
InterBase XE3 Quick Start

M

Product Documentation
arch, 2014

© 2014 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero Technologies logos,
and all other Embarcadero Technologies product or service names are trademarks or registered
trademarks of Embarcadero Technologies, Inc. All other trademarks are property of their
respective owners.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and
run them better, regardless of their platform or programming language. Ninety of the Fortune
100 and an active community of more than three million users worldwide rely on Embarcadero
products to increase productivity, reduce costs, simplify change management and compliance
and accelerate innovation. The company's flagship tools include: Embarcadero® Change
Manager™, CodeGear™ RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid
SQL®. Founded in 1993, Embarcadero is headquartered in San Francisco, with offices located
around the world. Embarcadero is online at www.embarcadero.com.

Contents
Introduction . 1

Using this Quick Start . 1

Finding the Files you Need . 2

Printing Conventions . 2

Syntax Conventions . 3

Understanding Which Parts to Do. 4

Advance to Part I . 4

Part I: Getting Started . 1

Installing InterBase XE3 Update 4 for Windows . 1

Installation . 1

To Start the Local InterBase Server . 3

Connecting to a Server from IBConsole . 4

Creating a New User. 6

Creating a New User . 7

Create a Database . 8

Connecting to a Database . 11

Disconnecting From a Database . 13

Installing InterBase XE for Mac OS X . 13

Installation . 14

Installing InterBase XE for Linux. 16

Installation . 16

Advance to Part II . 17

Part II: Data Definition . 1

Database Design . 1

The TUTORIAL Database. 2

An Overview of SQL . 3

Using IBConsole to Execute SQL . 3

Entering SQL Statements in the SQL Statement Area . 4

Creating Domains . 6

Entering Metadata Statements . 7

Create some Domains . 7

Data Definition Files . 8

Running an SQL Script . 9

Run the Domains.sql Script. 9
INTERBASE XE QUICK START 1

Creating Tables. 11

Primary Keys and Foreign Keys . 14

Computed Columns . 16

Backing up a Database. 16

Creating Tables with a Script . 18

Troubleshooting . 20

Viewing an Object Definition . 21

Altering Tables . 22

More Troubleshooting . 22

Creating Views . 23

Creating Indexes . 25

Specifying Index Sort Order . 26

Modifying Indexes . 26

Advance to Part III . 28

Part III: Populating the Database. 1

Inserting Data . 1

Updating Data . 3

Using UPDATE . 3

Updating to a NULL Value . 4

Using a Subquery to Update . 5

Deleting Data . 6

Deleting more Precisely . 7

Advance to Part IV . 7

Part IV: Retrieving Data . 1

Overview of SELECT . 1

Removing Duplicate Rows with DISTINCT. 2

Using the WHERE Clause . 3

Search Conditions. 4

Pattern Matching . 6

Testing for an Unknown Value . 10

Comparing Against a Range or List of Values . 10

Logical Operators. 12

Controlling the Order of Evaluation . 13

Using Subqueries . 15

Multiple-result Subqueries. 16

Conditions for Subqueries . 17
2 INTERBASE XE QUICK START

Using Aggregate Functions. 19

Grouping and Ordering Query Results . 20

Using ORDER BY to Arrange Rows . 20

Using the GROUP BY Clause. 22

Using the HAVING Clause . 23

Ordering by an Aggregate Column . 24

Joining Tables . 25

Correlation Names . 25

Inner Joins. 25

Outer Joins . 28

Formatting Data . 30

Using CAST to Convert Datatypes . 30

Using the String Operator in Search Conditions . 30

Converting to Uppercase . 32

Advance to Part V . 32

Part V: Advanced Topics . 1

Access Privileges . 1

Assigning Privileges with GRANT . 1

Using roles to Control Security . 2

Triggers and Stored Procedures . 5

Triggers . 5

Stored Procedures . 11
INTERBASE XE QUICK START 3

4 INTERBASE XE QUICK START

INTRODUCTION

This Quick Start takes you step-by-step through the process of creating and using a database
using the InterBase IBConsole dialog. You learn to create data structures that enforce referential
integrity constraints and maintain security. You populate your tables, create triggers and stored
procedures, and learn a number of techniques for retrieving the data with precision.

There are five parts in this tutorial:

• Part I: Getting Started

• How to Install and Start the InterBase Server

• How to Create a New User and a Database

• Part II: Data Definition

• What are the Fundamentals of Database Design

• How to Work in the IBConsole Environment

• How to create the Data Structures for your Database

• How to Recover from Errors

• Part III: Populating the Database

• How to Populate Your Database

• Part IV: Retrieving Data

• How to Access or Retrieve your Data

• Part V: Advanced Topics

• How to Work with Database Security

• How to Create Some Triggers and Stored Procedures to Automate Some of Your
Database Tasks

USING THIS QUICK START

Throughout this Quick Start, you are instructed to enter SQL statements manually at the
beginning of each new topic in order to give you a hands-on experience. Then you are
instructed to read in one of the SQL scripts that accompany this document. These steps allows
you to create a database that is complex enough to be interesting without excessive
keyboarding. The database that you create is, in fact, the EMPLOYEE database that is used as the
example database for InterBase and is referenced throughout the InterBase document set.
INTERBASE XE QUICK START 1

INTRODUCTION > Using this Quick Start
FINDING THE FILES YOU NEED
As you reach the places in this tutorial there are scripts that need to be run. Use the script files
(*.sql) that are located in the InterBase Quick Start Scripts.zip file in http://
docs.embarcadero.com/products/interbase/

PRINTING CONVENTIONS
The following typographic conventions are used through this document:

Convention Purpose Example

UPPERCASE SQL keywords, SQL functions, and
names of all database objects such as
tables, columns, indexes, and stored
procedures

the SELECT statement retrieves
data from the CITY column in the
CITIES table

can be used in CHAR, VARCHAR,
and BLOB text columns

the CAST() function

italic New terms, emphasized words, all
elements from host languages, and all
user-supplied items

isc_decode_date()

the host variable, segment_length

contains six variables, or data
members

bold File names, menu commands, and all
commands that are entered at a system
prompt, including their switches,
arguments, and parameters

a script, ib_udf.sql, in the examples
subdirectory

the employee.gdb database

the Session > Advanced Settings
command
2 INTERBASE XE QUICK START

http://docs.embarcadero.com/products/interbase/
http://docs.embarcadero.com/products/interbase/

INTRODUCTION > Using this Quick Start
SYNTAX CONVENTIONS
The following table lists the conventions used in syntax statements and sample code, and
provides examples of their use:

Convention Purpose Example

UPPERCASE Keywords that must be typed
exactly as they appear when used

SET TERM !!;

ADD [CONSTRAINT] CHECK

italic User-supplied parameters that
cannot be broken into smaller units

CREATE TRIGGER name FOR table;

ALTER EXCEPTION name 'message'

<italic> Parameters in angle brackets can be
broken into smaller syntactic units;
the expansion syntax for these
parameters follows the current
syntax statement

WHILE (<condition>) DO
<compound_statement>33

[] Optional syntax: you do not need to
include anything that is enclosed in
square brackets; when elements
within these brackets are separated
by the pipe symbol (|), you can
choose only one

CREATE [UNIQUE][ASCENDING |
DESCENDING]

[FILTER [FROM subtype] TO subtype]

{ } You must include one and only one
of the enclosed options, which are
separated by the pipe symbol (|)

{INTO | USING}

| You can choose only one of a group
whose elements are separated by
this pipe symbol

SELECT [DISTINCT | ALL]

... You can repeat the clause enclosed
in brackets with the “…” symbol as
many times as necessary

(<col> [,<col>…])
INTERBASE XE QUICK START 3

INTRODUCTION > Using this Quick Start
Reading and typing capitals

Line Breaks

• Line breaks are added within example statements to make them easy to read and
understand. They are not required.

• When you’re entering statements you don’t have to follow the line breaks in the examples.
Enter ones that make it easy for you to keep track of what you’re doing. InterBase ignores
line breaks within input SQL statements.

UNDERSTANDING WHICH PARTS TO DO
This tutorial contains some code examples that you are not supposed to enter into the TUTORIAL
database. In other places, it gives the text of code that you are supposed to enter - these are
your action items. So the code that you actually enter are all preceded by topic headings with an

 symbol. For example all code in the “Disconnecting from a Database” topic needs to be
entered because it is preceded by the green symbol.

ADVANCE TO PART I
Click here to advance to Part I: Getting Started which covers installation, starting the local
InterBase server, logging onto a server from the InterBase IBConsole, creating a new user on a
server, and creating a new database on a server

Type of entry Case sensitivity

SQL statements When you’re entering SQL statements into IBConsole, you can ignore
the capitalization. The conventions listed above are to make it easy to
read and understand the examples. You can enter the exercises in all
lower case if you prefer.

Strings Strings (anything inside of quotation marks) are case sensitive. There are
many strings in single quotes in this Quick Start, and you must enter the
case exactly as it’s shown.

External
references

When you refer to something outside of InterBase, such as a filename,
the reference is case sensitive.
4 INTERBASE XE QUICK START

PART I: GETTING STARTED

In Part I, you perform the following actions:

• Install InterBase XE

• Installing InterBase XE3 Update 4 for Windows

• Installing InterBase XE for Mac OS X

• Installing InterBase XE for Linux

• Start the Local InterBase server

• Log onto a server from the InterBase IBConsole

• Create a new user on a server

• Create a new database on a server

INSTALLING INTERBASE XE3 UPDATE 4 FOR WINDOWS

Before you get started you need to do the following:

• Go to https://downloads.embarcadero.com/free/interbase and download InterBase XE
Developer Edition for Windows.The file is InterBase_XE3.zip.

NOTE: The InterBase XE3 download includes both 32-bit and 64-bit in the same
Windows install.

• A Developer’s Network account is required. Click http://edn.embarcadero.com to either log
on to an existing account or create a new one.

NOTE: For installing on the Mac click: Installing InterBase XE for Mac OS X. For
installing on Linux click: Installing InterBase XE for Linux

INSTALLATION
1 Double-click the InterBase_XE3.zip file, and then double-click ib_install.exe.

NOTE: It is recommended that you exit all Windows programs before running the
setup program.

2 Following the instructions as you are guided through the install wizard.

3 In the Multi Instance Feature pane, make sure you leave the default setting of “No”.

4 In the Select Components pane, select Server and Client, Documentation, and Register
and click Next.
INTERBASE XE QUICK START 1

https://members.embarcadero.com/login.aspx?returnurl=http://edn.embarcadero.com/

PART I : GETTING STARTED > Insta l l ing InterBase XE3 Update 4 for Windows
5 Leave the default destination folder as is and click Next again to start the installation. The
Embarcadero InterBase XE installation dialog opens.

6 Once InterBase is installed the InterBase XE Product Registration dialog appears.

7 When you selected to download your application, you were emailed a serial number. Enter it
and your DN account information and click Register

8 Click Finish to complete the installation.
2 INTERBASE XE QUICK START

PART I : GETTING STARTED > Instal l ing InterBase XE3 Update 4 for Windows
TO START THE LOCAL INTERBASE SERVER
1 To start the Local InterBase server running as an application on Windows, choose Start >

Programs > Embarcadero InterBase XE [instance = gds_db] > InterBase Server
Manager and the InterBase XE 32 Manager dialog opens.

2 This dialog shows the default Startup Mode, the root directory, and the status of the server.
Click Start and the status changes to Running.

3 Deselect the “Run the InterBase server as a Windows Service” and click Server Properties
and additional information appears in the dialog showing the number of databases and
attachments.
INTERBASE XE QUICK START 3

PART I : GETTING STARTED > Insta l l ing InterBase XE3 Update 4 for Windows
4 Click Guardian Properties and a dialog opens showing the location, version, and action
associated with the Guardian server. Close OK to close this dialog.

5 To open IBConsole choose Start > Programs > Embarcadero InterBase XE3
[instance = gds_db] > IBConsole.

NOTE: To start Local InterBase as a service on a Windows NT platforms, click
Administrative Tools > Services in the Control Panel, highlight the InterBase
XE Guardian entry, and click Start.

CONNECTING TO A SERVER FROM IBCONSOLE
The text of this tutorial assumes that you are working on the Local InterBase server. If you want to
work on a remote server, you must have the password for a valid InterBase user on that server.
4 INTERBASE XE QUICK START

PART I : GETTING STARTED > Instal l ing InterBase XE3 Update 4 for Windows
In this exercise, you connect as the SYSDBA user, since that is the only user who can create new
user accounts. Later you will create a user called TUTOR, which will be the account you will use for
the rest of these exercises.

• To log on to the Local InterBase server click Server > Login the Server Login dialog opens.

6 Use the password masterkey for the SYSDBA user and click Login. You are now logged into
the Local Server gds_db database.
INTERBASE XE QUICK START 5

PART I : GETTING STARTED > Insta l l ing InterBase XE3 Update 4 for Windows
CREATING A NEW USER
Once you create the new user named TUTOR, the rest of this tutorial assumes that you are the
user TUTOR and that your password is tutor4ib.
6 INTERBASE XE QUICK START

PART I : GETTING STARTED > Instal l ing InterBase XE3 Update 4 for Windows
CREATING A NEW USER
NOTE: InterBase ships with one user, SYSDBA as the default.

1 To display the User Information dialog in IBConsole, click Server > User Security.

2 Click New to clear the Required Information and Optional Information fields.

3 Type TUTOR in the User Name field. This appears in all caps even if the Caps Lock is off.
Type tutor4ib in the Password and Confirm Password field. The password is case-sensitive.
You do not need to complete the Optional Information.

4 Click Apply to create the user, and then click Close.

5 Click Server > Logout and log out of the server. You will be asked to confirm this action.

6 Now click Server > Login and enter your new user name TUTOR and password. Once the
login is complete the TUTOR user appears in the Summary pane.
INTERBASE XE QUICK START 7

PART I : GETTING STARTED > Insta l l ing InterBase XE3 Update 4 for Windows
You have now created a user on the server you’re logged into. Users are defined server-wide
and can connect to any database that resides on that server. Tables within these databases
have additional security, however. Being able to connect to a database won’t do you much
good if you don’t have privileges on any of its tables. This will be covered later.

CREATE A DATABASE
Now that you have created a valid user name, you can create the TUTORIAL database that you will
use for the exercises in this tutorial.

InterBase databases are stored in files that have a .gdb extension.

Creating the TUTORIAL Database

1 If it isn’t already open, open IBConsole by choosing it from the InterBase folder on the Start
> Programs menu.

2 Log on to the server as the TUTOR user.

NOTE: Be sure you log on as TUTOR for the remaining exercises in this tutorial.
8 INTERBASE XE QUICK START

PART I : GETTING STARTED > Instal l ing InterBase XE3 Update 4 for Windows
3 For this tutorial you will use C:\Program Files\Embarcadero\Interbase\database\. If
you choose a different location, you must edit the CONNECT statement in the SQL script files
to reflect the new location. (You’re instructed how to do this a little later.)

4 To open the Create Database dialog, highlight the server in the left pane and select
Database > Create Database.

5 Enter Tutorial in the Alias field

6 In the Filename field, browse to the location of your new database at

 C:\Documents and Settings\All Users\Application
Data\Embarcadero\Interbase\gds_db\
INTERBASE XE QUICK START 9

PART I : GETTING STARTED > Insta l l ing InterBase XE3 Update 4 for Windows
7 Enter tutorial.gdb in the File name field and click Save

8 Set the SQL Dialect to 3. Leave the rest of the settings as is.
10 INTERBASE XE QUICK START

PART I : GETTING STARTED > Instal l ing InterBase XE3 Update 4 for Windows
9 Click OK to create the TUTORIAL database. This new database named TUTORIAL belongs to
the user TUTOR.

CONNECTING TO A DATABASE

1 To connect to the database, click and the DataBase Connect dialog opens.

NOTE: The Database Connect dialog opens automatically when you create the
TUTORIAL database.
INTERBASE XE QUICK START 11

PART I : GETTING STARTED > Insta l l ing InterBase XE3 Update 4 for Windows
2 Enter your Password and then click Connect.

Once you are connected, the Status Bar at the bottom of the IBConsole window shows the
server name, the name of the database you just created, and the name of the user
connected to the server.
12 INTERBASE XE QUICK START

PART I : GETTING STARTED > Instal l ing InterBase XE for Mac OS X
DISCONNECTING FROM A DATABASE
To disconnect from a database:

• Click Disconnect ()

OR

• Select Database > Disconnect.

When InterBase asks whether you want to disconnect from the database, click Yes.

INSTALLING INTERBASE XE FOR MAC OS X
Before you get started you need to do the following:
INTERBASE XE QUICK START 13

PART I : GETTING STARTED > Insta l l ing InterBase XE for Mac OS X
• A Developer’s Network account is required. Click http://edn.embarcadero.com to either log
on to an existing account or create a new one.

• Go to https://downloads.embarcadero.com/free/interbase and download InterBase XE
(10.0.4.590) 32-bit Developer Edition for Mac 0S X.The file is InterBase_XE_Mac-2.zip.

