INFINITE DEFICIENCY IN FRÉCHET MANIFOLDS

BY T. A. CHAPMAN

Abstract. Denote the countable infinite product of lines by s, let X be a separable metric manifold modeled on s, and let K be a closed subset of X having Property Z in X, i.e. for each nonnull, homotopically trivial, open subset U of X, it is true that $U \setminus K$ is nonnull and homotopically trivial. We prove that there is a homeomorphism h of X onto $X \times s$ such that h(K) projects onto a single point in each of infinitely many different coordinate directions in s. Using this we prove that there is an embedding of X as an open subset of s such that K is carried onto a closed subset of s having Property Z in s. We also establish stronger versions of these results.

1. **Introduction.** Let s denote the countable infinite product of open intervals and let I^{∞} denote the Hilbert cube, i.e. the countable infinite product of closed intervals. A *Fréchet manifold* (or *F-manifold*) is defined to be a separable metric space having an open cover by sets each homeomorphic to s.

Let α be a set of positive integers and for the remainder of the paper let T denote s or I^{∞} . A subset K of T is said to be deficient with respect to α in T provided that for each of the coordinate intervals which is indexed by an element of α , K projects onto a single interior point of the interval. If α is infinite, then we say that K has infinite deficiency in T. More generally let X be a space and let α be as given above. A subset K of $X \times T$ is said to be deficient with respect to α in $X \times T$ provided that $\pi_T(K)$ is deficient with respect to α in T, where π_T is the projection of $X \times T$ onto T. We say that K has infinite deficiency in $X \times T$ provided that $\pi_T(K)$ has infinite deficiency in T. We remark that if T is any T-manifold, then in [4] it is proved that T, T, T, and T are all homeomorphic.

A closed set K in a space X is said to have $Property\ Z$ in X if, for each nonempty, homotopically trivial, open set U in X, it is true that $U \setminus K$ is nonempty and homotopically trivial. In [2] it is proved that a closed subset K of T has Property Z in T if and only if there exists a homeomorphism h of T onto itself such that h(K) has infinite deficiency in T.

If X is any F-manifold and K is a closed subset of $X \times T$ having infinite deficiency in $X \times T$, then it is easy to show that K has Property Z in $X \times T$. This follows from the apparatus used in the proof of Theorem 9.1 of [2], which says that infinite deficiency in T implies Property Z in T. The question of Property Z implying

Presented to the Society, November 22, 1969; received by the editors July 18, 1969. AMS Subject Classifications. Primary 5420, 5425.

Key Words and Phrases. The Hilbert cube, Fréchet manifolds, Property Z, infinite deficiency.

Copyright © 1970, American Mathematical Society

infinite deficiency in $X \times s$ was raised at the conference on infinite-dimensional topology held at Cornell University, January 5-7, 1969, and it appears as Problem 11 in the report of that meeting, *Problems in the topology of infinite-dimensional manifolds*. In this paper we solve Problem 11 by proving the following theorem.

THEOREM 1. Let X be any F-manifold and let $\{K_i\}_{i=1}^{\infty}$ be a collection of closed subsets of $X \times T$, with each K_i having Property Z in $X \times T$. Then there is a homeomorphism h of $X \times T$ onto itself and a collection $\{\alpha_i\}_{i=1}^{\infty}$, where the α_i 's are pairwise-disjoint, infinite sets of positive integers, such that for all i > 0, $h(K_i)$ is deficient with respect to α_i in $X \times T$.

As an easy consequence of Theorem 1 and the preceding comments we obtain the following characterization of Property Z in F-manifolds.

COROLLARY. Let X be any F-manifold and let K be a closed subset of X. A necessary and sufficient condition for K to have Property Z in X is that there exists a homeomorphism of X onto $X \times T$ carrying K onto a set having infinite deficiency in $X \times T$.

In [8] David W. Henderson proved that any F-manifold can be embedded as an open subset of s. In Problem 10 of Problems in the topology of infinite-dimensional manifolds the following question was raised: If, for each i>0, K_i is a closed subset of an F-manifold X and each K_i has Property Z in X, is there an open embedding $h: X \to s$ such that, for each i>0, $h(K_i)$ is closed in s? In our next theorem we use Henderson's open embedding theorem, modify it with our Theorem 1, and obtain a solution to Problem 10.

THEOREM 2. Let X be any F-manifold and let $\{K_i\}_{i=1}^{\infty}$ be a collection of closed subsets of X, with each K_i having Property Z in X. Regard $s = s_1 \times s_2$, where s_1 and s_2 are copies of s, and let $f: X \to s_1$ be any open embedding. Then there exists an embedding $h: X \to s$ such that $h(X) = f(X) \times s_2$ and $h(K_i)$ is a closed subset of s having infinite deficiency in s, for all i > 0.

