
E. D. MACKINTOSH. CARVING MACHINE.

No. 346,596.

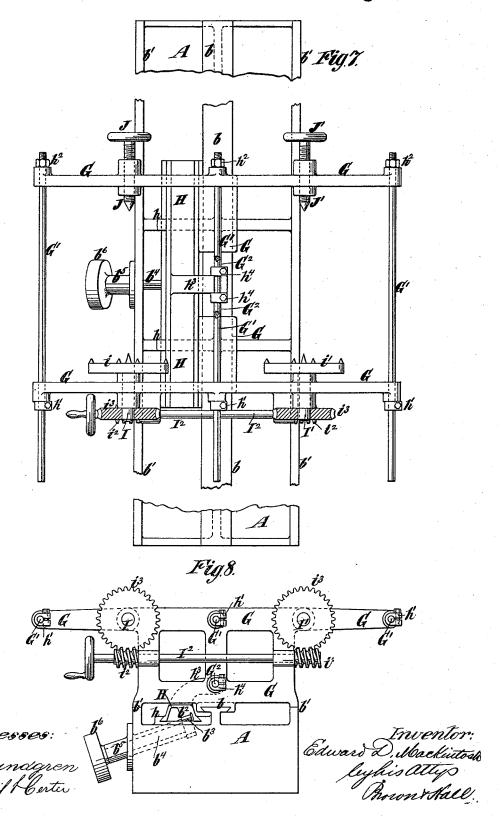
Patented Aug. 3, 1886.

E. D. MACKINTOSH. CARVING MACHINE.

No. 346,596.

Patented Aug. 3, 1886.

Fig.2. B' B'E'3


Witnesses:

Cl Sundgren Emil Herter. Inventor. Edward D. Mackinton lyhis attips
Brown v Stall

E. D. MACKINTOSH. CARVING MACHINE.

No. 346,596.

Patented Aug. 3, 1886.

United States Patent Office.

EDWARD D. MACKINTOSH, OF BROOKLYN, ASSIGNOR TO PAUL PRYIBIL, OF NEW YORK, N. Y.

CARVING-MACHINE.

SPECIFICATION forming part of Letters Patent No. 346,596, dated August 3, 1886.

Application filed March 20, 1886. Serial No. 195,944. (No model.)

To all whom it may concern:

Be it known that I, EDWARD D. MACKIN-TOSH, of the city of Brooklyn, in the county of Kings and State of New York, have invented 5 a new and useful Improvement in Carving-Machines, of which the following is a specifition.

My invention relates to carving-machines which comprise a bed or fixed frame, tables, to or a support for the work, and the pattern movable by gearing, operated by hand, along tracks or ways on the bed or fixed frame, and a movable frame arranged above the work and pattern tables or supports and carrying a 15 tracker or forming pin, which engages with the pattern, and a rotary spindle and carving-cutter, which operates on the work along lines, the direction of which is controlled by the forming pin following the pattern, the 20 tables or support and the movable upper frame providing for a universal change in position between the cutter and the work and the forming-pin and the pattern. When operating on flat work, the work and pattern are 25 supported on two tables, which travel side by side on the fixed frame or bed, and when operating on round work—such as columns,

statues, &c.—the two tables are removed and there is substituted therefor a frame which, like the tables, is movable on the bed and has journaled in it pairs of spindles or centers, whereby the pattern column or object and the corresponding piece of work to be carved are supported.

My invention consists in a novel combination of gearing whereby the tables or work and pattern supports are moved along the fixed frame or bed; also, in a novel and adjustable combination of parts whereby the tables for the work and pattern will receive a variable movement, the one relatively to the other, by a movement imparted to one of them, as is necessary to enlarge or reduce work from a pattern; also, in a novel combination of parts whereby the upper frame, carrying the work-cutter and the forming-pin, is supported so as to permit of its movement,

and has its weight balanced, whatever be its height above the fixed frame or bed; also, in and carries a hand-wheel, b^{10} , whereby it may be turned. The employment of the internal its support, so as to provide for enlarging or gear - wheel, b^{0} , is advantageous, because its

reducing the work from the pattern in its dimensions, which are transverse to the direction of movement of the work and pattern, and to further provide for arranging the formage pin so that it may operate on the work when secured to the same table with the pattern or on the other table, and to provide for the ready adjustment of the forming-pin upward and downward in its holder; and, also, to 60 provide for sustaining and properly moving and turning the work and pattern when the machine is employed on round work—as columns, statues, &c.

