
By the RAD Studio Team at Embarcadero Technologies, Inc.

Copyright © 2009
Embarcadero Technologies, Inc.
Download a free trial
at www.embarcadero.com

Getting Started
with RAD Studio 2009

Rapid Application Development Using the
Delphi® and C++Builder® Integrated Development Environment

Copyright © 2009
Embarcadero Technologies, Inc.
Download a free trial
at www.embarcadero.com

By the RAD Studio Team at Embarcadero Technologies, Inc.

Getting Started with
Delphi® and C++Builder®
2009
Rapid Application Development Using the
Delphi® and C++Builder® Integrated Development Environment

2009 04 16

Getting Started with

Delphi® and C++Builder®

 2009

© 2009 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos,
and all other Embarcadero Technologies product or service names are trademarks or regis-
tered trademarks of Embarcadero Technologies, Inc. All other trademarks are property of their
respective owners.
Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company’s flagship tools include: Embarcadero® Change Man-
ager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid SQL®.
Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located around
the world. Embarcadero is online at www.embarcadero.com.

2009 03 12

Chapter 1Chapter 1Chapter 1Chapter 1
IntroductionIntroductionIntroductionIntroduction
What is RAD Studio?

Finding information

Chapter 2Chapter 2Chapter 2Chapter 2
Tour of the IDE Tour of the IDE Tour of the IDE Tour of the IDE
First Look.

Welcome Page .

Toolbars .

Tools.

 Accessibility options

 Form Designer.

 Tool Palette.

 Object Inspector.

 Project Manager.

 File Browser.

 Structure View.

 The Code Editor.

 Code Navigation.

 Method Hopping.

 Bookmarks.

 Finding Classes.

 Finding Units.

 Code Folding.

 Change Bars.

 Block Comments.

 Live Templates.

 SyncEdit.

 Code Insight.

 Code Completion.

 Help Insight.

 Class Completion.

 Block Completion.

 Code Parameter Hints.

 Code Hints.

 Error Insight .

 Code Browsing.

 Refactoring.

 Keystroke Macros.

 To-Do Lists.

 Custom Template Libraries.

 History Manager.

 Data Explorer.

1111----1111
1-1

1-2

2222----1111
2-1

2-2

2-4

2-5

2-6

2-6

2-8

2-10

2-11

2-12

2-13

2-15

2-16

2-16

2-16

2-17

2-17

2-17

2-18

2-18

2-18

2-19

2-20

2-20

2-20

2-21

2-21

2-21

2-22

2-22

2-22

2-23

2-23

2-24

2-24

2-24

2-26

Chapter 3 Chapter 3 Chapter 3 Chapter 3
Starting your first RAD StudioStarting your first RAD StudioStarting your first RAD StudioStarting your first RAD Studio

application application application application
Using project templates from

the Object Repository .

Basic customization of the main form.

Adding the components using

the Form Designer.

 Adding an Action Manager.

 Adding the main menu.

 Adding a status bar

 Adding a text box.

 Adding the main menu commands.

 Defining Action properties.

 Adding word wrap and font capabilities. .

Customizing the components.

Coding responses to user actions in

the Code Editor.

 Creating an event handler for

 the New command.

 Creating the event handlers for

 the Open command.

 Creating the event handlers for

 the SaveAs command.

 Creating the event handlers for

 the Save command.

 Creating the event handler for

 the Font command.

 Creating the event handler for

 the Word Wrap command

 Creating event handlers for

 the status bar.

 Compiling and running the application. . .

Debugging the application

Chapter 4Chapter 4Chapter 4Chapter 4
More advanced topicsMore advanced topicsMore advanced topicsMore advanced topics
VCL and RTL .

Third party add-ins.

Chapter 5Chapter 5Chapter 5Chapter 5
Other resources Other resources Other resources Other resources
EDN.

Partners.

3333----1111

3-2

3-4

3-6

3-6

3-6

3-6

3-7

3-8

3-9

3-10

3-11

3-13

3-14

3-17

3-18

3-19

3-20

3-20

3-21

3-22

3-23

4444----1111
4-1

4-4

5555----1111
5-1

5-2

ContentsContentsContentsContents

List of figuresList of figuresList of figuresList of figures

Figure 1Figure 1Figure 1Figure 1----1. 1. 1. 1. The Trace IntoTrace IntoTrace IntoTrace Into menu item in Run Run Run Run 1-3

Figure 1Figure 1Figure 1Figure 1----2. 2. 2. 2. F1F1F1F1 Help for the Trace Into Trace Into Trace Into Trace Into menu item 1-3

Figure 2Figure 2Figure 2Figure 2----1. 1. 1. 1. The RAD Studio Welcome Page 2-1

Figure 2Figure 2Figure 2Figure 2----2. 2. 2. 2. The default layout for creating a RAD Studio application 2-3

Figure 2Figure 2Figure 2Figure 2----3. 3. 3. 3. The main menu bar 2-3

Figure 2Figure 2Figure 2Figure 2----4. 4. 4. 4. The main toolbars 2-4

Figure 2Figure 2Figure 2Figure 2----5. 5. 5. 5. Shortcut keys in the FileFileFileFile menu 2-4

Figure 2Figure 2Figure 2Figure 2----6. 6. 6. 6. Customizing the toolbars 2-5

Figure 2Figure 2Figure 2Figure 2----7. 7. 7. 7. Creating a basic RAD Studio application using the Form Designer 2-6

Figure 2Figure 2Figure 2Figure 2----8. 8. 8. 8. The Tool Palette showing the Standard Standard Standard Standard components category 2-8

Figure 2Figure 2Figure 2Figure 2----9. 9. 9. 9. The Tool Palette in Code Editor mode, showing the standard Delphi Projects Delphi Projects Delphi Projects Delphi Projects templates 2-9

Figure 2Figure 2Figure 2Figure 2----10. Properties10. Properties10. Properties10. Properties tab in the Object Inspector 2-10

Figure 2Figure 2Figure 2Figure 2----11. Events11. Events11. Events11. Events tab in the Object Inspector 2-10

Figure 2Figure 2Figure 2Figure 2----12. 12. 12. 12. Customizing the Object Inspector 2-10

Figure 2Figure 2Figure 2Figure 2----13. 13. 13. 13. Hierarchical file list of the project, displayed by the Project Manager 2-11

Figure 2Figure 2Figure 2Figure 2----14. 14. 14. 14. Browsing files and folders using File Browser 2-12

Figure 2Figure 2Figure 2Figure 2----15. 15. 15. 15. Setting up the file filter used in the File Browser 2-12

Figure 2Figure 2Figure 2Figure 2----16. 16. 16. 16. Structure View in Form Designer mode 2-13

Figure 2Figure 2Figure 2Figure 2----17. 17. 17. 17. Structure View in Code Editor mode 2-13

Figure 2Figure 2Figure 2Figure 2----18. 18. 18. 18. Structure View explorer options 2-14

Figure 2Figure 2Figure 2Figure 2----19. 19. 19. 19. Setting Bookmarks in the source code 2-17

Figure 2Figure 2Figure 2Figure 2----20. 20. 20. 20. Collapsed blocks of code 2-17

Figure 2Figure 2Figure 2Figure 2----21. 21. 21. 21. Expanding the list of Live Templates for Delphi 2-18

Figure 2Figure 2Figure 2Figure 2----22. 22. 22. 22. Highlighting all the occurrences of an identifier in a section of code 2-19

Figure 2Figure 2Figure 2Figure 2----23. 23. 23. 23. Code Completion popup window showing the list of available options 2-20

Figure 2Figure 2Figure 2Figure 2----24. 24. 24. 24. Using Code Parameter Hints to show the required types for the parameters 2-21

Figure 2Figure 2Figure 2Figure 2----25. 25. 25. 25. Displaying in-place Code Hints 2-22

Figure 2Figure 2Figure 2Figure 2----26. 26. 26. 26. Automatic marking of errors in the code 2-22

Figure 2Figure 2Figure 2Figure 2----27. 27. 27. 27. Comparing two versions of a file using the Diff Diff Diff Diff page 2-25

Figure 2Figure 2Figure 2Figure 2----28. 28. 28. 28. Exploring the list of available database connections 2-27

Figure 3Figure 3Figure 3Figure 3----1. 1. 1. 1. Description of all options in the FileFileFileFile menu 3-2

Figure 3Figure 3Figure 3Figure 3----2. 2. 2. 2. Expanding the NewNewNewNew option in the FileFileFileFile menu 3-2

Figure 3Figure 3Figure 3Figure 3----3. 3. 3. 3. The default layout for creating a RAD Studio application (Delphi view) 3-3

Figure 3Figure 3Figure 3Figure 3----4. 4. 4. 4. The default layout for creating a RAD Studio application (C++Builder view) 3-3

Figure 3Figure 3Figure 3Figure 3----5. 5. 5. 5. Basic customization of the main form (Delphi view) 3-5

Figure 3Figure 3Figure 3Figure 3----6. 6. 6. 6. Basic customization of the main form (C++Builder view) 3-5

Figure 3Figure 3Figure 3Figure 3----7. 7. 7. 7. Using the action filter in the Tool Palette to select TActionManager 3-6

Figure 3Figure 3Figure 3Figure 3----8. 8. 8. 8. Using the status filter in the Tool Palette to select TStatusBar 3-7

Figure 3Figure 3Figure 3Figure 3----9. 9. 9. 9. Using the memo filter in the Tool Palette to select TMemo 3-7

Figure 3Figure 3Figure 3Figure 3----10. 10. 10. 10. Basic text editor form 3-7

Figure 3Figure 3Figure 3Figure 3----11. 11. 11. 11. The main elements of the Actions Actions Actions Actions page in the Action Manager 3-8

Figure 3Figure 3Figure 3Figure 3----12. 12. 12. 12. Adding a New Standard Action 3-8

Figure 3Figure 3Figure 3Figure 3----13. 13. 13. 13. Selecting the Standard Actions that implement the basic file and text operations 3-9

Figure 3Figure 3Figure 3Figure 3----14. 14. 14. 14. Arranging the actions in the File File File File menu and finishing adding the Standard Actions 3-9

Figure 3Figure 3Figure 3Figure 3----15. 15. 15. 15. The final look of the FileFileFileFile menu 3-10

Figure 3Figure 3Figure 3Figure 3----16. 16. 16. 16. Editing the contents of the memo 3-11

Figure 3Figure 3Figure 3Figure 3----17. 17. 17. 17. Panel editor showing the list of added status panels 3-12

Figure 3Figure 3Figure 3Figure 3----18. 18. 18. 18. Defining the CurrentFile private variable (Delphi view) 3-13

Figure 3Figure 3Figure 3Figure 3----19. 19. 19. 19. Defining the currentFile private variable (C++Builder view) 3-14

Figure 3Figure 3Figure 3Figure 3----20. 20. 20. 20. Opening the EventsEventsEventsEvents tab in the Object Inspector 3-14

Figure 3Figure 3Figure 3Figure 3----21. 21. 21. 21. Automatic generation of the code skeleton for the OnExecute event (Delphi view) 3-15

Figure 3Figure 3Figure 3Figure 3----22. 22. 22. 22. Automatic generation of the code skeleton for the OnExecute event (C++Builder view) 3-15

