THERMODYNAMICS OF DISSOCIATION OF DICARBOXYLIC ACIDS IN WATER + DIOXANE MIXTURES

UPENDRA NATH DASH

P.G. Department of Chemistry, Utkal University, Bhubaneswar 751004 (India)

MADAN KUMAR MISHRA

Research & Control Laboratory, Rourkela Steel Plant, Rourkela 769 011 (India) (Received 26 September 1986)

ABSTRACT

From e.m.f. measurements on cells of the type Pt, $H_2(g)|H_2A(m_1)$, $MHA(m_2)$, $MCl(m_3)|AgCl(s)$, Ag and Pt, $H_2(g)|MHA(m_1)$, $M_2A(m_2)$, $MCl(m_3)|AgCl(s)$, Ag, the first and second dissociation constants of oxalic, malonic, succinic, glutaric, adipic, tartaric and phthalic acids have been determined at different temperatures in water +10, +20, +30 and +40 mass% dioxane. From the temperature coefficients, the thermodynamic quantities, ΔG^0 , ΔH^0 , ΔS^0 and ΔC_p^0 , of the dissociation process have been evaluated. The results have been discussed in terms of preferential solvation of dicarboxylate ions. The additivity in the thermodynamic quantities for the homologous series of dicarboxylate from the ratio of the successive dissociation constants in these media.

INTRODUCTION

Dash and Nayak [1] reported the dissociation constants of a number of dicarboxylic acids in aqueous and non-aqueous media using cells without liquid junction potentials. Relatively little work has been done on the determination of the dissociation constants of dicarboxylic acids in mixed solvent systems [2]. However, Das et al. [3] made similar studies on *dl*-malic, maleic and fumaric acids in different water-dioxane mixtures over a range of temperatures and discussed the results in terms of ion-solvent interactions. With a view to extending such studies to other dicarboxylic acids, the present work has been undertaken to determine the dissociation constants of oxalic, malonic, succinic, glutaric, adipic, tartaric and phthalic acids in different water + dioxane compositions (10, 20, 30 and 40 mass% dioxane) at five different temperatures ranging from 15 to 35°C. For this purpose, cells of the type

Pt, $H_2(g) | H_2A(m_1)$, $MHA(m_2)$, $MCl(m_3) | AgCl(s)$, Ag (A)

and

Pt,
$$H_2(g) \mid MHA(m_1), M_2A(m_2), MCl(m_3) \mid AgCl(s), Ag$$
 (B)

where M is Na or K, and A is the dicarboxylate ion of the acid concerned, have been employed.

EXPERIMENTAL

Acids were Merck G.R. grade or B.D.H. AnalaR grade. Oxalic acid was dehydrated following the method of Paul and Srenathan [4] by heating to $100 \,^{\circ}$ C and keeping in a vacuum for 18-20 h. Other acids were stored in a vacuum desiccator before use. Mono- and disodium salts of the acids were prepared by adding calculated quantities of sodium bicarbonate solution to known weights of pure acids, evaporating the solutions to dryness on a steam bath, and recrystallizing the products from 95% alcohol. The salts were dried at $110-120 \,^{\circ}$ C for at least 2 h. Sodium oxalate (Merck) was dried at $125 \,^{\circ}$ C for more than 4 h. Sodium chloride (Merck) was dried at $100 \,^{\circ}$ C for 2 h. These salts were kept in a vacuum desiccator over calcium chloride until required. The purity of the mono- and disodium salts was checked by the standard method [3,5].

Dioxane (Merck) was purified by the method described earlier [6]. Solvents of different compositions were prepared (wt.%) from the conductivity water and purified solvent.

Preparation of the electrodes, setting up of the cells, e.m.f. measurements and other experimental details have been discussed earlier [7].

RESULTS AND DISCUSSION

The method of calculating the first dissociation constant, K_1 , was based on the evaluation of the "apparent" hydrogen ion molality of the solution as recommended by Harned and Owen for moderately weak acids [8]. The "apparent" hydrogen ion molality, m'_{H^+} , is related to the e.m.f.s of cell (A) by the equation [3]

$$-\log m'_{H^+} = \frac{(\Delta E)F}{2.3026RT} + \log m_3 + 2\log \gamma$$
$$= \frac{(\Delta E)F}{2.3026RT} + \log m_3 + \frac{2A\sqrt{Id_0}}{1 + Ba^0\sqrt{Id_0}}$$
(1)

where $\Delta E = E - E^0$.