We note that if X is any F-manifold not homeomorphic to s, then there is no open embedding $h: X \to s$ such that h(X) is closed in s. Thus the assumption of Property Z in Theorem 2 cannot be omitted.

The author wishes to thank R. D. Anderson for pointing out that Theorem 2 follows from Theorem 1 and for helpful comments on an earlier version of this paper.

2. **Preliminaries.** We will regard the Hilbert cube I^{∞} as a canonical compactification of s in which $I^{\infty} = \prod_{i=1}^{\infty} I_i$ and $s = \prod_{i=1}^{\infty} I_i^0$, where for each i > 0 we have $I_i = [-1, 1]$ and $I_i^0 = (-1, 1)$. The metric we use for I^{∞} and s is given by

$$d((x_i), (y_i)) = \left(\sum_{i=1}^{\infty} 2^{-i} \cdot (x_i - y_i)^2\right)^{1/2},$$

where (x_i) , $(y_i) \in I^{\infty}$. Whenever no confusion arises we will use d to denote the metric of any space under consideration.

Let N denote the set of positive integers and for each $i \in N$ let τ_i be the projection of I^{∞} onto I_i . If $\alpha \subseteq N$ define $I^{\alpha} = \prod_{i \in \alpha} I_i$, $s^{\alpha} = \prod_{i \in \alpha} I_i^0$, and let τ_{α} be the projection of I^{∞} onto I^{α} . For each i > 0 let $W_i^+ = \tau_i^{-1}(1)$, $W_i^- = \tau_i^{-1}(-1)$, and $W_i = W_i^+ \cup W_i^-$. We call W_i^+ and W_i^- the *endslices* of I^{∞} in the *i*-direction.

A subset of I^{∞} of the form $\prod_{i=1}^{\infty} J_i$ is called a *closed basic set in* I^{∞} provided that J_i is a closed subinterval of I_i , for each i, and $J_i = I_i$ for all but finitely many i. An open basic set in s is the intersection of a closed basic set in s with s.

A homeomorphism h of I^{∞} onto itself is said to be a β^* -homeomorphism provided that h(s) = s. The pseudo-boundary of I^{∞} is $B(I^{\infty}) = I^{\infty} \setminus s$ and the pseudo-interior of I^{∞} is s.

If $\{f_i\}_{i=1}^{\infty}$ is a sequence of homeomorphisms of a space X onto itself for which the sequence $\{f_i \circ f_{i-1} \circ \cdots \circ f_1\}_{i=1}^{\infty}$ converges pointwise to a homeomorphism f of X onto itself, then we call f the *infinite left product* of $\{f_i\}_{i=1}^{\infty}$ and write $f = L \prod_{i=1}^{\infty} f_i$.

We list below three convergence procedures that we will need to insure the existence of an infinite left product of homeomorphisms. The first of these is Lemma 2.1 of [2] and the second is Theorem 2 of [5]. The third is an easy consequence of the apparatus used in [5] to establish the second.

Convergence Procedure A. For each homeomorphism g of a compact metric space X onto itself and each $\varepsilon > 0$ let

$$\eta(g, \varepsilon) = \text{g.l.b.} \{d(g(x), g(y)) \mid d(x, y) \ge \varepsilon\}.$$

If $\{f_i\}_{i=1}^{\infty}$ is a sequence of homeomorphisms of X onto itself such that

$$d(f_i, id) < \min((3^{-i}), (3^{-i}) \cdot \eta(f_{i-1} \circ \cdots \circ f_1, 2^{-i})),$$

for all i > 1, then $f = L \prod_{i=1}^{\infty} f_i$ exists.

Convergence Procedure B. Let \mathscr{U} be a countable star-finite open cover of any space X. (By star-finite cover we mean a cover such that the closure of each member of the cover intersects the closures of only finitely many other members of the cover.) There exists an ordering $\{U_i\}_{i=1}^{\infty}$ of the elements of \mathscr{U} such that for any sequence $\{f_i\}_{i=1}^{\infty}$ of homeomorphisms of X onto itself, where f_i is the identity on $X \setminus U_i$ for all i > 0, $f = L \prod_{i=1}^{\infty} f_i$ exists. Moreover, we can assign a positive integer n_i to each U_i , independent of the choice of $\{f_i\}_{i=1}^{\infty}$, such that $n_i \leq n_{i+1}$ and

$$f(U_i) = (f_{n_i} \circ f_{n_i-1} \circ \cdots \circ f_1)(U_i),$$

for all i > 0.

