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ABSTRACT 

A report of recent developments in the theory of the emanation thermal analysis of porous 
and dispersed solids is given. A mathematical model of the inert gas release during 
non-isothermal heating of solids is suggested, describing the behaviour of porous and 
dispersed solids on heating, taking into account the annealing of structure defects, recrystalli- 
zation, sintering and the chemical reaction between particles of the powdered sample. Using 
the suggested model, it was possible to characterize the disorder state of solids and its 
changes, diffusion phenomena in solids, the kinetics of surface and structure changes and the 
reaction of zinc ferrite formation from zinc oxide and iron(II1) oxide. 

INTRODUCTION 

Since Fhigge and Ziemens [l] formulated their theoretical concept of the 
release of radioactive inert gases from solids, labelled by their radioactive 
parents, emanation thermal analysis (ETA) has been widely used for the 
study of various solid-state processes. However, these wide and theoretical 
studies by later workers [2-61 did not fulfil the requirements of the experi- 
menters when dispersed or porous solids were studied by emanation thermal 
analysis. 

The expressions derived by Fltigge and Ziemens [l] are valid for isolated 
grains of solids, assuming a homogeneous and time-independent distribution 
of the inert gas in the sample. However, in emanation thermal analysis, the 
solids are commonly labelled by impregnation [7] of their surfaces with 
solutions containing radioactive parents of inert gases and a homogeneous 
distribution of the inert gas cannot be assumed. Also, a time-independent 
distribution of the inert gas in the sample cannot be assumed during the 
overall course of experiments during heating. 

Thermal Analysis Highlights, 8th ICTA, Bratislava, Czechoslovakia. 



246 

The relationship between the radon release rate due to the recoil effect of 
radon atoms and the surface area of finely dispersed samples has been 
discussed by Quet et al. [9]; Beckman [6] derived a relationship between the 
radon release rate due to the recoil and diffusion from solids of various 
shapes, assuming different concentration profiles under both stationary and 
non-stationary conditions. 

However, until recently a gap existed in the theory of the radon release 
rate from porous or finely dispersed solids during non-isothermal heating, 
taking into account the existence of various processes that may take place in 
the solids during heating. The aim of this paper is to outline the develop- 
ments in the theory of ETA applicable to the evaluation of solid-state 
processes in porous and dispersed solids. 

Theoretical consideration of the diffusion part of radon release. In porous 
solids, there appears to be a marked difference in the mobility of the 
emanating gas in the pores and in the solid matrix, at least at moderate 
temperatures. Therefore, we propose [1,2] to consider the emanation rate, cd, 
which is due to diffusion, as a sum of two different parts: 

‘d = ‘dp + ‘ds (1) 
Assuming a spherical shape of the solid under study (i.e., the smallest grain 
or, in a more abstract way of thinking, the elementary domain) and a 
cylindrical symmetry of the pore, the diffusion through the pore must follow 
the equation 

a+, XT t) 
at 

=D,(t) -$+;;+$ 
[ I 4 r, x, t) -A+-, x, t) + S(r, 0 

(2) 
where c is the concentration of the gas, r is the radial and x the axial 
coordinate, respectively, X is the decay constant and [ is the source 
function. If the pore reaches the surface, the part edp is then 

edp =?T J f(rp)r;D,(T)~ _ drp 
X-O 

where f( rp) is the distribution function of the pore radii, rp. The solution of 
eqn. (2) can be found [2,3], knowing the functions Or< t) and [(r, t). For 
D,(T), we propose a combination of the Knudsen relationship and the usual 
Arrhenius-type function, viz., 

T1/* + (1- eC8)dp exp( -E,/RT) 1 
where a is a coefficient allowing a correction for the corrugation of the pore, 
and 

p = b(l - r-,/i,) (5) 
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jr being the mean free range of the gas atoms in the pore medium; as for the 
pore radius, we have to allow for the sintering process at elevated tempera- 
ture, which has to follow some kinetics near to the form 

drP --= 
dT 

%r; exp( -E,JRT) 

where the exponent a has been given a value of 1. 
Considering now the source function l(T), we have to inspect three main 

cases: (a) simple diffusion through the solid matrix into the pore; (ii) direct 
emission of the atoms by recoil into the hollow of the pore; (iii) emission of 
the atoms into the opposite pore wall followed by escape of the atom via its 
own trajectory into the pore. We have shown [lo-121 the forms of the 
respective source functions for these three mechanisms and we have demon- 
strated that (i) is operative at elevated temperatures only, (ii) may be 
important in the case of the macropores and (iii) seems to be the main 
mechanism and is fairly sensitive to the defectivity of the material. With the 
explicit forms of these functions, the solution of eqn. (2) can be found 
[11,12] by the Fourier method. A good agreement of the resulting model 
with numerous experimental results has been found [12,13]. 