The ionic strength, I, is given by $I = m_1 + m_3 + m'_{H^+}$. The values of I and m'_{H^+} were calculated as described earlier [9]. The "apparent" first dissociation constant, K'_1 , can be calculated from the expression

+ log
$$K'_1 = \log \frac{m'_{\rm H^+}(m_2 + m'_{\rm H^+})}{(m_1 - m'_{\rm H^+})} - \frac{2A\sqrt{Id_0}}{1 + Ba^0\sqrt{Id_0}}$$
 (2)

The "apparent" second dissociation constant, K'_2 , obtained from cell (B) can be expressed by [3]

$$-\log K_2' = \frac{(\Delta E)F}{2.3026RT} + \log \frac{m_1 m_3}{m_2} + \frac{2A\sqrt{Id_0}}{1 + Ba^0\sqrt{Id_0}}$$
(3)

where $\Delta E = E - E^0$. The ionic strength, *I*, in this case equals $m_1 + 3m_2 + m_3$. The true (thermodynamic) dissociation constants, K_1 and K_2 , were obtained from the intercepts of the plots of log K'_1 and log K'_2 , respectively, against the ionic strength.

The e.m.f. values of cell (A) were measured with different solutions, from $m_1 = 1.2 \times 10^{-3}$, $m_2 = 0.6 \times 10^{-2}$ and $m_3 = 0.9 \times 10^{-2}$ up to $m_1 = 1.1 \times 10^{-2}$, $m_2 = 1.2 \times 10^{-2}$ and $m_3 = 8.5 \times 10^{-2}$ mol kg⁻¹. The ionic strength of the solution in the cell was varied in the range $(1.5-10.3) \times 10^{-2}$ mol kg⁻¹. For the solutions of cell (B), m_1 , m_2 and m_3 were varied in the range $(0.6-1.4) \times 10^{-3}$, $(0.12-2.7) \times 10^{-3}$ and $(1.2-9.8) \times 10^{-2}$ mol kg⁻¹, respectively, and the ionic strength was in the range $(1.0-10.7) \times 10^{-2}$ mol kg⁻¹.

 E^{0} values of the silver-silver chloride electrode in various water + dioxane mixtures were obtained from the literature [10]. d_{0} values and the Debye-Hückel constants (A and B) were also obtained from the literature [8,10] or calculated on the molal scale by usual methods. The e.m.f. values obtained for cells (A) and (B) were corrected for the atmosphere [11].

Acid	Mass% dic	oxane				
	0 a	10	20	30	40	
Oxalic	4.5	5.0	5.5	5.0	5.0	
Malonic	5.0	5.5	5.0	5.5	6.0	
Succinic	5.0	6.0	6.0	5.5	5.5	
Glutaric	5.5	5.0	5.5	5.5	6.0	
Adipic	5.5 ^b	2.5	2.5	5.0	5.5	
Tartaric	5.0 °	2.5	3.5	4.0	6.0	
Phthalic	5.0 °	6.0	6.0	5.5	5.5	

TABLE 1

Values of ion size parameter, a^0 (Å), for different acids in water and water + dioxane mixtures

^a Ref. 15.

^b Ref. 1e.

° Ref. 16.

For the suitable choice of the ion size parameter (a^0) , the first dissociation constants of the acids at 25°C were calculated for various values of a^0 in the range 2.5–6.0 Å [3,9] at an interval of 0.5 Å following the principle

Values of pK_1 and pK_2 of oxalic, malonic, succinic, glutaric, adipic, tartaric and phthalic acids in water and water + dioxane mixtures at different temperatures

