Oracle® Database
Database Utilities

18c
E83846-04
April 2020

ORACLE"

Oracle Database Database Utilities, 18c
E83846-04

Copyright © 1996, 2020, Oracle and/or its affiliates.
Primary Author: Reema Khosla

Contributors: Lee Barton, George Claborn, Steve DiPirro, Dean Gagne, John Kalogeropoulos, Joydip Kundu,
Rod Payne, Ray Pfau, Rich Phillips, Mike Sakayeda, Marilyn Saunders, Jim Stenoish, Roy Swonger, Randy
Urbano, William Wright, Hui-ling Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and maodifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and madifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government'’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience xliii
Documentation Accessibility xliii
Related Documentation xliv
Syntax Diagrams xliv
Conventions xliv

Changes in This Release for Oracle Database Utilities

Changes in Oracle Database 18c xlv

Part | Oracle Data Pump

1 Overview of Oracle Data Pump
1.1 Data Pump Components 1-2
1.2 How Does Oracle Data Pump Move Data? 1-3
1.2.1 Using Data File Copying to Move Data 1-4
1.2.2 Using Direct Path to Move Data 1-5
1.2.3 Using External Tables to Move Data 1-7
1.2.4 Using Conventional Path to Move Data 1-8
1.2.5 Using Network Link Import to Move Data 1-8
1.3 Using Data Pump With CDBs 1-9
1.3.1 Understanding How to Use Data Pump With CDBs 1-9
1.3.2 Using Data Pump to Move Databases Into a CDB 1-10
1.3.3 Using Data Pump to Move PDBs Within Or Between CDBs 1-11
1.4 Required Roles for Data Pump Export and Import Operations 1-11
1.5 What Happens During Execution of a Data Pump Job? 1-12
1.5.1 Coordination of a Job 1-13
1.5.2 Tracking Progress Within a Job 1-13
1.5.3 Filtering Data and Metadata During a Job 1-14
1.5.4 Transforming Metadata During a Job 1-14

ORACLE iii

1.5.5 Maximizing Job Performance 1-14
1.5.6 Loading and Unloading of Data 1-15
1.6 Monitoring Job Status 1-16
1.7 Monitoring the Progress of Executing Jobs 1-16
1.8 File Allocation 1-17
1.8.1 Understanding File Allocation in Data Pump 1-17
1.8.2 Specifying Files and Adding Additional Dump Files 1-17
1.8.3 Default Locations for Dump, Log, and SQL Files 1-18
1.8.3.1 Understanding Dump, Log, and SQL File Default Locations 1-18
1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC 1-20

1.8.3.3 Using Directory Objects When Oracle Automatic Storage
Management Is Enabled 1-20

1.8.3.4 The DATA PUMP_DIR Directory Object and Pluggable
Databases 1-21
1.8.4 Using Substitution Variables 1-21
1.9 Exporting and Importing Between Different Database Releases 1-22
1.10 SecureFiles LOB Considerations 1-24
1.11 Data Pump Exit Codes 1-25
1.12 Auditing Data Pump Jobs 1-25
1.13 How Does Data Pump Handle Timestamp Data? 1-26
1.13.1 TIMESTAMP WITH TIMEZONE Restrictions 1-26
1.13.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions 1-27
1.13.1.2 Data Pump Support for TIMESTAMP WITH TIME ZONE Data 1-27
1.13.1.3 Time Zone File Versions on the Source and Target 1-28
1.13.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions 1-29
1.14 Character Set and Globalization Support Considerations 1-29
1.14.1 Data Definition Language (DDL) 1-29
1.14.2 Single-Byte Character Sets and Export and Import 1-29
1.14.3 Multibyte Character Sets and Export and Import 1-30
1.15 Oracle Data Pump Behavior with Data-Bound Collation 1-30
2 Data Pump Export

2.1 What Is Data Pump Export? 2-1
2.2 Invoking Data Pump Export 2-2
2.2.1 Data Pump Export Interfaces 2-2
2.2.2 Data Pump Export Modes 2-3
2.2.2.1 Full Mode 2-4
2.2.2.2 Schema Mode 2-5
2.2.2.3 Table Mode 2-6
2.2.2.4 Tablespace Mode 2-6
2.2.2.5 Transportable Tablespace Mode 2-7

ORACLE

2.2.3 Network Considerations 2-7

2.3 Filtering During Export Operations 2-8
2.3.1 Data Filters 2-8
2.3.2 Metadata Filters 2-9

2.4 Parameters Available in Export's Command-Line Mode 2-10
2.4.1 About Data Pump Export Parameters 2-14
2.4.2 ABORT_STEP 2-16
243 ACCESS_METHOD 2-16
2.4.4 ATTACH 2-17
245 CLUSTER 2-18
246 COMPRESSION 2-19
2.4.7 COMPRESSION_ALGORITHM 2-20
2.4.8 CONTENT 2-21
249 DATA_OPTIONS 2-22
2.4.10 DIRECTORY 2-23
2.4.11 DUMPFILE 2-24
2412 ENCRYPTION 2-27
2.4.13 ENCRYPTION_ALGORITHM 2-28
2.4.14 ENCRYPTION_MODE 2-29
2.4.15 ENCRYPTION_PASSWORD 2-30
2416 ENCRYPTION_PWD_PROMPT 2-33
2.4.17 ESTIMATE 2-34
2.4.18 ESTIMATE_ONLY 2-35
2.4.19 EXCLUDE 2-35
2.4.20 FILESIZE 2-37
2.4.21 FLASHBACK_SCN 2-38
2.4.22 FLASHBACK_ TIME 2-39
2.4.23 FULL 2-41
2424 HELP 2.42
2.4.25 INCLUDE 2-43
2.4.26 JOB_NAME 2-45
2427 KEEP_MASTER 2-45
2.4.28 LOGFILE 2-46
2.4.29 LOGTIME 2-47
2430 METRICS 2-49
2.4.31 NETWORK_LINK 2-49
2.4.32 NOLOGFILE 2-51
2.4.33 PARALLEL 2-52
2.4.34 PARFILE 2-53
2.4.35 QUERY 2-54
2436 REMAP_DATA 2-56

ORACLE Y

2.4.37 REUSE_DUMPFILES 2-57
2.4.38 SAMPLE 2-58
2.4.39 SCHEMAS 2-59
2.4.40 SERVICE_NAME 2-60
2441 SOURCE_EDITION 2-61
2.4.42 STATUS 2-62
2.4.43 TABLES 2-62
2.4.44 TABLESPACES 2-65
2.4.45 TRANSPORT_FULL _CHECK 2-66
2.4.46 TRANSPORT_TABLESPACES 2-67
2.4.47 TRANSPORTABLE 2-68
2.4.48 VERSION 2-70
2449 VIEWS_AS TABLES 2-72

2.5 Commands Available in Data Pump Export Interactive-Command Mode 2-73
2.5.1 About Data Pump Export Interactive Command Mode 2-74
252 ADD_FILE 2-75
2.5.3 CONTINUE_CLIENT 2-76
2.5.4 EXIT_CLIENT 2-76
255 FILESIZE 2-77
256 HELP 2-77
2.5.7 KILL_JOB 2-78
2.5.8 PARALLEL 2-78
259 START_JOB 2-79
2510 STATUS 2-79
2511 STOP_JOB 2-80

2.6 Examples of Using Data Pump Export 2-81
2.6.1 Performing a Table-Mode Export 2-81
2.6.2 Data-Only Unload of Selected Tables and Rows 2-81
2.6.3 Estimating Disk Space Needed in a Table-Mode Export 2-82
2.6.4 Performing a Schema-Mode Export 2-82
2.6.5 Performing a Parallel Full Database Export 2-82
2.6.6 Using Interactive Mode to Stop and Reattach to a Job 2-83

2.7 Syntax Diagrams for Data Pump Export 2-83

3 Data Pump Import

3.1 What Is Data Pump Import? 3-1
3.2 Invoking Data Pump Import 3-2
3.2.1 Data Pump Import Interfaces 3-2
3.2.2 Data Pump Import Modes 3-3
3.2.2.1 About Data Pump Import Modes 3-3

ORACLE

Vi

3.2.2.2 Full Import Mode

3.2.2.3 Schema Mode

3.2.2.4 Table Mode

3.2.2.5 Tablespace Mode

3.2.2.6 Transportable Tablespace Mode

3.2.3

Network Considerations

3.3 Filtering During Import Operations

3.3.1
3.3.2

Data Filters
Metadata Filters

3.4 Parameters Available in Import's Command-Line Mode

34.1

3.4.2

3.4.3

3.4.4

3.45

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10
3.4.11
3.4.12
3.4.13
3.4.14
3.4.15
3.4.16
3.4.17
3.4.18
3.4.19
3.4.20
3.4.21
3.4.22
3.4.23
3.4.24
3.4.25
3.4.26
3.4.27
3.4.28
3.4.29
3.4.30
3.4.31

ORACLE

About Import Command-Line Mode
ABORT_STEP
ACCESS_METHOD
ATTACH
CLUSTER
CONTENT
DATA_OPTIONS
DIRECTORY
DUMPFILE
ENCRYPTION_PASSWORD
ENCRYPTION_PWD_PROMPT
ESTIMATE
EXCLUDE
FLASHBACK_SCN
FLASHBACK_TIME
FULL
HELP
INCLUDE
JOB_NAME
KEEP_MASTER
LOGFILE
LOGTIME
MASTER_ONLY
METRICS
NETWORK_LINK
NOLOGFILE
PARALLEL
PARFILE
PARTITION_OPTIONS
QUERY
REMAP_DATA

3-4
3-5
3-5
3-6
3-6
3-7

3-8

3-8

3-9
3-14
3-16
3-16
3-17
3-18
3-19
3-20
3-22
3-23
3-25
3-26
3-27
3-28
3-30
3-31
3-33
3-34
3-34
3-36
3-37
3-37
3-38
3-39
3-40
3-40
3-42
3-43
3-45
3-46
3-47
3-49

Vii

3.4.32
3.4.33
3.4.34
3.4.35
3.4.36
3.4.37
3.4.38
3.4.39
3.4.40
3.4.41
3.4.42
3.4.43
3.4.44
3.4.45
3.4.46
3.4.47
3.4.48
3.4.49
3.4.50
3.4.51
3.4.52
3.4.53
3.4.54
3.4.55
3.4.56

REMAP_DATAFILE
REMAP_DIRECTORY
REMAP_SCHEMA
REMAP_TABLE
REMAP_TABLESPACE
SCHEMAS

SERVICE_NAME
SKIP_UNUSABLE_INDEXES
SOURCE_EDITION

SQLFILE

STATUS
STREAMS_CONFIGURATION
TABLE_EXISTS_ACTION
REUSE_DATAFILES

TABLES

TABLESPACES
TARGET_EDITION
TRANSFORM
TRANSPORT_DATAFILES
TRANSPORT_FULL_CHECK
TRANSPORT_TABLESPACES
TRANSPORTABLE

VERSION
VIEWS_AS_TABLES (Network Import)
VIEWS_AS_TABLES (Non-Network Import)

3.5 Commands Available in Import's Interactive-Command Mode

351
3.5.2
3.5.3
3.54
3.55
3.5.6
3.5.7
3.5.8
3.5.9

About Data Pump Import Interactive Command Mode
CONTINUE_CLIENT

EXIT_CLIENT

HELP

KILL_JOB

PARALLEL

START_JOB

STATUS

STOP_JOB

3.6 Examples of Using Data Pump Import

3.6.1
3.6.2
3.6.3

Performing a Data-Only Table-Mode Import
Performing a Schema-Mode Import
Performing a Network-Mode Import

3.7 Syntax Diagrams for Data Pump Import

ORACLE

3-51
3-52
3-53
3-55
3-56
3-56
3-57
3-58
3-59
3-61
3-62
3-63
3-63
3-65
3-66
3-68
3-69
3-70
3-75
3-77
3-78
3-80
3-82
3-83
3-85
3-86
3-87
3-87
3-88
3-88
3-89
3-89
3-90
3-91
3-91
3-92
3-92
3-92
3-93
3-93

viii

4 Data Pump Legacy Mode

4.1 Parameter Mappings 4-1
4.1.1 Using Original Export Parameters with Data Pump 4-2
4.1.2 Using Original Import Parameters with Data Pump 4-5

4.2 Management of File Locations in Data Pump Legacy Mode 4-9

4.3 Adjusting Existing Scripts for Data Pump Log Files and Errors 4-11
4.3.1 Log Files 4-12
4.3.2 Error Cases 4-12
4.3.3 Exit Status 4-12

5 Data Pump Performance

5.1 Data Performance Improvements for Data Pump Export and Import 5-1

5.2 Tuning Performance 5-2
5.2.1 Controlling Resource Consumption 5-2
5.2.2 Effect of Compression and Encryption on Performance 5-3
5.2.3 Memory Considerations When Exporting and Importing Statistics 5-3

5.3 Initialization Parameters That Affect Data Pump Performance 5-4
5.3.1 Setting the Size Of the Buffer Cache In a Streams Environment 5-4

6 The Data Pump API

6.1 How Does the Client Interface to the Data Pump APl Work? 6-1

6.1.1 Job States 6-2
6.2 What Are the Basic Steps in Using the Data Pump API? 6-4
6.3 Examples of Using the Data Pump API 6-4

Part |l sSQL*Loader

7 SQL*Loader Concepts

7.1 SQL*Loader Features 7-1
7.2 SQL*Loader Parameters 7-3
7.3 SQL*Loader Control File 7-3
7.4 Input Data and Data Files 7-4
7.4.1 Fixed Record Format 7-4
7.4.2 Variable Record Format and SQL*Loader 7-5
7.4.3 Stream Record Format 7-6
7.4.4 Logical Records 7-7
7.45 Data Fields 7-8

ORACLE iX

7.5 LOBFILEs and Secondary Data Files (SDFs) 7-8

7.6 Data Conversion and Data Type Specification 7-9
7.7 Discarded and Rejected Records 7-10
7.7.1 The Bad File 7-10
7.7.1.1 Records Rejected by SQL*Loader 7-10

7.7.1.2 Records Rejected by Oracle Database During a SQL*Loader
Operation 7-10
7.7.2 The Discard File 7-11
7.8 Log File and Logging Information 7-11
7.9 Conventional Path Loads, Direct Path Loads, and External Table Loads 7-11
7.9.1 Conventional Path Loads 7-12
7.9.2 Direct Path Loads 7-12
7.9.2.1 Parallel Direct Path 7-13
7.9.3 External Table Loads 7-13
7.9.4 Choosing External Tables Versus SQL*Loader 7-14
7.9.5 Behavior Differences Between SQL*Loader and External Tables 7-14
7.9.5.1 Multiple Primary Input Data Files 7-15
7.9.5.2 Syntax and Data Types 7-15
7.9.5.3 Byte-Order Marks 7-15
7.9.5.4 Default Character Sets, Date Masks, and Decimal Separator 7-15
7.9.5.5 Use of the Backslash Escape Character 7-15
7.10 Loading Objects, Collections, and LOBs 7-16
7.10.1 Supported Object Types 7-16
7.10.1.1 column objects 7-16
7.10.1.2 row objects 7-16
7.10.2 Supported Collection Types 7-17
7.10.2.1 Nested Tables 7-17
7.10.2.2 VARRAYs 7-17
7.10.3 Supported LOB Data Types 7-17
7.11 Partitioned Object Support 7-18
7.12 Application Development: Direct Path Load API 7-18
7.13 SQL*Loader Case Studies 7-18
7.13.1 Case Study Files 7-20
7.13.2 Running the Case Studies 7-20
7.13.3 Case Study Log Files 7-21
7.13.4 Checking the Results of a Case Study 7-21

8 SQL*Loader Command-Line Reference

8.1 Invoking SQL*Loader 8-1
8.1.1 Specifying Parameters on the Command Line 8-1
8.1.2 Alternative Ways to Specify SQL*Loader Parameters 8-2

ORACLE X

8.1.3

Using SQL*Loader to Load Data Across a Network

8.2 Command-Line Parameters for SQL*Loader

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

8.2.8

8.2.9

8.2.10
8.2.11
8.2.12
8.2.13
8.2.14
8.2.15
8.2.16
8.2.17
8.2.18
8.2.19
8.2.20
8.2.21
8.2.22
8.2.23
8.2.24
8.2.25
8.2.26
8.2.27
8.2.28
8.2.29
8.2.30
8.2.31
8.2.32
8.2.33
8.2.34
8.2.35
8.2.36
8.2.37
8.2.38
8.2.39

ORACLE

BAD
BINDSIZE
COLUMNARRAYROWS
CONTROL

DATA

DATE_CACHE

DEFAULTS

DEGREE_OF PARALLELISM
DIRECT
DIRECT_PATH_LOCK_WAIT
DISCARD

DISCARDMAX
DNFS_ENABLE
DNFS_READBUFFERS
EMPTY_LOBS_ARE_NULL
ERRORS
EXTERNAL_TABLE

FILE

HELP

LOAD

LOG

MULTITHREADING
NO_INDEX_ERRORS
PARALLEL

PARFILE
PARTITION_MEMORY
READSIZE

RESUMABLE
RESUMABLE_NAME
RESUMABLE_TIMEOUT
ROWS

SDF_PREFIX

SILENT

SKIP
SKIP_INDEX_MAINTENANCE
SKIP_UNUSABLE_INDEXES
STREAMSIZE

TRIM

USERID

8-3
8-3
8-5
8-6
8-6
8-7

8-9
8-10
8-11
8-12
8-12
8-13
8-14
8-15
8-15
8-16
8-17
8-17
8-20
8-20
8-20
8-21
8-21
8-22
8-23
8-23
8-24
8-25
8-26
8-26
8-27
8-27
8-28
8-29
8-30
8-30
8-31
8-32
8-33
8-33

Xi

8.3 Exit Codes for Inspection and Display 8-34

O SQL*Loader Control File Reference

9.1 Control File Contents 9-2
9.1.1 Comments in the Control File 9-4
9.2 Specifying Command-Line Parameters in the Control File 9-4
9.2.1 OPTIONS Clause 9-4
9.2.2 Specifying the Number of Default Expressions to Be Evaluated At One
Time 9-5
9.3 Specifying File Names and Object Names 9-5
9.3.1 File Names That Conflict with SQL and SQL*Loader Reserved Words 9-6
9.3.2 Specifying SQL Strings 9-6
9.3.3 Operating System Considerations 9-6
9.3.3.1 Specifying a Complete Path 9-7
9.3.3.2 Backslash Escape Character 9-7
9.3.3.3 Nonportable Strings 9-7
9.3.3.4 Using the Backslash as an Escape Character 9-8
9.3.3.5 Escape Character Is Sometimes Disallowed 9-8
9.4 Identifying XMLType Tables 9-8
9.5 Specifying Field Order 9-9
9.6 Specifying Data Files 9-10
9.6.1 Examples of INFILE Syntax 9-12
9.6.2 Specifying Multiple Data Files 9-12
9.7 Specifying CSV Format Files 9-13
9.8 Identifying Data in the Control File with BEGINDATA 9-14
9.9 Specifying Data File Format and Buffering 9-14
9.10 Specifying the Bad File 9-15
9.10.1 Examples of Specifying a Bad File Name 9-16
9.10.2 How Bad Files Are Handled with LOBFILEs and SDFs 9-16
9.10.3 Criteria for Rejected Records 9-17
9.11 Specifying the Discard File 9-17
9.11.1 Specifying the Discard File in the Control File 9-18
9.11.1.1 Limiting the Number of Discard Records 9-19
9.11.2 Examples of Specifying a Discard File Name 9-19
9.11.3 Criteria for Discarded Records 9-19
9.11.4 How Discard Files Are Handled with LOBFILEs and SDFs 9-19
9.11.5 Specifying the Discard File from the Command Line 9-20
9.12 Specifying a NULLIF Clause At the Table Level 9-20
9.13 Specifying Datetime Formats At the Table Level 9-20
9.14 Handling Different Character Encoding Schemes 9-21
9.14.1 Multibyte (Asian) Character Sets 9-22

ORACLE Xii

9.14.2 Unicode Character Sets 9-22

9.14.3 Database Character Sets 9-23
9.14.4 Data File Character Sets 9-24
9.14.5 Input Character Conversion 9-24
9.14.5.1 Considerations When Loading Data into VARRAY's or Primary-
Key-Based REFs 9-25
9.14.5.2 CHARACTERSET Parameter 9-25
9.14.5.3 Control File Character Set 9-26
9.14.5.4 Character-Length Semantics 9-27
9.14.6 Shift-sensitive Character Data 9-29
9.15 Interrupted Loads 9-29
9.15.1 Discontinued Conventional Path Loads 9-30
9.15.2 Discontinued Direct Path Loads 9-30
9.15.2.1 Load Discontinued Because of Space Errors 9-30
9.15.2.2 Load Discontinued Because Maximum Number of Errors
Exceeded 9-31
9.15.2.3 Load Discontinued Because of Fatal Errors 9-31
9.15.2.4 Load Discontinued Because a Ctrl+C Was Issued 9-31
9.15.3 Status of Tables and Indexes After an Interrupted Load 9-31
9.15.4 Using the Log File to Determine Load Status 9-32
9.15.5 Continuing Single-Table Loads 9-32
9.16 Assembling Logical Records from Physical Records 9-32
9.16.1 Using CONCATENATE to Assemble Logical Records 9-32
9.16.2 Using CONTINUEIF to Assemble Logical Records 9-33
9.17 Loading Logical Records into Tables 9-36
9.17.1 Specifying Table Names 9-37
9.17.1.1 INTO TABLE Clause 9-37
9.17.2 Table-Specific Loading Method 9-38
9.17.2.1 Loading Data into Empty Tables with INSERT 9-38
9.17.2.2 Loading Data into Nonempty Tables 9-39
9.17.3 Table-Specific OPTIONS Parameter 9-40
9.17.4 Loading Records Based on a Condition 9-40
9.17.4.1 Using the WHEN Clause with LOBFILEs and SDFs 9-41
9.17.5 Specifying Default Data Delimiters 9-41
9.17.5.1 fields_spec 9-42
9.17.5.2 termination_spec 9-42
9.17.5.3 enclosure_spec 9-42
9.17.6 Handling Short Records with Missing Data 9-43
9.17.6.1 TRAILING NULLCOLS Clause 9-43
9.18 Index Options 9-44
9.18.1 SORTED INDEXES Clause 9-44
9.18.2 SINGLEROW Option 9-44

ORACLE Xiii

9.19 Benefits of Using Multiple INTO TABLE Clauses 9-45

9.19.1 Extracting Multiple Logical Records 9-46
9.19.1.1 Relative Positioning Based on Delimiters 9-46
9.19.2 Distinguishing Different Input Record Formats 9-46
9.19.2.1 Relative Positioning Based on the POSITION Parameter 9-47
9.19.3 Distinguishing Different Input Row Object Subtypes 9-47
9.19.4 Loading Data into Multiple Tables 9-49
9.19.5 Summary of Using Multiple INTO TABLE Clauses 9-49
9.20 Bind Arrays and Conventional Path Loads 9-49
9.20.1 Size Requirements for Bind Arrays 9-50
9.20.2 Performance Implications of Bind Arrays 9-51
9.20.3 Specifying Number of Rows Versus Size of Bind Array 9-51
9.20.4 Calculations to Determine Bind Array Size 9-51
9.20.4.1 Determining the Size of the Length Indicator 9-53
9.20.4.2 Calculating the Size of Field Buffers 9-53
9.20.5 Minimizing Memory Requirements for Bind Arrays 9-54
9.20.6 Calculating Bind Array Size for Multiple INTO TABLE Clauses 9-55

10 SQL*Loader Field List Reference

10.1 Field List Contents 10-2
10.2 Specifying the Position of a Data Field 10-3
10.2.1 Using POSITION with Data Containing Tabs 10-4
10.2.2 Using POSITION with Multiple Table Loads 10-4
10.2.3 Examples of Using POSITION 10-4
10.3 Specifying Columns and Fields 10-5
10.3.1 Specifying Filler Fields 10-5
10.3.2 Specifying the Data Type of a Data Field 10-7
10.4 SQL*Loader Data Types 10-7
10.4.1 Nonportable Data Types 10-8
10.4.1.1 INTEGER(n) 10-9
10.4.1.2 SMALLINT 10-9
10.4.1.3 FLOAT 10-10
10.4.1.4 DOUBLE 10-10
10.4.1.5 BYTEINT 10-10
10.4.1.6 ZONED 10-10
10.4.1.7 DECIMAL 10-11
10.4.1.8 VARGRAPHIC 10-11
10.4.1.9 VARCHAR 10-12
10.4.1.10 VARRAW 10-13
10.4.1.11 LONG VARRAW 10-13

ORACLE Xiv

10.4.2 Portable Data Types

10.4.2.1 CHAR

10.4.2.2 Datetime and Interval Data Types

10.4.2.3 GRAPHIC

10.4.2.4 GRAPHIC EXTERNAL

10.4.2.5 Numeric EXTERNAL

10.4.2.6 RAW

10.4.2.7 VARCHARC

10.4.2.8 VARRAWC

10.4.2.9 Conflicting Native Data Type Field Lengths
10.4.2.10 Field Lengths for Length-Value Data Types

10.4.3 Data Type Conversions

10.4.4 Data Type Conversions for Datetime and Interval Data Types
10.4.5 Specifying Delimiters

10.4.5.1 Syntax for Termination and Enclosure Specification
10.4.5.2 Delimiter Marks in the Data

10.4.5.3 Maximum Length of Delimited Data

10.4.5.4 Loading Trailing Blanks with Delimiters

10.4.6 How Delimited Data Is Processed

10.4.6.1 Fields Using Only TERMINATED BY
10.4.6.2 Fields Using ENCLOSED BY Without TERMINATED BY
10.4.6.3 Fields Using ENCLOSED BY With TERMINATED BY

10.4.6.4 Fields Using OPTIONALLY ENCLOSED BY With TERMINATED

BY

10.4.7 Conflicting Field Lengths for Character Data Types

10.5

10.4.7.1 Predetermined Size Fields
10.4.7.2 Delimited Fields

10.4.7.3 Date Field Masks
Specifying Field Conditions

10.5.1 Comparing Fields to BLANKS
10.5.2 Comparing Fields to Literals

10.6
10.7
10.8
10.9

Using the WHEN, NULLIF, and DEFAULTIF Clauses

Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses
Loading Data Across Different Platforms

Byte Ordering

10.9.1 Specifying Byte Order
10.9.2 Using Byte Order Marks (BOMs)

10.10
10.11

10.9.2.1 Suppressing Checks for BOMs
Loading All-Blank Fields
Trimming Whitespace

10.11.1 Data Types for Which Whitespace Can Be Trimmed

ORACLE

10-14
10-14
10-15
10-18
10-19
10-19
10-20
10-20
10-20
10-21
10-21
10-21
10-22
10-23
10-24
10-25
10-26
10-26
10-26
10-27
10-27
10-27

10-28
10-29
10-29
10-30
10-30
10-30
10-32
10-33
10-33
10-35
10-37
10-38
10-39
10-40
10-41
10-42
10-42
10-44

XV

10.11.2 Specifying Field Length for Data Types for Which Whitespace Can Be

Trimmed 10-45
10.11.2.1 Predetermined Size Fields 10-45
10.11.2.2 Delimited Fields 10-45
10.11.3 Relative Positioning of Fields 10-46
10.11.3.1 No Start Position Specified for a Field 10-46
10.11.3.2 Previous Field Terminated by a Delimiter 10-46
10.11.3.3 Previous Field Has Both Enclosure and Termination Delimiters 10-47
10.11.4 Leading Whitespace 10-47
10.11.4.1 Previous Field Terminated by Whitespace 10-47
10.11.4.2 Optional Enclosure Delimiters 10-48
10.11.5 Trimming Trailing Whitespace 10-48
10.11.6 Trimming Enclosed Fields 10-48
10.12 How the PRESERVE BLANKS Option Affects Whitespace Trimming 10-49
10.13 How [NO] PRESERVE BLANKS Works with Delimiter Clauses 10-49
10.14 Applying SQL Operators to Fields 10-50
10.14.1 Referencing Fields 10-52
10.14.2 Common Uses of SQL Operators in Field Specifications 10-53
10.14.3 Combinations of SQL Operators 10-54
10.14.4 Using SQL Strings with a Date Mask 10-54
10.14.5 Interpreting Formatted Fields 10-54
10.14.6 Using SQL Strings to Load the ANYDATA Database Type 10-55
10.15 Using SQL*Loader to Generate Data for Input 10-55
10.15.1 Loading Data Without Files 10-56
10.15.2 Setting a Column to a Constant Value 10-56
10.15.2.1 CONSTANT Parameter 10-56
10.15.3 Setting a Column to an Expression Value 10-57
10.15.3.1 EXPRESSION Parameter 10-57
10.15.4 Setting a Column to the Data File Record Number 10-57
10.15.4.1 RECNUM Parameter 10-57
10.15.5 Setting a Column to the Current Date 10-58
10.15.5.1 SYSDATE Parameter 10-58
10.15.6 Setting a Column to a Unique Sequence Number 10-58
10.15.6.1 SEQUENCE Parameter 10-58
10.15.7 Generating Sequence Numbers for Multiple Tables 10-59

10.15.7.1 Example: Generating Different Sequence Numbers for Each
Insert 10-59

11 Loading Objects, LOBs, and Collections

11.1 Loading Column Objects 11-1
11.1.1 Loading Column Objects in Stream Record Format 11-2

ORACLE

XVi

11.1.2 Loading Column Obijects in Variable Record Format 11-3
11.1.3 Loading Nested Column Objects 11-4
11.1.4 Loading Column Objects with a Derived Subtype 11-5
11.1.5 Specifying Null Values for Objects 11-6
11.1.5.1 Specifying Attribute Nulls 11-6
11.1.5.2 Specifying Atomic Nulls 11-7

11.1.6 Loading Column Objects with User-Defined Constructors 11-8
11.2 Loading Object Tables 11-11
11.2.1 Loading Object Tables with a Subtype 11-12
11.3 Loading REF Columns 11-13
11.3.1 Specifying Table Names in a REF Clause 11-14
11.3.2 System-Generated OID REF Columns 11-15
11.3.3 Primary Key REF Columns 11-15
11.3.4 Unscoped REF Columns That Allow Primary Keys 11-16
11.4 Loading LOBs 11-17
11.4.1 Loading LOB Data from a Primary Data File 11-18
11.4.1.1 LOB Data in Predetermined Size Fields 11-19
11.4.1.2 LOB Data in Delimited Fields 11-19
11.4.1.3 LOB Data in Length-Value Pair Fields 11-21

11.4.2 Loading LOB Data from LOBFILEs 11-22
11.4.2.1 Dynamic Versus Static LOBFILE Specifications 11-23
11.4.2.2 Examples of Loading LOB Data from LOBFILEs 11-23
11.4.2.3 Considerations When Loading LOBs from LOBFILEs 11-27

11.4.3 Loading Data Files that Contain LLS Fields 11-28
11.5 Loading BFILE Columns 11-29
11.6 Loading Collections (Nested Tables and VARRAYS) 11-30
11.6.1 Restrictions in Nested Tables and VARRAYs 11-31
11.6.2 Secondary Data Files (SDFs) 11-32
11.7 Dynamic Versus Static SDF Specifications 11-33
11.8 Loading a Parent Table Separately from Its Child Table 11-34
11.8.1 Memory Issues When Loading VARRAY Columns 11-35

12 Conventional and Direct Path Loads

12.1 Data Loading Methods 12-1
12.1.1 Loading ROWID Columns 12-2
12.2 Conventional Path Load 12-2
12.2.1 Conventional Path Load of a Single Partition 12-3
12.2.2 When to Use a Conventional Path Load 12-3
12.3 Direct Path Load 12-4
12.3.1 Data Conversion During Direct Path Loads 12-5

ORACLE

XVii

12.3.2 Direct Path Load of a Partitioned or Subpartitioned Table 12-5

12.3.3 Direct Path Load of a Single Partition or Subpartition 12-6
12.3.4 Advantages of a Direct Path Load 12-6
12.3.5 Restrictions on Using Direct Path Loads 12-7
12.3.6 Restrictions on a Direct Path Load of a Single Partition 12-8
12.3.7 When to Use a Direct Path Load 12-8
12.3.8 Integrity Constraints 12-8
12.3.9 Field Defaults on the Direct Path 12-8
12.3.10 Loading into Synonyms 12-9
12.4 Using Direct Path Load 12-9
12.4.1 Setting Up for Direct Path Loads 12-10
12.4.2 Specifying a Direct Path Load 12-10
12.4.3 Building Indexes 12-10
12.4.3.1 Improving Performance 12-10
12.4.3.2 Temporary Segment Storage Requirements 12-11
12.4.4 Indexes Left in an Unusable State 12-11
12.4.5 Using Data Saves to Protect Against Data Loss 12-12
12.4.5.1 Using the ROWS Parameter 12-13
12.4.5.2 Data Save Versus Commit 12-13
12.4.6 Data Recovery During Direct Path Loads 12-13
12.4.6.1 Media Recovery and Direct Path Loads 12-14
12.4.6.2 Instance Recovery and Direct Path Loads 12-14
12.4.7 Loading Long Data Fields 12-14
12.4.7.1 Loading Data As PIECED 12-15
12.4.8 Auditing SQL*Loader Operations That Use Direct Path Mode 12-15
12.5 Optimizing Performance of Direct Path Loads 12-16
12.5.1 Preallocating Storage for Faster Loading 12-17
12.5.2 Presorting Data for Faster Indexing 12-17
12.5.2.1 SORTED INDEXES Clause 12-18
12.5.2.2 Unsorted Data 12-18
12.5.2.3 Multiple-Column Indexes 12-18
12.5.2.4 Choosing the Best Sort Order 12-18
12.5.3 Infrequent Data Saves 12-19
12.5.4 Minimizing Use of the Redo Log 12-19
12.5.4.1 Disabling Archiving 12-19
12.5.4.2 Specifying the SQL*Loader UNRECOVERABLE Clause 12-20
12.5.4.3 Setting the SQL NOLOGGING Parameter 12-20
12.5.5 Specifying the Number of Column Array Rows and Size of Stream
Buffers 12-20
12.5.6 Specifying a Value for DATE_CACHE 12-21
12.6 Optimizing Direct Path Loads on Multiple-CPU Systems 12-22

ORACLE Xviii

12.7 Avoiding Index Maintenance 12-23

12.8 Direct Path Loads, Integrity Constraints, and Triggers 12-24
12.8.1 Integrity Constraints 12-24
12.8.1.1 Enabled Constraints 12-24
12.8.1.2 Disabled Constraints 12-25
12.8.1.3 Reenable Constraints 12-25

12.8.2 Database Insert Triggers 12-26
12.8.2.1 Replacing Insert Triggers with Integrity Constraints 12-27
12.8.2.2 When Automatic Constraints Cannot Be Used 12-27
12.8.2.3 Preparation 12-27
12.8.2.4 Using an Update Trigger 12-28
12.8.2.5 Duplicating the Effects of Exception Conditions 12-28
12.8.2.6 Using a Stored Procedure 12-28

12.8.3 Permanently Disabled Triggers and Constraints 12-29
12.8.4 Increasing Performance with Concurrent Conventional Path Loads 12-29
12.9 Parallel Data Loading Models 12-30
12.9.1 Concurrent Conventional Path Loads 12-30
12.9.2 Intersegment Concurrency with Direct Path 12-30
12.9.3 Intrasegment Concurrency with Direct Path 12-31
12.9.4 Restrictions on Parallel Direct Path Loads 12-31
12.9.5 Initiating Multiple SQL*Loader Sessions 12-31
12.9.6 Parameters for Parallel Direct Path Loads 12-32
12.9.6.1 Using the FILE Parameter to Specify Temporary Segments 12-33

12.9.7 Enabling Constraints After a Parallel Direct Path Load 12-34
12.9.8 PRIMARY KEY and UNIQUE KEY Constraints 12-34
12.10 General Performance Improvement Hints 12-34

13 SQL*Loader Express

13.1 What is SQL*Loader Express Mode? 13-1
13.2 Using SQL*Loader Express Mode 13-1
13.2.1 Default Values Used by SQL*Loader Express Mode 13-2
13.2.1.1 How SQL*Loader Express Mode Handles Byte Order 13-3

13.3 SQL*Loader Express Mode Parameter Reference 13-4
13.3.1 BAD 13-5
13.3.2 CHARACTERSET 13-6
13.3.3 CsV 13-7
13.3.4 DATA 13-8
13.3.5 DATE_FORMAT 13-9
13.3.6 DEGREE_OF_PARALLELISM 13-9
13.3.7 DIRECT 13-10

ORACLE XixX

13.3.8 DNFS_ENABLE 13-11
13.3.9 DNFS_READBUFFERS 13-12
13.3.10 ENCLOSED_BY 13-13
13.3.11 EXTERNAL_TABLE 13-13
13.3.12 FIELD_NAMES 13-14
13.3.13 LOAD 13-15
13.3.14 NULLIF 13-16
13.3.15 OPTIONALLY_ENCLOSED_BY 13-16
13.3.16 PARFILE 13-17
13.3.17 SILENT 13-18
13.3.18 TABLE 13-18
13.3.19 TERMINATED_BY 13-19
13.3.20 TIMESTAMP_FORMAT 13-20
13.3.21 TRIM 13-20
13.3.22 USERID 13-21
13.4 SQL*Loader Express Mode Syntax Diagrams 13-22
Part Il External Tables
14 External Tables Concepts
14.1 How Are External Tables Created? 14-1
14.2 Location of Data Files and Output Files 14-4
14.3 Access Parameters for External Tables 14-5
14.4 Data Type Conversion During External Table Use 14-6
15 The ORACLE_LOADER Access Driver
15.1 access_parameters Clause 15-3
15.2 record_format_info Clause 15-4
15.2.1 FIXED length 15-7
15.2.2 VARIABLE size 15-7
15.2.3 DELIMITED BY 15-7
15.2.4 XMLTAG 15-8
15.25 CHARACTERSET 15-10
15.2.6 EXTERNAL VARIABLE DATA 15-11
15.2.7 PREPROCESSOR 15-12
15.2.7.1 Using Parallel Processing with the PREPROCESSOR Clause 15-16
15.2.7.2 Restrictions When Using the PREPROCESSOR Clause 15-16
15.2.8 LANGUAGE 15-16
15.2.9 TERRITORY 15-17
ORACLE XX

15.2.10
15.2.11
15.2.12
15.2.13
15.2.14
15.2.15
15.2.16
15.2.17
15.2.18
15.2.19
15.2.20
15.2.21
15.2.22
15.2.23
15.2.24
15.2.25

DATA IS...ENDIAN
BYTEORDERMARK (CHECK | NOCHECK)
STRING SIZES ARE IN

LOAD WHEN

BADFILE | NOBADFILE
DISCARDFILE | NODISCARDFILE
LOGFILE | NOLOGFILE

SKIP

FIELD NAMES

READSIZE
DISABLE_DIRECTORY_LINK_CHECK
DATE_CACHE

string

condition_spec

[directory object name:] [filename]
condition

15.2.25.1 range start : range end

15.2.26
15.2.27
15.2.28

IO_OPTIONS clause
DNFS_DISABLE | DNFS_ENABLE
DNFS_READBUFFERS

15.3 field_definitions Clause

1531

delim_spec

15.3.1.1 Example: External Table with Terminating Delimiters

15.3.1.2 Example: External Table with Enclosure and Terminator

Delimiters

15.3.1.3 Example: External Table with Optional Enclosure Delimiters

15.3.2
15.3.3
15.3.4
15.35

trim_spec

MISSING FIELD VALUES ARE NULL
field_list

pos_spec Clause

15.3.5.1 start
15352 *
15.3.5.3 increment
15.3.54 end
15.3.5.5 length

15.3.6

datatype_spec Clause

15.3.6.1 [UNSIGNED] INTEGER [EXTERNAL] [(len)]
15.3.6.2 DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
15.3.6.3 ORACLE_DATE

15.3.6.4 ORACLE_NUMBER

15.3.6.5 Floating-Point Numbers

ORACLE

15-17
15-17
15-18
15-18
15-19
15-19
15-19
15-20
15-20
15-20
15-21
15-21
15-21
15-22
15-23
15-23
15-24
15-24
15-25
15-25
15-25
15-29
15-31