For the pure diffusion of the gas in the solid, i.e., eds, we assumed 
originally a perfect solid matrix, i.e., the diffusion equation 

(7) 

where r is now the radial coordinate of the spherical domain and the source 
function [, is given by the decay of the parent isotope. With defective 
materials, however, different sites with individual mobilities of the gas atoms 
can be operative, e.g., interstitials, point defects, clusters or linear defects. 
Such a situation can be met approximately by a multi-channel model [14] in 
which parallel diffusion is considered in a number of channels, which are 
assumed to interact by the exchange of the diffusant. Defining k,, as the 
probability of the transfer from the ith into the jth channel, the diffusion is 
described by the equation set 

where ci is the volume fraction of the ith channel. The solution of this 
equation set for a two-site medium was given at this conference [5] and it is 
shown that even in this simplest case the interplay of the channels can give 
rise to some anomalies in the ETA curve. 

This model can, however, be useful in a more general way. If the ith 
channel is, for instance, identified with the ith phase of the solid and if the 
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fraction ai is dependent on temperature and time or, more exactly, is the 
function 

a, =f(ai, e2,... s,, T, t> (9) 

the set (8) can be used [15] as a model of a phase transition. More 
specifically, the diffusion under the conditions of a simple phase transition 
can be described by the equations 

(lob) 

where S denotes the phase interface. Equations (10a) and (lob) describe the 
solid as a system of two mutually overlapping quasi-continua which are 
topologically interconnected by the interface S. In a more exact description, 
the original phase would be considered as a quasi-continuum, but the second 
as a statistical set of subdomains. The mathematical equivalent of such a 
description would be 

k,,D,, R,-r J ac,ci t) 

-70 
4Pb2 ap, dp 

P’ = P 

a+, t) 

4P)P2 ap, dP + 4(T) 
P’=P 

k2lD2, 
- Ts(P)P 

2wr7 t) 
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+ kl2Dl2 23C2(P, 0 
~T(p)p apt + Fhp3d P)<(T) 

(114 

(W 

where n(p) is the differential probability that the subdomain of the second 
phase will have a radius in the interval ( p, p + dp), and will be coincident 
with the sphere of the radius r. (lib) is, in fact, an infinite set of equations. 
It can be shown [15] that these two descriptions, represented by the sets (10) 
and (ll), are virtually equivalent. 

There is, however, one additional possibility. The interphase boundary, or 
rather some area in the vicinity of it, could represent a state of high disorder 
and could thus serve as a separate diffusion channel with an exceptional 
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mobility of the diffusant. This case is not included in our models and is 
under study now. 

Up to this point, a homogeneous spherical domain of the sample has been 
considered. Although this can be a sufficient approximation in some in- 
stances, a more general description of the morphology should be available. 
For this purpose, we propose [15] the quasi-continuum-domain (QCD) 
model, which represents a hierarchy of spherical domains, each of which is 
considered as a diffusional continuum in which a statistical set of spherical 
subdomains is randomly distributed (the tightly packed set of intercon- 
nected subdomains being the limiting case). If N,, is the number of the 
subdomains of (n - 1)th level in the domain of the nth level, the diffusion 
on the n th level is described by the approximate equation 

where c ,,_i,,(t) is the flux of the emanating gas from the ith domain of the 
(n - l)th level, which consists of the surface recoil part, corrected for the 
trapping of the atoms by other subdomains, and of the diffusional part 
specific for the subdomain; y,(r) is a factor expressing the probability of 
finding the boundary of the subdomain at the radius r. Expression (12) 
represents an equation set that can be simplified by two additional assump- 
tions: (i) on the ith level, we consider uniform domains only; (ii) the 
diffusion on the (i + 1)th level is much easier than on the ith level so that, 
for the i th level, it can be considered to be independent of the (i + 1)th 
level. The second approximation is crude but it simplifies greatly the 
technical side of the solution. Under these approximations and after trans- 
formation, we obtain 

where y, A 3N,,/4vRS. For D,,(T), we consider the Knudsen diffusion and 
the sintering of the domain in all cases except n = 1. The set (13) then has to 
be solved recursively, bearing in mind that E,, must contain the recoil term, 
which, according to our approximation, is (for n >, 2) 

c r.,z = + (%,1/rh.J2%,1 
where the factor 4 depends on geometrical relations. 

04) 

No interphase chemical reaction has been considered so far. The ETA 
technique has also been found, however, to be a powerful tool for the study 
of such reactions. Therefore, our latest endeavour has been to establish a 
feasible theory of the ETA of topochemical reactions. We assume a spherical 
grain of a species A with a homogeneous distribution of the parent nuclide, 
which is in the contact with n AB grains of the reaction partner B. In a 
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combination of the models of Jander [16] and Komatsu [17], we assume [18] 
that the product is formed in small contact domains at first but, owing to 
fast surface diffusion, is spread quickly over the whole surface of the grain; 
for its thickness h, we propose the equation 

dh CXDpJtl AB 

dt= h (1% 

where DiB-“’ is the diffusion coefficient of B in the product C, (Y is a constant 
and u is the contact surface, which can be shown to be [19] 