Convergence Procedure B'. Let \mathscr{U} be a countable star-finite open cover of any space X and let $\{U_i\}_{i=1}^{\infty}$, $\{n_i\}_{i=1}^{\infty}$ be as in Convergence Procedure B. If Y is any space and $\{f_i\}_{i=1}^{\infty}$ is any sequence of homeomorphisms of $X \times Y$ onto itself such that f_i is

the identity on $(X \setminus U_i) \times Y$, for all i > 0, then $f = L \prod_{i=1}^{\infty} f_i$ exists. Moreover we have

$$f(U_i \times Y) = (f_{n_i} \circ \cdots \circ f_1)(U_i \times Y),$$

for all i > 0.

3. Two technical lemmas. We will need a result on extensions of homeomorphisms in I^{∞} , where the given homeomorphism and its extension are required to lie in the same neighborhood of the identity.

LEMMA 1. Let K_1 , K_2 be compact subsets of I^{∞} having Property Z in I^{∞} and let $\varepsilon > 0$ be given. If $h: K_1 \to K_2$ is an onto homeomorphism such that $h(K_1 \cap s) = K_2 \cap s$ and $d(h, \mathrm{id}) < \varepsilon$, then h can be extended to a β^* -homeomorphism H such that $d(H, \mathrm{id}) < \varepsilon$.

A homeomorphism extension theorem for I^{∞} was first established by Anderson in [2], and modified with an " ε -condition" in [6] by Barit and in [7] by Bessaga and Pelczyński. If the " ε -condition" is omitted from the statement of our Lemma 1, then we obtain a statement which is equivalent to a homeomorphism extension theorem of Torunczyk, which is given as Theorem 6 of [9]. If the extension theorem of Barit or that of Bessaga and Pełczyński (loc. cit.) is used, then our Lemma 1 follows routinely from the proof of Torunczyk's extension theorem.

LEMMA 2. Let $\{F_i\}_{i=1}^{\infty}$ be a collection of relatively closed subsets of s, with each F_i having Property Z in s, let W be a finite union of endslices of I^{∞} , and let $\{\alpha_i\}_{i=1}^{\infty}$ be a collection of pairwise-disjoint, infinite sets of positive integers. Then there is a β^* -homeomorphism h and an infinite, increasing sequence $\{n_i\}_{i=1}^{\infty}$ of positive integers such that h is the identity on W and $h(\bigcup_{i=1}^{\infty} F_i) = \bigcup_{i=1}^{\infty} K_i$, where each K_i is a relatively closed subset of s having deficiency with respect to α_{n_i} .

Proof. We will construct h as an infinite left product of homeomorphisms $\{h_n\}_{n=1}^{\infty}$. Convergence will be assured by Convergence Procedure A by noting that whenever h_1, \ldots, h_n have been constructed, h_{n+1} can be constructed arbitrarily close to the identity. We will only explicitly construct h_1 and h_2 , as the construction of h_2 will essentially constitute the inductive step.

Let $\beta_1 = \{i_1, i_2, \ldots\}$ be an infinite, increasing sequence of positive integers such that $N \setminus \beta_1$ is infinite. We will construct a β^* -homeomorphism h_1 such that $h_1(F_1) = \bigcup_{n=1}^{\infty} A_n$, where each A_n is a relatively closed subset of s having deficiency with respect to α_{i_n} , and $h_1 \mid W = id$.

From Theorem 8.2 of [2] we know that $\overline{F_1}$, the closure of F_1 in I^{∞} , has Property Z in I^{∞} . Using Theorem II A of [3] and Theorem 8.5 of [2] there is a homeomorphism f_1 of I^{∞} onto itself such that $f_1(s \cup \overline{F_1}) = s$. Since $f_1(W \cap \overline{F_1})$ is a compact subset of s we can use Theorem II A of [3] to obtain a homeomorphism f_2 of I^{∞} onto itself such that

$$f_2[f_1(W \cap \overline{F}_1) \cup B(I^{\infty})] = B(I^{\infty}).$$

Using Lemma 1 we can clearly get a β^* -homeomorphism f_3 such that $f_3 \circ f_2 \circ f_1 | W = id$.

Now we note that $f_3 \circ f_2 \circ f_1(\overline{F}_1 \backslash W) = \bigcup_{n=1}^{\infty} C_n$, a countable union of compact subsets of s. Let $\{\gamma_n\}_{n=1}^{\infty}$ be a collection of pairwise-disjoint, infinite sets of positive integers such that for each n, $\gamma_n \subset N \backslash \bigcup_{n=1}^{\infty} \alpha_{i_n}$. For each n write $\gamma_n = \gamma'_n \cup \gamma''_n$ such that $\gamma'_n \cap \gamma''_n = \emptyset$ and both are infinite, and where from Theorem 3.5 of [1] we can get a β^* -homeomorphism f_4 such that $f_4 | W = \text{id}$ and $f_4(C_n)$ has deficiency with respect to $\alpha_{i_n} \cup \gamma'_n$.

