Oracle® Database
Advanced Queuing User's Guide

18c
E90592-01
February 2018

ORACLE"

Oracle Database Advanced Queuing User's Guide, 18c

E90592-01

Copyright © 1996, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Maitreyee Chaliha

Contributing Authors: Denis Raphaely, Neerja Bhatt, Charles Hall

Contributors: Alan Downing, Padmanabha Bhat, Longxing Deng , John Leinaweaver , Stella Kister, Qiang
Liu, Anil Madan, Abhishek Saxena, James Wilson

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXXil
Documentation Accessibility XXXIi
Related Documents XXXil
Conventions XXXili

Changes in This Release for Oracle Database Advanced Queuing

User's Guide
Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2.) XXXIV
Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2) XXXV
Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1) XXXV
1 Introduction to Oracle Database Advanced Queuing
1.1 What Is Queuing? 1-1
1.2 Oracle Database Advanced Queuing Leverages Oracle Database 1-2
1.3 Oracle Database Advanced Queuing in Integrated Application Environments 1-6
1.3.1 Oracle Database Advanced Queuing Client/Server Communication 1-7
1.3.2 Multiconsumer Dequeuing of the Same Message 1-8
1.3.3 Oracle Database Advanced Queuing Implementation of Workflows 1-10
1.3.4 Oracle Database Advanced Queuing Implementation of Publish/
Subscribe 1-11
1.4 Buffered Messaging 1-14
1.5 Asynchronous Notifications 1-18
1.5.1 Views on Registration 1-21
1.5.2 Event-Based Notification 1-21
1.5.3 Noaotification Grouping by Time 1-21
1.6 Enqueue Features 1-22
1.7 Dequeue Features 1-24
1.8 Propagation Features 1-31
1.9 Message Format Transformation 1-38
1.10 Other Oracle Database Advanced Queuing Features 1-39

ORACLE

1.11 Interfaces to Oracle Database Advanced Queuing 1-43
2 Basic Components of Oracle Database Advanced Queuing
2.1 Object Name 2-1
2.2 Type Name 2-2
2.3 AQ Agent Type 2-2
2.4 AQ Recipient List Type 2-3
2.5 AQ Agent List Type 2-3
2.6 AQ Subscriber List Type 2-3
2.7 AQ Registration Information List Type 2-3
2.8 AQ Post Information List Type 2-3
2.9 AQ Registration Information Type 2-3
2.10 AQ Notification Descriptor Type 2-5
2.11 AQ Message Properties Type 2-5
2.12 AQ Post Information Type 2-6
2.13 AQ$_NTFN_MSGID_ARRAY Type 2-6
2.14 Enumerated Constants for AQ Administrative Interface 2-7
2.15 Enumerated Constants for AQ Operational Interface 2-7
2.16 AQ Background Processes 2-8
2.16.1 Queue Monitor Processes 2-8
2.16.2 Job Queue Processes 2-9
2.16.3 AQ Background Architecture 2-9
3 Oracle Database Advanced Queuing: Programmatic Interfaces
3.1 Programmatic Interfaces for Accessing Oracle Database Advanced Queuing 3-1
3.2 Using PL/SQL to Access Oracle Database Advanced Queuing 3-2
3.3 Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced
Queuing 3-3
3.4 Using OCCI to Access Oracle Database Advanced Queuing 3-3
3.5 Using Oracle Java Message Service (Oracle JMS) to Access Oracle
Database Advanced Queuing 3-4
3.6 Using Oracle Database Advanced Queuing XML Servlet to Access Oracle
Database Advanced Queuing 3-6
3.7 Comparing Oracle Database Advanced Queuing Programmatic Interfaces 3-6
3.7.1 Oracle Database Advanced Queuing Administrative Interfaces 3-6
3.7.2 Oracle Database Advanced Queuing Operational Interfaces 3-9
4 Managing Oracle Database Advanced Queuing
4.1 Oracle Database Advanced Queuing Compatibility Parameters 4-1

ORACLE

4.2 Queue Security and Access Control 4-2
4.2.1 Oracle Database Advanced Queuing Security 4-2
4.2.1.1 Administrator Role 4-2

4.2.1.2 User Role 4-3

4.2.1.3 Access to Oracle Database Advanced Queuing Object Types 4-3

4.2.2 Queue Security 4-3
4.2.3 Queue Privileges and Access Control 4-3
4.2.4 OCI Applications and Queue Access 4-4
4.2.5 Security Required for Propagation 4-4
4.2.6 Security Required for Non-Sharded Buffered Messages on Oracle RAC 4-4

4.3 Queue Table Export/Import 4-4
4.3.1 Exporting Queue Table Data 4-5
4.3.2 Importing Queue Table Data 4-6
4.3.3 Data Pump Export and Import 4-7

4.4 Oracle Enterprise Manager Support for Non-Sharded Queues 4-7
4.5 Using Oracle Database Advanced Queuing with XA 4-8
4.6 Restrictions on Queue Management 4-8
4.6.1 Subscribers 4-9
4.6.2 DML Not Supported on Queue Tables or Associated I0Ts 4-9
4.6.3 Propagation from Object Queues with REF Payload Attributes 4-9
4.6.4 Collection Types in Message Payloads 4-9
4.6.5 Synonyms on Queue Tables and Queues 4-10
4.6.6 Synonyms on Object Types 4-10
4.6.7 Tablespace Point-in-Time Recovery 4-10
4.6.8 Virtual Private Database 4-10

4.7 Managing Propagation 4-10
4.7.1 EXECUTE Privileges Required for Propagation 4-11
4.7.2 Propagation from Object Queues 4-11
4.7.3 Optimizing Propagation 4-11
4.7.4 Handling Failures in Propagation 4-12

5 Oracle Database Advanced Queuing Performance and Scalability

5.1 Sharded Queues 5-1
5.1.1 Sharded Queues and the Message Cache 5-1
5.1.2 Sharded Queues and Enqueuing / Dequeuing Messages 5-2
5.1.3 Sharded Queues and Native JMS Support 5-2
5.1.4 Sharded Queues and Partitioning 5-3
5.1.5 Sharded Queues and Oracle Real Application Clusters (Oracle RAC) 5-3
5.1.6 Sharded Queue Restrictions 5-4
5.1.7 Sharded Queues Tuning 5-4

ORACLE

5.2 Non-Sharded Queues 5-5

5.2.1 Persistent Messaging Basic Tuning Tips 5-5
5.2.1.1 Memory Requirements 5-6
5.2.1.2 Using Storage Parameters 5-6
5.2.1.3 1/O Configuration 5-6
5.2.1.4 Running Enqueue and Dequeue Processes Concurrently in a
Single Non-Sharded Queue Table 5-7
5.2.1.5 Running Enqueue and Dequeue Processes Serially in a Single
Non-Sharded Queue Table 5-7
5.2.1.6 Creating Indexes on a Queue Table 5-7
5.2.1.7 Other Tips for Non-Sharded Queues 5-8
5.2.2 Propagation Tuning Tips 5-8
5.2.3 Buffered Messaging Tuning 5-9
5.2.3.1 Persistent Messaging Performance Overview for Non-Sharded
Queues 5-9
5.2.3.2 Non-Sharded Queues and Oracle Real Application Clusters 5-9
5.2.3.3 Oracle Database Advanced Queuing in a Shared Server
Environment 5-10
5.3 Performance Views 5-10
6 Internet Access to Oracle Database Advanced Queuing
6.1 Overview of Oracle Database Advanced Queuing Operations Over the
Internet 6-1
6.1.1 Oracle Database Advanced Queuing Internet Operations Architecture 6-1
6.1.2 Internet Message Payloads 6-2
6.1.3 Configuring the Web Server to Authenticate Users Sending POST
Requests 6-3
6.1.4 Client Requests Using HTTP 6-3
6.1.5 Oracle Database Advanced Queuing Servlet Responses Using HTTP 6-4
6.1.6 Oracle Database Advanced Queuing Propagation Using HTTP and
HTTPS 6-4
6.2 Deploying the Oracle Database Advanced Queuing XML Servlet 6-5
6.3 Internet Data Access Presentation (IDAP) 6-6
6.3.1 SOAP Message Structure 6-7
6.3.1.1 SOAP Envelope 6-7
6.3.1.2 SOAP Header 6-7
6.3.1.3 SOAP Body 6-7
6.3.2 SOAP Method Invocation 6-7
6.3.2.1 HTTP Headers 6-7
6.3.2.2 Method Invocation Body 6-8
6.3.2.3 Results from a Method Request 6-9
6.4 Request and Response IDAP Documents 6-9

ORACLE vi

6.4.1 IDAP Client Requests for Enqueue 6-9
6.4.2 IDAP Client Requests for Dequeue 6-12
6.4.3 IDAP Client Requests for Registration 6-13
6.4.4 IDAP Client Requests to Commit a Transaction 6-14
6.4.5 IDAP Client Requests to Roll Back a Transaction 6-14
6.4.6 IDAP Server Response to an Enqueue Request 6-14
6.4.7 IDAP Server Response to a Dequeue Request 6-15
6.4.8 IDAP Server Response to a Register Request 6-15
6.4.9 IDAP Commit Response 6-15
6.4.10 IDAP Rollback Response 6-15
6.4.11 IDAP Notification 6-16
6.4.12 IDAP Response in Case of Error 6-16
6.5 Notification of Messages by E-Malil 6-16
7 Troubleshooting Oracle Database Advanced Queuing
7.1 Debugging Oracle Database Advanced Queuing Propagation Problems 7-1
7.2 Oracle Database Advanced Queuing Error Messages 7-3
8 Oracle Database Advanced Queuing Administrative Interface
8.1 Managing Non-Sharded Queue Tables 8-1
8.1.1 Creating a Queue Table 8-2
8.1.2 Altering a Queue Table 8-9
8.1.3 Dropping a Queue Table 8-10
8.1.4 Purging a Queue Table 8-11
8.1.5 Migrating a Queue Table 8-13
8.2 Managing Non-Sharded Queues 8-14
8.2.1 Creating a Queue 8-14
8.2.2 Altering a Queue 8-17
8.2.3 Starting a Queue 8-17
8.2.4 Stopping a Queue 8-18
8.2.5 Dropping a Queue 8-18
8.3 Managing Sharded Queues 8-18
8.3.1 Creating a Sharded Queue 8-19
8.3.2 Dropping a Sharded Queue 8-20
8.3.3 Altering a Sharded Queue 8-20
8.3.4 Setting a Queue Parameter 8-21
8.3.5 Unsetting a Queue Parameter 8-21
8.3.6 Getting a Queue Parameter 8-22
8.3.7 Creating an Exception Queue 8-22
ORACLE Vii

8.4 Managing Transformations 8-23

8.4.1 Creating a Transformation 8-23
8.4.2 Modifying a Transformation 8-24
8.4.3 Dropping a Transformation 8-24
8.5 Granting and Revoking Privileges 8-25
8.5.1 Granting Oracle Database Advanced Queuing System Privileges 8-25
8.5.2 Revoking Oracle Database Advanced Queuing System Privileges 8-26
8.5.3 Granting Queue Privileges 8-26
8.5.4 Revoking Queue Privileges 8-27
8.6 Managing Subscribers 8-27
8.6.1 Adding a Subscriber 8-28
8.6.2 Altering a Subscriber 8-30
8.6.3 Removing a Subscriber 8-30
8.7 Managing Propagations 8-31
8.7.1 Scheduling a Queue Propagation 8-31
8.7.2 Verifying Propagation Queue Type 8-34
8.7.3 Altering a Propagation Schedule 8-35
8.7.4 Enabling a Propagation Schedule 8-35
8.7.5 Disabling a Propagation Schedule 8-36
8.7.6 Unscheduling a Queue Propagation 8-36
8.8 Managing Oracle Database Advanced Queuing Agents 8-37
8.8.1 Creating an Oracle Database Advanced Queuing Agent 8-37
8.8.2 Altering an Oracle Database Advanced Queuing Agent 8-37
8.8.3 Dropping an Oracle Database Advanced Queuing Agent 8-37
8.8.4 Enabling Database Access 8-38
8.8.5 Disabling Database Access 8-38
8.9 Adding an Alias to the LDAP Server 8-38
8.10 Deleting an Alias from the LDAP Server 8-39
o Oracle Database Advanced Queuing and Messaging Gateway
Views
9.1 DBA_QUEUE_TABLES: All Queue Tables in Database 9-3
9.2 USER_QUEUE_TABLES: Queue Tables in User Schema 9-3
9.3 ALL_QUEUE_TABLES: Queue Tables Accessible to the Current User 9-3
9.4 DBA_QUEUES: All Queues in Database 9-4
9.5 USER_QUEUES: Queues In User Schema 9-4
9.6 ALL_QUEUES: Queues for Which User Has Any Privilege 9-4
9.7 DBA_QUEUE_SCHEDULES: All Propagation Schedules 9-5
9.8 USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema 9-5
9.9 QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege 9-5

ORACLE viii

9.10
9.11
9.12
9.13

9.14

9.15
9.16
9.17

9.18
9.19
9.20
9.21
9.22
9.23
9.24

9.25
9.26
9.27

9.28
9.29
9.30

9.31

9.32

9.33

9.34

9.35
9.36
9.37

9.38

9.39
9.40

ORACLE

AQ$<Queue_Table_Name>: Messages in Queue Table
AQ$<Queue_Table_Name_S>: Queue Subscribers
AQ$<Queue_Table_ Name_ R>: Queue Subscribers and Their Rules

AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-
consumer Queue

AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-
consumer Queue

DBA_QUEUE_SUBSCRIBERS: All Queue Subscribers in Database
USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

ALL_ QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has
Queue Privileges

DBA_TRANSFORMATIONS: All Transformations

DBA_ ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions
USER_TRANSFORMATIONS: User Transformations
USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions
DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
USER_SUBSCR_REGISTRATIONS: User Subscription Registrations

AQSINTERNET USERS: Oracle Database Advanced Queuing Agents
Registered for Internet Access

V$AQ: Number of Messages in Different States in Database
V$BUFFERED_QUEUES: All Buffered Queues in the Instance

V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

VSPERSISTENT_QMN_CACHE: Performance Statistics on Background
Tasks for Persistent Queues

V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent
Queues in the Instance

V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the
Sending (Source) Side

V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on
the Receiving (Destination) Side

V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
VSMETRICGROUP: Information About the Metric Group

V$AQ_ MESSAGE_CACHE_STAT: Memory Management for Sharded
Queues

V$AQ _SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber
Statistics

V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics
V$AQ_ REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

9-5
9-10
9-10

9-11

9-11
9-12
9-12

9-12
9-13
9-13
9-13
9-14
9-14
9-14

9-15
9-15
9-16

9-16
9-16
9-17

9-17

9-17

9-18

9-18

9-18
9-19
9-19

9-19

9-20
9-21
9-23

9.41 V$AQ BACKGROUND_COORDINATOR: Performance Statistics for AQ's
Master Background Coordinator Process (AQPC) 9-23
9.42 V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator 9-24
9.43 V$AQ_SERVER_POOL: Performance Statistics for all Servers 9-24
9.44 V3$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description 9-24
9.45 V$AQ_IPC_ACTIVE_MSGS 9-25
9.46 V$AQ_IPC_MSG_STATS 9-25
9.47 V$AQ_IPC_PENDING_MSGS 9-25
9.48 VS$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations 9-25
9.49 V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections 9-26
9.50 V$AQ_SUBSCRIBER_LOAD: Durable Subscribers 9-26
9.51 V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers 9-26
9.52 V$AQ NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber 9-27
9.53 V$AQ_MESSAGE_CACHE: Performance Statistics 9-27
9.54 MGW_GATEWAY: Configuration and Status Information 9-27
9.55 MGW_AGENT_OPTIONS: Supplemental Options and Properties 9-29
9.56 MGW_LINKS: Names and Types of Messaging System Links 9-29
9.57 MGW_MQSERIES LINKS: WebSphere MQ Messaging System Links 9-30
9.58 MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links 9-30
9.59 MGW_FOREIGN_QUEUES: Foreign Queues 9-31
9.60 MGW_JOBS: Messaging Gateway Propagation Jobs 9-31
9.61 MGW_SUBSCRIBERS: Information for Subscribers 9-33
9.62 MGW_SCHEDULES: Information About Schedules 9-34

10 Oracle Database Advanced Queuing Operations Using PL/SQL
10.1 Using Secure Queues 10-1
10.2 Enqueuing Messages 10-2
10.3 Enqueuing an Array of Messages 10-11
10.4 Listening to One or More Queues 10-12
10.5 Dequeuing Messages 10-13
10.6 Dequeuing an Array of Messages 10-21
10.7 Registering for Notification 10-23
10.8 Unregistering for Notification 10-24
10.9 Posting for Subscriber Notification 10-24
10.10 Adding an Agent to the LDAP Server 10-25
10.11 Removing an Agent from the LDAP Server 10-26
11 Introduction to Oracle Java Message Service

11.1 General Features of JMS and Oracle JMS 11-1
11.1.1 JMS Connection and Session 111

ORACLE

11.1.1.1 ConnectionFactory Objects

11.1.1.2 Using AQjmsFactory to Obtain ConnectionFactory Objects
11.1.1.3 Using JNDI to Look Up ConnectionFactory Objects
11.1.1.4 JMS Connection

11.1.1.5 JMS Session

11.1.2

JMS Destination

11.1.2.1 Using a JMS Session to Obtain Destination Objects
11.1.2.2 Using JNDI to Look Up Destination Objects
11.1.2.3 JMS Destination Methods

11.1.3
11.1.4
11.15
11.1.6
1117

System-Level Access Control in IMS
Destination-Level Access Control in IMS

Retention and Message History in IMS

Supporting Oracle Real Application Clusters in JMS
Supporting Statistics Views in IMS

11.2 Structured Payload/Message Types in IMS

11.21
11.2.2
11.2.3

JMS Message Headers
JMS Message Properties
JMS Message Bodies

11.2.3.1 StreamMessage
11.2.3.2 BytesMessage
11.2.3.3 MapMessage
11.2.3.4 TextMessage
11.2.3.5 ObjectMessage
11.2.3.6 AdtMessage

11.2.4
11.25

Using Message Properties with Different Message Types
Buffered Messaging with Oracle JMS

11.3 Buffered Messaging in JMS
11.4 JMS Point-to-Point Model Features
11.5 JMS Publish/Subscribe Model Features

1151
1152
1153
1154
1155
1156
11.5.7
1158

JMS Publish/Subscribe Overview
DurableSubscriber

RemoteSubscriber

TopicPublisher

Recipient Lists

TopicReceiver

TopicBrowser

Setting Up JMS Publish/Subscribe Operations

11.6 JMS Message Producer Features

11.6.1
11.6.2
11.6.3

ORACLE

Priority and Ordering of Messages
Specifying a Message Delay
Specifying a Message Expiration

11-2
11-2
11-2
11-3
11-5
11-6
11-6
11-7
11-7
11-8
11-8
11-8
11-9
11-9
11-10
11-10
11-11
11-12
11-13
11-13
11-13
11-14
11-14
11-14
11-15
11-16
11-17
11-20
11-22
11-22
11-22
11-23
11-23
11-24
11-24
11-24
11-25
11-26
11-26
11-26
11-27

Xi

11.6.4 Message Grouping 11-27

11.7 JIMS Message Consumer Features 11-27
11.7.1 Receiving Messages 11-28
11.7.2 Message Navigation in Receive 11-28
11.7.3 Browsing Messages 11-29
11.7.4 Remove No Data 11-29
11.7.5 Retry with Delay Interval 11-29
11.7.6 Asynchronously Receiving Messages Using MessageListener 11-30
11.7.7 Exception Queues 11-30

11.8 JMS Propagation 11-31
11.8.1 RemoteSubscriber 11-32
11.8.2 Scheduling Propagation 11-32
11.8.3 Enhanced Propagation Scheduling Capabilities 11-33
11.8.4 Exception Handling During Propagation 11-34

11.9 Message Transformation with IMS AQ 11-35

11.10 JMS Streaming 11-35
11.10.1 JMS Streaming with Enqueue 11-36
11.10.2 JMS Streaming with Dequeue 11-37

11.11 Java EE Compliance 11-40

12 Oracle Java Message Service Basic Operations

12.1 EXECUTE Privilege on DBMS_AQIN 12-1
12.2 Registering a ConnectionFactory 12-1
12.2.1 Registering Through the Database Using JDBC Connection
Parameters 12-1
12.2.2 Registering Through the Database Using a JDBC URL 12-2
12.2.3 Registering Through LDAP Using JDBC Connection Parameters 12-3
12.2.4 Registering Through LDAP Using a JDBC URL 12-4
12.3 Unregistering a Queue/Topic ConnectionFactory 12-5
12.3.1 Unregistering Through the Database 12-5
12.3.2 Unregistering Through LDAP 12-5
12.4 Getting a QueueConnectionFactory or TopicConnectionFactory 12-6
12.4.1 Getting a QueueConnectionFactory with JDBC URL 12-6
12.4.2 Getting a QueueConnectionFactory with JDBC Connection
Parameters 12-7
12.4.3 Getting a TopicConnectionFactory with JDBC URL 12-7
12.4.4 Getting a TopicConnectionFactory with JDBC Connection Parameters 12-8
12.4.5 Getting a QueueConnectionFactory or TopicConnectionFactory in
LDAP 12-8
12.5 Getting a Queue or Topic in LDAP 12-9
12.6 Creating a Non-Sharded Queue Table 12-10

ORACLE Xii

12.7 Creating a Queue 12-10
12.7.1 Creating a Point-to-Point Queue 12-11
12.7.2 Creating a Publish/Subscribe Topic 12-11
12.7.3 Creating a Sharded Queue for Point-to-Point Queue and Publish/

Subscribe Topic 12-13

12.8 Getting a Non-Sharded Queue Table 12-13

12.9 Granting and Revoking Privileges 12-14
12.9.1 Granting Oracle Database Advanced Queuing System Privileges 12-14
12.9.2 Revoking Oracle Database Advanced Queuing System Privileges 12-15
12.9.3 Granting Publish/Subscribe Topic Privileges 12-15
12.9.4 Revoking Publish/Subscribe Topic Privileges 12-16
12.9.5 Granting Point-to-Point Queue Privileges 12-16
12.9.6 Revoking Point-to-Point Queue Privileges 12-17

12.10 Managing Destinations 12-17
12.10.1 Starting a Destination 12-17
12.10.2 Stopping a Destination 12-18
12.10.3 Altering a Destination 12-18
12.10.4 Dropping a Destination 12-19

12.11 Propagation Schedules 12-19
12.11.1 Scheduling a Propagation 12-19
12.11.2 Enabling a Propagation Schedule 12-20
12.11.3 Altering a Propagation Schedule 12-21
12.11.4 Disabling a Propagation Schedule 12-21
12.11.5 Unscheduling a Propagation 12-22

13 Oracle Java Message Service Point-to-Point

13.1 Creating a Connection with User Name/Password 13-1

13.2 Creating a Connection with Default ConnectionFactory Parameters 13-2

13.3 Creating a QueueConnection with User Name/Password 13-2

13.4 Creating a QueueConnection with an Open JDBC Connection 13-2

13.5 Creating a QueueConnection with Default ConnectionFactory Parameters 13-3

13.6 Creating a QueueConnection with an Open OracleOCIConnectionPool 13-3

13.7 Creating a Session 13-4

13.8 Creating a QueueSession 13-4

13.9 Creating a QueueSender 13-4

13.10 Sending Messages Using a QueueSender with Default Send Options 13-5

13.11 Sending Messages Using a QueueSender by Specifying Send Options 13-6

13.12 Creating a QueueBrowser for Standard JMS Type Messages 13-7

13.13 Creating a QueueBrowser for Standard JMS Type Messages, Locking

Messages 13-7

13.14 Creating a QueueBrowser for Oracle Object Type Messages 13-8

ORACLE Xiii

13.15 Creating a QueueBrowser for Oracle Object Type Messages, Locking

Messages 13-9
13.16 Creating a QueueReceiver for Standard JMS Type Messages 13-10
13.17 Creating a QueueReceiver for Oracle Object Type Messages 13-11

14 Oracle Java Message Service Publish/Subscribe

14.1 Creating a Connection with User Name/Password 14-2
14.2 Creating a Connection with Default ConnectionFactory Parameters 14-2
14.3 Creating a TopicConnection with User Name/Password 14-2
14.4 Creating a TopicConnection with Open JDBC Connection 14-3
14.5 Creating a TopicConnection with an Open OracleOCIConnectionPool 14-3
14.6 Creating a Session 14-3
14.7 Creating a TopicSession 14-4
14.8 Creating a TopicPublisher 14-4
14.9 Publishing Messages with Minimal Specification 14-4
14.10 Publishing Messages Specifying Topic 14-6
14.11 Publishing Messages Specifying Delivery Mode, Priority, and TimeToLive 14-6
14.12 Publishing Messages Specifying a Recipient List 14-7
14.13 Creating a DurableSubscriber for a JMS Topic Without Selector 14-8
14.14 Creating a DurableSubscriber for a JMS Topic with Selector 14-9
14.15 Creating a DurableSubscriber for an Oracle Object Type Topic Without

Selector 14-10
14.16 Creating a DurableSubscriber for an Oracle Object Type Topic with

Selector 14-11
14.17 Specifying Transformations for Topic Subscribers 14-13
14.18 Creating a Remote Subscriber for IMS Messages 14-14
14.19 Creating a Remote Subscriber for Oracle Object Type Messages 14-15
14.20 Specifying Transformations for Remote Subscribers 14-17
14.21 Unsubscribing a Durable Subscription for a Local Subscriber 14-18
14.22 Unsubscribing a Durable Subscription for a Remote Subscriber 14-19
14.23 Creating a TopicReceiver for a Topic of Standard JMS Type Messages 14-20
14.24 Creating a TopicReceiver for a Topic of Oracle Object Type Messages 14-21
14.25 Creating a TopicBrowser for Standard JMS Messages 14-22
14.26 Creating a TopicBrowser for Standard JMS Messages, Locking Messages 14-23
14.27 Creating a TopicBrowser for Oracle Object Type Messages 14-23
14.28 Creating a TopicBrowser for Oracle Object Type Messages, Locking

Messages 14-24
14.29 Browsing Messages Using a TopicBrowser 14-25

ORACLE Xiv

15 Oracle Java Message Service Shared Interfaces

15.1 Oracle Database Advanced Queuing JMS Operational Interface: Shared

Interfaces 15-1

15.1.1 Starting a JMS Connection 15-2
15.1.2 Getting a JMS Connection 15-2
15.1.3 Committing All Operations in a Session 15-2
15.1.4 Rolling Back All Operations in a Session 15-2
15.1.5 Getting the JDBC Connection from a Session 15-2
15.1.6 Getting the OracleOCIConnectionPool from a JMS Connection 15-2
15.1.7 Creating a BytesMessage 15-3
15.1.8 Creating a MapMessage 15-3
15.1.9 Creating a StreamMessage 15-3
15.1.10 Creating an ObjectMessage 15-3
15.1.11 Creating a TextMessage 15-3
15.1.12 Creating a JMS Message 15-4
15.1.13 Creating an AdtMessage 15-4
15.1.14 Setting a JMS Correlation Identifier 15-4
15.2 Specifying JMS Message Properties 15-4
15.2.1 Setting a Boolean Message Property 15-5
15.2.2 Setting a String Message Property 15-5
15.2.3 Setting an Integer Message Property 15-6
15.2.4 Setting a Double Message Property 15-6
15.2.5 Setting a Float Message Property 15-6
15.2.6 Setting a Byte Message Property 15-6
15.2.7 Setting a Long Message Property 15-7
15.2.8 Setting a Short Message Property 15-7
15.2.9 Setting an Object Message Property 15-7
15.3 Setting Default TimeToLive for All Messages Sent by a MessageProducer 15-8
15.4 Setting Default Priority for All Messages Sent by a MessageProducer 15-8
15.5 Creating an AQjms Agent 15-9
15.6 Receiving a Message Synchronously 15-9
15.6.1 Using a Message Consumer by Specifying Timeout 15-9
15.6.2 Using a Message Consumer Without Waiting 15-10
15.6.3 Receiving Messages from a Destination Using a Transformation 15-11
15.7 Specifying the Navigation Mode for Receiving Messages 15-12
15.8 Receiving a Message Asynchronously 15-12
15.8.1 Specifying a Message Listener at the Message Consumer 15-12
15.8.2 Specifying a Message Listener at the Session 15-14
15.9 Getting Message ID 15-14
15.9.1 Getting the Correlation Identifier 15-14
15.9.2 Getting the Message Identifier 15-14

ORACLE XV

15.10 Getting JMS Message Properties 15-14

15.10.1 Getting a Boolean Message Property 15-15
15.10.2 Getting a String Message Property 15-15
15.10.3 Getting an Integer Message Property 15-15
15.10.4 Getting a Double Message Property 15-15
15.10.5 Getting a Float Message Property 15-15
15.10.6 Getting a Byte Message Property 15-16
15.10.7 Getting a Long Message Property 15-16
15.10.8 Getting a Short Message Property 15-16
15.10.9 Getting an Object Message Property 15-16
15.11 Closing and Shutting Down 15-17
15.11.1 Closing a MessageProducer 15-17
15.11.2 Closing a Message Consumer 15-17
15.11.3 Stopping a JIMS Connection 15-17
15.11.4 Closing a JMS Session 15-17
15.11.5 Closing a JMS Connection 15-17
15.12 Troubleshooting 15-18
15.12.1 Getting a JMS Error Code 15-18
15.12.2 Getting a IMS Error Number 15-18
15.12.3 Getting an Exception Linked to a JMS Exception 15-18
15.12.4 Printing the Stack Trace for a JMS Exception 15-18
15.12.5 Setting an Exception Listener 15-19
15.12.6 Getting an Exception Listener 15-19

16 Oracle Java Message Service Types Examples

16.1 How to Set Up the Oracle Database Advanced Queuing JMS Type

Examples 16-1
16.2 JMS BytesMessage Examples 16-5
16.3 JMS StreamMessage Examples 16-9
16.4 JMS MapMessage Examples 16-14
16.5 More Oracle Database Advanced Queuing JMS Examples 16-20

17 Introduction to Oracle Messaging Gateway

17.1 Oracle Messaging Gateway Overview 17-1
17.2 Oracle Messaging Gateway Features 17-1
17.3 Oracle Messaging Gateway Architecture 17-3
17.3.1 Administration Package DBMS_MGWADM 17-3
17.3.2 Oracle Messaging Gateway Agent 17-4
17.3.3 Oracle Database 17-4
17.3.4 Non-Oracle Messaging Systems 17-4

ORACLE XVi

17.4 Propagation Processing Overview 17-5
17.5 Oracle Database AQ Buffered Messages and Messaging Gateway 17-6

18 Getting Started with Oracle Messaging Gateway

18.1 Oracle Messaging Gateway Prerequisites 18-1
18.2 Loading and Setting Up Oracle Messaging Gateway 18-1
18.2.1 Loading Database Objects into the Database 18-2
18.2.2 Modifying listener.ora for the External Procedure 18-2
18.2.3 Modifying thsnames.ora for the External Procedure 18-3
18.2.4 Setting Up an mgw.ora Initialization File 18-4
18.2.5 Creating an Oracle Messaging Gateway Administrator User 18-5
18.2.6 Creating an Oracle Messaging Gateway Agent User 18-5
18.2.7 Configuring Oracle Messaging Gateway Connection Information 18-5

18.2.8 Configuring Oracle Messaging Gateway in an Oracle RAC
Environment 18-6

18.2.8.1 Configuring Connection Information for the MGW Agent
Connections 18-6
18.2.8.2 Setting the Oracle RAC Instance for the Messaging Gateway

Agent 18-7
18.3 Setting Up Non-Oracle Messaging Systems 18-7
18.3.1 Setting Up for TIB/Rendezvous 18-7
18.3.2 Setting Up for WebSphere MQ Base Java or JIMS 18-8
18.4 Verifying the Oracle Messaging Gateway Setup 18-9
18.5 Unloading Oracle Messaging Gateway 18-9
18.6 Understanding the mgw.ora Initialization File 18-10
18.6.1 mgw.ora Initialization Parameters 18-10
18.6.2 mgw.ora Environment Variables 18-11
18.6.3 mgw.ora Java Properties 18-12
18.6.4 ~mgw.ora Comment Lines 18-14

19 Working with Oracle Messaging Gateway

19.1 Configuring the Oracle Messaging Gateway Agent 19-1
19.1.1 Creating a Messaging Gateway Agent 19-2
19.1.2 Removing a Messaging Gateway Agent 19-2
19.1.3 Setting Database Connection 19-2
19.1.4 Setting the Resource Limits 19-3

19.2 Starting and Shutting Down the Oracle Messaging Gateway Agent 19-3
19.2.1 Starting the Oracle Messaging Gateway Agent 19-3
19.2.2 Shutting Down the Oracle Messaging Gateway Agent 19-3
19.2.3 Oracle Messaging Gateway Agent Scheduler Job 19-4

ORACLE XVii

19.2.4 Running the Oracle Messaging Gateway Agent on Oracle RAC 19-5
19.3 Configuring Messaging System Links 19-5
19.3.1 Creating a WebSphere MQ Base Java Link 19-6
19.3.2 Creating a WebSphere MQ JMS Link 19-8
19.3.3 Creating a WebSphere MQ Link to Use SSL 19-9
19.3.4 Creating a TIB/Rendezvous Link 19-11
19.3.5 Altering a Messaging System Link 19-12
19.3.6 Removing a Messaging System Link 19-12
19.3.7 Views for Messaging System Links 19-13
19.4 Configuring Non-Oracle Messaging System Queues 19-13
19.4.1 Registering a Non-Oracle Queue 19-13
19.4.1.1 Registering a WebSphere MQ Base Java Queue 19-14
19.4.1.2 Registering a WebSphere MQ JMS Queue or Topic 19-14
19.4.1.3 Registering a TIB/Rendezvous Subject 19-15
19.4.2 Unregistering a Non-Oracle Queue 19-15
19.4.3 View for Registered Non-Oracle Queues 19-15
19.5 Configuring Oracle Messaging Gateway Propagation Jobs 19-15
19.5.1 Propagation Job Overview 19-16
19.5.2 Creating an Oracle Messaging Gateway Propagation Job 19-17
19.5.3 Enabling and Disabling a Propagation Job 19-17
19.5.4 Resetting a Propagation Job 19-18
19.5.5 Altering a Propagation Job 19-18
19.5.6 Removing a Propagation Job 19-19
19.6 Propagation Jobs, Subscribers, and Schedules 19-19
19.6.1 Propagation Job, Subscriber, Schedule Interface Interoperability 19-20
19.6.2 Propagation Job, Subscriber, Schedule Views 19-21
19.6.3 Single Consumer Queue as Propagation Source 19-21
19.7 Configuration Properties 19-21
19.7.1 WebSphere MQ System Properties 19-22
19.7.2 TIB/Rendezvous System Properties 19-24
19.7.3 Optional Link Configuration Properties 19-25
19.7.4 Optional Foreign Queue Configuration Properties 19-27
19.7.5 Optional Job Configuration Properties 19-28
20 Oracle Messaging Gateway Message Conversion
20.1 Converting Oracle Messaging Gateway Non-JMS Messages 20-1
20.1.1 Overview of the Non-JMS Message Conversion Process 20-1
20.1.2 Oracle Messaging Gateway Canonical Types 20-2
20.1.3 Message Header Conversion 20-2
20.1.4 Handling Arbitrary Payload Types Using Message Transformations 20-3
ORACLE Xviii

20.1.5 Handling Logical Change Records 20-5
20.2 Message Conversion for WebSphere MQ 20-6
20.2.1 WebSphere MQ Message Header Mappings 20-7
20.2.2 WebSphere MQ Outbound Propagation 20-10
20.2.3 WebSphere MQ Inbound Propagation 20-11
20.3 Message Conversion for TIB/Rendezvous 20-12
20.3.1 AQ Message Property Mapping for TIB/Rendezvous 20-13
20.3.2 TIB/Rendezvous Outbound Propagation 20-14
20.3.3 TIB/Rendezvous Inbound Propagation 20-15
20.4 JMS Messages 20-16
20.4.1 JMS Outbound Propagation 20-17
20.4.2 JMS Inbound Propagation 20-17
21 Monitoring Oracle Messaging Gateway
21.1 Oracle Messaging Gateway Log Files 21-1
21.1.1 Sample Oracle Messaging Gateway Log File 21-1
21.1.2 Interpreting Exception Messages in an Oracle Messaging Gateway
Log File 21-2
21.2 Monitoring the Oracle Messaging Gateway Agent Status 21-3
21.2.1 MGW_GATEWAY View 21-3
21.2.2 Oracle Messaging Gateway Irrecoverable Error Messages 21-4
21.2.3 Other Oracle Messaging Gateway Error Conditions 21-7
21.3 Monitoring Oracle Messaging Gateway Propagation 21-8
21.4 Oracle Messaging Gateway Agent Error Messages 21-9
22 Using ANYDATA Queues for User Messages
22.1 ANYDATA Queues and User Messages 22-1
22.1.1 ANYDATA Wrapper for User Messages Payloads 22-2
22.1.2 Programmatic Interfaces for Enqueue and Dequeue of User Messages 22-2
22.1.2.1 Enqueuing User Messages Using PL/SQL 22-3
22.1.2.2 Enqueuing User Messages Using OCI or IMS 22-3
22.1.2.3 Dequeuing User Messages Using PL/SQL 22-4
22.1.2.4 Dequeuing User Messages Using OCI or JMS 22-4
22.2 Message Propagation and ANYDATA Queues 22-5
22.3 Enqueuing User Messages in ANYDATA Queues 22-6
22.4 Dequeuing User Messages from ANYDATA Queues 22-8
22.5 Propagating User Messages from ANYDATA Queues to Typed Queues 22-10
22.6 Propagating User-Enqueued LCRs from ANYDATA Queues to Typed
Queues 22-13
ORACLE XiX

23 Oracle Streams Messaging Examples

23.1 Overview of Messaging Example 23-1
23.2 Setting Up Users and Creating an ANYDATA Queue 23-2
23.3 Creating Enqueue Procedures 23-4
23.4 Configuring an Apply Process 23-7
23.5 Configuring Explicit Dequeue 23-11
23.6 Enqueuing Messages 23-13
23.7 Dequeuing Messages Explicitly and Querying for Applied Messages 23-16
23.8 Enqueuing and Dequeuing Messages Using JMS 23-18
A Nonpersistent Queues
A.1 Creating Nonpersistent Queues A-1
A.2 Managing Nonpersistent Queues A-2
A.3 Compatibility of Nonpersistent Queues A-2
A.4 Nonpersistent Queue Notification A-2
A.5 Restrictions on Nonpersistent Queues A-3
B Oracle JMS and Oracle AQ XML Servlet Error Messages
B.1 Oracle JMS Error Messages B-1
B.2 Oracle AQ XML Servlet Error Messages B-14
Glossary
Index
ORACLE XX

List of Examples

4-1 Creating Objects Containing VARRAYS

8-1 Setting Up AQ Administrative Users

8-2 Setting Up AQ Administrative Example Types

8-3 Creating a Queue Table for Messages of Object Type

8-4 Creating a Queue Table for Messages of RAW Type

8-5 Creating a Queue Table for Messages of LOB Type

8-6 Creating a Queue Table for Messages of XMLType

8-7 Creating a Queue Table for Grouped Messages

8-8 Creating Queue Tables for Prioritized Messages and Multiple Consumers
8-9 Creating a Queue Table with Commit-Time Ordering

8-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers
8-11 Creating a Queue Table in a Specified Tablespace

8-12 Creating a Queue Table with Freelists or Freelist Groups

8-13 Altering a Queue Table by Changing the Primary and Secondary Instances
8-14 Altering a Queue Table by Changing the Comment

8-15 Dropping a Queue Table

8-16 Dropping a Queue Table with force Option

8-17 Purging All Messages in a Queue Table

8-18 Purging All Messages in a Named Queue

8-19 Purging All PROCESSED Messages in a Named Queue

8-20 Purging All Messages in a Named Queue and for a Named Consumer
8-21 Purging All Messages from a Named Sender

8-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-Compatible
8-23 Creating a Queue for Messages of Object Type

8-24 Creating a Queue for Messages of RAW Type

8-25 Creating a Queue for Messages of LOB Type

8-26 Creating a Queue for Grouped Messages

8-27 Creating a Queue for Prioritized Messages

8-28 Creating a Queue for Prioritized Messages and Multiple Consumers
8-29 Creating a Queue to Demonstrate Propagation

8-30 Creating an 8.1-Style Queue for Multiple Consumers

8-31 Altering a Queue by Changing Retention Time

8-32 Starting a Queue with Both Enqueue and Dequeue Enabled

8-33 Starting a Queue for Dequeue Only

8-34 Stopping a Queue

ORACLE

4-9
8-7
8-7
8-7
8-7
8-8
8-8
8-8
8-8
8-8
8-9
8-9
8-9

8-10

8-10

8-11

8-11

8-12

8-12

8-12

8-13

8-13

8-14

8-15

8-16

8-16

8-16

8-16

8-16

8-16

8-17

8-17

8-17

8-18

8-18

XXi

8-35 Dropping a Standard Queue

8-36 Creating a Transformation

8-37 Granting AQ System Privileges

8-38 Revoking AQ System Privileges

8-39 Granting Queue Privilege

8-40 Revoking Dequeue Privilege

8-41 Adding a Subscriber at a Designated Queue at a Database Link
8-42 Adding a Single Consumer Queue at a Dababase Link as a Subscriber
8-43 Adding a Subscriber with a Rule

