Getting Started with
Delphic and C++Builder-
2009

Rapid Application Development Using the
Delphi® and C++Builder® Integrated Development Environment

=

By the RAD Studio Team at Embarcadero Technologies, Inc.

2009 04 16

Delphi® C++Builder®
2009

© 2009 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos,
and all other Embarcadero Technologies product or service names are trademarks or regis-
tered trademarks of Embarcadero Technologies, Inc. All other trademarks are property of their
respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change Man-
ager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid SQL®.
Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located around
the world. Embarcadero is online at www.embarcadero.com.

2009 0312

Contents

Chapter 1
Introduction 1-1
What is RAD Studio? 1-1
Finding information 1-2

Chapter 2
Tour of the IDE 2-1
First Look. i 2-1
WelcomePage 2-2
Toolbars 2-4
Tools. .o 2-5
Accessibility options 2-6
Form Designer..................... 2-6
Tool Palette. 2-8
Object Inspector. 2-10
Project Manager. 2-11
File Browser. 2-12
Structure View. 2-13
The Code Editor. 2-15
Code Navigation. 2-16
Method Hopping. 2-16
Bookmarks.o 2-16
FindingClasses. 2-17
Finding Units. 2-17
Code Folding. 2-17
ChangeBars.................... 2-18
Block Comments. 2-18
Live Templates. 2-18
SyncEdit. ... 2-19
Code Insight. 2-20
Code Completion. 2-20
Help Insight. 2-20
Class Completion. 2-21
Block Completion................ 2-21
Code Parameter Hints. 2-21
CodeHints. ... 2-22
Errorinsight.............. 2-22
Code Browsing. 2-22
Refactoring..................... 2-23
Keystroke Macros. 2-23
To-Dolists........cooviiiit. 2-24
Custom Template Libraries. 2-24
History Manager. 2-24
Data Explorer. 2-26

Chapter 3
Starting your first RAD Studio

application
Using project templates from
the Object Repository
Basic customization of the main form.
Adding the components using
the Form Designer.
Adding an Action Manager.
Adding the mainmenu.
Addingastatusbar.......... .. .00
Addingatextbox.............,
Adding the main menu commands.
Defining Action properties.
Adding word wrap and font capabilities. .
Customizing the components.
Coding responses to user actions in
the Code Editor. i i
Creating an event handler for
the New command.
Creating the event handlers for
the Open command.
Creating the event handlers for
the SaveAs command.
Creating the event handlers for
the Save command.
Creating the event handler for
the Fontcommand.
Creating the event handler for
the Word Wrap command
Creating event handlers for
thestatusbar.
Compiling and running the application. . .
Debugging the application..................

Chapter 4

More advanced topics
VCLand RTL.o
Third party add-ins. L

Chapter 5
Other resources

3-10

List of figures

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.

Figure 2-9.

The Trace Into menu item in Run ~ 1-3

F1 Help for the Trace Into menu item 1-3

The RAD Studio Welcome Page 2-1

The default layout for creating a RAD Studio application 2-3

The main menu bar 2-3

The main toolbars 2-4

Shortcut keys in the File menu 2-4

Customizing the toolbars ~ 2-5

Creating a basic RAD Studio application using the Form Designer 2-6
The Tool Palette showing the Standard components category ~ 2-8

The Tool Palette in Code Editor mode, showing the standard Delphi Projects templates

Figure 2-10. Properties tab in the Object Inspector 2-10

Figure 2-11. Events tab in the Object Inspector 2-10

Figure 2-12. Customizing the Object Inspector 2-10

Figure 2-13. Hierarchical file list of the project, displayed by the Project Manager 2-11

Figure 2-14. Browsing files and folders using File Browser ~ 2-12

Figure 2-15. Setting up the file filter used in the File Browser = 2-12

Figure 2-16. Structure View in Form Designer mode ~ 2-13

Figure 2-17. Structure View in Code Editor mode 2-13

Figure 2-18. Structure View explorer options 2-14

Figure 2-19. Setting Bookmarks in the source code 2-17

Figure 2-20. Collapsed blocks of code 2-17

Figure 2-21. Expanding the list of Live Templates for Delphi 2-18

Figure 2-22. Highlighting all the occurrences of an identifier in a section of code 2-19

Figure 2-23. Code Completion popup window showing the list of available options ~ 2-20

Figure 2-24. Using Code Parameter Hints to show the required types for the parameters ~ 2-21

2-9

List of Figures

Figure 2-25. Displaying in-place Code Hints 2-22

Figure 2-26. Automatic marking of errors in the code ~ 2-22

Figure 2-27. Comparing two versions of a file using the Diff page 2-25

Figure 2-28. Exploring the list of available database connections 2-27

Figure 3-1. Description of all options in the File menu 3-2

Figure 3-2. Expanding the New option in the File menu 3-2

Figure 3-3. The default layout for creating a RAD Studio application (Delphi view) 3-3

Figure 3-4. The default layout for creating a RAD Studio application (C++Builder view) 3-3

Figure 3-5. Basic customization of the main form (Delphi view) 3-5

Figure 3-6. Basic customization of the main form (C++Builder view) 3-5

Figure 3-7. Using the action filter in the Tool Palette to select TActionManager — 3-6

Figure 3-8. Using the status filter in the Tool Palette to select TStatusBar ~ 3-7

Figure 3-9. Using the memo filter in the Tool Palette to select TMemo 3-7

Figure 3-10. Basic text editor form 3-7

Figure 3-11. The main elements of the Actions page in the Action Manager 3-8

Figure 3-12. Adding a New Standard Action 3-8

Figure 3-13. Selecting the Standard Actions that implement the basic file and text operations ~ 3-9
Figure 3-14. Arranging the actions in the File menu and finishing adding the Standard Actions ~ 3-9
Figure 3-15. The final look of the File menu 3-10

Figure 3-16. Editing the contents of the memo ~ 3-11

Figure 3-17. Panel editor showing the list of added status panels ~ 3-12

Figure 3-18. Defining the CurrentFile private variable (Delphi view) 3-13

Figure 3-19. Defining the currentFile private variable (C++Builder view) 3-14

Figure 3-20. Opening the Events tab in the Object Inspector ~ 3-14

Figure 3-21. Automatic generation of the code skeleton for the OnExecute event (Delphi view) 3-15
Figure 3-22. Automatic generation of the code skeleton for the OnExecute event (C++Builder view) 3-15
Figure 3-23. Project menu options for compiling and building the project 3-22

Figure 3-24. Dialog showing the success of compiling the application 3-22

Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.
Figure 3-30.
Figure 3-31.
Figure 3-32.
Figure 3-33.
Figure 3-34.
Figure 3-35.
Figure 3-36.
Figure 3-37.

Figure 3-38.

List of Figures
Dialog showing the success of building the application ~ 3-22
Running the application from the Run menu ~ 3-23
Debugging the FileSaveAs1Accept procedure (Delphi code) 3-24
Debugging the FileSaveAs1Accept function (C++Builder code) 3-24
Application stopping at the specified breakpoint (Delphi view) 3-25
Dragging the FileName variable to the Watch List (Delphi view) — 3-25
Dragging the fileName variable to the Watch List (C++Builder view) 3-26
Advancing to the next line of code to change the value of FileName (Delphi view) 3-26
Advancing to the next line of code to change the value of FileName (C++Builder view) 3-27
Jumping over the if statement (Delphi view) 3-27
Jumping over the if statement (C++Builder view) 3-28
Viewing the value of CurrentFile (Delphi view) 3-28
Viewing the value of CurrentFile (C++Builder view) 3-29

The Debug toolbar 3-29

Typographic conventions

Typeface Meaning

Monospace type Monospaced type represents text as it appears on screen or in
code. It also represents anything you must type.

Boldface Boldfaced words in text or code listings represent reserved
words, compiler options, menus, commands, and dialog boxes.

Italics Italicized text represents Delphi identifiers, such as variable or
type names. ltalics are also used to emphasize certain words,
such as new terms.

Keycaps Text in keycaps indicates a key on your keyboard. For example,
"Press Esc to exit a menu.”

Table 1-1. Typographic conventions

Introduction

This guide provides an overview of the CodeGear™ RAD Studio 2009 development
environment to get you started using the product right away. It also tells you where to
look for details about the tools and features available in RAD Studio.

Chapter 2, “Tour of the IDE” describes the main tools on the CodeGear™ RAD Studio
2009 desktop, or integrated development environment (IDE). Chapter 3, “Starting Your
First Visual Application” explains how to use some of these tools to create an applica-
tion. Chapter 4, “More Advanced Topics” describes the more advanced features in
RAD Studio, like VCL, RTL, or the included third party add-ins. Chapter 5, “EDN and
Partners”, displays a list of code-related articles on various products and the partners
of Embarcadero.

For various examples on using CodeGear™ RAD Studio 2009 to write programs such
as a text editor or database application, see the Demos directory of your CodeGear™
RAD Studio 2009 installation, also accessible from the Start menu folder. Other online
resources are available at the following address: www.embarcadero.com.

What is RAD Studio?

RAD Studio is an object-oriented, visual programming environment for rapid applica-
tion development (RAD). Using CodeGear™ RAD Studio 2009, you can create highly
efficient visual applications with a minimum of manual coding, using either the Delphi,

C++, or Delphi Prism programming languages. To learn about using Prism to cre-
ate .NET applications, see the Prism Primer at prismwiki.codegear.com.

CodeGear™ RAD Studio 2009 provides all the tools you need to model applications,
design user interfaces, automatically generate and edit code, and also the tools
needed to compile, debug, and deploy applications. The tools available in the IDE de-
pend on the version of RAD Studio you are using.

Introduction 1-1

Finding information

Finding information

You can find information about CodeGear™ RAD Studio 2009 in the following ways:
e Web-based product documentation

e F1 help and online help system

For information...

about new features in this release, refer to the www.embarcadero.com web site.

Web-based product documentation

You can get help online by visiting the www.embarcadero.com web site and navigating

to one of the following:

o Developer network—nhttp://dn.embarcadero.com—where you can find news and

articles about Embarcadero products.

e QualityCentral—http://gc.embarcadero.com—where you can read, create, update,
or manage reports about issues in the Embarcadero products.

o CodeCentral—http://cc.embarcadero.com—where you can find, comment upon,

upload, and download code snippets for the Embarcadero products.

e Blogs—http://blogs.embarcadero.com—you can find useful information in articles

written by the Embarcadero employees.

The http://docs.embarcadero.com web site also includes a list of books and additional

technical documents for all of the Embarcadero products.

F1Help and online help system

You can get context-sensitive help in any part of the development environment, in-
cluding in menu items, in dialog boxes, in toolbars, and in components by selecting
the item and pressing F1.

1-2 Getting Started with Delphi® and C++Builder® 2009

Finding information

Pressing the F1 key while a menu item is selected displays context-sensitive help for
the item. For example, pressing F1 on the Trace Into menu item...

) Projectl - CodeGear RAD Studio for Micrasoft Windows - Unitl u_‘g‘:' B
File Edit Search View Refactor Project Component Tools Window Help a Default Layout| x> | 5_} ﬁ
BT e -8Bl &b o B |9 - i@
S\ structure [! RunWithout Debugging ~ Shift-Ctri+F9 w12 | [Projectl.dproj - Project Manager [AE
Barameters...
R IR 2 12
Activate » e Ri
] Load Process... B actva Bt @ remove
=[] Form1
@ vi -|
2] Button1 Attach to Process... Views
Register ActiveX Server =
Unregister ActiveX. Server £ smc mEgend o Colapse
e File
j Step Over F&
4= Object Inspector RE3 Step R s e & ProjectGroupl
Form1 TForml Tracelnto F7 = @ Proj -
Properties | Events | Trace to Next Source Line Shift+F7 4 Buid Configurations
Action - Run to Cursor F4 Unit1.pas
A ccmid Run Until Return Shift+F8&
Align alNone L q = D
AlignWithMargins | False = Show Execution Point >
AlphaBlend False Program Pause Baprojects... | % Model view | JdDataEx... |
AlphaBlendvalue |255
Program Reset Ctrl+F2
Anchors [akLeft,2kTop] [El Program Rese Crl M), Tool Palette Rl
AutoScroll False ® [nspect.. i 4@\ Q, search
AutoSize False . Standard -
BiiMode baleRToRight ER T Sl Additional E
Borderlcons [biSystemMenu, biMinim ﬁ Add Watch... Ctrl+F5 Win32 =
BorderStyle bsSizeable AddiBreskpoint v
BorderWidth 0 i L SEENE
| Caption Win 3.4
ClientHeight 204 Dialogs
Clientwidth 418 Data Access
Color [JclBtnFace sl Data Controls
Constraints (TSizeConstraints) 5 dbExpress
All shown rPon 11 Insert Modified Code /, Design /i History Client =

Figure 1-1. The Trace Into menu item in Run

...displays the following help page.

@ Trace Into - CodeGear(TM) RAD Studio - Microsoft Document Explorer (Administrator) @E‘g

File Edit View Tools Window Help

i Back)] [¢] @ A’ | @ HowDol ~ Q Search [3Index & Contents [[] Help Favorites | [2f " &3 | %J MSDN Forums i _

Contents ~1Xx Trace lmo} il
Filtered by: URL: ms-help://embarcadero.rs2009/devcomman/runtraceinta_xmlhtml =
{biofen h RAD Studio (Comman)
RAD Studie Trace Into
Dinkumware See Also

nternet Direct (Indy) 10
Rave Reports

eeChart 8 Standard Run [Trace Into
Microsoft Windows Platform SDK!

El Collapse All

Tells the debugger to execute the next line of code. If the line contains a function, Trace Intro executes the function and then
stops at the first line of code inside the function.

=l See Also
Overview of Debugaing

Copyright(€) 2008 Embarcaders Technolagies, Inc. All Rights Reserved.
what do you think abaut this topic? Send feedback!

n 3

@ Contents [3 Index []Help Fa... |

Ready

Figure 1-2. F7 Help for the Trace Into menu item

Introduction 1-3

Finding information

Error messages from the compiler and linker appear in a special window below the
Code Editor. To get help with compilation errors, select a message from the list and
press F1.

Useful information about using the help viewer can be found at
http://edn.embarcadero.com/article/37562.

1-4 Getting Started with Delphi® and C++Builder® 2009

Tour of the IDE

First look

When you start CodeGear™ RAD Studio 2009, the integrated development environ-
ment (IDE) launches and displays several tools and menus.

The IDE helps you visually design user interfaces, set object properties, write code,

view, and manage your application in various ways.

The default IDE desktop layout includes some of the most commonly used tools. You
can use the View menu to display or hide certain tools. You can also customize your
desktop by moving or deleting elements, and you can save the desktop layouts that

work best for you.

Tour of the IDE 2-1

Welcome Page

Welcome Page

When you open RAD Studio, the Welcome Page appears with a number of links to

developer resources, such as product-related articles, training, and online Help.

As you develop projects, you can quickly access them from the list of recent projects at

the top of the page. To return to the Welcome Page from another main window such

as the Code Editor or Design window, click the Welcome Page tab at the top of the

window. If you close the Welcome Page, you can reopen it by choosing View >

Welcome Page.

Click this tab to return to the Welcome Page.
— 9

New Project...
Open Project...

My Favorites

You have not selected any
faworites. Select Projects -=
Show Recent Projects from
the Welcome Page menu to
create your favorites.

9‘5; Object Inspector oz

Report Piracy, Legal Notices, Privacy Policy

Browser

Copyright® 1994-2008 Embarcadero Technologies, Inc.)}II rights reserved.

