Quick Start

Borland®

C++Builder 6

for Windows™

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the DEPLOY document located in the root directory of your C++Builder 6 product for a complete list of files
that you can distribute in accordance with the C++Builder License Statement and Limited Warranty.

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. Please refer to the product CD or the
About dialog box for the list of applicable patents.

CoPYRIGHT © 1983-2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

CPE1360WW21000 6E2R0102
0203040506-987654321
D3

Contents

Chapter 1

Introduction
Whatis C++Builder?
Registering C++Builder
Finding information
Online Help
F1 Help
Printed documentation
Developer support services and
Website
Typographic conventions

Chapter 2

A tour of the environment
Starting C++Builder
ThelIDE
The menus and toolbars
The Component Palette, Form Designer,
and Object Inspector
The Object TreeView
The Object Repository
The Code Editor
Code Insight

Code Browsing

The Diagram page
Viewing form code
The ClassExplorer
The Project Manager
To-do lists

Chapter 3
Programming with C++Builder

Creating a project
Adding data modules
Building the user interface
Placing components on a form
Setting component properties.
Writing code
Writing event handlers
Using the VCL and CLX libraries.
Compiling and debugging projects
Deploying applications
Internationalizing applications
Types of projects
CLX applications
Web server applications

1-1
11
12
1-3
1-3
14
1-6

1-6
1-6

2-1
2-1
21
23

2-4
2-4
2-5
2-6
2-6
2-7
2-7

3-1
3-1
32
32
32
3-4
3-5

3-6
3-7
3-8
3-8
39
39
39

Database applications
BDE Administrator
SQL Explorer (Database

Explorer)
Database Desktop
Data Dictionary

Custom components

DLLs

COM and ActiveX
Type libraries

Chapter 4
Creating a text editor—a tutorial

Starting a new application

Setting property values.

Adding components to the form
Adding support for a menu and
atoolbar
Action Manager editor and
Action List editor differences.
Adding menu and toolbar images
(Enterprise and Professional).
Adding actions to the Action Manager
(Enterprise and Professional).
Adding standard actions (Enterprise
and Professional)
Adding a menu (Enterprise
and Professional)
Adding a toolbar (Enterprise
and Professional)
Adding an image list and images
(Personal edition)
Adding actions to the action list
(Personal edition)
Adding standard actions to the action
list (Personal edition)
Adding a menu (Personal edition)
Adding a toolbar (Personal edition)
Clearing the text area (all editions)
Writing event handlers
Creating an event handler for the
New command.
Creating an event handler for the
Open command
Creating an event handler for the
Save command

iii

Creating an event handler for the
Save As command
Creating a Help file
Creating an event handler for the
Help Contents command
Creating an event handler for the
Help Index command
Creating an About box
Completing your application

Chapter 5
Creating a CLX database
application—a tutorial

Overview of database architecture
Creating a new CLX application
Setting up data access components
Setting up the database connection.
Setting up the unidirectional dataset
Setting up the provider, client dataset,
and data source
Designing the user interface
Creating the grid and navigation
bar
Adding support for a menu
Adding a menu
Adding a button
Displaying a title and an image
Writing an event handler

5-1
51
52
52
53
55

iv

Writing the Update Now! command

eventhandler. 5-13
Writing the Exit command event
handler 5-13
Writing the FormClose event
handler 5-14
Chapter 6
Customizing the desktop 6-1
Organizing your workarea 6-1
Arranging menus and toolbars 6-1
Docking tool windows 6-2
Saving desktop layouts. 6-4
Customizing the Component palette 6-5
Arranging the Component palette. 6-5
Creating component templates 6-5
Installing component packages 6-6
Using frames 6-7
Adding ActiveX controls 6-8
Setting projectoptions 6-8
Setting default project options. 6-8
Specifying project and form templates
asthedefault. 6-8
Adding templates to the Object
Repository 6-9
Setting tool preferences. 6-10
Customizing the Form Designer. 6-10
Customizing the Code Editor 6-11
Index -1

Introduction

This Quick Start provides an overview of the C++Builder development environment
to get you started using the product right away. It also tells you where to look for
details about the tools and features available in C++Builder.

Chapter 2, “A tour of the environment” describes the main tools on the C++Builder
desktop, or integrated desktop environment (IDE). Chapter 3, “Programming with
C++Builder” explains how you use some of these tools to create an application.
Chapter 4, “Creating a text editor—a tutorial” takes you step by step through a
tutorial to write a program for a text editor. Chapter 5, “Creating a CLX database
application—a tutorial” walks you through the creation of a database application.
Chapter 6, “Customizing the desktop” describes how you can customize the
C++Builder IDE for your development needs.

What is C++Builder?

C++Builder is an object-oriented, visual programming environment for rapid
application development (RAD). Using C++Builder, you can create highly efficient
applications for Microsoft Windows XP, Microsoft Windows 2000 and Microsoft
Windows 98 with a minimum of manual coding. C++Builder provides all the tools
you need to develop, test, and deploy applications, including a large library of
reusable components, a suite of design tools, application and form templates, and
programming wizards.

Introduction 1-1

Registering C++Builder

Registering C++Builder

C++Builder can be registered in several ways. The first time you launch C++Builder
after installation, you will first be prompted to enter your serial number and
authorization key. Once this has been entered, a registration dialog offers three
choices:

* Register and activate the software online.
Use this option to register online using your existing internet connection.
* Register or activate by phone or web browser.

Use this option to register by phone or through your web browser. If you received
an activation key via email, use this option to enter it.

e [will register at a later time.

Online registration is the easiest way to register C++Builder, but it requires that you
have an active connection to the internet. If you are already a member of the Borland
Community, or have an existing software registration account, simply enter the
relevant account information. This will automatically register C++Builder. If not, the
registration process provides a way to create either of these accounts.

Register
online

Member ofthe | yeg
Borland
Community?

\|/ No —>! Enter username or

e-mail address [
and password

Existing software | veg
registration
account?

J/No

Create new software | Yes Enter information
registration account? for your account

No

v

Product
registered

Join Borland
Community?

1-2 Quick Start

Finding information

The second option (register or activate by phone or web browser) is useful if the
machine you are installing on is not connected to the internet, you are behind a
firewall that is blocking online registration, or if you have previously received an
activation key.

Register by phone
or Web browser
Enter Serial Number,
Authorization Key and
y Registration Code.
Register using a es
web browser. \;
No .)
Enter your account information or

create a new account (an
activation key will be sent to your
e-mail address)

=

Enter the Product
activation key) registered

Call closest
number listed

Note Unless you have a specific reason not to, use the online registration option.

Finding information

You can find information on C++Builder in the following ways, described in this
chapter:

¢ Online Help
¢ Printed documentation
* Borland developer support services and Web site

For information about new features in this release, refer to What’s New in the online
Help Contents and to the www.borland.com Web site.

Online Help

The online Help system provides detailed information about user interface features,
language implementation, programming tasks, and the components in the Visual
Component Library Reference (VCL) and Borland Component Library for Cross

Introduction 1-3

Finding information

Reference (CLX). It includes all the material in the Developer’s Guide, and a host of
Help files for other features bundled with C++Builder.

To view the table of contents, choose Help | C++Builder Help and Help | C++Builder
Tools, and click the Contents tab. To look up VCL or CLX objects or any other topic,

click the Index or Find tab and type your request.

F1 Help

You can get context-sensitive Help on the VCL, CLX, and any part of the
development environment, including menu items, dialog boxes, toolbars, and
components by selecting the item and pressing F1.

Form1 =

Properties 1 Events}
Action =
ActiveContol
Align alMane
AlphaBlend | false
AlphaBlendall 255
EAnchars [akLeft,akTap]
AutoScroll true
AutoSize false
BiDiMade bdLeftToRight
Borderlcons | [biSystembdenu.t
BorderStyle | bsSizeable
Borderwidth 0
Caption IForm1| —

ClientHeight |B13

Clientwidth 862

Color [ClcBtnFace
Canstraints [TSizeConstraint:

CH3D true
Cursor cilefault
D efaulthd onitor| dméctiveForm
DockSite falze
DragKind dkDrag
DragMode dmhanual
Enabled true
Font [TFont]
FormStyle fsMarmal
Height 640 =l
Al showe

1-4 Quick Start

Press F1 on a property or
event name in the Object
Inspector to display VCL
Help.

& Visual Component Library Reference Help
File Edt Bockmark Options Help

[_[O]x]

Contents] Index [G [Pt | o [o]

Caption Property

Semako

Applies to
TChartAvicTile component
Declaration
property Caption : String;
Description

The Caption praperty defines the string of text used 10 draw near to each Chart Axis. When empty, no
Tile is displayed. Use the Angle and Fant properties to control Axis Title formatting

Press F1on a language
keyword or VCL
element in the Code

£ Unit1_cpp
—

2 writ.cop |

Finding information

editor.

Press F1 on any menu

#pragua resource "F,

i -
& Prootl -Clesses -+
7 5
Iinc Luo- [
#prages hdrstop
4include "Unici.nr
e S] > Borland C++Builder Help =k

Fie Edi Bookmak Oplions Help

Help Topics|

Back |

Pint

[« [»]

yra
|_fastcall TFormi:s
: TForm{Owne

#include
Example

3 Syntax

Description

> Borland C++Builder Help
Fie Edt Bookmak Oplions Help

Directives

#include <cheader_name>
#include "header_name”
#include macro_identifier

The #nclude directive pulls in other named files, known as include files,
header fifes, or headers, Into the source code. The syntax has three versions
+ The first and second versions imply that no macro expansion will be

;) Forml) [=] B3

#_namme is never scanned for macro

2 valid file name with an extension
tional path name and path defimiters
cither < nor " appears as the first
ng #include; further, it assumes a macro
the macro identifier into a valid delimited
eader_name> 0t "headel_name” formats.
lude line and conceptually replaces it with
hat point in the source code. The source
ompiler "sees” the enlarged text. The
efore influence the scope and duration of

=l

Press F1on an object in

HepTopics] ool | Pt | o [o |

L Reference

Higrarciy
slso

Eroperties Methods Events

TMainMenu /

Using TMiainheny

™ the Form Designer.

See

for a form

Unit
Menus

Description

menus of the main menu with the main menu of anather form,

C++Builder 6 - Project]

File Edt Seach Wiew Project | Bun Component [Database

NE-3| @ @e>

@ E @ | = H » -1 ‘ <2 Altach to Process...

.f_v(Fiegister Activer Server

ﬁ(Unregister Activex Server

Imstall COk+ Objzcts

Tools

TMainhlenu encapsulates a menu bar and its accompanying drop-down menus

Use TMainMenu to provids the main menu for a form. To begin designing 3
menu, add a main menu ta a form, and double-click the component

TMainilenu introduces propetties and methods for merging the drop-town

]

window Help |“<None> - ‘ =) %|

Sustsml DalaAccessl Data Euntru\sl dbExDressl DalaSnaul B

= E L &

Borland C++Builder Help

File Edit Bookmark Options Help

command, dialog box,

5 Tracelnto & E

He\plop\csl Back I Frint | < | b

or window to display
Help on that item.

'Bi Trace to Mext Source Line
: Fun to Cursor

Shift+F7
F4

> Run|Step Over

See also

Chooge Run|Step Over to execute a prograrm one
procedures while executing them as a single unit

The Step Over cornmand executes the prograrn
gxecution point and advances the execution point
= [fyou issue the Step Over comrmand when the

& Fiun Untl Feturm Shift+FE
»E 5how Erecution Paint

" Program Pause:

Program Feset Chrl+F2
R Imspect...

Evaluate/Madiy... Chil+F7
on 4ddWatch Chl+F5

2£dd Breakpaint

function call, the debugger rans that function at
execution point on the statement that follows tt

= [fyou issue Step Over when the execution pain
of a function, the function returns from its call, :
the staternent following the function call

The debugger considers multiple program staterne

Pressing the Help button in any dialog box also displays context-sensitive online

documentation.

Error messages from the compiler and linker appear in a special window below the
Code editor. To get Help with compilation errors, select a message from the list and

press F1.

Introduction 1-5

Printed documentation

Printed documentation

This Quick Start is an introduction to C++Builder. To order additional printed
documentation, such as the Developer’s Guide, refer to shop.borland.com.

Developer support services and Web site

Borland also offers a variety of support options to meet the needs of its diverse
developer community. To find out about support, refer to
http:/ /www .borland.com/devsupport/.

From the Web site, you can access many newsgroups where C++Builder developers
exchange information, tips, and techniques. The site also includes a list of books
about C++Builder, additional C++Builder technical documents, and Frequently
Asked Questions (FAQs).

Typographic conventions

This manual uses the typefaces described below to indicate special text.

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in code. It also
represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved words or compiler
options.

Italics Italicized words in text represent C++Builder identifiers, such as variable or
type names. Italics are also used to emphasize certain words, such as new
terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit
a menu.”

1-6 Quick Start

A tour of the environment

This chapter explains how to start C++Builder and gives you a quick tour of the main
parts and tools of the integrated development environment (IDE).

Starting C++Builder

You can start C++Builder in the following ways:

Double-click the C++Builder icon (if you've created a shortcut).
Choose Programs | Borland C++Builder from the Windows Start menu.
Choose Run from the Windows Start menu, then enter Bcb.
Double-click Bcb.exe in the CBuilder6\Bin directory.

The IDE

When you first start C++Builder, you'll see some of the major tools in the IDE. In
C++Builder, the IDE includes the menus, toolbars, Component palette, Object
Inspector, Object TreeView, Code editor, ClassExplorer, Project Manager, and many

other tools. The particular features and components available to you will depend on
which edition of C++Builder you've purchased.

A tour of the environment 2-1

The IDE

The Object TreeView displays a hierarchical view of
your components’ parent-child relationships.

€5 Co+Builder 6 - Projer 1 =lal|
e £9 Sooch Yo Brion fun Conporet Dok Lo it top | [Hww =1 @4 — - Palette of ready-
D& | @) 33| & 9 |assna] wniz] ten] daasocess| Do Esorss| Datsran] EDE | ADD | Iase | WebSevces | ImetEsoess | et | WebSnao| Faser] DecisoncL2 | pmy ade components
ssmo) -1 et BT AMEur ¢ BE="15JF to use i
5 use In your
e G0 applications.

Code editor for
viewing and
editing code.

The Form Designer
contains a blank
form on which to
start designing the
Ul for your
application. An
application can
include many forms.

ont
FomStyle
Height 6
Allshawn

A Ile

The Object Inspectoris The ClassExplorer shows you the
used to change objects’ classes, variables, and routines in your
properties and select unit and lets you navigate quickly.
event handlers.

C++Builder’s development model is based on two-way tools. This means that you can
move back and forth between visual design tools and text-based code editing. For
example, after using the Form Designer to arrange buttons and other elements in a
graphical interface, you can immediately view the form file that contains the textual
description of your form. You can also manually edit any code generated by
C++Builder without losing access to the visual programming environment.

From the IDE, all your programming tools are within easy reach. You can design
graphical interfaces, browse through class libraries, write code, and compile, test,
debug, and manage projects without leaving the IDE.

To learn about organizing and configuring the IDE, see Chapter 6, “Customizing the
desktop.”

2-2 Quick Start

The menus and toolbars

The menus and toolbars

The main window, which occupies the top of the screen, contains the main menu,
toolbars, and Component palette. C++Builder’s toolbars provide quick access to

frequently used operations and commands. Most toolbar operations are duplicated
in the drop-down menus.

T Cr+Builder 6 - Project]

Fle Edt Seach View Projsct Bun Component Database Tools ‘window mlﬂh\ @@l
DE -3 ‘ = ‘ 23 I & || Standad | Addiional | Win3z] Sustem | Data Access | Data Contiole | dbEworess | DataSnan | BDE | 4D0 | Interase | webServices | IntemetExoress | Intemet | WebSnan | Fastiet | Desision 4|
IEEEEIEE W oae|t DT AN EWS ¢ Daw" B F |
Main window in its default arrangement.
Standard toolbar View toolbar Desktops toolbar
Remove
Open flefom view Toggle Name of saved Save current
New Save Project project unit form/unit desktop layout desktop
| | | | | |
| | | | T N
“DE# -5 | §ﬁ|ﬁg “lDesktDpsettmg j| 5_".'?’
V \ |
Open Save all Add file View New Set debug
to project form form desktop
Debug toolbar Internet toolbar To find out what a button does,
point to it for a moment until a
List of projects Trace New WebSnap ~ New WebSnap tooltip appears.
you can run |nto Application Data Module
You can use the right-click
I ; —~ || = menu to hide any toolbar. To
“ i1 “ | ‘ ﬁ | | e display a toolbar if it's not
‘ ‘ { (showing, choose View|Toolbars
Run Pause Step over New WebSnap External and check the one you want.

Page Module Editor

Many operations have keyboard shortcuts as well as toolbar buttons. When a

keyboard shortcut is available, it is always shown next to the command on the drop-
down menu.

You can right-click on many tools and icons to display a menu of commands
appropriate to the object you are working with. These are called context menus.

The toolbars are also customizable. You can add commands you want to them or
move them to different locations. For more information, see “Arranging menus and
toolbars” on page 6-1 and “Saving desktop layouts” on page 6-4.

For more information...
If you need help on any menu option, point to it and press F1.

A tour of the environment 2-3

The Component Palette, Form Designer, and Object Inspector

The Component Palette, Form Designer, and Object Inspector

The Component palette, Form Designer, Object Inspector, and Object TreeView work
together to help you build a user interface for your application.

The Component palette includes tabbed pages with groups of icons representing visual
or nonvisual VCL and CLX components. The pages divide the components into

various functional groups. For example, the Standard, Additional, and Win32 pages
include windows controls such as an edit box and up/down button; the Dialogs page
includes common dialog boxes to use for file operations such as opening and saving

files.

. Click to view
Component palette pages, grouped by function more pages

|)

Standard IA\:I\:I\IlUnall W|n32| Sustsml DalaAccessl Data Eunllulsl dbExDrsssl DataSnaDl EDE | AD0 | InlerBasel SUAP' InlemelExDressl Inlemell LI_'“

N OF fAREHw R 6 fF==" = F
| |

Components

Each component has specific attributes—properties, events, and methods—that
enable you to control your application.

After you place components on the form, or Form Designer, you can arrange
components the way they should look on your user interface. For the components
you place on the form, use the Object Inspector to set design-time properties, create
event handlers, and filter visible properties and events, making the connection
between your application’s visual appearance and the code that makes your
application run. See “Placing components on a form” on page 3-2.

For more information...
See “Component palette” in the online Help index.

The Object TreeView

The Object TreeView displays a component’s sibling and parent-child relationships
in a hierarchical, or tree diagram. The tree diagram is synchronized with the Object
Inspector and the Form Designer so that when you change focus in the Object
TreeView, both the Object Inspector and the form change focus.

You can use the Object TreeView to change related components’ relationships to each
other. For example, if you add a panel and check box component to your form, the
two components are siblings. But in the Object TreeView, if you drag the check box
on top of the panel icon, the check box becomes the child of the panel.

If an object’s properties have not been completed, the Object TreeView displays a red
question mark next to it. You can also double-click any object in the tree diagram to
open the Code editor to a place where you can write an event handler.

2-4 Quick Start

The Object Repository

If the Object TreeView isn’t displayed, choose View | Object TreeView.

The Object TreeView is especially useful for displaying the relationships between
database objects.

For more information...
See “Object TreeView” in the online Help index.

The Object Repository

The Object Repository contains forms, dialog boxes, data modules, wizards, DLLs,
sample applications, and other items that can simplify development. Choose File |
New | Other to display the New Items dialog box when you begin a project. The New
Items dialog box is the same as the Object Repository. Check the Repository to see if
it contains an object that resembles one you want to create.

