NAG Logo
Numerical Algorithms Group
NAG Toolbox for MATLAB

  • S Introduction
  • s01ba – ln((1+x))
  • s01ea – Complex exponential, e^z
  • s07aa – tan(x)
  • s09aa – arcsin(x)
  • s09ab – arccos(x)
  • s10aa – tanh(x)
  • s10ab – sinh(x)
  • s10ac – cosh(x)
  • s11aa – arctanh(x)
  • s11ab – arcsinh(x)
  • s11ac – arccosh(x)
  • s13aa – Exponential integral E_1(x)
  • s13ac – Cosine integral Ci((x))
  • s13ad – Sine integral Si((x))
  • s14aa – Gamma function
  • s14ab – Log Gamma function
  • s14ac – psi (x)-ln(x)
  • s14ad – Scaled derivatives of psi (x)
  • s14ae – Polygamma function psi ^(n)(x) for real x
  • s14af – Polygamma function psi ^(n)(z) for complex z
  • s14ag – Logarithm of the Gamma function ln( Gamma )(z)
  • s14ba – Incomplete Gamma functions P(ax) and Q(ax)
  • s15ab – Cumulative Normal distribution function P(x)
  • s15ac – Complement of cumulative Normal distribution function Q(x)
  • s15ad – Complement of error function erfc((x))
  • s15ae – Error function erf((x))
  • s15af – Dawson's integral
  • s15dd – Scaled complex complement of error function, exp((-z^2))erfc((-iz))
  • s17ac – Bessel function Y_0(x)
  • s17ad – Bessel function Y_1(x)
  • s17ae – Bessel function J_0(x)
  • s17af – Bessel function J_1(x)
  • s17ag – Airy function Ai((x))
  • s17ah – Airy function Bi((x))
  • s17aj – Airy function Ai^'((x))
  • s17ak – Airy function Bi'((x))
  • s17al – Zeros of Bessel functions J_ alpha (x), J_ alpha '(x), Y_ alpha (x) or Y_ alpha '(x)
  • s17dc – Bessel functions Y_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
  • s17de – Bessel functions J_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
  • s17dg – Airy functions Ai((z)) and Ai'((z)), complex z
  • s17dh – Airy functions Bi((z)) and Bi'((z)), complex z
  • s17dl – Hankel functions H_ nu +a^(j)(z), j=1,2, real a >= 0, complex z, nu =0,1,2, ...
  • s18ac – Modified Bessel function K_0(x)
  • s18ad – Modified Bessel function K_1(x)
  • s18ae – Modified Bessel function I_0(x)
  • s18af – Modified Bessel function I_1(x)
  • s18cc – Scaled modified Bessel function e^xK_0(x)
  • s18cd – Scaled modified Bessel function e^xK_1(x)
  • s18ce – Scaled modified Bessel function e^-|x|I_0(x)
  • s18cf – Scaled modified Bessel function e^-|x|I_1(x)
  • s18dc – Modified Bessel functions K_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
  • s18de – Modified Bessel functions I_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
  • s18gk – Bessel function of the 1st kind J_ alpha ±n(z)
  • s19aa – Kelvin function ber(x)
  • s19ab – Kelvin function bei(x)
  • s19ac – Kelvin function ker(x)
  • s19ad – Kelvin function kei(x)
  • s20ac – Fresnel integral S(x)
  • s20ad – Fresnel integral C(x)
  • s21ba – Degenerate symmetrised elliptic integral of 1st kind R_C(xy)
  • s21bb – Symmetrised elliptic integral of 1st kind R_F(xyz)
  • s21bc – Symmetrised elliptic integral of 2nd kind R_D(xyz)
  • s21bd – Symmetrised elliptic integral of 3rd kind R_J(xyzr)
  • s21ca – Jacobian elliptic functions sn, cn and dn of real argument
  • s21cb – Jacobian elliptic functions sn, cn and dn of complex argument
  • s21cc – Jacobian theta functions theta _k(xq) of real argument
  • s21da – General elliptic integral of 2nd kind F(zk'ab) of complex argument
  • s22aa – Legendre functions of 1st kind P_n^m(x) or (P_n^m)^-(x)