INFLUENCE OF CO₂ PRESSURE ON THE KINETICS OF THERMAL DECOMPOSITION OF CdCO₃

J.M. CRIADO, M. GONZÁLEZ and M. MACIAS

Departamento de Química Inorgánica de la Facultad de Química de la Universidad de Sevilla and Departamento de Investigaciones Físicas y Químicas, Centro Coordinado del C.S.I.C., Sevilla (Spain)

(Received 17 July 1986)

ABSTRACT

Kinetic analysis was performed on TG and DTG diagrams for the reaction $CdCO_3 \rightarrow CdO + CO_2$ recorded at different pressures of CO_2 up to 26.66 kPa. The results obtained show that the thermal decomposition of $CdCO_3$ follows a first order kinetic law, regardless of the CO_2 pressure used for the experiments. The activation energy was found to increase upon increasing the pressure of CO_2 until a maximum is attained at 14 kPa. At higher pressures the activation energy decreases on increasing the CO_2 pressure. These results cannot be explained by considering the influence of the reverse reaction of formation of $CdCO_3$ because, under the experimental conditions, the ratio PCO_2/Peq is very close to zero. A mechanism that takes into account both the adsorption of CO_2 on the phase boundary and the influence of the heat transfer phenomena is proposed in order to interpret these results.

INTRODUCTION

A number of authors [1-5] have paid attention to the study of the thermal decomposition of carbonates having a calcite-aragonite structure because of their interest in ceramic reactions and as starting material for the preparation of oxides. There are a number of papers [6-11] on the kinetics of the decomposition of CdCO₃ whose results are summarised in Table 1. This table completes and updates the data reported by Brown, et al. [12].

Kinetic data of the thermal decomposition of CdCO₃ selected from the literature

Atmosphere	Mechanism	$E (kJ mol^{-1})$	Ref.	
Air	A ₃	91	6	
Air	R ₃	94	7	
Vacuum	-	151	8, 9	
CO ₂	-	163	10	
CO	_	151-669	10	
N ₂	R ₃	150	11	

Table 1 shows the lack of agreement among the kinetic parameters obtained by different authors. This behaviour could be explained by considering the influence of CO_2 generated during the salt decomposition that is strongly dependent on the experimental conditions [13,14].

The scope of the present paper is to study the influence of the CO_2 pressure on the thermal decomposition of $CdCO_3$ in order to achieve a better understanding of the reaction mechanism.

EXPERIMENTAL

The $CdCO_3$ used was supplied by Merck (r.a. grade). DTG curves were obtained by using a Cahn electrobalance, model RG, equipped with a derivation adapter Mark II. This system permits work both in high vacuum and under a gas atmosphere.

RESULTS AND DISCUSSION

Several isothermal thermogravimetric curves of the CdCO₃ recorded under a vacuum of 1.33×10^{-5} kPa at temperatures ranging from 550 to 610° C and weights of 23 mg are included in Fig. 1. The DTG curve of CdCO₃ obtained under a vacuum of 1.33×10^{-5} kPa at a heating rate of 6° C min⁻¹ and a starting sample of about 23 mg is shown in Fig. 2 together with the DTG curves obtained at different pessures of CO₂; all the other experimental conditions being identical.

The thermogravimetric analysis of $CdCO_3$ and the X-ray diffraction analysis of the final product of its thermal decomposition show that this reaction takes place through a single step yielding CdO. It has been demonstrated in a previous work [15] that the activation energy, *E*, obtained from isothermal experiments is independent of the kinetic model previously assumed for performing the calculation, while the value of *E* determined from non-isothermal experiments is strongly dependant on the previous assumptions regarding the kinetic model. Thus, an agreement between the values of these two parameters calculated from both isothermal and non-isothermal experiments is achieved when the proper reaction kinetic model is assumed for carrying out the calculations.

The best agreement between the kinetic parameters of the thermal decomposition of $CdCO_3$ determined from both isothermal and non-isothermal measurements has been obtained by assuming that this reaction fits a first order kinetic as shown in Tables 2 and 3.