_ _ The Repository's tabbed pages include
. AI = Bu}w: - | | V;e?ﬁﬂjn | lF Weblﬁe'g_cis % objects like forms, frames, units, and
S R A L wizards to create specialized items.
&
BahFle ERE i T When you're creating an item based on
f) the Obj th it
. — = . 1 one from the Object Repository, you
can copy, inherit, or use the item.
o CortEre Contoiflrel CppFie Dalaborkie Copy (the default) creates a copy of
1 the item in your project. Inherit means
L 1 e 3
% D changes to the object in the Repository
DLL Wizard Form arms Header File HTML File are inherited by the one in your project.
&l Use means changes to the object in
o o o your project are inherited by the object
[k | cwes | s | in the Repository.

To edit or remove objects from the Object Repository, either choose Tools | Repository
or right-click in the New Items dialog box and choose Properties.

Dbject Repository [%]
&%Eds. You can add, remove, or
S] About box
Disoge T Tabted meaes rename tabbed pages from

Data Modules
Business
‘WebShap

SOAP

Corba

[Object Repositary]

2| 3

Add Page. |
Delete Page |
FRename Page... |

Edit Object: |
Delete Dhect |

E Dual list bow

E] BuickReport List

EI QuickReport Master/Detail
H fuickReport Labels

| el P = = HaisE

the Object Repository.

Click the arrows to change
the order in which a tabbed
page appears in the New
ltems dialog box.

(1] I Cancel | Help |

To add project and form templates to the Object Repository, see “Adding templates
to the Object Repository” on page 6-9.

A tour of the environment 2-5

The Code Editor

For more information...

See “Object Repository” in the online Help index. The objects available to you will
depend on which edition of C++Builder you purchased.

The Code Editor

As you design the user interface for your application, C++Builder generates the
underlying Object code. When you select and modify the properties of forms and
objects, your changes are automatically reflected in the source files. You can add code
to your source files directly using the built-in Code editor, which is a full-featured
ASCII editor. C++Builder provides various aids to help you write code, including the
Code Insight tools, class completion, and code browsing.

[-[O[x]

= |

Generated code.
Components added to

Code Insight

A — the form are reflected
o T s borml =10} in the code.
Buttonl
KT —

The Code Insight tools display context-sensitive pop-up windows.

Tool

Code completion

Code parameters
Tooltip expression evaluation
Tooltip symbol insight

Code templates

How it works

Type the name of a variable that represents a pointer to an object
followed by an arrow (->) or that represents a non-VCL object
followed by a dot. Type the beginning of an assignment
statement and press Ctri+space to display a list of valid values for
the variable. Type a procedure, function, or method name to
bring up a list of arguments.

Type a method name and an open parenthesis to display the
syntax for the method’s arguments.

While your program has paused during debugging, point to any
variable to display its current value.

While editing code, point to any identifier to display its
declaration.

Press Ctrl+J to see a list of common programming statements that
you can insert into your code. You can create your own
templates in addition to the ones supplied with C++Builder.

2-6 Quick Start

The Code Editor

To turn these tools on or off, choose Tools | Editor Options and click the Code Insight
tab. Check or uncheck the tools in the Automatic features section.

For more information...
See “Code Insight” in the online Help index.

Code Browsing

While passing the mouse over the name of any class, variable, property, method, or
other identifier, the pop-up menu called Tooltip Symbol Insight displays where the
identifier is declared. Press Ctrland the cursor turns into a hand, the identifier turns
blue and is underlined, and you can click to jump to the definition of the identifier.

The Code editor has forward and back buttons like the ones on Web browsers. As
you jump to these definitions, the Code editor keeps track of where you've been in
the code. You can click the drop-down arrows next to the Forward and Back buttons
to move forward and backward through a history of these references.

E Unitl.cpp

— Use the editor like a
B T 7 Web browser.

g, TFom(TCampanc
Functions #include <vel.h>
#pragua hdrstop

Press Ctrland point to

#inelude (Unitln any identifier. The cursor
I N

Fpragma package (swart_init) turns into a hand, and the
Fpran poooune M identifier turns blue and is
y i =S

\n\ underlined.
__fastcall TForwl::TForfnl (TComponent? Oum
i TForm(Owner)

] —— Click to jump to the
) definition of the identifier.

I

After navigating, click the
Back arrow to return to
your previous location.

< of
4 ol 12 24 todified Insert \Urit1.cpp Unit1.h A Disgram

To customize your code editing environment, see “Customizing the Code Editor” on
page 6-11.

For more information...
See “Code editor” in the online Help index.

The Diagram page

The bottom of the Code editor may contain one or more tabs, depending on which
edition of C++Builder you have. The Code page, where you write all your code,
appears in the foreground by default. The Diagram page displays icons and
connecting lines representing the relationships between the components you place

A tour of the environment 2-7

The Code Editor

on a form or data module. These relationships include siblings, parent to children, or
components to properties.

To create a diagram, click the Diagram page. From the Object TreeView, simply drag
one or multiple icons to the Diagram page to arrange them vertically. To arrange
them horizontally, press Shift while dragging. When you drag icons with parent-
children or component-property dependencies onto the page, the lines, or connectors,
that display the dependent relationships are automatically added. For example, if
you add a dataset component to a data module and drag the dataset icon plus its
property icons to the Diagram page, the property connector automatically connects
the property icons to the dataset icon.

For components that don’t have dependent relationships but where you want to
show one, use the toolbar buttons at the top of the Diagram page to add one of four
connector types, including allude, property, master/detail, and lookup. You can also
add comment blocks that connect to each other or to a relevant icon.

From the Object TreeView, drag
the icons of the components to
the Diagram page.

To view other diagrams you've named in the
current project, click the drop-down list box.

Type a name and description for your
diagram.

Use the Diagram page toolbar
buttons—Property, Master/
Detail and Lookup—to
| designate the relationship
Tl | £ between components and
components and their
properties. The appearance of
the connecting line varies for
each type of relationship.

Click the Comment block button
to add a comment, and the
Allude connector button to draw
a connection to another
comment or icon.

. o1l 2212 [Modfed nset '\Urit.cpp {Unitt h}Disgram/

You can type a name and description for your diagram, save the diagram, and print it
when you are finished.

For more information...
See “diagram page” in the online Help index.

2-8 Quick Start

The ClassExplorer

Viewing form code

Forms are a very visible part of most C++Builder projects—they are where you
design the user interface of an application. Normally, you design forms using
C++Builder’s visual tools, and C++Builder stores the forms in form files. Form files
(.dfm, or .xfm for a CLX application) describe each component in your form,
including the values of all persistent properties. To view and edit a form file in the
Code editor, right-click the form and select View as Text. To return to the graphic
view of your form, right-click and choose View as Form.

You can save form files in either text (the default) or binary format. Choose Tools |
Environment Options, click the Designer page, and check or uncheck the New forms
as text check box to designate which format to use for newly created forms.

For more information...
See “form files” in the online Help index.

The ClassExplorer

When you open C++Builder, the ClassExplorer is docked to the left of the Code
editor window, depending on whether the Code Explorer is available in the edition
of C++Builder you have. The ClassExplorer displays the table of contents as a tree
diagram for the source code open in the Code editor, listing the types, classes,
properties, methods, global variables, and routines defined in your unit.

You can use the ClassExplorer to navigate in the Code editor. For example, if you
double-click a method in the ClassExplorer, a cursor jumps to the definition in the
class declaration in the interface part of the unit in the Code editor.

To configure how the Code Explorer displays its contents, choose Tools |
Environment Options and click the Explorer tab.

For more information...
See “ClassExplorer” in the online Help index.

The Project Manager

When you first start C++Builder, it automatically opens a new project. A project
includes several files that make up the application or DLL you are going to develop.
You can view and organize these files—such as form, unit, resource, object, and

A tour of the environment 2-9

To-do lists

library files—in a project management tool called the Project Manager. To display the
Project Manager, choose View | Project Manager.

Project M anager

Projectl.exe = Eﬁ
Hew
Path

C:\Program Files
C:%Program Files

You can use the Project Manager to combine and display information on related

projects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. To change project
options, such as compiling a project, see “Setting project options” on page 6-8.

For more information...
See “Project Manager” in the online Help index.

To-do lists

To-do lists record items that need to be completed for a project. You can add project-
wide items to a list by adding them directly to the list, or you can add specific items

directly in the source code. Choose View | To-Do List to add or view information
associated with a project.

To Do Items E

Action Item | ¥ | Modue & | Owner [Categow
O Add Action Manager dislog box 1 Joerg 1]
O &dd buttons ta library 2 Jaoerg 1]
i buig 153 5
Right-click on a to-do list to
o o |<———1— display commands that let you
Beibite i sort and filter the list.
i Action ltem
Filter b Status
_‘J_I v Shaow Completed ltems Type
E\lems (D hidden) E v Show ToolTips when Clipped Priarity
todule
Copy &5 » Dwnet
C“Ck the Check Table Properties,

Categary

box when you're v Dockable
done with an item.

For more information...
See “to-do lists” in the online Help index.

2-10 Quick Start

Programming with C++Builder

The following sections provide an overview of software development with
C++Builder, including creating a project, working with forms, writing code, and
compiling, debugging, deploying, and internationalizing applications, and including
the types of projects you can develop.

Creating a project

A project is a collection of files that are either created at design time or generated
when you compile the project source code. When you first start C++Builder, a new
project opens. It automatically generates a project file (Projectl.dpr), unit file
(Unitl.pas), and resource file (Unitl.dfm; Unitl.xfm for CLX applications), among
others.

If a project is already open but you want to open a new one, choose either File | New |
Application or File | New | Other and double-click the Application icon. File | New |
Other opens the Object Repository, which provides additional forms, modules, and
frames as well as predesigned templates such as dialog boxes to add to your project.
To learn more about the Object Repository, see “The Object Repository” on page 2-5.

When you start a project, you have to know what you want to develop, such as an
application or DLL. To read about what types of projects you can develop with
C++Builder, see “Types of projects” on page 3-9.

For more information...
See “projects” in the online Help index.

Programming with C++Builder 3-1

Building the user interface

Adding data modules

A data module is a type of form that contains nonvisual components only. Nonvisual
components can be placed on ordinary forms alongside visual components. But if
you plan on reusing groups of database and system objects, or if you want to isolate
the parts of your application that handle database connectivity and business rules,
data modules provide a convenient organizational tool.

To create a data module, choose File | New | Data Module. C++Builder opens an
empty data module, which displays an additional unit file for the module in the
Code editor, and adds the module to the current project as a new unit. Add nonvisual
components to a data module in the same way as you would to a form.

% DataModule2

Double-click a nonvisual
component on the Component

== el palette to place the component in
l : 4;“': the data module.
ClientD ataSet] DataSourcel

When you reopen an existing data module, C++Builder displays its components.

For more information...
See “data modules” in the online Help index.

Building the user interface

With C++Builder, you first create a user interface (UI) by selecting components from
the Component palette and placing them on the main form.

Placing components on a form

To place components on a form, either:

1 Double-click the component; or
2 Click the component once and then click the form where you want the component
to appear.

3-2 Quick Start

Building the user interface

Select the component and drag it to wherever you want on the form.

Many components are provided on the Component palette, grouped by function.

C++Builder 6 - Project1

File Edit Search Yiew Project Run Component Database ook ‘Window Help H <Nanex -] | & ﬂL|

DES-H 8% 3= H & || Standard | Addifonal] Win32 | Sustem | Data Access | Data Contiols | dbEworess | DataSnan] BDE | ADD | InteiBase | WebServices | IntemelExoress | Intemet | WebSnan | Fasti

ez alls-inlsy b OF % AmEm e 6 g1 | F

Click a component on the Component palette.

Then click where you want to place it on the form.

Wiew
@ Project Manager Ctrldlt+F11
Trranslation M anager

ﬁ;l Object Inspectar F11
n Object TreeWiew Shift+Al+F11
To-Do List

Alignment Palstte

ClazsExplarer

Or choose a
component from an
alphabetical list. D]

= Ll ETT
Debug Windows
Search by name:
Desktops

@ Togale FoimdUnit

@ Uit Cir
ﬂ Farmz. Shif
M Type Libran

@ Frames

Thccesstpplication [&
E |TAccessFulm [fccess

ETAccessHypsr\lnk [#c
ThccessReferences [£ i

News Edit Window

Toolbars

You can install new components on

the Component palette.
You can also rearrange the palette and add A e el

new pages. Choose Tools|Environment Cresle Carmpanent Template |

@ Install Component n

Options, then the Palette page. ,
!

Cormpanent

3| New Component... ‘

| nto new package |

Envionment Varisbles | ClassExplorer | CosBulderDiect | Intemet | LUnitfile name [
Preferences | Designer | Object Inspectar Palette | Library
. P Bearch path s8N 5 CRNBn SECE R0t

Name Package
badiional =
Comion Cantrols Backagefile name: |]| Browse.. |
wina2
Sl s TMainMeny delstdB0 Package description:|
Dt Canrols
dbEspress B | TPopupMen deloicb
Datsbnap

A TLabel delstd6D
ADO 0K Cancel Help
Inerfiase 367 | TEat dolidBn
Intsimet Themo dostdsD
\ebSnap
Fasthlet TButton delstd8D
Decision Cube
GOReport = wlrrmon, aien I

agd. | pekte | Bename. | woelo | meveDown |
Eeeel | Help |

For more information...
See “Component palette” in the online Help index.

Programming with C++Builder 3-3

Building the user interface

Setting component properties

After you place components on a form, set their properties and code their event
handlers. Setting a component’s properties changes the way a component appears
and behaves in your application. When a component is selected on a form, its
properties and events are displayed in the Object Inspector.

’ ’
Button TButtan N Or use thls C_irOp-dOWﬂ ||St tO YOU can Se|eCt a
Fiopstis | Everts sBeIect an Obl?Ct- I-(ljere, " component, or object, on
Default False - Unon1‘ IS s€l ec.te) an Its the fOl'm by C||Ck|ng on |t
DiagCuser | caDrag properties are displayed.
DragKind dkDrag
Dragtode dmbtd anual
Ensbled Tne 4 Select a property and
Fort = i i
T c_hange its value in the
Calor M clvindowTe rlght column. : : S
Height B . . = Butlon] E
N 8 55 Click an ellipsis to open R EEETIEEE L PP
Pitch fpDefault a dialog box where you
Size g o - : : : :
e g can change the =
Height 25 properties of a helper SRR
HelpContext |0 Ob]eCT
Hint
Left 128 =
Il shawn A
You can also click a plus sign to open a detail list.

Many properties have simple values—such as names of colors, True or False, and
integers. For Boolean properties, you can double-click the word to toggle between
True and False. Some properties have associated property editors to set more complex
values. When you click on such a property value, you'll see an ellipsis. For some
properties, such as size, enter a value.

ot] Double-click here to Fonl
FrintScale poFroportional change the value from Font Fort style: S
Scaled True to False. [Feapar |'37 |
ShowHint Falze
Tan n . o i ﬂ
Laption Fanel) dc'hdl(any e|||pS|st to 0 Nows Bt T I
[Color ciTeal - Isplay a property T OCR A Evtended 8 Help
] editor for that property. T e H a4 e |
Effects Sample
[T Shikeout
Erigbled I e I Undefine AsBbYYZ2
|+F0nt [TFaht) Eﬂln?
FullR enaint True B Cick = Sl
Western =
Click on the down arrow to select from a list
of valid values.

When more than one component is selected in the form, the Object Inspector displays
all properties that are shared among the selected components.

The Object Inspector also supports expanded inline component references. This
provides access to the properties and events of a referenced component without
having to select the referenced component itself. For example, if you add a button
and pop-up menu component to your form, when you select the button component,

3-4 Quick Start

Writing code

in the Object Inspector you can set the PopupMenu property to Popuplenul, which
displays all of the pop-up menu’s properties.

% Fom eI Set the Button
Buttan TButtan - s
. E e TR, PRI component’s
opartiss |Ev5m| P M t
ParertShowHir True - i . . A 2 opup enu proper y
[EPopuphten [Popupttent o] <~ % tulr] to PopupMenul, and
Ali it Hight i . . . B
Aok ool & all of the popup
AutoLinzFi=d madvtomati L menu’s properties
AutoP T
DM BTSSR | L appear when you
HelnContest |0 click the plus sign (+).
Imanss g : : : : : : : : : : : : : .
el Inline component
[+ Menudnimat - -
Neme |Popuphnut references are
st e R R TR E R EEE T EEEEEEETEEEIEFEIEEE IR colored red, and their
el FEEPREEEI-IE I I e e i e g subproperties are
TrackButton | toRightBLtton colored green.
ShawHint False - i
Al shown A

For more information...
See “Object Inspector” in the online Help index.

Writing code

An integral part of any application is the code behind each component. While
C++Builder’s RAD environment provides most of the building blocks for you, such
as preinstalled visual and nonvisual components, you will usually need to write
event handlers, methods, and perhaps some of your own classes. To help you with
this task, you can choose from thousands of objects in C++Builder’s VCL and CLX
class libraries. To work with your source code, see “The Code Editor” on page 2-6.

Writing event handlers

Your code may need to respond to events that might occur to a component at
runtime. An event is a link between an occurrence in the system, such as clicking a
button, and a piece of code that responds to that occurrence. The responding code is
an event handler. This code modifies property values and calls methods.

Programming with C++Builder 3-5

Writing code

To view predefined event handlers for a component on your form, select the
component and, on the Object Inspector, click the Events tab.

Here, Button1 is selected and its type is displayed: TButton.
[ewot Teurn <—=t— Click the Events tab in the Object Inspector to see the
Propeties Everts | events that the Button component can handle.
Action
OnCliek | Bulton Clck.]'il
OnContextPopt Unitl | -
gnglaggrop |—SG|eCt an eXiSting eVem procedure TForml.ButtonlClick(Sender: TObject); ﬂ
Nl raglver -
s handler from the drop- e
OnEndDrag down list. ond;
OnEnter . .
OrExit Or double-click in the end.
gnievgw value column, and
nkeyrress '
BEen C++Builder generates
DnMouseDow skeleton code for the new
il oy event handler.
Ontousellp
OnStartDock.
OnStartDrag 3 _"LI
Popuphenu o
[l shorm v | 311 |Modified Insert ' CodeADisaram 4
For more information...

See “events” in the online Help index.

Using the VCL and CLX libraries

C++Builder comes with two class libraries made up of objects, some of which are also
components or controls, that you use when writing code. You can use the Visual
Component Library (VCL) for Windows applications and Borland Component
Library for Cross Platform (CLX) for Windows and Linux applications. These
libraries include objects that are visible at runtime—such as edit controls, buttons,
and other user interface elements—as well as nonvisual controls like datasets and
timers. The following diagram below shows some of the principal classes that make
up the VCL The CLX hierarchy is similar.

TObject
| \ I | |
Exception ~ TStream TPersistent TComObject Tinterface

TGraphiclstbject TGrap‘hic TCon|1ponent TCoIIe‘zction TStrIngs

TApplication TDataSet TMenu TControl TCommonDialog TField

‘ Most visual controls inherit

\ | : ;
; ; from TWinControl or in
TGraphicControl TWinControl CLX, TWidgetControl,

TScroIIingWiLControI TCustor‘nControI

TCustch Form

3-6 Quick Start

Compiling and debugging projects

Objects descended from TComponent have properties and methods that allow them to
be installed on the Component palette and added to C++Builder forms and data
modules. Because VCL and CLX components are hooked into the IDE, you can use
tools like the Form Designer to develop applications quickly.

