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ABSTRACT 

An effort has been made to relate several alternative means of defining the ideal 
composition dependence of the dielectric properties of binary mixtures of polar liquids with 
the various facets of thermodynamic ideality which constitute the generalization of Raoult’s 
law. Arguments are presented for considering Onsager’s equation for binary mixtures to 
represent a condition in which the mixing is regular but not ideal. 

INTRODUCTION 

We are interested in the derivation and application of procedures that 
may be used to extract, from the composition dependence of macroscopic 
properties of binary hydroorganic systems, clues as to the nature of the 
dynamic and structural characteristics of the patterns of molecular aggrega- 
tion which exist within their mixtures. 

The magnitude of the relative permittivity (static dielectric constant) of a 
liquid system is determined by the permanent electric moments and the 
polarizabilities of its individual molecules and by the nature of their mutual 
orientations. Given sufficient information about the properties of the indi- 
vidual molecules and an appropriate body of theory, it ought to be possible 
to translate the composition dependence of the dielectric constants of binary 
mixtures into some kind of information about the nature of the pattern or 
patterns of structural organization. 

When dealing with totally miscible binary systems, it is considered to be 
useful to examine the composition dependence of their excess properties. 
This requires the adoption of suitable choices of ideal composition depen- 
dence. For thermodynamic properties, ideal composition dependence may 
be defined within the context of the widely accepted generalization of 
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Raoult’s law [l]. For non-thermodynamic properties, such as dielectric 
constants and viscosities, it is necessary to look further afield for definitions 
of ideality. In such cases, one must rely upon theories which either offer an 
intuitive basis for defining ideality or provide a means of translating 
non-thermodynamic into quasi-thermodynamic quantities. 

In an earlier paper, we examined several different ways of defining ideal, 
and hence excess, dielectric properties for the acetonitrile-water and tertiary 
butanol-water systems [2]. While there appeared to be a broad level of 
consistency between the various definitions, there were sufficient disparities 
to introduce non-trivial ambiguities into the interpretations of detailed 
analyses of the different excess property curves. Since our choices of 
conditions for representing ideal dielectric behavior were to a large extent 
intuitive, we considered that it would be desirable to try to establish the 
theoretical implications of the differences between them. 

The components of the binary systems that were studied in ref. 2 are 
associated (structured) liquids. It was felt that, before attempting to address 
the question of the nature of dielectric ideality in mixtures of associated 
liquids, it would be appropriate to examine the much simpler case of binary 
mixtures of non-structured (Onsager) liquids. 

PURE ONSAGER LIQUIDS 

The derivation of Onsager’s theory of the dielectric constants of polar 
liquids has been presented and discussed in numerous books and articles 
[3,4]. It is expedient to review some of the assumptions upon which that 
theory is based and to reproduce some of the more important equations. 

A representative polar molecule is assigned to a spherical cavity with a 
volume of v/L, where v is the molar volume and L is Avogadro’s number. 
The cavity is assumed to be embedded in a homogeneous continuum of 
dielectric constant D. The assumption that the cavity is spherical, regardless 
of the shape of the molecule, is considered to be a relatively minor defect of 
the model, as is the decision to equate the cavity volume with the average 
molecular volume. Treating the environment of the representative molecule 
as a homogeneous continuum carries with it the implication that there is a 
random distribution of molecular orientations. This assumption must be 
regarded as a major flaw insofar as it would appear to be the major source 
of discrepancies between measured values of dielectric constants and the 
estimates that stem from Onsager’s theory [4-61. 

The representative molecule is assigned an isotropic 
which is related to the high-frequency dielectric constant 
the Lorentz-Lorenz equation: 

e = (0, - 1) 
3v M,+2) 

polarizability (Y, 
0, by means of 

(1) 
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Numerous suggestions have been made as to appropriate choices for the 
quantity 0, (see ref. 2). The common practice of equating 0, with the 
square of the optical refractive index neglects atomic (vibrational) polariza- 
tion and could well introduce non-trivial problems when dealing with liquids 
that have very low dielectric constants. 