Figure 3Figure 3Figure 3Figure 3----23. Project 23. Project 23. Project 23. Project menu options for compiling and building the project 3-22

Figure 3Figure 3Figure 3Figure 3----24. 24. 24. 24. Dialog showing the success of compiling the application 3-22

List of Figures

Figure 3Figure 3Figure 3Figure 3----25. 25. 25. 25. Dialog showing the success of building the application 3-22

Figure 3Figure 3Figure 3Figure 3----26. 26. 26. 26. Running the application from the RunRunRunRun menu 3-23

Figure 3Figure 3Figure 3Figure 3----27. 27. 27. 27. Debugging the FileSaveAs1Accept procedure (Delphi code) 3-24

Figure 3Figure 3Figure 3Figure 3----28. 28. 28. 28. Debugging the FileSaveAs1Accept function (C++Builder code) 3-24

Figure 3Figure 3Figure 3Figure 3----29. 29. 29. 29. Application stopping at the specified breakpoint (Delphi view) 3-25

Figure 3Figure 3Figure 3Figure 3----30. 30. 30. 30. Dragging the FileName variable to the Watch List (Delphi view) 3-25

Figure 3Figure 3Figure 3Figure 3----31. 31. 31. 31. Dragging the fileName variable to the Watch List (C++Builder view) 3-26

Figure 3Figure 3Figure 3Figure 3----32. 32. 32. 32. Advancing to the next line of code to change the value of FileName (Delphi view) 3-26

Figure 3Figure 3Figure 3Figure 3----33. 33. 33. 33. Advancing to the next line of code to change the value of FileName (C++Builder view) 3-27

Figure 3Figure 3Figure 3Figure 3----34. 34. 34. 34. Jumping over the ifififif statement (Delphi view) 3-27

Figure 3Figure 3Figure 3Figure 3----35. 35. 35. 35. Jumping over the ifififif statement (C++Builder view) 3-28

Figure 3Figure 3Figure 3Figure 3----36. 36. 36. 36. Viewing the value of CurrentFile (Delphi view) 3-28

Figure 3Figure 3Figure 3Figure 3----37. 37. 37. 37. Viewing the value of CurrentFile (C++Builder view) 3-29

Figure 3Figure 3Figure 3Figure 3----38. 38. 38. 38. The Debug Debug Debug Debug toolbar 3-29

List of Figures

Typeface Typeface Typeface Typeface MeaningMeaningMeaningMeaning

Monospace type Monospaced type represents text as it appears on screen or in

code. It also represents anything you must type.

BoldfaceBoldfaceBoldfaceBoldface Boldfaced words in text or code listings represent reserved

words, compiler options, menus, commands, and dialog boxes.

Italics Italicized text represents Delphi identifiers, such as variable or

type names. Italics are also used to emphasize certain words,

such as new terms.

KeycapsKeycapsKeycapsKeycaps Text in keycaps indicates a key on your keyboard. For example,

“Press EscEscEscEsc to exit a menu.”

Table 1Table 1Table 1Table 1----1. 1. 1. 1. Typographic conventions

Typographic conventionsTypographic conventionsTypographic conventionsTypographic conventions

 C h a p t e r C h a p t e r C h a p t e r C h a p t e r

1111
Introduction

This guide provides an overview of the CodeGear™ RAD Studio 2009 development

environment to get you started using the product right away. It also tells you where to

look for details about the tools and features available in RAD Studio.

Chapter 2, “Tour of the IDE” describes the main tools on the CodeGear™ RAD Studio

2009 desktop, or integrated development environment (IDE). Chapter 3, “Starting Your

First Visual Application” explains how to use some of these tools to create an applica-

tion. Chapter 4, “More Advanced Topics” describes the more advanced features in

RAD Studio, like VCL, RTL, or the included third party add-ins. Chapter 5, “EDN and

Partners”, displays a list of code-related articles on various products and the partners

of Embarcadero.

For various examples on using CodeGear™ RAD Studio 2009 to write programs such

as a text editor or database application, see the Demos directory of your CodeGear™

RAD Studio 2009 installation, also accessible from the Start menu folder. Other online

resources are available at the following address: www.embarcadero.com.

What is RAD Studio?What is RAD Studio?What is RAD Studio?What is RAD Studio?
RAD Studio is an object-oriented, visual programming environment for rapid applica-

tion development (RAD). Using CodeGear™ RAD Studio 2009, you can create highly

efficient visual applications with a minimum of manual coding, using either the Delphi,

C++, or Delphi Prism programming languages. To learn about using Prism to cre-

ate .NET applications, see the Prism Primer at prismwiki.codegear.com.

CodeGear™ RAD Studio 2009 provides all the tools you need to model applications,

design user interfaces, automatically generate and edit code, and also the tools

needed to compile, debug, and deploy applications. The tools available in the IDE de-

pend on the version of RAD Studio you are using.

Introduction 1-1

Finding informationFinding informationFinding informationFinding information

You can find information about CodeGear™ RAD Studio 2009 in the following ways:

• Web-based product documentation

• F1F1F1F1 help and online help system

For information... For information... For information... For information...

about new features in this release, refer to the www.embarcadero.com web site.

Web-based product documentation

You can get help online by visiting the www.embarcadero.com web site and navigating

to one of the following:

• Developer network—http://dn.embarcadero.com—where you can find news and

articles about Embarcadero products.

• QualityCentral—http://qc.embarcadero.com—where you can read, create, update,

or manage reports about issues in the Embarcadero products.

• CodeCentral—http://cc.embarcadero.com—where you can find, comment upon,

upload, and download code snippets for the Embarcadero products.

• Blogs—http://blogs.embarcadero.com—you can find useful information in articles

written by the Embarcadero employees.

The http://docs.embarcadero.com web site also includes a list of books and additional

technical documents for all of the Embarcadero products.

F1 Help and online help system

You can get context-sensitive help in any part of the development environment, in-

cluding in menu items, in dialog boxes, in toolbars, and in components by selecting

the item and pressing F1F1F1F1.

Finding information

1-2 Getting Started with Delphi® and C++Builder® 2009

Pressing the FFFF1111 key while a menu item is selected displays context-sensitive help for

the item. For example, pressing F1F1F1F1 on the Trace Into Trace Into Trace Into Trace Into menu item...

...displays the following help page.

Figure 1Figure 1Figure 1Figure 1----1. 1. 1. 1. The Trace IntoTrace IntoTrace IntoTrace Into menu item in RunRunRunRun

Figure 1Figure 1Figure 1Figure 1----2. 2. 2. 2. F1F1F1F1 Help for the Trace Into Trace Into Trace Into Trace Into menu item

Finding information

Introduction 1-3

Error messages from the compiler and linker appear in a special window below the

Code Editor. To get help with compilation errors, select a message from the list and

press F1F1F1F1.

Useful information about using the help viewer can be found at

http://edn.embarcadero.com/article/37562.

Finding information

1-4 Getting Started with Delphi® and C++Builder® 2009

 C h a p t e rC h a p t e rC h a p t e rC h a p t e r

 2222
Tour of the IDE

First lookFirst lookFirst lookFirst look

When you start CodeGear™ RAD Studio 2009, the integrated development environ-

ment (IDE) launches and displays several tools and menus.

The IDE helps you visually design user interfaces, set object properties, write code,

view, and manage your application in various ways.

The default IDE desktop layout includes some of the most commonly used tools. You

can use the View View View View menu to display or hide certain tools. You can also customize your

desktop by moving or deleting elements, and you can save the desktop layouts that

work best for you.

Tour of the IDE 2-1

Welcome PageWelcome PageWelcome PageWelcome Page

When you open RAD Studio, the Welcome Page appears with a number of links to

developer resources, such as product-related articles, training, and online Help.

As you develop projects, you can quickly access them from the list of recent projects at

the top of the page. To return to the Welcome Page from another main window such

as the Code Editor or Design window, click the Welcome Page tab at the top of the

window. If you close the Welcome Page, you can reopen it by choosing View > View > View > View >

Welcome PageWelcome PageWelcome PageWelcome Page.

Click this tab to return to the Welcome Page.

Figure 2Figure 2Figure 2Figure 2----1. 1. 1. 1. The RAD Studio Welcome Page

Welcome Page

2-2 Getting Started with Delphi® and C++Builder® 2009

The following pages describe and show screenshots of the various available options

when a RAD Studio project is open. You can create a new project by clicking

File > New > VCL Forms Application File > New > VCL Forms Application File > New > VCL Forms Application File > New > VCL Forms Application ---- DelphiDelphiDelphiDelphi or File > New > File > New > File > New > File > New >

VCL Forms Application VCL Forms Application VCL Forms Application VCL Forms Application ---- C++BuilderC++BuilderC++BuilderC++Builder, for Delphi and C++Builder, respectively. A

more detailed explanation on how to create a project is given in Chapter 3, “Starting

your first RAD Studio application”.

The Structure View displays a

hierarchical view of your components’

parent-child relationships.

The menus and toolbars provide several features

and tools to help you write an application.

The Object Inspector is used to change

objects’ properties and create event handlers.

The Form Designer contains a blank

form on which to start designing the

user interface for your application.

An application can include several

forms.

 The Tool Palette contains ready-made

components to add to your projects.

The main window, which occupies the top of the screen, contains the menu bar and

the toolbars.

The menu bar

Toolbars providing fast access to various tools that

you can use to operate on the current project

Figure 2Figure 2Figure 2Figure 2----2. 2. 2. 2. The default layout for creating a RAD Studio application

Figure 2Figure 2Figure 2Figure 2----3. 3. 3. 3. The main menu bar

Welcome Page

Tour of the IDE 2-3

Toggle

Form/Unit

View

Form

View

Desktop

layout setting

Save current

desktop

Set debug

Back

Forward

Run

List of

projects

you can run

Pause

Program

reset

Trace

into

Step

over

Run Until

Return

ToolbarsToolbarsToolbarsToolbars

RAD Studio toolbars provide quick access to frequently used operations and com-

mands. The toolbars are displayed below in more detail.

Most toolbar operations are duplicated in the drop-down menus.

New

items

Open

Save

Save All

Open

Project

Add file

to project

Remove

file from

project

To find out what a button does, hover the mouse over it for a moment until a tooltip

appears. You can hide any toolbar by right-clicking the toolbar and selecting the con-

text menu command HideHideHideHide. To display a toolbar that is not showing, choose ViewViewViewView > > > >

ToolbarsToolbarsToolbarsToolbars and check the toolbar you want.

Many operations have keyboard shortcuts as well as toolbar buttons. When a keyboard

shortcut is available, the dropdown menu displays the shortcut next to the command.

Shortcut key for the Save All Save All Save All Save All command

Figure 2Figure 2Figure 2Figure 2----4. 4. 4. 4. The main toolbars

Figure 2Figure 2Figure 2Figure 2----5. 5. 5. 5. Shortcut keys in the FileFileFileFile menu

Toolbars

2-4 Getting Started with Delphi® and C++Builder® 2009

About

Help

contents

You can right-click on many tools and icons to display a menu of commands appropri-

ate to the object you are highlighting. These are called context menus. The toolbars

are also customizable. You can add the commands you want to the toolbar or move

the commands to different locations on the toolbar.

