f02adf
f02adf
© Numerical Algorithms Group, 2002.
Purpose
F02ADF All eigenvalues of generalized real symmetric-definite
eigenproblem (Black Box)
Synopsis
[r,ifail] = f02adf(a,b<,ifail>)
Description
The problem is reduced to the standard symmetric eigenproblem
using Cholesky's method to decompose B into triangular matrices,
T
B=LL , where L is lower triangular. Then Ax=(lambda)Bx implies
-1 -T T T
(L AL )(L x)=(lambda)(L x); hence the eigenvalues of
Ax=(lambda)Bx are those of Py=(lambda)y where P is the symmetric
-1 -T
matrix L AL . Householder's method is used to tridiagonalise
the matrix P and the eigenvalues are then found using the QL
algorithm.
Parameters
f02adf
Required Input Arguments:
a (:,:) real
b (:,:) real
Optional Input Arguments: <Default>
ifail integer -1
Output Arguments:
r (:) real
ifail integer