Components are highly encapsulated. For example, buttons are preprogrammed to
respond to mouse clicks by firing OnClick events. If you use a VCL or CLX button
control, you don’t have to write code to handle generated events when the button is
clicked; you are responsible only for the application logic that executes in response to
the click itself.

Most editions of C++Builder come with VCL and CLX source code.
For more information...

See “Visual Component Library Reference” and “CLX Reference” in the Help
contents and “VCL” in the online Help index.

Compiling and debugging projects

After you have written your code, you will need to compile and debug your project.
With C++Builder, you can either compile your project first and then separately
debug it, or you can compile and debug in one step using the integrated debugger.
To compile your program with debug information, choose Project | Options, click the
Compiler page, and make sure Debug information is checked.

C++Builder uses an integrated debugger so that you can control program execution,
watch variables, and modify data values. You can step through your code line by
line, examining the state of the program at each breakpoint. To use the integrated
debugger, choose Tools | Debugger Options, click the General page, and make sure
Integrated debugging is checked.

You can begin a debugging session in the IDE by clicking the Run button on the
Debug toolbar, choosing Run | Run, or pressing F9.

F3

i} Parameters...

Choose any of the debugging

commands from the Run o e
G Step Over Fa menu. Some commands are
& Trace Inio F7 also available on the toolbar.
@i Trace loNest Sowce Line Shift+F7 Run button
¥ Run to Cursor F4
EvaluateMadify CHil+F7

o Acdd Walch Chl+F5
Add Breakpoint 3

With the integrated debugger, many debugging windows are available, including
Breakpoints, Call Stack, Watches, Local Variables, Threads, Modules, CPU, and

Programming with C++Builder 3-7

Deploying applications

Event Log. Display them by choosing View | Debug Windows. Not all debugger
views are available in all editions of C++Builder.

P

Filename/Address | Line/Length ‘ Condition |Adi0n

4]

| 3l

You can combine several

B CheckBoximp/l... 4 Braak. 0 debugging windows for
E}CheckBoxdmpl1... 20 rea 0 easier use.

B CheckBoxlmpl1 24 Break 1}

B Froject!.dpr 13 Break 0

To learn how to combine debugging windows for more convenient use, see “Docking
tool windows” on page 6-2.

Once you set up your desktop as you like it for debugging, you can save the settings
as the debugging or runtime desktop. This desktop layout will be used whenever
you are debugging any application. For details, see “Saving desktop layouts” on
page 6-4.

For more information...
See “debugging” and “integrated debugger” in the online Help index.

Deploying applications

You can make your application available for others to install and run by deploying it.
When you deploy an application, you will need all the required and supporting files,
such as the executables, DLLs, package files, and helper applications. C++Builder
comes bundled with a setup toolkit called InstallShield Express that helps you create
an installation program with these files. To install InstallShield Express, from the
C++Builder setup screen, choose InstallShield Express Custom Edition for
C++Builder.

For more information...
See “deploying, applications” in the online Help index.

Internationalizing applications

C++Builder offers several features for internationalizing and localizing applications.
The IDE and the VCL support input method editors (IMEs) and extended character
sets to internationalize your project. C++Builder includes a translation suite, not
available in all editions of C++Builder, for software localization and simultaneous
development for different locales. With the translation suite, you can manage
multiple localized versions of an application as part of a single project.

The translation suite includes three integrated tools:

® Resource DLL wizard, a DLL wizard that generates and manage resource DLLs.
¢ Translation Manager, a table for viewing and editing translated resources.
¢ Translation Repository, a shared database to store translations.

3-8 Quick Start

Types of projects
To open the Resource DLL wizard, choose File | New | Other and double-click the

Resource DLL Wizard icon. To configure the translation tools, choose Tools |
Translation Tools Options.

For more information...
See “international applications” in the online Help index.

Types of projects

All editions of C++Builder support general-purpose 32-bit Windows programming,
DLLs, packages, custom components, multithreading, COM (Component Object
Model) and automation controllers, and multiprocess debugging. Some editions
support server applications such as Web server applications, database applications,
COM servers, multi-tiered applications, CORBA, and decision-support systems.

For more information...

To see what tools your edition supports, refer to the feature list on
www .borland.com.

CLX applications

You can use C++Builder, to develop cross-platform 32-bit applications that run on both
the Windows and Linux operating systems. For Linux, a Borland C++ solution is not yet
available, but you can prepare ahead of time by developing the application with
C++Builder today. To develop a CLX application, choose File | New | CLX Application.
The IDE is similar to that of a regular C++Builder application, except that only the
components and items you can use in a CLX application appear on the Component
palette and in the Object Repository. Windows-specific features supported on
C++Builder will not port directly to Linux environments.

For more information...

To see which components are available for developing cross-platform applications,
see “CLX Reference” in the online Help contents.

Web server applications

A Web server application works with a Web server by processing a client’s request
and returning an HTTP message in the form of a Web page. To publish data for the
Web, C++Builder includes two different technologies, depending on what edition of
C++Builder you have.

C++Builder’s oldest Web server application technology is called Web Broker. Web
Broker applications can dispatch requests, perform actions, and return Web pages to
users. Most of the business logic of an application is defined in event handlers
written by the application developer. To create a WebBroker Web server application,

Programming with C++Builder 3-9

Types of projects

choose File | New | Other and double-click the Web Server Application icon. You can
add components to your Web module from the Internet and InternetExpress

Component palette pages.

WebSnap adds to this functionality with adapters, additional dispatchers, additional
page producers, session support, and Web page modules. These extra features are
designed to handle common Web server application tasks automatically. WebSnap
development is more visual and simple than Web Broker development. A WebSnap
application developer can spend more time designing the business logic of an
application, and less time writing event handlers for common page transfer tasks. To
create a new WebSnap server application, select File | New | Other, click the WebSnap
page, and double-click the Web Server Application icon. You can add WebSnap

components from the WebSnap Component palette page.

8 laa =

f

You can also access the
WebSnap Application data
module by choosing Viewl
Toolbarslinternet, and
clicking the New WebSnap
Application icon.

For more information...

] New WebSnap Application

€ in-CGI Stand-alone ereculable
™ Apache Shared Module (DLL)

= web &pp Debugger executable

Coftlass Hame: I

[Application Module Type |
% Page Module

" Data Module Services

— Application Madule Options

Page Name: IF‘ageProducerF‘age3

Page Options.
Caching: ICache Instance e

[~ Default oK I

Cancel | Help |

See “Web applications” in the online Help index.

Database applications

You can create an
application to run on
various Web server
application types,
including a test server to
help you debug your Web
server application.

Choose whether you
want a data module or a
page module, which
displays your HTML page
as you work.

C++Builder offers a variety of database and connectivity tools to simplify the

development of database applications.

To create a database application, first design your interface on a form using the Data
Controls page components. Second, add a data source to a data module using the
Data Access page. Third, to connect to various database servers, add a dataset and
data connection component to the data module from the previous or corresponding

pages of the following connectivity tools:

¢ dbExpress is a collection of database drivers for cross-platform applications that
provide fast access to SQL database servers, including DB2, InterBase, MySQL,

and Oracle. With a dbExpress driver, you can access databases using
unidirectional datasets.

3-10 Quick Start

Types of projects

* The Borland Database Engine (BDE) is a collection of drivers that support many
popular database formats, including dBASE, Paradox, FoxPro, Microsoft Access,
and any ODBC data source. SQL Links drivers, available with some versions of
C++Builder, support servers such as Oracle, Sybase, Informix, DB2, SQL Server,
and InterBase.

¢ ActiveX Data Objects (ADO) is Microsoft's high-level interface to any data source,
including relational and nonrelational databases, e-mail and file systems, text and
graphics, and custom business objects.

¢ InterBase Express (IBX) components are based on the custom data access
C++Builder component architectures. IBX applications provide access to advanced
InterBase features and offer the highest performance component interface for
InterBase 5.5 and later. IBX is compatible with C++Builder’s library of data-aware
components.

Certain database connectivity tools are not available in all editions of C++Builder.

For more information...
See “database applications” in the online Help index.

BDE Administrator

Use the BDE Administrator (BDEAdmin.exe) to configure BDE drivers and set up the
aliases used by data-aware VCL controls to connect to databases.

For more information...

From the Windows Start menu, choose Programs | Borland C++Builder | BDE
Administrator. Then choose Help | Contents.

SQL Explorer (Database Explorer)

The SQL Explorer (DBExplor.exe) lets you browse and edit databases. You can use it
to create database aliases, view schema information, execute SQL queries, and
maintain data dictionaries and attribute sets.

For more information...

From the C++Builder main menu, choose Database | Explore. Then choose Help |
Contents. Or see “Database Explorer” in the online Help index.

Database Desktop

The Database Desktop (DBD32.exe) lets you create, view, and edit Paradox and
dBase database tables in a variety of formats.

For more information...

From the Windows Start menu, choose Programs | Borland C++Builder | Database
Desktop. Then choose Help | User’s Guide Contents.

Programming with C++Builder 3-11

Types of projects

Data Dictionary

When you use the BDE, the Data Dictionary provides a customizable storage area,
independent of your applications, where you can create extended field attribute sets
that describe the content and appearance of data. The Data Dictionary can reside on a
remote server to share additional information.

For more information...
Choose Help | C++Builder Tools to see “Data Dictionary.”

Custom components

The components that come with C++Builder are preinstalled on the Component
palette and offer a range of functionality that should be sufficient for most of your
development needs. You could program with C++Builder for years without
installing a new component, but you may sometimes want to solve special problems
or display particular kinds of behavior that require custom components. Custom
components promote code reuse and consistency across applications.

You can either install custom components from third-party vendors or create your
own. To create a new component, choose Component | New Component to display
the New Component wizard. To install components provided by a third party, see
“Installing component packages” on page 6-6.

For more information...

See Part V, “Creating custom components,” in the Developer’s Guide and
“components, creating” in the online Help index.

DLLs

Dynamic-link libraries (DLLs) are compiled modules containing routines that can be
called by applications and by other DLLs. A DLL contains code or resources typically
used by more than one application. Choose File | New | Other and double-click the
DLL Wizard icon to create a template for a DLL.

For more information...
See “DLLs” in the online Help index.

COM and ActiveX

C++Builder supports Microsoft’s COM standard and provides wizards for creating
ActiveX controls. Choose File | New | Other and click the ActiveX tab to access the
wizards. Sample ActiveX controls are installed on the ActiveX page of the
Component palette. Numerous COM server components are provided on the Servers
tab of the Component palette. You can use these components as if they were VCL
components. For example, you can place one of the Microsoft Word components onto
a form to bring up an instance of Microsoft Word within an application interface.

3-12 Quick Start

Types of projects

For more information...
See “COM” and “ActiveX” in the online Help index.

Type libraries

Type libraries are files that include information about data types, interfaces, member
functions, and object classes exposed by an ActiveX control or server. By including a
type library with your COM application or ActiveX library, you make information
about these entities available to other applications and programming tools.
C++Builder provides a Type Library editor for creating and maintaining type
libraries.

For more information...
See “type libraries” in the online Help index.

Programming with C++Builder 3-13

3-14 Quick Start

Creating a text editor—a tutorial

This tutorial takes you through the creation of a text editor complete with menus, a
toolbar, and a status bar.

Note This tutorial is for all editions of C++Builder.

Starting a new application

Before beginning a new application, create a directory to hold the source files:

1

2

Create a directory called TextEditor in your C:\Program Files\Borland\
CBuilder6\ Projects directory.

Begin a new project by choosing File | New | Application or use the default project
that is already open when you started C++Builder.

Each application is represented by a project. When you start C++Builder, it creates
a blank project by default, and automatically creates the following files:

® Project1.cpp: a source-code file associated with the project. This is called a project
file.

e Unitl.cpp: a source-code file associated with the main project form. This is
called a unit file.

* Unitl.h: a header file associated with the main project form. This is called a unit
header file.

e Unitl.dfm: a resource file that stores information about the main project form.
This is called a form file.

Each form has its own unit (Unit1.cpp), header (Unit1.h), and form (Unitl.dfm) files.
If you create a second form, a second unit (Unit2.cpp), header (Unit2.h), and form
(Unit2.dfm) file are automatically created.

Creating a text editor—a tutorial 4-1

Setting property values

3 Choose File| Save All to save your files to disk. When the Save As dialog box
appears:

* Navigate to your TextEditor folder.
¢ Save Unitl using the default name Unitl.cpp.

¢ Save the project using the name TextEditor.dpr. (The executable will be named
the same as the project name with an .exe extension.)

Later, you can resave your work by choosing File | Save All

When you save your project, C++Builder creates various additional files in your
project directory. Do not delete these files.

The default form has Maximize
and Minimize buttons, a Close
button, and a Control menu.

If you run the form now by
pressing F9, you'll see that
these buttons all work.

To return to design mode, click
the X to close the form.

Setting property values

When you open a new project, C++Builder displays the project’s main form, named
Form1 by default. You'll create the user interface and other parts of your application
by placing components on this form.

Next to the form, you'll see the Object Inspector, which you can use to set property
values for the form and the components you place on it. When you set properties,
C++Builder maintains your source code for you. The values you set in the Object
Inspector are called design-time settings.

4-2 Quick Start

Adding components to the form

1 Find the form’s Caption property in the Object Inspector and type Text Editor
Tutorial replacing the default caption Fornl. Notice that the caption in the heading
of the form changes as you type.

Fom1 TForm1 g-

The drop-down list at the top of the Object Inspector
Propeties | Events | shows the currently selected component. In this case,
AuoSize |False B the component is Form1 and its type is TForm1.

BiDitode bdLeftT aRight
HEorderlcons [blSyslemMenu,bth

BorderStyle | bsSizeable
Borderwidth |0
Caption [t Editor Tutoria
ClientHeight {330

When a component is selected, the Object Inspector

Clientwidth 513 displays its properties.
Color [JclBtnFace

Constraints [T SizeConstraints)
CH3D Tiue =

20 shawn i

2 Run the form now by pressing F9, even though there are no components on it.
3 To return to the design-time view of Form1, do one of the following;:

e Click the X in the upper right corner of the title bar of your application
(the runtime view of the form);

¢ Click the Exit application button in the upper left corner of the title bar and click
Close;

¢ Choose View | Forms, select Form1, and click OK; or

* Choose Run | Program Reset.

Adding components to the form

Before you start adding components to the form, you need to think about the best
way to create the user interface (UI) for your application. The Ul is what allows the
user of your application to interact with it and should be designed for ease of use.

C++Builder includes many components that represent parts of an application. For
example, there are components (derived from objects) on the Component palette that
make it easy to program menus, toolbars, dialog boxes, and many other visual and
nonvisual program elements.

The text editor application requires an editing area, a status bar for displaying
information such as the name of the file being edited, menus, and a toolbar with
buttons for easy access to commands. The beauty of designing the interface using
C++Builder is that you can experiment with different components and see the results
right away. This way, you can quickly prototype an application interface.

To start designing the text editor, add a text area and a status bar to the form.

1 To create a text area, first add a RichEdit component. To find the RichEdit
component, on the Win32 page of the Component palette, point to an icon on the

Creating a text editor—a tutorial 4-3

Adding components to the form

palette for a moment; C++Builder displays a Help tooltip showing the name of the

o _[ol
Fle Edt Seach View Project Bun Componert Dalabase Tools Window Help || [Hone> &
O -l @222 | @/ Stadl Addtonal Wiz | Sustem | Datacosss | Data Controls | dbEnoress | DataSnan | BOE | ADO | InterBase | WebServioes | IntemelEnoress | Intemet | WebSnan | Fastiet | Desision G|
= T e e e W = e e T

RichEdit

When you find the RichEdit component, either:

¢ Select the component on the palette and then click the form where you want to
place the component; or

* Double-click the component to place it in the middle of the form.

5 Text Editor Tutorial

Each C++Builder component is a class; placing a component on a form creates an
instance of that class. Once the component is on the form, C++Builder generates
the code necessary to construct an instance of the object when your application is

running.

With the RichEdit component selected, in the Object Inspector, click the drop-
down arrow of the Align property and set it to alClient.

Object Inspector

| RichEdit1: TRichE dit

Froperties l Events]

| align ignt
Alignment

[Anchors alClient
BDiMode |allsft
BorderStyle |3Mone
Borderwidth [alRidht
Calar D

Constraints [TSizeConstrain

Cursor crDefault
DrragCursor cillrag

2 hidden

|alBcttam !

=l

Make sure the RichEdit1 component is
selected on the form.

| Look for the Align property in the Object
Inspector. Click the down arrow to
display the property’s drop-down list.
|7 SelectalClient.

The RichEdit component now fills the entire form so you have a large text editing
area. By choosing the alClient value for the Align property, the size of the RichEdit
control will vary to fill whatever size window is displayed even if the form is

resized.

4-4 Quick Start

Adding components to the form

-1 3 Double-click the StatusBar component on the Win32 page of the Component
palette to add a status bar to the bottom of the form.

Editing area

5 Status bar

4 Double-click the status bar to open the Editing StatusBar1l->Panels dialog box.

Tip You can also open the Editing StatusBarl->Panels dialog box by clicking the
(TStatusPanel) ellipse of the status bar’s Panels property.

5 Click the Add New button £ on the toolbar of the dialog box, or right-click and
choose Add, to add a panel to the status bar. The panel will display the path and
file name of the file being edited by your text editor.

T Text Editor Tutorial

RichEdit1

£ Editing StatusBar 1->Panels

¥ Love Down
Select Al

[t atr

e
i+

T

|7 Toolbar

Right-click on here to display a
context menu. Choose Add to
create a panel on the status bar
that can hold persistent text.

2

6 In the Object Inspector, set the Text property to untitled.txt. When you use the
text editor, if the file being edited is not yet saved, the file name will be untitled.txt.

7 Click the X to close the Editing StatusBar1->Panels dialog box.

Now the main editing area of the user interface for the text editor is set up.

Creating a text editor—a tutorial 4-5

Adding support for a menu and a toolbar

Adding support for a menu and a toolbar

For the application to do anything, it needs a menu, commands, and, for
convenience, a toolbar. Though you can code the commands separately, C++Builder
provides an action list or an action manager to centralize the actions, images, and code
for menu commands and toolbar buttons.

By convention, the actions that are connected to menu commands have a top-level
menu name and a command name. For example, the FileExit action refers to the Exit
command on the File menu. The following table lists the kinds of menu commands
your text editor application needs and whether the action has an associated toolbar

button:
On

Menu Command Toolbar? Description

File New Yes Creates a new file.

File Open Yes Opens an existing file for editing.

File Save Yes Saves the current file to disk.

File Save As No Saves a file using a new name (also lets you save a new file
using a specified name).

File Exit Yes Quits the editor program.

Edit Cut Yes Deletes text and stores it in the clipboard.

Edit Copy Yes Copies text and stores it in the clipboard.

Edit Paste Yes Inserts text from the clipboard.

Help Contents No Displays the Help contents screen from which you can
access Help topics.

Help Index No Displays the Help index screen.

Help About No Displays information about the application in a box.

Action Manager editor and Action List editor differences

Depending on your edition of C++Builder, there are two ways to manage actions and
images for your menus and toolbar. All editions of C++Builder include the Action List
editor, which provides a location to centralize the response to user commands. The
Action List editor is part of the Borland Component Library for Cross Platform (CLX)
and should be used instead of the Action Manager editor if migrating to a different
platform (such as Linux) is a future possibility.

The Action Manager editor provides some special functionality, but is only available as
part of the Visual Component Library (VCL), which is specific to the Windows
platform. Using the Action Manager editor Customize dialog can provide menu actions
that are customizable by the end user, and that have some of the properties of
Microsoft Office (such as having seldomly used menu items hidden from view).
Additionally, the Action Manager provides a more rapid development process, as
actions can simply be dragged from the Action Manager Customize dialog to the menu
component on the form.