The representative molecule is assigned a permanent dipole moment p, 
which is generally assumed to have the same value as in the gas phase. 
Onsager’s theory neglects quadrupole and higher electric moments. 

Of particular relevance to Onsager’s theory is the average dipole moment 
component (,Z) in the direction of an applied external field. Onsager 
assumed that for a sample of randomly oriented molecular dipoles that 
quantity is given by the Langevin-Debye equation: 

(4 
where ,??d (the directing field) is the effective potential gradient acting upon 
the orientation of the permanent dipole of the representative molecule. k is 
Boltzmann’s constant and T the absolute temperature. 

Onsager’s equation can be written in the form [3] 

30(0, - 1)V + L/.?D(2D + l)(D, + 2)2 

9kT~,(2D + 0,)’ 
(3) 

where co is vacuum permittivity. 
The equation may be rearranged to give the following important relation- 

ship: 

(4) 

where the quantity p is termed the molar orientational polarizability. 
Equation (4) offers a means of predicting the dielectric constant of a pure 

liquid of known dipole moment, density and refractive index. 
Onsager’s theory has been used to define and evaluate a quantity < (the 

molar dipolar free energy), which represents the contribution to the molar 
Helmholtz free energy which is due to the electrostatic interactions between 
the molecular dipoles and their homogeneous dielectric environments [4,6,7]. 

F = -RTLp’(D - l)(D, + 2) 
P V9kTq,(2D + D,) 

(5) 

BINARY MIXTURES OF ONSAGER LIQUIDS 

We which to explore expressions for the dielectric properties of binary 
mixtures of Onsager liquids. We shall assume that the mixing is isochoric: 
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where X, and X, are the respective mole fractions of components A and B 
and VA and & are the corresponding molar volumes. 

The molecules of the two components are assumed to be randomly 
distributed, giving rise to a homogeneous dielectric continuum. Both the 
pure liquids and their mixtures are assumed to have randomly oriented 
molecules. This seems to be consistent with the assumption that the entropy 
change, due to the mixing, is ideal: 

Ahs,= -R[XA ln(X,) +XB ln(X,)] (7) 

Since the entropy change of eqn. (7) is entirely due to the nature of the 
spatial distribution of the molecules, the contribution that is associated with 
the orientations and interactions of the molecular dipoles is assumed to be 
zero : 

As,=0 (8) 

Bottcher [4] has suggested that the net polarization of a binary mixture of 
this type may be represented by the following analog of eqn. (3): 

where PA may be evaluated from either pA or DA, using eqn. (4). 
We note that eqn. (9) may be rearranged in the form 

(D- l)T/= c X,v,(D,- 1) 
A+B 

+ 
x,~(D-D,)[(D,-1)(20+1)D~,-200,(0,,-1)’] 

DA(20 + %A )’ 

(10) 

Equation (9) provides a means of estimating an “ideal” value for the 
dielectric constant of a binary mixture of Onsager liquids, from the proper- 
ties of the pure components. It seems to be appropriate to refer to the 
behavior that is represented by eqn. (9) as “dielectric ideality”. 

One of the approaches to defining dielectric ideality that has received 
serious consideration is volume fraction additivity of the dielectric constants 
of the pure components [2,8,9]. This is equivalent to mole fraction additivity 
of the molar susceptibilities: 

(D - l)T/= X,v,(D, - 1) + X,v,(D, - 1) (11) 

We have ascertained that the values of the “ideal” dielectric constants of 
binary mixtures that are derived from eqn. (11) differ to only a modest 
extent from those obtained from eqn. (9). 
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One may define the molar orientational polarizability of a binary mixture 
by means of the following generalization of eqn. (4): 

where for an ideal binary mixture it is deemed to be reasonable to write [lo] 

0, = ( X,v,DmA + X,v,D,,)/V (13) 

Values of “ideal” molar orientational polarizabilities may be calculated 
by inserting the dielectric constant values of eqn. (9) into eqn. (12). 