Mass%	Tempe	erature (°C)							
dioxane	15		20		25		30		35	
	$\overline{\mathbf{p}K_1}$	pK ₂	$\overline{\mathbf{p}K_1}$	p <i>K</i> ₂	$\overline{\mathbf{p}K_1}$	p <i>K</i> ₂	$\overline{\mathbf{p}K_1}$	p <i>K</i> ₂	p <i>K</i> ₁	p <i>K</i> ₂
Oxalic ac	id									
0 ^a	1.375	4.280	_	_	1.354	4.303	_	_	1.308	4.338
10	1.601	4.653	1.592	4.662	1.580	4.673	1.571	4.684	1.559	4.691
20	1.861	4.940	1.853	4.948	1.846	4.953	1.839	4.960	1.834	4.968
30	2.188	5.360	2.182	5.366	2.175	5.372	2.170	5.379	2.164	5.385
40	2.576	5.879	2.570	5.884	2.565	5.892	2.559	5.899	2.552	5.906
Malonic a	icid									
0 ^a	2.860	5.683	-	-	2.848	5.701	-	-	2.850	5.731
10	3.101	5.941	3.092	5.952	3.081	5.961	3.070	5.970	3.062	5.981
20	3.360	6.233	3.352	6.240	3.346	6.246	3.340	6.254	3.335	6.261
30	3.686	6.679	3.680	6.670	3.675	6.662	3.668	6.668	3.661	6.675
40	4.068	7.164	4.061	7.170	4.055	7.178	4.048	7.184	4.042	7.190
Succinic d	acid									
0 ^a	4.246	5.650	-	-	4.224	5.661	-	-	4.201	5.671
10	4.480	5.968	4.471	5.975	4.462	5.982	4.454	5.989	4.443	5.997
20	4.744	6.254	4.738	6.261	4.731	6.267	4.725	6.274	4.718	6.280
30	5.070	6.669	5.061	6.675	5.055	6.681	5.046	6.690	5.040	6.697
40	5.453	7.185	5.447	7.191	5.440	7.198	5.434	7.204	5.428	7.213
Glutaric a	ncid									
0 ^a	4.374	5.400	3.363	5.413	4.351	5.421	4.345	5.429	4.339	5.437
10	4.610	5.970	4.601	5.979	4.592	5.986	4.583	5.994	4.576	6.001
20	4.877	6.280	4.870	6.288	4.861	6.295	4.855	6.301	4.849	6.310
30	5.198	6.695	5.191	6.702	5.185	6.710	5.180	6.718	5.174	6.725
40	5.582	7.218	5.577	7.224	5.570	7.230	5.563	7.238	5.558	7.245
Adıpic ac	ıd									
0 6	4.444	5.914	4.421	5.937	4.419	5.974	4.404	6.016	4.393	6.030
10	4.612	6.137	4.604	6.143	4.598	6.152	4.590	6.160	4.583	6.167
20	4.916	6.445	4.910	6.450	4.902	6.456	4.893	6.461	4.886	6.468
30	5.240	6.859	5.235	6.865	5.228	6.871	5.221	6.878	5.216	6.886
40	5.628	7.376	5.621	7.383	5.615	7.389	5.610	7.395	5.604	7.401
Tartaric d	ncıd									
0 ^c	3.235	4.370	3.218	4.386	3.201	4.400	3.195	4.409	3.190	4.413
10	3.458	4.632	3.450	4.644	3.442	3.653	3.431	4.662	3.422	4.670
20	3.726	4.917	3.720	4.925	3.713	4.932	3.705	4.941	3.698	4.948
30	4.050	5.338	4.040	5.341	4.038	5.345	4.030	5.351	4.025	5.358
40	4.44 0	5.862	4.433	5.866	4.425	5.862	4.419	5.868	4.413	5.875

TABLE 2 (continued)

Mass%	Tempe	rature (°C)							
dioxane	15		20		25		30		35	
	p <i>K</i> ₁	p <i>K</i> ₂	$\overline{\mathbf{p}K_1}$	pK_2	$\overline{\mathbf{p}K_1}$	p <i>K</i> ₂	$\overline{\mathbf{p}K_1}$	p <i>K</i> ₂	$\overline{\mathbf{p}K_1}$	p <i>K</i> ₂
Phthalic a	acid									
0 °	3.022	5.475	3.004	5.483	2.981	5.492	2.960	5.498	2.943	5.506
10	3.226	5.706	3.220	5.712	3.213	5.720	3.205	5.726	3.196	5.734
20	3.496	5.981	3.489	5.987	3.483	5.994	3.476	5.998	3.470	6.005
30	3.822	6.385	3.815	6.391	3.810	6.398	3.802	6.404	3.796	6.411
40	4.215	6.900	4.208	6.907	4.201	6.915	4.194	6.927	4.185	6.936

^a Ref. 15.

^b Ref. 1e.

