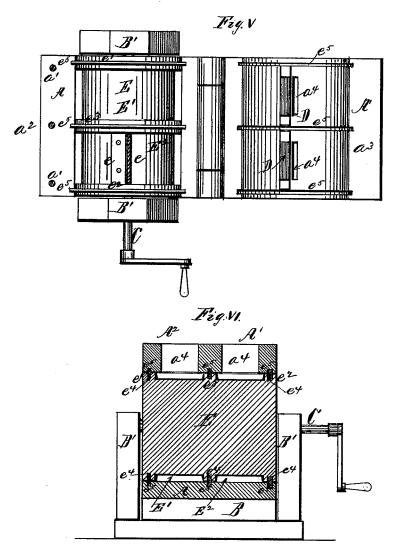

W. R. RIGHTOR.

Rotary Steam-Engines.



W. R. RIGHTOR.

Rotary Steam-Engines.

No. 198,214.

Patented Dec. 18, 1877

Witnesses:

Inventor: William A. Righton Fer: Hewy Gemen Atty

UNITED STATES PATENT OFFICE.

WILLIAM R. RIGHTOR, OF HELENA, ARKANSAS.

IMPROVEMENT IN ROTARY STEAM-ENGINES.

Specification forming part of Letters Patent No. 198,214, dated December 18, 1877; application filed August 2, 1877.

To all whom it may concern:

Be it known that I, WILLIAM R. RIGHTOR, of Helena, in the county of Phillips and State of Arkansas, have invented a new and useful Improvement in Rotary Steam-Engines, of which the following is the specification:

The nature and object of the invention will be readily understood by the subjoined description and by reference to the accompanying

drawings, of which-

Figure 1 is an end elevation of the improved engine. Fig. 2 is a general plan of the same. Fig. 3 is a transverse sectional elevation, taken through one of the steam-ports. Fig. 4 is an end elevation of the machine, showing the top half of the cylinder thrown open on its hinge, so as to gain access to the working parts. Fig. 5 is a plan of the parts as shown in the position indicated in Fig. 4. Fig. 6 is a longitudinal sectional elevation of the machine. Fig. 7 is a sectional view of one of the valves and

The cylinder or outer easing of the machine is divided into two parts, A and A1, the lower part, A, of which is to be firmly fixed to the bed-plate B, from which also rise the pillarblocks B', in which the bearings of the driving shaft C are placed. The top section, A1, of the cylinder is hinged to the lower section by the pivot-rod a, as shown in the drawings, so that it may be thrown open, as is illustrated

in Figs. 4 and 5.

When the two parts of the cylinder are closed together, as in use, they will be held firmly together by means of the screw-bolts a^1 , that pass through the lugs a^2 a^3 , attached, respectively, to the sections A and A¹. On top of the cylinder, constructed as above described, and attached to and forming part of the section A^1 , will be the steam-chest $\overline{A^2}$, which has seats for two abutment-valves, D D, and apertures a^4 for exhaust-pipes, and apertures a^5 for the introduction of the steam-pipes.

The abutment-valves D D are constructed as shown best in Figs. 3 and 7. Each of them has an open port, d, through which steam passes from the steam-entrance a^5 to the steamchamber of the engine, and each of them is backed by suitable springs d1, which will habitually press them down to the periphery of the working-piston E, which revolves within the | must, of course, be tightly fitted in.

cylinder A A1, and rests upon the driving-

The piston E is cylindrical in form, is driven rotarily by the pressure of steam against its piston-wings e, and is divided into two annular chambers, E^1 and E^2 , formed by the flanges e^1 and e^2 and a central flange, e^3 , each of these said flanges being constructed with sides sloping outwardly from the bottom of its respective chamber E1 or E2, as shown clearly in Fig. 6; and in the central part of each of the flanges e^1 e^2 e^3 is formed a groove, into which is placed an annular spring-packing, e^4 , that closes the sides of the steam-chambers E' and E' steam-tight against the surrounding cylinder A A1, concentric grooves e5 being formed in the said cylinder, into which the said packing-rings enter and form a perfectly

steam-tight packing.

The chambers E^1 and E^2 are each divided in two by the piston-wings c. These wings are set diametrically opposite each other in the said chambers, so that they will pass in succession the induction and exhaust ports, thereby causing a continuous action in one of the steam-chambers of the piston, and a con-

sequent obviation of any dead-point.

The piston-wings e are formed of two wedgeshaped ledges, as shown clearly in Fig. 3, and between these ledges (which pass entirely across the spaces of their respective chambers E^1 E^2) is placed a spring-packing, e^6 , which presses habitually against the surrounding cylinder as the piston is rotated, thereby securing a steam-tight joint, automatically adjustable, between these parts.

By using the wings e with sloping sides on both sides, the engine may be run in either direction with equal facility, the sliding abutment-valves DD being compelled to rise automatically over these piston-wings as they pass under them, and then the springs d^1 will press the said abutments down again to the periph-

ery of the piston.

The machine may be constructed so as to be run in either direction by making two sets of seats for the operating-valves D D on opposite sides of the exhaust-openings a^4 , and then by placing the said valves in the desired seats, and closing the seats not used with plugs d^2 , which

Having described my invention, I claim—
1. The piston E, formed into two chambers, E¹ and E², and provided with pressure-heads e and spring-packing e^4 and e^6 , in combination with sliding valves D, having ports d, spring d^1 , and exhaust a^4 , and steam-apertures a^5 , and the hinged and bolted cylinder A A¹, substantially as described.

2. The outer cylinder of a rotary steam-en-

gine, divided into the sections A A¹, hinged together at a, and bolted together at a^1 a^2 a^3 , substantially as and for the purpose set forth. This specification signed this 5th day of July, 1877.

W. R. RIGHTOR.

Witnesses:

RICHARD GERNER, CHR. REIGELMAN.