15-31
15-32
15-32
15-33
15-33
15-35
15-35
15-35
15-35
15-35
15-36
15-36
15-38
15-38
15-39
15-39
15-39

XXi

15.3.6.6 DOUBLE 15-39
15.3.6.7 FLOAT [EXTERNAL] 15-39
15.3.6.8 BINARY_DOUBLE 15-40
15.3.6.9 BINARY_FLOAT 15-40
15.3.6.10 RAW 15-40
15.3.6.11 CHAR 15-40
15.3.6.12 date_format_spec 15-41
15.3.6.13 VARCHAR and VARRAW 15-43
15.3.6.14 VARCHARC and VARRAWC 15-44
15.3.7 init_spec Clause 15-45
15.3.8 LLS Clause 15-45
15.4 column_transforms Clause 15-46
15.4.1 transform 15-47
15.4.1.1 column_name FROM 15-47
15.4.1.2 NULL 15-47
15.4.1.3 CONSTANT 15-48
15.4.1.4 CONCAT 15-48
15.4.1.5 LOBFILE 15-48
15.4.1.6 lobfile_attr_list 15-48
15.4.1.7 STARTOF source_field (length) 15-49
15.5 Parallel Loading Considerations for the ORACLE_LOADER Access Driver 15-50
15.6 Performance Hints When Using the ORACLE_LOADER Access Driver 15-50
15.7 Restrictions When Using the ORACLE_LOADER Access Driver 15-52
15.8 Reserved Words for the ORACLE_LOADER Access Driver 15-52
16 The ORACLE_DATAPUMP Access Driver
16.1 Using the ORACLE_DATAPUMP Access Driver 16-1
16.2 access_parameters Clause 16-2
16.2.1 comments 16-3
16.2.2 COMPRESSION 16-3
16.2.3 ENCRYPTION 16-4
16.2.4 LOGFILE | NOLOGFILE 16-5
16.2.4.1 Log File Naming in Parallel Loads 16-6
16.2.5 VERSION Clause 16-6
16.2.6 Effects of Using the SQL ENCRYPT Clause 16-6
16.3 Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver 16-7
16.3.1 Parallel Loading and Unloading 16-10
16.3.2 Combining Dump Files 16-11
16.4 Supported Data Types 16-12
16.5 Unsupported Data Types 16-13
ORACLE XXIi

16.5.1 Unloading and Loading BFILE Data Types 16-13

16.5.2 Unloading LONG and LONG RAW Data Types 16-15
16.5.3 Unloading and Loading Columns Containing Final Object Types 16-16
16.5.4 Tables of Final Object Types 16-17
16.6 Performance Hints When Using the ORACLE_DATAPUMP Access Driver 16-18
16.7 Restrictions When Using the ORACLE_DATAPUMP Access Driver 16-19
16.8 Reserved Words for the ORACLE_DATAPUMP Access Driver 16-19

17 ORACLE_HDFS and ORACLE_HIVE Access Drivers

17.1 Syntax Rules for Specifying Properties 17-1
17.2 ORACLE_HDFS Access Parameters 17-2
17.2.1 Default Parameter Settings for ORACLE_HDFS 17-3
17.2.2 Optional Parameter Settings for ORACLE_HDFS 17-3
17.3 ORACLE_HIVE Access Parameters 17-4
17.3.1 Default Parameter Settings for ORACLE_HIVE 17-4
17.3.2 Optional Parameter Settings for ORACLE_HIVE 17-4
17.4 Descriptions of com.oracle.bigdata Parameters 17-5
17.4.1 com.oracle.bigdata.colmap 17-5
17.4.2 com.oracle.bigdata.datamode 17-6
17.4.3 com.oracle.bigdata.erroropt 17-7
17.4.4 com.oracle.bigdata.fields 17-8
17.4.5 com.oracle.bigdata.fileformat 17-10
17.4.6 com.oracle.bigdata.log.exec 17-11
17.4.7 com.oracle.bigdata.log.qc 17-12
17.4.8 com.oracle.bigdata.overflow 17-13
17.4.9 com.oracle.bigdata.rowformat 17-14
17.4.10 com.oracle.bigdata.tablename 17-15
18 External Tables Examples
18.1 Using the ORACLE_LOADER Access Driver to Create Partitioned External
Tables 18-2
18.2 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned
External Tables 18-4
18.3 Using the ORACLE_HDFS Access Driver to Create Partitioned External
Tables 18-8
18.4 Using the ORACLE_HIVE Access Driver to Create Partitioned External
Tables 18-10
18.5 Loading LOBs From External Tables 18-14
18.6 Loading CSV Files From External Tables 18-16
ORACLE Xxiii

Part I\ Other Utilities

19 ADRCI: ADR Command Interpreter

19.1 About the ADR Command Interpreter (ADRCI) Utility
19.2 Definitions
19.3 Starting ADRCI and Getting Help

19.31
19.3.2
19.3.3

Using ADRCI in Interactive Mode
Getting Help
Using ADRCI in Batch Mode

19.4 Setting the ADRCI Homepath Before Using ADRCI Commands
19.5 Viewing the Alert Log

19.6 Finding Trace Files

19.7 Viewing Incidents

19.8 Packaging Incidents

19.8.1
19.8.2

About Packaging Incidents

Creating Incident Packages

19.8.2.1 Creating a Logical Incident Package

19.8.2.2 Adding Diagnostic Information to a Logical Incident Package

19.8.2.3 Generating a Physical Incident Package
19.9 ADRCI Command Reference

19.9.1
19.9.2
19.9.3
19.9.4
19.95

CREATE REPORT
ECHO

EXIT

HOST

IPS

19.9.5.1 Using the <ADR_HOME> and <ADR_BASE> Variables in IPS

Commands

19.9.5.2 IPSADD

19.9.5.3 IPS ADD FILE

19.9.5.4 IPS ADD NEW INCIDENTS
19.9.5.5 IPS COPY IN FILE
19.9.5.6 IPS COPY OUT FILE
19.9.5.7 IPS CREATE PACKAGE
19.9.5.8 |IPS DELETE PACKAGE
19.9.5.9 IPS FINALIZE

19.9.5.10 IPS GENERATE PACKAGE
19.9.5.11 IPS GET MANIFEST
19.9.5.12 IPS GET METADATA
19.9.5.13 IPS PACK

19.9.5.14 IPS REMOVE

ORACLE

19-2
19-2
19-5
19-5
19-6
19-6
19-7
19-9
19-10
19-11
19-12
19-12
19-13
19-14
19-15
19-16
19-17
19-18
19-19
19-19
19-19
19-20

19-21
19-21
19-23
19-23
19-24
19-25
19-25
19-28
19-28
19-28
19-29
19-29
19-30
19-32

XXIV

19.9.5.15
19.9.5.16
19.9.5.17
19.9.5.18
19.9.5.19
19.9.5.20
19.9.5.21

IPS REMOVE FILE

IPS SET CONFIGURATION
IPS SHOW CONFIGURATION

IPS SHOW FILES

IPS SHOW INCIDENTS
IPS SHOW PACKAGE
IPS UNPACK FILE

19.9.6 PURGE

19.9.7 QUIT
19.9.8 RUN

19.9.9 SELECT

19.9.9.1
19.9.9.2
19.9.9.3
19.9.9.4
19.9.95
19.9.9.6
19.9.9.7
19.9.9.8
19.9.9.9
19.9.9.10
19.9.9.11
19.9.9.12
19.9.9.13
19.9.9.14

AVG

CONCAT

COUNT

DECODE

LENGTH

MAX

MIN

NVL

REGEXP_LIKE
SUBSTR
SUM
TIMESTAMP_TO_CHAR
TOLOWER
TOUPPER

19.9.10 SET BASE
19.9.11 SET BROWSER
19.9.12 SET CONTROL
19.9.13 SET ECHO
19.9.14 SET EDITOR
19.9.15 SET HOMEPATH
19.9.16 SET TERMOUT
19.9.17 SHOW ALERT
19.9.18 SHOW BASE
19.9.19 SHOW CONTROL
19.9.20 SHOW HM_RUN
19.9.21 SHOW HOMEPATH
19.9.22 SHOW HOMES
19.9.23 SHOW INCDIR
19.9.24 SHOW INCIDENT
19.9.25 SHOW LOG

ORACLE

19-33
19-34
19-34
19-37
19-38
19-39
19-39
19-40
19-41
19-42
19-42
19-45
19-45
19-45
19-46
19-46
19-47
19-47
19-48
19-48
19-49
19-49
19-50
19-50
19-51
19-51
19-52
19-52
19-53
19-53
19-53
19-54
19-55
19-57
19-57
19-58
19-59
19-60
19-60
19-61
19-65

XXV

19.9.26 SHOW PROBLEM 19-66

19.9.27 SHOW REPORT 19-68
19.9.28 SHOW TRACEFILE 19-68
19.9.29 SPOOL 19-69
19.10 Troubleshooting ADRCI 19-70

20 DBVERIFY: Offline Database Verification Utility

20.1 Using DBVERIFY to Validate Disk Blocks of a Single Data File 20-1
20.1.1 DBVERIFY Syntax When Validating Blocks of a Single File 20-2
20.1.2 DBVERIFY Parameters When Validating Blocks of a Single File 20-2
20.1.3 Sample DBVERIFY Output For a Single Data File 20-3

20.2 Using DBVERIFY to Validate a Segment 20-4
20.2.1 DBVERIFY Syntax When Validating a Segment 20-4
20.2.2 DBVERIFY Parameters When Validating a Single Segment 20-5
20.2.3 Sample DBVERIFY Output For a Validated Segment 20-5

21 DBNEWID Utility

21.1 What Is the DBNEWID Utility? 21-1
21.2 Ramifications of Changing the DBID and DBNAME 21-1
21.2.1 Considerations for Global Database Names 21-2
21.3 DBNEWID Considerations for CDBs and PDBs 21-3
21.4 Changing the DBID and DBNAME of a Database 21-3
21.4.1 Changing the DBID and Database Name 21-3
21.4.2 Changing Only the Database ID 21-5
21.4.3 Changing Only the Database Name 21-6
21.4.4 Troubleshooting DBNEWID 21-8
21.5 DBNEWID Syntax 21-9
2151 DBNEWID Parameters 21-10
21.5.2 Restrictions and Usage Notes 21-10
21.5.3 Additional Restrictions for Releases Earlier Than Oracle Database 10g 21-11

22 Using LogMiner to Analyze Redo Log Files

22.1 LogMiner Benefits 22-2
22.2 Introduction to LogMiner 22-3
22.2.1 LogMiner Configuration 22-3
22.2.1.1 Sample LogMiner Configuration 22-4
22.2.1.2 Requirements 22-4

22.2.2 Directing LogMiner Operations and Retrieving Data of Interest 22-5
22.3 Using LogMiner in a CDB 22-6

ORACLE XXVi

22.3.1 LogMiner V$ Views and DBA Views in a CDB
22.3.2 The VSLOGMNR_CONTENTS View in a CDB
22.3.3 Enabling Supplemental Logging in a CDB
22.3.4 Using a Flat File Dictionary in a CDB
22.4 LogMiner Dictionary Files and Redo Log Files
22.4.1 LogMiner Dictionary Options
22.4.1.1 Using the Online Catalog
22.4.1.2 Extracting a LogMiner Dictionary to the Redo Log Files
22.4.1.3 Extracting the LogMiner Dictionary to a Flat File
22.4.2 Redo Log File Options
22.5 Starting LogMiner
22.6 Querying VSLOGMNR_CONTENTS for Redo Data of Interest
22.6.1 How the VSLOGMNR_CONTENTS View Is Populated
22.6.2 Querying VSLOGMNR_CONTENTS Based on Column Values
22.6.2.1 The Meaning of NULL Values Returned by the MINE_VALUE

Function
22.6.2.2 Usage Rules for the MINE_VALUE and COLUMN_PRESENT
Functions
22.6.2.3 Restrictions When Using the MINE_VALUE Function To Get an
NCHAR Value
22.6.3 Querying V3LOGMNR_CONTENTS Based on XMLType Columns and
Tables

22.6.3.1 Restrictions When Using LogMiner With XMLType Data
22.6.3.2 Example of a PL/SQL Procedure for Assembling XMLType Data
22.7 Filtering and Formatting Data Returned to VSLOGMNR_CONTENTS
22.7.1 Showing Only Committed Transactions
22.7.2 Skipping Redo Corruptions
22.7.3 Filtering Data by Time
22.7.4 Filtering Data by SCN
22.7.5 Formatting Reconstructed SQL Statements for Re-execution
22.7.6 Formatting the Appearance of Returned Data for Readability
22.8 Reapplying DDL Statements Returned to VSLOGMNR_CONTENTS
22.9 Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
22.10 Supplemental Logging
22.10.1 Database-Level Supplemental Logging
22.10.1.1 Minimal Supplemental Logging
22.10.1.2 Database-Level Identification Key Logging
22.10.1.3 Procedural Supplemental Logging
22.10.2 Disabling Database-Level Supplemental Logging
22.10.3 Table-Level Supplemental Logging
22.10.3.1 Table-Level Identification Key Logging
22.10.3.2 Table-Level User-Defined Supplemental Log Groups

ORACLE

22-7
22-8
22-8
22-8
22-9
22-9
22-10
22-11
22-12
22-13
22-14
22-15
22-17
22-18

22-19

22-19

22-20

22-20
22-22
22-22
22-25
22-25
22-28
22-29
22-29
22-30
22-30
22-31
22-32
22-33
22-34
22-34
22-35
22-36
22-36
22-37
22-37
22-38

XXVii

22.10.3.3 Usage Notes for User-Defined Supplemental Log Groups 22-39

22.10.4 Tracking DDL Statements in the LogMiner Dictionary 22-39
22.10.5 DDL_DICT_TRACKING and Supplemental Logging Settings 22-40
22.10.6 DDL_DICT_TRACKING and Specified Time or SCN Ranges 22-41
22.11 Accessing LogMiner Operational Information in Views 22-42
22.11.1 Querying VSLOGMNR_LOGS 22-43
22.11.2 Querying Views for Supplemental Logging Settings 22-44
22.12 Steps in a Typical LogMiner Session 22-46
22.12.1 Typical LogMiner Session Task 1: Enable Supplemental Logging 22-47
22.12.2 Typical LogMiner Session Task 2: Extract a LogMiner Dictionary 22-47
22.12.3 Typical LogMiner Session Task 3: Specify Redo Log Files for
Analysis 22-47
22.12.4 Typical LogMiner Session Task 4: Start LogMiner 22-48
22.12.5 Typical LogMiner Session Task 5: Query VSLOGMNR_CONTENTS 22-50
22.12.6 Typical LogMiner Session Task 6: End the LogMiner Session 22-50
22.13 Examples Using LogMiner 22-50
22.13.1 Examples of Mining by Explicitly Specifying the Redo Log Files of
Interest 22-51
22.13.1.1 Example 1: Finding All Modifications in the Last Archived Redo
Log File 22-51
22.13.1.2 Example 2: Grouping DML Statements into Committed
Transactions 22-53
22.13.1.3 Example 3: Formatting the Reconstructed SQL 22-55
22.13.1.4 Example 4: Using the LogMiner Dictionary in the Redo Log
Files 22-58
22.13.1.5 Example 5: Tracking DDL Statements in the Internal Dictionary 22-65
22.13.1.6 Example 6: Filtering Output by Time Range 22-68
22.13.2 Examples of Mining Without Specifying the List of Redo Log Files
Explicitly 22-70
22.13.2.1 Example 1: Mining Redo Log Files in a Given Time Range 22-70
22.13.2.2 Example 2: Mining the Redo Log Files in a Given SCN Range 22-72
22.13.2.3 Example 3: Using Continuous Mining to Include Future Values
in a Query 22-74
22.13.3 Example Scenarios 22-75
22.13.3.1 Scenario 1: Using LogMiner to Track Changes Made by a
Specific User 22-75
22.13.3.2 Scenario 2: Using LogMiner to Calculate Table Access
Statistics 22-76
22.14 Supported Data Types, Storage Attributes, and Database and Redo Log
File Versions 22-77
22.14.1 Supported Data Types and Table Storage Attributes 22-77
22.14.1.1 Compatibility Requirements 22-79
22.14.2 Unsupported Data Types and Table Storage Attributes 22-80
22.14.3 Supported Databases and Redo Log File Versions 22-80

ORACLE XXViii

22.14.4 SecureFiles LOB Considerations 22-80
23 Using the Metadata APIs
23.1 Why Use the DBMS_METADATA API? 23-2
23.2 Overview of the DBMS_METADATA API 23-2
23.3 Using the DBMS_METADATA API to Retrieve an Object's Metadata 23-4
23.3.1 Typical Steps Used for Basic Metadata Retrieval 23-5
23.3.2 Retrieving Multiple Objects 23-7
23.3.3 Placing Conditions on Transforms 23-8
23.3.4 Accessing Specific Metadata Attributes 23-10
23.4 Using the DBMS_METADATA API to Re-Create a Retrieved Object 23-12
23.5 Using the DBMS_METADATA API to Retrieve Collections of Different Object
Types 23-14
23.5.1 Filtering the Return of Heterogeneous Object Types 23-16
23.6 Using the DBMS_METADATA_DIFF API to Compare Object Metadata 23-17
23.7 Performance Tips for the Programmatic Interface of the DBMS_METADATA
API 23-26
23.8 Example Usage of the DBMS_METADATA API 23-26
23.8.1 What Does the DBMS_METADATA Example Do? 23-27
23.8.2 Output Generated from the GET_PAYROLL_TABLES Procedure 23-29
23.9 Summary of DBMS_METADATA Procedures 23-31
23.10 Summary of DBMS_METADATA_DIFF Procedures 23-33
24 Original Export
24.1 What is the Export Utility? 24-2
24.2 Before Using Export 24-3
24.2.1 Running catexp.sql or catalog.sql 24-3
24.2.2 Ensuring Sufficient Disk Space for Export Operations 24-4
24.2.3 Verifying Access Privileges for Export and Import Operations 24-4
24.3 Invoking Export 24-4
24.3.1 Invoking Export as SYSDBA 24-5
24.3.2 Command-Line Entries 24-5
24.3.3 Parameter Files 24-5
24.3.4 Interactive Mode 24-6
24.3.4.1 Restrictions When Using Export's Interactive Method 24-6
24.3.5 Getting Online Help 24-7
24.4 Export Modes 24-7
24.4.1 Table-Level and Partition-Level Export 24-10
24.4.1.1 Table-Level Export 24-10
24.4.1.2 Partition-Level Export 24-10

ORACLE

XXiX

24.5 Export Parameters

2451 BUFFER
245.1.1 Example: Calculating Buffer Size
2452 COMPRESS
2453 CONSISTENT
24.5.4 CONSTRAINTS
2455 DIRECT
245.6 FEEDBACK
2457 FILE
2458 FILESIZE
2459 FLASHBACK_SCN
24510 FLASHBACK TIME
24511 FULL
24.5.11.1 Points to Consider for Full Database Exports and Imports
24512 GRANTS
24513 HELP
24514 INDEXES
245.15 LOG
24516 OBJECT_CONSISTENT
24517 OWNER
24.5.18 PARFILE
24519 QUERY
24.5.19.1 Restrictions When Using the QUERY Parameter
24520 RECORDLENGTH
24521 RESUMABLE
24522 RESUMABLE_NAME
24523 RESUMABLE_TIMEOUT
24524 ROWS
24525 STATISTICS
24526 TABLES
24.5.26.1 Table Name Restrictions
24527 TABLESPACES
24528 TRANSPORT_TABLESPACE
24529 TRIGGERS
24530 TTS_FULL_CHECK
24.5.31 USERID (username/password)
24.5.32 VOLSIZE
24.6 Example Export Sessions
24.6.1 Example Export Session in Full Database Mode
24.6.2 Example Export Session in User Mode
24.6.3 Example Export Sessions in Table Mode

ORACLE

24-10
24-11
24-12
24-12
24-13
24-14
24-14
24-15
24-15
24-15
24-16
24-16
24-17
24-17
24-18
24-18
24-18
24-18
24-19
24-19
24-19
24-19
24-20
24-20
24-21
24-21
24-21
24-22
24-22
24-22
24-23
24-24
24-24
24-25
24-25
24-25
24-25
24-25
24-26
24-26
24-27

XXX

24.6.3.1 Example 1: DBA Exporting Tables for Two Users 24-27

24.6.3.2 Example 2: User Exports Tables That He Owns 24-28
24.6.3.3 Example 3: Using Pattern Matching to Export Various Tables 24-29

24.6.4 Example Export Session Using Partition-Level Export 24-29
24.6.4.1 Example 1: Exporting a Table Without Specifying a Partition 24-29
24.6.4.2 Example 2: Exporting a Table with a Specified Partition 24-30
24.6.4.3 Example 3: Exporting a Composite Partition 24-31

24.7 Warning, Error, and Completion Messages 24-31
24.7.1 Log File 24-32
24.7.2 Warning Messages 24-32
24.7.3 Nonrecoverable Error Messages 24-32
24.7.4 Completion Messages 24-32
24.8 Exit Codes for Inspection and Display 24-33
24.9 Conventional Path Export Versus Direct Path Export 24-33
24.10 Invoking a Direct Path Export 24-33
24.10.1 Security Considerations for Direct Path Exports 24-34
24.10.2 Performance Considerations for Direct Path Exports 24-34
24.10.3 Restrictions for Direct Path Exports 24-35
24.11 Network Considerations 24-35
24.11.1 Transporting Export Files Across a Network 24-35
24.11.2 Exporting with Oracle Net 24-35
24.12 Character Set and Globalization Support Considerations 24-36
24.12.1 User Data 24-36
24.12.1.1 Effect of Character Set Sorting Order on Conversions 24-36
24.12.2 Data Definition Language (DDL) 24-37
24.12.3 Single-Byte Character Sets and Export and Import 24-38
24.12.4 Multibyte Character Sets and Export and Import 24-38
24.13 Using Instance Affinity with Export and Import 24-38
24.14 Considerations When Exporting Database Objects 24-38
24.14.1 Exporting Sequences 24-39
24.14.2 Exporting LONG and LOB Data Types 24-39
24.14.3 Exporting Foreign Function Libraries 24-40
24.14.4 Exporting Offline Locally-Managed Tablespaces 24-40
24.14.5 Exporting Directory Aliases 24-40
24.14.6 Exporting BFILE Columns and Attributes 24-40
24.14.7 Exporting External Tables 24-41
24.14.8 Exporting Object Type Definitions 24-41
24.14.9 Exporting Nested Tables 24-41
24.14.10 Exporting Advanced Queue (AQ) Tables 24-41
24.14.11 Exporting Synonyms 24-42
24.14.12 Possible Export Errors Related to Java Synonyms 24-42

ORACLE XXXi

24.14.13 Support for Fine-Grained Access Control 24-42

24.15 Transportable Tablespaces 24-43
24.16 Exporting From a Read-Only Database 24-43
24.17 Using Export and Import to Partition a Database Migration 24-44
24.17.1 Advantages of Partitioning a Migration 24-44
24.17.2 Disadvantages of Partitioning a Migration 24-44
24.17.3 How to Use Export and Import to Partition a Database Migration 24-44
24.18 Using Different Releases of Export and Import 24-45
24.18.1 Restrictions When Using Different Releases of Export and Import 24-45
24.18.2 Examples of Using Different Releases of Export and Import 24-46

25 Original Import

25.1 What Is the Import Utility? 25-2
25.1.1 Table Objects: Order of Import 25-3
25.2 Before Using Import 25-3
25.2.1 Running catexp.sql or catalog.sql 25-3
25.2.2 Verifying Access Privileges for Import Operations 25-4
25.2.2.1 Importing Objects Into Your Own Schema 25-4
25.2.2.2 Importing Grants 25-5
25.2.2.3 Importing Objects Into Other Schemas 25-6
25.2.2.4 Importing System Objects 25-6

25.2.3 Processing Restrictions 25-6
25.3 Importing into Existing Tables 25-6
25.3.1 Manually Creating Tables Before Importing Data 25-7
25.3.2 Disabling Referential Constraints 25-7
25.3.3 Manually Ordering the Import 25-8
25.4 Effect of Schema and Database Triggers on Import Operations 25-8
25.5 Invoking Import 25-8
25.5.1 Command-Line Entries 25-9
25.5.2 Parameter Files 25-9
25.5.3 Interactive Mode 25-10
25.5.4 Invoking Import As SYSDBA 25-10
25.5.5 Getting Online Help 25-11
25.6 Import Modes 25-11
25.7 Import Parameters 25-14
25.7.1 BUFFER 25-15
25.7.2 COMMIT 25-16
25.7.3 COMPILE 25-16
25.7.4 CONSTRAINTS 25-17
25.7.5 DATA_ONLY 25-17

ORACLE XXXii

25.7.6 DATAFILES
25.7.7 DESTROY
25.7.8 FEEDBACK
25.7.9 FILE
25.7.10 FILESIZE
25.7.11 FROMUSER
25.7.12 FULL

25.7.12.1
25.7.13 GRANTS
25.7.14 HELP
25.7.15 IGNORE
25.7.16 INDEXES
25.7.17 INDEXFILE
25.7.18 LOG
25.7.19 PARFILE
25.7.20 RECORDLENGTH
25.7.21 RESUMABLE
25.7.22 RESUMABLE_NAME
25.7.23 RESUMABLE_TIMEOUT
25.7.24 ROWS
25.7.25 SHOW
25.7.26 SKIP_UNUSABLE_INDEXES
25.7.27 STATISTICS
25.7.28 STREAMS_CONFIGURATION
25.7.29 STREAMS_INSTANTIATION
25.7.30 TABLES

25.7.30.1 Table Name Restrictions
25.7.31 TABLESPACES
25.7.32 TOID_NOVALIDATE
25.7.33 TOUSER
25.7.34 TRANSPORT_TABLESPACE
25.7.35 TTS_OWNERS
25.7.36 USERID (username/password)
25.7.37 VOLSIZE

25.8 Example Import Sessions

25.8.1 Example Import of Selected Tables for a Specific User
25.8.2 Example Import of Tables Exported by Another User
25.8.3 Example Import of Tables from One User to Another
25.8.4 Example Import Session Using Partition-Level Import
25.8.4.1 Example 1: A Partition-Level Import
ORACLE

Points to Consider for Full Database Exports and Imports

25-17
25-17
25-18
25-18
25-18
25-19
25-19
25-19
25-20
25-21
25-21
25-21
25-22
25-22
25-22
25-23
25-23
25-23
25-23
25-24
25-24
25-24
25-25
25-26
25-26
25-26
25-28
25-28
25-29
25-30
25-30
25-31
25-31
25-31
25-31
25-32
25-32
25-33
25-33
25-33

XXXiii

25.8.4.2 Example 2: A Partition-Level Import of a Composite Partitioned

Table 25-34
25.8.4.3 Example 3: Repartitioning a Table on a Different Column 25-35
25.8.5 Example Import Using Pattern Matching to Import Various Tables 25-37
25.9 Exit Codes for Inspection and Display 25-37
25.10 Error Handling During an Import 25-38
25.10.1 Row Errors 25-38
25.10.1.1 Failed Integrity Constraints 25-38
25.10.1.2 Invalid Data 25-39
25.10.2 Errors Importing Database Objects 25-39
25.10.2.1 Object Already Exists 25-39
25.10.2.2 Sequences 25-40
25.10.2.3 Resource Errors 25-40
25.10.2.4 Domain Index Metadata 25-40
25.11 Table-Level and Partition-Level Import 25-40
25.11.1 Guidelines for Using Table-Level Import 25-41
25.11.2 Guidelines for Using Partition-Level Import 25-41
25.11.3 Migrating Data Across Partitions and Tables 25-42
25.12 Controlling Index Creation and Maintenance 25-42
25.12.1 Delaying Index Creation 25-43
25.12.2 Index Creation and Maintenance Controls 25-43
25.12.2.1 Example of Postponing Index Maintenance 25-43
25.13 Network Considerations 25-44
25.14 Character Set and Globalization Support Considerations 25-44
25.14.1 User Data 25-45
25.14.1.1 Effect of Character Set Sorting Order on Conversions 25-45
25.14.2 Data Definition Language (DDL) 25-46
25.14.3 Single-Byte Character Sets 25-46
25.14.4 Multibyte Character Sets 25-46
25.15 Using Instance Affinity 25-47
25.16 Considerations When Importing Database Objects 25-47
25.16.1 Importing Object Identifiers 25-47
25.16.2 Importing Existing Object Tables and Tables That Contain Object
Types 25-49
25.16.3 Importing Nested Tables 25-49
25.16.4 Importing REF Data 25-50
25.16.5 Importing BFILE Columns and Directory Aliases 25-50
25.16.6 Importing Foreign Function Libraries 25-50
25.16.7 Importing Stored Procedures, Functions, and Packages 25-50
25.16.8 Importing Java Objects 25-51
25.16.9 Importing External Tables 25-51
25.16.10 Importing Advanced Queue (AQ) Tables 25-51
ORACLE XXXV

25.16.11 Importing LONG Columns 25-52

25.16.12 Importing LOB Columns When Triggers Are Present 25-52
25.16.13 Importing Views 25-52
25.16.14 Importing Partitioned Tables 25-53
25.17 Support for Fine-Grained Access Control 25-53
25.18 Snapshots and Snapshot Logs 25-53
25.18.1 Snapshot Log 25-53
25.18.2 Snapshots 25-54
25.18.2.1 Importing a Snapshot 25-54
25.18.2.2 Importing a Snapshot into a Different Schema 25-54

25.19 Transportable Tablespaces 25-55
25.20 Storage Parameters 25-56
25.20.1 The OPTIMAL Parameter 25-56
25.20.2 Storage Parameters for OID Indexes and LOB Columns 25-56
25.20.3 Overriding Storage Parameters 25-57
25.21 Read-Only Tablespaces 25-57
25.22 Dropping a Tablespace 25-57
25.23 Reorganizing Tablespaces 25-57
25.24 Importing Statistics 25-58
25.25 Using Export and Import to Partition a Database Migration 25-59
25.25.1 Advantages of Partitioning a Migration 25-59
25.25.2 Disadvantages of Partitioning a Migration 25-59
25.25.3 How to Use Export and Import to Partition a Database Migration 25-59
25.26 Tuning Considerations for Import Operations 25-60
25.26.1 Changing System-Level Options 25-60
25.26.2 Changing Initialization Parameters 25-61
25.26.3 Changing Import Options 25-61
25.26.4 Dealing with Large Amounts of LOB Data 25-61
25.26.5 Dealing with Large Amounts of LONG Data 25-62
25.27 Using Different Releases of Export and Import 25-62
25.27.1 Restrictions When Using Different Releases of Export and Import 25-63
25.27.2 Examples of Using Different Releases of Export and Import 25-63

Part V. Appendixes

A SQL*Loader Syntax Diagrams

B Instant Client for SQL*Loader, Export, and Import

B.1 Whatis the Tools Instant Client? B-1

ORACLE -

B.2 Choosing the Instant Client to Install B-2
B.3 Installing Tools Instant Client by Downloading from OTN B-2
B.4 Installing Tools Instant Client from the 12c Client Release Media B-4
B.5 Configuring Tools Instant Client Package B-5
B.6 Connecting to a Database with the Tools Instant Client Package B-7
B.7 Uninstalling Instant Client B-8
Index

ORACLE XXXVI

List of Examples

2-1 Performing a Table-Mode Export

2-2 Data-Only Unload of Selected Tables and Rows

2-3 Estimating Disk Space Needed in a Table-Mode Export
2-4 Performing a Schema Mode Export

2-5 Parallel Full Export

2-6 Stopping and Reattaching to a Job

3-1 Performing a Data-Only Table-Mode Import

3-2 Performing a Schema-Mode Import

3-3 Network-Mode Import of Schemas

6-1 Performing a Simple Schema Export

6-2 Importing a Dump File and Remapping All Schema Objects
6-3 Using Exception Handling During a Simple Schema Export
6-4 Displaying Dump File Information

7-1 Loading Data in Fixed Record Format

7-2 Loading Data in Variable Record Format

7-3 Loading Data in Stream Record Format

9-1 Sample Control File

9-2 Identifying XMLType Tables in the SQL*Loader Control File
9-3 CONTINUEIF THIS Without the PRESERVE Parameter
9-4 CONTINUEIF THIS with the PRESERVE Parameter

9-5 CONTINUEIF NEXT Without the PRESERVE Parameter
9-6 CONTINUEIF NEXT with the PRESERVE Parameter

10-1 Field List Section of Sample Control File

10-2 DEFAULTIF Clause Is Not Evaluated

10-3 DEFAULTIF Clause Is Evaluated

10-4 DEFAULTIF Clause Specifies a Position

10-5 DEFAULTIF Clause Specifies a Field Name

11-1 Loading Column Objects in Stream Record Format

11-2 Loading Column Objects in Variable Record Format

11-3 Loading Nested Column Objects

11-4 Loading Column Objects with a Subtype

11-5 Specifying Attribute Nulls Using the NULLIF Clause

11-6 Loading Data Using Filler Fields

11-7 Loading a Column Object with Constructors That Match
11-8 Loading a Column Object with Constructors That Do Not Match
ORACLE

2-81
2-82
2-82
2-82
2-83
2-83
3-92
3-93
3-93
6-5
6-7
6-8
6-11
7-5
7-6
7-7
9-3
9-8
9-35
9-35
9-35
9-36
10-2
10-35
10-36
10-36
10-37
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9

XXXVil

11-9 Using SQL to Load Column Objects When Constructors Do Not Match

11-10 Loading an Object Table with Primary Key OIDs

11-11 Loading OIDs

11-12 Loading an Object Table with a Subtype

11-13 Loading System-Generated REF Columns

11-14 Loading Primary Key REF Columns

11-15 Loading LOB Data in Predetermined Size Fields

11-16 Loading LOB Data in Delimited Fields

11-17 Loading LOB Data in Length-Value Pair Fields

11-18 Loading LOB Data with One LOB per LOBFILE

11-19 Loading LOB Data Using Predetermined Size LOBs

11-20 Loading LOB Data Using Delimited LOBs

11-21 Loading LOB Data Using Length-Value Pair Specified LOBs

11-22 Example Specification of an LLS Clause

11-23 Loading Data Using BFILEs: Only File Name Specified Dynamically

11-24 Loading Data Using BFILEs: File Name and Directory Specified Dynamically

11-25 Loading a VARRAY and a Nested Table

11-26 Loading a Parent Table with User-Provided SIDs

11-27 Loading a Child Table with User-Provided SIDs

12-1 Setting the Date Format in the SQL*Loader Control File

12-2 Setting an NLS_DATE_FORMAT Environment Variable

14-1 Specifying Attributes for the ORACLE_LOADER Access Driver

14-2 Specifying Attributes for the ORACLE_DATAPUMP Access Driver

14-3 Specifying Attributes for the ORACLE_HDFS Access Driver

14-4 Specifying Attributes for the ORACLE_HIVE Access Driver

17-1 Setting Multiple Access Parameters for ORACLE_HDFS

17-2 Setting Multiple Access Parameters for ORACLE_HIVE

18-1 Using ORACLE_LOADER to Create a Partitioned External Table

18-2 Using the ORACLE_DATAPUMP Access Driver to Create Partitioned External Tables

18-3 Using the ORACLE_HDFS Access Driver to Create Partitioned External Tables

18-4 Using the ORACLE_HIVE Access Driver to Create Partitioned External Tables

18-5 Loading LOBs From External Tables

18-6 Loading Data From CSV Files With No Access Parameters

18-7 Default Date Mask For the Session Does Not Match the Format of Data Fields in the
Data File

18-8 Data is Split Across Two Data Files

18-9 Data Is Split Across Two Files and Only the First File Has a Row of Field Names

ORACLE

11-10
11-11
11-12
11-13
11-15
11-16
11-19
11-20
11-21
11-23
11-24
11-25
11-26
11-29
11-29
11-30
11-31
11-34
11-34
12-5
12-5
14-3
14-3
14-4
14-4
17-3
17-4
18-2
18-4
18-8
18-10
18-15
18-16

18-17
18-18
18-20

XXXVIII

18-10 The Order of the Fields in the File Match the Order of the Columns in the Table
18-11 Not All Fields in the Data File Use Default Settings for the Access Parameters
23-1 Using the DBMS_METADATA Programmatic Interface to Retrieve Data

23-2 Using the DBMS_METADATA Browsing Interface to Retrieve Data

23-3 Retrieving Multiple Objects

23-4 Placing Conditions on Transforms

23-5 Modifying an XML Document

23-6 Using Parse Items to Access Specific Metadata Attributes

23-7 Using the Submit Interface to Re-Create a Retrieved Object

23-8 Retrieving Heterogeneous Object Types

23-9 Filtering the Return of Heterogeneous Object Types

23-10 Comparing Object Metadata

ORACLE

18-21
18-22
23-5
23-6
23-7
23-8
23-9
23-10
23-13
23-15
23-16
23-17

XXXIX

List of Figures

7-1 SQL*Loader Overview

10-1 Example of Field Conversion

10-2 Relative Positioning After a Fixed Field

10-3 Relative Positioning After a Delimited Field

10-4 Relative Positioning After Enclosure Delimiters
10-5 Fields Terminated by Whitespace

10-6 Fields Terminated by Optional Enclosure Delimiters
22-1 Sample LogMiner Database Configuration

22-2 Decision Tree for Choosing a LogMiner Dictionary
ORACLE

7-2
10-43
10-46
10-46
10-47
10-47
10-48

22-4
22-10

Xl

List of Tables

1-1 Data Pump Exit Codes

2-1 Supported Activities in Data Pump Export's Interactive-Command Mode
3-1 Supported Activities in Data Pump Import's Interactive-Command Mode
4-1 How Data Pump Export Handles Original Export Parameters
4-2 How Data Pump Import Handles Original Import Parameters
6-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed
7-1 Case Studies and Their Related Files

8-1 Exit Codes for SQL*Loader

9-1 Parameters for the INFILE Keyword

9-2 Parameters for the CONTINUEIF Clause

9-3 Fixed-Length Fields

9-4 Nongraphic Fields

9-5 Graphic Fields

9-6 Variable-Length Fields

10-1 Parameters for the Position Specification Clause

10-2 Data Type Conversions for Datetime and Interval Data Types
10-3 Parameters Used for Specifying Delimiters

10-4 Parameters for the Field Condition Clause

10-5 Behavior Summary for Trimming Whitespace

10-6 Parameters Used for Column Specification

17-1 Special Characters in Properties

17-2 Variables for com.oracle.bigdata.log.exec

17-3 Variables for com.oracle.bigdata.log.qc

18-1 Where to Find Examples of Using External Tables

19-1 ADRCI Command Line Parameters for Batch Operation

19-2 Arguments of IPS ADD command

19-3 Arguments of IPS CREATE PACKAGE command

19-4 Arguments of IPS PACK command

19-5 Arguments of IPS REMOVE command

19-6 IPS Configuration Parameters

19-7 Flags for the PURGE command

19-8 Flags for the SELECT command

19-9 Flags for the SHOW ALERT command

19-10 Alert Fields for SHOW ALERT

19-11 Fields for Health Monitor Runs

ORACLE

1-25
2-75
3-87
4-2
4-5
6-3
7-20
8-35
9-11
9-33
9-53
9-54
9-54
9-54
10-3
10-23
10-24
10-32
10-43
10-58
17-2
17-12
17-12
18-1
19-7
19-22
19-26
19-30
19-33
19-36
19-40
19-42
19-55
19-55
19-58

Xli

19-12 Flags for SHOW INCIDENT command

19-13 Incident Fields for SHOW INCIDENT

19-14 Flags for SHOW LOG command

19-15 Log Fields for SHOW LOG

19-16 Flags for SHOW PROBLEM command

19-17 Problem Fields for SHOW PROBLEM

19-18 Arguments for SHOW TRACEFILE Command

19-19 Flags for SHOW TRACEFILE Command

21-1 Parameters for the DBNEWID Utility

23-1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects
23-2 DBMS_METADATA Procedures Used for the Browsing Interface
23-3 DBMS_METADATA Procedures and Functions for Submitting XML Data
23-4 DBMS_METADATA_DIFF Procedures and Functions

24-1 Objects Exported in Each Mode

24-2 Sequence of Events During Updates by Two Users

24-3 Maximum Size for Dump Files

24-4 Exit Codes for Export

24-5 Using Different Releases of Export and Import

25-1 Privileges Required to Import Objects into Your Own Schema
25-2 Privileges Required to Import Grants

25-3 Objects Imported in Each Mode

25-4 Exit Codes for Import

25-5 Using Different Releases of Export and Import

B-1 Instant Client Files in the Tools Package

ORACLE

19-62
19-62
19-65
19-65
19-67
19-67
19-68
19-69
21-10
23-31
23-32
23-32
23-33
24-8
24-13
24-16
24-33
24-46
25-4
25-5
25-12
25-37
25-63
B-3

xlii

Preface

Audience

This document describes how to use Oracle Database utilities for data transfer, data
maintenance, and database administration.