In the accompanying drawings, Figure 1 is 65 an end elevation of a machine embodying my invention. Fig. 2 is a plan and horizontal section on the plane of the dotted line x x, Fig. 1. Figs. 3, 4, 5, and 6 are detail views hereinafter described. Fig. 7 is a plan of the 70 bed or fixed frame and the frame for holding round work and a pattern movable upon said bed or fixed frame; and Fig. 8 is an end view of the parts shown in Fig. 7.

Similar letters of reference designate corre- 75 sponding parts in all the figures.

A designates the fixed frame or stationary bed, provided with tracks or ways b b', along which are movable two tables or work and pattern supports, B B'. As here represented, the 80 track or way b is dovetailed, so that the tables will not lift when any weight comes on their outer edges, but the tracks b' are plain, and hence the tables may be readily removed by first lifting its outer edge.

The stationary frame of the machine also comprises L-shaped upright arms A', which are secured to opposite sides of the bed A, and are connected at their top by a crossbar, A².

The tables B B' are connected, so that a movement imparted to one is transmitted to the other, as I shall soon describe. The worktable B has upon it a rack, b^2 , with which engages a pinion, b^3 , on an inclined shaft, b^4 , journaled in a bearing, b^5 , on the bed A. The shaft b^4 has motion imparted to it through an internal gear, b^6 , and a pinion, b^7 , on a shaft, b^8 , which is fitted in a bearing, b^9 , on the bed, and carries a hand-wheel, b^{10} , whereby it may soo be turned. The employment of the internal gear wheel, b^9 , is advantageous, because its

346,596

teeth are not liable to be obstructed by chips, and because when it is used the top of the handwheel b^{10} will move in the same direction as the table, which facilitates the movement of 5 the table B by the workman. Were ordinary external spur-wheels employed to gain equal power, the top of the hand-wheel would move in a reverse direction to the table. It is advantageous to arrange the shafts $b^4 b^8$ in an inclined position, because then a large handwheel may be employed without projecting above the table and in the way of overhanging work, and without necessitating the employment of large gears.

The means employed to connect the tables B B' consist of a horizontally-swinging bar, C, and slides cc', fitted thereto and pivotally connected with brackets c^2c^3 , projecting from the

tables, as shown best in Fig. 2.

In Fig. 3 I have shown a sectional view of the slides c c' on the bar C, and in Fig. 4 I have shown an end view of the slide c, and its bracket c^2 , including a part of the table B, to which the bracket is attached. The brackets c^2 c^3 are dovetailed to fit dovetailed guides c^4 on the tables B B', and may be secured by setserews c^5 after adjustment transversely to the width of the tables.

I have shown on each of the arms or frame portions A' a hub or boss, c⁶, and the bar C may be pivoted at either of these points and on either side of the machine. When the bar C is pivoted at the left hand of Fig. 2, as shown, the table B' for the pattern will receive a longer movement than the work - table B, and the work performed will be correspondingly reduced from the pattern; but if the bar C be pivoted at the right hand of Fig. 2 the table B will receive a greater movement than the table B', and the work will be enlarged from the pattern.

As here represented, the brackets c^2 c^3 are so formed that they may be cast from the same pattern and simply reversed in position, the 45 bracket c^2 being pivoted to the top of the slide c and the bracket c3 being pivoted to the bottom of the slide c'. Each slide c c' has a semicircular projection, c^{τ} , to which the bracket is pivoted, and each has at the side opposite said 50 projection a semi-circular recess, c^8 , which receives the projection c^7 of the other side when they are brought close together on the bar C. When the slides are thus constructed and pivoted to the brackets $c^2 c^3$, the slides can be 55 brought close together on the bar, so that the pivotal points of the two will be in line, and then the tables will receive equal movement, and the work will be produced of the same size as the pattern.

