Chapter Introduction
NAG C Library Manual

e04 – Minimizing or Maximizing a Function

e04 Chapter Introduction

Routine
Name
Mark of
Introduction

Purpose
e04abc
Example Text
5 nag_opt_one_var_no_deriv
Minimizes a function of one variable, using function values only
e04bbc
Example Text
5 nag_opt_one_var_deriv
Minimizes a function of one variable, requires first derivatives
e04ccc
Example Text
Example Data
4 nag_opt_simplex
Unconstrained minimization using simplex algorithm
e04dgc
Example Text
Example Data
2 nag_opt_conj_grad
Unconstrained minimization using conjugate gradients
e04fcc
Example Text
Example Data
2 nag_opt_lsq_no_deriv
Unconstrained nonlinear least squares (no derivatives required)
e04gbc
Example Text
Example Data
2 nag_opt_lsq_deriv
Unconstrained nonlinear least squares (first derivatives required)
e04hcc
Example Text
2 nag_opt_check_deriv
Derivative checker for use with e04kbc
e04hdc
Example Text
5 nag_opt_check_2nd_deriv
Checks second derivatives of a user-defined function
e04jbc
Example Text
Example Data
2 nag_opt_bounds_no_deriv
Bound constrained nonlinear minimization (no derivatives required)
e04kbc
Example Text
Example Data
2 nag_opt_bounds_deriv
Bound constrained nonlinear minimization (first derivatives required)
e04lbc
Example Text
Example Data
5 nag_opt_bounds_2nd_deriv
Solves bound constrained problems (first and second derivatives required)
e04mfc
Example Text
Example Data
2 nag_opt_lp
Linear programming
e04myc 5 nag_opt_sparse_mps_free
Free memory allocated by e04mzc
e04mzc
Example Text
Example Data
5 nag_opt_sparse_mps_read
Read MPSX data for sparse LP or QP problem from a file
e04ncc
Example Text
Example Data
5 nag_opt_lin_lsq
Solves linear least-squares and convex quadratic programming problems (non-sparse)
e04nfc
Example Text
Example Data
2 nag_opt_qp
Quadratic programming
e04nkc
Example Text
Example Data
5 nag_opt_sparse_convex_qp
Solves sparse linear programming or convex quadratic programming problems
e04ucc
Example Text
Example Data
4 nag_opt_nlp
Minimization with nonlinear constraints using a sequential QP method
e04ugc
Example Text
Example Data
6 nag_opt_nlp_sparse
NLP problem (sparse)
e04unc
Example Text
Example Data
5 nag_opt_nlin_lsq
Solves nonlinear least-squares problems using the sequential QP method
e04xac
Example Text
5 nag_opt_estimate_deriv
Computes an approximation to the gradient vector and/or the Hessian matrix for use with e04ucc and other nonlinear optimization functions
e04xxc 2 nag_opt_init
Initialisation function for option setting
e04xyc 2 nag_opt_read
Read options from a text file
e04xzc 2 nag_opt_free
Memory freeing function for use with option setting
e04yac
Example Text
Example Data
2 nag_opt_lsq_check_deriv
Least-squares derivative checker for use with e04gbc
e04ycc
Example Text
Example Data
2 nag_opt_lsq_covariance
Covariance matrix for nonlinear least-squares

Chapter Introduction
NAG C Library Manual

© The Numerical Algorithms Group Ltd, Oxford UK. 2002