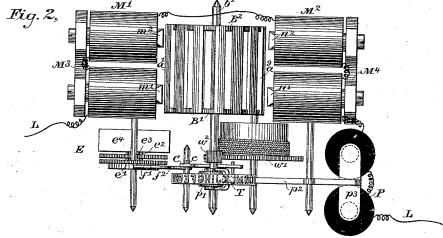
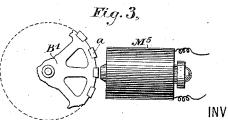

(No Model.)


H. VAN HOEVENBERGH.

PRINTING TELEGRAPH.

No. 306,297.

Patented Oct. 7, 1884.



WITNESSES

Mm A. Skinkle

Seo W. Greck

INVENTOR

By his Attorneys

Henry Van Hoevenbergh,

Pope Eagecomb + Butten.

UNITED STATES PATENT OFFICE.

HENRY VAN HOEVENBERGH, OF ELIZABETH, NEW JERSEY, ASSIGNOR TO THE BALTIMORE AND OHIO TELEGRAPH COMPANY, OF BALTIMORE, MD.

PRINTING-TELEGRAPH.

SPECIFICATION forming part of Letters Patent No. 306,297, dated October 7, 1884,

Application filed August 16, 1883. (No model.)

To all whom it may concern:

Be it known that I, Henry Van Hoeven-Bergh, a citizen of the United States, and a resident of Elizabeth, in the county of Union 5 and State of New Jersey, have invented certain new and useful Improvements in Printing-Telegraphs, of which the following is a specification.

My invention relates to certain improveno ments in the construction of printing tele-

graph instruments.

The principal object of the invention is to improve the escapement mechanism for controlling and arresting the movements of the type-wheel. In my improved mechanism these operations are effected silently and without the aid of the usual scape-wheel and its associated mechanism.

My invention consists, generally, in effect-20 ing the escape and control of the type-wheel through the agency of magnetism, instead of

the usual mechanical means.

Briefly, my invention may be carried out as follows: Between the confronting poles of two 25 permanently-polarized electro-magnets a series of armatures are arranged upon a cylindrical support or barrel, which is normally impelled in a given direction through the instrumentality of a weight or spring. The per-30 manent polarization of the cores of either electro-magnet is sufficient to prevent the movement of the cylindrical series of armatures, by reason of the attraction exerted upon any armature which chances to confront it. When, 35 however, an electrical impulse of the character requisite to neutralize the magnetism of the cores of one of the electro-magnets is transmitted through its coils, the series of armatures will be allowed to advance in response 40 to the force exerted by the said weight or spring. The electro-magnets are preferably so arranged with reference to the armatures in the cylindrical series that when one of said armatures is in front of one of said electro-mag-45 nets the other electro-magnet will confront the open space intervening between two other armatures. The coils of the electro-magnets are so connected in the same circuit that $\bar{\mathbf{a}}$ current rent of the proper polarity for neutralizing the cores of one of the electro-magnets be transmitted over the main line, the cylinder, acting under the influence of the weight, will advance until one of the armatures confronts : the poles of the strengthened magnet, and a space intervening between the two armatures is in a corresponding position with reference to the poles of the then neutralized magnet. If now an electrical current be transmitted upon & the main line in the reverse direction, the magnetic conditions of the two magnets will be reversed and the cylinder will advance a second step. A type-wheel of any suitable construction is mounted upon the arbor of the 6 cylindrical armature and revolves therewith. This wheel is preferably provided with twice as many type as there are armatures upon the cylinder. Thus by transmitting electrical impulses of alternating polarity the armature 7 may be advanced step by step, and by prolonging any impulse it may be arrested with any required type above the printing-platen.

