C. BATCHELOR.

DYNAMO ELECTRIC MACHINE. No. 341,990. Patented May 18, 1886. Fig3. Fig.4.

United States Patent Office.

CHARLES BATCHELOR, OF NEW YORK, N. Y.

DYNAMO-ELECTRIC MACHINE.

SPECIFICATION forming part of Letters Patent No. 341,990, dated May 18, 1886.

Application filed January 20, 1886. Serial No. 189,116. (No model.)

To all whom it may concern:

Be it known that I, CHARLES BATCHELOR, of New York city, in the county and State of New York, have invented a certain new and 5 useful Improvement in Dynamo-Electric Machines, of which the following is a specifica-

This invention relates to dynamo-electric machines designed to generate currents of high 10 electro-motive force, such as are used with series or multiple series systems of electric lighting. In such a machine when a sudden change is made in the load, or when the external circuit is broken, the discharge of the 15 suddenly-demagnetized armature sometimes causes a destructive spark, which passes from one coil to another on the armature, or from a coil to the iron core, through any ordinary insulation, and so injures or destroys the arma-20 ture. Similar destructive sparks also may occur on the commutator-cylinder, passing from the conducting-bars to the body of the cylin-

The object of my invention is to remedy 25 this difficulty by so constructing the armature and commutator that the sparks cannot pass to the core of the former or to the body of the latter or from one coil to another.

In the accompanying drawings, Figure 1 is 30 a cross-section of the armature of a dynamoelectric machine embodying my invention; Fig. 2, a longitudinal section of the commutator on a much larger scale than Fig. 1; Fig. 3, a cross-section of the commutator on line x x35 of Fig. 2; Fig. 4, a cross-section on line y y of Fig. 2 and Fig. 5, an enlarged segment of the armature cross-section.

A is one of the disks of which the armature cylinder or core is composed, B being the ar-40 mature-shaft, and a a the bolts which secure the disks together.

C C are the wires coiled longitudinally upon the armature-cylinder.

The manner of constructing the armature 45 to accomplish the object above named is as follows: I have found that the high-tension spark will not penetrate an insulation consisting of linseed-oil or other drying-oil dried upon the part to be insulated, or of paper satu-50 rated with such oil and then dried. I therefore, in constructing the armature, wrap the cylinder A with paper, D, which has been first | ate mica strips from turning when the nut is

dipped into boiling linseed-oil and then dried or baked thoroughly in an oven. The wire which is to be wound upon the armature, which 55 has any ordinary insulation b, of fibrous or similar material, is itself soaked in the boiling linseed-oil and dried, after which it is wound in the ordinary manner upon the cylinder and connected to the commutator placed upon the 60 same shaft. The armature thus completed is then dipped bodily into the receptacle of boiling linseed-oil, the commutator and connections being kept above the surface of the liquid, and such liquid entering between the wires 65 completely fills all the interstices between the wires, and between them and the core, thus completing the thorough insulation of these parts in such a manner that the high-tension spark cannot act in the manner described. 70 The fine shade-lines $c\ c$ are intended to represent the coating of oil.

The commutator which I use in this machine is built up as follows:

E is a metal cylinder placed upon the shaft 75 B, formed with a collar, E', at its inner end, and screw-threaded, as shown at d, at the other end. Upon the body of the cylinder I wrap paper e, coated with linseed-oil, as above described.

FF are the conducting-bars, which are placed around the surface of cylinder E. From each of these bars rises strip G, to which the armature-wires are connected by means of connecting device H. Each of the bars F is wrapped 85 upon its bottom and sides with linseed-oil paper e', and between the bars are placed strips of mica f, to make a stronger and more durable wearing-surface than if the paper alone were placed between them. Between the ends 90 of the bars and the collar E' is a loose metal ring, g, which is wrapped entirely with linseedoil paper h. The inner side of the ring is beveled to correspond with the shape of the ends of the bars. Between the bar ends and the 95 ring g is placed mica i. At the other end of the bars is placed another loose beveled ring, k, wrapped with linseed-oil paper l. Between the bars and ring k is mica m.

