|
Home /
Products /
Numerical Libraries / MATLAB®-NAG Toolbox
- E04 Introduction
- e04ab – Minimum, function of one variable using function values only
- e04bb – Minimum, function of one variable, using first derivative
- e04cc – Unconstrained minimum, simplex algorithm, function of several variables using function values only (comprehensive)
- e04dg – Unconstrained minimum, preconditioned conjugate gradient algorithm, function of several variables using first derivatives
(comprehensive)
- e04dk – Supply optional parameter values to e04dg
- e04fc – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using function values only
(comprehensive)
- e04fy – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using function values only
(easy-to-use)
- e04gb – Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm using first derivatives (comprehensive)
- e04gd – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using first derivatives (comprehensive)
- e04gy – Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)
- e04gz – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using first derivatives (easy-to-use)
- e04hc – Check user's routine for calculating first derivatives of function
- e04hd – Check user's routine for calculating second derivatives of function
- e04he – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (comprehensive)
- e04hy – Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm, using second derivatives (easy-to-use)
- e04jy – Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function values only (easy-to-use)
- e04kd – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives (comprehensive)
- e04ky – Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)
- e04kz – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives (easy-to-use)
- e04lb – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and second derivatives (comprehensive)
- e04ly – Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and second derivatives (easy-to-use)
- e04mf – LP problem (dense)
- e04mh – Supply optional parameter values to e04mf
- e04nc – Convex QP problem or linearly-constrained linear least-squares problem (dense)
- e04ne – Supply optional parameter values to e04nc
- e04nf – QP problem (dense)
- e04nh – Supply optional parameter values to e04nf
- e04nk – LP or QP problem (sparse)
- e04nm – Supply optional parameter values to e04nk
- e04np – Initialization routine for e04nq
- e04nq – LP or QP problem (suitable for sparse problems)
- e04ns – Set a single option for e04nq from a character string
- e04nt – Set a single option for e04nq from an integer argument
- e04nu – Set a single option for e04nq from a real argument
- e04nx – Get the setting of an integer valued option of e04nq
- e04ny – Get the setting of a real valued option of e04nq
- e04uc – Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally
first derivatives (forward communication, comprehensive)
- e04ue – Supply optional parameter values to e04uc or e04uf
- e04uf – Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally
first derivatives (reverse communication, comprehensive)
- e04ug – NLP problem (sparse)
- e04uj – Supply optional parameter values to e04ug
- e04un – Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives
(comprehensive)
- e04ur – Supply optional parameter values to e04us
- e04us – Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives
(comprehensive)
- e04vg – Initialization routine for e04vh
- e04vh – General sparse nonlinear optimizer
- e04vj – Determine the pattern of nonzeros in the Jacobian matrix for e04vh
- e04vl – Set a single option for e04vh from a character string
- e04vm – Set a single option for e04vh from an integer argument
- e04vn – Set a single option for e04vh from a real argument
- e04vr – Get the setting of an integer valued option of e04vh
- e04vs – Get the setting of a real valued option of e04vh
- e04wb – Initialization routine for
e04dg
e04mf
e04nc
e04nf
e04uf
e04ug
e04us
- e04wc – Initialization routine for e04wd
- e04wd – Solves the nonlinear programming (NP) problem
- e04wf – Set a single option for e04wd from a character string
- e04wg – Set a single option for e04wd from an integer argument
- e04wh – Set a single option for e04wd from a real argument
- e04wk – Get the setting of an integer valued option of e04wd
- e04wl – Get the setting of a real valued option of e04wd
- e04xa – Estimate (using numerical differentiation) gradient and/or Hessian of a function
- e04ya – Check user's routine for calculating Jacobian of first derivatives
- e04yb – Check user's routine for calculating Hessian of a sum of squares
- e04yc – Covariance matrix for nonlinear least-squares problem (unconstrained)
- e04zc – Check user's routines for calculating first derivatives of function and constraints
|