c06fuf
c06fuf
© Numerical Algorithms Group, 2002.
Purpose
C06FUF 2-D complex discrete Fourier transform
Synopsis
[x,y,trigm,trign,ifail] = c06fuf(x,y<,trigm,trign,init,ifail>)
Description
This routine computes the two-dimensional discrete Fourier
transform of a bivariate sequence of complex data values z ,
j j
1 2
where j =0,1,...,m-1, j =0,1,...,n-1.
1 2
The discrete Fourier transform is here defined by:
m-1 n-1 ( ( j k j k ))
^ 1 -- -- ( ( 1 1 2 2))
z = ---- > > z *exp(-2(pi)i( ---- + ----)),
__ -- -- j j ( ( m n ))
k k \/mn j =0 j =0 1 2
1 2 1 2
where k =0,1,...,m-1, k =0,1,...,n-1.
1 2
1
(Note the scale factor of ---- in this definition.)
__
\/mn
To compute the inverse discrete Fourier transform, defined with
exp(+2(pi)i(...)) in the above formula instead of
exp(-2(pi)i(...)), this routine should be preceded and followed
by negating the imaginary parts of the data to form the
complex conjugates of the data values and the transform.
Parameters
c06fuf
Required Input Arguments:
x (:,:) real
y (:,:) real
Optional Input Arguments: <Default>
trigm (:) real zeros(2*size(x,1),1)
trign (:) real zeros(2*size(x,2),1)
init (1) string c06fuf05(trigm,trign)
ifail integer -1
Output Arguments:
x (:,:) real
y (:,:) real
trigm (:) real
trign (:) real
ifail integer