For the purpose of taking the impression of a type that has been brought into position in 7 the manner described, a second electro-magnet is provided, the coils of which are included in the circuit of the main line. This electromagnet may be adjusted to respond to electric impulses of greater strength than those re- 8 quired for permitting the advancement of the type-wheel; or it may be constructed to respond to a prolonged impulse. In either case it causes a platen to move in the direction of the type-wheel and effect an impression in the 8 usual manner. The type-wheel is brought to the unison-point by means of a lever acting to intercept a pin carried upon the type-wheel whenever a pause of any considerable duration intervenes between the printing of two 9 characters. This lever is impelled from the path of said pin at each movement of the printing-lever; but as it tends continually to___ return the type-wheel will come to unison whenever a comparatively long pause occurs o in the printing.

matures. The coils of the electro-magnets are so connected in the same circuit that a current which neutralizes one magnet will strengthen to the other, and vice versa. If, therefore, a cur-

The device which I employ, however, is in no way dependent upon the movement of the type-wheel, but continues to advance into position to intercept the same, even though the 5 type-wheel remains at rest. It will be understood, therefore, that no unnecessary movement of the type-wheel will be required when it is desired to secure its unison, for the reason that it may be held at rest, in whatever posio tion it chances to occupy, until sufficient time may have elapsed to permit the unison-stop to move into its path, a sufficient number of impulses being then transmitted to advance the wheel to unison. Instead of employing two 5 electro-magnets for effecting the escapement of the type-wheel, a single electro-magnet may be applied to the armature, and it may be either provided with a polarized or with a soft-iron core. When a polarized electromagnet is employed, it is arranged to retain the armature so long as it remains unneutralized, but immediately upon the transmission through its coils of an impulse of proper character to neutralize the permanent magnetism of its core the armature will be liberated. Such impulses should be short enough to permit the escape of only one armature at a time. With such a construction it would be necessary to employ a number of armatures equal to the number of type carried upon the typewheel. In case an electro-magnet having a soft-iron core is employed, the step-by-step movement is effected by successively interrupting or reversing a current transmitted; through its coils, the demagnetization at the instant of reversal permitting a single arma-

In the accompanying drawings, which illustrate my invention, Figure 1 is a side elevation of such parts of a printing-telegraph receiving-instrument as are essential to illustrate my invention. Fig. 2 is a plan, and Fig. 3 represents a modification in the organization

of the apparatus.

Referring to the drawings, M' and M' represent two electro-magnets included in the circuit of the main line of a printing-telegraph system. The cores $m' m^2$ and $n' n^2$ are polarized, preferably by means of the permanent magnets shown at M3 and M4. The coils surrounding said cores are so connected with reference to each other that if a current of electricity be transmitted through the circuit it will tend to neutralize the cores of one electro-magnet and to increase the magnetic force manifested by those of the other.

Between the electro-magnets M' and M2 is placed a cylinder consisting of a series of softiron bars, a' a² a³, &c., carried upon two nonmagnetic rings or cylinder-heads, B' and B'. The entire armature is carried upon an arbor, b', upon which the armature revolves, and the soft-iron bars a are successively presented to the poles of the magnets. A weight, W, acting through a gear-wheel, w', and pinion w^2 ,

mature in the direction indicated by the arrow. The attraction of the cores of either magnet for any bar upon the armature is sufficient, however, to retain the cylinder against 70 the action of the weight. The soft-iron bars are so disposed that when one bar, as a', confronts the poles of one of the electro-magnets, as M', the poles of the other magnet, M2, will not face any bar, but will confront the space 75 intervening between two adjacent bars, as as and a^{9} . When an electric current of the proper character to neutralize the magnet confronted by the bar a' is transmitted through the main line L, the cylinder will be permitted to ad- 80 vance until the bar a^9 confronts the poles of the electro magnet M^2 . The polarization of the cores of this magnet is increased by the same current which tends to neutralize the cores of the electro-magnet M'. The cylindri- 85 cal armature will thereupon be arrested, the increased strength of the electro-magnet M2 assisting to overcome the momentum acquired by the same. Whether the impulse transmitted be continued or allowed to decrease, the cylindrical armature will be retained in this latter position until a current of opposite polarity be transmitted through the line -that is to say, a current of the proper character to neutralize the magnetic force of the cores of the electro-magnet M^2 . When such a current is transmitted, the cylindrical armature will be allowed to advance another step of the same length. An advance step of the cylinder is thus produced with every change in the polar- 100 ity of the main-line current. A type-wheel, T, of ordinary construction, is carried upon the arbor b' and revolves therewith. It is provided preferably with twice as many type as there are soft-iron bars a, so that for each 105 movement of the cylinder one type will be brought into the field of the printing-platen p'. The platen is carried upon the lever p^2 of a printing-magnet, P. The coils of this magnet are included in the circuit of the main line L; 110 but its armature p^3 is adjusted, by means of the spring p^4 , so as not to respond to currents of the strength required for causing the step-bystep movement of the cylindrical armature. but only to currents of increased strength. 115 When, therefore, the type wheel has been allowed to revolve until the required type is above the platen, an impression may be effected by simply increasing the current last transmitted to the proper strength. The elec- 120 tro-magnet P will thereupon be vitalized, the platen actuated, and the impression effected in the usual manner.