T CodeGear RAD Studio for Microsoft Windouws / = | (5] ||
File Edit Search View Refactor Project Run (fomponent Tools Window Help ’5 Default Layo b | & @
hE -8 8E - | - @
§\ Structure 222 | @ welcome Page 25| fig Project Manager 3
e i TS ~ % acivate v E3New @FRemove
Projects News Resources Documentation “| B views v|
Recent Projects Recently Opened Projects 5 Expand Collapse

File
28 <No Project Group>

€ [T r

Q,;Project..‘ @aﬁMode\ View a%DataExm

HY Tool Palette 32
£ v| [% | Q, search

Delphi Projects 2
[+ Delphi Projects | Delphi Files

1+ Other Files

[#l C++Builder Projects | C++Builder Files
[+ Design Projects

[+ Unit Test E
[z] C++Builder Projects

1+| Web Documents

{1 C++Builder Projects | WebServices

1+ Delphi Projects | WebServices

[# C++Builder Projects | WebSnap

(& Delphi Projects | WebSnap

[+ C++Builder Projects | WebBroker

[Delphi Projects | WebBroker =

Figure 2-1. The RAD Studio Welcome Page

The following pages describe and show screenshots of the various available options

when a RAD Studio project is open. You can create a new project by clicking

File > New > VCL Forms Application - Delphi or File > New >

VCL Forms Application - C++Builder, for Delphi and C++Builder, respectively. A
more detailed explanation on how to create a project is given in Chapter 3, “Starting

your first RAD Studio application”.

2-2 Getting Started with Delphi® and C++Builder® 2009

The Structure View displays a

hierarchical view of your components’

parent-child relationships.

Welcome Page

The menus and toolbars provide several features

and tools to help you write an application.

B Projectl - CodeGear,

D Studio for Microsoft Windows - Unitl

= (S|

Button1

Properties | Events |

#Z Object Inspector

S5 ProjectGroupl
=] Projectl.exe
% Build Configurations

fr

File Edit Search Jiew Refactor Project Run Component Tools Window Help -} pefauit Layout] t]l & &,
BERINE -85S HE:E e -NE| & hal BRI 4
5& Structure Lo ﬁwamme Page @Umtl 28 PE Projectl.dproj - Project Manager
v X | 4 B activate » 2 pew
5] Formt Dromt = |
5] Button1 LR i BReE
G==;'> Sync [4m Expand
File

fim Collapse

Action e = Unitl.pas
Align alNane
AlignWithMargins |False ‘ T m = s
Anchors [akleft,akTop] A S e
BiDiMode bdleftToRight B [Eese BaProject1.. | B Model view | #AData Ex...
ol lbwiont \ [ot G
CommandlinkHint = The Form Designer contains a blank %y | [l & search
® i . P =
| constrams {[Hzmoonsrants) form on which to start designing the Dol &
Cursor crDefault . N X Additional [
CustomHint user interface for your application. Win32 |=
Default False licati includ | G |
DisabledImagelndes|-1 An application can include severa ezl =
DoubleBuffered |False forms. “{i“ ==
DragCursor crDrag Dialogs
Dragkind dkDrag Data Access
DragMode dmManual Data Controls
DropDownMenu o dbExpress
E\evauonRequlr*d False -) - J Datasnap Client
All shown \ . @ 11 Insert Modified \Code /Design /History / Datasnap Server I o5
{

B3

The Object Inspectoris used to change

objects

' properties and create event handlers.

Figure 2-2. The default layout for creating a RAD Studio application

The Tool Palette contains ready-made
components to add to your projects.

The main window, which occupies the top of the screen, contains the menu bar and

the toolbars.

/_ The menu bar

File

Default Layout]

5 & &5

Edit Search View Refactor Project Run Compeonent Tools Window Help a
h®-8l88a8: b - | & & -

&

-

Figure 2-3. The main menu bar

_ Toolbars providing fast access to various tools that
you can use to operate on the current project

Tour of the IDE 2-3

Toolbars

Toolbars

RAD Studio toolbars provide quick access to frequently used operations and com-

mands. The toolbars are displayed below in more detail.

Most toolbar operations are duplicated in the drop-down menus.

Desktop Save current

layout setting desktop

Default Layout - | & &
Set debug
Add file
Open Save All to project

I I I
"5 -888l8s

New Save Open Remove
items Project file from
project

Figure 2-4. The main toolbars

Back

Forward

Ru|n
b -

List of

projects

Pause

Yyou can run

View Help
Form contents
About
| | |
Har = &
View Toggle
Form/Unit
Trace Run Until
into Return
| & %
Program Step

reset over

To find out what a button does, hover the mouse over it for a moment until a tooltip

appears. You can hide any toolbar by right-clicking the toolbar and selecting the con-

text menu command Hide. To display a toolbar that is not showing, choose View >

Toolbars and check the toolbar you want.

Many operations have keyboard shortcuts as well as toolbar buttons. When a keyboard

shortcut is available, the dropdown menu displays the shortcut next to the command.

Mew »

Open...

Bt 4

Open Project.. Ctrl+F11

Save Ctrl+5
Save As...

Save Project As..

Save All Shift+Ctrl+5
Close

Close All

L —

Use Unit... Alt+F11

Print...

N T

Exit

Shortcut key for the Save All command

2-4 Getting Started with Delphi® and C++Builder® 2009

Figure 2-5. Shortcut keys in the File menu

Tools

You can right-click on many tools and icons to display a menu of commands appropri-
ate to the object you are highlighting. These are called context menus. The toolbars
are also customizable. You can add the commands you want to the toolbar or move
the commands to different locations on the toolbar.

Tools Window Help % Pefault Layout] v| &1

P

| E v Standard

i w23
nitl ¥ | Debug

v Desktop g

v Custom - N—— Toolbar customization context menu
Align 1o
Spacing

Co Position

. v Personality

Dol ¥ Browser
HTML Design
HIML Format
HTML Table

v View

L Figure 2-6. Customizing the toolbars

Customize...

Tools

The tools available in the RAD Studio IDE depend on the version of RAD Studio you
are using. Every SKU of RAD Studio contains the following tools:

e Accessibility Options
e Form Designer

e Tool Palette

e Object Inspector

e Project Manager

o Data Explorer

e Structure View

e History Manager

o Code Editor

e File Browser

The following sections describe each of these tools.

Tour of the IDE 2-5

Accessibility options
Accessibility options

The IDE's main menu supports MS Active Accessibility (MSAA). This means that you
can use the Windows accessibility tools from the Start menu by choosing
All Programs > Accessories > Accessibility.

Form Designer

The Form Designer in RAD Studio allows you to rapidly prototype, build, and modify
the user interface of your application. Typically, a form represents a window or an
HTML page in the user interface.

Select the form that best suits your application design, whether it is a Web application
that provides business logic functionality over the Web or a Windows application that
provides processing and high-performance content display.

In RAD Studio, the user interface of an application is built using components that can
be either visual or nonvisual and can be added to the form using the Tool Palette,
which is discussed in the next section. Visual components appear on your form at the
time the program is run. Nonvisual components do not appear on the form at run
time, but they change the behavior of your application. Both types of components can
be accessed at run time from your application’s code.

A TMemo text editing box component
/ (visual)

" "N
Y Form1 = E=]
A TRsomcomponen: TR :
(visual) [|§ Button1 | Memol :

Another TButton component I Button2]

RS of B 1l
A TTimer component, providing a __._._._/La.-_;-'! c oo
basic synchronization system L Timerl. [..

(nonvisual)

A TOpenDialog component, providing _J SO\l
a basic open dialog window . . OpenDialogl .)

(nonvisual)

_ Form Designer

Figure 2-7. Creating a basic RAD Studio application using the Form Designer

2-6 Getting Started with Delphi® and C++Builder® 2009

Form Designer

The RAD Studio Form Designer is based on the WYSIWYG (What You See Is What You
Get) concept, allowing you to design your application's user interface with as little ef-
fort as possible.

The same concept applies to the possibility of seeing the way components will behave
at run time before compiling your applications.

This is the case, for instance, of database-aware components. You can develop live da-
tabase queries and connections at design time. Database viewing components can
show data from a selected database. This way you can check if the behavior at design
time will be the intended one at run time.

The Form Designer also allows you to build user interfaces for your VCL for the Web
applications, making the development as simple as possible.

To start using the Form Designer, you must first create a VCL for the Web or a VCL for
Win32 form using the project templates from the Object repository.

After you place components on the form, or Form Designer, you can arrange them the
way they should look on your user interface. Every component's attributes can be
viewed and changed with the Object Inspector pane. You can use the Object Inspec-
tor for many purposes, including the following:

e To set design-time properties for the components you place on the form.

e To create event handlers, filter-visible properties, and events, making the connec-
tion between your application’s visual appearance and the code that makes your
application run.

For more information...

See “Adding the components using the Form Designer” and “Customizing the com-
ponents using the Object Inspector” in the next chapter.

Tour of the IDE 2-7

Tool Palette

Tool Palette

The Tool Palette contains items to help you develop your application. The Tool Palette
is displayed as a category panel group, usually located in the right column. Each of the
categories in Tool Palette contains icons that represent visual or nonvisual compo-
nents.

The categories divide the components into functional groups. For example, in Design
mode, the Standard and Win32 categories include Windows controls such as a but-
ton, or an edit box; the Dialogs category includes common dialog boxes to use for file
operations such as opening and saving files.

The contents of the Tool Palette change when switching between Design mode and
Code Editor mode. More information on the Code Editor is given in a later section.
Thus, if you are viewing a form in Design mode, the Tool Palette displays components
that are appropriate for that form. You can double-click a control to add it to your
form. You can also drag a control to a desired position on the form.

H[Tool Palette /.q_%_ Type any component name, and Search automatically filters the com-
& v | L | 0, Search ponent list and locates the component, provided that is installed.

- Standard -

Frames \

& ™ainMenu
:; TPopupMenu
£} TActionList
“= TlLabel
TEdit
TMemo

TButton >
[® TCheckBox List of components in the Standard category

m

@ TRadioButton

@ TListBox

B TComboBox

ECE TScrollBar

TGroupBox

2} TRadioGroup)

[] TPanel

+ Additional \
+ Win32

+ System

+ Win 3.1

+ Dialogs

+ Data Access

+ Data Controls

+ dbExpress

+ Datasnap Client

+ Datasnap Server

+ BDE

+ Internet

+ Samples

+ Vista Dialogs - j

> List of components sorted by category

Figure 2-8. The Tool Palette showing the Standard components category

2-8 Getting Started with Delphi® and C++Builder® 2009

Tool Palette

If you are viewing code in the Code Editor, the Tool Palette displays project types that
you can add to your project group and file types that you can add to your project.

Hi[Tool Palette oz

% v| [% ‘ Q, Search
[= Delphi Projects] ~
i Package N\
W DL Wizard

Console Application

[B vl Forms Application

Service Application > List of components in the Delphi Projects category
E Control Panel Application
E SDI Application

E| MDI Application

a Resource DLL Wizard J/
+| Delphi Projects | Delphi Files \
+) Other Files

+ Unit Test

+ Web Documents

+ Delphi Projects | WebServices

+| Delphi Projects | WebSnap

+ Delphi Projects | WebBroker

+ Delphi Projects | VCL for the Web

+ Delphi Projects | ActiveX

+ Delphi Projects | XML

+ Delphi Projects | Multitier

+ Delphi Projects | Inheritable Ttems - _/

m

> Types of projects to create, sorted by category

Figure 2-9. The Tool Palette in Code Editor mode, showing the standard Delphi Projects templates

In addition to the components that are installed with RAD Studio, you can add custom-
ized or third-party components to the Tool Palette and save them in their own cate-

gory.

You can also create templates that are composed of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
you can save them as a component template.

Later, by selecting the template from the Tool Palette, you can place the preconfig-
ured components on a form in a single step; all associated properties and event-
handling code are added to your project at the same time. You can reposition the
components independently, reset their properties, and create or modify event han-
dlers for them just as if you had placed each component in a separate operation.

Each component has specific attributes—properties, events, and methods—that en-
able you to control your application.

After you place components on the form, or Form Designer, you can arrange compo-
nents the way they should look on your user interface. For the components you place
on the form, use the Object Inspector to customize their behavior, as shown in the fol-

lowing section.

Tour of the IDE 2-9

Object Inspector

Obiject Inspector

The Object Inspector allows you to customize the properties of the components that

make up the application user interface and create event handlers at design time. Each

visual and nonvisual component has a set of published properties and events, which

the Object Inspector displays and allows to be modified visually, using the Properties

and Events tabs. User interfaces created with RAD Studio are event-driven, meaning

that any component can react to an externally or internally generated event. The

Object Inspector allows you to automatically generate code that is executed when

such an event is fired.

Name of the component = ObJEC_t_InspECtOI' L3S = Objeci[nspector g
NButtonl TEutton B Buttonl TButton E]
Properties | Events Properties |Events
[Action ~ [Action =]~ \
Align alMone CustomHint
AlignWithMargins |False DropDownMenu
Anchors [akLeft,akTop] Images
BiDiMode bdLeftToRight = OnClick
Cancel False i OnContextPopup
¥ |Caption Buttonl OnDragDrop
CommandLinkHint OnDragOver List of possible events for
Constraints U‘SizfeCTnshainis) OnDropDownClick = the selected component —
. . . Cursor crDefault OnEndDock
List of properties and their values ustombint orEndbrag double-click an event to
for the selected component Default False OrEnter automatically create the
DisabledImageIndes-1 OnExit
DoubleBuffered |False Orkeyboun code skeleton of the event.
DragCursor crDrag OrKeyPress
Dragkind dkDrag Onkeylp
DragMode dmManual OnMouseActivate
DropDownMenu OnMouseDown
ElevationRequired |Falze OnMouseEnter
Enabled True OnMouseleave
\ Font (TFent) - OnMouseMove v j
All shown All shown

Figure 2-10. Properties tab in the Object Inspector

You can customize the Object Inspector by right-clicking
it. A popup menu will be shown with a list of customiza-
tion options such as the arrangement style of properties

or the filtering options.

Context menu displaying the available options
for customizing the Object Inspector

2-10 Getting Started with Delphi® and C++Builder® 2009

Figure 2-11. Events tab in the Object Inspector

,(5; Object Inspector sz
Buttonl TEutton E]
Propefias| Suants
Atiod View 4 ~
Align Arrange 3
Align
Anch Revert to inherted
BiDiM E =
Canc _ ~
| Capti Lollapse
Comn Hide
Cong Help
Curs:
Cust Properties
Defal
Disab Stay on Top
Dol v Dockable
Dyag
ragkind dkDrag
DragMode dmManual

DropDownMenu
ElevationRequired |False

Enabled True
Font (TFont) 2
All shown

Figure 2-12. Customizing the Object Inspector

Project Manager
Project Manager

To build an application or a DLL using Delphi or C++Builder, you need to create a pro-
ject. The Project Manager displays a hierarchical file list of your project or project
group, so you can view and organize the files.

You can use the Project Manager to combine and display information on related pro-
jects into a single project group. By organizing related projects into a group, such as
multiple executables, you can compile them at the same time. You can also set project
options to resolve the dependencies between projects.

fim Project1.cbproj - Project Manager oz Available operations for the current
Eﬁ Activate = @H&w Remaove @ Views - prolect
<f(> Sync Expand Collapse

File

£ b \))

& %ijsc@:tpll Available operations to apply to the
= roj .exe

+ {.\ Build Configurations
Frojectl.cpp

project hierarchy

|| Projectlres

=[] unitl.cpp \
Unit1.cpp Hierarchical view of the files inside
fF Unit1.dfm :
un!tl X the current project
nitl.

