THE PHASE DIAGRAM PdCl₂-CdCl₂

P. TISSOT and H. LARTIGUE

Département de Chimie Minérale, Analytique et Appliquée, Université de Genève, 30, quai E. Ansermet, 1211 Genève 4 (Switzerland)

(Received 17 July 1986)

ABSTRACT

The melting points of $PdCl_2$ and $CdCl_2$ have been determined by DTA in a sealed crucible, to avoid any decomposition of the samples. The phase diagram $PdCl_2-CdCl_2$ was determined; it shows an eutectic at 45% of $PdCl_2$ (melting point 483°C).

INTRODUCTION

The study of the phase diagram $PdCl_2-CdCl_2$ has been undertaken within the framework of the synthesis of the boracite $Pd_3B_7O_{13}Cl$. This synthesis was proved impossible from Bi_2O_3 and $PdCl_2$. The only way was to use the mixture $Bi_2O_3-PdCl_2-CdCl_2$. To our knowledge, the phase diagram $PdCl_2-CdCl_2$ has not been studied, so that no data were available on the liquidus and the Ostwald-Miers domains, and on the solubility of the two chlorides in the solid state. Moreover the melting points of these two compounds published in the literature [1] are rather scattered, due to the decomposition of the chlorides near the melting temperature. We have then used sealed crucibles to avoid any decomposition.

EXPERIMENTAL

PdCl₂ (Fluka, purum) and CdCl₂ (Merck, zur Synthese) were dried thoroughly at 120°C under vacuum (less than 0.1 Torr) for 12 h. In the case of CdCl₂, a heating rate of 0.5°C min⁻¹ was used from 25 to 120°C to avoid the partial hydrolysis of the compound. The platinum crucibles were filled with ca. 50 mg in a dried glove box and sealed with the technique described before [2]. DTA was performed at 4°C min⁻¹, using a Mettler TA1 and a Mettler TA2000 apparatus.

Compound	Transition	<i>T</i> (°C)	ΔH (kJ mol ⁻¹)	
PdCl ₂	$\gamma \rightarrow \alpha$	402	10.5	
	$\alpha \rightarrow \beta$	487	1.7	
	$\beta \rightarrow \text{liq}$	677	21.9	
CdCl ₂	$sol \rightarrow liq$	567	46.6	

TABLE 1

Phase transitions of PdCl₂ and CdCl₂

RESULTS AND DISCUSSION

Pure PdCl, and CdCl,

Three modifications of $PdCl_2$ have been described [3]; the temperature and the ΔH of the transitions are indicated in Table 1. The temperature of the irreversible transition $\gamma \rightarrow \alpha$ is in good agreement with that found by Soulen and Chappell [4]. The $\alpha \rightarrow \beta$ transition at 487°C presents a very small ΔH ; it is reversible with a delay of ca. 22°C. In the literature [3] a small endothermic effect has been described at temperatures between 504 and 525°C. The melting point of PdCl₂ (677°C) is in good agreement with the value determined by Puche [5]. This author has found a ΔH of 21.9 kJ mol⁻¹ by the difference between the heat of dissociation in the liquid and the solid state. The value found in this work by DSC measurement is 40.5 kJ mol⁻¹.

Figure 1 shows the evolution of DTA curves for dry $CdCl_2$ carried out in an open crucible; a small peak appears at 554°C as early as the second

Fig. 1. DTA curves of dry CdCl₂ in an open crucible. Sample mass, ca. 50 mg; heating rate, 4° C min⁻¹; atmosphere, N₂, 5 l h⁻¹.

Fig. 2. Phase diagram PdCl₂-CdCl₂.

heating, and the melting point is progressively lowered. If the DTA is performed with dry $CdCl_2$ in a sealed crucible, one obtains a single peak at 567°C even after several cycles; however if the product is not dried as indicated above, one obtains a single peak at 557°C in a sealed crucible. These results show that it is very important to avoid the hydrolysis and the decomposition of $CdCl_2$ according to the reactions:

 $CdCl_2 + 2H_2O \rightarrow CdO + 2HCl and/or CdCl_2 \rightarrow Cd + Cl_2$

by the use of thoroughly dried CdCl₂ in a sealed platinum crucible.

Phase diagram

Figure 2 shows the phase diagram obtained by DTA. An eutectic is formed at 45% of PdCl₂ (melting point = 483°C). PdCl₂ seems very slightly soluble in CdCl₂ (< 1% at 400°C), when CdCl₂ is insoluble in PdCl₂.

REFERENCES

- 1 Gmelins Handbuch der anorganischen Chemie, Verlag Chemie, Berlin. No. 33 (CdCl₂) and No. 65 (PdCl₂).
- 2 I.H. Brunskill, P. Tissot and H. Schmid, Thermochim. Acta, 49 (1981) 351.
- 3 G. Thiele and K. Brodersen, Fortsch. Chem. Forsch., 10 (1968) 631.
- 4 R. Soulen and W.H. Chappell, J. Phys. Chem., 69 (1965) 3669.
- 5 F. Puche, Ann. Chim., 9 (1938) 247.