In our earlier paper, we considered the expedient of assuming that the 
molar orientational polarizabilities of “ideal” binary mixtures are mole 
fraction adducts of those of the pure components: 

F = x,p, + x& (14) 

In the case that DmA = DmB, the combination of eqns. (9) and (12) is 
exactly equivalent to eqn. (14). Such is not the case, however, when the two 
high-frequency dielectric constants are different. In view of the manner in 
which the high-frequency dielectric constants appear in Onsager’s theory, it 
seemed to be appropriate to consider, as an alternative to eqn. (12) the 
following: 

P= c 
X,v,<D - %A)(20 + %A) 

(15) 
A+B D(%A+2)2 

We note that, if eqn. (14) is adopted as the preferred definition of 
dielectric ideality, eqns. (12) and (15) offer alternative means of estimating 
ideal dielectric constants of binary mixtures. 

Equation (5) provides us with a means of translating the dielectric 
constant of a pure polar liquid into a quasi-thermodynamic property. Since 
the concept of ideality has been explicitly defined for thermodynamic 
properties, one would like to be in a position to evaluate the molar dipolar 
free energies of binary mixtures. 

There appear to us to be two distinct approaches to defining “ideal” 
dipolar free energies. A reasonable analog to eqn. (5) is the expression 

e= -RT(D-1) c - 
A+B Cc20 + DmA) 

where D for the binary mixture might 
combination of eqns. (14) and (15). 

We commented earlier that Onsager’s 

06) 

be obtained from eqn. (9) or the 

model, as extended to the case of 
binary mixtures, satisfies the volumic (eqn. 6) and entropic (eqn. 7) require- 
ments for thermodynamic ideality. It does not, however, address the en- 
thalpic requirement which, in this context, would be given by 

AH,=AE,=O (17) 
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Combining eqns. (6), (8) and (17) leads to the condition that 

5 = x,F,, + x&i (18) 

It is interesting to compare the predictions of eqn. (18) with those of eqns. 
(9) and (16). 

CALCULATIONS AND DISCUSSION 

Numerous calculations were performed to estimate the properties of 
binary mixtures of components with a variety of combinations of values of 
the three quantities D, 0, and I? In Tables l-3 we have set out the results 
for a hypothetical mixture of components which have substantial differences 
in their dielectric constants and molar volumes and a non-trivial difference 
between their high-frequency dielectric constants. 

It is noted that the columns headed D(1) and D(I1) are virtually identical. 
Here, one is comparing the predictions of eqns. (11) and (9), respectively. 
Larger differences between the magnitudes of those two columns were 
encountered for other hypothetical mixtures, but in no case did they exceed 
0.1. It may thus be concluded that, within experimental accuracy, eqn. (11) 
is arithmetically equivalent, if not algebraically so, to eqn. (9). 

There are only modest differences between columns D(II1) and D(W) of 
Table 1. Such differences do not exist in the cases where the two high- 

TABLE 1 

Ideal dielectric constants 
DA=lO, DmA= 2.0, Q = 100 cm3 
D, = 80, DmB =1.8, Va = 20 

X* D(I) a D(I1) b D(II1) ’ D(IV d 

0 80.00 80.00 80.00 80.00 
0.1 55.00 55.01 56.57 56.68 
0.2 41.11 41.12 42.82 42.90 
0.3 32.27 32.28 33.78 33.83 
0.4 26.15 26.16 27.38 27.42 
0.5 21.67 21.67 22.62 22.64 
0.6 18.24 18.24 18.94 18.95 
0.7 15.53 15.53 16.01 16.02 
0.8 13.33 13.34 13.63 13.63 
0.9 11.52 11.52 11.66 11.66 
1. 10.00 10.00 10.00 10.00 

’ Based on eqn. (11). 
b Based on eqn. (9). 
’ Based on a combination of eqns. (14) and (15). 
d Based on a combination of eqns. (12) and (14). 
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TABLE 2 

Ideal molar orientational polarizabilities 

X, P(1) a (cm3) &II) b (cm3) 