Toolbar customization context menu

Figure 2Figure 2Figure 2Figure 2----6. 6. 6. 6. Customizing the toolbars

Tools

Tour of the IDE 2-5

ToolsToolsToolsTools

The tools available in the RAD Studio IDE depend on the version of RAD Studio you

are using. Every SKU of RAD Studio contains the following tools:

• Accessibility Options

• Form Designer

• Tool Palette

• Object Inspector

• Project Manager

• Data Explorer

• Structure View

• History Manager

• Code Editor

• File Browser

The following sections describe each of these tools.

Accessibility options

2-6 Getting Started with Delphi® and C++Builder® 2009

Accessibility options

The IDE's main menu supports MS Active Accessibility (MSAA). This means that you

can use the Windows accessibility tools from the Start Start Start Start menu by choosing

All Programs > Accessories > AccessibilityAll Programs > Accessories > AccessibilityAll Programs > Accessories > AccessibilityAll Programs > Accessories > Accessibility.

Form Designer

The Form Designer in RAD Studio allows you to rapidly prototype, build, and modify

the user interface of your application. Typically, a form represents a window or an

HTML page in the user interface.

Select the form that best suits your application design, whether it is a Web application

that provides business logic functionality over the Web or a Windows application that

provides processing and high-performance content display.

In RAD Studio, the user interface of an application is built using components that can

be either visual or nonvisual and can be added to the form using the Tool Palette,

which is discussed in the next section. Visual components appear on your form at the

time the program is run. Nonvisual components do not appear on the form at run

time, but they change the behavior of your application. Both types of components can

be accessed at run time from your application’s code.

A TTimer component, providing a

basic synchronization system

(nonvisual)

A TButton component

(visual)

Form Designer

Another TButton component

A TOpenDialog component, providing

a basic open dialog window

(nonvisual)

A TMemo text editing box component

(visual)

Figure 2Figure 2Figure 2Figure 2----7. 7. 7. 7. Creating a basic RAD Studio application using the Form Designer

The RAD Studio Form Designer is based on the WYSIWYG (What You See Is What You

Get) concept, allowing you to design your application's user interface with as little ef-

fort as possible.

The same concept applies to the possibility of seeing the way components will behave

at run time before compiling your applications.

This is the case, for instance, of database-aware components. You can develop live da-

tabase queries and connections at design time. Database viewing components can

show data from a selected database. This way you can check if the behavior at design

time will be the intended one at run time.

The Form Designer also allows you to build user interfaces for your VCL for the Web

applications, making the development as simple as possible.

To start using the Form Designer, you must first create a VCL for the Web or a VCL for

Win32 form using the project templates from the Object repository.

After you place components on the form, or Form Designer, you can arrange them the

way they should look on your user interface. Every component's attributes can be

viewed and changed with the Object Inspector pane. You can use the Object Inspec-

tor for many purposes, including the following:

• To set design-time properties for the components you place on the form.

• To create event handlers, filter-visible properties, and events, making the connec-

tion between your application’s visual appearance and the code that makes your

application run.

For more information…For more information…For more information…For more information…

See “Adding the components using the Form Designer” and “Customizing the com-

ponents using the Object Inspector” in the next chapter.

Form Designer

Tour of the IDE 2-7

Tool PaletteTool PaletteTool PaletteTool Palette

The Tool Palette contains items to help you develop your application. The Tool Palette

is displayed as a category panel group, usually located in the right column. Each of the

categories in Tool Palette contains icons that represent visual or nonvisual compo-

nents.

The categories divide the components into functional groups. For example, in Design

mode, the StandardStandardStandardStandard and Win32Win32Win32Win32 categories include Windows controls such as a but-

ton, or an edit box; the DialogsDialogsDialogsDialogs category includes common dialog boxes to use for file

operations such as opening and saving files.

The contents of the Tool Palette change when switching between Design mode and

Code Editor mode. More information on the Code Editor is given in a later section.

Thus, if you are viewing a form in Design mode, the Tool Palette displays components

that are appropriate for that form. You can double-click a control to add it to your

form. You can also drag a control to a desired position on the form.

Type any component name, and Search automatically filters the com-

ponent list and locates the component, provided that is installed.

List of components in the Standard Standard Standard Standard category

List of components sorted by category

Figure 2Figure 2Figure 2Figure 2----8. 8. 8. 8. The Tool Palette showing the Standard Standard Standard Standard components category

Tool Palette

2-8 Getting Started with Delphi® and C++Builder® 2009

If you are viewing code in the Code Editor, the Tool Palette displays project types that

you can add to your project group and file types that you can add to your project.

In addition to the components that are installed with RAD Studio, you can add custom-

ized or third-party components to the Tool Palette and save them in their own cate-

gory.

You can also create templates that are composed of one or more components. After

arranging components on a form, setting their properties, and writing code for them,

you can save them as a component template.

Later, by selecting the template from the Tool Palette, you can place the preconfig-

ured components on a form in a single step; all associated properties and event-

handling code are added to your project at the same time. You can reposition the

components independently, reset their properties, and create or modify event han-

dlers for them just as if you had placed each component in a separate operation.

Each component has specific attributes—properties, events, and methods—that en-

able you to control your application.

After you place components on the form, or Form Designer, you can arrange compo-

nents the way they should look on your user interface. For the components you place

on the form, use the Object Inspector to customize their behavior, as shown in the fol-

lowing section.

List of components in the Delphi Projects Delphi Projects Delphi Projects Delphi Projects category

Types of projects to create, sorted by category

Figure 2Figure 2Figure 2Figure 2----9. 9. 9. 9. The Tool Palette in Code Editor mode, showing the standard Delphi Projects Delphi Projects Delphi Projects Delphi Projects templates

Tool Palette

Tour of the IDE 2-9

Object InspectorObject InspectorObject InspectorObject Inspector

The Object Inspector allows you to customize the properties of the components that

make up the application user interface and create event handlers at design time. Each

visual and nonvisual component has a set of published properties and events, which

the Object Inspector displays and allows to be modified visually, using the PropertiesPropertiesPropertiesProperties

and EventsEventsEventsEvents tabs. User interfaces created with RAD Studio are event-driven, meaning

that any component can react to an externally or internally generated event. The

Object Inspector allows you to automatically generate code that is executed when

such an event is fired.

Name of the component

You can customize the Object Inspector by right-clicking

it. A popup menu will be shown with a list of customiza-

tion options such as the arrangement style of properties

or the filtering options.

Context menu displaying the available options

for customizing the Object Inspector

Figure 2Figure 2Figure 2Figure 2----10. Properties10. Properties10. Properties10. Properties tab in the Object Inspector Figure 2Figure 2Figure 2Figure 2----11. Events11. Events11. Events11. Events tab in the Object Inspector

Figure 2Figure 2Figure 2Figure 2----12. 12. 12. 12. Customizing the Object Inspector

Object Inspector

2-10 Getting Started with Delphi® and C++Builder® 2009

List of properties and their values

for the selected component

List of possible events for

the selected component —

double-click an event to

automatically create the

code skeleton of the event.

Project ManagerProject ManagerProject ManagerProject Manager

To build an application or a DLL using Delphi or C++Builder, you need to create a pro-

ject. The Project Manager displays a hierarchical file list of your project or project

group, so you can view and organize the files.

You can use the Project Manager to combine and display information on related pro-

jects into a single project group. By organizing related projects into a group, such as

multiple executables, you can compile them at the same time. You can also set project

options to resolve the dependencies between projects.

The buttons at the top of the Project Manager enable you to perform the following

tasks:

ActivateActivateActivateActivate—Activate the currently selected project.

NewNewNewNew—Add another project to the current project group. If only one project currently

exists, a project group is created for you automatically.

RemoveRemoveRemoveRemove—Remove a project from the current project group.

ViewViewViewView—View the file tree hierarchy in multiple ways.

SyncSyncSyncSync—Synchronize the project manager with the medium where the actual project or

project group files are stored.

ExpandExpandExpandExpand—Expand all child nodes from the one that is currently selected.

CollapseCollapseCollapseCollapse—Collapse all child nodes from the one that is currently selected.

Hierarchical view of the files inside

the current project

Available operations for the current

project

Available operations to apply to the

project hierarchy

Figure 2Figure 2Figure 2Figure 2----13. 13. 13. 13. Hierarchical file list of the project,

displayed by the Project Manager

Project Manager

Tour of the IDE 2-11

File BrowserFile BrowserFile BrowserFile Browser

The File Browser allows you to conveniently manage files at a specified path. All the

files are displayed in a tree view, allowing easy hierarchical browsing. To show the File

Browser, choose View > File BrowserView > File BrowserView > File BrowserView > File Browser.

The File Browser is especially useful for managing files that are not normally part of the

project itself, and thus not present in the Project Manager. The context menu shown

by the File Browser when a file is right-clicked is based on the Windows Explorer

menu, with two new options specific to RAD Studio. These two options allow you to

either open the selected files with RAD Studio itself or to add them to the currently

open project.

A useful feature of the File Browser is the ability to filter the displayed files based on a

set of masks. After clicking the Filter Filter Filter Filter button at the top of the File Browser window, a

new dialog box asking for a semicolon-separated list of masks appears. As an exam-

ple, setting the mask to *.txt; *.exe displays only executables and text files.

Allows you to display only files that

match a particular file name pattern

Hierarchical view of the existing files and folders,

providing basic file explorer features

Dialog box that allows you to specify the file name pattern

used to filter the existing files and folders

Figure 2Figure 2Figure 2Figure 2----14. 14. 14. 14. Browsing files and folders using File Browser

Figure 2Figure 2Figure 2Figure 2----15. 15. 15. 15. Setting up the file filter used in the File Browser

File Browser

2-12 Getting Started with Delphi® and C++Builder® 2009

Structure ViewStructure ViewStructure ViewStructure View

The contents of the Structure View reflect the current mode in the IDE. The Structure

View shows either the hierarchy of the source code that is currently open in the Code

Editor, or the components currently displayed in the Designer. The tree diagram is syn-

chronized with the Object Inspector and the Form Designer so that when you change

mode in the Structure View, the mode also changes for both the Object Inspector and

the form itself.

To display the Structure View, choose View > StructureView > StructureView > StructureView > Structure.

If the Structure View is displaying the structure of Designer components, you can sin-

gle-click a component in the tree diagram to focus it on the form.

If displaying the structure of source code or HTML, you can double-click an item in the

list to jump to its declaration or location in the Code Editor.

Hierarchical view of the components and source

code used in the current project

Hierarchical view of the resources used

in the current project, sorted by

classes, variables/constants, and units

Figure 2Figure 2Figure 2Figure 2----16. 16. 16. 16. Structure View in Form Designer mode

Figure 2Figure 2Figure 2Figure 2----17. 17. 17. 17. Structure View in Code Editor mode

Structure View

Tour of the IDE 2-13

If your code contains syntax errors, they are displayed in the Errors pane of the

Structure View. To locate an error in the Code Editor, double-click it in the Errors pane.

You can also use the Source View to change related components’ relationships. For

example, if you add a panel and a check box component to your form, the two compo-

nents are siblings. In the Structure View, however, if you drag the check box on top of

the panel icon, the check box becomes the child of the panel.

The Structure View is useful for displaying the relationships between database objects.

You can also double-click any Designer component in the Structure View to open the

Code Editor to a place where you can write an event handler for that component.