Audience

Documentation Accessibility
Related Documentation
Syntax Diagrams

Conventions

The utilities described in this book are intended for database administrators (DBAS),
application programmers, security administrators, system operators, and other Oracle
users who perform the following tasks:

Archive data, back up an Oracle database, or move data between Oracle
databases using the Export and Import utilities (both the original versions and the
Data Pump versions)

Load data into Oracle tables from operating system files using SQL*Loader, or
from external sources using the external tables feature

Perform a physical data structure integrity check on an offline database, using the
DBVERIFY utility

Maintain the internal database identifier (DBID) and the database name
(DBNAME) for an operational database, using the DBNEWID utility

Extract and manipulate complete representations of the metadata for database
objects, using the Metadata API

Query and analyze redo log files (through a SQL interface), using the LogMiner
utility

Use the Automatic Diagnostic Repository Command Interpreter (ADRCI) utility to
manage Oracle Database diagnostic data.

To use this manual, you need a working knowledge of SQL and of Oracle
fundamentals. You can find such information in Oracle Database Concepts. In
addition, to use SQL*Loader, you must know how to use the file management facilities
of your operating system.

Documentation Accessibility

ORACLE

xliii

Preface

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documentation

For more information, see these Oracle resources:
The Oracle Database documentation set, especially:

e Oracle Database Concepts

e Oracle Database SQL Language Reference

* Oracle Database Administrator's Guide

e Oracle Database PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information about how these schemas were created
and how you can use them yourself.

Syntax Diagrams

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other
command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle
Database SQL Language Reference for information about how to interpret these
descriptions.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLS, code
in examples, text that appears on the screen, or text that you enter.

ORACLE xliv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Changes in This Release for Oracle
Database Utilities

This preface lists changes in Oracle Database Utilities for Oracle Database 18c.

Changes in Oracle Database 18c

Changes in Oracle Database 18c

ORACLE

This topic lists changes in Oracle Database Ultilities for Oracle Database 18c

Oracle Data Pump, Export, and Import

The Data Pump Import DATA_OPTI ONS parameter has a new

CONTI NUE_LOAD_ON_FORMAT _ERROCR option. If Data Pump encounters a stream
format error when loading table data, Data Pump attempts to skip forward to find
the start of the next row and continue loading that data from that location.

For security purposes, Data Pump handles fixed user database links with
passwords differently. For additional information, see Using Transparent Data
Encryption with Other Oracle Features

Starting with Oracle Database 18c, you can include the unified audit trail in either
full or partial export and import operations using Oracle Data Pump. For additional
information, see Data Pump Components.

As of Oracle Database 18c, XM._CLOB option of the Export DATA_OPTI ONS
parameter is desupported.

Oracle LogMiner

The UTL_FI LE_DI Rinitialization parameter is desupported. It is still supported for
backward compatibility, but Oracle recommends that you instead use directory
objects. This desupport affects extracting LogMiner dictionaries to flat files. See
Extracting the LogMiner Dictionary to a Flat File .

DBMS_DATAPUMP PL/SQL Package

The DATA_OPTI ONS parameter of the DBMS_DATAPUMP. SET_PARAMETER procedure
has a new option, KU$_DATACPT_CONT_LOAD ON_FMI_ERR. This option tells Data
Pump to continue loading data from the next row if it encounters stream format
errors in the table data.

External Tables

External tables can be used as inline external tables in SQL statements, thus
eliminating the need to create an external table as a persistent database object in
the data dictionary.

xIv

Oracle Data Pump

The topics discussed in this part include Data Pump Export, Data Pump Import, legacy
mode, performance, and the Data Pump API DBMS_DATAPUMP.

e Overview of Oracle Data Pump
Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another.

* Data Pump Export
The Oracle Data Pump Export utility is used to unload data and metadata into a
set of operating system files called a dump file set.

e Data Pump Import
The Oracle Data Pump Import utility is used to load an export dump file set into a
target database. You can also use it to perform a network import to load a target
database directly from a source database with no intervening files.

* Data Pump Legacy Mode
Data Pump legacy mode lets you use original Export and Import parameters on
the Data Pump Export and Data Pump Import command lines.

e Data Pump Performance
Reasons why the performance of Data Pump Export and Import is better than that
of original Export and Import, and specific steps you can take to enhance
performance of export and import operations.

e The Data Pump API
Describes the Data Pump API, DBVS_DATAPUMP.

ORACLE

Overview of Oracle Data Pump

ORACLE

Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another.

An understanding of the following topics can help you to successfully use Oracle Data
Pump to its fullest advantage:

Data Pump Components

Oracle Data Pump is made up of three distinct components. They are the
command-line clients, expdp and i npdp; the DBMS_DATAPUMP PL/SQL package (also
known as the Data Pump API); and the DBMS_METADATA PL/SQL package (also
known as the Metadata API).

How Does Oracle Data Pump Move Data?
There are several Oracle Data Pump methods that you can use to move data in
and out of databases. You can select the method that best fits your use case.

Using Data Pump With CDBs

Data Pump can migrate all, or portions of, a database from a non-CDB into a PDB,
between PDBs within the same or different CDBs, and from a PDB into a non-
CDB.

Required Roles for Data Pump Export and Import Operations

Many Data Pump Export and Import operations require the user to have the
DATAPUMP_EXP_FULL_DATABASE role, or the DATAPUMP_| MP_FULL_DATABASE role, or
both.

What Happens During Execution of a Data Pump Job?
Data Pump jobs use a master table, a master process, and worker processes to
perform the work and keep track of progress.

Monitoring Job Status
The Data Pump Export and Import client utilities can attach to a job in either
logging mode or interactive-command mode.

Monitoring the Progress of Executing Jobs

Data Pump operations that transfer table data (export and import) maintain an
entry in the VESESSI ON_LONGOPS dynamic performance view indicating the job
progress (in megabytes of table data transferred). The entry contains the
estimated transfer size and is periodically updated to reflect the actual amount of
data transferred.

File Allocation

Oracle Data Pump manages several different types of files. You can use
commands in interactive mode to modify how Data Pump allocates and handles
these files

Exporting and Importing Between Different Database Releases
Data Pump can be used to migrate all or any portion of a database between
different releases of the database software.

1-1

Chapter 1
Data Pump Components

» SecureFiles LOB Considerations
When you use Data Pump Export to export SecureFiles LOBs, the resulting
behavior depends on several things, including the value of the Export VERSI ON
parameter, whether ContentType is present, and whether the LOB is archived and
data is cached.

e Data Pump Exit Codes
Data Pump reports the results of export and import operations in a log file and in a
process exit code.

e Auditing Data Pump Jobs
To monitor and record specific user database actions, perform auditing on Data
Pump jobs with unified auditing.

e How Does Data Pump Handle Timestamp Data?
This section describes factors that can affect successful completion of export and
import jobs that involve the timestamp data types TI MESTAMP W TH Tl MEZONE and
TI MESTAMP W TH LOCAL TI MEZONE.

* Character Set and Globalization Support Considerations
Globalization support behavior of Data Pump Export and Import.

e Oracle Data Pump Behavior with Data-Bound Collation
Oracle Data Pump supports data-bound collation (DBC).

1.1 Data Pump Components

Oracle Data Pump is made up of three distinct components. They are the command-
line clients, expdp and i npdp; the DBMS_DATAPUMP PL/SQL package (also known as the
Data Pump API); and the DBMS_METADATA PL/SQL package (also known as the
Metadata API).

The Data Pump clients, expdp and i npdp, start the Data Pump Export utility and Data
Pump Import utility, respectively.

The expdp and i npdp clients use the procedures provided in the DBVM5S_DATAPUVP
PL/SQL package to execute export and import commands, using the parameters
entered at the command line. These parameters enable the exporting and importing of
data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the
DBVS_METADATA PL/SQL package. The DBM5_METADATA package provides a centralized
facility for the extraction, manipulation, and re-creation of dictionary metadata.

The DBM5_DATAPUMP and DBMS_METADATA PL/SQL packages can be used independently
of the Data Pump clients.

ORACLE 1-2

Chapter 1
How Does Oracle Data Pump Move Data?

< Note:

All Data Pump Export and Import processing, including the reading and
writing of dump files, is done on the system (server) selected by the specified
database connect string. This means that for unprivileged users, the
database administrator (DBA) must create directory objects for the
Data Pump files that are read and written on that server file system. (For
security reasons, DBAs must ensure that only approved users are allowed
access to directory objects.) For privileged users, a default directory object is
available. See "Understanding Dump_ Log_ and SQL File Default Locations"
for more information about directory objects.

Starting with Oracle Database 18c, you can include the unified audit trail in either full
or partial export and import operations using Oracle Data Pump. There is no change to
the user interface. When you perform the export or import operations of a database,
the unified audit trail is automatically included in the Data Pump dump files. See
Oracle Database PL/SQL Packages and Types Reference for a description of the
DBVMS_DATAPUMP and the DBMS_METADATA packages. See Oracle Database Security
Guide for information about exporting and importing the unified audit trail using Oracle
Data Pump.

Related Topics
e Oracle Database PL/SQL Packages and Types Reference

e Oracle Database Security Guide

1.2 How Does Oracle Data Pump Move Data?

ORACLE

There are several Oracle Data Pump methods that you can use to move data in and
out of databases. You can select the method that best fits your use case.

< Note:

The UTL_FI LE_DI Rdesupport in Oracle Database 18c and later releases
affects Oracle Data Pump. This desupport can affect any feature from an
earlier release using symbolic links, including (but not restricted to) Oracle
Data Pump, BFILEs, and External Tables. If you attempt to use an affected
feature configured with symbolic links, then you encounter ORA- 29283
invalid file operation: path traverses a syniink. Oracle
recommends that you instead use directory objects in place of symbolic links.

Data Pump does not load tables with disabled unique indexes. To load data
into the table, the indexes must be either dropped or reenabled.

* Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data. With this method, Data Pump
Export is used to unload only structural information (metadata) into the dump file.

1-3

Chapter 1
How Does Oracle Data Pump Move Data?

Using Direct Path to Move Data

After data file copying, direct path is the fastest method of moving data. In this
method, the SQL layer of the database is bypassed and rows are moved to and
from the dump file with only minimal interpretation.

Using External Tables to Move Data
When data file copying is not selected, and the data cannot be moved using direct
path, the external tables mechanism is used.

Using Conventional Path to Move Data
Where there are conflicting table attributes, Data Pump uses conventional path to
move data.

Using Network Link Import to Move Data

When the Import NETWORK_LI NK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

1.2.1 Using Data File Copying to Move Data

The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data. With this method, Data Pump Export
is used to unload only structural information (metadata) into the dump file.

ORACLE

The TRANSPORT _TABLESPACES parameter is used to specify a transportable
tablespace export. Only metadata for the specified tablespaces is exported.

The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter) or a full mode network import (specified with the FULL and

NETWORK_LI NK parameters).

When an export operation uses data file copying, the corresponding import job always
also uses data file copying. During the ensuing import operation, both the data files
and the export dump file must be loaded.

1-4

Chapter 1
How Does Oracle Data Pump Move Data?

< Note:

During transportable imports tablespaces are temporarily made read/write
and then set back to read-only.The temporary setting change was introduced
with Oracle Database 12c Release 1 (12.1.0.2) to improve performance.
However, be aware that this behavior also causes the SCNs of the import job
data files to change. Changing the SCNs for data files can cause issues
during future transportable imports of those files.

For example, if a transportable tablespace import fails at any point after the
tablespaces have been made read/write (even if they are now read-only
again), then the data files become corrupt. They cannot be recovered.

Because transportable jobs are not restartable, you must restart the failed
job from the beginning. You must delete the corrupt datafiles, and copy fresh
versions to the target destination.

When transportable jobs are performed, it is best practice to keep a copy of
the data files on the source system until the import job has successfully
completed on the target system. If the import job fails for some reason, then
keeping copies ensures that you can have uncorrupted copies of the data
files.

When data is moved by using data file copying, there are some limitations regarding
character set compatibility between the source and target databases.

If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target platform.
You can use the DBMS_FI LE_TRANSFER PL/SQL package or the RMAN CONVERT command
to convert the data.

" See Also:

e Oracle Database Backup and Recovery Reference for information about
the RMAN CONVERT command

e Oracle Database Administrator’'s Guide for a description and example
(including how to convert the data) of transporting tablespaces between
databases

1.2.2 Using Direct Path to Move Data

ORACLE

After data file copying, direct path is the fastest method of moving data. In this method,
the SQL layer of the database is bypassed and rows are moved to and from the dump
file with only minimal interpretation.

Data Pump automatically uses the direct path method for loading and unloading data
unless the structure of a table does not allow it. For example, if a table contains a
column of type BFI LE, then direct path cannot be used to load that table and external
tables is used instead.

1-5

ORACLE

Chapter 1
How Does Oracle Data Pump Move Data?

The following sections describe situations in which direct path cannot be used for
loading and unloading.

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
to load the data for that table, instead of direct path:

* A domain index that is not a CONTEXT type index exists for a LOB column.

* A global index on multipartition tables exists during a single-partition load. This
case includes object tables that are partitioned.

* Atableisin a cluster.

* There is an active trigger on a preexisting table.

» Fine-grained access control is enabled in insert mode on a preexisting table.
* Atable contains BFI LE columns or columns of opaque types.

« Areferential integrity constraint is present on a preexisting table.

e Atable contains VARRAY columns with an embedded opaque type.

* The table has encrypted columns.

* The table into which data is being imported is a preexisting table and at least one
of the following conditions exists:

— There is an active trigger
— The table is partitioned
— Fine-grained access control is in insert mode
— Areferential integrity constraint exists
— A unique index exists
* Supplemental logging is enabled, and the table has at least one LOB column.

e The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

* Atable contains a column (including a VARRAY column) with a TI MESTAMP W TH
TI ME ZONE data type, and the version of the time zone data file is different between
the export and import systems.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, then Data Pump uses external tables
rather than direct path to unload the data:

* Fine-grained access control for SELECT is enabled.
e The table is a queue table.

* The table contains one or more columns of type BFI LE or opaque, or an object
type containing opaque columns.

* The table contains encrypted columns.
* The table contains a column of an evolved type that needs upgrading.

* The Data Pump command for the specified table used the QUERY, SAMPLE, or
REMAP_DATA parameter.

1-6

Chapter 1
How Does Oracle Data Pump Move Data?

» Before the unload operation, the table was altered to contain a column that is NOT
NULL, and also has a default value specified.

1.2.3 Using External Tables to Move Data

When data file copying is not selected, and the data cannot be moved using direct
path, the external tables mechanism is used.

The external tables mechanism creates an external table that maps to the dump file
data for the database table. The SQL engine is then used to move the data. If
possible, the APPEND hint is used on import to speed the copying of the data into the
database. The representation of data for direct path data and external table data is the
same in a dump file. Therefore, Data Pump can use the direct path mechanism at
export time, but use external tables when the data is imported into the target database.
Similarly, Data Pump can use external tables for the export, but use direct path for the
import.

In particular, Data Pump uses external tables in the following situations:

e Loading and unloading very large tables and partitions in situations where it is
advantageous to use parallel SQL capabilities

e Loading tables with global or domain indexes defined on them, including
partitioned object tables

e Loading tables with active triggers or clustered tables
e Loading and unloading tables with encrypted columns
» Loading tables with fine-grained access control enabled for inserts

e Loading a table not created by the import operation (the table exists before the
import starts)

Note:

When Data Pump uses external tables as the data access mechanism, it
uses the ORACLE_DATAPUWP access driver. However, it is important to
understand that the files that Data Pump creates when it uses external tables
are not compatible with files created when you manually create an external
table using the SQL CREATE TABLE ... ORGANI ZATI ON EXTERNAL statement.

¢ See Also:

¢ The ORACLE_DATAPUMP Access Driver

e Oracle Database SQL Language Reference for information about using
the APPEND hint

ORACLE r

Chapter 1
How Does Oracle Data Pump Move Data?

1.2.4 Using Conventional Path to Move Data

Where there are conflicting table attributes, Data Pump uses conventional path to
move data.

In situations where there are conflicting table attributes, Data Pump is not able to load
data into a table using either direct path or external tables. In such cases, conventional
path is used, which can affect performance.

1.2.5 Using Network Link Import to Move Data

When the Import NETWORK LI NK parameter is used to specify a network link for an
import operation, the direct path method is used by default. Review supported
database link types.

If direct path cannot be used (for example, because one of the columns is a BFl LE),
then SQL is used to move the data using an | NSERT SELECT statement. (Before Oracle
Database 12c¢ Release 2 (12.2.0.1), the default was to use the | NSERT SELECT
statement.) The SELECT clause retrieves the data from the remote database over the
network link. The | NSERT clause uses SQL to insert the data into the target database.
There are no dump files involved.

When the Export NETWORK LI NK parameter is used to specify a network link for an
export operation, the data from the remote database is written to dump files on the
target database. (Note that to export from a read-only database, the NETWORK_ LI NK
parameter is required.)

Because the link can identify a remotely networked database, the terms database link
and network link are used interchangeably.

Supported Link Types

The following types of database links are supported for use with Data Pump Export
and Import:

* Public fixed user

* Public connected user

» Public shared user (only when used by link owner)
» Private shared user (only when used by link owner)

* Private fixed user (only when used by link owner)

Unsupported Link Types

The following types of database links are not supported for use with Data Pump Export
and Import:

* Private connected user

e Current user

ORACLE 1-8

Chapter 1
Using Data Pump With CDBs

¢ See Also:

e The Export NETWORK_LINK parameter for information about
performing exports over a database link

e The Import NETWORK_LINK parameter for information about
performing imports over a database link

e Oracle Database Administrator’s Guide for information about creating
database links and the different types of links

1.3 Using Data Pump With CDBs

Data Pump can migrate all, or portions of, a database from a non-CDB into a PDB,
between PDBs within the same or different CDBs, and from a PDB into a non-CDB.

Understanding How to Use Data Pump With CDBs

In general, using Data Pump with PDBs is identical to using Data Pump with a
non-CDB. You can use Data Pump to migrate all, or portions of, a database from a
non-CDB into a PDB, between PDBs within the same or different CDBs, and from
a PDB into a non-CDB.

Using Data Pump to Move Databases Into a CDB
After you create an empty PDB in the CDB, you can use an Oracle Data Pump
full-mode export and import operation to move data into the PDB.

Using Data Pump to Move PDBs Within Or Between CDBs
Data Pump export and import operations on PDBs are identical to those on non-
CDBs with the exception of how common users are handled.

1.3.1 Understanding How to Use Data Pump With CDBs

In general, using Data Pump with PDBs is identical to using Data Pump with a non-

CDB. You can use Data Pump to migrate all, or portions of, a database from a non-

CDB into a PDB, between PDBs within the same or different CDBs, and from a PDB
into a non-CDB.

ORACLE

A multitenant container database (CDB) is an Oracle database that includes zero, one,
or many user-created pluggable databases (PDBs). A PDB is a portable set of
schemas, schema objects, and nonschema objects that appear to an Oracle Net client
as a non-CDB. A non-CDB is an Oracle database that is not a CDB.

Note:

Data Pump does not support any CDB-wide operations. If you are connected
to the root or seed database of a CDB, then Data Pump issues the following
warning:

ORA-39357: Warning: Oracle Data Punp operations are not typically needed
when connected to the root or seed of a container database.

1-9

Chapter 1
Using Data Pump With CDBs

1.3.2 Using Data Pump to Move Databases Into a CDB

ORACLE

After you create an empty PDB in the CDB, you can use an Oracle Data Pump full-
mode export and import operation to move data into the PDB.

The job can be performed with or without the transportable option. If you use the
transportable option on a full mode export or import, then it is referred to as a full
transportable export/import.

When the transportable option is used, export and import use both transportable
tablespace data movement and conventional data movement; the latter for those
tables that reside in non-transportable tablespaces such as SYSTEMand SYSAUX. Using
the transportable option can reduce the export time and especially, the import time,
because table data does not need to be unloaded and reloaded and index structures
in user tablespaces do not need to be recreated.

To specify a particular PDB for the export/import operation, on the Data Pump
command-line supply a connect identifier in the connect string when you start Data
Pump. For example, to import data to a PDB named pdb1, you could enter the
following on the Data Pump command line:

i mpdp hr @dbl DI RECTORY=dpunp_di r1 DUMPFI LE=hr. dnp TABLES=enpl oyees

Be aware of the following requirements when using Data Pump to move data into a
CDB:

e To administer a multitenant environment, you must have the CDB_DBA role.

» Full database exports from Oracle Database 11.2.0.2 and earlier can be imported
into Oracle Database 12¢ (CDB or non-CDB). However, Oracle recommends that
you first upgrade the source database to Oracle Database 11g release 2 (11.2.0.3
or later), so that information about registered options and components is included
in the export.

* When migrating Oracle Database 11g release 2 (11.2.0.3 or later) to a CDB (or to
a non-CDB) using either full database export or full transportable database export,
you must set the Data Pump Export parameter VERSI ON=12 in order to generate a
dump file that is ready for import into Oracle Database 12c. If you do not set
VERSI ON=12, then the export file that is generated does not contain complete
information about registered database options and components.

* Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT DATAFI LES=dat af i | e_name parameters.
When the source database is Oracle Database 11g release 11.2.0.3 or later, but
earlier than Oracle Database 12c¢ Release 1 (12.1), the VERSI ON=12 parameter is
also required.

» File-based full transportable imports only require use of the
TRANSPORT_DATAFI LES=dat af i | e_nane parameter. Data Pump Import infers the
presence of the TRANSPORTABLE=ALWAYS and FULL=YES parameters.

e As of Oracle Database 12c release 2 (12.2), in a multitenant container database
(CDB) environment, the default Data Pump directory object, DATA_PUMP_DI R, is
defined as a unique path for each PDB in the CDB. This unique path is defined
whether the PATH _PREFI X clause of the CREATE PLUGGABLE DATABASE statement is
defined or is not defined for relative paths.

1-10

Chapter 1
Required Roles for Data Pump Export and Import Operations

1.3.3 Using Data Pump to Move PDBs Within Or Between CDBs

Data Pump export and import operations on PDBs are identical to those on non-CDBs
with the exception of how common users are handled.

If you have created a common user in a CDB, then a full database or privileged
schema export of that user from within any PDB in the CDB results in a standard
CREATE USER C##conmon name DDL statement being performed upon import. The
statement will fail because of the common user prefix C## on the user name. The
following error message will be returned:

ORA-65094:invalid | ocal user or role nane

In the PDB being exported, if you have created local objects in that user's schema and
you want to import them, then either make sure a common user of the same name
already exists in the target CDB instance or use the Data Pump Import REMAP_SCHENA
parameter on the i npdp command, as follows:

REMAP_SCHEMA=C##common nane: | ocal user name

¢ See Also:

e Using the Transportable Option During Full Mode Exports
e Using the Transportable Option During Full Mode Imports

* Network Considerations for more information about supplying a connect
identifier on the command line

1.4 Required Roles for Data Pump Export and Import
Operations

ORACLE

Many Data Pump Export and Import operations require the user to have the
DATAPUMP_EXP_FULL_DATABASE role, or the DATAPUMP_| MP_FULL_DATABASE role, or both.

These roles are automatically defined for Oracle databases when you run the standard
scripts that are part of database creation. (Note that although the names of these roles
contain the word FULL, these roles actually apply to any privileged operations in any
export or import mode, not only Full mode.)

The DATAPUMP_EXP_FULL_DATABASE role affects only export operations. The
DATAPUMP_| MP_FULL_DATABASE role affects import operations and operations that use
the Import SQLFI LE parameter. These roles allow users performing exports and
imports to do the following:

* Perform the operation outside the scope of their schema
* Monitor jobs that were initiated by another user

* Export objects (such as tablespace definitions) and import objects (such as
directory definitions) that unprivileged users cannot reference

1-11

Chapter 1
What Happens During Execution of a Data Pump Job?

These are powerful roles. Database administrators should use caution when granting
these roles to users.

Although the SYS schema does not have either of these roles assigned to it, all security
checks performed by Data Pump that require these roles also grant access to the SYS
schema.

Note:

If you receive an ORA-39181: Only Partial Data Exported Due to Fine
Gain Access Control error message, then see the My Oracle Support note
422480.1 for information about security during an export of table data with
fine-grained access control policies enabled.:

https://support.oracle.com/rs?type=doc&id=422480.1

¢ See Also:

Oracle Database Security Guide for more information about predefined roles
in an Oracle Database installation

1.5 What Happens During Execution of a Data Pump Job?

Data Pump jobs use a master table, a master process, and worker processes to
perform the work and keep track of progress.

ORACLE

Coordination of a Job
A master process is created to coordinate every Data Pump Export and Data
Pump Import job.

Tracking Progress Within a Job
While the data and metadata are being transferred, a master table is used to track
the progress within a job.

Filtering Data and Metadata During a Job
You can use the EXCLUDE and | NCLUDE parameters to filter the types of objects that
are exported and imported.

Transforming Metadata During a Job

Transformations on the metadata can be done using the Data Pump Import
parameters REMAP_DATAFI LE, REMAP_SCHENMA, REMAP_TABLE, REMAP_TABLESPACE,
TRANSFORM and PARTI TI ON_COPTI ONS.

Maximizing Job Performance
Data Pump can employ multiple worker processes, running in parallel, to increase
job performance.

Loading and Unloading of Data
The worker processes unload and load metadata and table data. For export, all
metadata and data are unloaded in parallel, with the exception of jobs that use

1-12

https://support.oracle.com/rs?type=doc&id=422480.1

Chapter 1
What Happens During Execution of a Data Pump Job?

transportable tablespace. For import, objects must be created in the correct
dependency order.

1.5.1 Coordination of a Job

A master process is created to coordinate every Data Pump Export and Data Pump
Import job.

The master process controls the entire job, including communicating with the clients,
creating and controlling a pool of worker processes, and performing logging
operations.

1.5.2 Tracking Progress Within a Job

ORACLE

While the data and metadata are being transferred, a master table is used to track the
progress within a job.

The master table is implemented as a user table within the database. The specific
function of the master table for export and import jobs is as follows:

* For export jobs, the master table records the location of database objects within a
dump file set. Export builds and maintains the master table for the duration of the
job. At the end of an export job, the content of the master table is written to a file in
the dump file set.

» For import jobs, the master table is loaded from the dump file set and is used to
control the sequence of operations for locating objects that need to be imported
into the target database.

The master table is created in the schema of the current user performing the export or
import operation. Therefore, that user must have the CREATE TABLE system privilege
and a sufficient tablespace quota for creation of the master table. The name of the
master table is the same as the name of the job that created it. Therefore, you cannot
explicitly give a Data Pump job the same name as a preexisting table or view.

For all operations, the information in the master table is used to restart a job. (Note
that transportable jobs are not restartable.)

The master table is either retained or dropped, depending on the circumstances, as
follows:

» Upon successful job completion, the master table is dropped. You can override
this by setting the Data Pump KEEP_MASTER=YES parameter for the job.

* The master table is automatically retained for jobs that do not complete
successfully.

* Ifajobis stopped using the STOP_JOB interactive command, then the master table
is retained for use in restarting the job.

e Ifajobis killed using the KI LL_JOB interactive command, then the master table is
dropped and the job cannot be restarted.

« If a job terminates unexpectedly, then the master table is retained. You can delete
it if you do not intend to restart the job.

» If ajob stops before it starts running (that is, before any database objects have
been copied), then the master table is dropped.

1-13

Chapter 1
What Happens During Execution of a Data Pump Job?

¢ See Also:

JOB_NAME for more information about how job names are formed

1.5.3 Filtering Data and Metadata During a Job

You can use the EXCLUDE and | NCLUDE parameters to filter the types of objects that are
exported and imported.

Within the master table, specific objects are assigned attributes such as hame or
owning schema. Objects also belong to a class of objects (such as TABLE, | NDEX, or
DI RECTORY). The class of an object is called its object type. You can use the EXCLUDE
and | NCLUDE parameters to restrict the types of objects that are exported and
imported. The objects can be based upon the name of the object or the name of the
schema that owns the object. You can also specify data-specific filters to restrict the
rows that are exported and imported.

See Also:

e Filtering During Export Operations

e Filtering During Import Operations

1.5.4 Transforming Metadata During a Job

Transformations on the metadata can be done using the Data Pump Import
parameters REMAP_DATAFI LE, REMAP_SCHENMA, REMAP_TABLE, REMAP_TABLESPACE,
TRANSFORM and PARTI TI ON_OPTI ONS.

When you are moving data from one database to another, it is often useful to perform
transformations on the metadata for remapping storage between tablespaces or
redefining the owner of a particular set of objects.

1.5.5 Maximizing Job Performance

ORACLE

Data Pump can employ multiple worker processes, running in parallel, to increase job
performance.

Use the PARALLEL parameter to set a degree of parallelism that takes maximum
advantage of current conditions. For example, to limit the effect of a job on a
production system, the database administrator (DBA) might want to restrict the
parallelism. The degree of parallelism can be reset at any time during a job. For
example, PARALLEL could be set to 2 during production hours to restrict a particular job
to only two degrees of parallelism, and during nonproduction hours it could be reset to
8. The parallelism setting is enforced by the master process, which allocates work to
be executed to worker processes that perform the data and metadata processing
within an operation. These worker processes operate in parallel. For recommendations
on setting the degree of parallelism, see the Export PARALLEL and Import PARALLEL
parameter descriptions.

1-14

Chapter 1
What Happens During Execution of a Data Pump Job?

< Note:

The ability to adjust the degree of parallelism is available only in the
Enterprise Edition of Oracle Database.

" See Also:

e Using PARALLEL During An Export In An Oracle RAC Environment
e Using PARALLEL During An Import In An Oracle RAC Environment

1.5.6 Loading and Unloading of Data

ORACLE

The worker processes unload and load metadata and table data. For export, all
metadata and data are unloaded in parallel, with the exception of jobs that use
transportable tablespace. For import, objects must be created in the correct
dependency order.

If there are enough objects of the same type to make use of multiple workers, then the
objects will be imported by multiple worker processes. Some metadata objects have
interdependencies which require one worker process to create them serially to satisfy
those dependencies. Worker processes are created as needed until the number of
worker processes equals the value supplied for the PARALLEL command-line
parameter. The number of active worker processes can be reset throughout the life of
a job. Worker processes can be started on different nodes in an Oracle Real
Application Clusters (Oracle RAC) environment.

Note:

The value of PARALLEL is restricted to 1 in the Standard Edition of Oracle
Database.

When a worker process is assigned the task of loading or unloading a very large table
or partition, it may choose to use the external tables access method to make maximum
use of parallel execution. In such a case, the worker process becomes a parallel
execution coordinator. The actual loading and unloading work is divided among some
number of parallel /0O execution processes (sometimes called slaves) allocated from a
pool of available processes in an Oracle RAC environment.

Related Topics
* PARALLEL
PARALLEL

1-15

Chapter 1
Monitoring Job Status

1.6 Monitoring Job Status

The Data Pump Export and Import client utilities can attach to a job in either logging
mode or interactive-command mode.

In logging mode, real-time detailed status about the job is automatically displayed
during job execution. The information displayed can include the job and parameter
descriptions, an estimate of the amount of data to be processed, a description of the
current operation or item being processed, files used during the job, any errors
encountered, and the final job state (Stopped or Completed).

In interactive-command mode, job status can be displayed on request. The information
displayed can include the job description and state, a description of the current
operation or item being processed, files being written, and a cumulative status.

You can also have a log file written during the execution of a job. The log file
summarizes the progress of the job, lists any errors encountered during execution of
the job, and records the completion status of the job.

As an alternative to determine job status or other information about Data Pump jobs,
you can query the DBA DATAPUMP_JOBS, USER DATAPUMP_JCBS, or

DBA DATAPUMP_SESSI ONS views. Refer to Oracle Database Reference for more
information.

Related Topics

e Oracle Database Reference

1.7 Monitoring the Progress of Executing Jobs

ORACLE

Data Pump operations that transfer table data (export and import) maintain an entry in
the V$SESSI ON_LONGOPS dynamic performance view indicating the job progress (in
megabytes of table data transferred). The entry contains the estimated transfer size
and is periodically updated to reflect the actual amount of data transferred.

Use of the COVPRESSI ON, ENCRYPTI ON, ENCRYPTI ON_ALGORI THM ENCRYPTI ON_MCDE,
ENCRYPTI ON_PASSWORD, QUERY, and REMAP_DATA parameters are not reflected in the
determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of
estimation requested when the operation was initiated, and it is updated as required if
exceeded by the actual transfer amount. The estimate value for import operations is
exact.

The V$SESSI ON_LONGOPS columns that are relevant to a Data Pump job are as follows:
e USERNAME - job owner

e CPNAME - job name

e TARGET_DESC - job operation

» SOFAR - megabytes transferred thus far during the job

e TOTALWORK - estimated number of megabytes in the job

* UNITS - megabytes (MB)

e MESSACE - a formatted status message of the form:

1-16

Chapter 1
File Allocation

"job_nane: operation_nane : nnn out of nmm MB done'

1.8 File Allocation

Oracle Data Pump manages several different types of files. You can use commands in
interactive mode to modify how Data Pump allocates and handles these files

Understanding File Allocation in Data Pump
Understanding how Data Pump allocates and handles files will help you to use
Export and Import to their fullest advantage.

Specifying Files and Adding Additional Dump Files
For export operations, you can specify dump files at the time the job is defined,
and also at a later time during the operation.

Default Locations for Dump, Log, and SQL Files

Review these topics to understand the Oracle Data Pump default file locations,
and to understand how these locations are affected when you are using Oracle
RAC, Oracle Automatic Storage Management, and multitenant architecture.

Using Substitution Variables

Instead of, or in addition to, listing specific file names, you can use the DUMPFI LE
parameter during export operations to specify multiple dump files, by using a
substitution variable in the file name. This is called a dump file template.

1.8.1 Understanding File Allocation in Data Pump

Understanding how Data Pump allocates and handles files will help you to use Export
and Import to their fullest advantage.

Data Pump jobs manage the following types of files:

Dump files to contain the data and metadata that is being moved.
Log files to record the messages associated with an operation.

SQL files to record the output of a SQLFILE operation. A SQLFILE operation is
started using the Data Pump Import SQLFI LE parameter and results in all the SQL
DDL that Import would be executing based on other parameters, being written to a
SQL file.

Files specified by the DATA FI LES parameter during a transportable import.

¢ Note:

If your Data Pump job generates errors related to Network File Storage
(NFS), then consult the installation guide for your platform to determine the
correct NFS mount settings.

1.8.2 Specifying Files and Adding Additional Dump Files

For export operations, you can specify dump files at the time the job is defined, and
also at a later time during the operation.

ORACLE

1-17

Chapter 1
File Allocation

If you discover that space is running low during an export operation, then you can add
additional dump files by using the Data Pump Export ADD_FI LE command in interactive
mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files overwrite previously existing files. For dump files, you can use
the Export REUSE_DUMPFI LES parameter to specify whether to overwrite a preexisting
dump file.

1.8.3 Default Locations for Dump, Log, and SQL Files

Review these topics to understand the Oracle Data Pump default file locations, and to
understand how these locations are affected when you are using Oracle RAC, Oracle
Automatic Storage Management, and multitenant architecture.

e Understanding Dump, Log, and SQL File Default Locations
Data Pump is server-based rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

* Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to make sure that you are
making cluster member nodes available.

* Using Directory Objects When Oracle Automatic Storage Management Is Enabled
You can use Data Pump Export or Import with Oracle Automatic Storage
Management (Oracle ASM) enabled. You must define the directory object used for
the dump file so that the Oracle ASM disk group name is used, instead of an
operating system directory path.

« The DATA_PUMP_DIR Directory Object and Pluggable Databases
The default Data Pump directory object, DATA_ PUMP_DI R, is defined as a unique
path for each PDB in the CDB.

1.8.3.1 Understanding Dump, Log, and SQL File Default Locations

ORACLE

Data Pump is server-based rather than client-based. Dump files, log files, and SQL
files are accessed relative to server-based directory paths.

Data Pump requires that directory paths be specified as directory objects. A directory
object maps a name to a directory path on the file system. DBAs must ensure that only
approved users are allowed access to the directory object associated with the
directory path.

The following example shows a SQL statement that creates a directory object named
dpunp_di r 1 that is mapped to a directory located at / usr/ apps/ dat afi | es.

SQL> CREATE DI RECTORY dpunp_dirl AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity.
For example:

* If you were allowed to specify a directory path location for an input file, then you
might be able to read data that the server has access to, but to which you should
not.

1-18

ORACLE

Chapter 1
File Allocation

» If you were allowed to specify a directory path location for an output file, then the
server might overwrite a file that you might not normally have privileges to delete.

On UNIX and Windows operating systems, a default directory object, DATA PUVP_DI R,
is created at database creation or whenever the database dictionary is upgraded. By
default, it is available only to privileged users. (The user SYSTEMhas read and write
access to the DATA_PUVP_DI R directory, by default.) The definition of the

DATA PUWP_DI R directory may be changed by Oracle during upgrades or when patches
are applied.

If you are not a privileged user, then before you can run Data Pump Export or Data
Pump Import, a directory object must be created by a database administrator (DBA) or
by any user with the CREATE ANY DI RECTCRY privilege.

After a directory is created, the user creating the directory object must grant READ or
VIRl TE permission on the directory to other users. For example, to allow the Oracle
database to read and write files on behalf of user hr in the directory named by
dpunp_di r 1, the DBA must execute the following command:

SQL> GRANT READ, WRI TE ON DI RECTCRY dpunp_dir1 TO hr;

Note that READ or WRI TE permission to a directory object only means that the Oracle
database can read or write files in the corresponding directory on your behalf. You are
not given direct access to those files outside of the Oracle database unless you have
the appropriate operating system privileges. Similarly, the Oracle database requires
permission from the operating system to read and write files in the directories.

Data Pump Export and Import use the following order of precedence to determine a
file's location:

1. If a directory object is specified as part of the file specification, then the location
specified by that directory object is used. (The directory object must be separated
from the file name by a colon.)

2. If a directory object is not specified as part of the file specification, then the
directory object named by the DI RECTORY parameter is used.

3. If a directory object is not specified as part of the file specification, and if no
directory object is named by the DI RECTCRY parameter, then the value of the
environment variable, DATA PUMP_DI R, is used. This environment variable is
defined using operating system commands on the client system where the Data
Pump Export and Import utilities are run. The value assigned to this client-based
environment variable must be the name of a server-based directory object, which
must first be created on the server system by a DBA. For example, the following
SQL statement creates a directory object on the server system. The name of the
directory object is DUMP_FI LES1, and it is located at ' / usr/ apps/ dunpfilesl'.

SQL> CREATE DI RECTORY DUMP_FI LES1 AS '/usr/apps/ dunpfilesl';

Then, a user on a UNIX-based client system using csh can assign the value
DUMP_FI LES1 to the environment variable DATA_PUVMP_DI R. The DI RECTORY
parameter can then be omitted from the command line. The dump file

enpl oyees. dnp, and the log file export.| og, are written to '/ usr/apps/
dunpfilesl'.