INSTALLATION
1 Double-click the InterBase_XE_Mac-2.zip file and the InterBase_XE_Mac-2 dialog opens.

2 Double-click ib_install.app and a warning dialog appears asking you to confirm the
installation. Click Open and dialog opens requesting your password.

NOTE: The installation requires an Administrator password to install the software.

3 Click the Lock icon and enter your password. Once the password is authenticated the install
wizard appears.

4 Follow the wizard and in the Welcome pane, after you read the instructions, click Next.

5 Accept the License Agreement and click Next.

6 In the Choose Install Set pane, select the Server and Client option. This is the default
setting.

7 Leave the default setting of “No” in the Multi-Instance InterBase pane and click Next.

8 On the Choose Install Folder pane, select Restore Default Folder which is Macintosh HD >
Applications > InterBase.

9 Click Next and review the Pre-Installation Summary and then click Install.

10 During the install the Embarcadero Product Registration dialog appears.
14 INTERBASE XE QUICK START

https://members.embarcadero.com/login.aspx?returnurl=http://edn.embarcadero.com/

PART I : GETTING STARTED > Instal l ing InterBase XE for Mac OS X
11 Enter the Serial Number that was sent to your EDN account. You also need to enter your
Login and Password.

12 Click Register. Once the registration is complete you are notified that you now have the
InterBase XE Server Edition 15 Day Trial.

13 When the install is complete, click Done.

14 InterBase for Mac is a command-line application. To start the server go to Macintosh HD >
Applications > InterBase > bin > ibmgr.
INTERBASE XE QUICK START 15

PART I : GETTING STARTED > Insta l l ing InterBase XE for Linux
INSTALLING INTERBASE XE FOR LINUX

Before you get started you need to do the following:

• A Developer’s Network account is required. Click http://edn.embarcadero.com to either log
on to an existing account or create a new one.

• Go to https://downloads.embarcadero.com/free/interbase and download InterBase XE 32-
bit Developer Edition for Linux.The file is InterBase_XE_Linux.tar.gz.

• After extracting the Linux Tar, run install_linux.sh. This ensure that the sanctuary library for
registration is set in the environment.

INSTALLATION
1 Run the script install_linux.sh as a root user.

NOTE: The installation requires an Administrator password to install the software.

2 In the InterBase XE License Registration enter the Serial Number that was sent to your EDN
account. You also need to enter your Login and Password.

3 Follow the wizard and in the Choose Install pane, select the Server and Client option. This
is the default setting.

4 Leave the default setting of “No” in the Multi-Instance InterBase pane.

5 On the Choose Install Folder pane, select Restore Default Folder.

6 Review the Pre-Installation Summary and then click Install.

7 In the InterBase XE License Registration enter the Serial Number that was sent to your EDN
account. You also need to enter your Login and Password.
16 INTERBASE XE QUICK START

https://members.embarcadero.com/login.aspx?returnurl=http://edn.embarcadero.com/

PART I : GETTING STARTED > Insta l l ing InterBase XE for L inux
8 Click Register. Once the registration is complete you are notified that you now have the
InterBase XE Server Edition 15 Day Trial.

9 Click Finish and you are returned to the install wizard. Click Done

10 InterBase for Linux is command-line application. To start the server go to: opt > InterBase >
bin > ibmgr.

ADVANCE TO PART II
This completes Part I of the Quick Start. In Part III, you will cover the following:
INTERBASE XE QUICK START 17

PART I : GETTING STARTED > Insta l l ing InterBase XE for Linux
• Data modeling overview

• Creating domains

• Executing SQL scripts

• Creating tables and views

• Viewing object definitions

• Altering a table

• Creating, modifying and dropping indexes.
18 INTERBASE XE QUICK START

PART II: DATA DEFINITION

Part II covers the following topics:

• Database Design

• An Overview of SQL

• Creating Domains

• Data Definition Files

• Running an SQL Script

• Creating Tables

• Primary Keys and Foreign Keys

• Backing up a Database

• Creating Tables with a Script

• Creating Views

DATABASE DESIGN

The crucial first step in constructing any database is database design. You can’t create a
functional, efficient database without first thinking through all its components and desired
functionality in great detail. Chapter 2 of the Data Definition Guide provides a good introduction
to the topic.

A Quick Look at Data Modeling

This following list provides a brief and simple overview of the process of designing a database:

1 Determine data content: What information needs to be stored? In thinking about this, look
at it from the end user’s point of view: What groups of end users will access the database?
What information will they need to retrieve? What questions will they be asking of the
database?

2 Group types of data together: Information items tend to group together naturally. Later in
this Quick Start, when you create tables in the database, you will create one table for each
group of data items. The granularity with which you divide the mass of information into
groups depends on factors such as the quantity and complexity of the information your
database must handle. The goal is to have each item of information in only one place. The
process of identifying such groups is called normalization. Identify entities and their
attributes. In this Quick Start, for example, one type of entity is the project. A project’s
attributes are its ID number, name, description, leader’s name, and product. Later you will
see that there is a table named Project that has columns named proj_id, proj_name,
proj_desc, team_leader, and product.
INTERBASE XE QUICK START 1

PART I I : DATA DEFINITION > Database Design
3 Design the tables: Determine what tables you will create, what columns will be in each
table, and what type of data each column will contain. If you have identified your entities and
their attributes carefully, each entity corresponds to a table and each attribute is a column in
that table. At this point you then decide on the datatype for each column, as well.

Is the data numeric or text? If it’s numeric, what is the expected range of values? If it’s text,
how long a string do you need? Identify an appropriate datatype for each column.
InterBase’s supported datatypes are discussed in Chapter 4 of the Data Definition Guide.

4 Consider the interdependencies of your table columns: You can’t sell an item, for
example, unless you have it in an inventory. You can’t deliver it unless it’s in stock. You create
primary keys and foreign keys to maintain these dependencies. This is called maintaining
database integrity. Other mechanisms for maintaining database integrity and security
include CHECK constraints, and using GRANT and ROLE statements to control access to tables.

THE TUTORIAL DATABASE
The TUTORIAL database that you create is, in fact, an exact copy of the EMPLOYEE database that is
used for examples throughout the InterBase document set. The TUTORIAL database is a generic
business database. Imagine that you are responsible for creating a database for this company. In
the data modeling phase, you identify the following entities (information groups):

As you progress through this Quick Start, you will see that the TUTORIAL database contains ten
tables that correspond exactly to the ten items above. To get an overview now, you can look at
the EMPLOYEE database, since the EMPLOYEE database and the finished TUTORIAL database are
identical. The EMPLOYEE database is located in the \Documents and Settings\All
Users\Application Data\Embarcadero\InterBase\gds_db\examples directory on your
machine if you installed the examples.

departments jobs countries customers

salary history for each employee projects employee projects sales

department budgets for each project employees
2 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > An Overview of SQL
AN OVERVIEW OF SQL
SQL statements fall into two major categories: Data definition language (DDL) statements, and
Data manipulation language (DML) statements.

• DDL statements define, change, and delete the structures that hold data. These include
the database itself, tables, and other elements that are part of the database such as
domains, indexes, triggers, stored procedures, roles, and shadows. Collectively, the
objects defined with DDL statements are known as metadata. DDL statements begin with
the keywords CREATE, ALTER, and DROP. For example, CREATE TABLE defines a table, ALTER
TABLE modifies an existing table, and DROP TABLE deletes a table.

• DML statements manipulate data within these data structures. The four fundamental
DML statements are INSERT, UPDATE, DELETE, and SELECT. INSERT adds data to a table,
UPDATE modifies existing data, and DELETE removes data. The SELECT statement retrieves
or queries information from the database. It is the most important, and most complex, of
all the SQL statements, because it is the means by which you gain access to all the
information that you have so meticulously stored.

In this part of the Quick Start, you will use several DDL statements—CREATE DOMAIN, CREATE
TABLE, ALTER TABLE, CREATE VIEW, and CREATE INDEX—to create data structures for your TUTORIAL
database.

USING IBCONSOLE TO EXECUTE SQL
This section describes how to use the Interactive SQL to enter, execute, and commit SQL
statements.
INTERBASE XE QUICK START 3

PART I I : DATA DEFINITION > An Overview of SQL
ENTERING SQL STATEMENTS IN THE SQL STATEMENT AREA
You enter SQL statements by typing them in the SQL statement area in the Interactive SQL
dialog.

• You do not need to end statements with a terminator, such as a semicolon. However, the
terminator is not prohibited and does not cause a problem. You can, for example, copy and
paste statements from scripts (where they must have terminators) and run them without
removing the terminators.

• InterBase SQL statements are not case sensitive. You can enter all SQL statements in
lowercase if you prefer.

• Anything inside quotation marks is case sensitive and must be entered as shown.

• InterBase ignores line breaks within statements. They are for your convenience only.

• You can use spaces to indent lines to make them easier to read. InterBase ignores these
spaces. You cannot indent using tabs.
4 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > An Overview of SQL
• You must execute each statement before entering the next one.

Executing Statements

To execute a statement, do one of the following:

• Click Execute ()

OR

• Select Query > Execute.

You must execute each statement before entering the next one.

NOTE: Although this method of entering SQL statements by hand one at a time is an
option in InterBase, users often use SQL scripts (data definition files) as a more
convenient way of entering data. See “Running an SQL Script” on page 9 for
more information.

Committing your Work

Until you commit your work, your transaction is said to be active. Work associated with an active
transaction is not yet visible to other users. You often want to enter an entire group of related
items before committing, so that misleading intermediate states are never visible. When you
commit, your transaction changes to a committed state and the work you did in that transaction
becomes visible to other users. When you are creating metadata, however, you usually want to
commit each data structure as you complete the DDL statement. (See page 3 for a discussion of
DDL and DML statements.)

InterBase provides an Autocommit feature that automatically commits any DDL statement when
you execute it. The Autocommit feature does not apply to DML statements such as INSERT,
UPDATE, DELETE, and SELECT. The Autocommit feature is enabled by default in InterBase.

Checking Session Settings

To check the status of the Autocommit feature and other session settings, follow these steps:

1 Click to open the Interactive SQL dialog.

2 Choose Edit > Options to display the SQL Options dialog.
INTERBASE XE QUICK START 5

PART I I : DATA DEFINITION > Creat ing Domains
3 Check to see that the Auto Commit DDL is set to True. If not, enable the feature and click
OK.

CREATING DOMAINS

A domain is a customized column definition that you use to create tables. When you create a
table, you specify the characteristics of each column in the table. Often, across the tables in a
database, there will be several columns that have the same characteristics. Rather than entering
the same complex definition for each column, you can create a name for the collection of
characteristics. This named set of column characteristics is called a domain. You can use this
domain name in a column definition rather than typing out the full definition.

NOTE: If you are going to use domains in your column definitions, you must create the
domains before you use them in table definitions.

Column characteristics include:

• Datatype

• Default value: a literal value, NULL, or the name of the current user (USER)

• Nullability: NOT NULL prohibits NULL values in the column (columns are nullable by default)

• CHECK constraints: checks that the value being entered meets specified criteria
6 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creat ing Domains
• Character set and optional collation order (output sort order for CHAR and VARCHAR columns)

• When you specify a column, only a column name and datatype are required. All other
characteristics are optional.

Connecting to the TUTORIAL database

1 If you are not already connected to the Tutorial database, in IBConsole, log on as the TUTOR
user to the Local InterBase server.

• Select the Local Server in the left pane and then choose Server > Login to display the
Server Login dialog.

• The user name TUTOR is already in the first field. Enter the password “tutor4ib” and click
Login.

2 To connect to the TUTORIAL database highlight the Tutorial.gdb icon in the left pane and
choose Database > Connect.

ENTERING METADATA STATEMENTS
In this exercise, you use the CREATE DOMAIN statement to create domains that you will use later to
specify column datatypes.

CREATE SOME DOMAINS
In the following exercise you will define four domains. The first three specify only a datatype. The
fourth one is more complex. In each case, the domain will be useful for several different
columns, not just the column for which it is named.

NOTE: You should be connected to the TUTORIAL database when you begin this
exercise.

1 Click on the SQL icon () and type the following code in the SQL Statement Area to
define a domain called FIRSTNAME that has a datatype of VARCHAR(15).

CREATE DOMAIN FIRSTNAME AS VARCHAR(15)

2 Execute the statement: click , press F5, or choose Query > Execute.

Now create two more domains, LASTNAME and EMPNO. Execute each statement separately
before entering the next one.

CREATE DOMAIN LASTNAME AS VARCHAR(20)

CREATE DOMAIN EMPNO AS SMALLINT
INTERBASE XE QUICK START 7

PART I I : DATA DEFINITION > Data Definit ion Fi les
3 Next, enter and execute the following code to define a domain for department numbers.
The domain is defined as a three-character string. In addition to the datatype, it includes
check constraints to ensure that the department number is either “000”, alphabetically
between “0” and “999”, or NULL. Pay attention to parentheses and quotes as you enter this:

CREATE DOMAIN DEPTNO AS CHAR(3)
CHECK (VALUE = '000'

OR (VALUE > '0' AND VALUE <= '999')
OR VALUE IS NULL)

TIP: When you’re typing an SQL statement that has parentheses, take a moment to
count the left parentheses and the right parentheses and make sure that there
are the same number of each. Mismatched parentheses are a major source of
errors in SQL code. In the example above, there are nested parentheses: the
CHECK clause is enclosed in parentheses because it contains three parts (“A OR
B OR C”) and the second part of the clause has parentheses because it also
contains multiple parts (“A AND B”).

The CREATE DOMAIN statement above is divided into several lines to make it
easy for users to follow the syntax. InterBase ignores the line breaks when
parsing the statement. Enter the whole statement before executing it.

You don’t need to commit your work, because CREATE statements are DDL
(data definition language) statements. You turned Autocommit DDL on in the
Session Settings earlier in this tutorial, so all these DDL statements have been
committed automatically.

NOTE: You can manually commit your SQL statements, making them permanent by
selecting Transactions > Commit. This commits any uncommitted DML and
DDL statements.

DATA DEFINITION FILES

Since you’ve already created several domains, you can use an SQL script—also called a data
definition file—to create the rest of the domains. A data definition file is a text file that contains
SQL statements. It can be executed in IBConsole and is typically created with a text editor such
as Notepad.

It is often convenient to create a data definition file rather than typing each statement directly
into IBConsole, because the text editor provides you with an editing environment and the script
provides a reusable record of what was entered. In practice, most data definition is
accomplished using data definition files.

TIP: Every SQL script must begin with a CONNECT statement. The CONNECT
statement specifies a database name including the complete path, a user
name, and password. The SQL scripts that accompany this tutorial begin with
the following CONNECT statement:

CONNECT 'C:\Documents and Settings\All Users\Application
8 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Running an SQL Script
Data\Embarcadero\Interbase\gds_db\tutorial.gdb'
USER 'TUTOR' PASSWORD 'tutor4ib'

If this is not the correct information for you, you must edit each SQL file and
make the CONNECT string correct. The SQL scripts are text files that you can
modify in any text editor. If you use an application that saves by default in a
proprietary format, be sure to save the files as text.

RUNNING AN SQL SCRIPT

Before running an ISQL script, it is good practice to open the file in a text editor and check that
the CONNECT statement provides the correct server, database, user name, and password. Edit
the information if necessary.

The remaining domain definitions that are needed for your TUTORIAL database are in the
Domains.sql data definition file. In this section of the tutorial, you execute that file to create the
remaining domain definitions.

RUN THE DOMAINS.SQL SCRIPT
1 Open Domains.sql in a text editor and make sure that the CONNECT statement specifies the

correct path, database name, user name, and password.

2 Notice that the file contains many descriptive passages that are commented out. The
convention for comments is exactly like that for the C language: comments begin with /*
and end with */.

3 Look through the file and notice that each SQL statement ends with a semicolon (;).
Semicolons are required at the end of each statement in a data definition file. They are not
required when you type statements directly into IBConsole.

4 Choose Query > Load Script. The Load SQL Script dialog displays:
INTERBASE XE QUICK START 9

PART I I : DATA DEFINITION > Running an SQL Script
5 Navigate to the location where you have stored the tutorial SQL files, highlight Domains.sql
and click Open.

6 Choose Query > Execute.

Troubleshooting: If you receive a message stating that there are errors, read the log file, in
this case Domains.log, which is located in the \scripts directory. Also check
that the CONNECT information (database, user, and password) in the script
file is correct.

7 To confirm that the domains now exist, click on Domains in the left pane of IBConsole.

You should see all the domains defined for the database displayed in the right pane of
IBConsole. You should see the following domains:
10 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creating Tables
NOTE: You can choose to show or hide the systems data (for example the RDB$
domains) by choosing IBConsole > View > System Data.

CREATING TABLES

A table is a data structure consisting of an unordered set of rows, each containing a specific
number of columns. Conceptually, a database table is like an ordinary table. Much of the power
of relational databases comes from defining the relations among the tables.