For the kinetic analysis of the DTG curves of $CdCO_3$ in Fig. 2, obtained at different CO_2 pressures, the equation of Sharp and Wentworth [16] for a first order kinetics law must be modified in order to consider the presence of

Fig. 1. Isothermal thermogravimetric curves of CdCO₃ under a vacuum of 1.33×10^{-5} kPa at several temperatures.

 CO_2 . Therefore, bearing in mind the microreversibility principle, the following equation is deduced [17]:

$$d\alpha/dt = A \exp(-E/RT)(1-\alpha)(1-P/P_d)$$
(3)

where P is the pressure of CO₂ and P_d is the dissociation pressure of CdCO₃. From the P_d data calculated from ref. (18) the $\ln(1 - P/P_d) - 1/T$ plots included in Fig. 3 were obtained.

These plots show that, at the CO₂ pressures and temperatures at which the DTG curves in Fig. 2 were obtained, $(1 - P/P_d) = 1$. Therefore, eqn. (3) becomes:

$$d\alpha/dt = A \exp(-E/RT)(1-\alpha)$$
(4)

that is the same equation used for performing the kinetic analysis of the

Fig. 2. DTG curves of the thermal decomposition of $CdCO_3$ under different pressures of CO_2 .

data obtained under a high vacuum. The kinetic parameters calculated from the data included in Fig. 2 are shown in Table 4.

The plot of the values of the activation energy of the forward reaction of thermal decomposition of $CdCO_3$, against the pressure of CO_2 , included in Fig. 4, shows that *E* increases upon increasing the pressure of CO_2 until an asymptotic value is attained at about 14 kPa.

It is noteworthy that these results cannot be explained by considering the influence of the reverse rection of formation of $CdCO_3$, as we have mentioned before, $P/P_d = 0$.

Mechanism	E (kJ mol ⁻¹)	$A (\min^{-1})$	Correlation coefficient		
R ₁	- 8	2×10^{-3}	-0.39887		
R,	44	9×10^{1}	-0.98019		
R ₃	61	3×10^{3}	- 0.99503		
F ₁	96	4×10 ⁶	- 0.99900		
Å,	26	2	0.96668		
A ₃	2	1×10^{-2}	- 0.26120		
\mathbf{D}_{1}	88	3×10^{5}	-0.92921		
\mathbf{D}_{2}	132	2×10^{9}	- 0.97784		
D	185	2×10^{13}	- 0.99491		
D ₄	151	2×10^{10}	- 0.98666		

Kinetic	analysis	of	the	thermal	decomposition	of	the	CdCO ₁	in	vacuum
		~ -				~ -				

TABLE 3

TABLE 2

Kinetic analysis of the thermal decomposition of $CdCO_3$ from several isotherms obtained in high vacuum

Mechanism	$E (kJ mol^{-1})$	$A (\min^{-1})$	Correlation coefficient		
R ₁	69	3×10 ⁴	- 0.94834		
R,	79	4×10^{5}	-0.95877		
R ₃	82	1×10^{6}	-0.96153		
F ₁	90	9×10 ⁶	-0.96606		
A ₂	77	3×10^{5}	-0.95710		
A,	72	6×10^{4}	-0.95123		
D ₁	81	4×10^{5}	-0.96122		
D,	88	1×10^{6}	-0.96473		
D	99	7×10 ⁶	-0.96838		
D_4	92	9×10 ⁵	-0.96615		

The noticeable influence of CO_2 on the thermal decomposition of $CdCO_3$ could be interpreted if we consider that CO_2 is chemisorbed on the CdO surface. Therefore, if we assume that the active phase boundary is the surface not covered by CO_2 , the reaction rate would be expressed, according

TABLE 4

Kinetic parameters of the thermal decomposition of CdCO₃ under several pressures of CO₂