You can control the content and appearance of the Structure View by choosing Tools Tools Tools Tools

> Options > Environment Options > Explorer > Options > Environment Options > Explorer > Options > Environment Options > Explorer > Options > Environment Options > Explorer and changing the settings. The fol-

lowing options page should be displayed.

For more information…For more information…For more information…For more information…

Access the “Structure View” help page.

Figure 2Figure 2Figure 2Figure 2----18. 18. 18. 18. Structure View explorer options

Structure View

2-14 Getting Started with Delphi® and C++Builder® 2009

The Code EditorThe Code EditorThe Code EditorThe Code Editor

The Code Editor occupies the center pane of the IDE window. The Code Editor is a full

-featured, customizable, UTF8 editor that provides syntax highlighting, source code

browsing, multiple-undo capability, and context-sensitive Help for language elements.

As you design the user interface for your application, RAD Studio generates portions

of the underlying code. Whenever you modify the properties of an object, your

changes are automatically reflected in the source files.

Because all of your programs share common features, RAD Studio auto-generates

code to get you started. You can think of the auto-generated code as an outline that

you can use to create your program.

The Code Editor provides the following features to help you write code:

• Code Navigation

 Method Hopping, Bookmarks, Finding Classes, Finding Units

• Code Folding

• Change Bars

• Block Comments

• Live Templates

• SyncEdit

• Code Insight

 Code Parameter Hints, Code Hints, Help Insight, Class Completion,

 Block Completion, Error Insight, Code Browsing

• Refactoring

• Keystroke Macros

• To-Do Lists

• Custom Template Libraries

The Code Editor

Tour of the IDE 2-15

Code NavigationCode NavigationCode NavigationCode Navigation

To navigate code while you are using the Code Editor, you can use one of the follow-

ing methods.

Method HoppingMethod HoppingMethod HoppingMethod Hopping

You can navigate between methods using a series of editor hotkeys. You can also limit

hopping to the methods of the current class by setting class lock.

For example, if class lock is enabled and you are in a method of TComponent, then

hopping is only available within the methods of TComponent. The keyboard shortcuts

for Method Hopping are as follows.

BookmarksBookmarksBookmarksBookmarks

Bookmarks provide a convenient way to navigate long files. You can mark a location in

your code with a Bookmark and jump to that location from anywhere in the file.

You can use up to ten Bookmarks, numbered 0 through 9, within a file. To toggle a

Bookmark at the current line, simply press CTRL+SHIFT+digitCTRL+SHIFT+digitCTRL+SHIFT+digitCTRL+SHIFT+digit.

When you set a Bookmark, a book icon is displayed in the left gutter of the Code Edi-

tor, as in the following image.

CTRL+Q CTRL+Q CTRL+Q CTRL+Q followed by LLLL toggles class lock

CTRL+ALT+HOME CTRL+ALT+HOME CTRL+ALT+HOME CTRL+ALT+HOME moves to the first method in the file

CTRL+ALT+END CTRL+ALT+END CTRL+ALT+END CTRL+ALT+END moves to the last method in the file

CTRL+ALT+MOUSE WHEEL CTRL+ALT+MOUSE WHEEL CTRL+ALT+MOUSE WHEEL CTRL+ALT+MOUSE WHEEL scrolls through methods

Keyboard shortcutKeyboard shortcutKeyboard shortcutKeyboard shortcut EffectEffectEffectEffect

Table 2Table 2Table 2Table 2----1. 1. 1. 1. Method Hopping keyboard shortcuts

The Code Editor

2-16 Getting Started with Delphi® and C++Builder® 2009

Bookmark sign that marks

a particular line of code

Ellipsis symbol specifying that the

block of code is collapsed

Click the plus sign to expand the code.

Finding ClassesFinding ClassesFinding ClassesFinding Classes

Use the Search > Find Class Search > Find Class Search > Find Class Search > Find Class command to see a list of available classes that you can

select. If you double-click a class, the IDE automatically navigates to its declaration.

Finding UnitsFinding UnitsFinding UnitsFinding Units

Depending on your programming language, you can use a refactoring feature to lo-

cate namespaces or units. If you are using the Delphi language, you can use the

Search > Find Unit Search > Find Unit Search > Find Unit Search > Find Unit command to locate and add units to your code file. The Find Type

window allows regular expressions.

Code FoldingCode FoldingCode FoldingCode Folding

Code Folding lets you collapse sections of code to create a hierarchical view of your

code and to make it easier to read and navigate. To create Code Folding regions, see

the help topic “Using Code Folding”.

Code Folding regions have plus (+) and minus (-) signs located on the gutter of the

Code Editor, used to collapse and expand a region of code, respectively.

The collapsed code is not deleted, but hidden from view.

Figure 2Figure 2Figure 2Figure 2----19. 19. 19. 19. Setting Bookmarks in the source code

Figure 2Figure 2Figure 2Figure 2----20. 20. 20. 20. Collapsed blocks of code

The Code Editor

Tour of the IDE 2-17

Change BarsChange BarsChange BarsChange Bars

The left margin of the Code Editor displays a yellow change bar to indicate lines that

have been changed but not yet saved in the current editing session. A green change

bar indicates the changes that have been made since the last FileFileFileFile >>>> Save Save Save Save operation.

You can, however, customize the Change Bars to display in colors other than the de-

fault green and yellow. To do this, go to Tools > Options > Editor Options > ColorTools > Options > Editor Options > ColorTools > Options > Editor Options > ColorTools > Options > Editor Options > Color,

select the Modified Line Modified Line Modified Line Modified Line element and change the foreground and the background

colors.

Block CommentsBlock CommentsBlock CommentsBlock Comments————CTRL+/ CTRL+/ CTRL+/ CTRL+/

You can comment-out a section of code by selecting the code in the Code Editor and

pressing CTRL+/ CTRL+/ CTRL+/ CTRL+/ (slash). Each line of the selected code is then prefixed with // and is

ignored by the compiler. Pressing CTRL+/ CTRL+/ CTRL+/ CTRL+/ adds or removes the slashes, based on

whether the first line of the selected code is prefixed with //.

When using the Visual Studio or Visual Basic key mappings, use CTRL+K+C CTRL+K+C CTRL+K+C CTRL+K+C to add

and remove comment slashes.

Live TemplatesLive TemplatesLive TemplatesLive Templates

Live Templates allow you to have a dictionary of pre-written code that can be inserted

into your programs while you are working with the Code Editor. You can access Live

Templates by going to View > TemplatesView > TemplatesView > TemplatesView > Templates.

Using Live Templates reduces the amount of typing that you must do.

You can find further information concerning Live Templates in the help, by accessing

the pages entitled “Creating Live Templates” and “Using Live Templates”.

Figure 2Figure 2Figure 2Figure 2----21. 21. 21. 21. Expanding the list of Live Templates for Delphi

The Code Editor

2-18 Getting Started with Delphi® and C++Builder® 2009

List of available Delphi templates

A blue rectangle encloses each occurrence

of the identifier.

SyncEditSyncEditSyncEditSyncEdit

The SyncEdit feature lets you simultaneously edit identical identifiers in the code.

As you change the first identifier, the same change is performed automatically on the

other identifiers. For example, in a procedure that contains three occurrences of Self,

you can edit the first occurrence only and all the other occurrences will change auto-

matically.

To use SyncEdit:

1. In the Code Editor, select a block of code that contains identical identifiers.

2. Click the SyncEdit Mode icon that appears in the left gutter. The first identical

identifier is highlighted and the others are outlined. The cursor is positioned on the

first identifier. If the code contains multiple sets of identical identifiers, you can

press TABTABTABTAB to move between each identifier in the selection.

3. Begin editing the first identifier. As you change the identifier, the same change is

performed automatically on the other identifiers. By default, the identifier is re-

placed. To change the identifier without replacing it, use the arrow keys before you

begin typing.

4. When you have finished changing the identifiers, you can exit Sync Edit mode by

clicking the SyncEdit Mode icon, or by pressing the EscEscEscEsc key.

NoteNoteNoteNote: SyncEdit determines identical identifiers by matching text strings; it does not

analyze the identifiers. For example, it does not distinguish between two like-named

identifiers of different types in different scopes. Therefore, SyncEdit is intended for

small sections of code, such as a single method or a page of text. For changing larger

portions of code, consider using refactoring, which is a more advanced method of im-

proving your code, without changing its functionality. Further details on refactoring are

given in a later section.

Figure 2Figure 2Figure 2Figure 2----22. 22. 22. 22. Highlighting all the occurrences of an identifier in a section of code

The Code Editor

Tour of the IDE 2-19

SyncEdit Mode icon

Code completion window that appears when pressing

CTRL+SPACE CTRL+SPACE CTRL+SPACE CTRL+SPACE at the current cursor position

Code InsightCode InsightCode InsightCode Insight

Code Insight refers to a subset of features embedded in the Code Editor (such as

Code Parameter Hints, Code Hints, Help Insight, Code Completion, Class Completion,

Block Completion, and Code Browsing) that aid in the code writing process. These

features help identify common statements you want to insert into your code, and assist

you in the selection of properties and methods. Some of these features are described

in more detail in the following sub-sections.

To enable and configure Code Insight features, choose Tools > Options > Editor Tools > Options > Editor Tools > Options > Editor Tools > Options > Editor

Options Options Options Options and click Code Insight.

Figure 2Figure 2Figure 2Figure 2----23. 23. 23. 23. Code Completion popup window showing the list of available options

Help InsightHelp InsightHelp InsightHelp Insight—CTRL+SHIFT+H CTRL+SHIFT+H CTRL+SHIFT+H CTRL+SHIFT+H

Help Insight displays a hint containing information about the symbol, such as type, file,

line number where declared, and any XML documentation associated with the symbol

(if available).

Invoke Help Insight by hovering the mouse over an identifier in your code, while work-

ing in the Code Editor. You can also invoke Help Insight by pressing CTRL+SHIFT+HCTRL+SHIFT+HCTRL+SHIFT+HCTRL+SHIFT+H.

The Code Editor

2-20 Getting Started with Delphi® and C++Builder® 2009

Code CompletionCode CompletionCode CompletionCode Completion————CTRL+SPACECTRL+SPACECTRL+SPACECTRL+SPACE

To invoke Code Completion, press CTRL+SPACE CTRL+SPACE CTRL+SPACE CTRL+SPACE while using the Code Editor. A

popup window displays a list of symbols that are valid at the cursor location. You can

type characters to match those in the selection and press Return Return Return Return to insert the text in

the code at the cursor location.

Class CompletionClass CompletionClass CompletionClass Completion—CTRL+SHIFT+C CTRL+SHIFT+C CTRL+SHIFT+C CTRL+SHIFT+C

Class Completion simplifies the process of defining and implementing new classes by

generating skeleton code for the class members that you declare.

Position the cursor within a class declaration in the interface section of a unit and press

CTRL+SHIFT+CCTRL+SHIFT+CCTRL+SHIFT+CCTRL+SHIFT+C. Any unfinished property declarations are completed.

For any methods that require an implementation, empty methods are added to the

implementation section.

Class Completion can also be achieved by choosing the option Complete class at Complete class at Complete class at Complete class at

cursorcursorcursorcursor from the editor context menu.

Block CompletionBlock CompletionBlock CompletionBlock Completion—ENTERENTERENTERENTER

When you press ENTERENTERENTERENTER in a block of code that was incorrectly closed (while working in

the Code Editor), a closing block token is inserted at the first empty line following the

cursor position.