4-6 Quick Start

Warning

_J

Note

Adding support for a menu and a toolbar

This tutorial uses the Action Manager Customize dialog for Enterprise and Professional
editions of C++Builder. If you have the Enterprise or Professional edition, proceed
to”Adding menu and toolbar images (Enterprise and Professional)” below.

If you have the Personal edition or want to use the Action List editor, skip to“Adding
an image list and images (Personal edition)” on page 4-13.

Adding menu and toolbar images (Enterprise and Professional)

In this section, you’'ll add images for use with Action Bands.

In many cases you would add an ImageList1 component to your form and import
your own images. For this tutorial we will save time by importing the image list that
was used to create the C++Builder IDE. Unless you add your own graphics, the
ImageList] on the component palette will use default images for standard actions.

To add the existing image list:

1 If you installed C++Builder to the default directory, choose File | Open and select
C:\Program Files\Borland \CBuilder6\Source\vcl\actnres.pas. To see this file,
set Files of type: to (Any file. *.*) in the Open dialog.

2 Select the ImageList1 component and copy and paste it to your form. It is a
nonvisual component, so it doesn’t matter where you paste it.

To copy ImageList], right-click the component, and click Edit | Copy. On your
form, right-click and choose Edit | Paste.

3 Close the Standard Actions window.

4 Double-click the ImageList1 component to display all the possible images you can
use.

Form1->ImageList1 ImageList

Selected Image

;

The numbers underneath |:I|I{I = Cancel
T e
_ e |

the images correspond to
the image index property

for each action. Images
\ ¥ i, ']

S 1 2 3
You can click the Add . s
button to add Images ———> Add.. | Delete | Clear | Export... |

from another source.

Creating a text editor—a tutorial 4-7

Adding support for a menu and a toolbar

The image index properties for both standard actions and the ImageList1 we have

added include:
Command Imagelndex property
Edit| Cut 0
Edit | Copy 1
Edit | Paste 2
File | New 6
File | Open 7
File | Save 8
File | SaveAs 30
File | Exit 43
Help | Contents 40

Note You can add images from an entirely different list. See “Adding an image list and
images (Personal edition)” on page 4-13. Click OK to close the ImageList1 dialog.

Adding actions to the Action Manager (Enterprise and Professional)

The Enterprise and Professional editions provide an Action Manager that makes it
easy to add actions to menus and toolbars. You first add the Action Manager and
then add the actions.

1 On the Additional page of the Component palette, double-click the ActionManager
7| component to drop it onto the form. Because it is nonvisual, you can place it
anywhere on the form.

Tip To display the captions for nonvisual components you drop on the form, choose
Tools | Environment Options, click the Designer page, check Show component
captions, and click OK. Also, hovering over a component with the mouse will
display its name.

4-8 Quick Start

Adding support for a menu and a toolbar

2 With ActionManager1 selected on the form, set the Images property in the Object
Inspector to ImageList1.

< Forml
IActinnManagar1 Thctionkanag) = RichEdit1

Praperties | Events |

ActionBars [TActionB ars) L o
FilgName

Images -
LinkedActionLij mageList1

Name Actiontd anader]
PFriarityS chedult [TStringList)
State ashlomal
Tag o
& shown v

Click on the Images property, then on the down arrow next to Images. ImageList1
is listed for you. Select it. This associates the images in the image list with the
actions in the action list.

Next you'll add the actions to the Action Manager and set their properties. You
will add both nonstandard actions for which you set all the properties, and
standard actions, which have their properties automatically set.

3 Double-click the ActionManager component to open it.

The Editing Form1->ActionManagerl dialog box, or Action Manager editor,
appears.

4 Make sure the Actions tab is displayed. Click the drop-down arrow next to the
New Action button and click New Action.

Tip You can also right-click on the Action Manager editor and choose New Action.
(,3 Editing Form1->ActionM anager1
Taoibars Actions | options | | Click the (1rtopt-ﬁovKln
- = b arrow next to tne New
pr— gl] Action button to create

Categories: Actions: Mew Action Ins |

Hews Standard Aun... Chl+lns new aCtlonS for the

Action Manager.

When the Delete button
is activated, you can
remove existing actions
from the actions list.

’—De Cripion ‘

To add actions to your application simply drag and drop from either

Cateqgories or Actions onko an existing AckionBar,

5 Make sure No Category is selected, in the Actions list and Action1 is selected under
Actions. In the Object Inspector, set the following properties:

o After Caption, type &New. Note that typing an ampersand before one of the letters
makes that letter a shortcut to accessing the command.

o After Category, type File (this organizes the File commands in one place).

o After Hint, type Create file (this will be the Help tooltip).

Creating a text editor—a tutorial 4-9

Adding support for a menu and a toolbar

* Make sure the Imagelndex is set to 6 (This should match the image list we

Object Inspecto
IF\IeN ew Thction 2

Properties | Ewents |

AutoCheck

false

Caption

ihew

Categamy

File

Checked

false

Enabled

true:

Grouplndex

0

HelpContext

1]

Helpkeyword

HelpType

htt emmard

Hint

Create file

Imagelndex

Name

Secundalyshui [TS hDr CulLlsI] -

(,3 Editing Form1->ActionM anager1

Toolbars Actions |Optmns|
(all Actlnns) -

Cateqories: Actions:

Mo Categar

Actionl

escription
Creata filke

To add actions to your application simply drag and drop from either
Cateqgories or Actions onta an existing AckionBar,

&8 shown

A

Close

imported. You can also click the down arrow and select the proper image).
After Name, type Filelew (for the File | New command) and press Enter to save
the change.

With Action1 selected in
the Action Manager
editor, change its
properties in the Object
Inspector.

Caption is the name of
the action, Category is
the type of action, Hintis
a Help tooltip,
Imagelndex lets you
refer to an image in the
image list, and Name is
what the action called in
the code.

6 Make sure File is selected in the Editing Form1->ActionManagerl window. Click
the drop-down arrow next to the New Action button and select New Action.

7 In the Object Inspector, set the following properties:

After Caption, type &Save.

Make sure the Category is set to File.
After Hint, type Save file.

After Imagelndex, select image 8.
After Name, enter FileSave (for the File | Save command).

8 Click the drop-down arrow next to the New Action button and click New Action.

9 In the Object Inspector, set the following properties:

After Caption, type &Index.
After Category, type Help.

No Imagelndex is needed. Leave the default value.
After Name, enter HelpIndex (for the Help | Index command).

10 Click the drop-down arrow next to the New Action button and click New Action.

11 In the Object Inspector, set the following properties:

After Caption, type &ibout.

Make sure Category says Help.
No Imagelndex is needed. Leave the default value.
After Name, enter Helpibout (for the Help | About command).

12 Keep the Action Manager Customize dialog on the screen.

13 Save your work by clicking File | Save AllL

4-10 Quick Start

Note

Adding support for a menu and a toolbar

Adding standard actions (Enterprise and Professional)

Next you’ll add the standard actions (open, save as, exit, cut, copy, paste, and help
contents) to the action manager.

1

The Action Manager editor should still be displayed. If it’s not, double-click the
ActionManager component to open it.

Click the drop-down arrow next to the New Action button and click New
Standard Action.

The Standard Action Classes dialog box appears.

Scroll to the Edit category and use the Ctrl key to select TEditCut, TEditCopy, and
TEditPaste. Click OK to add these actions to a new Edit category in the Categories
list of the Editing Form1->ActionManager1 dialog box.

Right-click on the Action Manager editor and % Editing Form1->ActionManagerl
choose New Standard Action.

The available standard actions are then
displayed. To pick one, double-click an action,
or select multiple actions and click OK.

Toolbars ~ Actions lOptions]

a- |
iﬁ Mew Action

Mew Standard Action... . Chil+lns

-

€ S tandard Action Classes
Avallable Action Classes: Cut Chilex

TRichEditBullets =
TRichE ditdlignLeft Copy ChkC
TRichE ditélignRight Faste Clrl+t
TRichE dittlignCenter Description

= Help

elpCantents

THelpTopicSeach [%
THelpOnHelp To add actions ko your application simply drag and drop from either
THelpContextction Categaries or Actions onto an existing ActionBar,

= Window
TwindowClose
TwindowCascade
TwindowTileHorizantal
TiindowTileWertical
TWindowhinimized|
Twindowdirange

=l File
TFileOpen |

(1] | Cancel | Help |

Click the drop-down arrow next to the New Action button and click New
Standard Action.

Scroll to the File category and select TFileOpen, TFileSaveAs, and TFileExit. Click
OK to add these actions to the File category.

Click the drop-down arrow next to the New Action button and click New
Standard Action.

Scroll to the Help category and select THelpContents. Click OK to add this action to
the Help category.

The custom Help | Contents command displays a Help file always showing the
Help Contents tab. The standard Help | Contents command brings up the last
tabbed page that was displayed, either Contents, Index, or Find.

Creating a text editor—a tutorial 4-11

Adding support for a menu and a toolbar

S0

Tip

9

Now you’ve added all the standard actions you need for your application. The
standard actions have their properties set automatically, including the image
index. You can change the image index to display a different image.

You can change the image for standard actions if you prefer. For instance, select
the File | Open action in the Editing Form1->ActionManager1 dialog box. Now,
change the default image to image 7 in the list.

Click the Close button to close the Action Manager editor.

10 Click File | Save All to save your changes.

Adding a menu (Enterprise and Professional)

In the next two sections, you'll add customizable menu bar and tool action bands.
The text editor menu bar includes three drop-down menus—TFile, Edit, and Help—
and their menu commands. With the Action Manager Customize dialog, you can
drag each menu category and its commands onto the menu bar in one step.

1

From the Additional page of the Component palette, double-click a
ActionMainMenuBar component to add it to the form.

A blank menu bar appears at the top of the form.

Open the Action Manager Customize dialog if it isn’t already and select File in the
Categories list. The submenu commands are not in the exact order that you want
them, but you can easily change this by using the Move Up and Move Down
buttons, or Ctrl+T and Ctri+d.

Select the Open action and click the Move Up button on the Action Manager
Customize dialog toolbar, so that the File commands are listed in the following
order: New, Open, Save, Save As, and Exit.

Drag File to the menu bar. The File menu and its submenu commands appear on
the menu bar.

You can also reposition menu commands after you've dragged the menu category
to the menu bar. For example, you can click File on the menu bar so its submenu
commands appear, and drag Open above New and then back again.

From the Categories list of the Action Manager Customize dialog, drag Edit to the
right of File on the menu bar.

From the Categories list of the Action Manager Customize dialog, drag Help to the
right of the Edit on the menu bar.

Click the Help menu to view its submenu commands. Drag the Contents
command to above the Index command.

Press Esc or click the Help menu again to close it.

Choose File | Save All to save your changes.

Now you'll want to add a toolbar to provide easy access to the commands.

4-12 Quick Start

Note

Tip

Adding support for a menu and a toolbar

Adding a toolbar (Enterprise and Professional)

Since you've set up actions in the Action Manager Customize dialog, you can add
some of the same actions that were used on the menus to an action band toolbar,
which will resemble a Microsoft Office 2000 toolbar when you're finished with it.

1

On the Additional page of the Component palette, double-click the ActionToolBar
component to add it to the form.

A blank Action Band toolbar appears under the menu bar.

You can also add an Action Band toolbar by opening the Action Manager
Customize dialog, clicking the Toolbars tab, and clicking the New button.

If the Action Manager editor isn’t displayed, open it and select File in the
Categories list. In the Actions list, select New, Open, Save, and Exit and drag these
items to the toolbar. They automatically appear as buttons with each assigned
image.

In the Action Manager Customize dialog, drag the Edit category to the toolbar. All
of the Edit commands should appear on the toolbar.

If you drag the wrong command onto the toolbar, you can drag it off again. Or you
can also select the item in the Object TreeView and click the Del key. You can
reposition the buttons simply by dragging them to the left or right of each other.

4 Choose File | Save All to save your changes.

6

Press F9to compile and run the project.

You can also run the project by clicking the Run button on the Debug toolbar or
choosing Run | Run. When you run your project, C++Builder opens the program in
a runtime window like the one you designed on the form.

Your text editor already has lots of functionality. If you select text in the text area,
the Cut, Copy, and Paste buttons should work. The menus and toolbar buttons
work although some of the commands are grayed out. To activate some of the
commands you will need to write event handlers.

To return to design mode, click X in the upper right corner of the application.

To continue the tutorial, skip to“Clearing the text area (all editions)” on page 4-22.

Adding an image list and images (Personal edition)

In this section, you’'ll add an ImageList component to your form and images to that
list. Select the ImageList component on the Component palette and click on form to
add an ImageList1 component.

Creating a text editor—a tutorial 4-13

Adding support for a menu and a toolbar

The images to use for each command include:

Command Image name Imagelndex property
File | New Filenew.bmp 0
File | Open Fileopen.bmp 1
File | Save Filesave.bmp 2
File | Exit Doorshut.bmp 3
Edit| Cut Cut.bmp 4
Edit | Copy Copy.bmp 5
Edit | Paste Paste.bmp 6
Help | Contents Help.bmp 7

Note Without importing graphics, the ImageList uses default images for standard actions.
To add images to the image list:
1 Double-click the ImageList component on the form to display the Image List editor.
2 (Click the Add button.

3 Inthe Add Images dialog box, navigate to the Buttons directory provided with the
product. The default location is C:\Program Files\Common Files\Borland
Shared \Images\Buttons.

4 Double-click filenew.bmp.

When a message asks if you want to separate the bitmap into two separate ones,
click Yes each time. Each of the icons includes an active and a grayed out version
of the image. You'll see both images. Delete the grayed out (second) image.

5 Add the rest of the images:

Click Add. Double-click fileopen.bmp. Delete the grayed out image.
Click Add. Double-click filesave.bmp. Delete the grayed out image.
Click Add. Double-click doorshut.bmp. Delete the grayed out image.
Click Add. Double-click cut.bmp. Delete the grayed out image.

Click Add. Double-click copy.bmp. Delete the grayed out image.
Click Add. Double-click paste.bmp. Delete the grayed out image.

Form1->ImageList]1 ImageList

Selected Image

Tranzparent Color: Options 0K

b=
0+00008284 -] | & Con .

Fill Colar: ™ Syetch

=] [0«00005284 <] | © Center Apply

Help

el B

|]
®
- R
2

w

L] |+l
Add | TR Clear ‘ Expart |

4-14 Quick Start

Adding support for a menu and a toolbar

Tip You can use the Control key when clicking on the images to select multiple images.

Note

Then go back and delete the greyed out images.
Click OK to close the Image List editor.

You've added seven images to the image list and they’re numbered 0-6 consistent
with the Imagelndex properties for each of the actions.

If you get them out of order, you can drag and drop them into their correct
positions in the Image List editor.

Now you're ready to add the menu and toolbar.

Adding actions to the action list (Personal edition)

You have already added an ImageList component to the form and added images to
the ImageList. In this section you will add an action list and actions.

1 Double-click the ActionList component in the Standard tab of the Component
palette. Since the ActionList] that is added to the form is a nonvisual component it
doesn’t matter where you place it on the form.

2 With the ActionList component still selected on the form, set its Iimages property to
ImageListl.

Object Inspector

IActionManager‘I Tactionkd anag 'l HichEdit1

Froperties | Events |

U orm1

ActionBars [TActionBars] ﬁ' _‘il
Filet ame

I Images -
Linked&ctionLijlmageList]

Mame Actionkd anag‘f
PriorityS cheduls [TStringList]
State asMormal

Tag 1]

&1 shown 5

Click on the Images property, then on the down arrow next to Images. ImageList1
is listed for you. Select it. This associates the images that we’ll add to the image
list with the actions in the action list.

3 Double-click the ActionList component to open it.

The Editing Form1->ActionListl dialog box appears. This is also called the Action
List editor.

Creating a text editor—a tutorial 4-15

Adding support for a menu and a toolbar

Tip

4 Right-click on the Action List editor and choose New Action.

Editing Form1->ActionList1

ta-um+ ¥

Categores Actions
P Right-click on the Action
List editor and choose
New Action to create an
<— action for the action list.
Mew Standard Action... Chl+lns
+ hove il
¥ hiove Diovn [ty
Cut Clhrl+
Copy Ctrl+C
Paste Crl+4
@ elete el
Select All
|7 Panel Descriptions
|7 Toolbar

You can also click the drop-down arrow next to the New Action button and click
New Action.

For Actionl, in the Object Inspector, set the following properties:

After Caption, type &lew. Note that typing an ampersand before one of the letters
makes that letter a shortcut to accessing the command.

¢ After Category, type File (this organizes the File commands in one place).

After Hint, type Create file (this will be the Help tooltip).

After Imagelndex, select the related image (image 0 if you added your image list
in the order described above).

After Name, type FileNew (for the File | New command) and press Enter to save
the change.

6 Right-click on the Action List editor and choose New Action.

For Actionl, in the Object Inspector, set the following properties:

After Caption, type &Save.

Make sure Category says File.

After Hint, type Save file.

After Imagelndex, select the related image (image 2 if you added your images in
the order described above).

After Name, enter FileSave (for the File | Save command).

8 Right-click on the Action List editor and choose New Action.
For Actionl, in the Object Inspector, set the following properties:

After Caption, type &Index.

After Category, type Help.

No Imagelndex is needed. Leave the default value.

After Name, enter HelpIndex (for the Help | Index command).

4-16 Quick Start

Tip

Adding support for a menu and a toolbar

10 Right-click on the Action List editor and choose New Action.
11 For Actionl, in the Object Inspector, set the following properties:

After Caption, type &hbout.

After Category, type Help.

No Imagelndex is needed. Leave the default value.

After Name, enter Helpibout (for the Help | About command).

Keep the Action List editor on the screen.

Adding standard actions to the action list (Personal edition)

C++Builder provides several standard actions that are often used when developing
applications. Next you'll add these standard actions, such as cut, copy, and paste, to
the action list.

1 The Action List editor should still be displayed. If it’s not, double-click the
ActionList component on the form.

2 Right-click the Action List editor and click New Standard Action.

You can also click the drop-down arrow next to the New Action button and click
New Standard Action.

3 In the Standard Action Classes dialog box, scroll to the Edit category, and use the
Ctrl key to select TEditCut, TEditCopy, and TEditPaste. Click OK to add these
actions to a new Edit category in the Action List editor.

Right-click on the Action List editor and & Editing Forml >ActionManagel
choose New Standard Action. Tookbars Actions | aptions |

The available standard actions are then

| . . ta- |
displayed. To pick one, double-click an
action. Mew Standard Action... . Chil+lns
g;' Standard Action Clas:ses
Lwailable Action Classes:
TRichEdiBullets = Cut 3¢
TRichE ditélignLeft
TRichE dilignFight Copy Ctrl+C
TRichE ditslignCenter Paste Cirrl+
= Help Description
THelpContents
THelpT opicSearch [%
THelpDnHelp
THelpContexstaction To add actions ko your application simply drag and drop from either
= Wwindow Categaries or Actions onto an existing ActionBar,
TwindowClose
TwindowCascade
TwindowTileHorizontal
TwindowTileVertical
TwindowhMinimized|
T'windowdrrange
=l File
TFileOpen |

(1] | Cancel | Help |

4 Right-click the Action List editor and click New Standard Action.

5 Scroll to the File category and select TFileOpen, TFileSaveAs, and TFileExit. Click
OK to add these actions to the File category.

Creating a text editor—a tutorial 4-17

Adding support for a menu and a toolbar

6 Right-click the Action List editor and click New Standard Action.

7 Scroll to the Help category and select THelpContents. Click OK to add this action to
the Help category.

Note The custom Help | Contents command displays a Help file always showing the
Help Contents tab. The standard Help | Contents command brings up the last
tabbed page that was displayed, either Contents, Index, or Find.