The arms or frame portions A' are constructed with dovetailed guides d, to which are fitted slides D, constructed with nuts which receive screws D', and the screws D' at opposite sides of the machine are turned simultaneously by means of a cross-shaft, D², provided with a hand-wheel, d', and connected by bevel-gears d² with the screws.

Extending above the tables B B' is a crosshead, E, which is pivoted at e to the slides D, so that it may swing in a plane transverse to 70 its length. This cross-head is constructed with hoods or housings E', in which are pivoted vertically, by screws e', a pair of arms, E E³, and these arms are connected near their outer ends by a spindle frame, E', which is 75 yoked to receive them and pivoted vertically to them by screws e^2 . The arms $E^2 E^3$ extend horizontally, and their vertical pivots, which connect them with the cross-head E and spindle-frame E4, permit them to swing simultane- 80 ously in a horizontal direction, while the whole upper frame, composed of the parts E E² E³ E⁴, may be swung up and down on the pivots e as centers. The upper frame may be balanced and have its weight sustained by a 85 spring, F, attached at one end to a screw, s, which is adjustable in an arm, E5, extending from the cross-head E and attached at its other end to a cord or other flexible connection, e3, which is carried around pulleys e4 and GO attached to one of the slides D or to some other part movable by the screws D'. tension of the spring F may be varied by the screw s, and whenever the slides D are adjusted to raise or lower the cross-head E and 95 upper frame the upper end of the spring F will, through the cord e^3 , be correspondingly raised or lowered. The upper frame carries a carving tool or cutter, f, secured by a suitable chuck on a rotary spindle, f', journaled 100 in the frame E⁴, and this spindle f' has upon it a pulley, f^2 , and may be driven by a belt (not here shown) from a pulley, f^3 , on the cross head E. Below the pulley f^3 and rotating as one therewith is a pulley, f^4 , which , which IC5 may receive motion through a belt from a suitable outside shaft, and it will be understood that the cutter f operates on the work, which is to be secured on the table B.

The arm E³ is constructed with a dovetailed 110 guide, e5, to which is fitted a sliding hanger, e^6 , having a set-screw, e^7 , whereby it may be fixed in position after adjustment; and to the hanger $e^{\hat{i}}$ is secured, by a dovetailed tongueand groove connection, e8, and a set-screw, 115 e^{9} , a bracket, e^{10} , in which is fitted a tubular screw, e^{11} , carrying the forming-pin e^{12} . The bracket $e^{i\theta}$ is split at the nut which receives the screw e^{1} , and is there provided with a clamping-screw, f^{5} , for holding the screw e^{1} 120 against movement; and the screw e^{1} is also split in its lower portion, and provided with a clamping screw, f^6 , for holding the pin e^{12} against slipping therein. The pin e^{12} may be approximately adjusted in position by slip 125 ping it up or down in the screw e^{11} , and then tightening the clamping-screw f6, and the exact adjustment may then be obtained by turning the screw e11 up or down in the bracket e^{10} , and then tightening the clamping screw 130 f^5 . The bracket e^{10} is shown in Fig. 5 in plan view, and the screw e^{ii} is most clearly shown in Fig. 6.

When the work is of small size, and is to

3

346,596

be produced of the same size as the pattern. the bracket e^{10} , carrying the pin e^{12} , may be detached from the slide or hanger e^{6} and secured on a dovetailed guide or tongue, e^{13} , on 5 the bottom of the frame E⁴, as shown by dotted lines in Fig. 1, and then the work and pattern may both be secured to the table B, and the table B' not moved at all.

