NAG Logo
Numerical Algorithms Group
NAG Toolbox for MATLAB

  • E04 Introduction
  • e04ab – Minimum, function of one variable using function values only
  • e04bb – Minimum, function of one variable, using first derivative
  • e04cc – Unconstrained minimum, simplex algorithm, function of several variables using function values only (comprehensive)
  • e04dg – Unconstrained minimum, preconditioned conjugate gradient algorithm, function of several variables using first derivatives (comprehensive)
  • e04dk – Supply optional parameter values to e04dg
  • e04fc – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using function values only (comprehensive)
  • e04fy – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using function values only (easy-to-use)
  • e04gb – Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm using first derivatives (comprehensive)
  • e04gd – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using first derivatives (comprehensive)
  • e04gy – Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)
  • e04gz – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using first derivatives (easy-to-use)
  • e04hc – Check user's routine for calculating first derivatives of function
  • e04hd – Check user's routine for calculating second derivatives of function
  • e04he – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (comprehensive)
  • e04hy – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (easy-to-use)
  • e04jy – Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function values only (easy-to-use)
  • e04kd – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives (comprehensive)
  • e04ky – Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)
  • e04kz – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives (easy-to-use)
  • e04lb – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and second derivatives (comprehensive)
  • e04ly – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and second derivatives (easy-to-use)
  • e04mf – LP problem (dense)
  • e04mh – Supply optional parameter values to e04mf
  • e04nc – Convex QP problem or linearly-constrained linear least-squares problem (dense)
  • e04ne – Supply optional parameter values to e04nc
  • e04nf – QP problem (dense)
  • e04nh – Supply optional parameter values to e04nf
  • e04nk – LP or QP problem (sparse)
  • e04nm – Supply optional parameter values to e04nk
  • e04np – Initialization routine for e04nq
  • e04nq – LP or QP problem (suitable for sparse problems)
  • e04ns – Set a single option for e04nq from a character string
  • e04nt – Set a single option for e04nq from an integer argument
  • e04nu – Set a single option for e04nq from a real argument
  • e04nx – Get the setting of an integer valued option of e04nq
  • e04ny – Get the setting of a real valued option of e04nq
  • e04uc – Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (forward communication, comprehensive)
  • e04ue – Supply optional parameter values to e04uc or e04uf
  • e04uf – Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (reverse communication, comprehensive)
  • e04ug – NLP problem (sparse)
  • e04uj – Supply optional parameter values to e04ug
  • e04un – Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
  • e04ur – Supply optional parameter values to e04us
  • e04us – Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
  • e04vg – Initialization routine for e04vh
  • e04vh – General sparse nonlinear optimizer
  • e04vj – Determine the pattern of nonzeros in the Jacobian matrix for e04vh
  • e04vl – Set a single option for e04vh from a character string
  • e04vm – Set a single option for e04vh from an integer argument
  • e04vn – Set a single option for e04vh from a real argument
  • e04vr – Get the setting of an integer valued option of e04vh
  • e04vs – Get the setting of a real valued option of e04vh
  • e04wb – Initialization routine for e04dg e04mf e04nc e04nf e04uf e04ug e04us
  • e04wc – Initialization routine for e04wd
  • e04wd – Solves the nonlinear programming (NP) problem
  • e04wf – Set a single option for e04wd from a character string
  • e04wg – Set a single option for e04wd from an integer argument
  • e04wh – Set a single option for e04wd from a real argument
  • e04wk – Get the setting of an integer valued option of e04wd
  • e04wl – Get the setting of a real valued option of e04wd
  • e04xa – Estimate (using numerical differentiation) gradient and/or Hessian of a function
  • e04ya – Check user's routine for calculating Jacobian of first derivatives
  • e04yb – Check user's routine for calculating Hessian of a sum of squares
  • e04yc – Covariance matrix for nonlinear least-squares problem (unconstrained)
  • e04zc – Check user's routines for calculating first derivatives of function and constraints