%et env DATA PUMP_DI R DUMP_FI LES1
Y%expdp hr TABLES=enpl oyees DUWPFI LE=enpl oyees. dnp

1-19

Chapter 1
File Allocation

If none of the previous three conditions yields a directory object and you are a
privileged user, then Data Pump attempts to use the value of the default server-
based directory object, DATA_PUMP_DI R. This directory object is automatically
created at database creation or when the database dictionary is upgraded. You
can use the following SQL query to see the path definition for DATA PUVP_DI R:

SQL> SELECT directory_nane, directory_path FROM dba_directories
2 VWHERE directory_nanme=' DATA PUWP DR ;

If you are not a privileged user, then access to the DATA PUMP_DI R directory object
must have previously been granted to you by a DBA.

Do not confuse the default DATA_PUVP_DI R directory object with the client-based
environment variable of the same name.

1.8.3.2 Understanding How to Use Oracle Data Pump with Oracle RAC

Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to make sure that you are making
cluster member nodes available.

To use Data Pump or external tables in an Oracle RAC configuration, you must
ensure that the directory object path is on a cluster-wide file system.

The directory object must point to shared physical storage that is visible to, and
accessible from, all instances where Data Pump and/or external tables processes
can run.

The default Data Pump behavior is that worker processes can run on any instance
in an Oracle RAC configuration. Therefore, workers on those Oracle RAC
instances must have physical access to the location defined by the directory
object, such as shared storage media. If the configuration does not have shared
storage for this purpose, but you still require parallelism, then you can use the
CLUSTER=NO parameter to constrain all worker processes to the instance where the
Data Pump job was started.

Under certain circumstances, Data Pump uses parallel query slaves to load or
unload data. In an Oracle RAC environment, Data Pump does not control where
these slaves run. Therefore, these slaves can run on other cluster member nodes
in the cluster, regardless of which instance is specified for CLUSTER and

SERVI CE_NAME for the Data Pump job. Controls for parallel query operations are
independent of Data Pump. When parallel query slaves run on other instances as
part of a Data Pump job, they also require access to the physical storage of the
dump file set.

1.8.3.3 Using Directory Objects When Oracle Automatic Storage Management

Is Enabled

ORACLE

You can use Data Pump Export or Import with Oracle Automatic Storage Management

(Oracle ASM) enabled. You must define the directory object used for the dump file so

that the Oracle ASM disk group name is used, instead of an operating system

directory path.

For log file, use a separate directory object that points to an operating system directory
path.

1-20

Chapter 1
File Allocation

For example, you can create a directory object for the Oracle ASM dump file using this
procedure.

SQ.> CREATE or REPLACE DI RECTORY dpunp_dir as ' +DATAFILES/";

After you create the directory object, you then create a separate directory object for
the log file:

SQL> CREATE or REPLACE DI RECTORY dpunp_l og as '/homedir/userl/";

To enable user hr to have access to these directory objects, you assign the necessary
privileges for that user:

SQ> GRANT READ, VR TE ON DI RECTORY dpunp_dir TO hr;
SQL> GRANT READ, WRI TE ON DI RECTCRY dpunp_l og TO hr;

Finally, you then can use use the following Data Pump Export command:

> expdp hr DI RECTORY=dpunp_dir DUVPFI LE=hr. dmp LOGFI LE=dpunp_l og: hr. | og
Before the command executes, you are prompted for the password.

¢ Note:

If you simply want to copy Data Pump dump files between ASM and disk
directories, you can use the DBM5S_FI LE_ TRANSFER PL/SQL package.

Related Topics
e Oracle Database SQL Language Reference

e Oracle Database PL/SQL Packages and Types Reference

1.8.3.4 The DATA_PUMP_DIR Directory Object and Pluggable Databases

The default Data Pump directory object, DATA PUMP_DI R, is defined as a unique path
for each PDB in the CDB.

As of Oracle Database 12c¢ release 2 (12.2), in a multitenant container database
(CDB) environment, the default Data Pump directory object, DATA_PUMP_DI R, is defined
as a unique path for each PDB in the CDB, whether or not the PATH PREFI X clause of
the CREATE PLUGGABLE DATABASE statement is defined for relative paths.

1.8.4 Using Substitution Variables

Instead of, or in addition to, listing specific file names, you can use the DUMPFI LE
parameter during export operations to specify multiple dump files, by using a
substitution variable in the file name. This is called a dump file template.

ORACLE 1-21

Chapter 1
Exporting and Importing Between Different Database Releases

< Note:

This section uses %U to explain how Data Pump uses substitution variables.
For information about other available substitution variables, see the Data
Pump Export DUMPFILE parameter and the Data Pump Import DUMPFILE
parameter.

New dump files are created as they are needed. For example, if you are using the
substitution variable %U, then new dump files are created as needed beginning with
01 for %J, then using 02, 03, and so on. Enough dump files are created to allow all
processes specified by the current setting of the PARALLEL parameter to be active. If
one of the dump files becomes full because its size has reached the maximum size
specified by the FI LESI ZE parameter, then it is closed and a new dump file (with a new
generated name) is created to take its place.

If multiple dump file templates are provided, they are used to generate dump files in a
round-robin fashion. For example, if expa%J, expbh%J, and expc%J were all specified for
a job having a parallelism of 6, then the initial dump files created would be expa0l.dnmp,
exph01.dnp, expc0l.dmp, expal2.dnp, expb02.dnp, and expc02.dnp.

For import and SQLFILE operations, if dump file specifications expa%J, expbh%J, and
expcYJ are specified, then the operation begins by attempting to open the dump files
expa0l.dnp, expb0l.dmp, and expc0l.dnp. It is possible for the master table to span
multiple dump files, so until all pieces of the master table are found, dump files
continue to be opened by incrementing the substitution variable and looking up the
new file names (for example, expa02.dnp, expb02.dnp, and expc02.dnp). If a dump file
does not exist, then the operation stops incrementing the substitution variable for the
dump file specification that was in error. For example, if expb01.dnp and expb02.dnp
are found but expb03.dnp is not found, then no more files are searched for using the
exph%J specification. Once the entire master table is found, it is used to determine
whether all dump files in the dump file set have been located.

1.9 Exporting and Importing Between Different Database

Releases

ORACLE

Data Pump can be used to migrate all or any portion of a database between different
releases of the database software.

Typically, you use the Data Pump Export VERSI ON parameter to migrate between
database releases.Using VERSI ON generates a Data Pump dump file set that is
compatible with the specified version.

The default value for VERSI ON is COVPATI BLE. This value indicates that exported
database object definitions are compatible with the release specified for the
COVPATI BLE initialization parameter.

In an upgrade situation, when the target release of a Data Pump-based migration is
higher than the source, the VERSI ON parameter typically does not have to be specified.
When the target release is higher then the source, all objects in the source database
are compatible with the higher target release. An exception is when an entire Oracle
Database 11g (release 11.2.0.3 or higher) is exported in preparation for importing into
Oracle Database 12c Release 1 (12.1.0.1) or later. In this case, to include a complete

1-22

ORACLE

Chapter 1
Exporting and Importing Between Different Database Releases

set of Oracle internal component metadata, explicitly specify VERSI ON=12 with
FULL=YES.

In a downgrade situation, when the target release of a Data Pump-based migration is
lower than the source, set the VERS|I ON parameter value to be the same version as the
target. An exception is when the target release version is the same as the value of the
COWPATI BLE initialization parameter on the source system. In that case, you do not
need to specify VERSI ON. In general, however, Data Pump import cannot read dump
file sets created by an Oracle release that is newer than the current release unless the
VERSI ON parameter is explicitly specified.

Keep the following information in mind when you are exporting and importing between
different database releases:

e On a Data Pump export, if you specify a database version that is older than the
current database version, then a dump file set is created that you can import into
that older version of the database. For example, if you are running Oracle
Database 12c¢ Release 1 (12.1.0.2) and specify VERS|I ON=11. 2 on an export, then
the dump file set that is created can be imported into an Oracle 11.2 database.

" Note:

Note the following about importing into earlier releases:

— Database privileges that are valid only in Oracle Database 12c
Release 1 (12.1.0.2) and later (for example, the READ privilege on
tables, views, materialized views, and synonyms) cannot be
imported into Oracle Database 12c Release 1 (12.1.0.1) or earlier. If
an attempt is made to do so, then Import reports it as an error, and
continues the import operation.

— When you export to a release earlier than Oracle Database 12¢
Release 2 (12.2.0.1), Data Pump does not filter out object names
longer than 30 bytes. The objects are exported and at import time,
an error is returned if you attempt to create an object with a name
longer than 30 bytes.

» If you specify a database release that is older than the current database release,
then certain features and data types can be unavailable. For example, specifying
VERSI ON=10. 1 causes an error if data compression is also specified for the job
because compression was not supported in Oracle Database 10g release 1 (10.1).
Another example: If a user-defined type or Oracle-supplied type in the source
database is a later version than the type in the target database, then that type is
not loaded, because it does not match any version of the type in the target
database.

e Data Pump Import can always read Data Pump dump file sets created by older

releases of the database.

e When operating across a network link, Data Pump requires that the source and

target databases differ by no more than two versions.

For example, if one database is Oracle Database 12c, then the other database
must be 12c¢, 11g, or 10g. Data Pump checks only the major version number (for
example, 10g,11g, 12c), not specific release numbers (for example, 12.2, 12.1,
11.1,11.2,10.1, or 10.2).

1-23

Chapter 1
SecureFiles LOB Considerations

Importing Oracle Database 11g dump files that contain table statistics into Oracle
Database 12c¢ Release 1 (12.1) or later can result in an Oracle ORA-39346 error.
This error occurs because Oracle Database 11g dump files contain table statistics
as metadata. Oracle Database 12c¢ Release 1 (12.1) and later releases require
table statistics to be presented as table data. The workaround is to ignore the error
during the import operation. After the import operation completes, regather table
statistics.

Related Topics

VERSION
VERSION

¢ See Also:

e Oracle Database Security Guide for more information about the READ and
READ ANY TABLE privileges

1.10 SecureFiles LOB Considerations

When you use Data Pump Export to export SecureFiles LOBs, the resulting behavior
depends on several things, including the value of the Export VERSI ON parameter,
whether ContentType is present, and whether the LOB is archived and data is cached.

The following scenarios cover different combinations of these variables:

ORACLE

If a table contains SecureFiles LOBs with ContentType and the Export VERSI ON
parameter is set to a value earlier than 11. 2. 0. 0. 0, then the ContentType is not
exported.

If a table contains SecureFiles LOBs with ContentType and the Export VERSI ON
parameter is set to a value of 11. 2. 0. 0. 0 or later, then the ContentType is
exported and restored on a subsequent import.

If a table contains a SecureFiles LOB that is currently archived and the data is
cached, and the Export VERSI ON parameter is set to a value earlier than

11. 2. 0. 0. 0, then the SecureFiles LOB data is exported and the archive metadata
is dropped. In this scenario, if VERSI ONis set to 11. 1 or later, then the SecureFiles
LOB becomes a vanilla SecureFiles LOB. But if VERSI ONis set to a value earlier
than 11. 1, then the SecureFiles LOB becomes a BasicFiles LOB.

If a table contains a SecureFiles LOB that is currently archived but the data is not
cached, and the Export VERSI ON parameter is set to a value earlier than
11.2.0. 0. 0, then an ORA-45001 error is returned.

If a table contains a SecureFiles LOB that is currently archived and the data is
cached, and the Export VERSI ON parameter is set to a value of 11. 2. 0. 0. 0 or later,
then both the cached data and the archive metadata is exported.

1-24

Chapter 1
Data Pump Exit Codes

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles

1.11 Data Pump Exit Codes

Data Pump reports the results of export and import operations in a log file and in a
process exit code.

Oracle Data Pump provides the results of export and import operations immediately
upon completion. In addition to recording the results in a log file, Data Pump can also
report the outcome in a process exit code. Use the code to check the outcome of a
Data Pump job from the command line or a script. The following table describes the
Data Pump exit codes for Linux, Unix, and Windows operating systems.

Table 1-1 Data Pump Exit Codes

Exit Code Meaning

EX_SUCC 0 The export or import job completed successfully. No errors are displayed to the
output device or recorded in the log file, if there is one.

EX_SUCC ERR 5 The export or import job completed successfully but there were errors
encountered during the job. The errors are displayed to the output device and
recorded in the log file, if there is one.

EX FAIL 1 The export or import job encountered one or more fatal errors, including the

following:

e Errors on the command line or in command syntax

e Oracle database errors from which export or import cannot recover

e Operating system errors (such as malloc)

* Invalid parameter values that prevent the job from starting (for example, an
invalid directory object specified in the DI RECTCRY parameter)

A fatal error is displayed to the output device but may not be recorded in the log

file. Whether it is recorded in the log file can depend on several factors, including:

¢ Was a log file specified at the start of the job?

« Did the processing of the job proceed far enough for a log file to be opened?

1.12 Auditing Data Pump Jobs

ORACLE

To monitor and record specific user database actions, perform auditing on Data Pump
jobs with unified auditing.

You can perform auditing on Data Pump jobs to monitor and record specific user
database actions. Data Pump uses unified auditing, in which all audit records are
centralized in one place.

To set up unified auditing, you create a unified audit policy or alter an existing policy.
An audit policy is a named group of audit settings that enable you to audit a particular
aspect of user behavior in the database. To create the policy, use the SQL CREATE
AUDI T PCLI CY statement.

1-25

Chapter 1
How Does Data Pump Handle Timestamp Data?

After creating the audit policy, use the AUDI T and NCAUDI T SQL statements to,
respectively, enable and disable the policy.

See Also:

e Oracle Database SQL Language Reference for more information about
the SQL CREATE AUDI T POLI CY, ALTER AUDI T POLICY, AUDIT, and
NOAUDI T statements

e Oracle Database Security Guide for more information about using
auditing in an Oracle database

1.13 How Does Data Pump Handle Timestamp Data?

This section describes factors that can affect successful completion of export and
import jobs that involve the timestamp data types TI MESTAMP W TH Tl MEZONE and
TI MESTAMP W TH LOCAL TI MEZONE.

Note:

The information in this section applies only to Oracle Data Pump running on
Oracle Database 12c¢ and later.

¢ TIMESTAMP WITH TIMEZONE Restrictions
Export and import jobs that have TI MESTAMP W TH TI ME ZONE data are restricted.

TIMESTAMP WITH LOCAL TIME ZONE Restrictions
Moving tables using a transportable mode is restricted.

1.13.1 TIMESTAMP WITH TIMEZONE Restrictions

Export and import jobs that have TI MESTAMP W TH TI ME ZONE data are restricted.

e Understanding TIMESTAMP WITH TIME ZONE Restrictions
Carrying out export and import jobs that have TI MESTAMP W TH TI ME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

o Data Pump Support for TIMESTAMP WITH TIME ZONE Data
Data Pump supports TI MESTAMP W TH TI ME ZONE data during different export and
import modes like non-transportable mode, transportable tablespace and
transportable table mode, and full transportable mode.

e Time Zone File Versions on the Source and Target
Successful job completion can depend on whether the source and target time
zone file versions match.

ORACLE 1-26

Chapter 1
How Does Data Pump Handle Timestamp Data?

1.13.1.1 Understanding TIMESTAMP WITH TIME ZONE Restrictions

Carrying out export and import jobs that have TI MESTAMP W TH TI ME ZONE data
requires understanding information about your time zone file data and Oracle
Database release.

Successful job completion can depend on the following factors:

» The version of the Oracle Database time zone files on the source and target
databases.

* The export/import mode and whether the Data Pump version being used supports
TI MESTAMP W TH TI ME ZONE data. (Data Pump 11.2.0.1 and later provide support
for TI MESTAMP W TH TI ME ZONE data.)

To identify the time zone file version of a database, you can execute the following SQL
statement:

SQ.> SELECT VERSI ON FROM V$TI MEZONE_FI LE;

See Oracle Database Globalization Support Guide for more information about time
zone files.

Related Topics

* Oracle Database Globalization Support Guide

1.13.1.2 Data Pump Support for TIMESTAMP WITH TIME ZONE Data

ORACLE

Data Pump supports TI MESTAMP W TH TI ME ZONE data during different export and
import modes like non-transportable mode, transportable tablespace and transportable
table mode, and full transportable mode.

This section describes Data Pump support for TI MESTAMP W TH Tl ME ZONE data during
different export and import modes when versions of the Oracle Database time zone file
are different on the source and target databases.

Non-transportable Modes

e If the dump file is created with a Data Pump version that supports TI MESTAMP W TH
TI ME ZONE data (11.2.0.1 or later), then the time zone file version of the export
system is recorded in the dump file. Data Pump uses that information to determine
whether data conversion is necessary. If the target database knows about the
source time zone version, but is actually using a later version, then the data is
converted to the later version. TI MESTAVP W TH Tl ME ZONE data cannot be
downgraded, so if you attempt to import to a target that is using an earlier version
of the time zone file than the source used, the import fails.

« If the dump file is created with a Data Pump version prior to Oracle Database 11g
release 2 (11.2.0.1), then TI MESTAMP W TH TI ME ZONE data is not supported, so no
conversion is done and corruption may occur.

Transportable Tablespace and Transportable Table Modes

* Intransportable tablespace and transportable table modes, if the source and
target have different time zone file versions, then tables with TI MESTAMP W TH
TI ME ZONE columns are not created. A warning is displayed at the beginning of the

1-27

Chapter 1
How Does Data Pump Handle Timestamp Data?

job showing the source and target database time zone file versions. A message is
also displayed for each table not created. This is true even if the Data Pump
version used to create the dump file supports TI MESTAMP W TH TI ME ZONE data.
(Release 11.2.0.1 and later support TI MESTAMP W TH Tl MEZONE data.)

If the source is earlier than Oracle Database 11g release 2 (11.2.0.1), then the
time zone file version must be the same on the source and target database for all
transportable jobs regardless of whether the transportable set uses TI MESTAVP

W TH TI ME ZONE columns.

Full Transportable Mode

Full transportable exports and imports are supported when the source database is at
least Oracle Database 11g release 2 (11.2.0.3) and the target is Oracle Database 12c
release 1 (12.1) or later.

Data Pump 11.2.0.1 and later provide support for TI MESTAMP W TH Tl ME ZONE data.
Therefore, in full transportable operations, tables with TI MESTAMP W TH TI ME ZONE
columns are created. If the source and target database have different time zone file
versions, then TI MESTAMP W TH TI ME ZONE columns from the source are converted to
the time zone file version of the target.

" See Also:

e Oracle Database Administrator's Guide for more information about
transportable tablespaces

e Using the Transportable Option During Full Mode Exports for more
information about full transportable exports

e Using the Transportable Option During Full Mode Imports for more
information about full transportable imports

1.13.1.3 Time Zone File Versions on the Source and Target

ORACLE

Successful job completion can depend on whether the source and target time zone file
versions match.

If the Oracle Database time zone file version is the same on the source and target
databases, then conversion of TI MESTAMP W TH TI ME ZONE data is not necessary.
The export/import job should complete successfully.

The exception to this is a transportable tablespace or transportable table export
performed using a Data Pump release earlier than 11.2.0.1. In that case, tables in
the dump file that have TI MESTAMP W TH TI ME ZONE columns are not created on
import even though the time zone file version is the same on the source and
target.

If the source time zone file version is not available on the target database, then the
job fails. The version of the time zone file on the source may not be available on
the target because the source may have had its time zone file updated to a later
version but the target has not. For example, if the export is done on Oracle
Database 11g release 2 (11.2.0.2) with a time zone file version of 17, and the

1-28

Chapter 1
Character Set and Globalization Support Considerations

import is done on 11.2.0.2 with only a time zone file of 16 available, then the job
fails.

1.13.2 TIMESTAMP WITH LOCAL TIME ZONE Restrictions

Moving tables using a transportable mode is restricted.

If a table is moved using a transportable mode (transportable table, transportable
tablespace, or full transportable), and the following conditions exist, then a warning is
issued and the table is not created:

e The source and target databases have different database time zones.
e The table contains TI MESTAMP W TH LOCAL TI ME ZONE data types.

To successfully move a table that was not created because of these conditions, use a
non-transportable export and import mode.

1.14 Character Set and Globalization Support
Considerations

Globalization support behavior of Data Pump Export and Import.

These sections describe the globalization support behavior of Data Pump Export and
Import with respect to character set conversion of user data and data definition
language (DDL).

» Data Definition Language (DDL)
The Export utility writes dump files using the database character set of the export
system.

* Single-Byte Character Sets and Export and Import
Ensure that the export database and the import database use the same character
set.

* Multibyte Character Sets and Export and Import
During character set conversion, any characters in the export file that have no
equivalent in the import database character set are replaced with a default
character. The import database character set defines the default character.

1.14.1 Data Definition Language (DDL)

The Export utility writes dump files using the database character set of the export
system.

When the dump file is imported, a character set conversion is required for DDL only if
the database character set of the import system is different from the database
character set of the export system.

To minimize data loss due to character set conversions, ensure that the import
database character set is a superset of the export database character set.

1.14.2 Single-Byte Character Sets and Export and Import

Ensure that the export database and the import database use the same character set.

ORACLE 1-29

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

If the system on which the import occurs uses a 7-bit character set, and you import an
8-bit character set dump file, then some 8-bit characters may be converted to 7-bit
equivalents. An indication that this has happened is when accented characters lose
the accent mark.

To avoid this unwanted conversion, ensure that the export database and the import
database use the same character set.

1.14.3 Multibyte Character Sets and Export and Import

During character set conversion, any characters in the export file that have no
equivalent in the import database character set are replaced with a default character.
The import database character set defines the default character.

If the import system has to use replacement characters while converting DDL, then a
warning message is displayed and the system attempts to load the converted DDL.

If the import system has to use replacement characters while converting user data,
then the default behavior is to load the converted data. However, it is possible to
instruct the import system to reject rows of user data that were converted using
replacement characters. See the Import DATA OPTI ONS parameter for details.

To guarantee 100% conversion, the import database character set must be a superset
(or equivalent) of the character set used to generate the export file.

Caution:

When the database character set of the export system differs from that of the
import system, the import system displays informational messages at the
start of the job that show what the database character set is.

When the import database character set is not a superset of the character
set used to generate the export file, the import system displays a warning
that possible data loss may occur due to character set conversions.

Related Topics
- DATA_OPTIONS

1.15 Oracle Data Pump Behavior with Data-Bound Collation

ORACLE

Oracle Data Pump supports data-bound collation (DBC).

Data Pump Export always includes all available collation metadata into the created
dump file. This includes:

e Current default collations of exported users' schemas

e Current default collations of exported tables, views, materialized views and
PL/SQL units (including user-defined types)

e Declared collations of all table and cluster character data type columns

When importing a dump file exported from an Oracle Database 12c Release 2 (12.2)
database, Data Pump Import's behavior depends on the effective value of the Data

1-30

ORACLE

Chapter 1
Oracle Data Pump Behavior with Data-Bound Collation

Pump VERSI ON parameter at the time of import and on whether the data-bound
collation (DBC) feature is enabled in the target database. The effective value of the
VERSI ON parameter is determined by how it is specified. The parameter may be
specified as follows:

e VERSI ON=n, which means the effective value is the specific version number n, for
example, VERSI ON=12. 2

e VERSI ON=LATEST, which means the effective value is the currently running
database version

* VERSI ON=COWPATI BLE, which means the effective value is the same as the value of
the database initialization parameter COVPATI BLE. This is also true if no value is
specified for VERSI ON.

For the DBC feature to be enabled in a database, the initialization parameter
COVPATI BLE must be set to 12.2 or higher and the initialization parameter
MAX_STRI NG_SI ZE must be set to EXTENDED.

If the effective value of the Data Pump Import VERSI ON parameter is 12.2 and DBC is
enabled in the target database, then Data Pump Import generates DDL statements
with collation clauses referencing collation metadata from the dump file. Exported
objects are created with the original collation metadata that they had in the source
database.

No collation syntax is generated if DBC is disabled or if the Data Pump Import VERSI ON
parameter is set to a value lower than 12.2.

1-31

Data Pump Export

The Oracle Data Pump Export utility is used to unload data and metadata into a set of
operating system files called a dump file set.

e What Is Data Pump Export?
Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility
for unloading data and metadata into a set of operating system files called a dump
file set.

e Invoking Data Pump Export
The Data Pump Export utility is started using the expdp command.

» Filtering During Export Operations
Data Pump Export provides data and metadata filtering capability. This capability
helps you limit the type of information that is exported.

» Parameters Available in Export's Command-Line Mode
This section describes the parameters available in the command-line mode of
Data Pump Export.

* Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export
in interactive mode.

» Examples of Using Data Pump Export
These sections provides examples of using Data Pump Export.

* Syntax Diagrams for Data Pump Export
This section provides syntax diagrams for Data Pump Export.

2.1 What Is Data Pump Export?

ORACLE

Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for
unloading data and metadata into a set of operating system files called a dump file set.

The dump file set can be imported only by the Data Pump Import utility. The dump file
set can be imported on the same system or it can be moved to another system and
loaded there.

The dump file set is made up of one or more disk files that contain table data,
database object metadata, and control information. The files are written in a
proprietary, binary format. During an import operation, the Data Pump Import utility
uses these files to locate each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, the
database administrator (DBA) must create directory objects that define the server
locations to which files are written.

Data Pump Export enables you to specify that a job should move a subset of the data
and metadata, as determined by the export mode. This is done using data filters and
metadata filters, which are specified through Export parameters.

2-1

Chapter 2
Invoking Data Pump Export

¢ See Also:

e Default Locations for Dump_ Log_and SQL Files for more information
about directory objects.

* Filtering During Export Operations for more information about using
filters.

e Examples of Using Data Pump Export for examples of the various ways
in which you can use Data Pump Export.

2.2 Invoking Data Pump Export

The Data Pump Export utility is started using the expdp command.

The characteristics of the export operation are determined by the Export parameters
that you specify. These parameters can be specified either on the command line or in
a parameter file.

< Note:

Do not start Export as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its behavior
is not the same as for general users.

Data Pump Export Interfaces
You can interact with Data Pump Export by using a command line, a parameter
file, or an interactive-command mode.

Data Pump Export Modes
Export provides different modes for unloading different portions of the database.

Network Considerations

You can specify a connect identifier in the connect string when you start the Data
Pump Export utility. This identifier can specify a database instance that is different
from the current instance identified by the current Oracle System ID (SID).

2.2.1 Data Pump Export Interfaces

You can interact with Data Pump Export by using a command line, a parameter file, or
an interactive-command mode.

ORACLE

Command-Line Interface: Enables you to specify most of the Export parameters
directly on the command line. For a complete description of the parameters
available in the command-line interface.

Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFI LE parameter, because parameter
files cannot be nested. The use of parameter files is recommended if you are
using parameters whose values require quotation marks.

2-2

Chapter 2
Invoking Data Pump Export

* Interactive-Command Interface: Stops logging to the terminal and displays the
Export prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an export operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

Related Topics

» Parameters Available in Export's Command-Line Mode
This section describes the parameters available in the command-line mode of
Data Pump Export.

» Commands Available in Data Pump Export Interactive-Command Mode
Check which command options are available to you when using Data Pump Export
in interactive mode.

2.2.2 Data Pump Export Modes

Export provides different modes for unloading different portions of the database.

The mode is specified on the command line, using the appropriate parameter. The
available modes are described in the following sections:

¢ Note:

Several system schemas cannot be exported because they are not user
schemas; they contain Oracle-managed data and metadata. Examples of
system schemas that are not exported include SYS, ORDSYS, and MDSYS.

e Full Mode
You can use Data Pump to carry out a full database export by using the FULL
parameter.

* Schema Mode
You can specify a schema export with Data Pump by using the SCHEMAS
parameter. A schema export is the default export mode.

* Table Mode
You can use Data Pump to carry out a table mode export by specifying the table
using the TABLES parameter.

e Tablespace Mode
You can use Data Pump to carry out a tablespace export by specifying tables
using the TABLESPACES parameter.

» Transportable Tablespace Mode
You can use Data Pump to carry out A transportable tablespace export by using
the TRANSPORT _TABLESPACES parameter.

Related Topics

e Examples of Using Data Pump Export
These sections provides examples of using Data Pump Export.

ORACLE 2-3

Chapter 2
Invoking Data Pump Export

¢ See Also:

Examples of Using Data Pump Export

2.2.2.1 Full Mode

ORACLE

You can use Data Pump to carry out a full database export by using the FULL
parameter.

In a full database export, the entire database is unloaded. This mode requires that you
have the DATAPUMP_EXP_FULL_DATABASE role.

Using the Transportable Option During Full Mode Exports

If you specify the TRANSPORTABLE=ALWAYS parameter along with the FULL parameter,
then Data Pump performs a full transportable export. A full transportable export
exports all objects and data necessary to create a complete copy of the database. A
mix of data movement methods is used:

» Objects residing in transportable tablespaces have only their metadata unloaded
into the dump file set; the data itself is moved when you copy the data files to the
target database. The data files that must be copied are listed at the end of the log
file for the export operation.

« Objects residing in non-transportable tablespaces (for example, SYSTEMand
SYSAUX) have both their metadata and data unloaded into the dump file set, using
direct path unload and external tables.

Performing a full transportable export has the following restrictions:

* The user performing a full transportable export requires the
DATAPUMP_EXP_FULL_DATABASE privilege.

* The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

» If the database being exported contains either encrypted tablespaces or tables
with encrypted columns (either Transparent Data Encryption (TDE) columns or
SecureFiles LOB columns), then the ENCRYPTI ON_PASSWORD parameter must also
be supplied.

* The source and target databases must be on platforms with the same endianness
if there are encrypted tablespaces in the source database.

» If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. You can use the DBMS_FI LE_TRANSFER package or the RVAN CONVERT
command to convert the data.

e Afull transportable export is not restartable.

e All objects with storage that are selected for export must have all of their storage
segments either entirely within administrative, non-transportable tablespaces
(SYSTEM SYSAUX) or entirely within user-defined, transportable tablespaces.
Storage for a single object cannot straddle the two kinds of tablespaces.

* When transporting a database over the network using full transportable export,
auditing cannot be enabled for tables stored in an administrative tablespace (such

2-4

Chapter 2
Invoking Data Pump Export

as SYSTEMand SYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

e If both the source and target databases are running Oracle Database 12c, then to
perform a full transportable export, either the Data Pump VERSI ON parameter must
be set to at least 12.0. or the COVPATI BLE database initialization parameter must
be set to at least 12.0 or later.

Full transportable exports are supported from a source database running release
11.2.0.3. To do so, set the Data Pump VERSI ON parameter to at least 12.0, as shown in
the following syntax example, where user _nane is the user performing a full
transportable export:

> expdp user_nanme FULL=y DUMPFI LE=expdat.dnmp DI RECTORY=data_punp_dir
TRANSPORTABLE=al ways VERS|I ON=12. 0 LOGFI LE=export. | og

Related Topics

« FULL
The Export command-line FULL parameter specifies that you want to perform a
full database mode export

¢ TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

" See Also:

e Oracle Database Backup and Recovery Reference for information about
the RMAN CONVERT command

e Oracle Database Administrator’s Guide for an example of performing a
full transportable export

2.2.2.2 Schema Mode

ORACLE

You can specify a schema export with Data Pump by using the SCHEMAS parameter. A
schema export is the default export mode.

If you have the DATAPUVP_EXP_FULL_DATABASE role, then you can specify a list of
schemas, optionally including the schema definitions themselves and also system
privilege grants to those schemas. If you do not have the
DATAPUVP_EXP_FULL_DATABASE role, then you can export only your own schema.

The SYS schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also
specified in the list of schemas to be exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not explicitly
specified, is not exported. Also, external type definitions upon which tables in the
specified schemas depend are not exported. In such a case, it is expected that the
type definitions already exist in the target instance at import time.

2-5

Chapter 2
Invoking Data Pump Export

Related Topics

+ SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

2.2.2.3 Table Mode

You can use Data Pump to carry out a table mode export by specifying the table using
the TABLES parameter.

In table mode, only a specified set of tables, partitions, and their dependent objects
are unloaded. Any object required to create the table, such as the owning schema, or
types for columns, must already exist.

If you specify the TRANSPORTABLE=ALWAYS parameter with the TABLES parameter, then
only object metadata is unloaded. To move the actual data, you copy the data files to
the target database. This results in quicker export times. If you are moving data files
between releases or platforms, then the data files may need to be processed by
Oracle Recovery Manager (RMAN).

You must have the DATAPUVMP_EXP_FULL_DATABASE role to specify tables that are not in
your own schema. Note that type definitions for columns are not exported in table
mode. It is expected that the type definitions already exist in the target instance at
import time. Also, as in schema exports, cross-schema references are not exported.

To recover tables and table partitions, you can also use RMAN backups and the
RMAN RECOVER TABLE command. During this process, RMAN creates (and optionally
imports) a Data Pump export dump file that contains the recovered objects. Refer to
Oracle Database Backup and Recovery Guide for more information about transporting
data across platforms.

Related Topics

e TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

e TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

* Oracle Database Backup and Recovery User’s Guide

2.2.2.4 Tablespace Mode

ORACLE

You can use Data Pump to carry out a tablespace export by specifying tables using
the TABLESPACES parameter.

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. In tablespace mode, if any part of a table
resides in the specified set, then that table and all of its dependent objects are
exported. Privileged users get all tables. Unprivileged users get only the tables in their
own schemas.

2-6

Chapter 2
Invoking Data Pump Export

Related Topics

* TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies
a list of tablespace names to be exported in tablespace mode.

2.2.2.5 Transportable Tablespace Mode

You can use Data Pump to carry out A transportable tablespace export by using the
TRANSPORT_TABLESPACES parameter.

In transportable tablespace mode, only the metadata for the tables (and their
dependent objects) within a specified set of tablespaces is exported. The tablespace
data files are copied in a separate operation. Then, a transportable tablespace import
is performed to import the dump file containing the metadata and to specify the data
files to use.

Transportable tablespace mode requires that the specified tables be completely self-
contained. That is, all storage segments of all tables (and their indexes) defined within
the tablespace set must also be contained within the set. If there are self-containment
violations, then Export identifies all of the problems without actually performing the
export.

Type definitions for columns of tables in the specified tablespaces are exported and
imported. The schemas owning those types must be present in the target instance.

Transportable tablespace exports cannot be restarted once stopped. Also, they cannot
have a degree of parallelism greater than 1.

¢ Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Related Topics

* How Does Data Pump Handle Timestamp Data?
This section describes factors that can affect successful completion of export and
import jobs that involve the timestamp data types TI MESTAMP W TH Tl MEZONE and
TI MESTAMP W TH LOCAL TI MEZONE.

2.2.3 Network Considerations

ORACLE

You can specify a connect identifier in the connect string when you start the Data
Pump Export utility. This identifier can specify a database instance that is different
from the current instance identified by the current Oracle System ID (SID).

The connect identifier can be an Oracle*Net connect descriptor or a net service name
(usually defined in the t nsnanes. or a file) that maps to a connect descriptor. Use of a
connect identifier requires that you have Oracle Net Listener running (to start the
default listener, enter | snrct| start). The following is an example of this type of
connection, in which i nst 1 is the connect identifier:

expdp hr@nst1 DI RECTORY=dpunp_dir1l DUWPFI LE=hr. dnp TABLES=enpl oyees

2-7

Chapter 2
Filtering During Export Operations

Export then prompts you for a password:

Password: password

The local Export client connects to the database instance defined by the connect
identifier i nst 1 (a net service name), retrieves data from i nst 1, and writes it to the
dump file hr. dnp on i nst 1.

Specifying a connect identifier when you start the Export utility is different from
performing an export operation using the NETWORK_LI NK parameter. When you start an
export operation and specify a connect identifier, the local Export client connects to the
database instance identified by the connect identifier, retrieves data from that
database instance, and writes it to a dump file set on that database instance.
Whereas, when you perform an export using the NETWORK_LI NK parameter, the export
is performed using a database link. (A database link is a connection between two
physical database servers that allows a client to access them as one logical
database.)

Related Topics

¢ NETWORK_LINK
The Data Pump Export command-line utility NETWORK LI NK parameter enables an
export from a (source) database identified by a valid database link. The data from
the source database instance is written to a dump file set on the connected
database instance.

¢ See Also:

e Oracle Database Administrator’s Guide for more information about
database links

* Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

2.3 Filtering During Export Operations

Data Pump Export provides data and metadata filtering capability. This capability helps
you limit the type of information that is exported.

o Data Filters
Data-specific filtering is implemented through the QUERY and SAMPLE parameters,
which specify restrictions on the table rows that are to be exported.

* Metadata Filters
Metadata filtering is implemented through the EXCLUDE and | NCLUDE parameters.
The EXCLUDE and | NCLUDE parameters are mutually exclusive.

2.3.1 Data Filters

Data-specific filtering is implemented through the QUERY and SAMPLE parameters, which
specify restrictions on the table rows that are to be exported.

ORACLE 2-8

Chapter 2
Filtering During Export Operations

Data filtering can also occur indirectly because of metadata filtering, which can include
or exclude table objects along with any associated row data.

Each data filter can be specified once per table within a job. If different filters using the
same name are applied to both a particular table and to the whole job, then the filter
parameter supplied for the specific table takes precedence.

2.3.2 Metadata Filters

ORACLE

Metadata filtering is implemented through the EXCLUDE and | NCLUDE parameters. The
EXCLUDE and | NCLUDE parameters are mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from an Export or
Import operation. For example, you could request a full export, but without Package
Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For
example, if a filter specifies that an index is to be included in an operation, then
statistics from that index will also be included. Likewise, if a table is excluded by a
filter, then indexes, constraints, grants, and triggers upon the table will also be
excluded by the filter.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects pertaining to the job must pass all of the filters applied
to their object types.

The same metadata filter name can be specified multiple times within a job.

To see a list of valid object types, query the following views:

DATABASE_EXPORT _OBJECTS for full mode, SCHEMA EXPORT _OBJECTS for schema mode,
and TABLE_EXPORT_OBJECTS for table and tablespace mode. The values listed in the
OBJECT_PATH column are the valid object types. For example, you could perform the
following query:

SQL.> SELECT OBJECT_PATH, COMMENTS FROM SCHEMA EXPORT_OBJECTS
2 VHERE OBJECT_PATH LI KE " %GRANT' AND OBJECT_PATH NOT LIKE ' % % ;

The output of this query looks similar to the following:

OBJECT_PATH

GRANT
oj ect grants on the selected tables

OBJECT_GRANT
oj ect grants on the selected tables

PROCDEPOBJ _GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the sel ected schenas

2-9

Chapter 2
Parameters Available in Export's Command-Line Mode

SYSTEM GRANT
System privileges granted to users associated with the selected schemas

Related Topics

« EXCLUDE
The Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you
want to exclude from the export operation.

« INCLUDE
The Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the
current export mode. The specified objects and all their dependent objects are
exported. Grants on these objects are also exported.

Related Topics

« EXCLUDE
The Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

 INCLUDE
The Data Pump Import command-line mode | NCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the
current import mode.

2.4 Parameters Available in Export's Command-Line Mode

This section describes the parameters available in the command-line mode of Data
Pump Export.

e About Data Pump Export Parameters
Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information
about how to use examples.

e ABORT_STEP
The Data Pump Export command-line utility ABORT_STEP parameter stops the job
after it is initialized.

¢ ACCESS_METHOD
The Data Pump Export command-line utility ACCESS METHOD parameter instructs
Export to use a particular method to unload data.

e ATTACH
The Data Pump Export command-line utility ATTACH parameter attaches the client
session to an existing export job, and automatically places you in the interactive-
command interface.

¢ CLUSTER
The Data Pump Export command-line utility CLUSTER parameter determines
whether Data Pump can use Oracle RAC, resources, and start workers on other
Oracle RAC instances.

¢ COMPRESSION
The Data Pump Export command-line utility COWPRESSI ON parameter specifies
which data to compress before writing to the dump file set.

ORACLE 2-10

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

COMPRESSION_ALGORITHM

The Data Pump Export command-line utility COWPRESSI ON_ALGORI THM parameter
specifies the compression algorithm that you want to use when compressing dump
file data.

CONTENT
The Data Pump Export command-line utility CONTENT parameter enables you to
filter what Export unloads: data only, metadata only, or both.

DATA OPTIONS
The Data Pump Export command-line utility DATA OPTI ONS parameter designates
how you want certain types of data handled during export operations.