Figure 2-13. Hierarchical file list of the project,
: displayed by the Project Manager

4 n
Qaprojectl.d:nprnj QE,E Model View a%Data Explorer

The buttons at the top of the Project Manager enable you to perform the following
tasks:

Activate—Activate the currently selected project.

New—Add another project to the current project group. If only one project currently
exists, a project group is created for you automatically.

Remove—Remove a project from the current project group.

View—View the file tree hierarchy in multiple ways.

Sync—Synchronize the project manager with the medium where the actual project or
project group files are stored.

Expand—Expand all child nodes from the one that is currently selected.

Collapse—Collapse all child nodes from the one that is currently selected.

Tour of the IDE 2-11

File Browser

File Browser

The File Browser allows you to conveniently manage files at a specified path. All the
files are displayed in a tree view, allowing easy hierarchical browsing. To show the File
Browser, choose View > File Browser.

File Browser @
(—lLocal Disk (D:) |Z|
B Desktop \ Allows you to display only files that

+- [E anonymous

+ | (Documents

+- | Public

=} (M Computer
+ f;, Local Disk (C:)
i)|
+ L5 DVD RW Drive (Ex)
+- 5 DVD Drive (F:)

+- ¥ Network

match a particular file name pattern

@ Internet Explorer Hierarchical view of the existing files and folders,
+ Control Panel providing basic file explorer features
+1- |5] Recyde Bin
+ .‘-. others

Figure 2-14. Browsing files and folders using File Browser

The File Browser is especially useful for managing files that are not normally part of the
project itself, and thus not present in the Project Manager. The context menu shown
by the File Browser when a file is right-clicked is based on the Windows Explorer
menu, with two new options specific to RAD Studio. These two options allow you to
either open the selected files with RAD Studio itself or to add them to the currently
open project.

A useful feature of the File Browser is the ability to filter the displayed files based on a
set of masks. After clicking the Filter button at the top of the File Browser window, a
new dialog box asking for a semicolon-separated list of masks appears. As an exam-
ple, setting the mask to *.txt; *.exe displays only executables and text files.

Set Filter =5

Enter semi-colon delimited file mask(s):

Dialog box that allows you to specify the file name pattern
used to filter the existing files and folders

*.exe; ‘.txt]

Figure 2-15. Setting up the file filter used in the File Browser

2-12 Getting Started with Delphi® and C++Builder® 2009

Structure View

Structure View

The contents of the Structure View reflect the current mode in the IDE. The Structure
View shows either the hierarchy of the source code that is currently open in the Code
Editor, or the components currently displayed in the Designer. The tree diagram is syn-
chronized with the Object Inspector and the Form Designer so that when you change
mode in the Structure View, the mode also changes for both the Object Inspector and
the form itself.

To display the Structure View, choose View > Structure.

If the Structure View is displaying the structure of Designer components, you can sin-
gle-click a component in the tree diagram to focus it on the form.

ﬁk Structure BEs

% |
= D Form2

Button 1

EH[S] Listview1
& Columns

Groups . . .
Hierarchical view of the components and source

reeliew) .
code used in the current project

Figure 2-16. Structure View in Form Designer mode

If displaying the structure of source code or HTML, you can double-click an item in the
list to jJump to its declaration or location in the Code Editor.

ﬂ\ Structure 5z
£ Classes
[} 1, TRorm2(TFarm)
= D Published

O Buttoni: TButton

(9 Listview1: TListView

O TreeView 1: TTreeView
[Variables/Constants

G Form2: TForm2 \
& 0 Uses Hierarchical view of the resources used

T A
&% Windows in the current project, sorted by

& Messages
& Sysltils
& Variants
& Classes
& Graphics
& Controls
& Forms
& Dialogs
35 comCtrls

35 stdctris

classes, variables/constants, and units

Figure 2-17. Structure View in Code Editor mode

Tour of the IDE 2-13

Structure View

If your code contains syntax errors, they are displayed in the Errors pane of the
Structure View. To locate an error in the Code Editor, double-click it in the Errors pane.

You can also use the Source View to change related components’ relationships. For
example, if you add a panel and a check box component to your form, the two compo-
nents are siblings. In the Structure View, however, if you drag the check box on top of
the panel icon, the check box becomes the child of the panel.

The Structure View is useful for displaying the relationships between database objects.

You can also double-click any Designer component in the Structure View to open the
Code Editor to a place where you can write an event handler for that component.

You can control the content and appearance of the Structure View by choosing Tools
> Options > Environment Options > Explorer and changing the settings. The fol-
lowing options page should be displayed.

Cptions @
4 Emvironment Options
‘. Object Inspector ‘Explorer options Explorer categories:
4 Tool Palette [¥] Highlight incomplete dass items 1 Private P
Colors [#] show dedaration syntax i Strict Private
~Environment Variables | e —— 1 Protected
i+ Explorer # Aphabetica 1 Strict Protected
4 - Delphi Options e ¥l1 Protected Internal
i Type Library R i Internal
i iLibrary - Win32 Class completion option ¥ t+ Public
iV Desopier [7] Finish incomplete properties % Published
4 - Editor Options Wi Field =
i Source Options W11 Properties
tColor W3 Methods
.. Display % Classes
i Key Mappings i Interfaces
i Code Insight W3 Procedures
4-HTML Options Wi Types
L. HTML Formatting W3 Variables/Constants
WebSnap Wi Uses
4 Together 1 Virtuals
4 Default o 4 Statics 1l
P e @3 Trherited
< I 3
[[oc [concd |[rep

Figure 2-18. Structure View explorer options

For more information...

Access the “Structure View” help page.

2-14 Getting Started with Delphi® and C++Builder® 2009

The Code Editor
The Code Editor

The Code Editor occupies the center pane of the IDE window. The Code Editor is a full
-featured, customizable, UTF8 editor that provides syntax highlighting, source code
browsing, multiple-undo capability, and context-sensitive Help for language elements.

As you design the user interface for your application, RAD Studio generates portions
of the underlying code. Whenever you modify the properties of an object, your
changes are automatically reflected in the source files.

Because all of your programs share common features, RAD Studio auto-generates
code to get you started. You can think of the auto-generated code as an outline that
you can use to create your program.

The Code Editor provides the following features to help you write code:

Code Navigation
Method Hopping, Bookmarks, Finding Classes, Finding Units
e Code Folding
e Change Bars
e Block Comments
e Live Templates
e SyncEdit
e Code Insight

Code Parameter Hints, Code Hints, Help Insight, Class Completion,
Block Completion, Error Insight, Code Browsing

e Refactoring
o Keystroke Macros
e To-Do Lists

e Custom Template Libraries

Tour of the IDE 2-15

The Code Editor

Code Navigation

To navigate code while you are using the Code Editor, you can use one of the follow-
ing methods.

Method Hopping

You can navigate between methods using a series of editor hotkeys. You can also limit
hopping to the methods of the current class by setting class lock.

For example, if class lock is enabled and you are in a method of TComponent, then
hopping is only available within the methods of TComponent. The keyboard shortcuts
for Method Hopping are as follows.

Keyboard shortcut Effect

CTRL+Q followed by L toggles class lock
CTRL+ALT+HOME moves to the first method in the file
CTRL+ALT+END moves to the last method in the file
CTRL+ALT+MOUSE WHEEL scrolls through methods

Table 2-1. Method Hopping keyboard shortcuts

Bookmarks

Bookmarks provide a convenient way to navigate long files. You can mark a location in
your code with a Bookmark and jump to that location from anywhere in the file.

You can use up to ten Bookmarks, numbered O through 9, within a file. To toggle a
Bookmark at the current line, simply @ press CTRL+SHIFT+digit.

When you set a Bookmark, a book icon is displayed in the left gutter of the Code Edi-
tor, as in the following image.

2-16 Getting Started with Delphi® and C++Builder® 2009

The Code Editor

implementation
{$R *.dfm}
procedure TForml.FormPaint (Sender: TCbhject):

begin
with Canvas do

begin
Pen.Color := clRed;
D Pen.Style := psSolid;
Bookmark sign that marks - Ellipse (0, 0, Self.ClientWidth, Self.ClientHeight):
a particular line of code end;
end;
procedure TForml.FormResize (Sender: TCbject):
begin
|i Refresh;

end;

end.
Figure 2-19. Setting Bookmarks in the source code

Finding Classes

Use the Search > Find Class command to see a list of available classes that you can
select. If you double-click a class, the IDE automatically navigates to its declaration.

Finding Units

Depending on your programming language, you can use a refactoring feature to lo-
cate namespaces or units. If you are using the Delphi language, you can use the
Search > Find Unit command to locate and add units to your code file. The Find Type
window allows regular expressions.

Code Folding

Code Folding lets you collapse sections of code to create a hierarchical view of your
code and to make it easier to read and navigate. To create Code Folding regions, see
the help topic “Using Code Folding”.

Code Folding regions have plus (+) and minus (-) signs located on the gutter of the
Code Editor, used to collapse and expand a region of code, respectively.
The collapsed code is not deleted, but hidden from view.

Click the plus sign to expand the code.

procedure TForml.FormPaint (Sender: TCbject): EIIIpSIS symbol spemfymg that the
block of code is collapsed
procedure TForml.FormResize (Sender: TObject):

Figure 2-20. Collapsed blocks of code

Tour of the IDE 2-17

The Code Editor

Change Bars

The left margin of the Code Editor displays a yellow change bar to indicate lines that
have been changed but not yet saved in the current editing session. A green change
bar indicates the changes that have been made since the last File > Save operation.
You can, however, customize the Change Bars to display in colors other than the de-
fault green and yellow. To do this, go to Tools > Options > Editor Options > Color,
select the Modified Line element and change the foreground and the background
colors.

Block Comments—CTRL+/

You can comment-out a section of code by selecting the code in the Code Editor and
pressing CTRL+/ (slash). Each line of the selected code is then prefixed with // and is
ignored by the compiler. Pressing CTRL+/ adds or removes the slashes, based on
whether the first line of the selected code is prefixed with //.

When using the Visual Studio or Visual Basic key mappings, use CTRL+K+C to add
and remove comment slashes.

Live Templates

Live Templates allow you to have a dictionary of pre-written code that can be inserted
into your programs while you are working with the Code Editor. You can access Live
Templates by going to View > Templates.

Using Live Templates reduces the amount of typing that you must do.

You can find further information concerning Live Templates in the help, by accessing
the pages entitled “Creating Live Templates” and “Using Live Templates”.

Templates @

S ¥

Mame Description
=} Delphi Delphi - \
(= paren-star comment

I brace comment
arrayc array dedaration (constant)

m

arrayd array dedaration {variable)

begin begin...end; . . .
> List of available Delphi templates

case case statement

check Creates a default test for DUni

class dlass dedaration (full with secti

classc class dedaration (with Create T

classd class dedaration (no parts)

CreateC TCompanent descendant const —)

q T »

Figure 2-21. Expanding the list of Live Templates for Delphi

2-18 Getting Started with Delphi® and C++Builder® 2009

The Code Editor
SyncEdit
The SyncEdit feature lets you simultaneously edit identical identifiers in the code.

As you change the first identifier, the same change is performed automatically on the
other identifiers. For example, in a procedure that contains three occurrences of Self,
you can edit the first occurrence only and all the other occurrences will change auto-
matically.

To use SyncEdit:
1. In the Code Editor, select a block of code that contains identical identifiers.

procedure TForml.FormPaint (Sender: TCbhject):;
begin
with Canwvas do

begin
F Pen.Color := clRed:
SyncEdit Mode icon Pen.Stvle := psSclid;
Ellipse (0, 0, [J3Bs.ClientWidth, [Felf].ClientHeight);

end;
A blue rectangle encloses each occurrence

of the identifier.

end;

Figure 2-22. Highlighting all the occurrences of an identifier in a section of code

2. Click the SyncEdit Mode icon B that appears in the left gutter. The first identical
identifier is highlighted and the others are outlined. The cursor is positioned on the
first identifier. If the code contains multiple sets of identical identifiers, you can
press TAB to move between each identifier in the selection.

3. Begin editing the first identifier. As you change the identifier, the same change is
performed automatically on the other identifiers. By default, the identifier is re-
placed. To change the identifier without replacing it, use the arrow keys before you

begin typing.

4. When you have finished changing the identifiers, you can exit Sync Edit mode by
clicking the SyncEdit Mode icon, or by pressing the Esc key.

Note: SyncEdit determines identical identifiers by matching text strings; it does not
analyze the identifiers. For example, it does not distinguish between two like-named
identifiers of different types in different scopes. Therefore, SyncEdit is intended for
small sections of code, such as a single method or a page of text. For changing larger
portions of code, consider using refactoring, which is a more advanced method of im-
proving your code, without changing its functionality. Further details on refactoring are
given in a later section.

Tour of the IDE 2-19

The Code Editor

Code Insight

Code Insight refers to a subset of features embedded in the Code Editor (such as
Code Parameter Hints, Code Hints, Help Insight, Code Completion, Class Completion,
Block Completion, and Code Browsing) that aid in the code writing process. These
features help identify common statements you want to insert into your code, and assist
you in the selection of properties and methods. Some of these features are described
in more detail in the following sub-sections.

To enable and configure Code Insight features, choose Tools > Options > Editor
Options and click Code Insight.

Code Completion—CTRL+SPACE

To invoke Code Completion, press CTRL+SPACE while using the Code Editor. A
popup window displays a list of symbols that are valid at the cursor location. You can
type characters to match those in the selection and press Return to insert the text in
the code at the cursor location.

procedure TForml.FormPaint (Sender: TCkject):
begin
with Canvas do
begin
Pen.Color := clRed:;
Pen.Style := psSolid;
Ellipse (0, 0, S5elf.ClientWidth, Self.ClientHeight):
Pen.

snd:

end; destructor Destroy;
procedure Assign(Source: TPersistent);
procedur] |property Handle: HPEN; Code completion window that appears when pressing
begin property Color: TColor; CTRL+SPACE at the current cursor position
Refres| |property Mode: TPenMode; =

end;

Figure 2-23. Code Completion popup window showing the list of available options

Help Insight—CTRL+SHIFT+H

Help Insight displays a hint containing information about the symbol, such as type, file,
line number where declared, and any XML documentation associated with the symbol

(if available).

Invoke Help Insight by hovering the mouse over an identifier in your code, while work-
ing in the Code Editor. You can also invoke Help Insight by pressing CTRL+SHIFT+H.

2-20 Getting Started with Delphi® and C++Builder® 2009

The Code Editor
Class Completion—CTRL+SHIFT+C

Class Completion simplifies the process of defining and implementing new classes by
generating skeleton code for the class members that you declare.

Position the cursor within a class declaration in the interface section of a unit and press
CTRL+SHIFT+C. Any unfinished property declarations are completed.

For any methods that require an implementation, empty methods are added to the
implementation section.

Class Completion can also be achieved by choosing the option Complete class at
cursor from the editor context menu.

Block Completion—ENTER

When you press ENTER in a block of code that was incorrectly closed (while working in
the Code Editor), a closing block token is inserted at the first empty line following the
cursor position.

For instance, if you are using the Code Editor with the Delphi language, and you type
the token begin and then press ENTER, the Code Editor automatically completes the
statement so that you have: begin end;.

Block Completion also works for the C++ language.