^c Ref. 16.

adopted by Roy et al. [12]. The same value of a^0 was used for the calculation of both K_1 and K_2 . Values of a^0 are reported in Table 1.

Any possible error in the values of pK_1 and pK_2 due to deviations from the Debye-Hückel equation under the experimental conditions was compensated by the extrapolation method used and the adjustment of the parameter a^0 in our calculation procedure.

The values of pK_1 and pK_2 obtained from the linear extrapolation of pK'_1 and pK'_2 to I = 0 in water + dioxane mixtures at different temperatures are listed in Table 2. These values, obtained at different temperatures, were fitted by a least-squares method to an equation recommended by Harned and Robinson [13]

$$pK = \frac{A}{T} + B + CT \tag{4}$$

The parameters A, B and C for pK_1 and pK_2 of the acids in different solvents are presented in Table 3. The average deviation between the observed values of pK_1 and pK_2 and those calculated from eqn. (4) are within the range 0.003-0.007 log units.

Using these parameters, the various thermodynamic quantities, ΔG^0 , ΔH^0 , ΔS^0 and ΔC_p^0 , for both the dissociation processes of the acids in their standard states have been calculated from the following equations:

$$\Delta G^{0} = 2.3026R(A + BT + CT^{2})$$
⁽⁵⁾

$$\Delta H^0 = 2.3026R(A - CT^2)$$
(6)

$$\Delta S^{0} = -2.3026R(B + 2CT)$$
⁽⁷⁾

$$\Delta C_p^0 = -2.3026R(2CT) \tag{8}$$

Table 4 shows the values of these quantities at 25°C.

The thermodynamic functions (on the mole fraction scale) for the transfer process at 25° C between water (w) and water + dioxane mixtures (s) of

Constant	Mass% dioxan	le							1
	10		20		30		40		
	pK1	pK_2	pK_1	pK_2	pK_1	pK2	pK1	pK_2	
Oxalic acid									i .
A	134.9615	98.8051	253.1224	255.5331	401.0748	57.2847	279.7928	516.7966	
В	1.2998	3.4253	0.5528	2.8337	-0.1603	4.6135	1.0368	2.0110	
$C \times 10^3$	- 0.5	3.0	1.4	4.2	3.3	1.9	1.9	7.2	
Malonic acid									
۲	38.9204	- 71.9265	379.1213	-228.7615	330.4923	651.4482	175.2313	- 526.0218	
B	3.4165	5.8609	1.1704	7.3681	1.8233	2.3574	3.2656	10.3194	
$C \times 10^3$	- 1.5	1.1	3.0	-1.1	2.4	1.7	0.6	- 4.6	
Succinic acid									
¥	270.1373	-406.1615	117.6450	- 383.9672	745.2714	103.0617	- 76.6356	630.2043	
В	3.1906	8.2824	4.3288	8.4609	0.4964	5.5678	6.3313	2.5546	
$C \times 10^3$	1.2	- 3.1	0	- 3.0	6.8	2.5	- 2.1	8.4	

Constants of eqn. (4) for the acids in water + dioxane mixtures

Glutaric acıd								
A	736.9237	-177.1878	- 353.8604	303.4140	-159.3887	- 406.9147	50.5096	305.4718
B	0.1562	6.7185	7.6628	33.8235	0609.9	8.9911	5.6005	4.7767
$C \times 10^3$	6.5	- 0.4	- 5.4	4.8	- 2.9	- 3.0	-0.6	4.7
Adipic acid								
А	238.1683	- 267.6307	60.2466	706.0023	- 192.4617	86.2801	155.5918	-513.6208
B	3.4270	7.4913	4.9563	1.3749	6.8905	5.8938	4.9238	10.4715
$C \times 10^3$	1.2	1.4	- 0.8	9.0	-3,4	2.3	0.5	-4.5
Tartaric acid								
¥	167.5328	- 62.7326	83.9073	- 187.9732	555.6751	246.7547	329.9320	474.0225
B	2.8585	4.5133	3.5730	5.7316	0.6613	3.3922	2.6163	2.5173
$C \times 10^3$	0	1.1	- 0.4	-0.5	5.0	3.7	2.3	5.8
Phthalic acid								
*	-217.7277	-124.3760	-40.6044	- 336.2553	27.4989	-711.5252	380.9511	378.7485
B	5.1215	6.1386	4.1433	7.9011	4.0121	10.7914	2.0831	3.8257
$C \times 10^3$	-3.9	0	-1.7	- 2.6	-0.9	- 6.7	2.8	6.1

