FINITE GROUPS WITH NICELY SUPPLEMENTED SYLOW NORMALIZERS

BY

DAVID PERIN

ABSTRACT. This paper considers finite groups G whose Sylow normalizers are supplemented by groups D having a cyclic Hall 2'-subgroup. G is solvable and all odd order composition factors of G are cyclic. If $S \in \operatorname{Syl}_2(D)$ is cyclic, dihedral, semidihedral, or generalized quaternion, then G is almost supersolvable.

Let $\mathfrak D$ denote the class of finite groups D which satisfy:

(*) D = ST, where $S \in Syl_2(D)$ and T is cyclic group of odd order.

We say G is \mathfrak{D} -supplemented if G is finite and every Sylow normalizer in G has a supplement $D \in \mathfrak{D}$.

Theorem 1. D-supplemented groups are solvable.

Proof. Assume the theorem is false, and let G be a counterexample of minimal order. Since any homomorphic image of G is \mathfrak{D} -supplemented, G/N is solvable for any $1 \neq N \lhd G$. Thus, G has a unique minimal normal subgroup M. M is nonsolvable, and so 2 divides |M| by the Feit-Thompson Theorem. Choose $P \in \operatorname{Syl}_2(M)$ and $Q \in \operatorname{Syl}_2(G)$, $P \subseteq Q$. By the Frattini argument G = MN(P). Let $D \in \mathfrak{D}$ be a supplement for N(Q). Since $Q \in \operatorname{Syl}_2(G)$, we can assume D is cyclic of odd order. Choose a subgroup $H \geq N(P)$ which is maximal in G. Since $N(P) \geq N(Q)$, D is a supplement for H. $(D \cap H)^G = (D \cap H)^H \leq H$. If $D \cap H \neq 1$, then $M \leq (D \cap H)^G \leq H$, a contradiction. Consequently, N(P) = N(Q) is maximal in G, and D is a complement for N(P). G has a faithful primitive representation on the d = |D| cosets of N(P), and D is regularly represented. If D is not prime, then D is a D-group D is a D-group D is prime, and D is 2-transitive by a theorem of Burnside.

Recent results of Shult and O'Nan classify 2-transitive groups H in which H_{α} is a 2-local subgroup. If $T = O_2(H_{\alpha})$ is semiregular on $\Omega - \{\alpha\}$, then Shult's Fusion Theorem (see [5]) implies that H has a regular normal subgroup, or $N \leq H \leq \operatorname{Aut}(N)$, where N is isomorphic to $\operatorname{PSL}_2(2^a)$, $\operatorname{PSU}_3(2^a)$, or $\operatorname{Sz}(2^{2a+1})$ in its standard 2-transitive permutation representation. (We need Shult's result only in the case $O_2(G_{\alpha}) \in \operatorname{Syl}_2(G)$. This special case follows from Suzuki's work

Received by the editors July 28, 1972.

on finite groups with independent Sylow 2-subgroups [7].) If T is not semiregular, then work of O'Nan [6] implies that H has a regular normal subgroup or $N \subseteq H \subseteq \operatorname{Aut}(N)$, where $N \cong \operatorname{PSL}_n(2^a)$. Since G has no regular normal subgroup and $O_2(G_\alpha)$ is a Sylow 2-subgroup of G, the only possibility is $N \subseteq G \subseteq \operatorname{Aut}(N)$, where $N \cong \operatorname{PSL}_2(2^a)$, $\operatorname{PSU}_3(2^a)$, or $\operatorname{Sz}(2^{2a+1})$. In these cases one easily finds a prime p and $S \in \operatorname{Syl}_p(G)$ so that N(S) has no supplement $D \in \mathcal{D}$. For example, if $G \cong \operatorname{PSL}_2(4)$ take p = 3, and if $G \cong \operatorname{P}\Gamma L_2(4)$ take p = 2.

Remark. If $G \simeq \mathrm{PSL}_2(2^a)$ and $S \in \mathrm{Syl}_2(G)$, then N(S) has a cyclic complement of odd order.

Theorem 2. If G is \mathfrak{D} -supplemented then every chief factor of G of odd order is cyclic.

Proof. Let G be a counterexample of minimal order. A result of Huppert [4, VI. 8.6] implies that $\Phi(G) = 1$. G has a unique minimal normal subgroup M. Since G is solvable, M is an elementary abelian p-group. p is odd. Set $P = O_p(G)$. P is elementary abelian since $\Phi(P) < \Phi(G) = 1$.