The CREATE TABLE statement has the following general form:

CREATE TABLE tablename (colname1 characteristics[, colname2 characteristics, …][,
tableconstraint …])

• Characteristics must include a datatype and can also include several other things. See
“Creating Domains” on page 6 for a list of column characteristics.

• A tableconstraint can be a CHECK, UNIQUE, FOREIGN KEY, or PRIMARY KEY constraint on one or
more columns.

For the full syntax of the CREATE TABLE statement, see the Language Reference.

In the following steps, you create three of the ten tables for the TUTORIAL database.
INTERBASE XE QUICK START 11

PART I I : DATA DEFINITION > Creat ing Tables
Creating the Country table

The first table—the Country table—has two columns. The column definitions are separated by
commas. For each column, the first word is the column name and the following words are
characteristics. The first column, country, has the COUNTRYNAME domain and in addition is NOT
NULL and a primary key. Primary keys are discussed in a following section of this tutorial.

1 If you are not already connected, in IBConsole, connect to tutorial.gdb as TUTOR.

2 In the Interactive SQL dialog enter the following CREATE TABLE statement. The layout below is
for ease of reading; the line endings are not required:

CREATE TABLE Country (
country COUNTRYNAME NOT NULL PRIMARY KEY,
currency VARCHAR(10) NOT NULL)

Notice that the collection of column definitions is surrounded by parentheses and that the
columns are separated by commas.

3 Execute the statement (click , press F5 or choose Query > Execute). If you entered the
code without errors, the tables now exist in the database in IBConsole. Choose Tables from
the left pane.

Creating the Department table

Next, you create the Department table. This table has only two columns to begin with. Later, you
use the ALTER TABLE command to add to it. Type in the complete SQL statement and then
execute it:

CREATE TABLE Department (
dept_no DEPTNO NOT NULL PRIMARY KEY,
department VARCHAR(25) NOT NULL UNIQUE)
12 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creating Tables
The dept_no column is the primary key for the table and is therefore UNIQUE. Primary keys are
discussed on page 14. Notice that the department column value must be unique and that
neither column can be null.

Creating the Job table

Now you create the more complex Job table. This definition includes CHECK constraints, PRIMARY
KEY and FOREIGN KEY constraints and a BLOB datatype for storing descriptive text. The text
following the code discusses these new elements.

1 Enter the following CREATE TABLE statement in the Interactive SQL statement area. Type in
the whole statement and then execute it.

CREATE TABLE Job (job_code JOBCODE NOT NULL,
job_grade JOBGRADE NOT NULL,
job_country COUNTRYNAME NOT NULL,
job_title VARCHAR(25) NOT NULL,
min_salary SALARY NOT NULL,
max_salary SALARY NOT NULL,
job_requirement BLOB SUB_TYPE TEXT SEGMENT SIZE 400,
language_req VARCHAR(15)[1:5],

CONSTRAINT pkjob PRIMARY KEY (job_code, job_grade, job_country),
CONSTRAINT fkjob FOREIGN KEY (job_country) REFERENCES Country

(country),
CHECK (min_salary < max_salary))

The CHECK constraint at the end checks that the minimum salary is less than the maximum
salary.

The three-column primary key guarantees that the combination of the three columns
identifies a unique row in the table.

The foreign key checks that any country listed in the Job table also exists in the Country
table.

The BLOB datatype used for the job_requirement column is a dynamically sizable datatype
that has no specified size and encoding. It is used to store large amounts of data such as
text, images, sounds, and other multimedia content.

2 To check that the tables now exist in the database, in IBConsole, choose Tables from the left
pane.
INTERBASE XE QUICK START 13

PART I I : DATA DEFINITION > Primary Keys and Foreign Keys
PRIMARY KEYS AND FOREIGN KEYS

The Job table definition includes a primary key and a foreign key.

• A primary key is a column or group of columns that uniquely identify a row. Every table
should have a primary key. And a table cannot have more than one primary key. The PRIMARY
KEY characteristic can be specified as part of a column definition, as in the first column of the
Country table, or it can be specified as a separate clause of the CREATE TABLE statement, as in
the statement that creates the Job table. The primary key in the Job table is made up of
three columns: job_code, job_grade, and job_country. While a value can appear more than
once in any of these columns taken individually, the fact that they are collectively a primary
key means that the three values taken together cannot occur in more than one row.
14 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Primary Keys and Foreign Keys
• A foreign key is a column or set of columns in one table whose values must have matching
values in the primary key of another (or the same) table. A foreign key is said to reference its
primary key. Foreign keys are a mechanism for maintaining data integrity. In the Job table,
for example, any country listed in the job_country column must also exist in the Country
table. By stating that the job_country column of the Job table is a foreign key that references
the country column of the Country table, you are guaranteeing this, because InterBase will
return an error if a value is entered the job_country column that does not have a matching
entry in the country column of the Country table.

You can declare a constraint such as UNIQUE, FOREIGN KEY, or PRIMARY KEY either as part of a
column definition, or as a table constraint following the column definitions. The syntax
varies slightly depending on which you choose. See the Language Reference for details.

You declared the primary key constraint as part of a column definition in the Country and
Department tables. For the Job table, you declared the primary key, foreign key, and check
constraints at the table level. Functionally, the effect is the same.

Cascading Referential Integrity Constraints

When you create a foreign key, you are saying that the value in the foreign key must also exist in
the primary key that it references. What happens if later, the value in the referenced primary key
changes or is deleted? The cascading referential integrity constraints let you specify what should
happen. Your choices are to take no action, to propagate (cascade) the change to the foreign
key column, to set the foreign key to its default, or to set it to NULL.

If you are specifying the foreign key as part of the column definition, the syntax is this:

CREATE TABLE table_name (column_name datatype FOREIGN KEY
REFERENCES other_table(columns)

[ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
[ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}],

[, more columns defs])

If you are specifying the foreign key as a table-level constraint, the syntax is nearly the same
except that you have to identify the column for which it is being defined, so the syntax becomes:

CREATE TABLE table_name (column_defs,
FOREIGN KEY (column_name) REFERENCES other_table(columns)

[ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
[ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}],

[, more table constraints])

A little later, you will use ALTER TABLE to add columns and table constraints to the Department
table, including some cascading referential integrity constraints.

Naming Constraints

When you declare a constraint at either the column level or the table level, you have the option
of naming the constraint using the optional CONSTRAINT keyword, followed by a constraint name.
When a constraint is named, you can drop it using the ALTER TABLE statement. In the Job table
definition, two of the constraints have names “pkjob” and “fkjob”), but the CHECK constraint
does not have a name (although it could have). When you alter the Department table a little
later, you will add two named constraints.
INTERBASE XE QUICK START 15

PART I I : DATA DEFINITION > Backing up a Database
COMPUTED COLUMNS
When you are creating a table, you can define columns whose value is based on the values of
one or more other columns in the table. The computation can include any arithmetic operations
that are appropriate to the datatypes of the columns.

• Open the script Tables.sql and look at the following column definition for the Employee
table:

full_name COMPUTED BY (last_name || ', ' || first_name)

The value of the full-name column consists of the value in the same row of the last_name
column plus a comma plus the value of the first_name column.

BACKING UP A DATABASE

This is a good time to back up your database, because you’ve finished entering some tables. In
the next part of the tutorial, you run a script to create more tables. Throughout this tutorial, you
will be instructed to back up your database frequently. That way, if you run into difficulties, you
can restore the last correct version and try again.

In a production database, a full backup and restore performs several functions:

• It preserves your data by making a copy of both the data and the data structures (metadata).

• It improves database performance by balancing indexes and performing garbage collection
on outdated records.

• It reclaims space occupied by deleted records, and packs the remaining data.

• When you restore, it gives you the option of changing the database page size and of
distributing the database among multiple files or disks.

Important If you restore a database to a name that is already in use, be sure that no users are
connected to it at the time you restore.

Backing up your Database

Before you begin, create a subdirectory called backups. If you are using the recommended
directory path for this tutorial, your backups would be in C:\Documents and Settings\All
Users\Application Data\Embarcadero\InterBase\gds_db\backups.

1 If it’s not already open, open IBConsole by choosing it from the InterBase folder on the Start
menu.

2 Log in as TUTOR to the server where your TUTORIAL database is located. (See “Connecting to
a Server from IBConsole” on page 4 if you’ve forgotten how to do this.)

3 Right-click the Tutorial database and choose Backup/Restore > Backup to display the
Database Backup dialog.
16 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Backing up a Database
4 In the Alias field enter Tutorial

By convention, backups have a .gbk extent, but it is not required. From the Verbose Output,
select To Screen from the drop-down list in order to see a detailed description of what
InterBase does when it backs up a database

5 Browse to the location of your database backups (C:\Documents and Settings\All
Users\Application Data\Embarcadero\Interbase\gds_db\backups)and enter
tutorial1.gbk.

6 Click Save and then click OK. The backup actions are recorded in the Database Backup
dialog. You also get a message that “Database backup completed.”
INTERBASE XE QUICK START 17

PART I I : DATA DEFINITION > Creat ing Tables with a Script
7 The database backup file (tutorial1gbk) has been created in the following folder:

C:\Documents and Settings\All Users\Application
Data\Embarcadero\InterBase\gds_db\backups

CREATING TABLES WITH A SCRIPT

You’ve created several tables manually now and begin to understand what’s involved. To avoid
having to type in all of the table definitions, you should now run the Tables.sql script.
18 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creat ing Tables with a Script
Running the Tables.sql Script

Before you leave the topic of tables, look over the remaining table definitions in Tables.sql to be
sure that you understand them. Pay particular attention to the Employee table, which is complex
and is central to this database. Notice, in particular, the complex CHECK constraint on the salary
column in that table. It states that the salary entered for an employee has to be greater than the
minimum salary for the employee’s job (specified by job_code, job_grade, and job_country) and
less than the corresponding maximum.

1 In the Interactive SQL dialog, load the Tables.sql script to enter the remaining table
definitions into the TUTORIAL database by choosing Query > Load Script.

As before, check first that the database path, user name, and password are correct in the
CONNECT statement at the beginning of the file. Then choose Query > Execute.

2 Click on Tables in the left pane of IBConsole to check that you now have ten new tables in
the TUTORIAL database.

NOTE: Time to back up again: If you have successfully run Tables.sql, this is a good
time to back up your database to Tutorial2.gbk.
INTERBASE XE QUICK START 19

PART I I : DATA DEFINITION > Creat ing Tables with a Script
TROUBLESHOOTING
If you made any typing mistakes when you were entering the domain definitions, you’ll get an
error message when you run the Tables.sql script or when you are defining the tables manually.
InterBase posts a message.

When executing a script, check the script’s log file for error information. The log file is created in
the same directory as the script file. When you are defining tables manually, look in the SQL
Output area for more information. The SQL Output area echoes the contents of the script.

In either case, if there were problems with a particular table, the SQL code for that table is
followed by an error message such as the following:

Statement failed, SQLCODE = -607

Dynamic SQL Error

-SQL error code = -607

-Invalid command

-Specified domain or source column does not exist

To understand the problem, follow these steps:

1 Read the error text. In this case, it says that the specified domain does not exist. You
probably made an error in typing the domain name.

2 Click on Domains in the left pane of IBConsole. InterBase displays the names of all domains
in the right pane.

3 You defined four domains by hand: FIRSTNAME, LASTNAME, EMPNO, and DEPTNO. Look for each
of these in the list of domains and make sure that their names are spelled correctly. It’s likely
that you will find one that is misspelled.

4 Drop the incorrect domain by entering and executing the following command:

DROP DOMAIN domainname

5 Recreate the domain using the CREATE DOMAIN statement.

6 Run the Tables.sql script again.

If this isn’t the problem, continue with these steps:

1 Look right above the message text to see which table has the problem. Note which domains
are used in that table. Do they include any of the four domains that you entered by hand?

2 Click on Domains in the left pane of IBConsole. InterBase displays the names of all domains
in the right pane. Right-click on the domain in the right pane and select Properties. Click on
the Metadata tab and InterBase displays the domain’s definition in the SQL Output Area.

3 Compare the displayed definition with the definition given in this document (the one that
you typed). Continue checking each of the four hand-entered domains until you find one
that has a problem.
20 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creat ing Tables with a Script
4 Drop the domain as described in step 4 above, and then re-enter it correctly. Run the
Tables.sql script again.

VIEWING AN OBJECT DEFINITION
You can see the definition of any object in a database using the Metadata tab. Now you use it in
a different way to get information about a specific object.

Viewing the Definition of the Department Table

To refresh your memory of the current Department table definition, follow these steps:

1 In IBConsole click Tables in the left pane.

2 Click Department and choose Database > View Metadata and the metadata for the
Department table is displayed.
INTERBASE XE QUICK START 21

PART I I : DATA DEFINITION > Creat ing Tables with a Script
ALTERING TABLES
You can change the structure of existing tables with the ALTER TABLE statement. In the previous
section of the tutorial, you created a simple Department table. Now you can use the ALTER TABLE
statement to alter to this table. The syntax for altering a table, in simplified form, is:

ALTER TABLE table_name operation [, operation]

where each operation is one of the following:

ADD column
ADD tableconstraint
ALTER [column] col_name <alt_col_clause>
DROP column
DROP CONSTRAINT constraintname

Notice that you can drop a constraint only if you gave it a name at the time you created it.

Altering the Department Table

You now add five new columns (head_dept, mngr_no, budget, location, and phone_no) and two
foreign key constraints to the Department table that you created earlier.

1 In Interactive SQL, type the following code and then execute it:

ALTER TABLE Department
ADD head_dept DEPTNO,

 ADD mngr_no EMPNO,
 ADD budget BUDGET,
 ADD location VARCHAR(15),
 ADD phone_no PHONENUMBER DEFAULT '555-1234',

ADD FOREIGN KEY (mngr_no)
REFERENCES Employee (emp_no) ON DELETE CASCADE ON UPDATE

CASCADE,
 ADD CONSTRAINT fkdept FOREIGN KEY (head_dept)

REFERENCES Department (dept_no) ON DELETE CASCADE ON UPDATE
CASCADE

2 In IBConsole, click on the Department table once again and then Database > View
Metadata to see the new table definition.

MORE TROUBLESHOOTING
If you receive error messages when you are altering tables or inserting data, use the Metadata
command as your resource.

• Show the definition for each table that you entered by hand and compare the output to the
SQL code that this document instructs you to enter.

• When you find a problem, you can either drop the table and recreate it, or use ALTER TABLE to
drop a column and then add the column again with the correct definition. If you misspelled
the name of the table itself, you must drop the table and recreate it.
22 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creating Views
• The DROP TABLE statement has the following syntax:

DROP TABLE tablename

• To change a column definition, first drop it using the ALTER TABLE statement:

ALTER TABLE tablename DROP columnname

• Then add the column back in using the ALTER TABLE statement again:

ALTER TABLE tablename ADD columnname columndef

If you made any typing errors when creating the domains and tables, you will get errors when
you try to insert data by hand or to run the Inserts.sql and Update.sql scripts. If you follow the
steps above, you will be able to fix your errors and run the scripts successfully.

The remainder of the tutorial is less demanding, in that it focuses on the SELECT command. Once
you detect and fix any errors in the domain and table definitions, you will get the correct results
from your SELECT statements.

CREATING VIEWS

A view is a virtual table that contains selected rows and columns from one or more tables or
views. InterBase stores only the definition of a view. The contents of a view are essentially
pointers to data in the underlying tables. When you create a view, you are not copying data from
the source tables to the view. You are looking at the original data.

A view often functions as a security device, because you can give people permissions on a view
but not on the underlying tables. Thus, the people can access a defined part of the data (the
part defined in the view), but the rest of the data remains private.

In the following exercise, you use the CREATE VIEW statement to create a phone list by choosing
the employee number, first name, last name, and phone extension from the Employee table and
the employee’s location and department phone number from the Department table. Views are
frequently created to store an often-used query or set of queries in the database.

You can select from a view just as you can from a table. Other operations are more restricted.
See “Working with Views” in the Data Definition Guide for more on views.
INTERBASE XE QUICK START 23

PART I I : DATA DEFINITION > Creat ing Views
Creating the Phone_list View

1 Enter the following statement to create the Phone_list view from selected columns in the
Employee and Department tables.

CREATE VIEW Phone_list AS
SELECT emp_no, first_name, last_name, phone_ext, location,

phone_no
 FROM Employee, Department
 WHERE Employee.dept_no = Department.dept_no

The WHERE clause tells InterBase how to connect the rows: the dept_no column in the
Department table is a foreign key that references the dept_no column in the Employee
table. Both columns are UNIQUE and NOT NULL, so the dept_no value in a Department row
uniquely identifies a row in the Employee table. (In case you’re wondering, the dept_no
column in the Employee table is UNIQUE because all primary key columns automatically
acquire the UNIQUE property.)