Code Parameter Hints—CTRL+SHIFT+SPACE

Code Parameter Hints display a hint containing argument names and types for method
calls. You can invoke Code Parameter Hints by pressing CTRL+SHIFT+SPACE, after
opening a left bracket of a function call.

procedure TForml.FormPaint (Sender: TCbject):
begin
with Canvas do
begin
Pen.Color := clRed:
Pen.S5tyle := psS5olid;
Ellipse (0, 0, Self.ClientWidth, Self.ClientHeight);
HessageBox(I
end; hWnd: HWND; |pText: PWideChar; IpCaption: PWideChar; uType: Cardinal
end;

\¥ Parameter Hint message that appears when
you type the left bracket of a function call

Figure 2-24. Using Code Parameter Hints to
show the required types for the parameters

Tour of the IDE 2-21

The Code Editor
Code Hints

Code Hints display a hint containing information about the symbol such as type, file,
and line number where declared. You can display Code Hints by hovering the mouse
over an identifier in your code, while working in the Code Editor.

procedure TForml.FormPaint (Sender: TChject):
begin

with Canvas do

begin

Pen.Color clRed;

Pen.5tyle := | clRed Constant
Ellip=se(0, O
end;
end;

clRed = 255 - System.Integer

Code hint message that appears when the mouse
hovers over an identifier in the source code

Figure 2-25. Displaying in-place Code Hints

Note: Code Hints only work when the Help Insight feature is disabled.

Error Insight

When you type an expression that generates compiler errors, the expression is under-
lined in red.

Also, the list of errors generated by the expression appears in the Errors pane of the
Structure View.

procedore TForml.FormPaint (Sender: TObject):
begin
with Canvas do
begin
Pen.Color := clRed;
Pen.Style := psSolid;
Ellip=se (0, 0, Self.ClientWidth, Self.ClientHeight):
Sguare

d;
=n ¥ This line of code is underlined in red

end;

to indicate an error

Figure 2-26. Automatic marking of errors in the code

Code Browsing—CTRL+Click

While using the Code Editor to edit a VCL Form application, you can hold down the
CTRL key while hovering the mouse over the name of any class, variable, property,
method, or other identifier.

2-22 Getting Started with Delphi® and C++Builder® 2009

The Code Editor

The mouse pointer turns into a hand and the identifier appears highlighted and under-
lined. Click the identifier and the Code Editor jumps to the declaration of the identi-
fier, opening the source file, if necessary. You can do the same thing by right-clicking
an identifier and choosing Find Declaration.

Code browsing can only find and open units in the project Search path or Source path,
or in the product Browsing or Library path. Directories are searched in the following
order:

1. The project Search path
2. The project Source path, the directory in which the project was saved
3. The global Browsing path

4. The global Library path
5. The Library path, that is searched only if there is no project open in the IDE

These paths can be modified by editing the corresponding values in the list of
Directories, available by going to: Tools > Options > Environment Options >
Delphi Options > Library - Win32.

Refactoring

Refactoring is the process of improving your code without changing its external func-
tionality.

For example, you can turn a selected code fragment into a method by using the ex-
tract refactoring method. The IDE moves the extracted code outside of the current
method, determines the needed parameters, generates local variables if necessary,
determines the return type, and replaces the code fragment with a call to the new
method.

Several other refactoring methods, such as renaming a symbol and declaring a vari-
able, are also available.

Keystroke Macros

You can record a series of keystrokes as a macro while editing code. The red button at
the bottom of the code window starts the recording. After you record a macro, you
can play it back to repeat the keystrokes during the current IDE session. Recording a
macro replaces the previously recorded macro.

Tour of the IDE 2-23

The Code Editor
To-Do Lists

A To-Do List records the tasks that need to be completed for a project. After you add
a task to the To-Do List, you can edit the task, add it to your code as a comment, indi-
cate that it has been completed, and then remove it from the list.

You can filter the list to display only the tasks that are of interest to you.

To display the To-Do List window, select View > To-Do List.

Custom Template Libraries

RAD Studio allows you to create multiple custom template libraries to use as the basis
for creating future projects. Template libraries let you declare how projects can look,
and they enable you to add new types of projects to the Object Repository.

History Manager

The History Manager lets you compare versions of a file, including multiple backup
versions, saved local changes, and the buffer of unsaved changes for the active file.

If the current file is under version control, all types of revisions are available in the His-
tory Manager.

The History Manager is displayed on the History tab, which lies at the center of the
IDE to the right of the Code tab.

The History Manager contains the following tabbed pages.

Page Description

Contents Displays the current and previous versions of the file.

Info Displays all labels and comments for the active file.
Diff Displays the differences between the selected versions
of the file.

Table 2-2. History Manager pages

2-24 Getting Started with Delphi® and C++Builder® 2009

History Manager

The following image shows the Diff page of the History Manager, comparing two dif-
ferent versions of a .dfm file. The differences are shown using plus/minus signs and the
corresponding lines are highlighted in green/magenta.

Name of the file

44 |©3 89 1] |[unics dim z)
Current version Differences From: To: Previous version of the file
of the file \ Rev. Date Rev, Date
B File 3/6/20096:52:38PM | B File 3/6/2009 6:52:38 Ph
& o~ 3/6/2009 6:50:49PM || @ w2 3/6/2009 6:50:44 P
& ~1~ 3/6/2009 5:53:00PM | | & il 3/6/2009 5:53:00 Ph ~
4 i} 3 4 m

TextHeight = 13
cbject Buttonl: TButton

Left = 96 The lines of code are highlighted to indicate

3
~
Top = 64 . 3
e & 02D / differences between the two files.
,

Height = 57
Left = 184
Top = 112

Width = 75
Height = 25

[

]
2 differences found Diff from File to ~2. Unit3.dfm

Contents | Info | Diff

Figure 2-27. Comparing two versions of a file using the Diff page

Revision icons are used to represent file versions in the revision lists and they are de-
scribed in the following table.

Icon | Description

The latest saved file version.

A backup file version.

The file version that is in the buffer and includes unsaved
changes.

A file version that is stored in a version control repository.

A file version that you have checked out from a version

S|S0 |G

control repository.

Table 2-3. Revision icons on the Diff page

Tour of the IDE 2-25

Data Explorer

Data Explorer

.p% Data Explorer

s

o
-5 BLACKFISHSGL
- ASA

-7 ASE

- DE2

- INFORMIX
-7 INTERBASE
- MSsaL

&-F MYsaL

- ORACLE

QmProj... lT‘-'EF'I'\"IDEI... @%Data...

> The currently available database connections

Figure 2-28. Exploring the list of available database connections

RAD Studio offers a variety of database and connectivity tools to simplify the develop-

ment of database applications.

The Data Explorer is located, by default, in the upper right corner of the IDE. The Data

Explorer allows you to create and modify database connections that can easily be used

later in your database applications.

Note: Data Explorer works for databases that use the DBExpress connection type.

After you create a database connection, you can use the Data Explorer to create, view

and modify tables, views, procedures, function, and synonyms. You can click an item

from the expanded connection type entry. A menu that allows you to refresh the data

or create a new item will appear.

2-26 Getting Started with Delphi® and C++Builder® 2009

Starting your first RAD Studio application

This chapter explains how to use the Rapid Application Development tools of
CodeGear™ RAD Studio 2009 to create a GUI (Graphical User Interface) application.
You start with creating the main form, customizing it, and adding the necessary visual
and nonvisual components.

The sections of code in the application to handle user actions are called event
handlers, which you also need to implement. After following the steps, given both for
Delphi and C++, you will have a basic text editor, with a few additional features like
word-wrapping and the ability to change the font and display the current cursor posi-
tion in the status bar. The event handlers that implement these features refer to click-
ing options in the main menu and to typing or clicking inside the edit box.

Starting your first RAD Studio application 3-1

Using project templates from the Object Repository

Using project templates from the Object Repository

First, create a project in CodeGear™ RAD Studio 2009 by clicking File > New and
choosing VCL Forms Application > C++Builder or VCL Forms Application > Del-
phi, depending on the language you want to use to develop the text editor. At this

point, the File menu and its Open command submenu should be displayed as in the

following image.

Save the current file by overwriting
its previous version.

Save the current project as a
specified project, possibly different
from the current one.

Close the current
file.

Print the currently opened
file.

Bt 4

F ¢ 0 PFOPED

New
Open...
Open Project.. Ctrl+F11

Reopen

Save Ctrl+5
Save As...

Save Project As..

Save All Shift+Ctrl+5
Close

Close All

Use Unit... Alt+F11
Print...

Exit

Create a new application.

Open an existing file.

Open an existing project.

Reopen a recently opened project.

Save the current file as a specified file, possibly
different from the current one.

Save all files in the current project,
by overwriting their previous versions.

Close all files in the current project.

Add a unit to the current list of units used
by the application.

Exit the RAD Studio IDE.

Figure 3-1. Description of all options in the File menu

fl0ome DBme

Package - C++Builder
Unit - C++Builder
VCL Forms Application - C++Builder

Form - C++Builder

Package - Delphi
Unit - Delphi

VCL Forms Application - Delphi /_

Form - Delphi
Other...

Customize...

Create a new application, using
C++Builder.

Create a new application, using
Delphi.

Figure 3-2. Expanding the New option in the File menu

3-2 Getting Started with Delphi® and C++Builder® 2009

Using project templates from the Object Repository

After clicking the menu item to create a project, several files are automatically gener-
ated, using the VCL Forms Application template, also including the main form. After
the files are generated, the main form is displayed in the Form Designer. The next im-
ages give a screenshot of the IDE at this step, using Delphi or C++Builder, respec-

tively.

) Projectl - CodeGear RAD Studio for Microsoft Windows - Unitl = | B |G|
File Edit Search View Refactor Project Run Component Tools Window Help 8 v| & &
s — mo | -
MEENG -8 8| @& b~ | & @ K.
ﬂ\ Structure Lalbg Unit1 5 5 ?E Project1.dproj - Project Manager B[E3)
| # 4 o/ B actvate + E2new @ Remove
& Y.
B sync Expand Collapse
#% Object Inspector 3 Ry w e waeen e s e Setae s e e e e e) ﬂF?‘:leP © .
e o rojectGroup
e . e e
E] B (5] Projectl.exe
Properties | Events <3 Build Configurations
> | Action - Unit1.pas
ActiveCantrol
i o dl= == = Rl —— '
AlignWithMargins ~ |False 3
v A ‘ Boproectt... | TP Model vien | ddDatabx.. ||
alphaBlendvalue | 255 il
anchors [skLeft,akTon] H{ Tool Palett= Y
AutoScrol False B v| [| Qsearch
AutoSize False Standard -
BiDiMode bdLeftToRight [
Borderlcons [biSystemMenu, biMinim [+ Win32 E
BorderStyle bsSizeable [
BorderWidth [0 S S
Caption Form1 dadid
ClientHeight 204 Dialogs
Clientiidth 418 Data Access
Color [JciBtnFace = [# Data Controls
Constraints (TSizeConstraints) - [# dbExpress
All shown @ 11 Insert Code /, Design /,History (7 Datasnap Client &
Figure 3-3. The default layout for creating a RAD Studio application (Delphi view)
g Projectl - CodeGear RAD Studio for Microsoft Windows - Unitl.cpp I=RACIL X
File Edit Search View Refactor Project Run Component Tools Window Help 33 | EEENEEET hd | 3 &,
o S— | .
BEBDZ -8 88 & b - I[85 - - @
S structure 22 [B unitL.oe %1 | [Projectl.chproj - ProjectManager (7153
| L = 2 TE'J Activate « guew Remove
2] Form1 D Formt (= =]E=] - |
.............................. Views -
e & smc TmEpand T Colepse
#2 Object Inspector DEf i e %Epmjecmmupn
—— a3
Form1 TForm1
rm [B s
Properties | Events # Buid Configurations
> | Action | - Projectl.cpp
ActiveControl ‘ I [Projectt.res
Align alMone =
= - [& unitl.cop
AlignWithMargins |False 3 B
Alphatlend False ‘ g = 3
AlphaBlendvalue | 255 I
[#/|Anchors [akLeft,akTop] QaPrnJactl.‘. %ﬁModeW\ew o(aDataExu.
AutoScrol False:
AutoSize False] Tool Palette Rz
BiDiMode bdLeftToRight 5 v| Q | Q, search
&l ;u.:g.;ﬁ.‘s ‘[jhw‘ssystehr;wMEnu,thlmm # Standard £
orderStyle ssizeable = =
Borderiidth 0 Sl =
Caption Forml i
ClientHeight 204 ystem
ClientiWidth 418 Win 3.1
Calor []clBtnFace = [+ Dialogs
Constraints (TSizeConstraints) ~ 1 | & Data Access
All shown & 11 Insert Unit1.cpp /,Unit4.h ;;Design / History [+ Data Controls &

Figure 3-4. The default layout for creating a RAD Studio application (C++Builder view)

Starting your first RAD Studio application 3-3

Basic customization of the main form

Basic customization of the main form

Before adding any components, you should start by doing some basic customization
to the form. Make sure that the main form is activated (click it once otherwise) and that
the Object Inspector window is visible in the lower left quadrant (if not, press F11 to
display it). With the Properties tab selected, look for the Caption property and change
its value to Text Editor; also, change the value of the Name property to TextEdi-

torForm.

To make the design of the project more visually balanced, set the main form to initially
be positioned in the center of the screen. To do this, change the value of the Position
property to poScreenCenter by clicking the value field for Position and then select-
ing the value from the dropdown list. For the same reason, make the form square-
shaped, by changing the values of both Width and Height to 400, or any other num-
ber you prefer, as long as the number does not exceed the current screen size.

After making these changes, the main form should look like the following images, us-
ing Delphi or C++Builder, respectively.

3-4 Getting Started with Delphi® and C++Builder® 2009

Basic customization of the main form

) Project1 - CodeGear RAD Studio for Microsoft Windows - Unitl

oo 55 [

File Edit Search View Refactor Project Run Component Tools Window Help 5B v| & &
BEBNH -89S EaE: b -NEl s «-% -8
ﬂ\ Structure I[E3] @umﬂ\ @ £ E’E Project1.dproj - Project Manager &3
w4+ B activate ~ E2New [E2Remove
-[T] TextEditorForm B Text Editor (E=1[Ecl > = ‘
R TEOETERE e Vews -
B sync Expand i Collapse
42 Object Inspector 7z File
ProjectGroupl
TextEditorForm TTex(EdiiorForm B &8 proje it
[[F] Projectl.exe
Properties | Events | 3 Build Configurations
P> |Action | Unit1.pas
ActiveControl
Align alNone L = s »
AlignwithMargins |False 3
AphaBlend False BaProject... | @ Model .. | 4dDataE... |
AlphaBlendvalue |255
Anchors [akLeft,akTop] .I}{) Pa\ett.s LYES
AutoScroll False B » | EH Q Search
AutoSize False Standard -
BiDiMode bdLeftToRight B
BorderIcons [biSystemMenu, biMinim |E
BorderStyle bsSizeable
BarderWidth 0
Caption Text Editor
ClientHeight 364
ClientWidth 384
Calor []clBtnFace
Constraints (TSizeConstraints) -
Al shown [N N | 13: 29 Insert Modified Code /,Design History |+ Datasnap Client =
Figure 3-5. Basic customization of the main form (Delphi view)
B Project - CodeGear RAD Studio for Microsoft Windows - Unitl.cpp =

-0 TextEditorForm

#Z Object Inspector
TextditarForm TTexiEditorForm

Properties | Events |

File Edit Search View Refactor Project Run Component Tools Window Help 5 = Defaultlayout v | & &
BIABDZ -8 @SS b -NE| &€ » ;@

&\ structure £3F Prujactﬂ]
wE e

figy Projectl.cbproj - Project Manager | 152
'EJ Activate @uew @Remoue

Views v‘

S TR (e
aciveContrd | (i
Align alNone L B s
AligniithMargins | False 3
AlphaElend False
Alphalendvalue (255
Anchors [akLeft,akTop]
AutoScroll False
AutoSize False
BiDiMode bdLeftToRight
| Borderlcon: Doisy w, bikinim
BorderStyle bsSizeable
Borderidth 0
Caption Text Editor
ClientHeight 364
Clientwidth 384
Color [ClelBtnFace
Constraints (TSizeConstraints) hd E
ey o m %= 5 |imset Unit1.cpp /,UnitL.h /;Design / History

‘G sync em Expand T Collapse
File

2 ProjectGroupl
£] Projectlexe
Build Configurations

Projectl.cpp
|| Projectlres
Unit1.cpp

‘ 1 2
BgProje

HI[Tool Palette Lk
B vl Iz ‘ Q search

Standard

[+ Data Controls

Figure 3-6. Basic customization of the main form (C++Builder view)

Starting your first RAD Studio application 3-5

Adding the components using the Form Designer

Adding the components using the Form Designer

Now that you have set up the main form, you can proceed with arranging the neces-
sary components to create your text editor application. First, you need to add a menu
bar providing the basic options for file manipulation, editing, and also other options
like changing the font or toggling word wrap.