The standard actions have their properties set automatically. However, you need
to change the image index property to associate the actions with the correct images
that come with the Personal edition.

8 In the Action List editor’s Categories list, choose (All Actions).

9 Standard Actions include default images. Now, change the default images to the
images you added earlier. In the Actions list, select the following actions one at a
time and change their Imagelndex property in the Object Inspector:

Select EditCutl and set its Imagelndex property to 4.
Select EditCopy1 and set its Imagelndex property to 5.
Select EditPastel and set its Imagelndex property to 6.
Select FileOpen1 and set its Imagelndex property to 1.
Select FileExitl and set its Imagelndex property to 3.

10 Click the X to close the Action List editor.

11 Choose File | Save All to save your changes.

Adding a menu (Personal edition)

In this section, you'll add a main menu bar with three drop-down menus—TFile, Edit,
and Help—and you’ll add menu items to each one using the actions in the action list.

B 1 From the Standard tab of the Component palette, drop a MainMenu component
= onto the form. It doesn’t matter where you place it.

2 Set the main menu’s Images property to ImageListl so you can add the images to the
menu commands.

3 Double-click the MainMenu component to open the Menu Designer.

rr*l Form1->MainbMenu1

4-18 Quick Start

Adding support for a menu and a toolbar

4 To set the first top-level menu item in the Menu Designer, in the Object Inspector,
set the Caption property to &File and press Enter.

Qi When youtype &File
[FileT: TMenuiter =|| and focus on the i
Propetties] Events | Menu Designer, the
T top-level File
clion =
AutoHotkeys | maParent command appears
AutoLineR edus maFarent ready for you to add
Bitmap (None) the first menu item.
Break mbMone
Caption £.F il
Checked False
Default False
Enabled True
Grouplndex |0
HelpContext |0 =
All shown

5 Select the empty item below the File command you just created.

6 In the Object Inspector, set the Action property to FilelNlew. All actions from the
action list appear there.

Object Inspector

|New1: Thenultem
Froperties l Events]

| Action FileMew
AutoHatkeys (EditCopy
AuteLineR ed|E ditCutl
Bitmap EditPastel
Ereak FileE it
Caption
Checked
Default
Enabled
Grouplndex |0
HelpContext |0

All shown

FileOpen
FileSave
FileSaveds

=l

When you select
FileNew from the
Action property list,
the New command
appears with the
correct Caption and
Imagelndex.

'l Form1->MainMenu1

IS[=] E3

Select the item below New and set its Action property to FileOpenl.

Select the item below Open and set its Action property to FileSave.

Select the item below Save and set its Action property to FileSaveAsl.

Select the item below Save As, type a hyphen after its Caption property, and

press Enter. This creates a separator bar on the menu.
¢ Select the item below the separator bar and set its Action property to FileExitl.

7 Next create the Edit menu:

* Select the item to the right of the File command, set its Caption property to &Edit,

and press Enter.
* The focus is now on the item under Edit; set its Action property to EditCutl.
¢ Select the item below Cut and set its Action property to EditCopyl.

Creating a text editor—a tutorial

4-19

Adding support for a menu and a toolbar

¢ Select the item below Copy and set its Action property to EditPastel.

Object Inspector 3 | Wl 1 Form1->MainMenu =10] =]
IPaste‘I:TMenuItem 'l File Edit

Froperties | Eventsl Cut Chrl+
LCopy ChlC

AutoHotkeys | maParent

AutoLineRedud maParent

Bitmap [Maone]

Break mbMone

Caption LPaste

Checked false

Default false |
[0 shown i

8 Create a Help menu:

* Select the item to the right of the Edit command, set its Caption property to
&Help, and press Enter.

¢ Select the item below Help and set its Action property to HelpContents.

* Select the item below Contents and set its Action property to HelpIndex.

* Select the item below Index, type a hyphen after its Caption property, and press
Enter to create a separator bar on the Help menu.

¢ Select the item below the separator bar and set its Action property to HelpAbout.

9 Click the X to close the Menu Designer.

10 Choose File | Save AlL

11 To return to design mode, click X in the upper right corner of your application.
Note If you lose the form, click View | Forms, select Form1, and click OK.

Adding a toolbar (Personal edition)

Since you've set up actions in an action list, you can add some of the same actions
that were used on the menus onto a toolbar.

ol 1 On the Win32 tab of the Component palette, double-click the ToolBar component
to add it to the form. A blank toolbar is added under the main menu.

2 With the toolbar selected, change the following properties in the Object Inspector:

* Set the Images property to ImageListl.

* Set the toolbar’s Indent property to 4. (This indents the icons four pixels from
the left of the toolbar.)

* Set ShowHint to true. (Tip: Double-click false to change it to true.)

4-20 Quick Start

Note

Adding support for a menu and a toolbar

3 To add buttons to the toolbar, right-click and choose New Button four times.
4 To add a separator to the toolbar, right-click and choose New Separator.

5 Right-click and choose New Button three more times.

Don’t worry if the images aren’t correct yet. The correct images will be added
when you assign actions to the buttons.

%4 Text Editor Tutorial

File Edit Help

< Thetoolbar object is added

Mew Button = under the menus by default.
-

Mew Separator
Align to Grid

,@ Bring to Front

[Send to Back
Eresert to [nhented

55 Align...

A Size..

imly Scale...

[Tab Drder...

éE Creation Order...
Flip Children
Add to Bepository...
Wiew a3 Test

|v TextDFM

To add buttons or separators,
I select the toolbar, right-click,
and choose New Button or

New Separator. Then assign
actions from the action list.

Assign actions from the action list to the first set of buttons.

Assign actions to the second set of buttons.

Select the first button and set its Action property to FileNew.
Select the second button and set its Action property to FileOpenl.
Select the third button and set its Action property to FileSave.
Select the fourth button and set its Action property to FileExitl.

¢ Select the fifth button and set its Action property to EditCutl.
¢ Select the sixth button and set its Action property to EditCopyl.
¢ Select the last button and set its Action property to EditPastel.

Choose File | Save All.

9 Press F9to compile and run the project.

Creating a text editor—a tutorial 4-21

Clearing the text area (all editions)

Note

You can also run the project by clicking the Run button on the Debug toolbar or
choosing Run | Run.

Jlii: Text Editor Tutorial [_ (O] =] When you press F9to run your

Fie Edit Help N project, the application interface

RichE dit1 is displayed. The menus, text
area, and status bar all appear
on the form.

To return to design mode, click
the X to close the form.

| 4

When you run your project, C++Builder opens the program in a window like the

one you designed on the runtime form. The menus all work although most of the

commands are grayed out. The images appear next to menu items with which you
associated an image index.

Your text editor already has lots of functionality. You can type in the text area. If
you select text in the text area, the Cut, Copy, and Paste buttons should work.

10 Click the X in the upper right corner to close the application and return to the

design-time view.

Clearing the text area (all editions)

Important

The rest of the tutorial is for all editions.

When you ran your program, the name RichEdit] appeared in the text area. You can
remove that text using the String List editor. If you don’t clear the text now, the text
should be removed when initializing the main form in the last step.

To clear the text area:

1
2

On the main form, click the RichEdit] component.

In the Object Inspector, next to the Lines property, double-click the value (TStrings)
to display the String List editor.

In the String List editor, select and delete the text (RichEdit1) and click OK.

4 Save your changes and run the program again.

The text editing area is now empty when the main form is displayed.

Writing event handlers

Up to this point, you've developed your application without writing any code. By
using the Object Inspector to set property values at design time, you've taken full
advantage of C++Builder’s RAD environment. In this section, you'll write functions

4-22 Quick Start

Important

Writing event handlers

called event handlers that respond to user input while the application is running.
You'll connect the event handlers to the items on the menus and toolbar, so that
when an item is selected your application executes the code in the handler.

For nonstandard actions, you must create event handlers. For standard actions, such
as the File | Exit and Edit | Paste commands, the events are included in the code.
However, for some of the standard actions, such as the File | Save As command, you
can write your own event handler to customize the command.

Because all the menu items and toolbar actions are consolidated in the Action
Manager or Action List editor, you can create the event handlers from there.

If you have the Personal edition of C++Builder, use the ActionList component instead
of the ActionManager component in the following steps.

Creating an event handler for the New command

To create an event handler for the New command:
1 Choose View | Units and select Unitl to display the code associated with Form1.

2 First, youneed to declare a file name that will be used in the event handler, adding
a custom property for the file name to make it globally accessible from other
methods. Open the Unitl.h file by right-clicking in the Unitl.cpp file in the Code
editor and choosing Open Source/Header File (or by clicking on the Unitl.h tab in
the Code Editor. In the header file, locate the public declarations section for the
class TForm1, and on the line after

public: // User declarations

type:
AnsiString FileName;
Your screen should look like this:

& Unitl_cpp M=l E3

A it |
#- (] Classes
Thcotion *HelpIndex: ﬂ

Thction *Helplbout:

TEditCut *EditCutl;

TEditCopy *EditCopyl:

TEditPaste *EditPastel;

TFileOpen *FileCpenl;

TFileSavels *FileSaveksl:

TFileExit *FileExitl;

THelpContents *HelpContentsl;
TherionMain¥enuBar *AetionMainMenuBarl;
TictionToolBar *ActionToolBarl;

void _ fastcall FileNewExecute (TObject

private: /7 User declarations This line defines FileName

public: /¢ User declarations . P
AnsiString Filelames L as a string which is globally
__fastecall TForml (TComponent® Owner): aCCGSSIb|e fl’0m Other

bi methods.

£

extern PACKAGE TForml *Forml:

I

. #endif L,j

43 3 Madified Insert \Unit.cpp Urit].h A Diagram /

Creating a text editor—a tutorial 4-23

Writing event handlers

3 Press F12to go back to the main form.

Tip F12is a toggle that takes you back and forth from the form to the associated code.
You can also choose View | Forms and choose Form1.

Double-click the ActionManager or ActionList component to open it.
Double-click the FileNew action.
Tip You can also double-click the FileNew action in the Object TreeView.

The Code editor opens with the cursor inside the event handler.

%2 Editing Form1->Actio.. 1 . FliI’SlE, gou: le-
- T Text Editor Tutrial click the Action
- * * :
e ey Fie Edl Heh List or Action
Categories: Aclions: I 13 I‘. I 1y i
o Cateaoy) [Fietem Ll e {Vl adnag|er ?E]e‘:t
Edi o S — 0 display the
r =] < N
= e related editor.
180l Actions) |l FileS aveds
B Fisesin
E Unitl.cpp - [O]x]
—————————F| Unitl.cpp I == -
(3] Classes =

void _ fastcall TForml::FileNewExecute(TChject *SJende
{

I
¥
7

[21: 1 |Modiied Insert Unit1..cpp 7
Then, double-click the action to create an empty

event handler where you can specify what will
happen when users execute the command.

6 Right where the cursor is positioned in the Code editor (between { and }), type the
following lines:

RichEditl->Clear();
FileName = "untitled.txt";
StatusBarl->Panels->Items[0]->Text = FileName;

4-24 Quick Start

Note

Writing event handlers

Your event handler should look like this when you're done:

B Unitl _cpp _[O] =]
] .
(&) Classes Uni.cop | - o
))) =l—This line clears the text
\{rul\i _ fastcall TForml::FileNewExecute (TObjeg EL) area When you Create a
RichEditl->Clear (] : new file.
FileMName = "untitled.txt"; o
StatusBarl->Panels->Items[0] ->Text = Filelame: Thls Ime ca”S the new

: file “Untitled.txt”.

| This line puts the file
name into the status
bar.

| 3 =
| 2447 Modfied [lnsen {Unit.cpp ALlritt.h {Diagram / 7
7 Choose File | Save All.

You can resize the code portion of the window to reduce horizontal scrolling.

Creating an event handler for the Open command

To open a file in the text editor, you want a standard Windows Open dialog box to
appear. You've already added a standard File | Open command to the Action
Manager or Action List editor, which automatically includes the dialog box.
However, you still need to customize the event handler for the command.

1 Press F12 to locate the main form and double-click the ActionManager or ActionList
component to bring it to the front.

2 Select the FileOpenl action.

3 In the Object Inspector, click the plus sign to the left of Dialog to expand its
properties. Dialog is a referenced component that creates the Open dialog box.
C++Builder names the dialog box FileOpen1->OpenDialog by default. When
OpenDialog1’s Execute method is called, it invokes the standard dialog box for
opening files.

4 Set the DefaultExt property to txt.
5 Double-click the text area next to Filter to display the Filter editor.

¢ In the first row of the Filter Name column, type Text files (*.txt).In the Filter
column, type *.txt.

¢ In the second row of the Filter Name column, type 211 files (*.*) and in the
Filter column, type *.*.

Creating a text editor—a tutorial 4-25

Writing event handlers

¢ (Click OK.
Filter Editor [%]
Filter Mame I Filter lﬂ
;ﬁ;ﬁiﬁfi]m] {E;t Use the Filter editor to define
filters for the
FileOpen1.Dialog and

FileSaveAs1.Dialog actions.

=

Ok I Lancel | Help |

6 Set Title to Open file. These words will appear at the top of the Open dialog box.

7 Click the Events tab. Double-click the space to the right of the OnAccept event so
that FileOpenlAccept appears.

The Code editor opens with the cursor inside the event handler.
8 Right where the cursor is positioned (between { and }), type the following lines:

RichEditl->Lines->LoadFromFile (FileOpenl->Dialog->FileName);
FileName = FileOpenl->Dialog->FileName;
StatusBarl->Panels->Items[0]->Text = FileName;

Tip You can use the Code Insight tools as described on page 2-6 to help you write your
code faster. For example, after you type the arrow (->)after RichEditl, the code
completion dialog box appears. Type an “1” so that Lines : TStrings; appears at
the top of the dialog box. Press Enter or double-click it to add it to your code.

Your FileOpen event handler should look like this when you're done:

AUet e 2 it | =B This line inserts the
g text from the specified

void _ fastecall TForml::FileOpenliccept(TChject *Sender/ flle
1

RichEditl->»Lines->LoadFromFile (FileOpenl->Dialog->FileName)
FileName = FileOpenl->Dialog-»>FileName; Th|s ||ne sets the
StatusBarl->Panels->Items[0] ->Text = FileName; filename 10 the one in

v T the Open dialog.

- (] Classes

This line puts the file
name into the status
| bar.

32 39 Insert \Uml1.cpp,v{Un|t1 hJ{Dlagram,‘

That’s it for the File | Open command and the Open dialog box.

4-26 Quick Start

Tip

Writing event handlers

Creating an event handler for the Save command

To create an event handler for the Save command:

1 Press F12 to display the form and double-click the ActionManager or ActionList
component.

2 Double-click the FileSave action.
The Code editor opens with the cursor inside the event handler.
You can also double-click the FileSave action in the Object TreeView.

3 Right where the cursor is positioned (between { and }), type the following lines:

if (FileName == "untitled.txt")
FileSaveAsl->Execute();

else
RichEdit1->Lines->SaveToFile (FileName) ;

This code tells the text editor to display the SaveAs dialog box if the file isn’t
named yet so the user can assign a name to it. Otherwise, it saves the file using its
current name. The SaveAs dialog box is defined in the event handler for the Save
As command. FileSaveAs1BeforeExecute is the automatically generated name for the
Save As command.

Your event handler should look like this when you're done:

& Unitl cpp (O]]
——————— Unit1 cppl - o=
7 |

void _ fastcall TForml::FileSsveExecute (TChject *Sender)

¢ If the file is untitled,
if (FileName == "untitled.txt”) display the File Save
FileJavelsl->Execute()

else As dialog.

RichEditl-rLines-»JaveToFile (FileName) ; - :
, Otherwise, save to
the named file.

Classes

o

I [
| 81 Modfied |nsent |4 Uitd.epp ALt A Diagram / 4

That’s it for the File | Save command.

Creating an event handler for the Save As command

When SaveDialog’s Execute method is called, it invokes the standard Windows Save
As dialog box for saving files. To create an event handler for the Save As command:

1 Press F12 to display the form and double-click the ActionManager or ActionList
component.

2 Select the FileSaveAs] action.

Creating a text editor—a tutorial 4-27

Writing event handlers

3 In the Object Inspector, click the Properties tab. Click the plus sign to the left of
Dialog to expand its properties. Dialog references the Save As dialog box
component and displays the Save As dialog box’s properties.

4 Set DefaultExt to txt.

5 Double-click the text area next to Filter to display the Filter editor. In the Filter
editor, specify filters for file types as in the Open dialog box.

¢ In the first row of the Filter Name column, type Text files (*.txt).In the Filter
column, type *.txt.

¢ In the second row of the Filter Name column, type 211 files (*.*) and in the
Filter column, type *.*.

¢ Click OK.

Set Title to Save as.

Click the Events tab. Double-click the text area next to BeforeExecute so that the
Code editor opens with the cursor inside the FileSaveAslBeforeExecute event
handler.

8 Right where the cursor is positioned in the Code editor, type the following line:
FileSaveAsl->Dialog->InitialDir = ExtractFilePath (Filename);

9 The Events tab should still be displayed. Double-click the text area next to the
OnAccept event so that FileSaveAslAccept appears in the Code editor.

10 Where the cursor is positioned, type the following lines:

FileName = FileSaveAsl->Dialog->FileName;
RichEdit1->Lines->SaveToFile (FileName) ;
StatusBarl->Panels->Items[0]->Text = FileName;

Your FileSaveAs event handler should look like this when you're done:

& Uniti_cpp [a=]| The default directory is
x|

T e oon | - set to the last one
Iz 2l accessed.
void _ fastcall TForml::FileSavelslEBeforeExecute (TObject *3ender) . .
: / L This sets the main

ileSavedsl->Dialog->Initialbir = ExtractFilePath(FileName) s) H

] form’s F||el_lz_ame_ to the
v name specified in the
void _ fasteall TForml::FileSavelsliccept (TObject Ender | SaveAs d|a|og

{

FileNawe = FileSaveisl->Dialog->FileName;

RichEditl->Lines->SaveToFile (FileNawe) ;

?tatussar1—>Panals—>1tams[U] —>Text = Filelame; \ [This line saves the text
v to the specified file.

This puts the file name
. o| inthe text panel of the
s 1| finset Uit cpp Uit {Dizgram/ | status bar.

11 Choose File | Save All to save your changes.

4-28 Quick Start

Creating a Help file

12 To see what the application looks like so far, press F9.

[l Text Editor Tutorial _[O] =] . P
Fie Edt Help The running application looks

= a lot like the main form in
EL LT design mode. Notice that the
nonvisual objects aren’t
there.

You can close the application
in three ways:

Click the X.
Choose File|Exit.

Click the Exit application
button on the toolbar.

untitled. txt

If you receive any error messages at the bottom of the Code editor, double-click
them to go right to the place in the code where the error occurred. Make sure
you've followed the steps as described in the tutorial.

13 To return to design mode, click X in the upper right corner of the application.

Creating a Help file

Note

It’s a good idea to create a Help file that explains how to use your application.
C++Builder provides Microsoft Help Workshop in the C:\Project Files\Borland\
CBuilder6\Help\Tools directory, which includes information on designing and
compiling a Windows Help file. In the sample text editor application, users can
choose Help | Contents or Help | Index to access a Help file with either the contents or
index displayed.

Earlier, you created HelpContents and HelpIndex actions in the Action Manager or
Action List editor to display the Contents tab or Index tab of a compiled Help file.
You need to assign constant values to the Help parameters and create event handlers
that display what you want.