1c/ = 7~[ PDLB’R;(t - t,),‘kT]2’5 (16) 

where /? is a constant. 
Now, for the mathematical description of the gas diffusion from the 

reacting grain, the simplest way seems to be to express its diffusion coeffi- 
cient by a continuous function (alternatively, we would have to solve a set of 
partial differential equations); we propose to do it by the approximation 

D,t(r, T) = w&(T) + (I- a)D,(T) (17) 

where DC and DA are the diffusion coefficients of the gas in the product C 
or reactant A, respectively, and 

+= +arccotg[o(l- $+)I 074 

where h is the solution of eqn. 15; w ensures a steep, although continuous, 
change of De, on the boundary between A and C. The diffusion is now 
described by the equation 

$ =v[D,,(r, T)vc] -k+S(T) (18) 

which, in our approximation, can be transformed to 

where 

~=~D,(T)+($+O)[D,(T)-D,(T)] 

and 

(194 

1 (R,,- h)’ 
‘=’ (R,-h)Z+a2(R,-h-r)2 

(19b) 

For the diffusion coefficients, we generally assume an Arrhenius dependence 
on temperature. For product C, however, we have to allow for the structural 
change (e.g., crystallization) of its state which probably is, immediately after 
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reaction, highly disordered. Assuming first-order kinetics of such a restruc- 
turing, i.e., for the fraction E of the product in its original state, 

de Kc, -- 
dT 

= YE exp( -E,,/RT) 

we obtain for Dc 

- E$‘/RT - 2 
K J 

rexp( - E,,/RT)dT 
G 

- exp[- %yrexp(-EcS/Rr)dT 

1 
T, 

exp( - E&“/RT) (21) 

where the superscripts (1) and (2) denote the original and the changed states, 
respectively. The emanation rate due to diffusion is then 

ED 
= KD 

C 
Sack, T, 

i3r r=R, 
(24 

where S is the cross-section of the diffusion. The solution of eqn. (19) 
however, cannot be obtained in a closed form. We therefore solved it 
numerically and, by simulation, we have been able [18] to explain the 
existence of a typical peak on the ETA curve as a consequence of the 
reaction and restructuring process, both its form and its position being 
determined by the parameters of our model. 

Finally, we should mention the use of the developed models, i.e., of the 
curve fitting problem. We have made a fairly extensive study of this 
problem, part of which was presented at this conference [14]. It seems that 
even with a powerful algorithm, such as the program CURFIT which has 
been developed by our research group, the above limit of the unknown 
parameters that can reasonably be found is about six. 

We are currently attempting to find sensible approximations for routine 
work in the evaluation of the experimental data of emanation thermal 
analysis as published, e.g., in [20]. 

REFERENCES 

1 S. Fliigge and K.E. Ziemens, Z. Phys. Chem., B, 42 (1939) 179. 
2 D.G. Hurst, Report Atomic Energy Canada, No. 1550 (1962). 
3 H. Gaus, Z. Naturforsch., Teil B, 23a (1968) 985. 
4 G. DiCola and H.J. Matzke, Nucl. Inst. Methods, 57 (1967) 341. 
5 K.B. Zaborenko and O.A. Kapustin, Radiokhimiya, 16 (1974) 611,618. 
6 I.N. Beckman, Vistnik MGU, 3 (1984) 7. 
7 V. Balek, Thermochim. Acta, 22 (1978) 1. 
8 V. Balek and J. Tiilgyessy, Emanation Thermal Analysis and Other Radiometric Methods, 

Elsevier, Amsterdam, 1984, 302 pp. 



252 

9 C. Quet, J. Rousseau-Violet and P. Buss&e, Radiochem. Radioanal. Lett., 9 (1972) 9; 23 
(1975) 359. 

10 J. Kiii, V. BaIek and K. Habersberger, Proc. 9th, Czech. Conf. on Thermal Analysis, 
Bratislava, 1982, p. 143. 

11 J. Ki% and V. BaIek, Thermochim. Acta, 71 (1983) 175. 
12 J. Kiii and V. BaIek, Thermochim. Acta, 78 (1984) 377. 
13 V. BaIek and J. Ki%, Thermochim. Acta, 84 (1984) 335. 
14 J. Kiii, I.N. Beckman and V. Balek, Proc. 8th ICTA ‘85, Bratislava, Thermochim. Acta, 

92 (1985) 69. 
15 J. fii and V. BaIek, Thermochim. Acta, to be published. 
16 W. Jander, Z. Anorg. Chem., 163 (1927) 1. 
17 W. Komatsu, in G.M. Schwab (Ed.), Reactivity of Solids, EIsevier, Amsterdam, 1965,182 

PP. 
18 J. Kiwi and V. BaIek, to be published. 
19 J.E. Geguzin, The Physics of Sintering, Nauka, Moscow, 1984, p.43 (in Russian). 
20 T. Ishii. Proc. 8 ICTA ‘85, Bratislava, Thermochim. Acta, 93 (1985) 469. 