Adding an action manager

Add an action manager to the form to automatically provide the basic functionality of
your application. To do so, make sure the Design tab is selected, go to the Tool
Palette and type the text action in the search box, in order to locate the
TActionManager component. The Tool Palette should look as in the following image.

H[Tool Palette [AES
5 v|[,\\s|Qacﬁon £3

-| Standard

{7l TActionList

- Additional
TActionManager
E‘[; TPopupActionBar
7 TActionMainMenuBar
fil: TActionToolBar

- InterBase

T} -
g TIETransaction

Figure 3-7. Using the action filter in the Tool Palette to select TActionManager

Double-click the TActionManager button to add it to the form. Now you should
change the name of the ActionManager to suit your application. To do this, make sure
Object Inspector is visible (if not, press F11 to display it) and click the Action Manager
icon £ to activate it. Click the Name property and change its value to ActionMgr.

Adding the main menu

To put a main menu bar on the form, simply locate the TActionMainMenuBar compo-
nent in the Tool Palette. Double-click TActionMainMenuBar to add it to the form.

Adding a Status Bar

Next, you should also put a status bar on the form. To do this, type status in the
search box of the Tool Palette to locate the TStatusBar component. Using this filter,
the Tool Palette will look like the following image.

3-6 Getting Started with Delphi® and C++Builder® 2009

Adding the components using the Form Designer

H Tool Palette 5z
iy v‘%|Qstams| 3

= Win32

|2 Tstatussar

Figure 3-8. Using the status filter in the Tool Palette to select 7StatusBar

As with the previous components, double-click TStatusBar to add it to the form.

Adding a text box

The only component left to add is a text box, giving your application its main function-
ality—that of a text editor. Type memo in the search box and locate the TMemo com-
ponent. The Tool Palette should now display the components whose names include
the word memo, as in the following image.

H[Tool Palette AES
£ v||,\\s|0.mem0| 2

-| Standard

| TMemo

-1 Data Controls

f‘@ TDEMemo

= TW Standard

Z TTWMemo

- IW Standard 3.2
= TWMemo32
- IW Data

TZ| TIWDEMemo
| IW Data 3.2

[EpaEtes Figure 3-9. Using the memo filter in the Tool Palette to select 7TMemo

Double-click TMemo to add it to the form. The main form should now display the ac-
tion manager, the action main menu bar, the status bar, and the memo we have previ-
ously added to the form, similar to the following image.

Y Text Editor (===

E\‘\

..... ActionMagr

Figure 3-10. Basic text editor form

Starting your first RAD Studio application 3-7

Adding the components using the Form Designer

Adding the main menu commands

To finish designing the form, you must add the options to be displayed in the main
menu. Start by double-clicking the action manager component on the form to open
the Actions editor.

The following window should be displayed.

/_ This button allows you to add new actions.

i B
) Editing TextEditor.ActionMgr / [

/

| (All Actions) -| 5 v |

Cateqgories: Actions:

=gory The list of currently
added actions
The list of categories in which 1/
the currently added actions live
Description

To add actions to your application simply drag and drop from either

Categories or Actions onto an existing ActionBar.

Drag to create Separators

Figure 3-11. The main elements of the Actions page in the Action Manager

You are now ready to create the items in the main menu. Press CTRL+Insert to add
new standard actions or click the down-arrow of the New Action icon and choose
New Standard Action... from the menu. The image below shows this menu.

Mew Action Ins
Mew Standard Action... Ctrl+Ins

Figure 3-12. Adding a New Standard Action

While pressing CTRL, select all items in the Edit category and also TFileOpen, TFile-
SaveAs, and TFileExit from the File category, then click OK.

The following image shows how the Standard Action Classes list should display, with
the items in the File category selected.

3-8 Getting Started with Delphi® and C++Builder® 2009

Adding the components using the Form Designer

) Standard Action Classes @1

Available Action Classes:

- TWindowTileHorizontal -

- TWindowTileVertical

- TWindowMinimizeAll

- TWindowArrange

4 -File

- TFileOpen

- TFileOpeniith

- TFileSaveAs
TFilePrintSetup

- TFilePageSetup

- TFileRun

| TFileExit

- TBrowseForFolder

4 -Search

- TSearchFind

- TSearchFindMNext

- TSearchReplace Figure 3-13. Selecting the Standard Actions that

- TsearchFindFirst -

m

implement the basic file and text operations

OK][Cancel]I Help]

" -

After clicking OK, wait until the menu items are automatically generated. You may no-
tice that the object inspector displays the properties of each menu item, as they are
created.

Defining Action Properties

Since you need other options as well, you must define your own custom actions. To do
this, from the Actions Editor, select File from the Categories list and click the New Ac-
tion button twice to create two new, non-standard actions.

You can now customize the newly created actions. Click ActionT in the Actions list and
use the Object Inspector to change its Name property to New and its ShortCut to
CTRL+N. Also, click Action2 and change its Name to Save and its ShortCut property to
CTRL+S.

Now, use the Move Up and Move Down arrows to put the actions in the right order,
as in the following image.

-
B Editing TextEditor.ActionManagerl Iﬁ
Toolbars | Actions | Options
[(AII Actions) v] ¥ - |
Categories: Actions:
(féo Category) New Ctrl+N
Edit
: Open... Ctrl+0
(All Actions) save cl+s
Save As...
Exit
Description
Opens an existing file
To add actions to your application simply drag and drop from either Figure 3_1 4. Arranging the actions in the File menu and
Categories or Actions onto an existing ActionBar,
finishing adding the Standard Actions

Starting your first RAD Studio application 3-9

Adding the components using the Form Designer

Adding word wrap and font capabilities

To give your text additional features—word-wrapping and the ability to change the
font—you need to add another main menu option. Click (No Category) from the
Categories list and press CTRL+Insert on the keyboard to create a new standard ac-
tion. The Standard Actions Classes list is displayed.

Select TFontEdit from the Dialogs category and click OK. In the Actions list, click Se-
lect Font and use the Object Inspector to change its Category property to Format. Do
this by selecting Category and type the word Format. Also, write Font as its Caption
property.

With the Format category selected in the Categories list, press the New Action button
to define a new action. Change its Name to WordWrap and its Caption to Word Wrap,
using the Object Inspector.

Now drag each item from the Categories list to the menu bar at the top of the main
form, in this order: File, Edit, Format.

The following image shows how the File menu should look.

=Y Text Editor =B e

Edit Format

MNew Ctrl+MN
Open... Ctrl+0
Save Ctrl+5§

Save As...
Exit

£
ActionMagr

Figure 3-15. The final look of the File menu

Finally, close the Actions Editor to continue with customizing your application.

3-10 Getting Started with Delphi® and C++Builder® 2009

Customizing the components

Customizing the components

In the previous section of this chapter, “Arranging the components in the Form De-
signer”, you have added all the required components to your form and then config-
ured the action manager. Before you continue with writing code for the event han-
dlers, you must first customize the properties of the newly placed components.

To customize a component, first select the component in the Form Designer. Then you
can edit the properties of the component in the Object Inspector.

Follow these steps to customize the memo component:

1. Select the memo component in the Form Designer by clicking the memo compo-
nent.

2. Find the memo component in the Object Inspector (if the Object Inspector is not
visible, press F11 or click View > Object Inspector).

3. Set the Align property to alClient. This makes the memo component occupy all
the free space available on the form.

4. Setthe Name property to TextMemo. Naming your component properly is very im-
portant because your code needs to access the component using that name. Set-
ting a name you can easily remember is essential.

5. Set the ScrollBars property to ssBoth. This setting ensures that both the vertical
and horizontal scroll bars are displayed in the memo and allows users to easily
scroll through its contents.

6. Set WordWrap to False. WordWrap tells the memo to wrap all text on several
lines if the text does not fit in a single line. A False value disables word wrapping.

7. Find the Lines property and press the '..." | 5 String tist Editer .

1line

button located in the value box. A new o~
edit dialog appears, allowing you to edit
the initial contents of the memo, as in the
image on the right. Delete all the text

and then press OK to clear the memo.

Code Editor... l 0K,] | Cancel | | Help
\

Contents of the memo box _/

Figure 3-16. Editing the contents of the memo

Starting your first RAD Studio application 3-11

Customizing the components

After you have customized the memo, select the status bar component and customize
it as follows.

1. Select the status bar in the Design window.
2. Setthe Name property to TextStatus.

3. Find the Panels property and press the "..." button at the right side of the value
box. This will display a new dialog box that allows adding and customizing panels
displayed in the status bar.

4. Press the Insert key three times to add three panels. The panel editor should look
as in the following image. You do not need to customize these panels, so just close the
dialog.

5 Editing TextStatus.Panels ﬁ
HH| 4o

0 - TstatusPanel
The currently defined status panels

Figure 3-17. Panel editor showing the list of added status panels

This concludes all customization you need to perform on your components.

Before proceeding with writing any code, save all the changes you have made to the
project, as follows. Click File > Save As and save the unit as TextEditor. Also, click
File > Save Project As and save the project as TextEditor_proj.

3-12 Getting Started with Delphi® and C++Builder® 2009

Coding responses to user actions in the Code Editor

Coding responses to user actions in the Code Editor

By following the instructions in this section, you will make your application interactive

and provide it with the functionality you want. You will code event handlers, that is, the

responses to clicking the various options in the main menu.

Before proceeding with writing any code, define the String variable, which you need

throughout the execution of the application to retain the name of the currently

opened text file. First make sure you are in Code Editor mode by selecting the Code

tab, next to the Design tab in the status bar. To toggle between Form Designer and

Code Editor mode, press F12.

In Delphi, define a String variable called CurrentFile in the private section of the

TTextEditorForm class, in the interface part, as in the following image.

5 TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor

File Edit Search View Refactor Project Run Component Tools Window Help R ° Defaultlayout

BEDN G- 8| @@ b~ | & & ML IR)

S\ structure LA TextEditor | (5] TextEditor_proj
=] Classes - EditCutl: TEditCut;
=} ﬂﬁaxEd\torFormU‘Form) EditCopyl: TEditCopy:
(P CurrentFile: String £ EditPastel: TEditPaste:
£ Published EditSelectalll: TEditSelectAll;

EditUndol: TEditUndo:
EditDeletel: TEditDelete:
FileOpenl: TFileCpen:
FileSaveAsl: TFileSavelds;

(P ActionMgr: TActionManager
(@ ActionMainMenuBar 1: TAct
() TextStatus: TStatusBar

(3 TextMemo: TMemo
FileExitl: TFileExit:

9 Editcuts: TEditCut . : P =} (5] TextEditor_proj.exe
i = s Hew: Thorion; 1 Build Configurations
Save: TAction; = (- [E] TextEditor.pas
#F Object Inspector Y FontEditl: TFontEdit:
TextEditorForm TTexEditorForm [=] Wordiirapl: TAction: Declaration of . = .
private .
Properties | Events B e atedeciaratsons/ i CurrentFile BTextEdi,., | TP Model .. | 4OData k...
> Action =] - CurrentFile: String:|
ActiveControl 3 public [Tool Palette B
Align aliane i { Public declarations i 'lik ‘ Q Search
AlignwithMargins |False end; [# Delphi Projects -
AlphaBlend False +/ Delphi Projects | Delphi Files
AlphaBlendvalue |255 s [+ Other Files
Sljpadocs Lskleft,2kTop] TextEditorForm: TTextEditorForm; [+ Unit Test 1
AutoScrol False = =
AutoSize False » " [l Web Documents
BiDiMode bdLeftToRight T [Delphi Projects | WebServices
[+)|BorderIcons [bisystemMenu, biMinim = . (# Delphi Projects | WebSnap
BarderStyle bsSizeable : {$R *.dfm} ~ | [@ Delphi Projects | WebBroker
BorderWidth 0 | B) ' | [Delphi Projects | VCL for the Web
Al shown @ 31: 25 Insert Code | Design History [+ Delphi Projects | ActiveX =

-l %S

< £ | P TextEditor_proj.dproj - Praject M... (72
“| B acivate ~ ENew [E2Remove
I Views « ‘

‘% sync fo Ewpand i Collapse

File
8 ProjectGroupl

Figure 3-18. Defining the CurrentFile private variable (Delphi view)

In C++, use the tabs at the bottom of the Code Editor window to display the
TextEditor.h file. Also declare the currentFile variable in the private section of

TTextEditorForm, as in the following image.

Starting your first RAD Studio application 3-13

Coding responses to user actions in the Code Editor

ﬁ TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditorh

[N =)

TEditUndo *EditUndol:
TEditDelete *EditDeletel:
TFileOpen *FileOpenl:

] Indudes
=@ TTextEditorForm |=

& ActionMgr TFileSaveRs *FileSaveAsl:
& ActionMainMenuBar 1 TFileExit *FileExitl:
& TextStatus TAction *New;
& TextMemo TAction *Save; Declaration of
& Editcutt TFontEdit *FontEditl; .
& EditCopy1 TAction *WordWrap; currentFile
& EditPastel - | private: #/ User dec ns
String currentFile;|
#E Object Inspector LI public: #/ User declarations
[Properties| _ fastcall TTextEditorForm(TComponent® Owner);

File Edit Search View Refactor Project Run Component Tools Window Help 3 @ Defaultlayout -| & &
Y @55 —y & @Y o
HEmNE-888&& b - | 5 & i - @
&\ Structure T2 | [} TextEditor.h
.M‘ E | 2w | TEditPaste *EditPastel;
TEditSelectAll *EditSelecthlll;
#-£ Macros -

sad

i

|| extern PACKAGE TTextEditorForm *TextEditorForm;

@ 40: 24 Insert Modified

TextEditor.cpp / TextEditor.h Design /{History

BTextedt... | %PModel view | #dDatz Ex...

i TextEditor_proj.chproj - Project Man... |11/
1 activate @3New (3 Remove
@ yiews v|

= Expand i Collapse
File
£ ProjectGroupl
= [F) TextEditor_proj.exe
(31 Build Configurations
TextEditor. op
TextEditor.cpp
(B TextEditor.dfm
TextEditor.h
TextEditor_proj.cpp
|| TextEditor_praj.res

| (T ’

#, Tool Palette a5
5 - | [Q search

I Delphi Projects -
+ Delphi Projects | Delphi Files

) Other Files

[+ Unit Test

i Web Documents =

Figure 3-19. Defining the currentFile private variable (C++Builder view)

Creating an event handler for the New command

You are now ready to define the responses to clicking the menu items. In the Form De-
signer, click File > New on the menu bar in your text editor form. Then select the
Events tab in the Object Inspector, as in the following image. Click the plus sign (+) to

expand the Action list if necessary.