When the work is of large size, and is to be 10 produced without enlargement or reduction, the work and pattern may be secured to the two tables B \vec{B}' , and the slides c c' adjusted, as before described, so that their pivots will be concentric, and the tables will receive the 15 same movement. The hanger e^6 may then be adjusted so that the forming-pin e^{iz} will be in line with the cutter f and in the plane of the frame E^4 . When the forming-pin e^{12} is secured on the frame E4, the portion of the arm E3 20 which projects beyond that frame, adds needless weight to the upper frame comprising said parts, and said arm may have its outer portion made separate from its main portion, as shown in Fig. 2. The end portion of the arm 25 E³ may have a neck to be slid into a socket in the main portion and there secured by a set-

screw, f^{τ} As before described, the difference in the movement of the tables B B' provides for re-30 ducing or enlarging the work from the pattern in the direction of its length, and by shifting the hanger e^6 along the guide e^5 it may be set to a greater or less distance than the cutter f from the centers of motion e', and thereby the work may be reduced or enlarged in its width relatively to the pattern. Consequently it will be understood that the pivoted system of arms in the upper frames provides for the reduction or enlargement of the work in its width in 40 the same or a different proportion relatively to the reduction or enlargement in length, and this is a feature of considerable importance. For example, in the same piece of cabinetwork there may be panels twelve by sixteen 45 inches and twelve by fifteen inches in size, which difference is not enough to affect the proportion of the figures if made from the same pattern. By this machine both may be made from the same pattern, and the saving of the 50 cost of the extra pattern is often considerable. The bed or fixed frame A also has dovetailed bearers or seats h, which are used in connection with the attachment for round work, which I will now describe, reference being had 55 to Figs. 7 and 8. This work and pattern support or holder comprises end frames, G, which are fitted to slide on the tracks or ways b b' of the bed A, and are connected by rods G' G2, the frames being held on the rods by split 60 clamping-collars h' and nuts h^2 . In this case there is also employed a slide, H, which is fitted to the dovetailed seats or bearers h, and is constructed with a rack, b^2 ; with which engages a pinion, b^3 , on the inclined shaft b^4 , be-65 fore described. The slide has an arm, b^3 ,

able frame between two clamping collars, adjustable thereon.

In the end frames, G, are journaled spindles I I', carrying chucks i i', provided with spurs, 70 which are adapted to enter the ends of the work and pattern, and impart rotary motion to them when the spindles are turned simultaneously by means of a single shaft, I2, operating on the spindles through worms or screws 75 and worm-wheels $i^2 i^3$. Opposite the spindles I I' and their chucks are arranged centeringscrews J J' for the work and pattern. This attachment may be successfully employed for long or short work, and when the frames G 80 are placed on the bed A the cutter f will operate on the work held by the spindle and screw I J, while the forming-pin e12 will follow the pattern held by the spindle and screw I' J'. In operating on long work a portion of 85 the length might be completed, and then, by altering the relation of the slide H and the frames G, by shifting the collars h^4 on the rod G², another portion of the length may be presented to the cutter and forming-pin.

The split collars h' provide for setting the frames G at different distances apart for work and patterns of different length, and the end frames, G, will then be approximately parallel; but to avoid any binding of the end frames, G, 95 on the dovetailed track or way b of the bed or fixed frame A, the nuts h^2 may be adjusted to bring the end frames, G, into a truly parallel

position.

Instead of employing wheel-gearing for mov- 100 ing the table B, a nut and screw constituting screw-gearing might be used.

What I claim as my invention, and desire to

secure by Letters Patent, is-

1. The combination, with a bed having pare 105 allel tracks or ways and a table or workholder movable lengthwise thereon, and having connected with it a rack which is parallel with the tracks or ways, of a shaft arranged transversely to the tracks or ways, carrying a 110 pinion engaging said rack and inclined downward away from the pinion, and a hand-wheel at the lower end of the shaft, whereby it may be turned, substantially as herein described.

2. The combination, with a bed having par- 115 allel tracks or ways and a table or work-holder movable thereon, and having a rack connected with it, of a shaft journaled on the bed transversely to the tracks or ways and carrying a pinion engaging with the rack, and also car- 120 rying an internal gear-wheel, and a second shaft provided with a pinion engaging said internal gear-wheel, and also provided with a hand-wheel for turning it, whereby the top of the hand-wheel is caused to move in the same 125 direction as the table or work - holder, substantially as herein described.