DIRECTORY
The Data Pump Export command-line utility PARALLEL parameter specifies the
default location to which Export can write the dump file set and the log file.

DUMPFILE
The Data Pump Export command-line utility DUMPFI LE parameter specifies the
names, and optionally, the directory objects of dump files for an export job.

ENCRYPTION
The Data Pump Export command-line utility ENCRYPTI ON parameter specifies
whether to encrypt data before writing it to the dump file set.

ENCRYPTION_ALGORITHM
The Data Pump Export command-line utility ENCRYPTI ON_ALGORI THM parameter
specifies which cryptographic algorithm should be used to perform the encryption.

ENCRYPTION_MODE
The Data Pump Export command-line utility ENCRYPTI ON_MODE parameter specifies
the type of security to use when encryption and decryption are performed.

ENCRYPTION_PASSWORD

The Data Pump Export command-line utility ENCRYPTI ON_PASSWORD parameter
specifies a password for encrypting encrypted column data, metadata, or table
data in the export dump file. This parameter prevents unauthorized access to an
encrypted dump file set.

ENCRYPTION_PWD_PROMPT
The Data Pump Export command-line utility ENCRYPTI ON_PWD_PROVPT specifies
whether Data Pump should prompt you for the encryption password.

ESTIMATE

The Data Pump Export command-line utility ESTI MATE parameter specifies the
method that Export uses to estimate how much disk space each table in the export
job will consume (in bytes).

ESTIMATE_ONLY

The Data Pump Export command-line utility ESTI MATE_ONLY parameter instructs
Export to estimate the space that a job consumes, without actually performing the
export operation.

EXCLUDE

The Data Pump Export command-line utility EXCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types that you
want to exclude from the export operation.

FILESIZE
The Data Pump Export command-line utility FI LESI ZE parameter specifies the
maximum size of each dump file.

2-11

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

FLASHBACK_SCN

The Data Pump Export command-line utility FLASHBACK_SCN parameter specifies
the system change number (SCN) that Export uses to enable the Flashback Query
utility.

FLASHBACK_TIME

The Data Pump Export command-line utility FLASHBACK TI ME parameter finds the
SCN that most closely matches the specified time. This SCN is used to enable the
Flashback utility. The export operation is performed with data that is consistent up
to this SCN.

FULL
The Export command-line FULL parameter specifies that you want to perform a
full database mode export

HELP
The Data Pump Export command-line utility HELP parameter displays online help
for the Export utility.

INCLUDE

The Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the
current export mode. The specified objects and all their dependent objects are
exported. Grants on these objects are also exported.

JOB_NAME

The Data Pump Export command-line utility JOB_NAVE parameter identifies the
export job in subsequent actions, such as when using ATTACH to attach to a job, or
to identify a job using DBA_DATAPUMP_J(OBS or USER_DATAPUMP_JOBS views.

KEEP_MASTER

The Data Pump Export command-line utility KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump
job that completes successfully. The master table is automatically retained for jobs
that do not complete successfully.

LOGFILE
The Data Pump Export command-line utility LOGFILE parameter specifies the
name, and optionally, a directory, for the log file of the export job.

LOGTIME
The Data Pump Export command-line utility LOGTI ME parameter specifies that
messages displayed during export operations are timestamped.

METRICS
The Data Pump Export command-line utility METRI CS parameter indicates whether
you want additional information about the job reported to the Data Pump log file.

NETWORK_LINK

The Data Pump Export command-line utility NETWORK LI NK parameter enables an
export from a (source) database identified by a valid database link. The data from
the source database instance is written to a dump file set on the connected
database instance.

NOLOGFILE
The Data Pump Export command-line utility NOLOGFILE parameter specifies
whether to suppress creation of a log file.

PARALLEL
The Export command-line utility PARALLEL parameter specifies the maximum
number of processes of active execution operating on behalf of the export job.

2-12

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

PARFILE
The Data Pump Export command-line utility PARFILE parameter specifies the
name of an export parameter file.

QUERY
The Data Pump Export command-line utility QUERY parameter enables you to
specify a query clause that is used to filter the data that gets exported.

REMAP_DATA

The Data Pump Export command-line utility REMAP_DATA parameter enables you to
specify a remap function that takes as a source the original value of the
designated column and returns a remapped value that will replace the original
value in the dump file.

REUSE_DUMPFILES
The Data Pump Export command-line utility xxx parameter specifies whether to
overwrite a preexisting dump file.

SAMPLE

The Data Pump Export command-line utility SAMPLE parameter specifies a
percentage of the data rows that you want to be sampled and unloaded from the
source database.

SCHEMAS
The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

SERVICE_NAME

SOURCE_EDITION
The Data Pump Export command-line utility SOURCE_EDI TI ON parameter specifies
the database edition from which objects are exported.

STATUS
The Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated

TABLES
The Data Pump Export command-line utility TABLES parameter specifies that you
want to perform a table-mode export.

TABLESPACES
The Data Pump Export command-line utility TABLESPACES parameter specifies
a list of tablespace names to be exported in tablespace mode.

TRANSPORT_FULL_CHECK

The Data Pump Export command-line utility TRANSPORT FULL_CHECK parameter
specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is
applicable only to a transportable-tablespace mode export.

TRANSPORT_TABLESPACES

The Data Pump Export command-line utility TRANSPORT_TABLESPACES
parameter specifies that you want to perform an export in transportable-tablespace
mode

TRANSPORTABLE

The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

2-13

Chapter 2
Parameters Available in Export's Command-Line Mode

* VERSION
The Data Pump Export command-line utility VERSI ON parameter specifies the
version of database objects that you want to export.

e VIEWS_AS_TABLES
The Data Pump Export command-line utility VI EN6_AS TABLES parameter specifies
that you want one or more views exported as tables.

Related Topics

* PARFILE
The Data Pump Export command-line utility PARFILE parameter specifies the
name of an export parameter file.

* Understanding Dump, Log, and SQL File Default Locations
Data Pump is server-based rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

* Examples of Using Data Pump Export
These sections provides examples of using Data Pump Export.

* Syntax Diagrams for Data Pump Export
This section provides syntax diagrams for Data Pump Export.

2.4.1 About Data Pump Export Parameters

ORACLE

Learn how to use Oracle Data Pump Export parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information about
how to use examples.

Specifying Export Parameters

For parameters that can have multiple values specified, you can specify the values by
commas, or by spaces. For example, you can specify TABLES=enpl oyees, j obs or
TABLES=enpl oyees j obs.

For every parameter you enter, you must enter an equal sign (=), and a value. Data
Pump has no other way of knowing that the previous parameter specification is
complete and a new parameter specification is beginning. For example, in the
following command line, even though NOLOGFI LE is a valid parameter, Export interprets
the string as another dump file name for the DUMPFI LE parameter:

expdp DI RECTORY=dpunpdi r DUMPFI LE=t est. dnp NOLOGFI LE TABLES=enpl oyees

This command results in two dump files being created, t est . dnp and nol ogfi | e. dnp.

To avoid this result, specify either NOLOGFI LE=YES or NOLOGFI LE=NO.

Case Sensitivity When Specifying Parameter Values

For tablespace names, schema names, table names, and so on, that you enter as
parameter values, Oracle Data Pump by default changes values entered as lowercase
or mixed-case into uppercase. For example, if you enter TABLE=hr . enpl oyees, then it
is changed to TABLE=HR EMPLOYEES. To maintain case, you must enclose the value
within quotation marks. For example, TABLE="hr . enpl oyees" would preserve the table
name in all lower case. The name you enter must exactly match the name stored in
the database.

2-14

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

Use of Quotation Marks On the Data Pump Command Line

Some operating systems treat quotation marks as special characters. These operating
systems therefore do not pass quotation marks on to an application unless quotation
marks are preceded by an escape character, such as the backslash (\). This
requirement is true both on the command lin, and within parameter files. Some
operating systems can require an additional set of single or double quotation marks on
the command line around the entire parameter value containing the special characters.

The following examples are provided to illustrate these concepts. Note that your
particular operating system can have different requirements. The documentation
examples cannot fully anticipate operating environments, which are unique to each
user.

In this example, the TABLES parameter is specified in a parameter file:

TABLES = \"M xedCaseTabl eNane\ "

If you specify that value on the command line, then some operating systems require
that you surround the parameter file name using single quotation marks, as follows:

TABLES = '\"M xedCaseTabl eNare\ "'

To avoid having to supply more quotation marks on the command line, Oracle
recommends the use of parameter files. Also, note that if you use a parameter file, and
the parameter value being specified does not have quotation marks as the first
character in the string (for example, TABLES=scot t. " EnP"), then some operating
systems do not require the use of escape characters.

Using the Export Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the
following:

» After you enter the user name and parameters as shown in the example, Export is
started, and you are prompted for a password. You are required to enter the
password before a database connection is made.

* Most of the examples use the sample schemas of the seed database, which is
installed by default when you install Oracle Database. In particular, the human
resources (hr) schema is often used.

* The examples assume that the directory objects, dpunp_di r 1 and dpunp_di r 2,
already exist, and that READ and WRI TE privileges are granted to the hr user for
these directory objects.

* Some of the examples require the DATAPUMP_EXP_FULL_DATABASE and
DATAPUMP_| MP_FULL_DATABASE roles. The examples assume that the hr user is
granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning
the necessary privileges and roles.

Unless specifically noted, you can also specify these parameters in a parameter file.

2-15

Chapter 2
Parameters Available in Export's Command-Line Mode

¢ See Also:

e Oracle Database Sample Schemas

e Your Oracle operating system-specific documentation for information
about how special and reserved characters are handled on your system

2.4.2 ABORT_STEP

The Data Pump Export command-line utility ABORT _STEP parameter stops the job after
it is initialized.

Default: Null
Purpose

Used to stop the job after it is initialized. Stopping a job after it is initialized enables
you to query the master table to be queried before any data is exported.

Syntax and Description

ABORT_STEP=[n | -1]

The possible values correspond to a process order number in the master table. The
result of using each number is as follows:

* n: If the value is zero or greater, then the export operation is started and the job is
aborted at the object that is stored in the master table with the corresponding
process order number.

e -1:If the value is negative one (- 1), then abort the job after setting it up, but before
exporting any objects or data.

Restrictions

e None

Example

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=expdat . dnp SCHEMAS=hr
ABORT_STEP=-1

2.4.3 ACCESS_METHOD

ORACLE

The Data Pump Export command-line utility ACCESS METHOD parameter instructs Export
to use a particular method to unload data.

Default: AUTOVATI C

Purpose

Instructs Export to use a particular method to unload data.

2-16

Chapter 2
Parameters Available in Export's Command-Line Mode

Syntax and Description

ACCESS_METHOD=[AUTOMATI C | DI RECT_PATH | EXTERNAL_TABLE | |NSERT_AS_SELECT]

The ACCESS_METHCD parameter is provided so that you can try an alternative method if
the default method does not work for some reason. All methods can be specified for a
network export. If the data for a table cannot be unloaded with the specified access
method, then the data displays an error for the table and continues with the next work
item.

The available options are as follows:

e AUTOMATI C— Data Pump determines the best way to unload data for each table.
Oracle recommends that you use AUTOVATI C whenever possible because it allows
Data Pump to automatically select the most efficient method.

e DI RECT_PATH— Data Pump uses direct path unload for every table.

e EXTERNAL_TABLE — Data Pump uses a SQL CREATE TABLE AS SELECT statement
to create an external table using data that is stored in the dump file. The SELECT
clause reads from the table to be unloaded.

* I NSERT_AS SELECT — Data Pump executes a SQL | NSERT AS SELECT statement to
unload data from a remote database. This option is only available for network
mode exports.

Restrictions

e To use the ACCESS METHOD parameter with network exports, you must be using
Oracle Database 12c Release 2 (12.2.0.1) or later.

e The ACCESS METHOD parameter for Data Pump Export is not valid for transportable
tablespace jobs.

Example

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=expdat . dnp SCHEMAS=hr
ACCESS_METHOD=EXTERNAL_TABLE

2.4.4 ATTACH

ORACLE

The Data Pump Export command-line utility ATTACH parameter attaches the client
session to an existing export job, and automatically places you in the interactive-
command interface.

Default: job currently in the user schema, if there is only one

Purpose

Attaches the client session to an existing export job and automatically places you in
the interactive-command interface. Export displays a description of the job to which
you are attached and also displays the Export prompt.

Syntax and Description

ATTACH [=[schenma_nane.] j ob_nane]

2-17

Chapter 2
Parameters Available in Export's Command-Line Mode

The schema_nane is optional. To specify a schema other than your own, you must have
the DATAPUVP_EXP_FULL_DATABASE role.

The j ob_nane is optional if only one export job is associated with your schema and the
job is active. To attach to a stopped job, you must supply the job name. To see a list of
Data Pump job names, you can query the DBA_ DATAPUMP_JOBS view, or the
USER_DATAPUMP_JOBS view.

When you are attached to the job, Export displays a description of the job and then
displays the Export prompt.

Restrictions

e When you specify the ATTACH parameter, the only other Data Pump parameter you
can specify on the command line is ENCRYPTI ON_PASSWORD.

« If the job to which you are attaching was initially started using an encryption
password, then when you attach to the job, you must again enter the
ENCRYPTI ON_PASSWORD parameter on the command line to respecify that password.
The only exception to this requirement is if the job was initially started with the
ENCRYPTI ON=ENCRYPTED_COLUWNS_ONLY parameter. In that case, the encryption
password is not needed when attaching to the job.

* You cannot attach to a job in another schema unless it is already running.

» If the dump file set or master table for the job have been deleted, then the attach
operation fails.

» Altering the master table in any way leads to unpredictable results.

Example

The following is an example of using the ATTACH parameter. It assumes that the job
hr. export _j ob is an existing job.

> expdp hr ATTACH=hr. export job

Related Topics

e Commands Available in Data Pump Export Interactive-Command Mode

2.4.5 CLUSTER

ORACLE

The Data Pump Export command-line utility CLUSTER parameter determines whether
Data Pump can use Oracle RAC, resources, and start workers on other Oracle RAC
instances.

Default: YES

Purpose

Determines whether Data Pump can use Oracle Real Application Clusters (Oracle
RAC) resources and start workers on other Oracle RAC instances.

Syntax and Description

CLUSTER=[YES | N

2-18

Chapter 2
Parameters Available in Export's Command-Line Mode

To force Data Pump Export to use only the instance where the job is started and to
replicate pre-Oracle Database 119 release 2 (11.2) behavior, specify CLUSTER=NO.

To specify a specific, existing service and constrain worker processes to run only on
instances defined for that service, use the SERVI CE_NAME parameter with the
CLUSTER=YES parameter.

Use of the CLUSTER parameter can affect performance because there is some
additional overhead in distributing the export job across Oracle RAC instances. For
small jobs, it can be better to specify CLUSTER=NOto constrain the job to run on the
instance where it is started. Jobs whose performance benefits the most from using the
CLUSTER parameter are those involving large amounts of data.

Example
The following is an example of using the CLUSTER parameter:

> expdp hr DI RECTORY=dpunp_dir1 DUVPFI LE=hr _cl us%J. dnp CLUSTER=NO PARALLEL=3

This example starts a schema-mode export (the default) of the hr schema. Because
CLUSTER=NOis specified, the job uses only the instance on which it started. (If you do
not specify the CLUSTER parameter, then the default value of Y is used. With that value,
if necessary, workers are started on other instances in the Oracle RAC cluster). The
dump files are written to the location specified for the dpunp_di r 1 directory object. The
job can have up to 3 parallel processes.

Related Topics
* SERVICE_NAME

* Understanding How to Use Oracle Data Pump with Oracle RAC
Using Oracle Data Pump in an Oracle Real Application Clusters (Oracle RAC)
environment requires you to perform a few checks to make sure that you are
making cluster member nodes available.

2.4.6 COMPRESSION

ORACLE

The Data Pump Export command-line utility COMPRESSI ON parameter specifies which
data to compress before writing to the dump file set.

Default: METADATA_ONLY

Purpose

Specifies which data to compress before writing to the dump file set.

Syntax and Description

COVPRESSI ON=[ALL | DATA ONLY | METADATA ONLY | NONE]

e ALL enables compression for the entire export operation. The ALL option requires
that the Oracle Advanced Compression option be enabled.

* DATA ONLY results in all data being written to the dump file in compressed format.
The DATA_ONLY option requires that the Oracle Advanced Compression option be
enabled.

e METADATA ONLY results in all metadata being written to the dump file in compressed
format. This is the default.

2-19

Chapter 2
Parameters Available in Export's Command-Line Mode

* NONE disables compression for the entire export operation.

Restrictions

e To make full use of all these compression options, the COVPATI BLE initialization
parameter must be set to at least 11.0.0.

e The METADATA_ONLY option can be used even if the COVPATI BLE initialization
parameter is set to 10.2.

* Compression of data using ALL or DATA_ONLY is valid only in the Enterprise Edition
of Oracle Database 11g or later, and they require that the Oracle Advanced
Compression option be enabled.

Example
The following is an example of using the COVPRESSI ON parameter:

> expdp hr DI RECTORY=dpunp_dir1l DUMPFI LE=hr _conp. dnp
COVPRESSI ON=METADATA_ONLY

This command executes a schema-mode export that compresses all metadata before
writing it out to the dump file, hr _conp. dnp. It defaults to a schema-mode export,
because no export mode is specified.

See Oracle Database Licensing Information for information about licensing
requirements for the Oracle Advanced Compression option.

Related Topics

e Oracle Database Licensing Information User Manual

2.4.1 COMPRESSION_ALGORITHM

ORACLE

The Data Pump Export command-line utility COWPRESSI ON_ALGORI THMparameter
specifies the compression algorithm that you want to use when compressing dump file
data.

Default: BASI C

Purpose

Specifies the compression algorithm to be used when compressing dump file data.

Syntax and Description

COVPRESSI ON_ALGORI THM = {BASIC | LON| MEDIUM | H GH}

The parameter options are defined as follows:

e BASI C: Offers a good combination of compression ratios and speed; the algorithm
used is the same as in previous versions of Oracle Data Pump.

* LOW Least impact on export throughput. This option is suited for environments
where CPU resources are the limiting factor.

e MEDI UM Recommended for most environments. This option, like the BASI C option,
provides a good combination of compression ratios and speed, but it uses a
different algorithm than BASI C.

2-20

Chapter 2
Parameters Available in Export's Command-Line Mode

* HI GH: Best suited for situations in which dump files are copied over slower
networks, where the limiting factor is network speed.

You characterize the performance of a compression algorithm by its CPU usage, and
by the compression ratio (the size of the compressed output as a percentage of the
uncompressed input). These measures vary, based on the size and type of inputs, as
well as the speed of the compression algorithms used. The compression ratio
generally increases from low to high, with a trade-off of potentially consuming more
CPU resources.

It is recommended that you run tests with the different compression levels on the data
in your environment. Choosing a compression level based on your environment,
workload characteristics, and size and type of data is the only way to ensure that the
exported dump file set compression level meets your performance and storage
requirements.

Restrictions

* To use this feature, database compatibility must be set to 12.0.0 or later.

* This feature requires that you have the Oracle Advanced Compression option
enabled.

Example 1

This example performs a schema-mode unload of the HR schema and compresses
only the table data using a compression algorithm with a low level of compression.
Using this command option can result in fewer CPU resources being used, at the
expense of a less than optimal compression ratio.

> expdp hr DI RECTORY=dpunp_di r1 DUMPFI LE=hr. dnp COMPRESSI ON=DATA ONLY
COVPRESS| ON_ALGOR! THVELOW

Example 2

This example performs a schema-mode unload of the HR schema, and compresses
both metadata and table data using the basic level of compression. Omitting the
COVPRESSI ON_ALGORI THMparameter altogether is equivalent to specifying BASI C as the
value.

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=hr. dnp COVPRESS| ON=ALL
COVPRESS! ON_ALGOR! THVEBASI C

2.4.8 CONTENT

ORACLE

The Data Pump Export command-line utility CONTENT parameter enables you to filter
what Export unloads: data only, metadata only, or both.

Default: ALL

Purpose

Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description

CONTENT=[ALL | DATA ONLY | METADATA ONLY]

2-21

Chapter 2
Parameters Available in Export's Command-Line Mode

e ALL unloads both data and metadata. This option is the default.

e DATA ONLY unloads only table row data; no database object definitions are
unloaded.

e METADATA ONLY unloads only database object definitions; no table row data is
unloaded. Be aware that if you specify CONTENT=METADATA ONLY, then afterward,
when the dump file is imported, any index or table statistics imported from the
dump file are locked after the import.

Restrictions

e The CONTENT=METADATA_ONLY parameter cannot be used with the
TRANSPORT _TABLESPACES (transportable-tablespace mode) parameter or with the
QUERY parameter.

Example

The following is an example of using the CONTENT parameter:

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=hr. dnp CONTENT=METADATA ONLY

This command executes a schema-mode export that unloads only the metadata
associated with the hr schema. It defaults to a schema-mode export of the hr schema,
because no export mode is specified.

2.4.9 DATA_OPTIONS

ORACLE

The Data Pump Export command-line utility DATA_OPTI ONS parameter designates how
you want certain types of data handled during export operations.

Default: There is no default. If this parameter is not used, then the special data
handling options it provides simply do not take effect.

Purpose

The DATA _OPTI ONS parameter designates how certain types of data should be handled
during export operations.

Syntax and Description

e CGROUP_PARTI TI ON_TABLE DATA: Tells Data Pump to unload all table data in one
operation rather than unload each table partition as a separate operation. As a
result, the definition of the table will not matter at import time because Import will
see one partition of data that will be loaded into the entire table.

e VERI FY_STREAM FORMAT: Validates the format of a data stream before it is written to
the Data Pump dump file. The verification checks for a valid format for the stream
after it is generated but before it is written to disk. This assures that there are no
errors when the dump file is created, which in turn helps to assure that there will
not be errors when the stream is read at import time.

Restrictions

DATA_OPTI ONS= [GROUP_PARTI TI ON_TABLE_DATA | VERI FY_STREAM FORVAT]

2-22

Chapter 2
Parameters Available in Export's Command-Line Mode

* The Export DATA_OPTI ONS parameter requires the job version to be setto 11. 0.0
or later. See VERS| ON.

Example

This example shows an export operation in which data for all partitions of a table are
unloaded together instead of the default behavior of unloading the data for each
partition separately.

> expdp hr TABLES=hr.tabl DI RECTORY=dpunp_dir1 DUMPFI LE=hr.dnp VERSI ON=11.2
GROUP_PARTI TI ON_TABLE_DATA

See Oracle XML DB Developer’s Guide for information specific to exporting and
importing XM_Type tables.

Related Topics
e VERSION
e Oracle XML DB Developer’s Guide

2.4.10 DIRECTORY

ORACLE

The Data Pump Export command-line utility PARALLEL parameter specifies the default
location to which Export can write the dump file set and the log file.

Default: DATA_PUVP_DI R

Purpose

Specifies the default location to which Export can write the dump file set and the log
file.

Syntax and Description

DI RECTORY=di r ect ory_obj ect

The di rect ory_obj ect is the name of a database directory object. It is not the file path
of an actual directory. Privileged users have access to a default directory object
named DATA PUMP_DI R. The definition of the DATA_PUWP_DI R directory can be changed
by Oracle during upgrades, or when patches are applied.

Users with access to the default DATA_PUVP_DI R directory object do not need to use the
DI RECTORY parameter.

A directory object specified on the DUMPFI LE or LOGFI LE parameter overrides any
directory object that you specify for the DI RECTORY parameter.

Example

The following is an example of using the DI RECTORY parameter:

> expdp hr DI RECTORY=dpunp_dir1l DUVPFI LE=enpl oyees. dnp
CONTENT=METADATA_ONLY

In this example, the dump file, enpl oyees. dunp is written to the path that is associated
with the directory object dpunp_di r 1.

2-23

Chapter 2
Parameters Available in Export's Command-Line Mode

Related Topics
* Understanding Dump, Log, and SQL File Default Locations
» Understanding How to Use Oracle Data Pump with Oracle RAC

e Oracle Database SQL Language Reference

2.4.11 DUMPFILE

The Data Pump Export command-line utility DUVPFI LE parameter specifies the names,
and optionally, the directory objects of dump files for an export job.

Default: expdat . dnp

Purpose

Specifies the names, and optionally, the directory objects of dump files for an export
job.

Syntax and Description

DUWPFI LE=[directory_object:]file_name [, ...]

Specifying di rect ory_obj ect is optional if you have already specified the directory
object by using the DI RECTORY parameter. If you supply a value here, then it must be a
directory object that exists, and to which you have access. A database directory object
that is specified as part of the DUMPFI LE parameter overrides a value specified by the
DI RECTORY parameter, or by the default directory object.

You can supply multiple fi |l e_name specifications as a comma-delimited list or in
separate DUVPFI LE parameter specifications. If no extension is given for the file name,
then Export uses the default file extension of . dnp. The file names can contain a
substitution variable. The following table lists the available substitution variables.

Substitution Meaning

Variable

W The substitution variable is expanded in the resulting file names into a 2-digit,
fixed-width, incrementing integer that starts at 01 and ends at 99. If a file
specification contains two substitution variables, then both are incremented at
the same time. For example, exp%Jaa%J. dnp resolves to exp0laa0l. dnp,
exp02aal2. dnp, and so forth.

%l, 9D Specifies the current day of the month from the Gregorian calendar in format
DD.
Note: This substitution variable cannot be used in an import file name.

%m M Specifies the month in the Gregorian calendar in format MM
Note: This substitution variable cannot be used in an import file name.

% , %l Specifies the year, month, and day in the Gregorian calendar in this format:

YYYYMVDD.
Note: This substitution variable cannot be used in an import file name.

ORACLE 2-24

Chapter 2
Parameters Available in Export's Command-Line Mode

Substitution Meaning

Variable

% , % Specifies a system-generated unique file name.
The file names can contain a substitution variable (%), which implies that
multiple files can be generated. The substitution variable is expanded in the
resulting file names into a 2-digit, fixed-width, incrementing integer starting at
01 and ending at 99 which is the same as (%J). In addition, the substitution
variable is expanded in the resulting file names into a 3-digit to 10-digit,
variable-width, incrementing integers starting at 100 and ending at
2147483646. The width field is determined by the number of digits in the
integer.
For example if the current integer is 1, then exp%.aa%.. dnp resolves to:
exp0laall. dnp
exp02aa02. dnp
and so forth, up until 99. Then, the next file name has 3 digits substituted:
expl00aal00. dnp
expl0laalOl. dnp
and so forth, up until 999, where the next file has 4 digits substituted. The
substitutions continue up to the largest number substitution allowed, which is
2147483646.

Yy, %Y Specifies the year in this format: YYYY.

Note: This substitution variable cannot be used in an import file name.

If the FI LESI ZE parameter is specified, then each dump file has a maximum of that
size and be nonextensible. If more space is required for the dump file set, and a
template with a substitution variable was supplied, then a new dump file is
automatically created of the size specified by the FI LESI ZE parameter, if there is room
on the device.

As each file specification or file template containing a substitution variable is defined, it
is instantiated into one fully qualified file name, and Export attempts to create the file.
The file specifications are processed in the order in which they are specified. If the job
needs extra files because the maximum file size is reached, or to keep parallel
workers active, then more files are created if file templates with substitution variables
were specified.

Although it is possible to specify multiple files using the DUVPFI LE parameter, the
export job can only require a subset of those files to hold the exported data. The dump
file set displayed at the end of the export job shows exactly which files were used. It is
this list of files that is required to perform an import operation using this dump file set.
Any files that were not used can be discarded.

When you specify the DUVPFI LE parameter, it is possible to introduce conflicting file
names, regardless of whether substitution variables are used. The following are some

ORACLE 2-25

Chapter 2
Parameters Available in Export's Command-Line Mode

examples of expdp commands that would produce file name conflicts. For all these
examples, an ORA- 27308 created file already exists erroris returned:

expdp systen nanager directory=dpunp_dir schemas=hr DUMPFI LE=f 00%J. dnp, f 00
%J. dnp

expdp systen nanager directory=dpunp_dir schemas=hr DUMPFI LE=f 00%J. dnp, f 00
%.. dnp

expdp systen nanager directory=dpunp_dir schemas=hr DUWPFI LE=f 00%J. dnp, f 00
%9. dnp

expdp systen nanager directory =dpunp_dir schemas=hr DUVPFI LE=f 00% K % %
% _P, foo%K %I_%J %W P

Restrictions

* Any resulting dump file names that match preexisting dump file names generate
an error, and the preexisting dump files are not overwritten. You can override this
behavior by specifying the Export parameter REUSE_DUMPFI LES=YES.

» Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSI ON=12 can only be imported on Oracle Database 12¢ Release 1
(12.1) and later.

Example

The following is an example of using the DUMPFI LE parameter:

> expdp hr SCHEMAS=hr DI RECTORY=dpunp_dir1 DUVPFI LE=dpunp_dir2: expl. dnp,
exp2%J. dnp PARALLEL=3

The dump file, expl.dnp, is written to the path associated with the directory object
dpunp_di r 2, because dpunp_di r 2 was specified as part of the dump file name, and
therefore overrides the directory object specified with the DI RECTORY parameter.
Because all three parallel processes are given work to perform during this job, dump
files named exp201. dnp and exp202. dnp is created, based on the specified
substitution variable exp2%J. dnp. Because no directory is specified for them, they are
written to the path associated with the directory object, dpunp_di r 1, that was specified
with the DI RECTORY parameter.

Related Topics

e Using Substitution Variables

ORACLE 2-26

Chapter 2
Parameters Available in Export's Command-Line Mode

2.4.12 ENCRYPTION

ORACLE

The Data Pump Export command-line utility ENCRYPTI ON parameter specifies whether
to encrypt data before writing it to the dump file set.

Default: The default value depends upon the combination of encryption-related
parameters that are used. To enable encryption, either the ENCRYPTI ON or
ENCRYPTI ON_PASSWORD parameter, or both, must be specified.

If only the ENCRYPTI ON_PASSWORD parameter is specified, then the ENCRYPTI ON
parameter defaults to ALL.

If only the ENCRYPTI ON parameter is specified and the Oracle encryption wallet is open,
then the default mode is TRANSPARENT. If only the ENCRYPTI ON parameter is specified
and the wallet is closed, then an error is returned.

If neither ENCRYPTI ON nor ENCRYPTI ON_PASSWORD is specified, then ENCRYPTI ON defaults
to NONE.

Purpose

Specifies whether to encrypt data before writing it to the dump file set.

Syntax and Description

ENCRYPTI ON = [ALL | DATA ONLY | ENCRYPTED COLUWNS ONLY | METADATA ONLY | NONE]

e ALL enables encryption for all data and metadata in the export operation.

» DATA ONLY specifies that only data is written to the dump file set in encrypted
format.

e ENCRYPTED_COLUWNS_ONLY specifies that only encrypted columns are written to the
dump file set in encrypted format. This option cannot be used with the
ENCRYPTI ON_ALGORI THM parameter because the columns already have an assigned
encryption format and by definition, a column can have only one form of
encryption.

To use the ENCRYPTED _COLUMNS_ONLY option, you must have Oracle Advanced
Security Transparent Data Encryption (TDE) enabled. See Oracle Database
Advanced Security Guide for more information about TDE.

e METADATA ONLY specifies that only metadata is written to the dump file set in
encrypted format.

* NONE specifies that no data is written to the dump file set in encrypted format.

SecureFiles Considerations for Encryption

If the data being exported includes SecureFiles that you want to be encrypted, then
you must specify ENCRYPTI ON=ALL to encrypt the entire dump file set. Encryption of the
entire dump file set is the only way to achieve encryption security for SecureFiles
during a Data Pump export operation. For more information about SecureFiles, see
Oracle Database SecureFiles and Large Objects Developer’s Guide.

2-27

Chapter 2
Parameters Available in Export's Command-Line Mode

Oracle Database Vault Considerations for Encryption

When an export operation is started, Data Pump determines whether Oracle Database
Vault is enabled. If it is, and dump file encryption has not been specified for the job, a
warning message is returned to alert you that secure data is being written in an
insecure manner (clear text) to the dump file set:

ORA-39327: Oracle Database Vault data is being stored unencrypted in dunp
file set

You can abort the current export operation and start a new one, specifying that you
want the output dump file set to be encrypted.

Restrictions

e To specify the ALL, DATA ONLY, or METADATA ONLY options, the COVPATI BLE
initialization parameter must be set to at least 11.0.0.

» This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

» Data Pump encryption features require that you have the Oracle Advanced
Security option enabled. See Oracle Database Licensing Information for
information about licensing requirements for the Oracle Advanced Security option.

Example

The following example performs an export operation in which only data is encrypted in
the dump file:

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=hr _enc. dnp JOB_NAME=encl
ENCRYPTI ON=dat a_onl y ENCRYPTI ON_PASSWORD=f oobar

Related Topics
» Oracle Database Advanced Security Guide
* Oracle Database SecureFiles and Large Objects Developer's Guide

e Oracle Database Licensing Information User Manual

2.4.13 ENCRYPTION_ALGORITHM

ORACLE

The Data Pump Export command-line utility ENCRYPTI ON_ALGORI THM parameter
specifies which cryptographic algorithm should be used to perform the encryption.

Default: AES128

Purpose

Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description

ENCRYPTI ON_ALGORI THVI = [AES128 | AES192 | AES256]

2-28

Chapter 2
Parameters Available in Export's Command-Line Mode

Restrictions

* To use this encryption feature, the COVPATI BLE initialization parameter must be set
to at least 11.0.0.

e The ENCRYPTI ON_ALGORI THMparameter requires that you also specify either the
ENCRYPTI ON or ENCRYPTI ON_PASSWORD parameter; otherwise an error is returned.

e The ENCRYPTI ON_ALGORI THMparameter cannot be used in conjunction with
ENCRYPTI ON=ENCRYPTED _COLUWMNS_ONLY because columns that are already
encrypted cannot have an additional encryption format assigned to them.

* This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

» Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Licensing Information for information about
licensing requirements for the Oracle Advanced Security option.

Example

> expdp hr DI RECTORY=dpunp_dir1l DUMPFI LE=hr _enc3. dnp
ENCRYPTI ON_PASSWORD=f oobar ENCRYPTI ON_ALGORI THVFAES128

Related Topics
* Oracle Database Security Guide

e Oracle Database Licensing Information User Manual

2.4.14 ENCRYPTION_MODE

ORACLE

The Data Pump Export command-line utility ENCRYPTI ON_MODE parameter specifies the
type of security to use when encryption and decryption are performed.

Default: The default mode depends on which other encryption-related parameters are
used. If only the ENCRYPTI ON parameter is specified and the Oracle encryption wallet is
open, then the default mode is TRANSPARENT. If only the ENCRYPTI ON parameter is
specified and the wallet is closed, then an error is returned.

If the ENCRYPTI ON_PASSWORD parameter is specified and the wallet is open, then the
default is DUAL. If the ENCRYPTI ON_PASSWORD parameter is specified and the wallet is
closed, then the default is PASSWORD.

Purpose

Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description

ENCRYPTI ON_MODE = [DUAL | PASSWORD | TRANSPARENT]

DUAL mode creates a dump file set that can later be imported either transparently or by
specifying a password that was used when the dual-mode encrypted dump file set was
created. When you later import the dump file set created in DUAL mode, you can use
either the wallet or the password that was specified with the ENCRYPTI ON_PASSWORD
parameter. DUAL mode is best suited for cases in which the dump file set will be

2-29

Chapter 2
Parameters Available in Export's Command-Line Mode

imported on-site using the wallet, but which may also need to be imported offsite
where the wallet is not available.

PASSWORD mode requires that you provide a password when creating encrypted dump
file sets. You will need to provide the same password when you import the dump file
set. PASSWORD mode requires that you also specify the ENCRYPTI ON_PASSWORD
parameter. The PASSWORD mode is best suited for cases in which the dump file set will
be imported into a different or remote database, but which must remain secure in
transit.

TRANSPARENT mode enables you to create an encrypted dump file set without any
intervention from a database administrator (DBA), provided the required wallet is
available. Therefore, the ENCRYPTI ON_PASSWORD parameter is not required. The
parameter will, in fact, cause an error if it is used in TRANSPARENT mode. This
encryption mode is best suited for cases in which the dump file set is imported into the
same database from which it was exported.

Restrictions

* To use DUAL or TRANSPARENT mode, the COVPATI BLE initialization parameter must
be set to at least 11.0.0.

* When you use the ENCRYPTI ON_MODE parameter, you must also use either the
ENCRYPTI ON or ENCRYPTI ON_PASSWORD parameter. Otherwise, an error is returned.

* When you use the ENCRYPTI ON=ENCRYPTED_COLUWMNS_ONLY, you cannot use the
ENCRYPTI ON_MODE parameter. Otherwise, an error is returned.

» This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

« Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Licensing Information for information about
licensing requirements for the Oracle Advanced Security option.

Example

> expdp hr DI RECTORY=dpunp_dir1l DUMPFI LE=hr _enc4. dnp
ENCRYPTI ON=al | ENCRYPTI ON_PASSWORD=secr et wor ds
ENCRYPTI ON_ALGORI THMFAES256 ENCRYPTI ON_MODE=DUAL

Related Topics

* Oracle Database Licensing Information User Manual

2.4.15 ENCRYPTION_PASSWORD

ORACLE

The Data Pump Export command-line utility ENCRYPTI ON_PASSWORD parameter specifies
a password for encrypting encrypted column data, metadata, or table data in the
export dump file. This parameter prevents unauthorized access to an encrypted dump
file set.

Default: There is no default; the value is user-provided.

2-30

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

Purpose

Specifies a password for encrypting encrypted column data, metadata, or table data in
the export dump file.Using this parameter prevents unauthorized access to an
encrypted dump file set.

Note:

Data Pump encryption functionality changed as of Oracle Database 11g
release 1 (11.1). Before release 11.1, the ENCRYPTI ON_PASSWORD parameter
applied only to encrypted columns. However, as of release 11.1, the new
ENCRYPTI ON parameter provides options for encrypting other types of data.
As a result of this change, if you now specify ENCRYPTI ON_PASSWORD without
also specifying ENCRYPTI ON and a specific option, then all data written to the
dump file is encrypted (equivalent to specifying ENCRYPTI ON=ALL). To re-
encrypt only encrypted columns, you must now specify

ENCRYPTI ON=ENCRYPTED_COLUMNS_ONLY in addition to ENCRYPTI ON_PASSWORD.

Syntax and Description

ENCRYPTI ON_PASSWORD = password

The passwor d value that is supplied specifies a key for re-encrypting encrypted table
columns, metadata, or table data so that they are not written as clear text in the dump
file set. If the export operation involves encrypted table columns, but an encryption
password is not supplied, then the encrypted columns are written to the dump file set
as clear text and a warning is issued.

The password that you enter is echoed to the screen. If you do not want the password
shown on the screen as you enter it, then use the ENCRYPTI ON_PWD_PROVPT parameter.

The maximum length allowed for an encryption password is usually 128 bytes.
However, the limit is 30 bytes if ENCRYPTI ON=ENCRYPTED CCOLUWNS_ONLY and either the
VERSI ON parameter or database compatibility is set to less than 12.2.

For export operations, this parameter is required if the ENCRYPTI ON_MODE parameter is
set to either PASSWORD or DUAL .

2-31

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

< Note:

There is no connection or dependency between the key specified with the
Data Pump ENCRYPTI ON_PASSWORD parameter and the key specified with the
ENCRYPT keyword when the table with encrypted columns was initially
created. For example, suppose that a table is created as follows, with an
encrypted column whose key is xyz:

CREATE TABLE enp (col 1 VARCHAR2(256) ENCRYPT | DENTI FI ED BY "xyz");

When you export the enp table, you can supply any arbitrary value for
ENCRYPTI ON_PASSWORD. It does not have to be xyz.

Restrictions

This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

The ENCRYPTI ON_PASSWORD parameter is required for the transport of encrypted
tablespaces and tablespaces containing tables with encrypted columns in a full
transportable export.

Data Pump encryption features require that the Oracle Advanced Security option
be enabled. See Oracle Database Licensing Information for information about
licensing requirements for the Oracle Advanced Security option.