#= Object Inspector
TActionClients[0] Tac

Properties |Events

Accessible
[=|Action New
¥ |OnExecute | E]
OnHint ¥ Double-click here to write the
OnUpdate code for the OnExecute event.
All shown

Figure 3-20. Opening the Events tab in the Object Inspector

3-14 Getting Started with Delphi® and C++Builder® 2009

Coding responses to user actions in the Code Editor

Double-click the edit box corresponding to the OnExecute event. The Code Editor

opens and displays the following function skeleton, using Delphi or C++Builder, re-

spectively.

5 TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor =HACET X
File Edit Search View Refactor Project Run Component Tools Window Help R ° Defaultlayout v| & &
HEB NP -8 ad; b -NE| s A IR,
&\ structure 73 | [TextEditor | (5] TextEditor_proj < £ | P TextEditor_proj.dproj - Praject M... (72
=1 Classes - “procedurs TTextEditorForm.NewExecute (Sender: TObject); “| 8 acvate - PBuew Eremove
= TTextEditorForm(TForm) [begin
(P CurrentFile: String iz Vews - ‘
£ Published - end;
(P ActionMgr: TActionManager B e Expand T Collapse
(@ ActionMainMenuBar 1: TAct Lend.
() TextStatus: TStatusBar File
() TextMemo: TMemo Z8 ProjectGroup1
(0 EditCut: TEditCut - =8 =) Texteditor_proj.exe
o = | = , Buid Configurations
TextEditor.pas
#F Object Inspector Y
TActionClients[0] TActo [=] Il | -
p— TBgrexti...| Frioae - | oame.. 1|
= ii;iismle o Hi][Tool Palette CIES
¥ |OnExecute NewExecute = B v | EH Q search
OnHint Delphi Projects 7
Kot = Delphi Projects | Delphi Files |7
Other Files £
Unit Test |
Web Documents g
| # Delphi Projects | WebServices
Delphi Projects | WebSnap
b S Delphi Projects | WebBroker
e - ' | i Delphi Projects | VCL for the Web
Al shown) 49: 28 Insert Modified Code | Design History Delphi Projects | ActiveX =

Figure 3-21. Automatic generation of the code skeleton for t

he OnExecute event (Delphi view)

Indudes

Fvoid _ fastcall TTextEditorForm::NewExecute (TObject *Sender)

{

g TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor.cpp [Built: 0.55 secs] SRR X
File Edit Search View Refactor Project Run Component Tools Window Help N = Defaultlayout v| &
BEHN® -89 @@;: b -NE & ML IR,
&\ structure EYES @T&x(fdltnrqu._ 7 i3 | P TexiEditor_proj.chproj - Project ... |13
yEslen N -

& TextEditorForm
© TTexteditorForm: :TTextEditorForm(1
-9 TTexteditorForm: :NewExecute({TObj

B actvate ~ E2New [Remove

e M] v
/= Object Inspector

TActionClients[0] T4cto

Properties [Events
Accessible
| Action Hew
»|onExecute NewExecute (7]
Ontint
OnUpdate
< [b
Al shown ’ o 22: 20 | Insert Modified '\ TextEditor. cpp / TextEditor b/ Design | History

Views -‘
B syne Expand o5 Collapse
File

& ProjectGroupl
=[5 TextEditor_proj.exe
o Build Configurations
= TextEditor.cpp
TextEditor.cpp
TextEditor.dfm
TextEditor.h
-[B] TextEditor_proj.cpp
|| TextEditor_proj.res

m

Cal m +

BoTextedi... | HModel ... | fDatak...
H[Tool Palette 73

B 'HEH Q, search
Delphi Projects
Delphi Projects | Delphi Files [

Web Decuments

Figure 3-22. Automatic generation of the code skeleton for the OnExecute event (C++Builder view)

Starting your first RAD Studio application 3-15

Coding responses to user actions in the Code Editor

Now write the code that executes when the user selects File > New, inside the code
skeleton previously generated, as in the following lines of code.

procedure TTextEditorForm.NewExecute (Sender: TObject);
var
UserResponse : Integer;
begin
if TextMemo.Lines.Count > 0 then
begin
UserResponse := MessageDlg(
'This will clear the current document. ' +
'Do you want to continue?', mtInformation,

mbYesNo, 0);

if UserResponse = mrYes then
begin
TextMemo.Clear;
CurrentFile := '';
end;
end;

end;

void _ fastcall TTextEditorForm: :NewExecute (TObject *Sender)
{
if (TextMemo->Lines->Count > 0)
{
int userResponse = MessageDlg(
String("This will clear the current document. ")
+ "Do you want to continue?", mtInformation,

TMsgDlgButtons () << mbYes << mbNo, 0);

if (userResponse == mrYes) {
TextMemo->Clear () ;

currentFile = "";

3-16 Getting Started with Delphi® and C++Builder® 2009

Coding responses to user actions in the Code Editor

Creating the event handlers for the Open command

Return to the form and double-click the OnAccept event of the File > Open item and
write the code displayed below.

procedure TTextEditorForm.FileOpenlAccept (Sender: TObject);
var
FileName: String;

begin
FileName := FileOpenl.Dialog.FileName;
if FileExists(FileName) then
begin
TextMemo.Lines.LoadFromFile (FileName) ;
CurrentFile := FileName;
Self.Caption := 'Text Editor - ' + ExtractFileName (FileName) ;
end;

end;

void _ fastcall TTextEditorForm::FileOpenlAccept (TObject *Sender)
{
String fileName = FileOpenl->Dialog-—>FileName;
if (FileExists(fileName)) {
TextMemo—->Lines—>LoadFromFile (fileName) ;

currentFile = fileName;
this->Caption = "Text Editor - " + ExtractFileName (fileName) ;

Starting your first RAD Studio application 3-17

Coding responses to user actions in the Code Editor

Creating the event handlers for the SaveAs command

Double-click the OnAccept event of File > SaveAs and write the following code.

procedure TTextEditorForm.FileSaveAslAccept (Sender: TObject);
var
FileName: String;

UserResponse : Integer;
begin
FileName := FileSaveAsl.Dialog.FileName;

if FileExists (FileName) then
begin
UserResponse := MessageDlg(
'File already exists. ' +
'Do you want to overwrite?', mtInformation,
mbYesNo, 0);
if UserResponse = mrNo then
Exit () ;
end;

TextMemo.Lines.SaveToFile (FileName) ;

CurrentFile := FileName;
Self.Caption := ExtractFileName (FileName) ;
end;

void _ fastcall TTextEditorForm::FileSaveAslAccept (TObject *Sender)
{

String fileName = FileSaveAsl->Dialog->FileName;

if (FileExists(fileName)) {
int userResponse = MessageDlg(
String("File already exists. ") +
"Do you want to overwrite?", mtInformation,
TMsgDlgButtons () << mbYes << mbNo, 0);
if (userResponse == mrNo) {

return;

TextMemo—>Lines—->SaveToFile (fileName) ;
currentFile = fileName;
this->Caption = ExtractFileName (fileName) ;

}

3-18 Getting Started with Delphi® and C++Builder® 2009

Coding responses to user actions in the Code Editor

Creating the event handlers for the Save command

Double-click the OnExecute event of File > Save and write the following lines of code.

procedure TTextEditorForm.SaveExecute (Sender: TObject);
begin
if CurrentFile = '' then
Self.FileSaveAsl.Execute ()
else
TextMemo.Lines.SaveToFile (CurrentFile) ;

end;

void __ fastcall TTextEditorForm: :SaveExecute (TObject *Sender)
{
if (currentFile == "") {
this->FileSaveAsl->Execute () ;
}
else {
TextMemo—->Lines—>SaveToFile (currentFile) ;

Starting your first RAD Studio application 3-19

Coding responses to user actions in the Code Editor

Creating the event handlers for the Font command

Double-click the OnAccept event of Format > Font and write the following code.

procedure TTextEditorForm.FontEditlAccept (Sender: TObject);
begin

TextMemo.Font := FontEditl.Dialog.Font;
end;

void _ fastcall TTextEditorForm: :FontEditlAccept (TObject *Sender)

{
TextMemo->Font = FontEditl->Dialog->Font;

Creating the event handlers for the Word Wrap command

Next, double-click the OnExecute event of Format > Word Wrap and write the follow-

ing code.

procedure TTextEditorForm.WordWrapExecute (Sender: TObject);

begin
{ Toggle the word wrapping state. }
TextMemo.WordWrap := not TextMemo.WordWrap;
WordWrap.Checked := TextMemo.WordWrap;

if TextMemo.WordWrap = True then
{ Only vertical scrollbars are needed when word wrapping is set. }

TextMemo.ScrollBars := ssVertical
else
TextMemo.ScrollBars := ssBoth;

end;

void _ fastcall TTextEditorForm: :WordWrapExecute (TObject *Sender)
{
{ Toggle the word wrapping state. }
TextMemo—>WordWrap = !TextMemo->WordWrap;
WordWrap—->Checked = TextMemo->WordWrap;
if (TextMemo->WordWrap == True) {
{ Only vertical scrollbars are needed when word wrapping 1is set. }
TextMemo—->ScrollBars = ssVertical;
}
else {
TextMemo—->ScrollBars = ssBoth;

3-20 Getting Started with Delphi® and C++Builder® 2009

Coding responses to user actions in the Code Editor

Creating event handlers for the status bar

Finally, use the status bar to display the current cursor position and also the number of
lines of the currently opened text file. To do this, double-click the OnMouseDown
event of the TextMemo component and write the following code, in Delphi and C++
respectively. The CaretPos property is used to indicate the coordinates of the caret in-
side the text memo box.

procedure TTextEditorForm.TextMemoMouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
TextStatus.Panels.Items[0].Text :=
'L: ' + IntToStr (TextMemo.CaretPos.Y + 1);
TextStatus.Panels.Items[1l].Text :=
'C: ' + IntToStr (TextMemo.CaretPos.X + 1);
TextStatus.Panels.Items[2] .Text :=
'Lines: ' + IntToStr (TextMemo.Lines.Count) ;

end;

void _ fastcall TTextEditorForm: :TextMemoMouseDown (TObject *Sender,
TMouseButton Button, TShiftState Shift, int X, int Y)

TextStatus—->Panels->Items[0] —>Text =

"L: " + String (TextMemo->CaretPos.y + 1);
TextStatus—->Panels->Items[l]->Text =

"C: " + String (TextMemo->CaretPos.x + 1);
TextStatus—->Panels->Items[2]->Text =

"Lines: " + IntToStr (TextMemo->Lines->Count) ;

Next, double-click the OnKeyDown event of TextMemo and write the code below. The
OnKeyDown event is triggered whenever you press a key inside the text memo box.

procedure TTextEditorForm.TextMemoKeyDown (Sender: TObject;
var Key: Word; Shift: TShiftState);

begin
TextMemoMouseDown (Sender, mbLeft, Shift, 0, 0);

end;

void _ fastcall TTextEditorForm: :TextMemoKeyDown (TObject *Sender,
WORD &Key, TShiftState Shift)

TextMemoMouseDown (Sender, mbLeft, Shift, 0, 0);

Starting your first RAD Studio application 3-21

Coding responses to user actions in the Code Editor

Compiling and running the application

Before you can actually see your application running, you must first compile it. To com-
pile your application, press SHIFT-F9 or select Project > Compile. You then see a dia-
log box displaying the progress of the compilation. If your application contains any
syntactical errors, you will have to correct them and then recompile.

- Bun Component Tools Windc

{®] Addto Project... Shift+F11

= Remove from Project...

I

ﬁ° Add to Repository...

Languages »

X

Wiew Source

Add MNew Project...
Add Existing Project...

3wt ([

Compiles the project
Together Support... e P prel

=% Compile TextEditor_proj Ctrl+F9
%: Build TextEditor_proj Shift+F2
[Syntax check TextEditor_proj \—— Builds the entire project
@ Information for TextEditor_proj
&+ Compile all projects
gg: Build all projects
Resources...
Configuration Manager...
Options... Shift+ Ctrl+F11

Figure 3-23. Project menu options for compiling and building the project

Compiling
Project: C:\... Projects\Delphi{TextEditor_praj.dpr
Done: Compiled.
Current line: 0 |Total lines: 16
Hints: 0 |Warnings: 0 |Errors:]
[] Automatically dose on successful compile

Figure 3-24. Dialog showing the success of compiling the application

-

Compiling

Project: C:\... \Projects\Delphi\TextEditor_proj.dpr

Done: Build All
Current line: 0 | Total lines: 166
Hints: 0 |Warnings: 0 |Errors: [}

[Automatically dose on successful compile

Figure 3-25. Dialog showing the success of building the application

3-22 Getting Started with Delphi® and C++Builder® 2009

Debugging the application

After you compile the application, you can see how it behaves at run time. Press F9 or
click Run > Run to run your application in debug mode.

- Component Tools Window Help 3 Choose this option to run the application.
B Run i]
! Run Without Debugging Shift+Ctrl+F3

_____ Parameters...

{0k Load Process...
y Attach to Process...

‘s Step Over F8
& Tracelnto F7
’gi Trace to Next Source Line Shift+F7
3 Run to Cursor F4

Evaluate/Modify... Ctrl+F7
33 Add Watch... Ctrl+F5
Add Breakpoint 3

Figure 3-26. Running the application from the Run menu

There are a few other options available, but those options are beyond the scope of
this book.

Note: You can directly run the application without compiling it first. RAD Studio auto-
matically detects whether compilation is required and compiles the project if neces-
sary.

Even if the application successfully compiles and runs, it might still not perform as you
intended. The next section in this chapter, called “Debugging the application”, de-
scribes how to use some of the RAD Studio debugging features to rapidly find and fix
bugs.

Debugging the application

To get a glimpse of the basic debugging features in RAD Studio, first set a breakpoint
on the first line of the FileSaveAs1Accept function, by clicking on the bar at the left of
the line of code.

Starting your first RAD Studio application 3-23

Debugging the application

The Code Editor window should look like the following image.

procedure TTextEditorForm.FileSavelAslhccept (Sender: TCbject):

var
FileName: String:
UserResponse : Integer;
> begin
FileName := FileSaveasl.Dialog.FileName:
> if FileExists (FileName) then
. . . begin
Breakpoint on the first line ° CaerResponse i= MessageDld|(
of the procedure 'File already exista. ' +
'Do you want to overwrite?', mtInformation,
mbYesNao, 0);
> if UserResponse = mrNo then
Exit()»
end;
L] TextMemo.Lines.SaveToFile (FileName) ;
L CurrentFile := FileName;
@ Self.Caption := ExtractFileName (FileName):
L end;
procedure TTextEditorForm.FontEditlAccept (Sender: TCbject):
L] begin
> TextMemo.Font := FontEditl.Dialog.Font;
L end;

Figure 3-27. Debugging the FileSaveAs1Accept procedure (Delphi code)

void _ fastcall TTextEditorForm::FileSavelhslhccept (TObject *Sender
{
String fileName = FileSave@sl->Dialog->FileName;

if (FileExists (fileName)) {
int userResponse = MessageDlg|
String("File already exists. ") +
of the function "Do you want to overwrite?", mtInformation,
TMsgDlgButtons () << mb¥Yes << mbNo, 0):
if (userResponse == mrNo) {
return;

Breakpoint on the first line

TextMemo->Lines->SaveToFile (fileName) ;
currentFile = fileName;
this->»Caption = ExtractFileName (fileName) ;

void _ fastcall TTextEditorForm::SaveExecute (TObject *S5ender)
{
if (currentFile == "") {
this->FileSavelsl->Execute();

else {
TextMemo->Lines->3aveTloFile (currentFile);

Figure 3-28. Debugging the FileSaveAs1Accept function (C++Builder code)

3-24 Getting Started with Delphi® and C++Builder® 2009

Debugging the application

Press F9 to run the application, write something in the text box of the text editor and

click File > Save As. Name your text file, making sure that a file with the same name
does not already exist at the current location. After clicking Save, the application
should stop at the breakpoint you have previously set, and the code editor window

should display as in the image below.

