
B. HARRIS. Mold for Castings.

No.166,773.

Patented Aug. 17, 1875.

UNITED STATES PATENT OFFICE.

BENJAMIN HARRIS, OF MARSHALLTOWN, IOWA.

IMPROVEMENT IN MOLDS FOR CASTING.

Specification forming part of Letters Patent No. 166,773, dated August 17, 1875; application filed November 21, 1874.

To all whom it may concern:

Be it known that I, BENJAMIN HARRIS, of Marshalltown, in the county of Marshall and State of Iowa, have invented a new and valuable Improvement in a Mold and Former; and I do hereby declare that the following is a full, clear, and exact description of the construction and operation of the same, reference being had to the annexed drawings making a part of this specification, and to the figures of reference marked thereon.

Figure 1 is a plan view of my device. Fig. 2 is a transverse sectional view of the same, and Fig. 3 is a bottom view. Fig. 4 is a sectional detail view. Fig. 5 is a detail view.

tional detail view. Fig. 5 is a detail view. This invention has relation to means for applying a lining of Babbitt metal or other suitable metal to the bearing blocks of the axleboxes of railroad-car axles; and it consists in a rectangular mold-box, which is surrounded by flanges, and which has a bottom adapted to receive the lower edges of the bearing-block and form a close joint therewith, and also which has a raised convex portion, which corresponds in radius to the radius of the journal for which the bearing-box is designed, said block being constructed with a pouring-sprue, and with indentations to receive the bearing metal, as will be hereinafter explained.

In the annexed drawings, A designates a shallow rectangular box, from two sides of which project handles B B, and from the ends of which project dovetailed $\log a$ a. The central portion C of the mold-box A is convex, and in cross-section is the arc of a circle, corresponding in diameter to the diameter of the axle for which the bearing-block D is designed. On opposite sides of the convex portion C are narrow flat surfaces c c, on which the lower edges of the bearing-block lie snugly when

it is in place in the mold-box, as shown in Fig. 2. The bearing-block is constructed with a concavity, which leaves a space, e, between it and the upper surface of the convex portion C, to receive the lining metal g. (Shown in Fig. 4.) The bottom or concave surface of the block D has a number of indentations, h, in it, which, together with a pouring-sprue, j, will receive the lining metal, and securely attach the lining to the block.

When the block is put into the mold-box A the ends of this box tightly close the ends of the space e, so that when the lining metal g is poured into this space it will not escape therefrom.

It will be seen from the above description that journal-blocks can be conveniently and rapidly lined with any suitable metal, and that such lining will in every instance truly fit the axle for which it is designed.

What I claim as new, and desire to secure by Letters Patent, is—

1. A facing mold-box having a cylindrical convexity, C, on its bottom, adapted to form an unbroken concave bearing-face on the under side of the lining metal poured in through the journal-box, substantially as described.

2. The rectangular journal-facing mold-box

2. The rectangular journal-facing mold-box A, provided with opposite handles B B and opposite lugs a a, at right angles to the handles, and the inside bottom of the box having a seat-molding convexity, C, substantially as described, and for the purpose set forth.

In testimony that I claim the above I have hereunto subscribed my name in the presence of two witnesses.

BENJAMIN HARRIS.

Witnesses:

RICHD. CROCKER, D. C. WILBUR.