(first and seco	nd dissociation	ı steps)							
Mass%	ΔG^0 (kJ mol	⁻¹)	ΔH ⁰ (kJ n	nol ⁻¹)	ΔS ⁰ (kJ mol	⁻¹ K ⁻¹)	ΔC_p^0 (kJ mol	- ¹ K ⁻¹)	
dioxane	lst	2nd	lst	2nd	1st	2nd	lst	2nd	
Oxalic acid									
0	7.700	24.393	5.354	- 5.319	- 0.008	- 0.099	0.058	-0.319	
10	10.848	26.531	3.433	- 3.208	-0.019	-0.100	0.006	-0.034	
20	10.379	28.196	2.465	- 2.248	- 0.027	-0.102	- 0.016	-0.048	
30	11.153	30.644	2.067	-2.133	- 0.035	-0.109	- 0.038	-0.022	
40	14.500	33.604	2.126	-2.346	- 0.042	-0.120	- 0.022	- 0.082	
Malonic acid									
0	16.225	32.525	0.366	- 4.594	-0.053	-0.125	-0.212	-0.214	
10	17.684	33.927	3.295	- 3.246	- 0.048	-0.125	0.017	-0.013	
20	19.034	35.782	2.157	- 2.509	-0.057	-0.129	-0.034	0.013	
30	20.807	37.988	2.246	0.401	-0.062	-0.126	-0.027	-0.081	
40	23.003	40.978	2.334	- 2.249	-0.069	-0.145	-0.007	0.053	
Succinic acid									
0	23.992	32.273	3.743	-2.097	- 0.068	-0.115	-0.040	- 0.057	
10	25.411	34.202	3.131	- 2.505	- 0.075	-0.123	-0.014	0.035	
20	26.946	35.815	2.252	-2.250	-0.083	-0.128	0	0.034	
30	28.658	37.984	2.706	- 2.277	-0.087	-0.135	-0.078	- 0.029	
40	31.080	40.916	2.102	- 2.215	-0.097	-0.145	0.024	- 0.096	

Standard thermodynamic quantities (molal scale) for the dissociation process of carboxylic acids in water and water + dioxane mixtures at 25°C

	-0.010	0.005	- 0.055	0.034	- 0.054		- 0.686	0.016	-0.103	-0.026	0.051		0.037	-0.013	0.006	- 0.042	- 0.066		-0.029	0	0.030	0.076	-0.070
	-0.171	-0.074	0.062	0.033	0.007		0.017	-0.014	0.00	0.039	- 0.006		- 0.512	0	0.005	-0.057	- 0.026		- 0.076	0.045	0.019	0.010	-0.032
	-0.111	-0.124	-0.128	-0.138	- 0.145		-0.150	-0.127	-0.129	-0.139	-0.149		- 0.079	-0.099	-0.104	-0.107	-0.114		-0.112	-0.118	-0.122	-0.130	-0147
	-0.071	-0.077	-0.085	-0.093	-0.100		- 0.072	-0.079	-0.086	-0.093	-0.100		-0.032	-0.055	-0.064	-0.070	- 0.076		-0.034	-0.054	-0.060	-0.067	-0.072
	- 2.579	-2.711	-2.351	-2.689	- 2.142		-10.780	-2.743	- 1.784	-2.258	-2.182		1.483	- 3.070	-2.748	-1.566	-0.785		-2.316	-2.381	-2.016	-2.230	- 3 110
	3.657	3.057	2.409	1.878	1.986		3.830	2.519	2.513	2.095	2.128		8.899	3.207	2.286	2.137	2.405		6.734	2.461	2.112	2.056	7 537
	30.777	34.254	35.779	38.401	41.086		34.030	35.231	36.657	39.183	42.253		25.056	26.415	28.248	30.364	33.294		31.181	32.637	34.215	36.550	TTT DT
	24.700	26.048	27.759	29.720	31.895		25.200	26.148	28.066	29.843	31.916		18.312	19.513	21.308	22.909	25.150		16.890	18.418	19.968	21.883	73 035
Glutaric acid	0	10	20	30	40	Adipic acid	. 0	10	20	30	40	Tartaric acid	0	10	20	30	40	Phthalic acid	0	10	20	30	UD