Using Theorem 5.3 of [1] there is a homeomorphism f_5 of I^{∞} onto itself such that

$$f_5[f_4 \circ f_3 \circ f_2 \circ f_1((\overline{F}_1 \cap B(I^{\infty})) \backslash W) \cup B(I^{\infty})] = B(I^{\infty}),$$

 f_5 is the identity on W, and $\tau_i \circ f_5 = \tau_i$, for all $i \notin \bigcup_{n=1}^{\infty} \gamma'_n$. Then we put $h_1 = f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1$, which is obviously a β^* -homeomorphism satisfying $h_1 | W = \mathrm{id}$. It is also clear that $h_1(F_1) = \bigcup_{n=1}^{\infty} A_n$, where $A_n = f_5 \circ f_4(C_n) \cap s$ is a relatively closed subset of s which is deficient with respect to α_{in} , for all n.

We must be able to construct h_2 arbitrarily close to the identity. Thus let $\varepsilon > 0$ be given and let l be a positive integer such that $(\sum_{i=1}^{\infty} 2^{2^{-i}})^{1/2} < \varepsilon/6$. Let $\beta_2 = \{j_1, j_2, \ldots\}$ be an infinite, increasing sequence of positive integers such that $\beta_2 \subset N \setminus \beta_1$, $N \setminus (\beta_1 \cup \beta_2)$ is infinite, and $i \in \bigcup_{n=1}^{\infty} \alpha_{j_n}$ implies that $i \ge l$. We will construct a β^* -homeomorphism h_2 such that $d(h_2, id) < \varepsilon$, $h_2 \circ h_1(F_2 \setminus F_1) = \bigcup_{n=1}^{\infty} B_n$, where each B_n is a relatively closed subset of s having deficiency with respect to α_{j_n} , and h_2 is the identity on $W_1 \cup h_1(W_1) \cup W \cup h_1(\overline{F_1})$.

From Theorem IIA of [3] there is a homeomorphism g_1 of I^{∞} onto itself such that $g_1(h_1(\overline{F}_1 \cup \overline{F}_2) \cup B(I^{\infty})) = B(I^{\infty})$ and $d(g_1, id) < \varepsilon/12$. Using Theorem 8.5 of [2] there is a homeomorphism g_2 of I^{∞} onto itself such that $g_2(g_1 \circ h_1(\overline{F}_1 \cup \overline{F}_2) \cup s) = s$. Examining the apparatus used in [2] to obtain g_2 we find that we may additionally require that $d(g_2, id) < \varepsilon/12$. Put $A = W_1 \cup h_1(W_1) \cup W$ and note that

$$g_2 \circ g_1[h_1(\overline{F}_1 \cap B(I^{\infty})) \cup (A \cap h_1(\overline{F}_2))]$$

is a σ -compact subset of s. Thus using Lemma IIA of [3] there is a homeomorphism g_3 of I^{∞} onto itself such that

$$g_3\{g_2 \circ g_1[h_1(\overline{F}_1 \cap B(I^{\infty})) \cup (A \cap h_1(\overline{F}_2))] \cup B(I^{\infty})\} = B(I^{\infty})$$

and $d(g_3, id) < \varepsilon/6$. Using Lemma 1 there is a β^* -homeomorphism g_4 such that $g_4 \circ g_3 \circ g_2 \circ g_1$ is the identity on $h_1(\overline{F}_1) \cup A$ and $d(g_4, id) < \varepsilon/3$.

Let $g_4 \circ g_3 \circ g_2 \circ g_1(h_1(\overline{F}_2) \setminus (h_1(\overline{F}_1) \cup A)) = \bigcup_{n=1}^{\infty} D_n$, a countable union of compact subsets of s. Let $\{\delta_n\}_{n=1}^{\infty}$ be a collection of pairwise-disjoint, infinite sets of positive integers such that $\delta_n \subset N \setminus \bigcup_{n=1}^{\infty} (\alpha_{i_n} \cup \alpha_{j_n})$ and $m \in \delta_n$ implies that $m \ge l$, for all n > 0. Then write each $\delta_n = \delta'_n \cup \delta''_n$ such that $\delta'_n \cap \delta''_n = \emptyset$ and both are infinite, and where from Theorem 3.5 of [1] there is a β^* -homeomorphism g_5 such that $g_5(D_n)$ has deficiency with respect to $\alpha_{j_n} \cup \delta'_n$ and $d(g_5, id) < \varepsilon/6$. If we examine the apparatus used in [1] to obtain g_5 we find that we may additionally require that $g_5|(h_1(\overline{F}_1) \cup A) = id$.