If ENCRYPTI ON_PASSWORD is specified but ENCRYPTI ON_MODE is not specified, then it
is not necessary to have Oracle Advanced Security Transparent Data Encryption
enabled, because ENCRYPTI ON_MODE defaults to PASSWORD.

If the requested encryption mode is TRANSPARENT, then the ENCRYPTI ON_PASSWORD
parameter is not valid.

If ENCRYPTI ON_MODE is set to DUAL, then to use the ENCRYPTI ON_PASSWORD
parameter, you must have Oracle Advanced Security Transparent Data Encryption
(TDE) enabled. See Oracle Database Advanced Security Guide for more
information about TDE.

For network exports, the ENCRYPTI ON_PASSWORD parameter in conjunction with
ENCRYPTI ON=ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external
tables that have encrypted columns. The table is skipped, and an error message is
displayed, but the job continues.

Encryption attributes for all columns must match between the exported table
definition and the target table. For example, suppose you have a table, EMP, and
one of its columns is named EMPNQO. Both of the following scenarios result in an
error, because the encryption attribute for the EMP column in the source table does
not match the encryption attribute for the EMP column in the target table:

— The EMP table is exported with the EMPNO column being encrypted, but before
importing the table you remove the encryption attribute from the EMPNO column.

— The EMP table is exported without the EMPNO column being encrypted, but
before importing the table you enable encryption on the EMPNO column.

2-32

Chapter 2
Parameters Available in Export's Command-Line Mode

Example

In the following example, an encryption password, 123456, is assigned to the dump
file, dpcd2bel. dnp.

> expdp hr TABLES=enpl oyee s _encrypt DI RECTORY=dpunp_dir1l
DUNPFI LE=dpcd2bel. dnp ENCRYPTI ON=ENCRYPTED COLUMNS_ONLY
ENCRYPTI ON_PASSWORD=123456

Encrypted columns in the enpl oyee_s_encrypt table are not written as clear text in the
dpcd2bel. dnp dump file. Afterward, if you want to import the dpcd2bel. dnp file created
by this example, then you must supply the same encryption password.

Related Topics
* Oracle Database Licensing Information User Manual

* Oracle Database Advanced Security Guide

2.4.16 ENCRYPTION_PWD_PROMPT

ORACLE

The Data Pump Export command-line utility ENCRYPTI ON_PWD_PROVPT specifies
whether Data Pump should prompt you for the encryption password.

Default: NO

Purpose

Specifies whether Data Pump should prompt you for the encryption password.

Syntax and Description

ENCRYPTI ON_PVD_PROVPT=[YES | NO

Specify ENCRYPTI ON_PWD PROVPT=YES on the command line to instruct Data Pump to
prompt you for the encryption password, rather than you entering it on the command
line with the ENCRYPTI ON_PASSWORD parameter. The advantage to doing this is that the
encryption password is not echoed to the screen when it is entered at the prompt.
Whereas, when it is entered on the command line using the ENCRYPTI ON_PASSWORD
parameter, it appears in plain text.

The encryption password that you enter at the prompt is subject to the same criteria
described for the ENCRYPTI ON_PASSWORD parameter.

If you specify an encryption password on the export operation, you must also supply it
on the import operation.

Restrictions

e Concurrent use of the ENCRYPTI ON_PWD PROVPT and ENCRYPTI ON_PASSWORD
parameters is prohibited.

Example

The following syntax example shows Data Pump first prompting for the user password
and then for the encryption password.

2-33

Chapter 2
Parameters Available in Export's Command-Line Mode

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=hr.dnp ENCRYPTI ON_PWD_PROVPT=YES

Copyright (c) 1982, 2017, Oracle and/or its affiliates. Al rights reserved.
Passwor d:

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 - Production
Version 18.1.0.0.0

Encryption Password:

Starting "HR'."SYS EXPORT_SCHEMA 01": hr/****xx** djrectory=dpunp_dirl
dunpfile=hr.dnp encryption_pwd_pronpt =Y

2.4.17 ESTIMATE

ORACLE

The Data Pump Export command-line utility ESTI MATE parameter specifies the method
that Export uses to estimate how much disk space each table in the export job will
consume (in bytes).

Default: BLOCKS

Purpose

Specifies the method that Export will use to estimate how much disk space each table
in the export job will consume (in bytes). The estimate is printed in the log file and
displayed on the client's standard output device. The estimate is for table row data
only; it does not include metadata.

Syntax and Description

ESTI MATE=[BLOCKS | STATI STI CS)]

e BLOCKS - The estimate is calculated by multiplying the number of database blocks
used by the source objects, times the appropriate block sizes.

e STATI STI CS - The estimate is calculated using statistics for each table. For this
method to be as accurate as possible, all tables should have been analyzed
recently. (Table analysis can be done with either the SQL ANALYZE statement or
the DBMS_STATS PL/SQL package.)

Restrictions

» If the Data Pump export job involves compressed tables, then when you use
ESTI MATE=BLCOCKS, the default size estimation given for the compressed table is
inaccurate. This inaccuracy results because the size estimate does not reflect that
the data was stored in a compressed form. To obtain a more accurate size
estimate for compressed tables, use ESTI MATE=STATI STI CS.

» If either the QUERY or REMAP_DATA parameter is used, then the estimate can also be
inaccurate.

2-34

Chapter 2
Parameters Available in Export's Command-Line Mode

Example

The following example shows a use of the ESTI MATE parameter in which the estimate
is calculated using statistics for the enpl oyees table:

> expdp hr TABLES=enpl oyees ESTI MATE=STATI STI CS DI RECTORY=dpunp_di r1
DUVPFI LE=esti mate_stat. dnp

2.4.18 ESTIMATE_ONLY

The Data Pump Export command-line utility ESTI MATE_ONLY parameter instructs Export
to estimate the space that a job consumes, without actually performing the export
operation.

Default: NO

Purpose

Instructs Export to estimate the space that a job consumes, without actually
performing the export operation.

Syntax and Description

ESTI MATE_ONLY=[YES | NQ|

If ESTI MATE_ONLY=YES, then Export estimates the space that would be consumed, but
quits without actually performing the export operation.

Restrictions

e The ESTI MATE_ONLY parameter cannot be used in conjunction with the QUERY
parameter.

Example

The following shows an example of using the ESTI MATE_ONLY parameter to determine
how much space an export of the HR schema requires.

> expdp hr ESTI MATE_ONLY=YES NOLOGFI LEZYES SCHEMAS=HR

2.4.19 EXCLUDE

ORACLE

The Data Pump Export command-line utility EXCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types that you want to
exclude from the export operation.

Default: There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types that you want to exclude from the export operation.

2-35

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

Syntax and Description

EXCLUDE=0bj ect _type[: name_clause] [, ...]

The obj ect _t ype specifies the type of object that you want to exclude. To see a list of
valid values for obj ect _t ype, query the following views: DATABASE _EXPORT_OBJECTS for
full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for

table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

All object types for the given mode of export are included in the export, except object
types specified in an EXCLUDE statement. If an object is excluded, then all dependent
objects are also excluded. For example, excluding a table also excludes all indexes
and triggers on the table.

The nanme_cl ause is optional. Using this parameter enables selection of specific
objects within an object type. It is a SQL expression used as a filter on the object
names of that type. It consists of a SQL operator, and the values against which you
want to compare the object names of the specified type. The name_cl ause applies only
to object types whose instances have names (for example, it is applicable to TABLE,
but not to GRANT). It must be separated from the object type with a colon, and enclosed
in double quotation marks, because single quotation marks are required to delimit the
name strings. For example, you can set EXCLUDE=I NDEX: " LI KE ' EMP% " to exclude all
indexes whose names start with ENP.

The name that you supply for the name_cl ause must exactly match, including upper
and lower casing, an existing object in the database. For example, if the name_cl ause
you supply is for a table named EMPLOYEES, then there must be an existing table
named EMPLOYEES using all upper case. If you supplied the nane_cl ause as Enpl oyees
or enpl oyees or any other variation that does not match the existing table, then the
table is not found.

If no nane_cl ause is provided, then all objects of the specified type are excluded.
You can specify more than one EXCLUDE statement.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that otherwise can be needed on the command line.

If the obj ect _type you specify is CONSTRAI NT, GRANT, or USER, then be aware of the
effects, as described in the following paragraphs.

Excluding Constraints
The following constraints cannot be explicitly excluded:

e Constraints needed for the table to be created and loaded successfully; for
example, primary key constraints for index-organized tables, or REF SCOPE and
W TH ROW D constraints for tables with REF columns

For example, the following EXCLUDE statements are interpreted as follows:

e EXCLUDE=CONSTRAI NT excludes all constraints, except for any constraints needed
for successful table creation and loading.

o EXCLUDE=REF_CONSTRAI NT excludes referential integrity (foreign key) constraints.

2-36

Chapter 2
Parameters Available in Export's Command-Line Mode

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system
privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects
contained within user schemas.

To exclude a specific user and all objects of that user, specify a command such as the
following, where hr is the schema name of the user you want to exclude.

expdp FULL=YES DUMPFI LE=expful | . dnp EXCLUDE=SCHEMA: "=' HR "

In this example, the export mode FULL is specified. If no mode is specified, then the
default mode is used. The default mode is SCHEMAS. But if the default mode is used,
then in this example, the default causes an error, because if SCHEMAS is used, then the
command indicates that you want the schema both exported and excluded at the
same time.

If you try to exclude a user by using a statement such as EXCLUDE=USER "= HR ", then
only the information used in CREATE USER hr DDL statements is excluded, and you
can obtain unexpected results.

Restrictions

e The EXCLUDE and | NCLUDE parameters are mutually exclusive.

Example

The following is an example of using the EXCLUDE statement.

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=hr _excl ude. dnp EXCLUDE=VI EW
PACKAGE, FUNCTI ON

This example results in a schema-mode export (the default export mode) in which all
the hr schema is exported except its views, packages, and functions.

Related Topics
* Metadata Filters
* Filtering During Export Operations

e INCLUDE
The Data Pump Export command-line utility INCLUDE parameter enables you to
filter the metadata that is exported by specifying objects and object types for the
current export mode. The specified objects and all their dependent objects are
exported. Grants on these objects are also exported.

e Parameters Available in Export's Command-Line Mode

2.4.20 FILESIZE

The Data Pump Export command-line utility FI LESI ZE parameter specifies the
maximum size of each dump file.

Default: 0 (equivalent to the maximum size of 16 terabytes)

ORACLE 2-37

Chapter 2
Parameters Available in Export's Command-Line Mode

Purpose

Specifies the maximum size of each dump file. If the size is reached for any member
of the dump file set, then that file is closed and an attempt is made to create a new file,
if the file specification contains a substitution variable or if more dump files have been
added to the job.

Syntax and Description

FILES| ZE=integer[B | KB | MB | GB | TB|

The i nt eger can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes
is the default. The actual size of the resulting file can be rounded down slightly to
match the size of the internal blocks used in dump files.

Restrictions

e The minimum size for a file is 10 times the default Data Pump block size, which is
4 kilobytes.

e The maximum size for a file is 16 terabytes.

Example

The following example shows setting the size of the dump file to 3 megabytes:

> expdp hr DI RECTORY=dpunp_di r1 DUMPFI LE=hr _3m dnp FI LESI ZE=3MB

In this scenario, if the 3 megabytes allocated was not sufficient to hold all the exported
data, then the following error results, and displayed and the job stops:

ORA-39095: Dunp file space has been exhausted: Unable to allocate 217088
byt es

The actual number of bytes that cannot be allocated can vary. Also, this number does
not represent the amount of space required complete the entire export operation. It
indicates only the size of the current object that was being exported when the job ran
out of dump file space. You can correct this problem by first attaching to the stopped
job, adding one or more files using the ADD_FI LE command, and then restarting the
operation.

2.4.21 FLASHBACK_SCN

ORACLE

The Data Pump Export command-line utility FLASHBACK_SCN parameter specifies the
system change number (SCN) that Export uses to enable the Flashback Query utility.

Default: There is no default

Purpose

Specifies the system change number (SCN) that Export will use to enable the
Flashback Query utility.

2-38

Chapter 2
Parameters Available in Export's Command-Line Mode

Syntax and Description

FLASHBACK_SCN=scn_val ue

The export operation is performed with data that is consistent up to the specified SCN.
If the NETWORK_LI NK parameter is specified, then the SCN refers to the SCN of the
source database.

As of Oracle Database 12c release 2 (12.2) and later, the SCN value can be a big
SCN (8 bytes). You can also specify a big SCN when you create a dump file for an
earlier version that does not support big SCNs, because actual SCN values are not
moved. See the following restrictions for more information about using big SCNs.

Restrictions

e FLASHBACK_SCN and FLASHBACK_TI ME are mutually exclusive.

e The FLASHBACK SCN parameter pertains only to the Flashback Query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

* You cannot specify a big SCN for a network export or network import from a
version that does not support big SCNs.

Example

The following example assumes that an existing SCN value of 384632 exists. It exports
the hr schema up to SCN 384632.

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=hr _scn. dnp FLASHBACK SCN=384632

¢ Note:

If you are on a logical standby system and using a network link to access the
logical standby primary, then the FLASHBACK_SCN parameter is ignored
because SCNs are selected by logical standby. See Oracle Data Guard
Concepts and Administration for information about logical standby
databases.

Related Topics

e Oracle Data Guard Concepts and Administration

2.4.22 FLASHBACK_TIME

ORACLE

The Data Pump Export command-line utility FLASHBACK _TI ME parameter finds the SCN
that most closely matches the specified time. This SCN is used to enable the
Flashback utility. The export operation is performed with data that is consistent up to
this SCN.

Default: There is no default

2-39

Chapter 2
Parameters Available in Export's Command-Line Mode

Purpose

Finds the SCN that most closely matches the specified time. This SCN is used to
enable the Flashback utility. The export operation is performed with data that is
consistent up to this SCN.

Syntax and Description

FLASHBACK_TI ME=" TO_TI MESTAMP(t i me- val ue)"

Because the TO Tl MESTAWP value is enclosed in quotation marks, it is best to put this
parameter in a parameter file.

Alternatively, you can enter the following parameter setting. This setting initiate a
consistent export that is based on current system time:

FLASHBACK_TI ME=syst i mest anp

Restrictions

e FLASHBACK TI ME and FLASHBACK SCN are mutually exclusive.

* The FLASHBACK TI ME parameter pertains only to the flashback query capability of
Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or
Flashback Data Archive.

Example

You can specify the time in any format that the DBMS_FLASHBACK. ENABLE AT _TI ME
procedure accepts. For example, suppose you have a parameter file, f | ashback. par,
with the following contents:

DI RECTORY=dpunp_dir1

DUWPFI LE=hr _ti ne. dnp

FLASHBACK_TI ME="TO_TI MESTAMP(' 27- 10- 2012 13:16: 00', ' DD- MM YYYY
HH24: M : SS') "

You can then issue the following command:

> expdp hr PARFI LE=f| ashback. par

The export operation is performed with data that is consistent with the SCN that most
closely matches the specified time.

ORACLE 2-40

Chapter 2
Parameters Available in Export's Command-Line Mode

< Note:

If you are on a logical standby system and using a network link to access the
logical standby primary, then the FLASHBACK_SCN parameter is ignored,
because the logical standby selects the SCNs. See Oracle Data Guard
Concepts and Administration for information about logical standby
databases.

See Oracle Database Development Guide for information about using
Flashback Query.

Related Topics
e Parameters Available in Export's Command-Line Mode
e Oracle Data Guard Concepts and Administration

e Oracle Database Development Guide

2.4.23 FULL

ORACLE

The Export command-line FULL parameter specifies that you want to perform a full
database mode export

Default: NO

Purpose

Specifies that you want to perform a full database mode export.

Syntax and Description

FULL=[YES | N

FULL=YES indicates that all data and metadata are to be exported. To perform a full
export, you must have the DATAPUMP_EXP_FULL_DATABASE role.

Filtering can restrict what is exported using this export mode.

You can perform a full mode export using the transportable option
(TRANSPORTABLE=ALWAYS). This is referred to as a full transportable export, which
exports all objects and data necessary to create a complete copy of the database. See
Full Mode.

Note:

Be aware that when you later import a dump file that was created by a full-
mode export, the import operation attempts to copy the password for the SYS
account from the source database. This sometimes fails (for example, if the
password is in a shared password file). If it does fail, then after the import
completes, you must set the password for the SYS account at the target
database to a password of your choice.

2-41

Chapter 2
Parameters Available in Export's Command-Line Mode

Restrictions

* To use the FULL parameter in conjunction with TRANSPORTABLE (a full transportable
export), either the Data Pump VERSI ON parameter must be set to at least 12.0. or
the COVMPATI BLE database initialization parameter must be set to at least 12.0 or
later.

* Afull export does not, by default, export system schemas that contain Oracle-
managed data and metadata. Examples of system schemas that are not exported
by default include SYS, ORDSYS, and MDSYS.

» Grants on objects owned by the SYS schema are never exported.

* Afull export operation exports objects from only one database edition; by default it
exports the current edition but you can use the Export SOURCE_EDI TI ON parameter
to specify a different edition.

e If you are exporting data that is protected by a realm, then you must have
authorization for that realm.

e The Automatic Workload Repository (AWR) is not moved in a full database export
and import operation. (See Oracle Database Performance Tuning Guide for
information about using Data Pump to move AWR shapshots.)

e The XDB repository is not moved in a full database export and import operation.
User created XML schemas are moved.

Example

The following is an example of using the FULL parameter. The dump file, expful | . dnp
is written to the dpunp_di r 2 directory.

> expdp hr DI RECTORY=dpunp_di r2 DUMPFI LE=expful | . dnp FULL=YES NOLOGFI LE=YES

To see a detailed example of how to perform a full transportable export, see Oracle
Database Administrator’s Guide. For information about configuring realms, see Oracle
Database Vault Administrator’s Guide.

Related Topics
e Oracle Database Performance Tuning Guide
e Oracle Database Administrator’'s Guide

e QOracle Database Vault Administrator’'s Guide

2.4.24 HELP

ORACLE

The Data Pump Export command-line utility HELP parameter displays online help for
the Export utility.

Default; NO

Purpose

Displays online help for the Export utility.

Syntax and Description

HELP = [YES | NJ

2-42

Chapter 2
Parameters Available in Export's Command-Line Mode

If HELP=YES is specified, then Export displays a summary of all Export command-line
parameters and interactive commands.

Example

> expdp HELP = YES

This example display a brief description of all Export parameters and commands.

2.4.25 INCLUDE

ORACLE

The Data Pump Export command-line utility INCLUDE parameter enables you to filter
the metadata that is exported by specifying objects and object types for the current
export mode. The specified objects and all their dependent objects are exported.
Grants on these objects are also exported.

Default: There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object
types for the current export mode. The specified objects and all their dependent
objects are exported. Grants on these objects are also exported.

Syntax and Description

I NCLUDE = obj ect _type[:nane_clause] [, ...]

The obj ect _t ype specifies the type of object to be included. To see a list of valid
values for obj ect _t ype, query the following views: DATABASE EXPORT _OBJECTS for full
mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for
table and tablespace mode. The values listed in the OBJECT_PATH column are the valid
object types.

Only object types explicitly specified in | NCLUDE statements, and their dependent
objects, are exported. No other object types, including the schema definition
information that is normally part of a schema-mode export when you have the
DATAPUMP_EXP_FULL_DATABASE role, are exported.

The nane_cl ause is optional. It allows fine-grained selection of specific objects within
an object type. It is a SQL expression used as a filter on the object names of the type.
It consists of a SQL operator and the values against which the object names of the
specified type are to be compared. The name_cl ause applies only to object types
whose instances have names (for example, it is applicable to TABLE, but not to GRANT).
It must be separated from the object type with a colon and enclosed in double
guotation marks, because single quotation marks are required to delimit the name
strings.

The name that you supply for the name_cl ause must exactly match an existing object
in the database, including upper- and lower- case letters. For example, if the

name_cl ause you supply is for a table named EMPLOYEES, then there must be an
existing table named EMPLOYEES using all upper-case letters. If the nane_cl ause is
provided as Enpl oyees or enpl oyees or any other variation, then the table is not found.

Depending on your operating system, the use of quotation marks when you specify a
value for this parameter can also require that you use escape characters. Oracle

2-43

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that you otherwise need to enter on the command line.

For example, suppose you have a parameter file named hr. par with the following
content:

SCHEMAS=HR

DUMPFI LE=expi ncl ude. dnp

DI RECTORY=dpunp_dir1

LOGFI LE=expi ncl ude. | og

| NCLUDE=TABLE: "IN (' EMPLOYEES', ' DEPARTMENTS')"
| NCL UDE=PROCEDURE

| NCLUDE=I| NDEX: " LI KE ' EMP% "

You can then use the hr. par file to start an export operation, without having to enter
any other parameters on the command line. The EMPLOYEES and DEPARTMENTS tables,
all procedures, and all index names with an EMP prefix, are included in the export.

> expdp hr PARFI LE=hr. par

Including Constraints

If the obj ect _t ype that you specify is a CONSTRAI NT, then be aware of the effects of
using a constraint..

You cannot include explicitly the following constraints:

e NOT NULL constraints

» Constraints that are required for the table to be created and loaded successfully.
For example: you cannot include primary key constraints for index-organized
tables, or REF SCOPE and W TH ROW D constraints for tables with REF columns.

For example, the following | NCLUDE statements are interpreted as follows:

* | NCLUDE=CONSTRAI NT includes all (nonreferential) constraints, except for NOT NULL
constraints, and any constraints needed for successful table creation and loading.

* | NCLUDE=REF_CONSTRAI NT includeS referential integrity (foreign key) constraints.

Restrictions
e The | NCLUDE and EXCLUDE parameters are mutually exclusive.

» Grants on objects owned by the SYS schema are never exported.

Example

The following example performs an export of all tables (and their dependent objects) in
the hr schema:

> expdp hr | NCLUDE=TABLE DUWPFI LE=dpunp_dir1: exp_i nc. dnp NOLOGFI LE=YES

Related Topics
e Metadata Filters

e Parameters Available in Export's Command-Line Mode

2-44

Chapter 2
Parameters Available in Export's Command-Line Mode

2.4.26 JOB_NAME

The Data Pump Export command-line utility JOB_NAME parameter identifies the export
job in subsequent actions, such as when using ATTACH to attach to a job, or to identify
a job using DBA_DATAPUMP_JOBS or USER_DATAPUWP_J(OBS views.

Default: system-generated name of the form SYS_EXPORT_<nmode> NN

Purpose

Used to identify the export job in subsequent actions, such as when the ATTACH
parameter is used to attach to a job, or to identify the job using the DBA DATAPUMP_JOBS
or USER_DATAPUMP_JOBS views.

Syntax and Description

JOB_NAME=j obnane_string

The j obnane_st ri ng specifies a name of up to 128 bytes for this export job. The bytes
must represent printable characters and spaces. If spaces are included, then the name
must be enclosed in single quotation marks (for example, 'Thursday Export’). The job
name is implicitly qualified by the schema of the user performing the export operation.
The job name is used as the name of the master table, which controls the export job.

The default job name is system-generated in the form SYS_EXPORT _node_NN, where NN
expands to a 2-digit incrementing integer starting at 01. An example of a default name
is ' SYS_EXPORT_TABLESPACE 02'.

Example
The following example shows an export operation that is assigned a job name of
exp_j ob:

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=exp_j ob. dmp JOB_NAME=exp_j ob
NOLOGFI LE=YES

2.4.27 KEEP_MASTER

ORACLE

The Data Pump Export command-line utility KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump job
that completes successfully. The master table is automatically retained for jobs that do
not complete successfully.

Default: NO

Purpose

Indicates whether the master table should be deleted or retained at the end of a Data
Pump job that completes successfully. The master table is automatically retained for
jobs that do not complete successfully.

Syntax and Description

KEEP_MASTER=[YES | NO

2-45

Chapter 2
Parameters Available in Export's Command-Line Mode

Restrictions

* None

Example

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=expdat . dnp SCHEMAS=hr
KEEP_MASTER=YES

2.4.28 LOGFILE

The Data Pump Export command-line utility LOGFILE parameter specifies the name,
and optionally, a directory, for the log file of the export job.

Default; export .l og

Purpose

Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description

LOGFI LE=[directory_object:]file_name

You can specify a database di rectory_obj ect previously established by the DBA,
assuming that you have access to it. This setting overrides the directory object
specified with the DI RECTORY parameter.

The fil e_nanme specifies a name for the log file. The default behavior is to create a file
named export. | og in the directory referenced by the directory object specified in the
DI RECTORY parameter.

All messages regarding work in progress, work completed, and errors encountered are
written to the log file. (For a real-time status of the job, use the STATUS command in
interactive mode.)

A log file is always created for an export job unless the NOLOGFI LE parameter is
specified. As with the dump file set, the log file is relative to the server and not the
client.

An existing file matching the file name is overwritten.

Restrictions

e To perform a Data Pump Export using Oracle Automatic Storage Management
(Oracle ASM), you must specify a LOGFI LE parameter that includes a directory
object that does not include the Oracle ASM + notation. That is, the log file must
be written to a disk file, and not written into the Oracle ASM storage. Alternatively,
you can specify NOLOGFI LE=YES. However, if you specify NOLOGFI LE=YES, then that
setting prevents the writing of the log file.

ORACLE 2-46

Chapter 2
Parameters Available in Export's Command-Line Mode

Example

The following example shows how to specify a log file name when you do not want to
use the default:

> expdp hr DI RECTORY=dpunp_dir1l DUWPFI LE=hr.dnp LOGFI LE=hr _export. | og

" Note:

Data Pump Export writes the log file using the database character set. If your
client NLS_LANG environment setting sets up a different client character set
from the database character set, then it is possible that table names can be
different in the log file than they are when displayed on the client output
screen.

Related Topics
+ STATUS

* Using Directory Objects When Oracle Automatic Storage Management Is Enabled

2.4.29 LOGTIME

ORACLE

The Data Pump Export command-line utility LOGTI ME parameter specifies that
messages displayed during export operations are timestamped.

Default: No timestamps are recorded

Purpose

Specifies that messages displayed during export operations are timestamped. You can
use the timestamps to figure out the elapsed time between different phases of a Data
Pump operation. Such information can be helpful in diagnosing performance problems
and estimating the timing of future similar operations.

Syntax and Description

LOGTI ME=[NONE | STATUS | LOGFILE | ALL]

The available options are defined as follows:

* NONE: No timestamps on status or log file messages (same as default)
e STATUS: Timestamps on status messages only
e LOGFI LE: Timestamps on log file messages only

e ALL: Timestamps on both status and log file messages

Restrictions

e None

2-47

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

Example

The following example records timestamps for all status and log file messages that are
displayed during the export operation:

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=expdat . dnp SCHEMAS=hr LOGTI ME=ALL

The output looks similar to the following:

10-JUL- 12 10:12:22.300: Starting "HR'."SYS EXPORT_SCHEMA 01": hr/***xxx%%
directory=dpunp_dir1l dunpfil e=expdat.dnp schemas=hr |ogtine=all

10-JUL-12 10:12:22.915; Estimate in progress using BLOCKS net hod. ..
10-JUL- 12 10: 12: 24. 422; Processing object type SCHEMA EXPORT/ TABLE/
TABLE_DATA

10-JUL-12 10:12:24.498; Total estimation using BLOCKS nethod: 128 KB
10-JUL-12 10: 12:24.822: Processing object type SCHEMA EXPORT/ USER
10-JUL-12 10: 12:24.902; Processing object type SCHEMA EXPORT/ SYSTEM GRANT
10-JUL-12 10:12:24.926: Processing object type SCHEMA EXPORT/ ROLE_GRANT
10-JUL-12 10: 12:24.948: Processing object type SCHEMA EXPORT/ DEFAULT ROLE
10-JUL-12 10: 12:24.967: Processing object type SCHEMA EXPORT/
TABLESPACE_QUCTA

10-JUL- 12 10: 12:25.747; Processing object type SCHEMA EXPORT/ PRE_SCHEMAY
PROCACT _SCHEMA

10-JUL-12 10:12:32.762: Processing object type SCHEMA EXPORT/ SEQUENCE
SEQUENCE

10-JUL-12 10: 12: 46.631: Processing object type SCHEMA EXPORT/ TABLE/ TABLE
10-JUL-12 10:12:58.007;: Processing object type SCHEMA EXPORT/ TABLE/ GRANT/
OWNER_GRANT/ OBJECT_GRANT

10-JUL-12 10: 12:58. 106: Processing object type SCHEMA EXPORT/ TABLE/ COMVENT
10-JUL-12 10: 12:58.516: Processing object type SCHEMA EXPORT/ PROCEDURE/
PROCEDURE

10-JUL-12 10: 12:58. 630: Processing object type SCHEMA EXPORT/ PROCEDURE/
ALTER_PROCEDURE

10-JUL-12 10:12:59. 365; Processing object type SCHEMA EXPORT/ TABLE/ | NDEX/
| NDEX

10-JUL-12 10:13:01.066: Processing object type SCHEMA EXPORT/ TABLE/
CONSTRAI NT/ CONSTRAI NT

10-JUL-12 10:13:01. 143; Processing object type SCHEMA EXPORT/ TABLE/ | NDEX/
STATI STI CS/ | NDEX_STATI STI CS

10-JUL-12 10: 13:02.503;: Processing object type SCHEMA EXPORT/ VI EW VI EW
10-JUL- 12 10: 13:03.288: Processing object type SCHEMA EXPORT/ TABLE/
CONSTRAI NT/ REF_CONSTRAI NT

10-JUL-12 10: 13:04.067: Processing object type SCHEMA EXPORT/ TABLE/ TRI GGER
10-JUL- 12 10: 13:05. 251; Processing object type SCHEMA EXPORT/ TABLE/

STATI STI CS/ TABLE_STATI STI CS

10-JUL-12 10:13:06.172: . . exported
"HR". " EMPLOYEES" 17.05 KB 107 rows
10-JUL- 12 10:13:06.658: . . exported
"HR". " COUNTRI ES" 6.429 KB 25 rows
10-JUL-12 10:13:06.691: . . exported
"HR". " DEPARTMENTS' 7.093 KB 27 rows
10-JUL-12 10:13:06.723: . . exported
"HR'. " JOBS" 7.078 KB 19 rows
10-JUL-12 10:13:06.758: . . exported

2-48

Chapter 2
Parameters Available in Export's Command-Line Mode

"HR'."JOB_H STORY" 7.164 KB 10 rows
10-JUL- 12 10:13:06.794: . . exported
"HR". " LOCATI ONS' 8.398 KB 23 rows
10-JUL- 12 10:13:06.824: . . exported
"HR'. "REG ONS" 5.515 KB 4 rows

10-JUL- 12 10:13: 07.500: Master table "HR'."SYS_EXPORT_SCHEMA 01"
successful Iy | oaded/ unl oaded
10-JUL- 12 10: 13: 07.503:

IR RS E RS RS E RS EEE RS EEEEEEEEEEE RS RS EE R EEEEEEREEEEEEEE SRR EREEREEEEEREEEEEEEEES]

*kk

2.4.30 METRICS

The Data Pump Export command-line utility METRI CS parameter indicates whether you
want additional information about the job reported to the Data Pump log file.

Default: NO

Purpose

Indicates whether additional information about the job should be reported to the Data
Pump log file.

Syntax and Description

METRI CS=[YES | NJ

When METRI CS=YES is used, the number of objects and the elapsed time are recorded
in the Data Pump log file.

Restrictions

e None

Example

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=expdat.dnp SCHEMAS=hr METRI CS=YES

2.4.31 NETWORK_LINK

ORACLE

The Data Pump Export command-line utility NETWORK_LI NK parameter enables an
export from a (source) database identified by a valid database link. The data from the
source database instance is written to a dump file set on the connected database
instance.

Default: There is no default

Purpose

Enables an export from a (source) database identified by a valid database link. The
data from the source database instance is written to a dump file set on the connected
database instance.

2-49

Chapter 2
Parameters Available in Export's Command-Line Mode

Syntax and Description

NETWORK LI NK=sour ce_dat abase_l i nk

The NETWORK_LI NK parameter initiates an export using a database link. This export
setting means that the system to which the expdp client is connected contacts the

source database referenced by the sour ce_dat abase_| i nk, retrieves data from it, and
writes the data to a dump file set back on the connected system.

The sour ce_dat abase_| i nk provided must be the hame of a database link to an
available database. If the database on that instance does not already have a database
link, then you or your DBA must create one using the SQL CREATE DATABASE LI NK
statement.

If the source database is read-only, then the user on the source database must have a
locally managed temporary tablespace assigned as the default temporary tablespace.
Otherwise, the job will fail.

The following types of database links are supported for use with Data Pump Export:

* Public fixed user

* Public connected user

» Public shared user (only when used by link owner)
» Private shared user (only when used by link owner)

* Private fixed user (only when used by link owner)

Caution:

If an export operation is performed over an unencrypted network link, then all
data is exported as clear text, even if it is encrypted in the database. See
Oracle Database Security Guide for more information about network security.

Restrictions

e The following types of database links are not supported for use with Data Pump
Export:

— Private connected user
— Current user

e When operating across a network link, Data Pump requires that the source and
target databases differ by no more than two versions. For example, if one
database is Oracle Database 12c, then the other database must be 12c, 119, or
10g. Note that Data Pump checks only the major version number (for example,
109,119, 12c), not specific release numbers (for example, 12.1, 12.2, 11.1, 11.2,
10.1 or 10.2).

* When transporting a database over the network using full transportable export,
auditing cannot be enabled for tables stored in an administrative tablespace (such
as SYSTEMand SYSAUX) if the audit trail information itself is stored in a user-defined
tablespace.

ORACLE 2-50

Chapter 2
Parameters Available in Export's Command-Line Mode

* Metadata cannot be imported in parallel when the NETWORK_LI NK parameter is also
used

Example

The following is a syntax example of using the NETWORK LI NK parameter. Replace the
variable sour ce_dat abase_I i nk with the name of a valid database link that must
already exist.

> expdp hr DI RECTORY=dpunp_dir1l NETWORK LI NK=source_dat abase_l i nk
DUWPFI LE=net wor k_export. dnp LOGFI LE=net wor k_export. | og

See Also:

e Oracle Database Administrator’s Guide for more information about
database links

e Oracle Database SQL Language Reference for more information about
the CREATE DATABASE LI NK statement

e Oracle Database Administrator’s Guide for more information about
locally managed tablespaces

2.4.32 NOLOGFILE

ORACLE

The Data Pump Export command-line utility NOLOGFILE parameter specifies whether
to suppress creation of a log file.

Default: NO

Purpose

Specifies whether to suppress creation of a log file.
Syntax and Description

NOLOGFI LE=[YES | NO

Specify NOLOGFI LE=YES to suppress the default behavior of creating a log file. Progress
and error information is still written to the standard output device of any attached
clients, including the client that started the original export operation. If there are no
clients attached to a running job, and you specify NOLOGFI LE=YES, then you run the risk
of losing important progress and error information.

Example

The following is an example of using the NOLOGFI LE parameter:

> expdp hr DI RECTORY=dpunp_di r1 DUMPFI LE=hr. dnp NOLOGFI LE=YES

This command results in a schema-mode export (the default), in which no log file is
written.

2-51

Chapter 2
Parameters Available in Export's Command-Line Mode

2.4.33 PARALLEL

ORACLE

The Export command-line utility PARALLEL parameter specifies the maximum number
of processes of active execution operating on behalf of the export job.

Default: 1

Purpose

Specifies the maximum number of processes of active execution operating on behalf
of the export job. This execution set consists of a combination of worker processes
and parallel /O server processes. The master control process and worker processes
acting as query coordinators in parallel query operations do not count toward this total.

This parameter enables you to make trade-offs between resource consumption and
elapsed time.

Syntax and Description

PARALLEL=i nt eger

The value that you specify for i nt eger should be less than, or equal to, the number of
files in the dump file set (or you should specify either the %J or % substitution
variables in the dump file specifications). Because each active worker process or 1/0O
server process writes exclusively to one file at a time, an insufficient number of files
can have adverse effects. For example, some of the worker processes can be idle
while waiting for files, thereby degrading the overall performance of the job. More
importantly, if any member of a cooperating group of parallel I/O server processes
cannot obtain a file for output, then the export operation is stopped with an ORA- 39095
error. Both situations can be corrected by attaching to the job using the Data Pump
Export utility, adding more files using the ADD_FI LE command while in interactive
mode, and in the case of a stopped job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use interactive-
command mode. Decreasing parallelism does not result in fewer worker processes
associated with the job; it decreases the number of worker processes that are
executing at any given time. Also, any ongoing work must reach an orderly completion
point before the decrease takes effect. Therefore, it may take a while to see any effect
from decreasing the value. Idle workers are not deleted until the job exits.

If there is work that can be performed in parallel, then increasing the parallelism takes
effect immediately .

Using PARALLEL During An Export In An Oracle RAC Environment

In an Oracle Real Application Clusters (Oracle RAC) environment, if an export
operation has PARALLEL=1, then all Data Pump processes reside on the instance
where the job is started. Therefore, the directory object can point to local storage for
that instance.

If the export operation has PARALLEL set to a value greater than 1, then Data Pump
processes can reside on instances other than the one where the job was started.
Therefore, the directory object must point to shared storage that is accessible by all
instances of the Oracle RAC.

2-52

Chapter 2
Parameters Available in Export's Command-Line Mode

Restrictions

* This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later.

* To export a table or table partition in parallel (using PQ slaves), you must have the

DATAPUMP_EXP_FULL_DATABASE role.

e Transportable tablespace metadata cannot be exported in parallel.

e Metadata cannot be exported in parallel when the NETWORK LI NK parameter is also

used
» The following ojbects cannot be exported in parallel:
- TRIGGER
- VIEW
— OBJECT_GRANT
— SEQUENCE
— CONSTRAI NT
— REF_CONSTRAI NT

Example
The following is an example of using the PARALLEL parameter:

> expdp hr DI RECTORY=dpunp_dir1 LOGFI LE=paral | el _export.log
JOB_NAME=par 4_j ob DUMPFI LE=par _exp%. dnp PARALLEL=4

This results in a schema-mode export (the default) of the hr schema, in which up to
four files can be created in the path pointed to by the directory object, dpunp_di r 1.

Related Topics

* Controlling Resource Consumption

« DUMPFILE

» Commands Available in Data Pump Export Interactive-Command Mode

* Performing a Parallel Full Database Export

2.4.34 PARFILE

ORACLE

The Data Pump Export command-line utility PARFILE parameter specifies the name of

an export parameter file.

Default: There is no default

Purpose

Specifies the name of an export parameter file.

Syntax and Description

PARFI LE=[directory_path]fil e_nane

2-53

Chapter 2
Parameters Available in Export's Command-Line Mode

A parameter file enables you to specify Data Pump parameters within a file. You can
then specify that file on the command line, instead of entering all of the individual
commands. Using a parameter file can be useful if you use the same parameter
combination many times. The use of parameter files is also highly recommended when
you use parameters whose values require the use of quotation marks.

A directory object is not specified for the parameter file. You do not specify a directory
object, because the parameter file is opened and read by the expdp client, unlike dump
files, log files, and SQL files which are created and written by the server. The default
location of the parameter file is the user's current directory.

Within a parameter file, a comma is implicit at every newline character so you do not
have to enter commas at the end of each line. If you have a long line that wraps, such
as a long table name, then enter the backslash continuation character (\) at the end of
the current line to continue onto the next line.

The contents of the parameter file are written to the Data Pump log file.

Restrictions

* The PARFI LE parameter cannot be specified within a parameter file.

Example
The content of an example parameter file, hr. par, might be as follows:

SCHEMAS=HR

DUWPFI LE=exp. dnp

Dl RECTORY=dpunp_dir1
LOGFI LE=exp. | og

You could then issue the following Export command to specify the parameter file:

> expdp hr PARFI LE=hr. par

Related Topics

e About Data Pump Export Parameters

2.4.35 QUERY

ORACLE

The Data Pump Export command-line utility QUERY parameter enables you to specify a
query clause that is used to filter the data that gets exported.

Default: There is no default

Purpose

enables you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description

QUERY = [schena.][tabl e_nane:] query_clause

The query_cl ause is typically a SQL WHERE clause for fine-grained row selection, but
could be any SQL clause. For example, you can use an ORDER BY clause to speed up
a migration from a heap-organized table to an index-organized table. If a schema and
table name are not supplied, then the query is applied to (and must be valid for) all
tables in the export job. A table-specific query overrides a query applied to all tables.