There is a prime $q \neq p$ and a q-group $1 \neq Q < G$ so that $PQ \subseteq G$. $P = [P,Q] \times C_P(Q)$. Since $[P,Q] \neq 1$ and $C_P(Q)$ and [P,Q] are normal in G, $C_P(Q) = 1$. G is a split extension of P by N(Q). If $Q \leq Q_1 \in \operatorname{Syl}_q(G)$, then $N(Q) \geq N(Q_1)$. Consequently, N(Q) has a supplement $D \in \mathcal{D}$. D contains an element x of order $p^m = |P|$. The image \overline{x} of x in $\overline{G} = G/P$ has order at least p^{m-1} . Since \overline{G} is isomorphic to a subgroup of $\operatorname{GL}_m(p)$, $pm > p^{m-1}$. Hence, m = 2. G contains an element of order p^2 , and so p divides $|\overline{G}|$. But $O_p(\overline{G}) = 1$ and \overline{G} is solvable. The only possibility is p = 3 and $\overline{G} \simeq \operatorname{SL}_2(3)$ or $\operatorname{GL}_2(3)$. Then the normalizer of $S \in \operatorname{Syl}_2(G)$ has index 9 or 27 in G. However, G contains no elements of order 9, a final contradiction.

Let \mathfrak{D}^* denote the class of finite groups D which are the product of a cyclic group T of odd order and a cyclic, dihedral, semidihedral, or generalized quaternion 2-group S. T is a Hall 2'-subgroup of D and $S \in \operatorname{Syl}_2(D)$. $D \in \mathfrak{D}^*$ implies $D \in \mathfrak{D}$, so that \mathfrak{D}^* -supplemented groups are solvable. Buchthal [1] has show that certain solvable \mathfrak{D}^* -supplemented groups are either supersolvable or have Σ_4 as a homomorphic image.

Theorem 3. If G is \mathfrak{D}^* -supplemented, then G contains a normal subgroup N such that every G-composition factor of N is cyclic and G/N is isomorphic to 1, A_4, Σ_4 , or one of the groups $\Gamma_1, \Gamma_2, \Gamma_3$ defined below.

The group Γ_1 is defined as follows. Let W be an elementary abelian group of order 16. Choose $g \in \operatorname{Aut}(W)$ so that |g| = 3 and $C_W(g) = 1$. Let S be a Sylow 2-subgroup of $N_{\operatorname{Aut}(W)}(\langle g \rangle) \simeq \Gamma L_2(4)$. S and g generate a group X of order 24.

Define Γ_1 to be the split extension of W by X. The normalizer N(R) of $R \in \operatorname{Syl}_3(\Gamma_1)$ has index 16 in Γ_1 . The only supplements $D \in \mathfrak{D}^*$ for N(R) are semidihedral or generalized quaternion groups of order 16. (These facts are established in the proof of Theorem 3.)

Suppose $W \simeq Z_4 \times Z_4$. Let a and b be generators of W. Define automorphisms g, x, z, and s of W as follows.

- 1. $a^g = b^{-1}$, $b^g = ab^{-1}$,
- 2. $a^z = a^{-1}$, $b^z = b^{-1}$.
- 3. $a^x = ab^2$, $b^x = a^2b^{-1}$
- 4. $a^{s} = b$, $b^{s} = a$.

The element $g \in \operatorname{Aut}(W)$ has order 3, while x, z, and s are involutions. $C_{\operatorname{Aut}(W)}(g) = \langle g, x, z \rangle$ and $N_{\operatorname{Aut}(W)}(\langle g \rangle) = \langle g, x, z, s \rangle = X$. Γ_2 is the split extension of W by X. $S = \langle a, b, x, z, s \rangle$ is a Sylow 2-subgroup of Γ_2 . S contains no elements of order 16, and every element of order 8 in S is conjugate to sa. $N_S(\langle sa \rangle)$ is a split extension of $\langle sa \rangle$ by the 4-group $\langle zb, a^2 \rangle$. $\langle sa, zb \rangle$ and $\langle sa, a^2 \rangle$ are complements for $N_S(\langle g \rangle)$ in S, while $\langle sa, zba^2 \rangle \cap N_S(\langle g \rangle) = \langle sz \rangle$. Also, $\langle sa, zb \rangle$ is semidihedral, and $\langle sa, a^2 \rangle$ is neither dihedral nor semidihedral. These facts yield the following result.

Lemma 1. Γ_2 is \mathfrak{D}^* -supplemented. Any proper subgroup of Γ_2 which contains (a, b, g) and is \mathfrak{D}^* -supplemented is conjugate in Γ_2 to $\Gamma_3 = (a, b, g, z, s)$. Moreover, if $\Gamma = \Gamma_2$ or Γ_3 and $R \in \operatorname{Syl}_3(\Gamma)$, then N(R) has index 16 in Γ and the only supplements $D \in \mathfrak{D}^*$ for N(R) are semidihedral groups of order 16.

Proof of Theorem 3. In the following discussion, Γ denotes any one of the groups Γ_1 , Γ_2 , or Γ_3 .