8-44 Adding a Subscriber and Specifying a Transformation

8-45 Propagating from a Multiple-Consumer Queue to a Single Consumer Queue
8-46 Altering a Subscriber Rule

8-47 Removing a Subscriber

8-48 Scheduling a Propagation to Queues in the Same Database
8-49 Scheduling a Propagation to Queues in Another Database

8-50 Scheduling Queue-to-Queue Propagation

8-51 Verifying a Queue Type

8-52 Altering a Propagation Schedule to Queues in the Same Database
8-53 Altering a Propagation Schedule to Queues in Another Database
8-54 Enabling a Propagation to Queues in the Same Database

8-55 Enabling a Propagation to Queues in Another Database

8-56 Disabling a Propagation to Queues in the Same Database

8-57 Disabling a Propagation to Queues in Another Database

8-58 Unscheduling a Propagation to Queues in the Same Database
8-59 Unscheduling a Propagation to Queues in Another Database
10-1 Enqueuing a Message, Specifying Queue Name and Payload
10-2 Enqueuing a Message, Specifying Priority

10-3 Creating an Enqueue Procedure for LOB Type Messages

10-4 Enqueuing a LOB Type Message

10-5 Enqueuing Multiple Messages

10-6 Adding Subscribers RED and GREEN

10-7 Enqueuing Multiple Messages to a Multiconsumer Queue

10-8 Enqueuing Grouped Messages

10-9 Enqueuing a Message, Specifying Delay and Expiration

10-10 Enqueuing a Message, Specifying a Transformation

10-11 Enqueuing an Array of Messages

10-12 Listening to a Single-Consumer Queue with Zero Timeout
ORACLE

8-18
8-24
8-25
8-26
8-27
8-27
8-29
8-29
8-29
8-29
8-30
8-30
8-31
8-33
8-33
8-33
8-34
8-35
8-35
8-35
8-35
8-36
8-36
8-36
8-36
10-6
10-7
10-7
10-8
10-8
10-9
10-9
10-9
10-10
10-10
10-11
10-13

XXIi

10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26
12-27

Dequeuing Object Type Messages

Creating a Dequeue Procedure for LOB Type Messages

Dequeuing LOB Type Messages

Dequeuing Grouped Messages

Dequeuing Messages for RED from a Multiconsumer Queue
Dequeue in Browse Mode and Remove Specified Message

Dequeue in Locked Mode and Remove Specified Message
Dequeuing an Array of Messages

Registering for Notifications

Posting Object-Type Messages

Registering Through the Database Using JDBC Connection Parameters
Registering Through the Database Using a JDBC URL

Registering Through LDAP Using JDBC Connection Parameters
Registering Through LDAP Using a JDBC URL

Unregistering Through the Database

Unregistering Through LDAP

Getting a QueueConnectionFactory with JDBC URL

Getting a QueueConnectionFactory with JDBC Connection Parameters
Getting a TopicConnectionFactory with JIDBC URL

Getting a TopicConnectionFactory with JDBC Connection Parameters
Getting a QueueConnectionFactory or TopicConnectionFactory in LDAP
Getting a Queue or Topic in LDAP

Creating a Queue Table

Creating a Point-to-Point Queue

Creating a Publish/Subscribe Topic

Specifying Max Retries and Max Delays in Messages

Getting a Queue Table

Granting Oracle Database Advanced Queuing System Privileges
Revoking Oracle Database Advanced Queuing System Privileges
Granting Publish/Subscribe Topic Privileges

Revoking Publish/Subscribe Topic Privileges

Granting Point-to-Point Queue Privileges

Revoking Point-to-Point Queue Privileges

Starting a Destination

Stopping a Destination

Altering a Destination

Dropping a Destination

ORACLE

10-18
10-18
10-19
10-19
10-19
10-20
10-20
10-22
10-24
10-25
12-2
12-3
12-3
12-4
12-5
12-6
12-7
12-7
12-8
12-8
12-9
12-9
12-10
12-11
12-12
12-12
12-14
12-15
12-15
12-16
12-16
12-16
12-17
12-18
12-18
12-19
12-19

XXiii

12-28 Scheduling a Propagation

12-29 Enabling a Propagation Schedule

12-30 Altering a Propagation Schedule

12-31 Disabling a Propagation Schedule

12-32 Unscheduling a Propagation

13-1 Creating a QueueConnection with User Name/Password

13-2 Creating a QueueConnection with an Open JDBC Connection

13-3 Creating a QueueConnection from a Java Procedure Inside Database
13-4 Creating a QueueConnection with an Open OracleOCIConnectionPool
13-5 Creating a Transactional QueueSession

13-6 Creating a Sender to Send Messages to Any Queue

13-7 Creating a Sender to Send Messages to a Specific Queue

13-8 Sending Messages Using a QueueSender by Specifying Send Options 1
13-9 Sending Messages Using a QueueSender by Specifying Send Options 2
13-10 Creating a QueueBrowser Without a Selector

13-11 Creating a QueueBrowser With a Specified Selector

13-12 Creating a QueueBrowser Without a Selector, Locking Messages

13-13 Creating a QueueBrowser With a Specified Selector, Locking Messages
13-14 Creating a QueueBrowser for ADTMessages

13-15 Creating a QueueBrowser for AdtMessages, Locking Messages

13-16 Creating a QueueReceiver Without a Selector

13-17 Creating a QueueReceiver With a Specified Selector

13-18 Creating a QueueReceiver for AdtMessage Messages

14-1 Creating a TopicConnection with User Name/Password

14-2 Creating a TopicConnection with Open JDBC Connection

14-3 Creating a TopicConnection with New JDBC Connection

14-4 Creating a TopicConnection with Open OracleOCIConnectionPool

14-5 Creating a TopicSession

14-6 Publishing Without Specifying Topic

14-7 Publishing Specifying Correlation and Delay

14-8 Publishing Specifying Topic

14-9 Publishing Specifying Priority and TimeToLive

14-10 Publishing Specifying a Recipient List Overriding Topic Subscribers
14-11 Creating a Durable Subscriber for a IMS Topic Without Selector

14-12 Creating a Durable Subscriber for a JMS Topic With Selector

14-13 Creating a Durable Subscriber for an Oracle Object Type Topic Without Selector
14-14 Creating a Durable Subscriber for an Oracle Object Type Topic With Selector
ORACLE

12-20
12-20
12-21
12-21
12-22
13-2
13-3
13-3
13-4
13-4
13-5
13-5
13-6
13-6
13-7
13-7
13-8
13-8
13-9
13-10
13-11
13-11
13-12
14-2
14-3
14-3
14-3
14-4
14-5
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12

XXIV

14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27
14-28
14-29
14-30
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14
15-15
16-1
16-2
16-3
16-4
16-5
16-6

Sending Messages to a Destination Using a Transformation

Specifying Transformations for Topic Subscribers

Creating a Remote Subscriber for Topics of IMS Messages

Creating a Remote Subscriber for Topics of Oracle Object Type Messages
Specifying Transformations for Remote Subscribers

Unsubscribing a Durable Subscription for a Local Subscriber
Unsubscribing a Durable Subscription for a Remote Subscriber

Creating a TopicReceiver for Standard JMS Type Messages

Creating a TopicReceiver for Oracle Object Type Messages

Creating a TopicBrowser Without a Selector

Creating a TopicBrowser With a Specified Selector

Creating a TopicBrowser Without a Selector, Locking Messages While Browsing

Creating a TopicBrowser With a Specified Selector, Locking Messages
Creating a TopicBrowser for AdtMessage Messages

Creating a TopicBrowser for AdtMessage Messages, Locking Messages
Creating a TopicBrowser with a Specified Selector

Getting Underlying JDBC Connection from JMS Session

Getting Underlying OracleOCIConnectionPool from JMS Connection
Setting Default TimeToLive for All Messages Sent by a MessageProducer
Setting Default Priority Value for All Messages Sent by QueueSender
Setting Default Priority Value for All Messages Sent by TopicPublisher
Using a Message Consumer by Specifying Timeout

JMS: Blocking Until a Message Arrives

JMS: Nonblocking Messages

JMS: Receiving Messages from a Destination Using a Transformation
Specifying Navigation Mode for Receiving Messages

Specifying Message Listener at Message Consumer

Getting Message Property as an Object

Specifying Exception Listener for Connection

Using ExceptionListener with MessageListener

Getting the Exception Listener for the Connection

Setting Up Environment for Running JMS Types Examples

Setting Up the Examples

Populating and Enqueuing a BytesMessage

Dequeuing and Retrieving JMS BytesMessage Data

Populating and Enqueuing a JMS StreamMessage

Dequeuing and Retrieving Data From a JMS StreamMessage

ORACLE

14-13
14-13
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-22
14-23
14-23
14-24
14-25
14-26

15-2

15-3

15-8

15-8

15-8

15-9
15-10
15-10
15-11
15-12
15-13
15-17
15-19
15-19
15-23

16-1

16-5

16-5

16-7

16-9
16-11

XXV

16-7 Populating and Enqueuing a JMS MapMessage 16-15

16-8 Dequeuing and Retrieving Data From a JMS MapMessage 16-17
16-9 Enqueuing a Large TextMessage 16-20
16-10 Enqueuing a Large BytesMessage 16-21
18-1 Adding Static Service Information for a Listener 18-2
18-2 Configuring MGW_AGENT 18-4
18-3 Creating a Messaging Gateway Administrator User 18-5
18-4 Creating a Messaging Gateway Agent User 18-5
18-5 Configuring Messaging Gateway Connection Information 18-6
18-6 Setting Java Properties 18-8
19-1 Creating a Messaging Gateway Agent 19-2
19-2 Removing a Messaging Gateway Agent 19-2
19-3 Setting Database Connection Information 19-2
19-4 Setting the Resource Limits 19-3
19-5 Starting the Messaging Gateway Agent 19-3
19-6 Shutting Down the Messaging Gateway Agent 19-4
19-7 Configuring a WebSphere MQ Base Java Link 19-7
19-8 Configuring a WebSphere MQ JMS Link 19-9
19-9 Configuring a WebSphere MQ Base Java Link for SSL 19-10
19-10 Configuring a TIB/Rendezvous Link 19-12
19-11 Altering a WebSphere MQ Link 19-12
19-12 Removing a Messaging Gateway Link 19-13
19-13 Listing All Messaging Gateway Links 19-13
19-14 Checking Messaging System Link Configuration Information 19-13
19-15 Registering a WebSphere MQ Base Java Queue 19-14
19-16 Unregistering a Non-Oracle Queue 19-15
19-17 Checking Which Queues Are Registered 19-15
19-18 Creating a Messaging Gateway Propagation Job 19-17
19-19 Enabling a Messaging Gateway Propagation Job 19-18
19-20 Disabling a Messaging Gateway Propagation Job 19-18
19-21 Resetting a Propagation Job 19-18
19-22 Altering Propagation Job by Adding an Exception Queue 19-18
19-23 Altering Propagation Job by Changing the Polling Interval 19-18
19-24 Removing a Propagation Job 19-19
20-1 Transformation Function Signature 20-4
20-2 Creating a Transformation 20-4
20-3 Registering a Transformation 20-4

ORACLE XXVi

20-4
20-5
21-1
21-2
22-1
22-2
22-3
22-4
22-5
22-6
22-7
22-8
22-9
22-10
22-11
22-12
22-13
22-14
22-15
22-16
22-17
22-18
22-19
22-20
22-21
22-22
22-23
22-24
22-25
22-26
23-1
23-2
23-3
23-4
23-5
23-6
23-7

Outbound LCR Transformation

Inbound LCR Transformation

Sample Messaging Gateway Log File

Sample Exception Message

Creating ANYDATA Users

Creating an ANYDATA Queue

Adding a Subscriber to the ANYDATA Queue

Associating a User with an AQ_AGENT

Creating an Enqueue Procedure

Enqueuing a VARCHAR2 Message into an ANYDATA Queue
Enqueuing a NUMBER Message into an ANYDATA Queue
Enqueuing a User-Defined Type Message into an ANYDATA Queue
Determining the Consumer of Messages in a Queue

Creating a Dequeue Procedure for an ANYDATA Queue
Dequeuing Messages from an ANYDATA Queue

Granting EXECUTE Privilege on a Type

Creating a Typed Destination Queue

Creating a Database Link

Creating a Function to Extract a Typed Object from an ANYDATA Object

Creating an ANYDATA to Typed Object Transformation
Creating Subscriber ADDRESS_AGENT_REMOTE

Scheduling Propagation from an ANYDATA Queue to a Typed Queue

Enqueuing a Typed Message in an ANYDATA Wrapper
Viewing the Propagated Message

Creating a Queue of Type LCR$_ROW_RECORD

Creating an ANYDATA to LCR$_ROW_RECORD Transformation
Creating Subscriber ROW_LCR_AGENT_REMOTE
Creating a Procedure to Construct and Enqueue a Row LCR
Creating and Enqueuing a Row LCR

Viewing the Propagated LCR

Setting Up ANYDATA Users

Creating an ANYDATA Queue

Enabling Enqueue on the ANYDATA Queue

Creating an Orders Type

Creating a Customers Type

Creating a Procedure to Enqueue Non-LCR Messages

Creating a Procedure to Construct and Enqueue Row LCR Events

ORACLE

20-6
20-6
21-1
21-3
22-7
22-7
22-7
22-8
22-8
22-8
22-8
22-8
22-9
22-9
22-10
22-11
22-11
22-12
22-12
22-12
22-12
22-13
22-13
22-13
22-15
22-15
22-15
22-15
22-16
22-17
23-3
23-3
23-4
23-5
23-5
23-6
23-6

XXVii

23-8

23-9

23-10
23-11
23-12
23-13
23-14
23-15
23-16
23-17
23-18
23-19
23-20
23-21
23-22
23-23
23-24
23-25
23-26
23-27
23-28
23-29
23-30
23-31
23-32
23-33
23-34
23-35

Creating a Function to Determine the Value of the Action Attribute
Creating a Message Handler

Creating an Evaluation Context for the Rule Set

Creating a Rule Set for the Apply Process

Creating a Rule that Evaluates to TRUE if Action Is Apply
Creating a Rule that Evaluates to TRUE for Row LCR Events
Adding Rules to the Rule Set

Creating an Apply Process

Granting EXECUTE Privilege on the Rule Set To oe User
Starting the Apply Process

Creating an Agent for Explicit Dequeue

Associating User oe with Agent explicit_dq

Adding a Subscriber to the oe_queue Queue

Creating a Procedure to Dequeue Messages Explicitly
Enqueuing Non-LCR Messages to Be Dequeued by an Apply Process
Enqueuing Non-LCR Messages to Be Dequeued Explicitly
Enqueuing Row LCRs to Be Dequeued by an Apply Process
Dequeuing Messages Explicitly

Querying for Applied Messages

Granting EXECUTE on DBMS_AQIN to User oe

Enabling JMS Types on an ANYDATA Queue

Creating Oracle Object Types address and person

Creating Java Classes That Map to Oracle Object Types
Java Code for Enqueuing Messages

Java Code for Dequeuing Messages

Compiling StreamsEng.java and StreamsDeg.java

Running StreamsEnq

Running StreamsDeq

ORACLE

23-8

23-8

23-9

23-9

23-9
23-10
23-10
23-10
23-10
23-11
23-11
23-12
23-12
23-12
23-14
23-15
23-15
23-17
23-17
23-21
23-21
23-21
23-21
23-21
23-24
23-27
23-27
23-27

XXVl

List of Figures

1-1 Integrated Application Environment Using Oracle Database Advanced Queuing
1-2 Client/Server Communication Using Oracle Database Advanced Queuing

1-3 Communication Using a Multiconsumer Queue

1-4 Explicit and Implicit Recipients of Messages

1-5 Implementing a Workflow using Oracle Database Advanced Queuing

1-6 Point-to-Point Messaging

1-7 Publish/Subscribe Mode

1-8 Implementing Publish/Subscribe using Oracle Database Advanced Queuing
1-9 Message Propagation in Oracle Database Advanced Queuing

1-10 Transformations in Application Integration

1-11 Architecture for Performing Oracle Database Advanced Queuing Operations Using HTTP
6-1 Architecture for Performing Oracle Database Advanced Queuing Operations Using HTTP
6-2 HTTP Oracle Database Advanced Queuing Propagation

11-1 Structure of Oracle Database Advanced Queuing Entries in LDAP Server

17-1 Messaging Gateway Architecture

20-1 Non-JMS Message Conversion

20-2 Oracle Database Advanced Queuing Message Conversion

20-3 Message Conversion for WebSphere MQ Using MGW_BASIC_MSG_T

20-4 Message Conversion for TIB/Rendezvous

20-5 JMS Message Propagation

23-1 Example Oracle Streams Messaging Environment

ORACLE

1-6

1-7

1-9
1-10
1-11
1-12
1-12
1-13
1-34
1-39
1-42

6-2

6-5
11-3
17-3
20-2
20-3
20-7

20-12
20-16

23-2

XXiX

List of Tables

2-1 AQ$_REG_INFO Type Attributes

2-2 AQ$_DESCRIPTOR Attributes

2-3 Enumerated Constants in the Oracle Database Advanced Queuing Administrative
Interface

2-4 Enumerated Constants in the Oracle Database Advanced Queuing Operational Interface

3-1 Oracle Database Advanced Queuing Programmatic Interfaces

3-2 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Administrative Interface

3-3 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Create Connection, Session, Message Use Cases

3-4 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-
Point Model Use Cases

3-5 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/
Subscribe Model Use Cases

3-6 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Subscribing for Messages in a Multiconsumer Queue/Topic,
Publish/Subscribe Model Use Cases

3-7 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Browse Messages in a Queue Use Cases

3-8 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queue/Topic Use Cases

3-9 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Register to Receive Messages Asynchronously from a
Queue/Topic Use Cases

4-1 Operations and Required Privileges

8-1 CREATE_SHARDED_ QUEUE Procedure Parameters

8-2 ALTER_SHARDED_QUEUE Procedure Parameters

8-3 SET_QUEUE_PARAMETER Procedure Parameters

8-4 UNSET_QUEUE_PARAMETER Procedure Parameters

8-5 GET_QUEUE_PARAMETER Procedure Parameters

8-6 CREATE_EXCEPTION_QUEUE Procedure Parameters

9-1 AQ$<Queue_Table_Name> View

9-2 AQ$<Queue_Table_Name_S> View

ORACLE

2-4
2-5

2-7
2-7
3-1

3-7

3-10

3-10

3-12

3-14

3-15

3-15

3-17

4-3
8-20
8-21
8-21
8-22
8-22
8-23

9-7
9-10

XXX

9-3 AQ$<Queue_Table_Name_R> View

9-4 AQ3$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

9-5 AQ3$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue

9-6 AQS$INTERNET_USERS View

9-7 V$AQ_MESSAGE_CACHE_STAT View

9-8 V$AQ_SHARDED_SUBSCRIBER_STAT View

9-9 V$AQ_MESSAGE_CACHE_ADVICE View

9-10 V$AQ_REMOTE_DEQUEUE_AFFINITY View

9-11 MGW_GATEWAY View Properties

9-12 MGW_AGENT_OPTIONS View

9-13 MGW_LINKS View Properties

9-14 MGW_MQSERIES_LINKS View Properties

9-15 MGW_TIBRV_LINKS View Properties

9-16 MGW_FOREIGN_QUEUES View Properties

9-17 MGW_JOBS View

9-18 MGW_SUBSCRIBERS View Properties

9-19 MGW_SCHEDULES View Properties

11-1 StreamMessage Conversion

11-2 MapMessage Conversion

11-3 Oracle Database AQ and Oracle JMS Buffered Messaging Constants

18-1 SID_DESC Parameters

19-1 Messaging Gateway Propagation Job Subprograms

19-2 WebSphere MQ Link Properties

19-3 Optional Configuration Properties for WebSphere MQ Base Java

19-4 Optional Configuration Properties for WebSphere MQ JMS

19-5 TIB/Rendezvous Link Properties

19-6 Optional Properties for TIB/Rendezvous

20-1 MGW Names for WebSphere MQ Header Values

20-2 Default Priority Mappings for Propagation

20-3 TIB/Rendezvous Datatype Mapping

20-4 TIB/Rendezvous and MGW Names for Oracle Database Advanced Queuing
Message Properties

20-5 Oracle JMS Message Conversion

22-1 Propagation Between Different Types of Queues

A-1 Actions Performed for Nonpersistent Queues When RAW Presentation Specified

A-2 Actions Performed for Nonpersistent Queues When XML Presentation Specified

ORACLE

9-10
9-11
9-11
9-15
9-19
9-21
9-21
9-23
9-27
9-29
9-29
9-30
9-30
9-31
9-31
9-33
9-34
11-13
11-14
11-17
18-3
19-20
19-22
19-23
19-23
19-24
19-25
20-8
20-10
20-13

20-14
20-16
22-5
A-2
A-3

XXXi

Preface

Audience

Preface

This guide describes features of application development and integration using Oracle
Database Advanced Queuing (AQ). This information applies to versions of the Oracle

Database server that run on all platforms, unless otherwise specified.

This Preface contains these topics:

This guide is intended for developers of applications that use Oracle Database

Audience
Documentation Accessibility
Related Documents

Conventions

Advanced Queuing.

To use this guide, you need knowledge of an application development language and
object-relational database management concepts.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?

ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see these Oracle resources:

ORACLE

Oracle Database Development Guide

Oracle Database PL/SQL Language Reference

Oracle Database Advanced Queuing Java API Reference
Oracle Database PL/SQL Packages and Types Reference

Oracle Streams Concepts and Administration

XXX

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

e Oracle XML DB Developer's Guide

Many of the examples in this guide use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. See Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them.

Conventions

ORACLE

The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXXiii

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Changes in This Release for Oracle
Database Advanced Queuing User's Guide

This preface contains:

e Changes in Oracle Database Advanced Queuing 12c Release 2 (12.2)
e Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1.0.2)
e Changes in Oracle Database Advanced Queuing 12c Release 1 (12.1)

Changes in Oracle Database Advanced Queuing 12¢
Release 2 (12.2.)

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database 12c Release 2 (12.2).

New Features

The following features are new in this release:

* PL/SQL enqueue and dequeue support for IMS and non-JMS (ADT or RAW)
payload in Sharded Queues

Oracle Database 12c Release 2 (12.2) extends and supports PL/SQL APIs to
perform enqueue and dequeue operations for JIMS, ADT, and RAW payload in
sharded queues. The PL/SQL Array APIs also support sharded queues. Many
existing non-JMS applications can now use sharded queues with little or no
change.

Starting from Oracle Database 12c Release 2 (12.2), JMS customers using
sharded queues can make use of PL/SQL notification to register a PL/SQL
procedure that gets automatically invoked by AQ Server on successful enqueue.
PL/SQL notification can eliminate the need for clients to poll the queue for
messages because messages can be automatically dequeued and processed at
the server.

See Managing Sharded Queues for more information.
* Sharded Queue Diagnosability and Manageability

Starting from 12c Release 2 (12.2), AQ sharded queues provides an advisor,
views, and automated management for its message cache to optimize
STREAMS_POOL memory allocation and throughput.

See Sharded Queues Tuning for more information.

» Longer ldentifiers for Oracle Database Advanced Queuing

ORACLE XXXIV

Changes in This Release for Oracle Database Advanced Queuing User's Guide

Starting from 12c Release 2 (12.2), the maximum length of AQ queue names has
been increased to 122 bytes. The maximum length of subscriber and recipient
names is increased to 128 characters. For the AQ Rules Engine, the maximum
length of rule names and rule set names is now 128 bytes.

Changes in Oracle Database Advanced Queuing 12¢
Release 1 (12.1.0.2)

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database 12c Release 1 (12.1.0.2).

New Features

The following feature is new in this release:

* JMS Streaming

In Oracle Database 12¢ Release 1 (12.1.0.2), Advanced Queuing introduces JMS
Streaming with enqueue and dequeue for sharded queues through

AQ Byt esMessage and AQ nsSt reanmvessage, for the applications interested in
sending and receiving large message data or payload.

See "JMS Streaming” for more information.

Changes in Oracle Database Advanced Queuing 12¢
Release 1 (12.1)

The following are changes in Oracle Database Advanced Queuing User's Guide for
Oracle Database 12c Release 1 (12.1).

New Features

The following features are new in this release:

e JMS Sharded Queues

In Oracle Database 12¢ Release 1 (12.1), Advanced Queuing introduces high
performing and scalable sharded JMS Queues. A sharded queue is a single
logical queue that is divided into multiple, independent, physical queues through
system-maintained partitioning. A sharded queue increases enqueue-dequeue
throughput, especially across Oracle RAC instances, because ordering between
two messages on different queue shards is best effort. Each shard is ordered
based on enqueue time within a session. Sharded queues automatically manage
table partitions so that enqueuers and dequeuers do not contend among
themselves. In addition, sharded queues use an in-memory message cache to
optimize performance and reduce the disk and CPU overhead of AQ-JMS
enqueues and dequeues. Sharded queues are the preferred JMS queues for
gueues used across Oracle RAC instances, for queues with high enqueue or
dequeue rates, or for queues with many subscribers.

In 12.2, Sharded Queues have been enhanced to support more than JMS. See
Sharded Queues for more information.

* Result Cache Enhancement

ORACLE -

Changes in This Release for Oracle Database Advanced Queuing User's Guide

In Oracle Database 12c Release 1 (12.1), the Rules Engine introduces a result
cache to improve the performance of many commonly used rules. The result
cache will bypass the evaluation phase if an expression with the same attributes
has already been evaluated earlier. Not all rule results are cached, such as when
rule results are potentially non-deterministic or when not all rules are evaluated or
when attributes include non-scalar data types. For Advanced Queues, the cache is
most useful when subscriptions and their dequeue sessions are long-lived.

° LONG VARCHAR Support

The LONG VARCHAR data type is supported by Oracle Database Advanced Queuing
in Oracle Database 12c¢ Release 1 (12.1).

e 3-Tier Background Architecture

Oracle Database 12c Release 1 (12.1) introduces the AQ background process
architecture with a new a 3-tier design.

See "AQ Background Architecture" for more information.
* Support for Data Guard Database Rolling Upgrade

Databases that use Oracle Database Advanced Queuing can now be upgraded to
new Oracle database releases and patch sets in rolling fashion using Data Guard
database rolling upgrades (transient logical standby database only). Rolling
upgrades are supported beginning in Oracle Database 12¢ Release 1 (12.1).

Data Guard database rolling upgrades reduce planned downtime by enabling the
upgrade to new database releases or patch sets in rolling fashion. Total database
downtime for such an upgrade is limited to the small amount of time required to
execute a Data Guard switchover.

The following packages will have support for rolling upgrade using logical standby:
— DBMS_AQ
— DBVB_AQIMB
— DBMS_AQADM except for the following procedures:
* SCHECULE_PROPAGATI ON
* UNSCHEDULE_PROPAGATI ON
* ALTER PROPAGATI ON_SCHEDULE
* ENABLE_PROPAGATI ON_SCHEDULE
* DI SABLE_PROPAGATI ON_SCHEDULE

¢ See Also:

— Oracle Database High Availability Overview for more information on
Data Guard transient logical rolling upgrades

— Oracle Database PL/SQL Packages and Types Reference for more
information on the Oracle Database AQ packages

ORACLE XXXVi

Introduction to Oracle Database Advanced
Queuing

Advanced Queuing (AQ) is a robust and feature-rich message queuing system
integrated with Oracle Database. These topics discuss Oracle Database Advanced
Queuing (AQ) and the requirements for complex information handling in an integrated
environment.

* What Is Queuing?

e Oracle Database Advanced Queuing Leverages Oracle Database

* Oracle Database Advanced Queuing in Integrated Application Environments
* Buffered Messaging

* Asynchronous Notifications

* Enqueue Features

* Dequeue Features

* Propagation Features

* Message Format Transformation

e Other Oracle Database Advanced Queuing Features

» Interfaces to Oracle Database Advanced Queuing

1.1 What Is Queuing?

ORACLE

Advanced Queuing stores user messages in abstract storage units called queues.
When Web-based business applications communicate with each other, producer
applications enqueue messages and consumer applications dequeue messages.

At the most basic level of queuing, one producer enqueues one or more messages
into one queue. Each message is dequeued and processed once by one of the
consumers. A message stays in the queue until a consumer dequeues it or the
message expires. A producer can stipulate a delay before the message is available to
be consumed, and a time after which the message expires. Likewise, a consumer can
wait when trying to dequeue a message if no message were available. An agent
program or application could act as both a producer and a consumer.

Producers can enqueue messages in any sequence. Messages are not necessarily
dequeued in the order in which they are enqueued. Messages can be enqueued
without being dequeued.

At a slightly higher level of complexity, many producers enqueue messages into a
gueue, all of which are processed by one consumer. Or many producers enqueue
messages, each message being processed by a different consumer depending on
type and correlation identifier.

1-1

Chapter 1
Oracle Database Advanced Queuing Leverages Oracle Database

Enqueued messages are said to be propagated when they are reproduced on another
gueue, which can be in the same database or in a remote database.

Applications often use data in different formats. A transformation defines a mapping
from one data type to another. The transformation is represented by a SQL function
that takes the source data type as input and returns an object of the target data type.
You can arrange transformations to occur when a message is enqueued, when it is
dequeued, or when it is propagated to a remote subscriber.

1.2 Oracle Database Advanced Queuing Leverages Oracle

Database

ORACLE

Oracle Database Advanced Queuing provides database-integrated message queuing
functionality. This functionality is built on top of Oracle Streams and leverages the
functions of Oracle Database so that messages can be stored persistently, propagated
between queues on different computers and databases, and transmitted using Oracle
Net Services and HTTP(S).

Because Oracle Database Advanced Queuing is implemented in database tables, all
operational benefits of high availability, scalability, and reliability are also applicable to
gueue data. Standard database features such as recovery, restart, and security are
supported by Oracle Database Advanced Queuing. You can use database
development and management tools such as Oracle Enterprise Manager to monitor
gueues. Like other database tables, queue tables can be imported and exported.
Similarly, advanced queues are supported by Oracle Data Guard for high availability,
which can be critical to preserve your messages when using a stateless middle tier. By
being in the database, enqueues and dequeues can be incorporated in database
transactions without requiring distributed transactions. For example, Oracle XA.

Messages can be queried using standard SQL. This means that you can use SQL to
access the message properties, the message history, and the payload. With SQL
access you can also audit and track messages. All available SQL technology, such as
indexes, can be used to optimize access to messages.

Note:

Oracle Database Advanced Queuing does not support data manipulation
language (DML) operations on a queue table, or associated index-organized
table (I0T), or associated system-partitioned tables used by sharded queues, if
any. The only supported means of modifying queue tables is through the
supplied APIs. Queue tables and IOTs can become inconsistent and therefore
effectively ruined, if DML operations are performed on them.

System-Level Access Control

Oracle Database Advanced Queuing supports system-level access control for all
gueuing operations, allowing an application developer or DBA to designate users as
gueue administrators. A queue administrator can invoke Oracle Database Advanced
Queuing administrative and operational interfaces on any queue in the database. This
simplifies administrative work because all administrative scripts for the queues in a
database can be managed under one schema.

1-2

ORACLE

Chapter 1
Oracle Database Advanced Queuing Leverages Oracle Database

Queue-Level Access Control

Oracle Database Advanced Queuing supports queue-level access control for enqueue
and dequeue operations. This feature allows the application developer to protect
gueues created in one schema from applications running in other schemas. The
application developer can grant only minimal access privileges to applications that run
outside the queue schema.

Performance

Requests for service must be separated from the supply of services to increase
efficiency and enable complex scheduling. Oracle Database Advanced Queuing
exhibits high performance as measured by:

* Number of messages enqueued and dequeued each second
e Time to evaluate a complex query on a message warehouse

» Time to recover and restart the messaging process after a failure

Scalability

Queuing systems must be scalable. Oracle Database Advanced Queuing exhibits high
performance when the number of programs using the application increases, when the
number of messages increases, and when the size of the message warehouse
increases.

Persistence for Security

Messages that constitute requests for service must be stored persistently and
processed exactly once for deferred execution to work correctly in the presence of
network, computer, and application failures. Oracle Database Advanced Queuing can
meet requirements in the following situations:

* Applications do not have the resources to handle multiple unprocessed messages
arriving simultaneously from external clients or from programs internal to the
application.

* Communication links between databases are not available all the time or are
reserved for other purposes. If the system falls short in its capacity to deal with
these messages immediately, then the application must be able to store the
messages until they can be processed.

» External clients or internal programs are not ready to receive messages that have
been processed.

Persistence for Scheduling

Queuing systems must deal with priorities, and those priorities can change:

* Messages arriving later can be of higher priority than messages arriving earlier.
* Messages may wait for later messages before actions are taken.

* The same message may be accessed by different processes.

* Messages in a specific queue can become more important, and so must be
processed with less delay or interference from messages in other queues.

* Messages sent to some destinations can have a higher priority than others.

1-3

ORACLE

Chapter 1
Oracle Database Advanced Queuing Leverages Oracle Database

Persistence for Accessing and Analyzing Metadata

Queuing systems must preserve message metadata, which can be as important as the
payload data. For example, the time that a message is received or dispatched can be
crucial for business and legal reasons. With the persistence features of Oracle
Database Advanced Queuing, you can analyze periods of greatest demand or
evaluate the lag between receiving and completing an order.

Object Type Support

Oracle Database Advanced Queuing supports enqueue, dequeue, and propagation
operations where the queue type is an abstract datatype, ADT. It also supports
enqueue and dequeue operations if the types are inherited types of a base ADT.
Propagation between two queues where the types are inherited from a base ADT is
not supported.

Oracle Database Advanced Queuing also supports ANYDATA queues, which enable
applications to enqueue different message types in a single queue. Oracle Database
Advanced Queuing supports the LONG VARCHAR data type from 12c Release 1 (12.1)
onwards.

If you plan to enqueue, propagate, or dequeue user-defined type messages, then each
type used in these messages must exist at every database where the message can be
enqueued in a queue. Some environments use directed networks to route messages
through intermediate databases before they reach their destination. In such
environments, the type must exist at each intermediate database, even if the
messages of this type are never enqueued or dequeued at a particular intermediate
database.

In addition, the following requirements must be met for such types:

* Type name must be the same at each database.

* Type must be in the same schema at each database.

* Shape of the type must match exactly at each database.

» Type cannot use inheritance or type evolution at any database.

e Type cannot contain varrays, nested tables, LOBs, rowids, or urowids.

The object identifier need not match at each database.

Structured and XMLType Payloads

You can use object types to structure and manage message payloads. Relational
database systems in general have a richer typing system than messaging systems.
Because Oracle Database is an object-relational database system, it supports
traditional relational and user-defined types. Many powerful features are enabled
because of having strongly typed content, such as content whose format is defined by
an external type system. These include:

e Content-based routing

Oracle Database Advanced Queuing can examine the content and automatically
route the message to another queue based on the content.

e Content-based subscription

A publish and subscribe system is built on top of a messaging system so that you
can create subscriptions based on content.

1-4

ORACLE

Chapter 1
Oracle Database Advanced Queuing Leverages Oracle Database

* Querying

The ability to run queries on the content of the message enables message
warehousing.

You can create queues that use the new opaque type, XM.Type. These queues can be
used to transmit and store messages that are XML documents. Using XM.Type, you can
do the following:

» Store any type of message in a queue
e Store nore than one type of payload in a queue
* Query XMLType columns using the operator Exi st sNode()

e Specify the operators in subscriber rules or dequeue conditions

Integration with Oracle Internet Directory

You can register system events, user events, and notifications on queues with Oracle
Internet Directory. System events are database startup, database shutdown, and
system error events. User events include user log on and user log off, DDL statements
(create, drop, alter), and DML statement triggers. Notifications on queues include OCI
notifications, PL/SQL notifications, and e-mail notifications.

You can also create aliases for Oracle Database Advanced Queuing agents in Oracle
Internet Directory. These aliases can be specified while performing Oracle Database
Advanced Queuing enqueue, dequeue, and notification operations. This is useful
when you do not want to expose an internal agent name.

Note:

Sharded Queues does not support OCI and thick drivers in 12¢ Release 2
(12.2.0.1).

Support for Oracle Real Application Clusters(Oracle RAC)

Oracle Real Application Clusters can be used to improve Oracle Database Advanced
Queuing performance by allowing different queues to be managed by different
instances. You do this by specifying different instance affinities (preferences) for the
gueue tables that store the queues. This allows queue operations (enqueue and
dequeue) on different queues to occur in parallel. Sharded queues are recommended
for applications with enqueuers or dequeuers on multiple Oracle RAC instances. Refer
to Sharded Queues and Oracle Real Application Clusters (Oracle RAC) for more
information.

If compatibility is set to Oracle8i release 8.1.5 or higher, then an application can
specify the instance affinity for a queue table. When Oracle Database Advanced
Queuing is used with Oracle RAC and multiple instances, this information is used to
partition the queue tables between instances for queue-monitor scheduling and, also
for propagation. The queue table is monitored by the queue monitors of the instance
specified by the user. If the owner of the queue table is terminated, then the secondary
instance or some available instance takes over the ownership for the queue table.

If an instance affinity is not specified, then the queue tables are arbitrarily partitioned
among the available instances. This can result in pinging between the application
accessing the queue table and the queue monitor monitoring it. Specifying the

1-5

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

instance affinity prevents this, but does not prevent the application from accessing the
gueue table and its queues from other instances.

1.3 Oracle Database Advanced Queuing in Integrated
Application Environments

Oracle Database Advanced Queuing provides the message management and
communication needed for application integration. In an integrated environment,
messages travel between the Oracle Database server, applications, and users.This is
shown in Figure 1-1.

Figure 1-1 Integrated Application Environment Using Oracle Database Advanced Queuing

XML-Based Internet OCI, PL/SQL,

Internet Users Transport Java clients
(HTTP(s))

e B . "B
g’u_— Internet Access EQU__

Rules and

‘ Transformaiionsh

b TR
queues

MQ Series
Internet
Propagation
(Oracle
Net)

Internet
Propagation

Rules and
Transformations

Rules and
Transformations

PP

Advanced
queues

Advanced
queues

Global Agents,
Global Subscriptions,
Global Events

Messages are exchanged between a client and the Oracle Database server or
between two Oracle Database servers using Oracle Net Services. Oracle Net Services
also propagates messages from one Oracle Database queue to another. Or, as shown
in Figure 1-1, you can perform Oracle Database Advanced Queuing operations over
the Internet using HTTP(S). In this case, the client, a user or Internet application,
produces structured XML messages. During propagation over the Internet, Oracle
Database servers communicate using structured XML also.

Application integration also involves the integration of heterogeneous messaging
systems. Oracle Database Advanced Queuing seamlessly integrates with existing
non-Oracle Database messaging systems like IBM WebSphere MQ through
Messaging Gateway, thus allowing existing WebSphere MQ-based applications to be
integrated into an Oracle Database Advanced Queuing environment.

Topics:

ORACLE 1-6

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

* Oracle Database Advanced Queuing Client/Server Communication
e Multiconsumer Dequeuing of the Same Message
* Oracle Database Advanced Queuing Implementation of Workflows

* Oracle Database Advanced Queuing Implementation of Publish/Subscribe

1.3.1 Oracle Database Advanced Queuing Client/Server
Communication

Oracle Database Advanced Queuing provides an asynchronous alternative to the
synchronous manner in which Client/Server applications usually run. This figure
exemplifies Client/Server Communication Using Oracle Database Advanced Queuing.
In this example Application B (a server) provides service to Application A (a client)
using a request/response queue.

Figure 1-2 Client/Server Communication Using Oracle Database Advanced Queuing

Application A)
producer & consumej Client

Dequeue
Enqueue
Request Response
Queue Queue
Enqueue
Dequeue

Application B
Lconsumer & producer Server

ORACLE

Application A enqueues a request into the request queue. In a different transaction,
Application B dequeues and processes the request. Application B enqueues the result
in the response queue, and in yet another transaction, Application A dequeues it.

The client need not wait to establish a connection with the server, and the server
dequeues the message at its own pace. When the server is finished processing the
message, there is no need for the client to be waiting to receive the result. A process
of double-deferral frees both client and server.

1-7

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

1.3.2 Multiconsumer Dequeuing of the Same Message

ORACLE

A message can only be enqueued into one queue at a time. If a producer had to insert
the same message into several queues in order to reach different consumers, then this
would require management of a very large number of queues. Oracle Database
Advanced Queuing provides for queue subscribers and message recipients to allow
multiple consumers to dequeue the same message.

To allow for subscriber and recipient lists, the queue must reside in a queue table that
is created with the multiple consumer option. Each message remains in the queue until
it is consumed by all its intended consumers.

Queue Subscribers

Multiple consumers, which can be either applications or other queues, can be
associated with a queue as subscribers. This causes all messages enqueued in the
gueue to be made available to be consumed by each of the queue subscribers. The
subscribers to the queue can be changed dynamically without any change to the
messages or message producers.

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue is only able to dequeue messages
that are enqueued after the subscriber is added. No two subscribers can have the
same values for name, address, and protocol. At least one of these attributes must be
different for two subscribers.

It cannot be known which subscriber will dequeue which message first, second, and so
on, because there is no priority among subscribers. More formally, the order of
dequeuing by subscribers is indeterminate.

Subscribers can also be rule-based. Similar in syntax to the WHERE clause of a SQL
query, rules are expressed in terms of attributes that represent message properties or
message content. These subscriber rules are evaluated against incoming messages,
and those rules that match are used to determine message recipients.

In Figure 1-3, Application B and Application C each need messages produced by
Application A, so a multiconsumer queue is specially configured with Application B and
Application C as queue subscribers. Each receives every message placed in the
queue.

