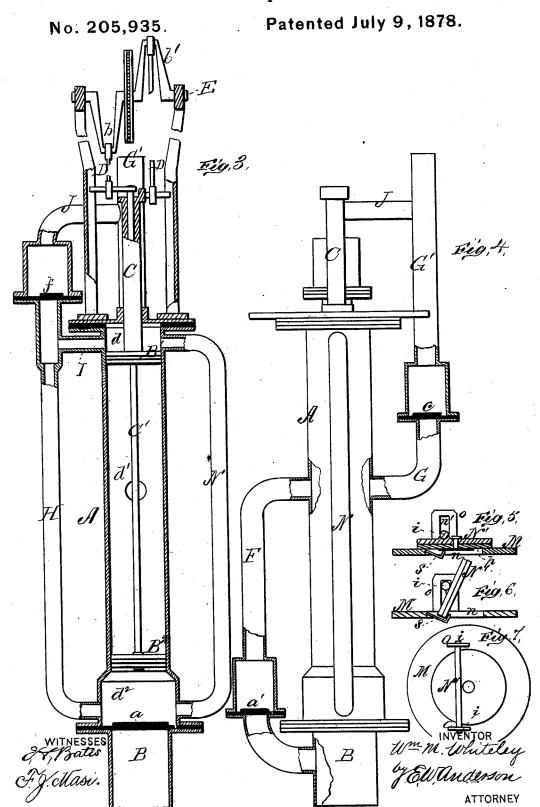

W. M. WHITELEY. Pump.

No. 205,935.


Patented July 9, 1878.

Witnesses St.Prates Ch.J. Masi INVENTOR
WM M. Whiteley.
by EW anderson,
ATTORNEY

W. M. WHITELEY.
Pump.

UNITED STATES PATENT OFFICE.

WILLIAM MEREDITH WHITELEY, OF JOPLIN, MISSOURI.

IMPROVEMENT IN PUMPS.

Specification forming part of Letters Patent No. 205,935, dated July 9,1878; application filed March 16, 1878.

To all whom it may concern:

Be it known that I, WILLIAM MEREDITH WHITELEY, of Joplin, in the county of Jasper and State of Missuri, have invented a new and valuable Improvement in Pumps; and I do hereby declare that the following is a full, clear, and exact description of the construction and operation of the same, reference being had to the annexed drawings, making a part of this specification, and to the letters and figures of reference marked thereon.

Figures 1, 2, and 4 of the drawings are side views of my improved pump, the latter partly in section. Fig. 3 is a longitudinal vertical section of pump-barrel, with its pipes partly in section; and Figs. 5, 6, and 7 are detail

views of the valve.

This invention has relation to improvements in pumps for wells, eisterns, and mines.

The object of the invention is to devise a pump for the purposes mentioned that will discharge a continuous stream from a nozzle or spout

The nature of the invention will be fully set

forth hereinafter.

In the accompanying drawings, the letter A designates a strong metallic barrel, having at its lower end a supply-pipe, B, closed by a valve, a, opening upward. B'B' designate two properly-packed unvalved pistons arranged in the barrel A. The piston-rod C of the piston B¹ is tubular, and that C¹ of piston B² solid, and carried up the rod C, as shown in Fig. 3. They are connected by pitmen D to the opposite arms bb' of a double-crank shaft, E, operated by a suitable mechanism to cause the said pistons to approach and recede from each other. F represents a metal tube, opening at its lower end into the supply-pipe below its valve, and at its upper end into the pumpbarrel at the space between the pistons B B1, aforesaid. The tube F has at a point on a level with the valve a of the supply-pipe a valve, a', opening upward. Opposite the point of entrance of the tube F into the barrel a second pipe, G, enters, that curves upward and enters the discharge-pipe G'. The pipe G has also a valve, c, opening upward.

It will be observed that there are three chambers in the barrel—one above the pis-

ton B¹, one below the piston B², and the third between them.

H represents a pipe, opening at its lower end into the chamber d^3 , and connected by means of a short coupling, I, with the upper chamber. The pipe H is provided with a valve, f, opening upward at a point above the coupling I, and is carried to the main discharge-pipe by means of an elbow, J. Diametrically opposite pipe H is another pipe, N, opening at one end into the chamber d, and at the other into the chamber d^3 . This pipe is auxiliary to pipe H, and may sometimes be dispensed with. In this case pipe H should be of greater capacity.

The operation of my improved pump is as follows: When the pistons recede from each other a vacuum is formed in the chamber d^1 , the valve a' is opened, and water rushes up the pipe F into the chamber d^1 , aforesaid. At the same time the air and water in the chambers d d^2 are forced, through the pipes H and N, valve f, and elbow J, into the discharge-pipe G', above its valve c. When the pistons approach each other the valve a' of pipe F closes, and that, c, of pipe G opens, and the water is forced out of the chamber d', through the valve c, out of the discharge-pipe. At the same time vacuums are made in the top and bottom chambers $d d^2$, valve a opens, and water rushes up the supply-pipe B into the chamber d², and, through the pipes H and N, into the chamber d. When the pistons again recede from each other the water in the chambers $d d^2$ is forced out, the former, through connection I and valve f, into the discharge-pipe G, and out of the latter, through pipes A N and the said valve f, also into the said discharge-pipe. It is evident from the above description that this arrangement of pipes and valves in

It is evident from the above description that this arrangement of pipes and valves in connection with a pump-barrel and the unvalved pistons, operating as set forth, produces a pump of exceptional excellence for discharging water continuously. It is also evident that, by the use of a condenser or condensers in connection with the discharge-pipe G, the lifting-pump is converted into an excellent

force-pump for many purposes.

In practice, the valves \hat{a} a' c f will be of any of the usual forms of clacks where clear water

205,935

water and sand mixed are to be raised, I prefer to use a valve of the following description: It consists of a metallic seat, M, having at each side of its opening n a vertically-slotted post, o, and of a valve, N', having journals i, that engage the slots n' of the posts o. The valve is of metal, and is provided with a leather or rubber facing, p. When the valve is raised by the upward flow of water, the journals i ascend the slots n', thereby causing the said valve to assume a nearly vertical position, when the silt, sand, or mud will run back through the opening in the valve-seat, and prevent the valve from clogging. The valve is prevented from tilting over by means of a stop, s, projecting inward toward the center of the opening in the seat.

What I claim as new, and desire to secure

by Letters Patent, is-

1. In a double action pump, the combination, with the pump-barrel A, having a supply-pipe, B, with apwardly opening valve a and the

is to be pumped; but where muddy water or | unvalved pistons, approaching to and receding from each other alternately, of the pipe F, opening at one end into the pump-barrel between the pistons, and at the other into the supply-pipe below its valve, the dischargepipe G', opening into the pump-barrel opposite pipe F, and provided with valve c, the pipes H N, opening into the upper and lower chambers of the pump-barrel, the valve f in pipe H, and a connection between the pipes H and G' above the valve of the latter, substantially as

2. The pump-valve consisting of the seat M, having stop s and vertically-slotted posts o, and the plate N', having journals i, substan-

tially as specified.

In testimony that I claim the above I have hereunto subscribed my name in the presence of two witnesses.

WILLIAM MEREDITH WHITELEY.

Witnesses:

S. Simonson, and a limit of the continuous line conditions. GEO. W. GABINE. 1818. 1818/11 1818/1818/1818/1818