Now let g_6 be a homeomorphism of I^{∞} onto itself such that

$$g_{6}\{[g_{5}\circ g_{4}\circ g_{3}\circ g_{2}\circ g_{1}(h_{1}(\overline{F}_{2})\cap B(I^{\infty}))\setminus (h_{1}(\overline{F}_{1})\cup A)]\cup B(I^{\infty})\}=B(I^{\infty}),$$

$$g_{6}|(h_{1}(\overline{F}_{1})\cup A)=\mathrm{id}, \qquad d(g_{6},\mathrm{id})<\varepsilon/6,$$

and $\tau_i \circ g_6 = \tau_i$, for all $i \notin \bigcup_{n=1}^{\infty} \delta'_n$. Put $h_2 = g_6 \circ g_5 \circ g_4 \circ g_3 \circ g_2 \circ g_1$, which is obviously a β^* -homeomorphism satisfying $h_2 | (h_1(\overline{F}_1) \cup A) = id$. It is clear that $h_2 \circ h_1(F_2 \setminus F_1) = \bigcup_{n=1}^{\infty} B_n$, where $B_n = g_6 \circ g_5(D_n) \cap s$ is a relatively closed subset of s which is deficient with respect to α_{j_n} , for all n. This completes the construction of h_2 and the proof of the lemma.

4. Separating closed sets with Property Z in F-manifolds.

LEMMA 3. Let $\{F_i\}_{i=1}^{\infty}$, $\{K_j\}_{j=1}^{\infty}$ be collections of relatively closed subsets of s, each having Property Z in s, and let W be a finite union of endslices of I^{∞} . Then there exists a B^* -homeomorphism h such that $h|W=\operatorname{id}$ and $h(\bigcup_{i=1}^{\infty}K_i)\cap(\bigcup_{i=1}^{\infty}F_i)=\emptyset$.

Proof. Using Lemma 2 there exists a β^* -homeomorphism f_1 , a collection $\{\alpha_i\}_{i=1}^{\infty}$ of pairwise-disjoint, infinite subsets of N, and relatively closed subsets $\{C_i\}_{i=1}^{\infty}$ of s, each C_i having deficiency with respect to α_i , such that $f_1|W=\text{id}$ and $f_1(\bigcup_{i=1}^{\infty} F_i)=\bigcup_{i=1}^{\infty} C_i$.

Applying Lemma 2 to $\{K_j\}_{j=1}^{\infty}$ we obtain a β^* -homeomorphism f_2 , a collection $\{\beta_j\}_{j=1}^{\infty}$ of pairwise-disjoint, infinite sets of positive integers such that each β_j is constructed by choosing exactly one element from each α_i , and a collection $\{D_j\}_{j=1}^{\infty}$ of relatively closed subsets of s such that each D_j is deficient with respect to β_j , $f_2|W=\mathrm{id}$, and $f_2(\bigcup_{j=1}^{\infty}K_j)=\bigcup_{j=1}^{\infty}D_j$.

We will now construct a β^* -homeomorphism g such that g|W=id and $g(D_j) \cap C_i = \emptyset$, for all i and j. For each i and j let $g_{i,j}$ be a β^* -homeomorphism which satisfies the following conditions

- (1) $\tau_k \circ g_{i,j} = \tau_k$, for $k \notin \alpha_i \cap \beta_j$,
- (2) $\tau_{\alpha_i \cap \beta_j} \circ g_{i,j}(D_j) \neq \tau_{\alpha_i \cap \beta_j}(C_i),$
- (3) $g_{i,j}|W=id$, and
- (4) $g_{i,j}(W_n^+) = W_n^+$ and $g_{i,j}(W_n^-) = W_n^-$, for all n > 0.

It is clear that (3) can be achieved by phasing out the motion isotopically as we approach W. Then we define

$$g = L \prod_{n=1}^{\infty} (g_{1,n} \circ g_{2,n-1} \circ \cdots \circ g_{n,1}),$$

which satisfies our requirements. It is clear that $h = f_1^{-1} \circ g \circ f_2$ satisfies the conditions of the lemma.

LEMMA 4. Let $\{F_i\}_{i=1}^{\infty}$ and $\{K_j\}_{j=1}^{\infty}$ be collections of closed subsets of any F-manifold X, with each F_i and K_j having Property Z in X. Then there is a homeomorphism h of X onto itself such that $h(\bigcup_{j=1}^{\infty} K_j) \cap (\bigcup_{i=1}^{\infty} F_i) = \emptyset$.