1-8

ORACLE

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

Figure 1-3 Communication Using a Multiconsumer Queue

L Application A J

Enqueue

Multiple
Consumer
Queue

Dequeue Dequeue

L Application B JL Application C J

Message Recipients

A message producer can submit a list of recipients at the time a message is enqueued
into a non-sharded queue. This allows for a unique set of recipients for each message
in the queue. The recipient list associated with the message overrides the subscriber
list associated with the queue, if there is one. The recipients need not be in the
subscriber list. However, recipients can be selected from among the subscribers.

A recipient can be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It can be
specified by its name and an address with a protocol value of 0. The address should
be the name of another queue in the same database or another installation of Oracle
Database (identified by the database link), in which case the message is propagated
to the specified queue and can be dequeued by a consumer with the specified name.
If the recipient's name is NULL, then the message is propagated to the specified
gueue in the address and can be dequeued by the subscribers of the queue specified
in the address. If the protocol field is nonzero, then the name and address are not
interpreted by the system and the message can be dequeued by a special consumer.

Subscribing to a queue is like subscribing to a magazine: each subscriber can
dequeue all the messages placed into a specific queue, just as each magazine
subscriber has access to all its articles. Being a recipient, however, is like getting a
letter: each recipient is a designated target of a particular message.

Figure 1-4 shows how Oracle Database Advanced Queuing can accommodate both
kinds of consumers. Application A enqueues messages. Application B and Application
C are subscribers. But messages can also be explicitly directed toward recipients like
Application D, which may or may not be subscribers to the queue. The list of such

1-9

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

recipients for a given message is specified in the enqueue call for that message. It
overrides the list of subscribers for that queue.

Figure 1-4 Explicit and Implicit Recipients of Messages
Application A
producer

Enqueue

Dequeue

Application B
consumer (subscriber)

Implicit Recipient

Application D
consumer (recipient)

Explicit Recipient

Dequeue

Application C
consumer (subscriber)

Implicit Recipient

Note:

Multiple producers can simultaneously enqueue messages aimed at different
targeted recipients.

1.3.3 Oracle Database Advanced Queuing Implementation of
Workflows

Oracle Database Advanced Queuing allows us to implement a workflow, also known
as a chained application transaction.The figure exemplifies how a workflow is
implemented using Oracle Database Advanced Queuing.

1. Application A begins a workflow by enqueuing Message 1.

2. Application B dequeues it, performs whatever activity is required, and enqueues
Message 2.

ORACLE 1-10

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

3. Application C dequeues Message 2 and generates Message 3.

4. Application D, the final step in the workflow, dequeues it.

Figure 1-5 Implementing a Workflow using Oracle Database Advanced

Queuing
Application A Application C
producer consumer & producer
Enqueue Dequeue Enqueue
(Message 1) (Message 2) (Message 3)
Dequeue Enqueue Dequeue
(Message 1) (Message 2) (Message 3)
Application B Application D
consumer & producer consumer
Note:

The contents of the messages 1, 2 and 3 can be the same or different. Even
when they are different, messages can contain parts of the contents of previous
messages.

The queues are used to buffer the flow of information between different processing
stages of the business process. By specifying delay interval and expiration time for a
message, a window of execution can be provided for each of the applications.

From a workflow perspective, knowledge of the volume and timing of message flows is
a business asset quite apart from the value of the payload data. Oracle Database
Advanced Queuing helps you gain this knowledge by supporting the optional retention
of messages for analysis of historical patterns and prediction of future trends.

1.3.4 Oracle Database Advanced Queuing Implementation of Publish/
Subscribe

A point-to-point message is aimed at a specific target. Senders and receivers decide
on a common queue in which to exchange messages. Each message is consumed by
only one receiver.

ORACLE 1-11

ORACLE

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

Figure 1-6 shows that each application has its own message queue, known as a
single-consumer queue.

Figure 1-6 Point-to-Point Messaging

Enqueue Enqueue
Application W @@@g W} Application
q Advanced q

queues

A publish/subscribe message can be consumed by multiple receivers, as shown in
Figure 1-7. Publish/subscribe messaging has a wide dissemination mode called
broadcast and a more narrowly aimed mode called multicast.

Broadcasting is like a radio station not knowing exactly who the audience is for a given
program. The dequeuers are subscribers to multiconsumer queues. In contrast,
multicast is like a magazine publisher who knows who the subscribers are. Multicast is
also referred to as point-to-multipoint, because a single publisher sends messages to
multiple receivers, called recipients, who may or may not be subscribers to the queues
that serve as exchange mechanisms.

Figure 1-7 Publish/Subscribe Mode

Publish Subscribe

Publish @@@@ Publish

queues Subscribe

Application Application

Publish/subscribe describes a situation in which a publisher application enqueues
messages to a queue anonymously (no recipients specified). The messages are then
delivered to subscriber applications based on rules specified by each application. The
rules can be defined on message properties, message data content, or both.

You can implement a publish/subscribe model of communication using Oracle
Database Advanced Queuing as follows:

1. Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

2. Setup a set of rule-based subscribers. Each subscriber can specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

3. Publisher applications publish messages to the queue by invoking an enqueue
call.

1-12

ORACLE

Chapter 1
Oracle Database Advanced Queuing in Integrated Application Environments

4. Subscriber applications can receive messages with a dequeue call. This retrieves
messages that match the subscription criteria.

5. Subscriber applications can also use a listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution in cases where
a subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

6. Subscriber applications can also use the Oracle Call Interface (OCI) notification
mechanism. This allows a push mode of message delivery. The subscriber
application registers the queues (and subscriptions specified as subscribing agent)
from which to receive messages. This registers a callback to be invoked when
messages matching the subscriptions arrive.

Figure 1-8 illustrates the use of Oracle Database Advanced Queuing for implementing
a publish/subscribe relationship between publisher Application A and subscriber
Applications B, C, and D:

* Application B subscribes with rule "priority = 1".
» Application C subscribes with rule "priority > 1".

» Application D subscribes with rule "priority = 3".

Figure 1-8 Implementing Publish/Subscribe using Oracle Database Advanced

Queuing
Application A
producer
Enqueue
1— priority 3
+— priority 1
1 priority 2
Register
Dequeue Dequeue
Application B Application C
consumer consumer
(rule-based subscriber) (rule-based subscriber)
"priority = 1" "priority > 1"
Application D
consumer
(rule-based subscriber)
"priority = 3"

1-13

Chapter 1
Buffered Messaging

If Application A enqueues three messages with priorities 1, 2, and 3 respectively, then
the messages will be delivered as follows:

» Application B receives a single message (priority 1).
» Application C receives two messages (priority 2, 3).

» Application D receives a single message (priority 3).

1.4 Buffered Messaging

Buffered messaging combines the rich functionality that this product has always
offered with a much faster queuing implementation. Buffered messaging is ideal for
applications that do not require the reliability and transaction support of Oracle
Database Advanced Queuing persistent messaging.

Buffered messaging is faster than persistent messaging, because its messages reside
in shared memory. They are usually written to disk only when the total memory
consumption of buffered messages approaches the available shared memory limit.

Note:

The portion of a queue that stores buffered messages in memory is sometimes
referred to as a buffered queue.

Message retention is not supported for buffered messaging.
When using buffered messaging, Oracle recommends that you do one of the following:

e Set parameter st reans_pool _si ze

This parameter controls the size of shared memory available to Oracle Database
Advanced Queuing. If unspecified, up to 10% of the shared pool size may be
allocated for the Oracle Database Advanced Queuing pool from the database
cache.

Refer to manually tuning sharded queues for more information about setting the
message cache for buffered messaging with sharded queues.

e Turn on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the SGA
for Oracle Database Advanced Queuing, based on Oracle Database Advanced
Queuing usage and, also usage of other components that use the SGA. Examples
of such other components are buffer cache and library cache. If streans_pool _si ze
is specified, it is used as the lower bound.

¢ See Also:

"Setting Initialization Parameters Relevant to Streams" in Oracle Streams
Concepts and Administration

Topics:

ORACLE 1-14

ORACLE

Chapter 1
Buffered Messaging

* Enqueuing Buffered Messages

* Dequeuing Buffered Messages

* Propagating Buffered Messages

* Flow Control

» Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)
» Buffered Messaging Restrictions

e Error Handling

Enqueuing Buffered Messages

Buffered and persistent messages use the same single-consumer or multiconsumer
gueues and the same administrative and operational interfaces. They are
distinguished from each other by a delivery mode parameter, set by the application
when enqueuing the message to an Oracle Database Advanced Queuing queue.

Recipient lists are supported for buffered messaging enqueue.

Buffered messaging is supported in all queue tables created with compatibility 8.1 or
higher. Transaction grouping queues and array enqueues are not supported for
buffered messages in this release. You can still use the array enqueue procedure to
enqueue buffered messages, but the array size must be set to one.

Buffered messages can be queried using the AGSQueue_Tabl e_Nane view. They appear
with states | N- MEMORY or SPI LLED.

The queue type for buffered messaging can be ADT, XM, ANYDATA, or RAW For ADT types
with LOB attributes, only buffered messages with null LOB attributes can be enqueued.

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and
buffered messages enqueued in the same session is not currently supported.

Both enqueue and dequeue buffered messaging operations must be with | MVEDI ATE
visibility mode. Thus they cannot be part of another transaction. You cannot specify
delay when enqueuing buffered messages.

¢ See Also:

e "Enqueuing Messages"
* "AQ$<Queue_Table _Name>: Messages in Queue Table"

e "Priority and Ordering of Messages in Enqueuing"

Dequeuing Buffered Messages

Rule-based subscriptions are supported with buffered messaging. The procedure for
adding subscribers is enhanced to allow an application to express interest in persistent
messages only, buffered messages only, or both.

For non-sharded queues, array dequeue is not supported for buffered messaging, but
you can still use the array dequeue procedure by setting array size to one message.

1-15

ORACLE

Chapter 1
Buffered Messaging

Dequeuing applications can choose to dequeue persistent messages only, buffered
messages only, or both types. Visibility must be set to | MEDI ATE for dequeuing
buffered messages. All of the following dequeue options are supported:

* Dequeue modes BROMSE, LOCK, REMOVE, and REMOVE_NO DATA
* Navigation modes FI RST_MESSAGE and NEXT_MESSAGE

* Correlation identifier

» Dequeue condition

* Message identifier

" See Also:

e "Adding a Subscriber"

« "Dequeue Options"

Propagating Buffered Messages

Propagation of buffered messages is supported. A single propagation schedule serves
both persistent and buffered messages. The DBA_QUEUE_SCHEDULES view displays
statistics and error information.

Oracle Database AQ deletes buffered messages once they are propagated to the
remote sites. If the receiving site fails before these messages are consumed, then
these messages will be lost. The source site will not be able to re-send them.
Duplicate delivery of messages is also possible.

2 See Also:

e "DBA_QUEUE_SCHEDULES: All Propagation Schedules"
- "Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)"

Flow Control

Oracle Database Advanced Queuing implements a flow control system that prevents
applications from flooding the shared memory with messages. If the number of
outstanding messages per sender exceeds a system-defined threshold, the enqueue
call will block and timeout with an error message. A message sender is identified by
sender_id.name in the enqueue options. A sender blocked due to flow control on a
gueue does not affect other message senders. The resolution is to dequeue
messages, thereby resolving flow control, after which new messages can be
enqueued.

Flow control threshold varies with memory pressure and could come down to the
system-defined limit if streams pool usage becomes significant. Message senders will
block on event Streanms AQ enqueue bl ocked due to flow control and time out with
error ORA- 25307 if flow control is not resolved. Applications are expected to handle this
error, and re-enqueue the failed message.

1-16

Chapter 1
Buffered Messaging

Even with flow control, slow consumers of a multiconsumer queue can cause the
number of messages stored in memory to grow without limit. Provided there is at least
one subscriber who is keeping pace, older messages are spilled to disk and removed
from the pool to free up memory. This ensures that the cost of disk access is paid by
the slower consumers, and faster subscribers can proceed unhindered.

Buffered Messaging with Oracle Real Application Clusters (Oracle RAC)

Sharded and non-sharded queues handle buffered messaging with Oracle RAC
differently.

Sharded queues perform cross-instance communication but avoid simultaneous writes
to the same block across Oracle RAC instances. Typically, dequeues occur on a shard
that is local to a message’s enqueuing instance, but in certain situations, Oracle will
efficiently forward messages across instances for dequeuing on another instance. For
example, if a sharded queue has a single enqueuing session on one Oracle RAC
instance and a single dequeuing session on another instance, then sharded queues
will forward messages between the Oracle RAC instances. The forwarding of
messages is done asynchronously to the enqueuing transaction to improve
performance. Dequeuers may get an ORA-25228 if they are connected to an instance
whose shards have no messages.

For non-sharded queues, an application can enqueue and dequeue buffered
messages from any Oracle RAC instance as long as it uses password-based
authentication to connect to the database. The structures required for buffered
messaging are implemented on one Oracle RAC instance. The instance where the
buffered messaging structures are implemented is the OWNER | NSTANCE of the queue
table containing the queue. Enqueue and dequeue requests received at other
instances are forwarded to the OANER | NSTANCE over the interconnect. The

REMOTE_LI STENER parameter in | i stener. ora must also be set to enable forwarding of
buffered messaging requests to correct instance. Internally, buffered queues on Oracle
RAC may use dbl i nks between instances. Definer's rights packages that enqueue or
dequeue into buffered queues on Oracle RAC must grant | NHERI T REMOTE PRI VI LEGES to
users of the package.

A service name is associated with each queue in Oracle RAC and displayed in the
DBA_QUEUES and USER_QUEUES views. This service name always points to the instance
with the most efficient access for buffered messaging, minimizing pinging between
instances. OCI clients can use the service name for buffered messaging operations.

Oracle recommends that you specify instance affinity when using buffered messaging
with queue-to-queue propagation. This results in transparent failover when
propagating messages to a destination Oracle RAC system. You do not need to re-
point your database links if the primary AQ Oracle RAC instance falils.

ORACLE 1-17

Chapter 1
Asynchronous Notifications

" See Also:

e "ALL QUEUE_TABLES: Queue Tables Accessible to the Current User" for
more information on OANER_| NSTANCE

e "REMOTE_LISTENER" in Oracle Database Reference for more information
on setting the REMOTE_LI STENER parameter

« "DBA_QUEUES: All Queues in Database" or "USER_QUEUES: Queues In
User Schema"

e "Support for Oracle Real Application Clusters(Oracle RAC)"

Buffered Messaging Restrictions

The following Oracle Database Advanced Queuing features are only supported for
buffered messaging on sharded queues:

* Message delay
* Array enqueue
e Array dequeue
e PL/SQL Notification

The following Oracle Database Advanced Queuing features are not currently
supported for buffered messaging:

e Message retention

e Transaction grouping

e Message export and import
e Messaging Gateway

* OCI notification

Error Handling

Retry count and retry delay are not supported for buffered messages. Message
expiration is supported. When a buffered message has been in the queue beyond its
expiration period, it is moved into the exception queue as a persistent message.

1.5 Asynchronous Notifications

ORACLE

Asynchronous notification allows clients to receive notifications of messages of
interest.

The client can use these notifications to monitor multiple subscriptions. The client need
not be connected to the database to receive notifications regarding its subscriptions.
Asynchronous notification is supported for buffered messages. The delivery mode of
the message is available in the message descriptor of the notification descriptor.

The client specifies a callback function which is run for each message. Asynchronous
notification cannot be used to invoke an executable, but it is possible for the callback
function to invoke a stored procedure.

1-18

ORACLE

Chapter 1
Asynchronous Notifications

Clients can receive notifications procedurally using PL/SQL, Java Message Service
(JMS), or OCI callback functions, or clients can receive notifications through e-mail or
HTTP post. Clients can also specify the presentation for notifications as either RAWor
XML

" Note:

Sharded queues only support PL/SQL notification.

For JMS queues, the dequeue is accomplished as part of the notification; explicit
dequeue is not required. For RAW queues, clients can specify payload delivery; but
they still must dequeue the message in REMOVE_NO DATA mode. For all other persistent
gueues, the notification contains only the message properties; clients explicitly
dequeue to receive the message.

Payload Delivery for RAW Queues

For RAW queues, Oracle Database Advanced Queuing clients can now specify that
the message payload be delivered along with its notification.

" See Also:

"AQ Registration Information Type"

Reliable Notification

Clients can specify persistent message notification. If an Oracle RAC instance fails, its
notifications are delivered by another Oracle RAC node. If a standalone instance fails,
its notifications are delivered when the instance restarts.

" Note:

Noatification reliability refers only to server failures. If Oracle Database
Advanced Queuing cannot deliver client notifications for any other reason, then
the notifications are purged along with the client registration.

Designated Port Notification

For non-sharded queues, Oracle Database Advanced Queuing clients can use the
OCI subscription handle attribute OCI _ATTR_SUBSCR_PORTNOto designate the port at which
notifications are delivered. This is especially useful for clients on a computer behind a
firewall. The port for the listener thread can be designated before the first registration,
using an attribute in the environment handle. The thread is started the first time an

OCl Subscri pti onRegi st er is called. If the client attempts to start another thread on a
different port using a different environment handle, then Oracle Database Advanced
Queuing returns an error.

1-19

ORACLE

Chapter 1
Asynchronous Notifications

Note:

Designated port notification and IP address notification apply only to OCI
clients.

¢ See Also:

"Publish-Subscribe Registration Functions in OCI" in Oracle Call Interface
Programmer's Guide

IPv6é Compliance and Designated IP Support

For non-sharded queues, Oracle Database AQ supports IPv6 and Oracle Database
AQ clients can use the OCI subscription handle attribute OCI _ATTR_SUBSCR | PADDR to
designate the IP address at which notifications are delivered. This is especially useful
for clients on a computer that has multiple network interface cards or IP addresses.
The IP address for the listener thread can be designated before the first registration
using an attribute in the environment handle. The thread is started the first time an

OCl Subscri pti onRegi ster is called. If the client attempts to start another thread on a
different IP address using a different environment handle, Oracle Database AQ returns
an error. If no IP address is specified, Oracle Database AQ will deliver notifications on
all IP addresses of the computer the client is on.

Registration Timeout

In earlier releases of Oracle Database Advanced Queuing, registrations for notification
persisted until explicitly removed by the client or purged in case of extended client
failure. From Oracle Database Advanced Queuing 10g Release 2 (10.2) onwards,
clients can register for a specified time, after which the registration is automatically
purged.

When the registration is purged, Oracle Database Advanced Queuing sends a
notification to the client, so the client can invoke its callback and take any necessary
action.

¢ See Also:

"AQ Registration Information Type" for information on the ti neout parameter

Purge on Notification

Clients can also register to receive only the first notification, after which the registration
is automatically purged.

An example where purge on notification is useful is a client waiting for enqueues to

start. In this case, only the first notification is useful; subsequent notifications provide
no additional information. Previously, this client would be required to unregister once
enqueuing started; now the registration can be configured to go away automatically.

1-20

Chapter 1
Asynchronous Notifications

Buffered Message Notification

Clients can register for notification of buffered messages. The registration requests
apply to both buffered and persistent messages. The message properties delivered
with the PL/SQL or OCI notification specify whether the message is buffered or
persistent.

¢ See Also:

e "Registering for Notification" for more information on PL/SQL notification

e Appendix C, "OCI Examples", which appears only in the HTML version of
this guide, for an example of OCI notification

Reliable notification is not supported.

1.5.1 Views on Registration

The dictionary views DBA_SUBSCR_REG STRATI ONS and USER_SUBSCR_REG STRATI ONS display
the various registrations in the system.

The diagnostic view GV$SUBSCR_REG STRATI ON_STATS may be used to monitor notification
statistics and performance.

1.5.2 Event-Based Notification

Event-based notifications are processed by a set of coordinator (EMC) and subordinate
processes.

The event notification load is distributed among these processes. These processes
work on the system notifications in parallel, offering a capability to process a larger
volume of notifications, a faster response time and lower shared memory use for
staging notifications.

1.5.3 Notification Grouping by Time

ORACLE

Notification applications may register to receive a single notification for all events that
occur within a specified time interval. Notification Clients may specify a start time for

the notifications. Additionally, they must specify a time as the grouping class and the

time interval as the grouping value.

A repeat count may be used to limit the number of notifications delivered. Clients can
receive two types of grouping events, Summary or Last. A summary notification is a
list of Message Identifiers of all the messages for the subscription. If last was specified
as a grouping type, natification would have information about the last message in the
notification interval. A count of the number of messages in the interval is also sent.
The registration interfaces in PLSQL and OCI allow for specification of the START_TI ME,
REPEAT_COUNT, GROUPI NG CLASS, GROUPI NG VALUE, GROUPI NG TYPE in the

AQS_REG STRATI ON_I NFO and the OCI subscription Handle.

1-21

Chapter 1
Enqueue Features

The notification descriptor received by the client initiated AQ notification provides
information about the group of message identifiers and the number of notifications in
the group.

" See Also:

e Oracle Database PL/SQL Packages and Types Reference

e Oracle Call Interface Programmer's Guide

1.6 Enqueue Features

ORACLE

This topic describes the enqueue features Enqueuing an Array of Messages,
Correlation Identifiers, Priority and Ordering of Messages in Enqueuing, Message
Grouping, Sender Identification, and Time Specification and Scheduling.

The following features apply to enqueuing messages:
e Enqueue an Array of Messages

* Correlation Identifiers

e Priority and Ordering of Messages in Enqueuing
e Message Grouping

* Sender Identification

e Time Specification and Scheduling

Enqueue an Array of Messages

When enqueuing messages into a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance
of enqueue operations. When enqueuing an array of messages into a queue, each
message shares the same enqueue options, but each message can have different
message properties. You can perform array enqueue operations using PL/SQL or OCI.

Array enqueuing is not supported for buffered messages in this release.

Correlation Identifiers

You can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Priority and Ordering of Messages in Enqueuing

You can specify the priority of an enqueued message and its exact position in the
gueue. This means that users can specify the order in which messages are consumed
in three ways:

* A priority can be assigned to each message.

e A sort order specifies which properties are used to order all messages in a queue.
This is set when the queue table is created and cannot be changed. You can
choose to sort messages by priority, enqueue time, or commit time.

1-22

ORACLE

Chapter 1
Enqueue Features

¢ See Also:

— "Commit-Time Queues" in Oracle Streams Concepts and
Administration

"Creating a Queue Table" for more information on sort order

* A sequence deviation positions a message in relation to other messages.

" Note:

The sequence deviation feature is deprecated in 10g Release 2 (10.2).

If several consumers act on the same queue, then each consumer gets the first
message that is available for immediate consumption. A message that is in the
process of being consumed by another consumer is skipped.

Priority ordering of messages is achieved by specifying priority, enqueue time as the
sort order. If priority ordering is chosen, then each message is assigned a priority at
enqueue time by the enqueuing agent. At dequeue time, the messages are dequeued
in the order of the priorities assigned. If two messages have the same priority, then the
order in which they are dequeued is determined by the enqueue time. A first-in, first-
out (FIFO) priority queue can also be created by specifying enqueue time, priority as
the sort order of the messages.

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group must
be created in the same transaction, and all messages created in one transaction
belong to the same group.

This feature allows users to segment complex messages into simple messages. For
example, messages directed to a queue containing invoices can be constructed as a
group of messages starting with a header message, followed by messages
representing details, followed by a trailer message.

Message grouping is also useful if the message payload contains complex large
objects such as images and video that can be segmented into smaller objects.

Group message properties priority, delay, and expiration are determined solely by the
message properties specified for the first message in a group, irrespective of which
properties are specified for subsequent messages in the group.

The message grouping property is preserved across propagation. However, the
destination queue where messages are propagated must also be enabled for
transactional grouping. There are also some restrictions you must keep in mind if the
message grouping property is to be preserved while dequeuing messages from a
gueue enabled for transactional grouping.

1-23

Chapter 1
Dequeue Features

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
Database Advanced Queuing also automatically identifies the queue from which a
message was dequeued. This allows applications to track the pathway of a
propagated message or a string message within the same database.

Time Specification and Scheduling

Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. The default for expiration is never. When a
message expires, it is moved to an exception queue. Expiration processing requires
that the queue monitor be running.

1.7 Dequeue Features

ORACLE

This topic discusses the dequeue features Concurrent Dequeues, Dequeue Methods,
Dequeue Modes, Dequeue an Array of Messages, Message States, Navigation of
Messages in Dequeuing, Waiting for Messages, Retries with Delays, Optional
Transaction Protection, and Exception Queues.

The following features apply to dequeuing messages:

e Concurrent Dequeues

e Dequeue Methods

e Dequeue Modes

* Dequeue an Array of Messages

e Message States

« Navigation of Messages in Dequeuing
e Waiting for Messages

e Retries with Delays

e Optional Transaction Protection

e Exception Queues

Concurrent Dequeues

When there are multiple processes dequeuing from a single-consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes
skip the messages that are being worked on by a concurrent process. This allows
multiple processes to work concurrently on different messages for the same
consumer.

Dequeue Methods
A message can be dequeued using one of the following dequeue methods:

» Specifying a correlation identifier

A correlation identifier is a user-defined message property. Multiple messages with
the same correlation identifier can be present in a queue, which means that the
ordering (enqueue order) between messages might not be preserved on dequeue
calls.

1-24

Chapter 1
Dequeue Features

* Specifying a message identifier
A message identifier is a system-assigned value (of RAWdatatype). Only one
message with a given message identifier can be present in the queue.

e Specifying a dequeue condition

A dequeue condition is expressed in terms of message properties or message
content and is similar in syntax to the WHERE clause of a SQL query. Messages in
the queue are evaluated against the condition, and messages that satisfy the
given condition are returned. When a dequeue condition is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

» Default dequeue

A default dequeue retrieves the first available message.

" Note:

Dequeuing with correlation identifier, message identifier, or dequeue condition
does not preserve the message grouping property.

Dequeue Modes

A dequeue request can browse a message, remove it, or remove it with no data. If a
message is browsed, then it remains available for further processing. If a message is
removed or removed with no data, then it is no longer available for dequeue requests.
Depending on the queue properties, a removed message can be retained in the queue
table. A message is retained in the queue table after it has been consumed only if a
retention time is specified for its queue.

The browse mode has three risks. First, there is no guarantee that the message can
be dequeued again after it is browsed, because a dequeue call from a concurrent user
might have removed the message. To prevent a viewed message from being
dequeued by a concurrent user, you should view the message in the locked mode.

Second, your dequeue position in browse mode is automatically changed to the
beginning of the queue if a nonzero wait time is specified and the navigating position
reaches the end of the queue. If you repeat a dequeue call in the browse mode with
the NEXT_MESSAGE navigation option and a nonzero wait time, then you can end up
dequeuing the same message over and over again. Oracle recommends that you use
a nonzero wait time for the first dequeue call on a queue in a session, and then use a
zero wait time with the NEXT_MESSAGE navigation option for subsequent dequeue calls. If
a dequeue call gets an "end of queue" error message, then the dequeue position can
be explicitly set by the dequeue call to the beginning of the queue using the

FI RST_MESSAGE navigation option, following which the messages in the queue can be
browsed again.

Third, if the sort order of the queue is ENQ TI ME, PRI ORI TY, or a combination of these
two, then results may not be repeatable from one browse to the next. If you must have
consistent browse results, then you should use a commit-time queue.

ORACLE 1-25

ORACLE

Chapter 1
Dequeue Features

¢ See Also:

e "Commit-Time Queues" in Oracle Streams Concepts and Administration

e "Creating a Queue Table"

When a message is dequeued using REMOVE_NODATA mode, the payload of the message
is not retrieved. This mode can be useful when the user has already examined the
message payload, possibly by means of a previous BROASE dequeue.

Dequeue an Array of Messages

When dequeuing messages from a queue, you can operate on an array of messages
simultaneously, instead of one message at a time. This can improve the performance
of dequeue operations. If you are dequeuing from a transactional queue, you can
dequeue all the messages for a transaction with a single call, which makes application
programming easier.

When dequeuing an array of messages from a queue, each message shares the same
dequeue options, but each message can have different message properties. You can
perform array enqueue and array dequeue operations using PL/SQL or OCI.

Array dequeuing is not supported for buffered messages in this release.

Message States

Multiple processes or operating system threads can use the same consumer name to
dequeue concurrently from a queue. In that case Oracle Database Advanced Queuing
provides the first unlocked message that is at the head of the queue and is intended
for the consumer. Unless the message identifier of a specific message is specified
during dequeue, consumers can dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have
successfully dequeued the message. A message is considered EXPI RED if one or more
consumers did not dequeue the message before the EXPI RATI ONtime. When a
message has expired, it is moved to an exception queue.

Expired messages from multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode exactly
once by specifying a NULL consumer name in the dequeue options.

" Note:

If the multiconsumer exception queue was created in a queue table with the
conpat i bl e parameter set to 8. 0, then expired messages can be dequeued only
by specifying a message identifier.

Queues created in a queue table with conpati bl e set to 8. 0 (referred to in this
guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues you
create be 8.1-style or newer and that you migrate existing 8.0-style queues at
your earliest convenience.

1-26

ORACLE

Chapter 1
Dequeue Features

Beginning with Oracle Database Advanced Queuing release 8.1.6, only the queue
monitor removes messages from multiconsumer queues. This allows dequeuers to
complete the dequeue operation by not locking the message in the queue table.
Because the queue monitor removes messages that have been processed by all
consumers from multiconsumer queues approximately once every minute, users can
see a delay between when the messages have been completely processed and when
they are physically removed from the queue.

Navigation of Messages in Dequeuing

You have several options for selecting a message from a queue. You can select the
first message with the FI RST_MESSAGE navigation option. Alternatively, once you have
selected a message and established its position in the queue, you can then retrieve
the next message with the NEXT_MESSAGE navigation option.

The FI RST_MESSAGE navigation option performs a SELECT on the queue. The NEXT_MESSAGE
navigation option fetches from the results of the SELECT run in the FI RST_MESSAGE
navigation. Thus performance is optimized because subsequent dequeues need not
run the entire SELECT again.

If the queue is enabled for transactional grouping, then the navigation options work in

a slightly different way. If FI RST_MESSAGE is requested, then the dequeue position is still
reset to the beginning of the queue. But if NEXT_MESSAGE is requested, then the position
is set to the next message in the same transaction. Transactional grouping also offers
a NEXT_TRANSACTI ON option. It sets the dequeue position to the first message of the next
transaction.

Transaction grouping has no effect if you dequeue by specifying a correlation identifier
or message identifier, or if you dequeue some of the messages of a transaction and
then commit.

If you reach the end of the queue while using the NEXT_MESSAGE or NEXT_TRANSACTI ON
option, and you have specified a nonzero wait time, then the navigating position is
automatically changed to the beginning of the queue. If a zero wait time is specified,
then you can get an exception when the end of the queue is reached.

Waiting for Messages

Oracle Database Advanced Queuing allows applications to block on one or more
gueues waiting for the arrival of either a newly enqueued message or a message that
becomes ready. You can use the DEQUEUE operation to wait for the arrival of a message
in a single queue or the LI STEN operation to wait for the arrival of a message in more
than one queue.

" Note:

Applications can also perform a blocking dequeue on exception queues to wait
for arrival of EXPI RED messages.

When the blocking DEQUEUE call returns, it returns the message properties and the
message payload. When the blocking LI STEN call returns, it discloses only the name of
the queue where a message has arrived. A subsequent DEQUEUE operation is needed to
dequeue the message.

1-27

ORACLE

Chapter 1
Dequeue Features

When there are messages for multiple agents in the agent list, LI STEN returns with the
first agent for whom there is a message. To prevent one agent from starving other
agents for messages, the application can change the order of the agents in the agent
list.

Applications can optionally specify a timeout of zero or more seconds to indicate the
time that Oracle Database Advanced Queuing must wait for the arrival of a message.
The default is to wait forever until a message arrives in the queue. This removes the
burden of continually polling for messages from the application, and it saves CPU and
network resources because the application remains blocked until a new message is
enqueued or becomes READY after its DELAY time.

An application that is blocked on a dequeue is either awakened directly by the
enqueuer if the new message has no DELAY or is awakened by the queue monitor
process when the DELAY or EXPI RATI ON time has passed. If an application is waiting for
the arrival of a message in a remote queue, then the Oracle Database Advanced
Queuing propagator wakes up the blocked dequeuer after a message has been
propagated.

Retries with Delays

If the transaction dequeuing a message from a queue fails, then it is regarded as an
unsuccessful attempt to consume the message. Oracle Database Advanced Queuing
records the number of failed attempts to consume the message in the message
history. Applications can query the RETRY_COUNT column of the queue table view to find
out the number of unsuccessful attempts on a message. In addition, Oracle Database
Advanced Queuing allows the application to specify, at the queue level, the maximum
number of retries for messages in the queue. The default value for maximum retries is
5. If the number of failed attempts to remove a message exceeds this number, then
the message is moved to the exception queue and is no longer available to
applications.

Note:

If a dequeue transaction fails because the server process dies (including ALTER
SYSTEMKI LL SESSI ON) or SHUTDOMN ABORT on the instance, then RETRY_COUNT is not
incremented.

A bad condition can cause the transaction receiving a message to end. Oracle
Database Advanced Queuing allows users to hide the bad message for a specified
retry delay interval, during which it is in the WAITING state. After the retry delay, the
failed message is again available for dequeue. The Oracle Database Advanced
Queuing time manager enforces the retry delay property. The default value for retry
delay is 0.

If multiple sessions are dequeuing messages from a queue simultaneously, then
RETRY_COUNT information might not always be updated correctly. If session one
dequeues a message and rolls back the transaction, then Oracle Database AQ notes
that the RETRY_COUNT information for this message must be updated. However
RETRY_COUNT cannot be incremented until session one completes the rollback. If session
two attempts to dequeue the same message after session one has completed the
rollback but before it has incremented RETRY_COUNT, then the dequeue by session two
succeeds. When session one attempts to increment RETRY_COUNT, it finds that the
message is locked by session two and RETRY_COUNT is not incremented. A trace file is

1-28

ORACLE

Chapter 1
Dequeue Features

then generated in the USER_DUMP_DESTI NATI ON for the instance with the following
message:

Error on rollback: ORA-25263: no nessage in queue schema. gqnanme with nessage ID ...

Note:

Maximum retries and retry delay are not available with 8.0-style multiconsumer
queues.

Queues created in a queue table with conpati bl e set to 8. 0 (referred to in this
guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues you
create be 8.1-style or newer and that you migrate existing 8.0-style queues at
your earliest convenience.

Optional Transaction Protection

Enqueue and dequeue requests are usually part of a transaction that contains the
requests, thereby providing the wanted transactional action. You can, however, specify
that a specific request is a transaction by itself, making the result of that request
immediately visible to other transactions. This means that messages can be made
visible to the external world when the enqueue or dequeue statement is applied or
after the transaction is committed.

" Note:

Transaction protection is not supported for buffered messaging.

Exception Queues

An exception queue is a repository for expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a multiconsumer
exception queue cannot have subscribers associated with it. However, an application
that intends to handle these expired or unserviceable messages can dequeue them
exactly once from the exception queue using remove mode. The consumer hame
specified while dequeuing should be null. Messages can also be dequeued from the
exception queue by specifying the message identifier.

1-29

ORACLE

Chapter 1
Dequeue Features

Note:

Expired or unserviceable buffered messages are moved to an exception queue
as persistent messages.

Messages intended for single-consumer queues, or for 8.0-style multiconsumer
queues, can only be dequeued by their message identifiers once the messages
have been moved to an exception queue.

Queues created in a queue table with conpati bl e set to 8. 0 (referred to in this
guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues you
create be 8.1-style or newer and that you migrate existing 8.0-style queues at
your earliest convenience.

After a message has been moved to an exception queue, there is no way to identify
which queue the message resided in before moving to the exception queue. If this
information is important, then the application must save this information in the
message itself.

The exception queue is a message property that can be specified during enqueue
time. If an exception queue is not specified, then a default exception queue is used.
The default exception queue is automatically created when the queue table is created.

A message is moved to an exception queue under the following conditions:

It was not dequeued within the specified expiration interval.

For a message intended for multiple recipients, the message is moved to the
exception queue if one or more of the intended recipients was not able to dequeue
the message within the specified expiration interval. The default expiration interval
is never, meaning the messages does not expire.

The message was dequeued successfully, but the application that dequeued it
rolled back the transaction because of an error that arose while processing the
message. If the message has been dequeued but rolled back more than the
number of times specified by the retry limit, then the message is moved to the
exception queue.

For a message intended for multiple recipients, a separate retry count is kept for
each recipient. The message is moved to the exception queue only when retry
counts for all recipients of the message have exceeded the specified retry limit.

The default retry limit is five for single-consumer queues and 8.1-style
multiconsumer queues. No retry limit is supported for 8.0-style multiconsumer
gueues, which are deprecated in Oracle Database Advanced Queuing 10g
Release 2 (10.2).

Note:

If a dequeue transaction fails because the server process dies (including
ALTER SYSTEMKI LL SESSI ON) or SHUTDOMN ABORT on the instance, then
RETRY_COUNT is not incremented.

1-30

Chapter 1
Propagation Features

* The statement processed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception.

If the dequeue procedure succeeds but the PL/SQL procedure raises an
exception, then Oracle Database Advanced Queuing increments the retry count of
the message returned by the dequeue procedure.

» The client program successfully dequeued a message but terminated before
committing the transaction.

1.8 Propagation Features

ORACLE

Messages can be propagated from one queue to another, allowing applications to
communicate with each other without being connected to the same database or to the
same queue. The destination queue can be located in the same database or in a
remote database.

Propagation enables you to fan out messages to a large number of recipients without
requiring them all to dequeue messages from a single queue. You can also use
propagation to combine messages from different queues into a single queue. This is
known as compositing or funneling messages.

Note:

e You can propagate messages from a multi-consumer queue to a single-
consumer queue. Propagation from a single-consumer queue to a multi-
consumer gueue is not possible.

e For non-sharded queues, you can propagate messages from a multi-
consumer gueue to a single-consumer non-sharded queue. Propagation
from a single-consumer queue to a multi-consumer non-sharrded queue is
not possible.

e For sharded queues, you can propagate between single-consumuer and
multi-consumer sharded queues.

e You cannot propagate between sharded and non-sharded queues.

A message is marked as processed in the source queue immediately after the
message has been propagated, even if the consumer has not dequeued the message
at the remote queue. Similarly, when a propagated message expires at the remote
gueue, the message is moved to the exception queue of the remote queue, and not to
the exception queue of the local queue. Oracle Database Advanced Queuing does not
currently propagate the exceptions to the source queue.

To enable propagation, one or more subscribers are defined for the queue from which
messages are to be propagated and a schedule is defined for each destination where
messages are to be propagated from the queue.

Oracle Database Advanced Queuing automatically checks if the type of the remote
gueue is structurally equivalent to the type of the local queue within the context of the
character sets in which they are created. Messages enqueued in the source queue are
then propagated and automatically available for dequeuing at the destination queue or
queues.

1-31

ORACLE

Chapter 1
Propagation Features

When messages arrive at the destination queues, sessions based on the source
gueue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you must grant schemas of the source queues
enqueue privileges to the destination queues.

Propagation runs as an Oracle Scheduler job. A background process, the
JOB_QUEUE_PROCESS will run the job. Propagation scheduling may be a dedicated
process, running continuously and without end, or it may be event driven, in which
case it runs only if there is a message to be propagated.

Oracle Database Advanced Queuing offers two kinds of propagation:
* Queue-to-dblink propagation
* Queue-to-queue propagation

Queue-to-dblink propagation delivers messages or events from the source queue to all
subscribing queues at the destination database identified by the dblink.

A single propagation schedule is used to propagate messages to all subscribing
gueues. Hence any changes made to this schedule will affect message delivery to all
the subscribing queues.

Queue-to-queue propagation delivers messages or events from the source queue to a
specific destination queue identified on the dblink. This allows the user to have fine-
grained control on the propagation schedule for message delivery.

This new propagation mode also supports transparent failover when propagating to a
destination Oracle RAC system. With queue-to-queue propagation, you are no longer
required to re-point a database link if the owner instance of the queue fails on Oracle
RAC.

Oracle Database Advanced Queuing provides detailed statistics about the messages
propagated and the schedule itself. This information can be used to tune propagation
schedules for best performance.

Remote Consumers

Consumers of a message in multiconsumer queues can be local or remote. Local
consumers dequeue messages from the same queues into which the producer
enqueued the messages. Local consumers have a name but no address or protocol in
their agent descriptions.

Remote consumers dequeue from queues that are different from the queues where
the messages were enqueued. Remote consumers fall into three categories:

* The address refers to a queue in the same database.

In this case the consumer dequeues the message from a different queue in the
same database. These addresses are of the form [schema] .queue_nane. If the
schema is not specified, then the schema of the current user is used.

* The address refers to a queue in a different database.

In this case the database must be reachable using database links and the protocol
must be either NULL or 0. These addresses are of the form

[schena] .queue_nane@bl i nk. If the schema is not specified, then the schema of the
current user is used. If the database link does not have a domain name specified,

then the default domain as specified by the DB_DOMAI Ni ni t .or a parameter is used.

e The address refers to a destination that can be reached by a third party protocol.

1-32

Chapter 1
Propagation Features

You must refer to the documentation of the third party software to determine how
to specify the address and the protocol database link and schedule propagation.

Propagation to Remote Subscribers

Oracle Database Advanced Queuing validates the database link specified in a
propagation schedule when the schedule runs, but not when the schedule is created. It
is possible, therefore, to create a queue-to-dblink or queue-to-queue propagation
before creating its associated database link. Also, the propagation schedule is not
disabled if you remove the database link.

