|
Routine Name |
Mark of Introduction |
Purpose |
|
e04abc
Example Text |
5 |
nag_opt_one_var_no_deriv
Minimizes a function of one variable, using function values only |
|
e04bbc
Example Text |
5 |
nag_opt_one_var_deriv
Minimizes a function of one variable, requires first derivatives |
|
e04ccc
Example Text Example Data |
4 |
nag_opt_simplex
Unconstrained minimization using simplex algorithm |
|
e04dgc
Example Text Example Data |
2 |
nag_opt_conj_grad
Unconstrained minimization using conjugate gradients |
|
e04fcc
Example Text Example Data |
2 |
nag_opt_lsq_no_deriv
Unconstrained nonlinear least squares (no derivatives required) |
|
e04gbc
Example Text Example Data |
2 |
nag_opt_lsq_deriv
Unconstrained nonlinear least squares (first derivatives required) |
|
e04hcc
Example Text |
2 |
nag_opt_check_deriv
Derivative checker for use with e04kbc |
|
e04hdc
Example Text |
5 |
nag_opt_check_2nd_deriv
Checks second derivatives of a user-defined function |
|
e04jbc
Example Text Example Data |
2 |
nag_opt_bounds_no_deriv
Bound constrained nonlinear minimization (no derivatives required) |
|
e04kbc
Example Text Example Data |
2 |
nag_opt_bounds_deriv
Bound constrained nonlinear minimization (first derivatives required) |
|
e04lbc
Example Text Example Data |
5 |
nag_opt_bounds_2nd_deriv
Solves bound constrained problems (first and second derivatives required) |
|
e04mfc
Example Text Example Data |
2 |
nag_opt_lp
Linear programming |
| e04myc | 5 |
nag_opt_sparse_mps_free
Free memory allocated by e04mzc |
|
e04mzc
Example Text Example Data |
5 |
nag_opt_sparse_mps_read
Read MPSX data for sparse LP or QP problem from a file |
|
e04ncc
Example Text Example Data |
5 |
nag_opt_lin_lsq
Solves linear least-squares and convex quadratic programming problems (non-sparse) |
|
e04nfc
Example Text Example Data |
2 |
nag_opt_qp
Quadratic programming |
|
e04nkc
Example Text Example Data |
5 |
nag_opt_sparse_convex_qp
Solves sparse linear programming or convex quadratic programming problems |
|
e04ucc
Example Text Example Data |
4 |
nag_opt_nlp
Minimization with nonlinear constraints using a sequential QP method |
|
e04ugc
Example Text Example Data |
6 |
nag_opt_nlp_sparse
NLP problem (sparse) |
|
e04unc
Example Text Example Data |
5 |
nag_opt_nlin_lsq
Solves nonlinear least-squares problems using the sequential QP method |
|
e04xac
Example Text |
5 |
nag_opt_estimate_deriv
Computes an approximation to the gradient vector and/or the Hessian matrix for use with e04ucc and other nonlinear optimization functions |
| e04xxc | 2 |
nag_opt_init
Initialisation function for option setting |
| e04xyc | 2 |
nag_opt_read
Read options from a text file |
| e04xzc | 2 |
nag_opt_free
Memory freeing function for use with option setting |
|
e04yac
Example Text Example Data |
2 |
nag_opt_lsq_check_deriv
Least-squares derivative checker for use with e04gbc |
|
e04ycc
Example Text Example Data |
2 |
nag_opt_lsq_covariance
Covariance matrix for nonlinear least-squares |