Notice that when the same column name appears in two tables in a query, you reference the
columns by giving both the table name and the column name, joined by a period:

table_name.column_name

2 Now look at the structure of the Phone_list view by selecting the EMPLOYEE table and then
selecting Database > View Metadata. You should see the following output:

/* View: PHONE_LIST, Owner: TUTOR */

CREATE VIEW PHONE_LIST (EMP_NO, FIRST_NAME, LAST_NAME, PHONE_EXT,
LOCATION, PHONE_NO) AS SELECT emp_no, first_name, last_name,
phone_ext, location, phone_no FROM Employee, Department
WHERE Employee.dept_no = Department.dept_no;
24 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creating Views
CREATING INDEXES
An index is based on one or more columns in a table. It orders the contents of the specified
columns and stores that information on disk in order to speed up access to those columns.
Although they improve the performance of data retrievals, indexes also take up disk space and
can slow inserts and updates, so they are typically used on frequently queried columns. Indexes
can also enforce uniqueness and referential integrity constraints.

InterBase automatically generates indexes on UNIQUE and PRIMARY KEY columns. See the Data
Definition Guide for more information about constraints.

You use the CREATE INDEX statement to create an index. The simplified syntax is as follows:

CREATE INDEX name ON table (columns)

Optionally, you can add one or more of the ASCENDING, DESCENDING, or UNIQUE keywords
following the CREATE INDEX keywords.

Creating the namex Index

Define an index for the Employee table, by entering the following code:

CREATE INDEX namex ON Employee (last_name, first_name)
INTERBASE XE QUICK START 25

PART I I : DATA DEFINITION > Creat ing Views
This statement defines an index called namex for the last_name and first_name columns in the
Employee table.

Preventing Duplicate Index Entries

To define an index that eliminates duplicate entries, include the UNIQUE keyword in CREATE INDEX.
After a UNIQUE index is defined, users cannot insert or update values in indexed columns if the
same values already exist there.

For unique indexes defined on multiple columns, such as prodtypex in the example below, the
same value can be entered within individual columns, but the combination of values entered in
all columns of the index must be unique for each row

You cannot create a UNIQUE index on columns that already contain non-unique values.

Creating a UNIQUE Index

Create a unique index named prodtypex, on the Project table by entering the following:

CREATE UNIQUE INDEX prodtypex ON Project (product, proj_name)

SPECIFYING INDEX SORT ORDER
By default, SQL stores an index in ascending order. To make a descending sort on a column or
group of columns more efficient, use the DESCENDING keyword to define the index.

Creating the budgetx DESCENDING Index

Enter and execute the following code to create an index called budgetx that is in descending
order:

CREATE DESCENDING INDEX budgetx ON Department (budget)

MODIFYING INDEXES
To change an index definition—which columns are indexed, sort order, or UNIQUE requirement—
you must first drop the index and then create a new index.

Altering the namex Index

Begin by viewing the current definition of the namex index.

1 Since namex was created on the Employee table, click Tables in the left pane of IBConsole.

2 Double-click Employee, and in the Tutorial - Properties for: EMPLOYEE dialog, click

Indexes ().

3 Select the Metadata tab to view the definition and then you can exit this Properties dialog.
26 INTERBASE XE QUICK START

PART I I : DATA DEFINITION > Creating Views
In the following steps, you redefine the namex index that you created earlier to include the
UNIQUE keyword.

1 In the ISQL enter and execute the following DROP INDEX statement:

DROP INDEX namex

2 Enter and execute the following line to redefine namex so that it includes the UNIQUE
keyword:

CREATE UNIQUE INDEX namex ON Employee (last_name, first_name)

3 Once again, double-click Employee, and in the Tutorial - Properties for: EMPLOYEE

dialog, click Indexes ().

Time to back up: If you have successfully altered the Department table definition, created
the phone_list view, created the three indexes, and altered the namex index, this is a good
time to back up your database to Tutorial3.gbk.
INTERBASE XE QUICK START 27

PART I I : DATA DEFINITION > Creat ing Views
ADVANCE TO PART III
Click here to advance to the next section: Part III: Populating the Database.
28 INTERBASE XE QUICK START

PART III: POPULATING THE DATABASE

In Part II you created the structure of your database: domains, tables, a view, and three indexes.
This chapter walks you through exercises where you will use the INSERT statement to populate
(add data to) the database that you created in previous steps. Then you can use UPDATE and
DELETE statements to manipulate the data.

INSERTING DATA

The INSERT statement is the mechanism by which you store one or more rows of data in an
existing table. In its simplest form, the syntax is:

INSERT INTO table_name [(columns)] VALUES (values)

If you don’t specify column names, InterBase inserts the supplied values into columns in the
order in which they were defined, and there must be as many values as there are columns in the
table. When you specify columns, you supply the values in the order you name the columns.
Columns not specified are given default values or NULL values, depending on the column
definitions.

The values supplied can be constants or can be calculated. In embedded SQL, they can also be
variables.

An important variation of this syntax is one that allows you to add rows to a table by selecting
rows from another table. The two tables must have columns occurring in the same order for this
to work. The syntax for this form is:

INSERT INTO table_name (columns) SELECT columns FROM table_name WHERE
conditions

See the Language Reference for a full description of INSERT.

Inserting Data Using Column Values

1 Enter and execute the following code to add a row to the Country table:

INSERT INTO Country(country, currency) VALUES ('USA', 'Dollar')

Reminder: Anything you type inside the quotation marks is case sensitive.

2 Enter and execute the following line to add a row to the Department table:

INSERT INTO Department

(dept_no, department, head_dept, budget, location, phone_no)

VALUES ('000', 'Corporate Headquarters', NULL, 1000000,
'Monterey',
INTERBASE XE QUICK START 1

PART I I I : POPULATING THE DATABASE > Insert ing Data
'(408) 555-1234')

Notice that strings are all enclosed in single quotes, while numeric values are not. The
department number and default phone number, for example, are strings, not numeric
values.

3 The next row of data for the Department table is similar to the previous one. To simplify

entry, click the Previous Script button. This displays the previous query in the SQL
Statement Area.

4 Now substitute into the previous query so that it reads as follows and execute the statement.

INSERT INTO Department
(dept_no, department, head_dept, budget, location, phone_no)

VALUES ('100', 'Sales and Marketing', '000', 200000, 'San
Francisco',

'(415) 555-1234')

Notice that the new value for head_dept is a string, not a numeric value.

5 Check the accuracy of your insertions by entering and executing each of the following
statements in turn. Examine the output to make sure it matches the instructions above.

SELECT * from Country

SELECT * from Department

In Part IV of this Quick Start, you will learn more about the important SELECT statement.
2 INTERBASE XE QUICK START

PART I I I : POPULATING THE DATABASE > Updating Data
Reading in the remaining data

1 To read the remaining data into the Country, Job, Department, and Employee tables, open
Inserts.sql in a text editor, make sure that the CONNECT statement has the correct
information, and load it into the database using Execute.

2 To confirm that data has been entered into each table enter and execute each following
statement in turn.

SELECT * FROM Country

There should be 14 entries in the Country table. If this one is correct, the others probably
are, too. Now run three more SELECT statements. Remember, you must execute each one
before proceeding to the next.

SELECT * FROM Job

SELECT * FROM Employee

SELECT * FROM Department

Once again it is time to back up If you have successfully entered three INSERTs and run the
Inserts.sql script, this is a good time to back up your database to Tutorial4.gbk.

UPDATING DATA

You use UPDATE statements to change values for one or more rows of data in existing tables.

USING UPDATE
A simple update has the following syntax:

UPDATE table

SET column = value

WHERE condition

The UPDATE statement changes values for columns specified in the SET clause; columns not listed
in the SET clause are not changed. To update more than one column, list each column
assignment in the SET clause, separated by a comma. The WHERE clause determines which rows
to update. If there is no WHERE clause, all rows are updated.

For example, the following statement would increase the salary of salespeople by $2,000, by
updating the salary column of the Employee table for rows where the value in the job_code
column is “sales.” (Don’t do this yet.)

UPDATE Employee

SET salary = salary + 2000
INTERBASE XE QUICK START 3

PART I I I : POPULATING THE DATABASE > Updating Data
WHERE job_code = 'Sales'

Executing and Committing

• For the rest of this tutorial, execute each statement after entering it. You will no longer be
explicitly instructed to do so.

• In addition, execute a COMMIT statement after executing a DML statement (INSERT, DELETE,
UPDATE, and SELECT). DDL statements—CREATE, ALTER, and DROP—don’t need manual
commits because you have enabled Auto Commit DDL in IBConsole’s Interactive SQL
Preferences.

Updating Data in the Employee Table

To make a more specific update, make the WHERE clause more restrictive. Enter the
following code to increase the salaries only of salespeople hired before January 1, 1992:

UPDATE Employee

SET salary = salary + 2000

WHERE job_code = 'Sales' AND hire_date < '01-JAN-1992'

A WHERE clause is not required for an update. If the previous statements did not include a
WHERE clause, the update would increase the salary of all employees in the Employee table.

Running the Updates.sql Script

1 Open the Updates.sql file in a text editor and look it over. It contains UPDATE statements that
set values for the mngr_no column in the Department table, it updates the Customer table
by setting the status of two customers to “on hold” by entering an asterisk in the on_hold
column. Close the file when you have finished examining it.

2 Choose Query > Execute and run the Updates.sql file.

Time to back up: If you have successfully run the Updates.sql script and performed the manual
update, this is a good time to back up your database to Tutorial5.gbk.

UPDATING TO A NULL VALUE
Sometimes data needs to be updated before all the new values are available. You can
indicate unknown data by setting values to NULL. This works only if a column is nullable,
meaning that it is not defined as NOT NULL.

Suppose that in the previous example, the department number of salespeople hired before
1992 is changing but the new number is not yet known. You would update salaries and
department numbers as follows:

UPDATE Employee

SET salary = salary + 2000, dept_no = NULL
4 INTERBASE XE QUICK START

PART I I I : POPULATING THE DATABASE > Updating Data
WHERE job_code = 'Sales'
AND hire_date < '01-Jan-1992'

USING A SUBQUERY TO UPDATE
The search condition of a WHERE clause can be a subquery. Suppose you want to change the
manager of the department that Katherine Young current manages. One way to do this is to
first determine Katherine Young’s department number (don’t do this yet):

SELECT dept_no FROM Employee

WHERE full_name = 'Young, Katherine'

This query returns “623” as the department. Then, using 623 as the search condition in an
UPDATE, you change the department with the following statement:

UPDATE Department

SET mngr_no = 107

WHERE dept_no = '623'

A more efficient way to perform the update is to combine the two previous statements
using a subquery. A subquery is one in which a SELECT clause is used within the WHERE clause
to determine which rows to update.

Updating Department Using a Subquery

1 So that you can see the results of this exercise, begin by entering the following query to
show you the manager number of Katherine’s department before you make the update:

SELECT mngr_no FROM department WHERE dept_no = '623'

This returns 15. (If you select first_name and last_name from the Employee table where
emp_no equals 15, you will see that the manager of department 623 is Katherine herself.)

2 Enter and execute the following UPDATE statement with a subquery to simultaneously find
out Katherine’s department number and assign a new manager number to that department:

UPDATE Department

SET mngr_no = 107

WHERE dept_no = (SELECT dept_no FROM Employee

WHERE full_name = 'Young, Katherine')

The rows returned by the SELECT statement within the parentheses are the rows that the
UPDATE statement acts on.

3 Now run the query in step 1 again to see the change. The manager of department 623 is
manager number 107, rather than 15.
INTERBASE XE QUICK START 5

PART I I I : POPULATING THE DATABASE > Delet ing Data
4 This isn’t a change we want to keep, so enter and execute the following statement to
reinstate Katherine Young as manager of department 623:

UPDATE Department SET mngr_no = 15 WHERE dept_no = '623'

DELETING DATA

To remove one or more rows of data from a table, use the DELETE statement. A simple DELETE has
the following syntax:

DELETE FROM table

WHERE condition

As with UPDATE, the WHERE clause specifies a search condition that determines the rows to
delete. Search conditions can be combined or can be formed using a subquery.

Important The DELETE statement does not require a WHERE clause. However, if you do not
include a WHERE clause, you delete all the rows of a table.

Deleting a Row from Sales (and put it back)

In this exercise, you first look to see what orders are older than a certain date. Then you delete
those sales from the Sales table and check to see that they are gone.

1 Enter the following SELECT statement to see what sales were ordered prior to 1992:

SELECT * FROM Sales WHERE order_date < '31-DEC-1991'

There should be only one order returned. Notice that the SELECT statement requires that
you specify columns. You can also use “*” to specify all columns.

2 Commit your data to this point by selecting Transaction > Commit (or F9).

3 Enter the following DELETE statement. To make it easier, you can display the previous SELECT
statement and substitute DELETE for “SELECT *”. You can use the Previous Statement
button to display previous statements:

DELETE FROM Sales
WHERE order_date < '31-DEC-1991'

Notice that the DELETE statement does not take any column specification. That’s because it
deletes all columns for the rows you have specified.

4 Now repeat your original SELECT query. There should be no rows returned.

5 However, you just realized that you didn’t want to delete that data after all. Fortunately, you
committed previous work before executing this statement, so choose Transaction >
Rollback and click OK at the prompt. This “undoes” all statements that were executed since
the last Commit.

6 Perform the SELECT again to see that the deleted row is back.
6 INTERBASE XE QUICK START

PART I I I : POPULATING THE DATABASE > Delet ing more Precisely
Time to back up: Now that you have created your database and its tables and finished inserting
and updating data, this is a good time to back up your database to Tutorial6.gbk.

DELETING MORE PRECISELY

You can restrict deletions further by combining search conditions. For example, enter the
following statement to delete records of everyone in the sales department hired before January
1, 1992:

DELETE FROM Employee
WHERE job_code = 'Sales'

AND hire_date < '01-Jan-1992'

You can try entering this statement, but you’ll get an error because there’s a foreign key column
in the Employee_project table that references the Employee table. If you were to delete these
rows, some values in the Employee_project table would no longer have matching values in the
Employee table, violating the foreign key constraint that says any employee who has a project
must also have an entry in the Employee table.

In addition, you can use subqueries to delete data, just as you use them to update. The
following statement would delete all rows from the Employee table where the employees were
in the same department as Katherine Young.

DELETE FROM Employee
WHERE dept_no = (SELECT dept_no FROM Employee

WHERE full_name = 'Young, Katherine')

Again, you cannot actually execute this statement because it would violate foreign key
constraints on other tables.

ADVANCE TO PART IV
Click here to advance to the next section: Part IV: Retrieving Data
INTERBASE XE QUICK START 7

PART I I I : POPULATING THE DATABASE > Delet ing more Precisely
8 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA

The SELECT statement lies at the heart of SQL because it is how you retrieve the information you
have stored. There is no use in creating and populating data structures if you cannot get the
data out again in usable form. You’ve seen some simple forms of the SELECT statement in earlier
exercises. In this part of the tutorial you get further practice with the SELECT statement.

OVERVIEW OF SELECT

Part III presented the simplest form of the SELECT statement. The full syntax is much more
complex. Take a minute to look at the entry for SELECT in the Language Reference Guide. Much
of SELECT’s power comes from its rich syntax.

In this chapter, you learn a core version of the SELECT syntax:

SELECT [DISTINCT] columns

FROM tables

WHERE <search_conditions>

[GROUP BY column [HAVING <search_condition>]]

[ORDER BY <order_list>]

The SELECT syntax above has seven main keywords. A keyword and its associated information is
called a clause. The clauses above are:

You have already used SELECT statements to retrieve data from single tables. However, SELECT
can also retrieve data from multiple tables, by listing the table names in the FROM clause,
separated by commas.

Clause Description

SELECT columns Lists columns to retrieve

DISTINCT Optional keyword that eliminates duplicate rows

FROM tables Identifies the tables to search for values

WHERE <search_conditions> Specifies the search conditions used to limit retrieved rows
to a subset of all available rows

GROUP BY column Groups rows retrieved according the value of the specified
column

HAVING
<search_conditions>

Specifies search condition to use with GROUP BY clause

ORDER BY <order_list> Orders the output of a SELECT statement by the specified
columns

Table 1: Seven Important SELECT Clauses
INTERBASE XE QUICK START 1

PART IV: RETRIEVING DATA > Removing Dupl icate Rows with DISTINCT
Retrieving Data from Two Tables at Once

In this example, you want to know the name and employee number of the person who manages
the Engineering department. The Department table contains the manager number (mngr_no)
for each department. That manager number matches an employee number (emp_no) in the
Employee table, which has a first and last name in the record with the employee number. You
link the corresponding records of the two tables by using the WHERE clause to specify the foreign
key of one (mngr_no) as equal to the primary key (emp_no) of the other. Since the primary key is
guaranteed to be unique, you are specifying a unique row in the employee table. Neither key
has to be part of the SELECT clause. In this example, the referenced primary key is part of the
SELECT clause but the foreign key is not.

To get the information described above, execute the following SQL statement in IBConsole:

SELECT department, last_name, first_name, emp_no

FROM Department, Employee

WHERE department = 'Engineering' AND mngr_no = emp_no

This statement retrieves the following information:

REMOVING DUPLICATE ROWS WITH DISTINCT

Columns often contain duplicate entries (assuming that they do not have PRIMARY KEY or UNIQUE
constraints on them). Sometimes you want to see only one instance of each value in a column.
The DISTINCT keyword gives you exactly that.