The currently executing line of
code in the debugging process

Lines of code that may execute
during the debugging process

procedure TTextEditorForm.FileSavehslAccept (Sender:
var

ICbject);

String:
: Integer;

FileName:

UserResponse
begin

FileName := FileSaveAsl.Dialog. FileName;l

if FileExists(FileName) then

_\;
begin

L] UserResponse = MessageDlg|
'File already exists. " +
'Do you want to overwrite?', mtInformation,
mb¥esNo, 0);
@ if UserResponse = mrHo then

Exit():

end;

TertMemo.Lines.SaveToFile (FileName) ;
:= FileName;
:= ExtractFileName (FileName) ;

CurrentFile
Self.Caption
end;

procedore ITextEditorForm.FontEditl&cecept (Sender: TChject):
begin

TextMemo.Font := FontEditl.Dialog.Font;

Figure 3-29. Application stopping at the specified breakpoint (Delphi view)

To see the value of the FileName variable, select the FileName word in the first line of
FileSaveAs1Accept and drag it to the Watch List, as in the following images.

The FileName variable is now
added to the Watch List.

B TextEditor_proj - CodeGear RAD Studio for Microsaft Windows - TextEditor [Stopped - Thread 2528]

=) (5 S|

File Edit Search View Refactor Project Run Component Tools Window Help 3 | Debuglayout ~| & &
BNEBNR-B @S| SEEP - NE| 5 % S
95 Cal Stack - Thread 2528 B TextEditor {) TextEditor_proj @8
& TextEditor TTextEdtorForm.FleSaveAs] = A
© :0045h0a7 TCommonDialogAction DoAcc || procedure TTextEditorForm.FileSavehsliccept (Sender: TObject):
© :004885ad TCustomForm. CMACtiorExea | = | T
© :0046bc73 TControl.wndProc +$205 | | FileName: String;
© 00470 18c TWinControl.WndProc + 851 UserResponse : Integer:
@ 00483ced TCustomForm.WndProc + $5' ° begin
& L0JbB TConlrok Perform; 1627 := FileSaveAsl.Dialog.FileName;
© :0048dbfc TAppiication DispatchAction +
© :0042bd02 StdWndProc + $16 . if FileE FileN th K
© :761c1210 USER32. GetMessagell + Ox€ = iEsEileRalats/{Fll cName)than) 3
begin
G Watch List - Thread 2528 mE) (e UserResponse := MessageDlg(
Watch Name Value 'File already exists. ' +
N FileName ‘Do you want to overwrite?', mtInformation,
mb¥esNo, 0)7
° if UserResponse = mrNo then
Exit():
| Lwatches| en

%5 Locol Variables -Thread 2528 @ |e TextMems.Lines.SaveToFile (FileName) ; o

« v
TextEditor. TTextEditorForm, FieSaveAs1Ac ~.
Code Design History

@ 718 Insert

'PE] EventLog

[Thread Start: Thread ID: 5592, Process TextEditor_proj.exe (1956)

Module Load: urimon.di, Mo Debug Info, Base Address: $75F70000, Process TextEditor_prej.exe (1956)
Thread Exit: Thread I0: 5592, Process TextEditor_proj.exe (1956)

Module Unload: XmLite.dl. Process TextEditor_proj.exe (1356)

Thread Exit: Thread ID: 4852. Process TextEditor_proj.exe (1956)

SelphilTexEditor.pasfine 71. Pr extEditor_proj.exe (1956)

g TextEditor_proj.dproj - Project Mana... | 7123

B actvate ~ 2new 5 Remove

@ vews |
5 snc fmEwand s Colapse

File

| 5% ProjectGroup1

- [3) TextEditor_proj.exe
@) Buid Configurations
& [B) TextEditor.pas

s kpoint at. 00485 15 jucanb Documentz\RAD Studio Proje
‘EJEventLog| &breakpont List| FaThread Status

Figure 3-30. Dragging the FileName variable to the Watch List (Delphi view)

Starting your first RAD Studio application 3-25

Debugging the application

') TexiEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor.cpp [Stopped - Thread 4384] [Built: 0.06 secs] =)
File Edit Search View Refactor Project Run Component Tools Window Help 3 @ Debuglayout - | & &
s —— 2 s . vy o
BEBNS -S| SS S -NE| 5 F s - @
5 Call Stack - Thread 4384 75 | [TextEditor.cop w22 | B TextEditor_proj.coproj - Project Man... |71/52
& 00402072 TTextEditorForm: FleSaveAs | BT ~ -
= Activate ~ ElNew [Remove
© :501bd607 vdl120. @Stdactns@TCommoi || | @ -jvoid _ fastcall TTextEditorForm::FileSavehslAccept (TObject *Sender) B & Blew &
© :501f5c1d vd 120, @Forms @TCustomFor |= { e v|
@ :501d0c1l; Ci\Windows\system32WvdLl | | | @ = FileSavehsl->Dialog->FileName; .
© 1501d5230 ; C:Windows'system32ivel = . e
” . . Sync 4 Expand Collapse
3 ‘sulgulag,i\\nﬂndows\syft&m}l\vdlﬁ @ if (FileExists(fileName)) { g Syn [##] Expal lap:
© :501d0837 vdl120. @Contols@TControlc | o . e e
© :501fbab4 vd120. @Forms@TApplication N R
© 150058932 rti120, @Classes@TDatabodt i o N B ProjectGrow1
@ :761c1a10 USER32.GetMessageW + Ot |~ oiyouivantitotoveryeite sy imintormaton __| =+ @) TextEditor_proj.exe
® TMsgDlgButtons () << mb¥es << mbNo, 0); 43 Build Confiuratons
% Watch List - Thread 4334 sz | @ - if (userResponse == mrNo) { 5B Textdtor.cop
Watch Name value 1® return;
fileName: {"OfF ErfE} i H : TextEditor.dfn
&) :
% - [B) TextEditor.h
° TextMemo->Lines->SaveToFile (fileName) ; TextEditor_proj.cop
W:O currentFile = fileName;] TextEditor_proj.res
® this->Caption = ExtractFileName (fileName);
V8 Local Variables - Thread 4384 073 5 |) 183 -
L
200402072 TTextEditorForms:FilesaveAs 14 v | - — .
7 16 Insert TextEditor.cpp TextEditor.h | Desian | History | = I ,
'] EventLog B
Thread Start: Thread ID: 5784, Process TextEditor_proj.exe (5216) -
Module Load: Lrimon. dl. No Debug Info. Base Address: $75F70000. Pracess TextEditor_proj.exe (5216)
Thread Exit: Thread ID: 5784, Process TextEditor_proj.exe (5216)
WModule Unload: xmiLite.dl. Procass TextEditor_proj.exe (5216) |
Thread Exit: Thread ID: 5140. Process TextEditor_proj.exe (5216)]
ent Log | 8 Breakpoint List | @ Thread Status

Figure 3-31. Dragging the fileName variable to the Watch List (C++Builder view)

Press F8 to advance to the following line of code, so that the value of FileName is up-
dated. To expand the value of FileName, hover the mouse cursor over its label in the
Watch List and wait.

The result should look as in the following images.

g TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor [Stopped - Thread 2528]

File Edit Search View Refactor Project Run Component Tools Window Help J@ @ Debuglayout - | & &

AEHmNh -8 88 Ea; e - El 58 i€-% - &
45 Call Stack - Thread 2528 (s3] Texfdwf TextEditar_proj 2 l£3 Q TextEditor_proj.dproj - Project Mana... |1/ 53

:0048dbfc TApplication. DispatchAction +
10042502 StdWndProc + $15
1761c1a10 USER32. GetMessageW +0xt ~

2% ProjectGroupl
EF () TextEditor_proj.exe
4 Build Configurations

% TextEditor. TTextEditorForm FileSaveAs1 A & actvete - BRrew ESr

ind ctivate + 2 New emove
@ :0045h0a7 TCommorDialogAction. DoAcc -|procedure TTextEditorForm.FileSaveAslAccept (Sender: TObject): = =
© :004385ad TCustomForm, CMACtionExec var e ,|
© 0046579 TControl. WndProc + §205 FileName: String: -
© 0047018 TWinControl.WndProc + 85

UserResponse : Integer: 7

© :00483ced TCUstomForm.WindProc + 551 70]| begin & gne o Bpand [Colapse
g FileName FileSaveAsl.Dialog.FileName: File
o
o

L)
100465803 TContral.Perform + $27 re
&

if FileExists(FileName) then
begin

tch List - Thread 2528 UserResponse := MessageDlg(
Nome . Vake | 'File already exists. ' +

G C: sersudanb Documents Helloviord bt} 'De you want te overwrite?', mtInformaticn,

mb¥esNo, 0):

® if UserResponse = mrNo then
80 Exit ()
- d:
Watches 1 =

% Locel Variables - Thread 2528 @l - TextMemo.Lines.SaveToFile (FileName) ; o

K 3
[TextEditor. TTextEditorForm. Fiesaveasiac v | —— - |

; 73 1 Imsert Code /Design History El —— i

'] Event Log EIES
Thread Start: Thread ID: 5582, Process TextEditor_proj.exe (1956) o

Module Load: uriman. dil. No Debug Info. Base Address: $75F 70000, Pracess TextEditor_proj.exe (1356)
Thread Exit: Thread ID: 5592, Process TextEditor_proj.exe (1955)

WModule Unload: XmiLite . Procsss TextEditor_proj.exs (1956)

Thread Exit: Thread ID: 4852. Process TextEditor_proj.exe (1356)

Figure 3-32. Advancing to the next line of code to change the value of FileName (Delphi view)

3-26 Getting Started with Delphi® and C++Builder® 2009

Debugging the application

) TextEditor_proj - CodeGear RAD Studio for Microsaft Windows - TextEditor.cpp [Stopped - Thread 4384] B =)
File Edit Search View Refactor Project Run Component Tools Window Help 3 = Debuglayout -| & &
HEBNH -S| SSIHSi e -NE s8¢ -3 |&

97| Cal Stack - Thread 4364 12 [[B] Texteditor.cop = 22| P TextEditor_proj.chproj - Project Man... |72

& :0040208E TTextEditorForm::FleSaveAs ~ | Bl 1 a0
= ctivate ~ E2New emave
© :501bd607 vel120. @Stdactns@TCommar [] | @ void _ fastcall TTextEditorForm::FileSaveAsliccept (TObject *Sender) = =
© 1501f5c1d vd 120, @Forms @TCustomFor |= { e v|
© :501d0cil; C:\Windows\system32\vdL | | |@ - String fileName = FileSaveAsl->Dialog->FileName; -
© 1501d52a0 ; C:\Windows'system32ivel T
© :5010f28 ; C:\Windowsleystem32vdiz | FE (DR AR % gync fm Expand Fi Colapse
© :501d0837 vdl120. @Controls@TControlc | o . =
int userResponse = MessageDlg([Fie
© :501fbab4 vdl120. @Forms @TApplcation e T I
© 150058932 rti120, @Classes@TDatabodt i o N ‘; 8 ProjectGroup1
@ :761c1a10 USER32.GetMessageW +Oxé ~ oiyouivantitotoveryeite sy imintormaton __| =+ @) TextEditor_proj.exe
° TMsgDlgButtons () << mb¥es << mbNo, 0); £ Buid Configurations
= ° if (1 -
2 Watch Uit - Thread 4384 3 if (userResponse mrNo) { 5B Textdtor.cop
Watch Name value ® return;
fleName 7 z
“C:\\Users\judanb\Pocuments\Helloworld. bt TE"‘E:"”':"”
3 TextEditor.
° TextMemo->Lines->SaveToFile (fileName) ; TextEditor_proj.cop
Mwatches @ currentFile = fileName;] TextEditor_proj.res
® this->Caption = ExtractFileName (£ileName);
T Local Variables - Thread 4384 BE | 1 -
‘< L
20040208 TTextEditorForme:FilesaveAs 14 v |
20 1 Insert TextEditor.cpp TextEditor.h / Design /History | o i -
'] EventLog EYES
Mocdule Load: urimon.dl. No Debug Info. Base Address: $75F 70000, Process TextEditor_proj.exe (5216) -

Thread Exit: Thread ID: 5784, Pracess TextEditor_proj.exe (5216)
Module Unload: XmiLite.dl, Process TextEditor_proj.exe (5216)
Thread Exit: Thread ID: 5140, Process TextEditor_proj.exe (5215)

rojects\C +-+Buide

\TexiEditor.cpp line 47. Process TexiEditor_proj.exe (5215)

Figure 3-33. Advancing to the next line of code to change the value of FileName (C++Builder view)

Pressing F8 once more jumps over the if statement, since a file with the given name
does not already exist at the current location. The screen should now look like the fol-
lowing images.

B TextEditer_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor [Stopped - Thread 2528]
File Edit Search View Refactor Project Run Component Tools Window Help J@ @ Debuglayout - | & &
o E—— ———— T— .
AEE N R-8|82 a8k -NE| s ¢« - - &
45 Call Stack - Thread 2528 (s3] TextEditor | |F] TextEditor_proj 2 l£3 Q TextEditor_proj.dproj - Project Mana... |1/ 53
% TextEditor. TTextEditorForm FleSaves] » | = -
Activate v [E2New [Remove
© :0045b087 TCommonDialogAction. DoAcc Jprocedure ITTextEditorForm.FileSaveAslAccept (Sender: TObject): E & lg’ &
© :004885ad TCustomForm,CMActionExea e — '|
seemnieeges rutatuse: secing ’
o ic finControl.WndProc + $:
UserResponse : Integer: g
© :00485ced TCustomForm WindProc +85 | g | pogyy % gnc fow Ewpand i Colapse
& S00schEs ot Berfom;- $2 & FileName := FileSaveAsl.Dialog.FileName: Fie
© :0048dbfc TApplication.DispatchAction +
@ :0042bd02 StdWndProc + $15 - s s = 25 Projecteroup1
o :761cia10 USER32.GetMessageW +0xt ~ 1‘) Filefxista(FileName) then £ {§ TextEditor_proj.exe
egin 4 Build Configurations
@ Watch List - Thread 2528 qE | . UserResponse := HessageDlg(T
Watch Name Value 'File already exists. ' +
FileName ‘C:\UsersWucianb'p... 'Do vou want to overwrite?', mtInformation,
nbYesNo, 0):
® if UserResponse = mrNo then
: Exit();
c d:
Watches b
% Local Variables - Thread 2528 7 & TextMemo.Lines.SaveToFile (FileName) ; e
<[] L3
[TextEditor. TTextEditorForm. Fiesaveasiac v L~ =
; ') & 1 |maat Code /Design Hstory 7 i] v
'] Event Log EIES
Thread Start: Thread ID: 5582, Process TextEditor_proj.exe (1956) ~
Module Load: Lriman. dl. No Debug Info. Base Address: $75F70000. Pracess TextEditor_proj.exe (1956)
Thread Exit: Thread ID: 5592, Process TextEditor_proj.exe (1956)
Module Unload: xmiLite.dl. Procass TextEditor_proj.exe (1956)
Thread Exit: Thread ID: 4852. Process TextEditor_proj.exe (1356)
reakpoint List | @Thread Status

Figure 3-34. Jumping over the if statement (Delphi view)