For instance, if you are using the Code Editor with the Delphi language, and you type

the token begin and then press ENTERENTERENTERENTER, the Code Editor automatically completes the

statement so that you have: begin end;.

Block Completion also works for the C++ language.

Code Parameter HintsCode Parameter HintsCode Parameter HintsCode Parameter Hints—CTRL+SHIFT+SPACE CTRL+SHIFT+SPACE CTRL+SHIFT+SPACE CTRL+SHIFT+SPACE

Code Parameter Hints display a hint containing argument names and types for method

calls. You can invoke Code Parameter Hints by pressing CTRL+SHIFT+SPACECTRL+SHIFT+SPACECTRL+SHIFT+SPACECTRL+SHIFT+SPACE, after

opening a left bracket of a function call.

The Code Editor

Tour of the IDE 2-21

Parameter Hint message that appears when

you type the left bracket of a function call

Figure 2Figure 2Figure 2Figure 2----24. 24. 24. 24. Using Code Parameter Hints to

show the required types for the parameters

Code HintsCode HintsCode HintsCode Hints

Code Hints display a hint containing information about the symbol such as type, file,

and line number where declared. You can display Code Hints by hovering the mouse

over an identifier in your code, while working in the Code Editor.

Code hint message that appears when the mouse

hovers over an identifier in the source code

Note: Note: Note: Note: Code Hints only work when the Help Insight feature is disabled.

Figure 2Figure 2Figure 2Figure 2----25. 25. 25. 25. Displaying in-place Code Hints

Error InsightError InsightError InsightError Insight

When you type an expression that generates compiler errors, the expression is under-

lined in red.

Also, the list of errors generated by the expression appears in the Errors pane of the

Structure View.

The Code Editor

2-22 Getting Started with Delphi® and C++Builder® 2009

This line of code is underlined in red

to indicate an error

Figure 2Figure 2Figure 2Figure 2----26. 26. 26. 26. Automatic marking of errors in the code

Code BrowsingCode BrowsingCode BrowsingCode Browsing—CTRL+Click CTRL+Click CTRL+Click CTRL+Click

While using the Code Editor to edit a VCL Form application, you can hold down the

CTRLCTRLCTRLCTRL key while hovering the mouse over the name of any class, variable, property,

method, or other identifier.

The mouse pointer turns into a hand and the identifier appears highlighted and under-

lined. Click the identifier and the Code Editor jumps to the declaration of the identi-

fier, opening the source file, if necessary. You can do the same thing by right-clicking

an identifier and choosing Find DeclarationFind DeclarationFind DeclarationFind Declaration.

Code browsing can only find and open units in the project Search path or Source path,

or in the product Browsing or Library path. Directories are searched in the following

order:

1. The project Search path

2. The project Source path, the directory in which the project was saved

3. The global Browsing path

4. The global Library path

5. The Library path, that is searched only if there is no project open in the IDE

These paths can be modified by editing the corresponding values in the list of

Directories, available by going to: Tools > Options > Environment Options >Tools > Options > Environment Options >Tools > Options > Environment Options >Tools > Options > Environment Options >

Delphi Options > Library Delphi Options > Library Delphi Options > Library Delphi Options > Library ---- Win32.Win32.Win32.Win32.

RefactoringRefactoringRefactoringRefactoring

Refactoring is the process of improving your code without changing its external func-

tionality.

For example, you can turn a selected code fragment into a method by using the ex-

tract refactoring method. The IDE moves the extracted code outside of the current

method, determines the needed parameters, generates local variables if necessary,

determines the return type, and replaces the code fragment with a call to the new

method.

Several other refactoring methods, such as renaming a symbol and declaring a vari-

able, are also available.

Keystroke MacrosKeystroke MacrosKeystroke MacrosKeystroke Macros

You can record a series of keystrokes as a macro while editing code. The red button at

the bottom of the code window starts the recording. After you record a macro, you

can play it back to repeat the keystrokes during the current IDE session. Recording a

macro replaces the previously recorded macro.

The Code Editor

Tour of the IDE 2-23

ToToToTo----Do ListsDo ListsDo ListsDo Lists

A To-Do List records the tasks that need to be completed for a project. After you add

a task to the To-Do List, you can edit the task, add it to your code as a comment, indi-

cate that it has been completed, and then remove it from the list.

You can filter the list to display only the tasks that are of interest to you.

To display the To-Do List window, select View > ToView > ToView > ToView > To----Do List.Do List.Do List.Do List.

Custom Template LibrariesCustom Template LibrariesCustom Template LibrariesCustom Template Libraries

RAD Studio allows you to create multiple custom template libraries to use as the basis

for creating future projects. Template libraries let you declare how projects can look,

and they enable you to add new types of projects to the Object Repository.

The Code Editor

2-24 Getting Started with Delphi® and C++Builder® 2009

History ManagerHistory ManagerHistory ManagerHistory Manager

The History Manager lets you compare versions of a file, including multiple backup

versions, saved local changes, and the buffer of unsaved changes for the active file.

If the current file is under version control, all types of revisions are available in the His-

tory Manager.

The History Manager is displayed on the HistoryHistoryHistoryHistory tab, which lies at the center of the

IDE to the right of the Code Code Code Code tab.

The History Manager contains the following tabbed pages.

PagePagePagePage DescriptionDescriptionDescriptionDescription

Contents Displays the current and previous versions of the file.

Info Displays all labels and comments for the active file.

Diff Displays the differences between the selected versions
of the file.

Table 2Table 2Table 2Table 2----2. 2. 2. 2. History Manager pages

The following image shows the Diff page of the History Manager, comparing two dif-

ferent versions of a .dfm file. The differences are shown using plus/minus signs and the

corresponding lines are highlighted in green/magenta.

Name of the file

The lines of code are highlighted to indicate

differences between the two files.

Current version

of the file

Previous version of the file

Figure 2Figure 2Figure 2Figure 2----27. 27. 27. 27. Comparing two versions of a file using the Diff Diff Diff Diff page

History Manager

Tour of the IDE 2-25

IconIconIconIcon DescriptionDescriptionDescriptionDescription

 The latest saved file version.

 A backup file version.

 The file version that is in the buffer and includes unsaved

changes.

 A file version that is stored in a version control repository.

 A file version that you have checked out from a version

control repository.

Table 2Table 2Table 2Table 2----3. 3. 3. 3. Revision icons on the Diff Diff Diff Diff page

Revision icons are used to represent file versions in the revision lists and they are de-

scribed in the following table.

Data Explorer

2-26 Getting Started with Delphi® and C++Builder® 2009

Data ExplorerData ExplorerData ExplorerData Explorer

Figure 2Figure 2Figure 2Figure 2----28. 28. 28. 28. Exploring the list of available database connections

The currently available database connections

RAD Studio offers a variety of database and connectivity tools to simplify the develop-

ment of database applications.

The Data Explorer is located, by default, in the upper right corner of the IDE. The Data

Explorer allows you to create and modify database connections that can easily be used

later in your database applications.

NoteNoteNoteNote: Data Explorer works for databases that use the DBExpress connection type.

After you create a database connection, you can use the Data Explorer to create, view

and modify tables, views, procedures, function, and synonyms. You can click an item

from the expanded connection type entry. A menu that allows you to refresh the data

or create a new item will appear.

 C h a p t e r

3333

Starting your first RAD Studio application

This chapter explains how to use the Rapid Application Development tools of

CodeGear™ RAD Studio 2009 to create a GUI (Graphical User Interface) application.

You start with creating the main form, customizing it, and adding the necessary visual

and nonvisual components.

The sections of code in the application to handle user actions are called event

handlers, which you also need to implement. After following the steps, given both for

Delphi and C++, you will have a basic text editor, with a few additional features like

word-wrapping and the ability to change the font and display the current cursor posi-

tion in the status bar. The event handlers that implement these features refer to click-

ing options in the main menu and to typing or clicking inside the edit box.

Starting your first RAD Studio application 3-1

Using project templates from the Object RepositoryUsing project templates from the Object RepositoryUsing project templates from the Object RepositoryUsing project templates from the Object Repository

First, create a project in CodeGear™ RAD Studio 2009 by clicking File > New File > New File > New File > New and

choosing VCL Forms Application > C++BuilderVCL Forms Application > C++BuilderVCL Forms Application > C++BuilderVCL Forms Application > C++Builder or VCL Forms Application > Del-VCL Forms Application > Del-VCL Forms Application > Del-VCL Forms Application > Del-

phiphiphiphi, depending on the language you want to use to develop the text editor. At this

point, the File File File File menu and its OpenOpenOpenOpen command submenu should be displayed as in the

following image.

Create a new application, using

Delphi.

Create a new application, using

C++Builder.

Figure 3Figure 3Figure 3Figure 3----1. 1. 1. 1. Description of all options in the FileFileFileFile menu

Figure 3Figure 3Figure 3Figure 3----2. 2. 2. 2. Expanding the NewNewNewNew option in the FileFileFileFile menu

Using project templates from the Object Repository

3-2 Getting Started with Delphi® and C++Builder® 2009

Create a new application.

Open an existing file.

Open an existing project.

Reopen a recently opened project.

Save the current file as a specified file, possibly

different from the current one.

Save the current file by overwriting

its previous version.

Save the current project as a

specified project, possibly different

from the current one.
Save all files in the current project,

by overwriting their previous versions.

Close the current

file.
Add a unit to the current list of units used

by the application.
Print the currently opened

file.
Exit the RAD Studio IDE.

Close all files in the current project.

After clicking the menu item to create a project, several files are automatically gener-

ated, using the VCL Forms Application template, also including the main form. After

the files are generated, the main form is displayed in the Form Designer. The next im-

ages give a screenshot of the IDE at this step, using Delphi or C++Builder, respec-

tively.

Figure 3Figure 3Figure 3Figure 3----3. 3. 3. 3. The default layout for creating a RAD Studio application (Delphi view)

Using project templates from the Object Repository

Starting your first RAD Studio application 3-3

Figure 3Figure 3Figure 3Figure 3----4. 4. 4. 4. The default layout for creating a RAD Studio application (C++Builder view)

Before adding any components, you should start by doing some basic customization

to the form. Make sure that the main form is activated (click it once otherwise) and that

the Object Inspector window is visible in the lower left quadrant (if not, press F11F11F11F11 to

display it). With the Properties Properties Properties Properties tab selected, look for the Caption property and change

its value to Text Editor; also, change the value of the Name property to TextEdi-

torForm.

To make the design of the project more visually balanced, set the main form to initially

be positioned in the center of the screen. To do this, change the value of the Position

property to poScreenCenter by clicking the value field for Position and then select-

ing the value from the dropdown list. For the same reason, make the form square-

shaped, by changing the values of both Width and Height to 400, or any other num-

ber you prefer, as long as the number does not exceed the current screen size.

After making these changes, the main form should look like the following images, us-

ing Delphi or C++Builder, respectively.

