c06frf
c06frf
© Numerical Algorithms Group, 2002.
Purpose
C06FRF Multiple 1-D complex discrete Fourier transforms
Synopsis
[x,y,trig,ifail] = c06frf(x,y<,trig,init,ifail>)
Description
p
Given m sequences of n complex data values z , for j=0,1,...,n-1;
j
p=1,2,...,m, this routine simultaneously calculates the Fourier
transforms of all the sequences defined by:
n-1
^p 1 -- p ( 2(pi)jk)
z = --- > z *exp(-i -------), k=0,1,...,n-1; p=1,2,...,m.
k _ -- j ( n )
\/n j=0
1
(Note the scale factor --- in this definition.)
_
\/n
The discrete Fourier transform is sometimes defined using a
positive sign in the exponential term
n-1
^p 1 -- p ( 2(pi)jk)
z = --- > z *exp(+i -------).
k _ -- j ( n )
\/n j=0
To compute this form, this routine should be preceded and
followed by negating the imaginary parts of the data
to form the complex conjugates of
p ^p
the z and the z .
j k
Parameters
c06frf
Required Input Arguments:
x (:,:) real
y (:,:) real
Optional Input Arguments: <Default>
trig (:) real zeros(2*size(x,2),1)
init (1) string c06frf05(trig)
ifail integer -1
Output Arguments:
x (:,:) real
y (:,:) real
trig (:) real
ifail integer