To use the Help commands, you'll have to create and compile a Windows Help file.
Creating Help files is beyond the scope of this tutorial. However, you can download
a sample rtf file (TextEditor.rtf), Help file (TextEditor.hlp) and contents file
(TextEditor.cnt):

1 In Windows Explorer, from your C:\Program Files\ Borland \ CBuilder6\Help
directory, open B6X1.zip

2 Extract and save the .hlp and .cnt files to your Text Editor directory; by default,
C:\Program Files\Borland \CBuilder6\Projects\ TextEditor.

You can also use any .hlp or .cnt file (such as one of the C++Builder Help files and
its associated .cnt file) in your project. You will have to copy them to your project
directory and rename them as TextEditor.hlp and TextEditor.cnt for the
application to find them.

Creating a text editor—a tutorial 4-29

Creating a Help file

Creating an event handler for the Help Contents command

To create an event handler for the Help Contents command:
1 Double-click the ActionManager or ActionList component.
2 Double-click the HelpContents1 action.
The Code editor opens with the cursor inside the event handler.

3 Right after where the cursor is positioned, type the following lines:

const static int HELP_TAB = 15;
const static int CONTENTS_ACTIVE = -3;

Application->HelpCommand (HELP_TAB, CONTENTS_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting
HELP_TAB to 15 displays the Help dialog and setting CONTENTS_ACTIVE to -3
displays the Contents tab.

Your event handler should look like this when you're done:

B Unitl.cpp JS[=] E3
i |y :pp}
+ (&) TenEditor - Classes

void _ fastcall TFormil::HelpContentsiExecute [TObject *Sender) These lines define the
{

const static int HELP_TAB - 15: I command and data
const static int COMTENTS ACTIVE = -3; parameters of the
Application->HelpCommand (HELP_TAE, CONTENTS_ACTIVE):
; HelpCommand method
iy of TApplication.

J This says to display the

Help dialog with the
contents tab displayed.
¢
B8 1 Modfied Insert \Uritt opp {Unit1.h /Diagram /
Note To get Help on the HelpCommand event, put the cursor next to HelpCommand in

the editor and press F1.
That’s it for the Help | Contents command.

Creating an event handler for the Help Index command

To create an event handler for the Help Index command:

1 The Action Manager or Action List editor should still be displayed. If it’s not,
double-click the ActionManager or ActionList component on the form.

2 Double-click the HelpIndex action.

The Code editor opens with the cursor inside the event handler.

4-30 Quick Start

Creating an About box

3 Right after where the cursor is positioned in the text editor, type the following

lines:

const static int HELP_TAB = 15;
const static int INDEX_ACTIVE = -2;

Application->HelpCommand (HELP_TAB, INDEX_ACTIVE);

This code assigns constant values to the HelpCommand parameters. Setting

HELP_TAB to 15 again displays the Help dialog box and setting INDEX_ACTIVE
to -2 displays the Index tab.

Your event handler should look like this when you're done:

B Unitl_cpp

—————————2 Unilemp |
(i£) TewEditor - Classes

[=] 3
- -

void _ fastcall TForml::HelpIndexExecute (TObject #*Sender)
1
const static int HELP TAB = 15; —|

= |

const static int INDEX ACTIVE = -2:

Lpplication->HelpCommand (HELF_TAB,” INDEX ACTIVE) ;|
; \
I

T —

[—

| 7850 |Modfied [inset \Urit].cpp /{Unit1.h fDisgram

B

That’s it for the Help | Index command.

Creating an About box

These lines define the
command and data
parameters of the
HelpCommand method
of TApplication.

This says to display the
Help dialog with the
index tab displayed.

Many applications include an About box which displays information on the product

such as the name, version, logos, and may include other legal information including
copyright information.

You've already set up a Help About command in the Action Manager or Action List

editor.

To add an About box:
1 Choose File | New | Other to display the New Items dialog box.

Creating a text editor—a tutorial 4-31

Creating an About box

2 Click the Forms tab and double-click the About Box icon.

¥ New ltems

Projects] Data Modules] Business
Mew I Activex,] I ultitier] Projectl Farrms I Dialogs 1

. The New Items dialog box is also called the
Obiect Repository.

Duallist box Quick Report OuickReport OuickReport When you’re creating an item based on
Master/Detail Labels List . f
) one from the Object Repository, you can
copy, inherit, or use the item.

Tabbed pages

Copy (the default) creates a copy of the
item in your project. Inherit means changes
to the object in the repository are inherited
by the one in your project. Use means
changes to the object in your project are
[0k] coes | o | inherited by the object in the repository.

& Copy Inheit Use

A predesigned form for an About box appears.

3 Select the form itself (click the grid portion) and in the Object Inspector, click the
Properties tab and change its Caption property to About Text Editor.

4 Click back on the form (notice it is now called About Text Editor). To change each
value on the form, click on it so it is highlighted and type the new value.

¢ Change Product Name to Text Editor.
¢ Change Version to Version 1.0.
¢ Change Copyright to Copyright 2002.

1 About Text Editor =] E3

The Object Repository
contains a standard About
box that you can modify as
you like to describe your
application.

.| Copyright 2002

o | Commerts

5 Save the About box form by choosing File | Save As and saving it as About.cpp.

In the C++Builder Code editor, you should have several files displayed: Unitl.cpp,
Unitl.h, About.cpp, and ActnRes (if you have the Enterprise or Professional
edition and are using the Action Manager editor). You don’t need the ActnRes unit
but you can leave it there.

6 Click the Unitl.cpp tab and scroll to the top of the Code editor. Add an include
statement for the About unit to Unitl. Choose File | Include Unit Hdr and then

4-32 Quick Start

Completing your application

select About and click OK. Notice that #include About.h has been added to the top
of the .cpp file.

Click on the tab to display a file associated with a unit. If you open other
files while working on a project, additional tabs appear on the editor.

H[=1 E3
-

E Unit1.cpp
N/
Unit1.cpp |Unﬂlh| Aboutcppl

I
#include <vel.h>
fipragmwa hdrstop

#include "Unitl.h"
#include "ibout.h"
74
#pragma package (smart _Nnit)
firragma resource "¥.dfm
TForml *Forml;

74

_ fastcall TForml::TForml(TComponent® Owner) =
. o . ;l_l

2 8 |Modified |IFsert i

When you create a new form for your application, you need to add it to the
main form. Choose Filellnclude Unit Hdr and select the header to add.

Press F12 to return to design mode. Double-click the ActionManager or ActionList
component to open it.

Double-click the Help | About action to create an event handler. Right where the
cursor is positioned in the Code editor, type the following line:

AboutBox->ShowModal () ;

This code opens the About box when the user clicks Help | About. ShowModal
opens the form in a modal state, a runtime state when the user can’t do anything
until the form is closed.

9 Choose File | Save All.

Completing your application

The application is almost complete. However, you still have to specify some items on
the main form. To complete the application:

1 Press F12to locate the main form.

2 Select the form. The focus should be on the form itself, not any of its components.
If it isn’t, in the Object Inspector, select Forml: TForml from the drop-down list box

at the top.

Creating a text editor—a tutorial 4-33

Completing your application

3 C(Click the Events tab, and double-click the area next to OnCreate.

Check here to make sure focus is on the
main form. If it's not, select Form1 from the
Puopeies Event | drop-down list.

OnCanResize |
OnClick
OnCloze
OnClaselueny ‘

Farm1 TFarm1 =

OnConstrained|

e | Double-click here to create an event handler
OnDbICick J for the form’s OnCreate event.

OnDeactivate
OnDestrop
OnCockDrop
OnlrockOwer
OnDragDrop
OnCagOver
OnEndDock
OnGetSitelnfa
OnHelp

E|
&8 shown v

4 Right where the cursor is positioned in the Code editor, type the following lines:

Application->HelpFile = ExtractFilePath(Application->ExeName) + "TextEditor.hlp";
FileName = "untitled.txt";

StatusBarl->Panels->Items[0]->Text = FileName;

RichEdit1->Clear();

This code initializes the application by associating a Help file, setting the value of
FileName to untitled.txt, putting the file name into the status bar, and clearing out
the text editing area.

& Unit1_cpp 1 [=] B
2 Ui o
————————= pp = - = -
[#-[#8] TexEditor - Classes |
|
void _ fastcall TFormwl::FormCreate|(TChiect *Hender)
{
Application->HelpFile = ExtractFilePath(Application->ExeName) + "TextEditor.hlp':
FileMName = "untitled.txt";
StatusBarl->Panels->Itewms[0] ->Text = FileName;
RichEditl-»>Clear () :
H
L
KT I— _'l—I
[a1 | Insent Unit]. 5pp it {Diagiam /- A

5 Choose File|SaveAll to save your changes.
6 Press F9to run the application.

Congratulations! You're done.

4-34 Quick Start

Creating a CLX database
application—a tutorial

This tutorial guides you through the creation of a cross-platform application that lets
you view and update a sample employee database. Cross-platform applications use
CLX, the Borland Component Library for Cross-Platform. Designed to compile and
run on different platforms, CLX applications require a minimum of changes between
Windows and Linux ports. (See Borland’s latest product offerings for cross-platform
compiler support.)

Note This tutorial is written for product editions that include the database components. It
sets up database access that requires features not available in the Personal edition. In
addition, you must have InterBase installed to successfully complete this tutorial.

Overview of database architecture

The architecture of a database application may seem complicated at first, but the use
of multiple components simplifies the development and maintenance of actual
database applications.

Database applications include three main parts: the user interface, a set of data access
components, and the database itself. In this tutorial, you will create a dbExpress
database application. Other database applications have a similar architecture.

The user interface includes data-aware controls such as a grid so that users can edit
and post data to the database. The data access components include the data source,
the client dataset, the data provider, a unidirectional dataset, and a connection
component. The data source acts as a conduit between the user interface and a client
dataset. The client dataset is the heart of the application as it contains a set of records
from the underlying database that are buffered in memory. The provider transfers
the data between the client dataset and the unidirectional dataset, which fetches data
directly from the database. Finally, the connection component establishes a

Creating a CLX database application—a tutorial 5-1

Creating a new CLX application

connection to the database. Each type of unidirectional dataset uses a different type
of connection component.

Database application

Data module

Data source | S5

¢l

Client dataset

Connection Unidirectional
component dataset

Provider

i

v

N——

For more information on database development, see “Designing database
applications” in the Developer’s Guide or online Help.

Creating a new CLX application

Before you begin the tutorial, create a folder to hold the source files. Then create and
save a new project.

1 Create a folder called Tutorial to hold the project files you'll create while working
through this tutorial.

2 Begin a new CLX project. Choose File | New | CLX Application to create a new
cross-platform project.

3 Choose File | Save All to save your files to disk. When the Save dialog appears,
navigate to your Tutorial folder and save each file using its default name.

Later on, you can save your work at any time by choosing File | Save All If you
decide not to complete the tutorial in one sitting, you can open the saved version
by choosing File | Reopen and selecting the tutorial from the list.

Setting up data access components

Data access components represent both data (datasets) and the components that
connect these datasets to other parts of your application. Each of these data access
components points to the next lower component. For example, the data source points

5-2 Quick Start

Tip

DE3

Tip

Setting up data access components

to the client dataset, the client dataset points to the provider, and so forth. Therefore,
when you set up your data access components, you add the components in the
proper order.

In the following sections, you’'ll add the database components to create the database
connection, unidirectional dataset, provider, client dataset, and data source.
Afterwards, you'll create the user interface for the application. These components are
located on the dbExpress, Data Access, and Data Controls pages of the Component
palette.

It is a good idea to isolate your user interface on its own form and place the data
access components in a data module. However, to make things simpler for this
tutorial, you'll place the user interface and all the components on the same form.

Setting up the database connection

The dbExpress page contains a set of components that provide fast access to SQL
database servers.

You need to add a connection component so that you can connect to a database. The
type of connection component you use depends on what type of dataset component
you use. In this tutorial you will use the TSQLConnection and TSQLDataSet
components.

To add a dbExpress connection component:

1 Click the dbExpress page on the Component palette and double-click the
TSQLConnection component to place it on the form. To find the TSQLConnection
component, point at an icon on the palette for a moment; a Help hint shows the
name of the component. The component is called SQLConnection1 by default.

The TSQLConnection component is nonvisual, so it doesn’t matter where you put
it. However, for this tutorial, line up all the nonvisual components at the top of the
form.

To display the captions for the components you place on a form, choose Tools |
Environment Options and click Show component captions.

2 In the Object Inspector, set its ConnectionName property to IBLocal (it’s on the
drop-down list).

3 Set the LoginPrompt property to false. (By setting this property to false, you won't
be prompted to log on every time you access the database.)

Creating a CLX database application—a tutorial 5-3

Setting up data access components

Tip

4 Double-click the TSQLConnection component to display the Connection Editor.

Express Connections: C:A\Program Files\Common Files\Borland ...

+] =] 2] v|a]

Driver Mame Connection Settings
[0 = [key Value H
LConnection Name BlobSize -1
D B2Connection CommitH etain False
M3 Connaction Database wared atatemplovee. gdb
Oracle Diriver ame Interbase

ErorResourceFile

LocaleCode 0000

Pazzword masterkey

FoleMame FoleMame

ServerCharSet

SOLDialect 1

Interbase Translsolatio ReadCommited -

Ok | Cancel | Help |

You use the Connection Editor to select a connection configuration for the
TSQLConnection component or edit the connections stored in the
dbxconnections.ini file. Any changes you make in the dialog are written to that file
when you click OK. In addition, when you click OK, the selected connection is
assigned as the value of the SQL Connection component’s ConnectionName
property.

5 In the Connection Editor, specify the pathname of the database file called

employee.gdb on your system. In this tutorial you will connect to a sample
InterBase database, employee.gdb, that is provided with C++Builder. By default,

the InterBase installation places employee.gdb in C:\Program Files\Common
Files\Borland Shared\Data.

6 Check the User_Name and Password fields for acceptable values. If you have not

altered the default values, you do not need to change the fields. If database access

is administered by someone else, you may need to get a username and password
to access the database.

7 When you are done checking and editing the fields, click OK to close the

Connection Editor and save your changes.

These changes are written to the dbxconnections.ini file and the selected
connection is assigned as the value of the SQL Connection component’s
ConnectionName property

If you need additional help while using the Connection Editor, click the Help
button.

Choose File | Save All to save your project.

5-4 Quick Start

I8

Tip

Setting up data access components

Setting up the unidirectional dataset

A basic database application uses a dataset to access information from the database.
In dbExpress applications, you use a unidirectional dataset. A unidirectional dataset
reads data from the database but doesn’t update data.

To add the unidirectional dataset:
1 From the dbExpress tab, drop TSQLDataSet at the top of the form.

2 In the Object Inspector, set its SQLConnection property to SQLConnectionl (the
database connection created previously).

3 Set the CommandText property to “select * from SALES” to specify the command
that the dataset executes. You can either type the Select statement in the Object
Inspector or click the ellipsis to the right of CommandText to display the
CommandText Editor where you can build your own query statement.

If you need additional help while using the CommandText Editor, click the Help
button.

4 Set Active to true to open the dataset.

5 Choose FilelSave All to save the project.

Setting up the provider, client dataset, and data source

The Data Access page contains components that can be used with any data access
mechanism, not just dbExpress.

Provider components are the way that client datasets obtain their data from other
datasets. The provider receives data requests from a client dataset, fetches data,
packages it, and returns the data to the client dataset. If using dbExpress, the
provider receives updates from a client dataset and applies them to the database
server.

To add the provider:

1 From the Data Access page, drop a TDataSetProvider component at the top of the
form.

2 In the Object Inspector, set the provider’s DataSet property to SQLDataSet1.

The client dataset buffers its data in memory. It also caches updates to be sent to the
database. You can use client datasets to supply the data for data-aware controls on
the user interface using the data source component.

To add the client dataset:

1 From the Data Access page, drop a TClientDataSet component to the right of the
TDataSetProvider component.

2 Set the ProviderName property to DataSetProviderl.
3 Set the Active property to true to allow data to be passed to your application.

Creating a CLX database application—a tutorial 5-5

Designing the user interface

A data source connects the client dataset with data-aware controls. Each data-aware
control must be associated with a data source component to have data to display and
manipulate. Similarly, all datasets must be associated with a data source component
for their data to be displayed and manipulated in data-aware controls on a form.

To add the data source:

=}4| 1 From the Data Access page, drop a TDataSource component to the right of the
1 TClientDataSet component.

2 Set the data source’s DataSet property to ClientDataSetl.
3 Choose File | Save All to save the project.

So far, you have added the nonvisual database infrastructure to your application.
Next, you need to design the user interface.

Designing the user interface

Now you need to add visual controls to the application so your users can view the
data, edit it, and save it. The Data Controls page provides a set of data-aware controls
that work with data in a database and build a user interface. You'll display the
database in a grid and add a few commands and a navigation bar.

Creating the grid and navigation bar

To create the interface for the application:

1 You can start by adding a grid to the form. From the Data Controls page, drop a
% TDBGrid component onto the form.

2 Set DBGrid’s properties to anchor the grid. Click the + next to Anchors in the Object
Inspector to display akLeft, akTop, akRight, and akBottom; set them all to true. The
easiest way to do this is to double-click false next to each property in the Object
Inspector.

3 Align the grid with the bottom of the form by setting the Align property to
alBottom. You can also enlarge the size of the grid by dragging it or setting its
Height property to 400.

4 Set the grid’s DataSource property to DataSourcel. When you do this, the grid is
populated with data from the employee database. If the grid doesn’t display data,
make sure you’ve correctly set the properties of all the objects on the form, as
explained in previous instructions.

5-6 Quick Start

Designing the user interface

So far your application should look like this:

PO_NUMBER[CUST_NO [54LES REP|ORDER_STATUS|ORDER_DATE ;l
[¥[vatEnzio 1004 11 shipped 341991
| |vaze0a40 1004 11 shipped 10/15/1392
| |vaeraoos mz 11 shipped 10/15/1392
| |vazino03 1m0 §1 shipped 7/26/1992
| |vasz0830 1001 127 open 124121993
| |vasz4z00 1001 72 shipped 8/9/1993
V324320 1001 127 shipped 8/16/1993
I |vaa3s005 1002 11 shipped 2/3/1993 '
| |va33300s 1002 11 shipped 4271993
| |vaszs100 1002 11 waiting 12/27/1993
WEESHES 1003 127 shipped 9/9/1993
| |vas4s200 1003 11 shipped 1141141993
| |va34e200 1003 11 waiting 12/711993
| |vase1o0z 104 134 shipped 5/20/1993 = ‘
4 | [3

The DBGrid control displays data at design time while you are working in the IDE.
This allows you to verify that you’ve connected to the database correctly. You
cannot, however, edit the data at design time; to edit the data in the table, you'll
have to run the application.

From the Data Controls page, drop a TDBNavigator control onto the form. A
database navigator is a tool for moving through the data in a dataset (using next
and previous arrows, for example) and performing operations on the data.

Set the navigator bar’s DataSource property to DataSourcel so the navigator is
looking at the data in the client dataset.

Set the navigator bar’s ShowHint property to true. (Setting ShowHint to true allows
Help hints to appear when the cursor is positioned over each of the items on the
navigator bar at runtime.)

Choose File | Save All to save the project.