Ś
ш
Ц
B
∢
F

Standard thermodynamic quantities (mole fraction scale) for the transfer of acids from water to water + dioxane mixtures at 25°C (first and second dissociation steps)

Mass%	ΔG ⁰ (kJ m	lol ⁻¹)	ΔH_t^0 (kJ mo	(₁₋₁)	ΔS ⁰ (kJ mo	l ⁻¹ K ⁻¹)	ΔC_{pt}^{0} (kJ mo)	[⁻¹ K ⁻¹)	1
dioxane	lst	2nd	<u>1st</u>	2nd	lst	2nd	lst	2nd	
Oxalic acid									1
10	2.739	1.729	- 1.921	2.111	-0.016	0.001	- 0.052	0.285	
20	1.822	2.946	-2.889	3.071	-0.016	0.001	- 0.074	0.271	
30	2.103	4.901	-3.287	3.186	-0.018	0.006	- 0.094	0.297	
40	4.902	7.313	- 3.228	2.973	-0.027	-0.015	- 0.080	0.237	
Malonic acid									
10	1.050	0.993	2.929	1.348	0.006	0.001	0.229	0.201	
20	1.952	2.400	1.791	2.085	-0.001	-0.001	0.178	0.227	
30	3.232	4.113	1.880	4.995	- 0.005	0.003	0.185	0.133	
40	4.880	6.555	1.968	2.345	-0.010	-0.014	0.205	0.267	
Succinic acid									
10	1.010	1.520	-0.612	-0.408	-0.005	-0.007	0.026	0.092	
20	2.097	2.685	-1.491	-0.153	-0.012	-0.010	0.040	0.091	
30	3.316	4.361	-1.037	-0.180	-0.015	-0.015	-0.038	0.028	
40	5.190	6.745	-1.641	-0.118	-0.023	-0.023	0.064	-0.039	

Futaric acid								
0	0.939	3.068	-0.600	-0.132	- 0.005	-0.011	0.097	0.015
0	2.202	4.145	-1.248	0.228	-0.012	-0.013	0.233	-0.045
0	3.670	6.274	- 1.779	-0.110	-0.018	-0.021	0.204	0.044
0	5.297	8.411	- 1.671	0.437	- 0.023	-0.027	0.178	-0.044
Adipic acid								
0	0.539	0.792	-1.311	8.037	-0.006	0.024	-0.031	0.702
0	2.009	1.770	-1.317	8.996	-0.011	0.024	- 0.008	0.583
00	3.293	3.803	-1.735	8.522	-0.017	0.016	0.022	0.660
10	4.818	6.325	-1.702	8.598	-0.022	0.008	-0.023	0.737
Tartaric acid								
0	0.792	0.950	-5.692	-4.553	-0.022	-0.019	0.512	-0.050
0	2.139	2.335	-6.613	-4.231	- 0.029	-0.022	0.507	-0.031
0	3.247	3.958	-6.762	- 3.049	-0.034	-0.024	- 0.005	- 0.079
01	4.940	6.340	- 6.494	- 2.268	-0.038	-0.029	0.486	-0.103
phthalic acid								
0	1.119	1.047	- 4.273	-0.065	-0.018	-0.004	0.121	0.029
07	2.221	2.177	- 4.622	0.030	-0.023	-0.007	0.095	0.059
0	3.643	4.019	- 4.678	0.086	-0.028	-0.013	0.086	0.105
0	5.147	6.365	-4.202	0.803	-0.031	-0.024	0.044	- 0.041

Mass%	Acid						
dioxane	Oxalic	Malonic	Succinic	Glutaric	Adipic	Tartaric	Phthalic
0	1.31	1.36	4.48	6.45	7.94	5.28	1.66
10	1.39	1.52	3.76	4.36	3.63	5.67	1.81
20	1.58	1.72	4.24	4.76	4.16	6.41	2.07
30	1.79	1.94	4.53	5.02	4.53	6.58	2.33
40	2.05	2.22	4.84	5.29	4.77	6.70	2.65

Values of γ (Å) in water and water + dioxane media at 25°C

various compositions of the first and second dissociation processes of acids are listed in Table 5. The results are expressed on the mole fraction scale in order to eliminate any change in the thermodynamic quantities due to concentration changes. For this purpose the dissociation constant on the mole fraction scale has been calculated from the standard equation:

$$pK(N) = pK(m) + 2\log(1000/M)$$
(9)

where \overline{M} is the mean molar mass of the mixed solvent. The standard Gibbs free energy of transfer is given by the expression:

$$\Delta G_{t}^{0}(N) = 2.3026 RT [_{s} pK(N) - _{w} pK(N)]$$
(10)

The values of other thermodynamic quantities for the transfer process (on the mole fraction scale) have been obtained from the usual relationships.