Let G be a counterexample of minimal order. Choose $N \subseteq G$ of minimal order so that $G/N \cong 1$, A_4 , Σ_4 , or Γ . (E.g., if G has both Σ_4 and Γ as homomorphic images, choose N such that $G/N \cong \Gamma$.) N contains a unique minimal normal subgroup M of G. M is not cyclic. Theorem 2 implies that M is a 2-group. Set $P = O_2(N)$. $C_N(P) \subseteq P$ and $O_2(G) = 1$. Suppose $\Phi(P) \ne 1$. Then by induction each G-composition factor of $P/\Phi(P)$ is cyclic, and so $G/C_G(P/\Phi(P))$ is a 2-group. Hence, $G/C_G(P)$ is a 2-group [3, 5.1.4], in which case $P \cap Z(G) \ne 1$. This contradiction implies that P is elementary abelian.

Assume $P \neq N$. Then there is a prime $q \neq 2$ and a q-group $1 \neq Q < N$ so that QP is normal in G. $C_P(Q) = 1$. Let $|P| = 2^m$. If $C_G(P) = P$, then the proof of Theorem 2 shows that $2^{m-2} < 2m$, or $m \leq 5$. If m < 4, there is no choice for q. If m = 5, then q = 31. But the normalizer in $GL_5(2)$ of a group of order 31 has order 31 · 5. It follows that $P \in Syl_2(G)$, and so N(Q) is not \mathfrak{D}^* -supplemented. Thus, the only possibility is m = 4 and q = 3 or 5. N(Q) has a supplement D

which is cyclic, dihedral, semihedral, or generalized quaternion of order at least |P| = 16. D has no normal elementary abelian subgroup of order 4, and so $|D \cap P| \leq 2$. Thus, DP/P has order at least 8. The normalizer in $GL_{\lambda}(2)$ of a cyclic group of order 5 is metacyclic group of order 60. Consequently, q = 3. Since $C_p(Q) = 1$, the normalizer in $GL_A(2)$ of Q is $\Gamma L_2(4)$. Since G is solvable, the only possibility is that N(Q) is a split extension of Q by D_8 or Σ_4 . In either case $O_2(G/P) \simeq Z_2 \times Z_2 \simeq C_P(O_2(G/P))$. By induction G/P acts reducibly on $P/C_P(O_2(G/P))$, which is not the case. Therefore, $C_G(P)$ properly contains P, whence $N \neq G$. There is a group $P < K \subseteq G$ so that $K/P \simeq Z_2 \times Z_2$. $C_P(Q) = 1$ and $[K, Q] \leq P$ imply $C_K(Q) \simeq Z_2 \times Z_2[3, 5.3.15]$. $C_K(Q) = C_K(PQ)$ is normal in G. Then $K \leq C(P)$ implies $K = P \times C_K(Q)$, and so K is elementary abelian. If $X \leq G$ let \widetilde{X} denote the image of X in $\widetilde{G} = G/C_K(Q)$. By induction G has a normal subgroup $H \geq C_K(Q)$ so that $\widetilde{G}/\widetilde{H} \simeq 1$, A_4 , Σ_4 or Γ , and each \widetilde{G} composition factor of \widetilde{H} is cyclic. From the facts that M is noncyclic, $M \cap C_{\kappa}(Q) = 1$, and M is the only minimal normal subgroup of G contained in N, it follows that N is isomorphic to a subgroup of $\widetilde{G}/\widetilde{H}$. Thus, $Q \simeq Z_3$. Choose $S \in \operatorname{Syl}_3(G)$. Suppose $G/N \simeq \Gamma$. Then $G: N(S) \ge 64$. Consequently, there is a cyclic, dihedral, semidihedral, or generalized quaternion group D of order at least 64 which is a supplement for N(S). For $X \leq G$ let \overline{X} denote the image of X in $\overline{G} = G/N \simeq \Gamma$. Then $\overline{S} \in \text{Syl}_3(\overline{G})$ and $N_{\overline{C}}(\overline{S}) = \overline{N_G(S)}$. Thus, $\overline{D} \simeq D/D \cap N$ is a supplement for $N_{\overline{C}}(\overline{S})$. But $D \cap N \neq 1$ since Γ has exponent 24. Hence, \overline{D} is cyclic or dihedral, whereas a \mathfrak{D}^* -supplement for $N_{\overline{G}}(\overline{S})$ in $\overline{G} \simeq \Gamma$ must be semidihedral or generalized quaternion of order 16. This contradiction implies $G/N \simeq A_4$ or Σ_4 , whence $N \simeq A_4$, or Σ_4 . Then $S \simeq Z_3 \times Z_3$, G:N(S)=16, and |G/K| divides 36. A Sylow 2-subgroup of G/K is not cyclic of order 4, and so the exponent of G divides 12. Hence, N(S) does not have a supplement $D \in \mathfrak{D}^*$.

