The Metrology Systems of Sardinia Radio Telescope

G. Serra gserra@oa-cagliari.inaf.it

on behalf of Metrology team* *T. Pisanu, S. Poppi, F.Buffa, P. Marongiu, R. Concu, G. Vargiu, P. Bolli, A. Saba, M.Pili, E.Urru Astronomical Observatory of Cagliari

Italian National Institute for Astrophysics Astronomical Observatory of Cagliari

Sardinia Radio Telescope

RadioNet Technical Workshop "*Metrologies at radio astronomy antennas*" Gothenburg, Sweden, September 1–2, 2014

Agenda

- SRT status at the end of technical validation (scientific validation in progress)
- SRT metrology short-term goals
- Work progress status of the first SRT metrology systems:
 - With-phase microwave holography
 - Inclinometers
 - Optical laser and Position sensing devices (PSD)
 - Temperature probes
- Other systems and future plans
 - Conclusions

The Metrology systems for SRT

Agenda

SRT status: introduction

A quick summary of the SRT features:

- fully steerable quasi-gregorian altazimuthal mounting reflector antenna
- active surfaces (64m-dia primary mirror and 8m-dia reflectors) made up of more than a thousand adjustable panels
- Frequency range: 0.3-100 GHz
- 3 main focal positions able to host up to 20 receivers

Focal position	Minimum Frequency	Maximum Frequency	F/D ratio
Primary focus (F_1)	300MHz	20GHz	0.33
Gregorian focus (F_2)	7.5GHz	$\sim 100 \mathrm{GHz}$	2.35
BWG foci $(F_3 \text{ and } F_4)$	1.4GHz	35GHz	1.37 for F_3 and 2.81 for F_4

SRT features

SRT status: receivers

At the present SRT is able to observe the sky in the frequency range: 0.3-26 GHz

18-26 GHz

0.3-0.41 /1.3-1.8 GHz

SRT status: surface accuracy

After the first panels alignment of the secondary (in 2010) and primary mirror (in 2012) with fotogrammetry measurement (by SIGMA 3D)

Subreflector surface

Accuracy: ~ 60 µm RMS @ 45° elevation

Primary reflector surface

Accuracy: ~ 290 µm RMS @ 45° elevation

Overall RMS accuracy of the reflecting surfaces $\epsilon \sim 310 \ \mu m$ (= $\lambda/20 \ @ \sim 48 \ GHz$)

SRT surface accuracy

SRT status: antenna performances

After the fine tuning of the telescope with active surfaces working, the pointing model allows SRT to observe at 22 GHz with a:

- ▶ focusing accuracy < 1 mm (λ /10 @ 1 cm → ~ 30 GHz)
- an azimuth and elevation pointing errors < 4 arc sec (HPBW/10 @ λ =1 cm \rightarrow ~ 30 GHz)
- > gain at 23 GHz over the SRT elevation angular range

SRT metrology short-term goals

Waiting for the higher frequency receivers, the metrology team is working to further improve the current SRT efficiency

- Short-term goals:
 - primary surface accuracy better than 150 µm (i.e. an overall surface accuracy 190 µm, a very good efficiency up to ~80 GHz) with
 Microwave holography system to measure RT far-field pattern by pointing a Ku-band GEO satellite (elevation angle 44 deg)
 - azimuth and elevation errors < HPBW/10 (~1 arcsec with HPBW =12 arcsec @ 100 GHz) with two inclinometers on the alidade
 - $^\circ\,$ focusing accuracy $<\lambda/10$ (~0.3 mm @ 100 GHz) with $\,$ optical laser- PSDs behind the subreflector central panel

Short-term goals

The holography system for SRT was already tested in 2010 at the Medicina 32-m diameter RT.

Measurement set-up of holography system installed at Medicina RT

To reduce the RMS phase noise both LNBS were modified :

Lab tests have confirmed the RMS phase noise improvement. Here below the interferemeter response before and after.

Work progress status of Inclinometer

On the base of the recommendations coming from the SRT thermal design study

Inclinometer #1

Inclinometer set-up

Work progress status of inclinometer

Just one inclinometer has been fully tested on SRT up to now

Inclinometer

Work progress status of inclinometer

Tests to check the planarity of the azimuth rail

INAF

<u>Systematic errors</u> not far from the expected one (±3 arcsec) deriving from the rail planarity tolerance. However they can be included in the antenna pointing model

Inclinometer test

Work progress status of inclinometer

Inclinometer measurement during astronomical observation on a circumpolar radio source at 23 GHz (K-band receiver) from sunrise to noon.

NOTE. With the antenna pointing model working, **residual offsets** take into account both alidade and quadripod temperature variation (not only alidade as in the inclinometer measurement)

Inclinometer test

Work progress status: temperature probes

The number and position of the temperature probes on SRT structure were inferred by FEM model:

Temperarure probes

- 16 probes on the alidade
- 8 probes on the quadrupod

Probes installation, cabling and interfacing with Beckhoff embeddes pc will be soon accomplished

Work progress status: optical laser PSD

Two PSD for a real-time measurement of the secondary mirror misalignments will be soon installed behind the central panel of the sub-reflector

PSDs can measure X, Y, Z translation (derived by two X measur.) and X,Y axes rotation of the subreflector. But not installed yet.

Optical laser PSD

Other systems for primary surface metrology

Radial optical linear sensors

Real-time photogrammetry

Project funded by Sardinian regional government to:

- develop a simulation environment for photogrammetric measurement
- obtain the best configuration of the camera suitable for the SRT during operations

Both systems are under test for a real time measurement of primary surface panel deformations

Other systems

INAF

SRT metrology future plans

- Include inclinometer, PSD and temperature probe data in the antenna pointing model in order to compensate for alidade and quadrupod thermal deformations and monitor the antenna temperature in real time
- Beside the traditional holography, test the Out-of-Focus method on SRT for a quasi-real time mapping of the primary surface deformations due even to thermal gradients
- Finally, approach a closed-loop control for a quasi-real time correction of pointing errors and primary surface deformations

The Metrology systems for SRT

Future plans

Conclusions

- At the present, the SRT scientific validation is keep going without intermission to make SRT ready to be shared with the radioastronomy community as soon as possible
- Even if the metrology systems, here presented, are not still ready, they look like very promising to preserve high antenna performances even at the higher frequencies
- Step by step we are getting confidence to reach the closed-loop control of the SRT metrology, i.e. final goal for the SRT metrology.

Thanks for you attention!

Any questions?

Conclusions