Basic customization of the main formBasic customization of the main formBasic customization of the main formBasic customization of the main form

Basic customization of the main form

3-4 Getting Started with Delphi® and C++Builder® 2009

Figure 3Figure 3Figure 3Figure 3----5. 5. 5. 5. Basic customization of the main form (Delphi view)

Figure 3Figure 3Figure 3Figure 3----6. 6. 6. 6. Basic customization of the main form (C++Builder view)

Basic customization of the main form

Starting your first RAD Studio application 3-5

Adding the components using the Form DesignerAdding the components using the Form DesignerAdding the components using the Form DesignerAdding the components using the Form Designer

Now that you have set up the main form, you can proceed with arranging the neces-

sary components to create your text editor application. First, you need to add a menu

bar providing the basic options for file manipulation, editing, and also other options

like changing the font or toggling word wrap.

Adding an action managerAdding an action managerAdding an action managerAdding an action manager

Add an action manager to the form to automatically provide the basic functionality of

your application. To do so, make sure the DesignDesignDesignDesign tab is selected, go to the Tool

Palette and type the text action in the search box, in order to locate the

TActionManager component. The Tool Palette should look as in the following image.

Double-click the TActionManager button to add it to the form. Now you should

change the name of the ActionManager to suit your application. To do this, make sure

Object Inspector is visible (if not, press F11F11F11F11 to display it) and click the Action Manager

icon to activate it. Click the Name property and change its value to ActionMgr.

Adding the main menuAdding the main menuAdding the main menuAdding the main menu

To put a main menu bar on the form, simply locate the TActionMainMenuBar compo-

nent in the Tool Palette. Double-click TActionMainMenuBar to add it to the form.

Adding a Status BarAdding a Status BarAdding a Status BarAdding a Status Bar

Next, you should also put a status bar on the form. To do this, type status in the

search box of the Tool Palette to locate the TStatusBar component. Using this filter,

the Tool Palette will look like the following image.

Figure 3Figure 3Figure 3Figure 3----7. 7. 7. 7. Using the action filter in the Tool Palette to select TActionManager

Adding the components using the Form Designer

3-6 Getting Started with Delphi® and C++Builder® 2009

As with the previous components, double-click TStatusBar to add it to the form.

Adding a text boxAdding a text boxAdding a text boxAdding a text box

The only component left to add is a text box, giving your application its main function-

ality—that of a text editor. Type memo in the search box and locate the TMemo com-

ponent. The Tool Palette should now display the components whose names include

the word memo, as in the following image.

Double-click TMemo to add it to the form. The main form should now display the ac-

tion manager, the action main menu bar, the status bar, and the memo we have previ-

ously added to the form, similar to the following image.

Figure 3Figure 3Figure 3Figure 3----8. 8. 8. 8. Using the status filter in the Tool Palette to select TStatusBar

Figure 3Figure 3Figure 3Figure 3----9. 9. 9. 9. Using the memo filter in the Tool Palette to select TMemo

Figure 3Figure 3Figure 3Figure 3----10. 10. 10. 10. Basic text editor form

Adding the components using the Form Designer

Starting your first RAD Studio application 3-7

Adding the main menu commandsAdding the main menu commandsAdding the main menu commandsAdding the main menu commands

To finish designing the form, you must add the options to be displayed in the main

menu. Start by double-clicking the action manager component on the form to open

the ActionsActionsActionsActions editor.

The following window should be displayed.

This button allows you to add new actions.

The list of currently

added actions

The list of categories in which

the currently added actions live

You are now ready to create the items in the main menu. Press CTRL+Insert CTRL+Insert CTRL+Insert CTRL+Insert to add

new standard actions or click the down-arrow of the New Action New Action New Action New Action icon and choose

New Standard Action... New Standard Action... New Standard Action... New Standard Action... from the menu. The image below shows this menu.

While pressing CTRLCTRLCTRLCTRL, select all items in the Edit category and also TFileOpen, TFile-

SaveAs, and TFileExit from the File category, then click OKOKOKOK.

The following image shows how the Standard Action Classes list should display, with

the items in the File category selected.

Figure 3Figure 3Figure 3Figure 3----11. 11. 11. 11. The main elements of the Actions Actions Actions Actions page in the Action Manager

Figure 3Figure 3Figure 3Figure 3----12. 12. 12. 12. Adding a New Standard Action

Adding the components using the Form Designer

3-8 Getting Started with Delphi® and C++Builder® 2009

After clicking OKOKOKOK, wait until the menu items are automatically generated. You may no-

tice that the object inspector displays the properties of each menu item, as they are

created.

Defining Action PropertiesDefining Action PropertiesDefining Action PropertiesDefining Action Properties

Since you need other options as well, you must define your own custom actions. To do

this, from the Actions Editor, select File from the CategoriesCategoriesCategoriesCategories list and click the New Ac-New Ac-New Ac-New Ac-

tiontiontiontion button twice to create two new, non-standard actions.

You can now customize the newly created actions. Click Action1 in the Actions Actions Actions Actions list and

use the Object Inspector to change its Name property to New and its ShortCut to

CTRL+N. . . . Also, click Action2 and change its Name to Save and its ShortCut property to

CTRL+S.

Now, use the Move Up Move Up Move Up Move Up and Move Down Move Down Move Down Move Down arrows to put the actions in the right order,

as in the following image.

Figure 3Figure 3Figure 3Figure 3----13. 13. 13. 13. Selecting the Standard Actions that

implement the basic file and text operations

Figure 3Figure 3Figure 3Figure 3----14. 14. 14. 14. Arranging the actions in the File File File File menu and

finishing adding the Standard Actions

Adding the components using the Form Designer

Starting your first RAD Studio application 3-9

Figure 3Figure 3Figure 3Figure 3----15. 15. 15. 15. The final look of the FileFileFileFile menu

Adding word wrap and font capabilitiesAdding word wrap and font capabilitiesAdding word wrap and font capabilitiesAdding word wrap and font capabilities

To give your text additional features—word-wrapping and the ability to change the

font—you need to add another main menu option. Click (No Category) from the

CategoriesCategoriesCategoriesCategories list and press CTRL+Insert CTRL+Insert CTRL+Insert CTRL+Insert on the keyboard to create a new standard ac-

tion. The Standard Actions Classes Standard Actions Classes Standard Actions Classes Standard Actions Classes list is displayed.

Select TFontEdit from the Dialogs category and click OKOKOKOK. In the ActionsActionsActionsActions list, click Se-

lect Font and use the Object Inspector to change its Category property to Format. Do

this by selecting CategoryCategoryCategoryCategory and type the word Format. Also, write Font as its Caption

property.

With the Format category selected in the Categories Categories Categories Categories list, press the New Action button

to define a new action. Change its Name to WordWrap and its Caption to Word Wrap,

using the Object Inspector.

Now drag each item from the Categories Categories Categories Categories list to the menu bar at the top of the main

form, in this order: FileFileFileFile, EditEditEditEdit, FormatFormatFormatFormat.

The following image shows how the FileFileFileFile menu should look.

Adding the components using the Form Designer

3-10 Getting Started with Delphi® and C++Builder® 2009

Finally, close the Actions Editor to continue with customizing your application.

Customizing the components Customizing the components Customizing the components Customizing the components

In the previous section of this chapter, “Arranging the components in the Form De-

signer”, you have added all the required components to your form and then config-

ured the action manager. Before you continue with writing code for the event han-

dlers, you must first customize the properties of the newly placed components.

To customize a component, first select the component in the Form Designer. Then you

can edit the properties of the component in the Object Inspector.

Follow these steps to customize the memo component:

1. Select the memo component in the Form Designer by clicking the memo compo-

nent.

2. Find the memo component in the Object Inspector (if the Object Inspector is not

visible, press F11 F11 F11 F11 or click View > Object InspectorView > Object InspectorView > Object InspectorView > Object Inspector).

3. Set the Align property to alClient. This makes the memo component occupy all

the free space available on the form.

4. Set the Name property to TextMemo. Naming your component properly is very im-

portant because your code needs to access the component using that name. Set-

ting a name you can easily remember is essential.

5. Set the ScrollBars property to ssBoth. This setting ensures that both the vertical

and horizontal scroll bars are displayed in the memo and allows users to easily

scroll through its contents.

6. Set WordWrap to False. WordWrap tells the memo to wrap all text on several

lines if the text does not fit in a single line. A False value disables word wrapping.

7. Find the Lines property and press the '...'

button located in the value box. A new

edit dialog appears, allowing you to edit

the initial contents of the memo, as in the

image on the right. Delete all the text

and then press OKOKOKOK to clear the memo.

Contents of the memo box

Figure 3Figure 3Figure 3Figure 3----16. 16. 16. 16. Editing the contents of the memo

Customizing the components

Starting your first RAD Studio application 3-11

After you have customized the memo, select the status bar component and customize

it as follows.

1. Select the status bar in the DesignDesignDesignDesign window.

2. Set the Name property to TextStatus.

3. Find the Panels property and press the "..." button at the right side of the value

box. This will display a new dialog box that allows adding and customizing panels

displayed in the status bar.

4. Press the Insert Insert Insert Insert key three times to add three panels. The panel editor should look

as in the following image. You do not need to customize these panels, so just close the

dialog.

This concludes all customization you need to perform on your components.

Before proceeding with writing any code, save all the changes you have made to the

project, as follows. Click File > Save As File > Save As File > Save As File > Save As and save the unit as TextEditor. Also, click

File > Save ProjectFile > Save ProjectFile > Save ProjectFile > Save Project As As As As and save the project as TextEditor_proj.

Figure 3Figure 3Figure 3Figure 3----17. 17. 17. 17. Panel editor showing the list of added status panels

Customizing the components

3-12 Getting Started with Delphi® and C++Builder® 2009

The currently defined status panels

Coding responses to user actions in the Code EditorCoding responses to user actions in the Code EditorCoding responses to user actions in the Code EditorCoding responses to user actions in the Code Editor

By following the instructions in this section, you will make your application interactive

and provide it with the functionality you want. You will code event handlers, that is, the

responses to clicking the various options in the main menu.

Before proceeding with writing any code, define the String variable, which you need

throughout the execution of the application to retain the name of the currently

opened text file. First make sure you are in Code Editor mode by selecting the CodeCodeCodeCode

tab, next to the DesignDesignDesignDesign tab in the status bar. To toggle between Form Designer and

Code Editor mode, press F12F12F12F12.

In Delphi, define a String variable called CurrentFile in the private section of the

TTextEditorForm class, in the interface part, as in the following image.

In C++, use the tabs at the bottom of the Code Editor window to display the

TextEditor.h file. Also declare the currentFile variable in the private section of

TTextEditorForm, as in the following image.

Figure 3Figure 3Figure 3Figure 3----18. 18. 18. 18. Defining the CurrentFile private variable (Delphi view)

Coding responses to user actions in the Code Editor

Starting your first RAD Studio application 3-13

Declaration of

CurrentFile

Creating an event handler for the New command Creating an event handler for the New command Creating an event handler for the New command Creating an event handler for the New command

You are now ready to define the responses to clicking the menu items. In the Form De-

signer, click File > New File > New File > New File > New on the menu bar in your text editor form. Then select the

EventsEventsEventsEvents tab in the Object Inspector, as in the following image. Click the plus sign (+) to

expand the Action list if necessary.

Double-click here to write the

code for the OnExecute event.