Creating a CLX database application—a tutorial 5-7

Designing the user interface

g

Tip

9 Press F9to compile and run the project. You can also run the project by clicking the
Run button on the Debug toolbar, or by choosing Run from the Run menu.

i o 3 1 3 I S S B r
PO_NUMBER[CUST MO [54LES REP|ORDER_STATUS|ORDER_DATE il

Qvatenzio 1004 11 shipped 3/4/1991

| |vaze0a40 1004 11 shipped 10/15/1392

| |vaeraoos mz 11 shipped 10/15/1392

| |vazino03 1m0 §1 shipped 7/26/1992

| |vasz0830 1001 127 open 124121993

| |vasz4z00 1001 72 shipped 8/9/1993

| |vasz4z20 1001 127 shipped 8/16/1993

| |va33300s 1002 11 shipped 2/3/1993

| |va33300s 1002 11 shipped 4271993

| |vaszs100 1002 11 waiting 12/27/1993

WEESHES 1003 127 shipped 9/9/1993

| |vas4s200 1003 11 shipped 1141141993

| |va34e200 1003 11 waiting 12/711993

| |vase1o02 104 134 shipped 9/20/1933 |

When you run your project, the program opens in a window like the one you
designed on the form. You can test the navigation bar with the employee database.
For example, you can move from record to record using the arrow commands, add
records using the + command, and delete records using the = command.

If you should encounter an error while testing an early version of your
application, choose Run | Program Reset to return to the design-time view.

Adding support for a menu

Though your program already has a great deal of functionality, it still lacks many
features usually found in GUI applications. For example, most applications
implement menus and buttons to make them easy to use.

In this section, you’'ll add an action list. While you can create menus, toolbars, and
buttons without using action lists, action lists simplify development and
maintenance by centralizing responses to user commands. (Note that for Windows-
only development, you can also use Action Bands to simplify development of
toolbars and menus.)

1 If the application is still running, click the X in the upper right corner to close the
application and return to the design-time view of the form.

2 From the Common Controls page of the Component palette, drop an ImageList
component onto the form. Line this up next to the other nonvisual components.
The ImageList will contain icons that represent standard actions like cut and paste.

3 From the Standard page of the Component palette, drop an ActionList component
onto the form. Set the action list’s Images property to ImageListl.

5-8 Quick Start

Designing the user interface

4 Double-click the action list to display the Action List editor.

c,:' Standard Actions

£ Editing Form1->ActionList1 [HI[=] B3

Dot b Right-click in the

o editor and choose — T
Esllons} New Standard .
Action to display the Cape!
Standard Actions list Hel
box _ |

Select the actions
you want and click
OK. Press Ctrlto
select multiple
actions.

Right-click the Action List editor and choose New Standard Action. The Standard
Actions list box appears.

Select the following actions: TEditCopy, TEditCut, and TEditPaste. (Use the Ctrl key
to select multiple items.) Then click OK.

£ Editing Form1->ActionList1 [HI[=] B3

d - r ¥

Categorjes: Actions:)

T— o] You've added standard
E ditCopyT <« 1 actions that come with the
EdiPastel product.

You'll use these on a menu.

Right-click on the Action List editor and choose New Action to add another action
(not provided by default). Actionl is added by default. In the Object Inspector, set
its Caption property to Update Now!

This same action will be used on a menu and a button. Later on, we'll add an event
handler so it will update the database.

Click (No Category), right-click and choose New Action to add another action.
Action? is added. Set its Caption property to Esxit.

Click the X (in the upper right corner) to close the Action List editor.

You've added three standard actions plus two other actions that we’ll connect to
event handlers later.

10 Choose File | Save All to save the project.

Adding a menu

In this section, you'll add a main menu bar with two drop-down menus—File and
Edit—and you’ll add menu items to each one using the actions in the action list.

1 From the Standard page of the Component palette, drop a TMainMenu component
onto the form. Drag it next to the other nonvisual components.

Creating a CLX database application—a tutorial 5-9

Designing the user interface

2 Set the main menu’s Images property to ImageListl to associate the image list with
the menu items.

3 Double-click the menu component to display the Menu Designer.

rm1->MainMenul

4 Type &File to set the Caption property of the first top-level menu item and press

Enter.

Object Inspector
File1

Froperties l Events]

When you type
&File and press
Enter, the top-level

Action = File command

AutoHotkeys | maParent appears ready for

- you to add the first
aption B

Checked false menu item.

Enabled true The ampersand

5r0|uElndte*t g before a character

e activates an
elpkepword lerator k

HelpType hifapword accelerator key.

Hint

Imagelndex |-1 |

=] E3

orm1->MainMenul

All shown

5 Select the blank menu item below the File menu. Set the blank menu item’s Action
property to Action2. An Exit menu item appears under the File menu.

6 Click the second top-level menu item (to the right of File). Set its Caption property
to &Edit and press Enter. Select the blank menu item that appears under the Edit
menu.

7 In the Object Inspector, set the Action property to EditCutl and press Enter. The
item’s caption is automatically set to Cut and a default cut bitmap appears on the
menu.

8 Select the next blank menu item (under Cut) and set its Action property to EditCopyl
(a default copy bitmap appears on the menu).

9 Select the next blank menu item (under Copy) and set its Action property to
EditPastel (a default paste bitmap appears on the menu).

10 Select the next blank menu item (under Paste) and set its Caption property to a
hyphen (-) to create a divider line in the menu. Press Enter.

11 Select the next blank menu item (under the divider line) and set its Action property
to Actionl. The menu item displays Update Now!

12 Click the X to close the Menu Designer.

5-10 Quick Start

Displaying a title and an image

13 Choose File | Save All to save the project.

14 Press F9 or Run on the toolbar to run your program and see how it looks.

Ed

I Form1 =l

File Edi

Lol el=fa] | e] -
PO_NUMBER[CUST MO [54LES REP|ORDER_STATUS|ORDER_DATE il

Qvateozio 1004 11 shipped 341991

| |vaze0a40 1004 11 shipped 10/15/1392

| |vaeraoos mz 11 shipped 10/15/1392

| |vazino03 1m0 §1 shipped 7/26/1992

| |vasz0830 1001 127 open 124121993

| |vasz4z00 1001 72 shipped 8/9/1993

| |vasz4z20 1001 127 shipped 8/16/1993

| |va33300s 1002 11 shipped 2/3/1993

| |va33300s 1002 11 shipped 4271993 Fooe

| |vaszs100 1002 11 waiting 12/27/1993

WEESHES 1003 127 shipped 9/9/1993

| |vas4s200 1003 11 shipped 1141141993
V346200 1003 11 waiting 12/711993

[500007 1014 134 chirmad 00201997 j

Many of the commands on the edit menu and the navigation bar are operational at
this time. Copy and Cut are grayed on the Edit menu until you select some text in the
database. You can use the navigation bar to move from record to record in the
database, insert a record, or delete a record. The Update command does not work yet.

Close the application when you're ready to continue.

Adding a button

This section describes how to add an Update Now button to the application. This
button is used to apply any edits that a user makes to the database, such as editing
records, adding new records, or deleting records.

To add a button:

1 From the Standard page of the Component palette, drop a TButton onto the form.
(Select the component then click the form next to the navigation bar.)

2 Set the button’s Action property to Actionl.

The button’s caption changes to Update Now! When you run the application, it
will be grayed out until an event handler is added to make it work.

Displaying a title and an image

You can add a company title and an image to make your application look more
professional:

1 From the Standard page of the component palette, drop a TLabel component onto
A the form (named Label1 by default).

Creating a CLX database application—a tutorial 5-11

Displaying a title and an image

2 In the Object Inspector, change the label’s Caption property to World Corp or
another company name.

3 Change the company name’s font by clicking the Font property. Click the ellipsis
that appears on the right and in the Font dialog box, change the font to Helvetica
Bold, 16-point type. Click OK.

Font
Farmn1 T Font: Font style: Size:
Em—— l = [Hebvatica [Bald []
(J Hasttenschweilsr ~| [Regular B -
Caption “whorld Corp = i Italic 3 j ﬂ
Clenticia 352 You can change the Grovoeas | I
H elvelica-tlact ol alc
Clientwidth | 543 J font of the label USImQ & HelveticaMarow 12
Colar clBackground the Font property In 8 'ﬂﬂi?fat Console = 1 =
EConstraints | [T SizeConstraint: the Ob]eCT |nSpeCt0r.
Cursor il efault Click the ellibsis t Effects Sample
DragMode dmkdanual _IC ontne ellipsis to [Ghikeout
Enabled e display a standard " Undering AaBbYyZz
= Fant [TFant] fontdialog. ————> | quor
All shown B lack - Scripk:

wiestern B

This iz a PostSeript font. This zame font will be used on bath pour
printer and pour screen.

Position the label in the upper right corner.

5 From the Additional Component palette page, drop a TImage component next to
nc] the label (named Imagel by default).

6 To add an image to the Imagel component, click the Picture property. Click the
ellipsis to display the Picture editor.

7 In the Picture editor, choose Load and navigate to earth.ico. On C++Builder, its
path is Program Files\Common Files\Borland Shared \images\icons\earth.ico.

Double-click earth.ico. Click OK to load the picture and to close the Picture editor.

Size the default image area to the size of the picture. Place the image next to the

label.
File Edit | You can drag the edge to
- - -) Sl set the width of Image, or
§ o5 g its Wi
k) B & A World Corp | you can setits Width
5QLCommestion] : SOLDalaSet]: DataSetPravider! CieniDataSet! DataSource! : ImageList!; ActionLi property in the Object
Mlqlblulq-l-l‘l./lxlel UpdaleNuw!l a |nSpeCt0r
PO_NUMBER[CUST_NO_[SALES_REP|ORDER_STATUS[ORDER_DATE [SHIP_DATE |£|
[¥[varEnzI 1004 11 shipped 3/441991 3/5/1991
| |va2enzan 1004 11 shipped 104151992 104161992
| |wvazranns 1mz 11 shipped 104151992 1/16/1993
| |va21002 1mo 61 shipped 7/26/1952 8441992
| |va3z08a0 100 127 open 124121993 —
| |wva324200 100 72 shipped 8/3/1993 8/3/1993
| |vazza320 1001 127 shipped /161933 /161933
| |vaz33005 1002 11 shipped 2/31993 33993
| |vaz33008 1002 11 shipped 4271983 5/2/1993
| |vazzsi00 1002 11 waing 124271993 17141994
WEEESES 1003 127 shipped 9/5/1993 97201933 |

10 To align the text and the image, select both objects on the form, right-click, and
choose Align. In the Alignment dialog box, under Vertical, click Bottoms.

11 Choose File | Save All to save the project.
12 Press F9to compile and run your application.

Close the application when you're ready to continue.

5-12 Quick Start

Writing an event handler

Writing an event handler

Note

Most components on the Component palette have events, and most components
have a default event. A common default event is OnClick, which gets called whenever
a component, such as TButton, is clicked. If you select a component on a form and
click the Object Inspector’s Events tab, you'll see a list of the component’s events.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

Writing the Update Now! command event handler

First, you'll write the event handler for the Update Now! command and button:
1 Double-click the ActionList component to display the Action List editor.
2 Select (No Category) to see Actionl and Action2.

3 Double-click Actionl. In the Code editor, the following skeleton event handler
appears:

void __fastcall TForml::ActionlExecute(TObject *Sender)
{
}
Right where the cursor is positioned (between the braces), type:
if (ClientDataSet1->State == dsEdit || ClientDataSetl->State == dsInsert)
ClientDataSetl1->Post();
ClientDataSetl->ApplyUpdates(-1);

This event handler first checks to see what state the database is in. When you move
off a changed record, it is automatically posted. But if you don’t move off a changed
record, the database remains in edit or insert mode. The if statement posts any data
that may have been changed but was not passed to the client dataset. The next
statement applies updates held in the client dataset to the database.

Changes to the data are not automatically posted to the database when using
dbExpress. You need to call the ApplyUpdates method to write all updated, inserted,
and deleted records from the client dataset to the database.

Writing the Exit command event handler

Next, we’ll write the event handler for the Exit command:

1 Double-click the ActionList component to display the Action List editor if it is not
already displayed.

2 Click (No Category) so you see Action2.

Creating a CLX database application—a tutorial 5-13

Writing an event handler
3 Double-click Action2. The Code editor displays the following skeleton event
handler:

void __fastcall TForml::Action2Execute(TObject *Sender)

{
}

Right where the cursor is positioned (between the braces), type:
Close();

This event handler will close the application when the File | Exit command on the
menu is used.

4 Close the Action List editor.
5 Choose File|Save All to save the project.

Writing the FormClose event handler

Finally, you'll write another event handler that is invoked when the application is
closed. The application can be closed either by using File | Exit or by clicking the X in
the upper right corner. Either way, the program checks to make sure that there are no
pending updates to the database and displays a message window asking the user
what to do if changes are pending.

You could place this code in the Exit event handler but any pending database
changes would be lost if users chose to exit your application using the X.

1 Click the main form to select it (rather than any specific object on it).
2 Select the Events tab in the Object Inspector to see the form events.

3 Double-click OnClose (or type FormClose next to the OnClose event and click on it).
A skeleton FormClose event handler is written and displayed in the code editor
after the other event handlers:

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)
{

}

Right where the cursor is positioned (between the braces), type:
TMessageButton Option;
TMessageButtons msgButtons;

msgButtons << smbYes << smbNo << smbCancel;

Action = caFree;

if (ClientDataSet1->State == dsEdit || ClientDataSetl->State == dsInsert)
ClientDataSetl->Post();

if (ClientDataSet1->ChangeCount > 0) {

5-14 Quick Start

Tip

Writing an event handler

Option = Application->MessageBox ("You have pending updates. Do you want to write them
to the database?", "Pending Updates", msgButtons, smsWarning, smbYes, smbNo);
if (Option == smbYes)
ClientDataSet1->ApplyUpdates(-1)
else
if (Option == smbCancel)
Action = caNone;

}

This event handler checks the state of the database. If changes are pending, they
are posted to the client dataset where the change count is increased. Then before
closing the application, a message box is displayed that asks how to handle the
changes. The reply options are Yes, No, or Cancel. Replying Yes applies updates to
the database; No closes the application without changing the database; and Cancel
cancels the exit but does not cancel the changes to the database and leaves the
application still running.

Check that the whole procedure looks like this:

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)
{

TMessageButton Option;

TMessageButtons msgButtons;

msgButtons << smbYes << smbNo << smbCancel;

Action = caFree;

if (ClientDataSetl->State == dsEdit || ClientDataSetl->State == dsInsert)
ClientDataSet1->Post();

if (ClientDataSetl->ChangeCount > 0) {

Option = Application->MessageBox("You have pending updates. Do you want to write them
to the database?", "Pending Updates", msgButtons, smsWarning, smbYes, smbNo);
if (Option == smbYes)
ClientDataSetl->ApplyUpdates(-1);
else
if (Option == smbCancel)
Action = caNone;

}

To finish up, choose File | Save All to save the project. Then press 9 to run the
application.

Fix any errors that occur by double-clicking the error message to go to the code in
question or by pressing F1 for Help on the message.

That’s it! You can try out the application to see how it works. When you want to exit
the program, you can use the fully functional File | Exit command.

Creating a CLX database application—a tutorial 5-15

5-16 Quick Start

Customizing the desktop

This chapter explains some of the ways you can customize the tools in C++Builder
IDE.

Organizing your work area

The IDE provides many tools to support development, so you'll want to reorganize
your work area for maximum convenience, including rearranging your menus and
toolbars, combining tool windows, and saving a new way your desktop looks.

Arranging menus and toolbars

In the main window, you can reorganize the menu, toolbars, and Component palette

by clicking the grabber on the left-hand side of each one and dragging it to another
location.

Main window in its
default arrangement.

% Cr+Builder 6 - Project]

Fie Edt Sewch Miew Pest Bun Componert Datsbase Tods Window Heo || [Hone> e

DE-3 ‘ = ‘ fes I @ || Standad | Addiional | 'Win32] Sustem | Data Access | Dats C dbExoress | Datadnan| BDE | ADD | InterBass | WebServices | IntemetE xoress | Intemet | ‘WebSnan | Fasthlet | Decision 1 ®
RGO -0 T

I BF R ARNEwr ¢ 55 &[] H ‘
You can move toolbars and menus within the main window. Click the
grabber (the double bar on the left) and drag it to where you want it. Main window
organized differently

T Cr+Builder 6 - Project!

O AN S wr ¢ B@aw D |
o B Gereh o Bees Epn B Podos Get S ﬂe\p“ EIES ﬂ&l

D W @2 eSS |35 0@

vl o

Customizing the desktop 6-1

Organizing your work area

You can separate parts from the main window and place them elsewhere on the
screen or remove them from the desktop altogether. This is useful if you have a dual
monitor setup.

Main window
organized
differently.

You can add or delete tools from the toolbars by choosing View | Toolbars |
Customize. Click the Commands page, select a category, select a command, and drag
it to the toolbar where you want to place it.

Customi
— On the Commands
Toolbars Commands | Elpllunsl page Select any
2 e ETW”-“' command and drag it

Separatar =
B onto any toolbar.
£ Call Stack On the Options page,
il click Show tooltips to
22 Modles make sure the hints for
& CPU components and

Tools B [t - toolbar icons appear.

To add command buttons, drag and drop commands onta a toolbar
To remave command buttons, drag them off of a Toolbar.

Cloze Help |

For more information...
See “toolbars, customizing” in the online Help index.

Docking tool windows

You can open and close individual tool windows and arrange them on the desktop as
you wish. Many windows can also be docked to one another for easy management.
Docking—which means attaching windows to each other so that they move
together—helps you use screen space efficiently while maintaining fast access to
tools.

From the View menu, you can bring up any tool window and then dock it directly to
another. For example, when you first open C++Builder in its default configuration,
the ClassExplorer is docked to the left of the Code editor. You can add the Project
Manager to the first two to create three docked windows.

6-2 Quick Start

Organizing your work area

You can combine, or
! e - “dock” windows with

s

#include <vol.h>
#pragma hdrstop

#include "Unitl.h"

either grabbers, as on
the right, or tabs.

s
#pragma package (smart_init)
#pragma resource "T.dfm"
TFormi *Formi;

b

&\7ﬁastca]:_l-r:§:::é;;l:ilorml (TComponent™ Owner)

{

¥

A

|
(4] Project] - Classes
Here the Project
L___Manager and Class
Explorer are docked
to the Code editor.
; o

11 |Modiied Insent | riet.cpp fUritt b ADisaran

4

To dock a window, click its title bar and drag it over the other window. When the
drag outline narrows into a rectangle and it snaps into a corner, release the mouse.

The two windows snap together.

& Unitl.cpp I8 =

-

Uit cpp |
S/
To get docked windows with N S
grabbers, release the e ne orses
mouse when the drag /s

outline snaps to the
window’s corner.

#pragma resource "*.dfm”

TForml FFormi:

#pragma package (smart_init)

2] Projectl.exe

Projectt E i ¢
f et New Remove Activale
’ Files Path
ya
Bl ProiectGrous C:\Program Filesh\Bofland\CBuilde1B\Projzcts

C:\Program Files“B orland\CBuilder6\Projects

465 |Modfied [lser

[\Urit epp fUrit. fDiagram

N

You can also dock tools to form tabbed windows.

Customizing the desktop 6-3

Organizing your work area

E Unitl.cpp =[ofx]|

(a1 Projest] - Classes

Uit cg | e

e =

#include <vel.h>
#pragua hdrstop

#include "Unitl.h"

Vs

To get docked windows that are
tabbed, release the mouse before
the drag outline snaps to the other
window’s corner.

#pragms package (smart_init)
#pragws rescurce ".dfne
TFormi *Formi:

LEW B Unitl cpp =l8ix]
CAP ET cpp| P

......... 7 =

Proisct!.cre - ‘ =] >
New Fem #include <vol.hs
has
Fles | Path #pragoa hdrstop
=53 ProjectGroup! C:\Program Fies'Borland Yinclude "nici.h"

(Z] Projectl.exe C:\Program Files\Borland y

#pragna package (swart_init)

#pragna resource " dfm”

TForml Forml;

S

|_fastcall TForml::TForml(TComponent® Owner)
i TForm(Owner)

i
3
s

[

i

11 Modfied [lnseit | \Unit cpp £t b {Disgram

To undock a window, double-click its grabber or tab, or click and drag the tab
outside of the docking area.