Selecting One of Each

1 Suppose you want to retrieve a list of all the valid job codes in the TUTORIAL database. Begin
by entering this query:

SELECT job_code FROM Job

As you can see, the results of this query are rather long, and some job codes are repeated a
number of times. What you really want is a list of job codes where each value returned is
distinct from the others. To eliminate duplicate values, use the DISTINCT keyword.

2 Re-enter the previous query with the DISTINCT keyword:

SELECT DISTINCT job_code FROM Job

This produces the desired results: each job code is listed only once in the results.
2 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using the WHERE Clause
3 What happens if you specify another column when using DISTINCT? Enter the following
SELECT statement:

SELECT DISTINCT job_code, job_grade FROM Job

This query returns:

DISTINCT applies to all columns listed in a SELECT statement. In this case, duplicate job codes
are retrieved. However, DISTINCT treats the job code and job grade together, so the
combination of values is distinct.

USING THE WHERE CLAUSE

The WHERE clause follows the SELECT and FROM clauses. It must precede the ORDER BY clause if
one is used. The WHERE clause tests data to see whether it meets certain conditions, and the
SELECT statement returns only the rows that meet the WHERE condition. The WHERE clause lies at
the heart of database usage, because it is the point at which you state exactly what you want. It
seems complex at first glance, but the complexity exists to allow you to be precise in your
requests for data.
INTERBASE XE QUICK START 3

PART IV: RETRIEVING DATA > Using the WHERE Clause
Using WHERE

1 Enter the following statement to return only rows for which “Green” is the value in the
last_name column.

SELECT last_name, first_name, phone_ext

FROM Employee

WHERE last_name = 'Green'

The query should return one row:

Green T.J. 218

2 Now display this statement again by clicking and change the equal sign to a greater than
sign. This retrieves rows for which the last name is alphabetically greater than (after)
“Green.” There should be 29 rows.

Something extra: To make the results more readable, execute the last query once again,
but add an ORDER BY clause. This is just a preview: the ORDER BY clause is discussed starting
on page 20.

SELECT last_name, first_name, phone_ext

FROM Employee

WHERE last_name > 'Green'

ORDER BY last_name

SEARCH CONDITIONS
The text following the WHERE keyword is called a search condition, because a SELECT statement
searches for rows that meet the condition. Search conditions consist of a column name (such as
“last_name”), an operator (such as “=”), and a value (such as “Green”). Thus, WHERE clauses
have the following general form:

WHERE column_name operator value

In general, column_name is the column name in the table being queried, operator is a
comparison operator (Table 2), and value is a value or a range of values compared against the
column. Table 3 describes the kinds of values you can specify.
4 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using the WHERE Clause
Comparison Operators

Search conditions use the following operators. Note that for two-character operators, there is no
space between the operators.

Search Condition Values

The values in a search condition can be literal, or they can be calculated (derived). In addition,
the value can be the return value of a subquery. A subquery is a nested SELECT statement.

Values that are text literals must be placed in quotes. The approaching standard will require
single quotes. Numeric literals must not be quoted.

Important String comparisons are case sensitive.

When a row is compared to a search condition, one of three values is returned:

• True: A row meets the conditions specified in the WHERE clause.

• False: A row does not meet the conditions specified in the WHERE clause.

• Unknown: A field in the WHERE clause contains an NULL state that could not be evaluated.

Find the Deadbeats

Execute the following SELECT statement into the SQL Statement Area of IBConsole to query the
Sales table for all the customers who ordered before January 1, 1994, received their shipment,
and still haven’t paid. Notice that there are three search conditions in the WHERE clause, which
are joined together with the AND operator.

Operator Description

Comparison
operators

Used to compare data in a column to a value in the search
condition. Examples include <, >, <=, >=, =, !=, and <>. Other
operators include BETWEEN, CONTAINING, IN, IS NULL, LIKE,
and STARTING WITH.

Arithmetic operators Used to calculate and evaluate search condition values. The
operators are +, −, *, and /.

Logical operators Used to combine search conditions or to negate a condition. The
keywords are NOT, AND, and OR.

Table 2: Search Condition Operators

Types of Values Description

Literal values Numbers and text strings whose value you want to test
literally; for example, the number 1138 or the string 'Smith'

Derived values Functions and arithmetic expressions; for example

salary * 2 or last_name || first_name

Subqueries A nested SELECT statement that returns one or more values.
The returned values are used in testing the search condition.

Table 3: Types of values used in search conditions
INTERBASE XE QUICK START 5

PART IV: RETRIEVING DATA > Using the WHERE Clause
SELECT * from Sales

WHERE order_date < '1-JAN-1994' AND order_status = 'shipped' AND
paid = 'n'

You should get two rows, one for PO number V93F3088 and one for PO number V93N5822.

Negation

You can negate any expression with the negation operators !, ^, and ~. These operators are all
synonyms for NOT.

Suppose you just want to find what customers are not in the United States. Execute the following
SELECT statement:

SELECT customer, country FROM Customer

WHERE NOT country = 'USA'

You should get a list of ten customers.

There are other ways to achieve exactly this result. To prove to yourself that these all produce the
same results as the previous query, execute each of the following forms of it:

SELECT customer, country FROM Customer

WHERE country != 'USA'

SELECT customer, country FROM Customer

WHERE country ~= 'USA'

SELECT customer, country FROM Customer

WHERE country ^= 'USA'

PATTERN MATCHING
Besides comparing values, search conditions can also test character strings for a particular
pattern. If data is found that matches a given pattern, the row is retrieved.

Wildcards Use a percent sign (%) to match zero or more characters. Use an underscore (_) to
match a single character.
6 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using the WHERE Clause
Table 4 gives examples of some common patterns. Only CONTAINING is not case sensitive.

Find what’s LIKE a Value

1 LIKE is case sensitive and takes wildcards. Execute this statement to find all employees whose
last name ends in “an”:

SELECT last_name, first_name, emp_no FROM Employee

WHERE last_name LIKE '%an'

The result set should look like this:

2 Now enter the following SELECT statement to find employees whose last names begin with
“M”, have exactly two more characters and then a “D”, followed by anything else in the
remainder of the name:

SELECT last_name, first_name, emp_no FROM Employee

WHERE last_name LIKE 'M__D%'

This returns

MacDonald Mary S. 85

but it would ignore names like McDonald.

3 The “%” matches zero or more characters. The following query returns rows for last names
Burbank, Bender, and Brown.

SELECT last_name, first_name, emp_no FROM Employee

WHERE Matches

last_name LIKE '%q%' Last names containing at least one “q”

last_name STARTING WITH
'Sm'

Last names beginning with the letters “Sm.”

last_name CONTAINING 'q' Last name contains at least one “q,” either uppercase or
lowercase.

last_name BETWEEN 'M' AND
'T'

Last name beginning with letters M through S

Table 4: Pattern Matching Examples
INTERBASE XE QUICK START 7

PART IV: RETRIEVING DATA > Using the WHERE Clause
WHERE last_name LIKE 'B%r%'

This returns:

Find Things STARTING WITH

The STARTING WITH operator tests whether a value starts with a particular character or sequence
of characters. STARTING WITH is case sensitive, but does not support wildcard characters.

1 Execute the following statement to retrieve two employee last names that start with “Le”:

SELECT last_name, first_name FROM Employee

WHERE last_name STARTING WITH 'Le'

The result set is:

2 To negate the STARTING WITH operator, precede it with the logical operator NOT. (Note: That’s
a “one” in the quotes at the end of the statement.)

SELECT dept_no, department, location from department
WHERE dept_no NOT starting with '1'

This query should return the following 10 rows:
8 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using the WHERE Clause
Find Something CONTAINING a Value

The CONTAINING operator is similar to STARTING WITH, except it matches strings containing the
specified string anywhere within the string. CONTAINING is not case sensitive and does not
support wildcards.

1 Execute the following statement to find last names that have a “g” or “G” anywhere in
them.

SELECT last_name, first_name FROM Employee

WHERE last_name CONTAINING 'G'

You should get the following result set:

Now execute the same query, except substitute a lower-case “g.” You should get exactly
the same result set.

SELECT last_name, first_name FROM Employee
INTERBASE XE QUICK START 9

PART IV: RETRIEVING DATA > Using the WHERE Clause
WHERE last_name CONTAINING 'g'

TESTING FOR AN UNKNOWN VALUE
Another type of comparison tests for the absence or presence of a value. Use the IS NULL
operator to test whether a value is unknown. To test for the presence of any value, use IS NOT
NULL.

Testing for NULL

1 Execute the following query to retrieve the names of employees who do not have phone
extensions:

SELECT last_name, first_name, phone_ext FROM Employee

WHERE phone_ext IS NULL

The query should return rows for last names Sutherland, Glon, and Osborne.

2 Now execute the statement using IS NOT NULL to retrieve the names of employees who do
have phone extensions:

SELECT last_name, first_name, phone_ext FROM Employee

WHERE phone_ext IS NOT NULL

There should be 39 rows in the result set.

COMPARING AGAINST A RANGE OR LIST OF VALUES
The previous sections present comparison operators that test against a single value. The
BETWEEN and IN operators test against multiple values.

BETWEEN tests whether a value falls within a range. The BETWEEN operator is case-sensitive and
does not require wildcards.

Finding Something BETWEEN Values

1 Execute the following query to find all the last names that start with letters between C and H.
Notice that the query does not include names that begin with the final value (“H”). This is
because BETWEEN finds values that are less than or equal to the terminating value. A name
that begins with the letter but includes other letters is greater than H. If there were someone
whose last name was just “H”, the query would return it.

SELECT last_name, first_name FROM Employee

WHERE last_name BETWEEN 'C' AND 'H'

The result set is:
10 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using the WHERE Clause
2 To demonstrate that BETWEEN is case sensitive, repeat the previous query using lower-case
letters. There are no names returned.

SELECT last_name, first_name FROM Employee

WHERE last_name BETWEEN 'c' AND 'h'

3 Execute the following query to retrieve names of employees whose salaries are between
$62,000 and $98,000, inclusive:

SELECT last_name, first_name, salary FROM Employee

WHERE salary BETWEEN 62000 AND 98000
ORDER BY salary

The result set should return 13 rows, with salaries that include both the low figure and the
high figure in the range. (See page 20 for a discussion of the ORDER BY clause.)
INTERBASE XE QUICK START 11

PART IV: RETRIEVING DATA > Using the WHERE Clause
Finding What’s IN

The IN operator searches for values matching one of the values in a list. The values in the list
must be separated by commas, and the list must be enclosed in parentheses. Use NOT IN to
search for values that do not occur in a set

Execute the following query to retrieve the names of all employees in departments 120, 600, and
623:

SELECT dept_no, last_name, first_name FROM Employee

WHERE dept_no IN (120, 600, 623)

ORDER BY dept_no, last_name

The returns the following result set:

LOGICAL OPERATORS
You can specify multiple search conditions in a WHERE clause by combining them with the logical
operators AND or OR.

Finding Rows that Match Multiple Conditions

When AND appears between search conditions, both conditions must be true for a row to be
retrieved. For example, execute this query to find employees in a particular department who
were hired after January 1, 1992:

SELECT dept_no, last_name, first_name, hire_date

FROM Employee

WHERE dept_no = 623 AND hire_date > '01-Jan-1992'

It should return two rows, one each for employees Parker and Johnson.
12 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using the WHERE Clause
Finding Rows that Match at Least One Condition

Use OR between search conditions where you want to retrieve rows that match at least one of the
conditions.

1 Click the Previous Query button to display your last query. Change AND to OR and
execute the new query. Notice that the results are dramatically different; the query returns 25
rows.

2 As a more likely example of the OR operator, execute the following query to find customers
who are in either Japan or Hong Kong:

SELECT customer, cust_no, country FROM Customer

WHERE country = 'Japan' OR country = 'Hong Kong'

The result set should look like this:

CONTROLLING THE ORDER OF EVALUATION
When entering compound search conditions, you must be aware of the order of evaluation of
the conditions. Suppose you want to retrieve employees in department 623 or department 600
who have a hire date later than January 1, 1992.

Trying a Compound Condition

Try executing this query:

SELECT last_name, first_name, hire_date, dept_no

FROM Employee

WHERE dept_no = 623 OR dept_no = 600 AND hire_date > '01-JAN-1992'

As you can see, the results include employees hired earlier than you want:
INTERBASE XE QUICK START 13

PART IV: RETRIEVING DATA > Using the WHERE Clause
This query produces unexpected results because AND has higher precedence than OR. This
means that the expressions on either side of AND are tested before those associated with OR. In
the example as written, the search conditions are interpreted as follows:

(WHERE dept_no = 623)

OR

(WHERE dept_no = 600 AND hire_date > '01-JAN-1992')

The restriction on the hire date applies only to the second department. Employees in
department 623 are listed regardless of hire date.

Using a Compound Condition Successfully

Use parentheses to override normal precedence. In the exercise below, place parentheses
around the two departments so they are tested against the AND operator as a unit. Redisplay
your last query and add parentheses, so that your query is interpreted correctly:

SELECT last_name, first_name, hire_date, dept_no

FROM Employee

WHERE (dept_no = 623 OR dept_no = 600)

AND hire_date > '01-JAN-1992'

This displays the results you want:
14 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using Subqueries
Order of precedence is not just an issue for AND and OR. All operators are defined with a
precedence level that determines their order of interpretation. You can study precedence levels
in detail by reading any number of books about SQL, but in general, the following rule of thumb
is all you need to remember.

TIP: Always use parentheses to group operations in complex search conditions.

USING SUBQUERIES

Subqueries are a special case of the WHERE clause, but they are an important tool and deserve a
discussion of their own.

Recall that in a WHERE clause, you provide a column name, a comparative operator, and a value.
WHERE tests the column contents against the value using the operator. You can use a SELECT
statement in place of the value portion of a WHERE clause. This internal SELECT clause is the
subquery. InterBase executes the SELECT subquery and uses its result set as the value for the
WHERE clause.

Suppose, for example, that you want to retrieve a list of employees who work in the same
country as a particular employee whose ID is 144. If you don’t use a subquery, you would first
need to find out what country this employee works in:

SELECT job_country FROM Employee

WHERE emp_no = 144

This query returns “USA.” With this information, you would issue a second query to find a list of
employees in the USA, the same country as employee number 144:

SELECT emp_no, last_name FROM Employee

WHERE job_country = 'USA'

Using a subquery permits you to perform both queries in a single statement.

Using a Subquery to Find a Single Item

You can obtain the same result by combining the two queries:

SELECT emp_no, last_name FROM Employee

WHERE job_country = (SELECT job_country FROM Employee WHERE emp_no
= 144)

In this case, the subquery retrieves a single value, “USA.” The main query interprets “USA” as a
value to be tested by the WHERE clause. The subquery must return a single value because the
WHERE clause is testing for a single value (“=”); otherwise the statement produces an error.

The result set for this query is a list of 33 employee numbers and last names. These are the
employees who work in the same country as employee number 144.
INTERBASE XE QUICK START 15

PART IV: RETRIEVING DATA > Using Subqueries
MULTIPLE-RESULT SUBQUERIES
If a subquery returns more than one value, the WHERE clause that contains it must use an
operator that tests against more than one value. IN is such an operator.

Using a Subquery to Find a Collection of Items

Execute the following example to retrieve the last name and department number of all
employees whose salary is equal to that of someone in department 623. It uses a subquery that
returns all the salaries of employees in department 623. The main query selects each employee
in turn and checks to see if the associated salary is in the result set of the subquery.

SELECT last_name, dept_no FROM Employee

WHERE salary IN (SELECT salary FROM Employee WHERE dept_no = 623)

The result set should look like this:
16 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using Subqueries
CONDITIONS FOR SUBQUERIES
The following table summarizes the operators that compare a value on the left of the operator to
the results of a subquery on the right of the operator:

Using ALL

The IN operator tests only against the equality of a list of values. What if you want to test some
relationship other than equality? For example, suppose you want to find out who earns more
than the people in department 623. Enter the following query:

SELECT last_name, salary FROM Employee

WHERE salary > ALL

(SELECT salary FROM Employee WHERE dept_no = 623)

The result set should look like this:

Operator Purpose

ALL Returns true if a comparison is true for all values returned by a
subquery.

ANY or SOME Returns true if a comparison is true for at least one value returned by a
subquery.

EXISTS Determines if at least one value exists in the resut set returned by a
subquery.

SINGULAR Determines if exactly one value exists in the result set returned by a
subquery.

Table 5: InterBase Comparison Operators that Require Subqueries
INTERBASE XE QUICK START 17

PART IV: RETRIEVING DATA > Using Subqueries
This example uses the ALL operator. The statement tests against all values in the subquery and
retrieves the row if the salary is greater. The manager of department 623 can use this output to
see which company employees earn more than his or her employees.