I is a nut screwed upon the screw-threaded 100 end of the commutator-cylinder to secure the parts all tightly together.

In order to prevent the bars and intermedi-

screwed on, and so being twisted out of line, I provide a ring, n, which has an inner lug, o, entering a slot in the cylinder E, so that the turning of the nut cannot cause any of the

other parts to turn also.

Heretofore in commutators of this character the body of the commutator has been provided with longitudinal slots or grooves in which the insulating material separating the con-10 ducting-bars is placed. Strips of such material have also been placed underneath each With this construction the insulation acted to hold the bars in place, and hence the devices just described for this purpose were 15 not employed. With the body having a continuous surface on which the bars are laid there is nothing to prevent their displacement, and I therefore provide the devices described. With this old construction it has been found 20 exceedingly difficult to thoroughly protect the parts from the high-tension spark or disruptive discharge when the high-tension current is broken, the insulation not being continuous and the bars being brought close to the cylin-25 der at points where there might be crevices between the insulating parts; but with the continuous wrapping which I provide upon the bars, the cylinder, and the other metal parts of material impenetrable by the spark, 30 I accomplish a complete insulation. The linseed-oil paper between the bars and cylinder prevents the spark from passing between them. The intermediaterings, g and k, interpose such a distance between the ends of the bars and 35 those of the cylinder that the spark cannot pass between these parts, as it might ordinarily where the bars come near to the cylinder ends with only a narrow filling of mica between them. As an additional safeguard, I extend the 40 mica i a short distance above the bars up against the radial strips G. The mica m is also made to project above the bars and ring k for the same purpose. It will be seen that thus the whole armature and commutator are thor-45 oughly and completely protected from the ill effects of the discharge-spark. As an additional precaution, however, I may, before wrapping the core of the armature, the body of the commutator, and the bars and rings of

I do not claim herein the method of insulating the armature by dipping it into liquid insulating material, since I am required by the Patent Office to embody this in a separate

50 the latter with the prepared paper, cover all

such parts with Japan varnish, which is baked

thereon, as shown by the heavy black lines

surrounding these parts. This may, however,

application.

be dispensed with.

What I claim is—

1. In a commutator for a dynamo-electric machine, the combination of a cylindrical metal body having a continuous surface, an insulating-wrapping for said body, and conducting-bars placed thereon, substantially as 65 set forth.

2. In a commutator for a dynamo-electric machine, the combination of a cylindrical metal body having a continuous surface, a wrapping for said body of paper impregnated 70 with linseed or other drying oil, and conducting-bars placed thereon, substantially as set forth.

3. In a commutator for a dynamo-electric machine, the combination of a cylindrical 75 metal body having a continuous surface, an insulating-wrapping for said body, and conducting bars placed thereon, each having an insulating wrapping upon its bottom and sides, substantially as set forth.

4. In a commutator for a dynamo-electric machine, the combination of a cylindrical metal body having a continuous surface, a wrapping for said body of paper impregnated with linseed or other drying-oil, and conduct- 85 ing-bars placed thereon, each wrapped upon its bottom and sides with the same material,

substantially as set forth.

5. In a commutator for a dynamo-electric machine, the combination of the cylindrical go metal body having a continuous surface and provided with a flange at one end and a nut or screw-ring at the other, the bars resting upon the surface of said cylinder, and the loose insulated metal rings between the ends 95 of said bars and said flange and nut or ring, substantially as set forth.

6. In a commutator for a dynamo-electric machine, the combination, with the cylindrical metal body having a continuous surface, 100 of the bars resting upon the surface thereof, the tightening-nut or screw-ring, and the keyed ring between the nut and bars, substantially

as set forth.

7. In a dynamo-electric machine, the com- 105 bination, with the commutator-body and the bars thereon, of the insulation at the ends of said bars projecting above their surface, substantially as set forth.

This specification signed and witnessed this 110

14th day of January, 1886.

CHAS. BATCHELOR.

Witnesses:

A. W. KIDDLE, E. C. ROWLAND.