CO ₂ pressure (kPa)	$E (kJ mol^{-1})$	$A (\min^{-1})$	Correlation coefficient		
6.66	254	2×10^{18}	-0.99634		
13.33	293	2×10^{21}	- 0.99777		
20.00	175	5×10^{11}	-0.97430		
26.66	258	6×10^{17}	-0.99408		

Fig. 3. Plots of the $ln(1 - PCO_2/Peq)$ values calculated for CdCO₃ at different pressures of CO₂ as a function of the inverse temperature.

to a previous paper [19], by means of the following equation:

$$d\alpha/dt = A \exp(-E/RT)(1-\alpha)[1/(1+aP)]$$
(5)

where the adsorption coefficient a depends on the adsorption heat through the expression:

$$a = a_0 \exp(\lambda/RT) \tag{6}$$

where a_0 is constant.

As shown in ref. 19, one can deduce for eqn. (5) that the reaction decreases when CO_2 increases and, therefore, the DTG curves move to

Fig. 4. Plots of the values of the activation energy of the forward reaction of thermal decomposition of $CdCO_3$ as a function of the CO_2 pressure.

higher temperatures, in agreement with our results in Fig. 2. Moreover, from eqns. 5 and 6 it would be expected that the apparent activation energy, E_a , varies from $E_a = E$ (if $aP \ll 1$) to an asymptotic value $E_a = E + \lambda$ (if $aP \gg 1$), what is in agreement with both the plot shown in Fig. 4 and previous results reported in ref. 19.

REFERENCES

- 1 A. Berlin and R.F. Robinson, Anal. Chim. Acta, 27 (1962) 50.
- 2 P.K. Gallagher and D.W. Johnson, Thermochim. Acta, 6 (1973) 67.

- 3 K.M. Caldwell, P.K. Gallagher and D.W. Johnson, Thermochim. Acta, 18 (1977) 15.
- 4 Z. Kubas and J. Osewczyk, in I. Buzas (Ed.), Thermal Analysis, Heyden, London, 1975, Vol. 1, p. 17.
- 5 D. Dollimore and P.F. Rodgers, Thermochim. Acta, 30 (1979) 273.
- 6 S.R. Dharwadkar, A.B. Phadnis, M.S. Chandrasekharaiah and M.D. Kharkhanavale, J. Therm. Anal., 16 (1979) 3.
- 7 R.S.H. Mikhail, D. Dollimore, A.M. Kamel and N.R. Elnazer, J. Appl. Chem. Biotechnol., 23 (1973) 419.
- 8 E.A. Prodam and M.M. Pavlyuchenko, Geterogennye Khim. Reaktsii, 50 (1961).
- 9 E.A. Prodam and M.M. Pavlyuchenko, Geterogennye Khim. Reaktsii, 79 (1961).
- 10 M.M. Pavlyuchenko and E.A. Prodan, Geterogennye Khim. Reaktsii, 65 (1961).
- 11 Jb. Mu and D.D. Perlmutter, Thermochim. Acta, 49 (1981) 207.
- 12 M.E. Brown, D. Dollimore and A.K. Galwey, J. Chem. Soc. Faraday Trans. I, 70 (1974) 1316; Thermochim. Acta, 21 (1977) 103.
- 13 J.M. Criado and J.M. Trillo, J. Therm. Anal., 9 (1976) 3.
- 14 J. Paulik and F. Paulik, in G. Svehla (Ed.), Comprehensive Analytical Chemistry, Vol. XII, Part A, Elsevier, Amsterdam, 1981.
- 15 J.M. Criado, M. González, A. Ortega and C. Real, J. Therm. Anal., 29 (1984) 243.
- 16 J.H. Sharp and S.A. Wentworth, Anal. Chem., 41 (1969) 2060.
- 17 R. Altofer, Thermochim. Acta, 24 (1978) 17.
- 18 A.M. Martre, P. Pouillen and C. Petot, J. Therm. Anal., 9 (1976) 271.
- 19 I. Carrizosa, J.M. Criado and M. González, Ann. Quim., 73 (1977) 1437.