c06fqf

c06fqf © Numerical Algorithms Group, 2002.

Purpose

C06FQF Multiple 1-D Hermitian discrete Fourier transforms

Synopsis

[x,trig,ifail] = c06fqf(x<,trig,init,ifail>)

Description

 
                                                       p     
 Given m Hermitian sequences of n complex data values z , for 
                                                       j     
 j=0,1,...,n-1; p=1,2,...,m, this routine simultaneously 
 calculates the Fourier transforms of all the sequences defined 
 by:
 
            n-1                  
    ^p   1  --  p    (   2(pi)jk)
    x = --- >  z *exp(-i -------), k=0,1,...,n-1; p=1,2,...,m.
     k    _ --  j    (      n   )
        \/n j=0                  
 
                          1                     
 (Note the scale factor  --- in this definition.)
                           _                    
                         \/n                    
 
 The transformed values are purely real (see also the Chapter 
 Introduction).
 
 The discrete Fourier transform is sometimes defined using a 
 positive sign in the exponential term
 
                          n-1                  
                  ^p   1  --  p    (   2(pi)jk)
                  x = --- >  z *exp(+i -------).
                   k    _ --  j    (      n   )
                      \/n j=0                  
 
 To compute this form, this routine should be preceded by a call 
                                                 ^p
 to C06GQF to form the complex conjugates of the z .
                                                  j
 

Parameters

c06fqf

Required Input Arguments:

x (:,:)                               real

Optional Input Arguments:                       <Default>

trig (:)                              real     zeros(2*size(x,2),1)
init (1)                              string   c06fqf04(trig)
ifail                                 integer  -1

Output Arguments:

x (:,:)                               real
trig (:)                              real
ifail                                 integer