To turn off automatic docking, either press the Ctrl key while moving windows
around the screen, or choose Tools | Environment Options, click the Preferences page,
and uncheck the Auto drag docking check box.

For more information...
See “docking” in the online Help index.

Saving desktop layouts

You can customize and save your desktop layout. The Desktops toolbar in the IDE
includes a pick list of the available desktop layouts and two icons to make it easy to
customize the desktop.

i Save current
”IMB‘ deskiop jl 2 ’%| desktop
Named desktop Set debug
settings are listed here. desktop

6-4 Quick Start

Customizing the Component palette
Arrange the desktop as you want, including displaying, sizing, and docking
particular windows.

On the Desktops toolbar, click the Save current desktop icon or choose
View | Desktops | Save Desktop, and enter a name for your new layout.

Save Desktop Enter a name for the desktop layout
Save current desktop as: yOU want to save and C||Ck OK
[|
l:l Cancel
For more information...

See “desktop layout” in the online Help index.

Customizing the Component palette

In its default configuration, the Component palette displays many useful VCL or
CLX objects organized functionally onto tabbed pages. You can customize the
Component palette by:

¢ Hiding or rearranging components.

¢ Adding, removing, rearranging, or renaming pages.

¢ Creating component templates and adding them to the palette.
¢ Installing new components.

Arranging the Component palette

To add, delete, rearrange, or rename pages, or to hide or rearrange components, use
the Palette Properties dialog box. You can open this dialog box in several ways:

¢ Choose Component | Configure Palette.
* Choose Tools | Environment Options and click the Palette tab.
¢ Right-click the Component palette and choose Properties.

For more information...
Click the Help button in the Palette Properties dialog box.

Creating component templates

Component templates are groups of components that you add to a form in a single
operation. Templates allow you to configure components on one form, then save
their arrangement, default properties, and event handlers on the Component palette
to reuse on other forms.

To create a component template, simply arrange one or more components on a form
and set their properties in the Object Inspector, and select all of the components by
dragging the mouse over them. Then choose Component | Create Component

Customizing the desktop 6-5

Customizing the Component palette

Template. When the Component Template Information dialog box opens, select a
name for the template, the palette page on which you want it to appear, and an icon
to represent the template on the palette.

After placing a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

Component name:

3 ut rmplat
o . [Templates -
i o T RadioBution EEREre 2 . i

S T S Paetslcon. [o)| Change oo S
ok, Cancel | Hep |

For more information...
See “templates, component” in the online Help index.

Installing component packages

Whether you write custom components or obtain them from a vendor, the
components must be compiled into a package before you can install them on the
Component palette.

A package is a special DLL containing code that can be shared among C++Builder
applications, the IDE, or both. Runtime packages provide functionality when a user
runs an application. Design-time packages are used to install components in the IDE.
C++Builder packages have a .bpl extension.

6-6 Quick Start

Customizing the Component palette

If a third-party vendor’s components are already compiled into a package, either
follow the vendor’s instructions or choose Component | Install Packages.

Project Dptions for Project].exe

Packages]

Design packages

4l B orland ActionB ar Components
v Borland D0 DB Compaonents
w| Borland Base Cached ClientD ataset Component

These components come preinstalled
in C++Builder. When you install new

w| Borland BDE DB Components
W Borland C++Builder COM Server Components Sample Package
w| Borland C++Builder Internet Explarer 5 Companents Package =l

c:spragram filesiborlandicbuilderB\Bin\delactB0. bpl

Add Remave | Components |

Runtime packages

¥ Build with untime packages

|vcI;rtl;dbrt\,ado|lI;vcldb;vc\x;bdertl;vc\dbx;\hxpress,dsnap;cd Add

components from third-party vendors,
their package appears in this list.

Click Components to see what
components the package contains.

ro efault oK | Cancel | Help

For more information...

See “installing components” and “packages” in the online Help index.

Using frames

A frame (TFrame), like a form, is a container for components that you want to reuse.
A frame is more like a customized component than a form. Frames can be saved on
the Component palette for easy reuse and they can be nested within forms, other
frames, or other container objects. After a frame is created and saved, it continues to
function as a unit and to inherit changes from the components (including other
frames) it contains. When a frame is embedded in another frame or form, it continues
to inherit changes made to the frame from which it derives.

To open a new frame, choose File | New | Frame.

— TEX .
You can add whatever visual
Name: | or nonvisual components
you need to the frame. A new
oo unit is automatically added to
' the Code editor.
. ok

For more information...

See “frames” and “TFrame” in the Help index.

Customizing the desktop 6-7

Setting project options

Adding ActiveX controls

You can add ActiveX controls to the Component palette and use them in your
C++Builder projects. Choose Component | Import ActiveX Control to open the
Import ActiveX dialog box. From here you can register new ActiveX controls or select
an already registered control for installation in the IDE. When you install an ActiveX
control, C++Builder creates and compiles a “wrapper” unit file for it.

For more information...
Choose Component | Import ActiveX Control and click the Help button.

Setting project options

If you need to manage project directories and to specify form, application, compiler,
and linker options for your project, choose Project | Options. When you make
changes in the Project Options dialog box, your changes affect only the current
project; but you can also save your selections as the default settings for new projects.

Setting default project options

To save your selections as the default settings for all new projects, in the lower-left
corner of the Project Options dialog box, check Default. Checking Default writes the
current settings from the dialog box to the options file default.bpr, located in the
Cbuilder6\Bin directory. To restore C++Builder’s original default settings, delete or
rename the default.bpr file.

For more information...
See “Project Options dialog box” in the online Help index.

Specifying project and form templates as the default

When you choose File | New | Application, C++Builder creates a standard new
application with an empty form, unless you specify a project template as your default
project. You can save your own project as a template in the Object Repository on the
Projects page by choosing Project | Add to Repository (see “Adding templates to the
Object Repository” on page 6-9). Or you can choose from one of C++Builder’s
existing project templates from the Object Repository (see “The Object Repository”
on page 2-5).

To specify a project template as the default, choose Tools | Repository. In the Object
Repository dialog box, under Pages, select Projects. If you've saved a project as a

6-8 Quick Start

Specifying project and form templates as the default

template on the Projects page, it appears in the Objects list. Select the template name,
check New Project, and click OK.

s The Object Repository’s pages
iAol contain project templates only,
E i form templates only, or a
4|Add e 5 \/r95/38 Logo Application combination of both.
Delete Page ﬁW\nZUUU Laga Application .
B sppiication Wizsrd To set a project template as the
Cate o | def_ault, select an item in the
Objects list and check New
Edit Object Project.
Delete Object To set a form template as the
default, select an item in the
Objects list and check New Form
2 [Monfroed or l]\/lain Form.

0K | caeel | Hep |

Once you've specified a project template as the default, C++Builder opens it
automatically whenever you choose File | New | Application.

In the same way that you specify a default project, you can specify a default new form
and a default main form from a list of existing form templates in the Object Repository.
The default new form is the form created when you choose File | New | Form to add
an additional form to an open project. The default main form is the form created
when you open a new application. If you haven’t specified a default form,
C++Builder uses a blank form.

You can override your default project or form temporarily by choosing File | New |
Other and selecting a different template from the New Items dialog box.

For more information...
See “templates, adding to Object Repository,” “projects, specifying default,” and
“forms, specifying default” in the online Help index.

e

Adding templates to the Object Repository

You can add your own objects to the Object Repository as templates to reuse and share
with other developers over a network. Reusing objects lets you build families of
applications with common user interfaces and functionality that reduces
development time and improves quality.

Customizing the desktop 6-9

Setting tool preferences

For example, to add a project to the Repository as a template, first save the project
and choose Project | Add To Repository. Complete the Add to Repository dialog box.

ﬁ;:':iecm Enter a title, description,
— and author. In the Page list
IGsnch form with check box and button bOX, Choose PrOJeCtS S0 that
- P your project Wl!l appear on
[Froes =] [paC Compary the Repository’s Projects

; ; tabbed page.
= Select ahiicon to represent this project:
Browse...

oK I Cancel | Help |

The next time you open the New Items dialog box, your project template will appear
on the Projects page (or the page to which you had saved it). To make your template
the default every time you open C++Builder, see “Specifying project and form
templates as the default” on page 6-8.

For more information...
See “templates, adding to Object Repository” in the online Help index.

Setting tool preferences

You can control many aspects of the appearance and behavior of the IDE, such as the
Form Designer, Object Inspector, and Code Explorer. These settings affect not just the
current project, but projects that you open and compile later. To change global IDE
settings for all projects, choose Tools | Environment Options.

For more information...

See “Environment Options dialog box” in the online Help index, or click the Help
button on any page in the Environment Options dialog box.

Customizing the Form Designer

The Designer page of the Tools | Environment Options dialog box has settings that
affect the Form Designer. For example, you can enable or disable the “snap to grid”
feature, which aligns components with the nearest grid line; you can also display or
hide the names, or captions, of nonvisual components you place on your form.

For more information...

In the Environment Options dialog box, click the Designer page and click the Help
button.

6-10 Quick Start

Setting tool preferences

Customizing the Code Editor

One tool you may want to customize right away is the Code editor. Several pages in
the Tools | Editor Options dialog box have settings for how you edit your code. For
example, you can choose keystroke mappings, fonts, margin widths, colors, syntax
highlighting, tabs, and indentation styles.

You can also configure the Code Insight tools that you can use within the editor on
the Code Insight page of Editor Options. To learn about these tools, see “Code
Insight” on page 2-6.

For more information...

In the Editor Options dialog box, click the Help button on the General, Display, Key
Mappings, Color, and Code Insight pages.

Customizing the desktop 6-11

6-12 Quick Start

Index

A

About box, adding 4-31
Action Manager editor 4-9 to 4-12
actions, adding to an application 4-9, 4-11, 4-17
ActiveX
Component palette page 3-12
installing controls 6-8
adding
components to a form 4-18
adding components to a form 4-3
adding items to Object Repository 2-5
ADO 3-11
applications
compiling and debugging 3-7, 4-13, 4-21
creating 3-1,3-9
database 3-10
deploying 3-8
internationalizing 3-8
Web server 3-9

BDE 3-11

BDE Administrator 3-11

bitmaps, adding to an application 4-7,4-13

Borland Component Library for Cross Platform
(CLX) 3-6

.BPR files 4-2

C

C++Builder
customizing 6-1 to 6-11
programming 3-1

character sets, extended 3-8

class libraries 3-6

classes, defined 4-4

ClassExplorer 2-9

closing a form 4-3

CLX
adding components 2-4
applications, creating 3-9
defined 3-6

code
event handlers 3-5
help in writing 2-6 to 2-7
viewing and editing 2-6 to 2-9
writing 3-5

code completion 2-6

Code editor
combining with other windows 6-2

customizing 6-11

using 2-6 to 2-7
Code Explorer

using 2-9
Code Parameters 2-6
Code Templates 2-6
compiling applications 3-7
compiling programs 4-21, 5-8
Component palette

adding custom components 3-12

adding pages 6-5

customizing 6-5 to 6-7

defined 2-4

using 3-2
component templates, creating 6-5
components

adding to a form 3-2,4-3

adding to Component palette 6-5

arranging on Component palette 6-5

creating custom 3-12

customizing 3-12, 6-5

defined 4-3

installing 3-12, 6-6

setting properties 3-4, 4-2
context menus, accessing 2-3
controls, adding to a form 3-2, 4-3
cross-platform

developing applications for 3-9
customizing

Code editor 6-11

Component palette 2-3

Form Designer 6-10

IDE 6-1 to 6-11

D

Data Dictionary 3-12
data modules
adding 3-2
creating 2-5
database applications
accessing 5-3 to 5-4
database applications, creating 3-10
Database Desktop 3-11
database example 5-1 to 5-15
Database Explorer 3-11
dbExpress 3-10
debugging programs 3-7 to 3-8, 4-13
default
project and form templates 6-8
project options 6-8

Index

I1

deploying applications 3-8
design-time view, closing forms 4-3
desktop

organizing 6-1 to 6-5

saving layouts 6-4
developer support 1-6
.dfm files 2-9, 4-1
Diagram page 2-7
dialog boxes, in Object Repository 2-5
DLLs

creating 2-5

defined 3-12

deploying 3-8
docking windows 6-2 to 6-4
documentation, ordering 1-6

E

Editing StatusBar1.Panels dialog box 4-5
Editor Options dialog box 2-7, 6-11
Environment Options dialog box 6-10
error messages 4-29
event handlers 5-13 to 5-15

creating 4-22 to 4-29

defined 3-5
events 5-13 to 5-15
example program 5-1 to 5-15
executables, deploying 3-8

F

files
form 2-9,4-1
project 4-1
saving 4-2
unit 4-1
Form Designer
customizing 6-10
defined 2-4
form files
defined 4-1
viewing code 2-9
forms
adding components to 3-2, 4-3
closing 4-3
finding 2-5
main 4-2, 6-9
specifying as default 6-9
frames 6-7

G

graphics, displaying 5-11
GUIs, creating 4-2

I-2 Quick Start

H

header files 4-1

Help files, adding to an application 4-29
Help tooltips 4-4

Help, F1 1-3

IDE
customizing 6-1to 6-11
defined 1-1
organizing 6-1
tour of 2-1
images
displaying 5-11
images, adding to an application 4-7, 4-13
IMEs 3-8
information, finding 1-3
input method editors 3-8
installing custom components 6-6
integrated debugger 3-7
integrated development environment (IDE)
customizing 6-1 to 6-11
tour of 2-1
InterBase 3-11
internationalizing applications 3-8

K

keystroke mappings 6-11

L

localizing applications 3-8

M

main form, defined 6-9
MainMenu component 5-9
makefiles 4-2
menus
adding to an application 4-18
context 2-3
in C++Builder 2-3
organizing 2-3, 6-1
messages, error 4-29

N

new features 1-3

new form, defined 6-9

New Items dialog box
saving templates to 6-8, 6-10
using 2-5,4-31

newsgroups 1-6

o)

Object Inspector
defined 2-4
inline component references 3-4
using 3-4, 4-2

Object Repository
adding templates to 6-8, 6-9
defined 2-5, 3-1
using 2-5 to 2-6

Object TreeView 2-4

objects, defined 3-6

ODBC 3-11

online Help files 1-3

options, setting for projects 6-8

P

packages 6-6
Panel component 5-11
Paradox 3-11
parent-child relationships 2-4
.pas files 4-1
pictures, displaying 5-11
programming with C++Builder 3-1
programs
CLX applications 3-9
compiling and debugging 3-7, 4-13, 4-21
deploying 3-8
internationalizing 3-8
Web server applications 3-9
project files 4-2
project files, default names 4-1
project groups 2-10
Project Manager 2-9 to 2-10
Project Options dialog box 6-8
project templates 6-9
projects
adding items to 2-5
creating 3-1
managing 2-9 to 2-10
saving 4-2
setting options as default 6-8
specifying as default 6-8
types 3-9 to 3-12
properties, setting 3-4, 4-2, 4-9, 4-11, 4-16

R

Resource DLL Wizard 3-8
right-click menus 2-3

Run button 5-8

running an application 3-7, 4-13
running applications 4-21, 5-8

S

sample program 4-1 to 4-34
saving
desktop layouts 6-4
projects 4-2
setting properties 3-4, 4-2, 4-9, 4-11, 4-16
source code
help in writing 2-6 to 2-7
SQL database servers 3-10
SQL Explorer 3-11
SQL Links 3-11
SQL Server 3-11

standard actions, adding to an application 4-17

starting C++Builder 2-1
support services 1-6

T

tabbed windows, docking 6-3
technical support 1-6
templates
adding to Object Repository 6-9
specifying as default 6-8
text editor tutorial 4-1 to 4-34
to-do lists 2-10
tool windows, docking 6-2
toolbars 2-3

adding and deleting components from 6-2

adding to an application 4-13, 4-20
organizing 6-1
Tooltip Expression Evaluation 2-6
Tooltip Symbol Insight 2-6
tooltips 4-4
translation tools 3-8
tutorial 4-1 to 4-34, 5-1 to 5-15
type libraries, defined 3-13
Typographic conventions 1-6
typographic conventions 1-6

U

unit files 4-1
unit header files 4-1
user interfaces, creating 3-2,4-2,4-3

vV

versions of C++Builder 3-9

Visual Component Library (VCL)
adding components 2-4
using 3-6

Index

I3

w

Web server applications, creating 3-9
Web site, Borland 1-6

WebSnap, introduction 3-9
windows, combining 6-2

wizards, finding 2-5

Writing code 3-5

X

xfm files 2-9

I-4 Quick Start

	Quick Start
	Contents
	Ch 1: Introduction
	What is C++Builder?
	Registering C++Builder
	Finding information
	Online Help
	F1 Help

	Printed documentation
	Developer support services and Web site
	Typographic conventions

	Ch 2: A tour of the environment
	Starting C++Builder
	The IDE
	The menus and toolbars
	The Component Palette, Form Designer, and Object Inspector
	The Object TreeView
	The Object Repository
	The Code Editor
	The Diagram page
	Viewing form code

	The ClassExplorer
	The Project Manager
	To-do lists

	Ch 3: Programming with C++Builder
	Creating a project
	Adding data modules

	Building the user interface
	Placing components on a form
	Setting component properties

	Writing code
	Writing event handlers
	Using the VCL and CLX libraries

	Compiling and debugging projects
	Deploying applications
	Internationalizing applications
	Types of projects
	CLX applications
	Web server applications
	Database applications
	Custom components
	DLLs
	COM and ActiveX

	Ch 4: Creating a text editor—a tutorial
	Starting a new application
	Setting property values
	Adding components to the form
	Adding support for a menu and a toolbar
	Action Manager editor and Action List editor differences
	Adding menu and toolbar images (Enterprise and Professional)
	Adding actions to the Action Manager (Enterprise and Professional)
	Adding standard actions (Enterprise and Professional)
	Adding a menu (Enterprise and Professional)
	Adding a toolbar (Enterprise and Professional)
	Adding an image list and images (Personal edition)
	Adding actions to the action list (Personal edition)
	Adding standard actions to the action list (Personal edition)
	Adding a menu (Personal edition)
	Adding a toolbar (Personal edition)

	Clearing the text area (all editions)
	Writing event handlers
	Creating an event handler for the New command
	Creating an event handler for the Open command
	Creating an event handler for the Save command
	Creating an event handler for the Save As command

	Creating a Help file
	Creating an event handler for the Help Contents command
	Creating an event handler for the Help Index command

	Creating an About box
	Completing your application

	Ch 5: Creating a CLX database application—a tutorial
	Overview of database architecture
	Creating a new CLX application
	Setting up data access components
	Setting up the database connection
	Setting up the unidirectional dataset
	Setting up the provider, client dataset, and data source

	Designing the user interface
	Creating the grid and navigation bar
	Adding support for a menu
	Adding a menu
	Adding a button

	Displaying a title and an image
	Writing an event handler
	Writing the Update Now! command event handler
	Writing the Exit command event handler
	Writing the FormClose event handler

	Ch 6: Customizing the desktop
	Organizing your work area
	Arranging menus and toolbars
	Docking tool windows
	Saving desktop layouts

	Customizing the Component palette
	Arranging the Component palette
	Creating component templates
	Installing component packages

	Setting project options
	Setting default project options

	Specifying project and form templates as the default
	Adding templates to the Object Repository

	Setting tool preferences
	Customizing the Form Designer
	Customizing the Code Editor

	Index