The distance r (Å) between the carboxylic groups of the acids in different solvents have been calculated from Bjerrum's equation [14]:

$$\ln(K_1/4K_2) = Ne^2/RTDr \tag{11}$$

where D is the effective dielectric constant of the solvent and r is the distance between the carboxylic groups. Other terms have their usual significance. The values are presented in Table 6 along with that in water.

A perusal of Table 2 shows that the pK values of the acids are higher in water + dioxane mixtures than in water and tend to increase with increasing dioxane content. The magnitude of this increase is in accordance with the electrostatic charging (Born) effect corresponding to the monotonic increase of D^{-1} or the composition of water + dioxane mixtures. As observed, the pK values of the acids in various water + dioxane solvents increase with lengthening of the aliphatic carbon chain, i.e., with increasing CH₂ groups in the carboxylate ion. It can be concluded that the strength of the homologous dicarboxylic acids gradually decreases with an increase of the carbon chain length. However, the order of pK_1 values for glutaric and adipic acids and pK_2 values for malonic, succinic and glutaric acids is opposite in water to that in water + dioxane mixtures. This deviation might be due to the difference in anionic solvation of the dicarboxylate ions in

these solvents. A comparison between the pK values of succinic, dl-malic [3] and tartaric acids shows that the introduction of a hydroxyl group into succinic acids favours ionization, i.e., pK values decrease with an increase in hydroxyl groups.

It is of interest to study the additive substituent effects for the proton ionization of the mono- and di-CH₂ substituted oxalic acids, and of the mono- and di-OH substituted succinic acids in these mixed solvents. Considering the CH₂ and OH substituent changes

 $\begin{array}{c} \text{COOH} & \delta_{pK_2} & \text{COOH} \\ \xrightarrow{} & \text{COOH} & \text{COOH} \\ \xrightarrow{} & \text{COOH} & \text{COOH} \\ & pK^{(CH_2)_2} \end{array}$ COOH $\delta p K_1$ \rightarrow CH₂<COOH pK^{0} $\mathsf{p}K^{CH_2}$

and

 $\begin{array}{cccc} \mathrm{CH}_2\mathrm{-COOH} & _{\delta pK_1} & \mathrm{CH}(\mathrm{OH})\mathrm{-COOH} & _{\delta pK_2} & \mathrm{CH}(\mathrm{OH})\mathrm{-COOH} \\ | & \rightarrow & | & \rightarrow & | \\ \mathrm{CH}_2\mathrm{-COOH} & & \mathrm{CH}_2\mathrm{-COOH} & & \mathrm{CH}(\mathrm{OH})\mathrm{-COOH} \end{array}$ рК^{ОН} $\mathbf{p}K^{(\mathrm{OH})_2}$ $\mathbf{p}K^0$

perfect additivity in pK would give pK_1 equal to pK_2 . If $pK_1 = pK_2$, i.e., $pK^X - pK^0 = pK^{(X)_2} - pK^X$, where $X = CH_2$ or OH, then $pK^{(X)_2} = 2pK^X$ $-pK^0$. The pK_1 values of oxalic, malonic (mono-CH₂-substituted) and succinic (di-CH₂-substituted oxalic) and the pK_2 values of succinic, malic (mono-hydroxy succinic) and tartaric (di-hydroxy succinic) acids are in good agreement with the additivity on the corresponding proton ionizations in these mixed solvents.