Proof. Using Henderson's open embedding theorem let $f: X \to s$ be an embedding of X as an open subset of s. From Theorem 1 of [5] there is a star-finite open cover $\{U_k\}_{k=1}^{\infty}$ of f(X), where each U_k is a basic open subset of s contained in f(X). Moreover let us assume that the U_k 's are indexed as in Convergence Procedure B.

Note that for each k>0, \overline{U}_k is a Hilbert cube, where \overline{U}_k is the closure of U_k in I^{∞} , and U_k may be regarded as the relative pseudo-interior of \overline{U}_k . It is obvious that the topological boundary of U_k in s is contained in a finite union of endslices of the relative pseudo-boundary of \overline{U}_k . We can then apply Lemma 3 to obtain a homeomorphism g_1 of f(X) onto itself such that $g_1|f(X)\backslash U_1=\mathrm{id}$ and

$$g_1\left(\bigcup_{i=1}^{\infty} f(K_i)\right) \cap \left(\bigcup_{i=1}^{\infty} f(F_i)\right) \cap U_1 = \varnothing.$$

Suppose now that homeomorphisms $\{g_k\}_{k=1}^n$ of f(X) onto itself have been defined such that $g_k|f(X)\setminus U_k=\mathrm{id}$ and

$$(g_k \circ \cdots \circ g_1) \Big(\bigcup_{j=1}^{\infty} f(K_j) \Big) \cap \Big(\bigcup_{i=1}^{\infty} f(F_i) \Big) \cap U_k = \emptyset,$$

for $1 \le k \le n$. Once more apply Lemma 3 to obtain a homeomorphism g_{n+1} of f(X) onto itself such that $g_{n+1}|f(X)\setminus U_{n+1}=\mathrm{id}$ and

$$(g_{n+1} \circ \cdots \circ g_1) \Big(\bigcup_{i=1}^{\infty} f(K_i) \Big) \cap \Big(\bigcup_{i=1}^{\infty} f(F_i) \Big) \cap U_{n+1} = \emptyset.$$

It is clear that $g = L \prod_{k=1}^{\infty} g_k$ defines a homeomorphism of f(X) onto itself such that $g(\bigcup_{j=1}^{\infty} f(K_j)) \cap (\bigcup_{i=1}^{\infty} f(F_i)) = \emptyset$. Then $h = f^{-1} \circ g \circ f$ satisfies the requirements of our lemma.

5. **Proof of Theorem 1.** We break Theorem 1 up into two lemmas, the first treating the case $T=I^{\infty}$ and the second treating the case T=s.

LEMMA 5. Let X be any F-manifold and let $\{K_i\}_{i=1}^{\infty}$ be a collection of closed subsets of $X \times I^{\infty}$, with each K_i having Property Z in $X \times I^{\infty}$. Then there is a homeomorphism K_i onto itself and a collection $\{\alpha_i\}_{i=1}^{\infty}$, where the α_i 's are pairwise-disjoint, infinite sets of positive integers, such that for all i > 0, K_i is deficient with respect to α_i in $X \times I^{\infty}$.

Proof. For each positive integer j let

$$F_i^+ = \{(x, y) \in X \times I^{\infty} \mid \tau_i(y) = 1\}, \qquad F_i^- = \{(x, y) \in X \times I^{\infty} \mid \tau_i(y) = -1\},$$

and $F_j = F_j^+ \cup F_j^-$. A straightforward and standard argument shows that each F_j has Property Z in $X \times I^{\infty}$. Thus applying Lemma 4 to $X \times I^{\infty}$ there is a homeomorphism f_1 of $X \times I^{\infty}$ onto itself such that $f_1(\bigcup_{i=1}^{\infty} K_i) \cap (\bigcup_{j=1}^{\infty} F_j) = \emptyset$.

Let j and m be any positive integers and for each $x \in X \times \prod_{i \neq j} I_i$ let $U_x \times (\delta_x, 1]$

be an open subset of $(X \times \prod_{i \neq j} I_i) \times I_j$ containing (x, 1) such that $(U_x \times (\delta_x, 1]) \cap f_1(K_m) = \emptyset$. Note that $\{U_x \mid x \in X \times \prod_{i \neq j} I_i\}$ is an open cover of $X \times \prod_{i \neq j} I_i$. Since we have already noted that $X \times \prod_{i \neq j} I_i$ is homeomorphic to X, and is hence an F-manifold, we can apply Lemma 5 of [5] to get a star-finite open refinement $\{U_i\}_{i=1}^{\infty}$ of $\{U_x \mid x \in X \times \prod_{i \neq j} I_i\}$ which covers $X \times \prod_{i \neq j} I_i$. Moreover we may assume that the U_i 's are indexed as in Convergence Procedure B. It is clear that for each i > 0 there is a number δ_i such that $1/2 \le \delta_i \le 1$ and $(U_i \times (\delta_i, 1]) \cap f_1(K_m) = \emptyset$.