Using ANY, EXISTS, and SINGULAR

Instead of testing against all values returned by a subquery, you can rewrite the example to test
for at least one value:

SELECT last_name, salary FROM Employee

WHERE salary > ANY(SELECT salary FROM Employee WHERE dept_no =
623)

This statement retrieves 34 rows for which salary is greater than any of the values from the
subquery. The ANY keyword has a synonym, SOME. The two are interchangeable.

Two other subquery operators are EXISTS and SINGULAR.

• For a given value, EXISTS tests whether at least one qualifying row meets the search condition
specified in a subquery. EXISTS returns either true or false, even when handling NULL values.

• For a given value, SINGULAR tests whether exactly one qualifying row meets the search
condition specified in a subquery.
18 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Using Aggregate Funct ions
USING AGGREGATE FUNCTIONS

SQL provides aggregate functions that calculate a single value from a group of values. A group
of values is all data in a particular column for a given set of rows, such as the job code listed in all
rows of the JOB table. Aggregate functions may be used in a SELECT clause, or anywhere a value
is used in a SELECT statement.

The following table lists the aggregate functions supported by InterBase:

Practicing with Aggregate Functions

1 Suppose you want to know how many different job codes are in the Job table. Enter the
following statement:

SELECT COUNT(job_code) FROM Job

The result count is 31

However, this is not what you want, because the query included duplicate job codes in the
count.

2 To count only the unique job codes, use the DISTINCT keyword as follows:

SELECT COUNT(DISTINCT job_code) FROM Job

This produces the correct result of 14.

3 Enter the following to retrieve the average budget of departments from the Department
table:

SELECT AVG(budget) FROM Department

The result average is 648095.23

4 A single SELECT can retrieve multiple aggregate functions. Enter the following statement to
retrieve the number of employees, the earliest hire date, and the total salary paid to all
employees:

SELECT COUNT(emp_no), MIN(hire_date), SUM(salary)

Function What It Does

AVG(value) Returns the average value for a group of rows

COUNT(value) Counts the number of rows that satisfy the WHERE clause

MIN(value) Returns the minimum value in a group of rows

MAX(value) Returns the maximum value in a group of rows

SUM(value) Adds numeric values in a group of rows

Table 6: Aggregate Functions Supported by InterBase
INTERBASE XE QUICK START 19

PART IV: RETRIEVING DATA > Grouping and Ordering Query Results
FROM Employee

The result sum is: a count of 42, a minimum hire date of 12/28/1988, and a salary sum of
37860791.52.

NOTE: The value in the sum column may vary, depending on which exercises you have
done and whether you have done some of them more than once.

Important If a value involved in an aggregate calculation is NULL or unknown, the function
ignores the entire row to prevent wrong results. For example, when calculating an
average over fifty rows, if ten rows contain a NULL value, then the average is taken
over forty values, not fifty.

5 To see for yourself that aggregate functions ignore NULL rows, perform the following test:
first, look at all the rows in the Department table:

SELECT dept_no, mngr_no FROM Department

Notice that there are 21 rows, but four of them have NULLs in the mngr_no column.

6 Now count the rows in mngr_no:

SELECT COUNT(mngr_no) FROM Department

The result is 17, not 21. COUNT did not count the NULL rows.

GROUPING AND ORDERING QUERY RESULTS

Rows are not stored in any particular order in a database. So when you execute a query, you may
find that the results are not organized in any useful way. The ORDER BY clause lets you specify how
the returned rows should be ordered. You can use the GROUP BY clause to group the results of
aggregate functions.

USING ORDER BY TO ARRANGE ROWS
You can use the ORDER BY clause to organize the data that is returned from your queries. You can
specify one or more columns by name or by ordinal number. The syntax of the ORDER BY clause
is:

ORDER BY [col_name | int] [ASC[ENDING] | DESC[ENDING]] [, …]

Notice that you can specify more than one column. As an alternative to naming the columns, you
can provide an integer that references the order in which you named the columns in the query.
The second column that you named in the SELECT can be referenced as 2.

By default, InterBase uses ASCENDING order, so you only need to specify the order if you want it
to be DESCENDING.
20 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Grouping and Ordering Query Results
Practicing with ORDER BY

1 Execute the following query (you did this one earlier when you worked with conditions for
subqueries).

SELECT cust_no, total_value FROM Sales

WHERE total_value > 10000

There’s no particular order to the returned rows. The result set should look like this:

2 Execute the same query, but order the results by the cust_no column:

SELECT cust_no, total_value FROM Sales

WHERE total_value > 10000

ORDER BY cust_no

Notice that the result set now has the cust_no column in ascending order. Ascending order
is the default.

3 Order the result set by the total value of the sales:

SELECT cust_no, total_value FROM Sales

WHERE total_value > 10000

ORDER BY total_value

4 Execute the query above, but order the result set by the descending order of the total_value
column:

SELECT cust_no, total_value FROM Sales

WHERE total_value > 10000

ORDER BY total_value DESC

5 To see the effect of ordering by more than one column, execute the following query:

SELECT last_name, first_name, phone_ext FROM Employee
INTERBASE XE QUICK START 21

PART IV: RETRIEVING DATA > Grouping and Ordering Query Results
ORDER BY last_name DESC, first_name

Notice that there are 42 rows with the last names are in descending order, as requested, and
the first names in ascending order, the default.

USING THE GROUP BY CLAUSE
You use the optional GROUP BY clause to organize data retrieved from aggregate functions. When
you issue a query (a SELECT statement) that has both aggregate (AVG, COUNT, MIN, MAX, or SUM)
and non-aggregate columns, you must use GROUP BY to group the result set by each of the
nonaggregate columns. The three following rules apply:

• Each column from which you are doing a nonaggregate SELECT must appear in the GROUP BY
clause

• The GROUP BY clause can reference only columns that appear in the SELECT clause

• Each SELECT clause in a query can have only one GROUP BY clause

A group is defined as the subset of rows that match a distinct value in the columns of the GROUP
BY clause.

Grouping the Result Set of Aggregate Functions

1 Execute the following query to find out how many employees there are in each country:

SELECT COUNT(emp_no), job_country FROM Employee

GROUP BY job_country

The result set should look like this:
22 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Grouping and Ordering Query Results
USING THE HAVING CLAUSE
Just as a WHERE clause reduces the number of rows returned by a SELECT clause, the HAVING
clause can be used to reduce the number of rows returned by a GROUP BY clause. Like the WHERE
clause, a HAVING clause has a search condition. However, in a HAVING clause, the search
condition typically corresponds to an aggregate function used in the SELECT clause.

Controlling your Query with GROUP BY and HAVING

Issue the following query to list the departments that have an average budget of over $60,000
and order the result set by department.

SELECT Department, AVG(budget) FROM department

GROUP BY Department

HAVING AVG(budget) >60000

ORDER BY Department

The result set should look like this:
INTERBASE XE QUICK START 23

PART IV: RETRIEVING DATA > Grouping and Ordering Query Results
ORDERING BY AN AGGREGATE COLUMN
But what if you want to list the result set by the average budget in the previous query? In that
query, it wouldn’t work to say “ORDER BY budget” because the query generates a two-column
result set in which the first column is named “department” but the second column, which is
generated by the aggregate function, doesn’t have a name. The ORDER BY clause is actually
referencing the columns of the result set. In order to request that the result set be ordered by
the results of an aggregate function, you must reference the ordinal column number. (Look back
at the ORDER BY syntax on page 20 and notice that it begins “ORDER BY [col_name | int]“.
You must reference the column by its integer number.

Ordering Result Set by the Results of an Aggregate Function

Display your last query, but change the ORDER BY clause as follows, to order by the second
column:

SELECT department, AVG(budget) FROM department

GROUP BY Department

HAVING AVG(budget) >60000

ORDER BY 2

Now the result set should have the second column in ascending order.
24 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Joining Tables
JOINING TABLES

Joins enable a SELECT statement to retrieve data from two or more tables in a database. The
tables are listed in the FROM clause. The optional ON clause can reduce the number of rows
returned, and the WHERE clause can further reduce the number of rows returned.

From the information in a SELECT that describes a join, InterBase builds a table that contains the
results of the join operation, the results table, sometimes also called a dynamic or virtual table.

InterBase supports two types of joins: inner joins and outer joins.

Inner joins link rows in tables based on specified join conditions and return only those rows that
match the join conditions. If a joined column contains a NULL value for a given row, that row is
not included in the results table. Inner joins are the more common type because they restrict the
data returned and show a clear relationship between two or more tables.

Outer joins link rows in tables based on specified join conditions but return rows whether they
match the join conditions or not. Outer joins are useful for viewing joined rows in the context of
rows that do not meet the join conditions.

CORRELATION NAMES
Once you begin to query multiple tables, it becomes important to identify unambiguously what
table each column is in. The standard syntax for doing this is to state the table name followed by
a period and the column name:

table_name.col_name

In complex queries, this can get very tedious, so InterBase permits you to state a shorter version
of the table name in the FROM clause of a join. This short name is called a correlation name or an
alias. You will see many examples of correlation names in the next few pages. The form is as
follows:

SELECT a.col, b.col FROM table_1 a, table_2 b

ON a.some_col = b.some_col

WHERE a.conditional_col <condition>

…

Notice the FROM clause, where table_1 is given the correlation name of a and table_2 is named
b. These abbreviated names are used even in the initial select list.

Important If you include a subquery in a join, you must assign new correlation names to any
tables that appeared in the main query.

INNER JOINS
There are three types of inner joins:
INTERBASE XE QUICK START 25

PART IV: RETRIEVING DATA > Joining Tables
• Equi-joins link rows based on common values or equality relationships in the join columns.

• Joins that link rows based on comparisons other than equality in the join columns. There is
not an officially recognized name for these joins, but for simplicity’s sake they can be
categorized as comparative joins, or non-equi-joins.

• Reflexive or self-joins compare values within a column of a single table.

To specify a SELECT statement as an inner join, list the tables to join in the FROM clause, and list
the columns to compare in the ON clause. Use the WHERE clause to restrict which rows are
retrieved. The simplified syntax is:

SELECT <columns> | *

FROM left_table [INNER] JOIN right_table
ON left_table.col = right_table.col

[WHERE <searchcondition>]

There are several things to note about this syntax:

• The INNER keyword is optional because INNER is the default join type. If you want to perform
an outer join, you must state the OUTER keyword explicitly.

• The FROM statement often specifies the correlation names

• FROM table1 t1 JOIN table2 t2

• The operator in the ON clause doesn’t have to be equality. It can be any of the comparison
operators, such as !=, >, >=, or <>.

Performing Inner Joins

1 Enter the following query to list all department managers and their departments where the
manager earns more than 80,000. (This isn’t stated as dollars because some of the employee
salaries are in other currencies.)

SELECT D.department, D.mngr_no

FROM Department D INNER JOIN Employee E

ON D.mngr_no = E.emp_no

WHERE E.salary > 80000

ORDER BY D.department

The result set should look like this:
26 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Joining Tables
2 The next query uses a subquery to display all departments and department managers where
the manager’s salary is at least 20% of a department’s total salary:

SELECT D.department, D.mngr_no, E.salary

FROM Department D JOIN Employee E

ON D.mngr_no = E.emp_no

WHERE E.salary*5 >= (SELECT SUM(S.salary) FROM Employee S
WHERE D.dept_no = S.dept_no)

ORDER BY D.department

The subquery sums the salaries for one department at a time and hands out the result to be
compared to the manager’s salary (multiplied by 5).

The result set should look like this:
INTERBASE XE QUICK START 27

PART IV: RETRIEVING DATA > Joining Tables
NOTE: Joins are not limited to two tables. There is theoretically no limit to how many
tables can be joined in one statement, although on the practical level of time
and resources, 16 is usually considered the workable maximum.

OUTER JOINS
Outer joins produce a results table containing columns from every row in one table and a subset
of rows from another table. Outer join syntax is very similar to that of inner joins.

SELECT col [, col …] | *

FROM left_table {LEFT | RIGHT | FULL} OUTER JOIN
right_table ON joincondition

[WHERE <searchcondition>]

The joincondition is of the form left_table.col = right_table.col where the equality operator
can be replaced by any of the comparison operators.

With outer joins, you must specify the type of join to perform. There are three types:

• A left outer join retrieves all rows from the left table in a join, and retrieves any rows from the
right table that match the search condition specified in the ON clause.
28 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Joining Tables
• A right outer join retrieves all rows from the right table in a join, and retrieves any rows from
the left table that match the search condition specified in the ON clause.

• A full outer join retrieves all rows from both the left and right tables in a join regardless of the
search condition specified in the ON clause.

Outer joins are useful for comparing a subset of data in the context of all data from which it is
retrieved. For example, when listing the employees that are assigned to projects, it might be
interesting to see the employees that are not assigned to projects, too.

Practicing with Joins

The following outer join retrieves employee names from the Employee table and project IDs
from the Employee_project table. It retrieves all the employee names, because this is a left outer
join, and Employee is the left table.

SELECT e.full_name, p.proj_id

FROM Employee e LEFT OUTER JOIN Employee_project p

ON e.emp_no = p.emp_no

ORDER BY p.proj_id

This should produce a list of 48 names. Notice that some employees are not assigned to a
project; the proj_id column displays <null> for them.

3 Now reverse the order of the tables and execute the query again.

SELECT e.full_name, p.proj_id

FROM Employee_project p LEFT OUTER JOIN Employee e

ON e.emp_no = p.emp_no

ORDER BY p.proj_id

This produces a list of 28 names. Notice that you get different results because this time the
left table is Employee_project. The left outer join is only required to produce all the rows of
the Employee_project table, not all of the Employee table.

4 As a last experiment with joins, repeat the query in Exercise 2 (the one you just did), but this
time do a right outer join. Before you execute the query, think about it for a moment. What
do you think this query will return?

SELECT e.full_name, p.proj_id

FROM Employee_project p RIGHT OUTER JOIN Employee e

ON e.emp_no = p.emp_no

ORDER BY p.proj_id

You should get the same result set as in Exercise 1. Did you realize that performing a right
outer join on tables B JOIN A is the same as a left outer join on tables A JOIN B?
INTERBASE XE QUICK START 29

PART IV: RETRIEVING DATA > Formatt ing Data
FORMATTING DATA

This section describes three ways to change data formats:

• Using CAST to convert datatypes

• Using the string operator to concatenate strings

• You can convert characters to uppercase

USING CAST TO CONVERT DATATYPES
Normally, only similar datatypes can be compared in search conditions, but you can work around
this by using CAST. Use the CAST clause in search conditions to translate one datatype into
another. The syntax for the CAST clause is:

CAST (<value> | NULL AS datatype)

For example, the following WHERE clause uses CAST to translate a CHAR datatype, INTERVIEW_DATE,
to a DATE datatype. This conversion lets you compare INTERVIEW_DATE to another DATE column,
hire_date:

. . . WHERE hire_date = CAST(interview_date AS DATE)

You can use CAST to compare columns in the same table or across tables. CAST allows the
conversions listed in the following table:

USING THE STRING OPERATOR IN SEARCH CONDITIONS
The string operator, also referred to as a concatenation operator, ||, joins two or more character
strings into a single string. The strings to be joined can be the result set of a query or can be
quoted strings that you supply. The operator is the pipe character, typed twice.

Using the String Operator to Join Strings

1 Execute the following SELECT statement to concatenate the result of the query with the
additional text “ is the manager.” Remember to have a space as the first character of the
string. The query returns the manager names for all department that are not field offices.

SELECT D.dept_no, D.department, E.last_name || ' is the manager'

FROM Department D, Employee E

From datatype To datatype

NUMERIC CHARACTER, DATE

CHARACTER NUMERIC, DATE

DATE CHARACTER, NUMERIC

Table 7: Compatible Datatypes for CAST
30 INTERBASE XE QUICK START

PART IV: RETRIEVING DATA > Formatt ing Data
WHERE D.mngr_no = E.emp_no AND D.department NOT CONTAINING 'Field'

ORDER BY D.dept_no

You should see the following result:

2 You can concatenate as many strings as you like. The following query is a slight variation on
the previous one: it concatenates the first name to the other output strings:

SELECT D.dept_no, D.department, E.first_name || ' ' || E.last_name
||

' is the manager'

FROM Department D, Employee E

WHERE D.mngr_no = E.emp_no AND D.department NOT CONTAINING 'Field'

ORDER BY D.dept_no

Notice that in order to get a space between the first and last names, you have to
concatenate a string that consists solely of a space. The result set should look like this:
INTERBASE XE QUICK START 31

PART IV: RETRIEVING DATA > Formatt ing Data
CONVERTING TO UPPERCASE
The UPPER function converts character values to uppercase. For example, you could include a
CHECK constraint that ensures that all column values are entered in uppercase when defining a
table column or domain. The following CREATE DOMAIN statement uses the UPPER function to
guarantee that column entries are all upper case:

CREATE DOMAIN PROJNO

AS CHAR(5)

CHECK (VALUE = UPPER (VALUE));

ADVANCE TO PART V
Click here to advance to the next section: Part V: Advanced Topics
32 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS

This chapter provides examples of some advanced DDL features, including:

• Granting and revoking access privileges

• Creating and using triggers

• Creating and using stored procedures

ACCESS PRIVILEGES

Initially, only a table’s creator, its owner, and the SYSDBA user have access to a table. On UNIX
servers that have a superuser, or a user with root privileges, those users also have access to all
database objects.