Figure 3Figure 3Figure 3Figure 3----19. 19. 19. 19. Defining the currentFile private variable (C++Builder view)

Figure 3Figure 3Figure 3Figure 3----20. 20. 20. 20. Opening the EventsEventsEventsEvents tab in the Object Inspector

Coding responses to user actions in the Code Editor

3-14 Getting Started with Delphi® and C++Builder® 2009

Declaration of

currentFile

Double-click the edit box corresponding to the OnExecute event. The Code Editor

opens and displays the following function skeleton, using Delphi or C++Builder, re-

spectively.

Figure 3Figure 3Figure 3Figure 3----21. 21. 21. 21. Automatic generation of the code skeleton for the OnExecute event (Delphi view)

Figure 3Figure 3Figure 3Figure 3----22. 22. 22. 22. Automatic generation of the code skeleton for the OnExecute event (C++Builder view)

Coding responses to user actions in the Code Editor

Starting your first RAD Studio application 3-15

Now write the code that executes when the user selects FileFileFileFile >>>> NewNewNewNew, inside the code

skeleton previously generated, as in the following lines of code.

procedure TTextEditorForm.NewExecute(Sender: TObject);

var

 UserResponse : Integer;

begin

 if TextMemo.Lines.Count > 0 then

 begin

 UserResponse := MessageDlg(

 'This will clear the current document. ' +

 'Do you want to continue?', mtInformation,

 mbYesNo, 0);

 if UserResponse = mrYes then

 begin

 TextMemo.Clear;

 CurrentFile := '';

 end;

 end;

end;

void __fastcall TTextEditorForm::NewExecute(TObject *Sender)

{

 if (TextMemo->Lines->Count > 0)

 {

 int userResponse = MessageDlg(

 String("This will clear the current document. ")

 + "Do you want to continue?", mtInformation,

 TMsgDlgButtons() << mbYes << mbNo, 0);

 if (userResponse == mrYes) {

 TextMemo->Clear();

 currentFile = "";

 }

 }

}

Coding responses to user actions in the Code Editor

3-16 Getting Started with Delphi® and C++Builder® 2009

Creating the event handlers for the Open commandCreating the event handlers for the Open commandCreating the event handlers for the Open commandCreating the event handlers for the Open command

Return to the form and double-click the OnAccept event of the File > Open File > Open File > Open File > Open item and

write the code displayed below.

procedure TTextEditorForm.FileOpen1Accept(Sender: TObject);

var

 FileName: String;

begin

 FileName := FileOpen1.Dialog.FileName;

 if FileExists(FileName) then

 begin

 TextMemo.Lines.LoadFromFile(FileName);

 CurrentFile := FileName;

 Self.Caption := 'Text Editor - ' + ExtractFileName(FileName);

 end;

end;

void __fastcall TTextEditorForm::FileOpen1Accept(TObject *Sender)

{

 String fileName = FileOpen1->Dialog->FileName;

 if (FileExists(fileName)) {

 TextMemo->Lines->LoadFromFile(fileName);

 currentFile = fileName;

 this->Caption = "Text Editor - " + ExtractFileName(fileName);

 }

}

Coding responses to user actions in the Code Editor

Starting your first RAD Studio application 3-17

Creating the event handlers for the SaveAs commandCreating the event handlers for the SaveAs commandCreating the event handlers for the SaveAs commandCreating the event handlers for the SaveAs command

Double-click the OnAccept event of FileFileFileFile >>>> SaveAsSaveAsSaveAsSaveAs and write the following code.

procedure TTextEditorForm.FileSaveAs1Accept(Sender: TObject);

var

 FileName: String;

 UserResponse : Integer;

begin

 FileName := FileSaveAs1.Dialog.FileName;

 if FileExists(FileName) then

 begin

 UserResponse := MessageDlg(

 'File already exists. ' +

 'Do you want to overwrite?', mtInformation,

 mbYesNo, 0);

 if UserResponse = mrNo then

 Exit();

 end;

 TextMemo.Lines.SaveToFile(FileName);

 CurrentFile := FileName;

 Self.Caption := ExtractFileName(FileName);

end;

void __fastcall TTextEditorForm::FileSaveAs1Accept(TObject *Sender)

{

 String fileName = FileSaveAs1->Dialog->FileName;

 if (FileExists(fileName)) {

 int userResponse = MessageDlg(

 String("File already exists. ") +

 "Do you want to overwrite?", mtInformation,

 TMsgDlgButtons() << mbYes << mbNo, 0);

 if (userResponse == mrNo) {

 return;

 }

 }

 TextMemo->Lines->SaveToFile(fileName);

 currentFile = fileName;

 this->Caption = ExtractFileName(fileName);

}

Coding responses to user actions in the Code Editor

3-18 Getting Started with Delphi® and C++Builder® 2009

Creating the event handlers for the Save commandCreating the event handlers for the Save commandCreating the event handlers for the Save commandCreating the event handlers for the Save command

Double-click the OnExecute event of File > Save File > Save File > Save File > Save and write the following lines of code.

procedure TTextEditorForm.SaveExecute(Sender: TObject);

begin

 if CurrentFile = '' then

 Self.FileSaveAs1.Execute()

 else

 TextMemo.Lines.SaveToFile(CurrentFile);

end;

void __fastcall TTextEditorForm::SaveExecute(TObject *Sender)

{

 if (currentFile == "") {

 this->FileSaveAs1->Execute();

 }

 else {

 TextMemo->Lines->SaveToFile(currentFile);

 }

}

Coding responses to user actions in the Code Editor

Starting your first RAD Studio application 3-19

Creating the event handlers for the Font commandCreating the event handlers for the Font commandCreating the event handlers for the Font commandCreating the event handlers for the Font command

Double-click the OnAccept event of Format > FontFormat > FontFormat > FontFormat > Font and write the following code.

Creating the event handlers for the Word Wrap commandCreating the event handlers for the Word Wrap commandCreating the event handlers for the Word Wrap commandCreating the event handlers for the Word Wrap command

Next, double-click the OnExecute event of Format > Word Wrap Format > Word Wrap Format > Word Wrap Format > Word Wrap and write the follow-

ing code.

procedure TTextEditorForm.FontEdit1Accept(Sender: TObject);

begin

 TextMemo.Font := FontEdit1.Dialog.Font;

end;

procedure TTextEditorForm.WordWrapExecute(Sender: TObject);

begin

 { Toggle the word wrapping state. }

 TextMemo.WordWrap := not TextMemo.WordWrap;

 WordWrap.Checked := TextMemo.WordWrap;

 if TextMemo.WordWrap = True then

 { Only vertical scrollbars are needed when word wrapping is set. }

 TextMemo.ScrollBars := ssVertical

 else

 TextMemo.ScrollBars := ssBoth;

end;

Coding responses to user actions in the Code Editor

3-20 Getting Started with Delphi® and C++Builder® 2009

void __fastcall TTextEditorForm::FontEdit1Accept(TObject *Sender)

{

 TextMemo->Font = FontEdit1->Dialog->Font;

}

void __fastcall TTextEditorForm::WordWrapExecute(TObject *Sender)

{

 { Toggle the word wrapping state. }

 TextMemo->WordWrap = !TextMemo->WordWrap;

 WordWrap->Checked = TextMemo->WordWrap;

 if (TextMemo->WordWrap == True) {

 { Only vertical scrollbars are needed when word wrapping is set. }

 TextMemo->ScrollBars = ssVertical;

 }

 else {

 TextMemo->ScrollBars = ssBoth;

 }

}

 Creating event handlers for the status barCreating event handlers for the status barCreating event handlers for the status barCreating event handlers for the status bar

Finally, use the status bar to display the current cursor position and also the number of

lines of the currently opened text file. To do this, double-click the OnMouseDown

event of the TextMemo component and write the following code, in Delphi and C++

respectively. The CaretPos property is used to indicate the coordinates of the caret in-

side the text memo box.

Coding responses to user actions in the Code Editor

Starting your first RAD Studio application 3-21

Next, double-click the OnKeyDown event of TextMemo and write the code below. The

OnKeyDown event is triggered whenever you press a key inside the text memo box.

procedure TTextEditorForm.TextMemoKeyDown(Sender: TObject;

 var Key: Word; Shift: TShiftState);

begin

 TextMemoMouseDown(Sender, mbLeft, Shift, 0, 0);

end;

procedure TTextEditorForm.TextMemoMouseDown(Sender: TObject;

 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin

 TextStatus.Panels.Items[0].Text :=

 'L: ' + IntToStr(TextMemo.CaretPos.Y + 1);

 TextStatus.Panels.Items[1].Text :=

 'C: ' + IntToStr(TextMemo.CaretPos.X + 1);

 TextStatus.Panels.Items[2].Text :=

 'Lines: ' + IntToStr(TextMemo.Lines.Count);

end;

void __fastcall TTextEditorForm::TextMemoMouseDown(TObject *Sender,

 TMouseButton Button, TShiftState Shift, int X, int Y)

{

 TextStatus->Panels->Items[0]->Text =

 "L: " + String (TextMemo->CaretPos.y + 1);

 TextStatus->Panels->Items[1]->Text =

 "C: " + String (TextMemo->CaretPos.x + 1);

 TextStatus->Panels->Items[2]->Text =

 "Lines: " + IntToStr (TextMemo->Lines->Count);

}

void __fastcall TTextEditorForm::TextMemoKeyDown(TObject *Sender,

 WORD &Key, TShiftState Shift)

{

 TextMemoMouseDown(Sender, mbLeft, Shift, 0, 0);

}

Compiling and running the applicationCompiling and running the applicationCompiling and running the applicationCompiling and running the application

Before you can actually see your application running, you must first compile it. To com-

pile your application, press SHIFTSHIFTSHIFTSHIFT----F9 F9 F9 F9 or select Project > CompileProject > CompileProject > CompileProject > Compile. You then see a dia-

log box displaying the progress of the compilation. If your application contains any

syntactical errors, you will have to correct them and then recompile.

Compiles the project

Builds the entire project

Figure 3Figure 3Figure 3Figure 3----23. Project 23. Project 23. Project 23. Project menu options for compiling and building the project

Figure 3Figure 3Figure 3Figure 3----24. 24. 24. 24. Dialog showing the success of compiling the application

Figure 3Figure 3Figure 3Figure 3----25. 25. 25. 25. Dialog showing the success of building the application

Coding responses to user actions in the Code Editor

3-22 Getting Started with Delphi® and C++Builder® 2009

After you compile the application, you can see how it behaves at run time. Press F9F9F9F9 or

click Run > Run Run > Run Run > Run Run > Run to run your application in debug mode.

Choose this option to run the application.

There are a few other options available, but those options are beyond the scope of

this book.

Note: Note: Note: Note: You can directly run the application without compiling it first. RAD Studio auto-

matically detects whether compilation is required and compiles the project if neces-

sary.

Even if the application successfully compiles and runs, it might still not perform as you

intended. The next section in this chapter, called “Debugging the application”, de-

scribes how to use some of the RAD Studio debugging features to rapidly find and fix

bugs.

Figure 3Figure 3Figure 3Figure 3----26. 26. 26. 26. Running the application from the RunRunRunRun menu

Debugging the application

Starting your first RAD Studio application 3-23

Debugging the applicationDebugging the applicationDebugging the applicationDebugging the application

To get a glimpse of the basic debugging features in RAD Studio, first set a breakpoint

on the first line of the FileSaveAs1Accept function, by clicking on the bar at the left of

the line of code.

