Combination of with-phase and phaseretrieval holography at the GBT

Richard Prestage, NRAO Green Bank (major contributions by Todd Hunter, Fred Schwab, Steve White, Bojan Nikolic)

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

GBT Active Surface

- 2004 panels, I.57mm 606 I T6 aluminum skins epoxied to rib frame,
- CMM-measured rms < 75 µm (mean=60)
- 2209 actuators (located at panel corner intersections)

Actuator specifications

- Stroke = 51 mm (\approx 4x the requirement)
- Speed = 250 microns /second
- Static load (axial and side) = 481 kg
- Lifetime = 20 years (at 60 meter /year)
- Motor type = DC brush
- Position sensor = LVDT
- Resolution ~ 25 microns
- Repeatability < 50 microns
- Temperature effect ~16 microns rms
- Control system
 - 139 pairs of modules
 - Each with up to 16 actuators

Actuator attached to panel mechanism

Initial Metrology Plan

- Trilateration to multiple targets using Laser Rangefinders
- Measure absolute position of optics (in a fixed reference frame)
- Required accuracy of LRFs: ~ 100µm

Laser Rangefinders (20 built)

LRF Configurations

Concerns with LRF Performance

- How to measure Group Index of Refraction
- Geometry of system: "long skinny triangles"; relaying coordinate systems
- System Integration Concerns
- Difficulty of integrating LRF usage into GBT control software, and astronomical (incremental, differential) improvements to pointing and surface adjustments

Alternative – Traditional + OOF Holography

High-resolution interferometric holography

- Technique is > 30 years old (Bennett et al. 1976)
 - Measure complex beam pattern (phase and amplitude)
 - Fourier transform to get phase and amplitude of E field on aperture
 - Convert phase to surface error, and apply mechanical corrections
- 2 Receivers: room-temp. LNBs, 10kHz filters, Hilbert transform correlator

Satellite target

- Galaxy 28 = geostationary TV broadcaster
- Elevation = 44°, well-behaved orbit
- 11.702 GHz CW beacon (stable to < kHz)
- Effective flux density ~ 10^6 Jy in 10 kHz filter
- Typical system phase stability (receiver + atmosphere) = 2° in 36 msec integrations
- Corresponds to 70 microns surface rms

High-resolution interferometric holography

Progress in surface adjustments (2009)

January 4, 2009

February 2009

March 2009

Shape of individual panels (gravitational and thermal sag) is the dominant pattern

Tier-averaged panel profiles for tier 26

S. von Hoerner (January 1971)

"Out-of-focus" (OOF) Holography

Any telescope surface pattern Horizontal Pointing Vertical Pointing can be conveniently expressed as a sum of Zernike patterns. GBT active surface can apply n=1 up through n=7 (36 terms). But not quite X astigmatism Focus + Astigmatism orthonormal (due to the n=2 receiver illumination taper) Trefoil Coma

n=3

The OOF Holography Algorithm: Forward Model

Out-of-Focus (OOF) Holography Technique

Thermal distortions due to solar heating

Pyro Client Initialized. Using Pyro V3.4

Example daytime AutoOOF correction

Estimated surface error budget (2010)

- Small-scale errors
 - Panel manufacturing error plus gravity
 - Panel-scale thermal error (nighttime sag)
 - Subreflector surface rms (photogrammetry)
 - Panel setting (actuator + panel corners)
 - Actuator repeatability
- Intermediate-scale gravity and thermal errors
- Residual large-scale thermal error
- Total root-sum-squared surface error

I 27 microns (known)
I 00 microns (model)
60 microns (known)
80 microns (estimated)
50 microns (known)
80 microns (estimated)
80 microns (known)
230 microns

(Surface degrades rapidly during the day with no OOF correction)

Results

Future Developments

- "Next Generation" laser rangefinder system
 - Fixed baseline system, range and angle measurements made by instruments mounted on GBT.
 - Relay a fiducial coordinate created at the pintle bearing by high performance inclinometers (like "ALMA reference telescope")
 - Use a two-tone system with incommensurate frequencies
 - DDS synthesizers
 - MEMS fiber optic switches
- Have a "brass-board" of this, functions well.

Predicted Results

Alternatives?