3. The combination, with a bed having a central dovetailed track or way, b, and plain $ar{ ext{side}}$ tracks or ways, b', of work and pattern holders 130 fitting said tracks or ways, and gearing wherewhich engages the lower rod, G2, of the mov- by said work and pattern holders may be moved

along the bed, substantially as herein de-

4. The combination, with a fixed frame and work and pattern tables movable thereon side 5 by side, of a bar pivoted to the fixed frame at one side of the tables and slides fitting the bar and pivotally connected with the tables, substantially as herein described.

5. The combination, with a fixed frame and to work and pattern tables movable thereon side by side, of a bar pivoted to the fixed frame at one side of the tables, slides fitting said bar, and brackets upon the tables, pivoted to said slides and adjustable on the tables transverse-15 ly to their direction of movement, substantially as herein described.

6. The combination, with a fixed frame and tables B B', movable thereon, of the bar C, pivoted at one end to the frame at the side of 20 the tables, slides c c', fitting said bar, brackets c^2 c^3 , adjustable on the tables transversely to their direction of movement, and pivoted one to the top of the slide c and the other to the bottom of the slide c', each slide having on one side a projection to receive the pivot for the bracket, and on the other side a recess to receive the projection on the other slide, substantially as and for the purpose herein described.

7. The combination, with a fixed frame and work and pattern tables movable thereon side by side, of a horizontally-swinging bar having provision for pivoting it at either end to the fixed frame at one or other side of the 35 tables, slides fitting the bar and pivotally connected with the tables, and gearing connected with one table for moving both of them, substantially as herein described.

8. The combination, with a fixed frame and 40 work and pattern tables or supports movable thereon, of a cross-head extending across above the tables or supports and pivoted at its ends so as to swing in a vertical plane transverse to its length, arms pivotally con-45 nected near their outer ends and connected by vertical pivots with the cross-head so as to swing in a horizontal plane, and a formingpin and cutter-spindle carried by said arms,

substantially as herein described. 9. The combination, with a fixed frame and work and pattern tables or supports movable thereon, of a movable upper frame above the tables or supports, vertically-movable slides supporting said movable upper frame, and a 55 balancing spring whereby the weight of the movable upper frame is sustained, and a support for the spring movable upward and downward simultaneously with the adjustment of the upper frame upward and downward, sub-60 stantially as herein described.

10. The combination, with the fixed frame and the movable tables or supports for the pattern and work, of the vertically-movable slides D, and their adjusting - screws D', the 65 movable upper frame supported on said slides and carrying a cutter and a forming-pin, and a spring, F, the lower end of which is connect-

ed with the movable upper frame, and which is suspended by a cord, e, passing over sheaves et, and connected with a part movable by said 70 screws, substantially as herein described.

11. The combination, with the fixed frame and the movable tables or supports for the pattern and work, of the slides D, and adjusting-screws D', the movable upper frame car- 75 ried by the slides, the spring F, the screw s at the lower end of the spring, adjustable in the movable upper frame, and the cord e3, suspending the spring and passing over sheaves e⁴ and attached to a part movable by said screws 8c D', substantially as herein described.

12. The combination, with the cross-head E, pivoted at the ends to swing in a vertical plane transversely to its length, of the arms E' E' connected by vertical pivots with the cross- 85 head, the frame e^i , pivotally connected with the arms at their outer ends and carrying a cutter-spindle, and a forming-pin movable on the arm E³ lengthwise thereof, substantially as herein described.

13. The combination, with the cross-head E and spindle-frame E', provided with a slideway or guide, e^{13} , and the arms $e^2 e^3$, the latter having a guide or slideway, e⁵, and all pivotally connected as described, of a cutter-spin-9; dle on the frame et, a forming-pin, e12, and a bracket carrying the same and adjustably secured on the guide e^5 or the guide e^{13} , substantially as herein set forth.

14. The combination, with the cross-head E, 100 the frame E4, and the arms E2 E3, all pivotally connected as described, the frame E' having the guide or slideway e^{13} , and the arm e^3 having the guide or slideway E5, and having its outer portion removable, of the cutter-spindle 105 in the frame e', the forming-pin e12, and a bracket carrying the same and adjustably secured on the guide e^{13} or the guide e^{5} , substantially as herein set forth.