2-54

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

When the query is to be applied to a specific table, a colon must separate the table
name from the query clause. More than one table-specific query can be specified, but
only one query can be specified per table.

If the NETWORK_LI NK parameter is specified along with the QUERY parameter, then any
objects specified in the query_cl ause that are on the remote (source) node must be
explicitly qualified with the NETWORK_LI NK value. Otherwise, Data Pump assumes that
the object is on the local (target) node; if it is not, then an error is returned and the
import of the table from the remote (source) system fails.

For example, if you specify NETWORK_LI NK=dbl i nk1, then the query_cl ause of the
QUERY parameter must specify that link, as shown in the following example:

QUERY=(hr . enpl oyees: "WHERE | ast _name | N(SELECT | ast _nane
FROM hr . enpl oyees@lbl i nk1) ")

Depending on your operating system, when you specify a value for this parameter that
the uses quotation marks, it can also require that you use escape characters. Oracle
recommends that you place this parameter in a parameter file, which can reduce the
number of escape characters that might otherwise be needed on the command line. .

To specify a schema other than your own in a table-specific query, you must be
granted access to that specific table.

Restrictions

» The QUERY parameter cannot be used with the following parameters:
— CONTENT=METADATA_ONLY
— ESTI MATE_ONLY
— TRANSPORT_TABLESPACES

e When the QUERY parameter is specified for a table, Data Pump uses external
tables to unload the target table. External tables uses a SQL CREATE TABLE AS
SELECT statement. The value of the QUERY parameter is the WHERE clause in the
SELECT portion of the CREATE TABLE statement. If the QUERY parameter includes
references to another table with columns whose names match the table being
unloaded, and if those columns are used in the query, then you will need to use a
table alias to distinguish between columns in the table being unloaded and
columns in the SELECT statement with the same name. The table alias used by
Data Pump for the table being unloaded is KUS.

For example, suppose you want to export a subset of the sh. sal es table based on
the credit limit for a customer in the sh. cust oner s table. In the following example,
KU$ is used to qualify the cust _i d field in the QUERY parameter for unloading

sh. sal es. As a result, Data Pump exports only rows for customers whose credit
limit is greater than $10,000.

QUERY=' sal es: "WHERE EXI STS (SELECT cust _id FROM customers ¢
VWHERE cust _credit limt > 10000 AND ku$.cust id = c.cust_id)"'

In the following query, KUS$ is not used for a table alias. The result is that all rows
are unloaded:

2-55

Chapter 2
Parameters Available in Export's Command-Line Mode

QUERY="sal es: "WHERE EXI STS (SELECT cust _id FROM custoners ¢
VWHERE cust _credit_limt > 10000 AND cust _id = c.cust_id)"'

* The maximum length allowed for a QUERY string is 4000 bytes, which includes
guotation marks. This restriction means that the actual maximum length allowed is
3998 bytes.

Example

The following is an example of using the QUERY parameter:

> expdp hr PARFI LE=enp_query. par

The contents of the enp_query. par file are as follows:

QUERY=enpl oyees: "WHERE departnment _id > 10 AND sal ary > 10000"
NOLOGFI LE=YES

DI RECTORY=dpunp_dir1

DUVPFI LE=expl. dnp

This example unloads all tables in the hr schema, but only the rows that fit the query
expression. In this case, all rows in all tables (except enpl oyees) in the hr schema are
unloaded. For the enpl oyees table, only rows that meet the query criteria are
unloaded.

Related Topics

e About Data Pump Export Parameters

2.4.36 REMAP_DATA

ORACLE

The Data Pump Export command-line utility REMAP_DATA parameter enables you to
specify a remap function that takes as a source the original value of the designated
column and returns a remapped value that will replace the original value in the dump
file.

Default: There is no default

Purpose

The REMAP_DATA parameter allows you to specify a remap function that takes as a
source the original value of the designated column and returns a remapped value that
will replace the original value in the dump file. A common use for this option is to mask
data when moving from a production system to a test system. For example, a column
of sensitive customer data such as credit card numbers could be replaced with
numbers generated by a REMAP_DATA function. This would allow the data to retain its
essential formatting and processing characteristics without exposing private data to
unauthorized personnel.

The same function can be applied to multiple columns being dumped. This is useful
when you want to guarantee consistency in remapping both the child and parent
column in a referential constraint.

Syntax and Description

REMAP_DATA=[schenm.] t abl enane. col um_nane: [schena.] pkg. functi on

2-56

Chapter 2
Parameters Available in Export's Command-Line Mode

The description of each syntax element, in the order in which they appear in the
syntax, is as follows:

schema: the schema containing the table to be remapped. By default, this is the
schema of the user doing the export.

tablename : the table whose column will be remapped.
column_name: the column whose data is to be remapped.

schema : the schema containing the PL/SQL package you have created that contains
the remapping function. As a default, this is the schema of the user doing the export.

pkg: the name of the PL/SQL package you have created that contains the remapping
function.

function: the name of the function within the PL/SQL that will be called to remap the
column table in each row of the specified table.

Restrictions

* The data types and sizes of the source argument and the returned value must
both match the data type and size of the designated column in the table.

* Remapping functions should not perform commits or rollbacks except in
autonomous transactions.

e The use of synonyms as values for the REMAP_DATA parameter is not supported.
For example, if the r egi ons table in the hr schema had a synonym of r egn, an
error would be returned if you specified r egn as part of the REMPA_DATA
specification.

 Remapping LOB column data of a remote table is not supported.

e Columns of the following types are not supported byREMAP_DATA: User Defined
Types, attributes of User Defined Types, LONGs, REFs, VARRAYSs, Nested
Tables, BFILEs, and XMLtype.

Example

The following example assumes a package named r emap has been created that
contains functions named mi nus10 and pl usx. These functions change the values for
enpl oyee_idandfirst_nane in the enpl oyees table.

> expdp hr DI RECTORY=dpunp_dir1l DUMPFI LE=r emapl. dnp TABLES=enpl oyees
REMAP_DATA=hr . enpl oyees. enpl oyee_i d: hr. remap. ni nus10
REMAP_DATA=hr . enpl oyees. first_nane: hr.remap. pl usx

2.4.37 REUSE_DUMPFILES

ORACLE

The Data Pump Export command-line utility xxx parameter specifies whether to
overwrite a preexisting dump file.

Default: NO

Purpose

Specifies whether to overwrite a preexisting dump file.

2-57

Chapter 2
Parameters Available in Export's Command-Line Mode

Syntax and Description

REUSE_DUMPFI LES=[YES | NO

Normally, Data Pump Export will return an error if you specify a dump file name that

already exists. The REUSE_DUWPFI LES parameter allows you to override that behavior
and reuse a dump file name. For example, if you performed an export and specified

DUMPFI LE=hr . dnp and REUSE_DUVPFI LES=YES, then hr . dnp is overwritten if it already

exists. Its previous contents are then lost, and it instead contains data for the current
export.

Example

The following export operation creates a dump file named encl. dnp, even if a dump
file with that name already exists.

> expdp hr DI RECTORY=dpunp_dir1l DUVPFI LE=encl. dnp
TABLES=enpl oyees REUSE_DUMPFI LES=YES

2.4.38 SAMPLE

ORACLE

The Data Pump Export command-line utility SAMPLE parameter specifies a percentage
of the data rows that you want to be sampled and unloaded from the source database.

Default; There is no default

Purpose

Specifies a percentage of the data rows that you want to be sampled and unloaded
from the source database.

Syntax and Description

SAVPLE=[[schema_nane.] t abl e_name:] sanpl e_per cent

This parameter allows you to export subsets of data by specifying the percentage of
data to be sampled and exported. The sanpl e_per cent indicates the probability that a
row will be selected as part of the sample. It does not mean that the database will
retrieve exactly that amount of rows from the table. The value you supply for

sanpl e_per cent can be anywhere from .000001 up to, but not including, 100.

You can apply the sanpl e_per cent to specific tables. In the following example, 50% of
the HR. EMPLOYEES table is exported:

SAMPLE="HR'. " EMPLOYEES" : 50

If you specify a schema, then you must also specify a table. However, you can specify
a table without specifying a schema. In that scenario, the current user is assumed. If
no table is specified, then the sanpl e_per cent value applies to the entire export job.

You can use this parameter with the Data Pump Import PCTSPACE transform, so that
the size of storage allocations matches the sampled data subset. (See the Import
TRANSFORM parameter).

2-58

Chapter 2
Parameters Available in Export's Command-Line Mode

Restrictions

e The SAVWPLE parameter is not valid for network exports.

Example

In the following example, the value 70 for SAMPLE is applied to the entire export job
because no table name is specified.

> expdp hr DI RECTORY=dpunp_dir1 DUVPFI LE=sanpl e. dnp SAMPLE=70

Related Topics
¢ TRANSFORM

2.4.39 SCHEMAS

ORACLE

The Data Pump Export command-line utility SCHEMAS parameter specifies that you
want to perform a schema-mode export. This is the default mode for Export.

Default: current user's schema

Purpose

Specifies that you want to perform a schema-mode export. This is the default mode for
Export.
Syntax and Description

SCHEMAS=schena_name [, ...]

If you have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify a single
schema other than your own or a list of schema names. The
DATAPUMP_EXP_FULL_DATABASE role also allows you to export additional nonschema
object information for each specified schema so that the schemas can be re-created at
import time. This additional information includes the user definitions themselves and all
associated system and role grants, user password history, and so on. Filtering can
further restrict what is exported using schema mode.

Restrictions

* If you do not have the DATAPUMP_EXP_FULL_DATABASE role, then you can specify
only your own schema.

e The SYS schema cannot be used as a source schema for export jobs.

Example

The following is an example of using the SCHEMAS parameter. Note that user hr is
allowed to specify more than one schema, because the DATAPUMP_EXP_FULL_ DATABASE
role was previously assigned to it for the purpose of these examples.

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=expdat . dnp SCHEMAS=hr, sh, oe

2-59

Chapter 2
Parameters Available in Export's Command-Line Mode

This results in a schema-mode export in which the schemas, hr, sh, and oe will be
written to the expdat . dnp dump file located in the dpunp_di r 1 directory.

Related Topics

* Filtering During Export Operations

2.4.40 SERVICE_NAME

ORACLE

Default: There is no default

Purpose

Used to specify a service name to be used in conjunction with the CLUSTER parameter.

Syntax and Description

SERVI CE_NAME=nane

You can use the SERVI CE_NAME parameter with the CLUSTER=YES parameter to specify
an existing service associated with a resource group that defines a set of Oracle Real
Application Clusters (Oracle RAC) instances belonging to that resource group.
Typically, the resource group is a subset of all the Oracle RAC instances.

The service name is only used to determine the resource group, and the instances
defined for that resource group. The instance where the job is started is always used,
regardless of whether it is part of the resource group.

If CLUSTER=NQis also specified, then the SERVI CE_NAME parameter is ignored

Suppose you have an Oracle RAC configuration containing instances A, B, C, and D.
Also suppose that a service named ny_ser vi ce exists with a resource group
consisting of instances A, B, and C only. In such a scenario, the following is true:

» If you start a Data Pump job on instance A, and specify CLUSTER=YES (or accept
the default, which is Y), and you do not specify the SERVI CE_NAME parameter, then
Data Pump creates workers on all instances: A, B, C, and D, depending on the
degree of parallelism specified.

» If you start a Data Pump job on instance A, and specify CLUSTER=YES, and
SERVI CE_NAME=ny_ser vi ce, then workers can be started on instances A, B, and C
only.

e If you start a Data Pump job on instance D, and specify CLUSTER=YES, and
SERVI CE_NAME=ny_ser vi ce, then workers can be started on instances A, B, C, and
D. Even though instance D is not in ny_servi ce it is included because it is the
instance on which the job was started.

» If you start a Data Pump job on instance A, and specify CLUSTER=NO, then any
SERVI CE_NAME parameter that you specify is ignored. All processes start on
instance A.

Example
The following is an example of using the SERVI CE_NAME parameter:
> expdp hr DI RECTORY=dpunp_di r1 DUMPFI LE=hr _svnane2. dnp SERVI CE_NAME=sal es

2-60

Chapter 2
Parameters Available in Export's Command-Line Mode

This example starts a schema-mode export (the default mode) of the hr schema. Even
though CLUSTER=YES is not specified on the command line, it is the default behavior, so
the job will use all instances in the resource group associated with the service name
sal es. A dump file named hr _svname2. dnp will be written to the location specified by
the dpunp_di r 1 directory object.

Related Topics
¢ CLUSTER

2.4.41 SOURCE_EDITION

ORACLE

The Data Pump Export command-line utility SOURCE_EDI TI ON parameter specifies the
database edition from which objects are exported.

Default: the default database edition on the system

Purpose

Specifies the database edition from which objects are exported.

Syntax and Description

SOURCE_EDI Tl ON=edi ti on_nane

If SOURCE_EDI TI ON=edi t i on_nane is specified, then the objects from that edition are
exported. Data Pump selects all inherited objects that have not changed, and all actual
objects that have changed.

If this parameter is not specified, then the default edition is used. If the specified
edition does not exist or is not usable, then an error message is returned.

Restrictions

e This parameter is only useful if there are two or more versions of the same
versionable objects in the database.

e The job version must be 11. 2 or later.

Example
The following is an example of using the SOURCE_EDI TI ON parameter:

> expdp hr DI RECTORY=dpunp_dir1 DUWPFI LE=exp_dat . dnp SOURCE_EDI TI ON=exp_edition
EXCLUDE=USER

This example assumes the existence of an edition named exp_edi ti on on the system
from which objects are being exported. Because no export mode is specified, the
default of schema mode will be used. The EXCLUDE=user parameter excludes only the
definitions of users, not the objects contained within users' schemas.

Related Topics
* VERSION
* Oracle Database SQL Language Reference

* Oracle Database Development Guide

2-61

Chapter 2
Parameters Available in Export's Command-Line Mode

¢ See Also:

e Oracle Database SQL Language Reference for information about how
editions are created

e Oracle Database Development Guide for more information about the
editions feature, including inherited and actual objects

2.4.42 STATUS

The Data Pump Export command-line utility STATUS parameter specifies the
frequency at which the job status display is updated

Default; 0

Purpose

Specifies the frequency at which the job status display is updated.

Syntax and Description

STATUS=[i nt eger]

If you supply a value for i nt eger, it specifies how frequently, in seconds, job status
should be displayed in logging mode. If no value is entered or if the default value of 0
is used, then no additional information is displayed beyond information about the
completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log file
(if one is in effect).

Example

The following is an example of using the STATUS parameter.

> expdp hr DI RECTORY=dpunp_dir1 SCHEMAS=hr,sh STATUS=300

This example exports the hr and sh schemas, and displays the status of the export
every 5 minutes (60 seconds x 5 = 300 seconds).

2.4.43 TABLES

ORACLE

The Data Pump Export command-line utility TABLES parameter specifies that you want
to perform a table-mode export.

Default; There is no default

Purpose

Specifies that you want to perform a table-mode export.

Syntax and Description

TABLES=[schema_nane.] tabl e_name[: partition_name] [, ...]

2-62

Chapter 2
Parameters Available in Export's Command-Line Mode

Filtering can restrict what is exported using this mode. You can filter the data and
metadata that is exported by specifying a comma-delimited list of tables and partitions
or subpartitions. If a partition name is specified, then it must be the name of a partition
or subpartition in the associated table. Only the specified set of tables, partitions, and
their dependent objects are unloaded.

If an entire partitioned table is exported, then it is imported in its entirety as a
partitioned table. The only case in which this is not true is if
PARTI TI ON_OPTI ONS=DEPARTI TI ONis specified during import.

The table name that you specify can be preceded by a qualifying schema name. The
schema defaults to that of the current user. To specify a schema other than your own,
you must have the DATAPUVP_EXP_FULL_DATABASE role.

Use of the wildcard character (% to specify table names and partition names is
supported.

The following restrictions apply to table names:

» By default, table names in a database are stored as uppercase. If you have a table
name in mixed-case or lowercase, and you want to preserve case-sensitivity for
the table name, then you must enclose the name in quotation marks. The name
must exactly match the table name stored in the database.

Some operating systems require that quotation marks on the command line are
preceded by an escape character. The following examples show of how case-
sensitivity can be preserved in the different Export modes.

— In command-line mode:
TABLES="\"Enp\ "'
— In parameter file mode:
TABLES="" Enp"'
» Table names specified on the command line cannot include a pound sign (#),
unless the table name is enclosed in quotation marks. Similarly, in the parameter
file, if a table name includes a pound sign (#), then the Export utility interprets the

rest of the line as a comment, unless the table name is enclosed in quotation
marks.

For example, if the parameter file contains the following line, then Export interprets
everything on the line after enp# as a comment, and does not export the tables
dept and nydat a:

TABLES=(enp#, dept, nydata)

However, if the parameter file contains the following line, then the Export utility
exports all three tables, because enp# is enclosed in quotation marks:

TABLES=('"enp#"', dept, nydata)

ORACLE 2-63

Chapter 2
Parameters Available in Export's Command-Line Mode

< Note:

Some operating systems use single quotation marks as escape
characters, rather than double quotation marks, and others the reverse.
See your Oracle operating system-specific documentation. Different
operating systems also have other restrictions on table naming.

For example, the UNIX C shell attaches a special meaning to a dollar
sign ($) or pound sign (#), or certain other special characters. You must
use escape characters to be able to use such characters in the name
and have them ignored by the shell, and used by Export.

Using the Transportable Option During Table-Mode Export

To use the transportable option during a table-mode export, specify the
TRANSPORTABLE=ALWAYS parameter with the TABLES parameter. Metadata for the
specified tables, partitions, or subpartitions is exported to the dump file. To move the
actual data, you copy the data files to the target database.

If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

Restrictions

* Cross-schema references are not exported. For example, a trigger defined on a
table within one of the specified schemas, but that resides in a schema not
explicitly specified, is not exported.

» Types used by the table are not exported in table mode. This restriction means
that if you subsequently import the dump file, and the type does not already exist
in the destination database, then the table creation fails.

* The use of synonyms as values for the TABLES parameter is not supported. For
example, if the r egi ons table in the hr schema had a synonym of r egn, then it is
not valid to use TABLES=r egn. If you attempt to use the synonym, then an error is
returned.

* The export of tables that include a wildcard character (%) in the table name is not
supported if the table has partitions.

e The length of the table name list specified for the TABLES parameter is limited to a
maximum of 4 MB, unless you are using the NETWORK LI NK parameter to an Oracle
Database release 10.2.0.3 or earlier, or to a read-only database. In such cases,
the limit is 4 KB.

* You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also set
on the export.

Examples

The following example shows a simple use of the TABLES parameter to export three
tables found in the hr schema: enpl oyees, j obs, and depart nent s. Because user hr is

ORACLE 2-64

Chapter 2
Parameters Available in Export's Command-Line Mode

exporting tables found in the hr schema, the schema name is not needed before the
table names.

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=t abl es. dnp
TABLES=enpl oyees, j obs, depart nent s

The following example assumes that user hr has the DATAPUMP_EXP_FULL_DATABASE
role. It shows the use of the TABLES parameter to export partitions.

> expdp hr DI RECTORY=dpunp_dir1 DUMPFI LE=t abl es_part. dnp
TABLES=sh. sal es: sal es_QL 2012, sh. sal es: sal es_@_2012

This example exports the partitions, sal es_QL 2012 and sal es_@_2012, from the table
sal es in the schema sh.

Related Topics
* Filtering During Export Operations

* TRANSPORTABLE
The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

* REMAP_TABLE
The Data Pump Import command-line mode REMAP_TABLE parameter enables you
to rename tables during an import operation.

» Using Data File Copying to Move Data

2.4.44 TABLESPACES

ORACLE

The Data Pump Export command-line utility TABLESPACES parameter specifies a list
of tablespace names to be exported in tablespace mode.

Default;: There is no default

Purpose

Specifies a list of tablespace names to be exported in tablespace mode.

Syntax and Description

TABLESPACES=t ahl espace_name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are
unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both
object metadata and data are unloaded. If any part of a table resides in the specified
set, then that table and all of its dependent objects are exported. Privileged users get
all tables. Unprivileged users obtain only the tables in their own schemas

Filtering can restrict what is exported using this mode.

2-65

Chapter 2
Parameters Available in Export's Command-Line Mode

Restrictions

* The length of the tablespace name list specified for the TABLESPACES parameter is
limited to a maximum of 4 MB, unless you are using the NETWORK LI NKto an
Oracle Database release 10.2.0.3 or earlier, or to a read-only database. In such
cases, the limit is 4 KB.

Example

The following is an example of using the TABLESPACES parameter. The example
assumes that tablespacestbs_4, tbs_5, and t bs_6 already exist.

> expdp hr DI RECTORY=dpunp_dir1l DUVPFI LE=t bs. dnp
TABLESPACES=tbs_4, tbhs_5, ths_6

This command results in a tablespace export in which tables (and their dependent
objects) from the specified tablespaces (t bs_4, t bs_5, and t bs_6) is unloaded.

Related Topics

* Filtering During Export Operations

2.4.45 TRANSPORT_FULL_CHECK

ORACLE

The Data Pump Export command-line utility TRANSPORT FULL_CHECK parameter
specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Default: NO

Purpose

Specifies whether to check for dependencies between those objects inside the
transportable set and those outside the transportable set. This parameter is applicable
only to a transportable-tablespace mode export.

Syntax and Description

TRANSPORT FULL_CHECK=[YES | NO

If TRANSPORT_FULL_CHECK=YES, then Export verifies that there are no dependencies
between those objects inside the transportable set and those outside the transportable
set. The check addresses two-way dependencies. For example, if a table is inside the
transportable set, but its index is not, then a failure is returned, and the export
operation is terminated. Similarly, a failure is also returned if an index is in the
transportable set, but the table is not.

If TRANSPORT _FULL_CHECK=NOthen Export verifies only that there are no objects within
the transportable set that are dependent on objects outside the transportable set. This
check addresses a one-way dependency. For example, a table is not dependent on an
index, but an index is dependent on a table, because an index without a table has no
meaning. Therefore, if the transportable set contains a table, but not its index, then this
check succeeds. However, if the transportable set contains an index, but not the table,
then the export operation is terminated.

2-66

Chapter 2
Parameters Available in Export's Command-Line Mode

There are other checks performed as well. For instance, export always verifies that all
storage segments of all tables (and their indexes) defined within the tablespace set
specified by TRANSPORT TABLESPACES are actually contained within the tablespace set.

Example
The following is an example of using the TRANSPORT FULL CHECK parameter. It
assumes that tablespace t bs_1 exists.

> expdp hr DI RECTORY=dpunp_dir1l DUVPFILE=tts. dnp
TRANSPORT_TABLESPACES=t bs_1 TRANSPCRT_FULL_CHECK=YES LOGFI LE=tts. | og

2.4.46 TRANSPORT_TABLESPACES

ORACLE

The Data Pump Export command-line utility TRANSPORT_TABLESPACES parameter
specifies that you want to perform an export in transportable-tablespace mode

Default: There is no default

Purpose

Specifies that you want to perform an export in transportable-tablespace mode.

Syntax and Description

TRANSPORT_TABLESPACES=t abl espace_nane [, ...]

Use the TRANSPORT _TABLESPACES parameter to specify a list of tablespace names for
which object metadata will be exported from the source database into the target
database.

The log file for the export lists the data files that are used in the transportable set, the
dump files, and any containment violations.

The TRANSPORT _TABLESPACES parameter exports metadata for all objects within the
specified tablespaces. If you want to perform a transportable export of only certain
tables, partitions, or subpartitions, then you must use the TABLES parameter with the
TRANSPORTABLE=ALWAYS parameter.

¢ Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Restrictions
» Transportable tablespace jobs are not restartable.
» Transportable tablespace jobs are restricted to a degree of parallelism of 1.

» Transportable tablespace mode requires that you have the
DATAPUMP_EXP_FULL_DATABASE role.

2-67

Chapter 2
Parameters Available in Export's Command-Line Mode

* The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

* The SYSTEMand SYSAUX tablespaces are not transportable in transportable
tablespace mode.

e All tablespaces in the transportable set must be set to read-only.

e If the Data Pump Export VERSI ON parameter is specified along with the
TRANSPORT _TABLESPACES parameter, then the version must be equal to or greater
than the Oracle Database COVPATI BLE initialization parameter.

e The TRANSPORT TABLESPACES parameter cannot be used in conjunction with the
QUERY parameter.

e Transportable tablespace jobs do not support the ACCESS METHOD parameter for
Data Pump Export.

Example

The following is an example of using the TRANSPORT_TABLESPACES parameter in a file-
based job (rather than network-based). The tablespace t bs_1 is the tablespace being
moved. This example assumes that tablespace t bs_1 exists and that it has been set to
read-only. This example also assumes that the default tablespace was changed before
this export command was issued.

> expdp hr DI RECTORY=dpunp_dir1l DUVPFILE=tts. dnp
TRANSPORT _TABLESPACES=t bs_1 TRANSPORT FULL_ CHECK=YES LOGFI LE=tts.| og

See Oracle Database Administrator's Guide for detailed information about transporting
tablespaces between databases

Related Topics

e Transportable Tablespace Mode

e Using Data File Copying to Move Data

e How Does Data Pump Handle Timestamp Data?

* Oracle Database Administrator’s Guide

2.4.47 TRANSPORTABLE

ORACLE

The Data Pump Export command-line utility TRANSPORTABLE parameter specifies
whether the transportable option should be used during a table mode export (specified
with the TABLES parameter) or a full mode export (specified with the FULL parameter).

Default: NEVER

Purpose

Specifies whether the transportable option should be used during a table mode export
(specified with the TABLES parameter) or a full mode export (specified with the FULL
parameter).

Syntax and Description

TRANSPORTABLE = [ALWAYS | NEVER]

2-68

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is not
possible, then the job fails.

In a table mode export, using the transportable option results in a transportable
tablespace export in which metadata for only the specified tables, partitions, or
subpartitions is exported.

In a full mode export, using the transportable option results in a full transportable
export which exports all objects and data necessary to create a complete copy of the
database.

NEVER - Instructs the export job to use either the direct path or external table method to
unload data rather than the transportable option. This is the default.

Note:

To export an entire tablespace in transportable mode, use the
TRANSPORT_TABLESPACES parameter.

» If only a subset of a table's partitions are exported and the TRANSPORTABLE=ALWAYS
parameter is used, then on import each partition becomes a non-partitioned table.

e If only a subset of a table's partitions are exported and the TRANSPORTABLE
parameter is not used at all or is set to NEVER (the default), then on import:

— If PARTI TI ON_OPTI ONS=DEPARTI Tl ONis used, then each partition included in the
dump file set is created as a non-partitioned table.

— If PARTI TI ON_OPTI ONS is not used, then the complete table is created. That is,
all the metadata for the complete table is present, so that the table definition
looks the same on the target system as it did on the source. But only the data
that was exported for the specified partitions is inserted into the table.

Restrictions

* The TRANSPORTABLE parameter is only valid in table mode exports and full mode
exports.

e To use the TRANSPORTABLE parameter, the COVPATI BLE initialization parameter
must be set to at least 11.0.0.

* To use the FULL parameter in conjunction with TRANSPORTABLE (to perform a full
transportable export), the Data Pump VERSI ON parameter must be set to at least
12.0. If the VERSI ON parameter is not specified, then the COVPATI BLE database
initialization parameter must be set to at least 12.0 or later.

* The user performing a transportable export requires the
DATAPUMP_EXP_FULL_DATABASE privilege.

e Tablespaces associated with tables, partitions, and subpartitions must be read-
only.

e Afull transportable export uses a mix of data movement methods. Objects residing
in a transportable tablespace have only their metadata unloaded; data is copied
when the data files are copied from the source system to the target system. The
data files that must be copied are listed at the end of the log file for the export

2-69

Chapter 2
Parameters Available in Export's Command-Line Mode

operation. Objects residing in non-transportable tablespaces (for example, SYSTEM
and SYSAUX) have both their metadata and data unloaded into the dump file set.
(See Oracle Database Administrator's Guide for more information about
performing full transportable exports.)

* The default tablespace of the user performing the export must not be set to one of
the tablespaces being transported.

Example

The following example assumes that the sh user has the
DATAPUVP_EXP_FULL_DATABASE role and that table sal es2 is partitioned and contained
within tablespace t bs2. (The t bs2 tablespace must be set to read-only in the source
database.)

> expdp sh DI RECTORY=dpunp_dir1 DUVPFI LE=ttol. dnp
TABLES=sh. sal es2 TRANSPORTABLE=ALWAYS

After the export completes successfully, you must copy the data files to the target
database area. You could then perform an import operation using the

PARTI TI ON_OPTI ONS and REMAP_SCHENMA parameters to make each of the partitions in
sal es2 its own table.

> inpdp system PARTI TI ON_OPTI ONS=DEPARTI TI ON
TRANSPORT DATAFI LES=or acl e/ dbs/ t bs2 DI RECTORY=dpunp_di r 1
DUVPFI LE=t t ol. dnp REMAP_SCHEMA=sh: dp

Related Topics

* Oracle Database Administrator’s Guide
* Full Mode

» Using Data File Copying to Move Data

2.4.48 VERSION

ORACLE

The Data Pump Export command-line utility VERSI ON parameter specifies the version
of database objects that you want to export.

Default: COVPATI BLE

Purpose

Specifies the version of database objects that you want to export. Only database
objects and attributes that are compatible with the specified release are exported. You
can use the VERSION parameter to create a dump file set that is compatible with a
previous release of Oracle Database. You cannot use Data Pump Export with releases
of Oracle Database before Oracle Database 10g release 1 (10.1). Data Pump Export
only works with Oracle Database 10g release 1 (10.1) or later. The VERSI ON parameter
simply allows you to identify the version of objects that you export.

On Oracle Database 119 release 2 (11.2.0.3) or later, you can specify the VERS| ON
parameter as VERSI ON=12 with FULL=Y to generate a full export dump file that is ready
for import into Oracle Database 12c¢. The export with the later release target VERSI ON
value includes information from registered database options and components. The
dump file set specifying a later release version can only be imported into Oracle
Database 12c Release 1 (12.1.0.1) and later. For example, if VERSI ON=12 is used with

2-70

ORACLE

Chapter 2
Parameters Available in Export's Command-Line Mode

FULL=Y and also with TRANSPORTABLE=ALWAYS, then a full transportable export dump file
is generated that is ready for import into Oracle Database 12c¢. For more information,
refer to the FULL export parameter option.

Syntax and Description

VERSI| ON=[COMPATI BLE | LATEST | version_string]

The legal values for the VERSI ON parameter are as follows:

e COWPATI BLE - This value is the default value. The version of the metadata
corresponds to the database compatibility level as specified on the COVPATI BLE
initialization parameter.

Note: Database compatibility must be set to 9.2 or later.

e LATEST - The version of the metadata and resulting SQL DDL corresponds to the
database release, regardless of its compatibility level.

e version_string - A specific database release (for example, 11.2.0). In Oracle
Database 11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the release specified for
VERSI ON are not exported. For example, tables containing new data types that are not
supported in the specified release are not exported.

Restrictions

e Exporting a table with archived LOBs to a database release earlier than 11.2 is not
allowed.

e If the Data Pump Export VERSI ON parameter is specified with the
TRANSPORT_TABLESPACES parameter, then the value for VERSI ON must be equal to
or greater than the Oracle Database COVPATI BLE initialization parameter.

» If the Data Pump VERSI ON parameter is specified as any value earlier than 12.1,
then the Data Pump dump file excludes any tables that contain VARCHAR2 or
NVARCHAR?2 columns longer than 4000 bytes, and any RAWcolumns longer than
2000 bytes.

» Dump files created on Oracle Database 11g releases with the Data Pump
parameter VERSI ON=12 can only be imported on Oracle Database 12¢ Release 1
(12.1) and later.

Example

The following example shows an export for which the version of the metadata
corresponds to the database release:

> expdp hr TABLES=hr. enpl oyees VERSI ON=LATEST DI RECTORY=dpunp_dir1
DUNPFI LE=enp. dmp NOLOGFI LE=YES

Related Topics
e Full Mode

» Exporting and Importing Between Different Database Releases

2-71

Chapter 2
Parameters Available in Export's Command-Line Mode

2.4.49 VIEWS_AS_TABLES

The Data Pump Export command-line utility VI EW5_AS_TABLES parameter specifies that
you want one or more views exported as tables.

Default: There is no default.

Caution:

The VI EW5_AS_TABLES parameter unloads view data in unencrypted format,
and creates an unencrypted table. If you are unloading sensitive data, then
Oracle strongly recommends that you enable encryption on the export
operation and that you ensure the table is created in an encrypted
tablespace. You can use the REMAP_TABLESPACE parameter to move the table
to such a tablespace.

Purpose

Specifies that one or more views are to be exported as tables.

Syntax and Description

VI EWS_AS_TABLES=[schema_nane.] vi ew_nane[:tabl e_nanme], ...

Data Pump exports a table with the same columns as the view and with row data
obtained from the view. Data Pump also exports objects dependent on the view, such
as grants and constraints. Dependent objects that do not apply to tables (for example,
grants of the UNDER object privilege) are not exported. You can use the

VI EW6_AS TABLES parameter by itself, or with the TABLES parameter. If either is used,
then Data Pump performs a table-mode export.

The syntax elements are defined as follows:

schema_name: The name of the schema in which the view resides. If a schema name is
not supplied, it defaults to the user performing the export.

view_name: The name of the view to be exported as a table. The view must exist and
it must be a relational view with only scalar, non-LOB columns. If you specify an invalid
or non-existent view, the view is skipped and an error message is returned.

t abl e_nane: The name of a table that you want to serve as the source of the metadata
for the exported view. By default, Data Pump automatically creates a temporary
"template table" with the same columns and data types as the view, but no rows. If the
database is read-only, then this default creation of a template table fails. In such a
case, you can specify a table name. The table must be in the same schema as the
view. It must be a non-partitioned relational table with heap organization. It cannot be
a nested table.

ORACLE 2-72

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

If the export job contains multiple views with explicitly specified template tables, then
the template tables must all be different. For example, in the following job (in which
two views use the same template table) one of the views is skipped:

expdp scott/tiger directory=dpunp_dir dunpfile=a.dnp
views_as_tabl es=vl:enp, v2: enp
An error message is returned reporting the omitted object.

Template tables are automatically dropped after the export operation is completed.
While they exist, you can perform the following query to view their names (which all
begin with KUSVAT):

SQL> SELECT * FROM user _tab_comrents WHERE tabl e_nane LIKE ' KUSVAT% ;

TABLE_NAME TABLE_TYPE
COWENTS
KUSVAT_63629 TABLE

Data Punp netadata tenplate table for view SCOIT. EMPV

Restrictions

* The VIEWS_AS TABLES parameter cannot be used with the TRANSPORTABLE=ALWAYS
parameter.

e Tables created using the VI ENs_AS TABLES parameter do not contain any hidden
or invisible columns that were part of the specified view.

* The VIEWS_AS TABLES parameter does not support tables that have columns with a
data type of LONG.

Example

The following example exports the contents of view scott . vi ewl to a dump file named
scott 1. dnp.

> expdp scott/tiger views_as_tabl es=viewl directory=data_punp_dir dunpfile=scottl.dnp

The dump file contains a table named vi ewl with rows obtained from the view.

2.5 Commands Available in Data Pump Export Interactive-
Command Mode

ORACLE

Check which command options are available to you when using Data Pump Export in
interactive mode.

* About Data Pump Export Interactive Command Mode
Learn about commands you can use with Data Pump Export in interactive
command mode while your current job is running.

« ADD_FILE
The Data Pump Export interactive command mode ADD_FI LE parameter adds
additional files or substitution variables to the export dump file set.

2-73

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

CONTINUE_CLIENT
The Data Pump Export interactive command mode CONTI NUE_CLI ENT parameter
changes the Export mode from interactive-command mode to logging mod

EXIT_CLIENT

The Data Pump Export interactive command mode EXI T_CLI ENT parameter stops
the export client session, exits Export, and discontinues logging to the terminal,
but leaves the current job running.

FILESIZE
The Data Pump Export interactive command mode Fl LESI ZE parameter redefines
the maximum size of subsequent dump files.

HELP

The Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command
mode.

KILL_JOB

The Data Pump Export interactive command mode Kl LL_JOB parameter detaches
all currently attached client sessions and then terminates the current job. It exits
Export and returns to the terminal prompt.

PARALLEL

The Export Interactive-Command Mode PARALLEL parameter enables you to
increase or decrease the number of active processes (worker and parallel slaves)
for the current job.

START_JOB
The Data Pump Export interactive command mode START_JOB parameter starts
the current job to which you are attached.

STATUS
The Export interactive command STATUS parameter displays status information
about the export, and enables to to set the display interval for logging mode status.

STOP_JOB

The Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and
exits Export.

2.5.1 About Data Pump Export Interactive Command Mode

Learn about commands you can use with Data Pump Export in interactive command
mode while your current job is running.

ORACLE

In interactive command mode, the current job continues running, but logging to the
terminal is suspended, and the Export prompt (Expor t >) is displayed.

To start interactive-command mode, do one of the following:

From an attached client, press Ctrl+C.

From a terminal other than the one on which the job is running, specify the ATTACH
parameter in an expdp command to attach to the job. ATTACH s is a useful feature
in situations in which you start a job at one location, and need to check on it at a
later time from a different location.

The following table lists the activities that you can perform for the current job from the
Data Pump Export prompt in interactive-command mode.

2-74

Chapter 2

Commands Available in Data Pump Export Interactive-Command Mode

Table 2-1 Supported Activities in Data Pump Export's Interactive-Command

Mode

Activity

Command Used

Add additional dump files.
Exit interactive mode and enter logging mode.
Stop the export client session, but leave the job running.

Redefine the default size to be used for any subsequent
dump files.

Display a summary of available commands.

Detach all currently attached client sessions and terminate
the current job.

Increase or decrease the number of active worker processes
for the current job. This command is valid only in the
Enterprise Edition of Oracle Database 119 or later.

Restart a stopped job to which you are attached.

Display detailed status for the current job and/or set status
interval.

Stop the current job for later restart.

ADD_FI LE

CONTI NUE_CLI ENT
EXIT_CLIENT

FI LESI ZE

HELP
KILL_JOB

PARALLEL
START_JOB
STATUS

STOP_JOB

2.5.2 ADD_FILE

The Data Pump Export interactive command mode ADD _FI LE parameter adds
additional files or substitution variables to the export dump file set.

ORACLE

Purpose

Adds additional files or substitution variables to the export dump file set.

Syntax and Description

ADD _FI LE=[directory_object:]file_name [,...]

Each file name can have a different directory object. If no directory object is specified,

then the default is assumed.

The fil e_name must not contain any directory path information. However, it can
include a substitution variable, %J, which indicates that multiple files can be generated

using the specified file name as a template.

The size of the file being added is determined by the setting of the FI LESI ZE

parameter.

Example

The following example adds two dump files to the dump file set. A directory object is
not specified for the dump file named hr 2. dnp, so the default directory object for the
job is assumed. A different directory object, dpunp_di r 2, is specified for the dump file

named hr 3. dnp.

Export> ADD FI LE=hr2. dnp, dpunp_dir2:hr3.dnp

2-75

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

Related Topics

* File Allocation

2.5.3 CONTINUE_CLIENT

The Data Pump Export interactive command mode CONTI NUE_CLI ENT parameter
changes the Export mode from interactive-command mode to logging mod

Purpose

Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description

CONTI NUE_CLI ENT

In logging mode, status is continually output to the terminal. If the job is currently
stopped, then CONTI NUE_CLI ENT also causes the client to attempt to start the job.

Example

Export> CONTI NUE_CLI ENT

2.5.4 EXIT_CLIENT

The Data Pump Export interactive command mode EXI T_CLI ENT parameter stops the
export client session, exits Export, and discontinues logging to the terminal, but leaves
the current job running.

Purpose

Stops the export client session, exits Export, and discontinues logging to the terminal,
but leaves the current job running.