Oracle Database AQ offers two kinds of propagation:

A) Queue-to-dblink propagation - specified by providing a (source) queue and
(destination) databaselink. Messages from the source queue for any queues at the
destination specified by the dblink will be handled by this propagation.

In this scenario, we cannot have multiple propagations from a source queue, with
dblinks connecting to the same database. Thus(ql, dblink1) and (g1, dblink2) cannot
coexist if both dblinks connect to the same database. However (g1, dblink1) and (g2,
dblink1) OR (g1, dblink1) and (g2, dblink2) can coexist as source queues are different.

B) Queue-to-queue propagation - specified by providing a (source) queue,
(destination) dblink and (destination) queue. Messages from the source queue for the
indicated queue at the destination dblink will be handled by this propagation. Here,
either (g1, dblinkl, dq1), (q1, dblink1, dg2) OR (g1, dblink1, dq1), (g1, dblink2, dg2)
succeeds. This strategy works because the destination queues are different even
though source queue is the same and dblink connects to the same database.

In this scenario, we cannot have multiple propagations between a source queue,
destination queue, even if using different dblinks: (q1, dblink1, g2) and (q1, dblink2,
g2) cannot coexist, if dblinkl and dblink2 are pointing to the same database.

Priority and Ordering of Messages in Propagation

The delay, expiration, and priority parameters apply identically to both local and
remote consumers in both queue-to-dblink and queue-to-queue propagation. Oracle
Database Advanced Queuing accounts for any delay in propagation by adjusting the
delay and expiration parameters accordingly. For example, if expiration is set to one
hour, and the message is propagated after 15 minutes, then the expiration at the
remote queue is set to 45 minutes.

Inboxes and Outboxes

Figure 1-9 illustrates applications on different databases communicating using Oracle
Database Advanced Queuing. Each application has an inbox for handling incoming
messages and an outbox for handling outgoing messages. Whenever an application
enqueues a message, it goes into its outbox regardless of the message destination.
Similarly, an application dequeues messages from its inbox no matter where the
message originates.

ORACLE 1-33

ORACLE

Chapter 1
Propagation Features

Figure 1-9 Message Propagation in Oracle Database Advanced Queuing

Database 1

Application A
producer & consumer

Dequeue
Enqueue

Qutbox Inbox

f AQ's '
J/ Message
" Propagation

Infrastructure

LTS

-,

Database 2

Inbox Outbox Inbox Outbox

Enqueue Enqueue

Dequeue Dequeue

Application C

Application B
consumer & producer

consumer & producer

Propagation Scheduling

A queue-to-dblink propagation schedule is defined for a pair of source and destination
database links. A queue-to-queue propagation schedule is defined for a pair of source
and destination queues. If a queue has messages to be propagated to several queues,
then a schedule must be defined for each of the destination queues. With queue-to-
dblink propagation, all schedules for a particular remote database have the same
frequency. With queue-to-queue propagation, the frequency of each schedule can be
adjusted independently of the others

A schedule indicates the time frame during which messages can be propagated from
the source queue. This time frame can depend on several factors such as network
traffic, load at the source database, and load at the destination database. If the
duration is unspecified, then the time frame is an infinite single window. If a window

1-34

ORACLE

Chapter 1
Propagation Features

must be repeated periodically, then a finite duration is specified along with a NEXT_TI ME
function that defines the periodic interval between successive windows.

When a schedule is created, a job is automatically submitted to the job queue facility
to handle propagation.

The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue. You can also temporarily disable a schedule instead
of dropping it. All administrative calls can be made irrespective of whether the
schedule is active or not. If a schedule is active, then it takes a few seconds for the
calls to be processed.

Propagation of Messages with LOBs

Large Objects can be propagated using Oracle Database Advanced Queuing using
two methods:

e Propagation from RAWqueues

In RAWqueues the message payload is stored as a BLOB. This allows users to
store up to 32KB of data when using the PL/SQL interface and as much data as
can be contiguously allocated by the client when using OCI. This method is
supported by all releases after 8.0.4 inclusive.

» Propagation from object queues with LOB attributes

The user can populate the LOB and read from the LOB using Oracle Database LB
handling routines. The LOB attributes can be BLOBs or CLOBs (not NCLOBS). If the
attribute is a CLOB, then Oracle Database Advanced Queuing automatically
performs any necessary character set conversion between the source queue and
the destination queue. This method is supported by all releases from 8.1.3
inclusive.

" Note:

Payloads containing LOBs require users to grant explicit Sel ect, I nsert and
Updat e privileges on the queue table for doing enqueues and dequeues.

" See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide

Propagation Statistics

Detailed runtime information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULES view for each propagation schedule. This information can be used
by queue designers and administrators to fix problems or tune performance. Similarly,
errors reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation and the process name of the job queue process handling the propagation.

For each schedule, detailed propagation statistics are maintained:

» Total number of messages propagated in a schedule

1-35

ORACLE

Chapter 1
Propagation Features

» Total number of bytes propagated in a schedule

* Maximum number of messages propagated in a window
* Maximum number of bytes propagated in a window

* Average number of messages propagated in a window
* Average size of propagated messages

* Average time to propagated a message

Propagation Error Handling

Propagation has built-in support for handling failures and reporting errors. For
example, if the specified database link is invalid, if the remote database is unavailable,
or if the remote queue is not enabled for enqueuing, then the appropriate error
message is reported. Propagation uses a linear backoff scheme for retrying
propagation from a schedule that encountered a failure.

If a schedule continuously encounters failures, then the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
retry time is beyond the expiration time of the current window, then the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts is
made, after which the schedule is automatically disabled.

Note:

Once a retry attempt slips to the next propagation window, it will always do so;
the exponential backoff scheme no longer governs retry scheduling. If the date
function specified in the next _ti me parameter of

DBVS_AQADM SCHEDULE_PROPAGATI ON results in a short interval between windows,
then the number of unsuccessful retry attempts can quickly reach 16, disabling
the schedule.

When a schedule is disabled automatically due to failures, the relevant information is
written into the alert log. A check for scheduling failures indicates:

* How many successive failures were encountered
* The error message indicating the cause for the failure
* The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable the
schedule. If propagation is successful during a retry, then the number of failures is
reset to 0.

In some situations that indicate application errors in queue-to-dblink propagations,
Oracle Database Advanced Queuing marks messages as UNDELI VERABLE and logs a
message in al ert. | og. Examples of such errors are when the remote queue does not
exist or when there is a type mismatch between the source queue and the remote
gueue. The trace files in the background_dunp_dest directory can provide additional
information about the error.

When a new job queue process starts, it clears the mismatched type errors so the
types can be reverified. If you have capped the number of job queue processes and
propagation remains busy, then you might not want to wait for the job queue process

1-36

ORACLE

Chapter 1
Propagation Features

to terminate and restart. Queue types can be reverified at any time using
DBMS_AQADM VERI FY_QUEUE_TYPES.

Note:

When a type mismatch is detected in queue-to-queue propagation, propagation
stops and throws an error. In such situations you must query the DBA_SCHEDULES
view to determine the last error that occurred during propagation to a particular
destination. The message is not marked as UNDELI VERABLE.

Propagation with Oracle Real Application Clusters

Propagation has support built-in for Oracle Real Application Clusters. It is transparent
to the user and the queue administrator. The job that handles propagation is submitted
to the same instance as the owner of the queue table where the queue resides.

If there is a failure at an instance and the queue table that stores the source queue is
migrated to a different instance, then the propagation job is also migrated to the new
instance. This minimizes pinging between instances and thus offers better
performance.

The destination can be identified by a database link or by destination queue name.
Specifying the destination database results in queue-to-dblink propagation. If you
propagate messages to several queues in another database, then all queue-to-dblink
propagations to that database have the same frequency. Specifying the destination
gueue name results in queue-to-queue propagation. If you propagate messages to
several queues in another database, then queue-to-queue propagation enables you to
adjust the frequency of each schedule independently of the others. You can even
enable or disable individual propagations.

This new queue-to-queue propagation mode also supports transparent failover when
propagating to a destination Oracle RAC system. With queue-to-queue propagation,
you are no longer required to re-point a database link if the owner instance of the
gueue fails on Oracle RAC.

" See Also:

"Scheduling a Queue Propagation” for more information on queue-to-queue
propagation

Propagation has been designed to handle any number of concurrent schedules. The
number of job queue processes is limited to a maximum of 1000, and some of these
can be used to handle jobs unrelated to propagation. Hence, propagation has built-in
support for multitasking and load balancing.

The propagation algorithms are designed such that multiple schedules can be handled
by a single job queue process. The propagation load on a job queue process can be
skewed based on the arrival rate of messages in the different source queues.

If one process is overburdened with several active schedules while another is less
loaded with many passive schedules, then propagation automatically redistributes the
schedules so they are loaded uniformly.

1-37

Chapter 1
Message Format Transformation

Third-Party Support

If the protocol number for a recipient is in the range 128 - 255, then the address of the
recipient is not interpreted by Oracle Database Advanced Queuing and the message is
not propagated by the Oracle Database Advanced Queuing system. Instead, a third-
party propagator can dequeue the message by specifying a reserved consumer hame
in the dequeue operation. The reserved consumer names are of the form

AQ_Pprot ocol _nunber . For example, the consumer name AQ_P128 can be used to
dequeue messages for recipients with protocol number 128. The list of recipients for a
message with the specific protocol number is returned in the reci pi ent _| i st message
property on dequeue.

Another way for Oracle Database Advanced Queuing to propagate messages to and
from third-party messaging systems is through Messaging Gateway. Messaging
Gateway dequeues messages from an Oracle Database Advanced Queuing queue
and guarantees delivery to supported third-party messaging systems. Messaging
Gateway can also dequeue messages from these systems and enqueue them to an
Oracle Database Advanced Queuing queue.

Propagation Using HTTP

In Oracle Database 10g you can set up Oracle Database Advanced Queuing
propagation over HTTP and HTTPS (HTTP over SSL). HTTP propagation uses the
Internet access infrastructure and requires that the Oracle Database Advanced
Queuing servlet that connects to the destination database be deployed. The database
link must be created with the connect string indicating the Web server address and
port and indicating HTTP as the protocol. The source database must be created for
running Java and XML. Otherwise, the setup for HTTP propagation is more or less the
same as Oracle Net Services propagation.

1.9 Message Format Transformation

ORACLE

Applications often use data in different formats. A transformation defines a mapping
from one Oracle data type to another.

The transformation is represented by a SQL function that takes the source data type
as input and returns an object of the target data type. Only one-to-one message
transformations are supported.

To transform a message during enqueue, specify a mapping in the enqueue options.
To transform a message during dequeue, specify a mapping either in the dequeue
options or when you add a subscriber. A dequeue mapping overrides a subscriber
mapping. To transform a message during propagation, specify a mapping when you
add a subscriber.

You can create transformations by creating a single PL/SQL function or by creating an
expression for each target type attribute. The PL/SQL function returns an object of the
target type or the constructor of the target type. This representation is preferable for
simple transformations or those not easily broken down into independent
transformations for each attribute.

Creating a separate expression specified for each attribute of the target type simplifies
transformation mapping creation and management for individual attributes of the
destination type. It is useful when the destination type has many attributes.

1-38

Chapter 1
Other Oracle Database Advanced Queuing Features

As Figure 1-10 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from the
Out queue of a CRM application is routed and transformed in the integration hub and
then propagated to the In queue of the Web application. The transformation engine
maps the message from the format of the Out queue to the format of the In queue.

Figure 1-10 Transformations in Application Integration

Integration Hub

CRM > Out Queue Routing and ; In Queue Web
Application 5PR9 [| Transformation [~| Propagation =| "oo =

Application

L/

Spoke

Spoke

XML Data Transformation

You can transform XML data using the extract () method supported on XM.Type to
return an object of XM_Type after applying the supplied XPat h expression. You can also
create a PL/SQL function that transforms the XM.Type object by applying an XSLT
transformation to it, using the package XSLPROCESSCR.

1.10 Other Oracle Database Advanced Queuing Features

ORACLE

This topic describes the AQ features Queue Monitor Coordinator, Integration with
Oracle Internet Directory, Integration with Oracle Enterprise Manager, Retention and
Message History, Cleaning Up Message Queues, Tracking and Event Journals, Non-
repudiation, and Internet Integration.

e Queue Monitor Coordinator

* Integration with Oracle Internet Directory

» Integration with Oracle Enterprise Manager
* Retention and Message History

» Cleaning Up Message Queues

e Tracking and Event Journals

* Non-repudiation

* Internet Integration

Queue Monitor Coordinator

Before 10g Release 1 (10.1), the Oracle Database Advanced Queuing time manager
process was called queue monitor (QWN\n), a background process controlled by setting
the dynamic init. ora parameter AQ TM PROCESSES. Beginning with 10g Release 1
(10.1), time management and many other background processes are automatically
controlled by a coordinator-slave architecture called Queue Monitor Coordinator (QWNC).
QWC dynamically spawns slaves named gXXX dependi ng on the system load. The slaves
provide mechanisms for:

e Message delay

1-39

ORACLE

Chapter 1
Other Oracle Database Advanced Queuing Features

* Message expiration

* Retry delay

* Garbage collection for the queue table

* Memory management tasks for buffered messages

Because the number of processes is determined automatically and tuned constantly,
you are saved the trouble of setting it with AQ TM PROCESSES.

Although it is no longer necessary to set init. ora parameter AQ TM PROCESSES, it is still
supported. If you do set it (up to a maximum of 40), then QMNC still autotunes the
number of processes. But you are guaranteed at least the set number of processes for
persistent queues. Processes for a buffered queue and other Oracle Streams tasks,
however, are not affected by this parameter.

Note:

If you want to disable the Queue Monitor Coordinator, then you must set

AQ TM PROCESSES = 0 in your pfil e or spfile. Oracle strongly recommends that
you do NOT set AQ TM PROCESSES = 0. If you are using Oracle Streams, setting
this parameter to zero (which Oracle Database respects no matter what) can
cause serious problems.

Integration with Oracle Internet Directory

Oracle Internet Directory is a native LDAPV3 directory service built on Oracle
Database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for many
types of networked devices. You can look up enterprise-wide queuing information—
gueues, subscriptions, and events—from one location, the Oracle Internet Directory.
Refer to the Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory for more information.

Integration with Oracle Enterprise Manager
You can use Oracle Enterprise Manager to:

» Create and manage queues, queue tables, propagation schedules, and
transformations

* Monitor your Oracle Database Advanced Queuing environment using its topology
at the database and queue levels, and by viewing queue errors and queue and
session statistics

Retention and Message History

The systems administrator specifies the retention duration to retain messages after
consumption. Oracle Database Advanced Queuing stores information about the
history of each message, preserving the queue and message properties of delay,
expiration, and retention for messages destined for local or remote receivers. The
information contains the enqueue and dequeue times and the identification of the
transaction that executed each request. This allows users to keep a history of relevant
messages. The history can be used for tracking, data warehouse, data mining
operations, and, also specific auditing functions.

1-40

ORACLE

Chapter 1
Other Oracle Database Advanced Queuing Features

Message retention is not supported for buffered messaging.

Cleaning Up Message Queues

The Oracle Database Advanced Queuing retention feature can be used to
automatically clean up messages after the user-specified duration after consumption.

If messages are accidentally inserted into a queue for the wrong subscriber, you can
dequeue them with the subscriber name or by message identifier. This consumes the
messages, which are cleaned up after their retention time expires.

To clean up messages for a particular subscriber, you can remove the subscriber and
add the subscriber again. Removing the subscriber removes all the messages for that
subscriber.

Tracking and Event Journals

Retained messages can be related to each other to form sequences. These
sequences represent event journals, which are often constructed by applications.
Oracle Database Advanced Queuing is designed to let applications create event
journals automatically.

Non-repudiation

Oracle Database Advanced Queuing maintains the entire history of information about
a message along with the message itself. This information serves as proof of sending
and receiving of messages and can be used for non-repudiation of the sender and
non-repudiation of the receiver.

The following information is kept at enqueue for non-repudiation of the enqueuer:
» Oracle Database Advanced Queuing agent doing the enqueue

- Database user doing the enqueue

* Enqueue time

e Transaction ID of the transaction doing enqueue

The following information is kept at dequeue for non-repudiation of the dequeuer:

e Oracle Database Advanced Queuing agent doing dequeue
e Database user doing dequeue

e Dequeue time

e Transaction ID of the transaction doing dequeue

After propagation, the ORI G NAL_MSG D field in the destination queue of the propagation
corresponds to the message ID of the source message. This field can be used to
correlate the propagated messages. This is useful for non-repudiation of the dequeuer
of propagated messages.

Stronger non-repudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature of
the dequeuer at the time of dequeue.

Internet Integration

You can access Oracle Database Advanced Queuing over the Internet by using
Simple Object Access Protocol (SOAP). Internet Data Access Presentation (IDAP) is

1-41

ORACLE

Chapter 1
Other Oracle Database Advanced Queuing Features

the SOAP specification for Oracle Database Advanced Queuing operations. IDAP
defines the XML message structure for the body of the SOAP request.

An IDAP message encapsulates the Oracle Database Advanced Queuing request and
response in XML. IDAP is used to perform Oracle Database Advanced Queuing
operations such as enqueue, dequeue, send notifications, register for notifications,
and propagation over the Internet standard transports—HTTP(s) and e-mail. In
addition, IDAP encapsulates transactions, security, transformation, and the character
set ID for requests.

You can create an alias to an Oracle Database Advanced Queuing agent in Oracle
Internet Directory and then use the alias in IDAP documents sent over the Internet to
perform Oracle Database Advanced Queuing operations. Using aliases prevents
exposing the internal name of the Oracle Database Advanced Queuing agent.

Figure 1-11 shows the architecture for performing Oracle Database Advanced
Queuing operations over HTTP. The major components are:

* Oracle Database Advanced Queuing client program
* Web server/servlet runner hosting the Oracle Database Advanced Queuing servlet
* Oracle Database server

The Oracle Database Advanced Queuing client program sends XML messages
(conforming to IDAP) to the Oracle Database Advanced Queuing servlet, which
understands the XML message and performs Oracle Database Advanced Queuing
operations. Any HTTP client, a Web browser for example, can be used. The Web
server/servlet runner hosting the Oracle Database Advanced Queuing servlet, Apache/
Jserv or Tomcat for example, interprets the incoming XML messages. The Oracle
Database Advanced Queuing servlet connects to the Oracle Database server and
performs operations on user queues.

" Note:

This feature is certified to work with Apache, along with the Tomcat or Jserv
servlet execution engines. However, the code does not prevent the servlet from
working with other Web server and servlet execution engines that support Java
Servlet 2.0 or higher interfaces.

Figure 1-11 Architecture for Performing Oracle Database Advanced Queuing
Operations Using HTTP

Oracle
Web Database
Server Server

[. XM Messago =
+—p
) E——

SR

Queue

PP F—>

AQ Servlet

AQ Client ;IO'\ L:’

1-42

Chapter 1
Interfaces to Oracle Database Advanced Queuing

1.11 Interfaces to Oracle Database Advanced Queuing

You can access Oracle Database Advanced Queuing functionality through the
interfaces listed in this topic.

e PL/SQL using DBVS_AQ, DBMS_AQADM, and DBVS_AQELM
e Java Message Service (JMS) using the oracl e. j s Java package

e Internet access using HTTP(S)

Note:

The or acl e. AQ Java package was deprecated in Oracle Database
Advanced Queuing 10g Release 1 (10.1). Oracle recommends that you
migrate existing Java AQ applications to Oracle JMS and use Oracle JMS
to design your future Java AQ applications.

See Also:

— Oracle Database PL/SQL Packages and Types Reference

ORACLE' 1-43

Basic Components of Oracle Database
Advanced Queuing

This topic lists the basic components of Oracle Database Advanced Queuing.

e Object Name

* Type Name

* AQ Agent Type

* AQ Recipient List Type

* AQ Agent List Type

e AQ Subscriber List Type

* AQ Registration Information List Type

e AQ Post Information List Type

e AQ Registration Information Type

e AQ Notification Descriptor Type

* AQ Message Properties Type

e AQ Post Information Type

« AQ$ NTFN_MSGID_ARRAY Type

e Enumerated Constants for AQ Administrative Interface
e Enumerated Constants for AQ Operational Interface

* AQ Background Processes

¢ See Also:

— Oracle Database Advanced Queuing Administrative Interface

— Oracle Database Advanced Queuing Operations Using PL/SQL

2.1 Object Name

ORACLE

This component names database objects.

VARCHAR2
[schema_nane.] nane

obj ect _nane :
obj ect _nane :

This naming convention applies to queues, queue tables, and object types.

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, then the current schema is assumed. The name must

2-1

Chapter 2
Type Name

follow the reserved character guidelines in Oracle Database SQL Language
ReferenceOracle Database SQL Language Reference. The schema name, agent
name, and the object type name can each be up to 128 bytes long. However starting
from 12c Release 2 (12.2.), queue hames and queue table names can be a maximum
of 122 bytes.

2.2 Type Name

This component defines queue types.

type_nanme := VARCHAR2
type_nane : = object_type | "RAW

The maximum number of attributes in the object type is limited to 900.

To store payloads of type RAW Oracle Database Advanced Queuing creates a queue
table with a LOB column as the payload repository. The size of the payload is limited
to 32K bytes of data. Because LOB columns are used for storing RAWpayload, the
Oracle Database Advanced Queuing administrator can choose the LOB tablespace and
configure the LOB storage by constructing a LOB storage string in the st orage_cl ause
parameter during queue table creation time.

< Note:

Payloads containing LOBs require users to grant explicit Sel ect, I nsert and
Updat e privileges on the queue table for doing enqueues and dequeues.

2.3 AQ Agent Type

ORACLE

This component identifies a producer or consumer of a message.

TYPE AQB_AGENT | S OBJECT (

name VARCHAR2(30) ,
addr ess VARCHAR2(11024) ,
pr ot ocol NUVBER) ;

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQS_AGENT parameters. Two subscribers cannot have the same
values for the NAME, ADDRESS, and PROTOCOL attributes for the AQS_AGENT type. At least one
of the three attributes must be different for two subscribers.

You can add subscribers by repeatedly using the DBVS_AQADM ADD_SUBSCRI BER procedure
up to a maximum of 1024 subscribers for a multiconsumer queue.

This type has three attributes:
° nanme

This attribute specifies the name of a producer or a consumer of a message. It can
be the name of an application or a name assigned by an application. A queue can
itself be an agent, enqueuing or dequeuing from another queue. The nhame must
follow the reserved character guidelines in Oracle Database SQL Language
Reference.

° address

2-2

Chapter 2
AQ Recipient List Type

This attribute is interpreted in the context of prot ocol . If prot ocol is O (default), then
addr ess is of the form [schena.] queue[@bl i nk] .

e protocol

This attribute specifies the protocol to interpret the address and propagate the
message. The default value is 0.

2.4 AQ Recipient List Type

This component identifies the list of agents that receive a message.

TYPE AQS_RECI PIENT_LIST T IS TABLE OF ag$_agent
I NDEX BY Bl NARY_ | NTEGER;

2.5 AQ Agent List Type

This component identifies the list of agents for DBMS_AQ LI STEN to listen for.

TYPE AQS_AGENT LIST T I'S TABLE OF ag$_agent
I NDEX BY Bl NARY | NTEGER;

2.6 AQ Subscriber List Type

This component identifies the list of subscribers that subscribe to this queue.

TYPE AQS_SUBSCRI BER LI ST T |'S TABLE OF ag$_agent
I NDEX BY BI NARY | NTEGER

2.7 AQ Registration Information List Type

This component identifies the list of registrations to a queue.

TYPE AQS_REG | NFO LI ST AS VARRAY(1024) OF sys. ag$_reg_info;

2.8 AQ Post Information List Type

This component identifies the list of anonymous subscriptions to which messages are
posted.

TYPE AQS_POST | NFO LI ST AS VARRAY(1024) OF sys. ag$_post i nf o;

2.9 AQ Registration Information Type

This component identifies a producer or a consumer of a message.

TYPE SYS. AQS_REG | NFO | S OBJECT (

nane VARCHAR2(128) ,

nanespace NUMBER,

cal I back VARCHAR2(4000),

cont ext RAW 2000) DEFAULT NULL,
qosfl ags NUMBER,

ti meout NUMBER

nt f n_groupi ng_cl ass NUMBER,

ORACLE' 2.3

Chapter 2
AQ Registration Information Type

ntfn_groupi ng_val ue NUMBER DEFAULT 600,
ntfn_groupi ng_type NUVBER,
ntfn_grouping_start_tinme TI MESTAMP W TH TI ME ZONE,

ntfn_groupi ng_repeat _count NUVBER);

Its attributes are described in the following list.

Table 2-1 AQ$_REG_INFO Type Attributes

__|
Attribute Description

nane Specifies the name of the subscription. The subscription name is
of the form schema. queue if the registration is for a single
consumer queue or schema. queue: consuner _nane if the
registration is for a multiconsumer queues.

namespace Specifies the namespace of the subscription. To receive
notification from Oracle Database AQ queues, the namespace
must be DBMS_AQ NAMESPACE_AQ To receive notifications from
other applications through DBMS_AQ PCST or
OCl Subscri ptionPost (), the namespace must be
DBMS_AQ NAVESPACE_ANONYMOUS.

cal | back Specifies the action to be performed on message notification. For
HTTP notifications, use htt p: / / www. conpany. com 8080. For e-
mail notifications, use mai | t 0: / / xyz@onpany. com For raw
message payload for the PLSQLCALLBACK procedure, use
pl sql : // schema. procedur e?PR=0. For user-defined type
message payload converted to XML for the PLSQLCALLBACK
procedure, use pl sql : // schena. procedur e?PR=1

cont ext Specifies the context that is to be passed to the callback function

qosf | ags Can be set to one or more of the following values to specify the
notification quality of service:

* NTFN_QOS_RELI ABLE- This value specifies that reliable
notification is required. Reliable notifications persist across
instance and database restarts.

e NTFN_QOS_PAYLQAD - This value specifies that payload
delivery is required. It is supported only for client notification
and only for RAWqueues.

e NTFN_QOS_PURGE_ON_NTFN - This value specifies that the
registration is to be purged automatically when the first
notification is delivered to this registration location.

nt f n_groupi ng_cl ass Currently, only the following flag can be set to specify criterion for
grouping. The default value will be 0. If nt f n_gr oupi ng_cl ass is

0, all other notification grouping attributes must be 0.

e NTFN_GROUPI NG_CLASS_TI ME - Notifications grouped by time,
that is, the user specifies a time value and a single
notification gets published at the end of that time.

nt f n_groupi ng_val ue Time-period of grouping notifications specified in seconds,

meaning the time after which grouping notification would be sent
periodically until nt f n_gr oupi ng_r epeat _count is exhausted.

nt f n_groupi ng_t ype e NTFN_GROUPI NG_TYPE_SUMVARY - Summary of all notifications
that occurred in the time interval. (Default)
e NTFN_GROUPI NG TYPE LAST - Last notification that occurred in
the interval.

ORACLE 2.4

Chapter 2
AQ Notification Descriptor Type

Table 2-1 (Cont.) AQ$S_REG_INFO Type Attributes

__|
Attribute Description

ntfn_grouping_start_time Notification grouping start time. Notification grouping can start
from a user-specified time that should a valid timestamp with time
zone. If ntf n_groupi ng_start _ti me is not specified when using
grouping, the default is to current timestamp with time zone

nt f n_groupi ng_repeat _cou Grouping notifications will be sent as many times as specified by

nt the notification grouping repeat count and after that revert to
regular notifications. The ntfn_grouping_repeat_count, if not
specified, will default to

e NTFN_GROUPI NG_FOREVER - Keep sending grouping
notifications forever.

2.10 AQ Notification Descriptor Type

This component specifies the Oracle Database Advanced Queuing descriptor received
by AQ PL/SQL callbacks upon notification.

TYPE SYS. AQS_DESCRI PTOR | S OBJECT (

queue_name VARCHAR2(61) ,
consuner _nane VARCHAR2(30),

meg_i d RAW 16) ,

nmsg_prop MSG_PROP_T,

gen_desc AQS_NTFN_DESCRI PTCR,

megi d_array SYS. AGB_NTFN_MSG D_ARRAY,
ntfnsRecdlnG p NUMBER);

It has the following attributes:

Table 2-2 AQ$_DESCRIPTOR Attributes

Attribute Description

queue_nane Name of the queue in which the message was enqueued which resulted
in the notification

consumer _nane Name of the consumer for the multiconsumer queue

msg_id Identification number of the message

msg_prop Message properties specified by the MSG_PROP_T type

gen_desc Indicates the timeout specifications

megi d_array Group notification message ID list

ntf nsRecdl nG p Notifications received in group

2.11 AQ Message Properties Type

ORACLE

The message properties type nsg_prop_t has these components.

TYPE AQS_MSG PROP_T |'S OBJECT(

priority nunber,
del ay nunber,
expiration nunber,

2-5

Chapter 2
AQ Post Information Type

correlation var char 2(128),
attenpts nunber,

recipent _|ist agq$_recipient _list_t,
exception_queue varchar2(51),

enqueue_tine dat e,
state nunber,
sender _i d agq$_agent,

original _nmsgid raw16),
del i very_node nunber);

The timeout specifications type AQ_NTFN_DESCRI PTCR has a single component:

TYPE AQS_NTFN_DESCRI PTOR | S OBJECT(
NTFN_FLAGS nunber);

NTFN_FLAGS is set to 1 if the notifications are already removed after a stipulated timeout;
otherwise the value is 0.

See Also:

"MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages
and Types Reference

2.12 AQ Post Information Type

This component specifies anonymous subscriptions to which you want to post
messages.

TYPE SYS. AGG_POST_INFO I'S OBJECT (
name VARCHAR2(128) ,
namespace NUMBER
payl oad RAW 2000)) ;

It has three attributes:

° nane

This attribute specifies the name of the anonymous subscription to which you want
to post.

° nanespace

This attribute specifies the namespace of the anonymous subscription. To receive
notifications from other applications using DBMS_AQ PCST or OCl Subscri pti onPost (),
the namespace must be DBVS_AQ NAMESPACE_ANONYMOUS.

* payl oad

This attribute specifies the payload to be posted to the anonymous subscription.
The default is NULL.

2.13 AQ$_NTFN_MSGID ARRAY Type

This component is for storing grouping notification data for AQ namespace, value 230
which is the max varray size.

ORACLE 2-6

Chapter 2
Enumerated Constants for AQ Administrative Interface

TYPE SYS. AGS_NTFN_MSG D_ARRAY AS VARRAY(1073741824) OF RAW 16);

2.14 Enumerated Constants for AQ Administrative Interface

When enumerated constants such as | NFI NI TE, TRANSACTI ONAL, and NORMAL_QUEUE are
selected as values, the symbol must be specified with the scope of the packages
defining it.

All types associated with the administrative interfaces must be prepended with
DBMS_AQADM. For example:

DBMS_AQADM NORMAL_QUEUE

Table 2-3 lists the enumerated constants in the Oracle Database Advanced Queuing
administrative interface.

Table 2-3 Enumerated Constants in the Oracle Database Advanced Queuing
Administrative Interface

Parameter Options
retention 0,1,2...INFINITE
nmessage_groupi ng TRANSACTI ONAL, NONE
queue_t ype NORVAL_QUEUE, EXCEPTI ON_QUEUE, NON_PERSI STENT _QUEUE
del i very_node BUFFERED, PERSI STENT, PERSI STENT_OR_BUFFERED
¢ Note:

Nonpersistent queues are deprecated in Oracle Database Advanced Queuing
10g Release 2 (10.2). Oracle recommends that you use buffered messaging
instead.

2.15 Enumerated Constants for AQ Operational Interface

ORACLE

When using enumerated constants such as BROASE, LOCKED, and REMOVE, the PL/SQL
constants must be specified with the scope of the packages defining them.

All types associated with the operational interfaces must be prepended with DBVS_AQ.
For example:

DBMS_AQ BROVSE

Table 2-4 lists the enumerated constants in the Oracle Database Advanced Queuing
operational interface.

Table 2-4 Enumerated Constants in the Oracle Database Advanced Queuing
Operational Interface

__|
Parameter Options

visibility | MVEDI ATE, ON_COW T

2-7

Chapter 2
AQ Background Processes

Table 2-4 (Cont.) Enumerated Constants in the Oracle Database Advanced
Queuing Operational Interface

Parameter Options

dequeue node BROWGE, LOCKED, REMOVE, REMOVE_NCDATA

navi gation FI RST_MESSAGE, NEXT_MESSAGE, NEXT_TRANSACTI ON

state WAl TI NG, READY, PROCESSED, EXPI RED

wai t FOREVER, NO WAI T

del ay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

del i very_node BUFFERED, PERSI STENT, PERSI STENT_OR_BUFFERED

quosf | ags NTFN_QOS_RELI ABLE, NTFN QOS_PAYLQOAD,
NTFN_QCS_PURGE_ON_NTFN

nt f n_groupi ng_cl ass NFTN_GROUPI NG_CLASS _TI ME

nt f n_groupi ng_t ype NTFN_GROUPI NG_TYPE_SUMVARY, NTFN_GROUPI NG _TYPE_LAST

ntfn_groupi ng_repeat_co NTFN_GROUPI NG_FOREVER

unt

2.16 AQ Background Processes

These topics describe the background processes of Oracle Database Advanced
Queuing.

e Queue Monitor Processes
e Job Queue Processes

e AQ Background Architecture

2.16.1 Queue Monitor Processes

ORACLE

Oracle recommends leaving the AQ TM PROCESSES parameter unspecified and let the
system autotune.

Many Oracle Database Advanced Queuing or Streams tasks are executed in the
background. These include converting messages with DELAY specified into the READY
state, expiring messages, moving messages to exception queues, spilling and
recovering of buffered messages, and similar operations.

It is no longer necessary to set AQ TM PROCESSES when Oracle Database AQ or Streams
is used. If a value is specified, that value is taken into account when starting the Qx
processes. However, the number of Qxx processes can be different from what was
specified by AQ TM PROCESSES.

No separate APl is needed to disable or enable the background processes. This is
controlled by setting AQ TM PROCESSES to zero or nonzero. Oracle recommends,
however, that you leave the AQ TM PROCESSES parameter unspecified and let the system
autotune.

2-8

Chapter 2
AQ Background Processes

Note:

If you want to disable the Queue Monitor Coordinator, then you must set

AQ TM PROCESSES = 0 in your pfil e or spfil e. Oracle strongly recommends that
you do NOT set AQ TM PROCESSES = 0. If you are using Oracle Streams, then
setting this parameter to zero (which Oracle Database respects no matter what)
can cause serious problems.

2.16.2 Job Queue Processes

Propagation and PL/SQL noatifications are handled by job queue (Jnnn) processes.

The parameter JOB_QUEUE_PROCESSES no longer needs to be specified. The database
scheduler automatically starts the job queue processes that are needed for the
propagation and notification jobs.

2.16.3 AQ Background Architecture

Oracle Database Advanced Queuing 12c¢ Release 1 (12.1) introduces a new AQ
background architecture with a 3-tier design.

e Tierl (AQPC): Asingle background process called the Advanced Queueing
Process Coordinator is created at instance startup. It will be responsible for
creating and managing various master processes. The coordinator statistics can
be viewed using GV$AQ BACKGROUND_COORDI NATCR.

e Tier2 (QM**): There will be many master processes named Queue Monitors. Each
will be responsible for handling a distinct type of job. Jobs could be of type
notification(Emon pool), queue monitors (handling sharded queues time manager
etc) , cross process etc.

Note:

The old processes like QMNC and EMNC will be subsumed within one of
new master processes.

A job can be defined as a type of work which needs own scheduling mechanism
across multiple server processes (Q***) to perform its task . The master process
statistics and their jobs can be viewed using GV$AQ JOB_COORDI NATCR.

o Tier3(Q***): There will be a single pool of server processes for all above
mentioned master processes. Each process will be associated to a single master
process at a time. But can be rescheduled to another once original master
relinquishes its need to use it. These servers will perform jobs for respective
masters providing performance and scalability. The server process statistics and
its current master association can be viewed using GV$AQ SERVER PCOL.

ORACLE 2-9

Oracle Database Advanced Queuing:
Programmatic Interfaces

These topics describe the various language options and elements you must work with
and issues to consider in preparing your Oracle Database Advanced Queuing (AQ)
application environment.

" Note:

Java package or acl e. AQwas deprecated in 10g Release 1 (10.1). Oracle
recommends that you migrate existing Java AQ applications to Oracle JMS (or
other Java APIs) and use Oracle JMS (or other Java APIs) to design your
future Java AQ applications.

Topics:

* Programmatic Interfaces for Accessing Oracle Database Advanced Queuing
» Using PL/SQL to Access Oracle Database Advanced Queuing

» Using OCI to Access Oracle Database Advanced Queuing

* Using OCCI to Access Oracle Database Advanced Queuing

* Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database
Advanced Queuing

e Using Oracle Database Advanced Queuing XML Servlet to Access Oracle
Database Advanced Queuing

» Comparing Oracle Database Advanced Queuing Programmatic Interfaces

3.1 Programmatic Interfaces for Accessing Oracle Database
Advanced Queuing

The table lists Oracle Database Advanced Queuing programmatic interfaces, functions
supported in each interface, and syntax references.

Table 3-1 Oracle Database Advanced Queuing Programmatic Interfaces

Language Precompiler or Interface Program Functions Syntax References
Supported

PL/SQL DBMS_AQADMand DBMS_AQ Packages Administrative and Oracle Database PL/SQL
operational Packages and Types Reference

ORACLE 3-1

Chapter 3
Using PL/SQL to Access Oracle Database Advanced Queuing

Table 3-1 (Cont.) Oracle Database Advanced Queuing Programmatic Interfaces

Language Precompiler or Interface Program Functions Syntax References
Supported
C Oracle Call Interface (OCI) Operational only Oracle Call Interface
Programmer's Guide
Java (JMS) oracl e. JMS package using JDBC API Administrative and Oracle Database Advanced
operational Queuing Java API Reference

AQ XML servlet

Internet Data Access Presentation (IDAP) Operational only Oracle XML DB Developer's

Guide

3.2 Using
Queuing

ORACLE

PL/SQL to Access Oracle Database Advanced

The PL/SQL packages DBVs_AQADMand DBVS_AQ support access to Oracle Database
Advanced Queuing administrative and operational functions using the native Oracle
Database Advanced Queuing interface.

These functions include:

Create queue, queue table, nonpersistent queue, sharded queue, multiconsumer
gqueue/topic, RAW message, or message with structured data

Get queue table, queue, or multiconsumer queue/topic

Alter queue table or queue/topic

Drop queue/topic

Start or stop queue/topic

Grant and revoke privileges

Add, remove, or alter subscriber

Add, remove, or alter an Oracle Database Advanced Queuing Internet agent

Grant or revoke privileges of database users to Oracle Database Advanced
Queuing Internet agents

Enable, disable, or alter propagation schedule

Engqueue messages to single consumer queue (point-to-point model)
Publish messages to multiconsumer queue/topic (publish/subscribe model)
Subscribe for messages in multiconsumer queue

Browse messages in a queue

Receive messages from queue/topic

Register to receive messages asynchronously

Listen for messages on multiple queues/topics

Post messages to anonymous subscriptions

Bind or unbind agents in a Lightweight Directory Access Protocol (LDAP) server

3-2

Chapter 3
Using OCI and the Thin JDBC Driver to Access Oracle Database Advanced Queuing

* Add or remove aliases to Oracle Database Advanced Queuing objects in a LDAP
server

Available PL/SQL DBM5_AQADMand DBVS_AQ functions are listed in detail in Table 3-2
through Table 3-9.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
documentation of DBMS_AQADMand DBMS_AQ, including syntax, parameters,
parameter types, return values, and examples

3.3 Using OCI and the Thin JDBC Driver to Access Oracle
Database Advanced Queuing

An Oracle Call Interface (OCI) provides an interface to Oracle Database Advanced
Queuing functions using the native Oracle Database Advanced Queuing interface.

An OCI client can perform the following actions:

* Enqueue messages

* Dequeue messages

» Listen for messages on sets of queues

* Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in a

gueue using OCl Subscr i pti onRegi st er . Sharded queues do not support OCI clients.

Oracle Type Translator

For queues with user-defined payload types, the Oracle type translator must be used
to generate the OCI/OCCI mapping for the Oracle type. The OCI client is responsible
for freeing the memory of the Oracle Database Advanced Queuing descriptors and the
message payload.

" See Also:

"OCI and Advanced Queuing" and "Publish-Subscribe Notification" in Oracle
Call Interface Programmer's Guide for syntax details

3.4 Using OCCI to Access Oracle Database Advanced
Queuing

C++ applications can use OCCI, which has a set of Oracle Database Advanced
Queuing interfaces that enable messaging clients to access Oracle Database
Advanced Queuing.

ORACLE' 33

Chapter 3
Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing

OCCI AQ supports all the operational functions required to send/receive and publish/
subscribe messages in a message-enabled database. Synchronous and
asynchronous message consumption is available, based on a message selection rule.
Sharded queues do not support OCCI clients.

" See Also:

"Oracle Database Advanced Queuing" in Oracle C++ Call Interface
Programmer's Guide

3.5 Using Oracle Java Message Service (Oracle JMS) to
Access Oracle Database Advanced Queuing

ORACLE

Java Message Service (JMS) is a messaging standard defined by Sun Microsystems,
Oracle, IBM, and other vendors. JMS is a set of interfaces and associated semantics
that define how a JMS client accesses the facilities of an enterprise messaging
product. Oracle Java Message Service (Oracle JMS) provides a Java API for Oracle
Database Advanced Queuing based on the JMS standard.