You can grant other users the right to look at or change your tables by assigning access
privileges using the GRANT statement. Table 1 lists the available access privileges:

The GRANT statement assigns access privileges for a table or view to specified users, roles, or
procedures. The REVOKE statement removes previously granted access privileges.

ASSIGNING PRIVILEGES WITH GRANT
The GRANT statement can grant one or more privileges to one or more users. The privileges can
be to one or more complete tables or can be restricted to certain columns of the tables. Only
UPDATE and REFERENCES privileges can be assigned at the column level.

Privilege Access

ALL SELECT, DELETE, INSERT, UPDATE, and REFERENCES; note that ALL does not
include the EXECUTE privilege

SELECT Read data

DELETE Delete data

INSERT Write new data

UPDATE Modify existing data

EXECUTE Execute or call a stored procedure

REFERENCE
S

Reference a primary key with a foreign key

ROLE All privileges assigned to the role

Table 1: SQL Access Privileges
INTERBASE XE QUICK START 1

PART V: ADVANCED TOPICS > Access Priv i leges
Granting Access to Whole Tables

The following statement grants one privilege on the Department table to one user:

GRANT SELECT ON Department TO EMIL

The following statement assigns two privileges (INSERT and UPDATE) on the Department table to
three users:

GRANT INSERT, UPDATE ON Department TO EMIL, RAVI, HELGA

To grant privileges to everyone, use the PUBLIC keyword. The following statement grants all
privileges except EXECUTE on the Department table to anyone who connects to the database:

GRANT ALL ON Department to PUBLIC

Granting Access to Columns

In the previous examples, users were granted access to entire tables. Often, however, you may
want to grant access only to certain columns of a table. The following statement assigns UPDATE
privilege to all users for the contact and phone columns in the Customers table:

This is a very brief introduction to an important topic: security. For more information about
granting access, see the Data Definition Guide.

Revoking Privileges

The REVOKE statement removes access privileges that were granted with GRANT. The following
statement removes the insert and update privileges on the Department table that were granted
to Emil, Ravi, and Helga in an earlier example.

REVOKE INSERT, UPDATE ON Department FROM EMIL, RAVI, HELGA

USING ROLES TO CONTROL SECURITY
MarketPlace® is compliant with entry- and mid-level SQL92 standards regarding roles. A role is
a named group of privileges.

In practice, a company might want to grant a particular collection of privileges to its sales people
and a different collection of privileges to its accounting staff. The privileges list in each case
might be quite complex. Without roles, you would have to use a lengthy and detailed GRANT
statement each time a new sales or accounting person joined the company. The role feature
avoids that.

Implementing roles is a four-step process:

Step 1: Define the role.
2 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Access Priv i leges
CREATE ROLE role_name

Step 2: Grant privileges to the role

GRANT {one or more of INSERT, UPDATE, DELETE, SELECT, REFERENCES,
 EXECUTE}

ON table_name to role_name

GRANT UPDATE (col_name1, col_name 2) ON table_name TO role_name

When the access is restricted to certain columns, as in the second line, only UPDATE and
REFERENCES can be granted. EXECUTE must always be granted in a separate statement.

Step 3: Grant the role to users

GRANT role_name TO user_name1, user_name2

The users have now have all the privileges that were granted to the role_name role. But
there’s an additional step they must take before those privileges are available to them. They
must specify the role when the connect to a database.

Step 4: Specify the role when connecting to a database.

Committing your Work

If you have not committed your work in IBConsole lately, do so now (Transaction >
Commit). That way, if anything goes astray, you can roll back your work to this point
(Transaction > Rollback).
INTERBASE XE QUICK START 3

PART V: ADVANCED TOPICS > Access Priv i leges
Using a Role to Control Access

This exercise takes you through all four steps of implementing a role. You begin by creating
another user and trying to access one of your tables when you are connected as this new user, in
order to experience InterBase’s security at work. Then you create the Salesperson role, assign
some privileges to it, assign the role to your new user, and finally, repeat the access that failed
earlier to experience that your new user now has the necessary permissions.

1 Logout from the server.

2 Disconnect from the Tutorial database by selecting Database > Disconnect.

3 Login to the server as SYSDBA (password "masterkey) by choosing Server > Login

4 Create a new user called CHRIS with a password of chris4ib. Refer to “Creating a New User”
on page 6 if you’ve forgotten how to create a user.

5 Highlight the Tutorial database icon in the left pane and choose Database > Connect As to
connect to the database as Chris:

6 Execute the following SELECT statement:

SELECT * FROM SALES

NOTE: InterBase issues an error statement, because all those tables you’ve created in
this tutorial belong to user TUTOR. User CHRIS doesn’t have permission to do
anything at all with them.

7 Now disconnect from CHRIS and reconnect to the TUTORIAL database again, this time as
TUTOR. Leave the Role field empty.

8 Create a role called SALESPEOPLE.

CREATE ROLE SALESPEOPLE

9 Execute the following GRANT statements to assign privileges to the SALESPERSON role.

NOTE: Remember that you must execute each GRANT statement before entering the
next one.

GRANT SELECT, UPDATE, INSERT ON Sales to SALESPEOPLE
GRANT update (contact_first, contact_last, phone_no) ON Customer

to SALESPEOPLE
4 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
10 Grant the SALESPEOPLE role to user CHRIS.

GRANT SALESPEOPLE TO CHRIS

11 Connect to the TUTORIAL database as user CHRIS.

12 Now enter the same query that failed in Step 5. This time, InterBase retrieves all the rows in
the Sales table, because CHRIS now has the required permissions, thanks to the role.

13 Now reconnect to the database as user TUTOR.

TRIGGERS AND STORED PROCEDURES
Stored procedures and triggers are part of a database’s metadata and are written in stored
procedure and trigger language, an InterBase extension to SQL. Procedure and trigger
language includes SQL data manipulation statements and some powerful extensions, including
IF … THEN … ELSE, WHILE … DO, FOR SELECT … DO, exceptions, and error handling.

• A stored procedure is a program that can be called by applications or from IBConsole.

Stored procedures can be invoked directly from applications, or can be substituted for a table or
view in a SELECT statement. They can receive input parameters from and return values to the
calling application.

• A trigger is a self-contained routine that is associated with a table. A trigger definition
specifies an action to perform when a specified event, such as an update, insert, or delete
occurs on the table. A trigger is never called directly by an application or user. Instead, when
an application or user attempts to perform the action stated in the trigger definition, the
trigger automatically executes, or fires.

See the Data Definition Guide for a full explanation of stored procedures and triggers.

TRIGGERS
Triggers have a great variety of uses, but in general, they permit you to automate tasks that
would otherwise have to be done manually. You can use them to define actions that should
occur automatically when data is inserted, updated, or deleted in a particular table. Triggers are
a versatile tool, with a wide range of uses.

The triggers defined in the TUTORIAL database perform the following actions:

• The set_emp_no trigger generates and inserts unique employee numbers when a row is
inserted into the Employee table and the set_cust_no trigger does the same for customer
numbers in the Customer table.

• The save_salary_change trigger maintains a record of employees’ salary changes.

• The new_order trigger posts an event when a new row is inserted into the Sales table.
INTERBASE XE QUICK START 5

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
Using SET TERM

In command-line isql and SQL scripts, the trigger statement must be preceded by a SET TERM
statement that defines what characters will terminate the trigger statement, since the SQL
statements in the body of a trigger must each end with a semicolon (;). The double exclamation
mark (!!) is a common choice for this terminator.

In environments where the terminator was changed using the SET TERM statement, the trigger
code should be followed by another SET TERM statement to change the terminator back to a
semicolon.

The following example changes the terminator to !!, but ends with the current terminator
(semicolon), because that is the one in effect for this statement:

SET TERM !!;

Changing the Terminator in IBConsole

To change the terminator in IBConsole, choose Edit >| Preferences and click on the Interactive
SQL tab. Enter a double exclamation mark (!!), or another terminator if you prefer, in the
Terminator field.

The Structure of Triggers

• The CREATE TRIGGER keywords are followed by the trigger name and the table for which the
trigger is defined.

• The next line determines when the trigger fires. Choices are before or after an insert,
deletion, or update. If more than one trigger is defined for a particular point—such as AFTER
INSERT—you can add a position number that specifies the sequence in which the trigger
should fire.

• If the trigger uses local variables, they are declared next.

• The variables, if any, are followed by SQL statements that determine the behavior of the
trigger. These statements are bracketed between the keywords BEGIN and END. Each of
these SQL statements ends with a semicolon.

• If you are working in isql or writing a script, the END keyword is followed by the terminator
that was defined by the SET TERM statement.

The syntax for a trigger looks like this.

CREATE TRIGGER trigger_name FOR Table_name
{BEFORE | AFTER} {INSERT | DELETE | UPDATE} [POSITION NUMBER]
AS
[DECLARE VARIABLE variable_name datatype;]
BEGIN

statements in InterBase procedure and trigger language
END

See Triggers.sql for an example. The Language Reference, Data Definition Guide, and
Programmer’s Guide all contain more discussion of triggers.
6 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
Generators: Generating Unique Column Values

There are many cases in which table columns require unique, sequential values. The emp_no
column of the Employee table is a good example. Without a trigger, you would have to know
what the last employee number is each time you add a row for a new employee, so that you
could increment it by one to create the new employee number. This is cumbersome and error
prone.

Triggers provide a way to automate this process, by using a handy database object called a
generator. A generator is a named variable that is called and incremented through the gen_id()
function. The value of the generator is initialized with SET GENERATOR. After that, it generates the
next incremental value each time gen_id() is called. The gen_id() function takes a generator
name and an increment as inputs.

Context Variables

Context variables are unique to triggers. Triggers are often used to change a value, and in the
process of doing so, must temporarily store both the old and new values. The context variables,
Old and New, are the mechanisms by which triggers do this. As you perform the exercises in this
section, look for them in contexts such as New.emp_no = gen_id(emp_no_gen, 1). For more
information about context variables, see the Data Definition Guide

Creating a Generator

1 Begin by checking the employee numbers in the Employee table, to confirm that the
highest employee number currently in use is 145:

SELECT emp_no from Employee
ORDER BY emp_no

NOTE: The statement above returns all the employee numbers so that you can confirm
that 145 is the highest. The following statement produces the same information
more efficiently:

SELECT max(emp_no) from Employee

2 Triggers often use generators, and the trigger you create in the next exercise is an example
of one. Execute the following statement to create a generator called emp_no_gen.

CREATE GENERATOR emp_no_gen

3 Now initialize the generator to 145, the highest value currently in use.

SET GENERATOR emp_no_gen TO 145
INTERBASE XE QUICK START 7

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
Creating a Trigger that Generates a Value

1 The next statements define a trigger named set_emp_no that makes use of the
emp_no_gen generator to generate unique sequential employee numbers and insert them
into the Employee table.

CREATE TRIGGER set_emp_no FOR Employee
BEFORE INSERT AS

BEGIN
New.emp_no = gen_id(emp_no_gen, 1);
END

This statement says that the set_emp_no trigger will fire before an insert operation, and that
it will create a new value for emp_no by calling the gen_id() function on the emp_no_gen
generator with an increment of 1.

2 To test the generator, execute the following INSERT statement:

INSERT INTO Employee (first_name, last_name, dept_no, job_code,
 job_grade,job_country, hire_date, salary, phone_ext)

VALUES ('Reed', 'Richards', '671', 'Eng', 5, 'USA', '07/27/95',
'34000', '444')

Notice that you did not include a value for the emp_no column in the INSERT statement.
Look at the new record by entering

SELECT * from Employee WHERE last_name = 'Richards'

The employee number is 146. Remember that the highest employee number before you
created the generator and inserted a new row was 145. The trigger has automatically
assigned the new employee the next employee number.

3 If your INSERT ran without errors and your SELECT returns the correct result set, commit your
work by selecting Transactions > Commit.

Finishing the Trigger Exercises

The remainder of this section on triggers takes you through the process of creating another
generator and three more triggers. The text instructs you to enter them by hand in order to get
more experience with them.

TIP: If you want to save time, you can use the Query > Load Script command to
read in the Triggers.sql script in place of entering the remaining trigger and
generator statements yourself. Triggers.sql defines another generator and a
trigger named set_cust_no that assigns unique customer numbers. It defines
two other triggers: save_salary_change and post_new_order.

Whether you choose to enter the remaining trigger statements yourself or to
run the script, do take time to open Triggers.sql in a text editor and see that
you understand the code in it. Notice that triggers in a script require the use of
the SET TERM statement. (See “The Structure of Triggers” on page 6 for more
8 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
about SET TERM.)

If you choose to work through this section manually instead of running the
script, commit your work after creating and testing each trigger or stored
procedure.

More Practice with Generators and Triggers

1 The next trigger that you will create uses the cust_no_gen generator.

NOTE: Execute each statement in turn to create and initialize this generator:

CREATE GENERATOR cust_no_gen

SET GENERATOR cust_no_gen to 1015

Remember, these are two separate statements, and you must execute each one before
entering the next.

2 Now execute the following CREATE TRIGGER statement to create the set_cust_no trigger.

CREATE TRIGGER set_cust_no FOR Customer
BEFORE INSERT AS
BEGIN

 new.cust_no = gen_id(cust_no_gen, 1);
END

3 To test this trigger, first confirm that the highest customer number is 1015.

SELECT max(cust_no) WHERE customer =

4 Then insert the following row:

INSERT INTO Customer (customer, contact_first, contact_last,
phone_no, address_line1, address_line2, city, state_province,

country, postal_code, on_hold)
VALUES ('Big Rig', 'Henry', 'Erlig', '(701) 555-1212', '100 Big

Rig Way',
NULL, 'Atlanta', 'GA', 'USA', '70008', NULL)

Now perform the following SELECT to confirm that the new customer number is, as you
expect, 1016:

SELECT cust_no FROM Customer WHERE customer = 'Big Rig'

Creating a Trigger to Maintain Change Records

Enter the following CREATE TRIGGER statement to create the save_salary_change trigger, which
maintains a record of changes to employees’ salaries in the Salary_history table:
INTERBASE XE QUICK START 9

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
CREATE TRIGGER save_salary_change FOR Employee
AFTER UPDATE AS
BEGIN

 IF (Old.salary <> New.salary) THEN
 INSERT INTO Salary_history
 (emp_no, change_date, UPDATER_ID, old_salary, percent_change)
 VALUES (

OLD.emp_no,
'NOW',
USER,
OLD.salary, (NEW.salary - OLD.salary) * 100 / OLD.salary

);
END

This trigger fires AFTER UPDATE of the Employee table. It compares the value of the salary column
before the update to the value after the update and if they are different, it enters a record in
Salary_history that consists of the employee number, date, previous salary, and percentage
change in the salary.

Notice that when the values to be entered in the Salary_history table are to be taken from the
Employee table, they are always preceded by the Old or New context variable. That is because
InterBase creates two versions of a record during the update process, and you must specify
which version the value is to come from.

In addition, note that this example makes use of two other InterBase features: it inserts the
current date into a column of DATE datatype by supplying the string 'NOW' in single quotes, and
it inserts the name of the user who is currently connected to the database by supplying the
keyword USER.

Update an employee record and change the salary to see how this trigger works.

Creating a Trigger that Posts an Event

Execute the following CREATE TRIGGER statement to create a trigger, post_new_order, that posts
an event named “new_order” whenever a record is inserted into the Sales table.

CREATE TRIGGER post_new_order FOR Sales

AFTER INSERT AS
BEGIN

POST_EVENT 'new_order';
END

An event is a message passed by a trigger or stored procedure to the InterBase event manager
to notify interested applications of the occurrence of a particular condition. Applications that
have registered interest in an event can pause execution and wait for the specified event to
occur. For more information on events, see the Programmer’s Guide.

The post_new_order trigger fires after a new record is inserted into the Sales table—in other
words when a new sale is made. When this event occurs, interested applications can take action,
such as printing an invoice or notifying the shipping department.
10 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
STORED PROCEDURES
Stored procedures are programs stored with a database’s metadata that run on the server.
Applications can call stored procedures to perform tasks, and you can also use stored
procedures in IBConsole. See the Programmer’s Guide for more information on calling stored
procedures from applications.

There are two types of stored procedures:

• Select procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must be defined to return one or more values (output
parameters), or an error results. Since select procedures can return more than one row, they
appear as a table or view to a calling program.

• Executable procedures that an application can call directly with the EXECUTE PROCEDURE
statement. Executable procedures can perform a variety of tasks; they might or might not
return values to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have essentially the same
syntax. The difference is in how the procedure is written and how it is intended to be used.