Syntax and Description

EXI T_CLI ENT

Because EXI T_CLI ENT leaves the job running, you can attach to the job at a later time.
To see the status of the job, you can monitor the log file for the job, or you can query
the USER DATAPUMP_J(BS view, or the VESESSI ON_LONGOPS view.

Example

Export> EXI T_CLI ENT

ORACLE 2-76

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2.5.5 FILESIZE

2.5.6 HELP

ORACLE

The Data Pump Export interactive command mode FI LESI ZE parameter redefines the
maximum size of subsequent dump files.

Purpose

Redefines the maximum size of subsequent dump files. If the size is reached for any
member of the dump file set, then that file is closed and an attempt is made to create a
new file, if the file specification contains a substitution variable or if additional dump
files have been added to the job.

Syntax and Description

FI LESI ZE=integer[B | KB | M3 | GB | TBH|

The i nt eger can be immediately followed (do not insert a space) by B, KB, MB, GB, or TB
(indicating bytes, kilobytes, megabytes, gigabytes, and terabytes respectively). Bytes
is the default. The actual size of the resulting file may be rounded down slightly to
match the size of the internal blocks used in dump files.

A file size of 0 is equivalent to the maximum file size of 16 TB.
Restrictions

e The minimum size for a file is ten times the default Data Pump block size, which is
4 kilobytes.

e The maximum size for a file is 16 terabytes.

Example

Export> FI LESI ZE=100MB

The Data Pump Export interactive command mode HELP parameter provides
information about Data Pump Export commands available in interactive-command
mode.

Purpose

Provides information about Data Pump Export commands available in interactive-
command mode.

Syntax and Description

HELP
Displays information about the commands available in interactive-command mode.

Example

Export> HELP

2-77

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

2.5.7KILL_JOB

The Data Pump Export interactive command mode Kl LL_JOB parameter detaches all
currently attached client sessions and then terminates the current job. It exits Export
and returns to the terminal prompt.

Purpose

Detaches all currently attached client sessions and then terminates the current job. It
exits Export and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is terminated using Kl LL_JOB cannot be restarted. All attached clients,
including the one issuing the KI LL_JOB command, receive a warning that the job is
being terminated by the current user and are then detached. After all clients are
detached, the job's process structure is immediately run down and the master table
and dump files are deleted. Log files are not deleted.

Example

Export> KILL_JOB

2.5.8 PARALLEL

ORACLE

The Export Interactive-Command Mode PARALLEL parameter enables you to increase
or decrease the number of active processes (worker and parallel slaves) for the
current job.

Purpose

Enables you to increase or decrease the number of active processes (worker and
parallel slaves) for the current job.

Syntax and Description

PARALLEL=i nt eger

PARALLEL is available as both a command-line parameter, and as an interactive-
command mode parameter. You set it to the desired number of parallel processes
(worker and parallel slaves). An increase takes effect immediately if there are sufficient
files and resources. A decrease does not take effect until an existing process finishes

its current task. If the value is decreased, then workers are idled but not deleted until
the job exits.

Restrictions

* This parameter is valid only in the Enterprise Edition of Oracle Database 11g or
later releases.

e Transportable tablespace metadata cannot be exported in parallel.

* Metadata cannot be exported in parallel when the NETWORK_LI NK parameter is
used.

2-78

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

In addition, the following objects cannot be imported in parallel:

- TR GGER
. VIEW

. OBJECT GRANT
. SEQUENCE

- CONSTRAI NT

« REF_CONSTRAI NT

Example

Export> PARALLEL=10

Related Topics
* PARALLEL

2.5.9 START JOB

The Data Pump Export interactive command mode START_JOB parameter starts the
current job to which you are attached.

Purpose
Starts the current job to which you are attached.

Syntax and Description

START JOB

The START_JOB command restarts the current job to which you are attached (the job
cannot be currently executing). The job is restarted with no data loss or corruption
after an unexpected failure or after you issued a STOP_JOB command, provided the
dump file set and master table have not been altered in any way.

Exports done in transportable-tablespace mode are not restartable.

Example

Export> START_JOB

2.5.10 STATUS

The Export interactive command STATUS parameter displays status information about
the export, and enables to to set the display interval for logging mode status.

Purpose

Displays cumulative status of the job, a description of the current operation, and an
estimated completion percentage. It also allows you to reset the display interval for
logging mode status.

ORACLE 2-79

Chapter 2
Commands Available in Data Pump Export Interactive-Command Mode

Syntax and Description

STATUS[=i nt eger]

You have the option of specifying how frequently, in seconds, this status should be
displayed in logging mode. If no value is entered or if the default value of 0 is used,
then the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file
(even if one is in effect).

Example

The following example displays the current job status, and changes the logging mode
display interval to five minutes (300 seconds):

Export> STATUS=300

2.5.11 STOP_JOB

ORACLE

The Data Pump Export interactive command mode STOP_JOB parameter stops the
current job. It stops the job either immediately, or after an orderly shutdown, and exits
Export.

Purpose

Stops the current job, either immediately, or after an orderly shutdown, and exits
Export.

Syntax and Description

STOP_JOB[=I MVEDI ATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB
command is issued, then the job can be attached to and restarted at a later time with
the START _JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A
warning requiring confirmation will be issued. An orderly shutdown stops the job after
worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=I MVEDI ATE. A warning requiring
confirmation will be issued. All attached clients, including the one issuing the STOP_JOB
command, receive a warning that the job is being stopped by the current user and they
will be detached. After all clients are detached, the process structure of the job is
immediately run down. That is, the master process will not wait for the worker
processes to finish their current tasks. There is no risk of corruption or data loss when
you specify STOP_JOB=I MVEDI ATE. However, some tasks that were incomplete at the
time of shutdown may have to be redone at restart time.

Example

Export> STOP_JOB=I MVEDI ATE

2-80

Chapter 2
Examples of Using Data Pump Export

2.6 Examples of Using Data Pump Export

These sections provides examples of using Data Pump Export.

e Performing a Table-Mode Export
This example shows a table-mode export, specified using the TABLES parameter.

» Data-Only Unload of Selected Tables and Rows
This example shows data-only unload of selected tables and rows.

» Estimating Disk Space Needed in a Table-Mode Export
This example shows how to estimate the disk space needed in a table-mode
export.

» Performing a Schema-Mode Export
This example shows you how to perform a schema-mode export.

» Performing a Parallel Full Database Export
This example shows you how to perform a parallel full database export.

* Using Interactive Mode to Stop and Reattach to a Job
This example shows you how to use interactive mode to stop and reattach to a
job.

2.6.1 Performing a Table-Mode Export

This example shows a table-mode export, specified using the TABLES parameter.

In this example, the Data Pump export command performs a table export of the tables
enpl oyees and j obs from the human resources (hr) schema.

Because user hr is exporting tables in his own schema, it is not necessary to specify
the schema name for the tables. The NOLOGFI LE=YES parameter indicates that an
Export log file of the operation is not generated.

Example 2-1 Performing a Table-Mode Export
expdp hr TABLES=enpl oyees, j obs DUVPFI LE=dpunp_di r1:tabl e. dnp NOLOGFI LE=YES

2.6.2 Data-Only Unload of Selected Tables and Rows

ORACLE

This example shows data-only unload of selected tables and rows.

The example shows the contents of a parameter file (exp. par), which you can use to
perform a data-only unload of all the tables in the human resources (hr) schema,
except for the tables count ri es and r egi ons. Rows in the enpl oyees table are
unloaded that have a depart nent _i d other than 50. The rows are ordered by

enpl oyee_id.

You can issue the following command to execute the exp. par parameter file:

> expdp hr PARFI LE=exp. par

This export performs a schema-mode export (the default mode), but the CONTENT
parameter effectively limits the export to an unload of just the table data. The DBA
previously created the directory object dpunp_di r 1, which points to the directory on the

2-81

Chapter 2
Examples of Using Data Pump Export

server where user hr is authorized to read and write export dump files. The dump file
dat aonl y. dnp is created in dpunp_dir 1.

Example 2-2 Data-Only Unload of Selected Tables and Rows
DI RECTORY=dpunp_di r1

DUVPFI LE=dat aonl y. dnp

CONTENT=DATA_ONLY

EXCLUDE=TABLE: "IN (' COUNTRIES', 'REG ONS')"
QUERY=enpl oyees: "WHERE departnent _id ! =50 ORDER BY enpl oyee_i d"

2.6.3 Estimating Disk Space Needed in a Table-Mode Export

This example shows how to estimate the disk space needed in a table-mode export.

In this example, the ESTI MATE_ONLY parameter is used to estimate the space that is
consumed in a table-mode export, without actually performing the export operation.
Issue the following command to use the BLOCKS method to estimate the number of

bytes required to export the data in the following three tables located in the human

resource (hr) schema: enpl oyees, departnments, and | ocati ons.

The estimate is printed in the log file and displayed on the client's standard output
device. The estimate is for table row data only; it does not include metadata.

Example 2-3 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DI RECTORY=dpunp_dir1 ESTI MATE_ONLY=YES TABLES=enpl oyees,
departnents, |ocations LOGFI LE=estimate. | og

2.6.4 Performing a Schema-Mode Export

This example shows you how to perform a schema-mode export.

The example shows a schema-mode export of the hr schema. In a schema-mode
export, only objects belonging to the corresponding schemas are unloaded. Because
schema mode is the default mode, it is not necessary to specify the SCHEMAS
parameter on the command line, unless you are specifying more than one schema or
a schema other than your own.

Example 2-4 Performing a Schema Mode Export

> expdp hr DUMPFI LE=dpunp_dir1: expschena. dnp
LOGFI LE=dpunp_di r 1: expschema. | og

2.6.5 Performing a Parallel Full Database Export

This example shows you how to perform a parallel full database export.

The example shows a full database Export that can use 3 parallel processes (worker
or PQ slaves).

ORACLE 2-82

Chapter 2
Syntax Diagrams for Data Pump Export

Example 2-5 Parallel Full Export

> expdp hr FULL=YES DUMPFI LE=dpunp_dir1: ful | 19J. dnp, dpunp_dir2:ful | 29%J. dnp
FI LESI ZE=2G PARALLEL=3 LOGFI LE=dpunp_di r1: expfull.log JOB NAVE=expf ul |

Because this export is a full database export, all data and metadata in the database is
exported. Dump files ful | 101. dnp, ful | 201. dnp, ful | 102. dnp, and so on, are created
in a round-robin fashion in the directories pointed to by the dpunp_di r1 and

dpunp_di r 2 directory objects. For best performance, Oracle recommends that you
place the dump files on separate I/O channels. Each file is up to 2 gigabytes in size, as
necessary. Initially, up to three files are created. If needed, more files are created. The
job and master table has a name of expf ul | . The log file is written to expful | . | og in
the dpunp_di r 1 directory.

2.6.6 Using Interactive Mode to Stop and Reattach to a Job

This example shows you how to use interactive mode to stop and reattach to a job.
To start this example, reexecute the parallel full export described here:
Performing a Parallel Full Database Export

While the export is running, press Ctrl+C. This keyboard command starts the
interactive-command interface of Data Pump Export. In the interactive interface,
logging to the terminal stops, and the Export prompt is displayed.

After the job status is displayed, you can issue the CONTI NUE_CLI ENT command to
resume logging mode and restart the expf ul | job.

Export > CONTI NUE_CLI ENT

A message is displayed that the job has been reopened, and processing status is
output to the client.

Example 2-6 Stopping and Reattaching to a Job

At the Export prompt, issue the following command to stop the job:

Export > STOP_JOB=| MVEDI ATE
Are you sure you wish to stop this job ([y]/n): vy

The job is placed in a stopped state, and exits the client.

To reattach to the job you just stopped, enter the following command:

> expdp hr ATTACHEEXPFULL

2.7 Syntax Diagrams for Data Pump Export

This section provides syntax diagrams for Data Pump Export.

These diagrams use standard SQL syntax notation. For more information about SQL
syntax notation, see Oracle Database SQL Language Reference.

ORACLE 2-83

Chapter 2
Syntax Diagrams for Data Pump Export

Explnit

password

®

ExpStart

f—(ExpModes){ExpOpts){ExpFiIeOptsh
|
f—>® (job_name)— I

ATTACH

ExpModes

()

)
| O O |
~H TABLES |x(= (table_name))

TABLESPACES

tablespace_name

YES

TRANSPORT_FULL_CHECK a H

tablespace_name

\| TRANSPORT_TABLESPACES

ORACLE 2-84

Chapter 2
Syntax Diagrams for Data Pump Export

ExpOpts

ALL ﬁ
A CONTENT DATA_ONLY

N
METADATA_ONLY J

—(ExpCompression)
GROUP_PARTITION_TABLE_DATA
DATA_OPTIONS »@»—[—
VERIFY_STREAM_FORMAT
BLOCKS
ESTIMATE 9@—)—[
STATISTICS P

YEs |\
ESTIMATE_ONLY @[

No |
—(ExpEncrypt)

ExpFilter
FLASHBACK_SCN »@»@
FLASHBACK_TIME @@

N/ N J

Ve

ORACLE 2-85

Chapter 2
Syntax Diagrams for Data Pump Export

ExpOpts_Cont

NETWORK_LINK Q database_link
H PARALLEL (=)»(integer)
—(ExpRacOpt)
—(ExpRemap)

—| SOURCE_EDITION F@»{source_edition_name\

/
STATUS a integer
TRANSPORTABLE
—(ExpVersion)
M

)
| |
H VIEWS_AS_TABLES @ 5 view_name)
™ ExpDiagnostics }

ExpCompression

DATA_ONLY

COMPRESSION

METADATA_ONLY

ORACLE 2-86

ExpEncrypt

ENCRYPTION a METADATA_ONLY L

ALL .

DATA_ONLY

—| ENCRYPTED_COLUMNS_ONLY |—

\| NONE /

—| ENCRYPTION_ALGORITHM

i=al

—| ENCRYPTION_MODE e

I PASSWORD q
TRANSPARENT

ENCRYPTION_PASSWORD

e password

ENCRYPTION_PWD_PROMPT

ExpFilter

Chapter 2

Syntax Diagrams for Data Pump Export

‘ name_clause]

— EXCLUDE P@{ohject,type)

,e'e_ame_clause I
—{ INCLUDE @(object_type) O

@ O

table_name

query_clause

RO

schema_name ‘

sample_percent

el OS—1
b T
[SERVGE RAVE }(2)-(rio are)

ExpRacOpt

YES

ORACLE

2-87

Chapter 2
Syntax Diagrams for Data Pump Export

ExpRemap

.schema f.M
\J EON @ 0@ 0 = ’

ExpVersion

COMPATIBLE
l LATEST d

VERSION
()

ExpFileOpts

fi DIRECTORY P@{directory,object)

(X

)
‘ directory_object ‘
DUMPFILE = file_name
FILESIZE a number_of_bytes
directory_object ‘
LOGFILE file_name

YES
NOLOGFILE

directory_path
PARFILE |(= (file_name)—————

YES
\| REUSE_DUMPFILES e g

ORACLE 2-88

ExpDynOpts

()
(N

directory_object ‘

file_name

CONTINUE_CLIENT }

1

EXIT_CLIENT

<
FILESIZE (=)>(number_of bytes)
H HELP
H KILL_JoB

—| LLEL

1

O EX=110

PARA
—| START_JOB
—| STATUS
k| STOP_JOB

F@s(integer) —

ExpDiagnostics

| ABORT STEP F@—)Gnteger)

INSERT_AS_SELECT

ACCESS_METHOD

KEEP_MASTER

Related Topics

e Oracle Database SQL Language Reference

ORACLE

Chapter 2
Syntax Diagrams for Data Pump Export

2-89

Data Pump Import

The Oracle Data Pump Import utility is used to load an export dump file set into a
target database. You can also use it to perform a network import to load a target
database directly from a source database with no intervening files.

* What Is Data Pump Import?
Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility
for loading an export dump file set into a target system.

e Invoking Data Pump Import
The Data Pump Import utility is started using the i npdp command.

» Filtering During Import Operations
Data Pump Import provides data and metadata filtering capability, which can help
you limit the type of information that is imported..

e Parameters Available in Import's Command-Line Mode
This section describes the parameters available in the command-line mode of
Data Pump Import.

e Commands Available in Import's Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended and the Import prompt (I npor t >) is displayed.

* Examples of Using Data Pump Import
This section provides examples of the following ways in which you might use Data
Pump Import.

e Syntax Diagrams for Data Pump Import
This section provides syntax diagrams for Data Pump Import.

3.1 What Is Data Pump Import?

ORACLE

Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for
loading an export dump file set into a target system.

The dump file set is made up of one or more disk files that contain table data,
database object metadata, and control information. The files are written in a
proprietary, binary format. During an import operation, the Data Pump Import utility
uses these files to locate each database object in the dump file set.

Import can also be used to load a target database directly from a source database with
no intervening dump files. This is known as a network import.

Data Pump Import enables you to specify whether a job should move a subset of the
data and metadata from the dump file set or the source database (in the case of a
network import), as determined by the import mode. This is done using data filters and
metadata filters, which are implemented through Import commands.

3-1

Chapter 3
Invoking Data Pump Import

¢ See Also:

e Filtering During Import Operations to learn more about data filters and
metadata filters.

e Examples of Using Data Pump Import to see some examples of the
various ways in which you can use Import.

3.2 Invoking Data Pump Import

The Data Pump Import utility is started using the i npdp command.

The characteristics of the import operation are determined by the import parameters
you specify. These parameters can be specified either on the command line or in a
parameter file.

< Note:

Do not start Import as SYSDBA, except at the request of Oracle technical
support. SYSDBA is used internally and has specialized functions; its behavior
is not the same as for general users.

Note:

Be aware that if you are performing a Data Pump Import into a table or
tablespace created with the NOLOGE NG clause enabled, then a redo log file
may still be generated. The redo that is generated in such a case is generally
for maintenance of the master table or related to underlying recursive space
transactions, data dictionary changes, and index maintenance for indices on
the table that require logging.

o Data Pump Import Interfaces
You can interact with Data Pump Import by using a command line, a parameter
file, or an interactive-command mode.

e Data Pump Import Modes
The import mode determines what is imported.

* Network Considerations
You can specify a connect identifier in the connect string when you start the Data

Pump Import utility.

3.2.1 Data Pump Import Interfaces

You can interact with Data Pump Import by using a command line, a parameter file, or
an interactive-command mode.

ORACLE 3-2

Chapter 3
Invoking Data Pump Import

Command-Line Interface: Enables you to specify the Import parameters directly on
the command line. For a complete description of the parameters available in the
command-line interface.

Parameter File Interface: Enables you to specify command-line parameters in a
parameter file. The only exception is the PARFI LE parameter because parameter
files cannot be nested. The use of parameter files is recommended if you are
using parameters whose values require quotation marks.

Interactive-Command Interface: Stops logging to the terminal and displays the
Import prompt, from which you can enter various commands, some of which are
specific to interactive-command mode. This mode is enabled by pressing Ctrl+C
during an import operation started with the command-line interface or the
parameter file interface. Interactive-command mode is also enabled when you
attach to an executing or stopped job.

Related Topics

Parameters Available in Import's Command-Line Mode
This section describes the parameters available in the command-line mode of
Data Pump Import.

Commands Available in Import's Interactive-Command Mode
In interactive-command mode, the current job continues running, but logging to the
terminal is suspended and the Import prompt (I npor t >) is displayed.

3.2.2 Data Pump Import Modes

The import mode determines what is imported.

The available impot modes are described in the following sections.

About Data Pump Import Modes
Learn how Data Pump Import modes operate during the import.

Full Import Mode
A full import is specified using the FULL parameter.

Schema Mode
A schema import is specified using the SCHEMAS parameter.

Table Mode
A table-mode import is specified using the TABLES parameter.

Tablespace Mode
A tablespace-mode import is specified using the TABLESPACES parameter.

Transportable Tablespace Mode
A transportable tablespace import is specified using the TRANSPORT TABLESPACES
parameter.

3.2.2.1 About Data Pump Import Modes

Learn how Data Pump Import modes operate during the import.

ORACLE

The Data Pump import mode that you specify for the import applies to the source of
the operation. If you specify the NETWORK LI NK parameter, then that source is either a
dump file set, or another database.

3-3

Chapter 3
Invoking Data Pump Import

When the source of the import operation is a dump file set, specifying a mode is
optional. If you do not specify a mode, then Import attempts to load the entire dump file
set in the mode in which the export operation was run.

The mode is specified on the command line, using the appropriate parameter.

" Note:

When you import a dump file that was created by a full-mode export, the
import operation attempts to copy the password for the SYS account from the
source database. This copy sometimes fails (For example, if the password is
in a shared password file). If it does fail, then after the import completes, you
must set the password for the SYS account at the target database to a
password of your choice.

3.2.2.2 Full Import Mode

ORACLE

A full import is specified using the FULL parameter.

In full import mode, the entire content of the source (dump file set or another
database) is loaded into the target database. This mode is the default for file-based
imports. If the source is another database containing schemas other than your own,
then you must have the DATAPUVP_| MP_FULL_DATABASE role.

Cross-schema references are not imported for non-privileged users. For example, a
trigger defined on a table within the schema of the importing user, but residing in
another user schema, is not imported.

The DATAPUMP_I MP_FULL_DATABASE role is required on the target database. If the
NETWORK LI NK parameter is used for a full import, then the
DATAPUMP_EXP_FULL_DATABASE role is required on the source database

Using the Transportable Option During Full Mode Imports

You can use the transportable option during a full-mode import to perform a full
transportable import.

Network-based full transportable imports require use of the FULL=YES,
TRANSPORTABLE=ALWAYS, and TRANSPORT DATAFI LES=dat af i | e_name parameters.

File-based full transportable imports only require use of the
TRANSPORT _DATAFI LES=dat af i | e_nane parameter. Data Pump Import infers the
presence of the TRANSPORTABLE=ALWAYS and FULL=Y parameters.

There are several requirements when performing a full transportable import:

» Either you must also specify the NETWORK_LI NK parameter, or the dump file set
being imported must have been created using the transportable option during
export.

» If you are using a network link, then the database specified on the NETWORK_LI NK
parameter must be Oracle Database 119 release 2 (11.2.0.3) or later, and the
Data Pump VERSI ON parameter must be set to at least 12. (In a non-network
import, VERSI ON=12 is implicitly determined from the dump file.)

3-4

Chapter 3
Invoking Data Pump Import

* If the source platform and the target platform are of different endianness, then you
must convert the data being transported so that it is in the format of the target
platform. You can use the DBMS_FI LE_TRANSFER package or the RVAN CONVERT
command to convert the data.

e If the source and target platforms do not have the same endianness, then a full
transportable import of encrypted tablespaces is not supported in network mode or
in dump file mode

Related Topics

« FULL
The Data Pump Import command-line mode FULL parameter specifies that you
want to perform a full database import.

e TRANSPORTABLE
The Data Pump Import command-line mode TRANSPORTABLE parameter specifies
whether you want to use the transportable option during a table mode import
(specified with the TABLES parameter) or a full mode import (specified with the FULL
parameter).

¢ See Also:

Oracle Database Administrator’s Guide for a detailed example of performing
a full transportable import

3.2.2.3 Schema Mode

A schema import is specified using the SCHEMAS parameter.

In a schema import, only objects owned by the specified schemas are loaded. The
source can be a full, table, tablespace, or schema-mode export dump file set or
another database. If you have the DATAPUVP_| MP_FULL_DATABASE role, then a list of
schemas can be specified and the schemas themselves (including system privilege
grants) are created in the database in addition to the objects contained within those
schemas.

Cross-schema references are not imported for non-privileged users unless the other
schema is remapped to the current schema. For example, a trigger defined on a table
within the importing user's schema, but residing in another user's schema, is not
imported.

Related Topics

e SCHEMAS
The Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

3.2.2.4 Table Mode

ORACLE

A table-mode import is specified using the TABLES parameter.

A table-mode import is specified using the TABLES parameter. In table mode, only the
specified set of tables, partitions, and their dependent objects are loaded. The source
can be a full, schema, tablespace, or table-mode export dump file set or another

3-5

Chapter 3
Invoking Data Pump Import

database. You must have the DATAPUMP_| MP_FULL_DATABASE role to specify tables that
are not in your own schema.

You can use the transportable option during a table-mode import by specifying the
TRANPORTABLE=ALWAYS parameter with the TABLES parameter. If you use this option,
then you must also use the NETWORK_LI NK parameter.

To recover tables and table partitions, you can also use RMAN backups and the
RMAN RECOVER TABLE command. During this process, RMAN creates (and optionally
imports) a Data Pump export dump file that contains the recovered objects.

Related Topics

e TABLES
The Data Pump Import command-line mode TABLES parameter specifies that you
want to perform a table-mode import.

* TRANSPORTABLE
The Data Pump Import command-line mode TRANSPORTABLE parameter specifies
whether you want to use the transportable option during a table mode import
(specified with the TABLES parameter) or a full mode import (specified with the FULL
parameter).

* Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data. With this method, Data Pump
Export is used to unload only structural information (metadata) into the dump file.

» Oracle Database Backup and Recovery User’s Guide

3.2.2.5 Tablespace Mode

A tablespace-mode import is specified using the TABLESPACES parameter.

A tablespace-mode import is specified using the TABLESPACES parameter. In
tablespace mode, all objects contained within the specified set of tablespaces are
loaded, along with the dependent objects. The source can be a full, schema,
tablespace, or table-mode export dump file set or another database. For unprivileged
users, objects not remapped to the current schema will not be processed.

Related Topics

* TABLESPACES
The Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

3.2.2.6 Transportable Tablespace Mode

ORACLE

A transportable tablespace import is specified using the TRANSPORT TABLESPACES
parameter.

In transportable tablespace mode, the metadata from another database is loaded
using either a database link (specified with the NETWORK_LI NK parameter) or by
specifying a dump file that contains the metadata. The actual data files, specified by
the TRANSPORT_DATAFI LES parameter, must be made available from the source system
for use in the target database, typically by copying them over to the target system.

When transportable jobs are performed, it is best practice to keep a copy of the data
files on the source system until the import job has successfully completed on the target

3-6

Chapter 3
Invoking Data Pump Import

system. If the import job should fail for some reason, you will still have uncorrupted
copies of the data files.

This mode requires the DATAPUMP_| MP_FULL_DATABASE role.

¢ Note:

You cannot export transportable tablespaces and then import them into a
database at a lower release level. The target database must be at the same
or later release level as the source database.

Related Topics

* How Does Data Pump Handle Timestamp Data?
This section describes factors that can affect successful completion of export and
import jobs that involve the timestamp data types TI MESTAMP W TH Tl MEZONE and
TI MESTAMP W TH LOCAL TI MEZONE.

» Using Data File Copying to Move Data
The fastest method of moving data is to copy the database data files to the target
database without interpreting or altering the data. With this method, Data Pump
Export is used to unload only structural information (metadata) into the dump file.

3.2.3 Network Considerations

ORACLE

You can specify a connect identifier in the connect string when you start the Data
Pump Import utility.

The connect identifier can specify a database instance that is different from the current
instance identified by the current Oracle System ID (SID). The connect identifier can
be an Oracle*Net connect descriptor or a net service name (usually defined in the

t nsnanes. or a file) that maps to a connect descriptor. Use of a connect identifier
requires that you have Oracle Net Listener running (to start the default listener, enter
I'snrctl start). The following is an example of this type of connection, in which i nst 1
is the connect identifier:

i mpdp hr @nst1 DI RECTORY=dpunp_dir1 DUMPFI LE=hr.dnp TABLES=enpl oyees

Import then prompts you for a password:

Password: password

The local Import client connects to the database instance identified by the connect
identifier i nst 1 (a net service name), and imports the data from the dump file hr. dnp
toinstl.

Specifying a connect identifier when you start the Import utility is different from
performing an import operation using the NETWORK_LI NK parameter. When you start an
import operation and specify a connect identifier, the local Import client connects to the
database instance identified by the connect identifier and imports the data from the
dump file named on the command line to that database instance.

Whereas, when you perform an import using the NETWORK_LI NK parameter, the import
is performed using a database link, and there is no dump file involved. (A database

3-7

Chapter 3
Filtering During Import Operations

link is a connection between two physical database servers that allows a client to
access them as one logical database.)

Related Topics

¢ NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK LI NK parameter
enables an import from a source database identified by a valid database link.

¢ See Also:

e Oracle Database Administrator's Guide for more information about
database links

¢ Oracle Database Net Services Administrator's Guide for more
information about connect identifiers and Oracle Net Listener

3.3 Filtering During Import Operations

Data Pump Import provides data and metadata filtering capability, which can help you
limit the type of information that is imported..

e Data Filters
Data-specific filtering is implemented through the QUERY and SAMPLE parameters,
which specify restrictions on the table rows that are to be imported.

* Metadata Filters
Metadata filtering is implemented through the EXCLUDE and | NCLUDE parameters.

3.3.1 Data Filters

Data-specific filtering is implemented through the QUERY and SAMPLE parameters, which
specify restrictions on the table rows that are to be imported.

Data filtering can also occur indirectly because of metadata filtering, which can include
or exclude table objects along with any associated row data.

Each data filter can only be specified once per table and once per job. If different filters
using the same name are applied to both a particular table and to the whole job, then
the filter parameter supplied for the specific table takes precedence.

3.3.2 Metadata Filters

ORACLE

Metadata filtering is implemented through the EXCLUDE and | NCLUDE parameters.

Data Pump Import provides much greater metadata filtering capability than was
provided by the original Import utility. The EXCLUDE and | NCLUDE parameters are
mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from a Data Pump
operation. For example, you could request a full import, but without Package
Specifications or Package Bodies.

3-8

Chapter 3
Parameters Available in Import's Command-Line Mode

To use filters correctly and to get the results you expect, remember that dependent
objects of an identified object are processed along with the identified object. For
example, if a filter specifies that a package is to be included in an operation, then
grants upon that package will also be included. Likewise, if a table is excluded by a
filter, then indexes, constraints, grants, and triggers upon the table will also be
excluded by the filter.

If multiple filters are specified for an object type, then an implicit AND operation is
applied to them. That is, objects participating in the job must pass all of the filters
applied to their object types.

The same filter name can be specified multiple times within a job.

To see a list of valid object types, query the following views:

DATABASE_EXPORT _OBJECTS for full mode, SCHEMA EXPORT _OBJECTS for schema mode,
and TABLE EXPORT_OBJECTS for table and tablespace mode. The values listed in the
OBJECT_PATH column are the valid object types. Note that full object path names are
determined by the export mode, not by the import mode.

Related Topics

* Metadata Filters
Metadata filtering is implemented through the EXCLUDE and | NCLUDE parameters.
The EXCLUDE and | NCLUDE parameters are mutually exclusive.

« EXCLUDE
The Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

« INCLUDE
The Data Pump Import command-line mode | NCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the
current import mode.

3.4 Parameters Available in Import's Command-Line Mode

ORACLE

This section describes the parameters available in the command-line mode of Data
Pump Import.

e About Import Command-Line Mode
Learn how to use Oracle Data Pump Import parameters in command-line mode,
including case sensitivity, quotation marks, escape characters, and information
about how to use examples.

e ABORT_STEP
The Data Pump Import command-line mode ABORT_STEP parameter stops the job
after it is initialized. Stopping the job enables the master table to be queried before
any data is imported.

* ACCESS_METHOD
The Data Pump Import command-line mode ACCESS_METHOD parameter instructs
Import to use a particular method to load data

e« ATTACH
The Data Pump Import command-line mode ATTACH parameter attaches the client
session to an existing import job and automatically places you in interactive-
command mode.

3-9

ORACLE

Chapter 3
Parameters Available in Import's Command-Line Mode

CLUSTER

The Data Pump Import command-line mode CLUSTER parameter determines
whether Data Pump can use Oracle Real Application Clusters (Oracle RAC)
resources, and start workers on other Oracle RAC instances.

CONTENT
The Data Pump Import command-line mode CONTENT parameter enables you to
filter what is loaded during the import operation.

DATA OPTIONS
The Data Pump Import command-line mode DATA_OPTI ONS parameter designates
how you want certain types of data to be handled during import operations.

DIRECTORY

The Data Pump Import command-line mode PARALLEL parameter specifies the
default location in which the import job can find the dump file set and where it
should create log and SQL files.

DUMPFILE

The Data Pump Import command-line mode DUMPFI LE parameter specifies the
names, and optionally, the directory objects of the dump file set that Export
created.

ENCRYPTION_PASSWORD

The Data Pump Import command-line mode ENCRYPTI ON_PASSWORD parameter
specifies a password for accessing encrypted column data in the dump file set.
This prevents unauthorized access to an encrypted dump file set.

ENCRYPTION_PWD_PROMPT
The Data Pump Import command-line mode ENCRYPTI ON_PWD_PROVPT parameter
specifies whether Data Pump should prompt you for the encryption password.

ESTIMATE

The Data Pump Import command-line mode ESTI MATE parameter instructs the
source system in a network import operation to estimate how much data is
generated during the import.

EXCLUDE

The Data Pump Import command-line mode EXCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types to
exclude from the import job.

FLASHBACK_SCN
The Data Pump Import command-line mode FLASHBACK SCN specifies the system
change number (SCN) that Import uses to enable the Flashback utility.

FLASHBACK_TIME
The Data Pump Import command-line mode FLASHBACK_TI ME parameter specifies
the system change number (SCN) that Import uses to enable the Flashback utility.

FULL
The Data Pump Import command-line mode FULL parameter specifies that you
want to perform a full database import.

HELP
The Data Pump Import command-line mode HELP parameter displays online help
for the Import utility.

3-10

ORACLE

Chapter 3
Parameters Available in Import's Command-Line Mode

INCLUDE

The Data Pump Import command-line mode | NCLUDE parameter enables you to
filter the metadata that is imported by specifying objects and object types for the
current import mode.

JOB_NAME
The Data Pump Import command-line mode JOB_NAME parameter is used to
identify the import job in subsequent actions.

KEEP_MASTER

The Data Pump Import command-line mode KEEP_MASTER parameter indicates
whether the master table should be deleted or retained at the end of a Data Pump
job that completes successfully.

LOGFILE
The Data Pump Import command-line mode LOGFILE parameter specifies the
name, and optionally, a directory object, for the log file of the import job.

LOGTIME
The Data Pump Import command-line mode LOGTI ME parameter specifies that you
want to have messages displayed with timestamps during import.

MASTER_ONLY

The Data Pump Import command-line mode MASTER_ONLY parameter indicates
whether to import just the master table and then stop the job so that the contents
of the master table can be examined.

METRICS
The Data Pump Import command-line mode METRI CS parameter indicates whether
additional information about the job should be reported to the Data Pump log file.

NETWORK_LINK
The Oracle Data Pump Import command-line mode NETWORK_LI NK parameter
enables an import from a source database identified by a valid database link.

NOLOGFILE
The Data Pump Import command-line mode NOLOGFI LE parameter specifies
whether to suppress the default behavior of creating a log file.

PARALLEL
The Data Pump Import command-line mode PARALLEL parameter sets the
maximum number of worker processes that can load in parallel.

PARFILE
The Data Pump Import command-line mode PARFI LE parameter specifies the
name of an import parameter file.

PARTITION_OPTIONS
The Data Pump Import command-line mode PARTI TI ON_OPTI ONS parameter
specifies how you want table partitions created during an import operation.

QUERY
The Data Pump Import command-line mode QUERY parameter enables you to
specify a query clause that filters the data that is imported.

REMAP_DATA
The Data Pump Import command-line mode REMAP_DATA parameter enables you to
remap data as it is being inserted into a new database.

REMAP_DATAFILE

3-11

ORACLE

Chapter 3
Parameters Available in Import's Command-Line Mode

REMAP_DIRECTORY
The Data Pump Import command-line mode REMAP_DI RECTCRY parameter

REMAP_SCHEMA
The Data Pump Import command-line mode REMAP_SCHEMA parameter loads
all objects from the source schema into a target schema.

REMAP_TABLE
The Data Pump Import command-line mode REMAP_TABLE parameter enables you
to rename tables during an import operation.

REMAP_TABLESPACE

The Data Pump Import command-line mode REMAP_TABLESPACE parameter remaps
all objects selected for import with persistent data in the source tablespace to be
created in the target tablespace.

SCHEMAS
The Data Pump Import command-line mode SCHEMAS parameter specifies that you
want a schema-mode import to be performed.

SERVICE_NAME
The Data Pump Import command-line mode SERVI CE_NAME parameter specifies a
service name that you want to use in conjunction with the CLUSTER parameter.

SKIP_UNUSABLE_INDEXES

The Data Pump Import command-line mode SKI P_UNUSABLE | NDEXES parameter
specifies whether Import skips loading tables that have indexes that were set to
the Index Unusable state (by either the system or the user).

SOURCE_EDITION
The Data Pump Import command-line mode SCURCE_EDI TI ON parameter specifies
the database edition on the remote node from which objects are fetched.

SQLFILE

The Data Pump Import command-line mode SQLFILE parameter specifies a file
into which all the SQL DDL that Import prepares to execute is written, based on
other Import parameters selected.

STATUS
The Data Pump Import command-line mode STATUS parameter specifies the
frequency at which the job status is displayed.

STREAMS_CONFIGURATION

The Data Pump Import command-line mode STREAMS_CONFI GURATI ON parameter
specifies whether to import any Streams metadata that may be present in the
export dump file.

TABLE_EXISTS_ACTION
The Data Pump Import command-line mode TABLE_EXI STS_ACTI ON parameter
specifies for Import what to do if the table it is trying to create already exists.

REUSE_DATAFILES

The Data Pump Import command-line mode REUSE_DATAFI LES parameter specifies
whether you want the import job to reuse existing data files for tablespace
creation.

TABLES
The Data Pump Import command-line mode TABLES parameter specifies that you
want to perform a table-mode import.

3-12

ORACLE

Chapter 3
Parameters Available in Import's Command-Line Mode

TABLESPACES
The Data Pump Import command-line mode TABLESPACES parameter specifies that
you want to perform a tablespace-mode import.

TARGET_EDITION
The Data Pump Import command-line mode TARGET_EDI TI ON parameter pecifies
the database edition into which you want objects imported.

TRANSFORM
The Data Pump Import command-line mode TRANSFORM parameter enables you to
alter object creation DDL for objects being imported.

TRANSPORT_DATAFILES

The Data Pump Import command-line mode TRANSPORT DATAFI LES parameter
specifies a list of data files that are imported into the target database by a
transportable-tablespace mode import, or by a table-mode or full-mode import
when TRANSPORTABLE=ALWAYS is set during the export.

TRANSPORT_FULL_CHECK

The Data Pump Import command-line mode TRANSPORT_FULL_CHECK parameter
specifies whether to verify that the specified transportable tablespace set is being
referenced by objects in other tablespaces.

TRANSPORT_TABLESPACES

The Data Pump Import command-line mode TRANSPORT _TABLESPACES parameter
specifies that you want to perform an import in transportable-tablespace mode
over a database link (as specified with the NETWORK_LI NK parameter.)

TRANSPORTABLE

The Data Pump Import command-line mode TRANSPORTABLE parameter specifies
whether you want to use the transportable option during a table mode import
(specified with the TABLES parameter) or a full mode import (specified with the FULL
parameter).

VERSION

The Data Pump Import command-line mode VERSI ON parameter specifies the
version of database objects that you want to import; only database objects and
attributes that are compatible with the specified release are imported.

VIEWS_AS_TABLES (Network Import)
The Data Pump Import command-line mode VI EWs_AS TABLES (Network Import)
parameter specifies that you want one or more views to be imported as tables.

VIEWS_AS_TABLES (Non-Network Import)

The Data Pump Import command-line mode VI EW§_AS TABLES (Non-Network
Import) parameter specifies that you want to import one or more tables in the
dump file that were exported as views.

Related Topics

PARFILE
The Data Pump Import command-line mode PARFI LE parameter specifies the
name of an import parameter file.

Understanding Dump, Log, and SQL File Default Locations
Data Pump is server-based rather than client-based. Dump files, log files, and
SQL files are accessed relative to server-based directory paths.

Examples of Using Data Pump Import
This section provides examples of the following ways in which you might use Data
Pump Import.

3-13

Chapter 3
Parameters Available in Import's Command-Line Mode

» Syntax Diagrams for Data