The only remaining case is P=N. Then $G\neq N$ and there is an element $g\in G$ of order 3. Assume $G/N\simeq \Gamma$. $C_G(N)$ does not contain g, for otherwise $G/C_G(N)$ is a 2-group, and $N\cap Z(G)\neq 1$. Hence, $N:C_N(g)\geq 4$, and so $G:N((g))\geq 64$. Since G has exponent 24 or 48, N((g)) has no supplement $D\in \mathfrak{D}^*$. Thus, $G/N\simeq A_4$ or Σ_4 . Set $K=O_2(G)$. $K/N\simeq Z_2\times Z_2$. Suppose [N,K]=1. Then $C_N(g)=1$, and by induction |N|=4. A supplement $D\in \mathfrak{D}^*$ for N((g)) has order at least 16, whence $|D\cap K|\geq 8$. Since K has exponent 2 or 4, $D\cap K$ is dihedral or quaternion. Thus, K is a nonabelian group of order 16 and exponent 4. According to Burnside [2, p. 146] |K'|=2, and so N contains a subgroup of order 2 which is normal in G. This contradiction implies $[N,K]=U\neq 1$.

By induction each G-composition factor of N/M is cyclic of order 2. Consequently, g centralizes N/M. Then K = N[K, g] also centralizes N/M, so $U \le M$. Thus, U = M and K centralizes U. Then $C_U(g) = 1$. By induction

|U|=4. Set $V=C_N(g)$, so that $N=V\times U$. Choose $H\leq K$ such that H:N=2. $C_N(H)$ contains U and therefore is normalized by g. Then $C_N(H)=C_N(H^g)=C_N(HH^g)=C_N(K)$. Since $C_N(K)\cap C_N(g)=1$, $C_N(H)=U$. Consequently, |N|=8 or 16.

Suppose there is an element $x \in K$ so that the image \overline{x} of x in $\overline{K} = K/U$ has order 4. $x^2 \in N$ since $K/N \simeq Z_2 \times Z_2$, but $x \notin N$ since N is elementary. Hence, $C_K(x^2)$ properly contains N, which is not the case. Consequently, K/U is elementary abelian, and so $K/U = C_{K/U}(g) \times [K/U, g]$. Since U = [U, g] < W = [K, g] and $C_U(g) = 1$, K is a split extension of W by V. W has order 16 and is normal in G. Since W has exponent at most 4 and $|W'| \neq 2$, W is abelian.

Let $R=\langle g\rangle$. G is a split extension of W by N(R). N(R) acts faithfully on W. N(R) has a supplement D which is cyclic, dihedral, semidihedral, or generalized quaternion. Since K has exponent 4, the only possibility is $G/N\simeq \Sigma_4$, D is a complement for N(R), and D is dihedral, semidihedral, or generalized quaternion of order 16. Suppose $W\simeq Z_4\times Z_4$. Then Lemma 1 yields $G\simeq \Gamma_2$ or Γ_3 . This contradiction implies that W is elementary abelian of order 16, and G is isomorphic to a subgroup of Γ_1 . The nonidentity elements of $N\cup W$ have order 2, while all elements in $K-(N\cup W)$ have order 4. Since D has no normal 4-group, $D\cap N=D\cap W\simeq Z_2$. Hence, $D\cap K$ is a quaternion group, and so D is semi-dihedral or generalized quaternion of order 16. Moreover, $|DW|=|D||W|/|D\cap W|=2^7$, so that $|G|=3\cdot 2^7=|\Gamma_1|$. Then $G\simeq \Gamma_1$, a final contradiction.

Thus, G has a normal subgroup N so that every G-composition factor of N is cyclic and $G/N \simeq 1$, A_4 , Σ_4 , Γ_1 , Γ_2 , or Γ_3 . N is the join of all groups $H \subseteq G$ which are supersolvably embedded in G, and so N is unique.

Acknowledgement. The author would like to thank Professor W. R. Scott for several helpful conversations during the preparation of this article.

REFERENCES

- 1. D. Buchthal, On factorized groups, Trans. Amer. Math Soc. 183 (1973), 425-432.
- 2. W. Burnside, Theory of groups, 2nd ed., Dover, New York, 1955. MR 16, 1086.
- 3. D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229.
- 4. B. Huppert, Endliche Gruppen I, Die Grundlehren der math. Wissenschaften, Band 134, Springer-Verlag, Berlin and New York, 1967. MR 37 #302.
- 5. W. Kantor and G. Seitz, Some results on 2-transitive groups, Invent. Math. 13 (1971), 125-142.
 - 6. M. O'Nan, Illinois J. Math. (to appear).
- 7. M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. (2) 80 (1964), 58-77. MR 29 #145.
- 8. H. Wielandt, Finite permutation groups, Lectures, University of Tübingen, 1954/55; English transl., Academic Press, New York, 1964. MR 32 #1252.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061