15. The combination, with a fixed frame and 110 work and pattern tables or supports movable thereon, of a cross-head extending across above the tables or supports and pivoted at the ends to swing in a vertical plane transverse to its length, arms pivotally connected at their outer 115 ends and connected with the cross-head by vertical pivots, so as to swing in a horizontal plane, a cutter-spindle carried by said arms, a bracket, e10, also carried by said arms and forming a split nut provided with a clamping- 120 screw, the tubular screw e^{11} , receiving the forming-pin e^{12} , and split at its lower portion and provided with a clamping-screw, whereby provision is afforded for the approximate and exact adjustment of said pin, substantially as 125 herein described.

16. The combination, with a fixed frame, two tables or work and pattern supports movable thereon, and connections whereby the length of movement of said tables or supports 13c may be varied one relatively to the other, of a movable upper frame consisting of a crosshead pivoted to swing in a plane transverse to its length, arms connected by vertical piv-

ots with said cross-head, and a frame pivotally connecting the outer end of said arms and carrying a cutter-spindle, and a forming-pin adjustable on said frame to vary its length of 5 movement relatively to the cutter-spindle in a direction transverse to the line of movement of the said tables or supports, substantially as herein described.

17. The combination, with the bed or fixed 10 frame A, having parallel tracks or ways, of the work and pattern supports movable thereon, and consisting of end frames, G, arranged transversely across and movable on the tracks or ways, and rods G', connecting 15 the end frames, G, and extending parallel with the tracks or ways, pairs of spindles provided with chucks, and centering screws in the opposite end frames, and having their axes parallel with the tracks or ways for holding the 20 work and pattern, and an upper cross-head, E, and arms E² E³, pivoted as described, and carrying a cutter-spindle and a forming-pin,

substantially as herein set forth. 18. The combination, with the bed or frame 25 A and the slide H, fitted thereto, and having an arm, h^3 , of the end frames, G, and rods G' G2, connecting them, the rod G2 having an adjustable connection with the arm h^3 , pairs of spindles and centering-screws in the 30 opposite end frames, for holding the work and pattern, and the upper cross-head, E, and arms E2 E3, pivoted as described, and carrying a cutter-spindle and forming-pin, sub-

stantially as herein set forth.

19. The combination, with the bed or fixed 35 frame A and the end frames, G, movable thereon, of the rods G', connected by nuts h^2 and clamping-collars h' with the end frames, pairs of spindles and centering screws in the opposite ends, frames for holding the work and 40 pattern, and the upper cross-head, E, and arms E² E³, pivoted as described, and carrying a cutter-spindle and forming-pin, substan-

tially as herein set forth.

20. The combination, with the bed or fixed 45 frame A and the end frames, G, movable thereon and connected by rods G', of the pairs of spindles and centering screws in the oppoposite end frames for holding the work and pattern, a shaft connected by worm-gearing 50 with the two spindles, whereby they, with the work and pattern, may be turned simultaneously, and the upper cross-head, E, and arms E² E³, pivoted as described, and carrying a cutter-spindle and a forming-pin, substan- 55 tially as herein set forth.

EDWARD D. MACKINTOSH.

CHANDLER HALL, MINERT LINDEMAN. It is hereby certified that in Letters Patent No. 346,596, granted August 3, 1886, upon the application of Edward D. Mackintosh, of Brooklyn, New York, for an improvement in "Carving Machines," errors appear in the printed specification requiring correction, as follows: On page 4, in lines 86, 96 and 106, the reference letters and figures "e⁴" should read E⁴, and on page 5, line 40, the word "ends" should read end. and the comma thereafter should be stricken out; and that the Letters Patent should be read with these corrections therein that the same may conform to the record of the case in the Patent Office.

Signed, countersigned, and sealed this 17th day of August, A. D. 1886.

[SEAL.]

H. L. MULDROW,
Acting Secretary of the Interior

Countersigned:

R. B. VANCE,

Acting Commissioner of Patents.

288