NAG Logo
Numerical Algorithms Group
NAG Toolbox for MATLAB

  • G02 Introduction
  • g02ba – Pearson product-moment correlation coefficients, all variables, no missing values
  • g02bb – Pearson product-moment correlation coefficients, all variables, casewise treatment of missing values
  • g02bc – Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
  • g02bd – Correlation-like coefficients (about zero), all variables, no missing values
  • g02be – Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
  • g02bf – Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
  • g02bg – Pearson product-moment correlation coefficients, subset of variables, no missing values
  • g02bh – Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values
  • g02bj – Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of missing values
  • g02bk – Correlation-like coefficients (about zero), subset of variables, no missing values
  • g02bl – Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
  • g02bm – Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values
  • g02bn – Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
  • g02bp – Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, overwriting input data
  • g02bq – Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data
  • g02br – Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data
  • g02bs – Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
  • g02bt – Update a weighted sum of squares matrix with a new observation
  • g02bu – Computes a weighted sum of squares matrix
  • g02bw – Computes a correlation matrix from a sum of squares matrix
  • g02bx – Computes (optionally weighted) correlation and covariance matrices
  • g02by – Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by g02bx
  • g02ca – Simple linear regression with constant term, no missing values
  • g02cb – Simple linear regression without constant term, no missing values
  • g02cc – Simple linear regression with constant term, missing values
  • g02cd – Simple linear regression without constant term, missing values
  • g02ce – Service routines for multiple linear regression, select elements from vectors and matrices
  • g02cf – Service routines for multiple linear regression, re-order elements of vectors and matrices
  • g02cg – Multiple linear regression, from correlation coefficients, with constant term
  • g02ch – Multiple linear regression, from correlation-like coefficients, without constant term
  • g02da – Fits a general (multiple) linear regression model
  • g02dc – Add/delete an observation to/from a general linear regression model
  • g02dd – Estimates of linear parameters and general linear regression model from updated model
  • g02de – Add a new independent variable to a general linear regression model
  • g02df – Delete an independent variable from a general linear regression model
  • g02dg – Fits a general linear regression model to new dependent variable
  • g02dk – Estimates and standard errors of parameters of a general linear regression model for given constraints
  • g02dn – Computes estimable function of a general linear regression model and its standard error
  • g02ea – Computes residual sums of squares for all possible linear regressions for a set of independent variables
  • g02ec – Calculates R^2 and C_P values from residual sums of squares
  • g02ee – Fits a linear regression model by forward selection
  • g02ef – Stepwise linear regression
  • g02fa – Calculates standardized residuals and influence statistics
  • g02fc – Computes Durbin–Watson test statistic
  • g02ga – Fits a generalized linear model with Normal errors
  • g02gb – Fits a generalized linear model with binomial errors
  • g02gc – Fits a generalized linear model with Poisson errors
  • g02gd – Fits a generalized linear model with gamma errors
  • g02gk – Estimates and standard errors of parameters of a general linear model for given constraints
  • g02gn – Computes estimable function of a generalized linear model and its standard error
  • g02ha – Robust regression, standard M-estimates
  • g02hb – Robust regression, compute weights for use with g02hd
  • g02hd – Robust regression, compute regression with user-supplied functions and weights
  • g02hf – Robust regression, variance-covariance matrix following g02hd
  • g02hk – Calculates a robust estimation of a correlation matrix, Huber's weight function
  • g02hl – Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives
  • g02hm – Calculates a robust estimation of a correlation matrix, user-supplied weight function
  • g02ja – Linear mixed effects regression using Restricted Maximum Likelihood (REML)
  • g02jb – Linear mixed effects regression using Maximum Likelihood (ML)