Now construct a closed cover $\{C_i\}_{i=1}^{\infty}$ of $X \times \prod_{i \neq j} I_i$ such that $C_i \subset U_i$, for all i > 0. For each i > 0 let $\varphi_i \colon X \times \prod_{i \neq j} I_i \to [0, 1]$ be a continuous function such that $\varphi_i(x) = 1$ for $x \in C_i$ and $\varphi_i(x) = 0$ for $x \in (X \times \prod_{i \neq j} I_i) \setminus U_i$. For each i > 0 we now construct a homeomorphism g_i of $(X \times \prod_{i \neq j} I_i) \times I_j$ onto itself which slides points linearly in the I_j -direction as follows: if $x \in X \times \prod_{i \neq j} I_i$, then $\{x\} \times I_j$ is taken linearly onto itself such that $g_i(x, \delta_i) = (x, \delta_i(1 - \varphi_i(x)) + (1/2)\varphi_i(x))$. Applying Convergence Procedure B' to $\{g_i\}_{i=1}^{\infty}$ let $g = L \prod_{i=1}^{\infty} g_i$, which is a homeomorphism of $X \times I^{\infty}$ onto itself satisfying $g \circ f_1(K_m) \subset X \times \prod_{i \neq j} I_i \times [-1, 1/2]$. Using similar techniques we can construct a homeomorphism g' of $X \times I^{\infty}$ onto itself which slides points only in the I_j -direction such that $g' \circ g \circ f_1(K_m) \subset X \times \prod_{i \neq j} I_i \times [-1/2, 1/2]$.

Choose a collection $\{\beta_i\}_{i=1}^{\infty}$ of pairwise-disjoint, infinite sets of integers such that $N = \bigcup_{i=1}^{\infty} \beta_i$. Then we can successively use the above construction to obtain a homeomorphism f_2 of $X \times I^{\infty}$ onto itself such that $\tau_j \circ \pi_{I^{\infty}} \circ f_2 \circ f_1(K_i) \subset [-1/2, 1/2]$, for all $j \in \beta_i$ and all i > 0.

Using Theorem 3.5 of [1] there is a homeomorphism d_i of I^{β_i} onto itself such that $d_i(\prod_{j\in\beta_i} [-1/2, 1/2]_j)$ has deficiency with respect to an infinite subset α_i of β_i , for all i>0. Grouping these together we obtain a homeomorphism d of $X\times I^{\infty}=X\times I^{\beta_1}\times I^{\beta_2}\times\cdots$ onto itself defined by $d=(\mathrm{id},d_1,d_2,\ldots)$. Then $h=d\circ f_2\circ f_1$ is a homeomorphism of $X\times I^{\infty}$ onto itself such that $h(K_i)$ is deficient with respect to α_i , for all i>0.

LEMMA 6. Let X be any F-manifold and let $\{K_i\}_{i=1}^{\infty}$ be a collection of closed subsets of $X \times s$, with each K_i having Property Z in $X \times s$. Then there is a homeomorphism h of $X \times s$ onto itself and a collection $\{\alpha_i\}_{i=1}^{\infty}$, where the α_i 's are pairwise-disjoint, infinite sets of positive integers, such that for all i > 0, $h(K_i)$ is deficient with respect to α_i in $X \times s$.

Proof. Using Theorem 9.3 of [1] there is a homeomorphism f of $s = \prod_{i=1}^{\infty} I_i^0$ onto $s^{\alpha} \times I^{\beta}$, where α is the set of even positive integers and β is the set of odd positive integers. Let f be the homeomorphism of $X \times s$ onto $X \times s^{\alpha} \times I^{\beta}$ defined by f(x, y) = (x, f(y)), where $(x, y) \in X \times s$.

From Lemma 5 there is a homeomorphism g of $(X \times s^{\alpha}) \times I^{\beta}$ onto itself such that $\pi_{I^{\beta}} \circ g \circ \bar{f}(K_i)$ is deficient with respect to β_i , where the β_i 's are pairwise-disjoint, infinite, and $\beta = \bigcup_{i=1}^{\infty} \beta_i$. Now write $\alpha = \bigcup_{i=1}^{\infty} \alpha'_i$, where the α'_i 's are pairwise-disjoint and infinite. Furthermore write $\alpha'_i = \bigcup_{j=1}^{\infty} \alpha_{i,j}$, where for each i > 0 the $\alpha_{i,j}$'s are

pairwise-disjoint and infinite, and write $\beta_i = \{m_{i,1}, m_{i,2}, \ldots\}$, an increasing sequence of integers.