For the purpose of arresting the type-wheel at its unison-point I provide an arm, C, which, 125 whenever a pause of any considerable length occurs in the printing, is projected into the path of a pin or stop, c, attached to the side of the type-wheel; or, if preferred, it may be attached to the cylinder or to the arbor b'. 130 The arm C is pivoted at a point, c', and pronormally tends to advance the cylindrical ar | vided with a spring, c2, which tends to draw

306,297

the same forward, causing a catch or hook, d, 1

to project into the path of the pin c. The hook d is thrown out of the path of the pin c' with every actuation of the printing 5 mechanism in the following manner: Each upward movement of the printing-lever p', as in the act of printing, causes the end of the printing-lever to engage the extension d^2 of the arm C and throw back the hook d. As the spring 10 c^2 would, however, immediately cause the arm C to move forward after the lever p^2 had reassumed its normal position, retarding mechanism E is employed for preventing an immediate return of the arm C. This mechanism may 15 consist of a series of toothed wheels, e^2 e^3 , provided with a fan-escapement, et, and geared with a ratchet-wheel, e'. A pawl, f', is pivoted to the arm C, and is normally pressed by means of a spring, f^2 , against the periphery of the 20 ratchet-wheel e'. Each time the arm C is thrown back by the movement of the printing-lever p'the pawl f' slides over the teeth of the wheel e' and engages a tooth at the limit of its backward movement. The tension of the spring 25 c^2 acts, through the arm C and pawl f', to cause a continuous forward movement of the wheel e', thereby permitting the arm to gradually move into the path of the pin c. The fan e^i , however, prevents a rapid movement of the

It will be evident that to bring the typewheel to its unison-point it is only necessary to permit enough time to elapse after effecting an impression to allow the arm C to move into 35 the path of the pin c, and then to cause the type-wheel to advance in the usual manner until arrested.

To release the type-wheel an impulse is transmitted of sufficient strength to actuate 40 the lever p', which throws back the arm C. A blank space is preferably left upon the typewheel in such a position as to be above the platen when arrested by the above-described mechanism, and no impression will therefore 45 be made.

In Fig. 3 I have shown a modification of the electro-magnetic escapement device. This modification consists in dispensing with one of the electro-magnets shown in Fig. 1—the 50 electro-magnet M2, for instance—and controlling the movements of the cylindrical armature through the instrumentality of a single electro-magnet, M⁵. This electro-magnet may be constructed with a permanently-polarized 55 core, or with a soft-iron core. If the polarized core is used, the step-by-step movement may be effected by transmitting through the coils of the magnet successive impulses adapted to momentarily neutralize the normal magnetism 60 of the core, and thus release the armature. These impulses, however, should be of sufficient duration only to permit the escape of a single armature at each impulse—that is to say, one soft-iron bar, a, having been released 65 the core should be allowed to resume its nor-

armature with the succeeding soft-iron bar opposite the poles of the magnet. If the cores of the electro-magnet M5 are of soft iron, they may be kept in a polarized condition by means 7c of an electric current. The step-by-step movement may then be effected by successive interruptions of the current, and consequent momentary demagnetizations of the core. For the purpose of accelerating the action of the 75 electro-magnet in this organization alternating currents may be employed, each succeeding current or impulse acting to overcome the magnetism existing in the core and to immediately induce magnetism of opposite polarity. 80

In the two modifications last described it is evident that the number of soft-iron bars ashould be equal to the number of type carried by the type-wheel.