Oracle Java Message Service (Oracle JMS) supports the standard JMS interfaces and
has extensions to support administrative operations and other features that are not a
part of the standard.

Standard Java Message Service(JMS) features include:

* Point-to-point model of communication using queues
e Publish/subscribe model of communication using topics

* (bj ect Message, Stream\essage, Text Message, Byt esMessage, and MapMessage message
types

e Asynchronous and synchronous delivery of messages

* Message selection based on message header fields or properties

Oracle JMS extensions include:

* Administrative API to create queue tables, queues and topics
* Point-to-multipoint communication using recipient lists for topics

* Message propagation between destinations, which allows the application to define
remote subscribers

» Support for transactional sessions, enabling JMS and SQL operations in one
transaction

* Message retention after messages have been dequeued
* Message delay, allowing messages to be made visible after a certain delay

» Exception handling, allowing messages to be moved to exception queues if they
cannot be processed successfully

e Support for Adt Message

3-4

ORACLE

Chapter 3
Using Oracle Java Message Service (Oracle JMS) to Access Oracle Database Advanced Queuing

These are stored in the database as Oracle objects, so the payload of the
message can be queried after it is enqueued. Subscriptions can be defined on the
contents of these messages as opposed to just the message properties.

* Topic browsing

This allows durable subscribers to browse through the messages in a publish/
subscribe (topic) destination. It optionally allows these subscribers to purge the
browsed messages, so they are no longer retained by Oracle Database Advanced
Queuing for that subscriber.

¢ See Also:

— Java Message Service Specification, version 1.1, March 18, 2002, Sun
Microsystems, Inc.

— Oracle Database Advanced Queuing Java APl Reference

Accessing Standard and Oracle JMS Applications

Standard JMS interfaces are in the j avax. j ms package. Oracle JMS interfaces are in
the oracl e. j ms package. You must have EXECUTE privilege on the DBMS_AQ N and
DBMS_AQIMS packages to use the Oracle JMS interfaces. You can also acquire these
rights through the AQ USER ROLE or the AQ ADM NSTRATOR ROLE. You also need the
appropriate system and queue or topic privileges to send or receive messages.

Because Oracle JMS uses Java Database Connectivity (JDBC) to connect to the
database, its applications can run outside the database using the JDBC OCI driver or
JDBC thin driver.

Using JDBC OCI Driver or JDBC Thin Driver

To use JMS with clients running outside the database, you must include the
appropriate JDBC driver, Java Naming and Directory Interface (JNDI) jar files, and
Oracle Database Advanced Queuing jar files in your CLASSPATH.

Note that the Oracle Database does not support JDK 1.2, JDK 1.3, JDK 1.4, JDK5.n
and all classes12*.* files. You need to use the oj dbcé.jar and oj bc7.jar files with JIDK
6.n and JDK 7.n, respectively. The following jar and zip files should be in the CLASSPATH
based on the release of JDK you are using.

For JDK 1.5.x, the CLASSPATH must contain:
ORACLE_HOVE/ j dbc/ i b/ oj dbcé. j ar

For JDK 1.6.x, the CLASSPATH must contain:
ORACLE_HOVE/ j dbc/ 1i b/ oj dbe7. j ar

The following files are used for either JDK version:

ORACLE_HOWE/lib/jta.jar

ORACLE_HOVE/ xdk/ | i b/ xm par serv2. | ar
ORACLE_HOVE/ rdbnrs/ j |'i b/ xdb. j ar
ORACLE_HOVE/ rdbnrs/ j |'i b/ agapi . j ar
ORACLE_HOVE/ rdbnrs/ j |i b/ j mscommon. | ar

3-5

Chapter 3
Using Oracle Database Advanced Queuing XML Servlet to Access Oracle Database Advanced Queuing

Using Oracle Server Driver in JServer

If your application is running inside the JServer, then you should be able to access the
Oracle JMS classes that have been automatically loaded when the JServer was
installed. If these classes are not available, then you must load j nscommon. j ar followed
by aqgapi . j ar using the $ORACLE_HOME/ r dbms/ admi n/ i ni tj ms SQL script.

3.6 Using Oracle Database Advanced Queuing XML Servlet
to Access Oracle Database Advanced Queuing

You can use Oracle Database Advanced Queuing XML servlet to access Oracle
Database Advanced Queuing over HTTP using Simple Object Access Protocol
(SOAP) and an Oracle Database Advanced Queuing XML message format called
Internet Data Access Presentation (IDAP).

Using the Oracle Database Advanced Queuing servlet, a client can perform the
following actions:

* Send messages to single-consumer queues
* Publish messages to multiconsumer queues/topics
* Receive messages from queues

* Register to receive message notifications

3.7 Comparing Oracle Database Advanced Queuing
Programmatic Interfaces

These topics list and compare the Oracle Database Advanced Queuing Administrative
Interfaces and the Oracle Database Advanced Queuing Operational Interfaces.

Available functions for the Oracle Database Advanced Queuing programmatic
interfaces are listed by use case in Table 3-2 through Table 3-9. Use cases are
described in Oracle Database Advanced Queuing Administrative Interface through
Oracle Database Advanced Queuing Operations Using PL/SQL and Oracle Java
Message Service Basic Operations through Oracle Java Message Service Shared
Interfaces.

3.7.1 Oracle Database Advanced Queuing Administrative Interfaces

The table lists the equivalent Oracle Database Advanced Queuing administrative
functions for the PL/SQL and Java (JMS) programmatic interfaces.

ORACLE 3-6

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-2 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Administrative Interface

Use Case PL/ISQL Java (JMS)
]S;r(:tetgt:e a connection N/A AQ msFact or y. get Queue
y Connect i onFact ory
AQ nsFact ory. get Topi c
Connect i onFact ory
Register a N/A

ConnectionFactory in an
LDAP server

Create a queue table

Get a queue table

Alter a queue table

Drop a queue table

Create a queue

Get a queue

Create a multiconsumer
gueue/topic in a queue
table with multiple
consumers enabled

Get a multiconsumer
queue/topic

Alter a queue/topic
Start a queue/topic
Stop a queue/topic

Drop a queue/topic

Create a sharded queue

Drop a sharded queue

ORACLE

DBMVS_AQADM CREATE_QUEU
E_TABLE

Use
schena.queue_t abl e_nam
e

DBMVS_AQADM ALTER QUEUE
_TABLE

DBMVS_AQADM DROP_QUEUE_
TABLE

DBMVS_AQADM CREATE_QUEU
E

Use schema. queue_nane

DBMVS_AQADM CREATE_QUEU
E

Use schema. queue_nane

DBMVS_AQADM ALTER_QUEUE

DBMS_AQADM START_QUEUE

DBVS_AQADM STOP_QUEUE

DBVS_AQADM DROP_QUEUE

DBMS_AQADM CREATE_SHAR
DED_QUEUE

DBMS_AQADM DROP_SHARDE
D_QUEUE

AQ nsFactory. register
Connect i onFact ory

AQ nsSessi on. creat eQueueTabl e

AQ nsSessi on. get QueueTabl e

AQQueueTabl e. al ter

AQQueueTabl e. drop

AQ nmsSessi on. creat eQueue

AQ nmsSessi on. get Queue

AQ nmsSessi on. creat eTopi ¢

AQ msSessi on. get Topi ¢

AQ msDestination.alter

AQ msDestination.start

AQ msDestination. stop

AQ msDestination. drop

AQ msDest i nati on. creat eJMSShar dedQueue

AQ nsDest i nati on. dr opJMSShar dedQueue

3-7

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-2 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Administrative Interface

Use Case

PL/SQL

Java (JMS)

Alter a sharded queue

Grant system privileges

Revoke system privileges

Grant a queue/topic
privilege

Revoke a queue/topic
privilege

Verify a queue type

Add a subscriber

Alter a subscriber

Remove a subscriber

Schedule propagation

Enable a propagation
schedule

Alter a propagation
schedule

ORACLE

DBMS_AQADM ALTER SHARD
ED_QUEUE

DBVS_AQADM GRANT SYSTE
M
PRI VI LEGE

DBMVS_AQADM REVOKE_SYST
EM
PRI VI LEGE

DBVS_AQADM GRANT QUEUE

PRI VI LEGE

DBMVS_AQADM REVOKE_QUEU
E_
PRI VI LEGE

DBMVS_AQADM VER! FY_QUEU
E_TYPES

DBVS_AQADM ADD_SUBSCRI
BER

DBVS_AQADM ALTER SUBSC
RI BER

DBVS_AQADM REMOVE_SUBS
CR BER

DBNVS_AQADM SCHEDULE_PR
OPAGATI ON

DBVS_AQADM ENABLE_PROP
AGATI ON_
SCHEDULE

DBMVS_AQADM ALTER PROPA
GATI ON_
SCHEDULE

None. Use PL/SQL API.

AQ msSessi on. grant System
Privilege

AQ msSessi on. revokeSyst em
Privilege

AQ msDestination. grant Queue
Privilege

AQ msDesti nation. grant Topi ¢
Privilege

AQ msDestination. revokeQueue
Privilege

AQ msDestination. revokeTopi ¢
Privilege

Not supported

See Table 3-6

See Table 3-6

See Table 3-6

AQ msDestination. schedul e
Propagat i on

AQ msDestination. enabl e
Propagat i onSchedul e

AQ msDestination. al ter
Propagat i onSchedul e

3-8

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-2 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Administrative Interface

Use Case

PL/SQL

Java (JMS)

Disable a propagation

schedule

Unschedule a
propagation

Create an Oracle

Database Advanced

DBVS_AQADM DI SABLE_PRO
PAGATI ON_
SCHEDULE

DBVS_AQADM UNSCHEDULE_
PROPAGATI ON

DBNVS_AQADM CREATE_AQ A
GENT

Queuing Internet Agent

Alter an Oracle Database

Advanced Queuing

Internet Agent

Drop an Oracle Database
Advanced Queuing

Internet Agent

DBVS_AQADM ALTER AQ AG
ENT

DBNVS_AQADM DROP_AQ AGE
NT

Grant database user

privileges to an Oracle

DBMVS_AQADM ENABLE AQ A
GENT

Database Advanced
Queuing Internet Agent

Revoke database user

privileges from an Oracle

DBMVS_AQADM DI SABLE_AQ_
AGENT

Database Advanced
Queuing Internet Agent

Add alias for queue,

agent,

ConnectionFactory in a

LDAP server

Delete alias for queue,

agent,

ConnectionFactory in a

LDAP server

DBVS_AQADM ADD ALl AS T
O LDAP

DBMVS_AQADM DEL_ALI AS_F
ROM LDAP

AQ nsDestinati on. di sabl e
Propagat i onSchedul e

AQ nsDesti nation. unschedul e
Propagat i on

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

3.7.2 Oracle Database Advanced Queuing Operational Interfaces

These tables list equivalent Oracle Database Advanced Queuing operational functions
for the programmatic interfaces PL/SQL, OCI, Oracle Database Advanced Queuing
XML Servlet, and JMS, for various use cases.

ORACLE

3-9

Chapter 3
Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-3 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Create Connection, Session, Message Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS
comecion Cserver T icatng wih e AQ TS QieueConmect onact ory
Attach 9 . creat eQueueConnecti on
Web server
AQ nsTopi cConnecti onFact ory
. createTopi cConnecti on
wwon QO Session ol stared with tne. UeCoMect o, oreat eQueue
Begin Y Sessi on

first SOAP request

Topi cConnecti on. creat eTopi ¢

Sessi on

Create a Use SQL Use OCIRaw for Supply the hex Not supported
RAW RAW type for Message representation of the
message message message payload in the XML

message. For example,

<raw>023f 4523</ r aw>
Create a _ Use SQL _ Us_e SQL Oracle For Oracle object type Sessi on. cr eat eText Message
message with Oracle object object type for queues that are not IMS . .

. Sessi on. cr eat e(oj ect Message

structured type for message gueues (that is, they are not Sessi on. cf eat eMapNesSage
data message type AQS_JMB_*), the XML ' P g

Sessi on. cr eat eByt esMessage
Sessi on. creat eSt r eanMessage
AQ msSessi on. cr eat eAdt Message

specified in <message

payl oad> must map to the
SQL type of the payload for
the queue table.

For JMS queues, the XML
specified in the
<nmessage_payl oad> must be
one of the following:

<j ms_t ext _message>,

<j ms_map_nessage>,

<j ms_byt es_nessage>,

<j ms_obj ect _message>

Create a NIA NIA NIA QueueSessi on. cr eat eSender
message Topi cSessi on. creat ePubl i sher
producer

Table 3-4 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model
Use Cases

__|]
Use Case PL/SQL OCI AQ XML Servlet JMS

Enqueue a
message to a
single-consumer
queue

DBVS_AQ enqueue OCl AQENq <AQXm Send> QueueSender . send

ORACLE 3-10

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-4 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model

Use Cases
L __|]
Use Case PL/SQL OCI AQ XML Servlet JMS
Enqueue a Not supported
message 10 a queue DBMS_AQ enqueue OCl AGEnq <AQXm Send>
and specify visibility - g0 ity visibility in~ Specify Specify <vi si bili ty>

options

Enqueue a
message to a
single-consumer
queue and specify
message properties
priority and
expiration

Enqueue a
message to a
single-consumer
gqueue and specify
message properties
correlationlD, delay,
and exception
queue

ORACLE

ENQUEUE_CPTI ONS

DBMS_AQ enqueue

Specify priority,
expiration in

MESSAGE_PROPERTI ES

DBMS_AQ enqueue

Specify correlation,
delay,
exception_queue in

MESSAGE_PROPERTI ES

OCl _ATTR VISIBILIT
Y in

OCl AQEngOpt i ons

OCl AQEngqOpt i ons

OCl AQENq

Specify

OCl _ATTR PRI ORI TY,
OCl _ATTR_EXPI RATI O
Nin

OCl AQVsgProperties

CCl AQENnq

Specify

OCl _ATTR_CORRELATI

ON, OCl _ATTR_DELAY,

OCl _ATTR_EXCEPTI ON
_QUEUE in

OCl AQVsgProperties

in

<producer _options>

<AQXm Send>

Specify <priority>,
<expiration> in

<nessage_header >

<AQXnl Send>

Specify
<correlation_id>,
<del ay>,
<exception_queue> in

<nmessage_header >

Specify priority and
Ti meToLi ve during

QueueSender. send

or

.set Ti meToLi ve

and

MessagePr oducer .
setPriority

followed by
QueueSender . send

Message. set IMS
Correl ationl

Delay and exception
queue specified as
provider specific
message properties

JM5_Or acl eDel ay
JM5_Oracl eExcpQ

followed by
QueueSender. send

3-11

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-4 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Enqueue Messages to a Single-Consumer Queue, Point-to-Point Model

Use Cases
]
Use Case PL/SQL OCI AQ XML Servlet JMS
Enqueue a Not supported Not supported <AQKT Send> Message. set | nt
message to a Properties should be Properties should be Proper ty
smgle-cor:jsumer. part of payload part of payload Specify <nane> and
Sg:ﬂzg?nezpemfy <int_val ue>, Message. set String
; <string_val ue>, Property
message properties <l ong lues and so
onin Message. set Bool ean
) Property
<user _properties>
and so forth, followed
by
QueueSender . send
E}r;c;;:zug ?o a DBVE_AQ enqueue 00l AQEng <AQXm Send> AQ msQueueSender .
sin |e_gonsumer set Transf ormat i on
9 Specify Specify Specify

gueue and specify
message
transformation

transformation in

ENQUEUE_CPTI ONS

OCl _ATTR TRANSFORM
ATIONin

OCl AQEnqOpt i ons

<transformation>in

<producer _options>

followed by
QueueSender . send

Table 3-5 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe

Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS
Publish a message ppye a4 enqueue 00l AGEng <AQX Publ i sh> Topi cPubl i sher .
to a multiconsumer publ i sh
gg?;j:f&csgr‘?q%n Setrecipient_list Set
list P to NULL in OCl _ATTR_RECI PI ENT
_LI'STto NULL in
MESSAGE_PROPERTI ES
OCl AQVsgProperties
;“g'ﬁnlgcgﬁgj;%i DBVS_AQ enqueue 00l AGEng <AQX Publ i sh> AQj msTopi ¢
: . Publ i sher. publish
gueue/topic using Specify Specify P

specific recipient list
See footnote-1

ORACLE

Specify recipient list
in

MESSAGE_PROPERTI ES

OCl _ATTR RECI Pl ENT
_LISTin

OCl AQVsgProperties

<recipient_list>in

<nessage_header >

Specify recipients as
an array of
AQ msAgent

3-12

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-5 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe

Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS
Publish a message . Specify priority and
to a multiconsumer DBIVE_AQ enqueue 00 ACEnq <AQu Publ i sh> Ti meToLi ve during
guggi?;t?np;sa; 9 Specity priority, Specify Specify <priority>, Topi cPubl i sher.

P . ad expiration in OCl _ATTR_PRIORITY, <expiration>in publ i sh
properties priority OCl_ATTR_EXPI RATI O
and expiration MESSAGE_PROPERTI ES Nin_ - <message_header > or

OCl AQvsgProperties MessagePr oducer .

Publish a message
to a multiconsumer
queue/topic and
specify send options
correlationlD, delay,
and exception
queue

DBMS_AQ enqueue

Specify correlation,
delay,
exception_queue in

MESSAGE_PROPERTI ES

Publish a message Not supported

toatopicand Properties should be
specify user-defined part of payload
message properties

ORACLE

OCl AQENq

Specify

OCl _ATTR_CORRELATI

ON, OCI _ATTR DELAY,

OCl _ATTR_EXCEPTI ON
_QUELE in

OCl AQVsgProperties

Not supported

Properties should be
part of payload

<AQXm Publ i sh>

Specify

<correl ation_id>,
<del ay>,
<exception_queue> in

<nessage_header >

<AQXm Publ i sh>

Specify <nane> and
<int_val ue>,
<string_val ue>,

<l ong_val ue>, and so
onin

<user_properties>

set Ti meToLi ve

and

MessagePr oducer .
setPriority

followed by

Topi cPubl i sher.
publish

Message. set IMS
CorrelationlD

Delay and exception
queue specified as
provider-specific
message properties

JMB_Or acl eDel ay
JMB_Or acl eExcpQ

followed by

Topi cPubl i sher.
publish

Message. set | nt
Property

Message. set String
Property

Message. set Bool ean
Property

and so forth, followed
by

Topi cPubl i sher.
publish

3-13

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-5 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Publish Messages to a Multiconsumer Queue/Topic, Publish/Subscribe

Model Use Cases

Use Case PL/SQL OCI AQ XML Servlet JMS
E}u:lghlg ;%ssage DBMS_AQ. enqueue QCl ACEng <AQXm Publ i sh> AQ msTopi ¢
speci plmessa e Publ i sher . set
trznsgrmationg Specify Specify Specify Transf or mati on
transformation in OCl _ATTR_TRANSFORM <transformation>in
ATIONin followed by

ENQUEUE_OPTI ONS

OCl AQEngqOpt i ons

<producer_opti ons>

Topi cPubl i sher.
publish

Table 3-6 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Subscribing for Messages in a Multiconsumer Queue/Topic, Publish/
Subscribe Model Use Cases

Use Case

PL/SQL

(o]¢]]

AQ XML Servlet

JMS

Add a subscriber

Alter a subscriber

See administrative
interfaces

See administrative
interfaces

Remove a subscriber See administrative

interfaces

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Topi cSessi on.
createDurabl e
Subscri ber

AQ msSessi on.
createDurabl e
Subscri ber

Topi cSessi on.
createDurabl e
Subscri ber

AQ msSessi on.
createDurabl e
Subscri ber

using the new
selector

AQ msSessi on.
unsubscri be

ORACLE

3-14

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-7 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Browse Messages in a Queue Use Cases

Use Case PL/SQL OCl AQ XML Servlet JMS
Browse . DBVS_AQ. OCl AQDeq <AQXm Recei ve> QueueSessi on. cr eat eBr owser
messages in a dequeue
queue/topic Set Specify QueueBrowser . get Enurerat i on
Set dequeue_mode OCI _ATTR DEQ MDD <dequeue_node>
to BROABE in E to BROABE in BROWBE in Not supported on topics
DEQUEUE_OPTIONS OCI AQDeqOptions <consumer _options> oracle.jms. AQ msSessi on.
creat eBrowser
oracl e. j ms. Topi cBrowser.
get Enuneration
Browse . ! .
) < > .
messages in a DBVS_AQ. dequeue OCl AQDeq AQXm Recei ve AQ nsSessi on. creat eBr owser
gﬁgulgétl?plc Set dequeue_node Set Specify set | ocked to TRUE.
to LOCKED in OCl _ATTR_DEQ MDD <dequeue_nnde>)
messages E to LOCKED in LOCKED in QueueBrowser . get Enuner ati on
while browsing DEQUEUE_OPTI ONS
OCl AQDeqOpti ons <consuner _options> Not supported on topics

oracl e. j ms. AQ nmsSessi on.
creat eBrowser

oracl e. j ms. Topi cBrowser.
get Enuneration

Table 3-8 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Receive Messages from a Queuel/Topic Use Cases

Use Case PL/ISQL o]o]] AQ XML Servlet JMS
Start a _ N/A N/A N/A Connection. start
connection for
receiving
messages
Create a N/A N/A N/A QueueSessi on.
message creat eQueueRecei ver
consumer
Topi cSessi on. create
Dur abl eSubscri ber
AQ msSession. create
Topi cRecei ver
ORACLE 3-15

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-8 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Receive Messages from a Queuel/Topic Use Cases

Use Case PL/SQL ocCl AQ XML Servlet JMS
Dequeue a . Not supported
message from a DBVS_AQ dequeue OCl AQDeq <AQXm Recei ve>

queueftopic and o o vicibilityin - Specify Specify

specify visibility

Dequeue a
message from a
queue/topic and
specify
transformation

Dequeue a
message from a
queue/topic and
specify
navigation
mode

Dequeue a
message from a
single-
consumer
queue

ORACLE

DEQUEUE_CPTI ONS

DBVS_AQ dequeue

Specify
transformation in

DEQUEUE_CPTI ONS

DBVS_AQ dequeue

Specify navigation in

DEQUEUE_CPTI ONS

DBVS_AQ dequeue

Set dequeue_node to
REMOVE in

DEQUEUE_CPTI ONS

OCl _ATTRVISIBILIT
Yin

OCl AQDeqOpt i ons

00 AQDeq

Specify
OCl _ATTR_TRANSFORM
ATI ONiin

OCl AQDeqOpt i ons

00 AQDeq

Specify
OCl _ATTR_NAVI GATI O
Nin

OCl AQDeqOpt i ons

OCl AQDeq

Set

OCl _ATTR_DEQ MODE
to REMOVE in

OCl AQDeqOpt i ons

<visibility>in

<consuner_opti ons>

<AQXm Recei ve>

Specify
<transformation>in

<consuner _opti ons>

<AQXm Recei ve>

Specify
<navi gation>in

<consuner _opti ons>

<AQXm Recei ve>

AQ msQueueRecei ver.
set Transf ormati on

AQ nsTopi cSubscri ber.
set Transf ormati on

AQ nsTopi cRecei ver.
set Transf ormati on

AQ msQueueRecei ver.
set Navi gati onMbde

AQ nsTopi cSubscri ber.
set Navi gati onMbde

AQ nsTopi cRecei ver.
set Navi gati onMbde

QueueRecei ver. receive

or
QueueRecei ver. receive
NoWi t

or

AQ msQueueRecei ver.
recei veNoDat a

3-16

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-8 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:

Operational Interface—Receive Messages from a Queuel/Topic Use Cases

Use Case PL/SQL ocCl AQ XML Servlet JMS

Dequeue a . Create a durable
message from a DBIB_AQ dequeue 00 AQDeg <AQul Recei ve> TopicSubscriber on the
multiconsumer Set dequeve_nmode to Set Specify topic using the

gueue/topic
using
subscription
name

Dequeue a
message from a
multiconsumer
queue/topic
using recipient
name

REMOVE and set
consuner _nane to
subscription name in

DEQUEUE_CPTI ONS

DBVS_AQ dequeue

Set dequeue_node to
REMOVE and set
consuner _nane to
recipient name in

DEQUEUE_OPTI ONS

OCl _ATTR_DEQ MODE
to REMOVE and set
OCl _ATTR_CONSUMER _
NAME to subscription
name in

OCl AQDeqOpt i ons

00l AQDeq

Set

OCl _ATTR_DEQ MODE
to REMOVE and set
OCl _ATTR_CONSUMER _
NAME to recipient
name in

OCl AQDeqOpt i ons

<consumer _nane> in

<consuner_opti ons>

<AQX Recei ve>

Specify
<consuner _nane> in

<consuner _options>

subscription name, then

Topi cSubscri ber.
receive

or

Topi cSubscri ber.
recei veNoVi t

or

AQ msTopi cSubscri ber.
recei veNoDat a

Create a Topi cRecei ver
on the topic using the
recipient name, then

AQ nsSession. create
Topi cRecei ver

AQ nsTopi cRecei ver.
receive

or

AQ nsTopi cRecei ver.
recei veNoVi t

or

AQ nsTopi cRecei ver.
recei veNoDat a

Table 3-9 Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Register to Receive Messages Asynchronously from a Queuel/Topic Use

Cases

Use Case

PL/SQL

o]0}

AQ XML Servlet

JMS

Receive messages
asynchronously from

Define a PL/SQL
callback procedure

OCl Subscri ption

<AQXm Regi st er>

Create a
QueueRecei ver on

a single-consumer
queue

Register it using

DBMVS_AQ REG STER

ORACLE

Regi st er
Specify queue_nane
as subscription name

OCl Subscription
Enabl e

Specify queue name the queue, then

in <dest i nati on>and Q_jeueRecei ver. set

notification MessageLi st ener
mechanism in

<notify_url>

3-17

Chapter 3

Comparing Oracle Database Advanced Queuing Programmatic Interfaces

Table 3-9 (Cont.) Comparison of Oracle Database Advanced Queuing Programmatic Interfaces:
Operational Interface—Register to Receive Messages Asynchronously from a Queue/Topic Use

Cases
___|]
Use Case PL/SQL OClI AQ XML Servlet JMS
Receive messages Define a PL/SQL 0Ol Subscri pti on <AQXr Regi st er > Cregte a .
asynchronously from callback procedure Regi st er Topi cSubscri ber or
aungﬂletlﬁgniscumer Register it using Specify queue name ;FI;)pltcR.ecilhver on
a P DBMS_AQ REG STER Specify in <desti nation>, € topic, then
- queue: ocl _ATTR_CO\I consumer in T0p| cSubscri ber.
SUMER_NAME as <consumer _name>and set MessageLi st ener
subscription name notification

Listen for messages
on multiple queues/
topics

Listen for messages
on one (many) single-
consumer queues

Listen for messages
on one (many)
multiconsumer
gqueues/Topics

DBVS_AQ. LI STEN

Use agent _nane as
NULL for all agents in
agent _|i st

DBVS_AQ. LI STEN

Specify agent _nane
for all agents in
agent _|i st

OCl Subscription
Enabl e

OCl AQLi sten

Use agent _nane as
NULL for all agents in
agent _|i st

OCl AQLi sten

Specify agent _nane
for all agents in
agent _|i st

mechanism in
<notify_url>

Not supported

Not supported

Create multiple
QueueRecei vers on a
QueueSessi on, then

QueueSessi on. set
Messageli st ener

Create multiple

Topi cSubscri bers or
Topi cRecei vers on a
Topi cSessi on, then

Topi cSessi on. set
Messageli st ener

ORACLE

3-18

Managing Oracle Database Advanced
Queuing

These topics discuss how to manage Oracle Database Advanced Queuing.

e Oracle Database Advanced Queuing Compatibility Parameters
* Queue Security and Access Control

* Queue Table Export/Import

e Oracle Enterprise Manager Support

e Using Oracle Database Advanced Queuing with XA

e Restrictions on Queue Management

e Managing Propagation

4.1 Oracle Database Advanced Queuing Compatibility
Parameters

The queues in which buffered messages are stored must be created with compatibility
set to 8.1 or higher.

The conpat i bl e parameter of i nit. ora and the conpati bl e parameter of the queue table
should be set to 8.1 or higher to use the following features:

e Queue-level access control

e Support for Oracle Real Application Clusters environments
e Rule-based subscribers for publish/subscribe

e Asynchronous notification

* Sender identification

e Separate storage of history management information

e Secure queues

Mixed case (upper and lower case together) queue names, queue table names, and
subscriber names are supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc. ef g means the schema is ABC and the
name is EFG, but "abc". "ef g" means the schema is abc and the name is ef g.

" See Also:

Oracle Streams Concepts and Administration for more information on secure
queues

ORACLE 4-1

Chapter 4
Queue Security and Access Control

4.2 Queue Security and Access Control

These topics discuss Oracle Database Advanced Queuing queue security and access
control.

» Oracle Database Advanced Queuing Security
* Queue Security

* Queue Privileges and Access Control

e OCI Applications and Queue Access

» Security Required for Propagation

4.2.1 Oracle Database Advanced Queuing Security

Configuration information can be managed through procedures in the DBVS_AQADM
package.

Initially, only SYS and SYSTEMhave execution privilege for the procedures in DBMS_AQADM
and DBVS_AQ. Users who have been granted EXECUTE rights to these two packages are
able to create, manage, and use queues in their own schemas. The MANAGE_ANY AQ
system privilege is used to create and manage queues in other schemas.

Users of the Java Message Service (JMS) API need EXECUTE privileges on DBVS_AQIMG
and DBVS_AQ N,

Topics:
e Administrator Role
e User Role

* Access to Oracle Database Advanced Queuing Object Types

" See Also:

"Granting Oracle Database Advanced Queuing System Privileges" for more
information on AQ system privileges

4.2.1.1 Administrator Role

ORACLE

The AQ ADM NI STRATCR_ROLE has all the required privileges to administer queues.
The privileges granted to the role let the grantee:

« Perform any queue administrative operation, including create queues and queue
tables on any schema in the database

« Perform enqueue and dequeue operations on any queues in the database
» Access statistics views used for monitoring the queue workload
* Create transformations using DBVS_TRANSFORM

* Run all procedures in DBMS_AQELM

4-2

Chapter 4
Queue Security and Access Control

* Run all procedures in DBMS_AQIMS

4.2.1.2 User Role

You should avoid granting AQ USER ROLE, because this role does not provide sufficient
privileges for enqueuing or dequeuing.

Your database administrator has the option of granting the system privileges
ENQUEUE_ANY and DEQUEUE_ANY, exercising DBMS_AQADM GRANT_SYSTEM PRI VI LEGE and
DBMS_AQADM REVOKE_SYSTEM PRI VI LEGE directly to a database user, if you want the user to
have this level of control.

You as the application developer give rights to a queue by granting and revoking
privileges at the object level by exercising DBM5_AQADM GRANT_QUEUE PRI VI LEGE and
DBMS_AQADM REVOKE_QUEUE_PRI VI LEGE.

As a database user, you do not need any explicit object-level or system-level
privileges to enqueue or dequeue to queues in your own schema other than the
EXECUTE right on DBVS_AQ

4.2.1.3 Access to Oracle Database Advanced Queuing Object Types

All internal Oracle Database Advanced Queuing objects are accessible to PUBLI C.

4.2.2 Queue Security

Oracle Database Advanced Queuing administrators of Oracle Database can create
gueues. When you create queues, the default value of the conpati bl e parameter in
DBVB_AQADM CREATE_QUEUE_TABLE is that of the conpati bl e parameter.

To enqueue or dequeue, users need EXECUTE rights on DBMS_AQ and either enqueue or
dequeue privileges on target queues, or ENQUEUE_ANY/DEQUEUE_ANY system privileges.

4.2.3 Queue Privileges and Access Control

ORACLE

You can grant or revoke privileges at the object level on queues. You can also grant or
revoke various system-level privileges.

Table 4-1 lists all common Oracle Database Advanced Queuing operations and the
privileges needed to perform these operations.

Table 4-1 Operations and Required Privileges

Operation(s) Privileges Required

CREATE/DROP/MONI TOR own Must be granted EXECUTE rights on DBVMS_AQADM No other
queues privileges needed.

CREATE/DROP/MONI TOR any Must be granted EXECUTE rights on DBMS_AQADMand be granted
gqueues AQ ADM NI STRATOR ROLE by another user who has been

granted this role (SYS and SYSTEMare the first granters of
AQ_ADM NI STRATOR _ROLE)

ENQUEUE/ DEQUEUE to own Must be granted EXECUTE rights on DBMS_AQ. No other
queues privileges needed.

4-3

Chapter 4
Queue Table Export/Import

Table 4-1 (Cont.) Operations and Required Privileges
|

Operation(s) Privileges Required
ENQUEUE/ DEQUEUE to another's Must be granted EXECUTE rights on DBVMS_AQand be granted
queues privileges by the owner using

DBVS_AQADMGRANT_QUEUE_PRI VI LEGE.
ENQUEUE/ DEQUEUE to any Must be granted EXECUTE rights on DBMS_AQ and be granted
queues ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system privileges by

an Oracle Database Advanced Queuing administrator using
DBMS_AQADMGRANT_SYSTEM PRI VI LEGE.

4.2.4 OCI Applications and Queue Access

For an Oracle Call Interface (OCI) application to access a queue, the session user
must be granted either the object privilege of the queue he intends to access or the
ENQUEUE ANY QUEUE or DEQUEUE ANY QUELE system privileges.

The EXECUTE right of DBMS_AQis not checked against the session user's rights.

4.2.5 Security Required for Propagation

Oracle Database Advanced Queuing propagates messages through database links.

The propagation driver dequeues from the source queue as owner of the source
gueue; hence, no explicit access rights need be granted on the source queue. At the
destination, the login user in the database link should either be granted ENQUEUE ANY
QUEUE privilege or be granted the right to enqueue to the destination queue. However, if
the login user in the database link also owns the queue tables at the destination, then
no explicit Oracle Database Advanced Queuing privileges must be granted.

" See Also:

"Propagation from Object Queues"

4.2.6 Security Required for Non-Sharded Buffered Messages on
Oracle RAC

Internally, buffered queues on Oracle RAC may use dbl i nks between instances.
Definer's rights packages that enqueue or dequeue into buffered queues on Oracle
RAC must grant | NHERI T REMOTE PRI VI LEGES to users of the package.

4.3 Queue Table Export/Import

ORACLE

When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported, the
import utility executes these PL/SQL anonymous blocks to write the metadata to the
data dictionary.

4-4

Chapter 4
Queue Table Export/Import

Oracle AQ does not export registrations with a user export. All applications that make
use of client registrations should take this into account as the client may not be
present in the imported database.

Note:
You cannot export or import buffered messages.

If there exists a queue table with the same name in the same schema in the
database as in the export dump, then ensure that the database queue table is
empty before importing a queue table with queues. Failing to do so has a
possibility of ruining the metadata for the imported queue.

Topics:
e Exporting Queue Table Data
e Importing Queue Table Data

e Data Pump Export and Import

4.3.1 Exporting Queue Table Data

ORACLE

The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can also be accomplished at queue-table
granularity.

Exporting Queue Tables with Multiple Recipients

For non-sharded queues, a queue table that supports multiple recipients is associated
with the following tables:

* Dequeue index-organized table (10T)

* Time-management index-organized table
* Subscriber table

* Ahistory IOT

Sharded queues are associated with the following objects:
* A queue table

* Adequeue table

* Atime management table

* An optional exception queue map table

* Indexes for the above tables

* Sequences

* Rules sets and evaluation contexts

These tables are exported automatically during full database mode, user mode and
table mode exports. See Export Modes .

4-5

Chapter 4
Queue Table Export/Import

Because the metadata tables contain ROWIDs of some rows in the queue table, the
import process generates a note about the ROWIDs being made obsolete when
importing the metadata tables. This message can be ignored, because the queuing
system automatically corrects the obsolete ROWIDs as a part of the import operation.
However, if another problem is encountered while doing the import (such as running
out of rollback segment space), then you should correct the problem and repeat the
import.

Export Modes

Exporting operates in full database mode, user mode, and table mode. Incremental
exports on queue tables are not supported.

In full database mode, queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

In user mode, queue tables, all related tables, and primary object grants are exported
automatically. However, doing a user-level export from one schema to another using
the FROMUSER TOUSER clause is not supported.

In table mode, queue tables, all related tables, and primary object grants are exported
automatically. For example, when exporting a non-sharded multiconsumer queue
table, the following tables are automatically exported:

* AQ_queue_table_| (the dequeue IOT)

° AQ@_queue_t abl e_T (the time-management IOT)

* AQ_queue_t abl e_S (the subscriber table)

e AQ@_queue_t abl e_H (the history IOT)

For sharded queues, the following tables are automatically exported:
° queue_table

* AQ_queue_name_L (dequeue table)

° AQ@_gueue_name_T (time-management table)

* AQ_gueue_nane (exception map table)

e AQ@_queue_name_V (evaluation context)

* queue_nane_R (rule set)

4.3.2 Importing Queue Table Data

ORACLE

Similar to exporting queues, importing queues entails importing the underlying queue
tables and related dictionary data. After the queue table data is imported, the import
utility executes the PL/SQL anonymous blocks in the dump file to write the metadata to
the data dictionary.

Importing Queue Tables with Multiple Recipients

A non-sharded queue table that supports multiple recipients is associated with the
following tables:

* Adequeue IOT
* Atime-management IOT

e A subscriber table

4-6

Chapter 4
Oracle Enterprise Manager Support for Non-Sharded Queues

e Ahistory IOT

Sharded queues are associated with the following objects:

A queue table

A dequeue log table

* Atime management table

» An optional exception queue map table
* Indexes for the above tables

e Sequences

* Rules sets and evaluation contexts

These objects must be imported along with the queue table itself.

Import IGNORE Parameter

You must not import queue data into a queue table that already contains data. The

| GNORE parameter of the import utility must always be set to NOwhen importing queue
tables. If the | GNORE parameter is set to YES, and the queue table that already exists is
compatible with the table definition in the dump file, then the rows are loaded from the
dump file into the existing table. At the same time, the old queue table definition is lost
and re-created. Queue table definition prior to the import is lost and duplicate rows
appear in the queue table.

4.3.3 Data Pump Export and Import

The Data Pump replace and skip modes are supported for queue tables.

In the replace mode an existing queue table is dropped and replaced by the new
gueue table from the export dump file. In the skip mode, a queue table that already
exists is not imported.

The truncate and append modes are not supported for queue tables. The behavior in
this case is the same as the replace mode.

¢ See Also:

Oracle Database Utilities for more information on Data Pump Export and Data
Pump Import

4.4 Oracle Enterprise Manager Support for Non-Sharded

Queues

ORACLE

Oracle Enterprise Manager supports most of the administrative functions of Oracle
Database Advanced Queuing. Oracle Database Advanced Queuing functions are
found under the Distributed node in the navigation tree of the Enterprise Manager
console.

Functions available through Oracle Enterprise Manager include:

4-7

4.5 Using

Chapter 4
Using Oracle Database Advanced Queuing with XA

» Using queues as part of the schema manager to view properties
» Creating, starting, stopping, and dropping queues

* Scheduling and unscheduling propagation

* Adding and removing subscribers

* Viewing propagation schedules for all queues in the database

* Viewing errors for all queues in the database

* Viewing the message queue

» Granting and revoking privileges

» Creating, modifying, or removing transformations

Oracle Database Advanced Queuing with XA

You must specify "Obj ect s=T" in the xa_open string if you want to use the Oracle
Database Advanced Queuing OCI interface. This forces XA to initialize the client-side
cache in Objects mode. You are not required to do this if you plan to use Oracle
Database Advanced Queuing through PL/SQL wrappers from OCI or Pro*C.

The large object (LOB) memory management concepts from the Pro* documentation
are not relevant for Oracle Database Advanced Queuing raw messages because
Oracle Database Advanced Queuing provides a simple RAW buffer abstraction
(although they are stored as LOBS).

When using the Oracle Database Advanced Queuing navigation option, you must
reset the dequeue position by using the FI RST_MESSAGE option if you want to continue
dequeuing between services (such as xa_start and xa_end boundaries). This is
because XA cancels the cursor fetch state after an xa_end. If you do not reset, then you
get an error message stating that the navigation is used out of sequence
(ORA-25237).

" See Also:

e "Working with Transaction Monitors with Oracle XA" in Oracle Database
Development Guide for more information on XA

e "Large Objects (LOBs)" in Pro*C/C++ Programmer's Guide

4.6 Restrictions on Queue Management

ORACLE

These topics discuss restrictions on queue management.

* Subscribers

DML Not Supported on Queue Tables or Associated IOTs

» Propagation from Object Queues with REF Payload Attributes
e Collection Types in Message Payloads

* Synonyms on Queue Tables and Queues

4-8

Chapter 4
Restrictions on Queue Management

e Synonyms on Object Types
* Tablespace Point-in-Time Recovery

e Virtual Private Database

" Note:

Mixed case (upper and lower case together) queue names, queue table names,
and subscriber names are supported if database compatibility is 10.0, but the
names must be enclosed in double quote marks. So abc. ef g means the
schema is ABC and the name is EFG, but "abc". "ef g" means the schema is abc
and the name is ef g.

4.6.1 Subscribers

You cannot have more than 1,000 local subscribers for each queue.

Also, only 32 remote subscribers are allowed for each remote destination database.

4.6.2 DML Not Supported on Queue Tables or Associated I0Ts

Oracle Database Advanced Queuing does not support data manipulation language
(DML) operations on queue tables or associated index-organized tables (IOTs), if any.

The only supported means of modifying queue tables is through the supplied APIs.
Queue tables and I0Ts can become inconsistent and therefore effectively ruined, if
data manipulation language (DML) operations are performed on them.