We note that for each i and j we have

$$\tau_k \circ \pi_{s^{\alpha} \times I^{\beta}} \circ g \circ \bar{f}(K_i) \subset s^{\alpha_{i,j}} \times \{a_{i,j}\},$$

where $a_{i,j} \in I_{m_{i,j}}^0$ and $k = \alpha_{i,j} \cup \{m_{i,j}\}$. Theorem 9.3 of [1] gives a homeomorphism of $\prod_{i=1}^{\infty} I_i^0 \times [-1, 1]$ onto $\prod_{i=1}^{\infty} I_i^0 \times (-1, 1)$. If we examine the apparatus used to prove this we find that for each i and j we can get a homeomorphism $d_{i,j}$ of $s^{\alpha_{i,j}} \times I_{m_{i,j}}$ onto $s^{\alpha_{i,j}} \times I_{m_{i,j}}^0$ such that $d_{i,j}(s^{\alpha_{i,j}} \times \{a_{i,j}\}) = s^{\alpha_{i,j}} \times \{a_{i,j}\}$. This then gives a homeomorphism d of $X \times s^{\alpha} \times I^{\beta}$ onto $X \times s^{\alpha} \times s^{\beta}$ such that $d \circ g \circ \tilde{f}(K_i)$ is deficient with respect to β_i , for all i > 0. Thus with $h = d \circ g \circ \tilde{f}$ and $\{\alpha_i\}_{i=1}^{\infty} = \{\beta_i\}_{i=1}^{\infty}$ the proof of the lemma is complete.

6. **Proof of Theorem 2.** Using Theorem 1 there is a homeomorphism f_1 of X onto $X \times s$ and a collection $\{\alpha_i\}_{i=1}^{\infty}$ of pairwise-disjoint, infinite sets of positive integers such that for each i > 0, $f_1(K_i)$ is deficient with respect to α_i in $X \times s$.

Applying Henderson's open embedding theorem let $f_2: X \to s_1$ be an open embedding, where $s_1 = \prod \{I_i^0 \mid i \text{ odd}\}$. If $s_2 = \prod \{I_i^0 \mid i \text{ even}\}$ then there is a homeomorphism f_3 of s onto s_2 which is defined coordinatewise. Thus $f_4 = f_2 \times f_3$ is an open embedding of $X \times s$ into $s = s_1 \times s_2$ and there is a collection $\{\beta_i\}_{i=1}^{\infty}$ of pairwise-disjoint, infinite sets of positive even integers such that $f_4 \circ f_1(K_i)$ is deficient with respect to β_i , for all i > 0.

If Cl $(f_4 \circ f_1(K_i))$ is the closure of $f_4 \circ f_1(K_i)$ in I^{∞} , then Cl $(f_4 \circ f_1(K_i)) \setminus f_4 \circ f_1(K_i) = \bigcup_{j=1}^{\infty} C_{i,j}$, a countable union of compact subsets of I^{∞} , with each $C_{i,j}$ having deficiency with respect to β_i , for all i > 0. Using Theorem 5.3 of [1] there is a homeomorphism g of I^{∞} onto itself such that $g[(\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} C_{i,j}) \cup B(I^{\infty})] = B(I^{\infty})$ $\tau_i \circ g = \tau_i$, for i odd, and $g \circ f_4 \circ f_1(K_i)$ has infinite deficiency, for all i > 0. Clearly $h = g \circ f_4 \circ f_1$ is the required embedding.

REFERENCES

- 1. R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216. MR 34 #5045.
- 2. —, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365-383. MR 35 #4893.
- 3. ——, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64-67.
- 4. R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330.
- 5. R. D. Anderson, David W. Henderson and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143-150.
 - 6. William Barit, Notices Amer. Math. Soc. 16 (1969), 295, Abstract #663-715.
 - 7. C. Bessaga and A. Pelczyński, Estimated extension theorem, homogeneous collections

and skeletons, and their applications to topological classifications of linear metric spaces and convex sets, Fund. Math. (to appear).

- 8. David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc. 75 (1969), 759-762.
- 9. H. Torunczyk, Remarks on Anderson's paper on topological infinite deficiency, Fund. Math. (to appear)

LOUISIANA STATE UNIVERSITY,
BATON ROUGE, LOUISIANA