Stored Procedure Syntax

A CREATE PROCEDURE statement is composed of a header and a body. The header contains:

• The name of the stored procedure, which must be unique among procedure, view, and table
names in the database.

• An optional list of input parameters and their datatypes that a procedure receives from the
calling program.

• If the procedure returns values to the calling program, the next item is the RETURNS keyword,
followed by a list of output parameters and their datatypes.

The procedure body contains:

• An optional list of local variables and their datatypes.

• A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. A block can itself include other blocks, so that there might be many levels of
nesting.

The simplified syntax of a procedure looks like this:

CREATE PROCEDURE procedure_name
[(input_var1 datatype[, input_var2 datatype …])]
[RETURNS (output_var1 datatype[, output_var2 datatype …])]
AS

BEGIN
statements in InterBase procedure and trigger language

END
INTERBASE XE QUICK START 11

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
Like trigger definitions, procedure definitions in SQL scripts, embedded SQL, and command-
line isql must be preceded by a SET TERM statement that sets the terminator to something other
than a semicolon. When all procedure statements have been entered, the SET TERM statement
must be used again to set the terminator back to a semicolon. See Procs.sql for an example.
The Language Reference, Data Definition Guide, and Programmer’s Guide all contain more
information on stored procedures.

Creating a Simple SELECT Procedure

1 Execute the following code to create the get_emp_proj procedure. There is a useful
convention of starting variable names with “v_” to help make the code readable, but it is not
required. You can name variables anything you wish. The following code is a single SQL
statement. Enter the whole thing and then execute it:

CREATE PROCEDURE get_emp_proj (v_empno SMALLINT)
RETURNS (project_id CHAR(5))
AS
BEGIN

FOR SELECT proj_id
FROM Employee_project
WHERE emp_no = :v_empno
INTO :project_id

DO
 SUSPEND;

END

This is a select procedure that takes an employee number as its input parameter (v_empno,
specified in parentheses after the procedure name) and returns all the projects to which the
employee is assigned (project_id, specified after RETURNS). The variables are named in the
header as varname and then referenced in the body as :varname.

It uses a FOR SELECT … DO statement to retrieve multiple rows from the Employee_project
table. This statement retrieves values just as a normal SELECT statement does, but retrieves
them one at a time into the variable listed after INTO, and then performs the statements
following DO. In this case, the only statement is SUSPEND, which suspends execution of the
procedure and sends values back to the calling application (in this case, InterBase
Windows > SQL).

2 See how the procedure works by entering the following query:

SELECT * FROM get_emp_proj(71)

This query looks at first as though there were a table named get_emp_proj, but you can tell
that it’s a procedure rather than a table because of the input parameter in parentheses
following the procedure name. The results are:
12 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
These are the projects to which employee number 71 is assigned. Try it with some other
employee numbers.

Create a More Complex Select Procedure

1 The next exercise starts with the code for the previous procedure and adds an output
column that counts the line numbers. Execute the following code. (You can display the
previous query if you wish and add the new code.)

CREATE PROCEDURE get_emp_proj2 (v_empno SMALLINT)
RETURNS (line_no integer, project_id CHAR(5))
AS
BEGIN
line_no = 0;

FOR SELECT proj_id
FROM Employee_project
WHERE emp_no = :v_empno
INTO :project_id

DO
BEGIN

line_no = line_no+1;
 SUSPEND;

END
END

2 To test this new procedure, execute the following query:

SELECT * FROM get_emp_proj2(71)

You should see the following output:

3 If your procedure returns the correct result set, commit your work.
INTERBASE XE QUICK START 13

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
Creating a Simple Executable Procedure

1 The executable procedure that you create in the next step of this exercise, add_emp_proj,
makes use of an exception, a named error message, that you define with CREATE EXCEPTION.
Execute the following SQL statement to create the UNKNOWN_EMP_ID exception:

CREATE EXCEPTION unknown_emp_id
'Invalid employee number or project ID.'

Once defined, this exception can be raised in a trigger or stored procedure with the
EXCEPTION clause. The associated error message is then returned to the calling application.

2 Execute the following statement to create the add_emp_proj stored procedure:

CREATE PROCEDURE add_emp_proj (v_empno SMALLINT, v_projid CHAR(5))
AS
BEGIN

INSERT INTO Employee_project (emp_no, proj_id)
VALUES (:v_empno, :v_projid);
WHEN SQLCODE -530 DO

EXCEPTION UNKNOWN_EMP_ID;
END

This procedure takes an employee number and project ID as input parameters and adds the
employee to the specified project using an INSERT statement. The error-handling WHEN
statement checks for SQLCODE -530, violation of foreign key constraint, and then raises the
previously-defined exception when this occurs.

3 Practice using this procedure by executing the following SQL statement:

EXECUTE PROCEDURE add_emp_proj(20, 'DGPII')

To confirm that this worked, execute the following SELECT statement:

SELECT * FROM Employee_project where emp_no = 20

You should see that employee 20 is now assigned to both the DGPII project and the GUIDE
project.

4 Now try adding a non-existent employee to a project, for example:

EXECUTE PROCEDURE add_emp_proj(999, 'DGPII')

The statement fails and the exception message displays on the screen.
14 INTERBASE XE QUICK START

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
Recursive Procedures

Stored procedures support recursion, that is, they can call themselves. This is a powerful
programming technique that is useful in performing repetitive tasks across hierarchical structures
such as corporate organizations or mechanical parts.

Creating a Recursive Procedure

In this exercise, you create a stored procedure called dept_budget that takes a department
number as its input parameter and returns the budget of the department and all departments
that are under it in the corporate hierarchy. It uses local variables declared with DECLARE VARIABLE
statements. These variables are used only within the context of the procedure.

First, the procedure retrieves the budget of the department given as the input parameter from
the Department table and stores it in the total_budget variable. Then it retrieves the number of
departments reporting to that department using the COUNT aggregate function. If there are no
reporting departments, it returns the value of total_budget with SUSPEND.

Using a FOR SELECT … DO loop, the procedure then retrieves the department number of each
reporting department into the local variable rdno, and then recursively calls itself with

 EXECUTE PROCEDURE dept_budget :rdno RETURNING_VALUES :sumb

This statement executes dept_budget with input parameter rdno, and puts the output value in
sumb. Notice that when using EXECUTE PROCEDURE within a procedure, the input parameters are
not put in parenthesis, and the variable into which to put the resultant output value is specified
after the RETURNING_VALUES keyword. The value of sumb is then added to total_budget, to keep
a running total of the budget. The result is that the procedure returns the total of the budgets of
all the reporting departments given as the input parameter plus the budget of the department
itself.

1 Execute the following SQL statement:

CREATE PROCEDURE dept_budget (v_dno CHAR(3))
RETURNS (total_budget NUMERIC(15, 2))
AS

 DECLARE VARIABLE sumb DECIMAL(12, 2);
DECLARE VARIABLE rdno CHAR(3);
DECLARE VARIABLE cnt INTEGER;

BEGIN
total_budget = 0;

 SELECT budget FROM Department WHERE dept_no = :v_dno INTO
:total_budget;
 SELECT COUNT(budget)
 FROM Department
 WHERE head_dept = :v_dno
 INTO :cnt;

IF (cnt = 0) THEN
SUSPEND;

FOR SELECT dept_no
 FROM Department
 WHERE head_dept = :v_dno

INTO :rdno
INTERBASE XE QUICK START 15

PART V: ADVANCED TOPICS > Triggers and Stored Procedures
DO
BEGIN

 EXECUTE PROCEDURE Dept_budget :rdno RETURNING_VALUES :sumb;
total_budget = total_budget + sumb;

 END
END

2 To find the total budget for department 620, including all its subdepartments, execute the
following SQL statement:

EXECUTE PROCEDURE dept_budget(620)

The result is:

A Little about Datatype Conversion

Notice that the dept_budget procedure is defined to take a CHAR(3) as its input parameter, but
that you can get away with giving it an integer (without quotes). This is because of InterBase’s
automatic type conversion, which converts datatypes, where possible, to the required datatype.
It automatically converts the integer 620 to the character string “620”. The automatic type
conversion won’t work for department number 000, however, because it would convert to the
string “0”, which is not a department number.

More Procedures

There are a number of other procedures, some quite complex, defined in Procs.sql for the
TUTORIAL database. Now that you have a basic understanding of procedures, it will be worth your
while to read them over so that you understand them. Then try using them. Notice that
comments are often included within the text of a statement to make it easier for people to
understand what the code is doing.

This completes the InterBase Update 4 Quick Start. For additional information on each of these
topics, please refer to the InterBase Guides located at: http://docs.embarcadero.com/products/
interbase/
16 INTERBASE XE QUICK START

http://docs.embarcadero.com/products/interbase/
http://docs.embarcadero.com/products/interbase/

 >
Symbols
_ (underscore), pattern matching 6
* operator 5
/ operator 5
% (percent), pattern matching 6
+ operator 5
|| operator 30
– operator 5

A
accessing data 25
adding numbers 19
aggregate functions ??–20
ALL privileges 1
ALTER keyword 3
ALTER TABLE 22
altering

sort order 26
AND operator 5
ANY keyword 18
arithmetic expressions 5
arithmetic operators 5
ascending sort order 26
automating tasks 5
averages 19–20
AVG() 19

B
BETWEEN operator 10

C
case

pattern matching 7–8
casting ??–30
character strings 30

checking for patterns 6–9
concatenating 30
joining 30
literal

testing for 5
characters, searching for multiple 6
CHECK constraints 32
clause (defined) 1
columns

access, restricting 2
definitions, customizing 6
updating multiple 3

comparing values 17
comparison operators

subqueries 17
comparisons, negating 5
compound search conditions ??–15
concatenation operator 30
conditions 3

triggers and 10
constants 30
CONTAINING operator 9
context variables 7
COUNT() 19
INTERBASE XE QUICK START 1

 >
counting rows 19
CREATE EXCEPTION 14
CREATE keyword 3
CREATE PROCEDURE 11
creating

indexes 25

D
data

accessing 25
adding to tables 1
changing 22, 3
deleting 6–7
formatting 30–32
retrieving 3

multiple rows 12
multiple tables 1, 25

updating 7
data definition files 8
data definition language 1
data entry, automating 5
data types

casting ??–30
domains as 6

defining domains 6
DELETE 6
DELETE privileges 1
derived values 5
DESCENDING keyword 26
descending sort order 26
DISTINCT keyword 2, 19
domains 6
DROP keyword 3
dropping data 6–7
duplicate values

preventing 26, 2
E
editors 8
events 10
executable procedures 11
EXECUTE privileges 1
expressions 5

F
formatting data 30–32
functions 5

G
generators (defined) 7
GRANT 1

H
headers (procedures) 11

I
incremental values 7
indexes

creating 25
specifying sort order 26
unique 26
2 INTERBASE XE QUICK START

 >
inner joins 25–27
outer joins vs. 25

input parameters 11
INSERT privileges 1
IS NOT NULL operator 10
IS NULL operator 10
isc_decode_date() 2

J
joining strings 30
joins 25–29

inner 25–27
outer 28–29

K
keywords 1

L
LIKE operator ??–8
literal strings

testing for 5
literal values 5
local variables 15
logical operators 5–15

M
MAX() 19
maximum values 19
MIN() 19
minimum values 19
multiple search conditions ??–15
multiple tables

joining 25–29
querying 25
retrieving data 1, 25

multiple values
subqueries 16

N
negation 5
NOT IN operator 12
NOT operator 5–6
NULL values 4, 5, 20

testing for 10
numbers 5

adding 19
averaging 19–20
incrementing 7
INTERBASE XE QUICK START 3

 >
O
operators

arithmetic 5
BETWEEN 10
comparison

subqueries 17
concatenation 30
CONTAINING 9
IS NOT NULL 10
IS NULL 10
LIKE ??–8
logical 5–15
NOT IN 12
precedence

overriding 14
STARTING WITH 8

OR operator 5
order of evaluation (operators)

overriding 14
outer joins 28–29

inner joins vs. 25
output parameters 11
overriding normal precedence 14

P
parameters

input 11
output 11

pattern matching (queries) 6
case sensitivity 7–8

percent sign (%), pattern matching 6
populating (defined) 1
precedence (operators)

overriding 14

Q
queries 3, 23

meeting specified conditions 3
multi-table 25
pattern matching 6

case sensitivity 7–8
removing duplicate rows 2–3
return values 5, 16, 30
search conditions 6

concatenation 30
defined 4
multiple ??–15
operators in 5
testing 5

updating data 5

R
range of values 10
recursion 15
repetitive tasks 15
results tables 25
retrieving data 3

multiple rows 12
multiple tables 1, 25
4 INTERBASE XE QUICK START

 >
return values (queries) 5, 16, 30
routines 11
rows

counting 19
retrieving

multiple 12
preventing duplicates 2–3

S
search conditions (queries) 6

concatenation 30
defined 4
multiple ??–15
multi-tables 25
operators in 5
testing 5

searching for multiple characters 6
security

access privileges
granting 1

SELECT
DISTINCT clause 2–3
FROM clause 26
ORDER BY clause 3
WHERE clause 3–18, 26

SELECT privileges 1
select procedures 11
SELECT statements 3

inner joins 26
multi-table 25
nesting 5
outer joins 28

SOME keyword 18
sort order

specifying 26
SQL statements

adding data 1
entering multiple 8
overview 3

STARTING WITH operator 8
stored procedures 5, 11–16

defined 5
headers 11
naming 11
procedure body 11
recursive 15
types, described 11

string operator 30
subqueries 5, 15–18

comparing values 17
returning multiple values 16
updating data 5

SUM() 19
SUSPEND 12
syntax

inner joins 26
outer joins 28
search conditions 4
INTERBASE XE QUICK START 5

 >
T
tables

changing data 22, 3
joining 25–29
multiple

retrieving data 1
results 25

tasks
automating 5
repetitive 15

testing for multiple values 10
text editors 8
totals 22
triggers 5–10

defined 5
posting events 10
updating data 7

U
underscore (_), pattern matching 6
unique indexes 26
UNIQUE keyword 26
unknown values 5, 20

testing for 10
UPDATE 3
UPDATE privileges 1
updating data 7

V
values

averages 19–20
comparing 17
derived 5
duplicate

preventing 26, 2
incremental 7
literal 5
maximum 19
minimum 19
ranges, testing for 10
returned in queries 5, 16, 30
sums 19
unknown 5, 20

testing for 10
updating 4

variables
context 7
local 15

W
WHERE keyword 3
wildcards

pattern matching ??–8
6 INTERBASE XE QUICK START

	Contents
	Introduction
	Using this Quick Start
	Finding the Files you Need
	Printing Conventions
	Syntax Conventions
	Understanding Which Parts to Do
	Advance to Part I

	Part I: Getting Started
	Installing InterBase XE3 Update 4 for Windows
	Installation
	To Start the Local InterBase Server
	Connecting to a Server from IBConsole

	Creating a New User
	Creating a New User

	Create a Database
	Connecting to a Database
	Disconnecting From a Database

	Installing InterBase XE for Mac OS X
	Installation

	Installing InterBase XE for Linux
	Installation
	Advance to Part II

	Part II: Data Definition
	Database Design
	The TUTORIAL Database

	An Overview of SQL
	Using IBConsole to Execute SQL
	Entering SQL Statements in the SQL Statement Area

	Creating Domains
	Entering Metadata Statements
	Create some Domains

	Data Definition Files
	Running an SQL Script
	Run the Domains.sql Script

	Creating Tables
	Primary Keys and Foreign Keys
	Computed Columns

	Backing up a Database
	Creating Tables with a Script
	Troubleshooting
	Viewing an Object Definition
	Altering Tables
	More Troubleshooting

	Creating Views
	Creating Indexes
	Specifying Index Sort Order
	Modifying Indexes
	Advance to Part III

	Part III: Populating the Database
	Inserting Data
	Updating Data
	Using UPDATE
	Updating to a NULL Value
	Using a Subquery to Update

	Deleting Data
	Deleting more Precisely
	Advance to Part IV

	Part IV: Retrieving Data
	Overview of SELECT
	Removing Duplicate Rows with DISTINCT
	Using the WHERE Clause
	Search Conditions
	Pattern Matching
	Testing for an Unknown Value
	Comparing Against a Range or List of Values
	Logical Operators

	Controlling the Order of Evaluation

	Using Subqueries
	Multiple-result Subqueries
	Conditions for Subqueries

	Using Aggregate Functions
	Grouping and Ordering Query Results
	Using ORDER BY to Arrange Rows
	Using the GROUP BY Clause
	Using the HAVING Clause
	Ordering by an Aggregate Column

	Joining Tables
	Correlation Names
	Inner Joins
	Outer Joins

	Formatting Data
	Using CAST to Convert Datatypes
	Using the String Operator in Search Conditions
	Converting to Uppercase
	Advance to Part V

	Part V: Advanced Topics
	Access Privileges
	Assigning Privileges with GRANT
	Using roles to Control Security

	Triggers and Stored Procedures
	Triggers
	Stored Procedures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