4.6.3 Propagation from Object Queues with REF Payload Attributes

Oracle Database Advanced Queuing does not support propagation from object queues
that have REF attributes in the payload.

4.6.4 Collection Types in Message Payloads

ORACLE

You cannot construct a message payload using a VARRAY that is not itself contained
within an object.

You also cannot currently use a NESTED Table even as an embedded object within a
message payload. However, you can create an object type that contains one or more
VARRAYSs, and create a queue table that is founded on this object type, as shown in
Example 4-1.

Example 4-1 Creating Objects Containing VARRAYs

CREATE TYPE nunber _varray AS VARRAY(32) OF NUMVBER,
CREATE TYPE enbedded_varray AS OBJECT (col 1 nunber _varray);
EXECUTE DBMS_AQADM CREATE_QUEUE_TABLE(

queue_tabl e = tqr,

queue_pay!l oad_t ype = " enbedded_varray');

4-9

Chapter 4
Managing Propagation

4.6.5 Synonyms on Queue Tables and Queues

No Oracle Database Advanced Queuing PL/SQL calls resolve synonyms on queues
and queue tables.

Although you can create synonyms, you should not apply them to the Oracle Database
Advanced Queuing interface.

4.6.6 Synonyms on Object Types

If you have created synonyms on object types, you cannot use them in
DBMS_AQADM CREATE_QUEUE_TABLE. Error ORA-24015 results.

4.6.7 Tablespace Point-in-Time Recovery

Oracle Database Advanced Queuing currently does not support tablespace point-in-
time recovery.

Creating a queue table in a tablespace disables that particular tablespace for point-in-
time recovery. Oracle Database Advanced Queuing does support regular point-in-time
recovery.

4.6.8 Virtual Private Database

You can use Oracle Database Advanced Queuing with Virtual Private Database by
specifying a security policy with Oracle Database Advanced Queuing queue tables.

While dequeuing, use the dequeue condition (deq_cond) or the correlation identifier for
the policy to be applied. You can use "1=1" as the dequeue condition. If you do not
use a dequeue condition or correlation ID, then the dequeue results in an error.

" Note:

When a dequeue condition or correlation identifier is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is not
honored.

4.7 Managing Propagation

ORACLE

These topics discuss managing Oracle Database Advanced Queuing propagation.
 EXECUTE Privileges Required for Propagation

* Propagation from Object Queues

e Optimizing Propagation

* Handling Failures in Propagation

4-10

Chapter 4
Managing Propagation

Note:

For propagation to work correctly, the queue ag$_prop_notify_X should never be
stopped or dropped and the table ag$_prop_t abl e_X should never be dropped.

4.7.1 EXECUTE Privileges Required for Propagation

Propagation jobs are owned by SYS, but the propagation occurs in the security context
of the queue table owner.

Previously propagation jobs were owned by the user scheduling propagation, and
propagation occurred in the security context of the user setting up the propagation
schedule. The queue table owner must be granted EXECUTE privileges on the DBMS_AQADM
package. Otherwise, the Oracle Database snapshot processes do not propagate and
generate trace files with the error identifier SYS. DBMs_AQADM not defined. Private
database links owned by the queue table owner can be used for propagation. The user
name specified in the connection string must have EXECUTE access on the DBMs_AQand
DBMS_AQADM packages on the remote database.

4.7.2 Propagation from Object Queues

Propagation from object queues with BFI LE objects is supported.

To be able to propagate object queues with BFI LE objects, the source queue owner
must have read privileges on the directory object corresponding to the directory in
which the BFI LE is stored. The database link user must have write privileges on the
directory object corresponding to the directory of the BFI LE at the destination database.

AQ propagation does not support non-final types. Propagation of BFI LE objects from
object queues without specifying a database link is not supported.

¢ See Also:

"CREATE DIRECTORY" in Oracle Database SQL Language Reference for
more information on directory objects

4.7.3 Optimizing Propagation

ORACLE

AQ propagation jobs are run by the Oracle Scheduler. Propagation may be scheduled
in these ways.

* A dedicated schedule in which the propagation runs forever or for a specified
duration. This mode provides the lowest propagation latencies.

» A periodic schedule in which the propagation runs periodically for a specified
interval. This may be used when propagation can be run in a batched mode.

* An event based system in which propagation is started when there are messages
to be propagated. This mode makes more efficient use of available resources,
while still providing a fast response time.

4-11

Chapter 4
Managing Propagation

The administrator may choose a schedule that best meets the application performance
requirements.

Oracle Scheduler will start the required number of job queue processes for the
propagation schedules. Since the scheduler optimizes for throughput, if the system is
heavily loaded, it may not run some propagation jobs. The resource manager may be
used to have better control over the scheduling decisions. In particular, associating
propagation jobs with different resource groups can allow for fairness in scheduling
which may be important in heavy load situations.

In setting the nunber of JOB QUEUE PROCESSES, DBAs should be aware that this
number is determined by the number of queues from which the messages must be
propagated and the number of destinations (rather than queues) to which messages
must be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
gueue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing near-
OLTP action. The algorithm can handle an unlimited nhumber of schedules and various
types of failures. While propagation tries to make the optimal use of the available job
gueue processes, the number of job queue processes to be started also depends on
the existence of jobs unrelated to propagation, such as replication jobs. Hence, it is
important to use the following guidelines to get the best results from the scheduling
algorithm.

The scheduling algorithm uses the job queue processes as follows (for this discussion,
an active schedule is one that has a valid current window):

» If the number of active schedules is fewer than half the number of job queue
processes, then the number of job queue processes acquired corresponds to the
number of active schedules.

» If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, then multiple
active schedules are assigned to an acquired job queue process.

» If the system is overloaded (all schedules are busy propagating), depending on
availability, then additional job queue processes are acquired up to one fewer than
the total number of job queue processes.

* If none of the active schedules handled by a process has messages to be
propagated, then that job queue process is released.

* The algorithm performs automatic load balancing by transferring schedules from a
heavily loaded process to a lightly load process such that no process is
excessively loaded.

4.7.4 Handling Failures in Propagation

ORACLE

The scheduling algorithm has robust support for handling failures. These are the
common failures that prevent message propagation.

e Database link failed

* Remote database is not available
* Remote queue does not exist

* Remote queue was not started

e Security violation while trying to enqueue messages into remote queue

4-12

ORACLE

Chapter 4
Managing Propagation

Under all these circumstances the appropriate error messages are reported in the
DBA_QUEUE SCHEDULES view.

When an error occurs in a schedule, propagation of messages in that schedule is
attempted again after a retry period that is a function of the number of failures. After
the retries have exceeded a system defined maximum, the schedule is disabled.

If the problem causing the error is fixed and the schedule is enabled, then the error
fields that indicate the last error date, time, and message continue to show the error
information. These fields are reset only when messages are successfully propagated
in that schedule.

¢ See Also:

Troubleshooting Oracle Database Advanced Queuing

4-13

Oracle Database Advanced Queuing
Performance and Scalability

These topics discuss performance and scalability issues relating to Oracle Database
Advanced Queuing (AQ).

e Sharded Queues
e Non-Sharded Queues

* Performance Views

5.1 Sharded Queues

A sharded queue increases enqueue-dequeue throughput, especially across Oracle
RAC instances, because messages from different enqueue sessions are allowed to be
dequeued in parallel. Each shard of the queue is ordered based on enqueue time
within a session and ordering across shards is best-effort. Sharded queues
automatically manage table partitions so that enqueuers and dequeuers do not
contend among themselves. In addition, sharded queues use an in-memory message
cache to optimize performance and reduce the disk and CPU overhead of enqueues
and dequeues.

The advantages and tradeoffs of sharded queues include the following:

» Sharded queues provide scalability of a single queue on Oracle Real Application
Clusters (Oracle RAC), especially in the case where each subscriber has multiple
dequeuers on each instance.

» Sharded queues trades off increased memory usage to obtain performance.
This section contains the following topics:

e Sharded Queues and the Message Cache

e Sharded Queues and Enqueuing / Dequeuing Messages

e Sharded Queues and Native JMS Support

* Sharded Queues and Partitioning

* Sharded Queues and Oracle Real Application Clusters (Oracle RAC)

e Sharded Queue Restrictions

* Sharded Queues Tuning

5.1.1 Sharded Queues and the Message Cache

ORACLE

Sharded queues introduce a special purpose message cache which lets you trade off
SGA usage for increased throughput, reduced latency, and increased concurrency.
When combined with partitioning, the message cache reduces the need for some
gueries, DML operations, and indexes. The message cache is most effective when all
dequeuers keep up with enqueuers and when the message cache is big enough to

5-1

Chapter 5
Sharded Queues

store messages (including payloads) for each sharded queue's enqueuers and
dequeuers. The message cache uses the Streams pool. If sharded queues share the
Streams pool on the same instance as Streams replication functionality, you can use
DBMS_AQADM procedures such as SET_M N_STREAMS_POOL and SET_MAX_STREAMS_POOL to fine
tune the allocation of Streams Pool memory.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information

5.1.2 Sharded Queues and Enqueuing / Dequeuing Messages

To improve throughput and reduce overhead and latency, enqueues and dequeues
are optimized to use the message cache, the rules engine, and background
processing when possible. For example,

* sharded queues take advantage of new rules engine improvements

* amessage that has its payload in the message cache does not have to be re-read
from disk during a dequeue

» dequeue by correlation id or other JMS properties can often be evaluated without
accessing the disk

e partition operations on sharded queues implements efficient bulk processing.

5.1.3 Sharded Queues and Native JMS Support

ORACLE

Sharded queues have native support for:

e Non-Durable Subscribers
e JMS payloads
e Priorities

Sharded queues support both persistent and nonpersistent messages. Nonpersistent
messages are stored in memory inside the message cache and are not stored on disk.
As a result, nonpersistent messages are lost upon instance crash or shutdown.

Sharded queues natively support two kinds of subscribers to meet the IMS
requirements:

* Non-durable subscribers: These subscribers receive messages on their chosen
topic, only if the messages are published while the subscriber is active. This
subscription is not sharable among different sessions.

» Durable subscribers: These subscribers receive all the messages published on a
topic, including those that are published while the subscriber is inactive. Multiple
database sessions can share the same subscription.

Sharded queues do not use ADTSs to store the JMS payload. The JMS message is
stored in scalar columns of the database. JMS message types such as TEXT, BYTES,
MAP, STREAMand OBJECT store the JMS payload in scalar TEXT/RAWOr CLOB/ BLOB columns
in the queue table depending on payload size and type. The JMS message properties
are stored in a CLOB (SecureFile) column in the queue table with attribute access
functions defined for the user defined properties. The payload and user properties are

5-2

Chapter 5
Sharded Queues

pickled into RAW VARCHAR? or Secure File columns instead of being stored as an ADT.
JMS Header properties and JMS provider information are stored in their own scalar
columns.

Sharded queues support integer priority values ranging between 0 (lowest priority) and
9 (highest priority), with the default being priority 4, as defined by the JMS standard.

5.1.4 Sharded Queues and Partitioning

Sharded queues automatically manage the underlying partitioned tables used for the
gueue table. Such partition management may occur in the foreground or the
background. Each shard provides session-level ordering of enqueued messages.
Each enqueuing session is assigned a shard. Each shard is composed of a series of
subshards. Each subshard maps to a single partition. Messages are automatically
assigned to a table partition upon enqueue.

New partitions are automatically created as needed, as when the queue table needs to
grow when dequeuers do not keep up with enqueuers. Partitions are truncated and
reused when all messages in the partition are dequeued and no longer needed. The
message cache automatically loads messages from partitions into memory as required
by dequeuers. Global indexes should not be created on the partitioned table
underlying a sharded queue. Local indexes are not typically recommended on the
partitioned table either. If such indexes are desired and result in performance
degradation, then non-sharded queues should be considered.

5.1.5 Sharded Queues and Oracle Real Application Clusters (Oracle

RAC)

ORACLE

Sharded queues automatically provides enqueue session ordering while avoiding
cross-instance communication when possible. Sometimes cross instance
communication is required. For example, if a sharded queue has a single enqueuing
session on one Oracle RAC instance and a single dequeuing session on another
instance, then sharded queues will forward messages between the Oracle RAC
instances. The forwarding of messages is non-atomic to the enqueuing transaction to
improve performance. Dequeuers may get an ORA-25228 if they are connected to an
instance that has no messages in its shards.

In most cases, consider having multiple dequeuers for each subscriber or single
consumer queue on each Oracle RAC instance to improve throughput and reduce
cross-instance overhead. An exception to this guideline is when you are using
dequeue selectors that specify a single message. If you want to dequeue a message
from a sharded queue by its message identifier in an Oracle RAC database, then you
have to connect to the instance that is assigned dequeue ownership for the shard
containing the message. Otherwise, the message will not be available for dequeue to
the dequeue session. If all dequeues are performed at a single instance, then
messages will be automatically forwarded to this instance. Hence, for a sharded
single-consumer queue that extensively dequeues by message ID, consider having all
dequeue sessions for the sharded queue connect to a single instance. Similarly, for a
sharded multiconsumer queue that extensively dequeues by message ID, consider
having all dequeue sessions for each subscriber connect to a single instance. Services
can be used to simplify connecting dequeue sessions to a particular instance.

5-3

Chapter 5
Sharded Queues

5.1.6 Sharded Queue Restrictions

The following Oracle Database features are not currently supported for sharded
gueues:

* Message retention
e Transaction grouping

* Anonymous posting for subscriber notification and OCI callback notification are not
supported. PL/SQL callback notification is supported.

* Messaging Gateway
» Oracle extensions for JMS such as JMS propagation and remote subscribers

* Multiple queues per queue table. Sharded queues are created via the
CREATE_SHARDED QUELE interface.

* Ordering other than message priority followed by enqueue time (as specified in the
JMS standard)

e The JDBC thick (OCI) driver.
* Propagation between sharded and non-sharded queues

* Message transformations

5.1.7 Sharded Queues Tuning

ORACLE

Sharded queues perform best under the following conditions:

» Dequeuers for each subscriber are located on each instance

* Subscribers keep up with the enqueuers. Consider having multiple dequeuers for
each subscriber on each Oracle RAC instance

The message cache is most effective when dequeuers keep up with enqueuers and
where the cache is big enough to store messages (including payloads) for each
sharded queue's enqueuers and dequeuers. When using sharded queues, Oracle
requires that you do one of the following:

e Setting parameter STREAVMS_PCOL_SI ZE

This parameter controls the size of shared memory available to the Oracle
Database for the sharded queue message cache. If unspecified, up to 10% of the
shared pool size may be allocated for the Streams pool.

Oracle's Automatic Shared Memory Management feature manages the size of the
Streams pool when the SGA_TARGET initialization parameter is set to a nonzero
value. If the STREAMS_POOL_SI ZE initialization parameter also is set to a nonzero
value, then Automatic Shared Memory Management uses this value as a minimum
for the Streams pool.

If the STREAMS_POOL_SI ZE initialization parameter is set to a nonzero value, and the
SGA TARGET parameter is set to 0 (zero), then the Streams pool size is the value
specified by the STREAMS_POOL_S| ZE parameter, in bytes.

If both the STREAMS_POOL_SI ZE and the SGA_TARGET initialization parameters are set to
0 (zero), then, by default, the first use of the Streams pool in a database transfers
an amount of memory equal to 10% of the shared pool from the buffer cache to
the Streams pool.

5-4

Chapter 5
Non-Sharded Queues

¢ See Also:

— DBMS_AQADM set _nin_streans_pool () and
DBMS_AQADM set _nmax_streams_pool () in Oracle Database PL/SQL
Packages and Types Reference for a finer grained control over
STREAMS_POOL sharing with Streams processing.

e Turning on SGA autotuning

Oracle will automatically allocate the appropriate amount of memory from the SGA
for the Streams pool, based on Streams pool usage as well as usage of other
components that use the SGA. Examples of such other components are buffer
cache and library cache. If STREAMS_POOL_SI ZE is specified, it is used as the lower
bound.

e Manually tuning sharded queues

Sharded queues can be tuned by allocating STREAMS_POOL memory for the message
cache. The view GV$AQ MESSAGE_CACHE_ADVI CE provides advice on how much
STREAMS_POOL should be allocated for sharded queues based on a snapshot of the
current messaging load. During periods of high load, select the columns | NST_I D,
S| ZE_FOR_ESTI MATE, and ESTD Sl ZE_TYPE. ESTD S| ZE TYPE is one of three values:

M NI MUM, PREFERRED, or MAXI MUM Find the maximum value of Sl ZE FOR_ESTI MATE
across Oracle RAC instances for each of the ESTD_SI ZE TYPE values. It is highly
recommended that STREAMS_POOL be set at least to the M Nl MUMrecommendation to
provide any message cache performance gains. There is little additional
performance gains to setting STREAMS_POOL greater than the MAXI MUM
recommendation value. Setting STREAMS_POCOL to the PREFERRED recommendation
tries to provide a reasonable space-performance tradeoff. If the MAXI MIMsize
recommendation is much greater than the PREFERRED recommendation, then check
that the sharded queue has no orphaned subscribers, or whether more dequeuers
should be added to the instance, so that dequeuers can keep up with the enqueue
load. STREAMS_POOL tuning should be done over multiple periods of high load and
whenever messaging load characteristics change.

5.2 Non-Sharded Queues

This section includes the following topics:

e Persistent Messaging Performance Overview for Non-Sharded Queues
e Persistent Messaging Basic Tuning Tips

e Propagation Tuning Tips

« Buffered Messaging Tuning

5.2.1 Persistent Messaging Basic Tuning Tips

Oracle Database Advanced Queuing table layout is similar to a layout with ordinary
database tables and indexes.

ORACLE 5-5

Chapter 5
Non-Sharded Queues

¢ See Also:

Oracle Database Performance Tuning Guide for tuning recommendations

5.2.1.1 Memory Requirements

Streams pool size should be at least 20 MB for optimal multi-consumer dequeue
performance in a non-Oracle RAC database.

Persistent queuing dequeue operations use the streams pool to optimize performance,
especially under concurrency situations. This is, however, not a requirement and the
code automatically switches to a less optimal code path.

Sharded queues introduces a message cache for optimal performance of high
throughput messaging systems. Ideally the Streams pool size should be large enough
to cache the expected backlog of messages in sharded queues.

5.2.1.2 Using Storage Parameters

Storage parameters can be specified when creating a queue table using the
storage_cl ause parameter.

Storage parameters are inherited by other IOTs and tables created with the queue
table. The tablespace of the queue table should have sufficient space to accommodate
data from all the objects associated with the queue table. With retention specified, the
history table and, also the queue table can grow to be quite big.

Oracle recommends you use automatic segment-space management (ASSM).
Otherwise i ni trans, freelists and freelist groups must be tuned for AQ performance
under high concurrency.

Increasing PCTFREE will reduce the number of messages in a queue table/IOT block.
This will reduce block level contention when there is concurrency.

Storage parameters specified at queue table creation are shared by the queue table,
IOTs and indexes. These may be individually altered by an online redefinition using
DBVS_REDEFI NI TI ON.

5.2.1.3 1/0 Configuration

Because Oracle Database Advanced Queuing is very I/O intensive, you will usually
need to tune I/O to remove any bottlenecks.

2 See Also:

"I/O Configuration and Design" in Oracle Database Performance Tuning Guide

ORACLE 5-6

Chapter 5
Non-Sharded Queues

5.2.1.4 Running Enqueue and Dequeue Processes Concurrently in a Single
Non-Sharded Queue Table

Some environments must process messages in a constant flow, requiring that
enqueue and dequeue processes run concurrently. If the message delivery system
has only one queue table and one queue, then all processes must work on the same
segment area at the same time. This precludes reasonable performance levels when
delivering a high number of messages.

The best number for concurrent processes depends on available system resources.
For example, on a four-CPU system, it is reasonable to start with two concurrent
enqueue and two concurrent dequeue processes. If the system cannot deliver the
wanted number of messages, then use several subscribers for load balancing rather
than increasing the number of processes.

Tune the enqueue and dequeue rates on the queue so that in the common case the
gueue size remains small and bounded. A queue that grows and shrinks considerably
will have indexes and IOTs that are out of balance, which will affect performance.

With multi-consumer queues, using several subscribers for load balancing rather than
increasing the number of processes will reduce contention. Multiple queue tables may
be used garnering horizontal scalability.

For information about tuning sharded queues refer to Sharded Queues Tuning.

5.2.1.5 Running Enqueue and Dequeue Processes Serially in a Single Non-
Sharded Queue Table

When enqueue and dequeue processes are running serially, contention on the same
data segment is lower than in the case of concurrent processes. The total time taken
to deliver messages by the system, however, is longer than when they run
concurrently.

Increasing the number of processes helps both enqueuing and dequeuing. The
message throughput rate may be higher for enqueuers than for dequeuers when the
number of processes is increased, especially with single consumer queues. Dequeue
processes on multi-consumer queues scale much better.

5.2.1.6 Creating Indexes on a Queue Table

ORACLE

Creating an index on a non-sharded queue table is useful if you meet these conditions.

» Dequeue using correlation ID

An index created on the column corr _i d of the underlying queue table
AQ_QueueTabl eName expedites dequeues.

* Dequeue using a condition

This is like adding the condition to the where-clause for the SELECT on the
underlying queue table. An index on QueueTabl eNane expedites performance on this
SELECT statement.

5-7

Chapter 5
Non-Sharded Queues

5.2.1.7 Other Tips for Non-Sharded Queues

These are some other persistent messaging basic tuning tips.

» Ensure that statistics are being gathered so that the optimal query plans for
retrieving messages are being chosen. By default, queue tables are locked out
from automatic gathering of statistics. The recommended use is to gather statistics
with a representative queue message load and lock them.

* The queue table indexes and IOTs are automatically coalesced by AQ background
processes. However, they must continue to be monitored and coalesced if
needed. With automatic space segment management (ASSM), an online shrink
operation may be used for the same purpose. A well balanced index reduces
gueue monitor CPU consumption, and ensures optimal enqueue-dequeue
performance.

» Ensure that there are enough queue monitor processes running to perform the
background tasks. The queue monitor must also be running for other crucial
background activity. Multiple grm processes share the load; make sure that there
are enough of them. These are auto-tuned, but can be forced to a minimum
number, if needed.

* Itis recommended that dequeue with a wait time is only used with dedicated
server processes. In a shared server environment, the shared server process is
dedicated to the dequeue operation for the duration of the call, including the wait
time. The presence of many such processes can cause severe performance and
scalability problems and can result in deadlocking the shared server processes.

e Long running dequeue transactions worsen dequeue contention on the queue, and
must be avoided.

» Batching multiple dequeue operations on multi-consumer queues into a single
transaction gives best throughput.

* Use NEXT as navigation mode, if not using message priorities. This offers the same
semantics but improved performance.

» Use the REMOVE_NODATA dequeue mode if dequeuing in BROAE mode followed by a
REMOVE.

5.2.2 Propagation Tuning Tips

ORACLE

Propagation can be considered a special kind of dequeue operation with an additional
I NSERT at the remote (or local) queue table. Propagation from a single schedule is not
parallelized across multiple job queue processes. Rather, they are load
balanced.Propagation can be considered a special kind of dequeue operation with an
additional | NSERT at the remote (or local) queue table. Propagation from a single
schedule is not parallelized across multiple job queue processes. Rather, they are load
balanced.

For better scalability, configure the number of propagation schedules according to the
available system resources (CPUSs).

Propagation rates from transactional and nontransactional (default) queue tables vary
to some extent because Oracle Database Advanced Queuing determines the batching
size for nontransactional queues, whereas for transactional queues, batch size is
mainly determined by the user application.

5-8

Chapter 5
Non-Sharded Queues

Optimized propagation happens in batches. If the remote queue is in a different
database, then Oracle Database Advanced Queuing uses a sequencing algorithm to
avoid the need for a two-phase commit. When a message must be sent to multiple
gueues in the same destination, it is sent multiple times. If the message must be sent
to multiple consumers in the same queue at the destination, then it is sent only once.

5.2.3 Buffered Messaging Tuning

Buffered messaging operations in a Oracle Real Application Clusters environment will
be fastest on the OMER_| NSTANCE of the queue.

5.2.3.1 Persistent Messaging Performance Overview for Non-Sharded Queues

When persistent messages are enqueued, they are stored in database tables. The
performance characteristics of queue operations on persistent messages are similar to
underlying database operations.

The code path of an enqueue operation is comparable to SELECT and | NSERT into a
multicolumn queue table with three index-organized tables. The code path of a
dequeue operation is comparable to a SELECT operation on the multi-column table and
a DELETE operation on the dequeue index-organized table. In many scenarios, for
example when Oracle RAC is not used and there is adequate streams pool memory,
the dequeue operation is optimized and is comparable to a SELECT operation on a
multi-column table.

" Note:

Performance is not affected by the number of queues in a table.

5.2.3.2 Non-Sharded Queues and Oracle Real Application Clusters

Oracle Real Application Clusters (Oracle RAC) can be used to ensure highly available
access to queue data.

The entry and exit points of a queue, commonly called its tail and head respectively,
can be extreme hot spots. Because Oracle RAC may not scale well in the presence of
hot spots, limit usual access to a queue from one instance only. If an instance failure
occurs, then messages managed by the failed instance can be processed immediately
by one of the surviving instances. If non-sharded queues are experiencing hot spots,
then consider using sharded queues instead.

You can associate Oracle RAC instance affinities with 8.1-compatible queue tables. If
you are using gl and g2 in different instances, then you can use ALTER QUEUE_TABLE or
CREATE_QUEUE TABLE on the queue table and set pri mary_i nst ance to the appropriate

i nstance_i d.

ORACLE 5-9

Chapter 5
Performance Views

" See Also:

e Creating a Queue Table
e Altering a Queue Table

e Sharded Queues and Oracle Real Application Clusters (Oracle RAC)

5.2.3.3 Oracle Database Advanced Queuing in a Shared Server Environment

Queue operation scalability is similar to the underlying database operation scalability.

If a dequeue operation with wait option is applied, then it does not return until it is
successful or the wait period has expired. In a shared server environment, the shared
server process is dedicated to the dequeue operation for the duration of the call,
including the wait time. The presence of many such processes can cause severe
performance and scalability problems and can result in deadlocking the shared server
processes. For this reason, Oracle recommends that dequeue requests with wait
option be applied using dedicated server processes. This restriction is not enforced.

See Also:

"DEQUEUE_OPTIONS_T Type" in Oracle Database PL/SQL Packages and
Types Reference for more information on the wait option

5.3 Performance Views

ORACLE

Oracle provides these views to monitor system performance and troubleshooting.

* V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues
* V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics
« V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

* V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

* V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

* V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

* V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in
the Instance

* V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

* V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

* V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance

* V$PERSISTENT_QMN_CACHE: Performance Statistics on Background Tasks for
Persistent Queues

* V$AQ: Number of Messages in Different States in Database

5-10

ORACLE

Chapter 5
Performance Views

V$AQ BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC)

V$AQ _JOB_COORDINATOR: Performance Statistics per Coordinator
V$AQ _NONDUR_REGISTRATIONS: Non-Durable Registrations
V$AQ_SERVER_POOL: Performance Statistics for all Servers

V$AQ_ CROSS_INSTANCE_JOBS: Cross Process Jobs Description
V$AQ _NONDUR_REGISTRATIONS: Non-Durable Registrations

V$AQ _NOTIFICATION_CLIENTS: Secure OCI Client Connections
V$AQ_SUBSCRIBER_LOAD: Durable Subscribers

V$AQ NONDUR_SUBSCRIBER: Non-Durable Subscribers

V$AQ _NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber
V$AQ_ MESSAGE_CACHE: Performance Statistics

These views are integrated with the Automatic Workload Repository (AWR). Users can
generate a report based on two AWR snapshots to compute enqueue rate, dequeue
rate, and other statistics per queue/subscriber.

5-11

Internet Access to Oracle Database
Advanced Queuing

You can access Oracle Database Advanced Queuing (AQ) over the Internet by using
SOAP with non-sharded queues. IDAP is the SOAP specification for Oracle Database
Advanced Queuing operations.

IDAP defines XML message structure for the body of the Simple Object Access
Protocol (SOAP) request. An Internet Data Access Presentation (IDAP)-structured
message is transmitted over the Internet using HTTP.

Users can register for notifications using the IDAP interface.

Topics:

» Overview of Oracle Database Advanced Queuing Operations Over the Internet
» Deploying the Oracle Database Advanced Queuing XML Servlet

* Internet Data Access Presentation (IDAP)

* Request and Response IDAP Documents

* Notification of Messages by E-Mail

6.1 Overview of Oracle Database Advanced Queuing
Operations Over the Internet

The section discusses these topics.

e Oracle Database Advanced Queuing Internet Operations Architecture

e Internet Message Payloads

e Configuring the Web Server to Authenticate Users Sending POST Requests
e Client Requests Using HTTP

e Oracle Database Advanced Queuing Servlet Responses Using HTTP

e Oracle Database Advanced Queuing Propagation Using HTTP and HTTPS

6.1.1 Oracle Database Advanced Queuing Internet Operations
Architecture

The figure shows the architecture for performing Oracle Database Advanced Queuing
operations over HTTP.

The major components are:

* Oracle Database Advanced Queuing client program

* Web server/servlet runner hosting the Oracle Database Advanced Queuing servlet

ORACLE 6-1

Chapter 6
Overview of Oracle Database Advanced Queuing Operations Over the Internet

e Oracle Database server

A Web browser or any other HTTP client can serve as an Oracle Database Advanced
Queuing client program, sending XML messages conforming to IDAP to the Oracle
Database Advanced Queuing servlet, which interprets the incoming XML messages.
The Oracle Database Advanced Queuing servlet connects to the Oracle Database
server and performs operations on user queues.

Figure 6-1 Architecture for Performing Oracle Database Advanced Queuing
Operations Using HTTP

Oracle
Web Database
Server Server

] D
XML Message =

W <= Seel— —Hosos

AQ Servlet

AQ Client ;IO'\ L:’

Queue

6.1.2 Internet Message Payloads

ORACLE

Oracle Database Advanced Queuing supports messages of three types: RAW, Oracle
object, and JMS. All these message types can be accessed using SOAP and Web
services.

If the queue holds messages in RAW, Oracle object, or Java Message Service (JMS)
format, then XML payloads are transformed to the appropriate internal format during
enqueue and stored in the queue. During dequeue, when messages are obtained from
gueues containing messages in any of the preceding formats, they are converted to
XML before being sent to the client.

The message payload type depends on the queue type on which the operation is
being performed:

RAW Queues

The contents of RAW queues are raw bytes. You must supply the hex representation
of the message payload in the XML message. For example, <r aw>023f 4523</ r aw>.

Oracle Object Type Queues

For Oracle object type queues that are not JMS queues (that is, they are not type
AQ_JMs_*), the type of the payload depends on the type specified while creating the
gueue table that holds the queue. The content of the XML elements must map to the
attributes of the object type of the queue table.

JMS Type Queues/Topics

For queues with JMS types (that is, those with payloads of type AQS_JMS_*), there are
four XML elements, depending on the JMS type. IDAP supports queues or topics with
the following JMS types:

e Text Message

6-2

Chapter 6
Overview of Oracle Database Advanced Queuing Operations Over the Internet

* MapMessage

° BytesMessage

* (bj ect Message

JMS queues with payload type Stream\essage are not supported through IDAP.

6.1.3 Configuring the Web Server to Authenticate Users Sending
POST Requests

After the servlet is installed, the Web server must be configured to authenticate all
users that send PCST requests to the Oracle Database Advanced Queuing servlet. The
Oracle Database Advanced Queuing servlet allows only authenticated users to access
the servlet. If the user is not authenticated, then an error is returned by the servlet.

The Web server can be configured in multiple ways to restrict access. Some of the
common techniques are basic authentication (user name/password) over SSL and
client certificates. Consult your Web server documentation to see how you can restrict
access to servlets.

In the context of the Oracle Database Advanced Queuing servlet, the user name that
is used to connect to the Web server is known as the Oracle Database Advanced
Queuing HTTP agent or Oracle Database Advanced Queuing Internet user.

6.1.4 Client Requests Using HTTP

ORACLE

An Oracle Database Advanced Queuing client begins a request to the Oracle
Database Advanced Queuing servlet using HTTP by opening a connection to the
server. The client logs in to the server using HTTP basic authentication (with or without
SSL) or SSL certificate-based client authentication. The client constructs an XML
message representing the send, publish, receive or register request.

The client sends an HTTP PCST to the servlet at the remote server.

¢ See Also:

"Request and Response IDAP Documents"

User Sessions and Transactions

After a client is authenticated and connects to the Oracle Database Advanced
Queuing servlet, an HTTP session is created on behalf of the user. The first request in
the session also implicitly starts a new database transaction. This transaction remains
open until it is explicitly committed or terminated. The responses from the servlet
includes the session ID in the HTTP headers as cookies.

If the client wishes to continue work in the same transaction, then it must include this
HTTP header containing the session ID cookie in subsequent requests. This is
automatically accomplished by most Web browsers. However, if the client is using a
Java or C client to post requests, then this must be accomplished programmatically.

6-3

Chapter 6
Overview of Oracle Database Advanced Queuing Operations Over the Internet

An explicit commit or rollback must be applied to end the transaction. The commit or
rollback requests can also be included as part of other Oracle Database Advanced
Queuing operations.

6.1.5 Oracle Database Advanced Queuing Servlet Responses Using
HTTP

The server accepts the client HTTP(S) connection and authenticates the user (Oracle
Database Advanced Queuing agent) specified by the client. The server receives the
PCST request and invokes the Oracle Database Advanced Queuing servlet.

If this is the first request from this client, then a new HTTP session is created. The
XML message is parsed and its contents are validated. If a session ID is passed by
the client in the HTTP headers, then this operation is performed in the context of that
session.

The servlet determines which object (queue/topic) the agent is trying to perform
operations on. The servlet looks through the list of database users that map to this
Oracle Database Advanced Queuing agent. If any one of these users has privileges to
access the queue/topic specified in the request, then the Oracle Database Advanced
Queuing servlet superuser creates a session on behalf of this user.

If no transaction is active in the HTTP session, then a new database transaction is
started. Subsequent requests in the session are part of the same transaction until an
explicit COWM T or ROLLBACK request is made. The effects of the transaction are visible
only after it is committed. If the transaction remains inactive for 120 seconds, then it is
automatically terminated.

The requested operation is performed. The response is formatted as an XML message
and sent back the client. The response also includes the session ID in the HTTP
headers as a cookie.

¢ See Also:

"User Sessions and Transactions"

6.1.6 Oracle Database Advanced Queuing Propagation Using HTTP
and HTTPS

You can propagate over HTTP and HTTPS (HTTP over SSL) instead of Oracle Net
Services. HTTP, unlike Oracle Net Services, is easy to configure for firewalls. The
background process doing propagation pushes messages to an Oracle Database
Advanced Queuing servlet that enqueues them into the destination database, as
shown in the figure.

ORACLE 6-4

Chapter 6
Deploying the Oracle Database Advanced Queuing XML Servlet

Figure 6-2 HTTP Oracle Database Advanced Queuing Propagation

Oracle Web Oracle
Server Server Server

Destination
Database

i

Job queue > AQ AQ Queue =
process _| Servlet 5
Lp AQ Queue

[\

/|) S— | E—

You can set up any application to use Oracle Database Advanced Queuing HTTP
propagation without any change to the existing code. An application using Oracle
Database Advanced Queuing HTTP propagation can easily switch back to Net
Services propagation just by re-creating the database link with a Net Services
connection string, without any other changes.

6.2 Deploying the Oracle Database Advanced Queuing XML

Servlet

ORACLE

The AQ servlet can be deployed with any Web server, for example, Tomcat. Follow
these steps to deploy the AQ XML servlet using Tomcat:

1. For JDK1.8.x, include the following in your CLASSPATH:

ORACLE_HOVE/ j dbc/ |i b/ oj dbc8. j ar
ORACLE_HOVE/ j lib/jndi.jar
ORACLE_HOMVE/ j lib/jta.jar
ORACLE_HOWE/j l'i b/ orai 18n. | ar
ORACLE_HOWE/j |'i b/ orai 18n-col | ation.jar
ORACLE_HOWE j | i b/ or ai 18n- mappi ng. j ar
ORACLE_HOWE/j l'i b/ orai 18n-utility.jar
ORACLE_HOWE/ I'i b/ http_client.jar
ORACLE_HOWE/ I'i b/ | cl asses12. zi p
ORACLE_HOWE/ i b/ servl et. | ar
ORACLE_HOWE/ | i b/ xm par serv2. | ar
ORACLE_HOWE/ | i b/ xschema. j ar
ORACLE_HOWE/ | i b/ xsul2. j ar
ORACLE_HOVE/ rdbnrs/ j |'i b/ agapi . j ar
ORACLE_HOVE/ rdbnrs/ j |'i b/ agxml . j ar
ORACLE_HOVE/ rdbns/ j | i b/ j msconmon. | ar
ORACLE_HOVE/ rdbnrs/ j |'i b/ xdb. j ar

2. Copy the following jar files into the tontat/|i b directory:

ORACLE_HOME/ j dbc/ i b/ o dbc8. j ar
ORACLE_HOWE/ j i b/ jndi.jar
ORACLE_HOVE/ jlibljta.jar
ORACLE_HOWE/ i b/ http_client.jar
ORACLE_HOWE/ l'i b/ | cl asses12. zip
ORACLE_HOMVE/ | i b/ servl et. | ar
ORACLE_HOWE/ | i b/ xm par serv2.jar
ORACLE_HOMVE/ | i b/ xschena. j ar
ORACLE_HOWE/ | i b/ xsul2. j ar
ORACLE_HOVE/ rdbns/ j | i b/ agapi . j ar
ORACLE_HOVE/ rdbns/ j | i b/ agxm . j ar

6-5

Chapter 6
Internet Data Access Presentation (IDAP)

ORACLE_HOVE/ rdbns/ j | i b/ j mecomron. | ar
ORACLE_HOVE/ rdbms/ j i b/ xdb. j ar

3. Create or update tontat - users. xm file appropriately for Web applications users
accessing queues. For example:

User Passwor d

4. Set up queues in database and create AQ agents so that Tomcat users created in
step 3 get authenticated before it can access AQ queues. DBA needs to make use
of DBMS_AQADM CREATE_AQ AGENT and DBMS_AQADM ENABLE DB _ACCESS procedures. For
example, if we assume JOHN is the user created in Tomcat and AQXMLUSER is the AQ
agent created on the database, then in order to access AQ servlet using HTTP,
run the following queries:

EXECUTE dbms_aqgadm creat e_aq_agent (agent _name=>' JOHN , enabl e_http =>true);
EXECUTE dbms_agadm enabl e_db_access(' JOHN , ' AQXMLUSER);

Here AQXMLUSER is the AQ user that is created in the database.
DBA can check internet AQ users agents details using the following query :
SELECT agent _nane, db_usernane, http_enabl ed FROM ag$i nternet users ;
5. Deploy the AQ XML servlet, which extends oracl e. AQ xm . AQxni Servl et class.
6. Start or stop the Tomcat instance as follows:
a. Start the Tomcat instance using sh toncat/bin/startup. sh
b. Shutdown the Tomcat instance using sh tontat/ bi n/ shut down. sh
c. Forlogs in Tomcat check tontat /| ogs/ catal i na. out file
Related Topics

e Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server

6.3 Internet Data Access Presentation (IDAP)

ORACLE

Internet Data Access Presentation (IDAP) uses the Content-Type of text/xnl to
specify the body of the SOAP request.

XML provides the presentation for IDAP request and response messages as follows:

* All request and response tags are scoped in the SOAP namespace.

* Oracle Database Advanced Queuing operations are scoped in the IDAP
namespace.

* The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

* The receiver processes SOAP messages that have correct namespaces and
returns an invalid request error for requests with incorrect namespaces.

* The SOAP namespace has the value http://schemas. xm soap. or g/ soap/ envel ope/

e The IDAP namespace has the value http://ns. oracl e. coml AQ schenas/ access

6-6

Chapter 6
Internet Data Access Presentation (IDAP)

6.3.1 SOAP Message Structure

These topics shows how SOAP structures a message request or response.
* SOAP Envelope

* SOAP Header

SOAP Body

6.3.1.1 SOAP Envelope

This is the root or top element in an XML tree. Its tag is SOAP: Envel ope. SOAP defines a
global attribute SOAP: encodi ngSt yl e that indicates serialization rules used instead of
those described by the SOAP specification.

This attribute can appear on any element and is scoped to that element and all child
elements not themselves containing such an attribute. Omitting this attribute means
that type specification has been followed unless overridden by a parent element.

The SOAP envelope also contains namespace declarations and additional attributes,
provided they are namespace-qualified. Additional namespace-qualified subelements
can follow the body.

6.3.1.2 SOAP Header

This is the first element under the root. Its tag is SOAP: Header . A SOAP header passes
necessary information, such as the transaction identifier.

The header is encoded as a child of the SOAP: Envel ope XML element. Headers are
identified by the name element and are namespace-qualified. A header entry is
encoded as an embedded element.

6.3.1.3 SOAP Body

This is the Oracle Database Advanced Queuing XML document. Its tag is SOAP: Body,
and it contains a first subelement whose name is the method name.

This method request element contains elements for each input and output parameter.
The element names are the parameter names. The body also contains SOAP: Faul t,
indicating information about an error. The Oracle Database Advanced Queuing XML
document has the namespace http://ns. oracl e. coml AQ schenas/ access

6.3.2 SOAP Method Invocation

A method invocation is performed by creating the request header and body and
processing the returned response header and body. The request and response
headers can consist of standard transport protocol-specific and extended headers.