I claim as my invention-

1. The combination, substantially as hereinbefore set forth, of a type-wheel, mechanism tending to rotate said type-wheel, a cylindrical series of armatures mounted upon a non-magnetic support revolving with said 90 type-wheel, and the electro-magnet acting therewith as an electro-magnetic escapement for controlling and arresting the progressive movement of said type-wheel.

2. The combination, substantially as here- 95. inbefore set forth, of the type-wheel, the circular series of magnetically-independent softiron bars, the mechanism for rotating said type-wheel and bars about a common axis, and the polarized electro-magnets acting un- 100 der changes in the direction of the currents traversing their coils to allow the escapement of said bars.

3. The combination, substantially as hereinbefore set forth, of a type-wheel, a cylin- 105 drical armature moving therewith, and comprising a series of soft-iron bars or simple armatures, and a non-magnetic support for the same, means for revolving said cylindrical armature upon its longitudinal axis, one or more 110 magnets normally acting to prevent such rotation, and means, such as described, for overcoming or withdrawing the effect of such magnets from said armature.

4. The combination, substantially as here- 115 inbefore set forth, of a type-wheel, two permanently-polarized electro-magnets, a cylindrical support constructed with a series of magnetically isolated soft-iron bars, and having a bar presented to one electro-magnet when 120 a space midway between two other bars is presented to the other magnet, means for revolving said support in a given direction when unopposed by the attraction of said electromagnets for said bars, and means for simulta- 125 neously neutralizing the effect of either magnet while increasing the force of the other.

5. The combination, substantially as hereinbefore set forth, of a type-wheel, a cylindrical series of magnetically-separated armatures, 130 independent means for revolving said series mal condition, and thus arrest the cylindrical I of armatures, and one or more electro-mag-

nets acting through their successive magnetization and demagnetization to permit the step-by-step advancement of said type-wheel.

6. The combination, substantially as hereinbefore set forth, of a cylindrical series of magnetically independent armature bars, means
for rotating said series about a common axis,
one or more electro-magnets acting to normally
retain said series in any of several successive
positions which it may chance to assume, and
means whereby the effect of said electro-magnet or magnets may be neutralized or withdrawn.

7. The combination, substantially as hereinbefore set forth, with a type-wheel, and means for actuating the same and effecting impressions therefrom, of a unison device for mechanically arresting said type-wheel, mechanism actuated independently of the typewheel - actuating mechanism for controlling the action of said unison device and permitting the same to operate while the type-wheel is at rest, and mechanism actuated by the impression device tending to throw said unison device out of engagement with said type-wheel.

8. The combination, substantially as hereinbefore set forth, of the type-wheel, an electro-magnetic escapement, a printing mechan-30 ism, unison mechanism for arresting the typewheel in position to print blank, and means controlled by independent mechanism for permitting said unison mechanism to move into the path of said type-wheel independently of the movement of the latter, and means for 35 preventing it from intercepting said type-wheel during rapid printing.

9. A unison device for arresting the type-wheel of a printing-telegraph instrument, which is prevented from intercepting the path 40 of the unison-stop during the continuous operation of printing by mechanism independent from the actuating mechanism of the type-wheel.

10. The combination, substantially as hereinbefore set forth, with a type-wheel, and
means, substantially such as described, for actuating the same, of a unison-stop normally
tending to intercept the path of said typewheel, means independent of the type-wheel 50
for actuating mechanism for retarding the operation of said stop, and means, substantially
such as described, for effecting impressions
from said type-wheel, and forcing said stop
out of the path of said type-wheel.

In testimony whereof I have hereunto subscribed my name this 31st day of July, A. D. 1883.

HENRY VAN HOEVENBERGH. Witnesses:

DANIEL W. EDGECOMB, CHARLES A. TERRY.