0 219.1 219.1 
0.1 202.3 208.2 
0.2 189.2 197.2 
0.3 177.8 186.3 
0.4 167.3 175.4 
0.5 157.3 164.5 

X, P(1) a (cm3) P(I1) b (cm3) 

0.6 147.6 153.6 
0.7 138.1 142.7 
0.8 128.7 131.8 
0.9 119.3 120.9 
1. 110.0 110.0 

a Based on a combination of eqns. (9) and (15). 
b Based on eqn. (14). 

frequency dielectric constants are identical. That the differences are rela- 
tively small indicates that eqn. (12) is a fairly good approximation to eqn. 

(15). 
A fairly substantial difference is observed between the columns headed 

D(I1) and D(II1). This difference also disappears if the two high-frequency 
dielectric constants are identical. In this instance we are dealing with the 
distinction between two different ways of defining dielectric ideality. That 
distinction is also to be found between the two estimates of the “ideal” 
molar orientational polarizabilities given in the columns P(1) and P(I1) of 
Table 2. It is appropriate to note that Decroocq [8] has addressed the 
question of alternate definitions of dielectric ideality in this general context. 

When translated into molar dipolar free energies, using eqn. (16), the 
differences between the dielectric constant values of columns D(I1) and 

TABLE 3 

Ideal molar dipolar free energies (k.J) 

xA &III) = 

0 - 50.38 - 50.38 - 50.38 
0.1 - 45.38 - 45.42 - 45.78 
0.2 - 40.44 - 40.52 - 41.19 
0.3 - 35.58 - 35.67 - 36.60 
0.4 - 30.80 - 30.90 - 32.01 
0.5 - 26.11 - 26.21 - 27.42 
0.6 - 21.52 - 21.60 - 22.83 
0.7 - 17.04 - 17.11 - 18.24 
0.8 - 12.69 - 12.73 - 13.64 
0.9 - 8.49 - 8.51 - 9.05 
1. - 4.46 - 4.46 - 4.46 

a Based on a combination of eqns. (9) and (16). 
b Based on a combination of eqns. (14), (15) and (16). 
’ Based on eqn. (18). 
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D(II1) result in energy differences no greater than 0.1 kJ mall’. The 
appropriate values are given in columns F(I) and F(I1) of Table 3. The free 
energy values in both of those columns differ substantially from those in 
column F(III), which were calculated using eqn. (18). 

The differences between the molar dipolar free energy values of columns 
F(I) and F(II1) are particularly interesting. 

We noted that Onsager’s model, as extended to the case of binary 
mixtures, would appear to be consistent with the condition of entropic 
ideality (eqn. 7). Consequently it would seem to be reasonable to suggest 
that eqn. (9) represents the condition of regular mixing [ll] but not neces- 
sarily ideal mixing. That there should be such substantial differences be- 
tween the sets of energy values of columns F(1) and F(II1) indicates that, in 
the context of Onsager’s theory, there is a fairly substantial excess internal 
energy. In the event that the excess volume is zero, as assumed here, or 
relatively small, these calculations also indicate a substantial excess enthalpy 
of mixing. 

SUMMARY 

We have explored some of the implications of Onsager’s theory of polar 
liquids as extended to binary systems. It is apparent that the theory is 
approximately consistent with volume fraction additivity of the dielectric 
constants of the two components. In the case where the high-frequency 
dielectric constants of the two components are identical, Onsager’s theory is 
equivalent to mole fraction additivity of the molar orientational polarizabili- 
ties, but only in that case. 

It is argued that the Onsager-Bottcher equation for a binary mixture 
represents a condition of regular, but not necessarily ideal mixing. Indeed, 
consideration of the molar dipolar free energies of the mixture, as defined by 
Frohlich’s interpretation of the Onsager theory, leads to the conclusion that 
these mixtures have fairly substantial excess internal energies and enthalpies. 

We intend to extend this line of enquiry to the case of mixtures of 
associated liquids. 
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