6.3.2.1 HTTP Headers

ORACLE

The PGST method within the HTTP request header performs the SOAP method
invocation. The request should include the header SOAPMet hodNare, whose value
indicates the method to be invoked on the target. The value is of the form URI #net hod
nane.

6-7

Chapter 6
Internet Data Access Presentation (IDAP)

For example:

SOAPMet hodNane: http://ns. oracl e. com AQ schenas/ access#AQXm Send

The URI used for the interface must match the implied or specified namespace
gualification of the method name element in the SOAP: Body part of the payload. The
method name must not include the "#" character.

6.3.2.2 Method Invocation Body

ORACLE

SOAP method invocation consists of a method request and optionally a method
response. The SOAP method request and method response are an HTTP request and
response, respectively, whose contents are XML documents consisting of the root and
mandatory body elements.

These XML documents are referred to as SOAP payloads in the rest of the sections.
A SOAP payload is defined as follows:

* The SOAP root element is the top element in the XML tree.

* The SOAP payload headers contain additional information that must travel with the
request.

* The method request is represented as an XML element with additional elements
for parameters. It is the first child of the SOAP: Body element. This request can be
one of the Oracle Database Advanced Queuing XML client requests described in
the next section.

» The response is the return value or an error or exception that is passed back to
the client.

At the receiving site, a request can have one of the following outcomes:

e The HTTP infrastructure on the receiving site can receive and process the request.
In this case, the HTTP infrastructure passes the headers and body to the SOAP
infrastructure.

e The HTTP infrastructure on the receiving site cannot receive and process the
request. In this case, the result is an HTTP response containing an HTTP error in
the status field and no XML body.

e The SOAP infrastructure on the receiving site can decode the input parameters,
dispatch to an appropriate server indicated by the server address, and invoke an
application-level function corresponding semantically to the method indicated in
the method request. In this case, the result of the method request consists of a
response or error.

e The SOAP infrastructure on the receiving site cannot decode the input
parameters, dispatch to an appropriate server indicated by the server address,
and invoke an application-level function corresponding semantically to the
interface or method indicated in the method request. In this case, the result of the
method is an error that prevented the dispatching infrastructure on the receiving
side from successful completion.

In the last two cases, additional message headers can be present in the results of the
request for extensibility.

6-8

Chapter 6
Request and Response IDAP Documents

6.3.2.3 Results from a Method Request

The results of the request are to be provided in the form of a request response. The
HTTP response must be of Content-Type text/xn .

A SOAP result indicates success and an error indicates failure. The method response
never contains both a result and an error.

6.4 Request and Response IDAP Documents

The body of a SOAP message is an IDAP message. This XML document has the
namespace http://ns. oracl e. coml AQ schenas/ access.

The body represents:

* Client requests for enqueue, dequeue, and registration
» Server responses to client requests for enqueue, dequeue, and registration

* Notifications from the server to the client

" Note:

Oracle Database Advanced Queuing Internet access is supported only for
8.1 or higher style queues.

Sharded queues do not support internet access through SOAP.

This section contains these topics:

* IDAP Client Requests for Enqueue

IDAP Client Requests for Dequeue

» IDAP Client Requests for Registration

* IDAP Client Requests to Commit a Transaction

* IDAP Client Requests to Roll Back a Transaction
* IDAP Server Response to an Enqueue Request
* IDAP Server Response to a Dequeue Request

* |IDAP Server Response to a Register Request

* IDAP Commit Response

* IDAP Rollback Response

* IDAP Notification

* |IDAP Response in Case of Error

6.4.1 IDAP Client Requests for Enqueue

ORACLE

Client send and publish requests use AQXm Send to enqueue to a single-consumer
gueue and AQXnl Publ i sh to enqueue to multiconsumer queues/topics.

6-9

ORACLE

Chapter 6
Request and Response IDAP Documents

AQXm Send and AQXmi Publ i sh contain the following elements:

producer_options
message_set
message_header
message_payload
AQXmICommit

producer_options

This is a required element. It contains the following child elements:

destination

This element is required. It specifies the queue/topic to which messages are to be
sent. It has an optional | ookup_t ype attribute, which determines how the destination
value is interpreted. If lookup_type is DATABASE, which is the default, then the
destination is interpreted as schena. queue_nane. If | ookup_t ype is LDAP, then the
LDAP server is used to resolve the destination.

visibility

This element is optional. It determines when an enqueue becomes visible. The
default is ON_COW T, which makes the enqueue visible when the current transaction
commits. If | MVEDI ATE is specified, then the effects of the enqueue are visible

immediately after the request is completed. The enqueue is not part of the current
transaction. The operation constitutes a transaction on its own.

transformation

This element is optional. It specifies the PL/SQL transformation to be invoked
before the message is enqueued.

message_set

This is a required element and contains one or more messages. Each message
consists of a message_header and a message_payload.

message_header

This element is optional. It contains the following child elements:

sender i d

If a nessage_header element is included, then it must contain a sender _i d element,
which specifies an application-specific identifier. The sender _i d element can
contain agent _nanme, addr ess, protocol , and agent _al i as elements. The agent _al i as
element resolves to a name, address, and protocol using LDAP.

message_i d

This element is optional. It is a unique identifier of the message, supplied during
dequeue.

correlation
This element is optional. It is the correlation identifier of the message.

del ay

6-10

Chapter 6
Request and Response IDAP Documents

This element is optional. It specifies the duration in seconds after which a
message is available for processing.

e expiration

This element is optional. It specifies the duration in seconds that a message is
available for dequeuing. This parameter is an offset from the delay. By default
messages never expire. If a message is not dequeued before it expires, then it is
moved to an exception queue in the EXPI RED state.

e priority

This element is optional. It specifies the priority of the message. The priority can
be any number, including negative numbers. A smaller number indicates higher
priority.

° recipient_list

This element is optional. It is a list of recipients which overrides the default
subscriber list. Each recipient is represented in reci pi ent _| i st by areci pi ent
element, which can contain agent _nane, address, protocol , and agent _al i as
elements. The agent _al i as element resolves to a name, address, and protocol
using LDAP.

® nessage_state

This element is optional. It specifies the state of the message. It is filled in
automatically during dequeue. If nessage_st at e is 0, then the message is ready to
be processed. If it is 1, then the message delay has not yet been reached. If it is 2,
then the message has been processed and is retained. If it is 3, then the message
has been moved to an exception queue.

° exception_queue

This element is optional. It specifies the name of the queue to which the message
is moved if the number of unsuccessful dequeue attempts has exceeded

max_retri es or the message has expired. All messages in the exception queue are
in the EXPI RED state.

If the exception queue specified does not exist at the time of the move, then the
message is moved to the default exception queue associated with the queue table,
and a warning is logged in the alert log. If the default exception queue is used,
then the parameter returns a NULL value at dequeue time.

message_payload

This is a required element. It can contain different elements based on the payload type
of the destination queue/topic. The different payload types are described in "IDAP
Client Requests for Dequeue".

AQXmICommit

This is an optional empty element. If it is included, then the transaction is committed at
the end of the request.

¢ See Also:

"Internet Message Payloads" for an explanation of IDAP message payloads

ORACLE 6-11

Chapter 6
Request and Response IDAP Documents

6.4.2 IDAP Client Requests for Dequeue

Client requests for dequeue use AQXnl Recei ve, which contains these elements.

ORACLE

consumer_options

AQXmICommit

consumer_options

This is a required element. It contains the following child elements:

destination

This element is required. It specifies the queue/topic from which messages are to
be received. The desti nati on element has an optional | ookup_t ype attribute, which
determines how the destination value is interpreted. If lookup_type is DATABASE,
which is the default, then the destination is interpreted as schema. queue_nane. If

| ookup_t ype is LDAP, then the LDAP server is used to resolve the destination.

consuner _nane

This element is optional. It specifies the name of the consumer. Only those
messages matching the consumer name are accessed. If a queue is not set up for
multiple consumers, then this field should not be specified.

wait_tine
This element is optional. It specifies the number of seconds to wait if there is no
message currently available which matches the search criteria.

sel ect or

This element is optional. It specifies criteria used to select the message. It can
contain child elements correl ati on, message_i d, or condi ti on.

A dequeue condi ti on element is a Boolean expression using syntax similar to the
VHERE clause of a SQL query. This Boolean expression can include conditions on
message properties, user object payload data properties, and PL/SQL or SQL
functions. Message properties include priority, corrid and other columns in the
gueue table.

To specify dequeue conditions on a message payload, use attributes of the object
type in clauses. You must prefix each attribute with t ab.user _dat a as a qualifier to
indicate the specific column of the queue table that stores the payload.

A dequeue condi ti on element cannot exceed 4000 characters.

¢ Note:

When a dequeue condition or correlation identifier is used, the order of the
messages dequeued is indeterminate, and the sort order of the queue is
not honored.

visibility
This element is optional. It determines when a dequeue becomes visible. The

default is ON_COW T, which makes the dequeue visible when the current transaction
commits. If | MEDI ATE is specified, then the effects of the dequeue are visible

6-12

ORACLE

Chapter 6
Request and Response IDAP Documents

immediately after the request is completed. The dequeue is not part of the current
transaction. The operation constitutes a transaction on its own.

dequeue_node

This element is optional. It specifies the locking action associated with the
dequeue. The possible values are REMOVE, BROASE, and LOCKED.

REMOVE is the default and causes the message to be read and deleted. The
message can be retained in the queue table based on the retention properties.
BROWEE reads the message without acquiring any lock on it. This is equivalent to a
select statement. LOCKED reads the message and obtains a write lock on it. The
lock lasts for the duration of the transaction. This is equivalent to a select for
update statement.

navi gati on_node

This element is optional. It specifies the position of the message that is retrieved.
First, the position is determined. Second, the search criterion is applied. Finally,
the message is retrieved. Possible values are FI RST_MESSAGE, NEXT_MESSAGE, and
NEXT_TRANSACTI ON.

FI RST_MESSAGE retrieves the first message which is available and which matches
the search criteria. This resets the position to the beginning of the queue.
NEXT_MESSAGE is the default and retrieves the next message which is available and
which matches the search criteria. If the previous message belongs to a message
group, then Oracle Database Advanced Queuing retrieves the next available
message which matches the search criteria and which belongs to the message
group.NEXT_TRANSACTI ON skips the remainder of the current transaction group and
retrieves the first message of the next transaction group. This option can only be
used if message grouping is enabled for the current queue.

transformation

This element is optional. It specifies the PL/SQL transformation to be invoked after
the message is dequeued.

AQXmICommit

This is an optional empty element. If it is included, then the transaction is committed at
the end of the request.

6.4.3 IDAP Client Requests for Registration

Client requests for registration use AQXn Regi st er, which must contain a
regi ster_options element. The regi ster_opti ons element contains these child
elements.

destination

This element is required. It specifies the queue/topic on which notifications are
registered. The desti nati on element has an optional | ookup_t ype attribute, which
determines how the destination value is interpreted. If lookup_type is DATABASE,
which is the default, then the destination is interpreted as schema. queue_nane. If

| ookup_t ype is LDAP, then the LDAP server is used to resolve the destination.

consuner _nane

This element is optional. It specifies the consumer name for multiconsumer
gueues or topics. This parameter must not be specified for single-consumer
queues.

6-13

Chapter 6
Request and Response IDAP Documents

e notify_url

This element is required. It specifies where notification is sent when a message is
enqueued. The form can be http://url, milto://email address orplsqgl://pl/sgl
procedure.

6.4.4 IDAP Client Requests to Commit a Transaction

A request to commit all actions performed by the user in a session uses AQXm Conmi t .

A commit request has the following format:

<?xm version="1.0"?>
<Envel ope xm ns="http://schenmas. xm soap. or g/ soap/ envel ope/ ">
<Body>
<AQXm Commit xm ns="http://ns. oracl e. coml AQ schenmas/access"/ >
</ Body>
</ Envel ope>

6.4.5 IDAP Client Requests to Roll Back a Transaction

A request to roll back all actions performed by the user in a session uses
AQXm Rol | back. Actions performed with | MVEDI ATE visibility are not rolled back.

An IDAP client rollback request has the following format:

<?xm version="1.0"?>
<Envel ope xm ns="http://schenmas. xm soap. or g/ soap/ envel ope/ " >
<Body>
<AQXm Rol | back xm ns="http://ns. oracle.com AQ schenas/ access"/>
</ Body>
</ Envel ope>

6.4.6 IDAP Server Response to an Enqueue Request

ORACLE

The response to an enqueue request to a single-consumer queue uses
AQXm SendResponse.

It contains the following elements:

e status_response

This element contains child elements st at us_code, error_code, and error_nessage.
The st at us_code element takes value 0 for success or - 1 for failure. The error_code
element contains an Oracle error code. The error_nessage element contains a
description of the error.

e send_result

This element contains child elements desti nati on and message_i d. The desti nation
element specifies where the message was sent. The nessage_i d element uniquely
identifies every message sent.

The response to an enqueue request to a multiconsumer queue or topic uses
AQXn Publ i shResponse. It contains the following elements:

® stat us_response

This element contains child elements st at us_code, error_code, and error_nessage.
The status_code element takes value 0 for success or - 1 for failure. The error_code

6-14

Chapter 6
Request and Response IDAP Documents

element contains an Oracle error code. The error _nessage element contains a
description of the error.

°* publish_result

This element contains child elements desti nati on and message_i d. The desti nation
element specifies where the message was sent. The nessage_i d element uniquely
identifies every message sent.

6.4.7 IDAP Server Response to a Dequeue Request

The response to a dequeue request uses AQXnl Recei veResponse.
It contains the following elements:

e status_response

This element contains child elements st at us_code, error_code, and error_nessage.
The st at us_code element takes value 0 for success or - 1 for failure. The error_code
element contains an Oracle error code. The error_nessage element contains a
description of the error.

° receive_result

This element contains child elements desti nati on and message_set. The
desti nati on element specifies where the message was sent. The nessage_set
element specifies the set of messages dequeued.

6.4.8 IDAP Server Response to a Register Request

The response to a register request uses AQXni Regi st er Response.

It contains the st at us_r esponse element described in "IDAP Server Response to a
Dequeue Request".

6.4.9 IDAP Commit Response

The response to a commit request uses AQXnl Commi t Response.

It contains the st at us_r esponse element described in "IDAP Server Response to a
Dequeue Request". The response to a commit request has the following format:

<?xm version = "'1.0"?>
<Envel ope xm ns="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<Body>
<AQXm Cormmi t Response xm ns="http://ns. oracl e. conl AQ schenmas/ access">
<status_response>
<status_code>0</stat us_code>
</ status_response>
</ AQXm Commi t Response>
</ Body>
</ Envel ope>

6.4.10 IDAP Rollback Response

The response to a rollback request uses AQXm Rol | backResponse.

It contains the st at us_r esponse element described in "IDAP Server Response to a
Dequeue Request".

ORACLE 6-15

Chapter 6
Notification of Messages by E-Malil

6.4.11 IDAP Notification

When an event for which a client has registered occurs, a notification is sent to the
client at the URL specified in the REG STER request using AQXn Not i fi cati on.

It contains the following elements:
e notification_options

This element has child elements desti nation and consuner _nane. The destination
element specifies the destination queue/topic on which the event occurred. The
consumer_name element specifies the consumer name for which the even
occurred. It applies only to multiconsumer queues/topics.

e message_set

This element specifies the set of message properties.

6.4.12 IDAP Response in Case of Error

In case of an error in any of the preceding requests, a FAULT is generated.
The FAULT element contains the following elements:

e faultcode
This element specifies the error code for the fault.
e faultstring

This element indicates a client error or a server error. A client error means that the
request is not valid. A server error indicates that the Oracle Database Advanced
Queuing servlet has not been set up correctly.

e detail

This element contains the st at us_r esponse element, which is described in "IDAP
Server Response to a Dequeue Request".

6.5 Notification of Messages by E-Mall

These are the steps for setting up your database for e-mail notifications.

1. Setthe SMTP mail host by invoking DBMS_AQELM SET_MAI LHCST as an Oracle
Database Advanced Queuing administrator.

2. Setthe SMTP mail port by invoking DBMS_AQELM SET_MAI LPORT as an Oracle
Database Advanced Queuing administrator. If not explicit, set defaults to 25.

3. Setthe SendFrom address by invoking DBVS_AQELM SET_SENDFROM

4. After setup, you can register for e-mail notifications using the Oracle Call Interface
(OCI) or PL/SQL API.

ORACLE 6-16

Troubleshooting Oracle Database
Advanced Queuing

These topics describe how to troubleshoot Oracle Database Advanced Queuing (AQ).

» Debugging Oracle Database Advanced Queuing Propagation Problems

e Oracle Database Advanced Queuing Error Messages

7.1 Debugging Oracle Database Advanced Queuing
Propagation Problems

These tips should help with debugging propagation problems. This discussion
assumes that you have created queue tables and queues in source and target
databases and defined a database link for the destination database.

The notation assumes that you supply the actual name of the entity (without the
brackets).

" See Also:

"Optimizing Propagation”

To begin debugging, do the following:

1. Check that the propagation schedule has been created and that a job queue
process has been assigned.

Look for the entry in the DBA_ QUEUE_SCHEDULES view and make sure that the status of
the schedule is enabled. SCHEDULE DI SABLED must be set to 'N. Check that it has a
nonzero entry for JOBNO in table AQS_SCHEDULES, and that there is an entry in table
JOB$ with that JOBNO.

To check if propagation is occurring, monitor the DBA QUEUE_SCHEDULES view for the
number of messages propagated (TOTAL_NUMBER).

If propagation is not occurring, check the view for any errors. Also check the
NEXT_RUN_DATE and NEXT_RUN_TI ME in DBA_ QUEUE_SCHEDULES to see if propagation is
scheduled for a later time, perhaps due to errors or the way it is set up.

2. Check if the database link to the destination database has been set up properly.
Make sure that the queue owner can use the database link. You can do this with:

sel ect count(*) fromtable_name@blink_name;
3. Make sure that at least two job queue processes are running.

4. Check for messages in the source queue with:

ORACLE 7-1

Chapter 7
Debugging Oracle Database Advanced Queuing Propagation Problems

sel ect count (*) from AQb<source_queue_t abl e>
where g_nane = 'source_gqueue_nane';

5. Check for messages in the destination queue with:

sel ect count (*) from AQB<destination_queue_tabl e>
where ¢_nane = 'destination_queue_nane';

6. Check to see who is using job queue processes.

Check which jobs are being run by querying dba_j obs_r unni ng. It is possible that
other jobs are starving the propagation jobs.

7. Check to see that the queue table sys. ag$_prop_t abl e_i nst no exists in
DBA_QUEUE_TABLES. The queue sys. ag$_prop_notify_queue_i nst no must also exist in
DBA_QUEUES and must be enabled for enqueue and dequeue.

In case of Oracle Real Application Clusters (Oracle RAC), this queue table and
gueue pair must exist for each Oracle RAC node in the system. They are used for
communication between job queue processes and are automatically created.

8. Check that the consumer attempting to dequeue a message from the destination
gueue is a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

sel ect consumer _nane, deq_txn_id, deq_tine, deq_user_id,
propagat ed_nsgi d from ag$<desti nation_queue_t abl e>
where queue = 'queue_nane';

For 8.0-style queues, you can obtain the same information from the history column
of the queue table:

sel ect h.consuner, h.transaction_id, h.deq_tinme, h.deq_user,
h. propagat ed_nsgi d from aq$<destination_queue_table> t, table(t.history) h
where t.qg_name = 'queue_nane';

" Note:

Queues created in a queue table with conpati bl e set to 8. 0 (referrred to in
this guide as 8.0-style queues) are deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2). Oracle recommends that any
new queues you create be 8.1-style or newer and that you migrate existing
8.0-style queues at your earliest convenience.

9. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information is logged to job queue trace files as propagation takes
place. You can check the trace file for errors and for statements indicating that
messages have been sent.

ORACLE 7-2

Chapter 7
Oracle Database Advanced Queuing Error Messages

7.2 Oracle Database Advanced Queuing Error Messages

ORACLE

The Oracle Database Advanced Queuing Error Messages are listed here.

ORA-1555

You might get this error when using the NEXT_MESSAGE navigation option for dequeue.
NEXT_MESSAGE uses the snapshot created during the first dequeue call. After that, undo
information may not be retained.

The workaround is to use the FI RST_MESSAGE option to dequeue the message. This
reexecutes the cursor and gets a new snapshot. FI RST_MESSAGE does not perform as
well as NEXT_MESSAGE, so Oracle recommends that you dequeue messages in batches:
FI RST_MESSAGE for one, NEXT_MESSAGE for the next 1000 messages, then FI RST_MESSAGE
again, and so on.

ORA-24033

This error is raised if a message is enqueued to a multiconsumer queue with no
recipient and the queue has no subscribers (or rule-based subscribers that match this
message). This is a warning that the message will be discarded because there are no
recipients or subscribers to whom it can be delivered.

ORA-25237

When using the Oracle Database Advanced Queuing navigation option, you must
reset the dequeue position by using the FI RST_MESSAGE option if you want to continue
dequeuing between services (such as xa_start and xa_end boundaries). This is
because XA cancels the cursor fetch state after an xa_end. If you do not reset, then you
get an error message stating that the navigation is used out of sequence.

ORA-25307

Flow control has been enabled for the message sender. This means that the fastest
subscriber of the sender's message is not able to keep pace with the rate at which
messages are enqueued. The buffered messaging application must handle this error
and attempt again to enqueue messages after waiting for some time.

7-3

Oracle Database Advanced Queuing
Administrative Interface

These topics describe the Oracle Database Advanced Queuing (AQ) administrative
interface.

e Managing Non-Sharded Queue Tables

e Managing Non-Sharded Queues

e Managing Sharded Queues

e Managing Transformations

e Granting and Revoking Privileges

e Managing Subscribers

e Managing Propagations

* Managing Oracle Database Advanced Queuing Agents
e Adding an Alias to the LDAP Server

* Deleting an Alias from the LDAP Server

¢ See Also:

e Oracle Database Advanced Queuing: Programmatic Interfaces for a list of
available functions in each programmatic interface

e Oracle Database PL/SQL Packages and Types Reference for information
on the DBMS_AQADM Package

8.1 Managing Non-Sharded Queue Tables

These topics describe how to manage non-sharded queue tables.

* Creating a Queue Table
* Altering a Queue Table
» Dropping a Queue Table
* Purging a Queue Table

* Migrating a Queue Table

ORACLE 8-1

8.1.1 Creating a Queue Table

Chapter 8

Managing Non-Sharded Queue Tables

DBMS_AQADM CREATE_QUEUE_TABLE creates a non-sharded queue table for messages of a

predefined type.

DBVS_AQADM CREATE_QUEUE_TABLE(

queue_tabl e IN VARCHAR?,

queue_payl oad_type IN VARCHAR?,

storage_cl ause IN VARCHAR2 DEFAULT NULL,
sort_list IN VARCHAR2 DEFAULT NULL,
mul tiple_consuners IN BOOLEAN DEFAULT FALSE,
message_groupi ng IN BI NARY_| NTEGER DEFAULT NONE,
comrent IN VARCHAR2 DEFAULT NULL,
auto_commi t IN BOOLEAN DEFAULT TRUE,
primary_instance IN Bl NARY_| NTEGER DEFAULT O,
secondary_instance IN BI NARY_| NTEGER DEFAULT 0,
conpatibl e IN VARCHAR2 DEFAULT NULL,
secure IN BOOLEAN DEFAULT FALSE
replication_node IN BI NARY_| NTEGER DEFAULT NONE);

It has the following required and optional parameters:

Parameter

Description

queue_t abl e

This required parameter specifies the queue

table name.

Mixed case (upper and lower case together)
queue table names are supported if database
compatibility is 10.0, but the names must be
enclosed in double quote marks. So abc. ef g
means the schema is ABC and the name is EFG,
but "abc". "ef g" means the schema is abc
and the name is ef g.

Starting from 12c Release 2 (12.2.), the
maximum length of AQ queue table names is
122 bytes. If you attempt to create a queue
table with a longer name, error ORA-24019
results.

This required parameter specifies the payload
type as RAW or an object type. See "Payload
Type" for more information.

queue_payl oad_t ype

storage_cl ause This optional parameter specifies a tablespace
for the queue table. See "Storage Clause" for

more information.

sort_|ist This optional parameter specifies one or two
columns to be used as sort keys in ascending
order. It has the format

sort_col umi, sort_col um2. See "Sort Key"

for more information.

mul tipl e_consuners This optional parameter specifies the queue
table as single-consumer or multiconsumer.
The default FALSE means queues created in
the table can have only one consumer for
each message. TRUE means queues created in
the table can have multiple consumers for

each message.

ORACLE 8-2

ORACLE

Chapter 8
Managing Non-Sharded Queue Tables

Parameter

Description

message_groupi ng

comrent

auto_comit

primary_instance

secondary_i nstance

compati bl e

This optional parameter specifies whether
messages are grouped or not. The default
NONE means each message is treated
individually. TRANSACTI ONAL means all
messages enqueued in one transaction are
considered part of the same group and can be
dequeued as a group of related messages.

This optional parameter is a user-specified
description of the queue table. This user
comment is added to the queue catalog.

TRUE causes the current transaction, if any, to
commit before the CREATE_QUEUE_TABLE
operation is carried out. The
CREATE_QUEUE_TABLE operation becomes
persistent when the call returns. This is the
default. FALSE means the operation is part of
the current transaction and becomes
persistent only when the caller enters a
commit.

Note: This parameter has been deprecated.

This optional parameter specifies the primary
owner of the queue table. Queue monitor
scheduling and propagation for the queues in
the queue table are done in this instance. The
default value 0 means queue monitor
scheduling and propagation is done in any
available instance.

You can specify and modify this parameter
only if conpati bl e is 8. 1 or higher.

This optional parameter specifies the owner of
the queue table if the primary instance is not
available. The default value 0 means that the
queue table will fail over to any available
instance.

You can specify and modify this parameter
only if pri mary_i nst ance is also specified and
conpati bl e is 8. 1 or higher.

This optional parameter specifies the lowest
database version with which the queue table is
compatible. The possible values are 8. 0, 8. 1,
and 10. 0. If the database is in 10.1-compatible
mode, then the default value is 10. 0. If the
database is in 8.1-compatible or 9.2-
compatible mode, then the default value is

8. 1. If the database is in 8.0-compatible mode,
then the default value is 8. 0. The 8. 0 value is
deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2).

For more information on compatibility, see
"Oracle Database Advanced Queuing
Compatibility Parameters".

8-3

Chapter 8
Managing Non-Sharded Queue Tables

Parameter Description

secure This optional parameter must be set to TRUE if
you want to use the queue table for secure
gueues. Secure queues are queues for which
AQ agents must be associated explicitly with
one or more database users who can perform
gqueue operations, such as enqueue and
dequeue. The owner of a secure queue can
perform all queue operations on the queue,
but other users cannot unless they are
configured as secure queue users

replication_node Reserved for future use.
DBVS_AQADM REPLI CATI ON_MODE if queue is
being created in the Replication Mode or else
DBVS_AQADM NONE. Default is DBMS_AQADM NONE.

Payload Type

To specify the payload type as an object type, you must define the object type.

Note:

If you have created synonyms on object types, then you cannot use them in
DBMS_AQADM CREATE_QUEUE_TABLE. Error ORA-24015 results.

CLOB, BLOB, and BFILE objects are valid in an Oracle Database Advanced Queuing
message. You can propagate these object types using Oracle Database Advanced
Queuing propagation with Oracle software since Oracle8i release 8.1.x. To enqueue
an object type that has a LOB, you must first set the LOB_attri but e to EMPTY_BLOB() and
perform the enqueue. You can then select the LOB locator that was generated from the
gueue table's view and use the standard LOB operations.

" Note:

Payloads containing LOBs require users to grant explicit Sel ect, I nsert and
Updat e privileges on the queue table for doing enqueues and dequeues.

Storage Clause

The storage_cl ause argument can take any text that can be used in a standard CREATE
TABLE st or age_cl ause argument.

Once you pick the tablespace, any index-organized table (I0T) or index created for
that queue table goes to the specified tablespace. You do not currently have a choice
to split them between different tablespaces.

ORACLE 8-4

ORACLE

Chapter 8
Managing Non-Sharded Queue Tables

Note:

The gmon processes in the 11g Release 2 (11.2) perform auto-coalesce of the
the dequeue IOT, history 10T, and the time manager IOT. It is not required to
manually coalesce AQ IOTs. However, it can be performed as a workaround if
a performance degradation is observed.

If you choose to create the queue table in a locally managed tablespace or with
freelist groups > 1, then Queue Monitor Coordinator will skip the cleanup of
those blocks. This can cause a decline in performance over time.

Coalesce the dequeue IOT by running
ALTER TABLE AQ$_queue_tabl e_| COALESCE;
You can run this command while there are concurrent dequeuers and

enqueuers of the queue, but these concurrent users might see a slight decline
in performance while the command is running.

Sort Key

The sort_list parameter determines the order in which messages are dequeued. You
cannot change the message sort order after you have created the queue table. Your
choices are:

« ENQTIME
« ENQTIME PRIORITY

¢ PRORITY

« PRIORITY, ENQ TIME

« PRICRITY,COWM T_TIME
. COWT.TIME

If COMM T_TI ME is specified, then any queue that uses the queue table is a commit-time
gueue, and Oracle Database Advanced Queuing computes an approximate CSCN for
each enqueued message when its transaction commits.

If you specify COWM T_TI M as the sort key, then you must also specify the following:
e mltiple_consumers = TRUE

° nessage_groupi ng = TRANSACTI ONAL

e conpatible =8.1 or higher

Commit-time ordering is useful when transactions are interdependent or when
browsing the messages in a queue must yield consistent results.

Other Tables and Views
The following objects are created at table creation time:

* AQ_queue_t abl e_nane, a read-only view which is used by Oracle Database
Advanced Queuing applications for querying queue data

e AQ _queue_tabl e_nane_E, the default exception queue associated with the queue
table

8-5

Chapter 8
Managing Non-Sharded Queue Tables

* AQ_queue_t abl e_nanme_|, an index or an index-organized table (IOT) in the case of
multiple consumer queues for dequeue operations

e AQ _queue_tabl e_nane_T, an index for the queue monitor operations

* AQ_queue_t abl e_nanme_L, dequeue log table, used for storing message identifiers of
committed dequeue operations on the queue

The following objects are created only for 8.1-compatible multiconsumer queue tables:
* AQ_queue_t abl e_nane_S, a table for storing information about subscribers

° AQ@_queue_t abl e_nane_H, an index organized table (IOT) for storing dequeue history
data

Note:

Oracle Database Advanced Queuing does not support the use of triggers on
these internal AQ queue tables.

If you do not specify a schema, then you default to the user's schema.

If GLOBAL_TOPI C_ENABLED = TRUE when a queue table is created, then a corresponding
Lightweight Directory Access Protocol (LDAP) entry is also created.

If the queue type is ANYDATA, then a buffered queue and two additional objects are
created. The buffered queue stores logical change records created by a capture
process. The logical change records are staged in a memory buffer associated with
the queue; they are not ordinarily written to disk.

If they have been staged in the buffer for a period of time without being dequeued, or if
there is not enough space in memory to hold all of the captured events, then they are
spilled to:

° AQ_queue_t abl e_nane_P, a table for storing the captured events that spill from
memory

* AQ_queue_t abl e_nane_D, a table for storing information about the propagations and
apply processes that are eligible for processing each event

¢ See Also:

e "Dequeue Modes"
e "Commit-Time Queues" in Oracle Streams Concepts and Administration
e Oracle Database SecureFiles and Large Objects Developer's Guide

e Chapter 3, "Streams Staging and Propagation” in Oracle Streams
Concepts and Administration

Examples

The following examples assume you are in a SQL*Plus testing environment. In
Example 8-1, you create users in preparation for the other examples in this chapter.

ORACLE 8-6

ORACLE

Chapter 8
Managing Non-Sharded Queue Tables

For this example, you must connect as a user with administrative privileges. For most
of the other examples in this chapter, you can connect as user test _adm A few
examples must be run as test with EXECUTE privileges on DBVS_AQADM

Example 8-1 Setting Up AQ Administrative Users

CREATE USER test _adm | DENTI FI ED BY test _adm DEFAULT TABLESPACE exanpl e;
GRANT DBA, CREATE ANY TYPE TO test_adm

GRANT EXECUTE ON DBMS_AQADM TO test _adm

GRANT aqg_administrator_role TO test_adm

BEG N
DBMS_AQADM GRANT_SYSTEM PRI VI LEGE(
privilege = " MANAGE_ANY" ,
grantee = "test_adni,
admi n_option = FALSE) ;
END;

/
CREATE USER test |DENTIFIED BY test;
GRANT EXECUTE ON dbns_aq TO test;

Example 8-2 Setting Up AQ Administrative Example Types

CREATE TYPE test.message_typ AS object(

sender _i d NUMBER,
subj ect VARCHAR2(30) ,
t ext VARCHAR2(11000)) ;

/

CREATE TYPE test.nmsg_table AS TABLE OF test.nessage_typ;
/

CREATE TYPE test.order_typ AS object(

custno NUMBER,
item VARCHAR2(30) ,
description VARCHAR2(11000)) ;
/
CREATE TYPE test.lob_typ AS object(
id NUMBER,
subj ect VARCHAR2('100) ,
data BLOB,
trailer NUVBER) ;

/

Example 8-3 Creating a Queue Table for Messages of Object Type

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.obj_qtab',
queue_payl oad_t ype => 'test.nmessage_typ');
END;

/

Example 8-4 Creating a Queue Table for Messages of RAW Type

BEG N
DBMVS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.raw gtab',
queue_pay! oad_t ype => 'RAW);
END;

/

8-7

ORACLE

Chapter 8
Managing Non-Sharded Queue Tables

Example 8-5 Creating a Queue Table for Messages of LOB Type

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.lob_qgtab',
queue_payl oad_t ype => "test.lob_typ');
END;

/

Example 8-6 Creating a Queue Table for Messages of XMLType

BEG N
DBMVS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.xnl _gtab',
queue_payl oad_type => 'SYS. XM.Type',
mul tiple_consuners => TRUE,
conpatibl e = "'8.1,
comment => 'Qverseas Shipping multiconsunmer orders queue table');
END;
/

Example 8-7 Creating a Queue Table for Grouped Messages

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => 'test.group_qtab',
queue_payl oad_type => 'test.nessage_typ',
nmessage_gr oupi ng => DBMS_AQADM TRANSACTI ONAL) ;
END;

/

Example 8-8 Creating Queue Tables for Prioritized Messages and Multiple
Consumers

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.priority_qtab',
queue_payl oad_t ype => 'test.order_typ',
sort_|ist => ' PRIORI TY, ENQ_TI ME',
mul ti pl e_consuners => TRUE);
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.multiconsuner_qtab',
queue_payl oad_t ype => 'test.nessage_typ',
sort_|ist => ' PRIORI TY, ENQ TI ME',
mul ti pl e_consuners => TRUE);
END;

/

Example 8-9 Creating a Queue Table with Commit-Time Ordering

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.commit_tine_qgtab',
queue_payl oad_t ype => 'test.nmessage_typ',
sort |ist = "COWM T_TIM,
mul tipl e_consuners => TRUE,
message_groupi ng => DBM5_AQADM TRANSACTI ONAL,
conpati bl e => "'10.0");
END;

8-8

Chapter 8
Managing Non-Sharded Queue Tables

Example 8-10 Creating an 8.1-Compatible Queue Table for Multiple Consumers

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.multiconsuner_81 gtab',
queue_payl oad_t ype => 'test.message_typ',
mul ti pl e_consuners => TRUE,
conpatibl e = '8.1);
END;

/

Example 8-11 Creating a Queue Table in a Specified Tablespace

BEG N
DBMVS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => 'test.exanple_qgtab',
queue_payl oad_type => 'test.message_typ',
storage_cl ause => 'tabl espace exanple');
END;
/

Example 8-12 Creating a Queue Table with Freelists or Freelist Groups

BEG N
DBMS_AQADM CREATE_QUEUE_TABLE(
queue_tabl e => "test.freelist_qtab',
queue_payl oad_t ype = 'RAW,
storage_cl ause => ' STORACGE (FREELI STS 4 FREELI ST GROUPS 2)',
conpati bl e = '8.1");
END,

/

8.1.2 Altering a Queue Table

ORACLE

DBMS_AQADM ALTER QUEUE_TABLE alters the existing properties of a non-sharded queue
table.

DBMVS_AQADM ALTER QUEUE_TABLE (

queue_tabl e IN VARCHARZ,
comrent IN VARCHAR2 DEFAULT NULL,
primary_instance N BI NARY_I NTEGER DEFAULT NULL,
secondary_instance IN BINARY_| NTEGER DEFAULT NULL
replication_nmode IN BINARY_I NTEGER DEFAULT NULL);
Parameter Description
queue_t abl e This required parameter specifies the queue table name.
coment This optional parameter is a user-specified description of the queue

table. This user comment is added to the queue catalog.

primary_i nstance This optional parameter specifies the primary owner of the queue
table. Queue monitor scheduling and propagation for the queues in
the queue table are done in this instance.

You can specify and modify this parameter only if conpati bl e is 8.1
or higher.

secondary_i nstance This optional parameter specifies the owner of the queue table if the
primary instance is not available.

You can specify and modify this parameter only if pri mary_i nst ance
is also specified and conpati bl e is 8. 1 or higher.

8-9

Chapter 8
Managing Non-Sharded Queue Tables

Parameter Description

replication_node Reserved for future use. DBMS_AQADM REPLI CATI ON_MCDE if Queue is
being altered to be in the Replication Mode or else
DBMS_AQADM NONE. Default value is NULL.

Note:

In general, DDL statements are not supported on queue tables and may even
render them inoperable. For example, issuing an ALTER TABLE ... SHRI NK
statement against a queue table results in an internal error, and all subsequent
attempts to use the queue table will also result in errors. Oracle recommends
that you not use DDL statements on queue tables.

If GLOBAL_TOPI C_ENABLED = TRUE when a queue table is modified, then a corresponding
LDAP entry is also altered.

Example 8-13 Altering a Queue Table by Changing the Primary and Secondary
Instances

BEG N
DBMS_AQADM ALTER QUEUE_TABLE(
queue_tabl e => 'test.obj _qgtab',
primry_instance = 3,

secondary_instance => 2);
END;
/

Example 8-14 Altering a Queue Table by Changing the Comment

BEG N
DBMVS_AQADM ALTER QUEUE_TABLE(
queue_tabl e => 'test.obj _qgtab',
conment => 'revised usage for queue table');
END;

/

8.1.3 Dropping a Queue Table

ORACLE

DBMS_AQADM DROP_QUEUE_TABLE drops an existing non-sharded queue table.

DBVS_AQADM DROP_QUEUE_TABLE(
queue_tabl e IN VARCHAR?2,
force IN BOOLEAN DEFAULT FALSE,

You must stop and drop all the queues in a queue table before the queue table can be
dropped. You must do this explicitly if f or ce is set to FALSE. If force is set to TRUE, then
all queues in the queue table and their associated propagation schedules are dropped
automatically.

If GLOBAL_TOPI C_ENABLED = TRUE when a queue table is dropped, then a corresponding
LDAP entry is also dropped.

8-10

Chapter 8
Managing Non-Sharded Queue Tables

Example 8-15 Dropping a Queue Table

BEG N
DBMS_AQADM DROP_QUEUE_TABLE(
queue_tabl e => "test.obj _qtab');
END;

/

Example 8-16 Dropping a Queue Table with force Option

BEG N
DBMS_AQADM DROP_QUEUE_TABLE(
queue_table => 'test.raw gtab',
force => TRUE);
END;

/

8.1.4 Purging a Queue Table

DBVS_AQADM PURGE_QUEUE_TABLE purges messages from a non-sharded queue table.

DBMVS_AQADM PURGE_QUEUE_TABLE(

queue_tabl e IN VARCHAR?,
purge_condi tion IN VARCHARZ,
purge_opti ons IN ag$_purge_options_t);

It has the following parameters:

Parameter Description
queue_tabl e This required parameter specifies the queue table name.
purge_condition The purge condition must be in the format of a SQL WHERE clause,

and it is case-sensitive. The condition is based on the columns of
ag$queue_t abl e_nane view. Each column name in the purge
condition must be prefixed with "qt vi ew. "

All purge conditions supported for persistent messages are also
supported for buffered messages.

To purge all queues in a queue table, set purge_condi ti on to either
NULL (a bare null word, no quotes) or ' ' (two single quotes).

purge_options Type aq$_purge_options_t contains a bl ock parameter. If bl ock is
TRUE, then an exclusive lock on all the queues in the queue table is
held while purging the queue table. This will cause concurrent
enqueuers and dequeuers to block while the queue table is purged.
The purge call always succeeds if bl ock is TRUE. The default for
bl ock is FALSE. This will not block enqueuers and dequeuers, but it
can cause the purge to fail with an error during high concurrency
times.

Type ag$_purge_options_t also contains a del i very_node
parameter. If it is the default PERSI STENT, then only persistent
messages are purged. If it is set to BUFFERED, then only buffered
messages are purged. If it is set to PERS| STENT_CR _BUFFERED, then
both types are purged.

A trace file is generated in the udump destination when you run this procedure. It
details what the procedure is doing. The procedure commits after it has processed all
the messages.

ORACLE 8-11

Chapter 8
Managing Non-Sharded Queue Tables

" See Also:

"DBMS_AQADM" in Oracle Database PL/SQL Packages and Types Reference
for more information on DBVS_AQADM PURGE_QUEUE_TABLE

Note:

Some purge conditions, such as consuner _name in Example 8-20 and
sender _nane in Example 8-21, are supported only in 8.1-compatible queue
tables. For more information, see Table 9-1.