The similarity between ΔH^0 values of the dissociation processes of the acids (except ΔH_2^0 for malonic acid in 30 wt% dioxane and tartaric acid in water) in water and water + dioxane mixtures indicates similar pattern of solvation in these solvents. The ΔS^0 values are expected to be negative in these solvents but in water + dioxane mixtures they are more negative. This may be due to the fact that the degree of reorientation and partial immobilization of the dioxane and water molecules by H^+ ion and mono- and di-carboxylate ions is greater in water + dioxane mixtures than in pure water. As apparent from Table 4, the standard changes in the heat capacity, ΔC_p^0 for both of the dissociation processes appear to be different in few solvents. This difference might be attributed to the contrary variation of ΔS^0 and ΔC_p^0 in the solvents concerned. Since electrostatic interactions between ions and dipolar solvent molecules should orient solvent molecules in the proximity of the ions, and hence should lead to decreased entropy and heat capacity (which is not observed in some cases), it is expected that there may be other interactions involved, such as "hydrophobic interactions", between the undissociated acid molecule and the water + dioxane solvent structure which may lead to the opposite trends in ΔS^0 and ΔC_p^0 values. The increased positive values of ΔG_t^0 (except the first dissociation step of

oxalic acid in 10 wt% dioxane) for the transfer from water to the mixed

solvent of increased dioxane content indicate that the acids have more energy in the mixed media than in water. Unlike ΔG_t^0 values, ΔH_t^0 and ΔS_t^0 values are increasingly negative (except a few cases) in water + dioxane mixtures. This points to the fact that the mixed solvents are less associated (i.e., more structured) than pure water, thereby promoting an increased order in the solvation shells of the H⁺ ion and the acid anions formed on dissociation in the mixed solvents.

The values of r, the distance between the carboxyl groups, are found to be more in water + dioxane mixtures than in water (except for succinic in 10 and 20 wt% dioxane and glutaric and adipic acids in all solvents). The values are presented in Table 6. As observed, the values of r in water + dioxane mixtures increase with increasing dioxane content. This increase may be attributed to the change in orientation of solvent molecules accompanying the acid ion-solvent interactions and solvation. When the proportion of dioxane increases, more solvent molecules (having two non-adjacent dipolar groups) enter the ionic field, thereby promoting a sort of ordering effect in the medium, and reducing the freedom of solvent molecules which would probably cause a separation between the carboxyl groups. This is reflected in the increased r value between the carboxyl groups with increasing dioxane content, contrary to the fact that the electrostatic interaction between the carboxyl groups and formation of intermolecular hydrogen bond in the acid ion are indicative of high K_1/K_2 ratios in these acids.

REFERENCES

- 1 a U.N. Dash, Aust. J. Chem., 28 (1975) 1653; 29 (1976) 1609; 30 (1977) 2621.
 - b U.N. Dash, Thermochim. Acta, 27 (1978) 379.
 - c U.N. Dash, J. Electroanal. Chem., 98 (1979) 297.
 - d B. Nayak and U.N. Dash, Aust. J. Chem., 26 (1973) 115.
 - e U.N. Dash and U.K. Nayak, Can. J. Chem., 58 (1980) 323.
- 2 H.N. Parton and A.J.C. Nicholson, Trans. Faraday Soc., 35 (1939) 546.
- 3 R.C. Das, U.N. Dash and K.N. Panda, J. Chem. Soc., Faraday Trans. 1, 76 (1980) 2152.
- 4 R.C. Paul and B.R. Srenathan, Indian J. Chem., 4 (1966) 348.
- 5 A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longmans, London, 1961.
- 6 U.N. Dash, D. Satyanarayan, K.N. Panda, S.C. Rath and S.K. Mohanty, Thermochim. Acta, 30 (1979) 217.
- 7 R.C. Das, U.N. Dash and K.N. Panda, Thermochim. Acta, 32 (1979) 301.
- 8 H.S. Harned and B.B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold, New York, 1967.
- 9 R.C. Das, U.N. Dash and K.N. Panda, Can. J. Chem., 54 (1976) 1916.
- 10 P.K. Das and U.C. Mishra, Electrochim. Acta, 22 (1977) 59.
- 11 G.J. Janz, in D.J.G. Ives and G.J. Janz (Eds.), Reference Electrodes, Academic Press, London, 1961.
- 12 R.N. Roy, R.A. Robinson and R.G. Bates, J. Am. Chem. Soc., 95 (1973) 8231.
- 13 H.S. Harned and R.A. Robinson, Trans. Faraday Soc., 36 (1940) 973.
- 14 N. Bjerrum, Z. Phys. Chem., 106 (1923) 219.
- 15 S.P. Kalia, Ph.D. Thesis, Sambalpur University, 1986.
- 16 U.N. Dash, private communication.