Starting your first RAD Studio application 3-27

Debugging the application

') TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditorcpp [Stopped - Thread 4384]

=)

Thread Exi
[Th

File Edit Search View Refactor Project Run Component Tools Window Help 5 @ Debuglayout ~| & &
5 Sy . o, s é 5
BED N E-82BS; s -NE| a4 - » &
45 Call Stack - Thread 4384 ez TextEditor.cpp
& 100402177 TTextEditorForm: FileSaveds « ’r
© :501bd607 vd120. @Stdactns@TCommor || | @ _ fasteall TTextEditorForm: :FileSaveAslhccept (ICbject *Sender)
© :501f5c1d vel120, @Forms @TCustomFor | = ¢
© :501d0c11; C:\Windowssystem32vdll | | | @ String fileName = FileSaveAsl->Dialog->FileName;
© :501d52a0 ; C:\Windows\system32\vd1
© :501f0fad ; C:\Windows'system32ivd 12 @ if (FileExists(fileName)) {
© :501d0837 vd120, @Controls@TControlt | g R B
© :501fbab4 vdl120. @Forms @TApplication AN R R
© :5005893a 120, @Classes@TDataMod: S - i T
© :761c1a10 USER32.GetMessageW +Dxé ~ afyouiuanti tolavernrrte i jms Intormationy,
THMsgDlgButtons () << mb¥es << mbNo, 0):
4 Watch List - Thread 4334 o | e if (userResponse == mrNo) {
Watch Name Value @ ety
fileName {°C:Wsers\jucan... |]
. }
& | Lin ile (fileName) ;
. currentFile = fileName:
Watches N _ . .
@ this->Caption = ExtractFileName (filsName);
V&) Local Variables - Thread 4334 ez |® 3
<l b
200402177 Trex 1 v = — - -
@ = 1 |imsert TextEditor.cpp TextEditor.h /Design | History |
T] EventLog
Thread Exit: Thread ID; 5140, Process TextEditor_proj.exe (5216)
Source Breskpoint at $00402072; Cr\Usersiudant\Documents\RAD Studio|Projects\C ++5uilder TextEditor. cpp line 47, Process TextEditor_proj.exe (5216)
Thread Exit: Thread ID: 4828. Process TextEditor_proj.exe (5216)
Thread Start: Thread ID: 5328, Frocess TextEditor_proj.exe (5216)
4950, Process TextEditor_proj. exe (5216)

fig TextEditor_proj.cbproj - Project Man... | /52

B actvate » E2New [Remove
Views v|

E sync Expand (i Collapse
File

% ProjectGroupl
(3] TextEditor_proj.exe
4 Build Configurations
EH [El] TextEditor.cop
TextEditor.cpp
TextEditor.dfm
TextEditor.h
TextEditor_proj.cpp
| TextEditor_proj.res

Lalbd

vent Log | 9 Breakpoint List | $AThread status

Figure 3-35. Jumping over the if statement (C++Builder view)

Press F8 until you get to the last line of the FileSaveAs1Accept function. Now move
the mouse cursor over the name of the CurrentFile variable to instantly view its value,

as in the following images.

g TextEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor [Stopped - Thread 2528]

[N =)

File Edit Search View Refactor Project Run Component Tools Window Help § = Debuglavout -| & &

BEB N - B8 ES e -NE 58 €% - &
Y] Call Stack -Thread 2528 722 | [B Texteditor | (5] TextEditor_proj

% TextEditor. TTextEditorForm, FlesaveAs] o begin
@ :004500a7 TCommonDialogAction.DoAcc [| | @ UserResponse := MessageDlg|(
:004885ad TCustomForm. CMActionExea | £ 'File already exists. ' +

20046075 TContral WndProc + $2D5
:0047018c TWinControl. WndProc + $51¢
:00433ced TCustomForm. WndProc +$5 | o
:004608b3 TControl.Perform + $27

:0048dbfc TApplication. DispatchAction +
200420402 StdWndProc + $15

© :761c1a10 USER32.GetMessageW +0xt ~

'Do you want to overwrite?', mtInformation,
mbYesNo, 0);
if UserResponse = mrNo then
Erit ()
end;

scoo0 000

@ TextMemo.Lines.SaveToFile (FileName) ;
%§ Watch List - Thread 2528 sz | @ CurrentFile Filelame;
Watch Name Value & Currentfile | ‘C:\Jsers\ucanbiDocuments HelloWorld. et JId
FileName 'C:\JsersYucianb\p... | ¥ endr

procedure TTextEditorForm.FontEditlAccept (Sender: TObject);
begin
TextMemo.Font

®®

:= FontEditl1.Dialog.Font:

Watches &

V& Local Variables - Thread 2523)

end;

[Textfdimr.'rrautfdimrFurm FileSaveAs 1Ac v]

85 1 Insert ', Code / Design History |

'] EventLog

| Thread Start: Thread ID: 5552. Process TextEditor_praj.exe (1956)

Module Load: urimon.dll. No Debug Info, Base Address: $75F70000. Process TextEditor_proj.exe (1958)
Thread Exit: Thread ID: 5592, Process TextEditar_proj.exe (1956)

Module Unload: XmlLite.dll. Process TextEditor_proj.exe (1955)

Thread Exit: Thread ID: 4852, Process TextEditor_proj.exe (1956)

f

ki

i TextEditor_proj.dproj -Project Mana... (%53
B Actvate ~ Z2New 3 Remove
Views v|

G==‘.> Sync

Expand fg Collapse

File

8 ProjectGroupl

- (3] TextEditor_proj.exe
3 Build Configurations

TextEditor.pas

I3

“Blevent Log | B reskpont List | EThread Status

Figure 3-36. Viewing the value of CurrentFile (Delphi view)

3-28 Getting Started with Delphi® and C++Builder® 2009

Debugging the application

B TexiEditor_proj - CodeGear RAD Studio for Microsoft Windows - TextEditor.cop [Stopped - Thread 4384]

[N =)

File Edit Search View Refactor Project Run Component Tools Window Help 3 = Debuglayout -| &8
BEB N - B8 ES b -NE 58 €% - &
5 Call Stack - Thread 4384 752 | [Textditor.cop

22| [TextEditor_proj.chproj - Project Man... (153

value
FleName {£°C:\Wsers\udan... H
.

'] EventLog
Thread Exit: Thread ID: 5140, Process TextEditor_proj.exe (5216)
Source Breakpoint at $00402072: C: WsersWudanb\Pocuments\RAD Studic\Proj
read ID: 4828, Process TextEditor_proj.exe (5215)
Thread Start: Thread ID: 5328, Process TextEditor_proj.exe (5216)
read ID: 4360. Process TextEditor_proj.exe (5215)

t5\C +-+Builder\TextEditor. cpp line 47. Process TextEditor_proj.exe (5216)

& :00402146 TTextEditorForms:FileSaveds » | £ actvote - Bhew En

i ctivate ~ E2New emove
© :501bd607 vdl120. @Stdactns@TCommoi | | | @ void _ fastcall TTextEditorForm::FileSaveAsliccept (TObject *Sender) = =
@ 1501f5c1d vdl120. @Forms @TCustomFor | & { B views v|
) :501d0c11;C:\Wmdo‘A'S\svsbemﬂ\Vd1‘L @ String fileName = FileSaveAsl->Dialog->FileName; -
© 1501d5230 ; C:Windows'system32ivel =
© 1501029 ; C:\Windowssystem3azivdl1z | o o EISTE S (ESEET, © % gync fm Expand Fi Colapse
© :501d0837 vdl120. @Controls@TControlc | o e Dy B =
© :501fbab4 vd120. @Forms@TApplication N R
© 150058932 rti120. @Classes@TDatabodt i - N B ProjectGrow1
@ :761c1a10 USER32.GetMessageW +Oxé ~ oiyouivantitotoveryeite sy imintormaton (- (] TextEditor_proj.exe

° TMsgDlgButtons () << mb¥es << mblo, 0); - Buld Confiquratons

% Watch List - Thread 4334 e | @ if (userResponse == mrNo) { = extEditor. cpp
Watch Name ® Deturn:

. TextMemo->Lines->SaveTaFile (fileName) ;
L] i = i .

B — currentFile — fileName;
& | currentFie | { Cr\\Users\fudanbDocuments\HelloWorld.bt” 3|

T Local Variables - Thread 4384 BE |
(=

200402146 TTextEditorForm: FiesaveAsta v | -——

— ™ ok 1 |memt TextEcitor.cop TextEitor.h Design | History

TextEditor.dfm
TextEditor.h
TextEditor_proj.cpp
|| TextEditor_praj.res

T G

EiEd

Figure 3-37. Viewing the value of CurrentFile (C++Builder view)

To end the debugging session, press the stop button on the Debug toolbar, also dis-

played in the following image.

£y

7]

| & & &

_ Click here to stop debugging the application.

b~

o]

Figure 3-38. The Debug toolbar

Starting your first RAD Studio application 3-29

Debugging the application

3-30 Getting Started with Delphi® and C++Builder® 2009

More Advanced Topics

VCL and RTL

As seen in the previous chapters, CodeGear™ RAD Studio 2009 offers a powerful Inte-
grated Development Environment that makes building native Windows applications
extremely easy. The Visual Component Library (also known as VCL) offers a large num-
ber of visual and nonvisual components that can be used to build almost any desired
user interface. Besides the VCL, RAD Studio provides an extensive library of routines
and classes, called the Run Time Library (known as RTL), that provides the common
functionality needed in all applications.

This chapter lists the most important classes, data types, and functions that can be
found both in the VCL and RTL.

The most important components of the VCL are:

e Astandard set of components that include all controls provided by the Windows Ul
framework. This set consists of components such as buttons, edits, menus, and so
on. The VCL also extends some of these controls, offering you even more function-
ality than is normally provided by the Windows controls.

* An extended set of components not normally present in the Windows Ul frame-
work. These components are built on top of the standard set.

e Actions, which is a key concept extensively used in VCL applications, allow you to
centralize all the interaction logic of your user interface.

More advanced topics 4-1

VCL and RTL

e A number of data-aware controls that can be linked to a data source at design
time. These components are widely used in database applications.

e Ribbon controls that allow you to build the next generation of user interfaces that
integrate nicely with the Windows Vista and Microsoft Office 2007 look-and-feel.

e DBExpress and dbGo database frameworks. These frameworks can be used with all
the data-aware controls, simplifying your application development more than ever.

e Internet Direct, also known as Indy, that provides an extensive number of compo-
nents used in Internet-connected applications. Indy includes client and server com-
ponents for today’s most used communication protocols on the Internet.

e DataSnap, which allows you to build distributed applications.

» Easy integration of any exposed OLE and ActiveX objects in your application. RAD
Studio provides a set of tools that allow creating a wrapper component over any
public ActiveX. This wrapper component can be used as any normal VCL compo-
nent inside your application.

Even though this is not the full list of components available in the VCL, the above men-
tioned are the most widely used and appreciated VCL components. To see all avail-
able components, check out the Tool Palette in RAD Studio.

The most useful features in the RTL, which are available both in Delphi and
C++Builder, are:

» An extensive support for strings. This support includes handling of Unicode strings
(the default encoding used by RAD Studio), ANSI and UTF-8 strings, various string
handling routines, and much more.

e Alarge number of date and time manipulation routines.
e Extensive support for file and stream operations.

e Routines and classes that provide Windows APl support. You, as a developer, will
often be required to use Windows API directly because a certain functionality is not
provided by the RTL. RAD Studio provides developers with the ability to use the full
Windows API directly. RAD Studio also provides easy-to-use classes like TRegistry
for registry handling.

4-2 Getting Started with Delphi® and C++Builder® 2009

VCL and RTL

e Variant data types and various support routines to make COM integration easy.
Variant data types have long been used in Microsoft COM and OLE technologies.
Variants are useful when you do not know the exact data type you are operating on.
The Delphi language compiler provides native support for Variants, integrating

some of the dynamic language concepts, found in other languages such as Java,
PHP, and others.

e Run-time Type Information, also known as RTTI, that provides an easy way to obtain
metadata about types, classes, and interfaces at runtime.

Another important part of the RTL is provided by the generic collections, which is spe-
cific to the Delphi language. This collection of generic classes can be used in any ap-
plication that requires lists, dictionaries, and other container classes. There are also
nongeneric counterparts for these classes.

The C++Builder equivalent of the generic collections is given by the STL library, pro-
vided by Dinkumware as a third party add-in. This is presented in the next section.

For more information...

See “Win32 Developer's Guide” in the bundled Help.

More advanced topics 4-3

Third party add-ins

Third party add-ins

Dinkumware (STL)

Boost

Intraweb

Indy

Dinkumware (STL) is a collection of template libraries for C++, included in C++Builder.
It includes containers such as vectors, lists, sets, maps, bitsets. It also includes algo-
rithms for applying widely used operations, like sorting a container or searching inside
a container. To implement the algorithms, STL introduces iterators in all five flavors for
operating on a container: input, output, forward, backward, bidirectional. Functors, or
function objects, are also introduced for overloading operators.

Boost is a set of libraries for C++ that significantly expand the language using tem-
plate meta-programming. A fully tested and preconfigured subset of Boost is included
in C++Builder. Include paths have been set for the Boost libraries, and any other nec-
essary libraries should be automatically linked. As an example, to use the Boost
minmax library, your code should specify:

#include <boost/algorithm/minmax.hpp>.

Intraweb is a collection of visual components, a framework designed to allow you to
create web applications or Apache plug-ins. It allows you to create web applications
with the same ease you use the VCL.

Indy is an Open Source group. The Indy project maintains several active Open Source
projects which have evolved from the original Indy (Internet Direct) project. Indy offers
client and server components using Internet protocols, such as tcp, udp, echo, ftp,
http, telnet, and many others. It also provides components for I/O handling, intercepts,
SASL, UUE, MIME, XXE encoders, and others.

4-4 Getting Started with Delphi® and C++Builder® 2009

EDN and Partners

Other resources

EDN

The Embarcadero Developer Network (EDN), located at dn.embarcadero.com, is a col-
lection of code-related articles on various products, including 3rdRail, Turbo Ruby,
Blackfish SQL, C++Builder, Delphi, Delphi for PHP, Delphi Prism, Interbase, and
JBuilder.

The EDN website keeps an up-to-date calendar of the most important events related
to Embarcadero products and also gives the latest news in product updates. As a fea-
ture of this website, the calendar can be customized to show the events concerning a
single Embarcadero product.

An important developers’ resource is the CodeCentral page, as part of the EDN. This
is located at the following link: cc.embarcadero.com. CodeCentral is a collection of

code snippets contributed by various members, using all the programming languages
featured in EDN.

EDN and partners 5-1

Other Resources

Partners

The companies behind all the included third party add-ins are mentioned in the follow-
ing list:

e DINKUMWARE Ltd for Dinkumware, at http://www.dinkumware.com

e The Boost open source project, at www.boost.org

e ATOZED Software for IntraWeb, at http://www.atozed.com/IntraWeb

e The Indy Project, at http://www.indyproject.org

A complete list of the RAD Studio 2009 partners can be found at the following links:

e http://cc.embarcadero.com/partners/delphicpp2009/CBuilder/index.html

e http://cc.embarcadero.com/partners/delphicpp2009/Prism/index.html

e http://cc.embarcadero.com/partners/delphicpp2009/Delphi/index.html

5-2 Getting Started with Delphi® and C++Builder® 2009

2009 04 16

Copyright © 2009
Embarcadero Technologies, Inc.
Download a free trial

at

	A4frontcover_GetStart_
	blankpage
	content_GetStart.pdf
	blankpage
	A4backcover_GetStart_

