S. J. KEIM. Car-Coupling.

No. 200,311.

Patented Feb. 12, 1878.

Witnesses.

Park Il Farland, Jr.

John F. Grant.

Inventor.

Simon f. Kein per Edu Brown attorney

UNITED STATES PATENT OFFICE.

SIMON J. KEIM, OF CATASAUQUA, PENNSYLVANIA, ASSIGNOR OF ONE-HALF HIS RIGHT TO WILLIAM YOUNGER, OF SAME PLACE.

IMPROVEMENT IN CAR-COUPLINGS.

Specification forming part of Letters Patent No. 200,311, dated February 12, 1878; application filed March 27, 1877.

To all whom it may concern:

Be it known that I, SIMON J. KEIM, of Catasauqua, Lehigh county, Pennsylvania, have invented a new and useful Improvement in Car-Coupling, which improvement is fully set forth in the following specification and accompanying drawing, in which—

companying drawing, in which—
Figure 1 is a plan. Fig. 2 is a side elevation. Fig. 3 is a longitudinal section. Fig. 4

is a front-end view.

The object of my invention is to make the railway-cars self-coupling, so that by simply pushing the cars in contact they will become securely fastened without any assistance from the brakeman.

A is the draw-head; B, the buffer; C, the draw-bar. The draw-head is made double, having an upper recess, a^1 , and a lower recess, a^2 , or there may be several recesses, so that in the event of two cars coming together having draw-heads of different heights there

will be no difficulty in coupling them.

A falling bolt or tongue, e^l , is pivoted to the shaft e^3 , which passes! through the draw-head above the recess a^1 , and a similar bolt, e^2 , is pivoted to the shaft e^4 , which passes through the middle web of the draw-head. Each of these shafts has a lever-arm attached. (Shown in Fig. 2, and lettered $h^1 h^2$.) These arms are connected on the outside by a link, K, which is weighted at the bottom by a ball, M, or the link itself may be heavy enough to act as a weight. An eye, k', is made at the top of the link, into which a chain may be hooked, and the bolt or tongue operated from the platform of the car.

The bolt e^1 is held vertically in the position shown by the weighted levers, and as soon as the cars are forced together for coupling the end of the draw-bar C forces the bolt e^1 into its recess d, and as soon as it has passed the bolt falls and the pull of the draw-bar brings the toe of it in contact with the stop m^1 on the lower side of the recess a^1 . The operation of the upper and lower bolts e^1 e^2 is the same, and the movement of one is communicated by the link K to the other. When the bolt e^1 is forced into the recess d the lever h^1 takes the position shown by dotted lines, Fig. 2.

The buffer B is made with two funnel-shaped mouths, corresponding with the recesses a^{\dagger} a^{2} , and the central web is pointed at g, so as to facilitate the entrance of the draw-bar C into

one or the other recess.

I claim-

1. The combination, in a draw-head, of a series of bolts pivoted on shafts one above the other, levers at the ends of said shafts, and a weighted link uniting said levers, substantially as and for the purposes specified.

2. The combination in the draw-head A of the two recesses a^1 a^2 , the falling bolts e^1 e^2 , the stops m^1 m^2 on the lower side of the recesses, the levers h^1 h^2 , and the weighted link K connecting them, as herein described.

SIMON J. KEIM.

Witnesses:

SIMON KEMP, R. CLAY HAMERSLY.