Figure 3Figure 3Figure 3Figure 3----27. 27. 27. 27. Debugging the FileSaveAs1Accept procedure (Delphi code)

Figure 3Figure 3Figure 3Figure 3----28. 28. 28. 28. Debugging the FileSaveAs1Accept function (C++Builder code)

Debugging the application

3-24 Getting Started with Delphi® and C++Builder® 2009

The Code Editor window should look like the following image.

Breakpoint on the first line

of the procedure

Breakpoint on the first line

of the function

Press F9F9F9F9 to run the application, write something in the text box of the text editor and

click File > Save AsFile > Save AsFile > Save AsFile > Save As. Name your text file, making sure that a file with the same name

does not already exist at the current location. After clicking SaveSaveSaveSave, the application

should stop at the breakpoint you have previously set, and the code editor window

should display as in the image below.

To see the value of the FileName variable, select the FileName word in the first line of

FileSaveAs1Accept and drag it to the Watch List, as in the following images.

Figure 3Figure 3Figure 3Figure 3----29. 29. 29. 29. Application stopping at the specified breakpoint (Delphi view)

Figure 3Figure 3Figure 3Figure 3----30. 30. 30. 30. Dragging the FileName variable to the Watch List (Delphi view)

Debugging the application

Starting your first RAD Studio application 3-25

Lines of code that may execute

during the debugging process

The currently executing line of

code in the debugging process

The FileName variable is now

added to the Watch List.

Press F8F8F8F8 to advance to the following line of code, so that the value of FileName is up-

dated. To expand the value of FileName, hover the mouse cursor over its label in the

Watch List and wait.

The result should look as in the following images.

Figure 3Figure 3Figure 3Figure 3----31. 31. 31. 31. Dragging the fileName variable to the Watch List (C++Builder view)

Figure 3Figure 3Figure 3Figure 3----32. 32. 32. 32. Advancing to the next line of code to change the value of FileName (Delphi view)

Debugging the application

3-26 Getting Started with Delphi® and C++Builder® 2009

Pressing F8F8F8F8 once more jumps over the ifififif statement, since a file with the given name

does not already exist at the current location. The screen should now look like the fol-

lowing images.

Figure 3Figure 3Figure 3Figure 3----33. 33. 33. 33. Advancing to the next line of code to change the value of FileName (C++Builder view)

Figure 3Figure 3Figure 3Figure 3----34. 34. 34. 34. Jumping over the ifififif statement (Delphi view)

Debugging the application

Starting your first RAD Studio application 3-27

Press F8F8F8F8 until you get to the last line of the FileSaveAs1Accept function. Now move

the mouse cursor over the name of the CurrentFile variable to instantly view its value,

as in the following images.

Figure 3Figure 3Figure 3Figure 3----35. 35. 35. 35. Jumping over the ifififif statement (C++Builder view)

Figure 3Figure 3Figure 3Figure 3----36. 36. 36. 36. Viewing the value of CurrentFile (Delphi view)

Debugging the application

3-28 Getting Started with Delphi® and C++Builder® 2009

To end the debugging session, press the stop button on the Debug Debug Debug Debug toolbar, also dis-

played in the following image.

Figure 3Figure 3Figure 3Figure 3----37. 37. 37. 37. Viewing the value of CurrentFile (C++Builder view)

Figure 3Figure 3Figure 3Figure 3----38. 38. 38. 38. The Debug Debug Debug Debug toolbar

Debugging the application

Starting your first RAD Studio application 3-29

Click here to stop debugging the application.

Debugging the application

3-30 Getting Started with Delphi® and C++Builder® 2009

 C h a p t e r C h a p t e r C h a p t e r C h a p t e r

4444
More Advanced Topics

VCL and RTLVCL and RTLVCL and RTLVCL and RTL

As seen in the previous chapters, CodeGear™ RAD Studio 2009 offers a powerful Inte-

grated Development Environment that makes building native Windows applications

extremely easy. The Visual Component Library (also known as VCL) offers a large num-

ber of visual and nonvisual components that can be used to build almost any desired

user interface. Besides the VCL, RAD Studio provides an extensive library of routines

and classes, called the Run Time Library (known as RTL), that provides the common

functionality needed in all applications.

This chapter lists the most important classes, data types, and functions that can be

found both in the VCL and RTL.

The most important components of the VCL are:

• A standard set of components that include all controls provided by the Windows UI

framework. This set consists of components such as buttons, edits, menus, and so

on. The VCL also extends some of these controls, offering you even more function-

ality than is normally provided by the Windows controls.

• An extended set of components not normally present in the Windows UI frame-

work. These components are built on top of the standard set.

• Actions, which is a key concept extensively used in VCL applications, allow you to

centralize all the interaction logic of your user interface.

More advanced topics 4-1

• A number of data-aware controls that can be linked to a data source at design

time. These components are widely used in database applications.

• Ribbon controls that allow you to build the next generation of user interfaces that

integrate nicely with the Windows Vista and Microsoft Office 2007 look-and-feel.

• DBExpress and dbGo database frameworks. These frameworks can be used with all

the data-aware controls, simplifying your application development more than ever.

• Internet Direct, also known as Indy, that provides an extensive number of compo-

nents used in Internet-connected applications. Indy includes client and server com-

ponents for today’s most used communication protocols on the Internet.

• DataSnap, which allows you to build distributed applications.

• Easy integration of any exposed OLE and ActiveX objects in your application. RAD

Studio provides a set of tools that allow creating a wrapper component over any

public ActiveX. This wrapper component can be used as any normal VCL compo-

nent inside your application.

Even though this is not the full list of components available in the VCL, the above men-

tioned are the most widely used and appreciated VCL components. To see all avail-

able components, check out the Tool Palette in RAD Studio.

The most useful features in the RTL, which are available both in Delphi and

C++Builder, are:

• An extensive support for strings. This support includes handling of Unicode strings

(the default encoding used by RAD Studio), ANSI and UTF-8 strings, various string

handling routines, and much more.

• A large number of date and time manipulation routines.

• Extensive support for file and stream operations.

• Routines and classes that provide Windows API support. You, as a developer, will

often be required to use Windows API directly because a certain functionality is not

provided by the RTL. RAD Studio provides developers with the ability to use the full

Windows API directly. RAD Studio also provides easy-to-use classes like TRegistry

for registry handling.

VCL and RTL

4-2 Getting Started with Delphi® and C++Builder® 2009

• Variant data types and various support routines to make COM integration easy.

Variant data types have long been used in Microsoft COM and OLE technologies.

Variants are useful when you do not know the exact data type you are operating on.

The Delphi language compiler provides native support for Variants, integrating

some of the dynamic language concepts, found in other languages such as Java,

PHP, and others.

• Run-time Type Information, also known as RTTI, that provides an easy way to obtain

metadata about types, classes, and interfaces at runtime.

Another important part of the RTL is provided by the generic collections, which is spe-

cific to the Delphi language. This collection of generic classes can be used in any ap-

plication that requires lists, dictionaries, and other container classes. There are also

nongeneric counterparts for these classes.

The C++Builder equivalent of the generic collections is given by the STL library, pro-

vided by Dinkumware as a third party add-in. This is presented in the next section.

For more information... For more information... For more information... For more information...

See “Win32 Developer's Guide” in the bundled Help.

VCL and RTL

More advanced topics 4-3

Third party addThird party addThird party addThird party add----insinsinsins

Dinkumware (STL) is a collection of template libraries for C++, included in C++Builder.

It includes containers such as vectors, lists, sets, maps, bitsets. It also includes algo-

rithms for applying widely used operations, like sorting a container or searching inside

a container. To implement the algorithms, STL introduces iterators in all five flavors for

operating on a container: input, output, forward, backward, bidirectional. Functors, or

function objects, are also introduced for overloading operators.

Boost is a set of libraries for C++ that significantly expand the language using tem-

plate meta-programming. A fully tested and preconfigured subset of Boost is included

in C++Builder. Include paths have been set for the Boost libraries, and any other nec-

essary libraries should be automatically linked. As an example, to use the Boost

minmax library, your code should specify:

#include <boost/algorithm/minmax.hpp>.

Intraweb is a collection of visual components, a framework designed to allow you to

create web applications or Apache plug-ins. It allows you to create web applications

with the same ease you use the VCL.

Indy is an Open Source group. The Indy project maintains several active Open Source

projects which have evolved from the original Indy (Internet Direct) project. Indy offers

client and server components using Internet protocols, such as tcp, udp, echo, ftp,

http, telnet, and many others. It also provides components for I/O handling, intercepts,

SASL, UUE, MIME, XXE encoders, and others.

Third party add-ins

4-4 Getting Started with Delphi® and C++Builder® 2009

• Dinkumware (STL)Dinkumware (STL)Dinkumware (STL)Dinkumware (STL)

• BoostBoostBoostBoost

• IntrawebIntrawebIntrawebIntraweb

• IndyIndyIndyIndy

 C h a p t e r C h a p t e r C h a p t e r C h a p t e r

5555
EDN and Partners

Other resourcesOther resourcesOther resourcesOther resources

EDNEDNEDNEDN

The Embarcadero Developer Network (EDN), located at dn.embarcadero.com, is a col-

lection of code-related articles on various products, including 3rdRail, Turbo Ruby,

Blackfish SQL, C++Builder, Delphi, Delphi for PHP, Delphi Prism, Interbase, and

JBuilder.

The EDN website keeps an up-to-date calendar of the most important events related

to Embarcadero products and also gives the latest news in product updates. As a fea-

ture of this website, the calendar can be customized to show the events concerning a

single Embarcadero product.

An important developers’ resource is the CodeCentral page, as part of the EDN. This

is located at the following link: cc.embarcadero.com. CodeCentral is a collection of

code snippets contributed by various members, using all the programming languages

featured in EDN.

EDN and partners 5-1

PartnersPartnersPartnersPartners

The companies behind all the included third party add-ins are mentioned in the follow-

ing list:

• DINKUMWARE Ltd for Dinkumware, at http://www.dinkumware.com

• The Boost open source project, at www.boost.org

• ATOZED Software for IntraWeb, at http://www.atozed.com/IntraWeb

• The Indy Project, at http://www.indyproject.org

A complete list of the RAD Studio 2009 partners can be found at the following links:

• http://cc.embarcadero.com/partners/delphicpp2009/CBuilder/index.html

• http://cc.embarcadero.com/partners/delphicpp2009/Prism/index.html

• http://cc.embarcadero.com/partners/delphicpp2009/Delphi/index.html

Other Resources

5-2 Getting Started with Delphi® and C++Builder® 2009

2009 04 16

By the RAD Studio Team at Embarcadero Technologies, Inc.

Copyright © 2009
Embarcadero Technologies, Inc.
Download a free trial
at www.embarcadero.com

Getting Started
with RAD Studio 2009

Rapid Application Development Using the
Delphi® and C++Builder® Integrated Development Environment

Copyright © 2009
Embarcadero Technologies, Inc.
Download a free trial
at www.embarcadero.com

By the RAD Studio Team at Embarcadero Technologies, Inc.

Getting Started
with RAD Studio 2009

Rapid Application Development Using the
Delphi® and C++Builder® Integrated Development Environment

	A4frontcover_GetStart_
	blankpage
	content_GetStart.pdf
	blankpage
	A4backcover_GetStart_