Example 8-17 Purging All Messages in a Queue Table

DECLARE
po dbms_agadm ag$_pur ge_options_t;
BEG N

po. bl ock := FALSE;

DBMS_AQADM PURGE_QUEUE_TABLE(
queue_tabl e => 'test.obj_qgtab',
purge_condition => NULL,
purge_options => po);

END;
/

Example 8-18 Purging All Messages in a Named Queue

DECLARE
po dbms_agadm ag$_pur ge_options_t;
BEG N
po. bl ock : = TRUE;
DBMVS_AQADM PURGE_QUEUE_TABLE(
queue_tabl e => 'test.obj _qgtab',
purge_condition => 'qtview queue = "' TEST. OBJ_QUEUE "',
purge_options => po);
END;
/

Example 8-19 Purging All PROCESSED Messages in a Named Queue

DECLARE
po dbms_aqadm aq$_purge_options_t;
BEG N
po. bl ock : = TRUE;
DBMS_AQADM PURGE_QUEUE_TABLE(
queue_tabl e => 'test.obj _qgtab',
purge_condition => 'qtview queue = "' TEST. OBJ_QUEUE''
and qtview nsg_state = ''PROCESSED "',
purge_options => po);
END;
/

ORACLE 8-12

Chapter 8
Managing Non-Sharded Queue Tables

Example 8-20 Purging All Messages in a Named Queue and for a Named
Consumer

DECLARE
po dbms_agadm ag$_pur ge_options_t;
BEG N
po. bl ock : = TRUE;
DBMS_AQADM PURGE_QUEUE_TABLE(
queue_tabl e => "test.mul ticonsuner_81 gtab',
purge_condition => 'qtvi ew queue = "' TEST. MULTI CONSUVER 81 QUEUE' '
and qtview consumer_nane = '' PAYROLL_APP "',
purge_options => po);
END;
/

Example 8-21 Purging All Messages from a Named Sender

DECLARE
po dbms_agadm ag$_pur ge_options_t;
BEG N
po. bl ock : = TRUE;
DBMVS_AQADM PURGE_QUEUE_TABLE(
queue_tabl e => "test.multiconsuner_81 gtab',
purge_condition => 'qtview sender_name = ''TEST. OBJ_QUEUE "',
purge_options => po);
END;
/

8.1.5 Migrating a Queue Table

ORACLE

DBVS_AQADM M GRATE_QUEUE TABLE migrates a non-sharded queue table from 8.0, 8.1, or
10.0 to 8.0, 8.1, or 10.0. Only the owner of the queue table can migrate it.

DBMVS_AQADM M GRATE_QUEUE_TABLE(
queue_table IN VARCHARZ,
conpatibl e IN VARCHAR?);

Note:

This procedure requires that the EXECUTE privilege on DBMS_AQADMbe granted to
the queue table owner, who is probably an ordinary queue user. If you do not
want ordinary queue users to be able to create and drop queues and queue
tables, add and delete subscribers, and so forth, then you must revoke the
EXECUTE privilege as soon as the migration is done.

" Note:

Queues created in a queue table with conpati bl e set to 8. 0 (referred to in this
guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues you
create be 8.1-style or newer and that you migrate existing 8.0-style queues at
your earliest convenience.

8-13

Chapter 8
Managing Non-Sharded Queues

If a schema was created by an import of an export dump from a lower release or has
Oracle Database Advanced Queuing queues upgraded from a lower release, then
attempts to drop it with DROP USER CASCADE will fail with ORA-24005. To drop such
schemas:

1. Event 10851 should be set to level 1.

2. Drop all tables of the form AQ_queue_t abl e_nane_NR from the schema.
3. Turn off event 10851.

4. Drop the schema.

Example 8-22 Upgrading a Queue Table from 8.1-Compatible to 10.0-
Compatible

BEG N
DBMS_AQADM M GRATE_QUEUE_TABLE (
queue_tabl e => 'test.xnl _gtab',
conpatibl e = '10.0");
END;

/

8.2 Managing Non-Sharded Queues

These topics describe how to manage non-sharded queues.

< Note:

Starting and stopping a sharded queue use the same APIs as non-sharded
queues.

* Creating a Queue
* Altering a Queue
e Starting a Queue
e Stopping a Queue
* Dropping a Queue

8.2.1 Creating a Queue

ORACLE

DBMS_AQADM CREATE_QUEUE creates a non-sharded queue.

DBMVS_AQADM CREATE_QUEUE(

queue_nane I'N VARCHAR2,

queue_t abl e IN VARCHAR?,

queue_type I'N Bl NARY_| NTEGER DEFAULT NORMAL_QUEUE,
max_retries I'N NUMBER DEFAULT NULL,
retry_del ay IN NUMBER DEFAULT 0,
retention_time I'N NUMBER DEFAULT O,
dependency_tracking IN BOCLEAN DEFAULT FALSE,
coment I'N VARCHAR2 DEFAULT NULL,

It has the following parameters:

8-14

ORACLE

Chapter 8
Managing Non-Sharded Queues

Parameter

Description

queue_nane

queue_t abl e

queue_t ype

max_retries

retry_del ay

retention_time

dependency_tracki ng

coment

This required parameter specifies the name of the new queue.

Mixed case (upper and lower case together) queue names are
supported if database compatibility is 10.0, but the names must
be enclosed in double quote marks. So abc. ef g means the
schema is ABC and the name is EFG, but "abc". "ef g" means the
schema is abc and the name is ef g.

Starting from 12c Release 2 (12.2.), the maximum length of user-
generated queue names is 122 bytes. If you attempt to create a
gueue with a longer name, error ORA-24019 results. Queue
names generated by Oracle Database Advanced Queuing, such
as those listed in "Other Tables and Views", cannot be longer
than 128 characters.

This required parameter specifies the queue table in which the
queue is created.

This parameter specifies what type of queue to create. The
default NORVAL_QUEUE produces a normal queue.
EXCEPTI ON_QUEUE produces an exception queue.

This parameter limits the number of times a dequeue with the
REMOVE mode can be attempted on a message. The maximum
value of max_retries is 2**31 -1.

This parameter specifies the number of seconds after which this
message is scheduled for processing again after an application
rollback. The default is 0, which means the message can be
retried as soon as possible. This parameter has no effect if
max_retriesissettoO.

This parameter is supported for single-consumer queues and 8.1-
style or higher multiconsumer queues but not for 8.0-style
multiconsumer queues, which are deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2).

This parameter specifies the number of seconds a message is
retained in the queue table after being dequeued from the queue.
When retention_ti ne expires, messages are removed by the
time manager process. | NFI NI TE means the message is retained
forever. The default is 0, no retention.

This parameter is reserved for future use. FALSE is the default.
TRUE is not permitted in this release.

This optional parameter is a user-specified description of the
gueue. This user comment is added to the queue catalog.

All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is created
with both enqueue and dequeue disabled. To view retained messages, you can either
dequeue by message ID or use SQL. If GLOBAL_TOPI C ENABLED = TRUE when a queue is
created, then a corresponding LDAP entry is also created.

The following examples (Example 8-23 through Example 8-30) use data structures
created in Example 8-1 through Example 8-12.

Example 8-23 Creating a Queue for Messages of Object Type

BEG N

DBMVS_AQADM CREATE._QUEUE(

gueue_nane

=> 'test.obj_queue',

8-15

ORACLE

Chapter 8
Managing Non-Sharded Queues

queue_tabl e => 'test.obj_qtab');
END;
/

Example 8-24 Creating a Queue for Messages of RAW Type

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_nanme => 'test.raw_queue',
queue_tabl e => "test.raw qtab');
END;

/

Example 8-25 Creating a Queue for Messages of LOB Type

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_narme => 'test.|ob_queue',
queue_tabl e => 'test.lob_gtab');
END;

/

Example 8-26 Creating a Queue for Grouped Messages

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_nane => 'test.group_queue',
queue_tabl e => 'test.group_qtab');
END,

/

Example 8-27 Creating a Queue for Prioritized Messages

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_narme => "test.priority_queue',
queue_tabl e => "test.priority_qtab');
END;

/

Example 8-28 Creating a Queue for Prioritized Messages and Multiple
Consumers

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_narme => "test.multiconsuner_queue',
queue_table => "test.multiconsuner_qgtab');
END;

/

Example 8-29 Creating a Queue to Demonstrate Propagation

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_nane => "test.anot her _queue',
queue_tabl e => "test.multiconsuner_qtab');
END;

/

8-16

Chapter 8
Managing Non-Sharded Queues

Example 8-30 Creating an 8.1-Style Queue for Multiple Consumers

BEG N
DBMS_AQADM CREATE_QUEUE(
queue_name => "test.ml ticonsuner_81_queue',
queue_tabl e => "test.ml ticonsuner_81 _gtab');
END;

/

8.2.2 Altering a Queue

DBMS_AQADM ALTER QUEUE alters existing properties of a non-sharded queue.
DBMS_AQADM ALTER QUEUE(

queue_narne IN VARCHAR?,

max_retries IN NUMBER DEFAULT NULL,
retry_del ay IN NUMBER DEFAULT NULL,
retention_time IN NUVBER DEFAULT NULL,
comment IN VARCHAR2 DEFAULT NULL);

Only max_retries, conment, retry_del ay, and retention_ti ne can be altered. To view
retained messages, you can either dequeue by message ID or use SQL. If
GLOBAL_TCPI C ENABLED = TRUE when a queue is modified, then a corresponding LDAP
entry is also altered.

The following example changes retention time, saving messages for 1 day after
dequeuing:

Example 8-31 Altering a Queue by Changing Retention Time

BEG N
DBMS_AQADM ALTER QUEUE(
queue_nane => 'test.anot her_queue',
retention_tine => 86400);
END,

/

8.2.3 Starting a Queue

ORACLE

DBMS_AQADM START_QUEUE enables the specified non-sharded queue for enqueuing or
dequeuing.

DBMVS_AQADM START QUEUE(

queue_nane I'N VARCHAR2,
enqueue I'N BOOLEAN DEFAULT TRUE,
dequeue I'N BOOLEAN DEFAULT TRUE);

After creating a queue, the administrator must use START_QUEUE to enable the queue.
The default is to enable it for both enqueue and dequeue. Only dequeue operations
are allowed on an exception queue. This operation takes effect when the call
completes and does not have any transactional characteristics.

Example 8-32 Starting a Queue with Both Enqueue and Dequeue Enabled

BEG N
DBMS_AQADM START QUEUE (
queue_narme => 'test.obj _queue');
END;

/

8-17

Chapter 8
Managing Sharded Queues

Example 8-33 Starting a Queue for Dequeue Only

BEG N
DBMS_AQADM START_QUEUE(
queue_nanme => 'test.raw_queue',
dequeue => TRUE,
enqueue => FALSE);
END;

/

8.2.4 Stopping a Queue

DBMS_AQADM STOP_QUEUE disables enqueuing, dequeuing, or both on the specified non-
sharded queue.

DBMS_AQADM STOP_ QUEUE(

queue_narne IN VARCHARZ,

enqueue IN BOOLEAN DEFAULT TRUE,
dequeue IN BOOLEAN DEFAULT TRUE,
wai t IN BOOLEAN DEFAULT TRUE);

By default, this call disables both enqueue and dequeue. A queue cannot be stopped if
there are outstanding transactions against the queue. This operation takes effect when
the call completes and does not have any transactional characteristics.

Example 8-34 Stopping a Queue

BEG N
DBMS_AQADM STOP_QUEUE(
queue_narme => "test.obj _queue');
END;
/

8.2.5 Dropping a Queue

This procedure drops an existing non-sharded queue. DROP_QUEUE is not allowed unless
STOP_QUEUE has been called to disable the queue for both enqueuing and dequeuing. All
the queue data is deleted as part of the drop operation.

DBMVS_AQADM DROP_QUEUE(
queue_nane IN VARCHAR?,

If GLOBAL_TOPI C_ENABLED = TRUE when a queue is dropped, then a corresponding LDAP
entry is also dropped.
Example 8-35 Dropping a Standard Queue
BEG N
DBMS_AQADM DROP_ QUEUE(
queue_narme => 'test.obj _queue');

END;
/

8.3 Managing Sharded Queues

These topics describe how to manage sharded queues.

ORACLE 8-18

Chapter 8
Managing Sharded Queues

Note:

Starting and stopping a sharded queue use the same APIs as non-sharded
queues.

e Creating a Sharded Queue

e Dropping a Sharded Queue

e Altering a Sharded Queue

e Setting a Queue Parameter

e Unsetting a Queue Parameter
e Getting a Queue Parameter

e Creating an Exception Queue

8.3.1 Creating a Sharded Queue

ORACLE

The CREATE_SHARDED QUEUE API creates a sharded queue.

PROCEDURE CREATE_SHARDED QUEUE (

queue_nane I'N VARCHARZ,

storage_cl ause I'N VARCHAR2 DEFAULT NULL,

mul tipl e_consuners I N BOOLEAN DEFAULT FALSE,
max_retries I N NUMBER DEFAULT NULL,
comment I'N VARCHAR2 DEFAULT NULL,
queue_payl oad_t ype I'N VARCHAR2 DEFAULT JMS_TYPE,
queue_properties I'N QUEUE_PROPS T DEFAULT NULL,
replication_node I'N BI NARY_| NTEGER DEFAULT NONE);

It has the following parameters:

Parameter Description

queue_nane This required parameter specifies the name of the new queue.
Maximum of 128 characters allowed.

storage_cl ause The storage parameter is included in the CREATE TABLE statement
when the queue table is created. The st orage_cl ause argument
can take any text that can be used in a standard CREATE TABLE
st orage_cl ause argument. The storage parameter can be made
up of any combinations of the following parameters: PCTFREE,
PCTUSED, | NI TRANS, MAXTRANS, TABLESPACE, LOB, and a table
storage clause.

If a tablespace is not specified here, then the queue table and all
its related objects are created in the default user tablespace. If a
tablespace is specified here, then the queue table and all its
related objects are created in the tablespace specified in the
storage clause. See Oracle Database SQL Language Reference
for the usage of these parameters.

mul tipl e_consuners FALSE means queues can only have one consumer for each
message. This is the default. TRUE means queues created in the
table can have multiple consumers for each message.

8-19

Chapter 8
Managing Sharded Queues

Parameter Description

max_retries This optional parameter limits the number of times that a dequeue
can reattempted on a message after a failure. The maximum value
of mx_retriesis2**31 - 1. After the retry limit has been
exceeded, the message will be purged from the queue.
RETRY_COUNT is incremented when the application issues a rollback
after executing the dequeue. If a dequeue transaction fails
because the server process dies (including ALTER SYSTEM KI LL
SESSI ON) or SHUTDOAN ABORT on the instance, then RETRY_COUNT is
not incremented.

comrent This optional parameter is a user-specified description of the
queue table. This user comment is added to the queue catalog.
queue_payl oad_t ype Payload can be RAW DBMS_AQADM JMS_TYPE, or an object type.

Default is DBMS_AQADM JNVS_TYPE.

queue_properties Properties such as Normal or Exception Queue, Retry delay,
retention time, sort list and cache hint.

See also Oracle Database PL/SQL Packages and Types
Reference for more information about queue_pr operti es.

replication_node Reserved for future use. DBVS_AQADM REPLI CATI ON_MODE if queue
is being created in the Replication Mode or else DBMS_AQADM NONE.
Default is DBVS_AQADM NONE.

8.3.2 Dropping a Sharded Queue

This procedure drops an existing sharded queue from the database queuing system.
You must stop the queue before calling DROP_SHARDED QUEUE. User must stop the queue
explicitly if force is set to FALSE before calling DROP_SHARDED QUEUE. If force is set to TRUE
then queue will be stopped internally and then dropped.

Syntax

DBMS_AQADM DROP_SHARDED QUEUE(
queue_name | N VARCHARZ,
force I'N BOOLEAN DEFAULT FALSE)

Parameters

Table 8-1 CREATE_SHARDED_QUEUE Procedure Parameters

Parameter Description
queue_nane This required parameter specifies the name of the sharded queue.
force The sharded queue is dropped even if the queue is not stopped.

8.3.3 Altering a Sharded Queue

This procedure provides user the ability to alter queue_properties of a sharded queue.

Syntax

PROCEDURE ALTER_SHARDED QUEUE(
queue_nane I'N VARCHAR2,

ORACLE 8-20

Chapter 8
Managing Sharded Queues

max_retries I N NUMBER DEFAULT NULL,

comment I N VARCHAR2 DEFAULT NULL,

queue_properties IN QUEUE_PROPS T DEFAULT NULL,

replication_node I'N BI NARY_| NTEGER DEFAULT NULL);
Parameters

Table 8-2 ALTER_SHARDED_QUEUE Procedure Parameters
|

Parameter Description

queue_nane This parameter specifies the name of the sharded queue. A
maximum of 128 characters are allowed.

max_retries The maximum number of retries allowed.

comment The parameter comment.

queue_properties Properties such as Normal or Exception Queue, Retry delay,

retention time, sort list and cache hint.
See also Oracle Database PL/SQL Packages and Types
Reference for more information about queue_properti es.

replication_node Reserved for future use. DBMS_AQADM REPLI CATI ON_MODE if
queue is being altered to be in the Replication Mode or else
DBVS_AQADM NONE. Default is NULL.

8.3.4 Setting a Queue Parameter

This procedure allows user to set different parameters for sharded queues at queue or
database level. For database level the queue_nanme should be NULL. Note that queue
overrides database level parameter values.

Syntax
PROCEDURE SET_QUEUE_PARAMETER(
queue_nane I N VARCHAR?2,
param narme I N VARCHAR2,
param val ue I N NUMBER) ;
Parameters

Table 8-3 SET_QUEUE_PARAMETER Procedure Parameters
|

Parameter Description

queue_nane The name of the sharded queue.
par am name The name of the parameter.
param val ue The value of the parameter.

8.3.5 Unsetting a Queue Parameter

ORACLE

This procedure allows user to unset different parameters for sharded queues at queue
or database level. For database level the queue_nane should be NULL. Note that queue
overrides database level parameter values.

8-21

Chapter 8
Managing Sharded Queues

Syntax
PROCEDURE UNSET_QUEUE_PARAMETER(
queue_nane I'N VARCHAR2,
param name IN VARCHAR2) ;
Parameters

Table 8-4 UNSET_QUEUE_PARAMETER Procedure Parameters
|

Parameter Description
queue_nane The name of the sharded queue.
par am name The name of the parameter.

8.3.6 Getting a Queue Parameter

This procedure allows user to get different parameters for sharded queues at queue or
database level. For database level the queue_name should be NULL. Note that queue
overrides database level parameter values.

Syntax
PROCEDURE GET_QUEUE_PARAMETER(
gqueue_nane I'N VARCHAR2,
par am narme I'N VARCHAR2,
param val ue QUT NUMBER) ;
Parameters

Table 8-5 GET_QUEUE_PARAMETER Procedure Parameters
|

Parameter Description

queue_nane The name of the sharded queue.
par am name The name of the parameter.
param val ue The value of the parameter.

8.3.7 Creating an Exception Queue

This procedure allows a user to create an exception queue for a sharded queue.

Syntax

PROCEDURE CREATE_EXCEPTI ON_QUEUE(
sharded_queue_name I'N VARCHAR,
exception_queue_name | N VARCHAR2 DEFAULT NULL

K

ORACLE 8-22

Chapter 8
Managing Transformations

Parameters

Table 8-6 CREATE_EXCEPTION_QUEUE Procedure Parameters

Parameter Description

shar ded_queue_name The name of the sharded queue.

exception_queue_nane The name of the exception queue.

8.4 Managing Transformations

Transformations change the format of a message, so that a message created by one
application can be understood by another application. You can use transformations on
both persistent and buffered messages. These topics describe how to manage queue
tables.

* Creating a Transformation
* Modifying a Transformation

* Dropping a Transformation

" Note:

Sharded queues do not support transformations.

8.4.1 Creating a Transformation

ORACLE

DBMS_TRANSFORM CREATE_TRANSFORMATI ON creates a message format transformation.

DBNVS_TRANSFORM CREATE_TRANSFORMATI ON(

schema VARCHAR2(30) ,
nane VARCHAR2(30) ,
fromschema VARCHAR2(30) ,
fromtype VARCHAR2(30) ,
to_schema VARCHAR2(30) ,
to_type VARCHAR2(30) ,
transformation VARCHAR2('4000));

The transformation must be a SQL function with input type from type, returning an
object of type to_type. It can also be a SQL expression of type t o_t ype, referring to
from type. All references to from t ype must be of the form sour ce. user _dat a.

You must be granted EXECUTE privilege on dbns_t ransf or mto use this feature. This
privilege is included in the AQ ADM NI STRATCR _ROLE.

You must also have EXECUTE privilege on the user-defined types that are the source
and destination types of the transformation, and have EXECUTE privileges on any
PL/SQL function being used in the transformation function. The transformation cannot
write the database state (that is, perform DML operations) or commit or rollback the
current transaction.

8-23

Chapter 8
Managing Transformations

Example 8-36 Creating a Transformation

BEG N
DBMS_TRANSFORM CREATE_TRANSFORMATI ON(
schenn => 'test',
nane => 'nessage_order_transform,
fromschema => 'test',
fromtype => 'nmessage_typ',
to_schema => 'test',
to_type => 'order_typ',

transformation => 'test.order_typ(
source. user _data. sender _i d,
sour ce. user _dat a. subj ect,
source. user_data.text)');
END;

See Also:

"Oracle Database Advanced Queuing Security" for more information on
administrator and user roles

8.4.2 Modifying a Transformation

DBMS_TRANSFORM MODI FY_TRANSFORMATI ON changes the transformation function and
specifies transformations for each attribute of the target type.

DBVB_TRANSFORM MODI FY_TRANSFORMATI ON(
schema VARCHAR2(30) ,
nane VARCHAR2(30) ,
attribute_nunber | NTECGER,
transformation VARCHAR2(14000)) ;

If the attribute number 0 is specified, then the transformation expression singularly
defines the transformation from the source to target types.

All references to from t ype must be of the form sour ce. user _dat a. All references to the
attributes of the source type must be prefixed by sour ce. user _dat a.

You must be granted EXECUTE privileges on dbns_t ransf or mto use this feature. You
must also have EXECUTE privileges on the user-defined types that are the source and
destination types of the transformation, and have EXECUTE privileges on any PL/SQL
function being used in the transformation function.

8.4.3 Dropping a Transformation

ORACLE

DBMS_TRANSFORM DROP_TRANSFORMATI ON drops a transformation.

DBMS_TRANSFORM DROP_TRANSFORMATI ON (
schema VARCHAR2(30) ,
nane VARCHAR2(30)) ;

You must be granted EXECUTE privileges on dbns_t r ansf or mto use this feature. You
must also have EXECUTE privileges on the user-defined types that are the source and

8-24

Chapter 8
Granting and Revoking Privileges

destination types of the transformation, and have EXECUTE privileges on any PL/SQL
function being used in the transformation function.

8.5 Granting and Revoking Privileges

These topics describe how to grant and revoke privileges.

» Granting Oracle Database Advanced Queuing System Privileges
* Revoking Oracle Database Advanced Queuing System Privileges
* Granting Queue Privileges

* Revoking Queue Privileges

8.5.1 Granting Oracle Database Advanced Queuing System Privileges

ORACLE

DBMS_AQADM GRANT_SYSTEM PRI VI LEGE grants Oracle Database Advanced Queuing system
privileges to users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY, MANAGE_ANY.
Initially, only SYS and SYSTEMcan use this procedure successfully.

DBMVS_AQADM GRANT SYSTEM PRI VI LEGE(

privilege IN VARCHAR?,
grantee IN VARCHARZ,
adm n_option IN BOOLEAN : = FALSE);

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
gueues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADMcalls on any schemas in the database.

" Note:

p
Starting from Oracle Database 12c Release 2, MANAGE_ANY, ENQUEUE_ANY, and

DEQUEUE_ANY privileges will not allow access to SYS owned queues by users other
than SYS.

Example 8-37 Granting AQ System Privileges

BEG N
DBMS_AQADM GRANT _SYSTEM PRI VI LEGE(
privilege = " ENQUEUE_ANY" ,
grantee = "test',
admi n_option = FALSE) ;
DBMS_AQADM GRANT _SYSTEM PRI VI LEGE(
privilege = " DEQUEUE_ANY" ,
grantee = "test',
admi n_option = FALSE) ;
END;

/

8-25

Chapter 8
Granting and Revoking Privileges

8.5.2 Revoking Oracle Database Advanced Queuing System

Privileges

DBMS_AQADM REVOKE_SYSTEM PRI VI LEGE revokes Oracle Database Advanced Queuing
system privileges from users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY
and MANAGE_ANY.

DBMS_AQADM REVOKE_SYSTEM PRI VI LEGE(
privilege IN VARCHARZ,
grantee IN VARCHAR?);

The ADM N option for a system privilege cannot be selectively revoked.

Users granted the ENQUEUE_ANY privilege are allowed to enqueue messages to any
gueues in the database. Users granted the DEQUEUE_ANY privilege are allowed to
dequeue messages from any queues in the database. Users granted the MANAGE_ANY
privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

" Note:

Starting from Oracle Database 12c Release 2, MANAGE_ANY, ENQUEUE_ANY, and
DEQUEUE_ANY privileges will not allow access to SYS owned queues by users other
than SYS.

Example 8-38 Revoking AQ System Privileges

BEG N
DBNMS_AQADM REVOKE_SYSTEM PRI VI LEGE(
privilege = " DEQUEUE_ANY" ,
grantee = "test');
END,

/

8.5.3 Granting Queue Privileges

ORACLE

DBMS_AQADM GRANT_QUEUE_PRI VI LEGE grants privileges on a queue to users and roles. The
privileges are ENQUEUE, DEQUEUE, or ALL. Initially, only the queue table owner can use this
procedure to grant privileges on the queues.

DBMS_AQADM GRANT QUEUE_PRI VI LEGE(

privilege IN VARCHAR?,
queue_nane I'N VARCHAR2,
grantee I'N VARCHAR2,
grant _option IN BOOLEAN : = FALSE);

8-26

Chapter 8
Managing Subscribers

Note:

This procedure requires that EXECUTE privileges on DBVS_AQADM be granted to the
queue table owner, who is probably an ordinary queue user. If you do not want
ordinary queue users to be able to create and drop queues and queue tables,
add and delete subscribers, and so forth, then you must revoke the EXECUTE
privilege as soon as the initial GRANT_QUEUE_PRI VI LEGE is done.

Example 8-39 Granting Queue Privilege

BEG N
DBMVS_AQADM GRANT_QUEUE_PRI VI LEGE (
privilege = "ALL",
queue_narme = "test.nmulticonsunmer_81 queue',
grantee = "test_adni,
grant_option => TRUE) ;
END;

/

8.5.4 Revoking Queue Privileges

DBMS_AQADM REVOKE_QUEUE_PRI VI LEGE revokes privileges on a queue from users and
roles. The privileges are ENQUEUE or DEQUEUE.

DBMVS_AQADM REVOKE_QUEUE_PRI VI LEGE (

privilege IN VARCHAR?,
queue_nane IN VARCHAR2,
grantee IN VARCHAR2) ;

To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantor's privileges
are revoked.

You can revoke the dequeue right of a grantee on a specific queue, leaving the
grantee with only the enqueue right as in Example 8-40.

Example 8-40 Revoking Dequeue Privilege

BEG N
DBMS_AQADM REVOKE_QUEUE_PRI VI LEGE(
privilege = ' DEQUEUE'
queue_narme = "test.nulticonsunmer_81 _queue',
grantee = "test_adm);
END;

8.6 Managing Subscribers

These topics describe how to manage subscribers.

* Adding a Subscriber
» Altering a Subscriber

* Removing a Subscriber

ORACLE 8-27

Chapter 8
Managing Subscribers

8.6.1 Adding a Subscriber

ORACLE

DBMS_AQADM ADD_SUBSCRI BER adds a default subscriber to a queue.

DBMVS_AQADM ADD_SUBSCRI BER (

queue_narne IN VARCHAR?,
subscri ber IN sys.aq$_agent,
rule I'N VARCHAR2 DEFAULT NULL,

transformation IN VARCHAR2 DEFAULT NULL,
queue_to_queue I N BOOLEAN DEFAULT FALSE,
delivery_mode IN PLS I NTEGER DEFAULT PERSI STENT);

An application can enqueue messages to a specific list of recipients or to the default
list of subscribers. This operation succeeds only on queues that allow multiple
consumers, and the total number of subscribers must be 1024 or less. This operation
takes effect immediately and the containing transaction is committed. Enqueue
requests that are executed after the completion of this call reflect the new action. Any
string within the rul e must be quoted (with single quotation marks) as follows:

rule =>"PRIORITY <= 3 AND CORRID = "' FROM JAPAN "'

User data properties or attributes apply only to object payloads and must be prefixed
with t ab. user dat a in all cases.

If GLOBAL_TOPI C_ENABLED is set to true when a subscriber is created, then a
corresponding LDAP entry is also created.

Specify the name of the transformation to be applied during dequeue or propagation.
The transformation must be created using the DBVS_TRANSFORM package.

For queues that contain payloads with XMLType attributes, you can specify rules that
contain operators such as XM.Type. exi st sNode() and XM.Type. extract ().

If parameter queue_t o_queue is set to TRUE, then the added subscriber is a queue-to-
gueue subscriber. When queue-to-queue propagation is set up between a source
gueue and a destination queue, queue-to-queue subscribers receive messages
through that propagation schedule.

If the del i very_node parameter is the default PERSI STENT, then the subscriber receives
only persistent messages. If it is set to BUFFERED, then the subscriber receives only
buffered messages. If it is set to PERSI STENT_OR BUFFERED, then the subscriber receives
both types. You cannot alter this parameter with ALTER_SUBSCRI BER.

The agent name should be NULL if the destination queue is a single consumer queue.

Note:

ADD _SUBSCRI BER is an administrative operation on a queue. Although Oracle
Database AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. ADD_SUBSCRI BER blocks
until pending calls that are enqueuing or dequeuing messages complete. It will
not wait for the pending transactions to complete.

8-28

ORACLE

Chapter 8
Managing Subscribers

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information on the DBMS_TRANSFORM package

e "Scheduling a Queue Propagation”

Example 8-41 Adding a Subscriber at a Designated Queue at a Database Link

DECLARE
subscri ber sys. ag$_agent ;
BEG N
subscriber := sys.aq$_agent (' subscriberl', 'test2. nmsg_queue2@ondon', null);
DBMS_AQADM ADD_SUBSCRI BER(
queue_narme => "test.nmulticonsuner_81 queue',
subscri ber => subscriber);
END;
/

Example 8-42 Adding a Single Consumer Queue at a Dababase Link as a
Subscriber

DECLARE
subscri ber sys. aq$_agent;
BEG N
subscriber := sys.ag$_agent (' subscriberl, 'test2. msg_queue2@ondon', null);
DBMS_AQADM ADD_SUBSCRI BER(
queue_narme => "test.multiconsuner_81 _queue',
subscri ber => subscriber);
END;

/

Example 8-43 Adding a Subscriber with a Rule

DECLARE
subscri ber sys. aq$_agent;
BEG N
subscriber := sys.aq$_agent (' subscriber2', 'test2.nmsg_queue2@ondon', null);
DBMS_AQADM ADD_SUBSCRI BER(
queue_name => ‘'test.multiconsuner_81 queue',
subscriber => subscriber,
rule = ‘priority <2');
END;
/

Example 8-44 Adding a Subscriber and Specifying a Transformation

DECLARE
subscri ber sys. ag$_agent ;
BEG N
subscriber := sys.aq$_agent (' subscriber3', 'test2. nmsg_queue2@ondon', null);
DBMS_AQADM ADD_SUBSCRI BER(
queue_narme => "test.multiconsuner_81 queue',
subscri ber => subscri ber,
transformation => 'test.message_order _transform);
END,
/

8-29

Chapter 8
Managing Subscribers

Example 8-45 Propagating from a Multiple-Consumer Queue to a Single
Consumer Queue

DECLARE
subscri ber SYS. AQS_AGENT;
BEG N
subscriber := SYS. AQS_AGENT(NULL, 'test2.single_consuner__queue@ ondon',
null);
DBMVS_AQADM ADD_SUBSCRI BER(
queue_name => "test.ml ticonsuner_81_queue',
subscri ber => subscriber);
END;

8.6.2 Altering a Subscriber

DBMS_AQADM ALTER SUBSCRI BER alters existing properties of a subscriber to a specified
queue.

DBMS_AQADM ALTER SUBSCRI BER (

queue_nane I'N VARCHAR2,
subscri ber I'N sys. ag$_agent,
rule I'N VARCHAR2

transformation IN VARCHAR2) ;

The rule, the transformation, or both can be altered. If you alter only one of these
attributes, then specify the existing value of the other attribute to the alter call. If
GLOBAL_TOPIC_ENABLED = TRUE when a subscriber is modified, then a
corresponding LDAP entry is created.

Example 8-46 Altering a Subscriber Rule

DECLARE
subscri ber sys. aq$_agent;
BEG N
subscriber := sys.aq$_agent (' subscriber2', 'test2.msg_queue2@ondon', null);
DBVS_AQADM ALTER_SUBSCRI BER(
queue_name => 'test.nulticonsumer_81 queue',
subscri ber => subscri ber,
rule = 'priority = 1');
END;
/

8.6.3 Removing a Subscriber

ORACLE

DBMS_AQADM REMOVE_SUBSCRI BER removes a default subscriber from a queue.

DBVS_AQADM REMOVE_SUBSCRI BER (
queue_nane I'N VARCHAR2,
subscri ber IN sys. aq$_agent);

This operation takes effect immediately and the containing transaction is committed.
All references to the subscriber in existing messages are removed as part of the
operation. If GLOBAL_TOPI C ENABLED = TRUE when a subscriber is dropped, then a
corresponding LDAP entry is also dropped.

It is not an error to run the REMOVE_SUBSCRI BER procedure even when there are pending
messages that are available for dequeue by the consumer. These messages are
automatically made unavailable for dequeue when the REMOVE_SUBSCRI BER procedure
finishes.

8-30

Chapter 8
Managing Propagations

Note:

REMOVE_SUBSCRI BER is an administrative operation on a queue. Although Oracle
Database AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. REMOVE_SUBSCRI BER
blocks until pending calls that are enqueuing or dequeuing messages
complete. It will not wait for the pending transactions to complete.

Example 8-47 Removing a Subscriber

DECLARE
subscri ber sys. ag$_agent ;
BEG N
subscriber := sys.aq$_agent ('subscriber2', 'test2.msg_queue2@ondon', null);
DBVS_AQADM REMOVE_SUBSCRI BER(
queue_name => 'test.nulticonsuner_81 queue',
subscriber => subscriber);
END;
/

8.7 Managing Propagations

The propagation schedules defined for a queue can be changed or dropped at any
time during the life of the queue.

You can also temporarily disable a schedule instead of dropping it. All administrative
calls can be made irrespective of whether the schedule is active or not. If a schedule is
active, then it takes a few seconds for the calls to be processed.

These topics describe how to manage propagations.
* Scheduling a Queue Propagation

* Verifying Propagation Queue Type

* Altering a Propagation Schedule

* Enabling a Propagation Schedule

» Disabling a Propagation Schedule

* Unscheduling a Queue Propagation

8.7.1 Scheduling a Queue Propagation

ORACLE

DBMS_AQADM SCHEDULE_PROPAGATI ON schedules propagation of messages.
DBMS_AQADM SCHEDULE_PROPAGATI ON (

queue_nane IN VARCHAR?,

destination IN VARCHAR2 DEFAULT NULL,
start_tinme IN DATE DEFAULT SYSDATE,
duration IN NUMBER DEFAULT NULL,
next _time IN VARCHAR2 DEFAULT NULL,

| at ency IN NUMBER DEFAULT 60,

destination_queue |IN VARCHAR2 DEFAULT NULL);

8-31

ORACLE

Chapter 8
Managing Propagations

The destination can be identified by a database link in the desti nati on parameter, a
gueue name in the desti nati on_queue parameter, or both. Specifying only a database
link results in queue-to-dblink propagation. If you propagate messages to several
gueues in another database, then all propagations have the same frequency.

If a private database link in the schema of the queue table owner has the same name
as a public database link, AQ always uses the private database link.

Specifying the destination queue name results in queue-to-queue propagation. If you
propagate messages to several queues in another database, queue-to-queue
propagation enables you to configure each schedule independently of the others. You
can enable or disable individual propagations.

Note:

If you want queue-to-queue propagation to a queue in another database, then
you must specify parameters dest i nati on and desti nati on_queue.

Queue-to-queue propagation mode supports transparent failover when propagating to
a destination Oracle Real Application Clusters (Oracle RAC) system. With queue-to-
gueue propagation, it is not required to repoint a database link if the owner instance of
the queue fails on Oracle RAC.

Messages can also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues, then the message is propagated to
all of them at the same time.

The source queue must be in a queue table meant for multiple consumers. If you
specify a single-consumer queue, than error ORA-24039 results. Oracle Database
Advanced Queuing does not support the use of synonyms to refer to queues or
database links.

If you specify a propagation next _ti ne and dur ati on, propagation will run periodically
for the specified duration.If you specify a latency of zero with no next _ti ne or durati on,
the resulting propagation will run forever, propagating messages as they appear in the
gueue, and idling otherwise. If a non-zero latency is specified, with no next _tine or
duration (default), the propagation schedule will be event-based. It will be scheduled
to run when there are messages in the queue to be propagated. When there are no
more messages for a system-defined period of time, the job will stop running until
there are new messages to be propagated.The time at which the job runs depends on
other factors, such as the number of ready jobs and the number of job queue
processes.

Propagation uses a linear backoff scheme for retrying propagation from a schedule
that encountered a failure. If a schedule continuously encounters failures, then the first
retry happens after 30 seconds, the second after 60 seconds, the third after 120
seconds and so forth. If the retry time is beyond the expiration time of the current
window, then the next retry is attempted at the start time of the next window. A
maximum of 16 retry attempts are made after which the schedule is automatically
disabled.

8-32

Chapter 8
Managing Propagations

Note:

Once a retry attempt slips to the next propagation window, it will always do so;
the exponential backoff scheme no longer governs retry scheduling. If the date
function specified in the next _ti ne parameter of

DBMVS_AQADM SCHEDULE_PROPAGATI ON results in a short interval between windows,
then the number of unsuccessful retry attempts can quickly reach 16, disabling
the schedule.

If you specify a value for desti nati on that does not exist, then this procedure still runs
without throwing an error. You can query runtime propagation errors in the
LAST_ERROR _MSG column of the USER_QUEUE_SCHEDULES view.

" See Also:

e "Managing Job Queues" in Oracle Database Administrator's Guide for more
information on job queues and Jnnn background processes

* Internet Access to Oracle Database Advanced Queuing
¢ "USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema"

Example 8-48 Scheduling a Propagation to Queues in the Same Database

BEG N
DBVS_AQADM SCHEDULE_PROPAGATI ON(
queue_narme = "test.nul ticonsumer_queue');
END;
/

Example 8-49 Scheduling a Propagation to Queues in Another Database

BEG N
DBMS_AQADM SCHEDULE_PROPAGATI ON(
queue_narme = "test.nulticonsumer_queue',
destination => "anot her _db.world');
END;

/

Example 8-50 Scheduling Queue-to-Queue Propagation

BEG N
DBMS_AQADM SCHEDULE_PROPAGATI ON(
queue_narme = "test.nulticonsunmer_queue',
destination = "anot her _db. worl d'
destination_gqueue => "target _queue');
END;

/

ORACLE 8-33

Chapter 8
Managing Propagations

8.7.2 Verifying Propagation Queue Type

ORACLE

DBMS_AQADM VERI FY_QUEUE_TYPES verifies that the source and destination queues have
identical types. The result of the verification is stored in the dictionary table
SYS. AQS_MESSAGE_TYPES, overwriting all previous output of this command.

DBMS_AQADM VERI FY_QUEUE_TYPES(
Src_gqueue_nane I'N VARCHAR2,
dest _queue_name IN VARCHAR2,
destination IN VARCHAR2 DEFAULT NULL,
rc QUT BINARY_I NTEGER);

If the source and destination queues do not have identical types and a transformation
was specified, then the transformation must map the source queue type to the
destination queue type.

Note:

* SYS. AQS_MESSAGE_TYPES can have multiple entries for the same source
queue, destination queue, and database link, but with different
transformations.

e VER FY_QUEUE_TYPES check happens once per AQ propagation schedule and
not for every propagated message send

e In case the payload of the queue is modified then the existing propagation
schedule between source and destination queue needs to be dropped and
recreated.

Example 8-51 involves two queues of the same type. It returns:

VQT: new style queue
Conpatible: 1

If the same example is run with test. raw_queue (a queue of type RAW) in place of
test. anot her _queue, then it returns:

VQT: new style queue
Conpatible: 0

Example 8-51 Verifying a Queue Type

SET SERVEROQUTPUT ON
DECLARE
re Bl NARY_| NTEGER;
BEG N
DBMS_AQADM VER! FY_QUEUE_TYPES(
src_queue_nane => 'test.multiconsuner_queue',
dest _queue_nanme => 'test.another _queue',
re = rc);
DBMS_QUTPUT. PUT_LI NE(' Conpatible: '|]|rc);
END;
/

8-34

Chapter 8
Managing Propagations

8.7.3 Altering a Propagation Schedule

DBMS_AQADM ALTER PROPAGATI ON_SCHEDULE alters parameters for a propagation schedule.
The destination_queue parameter for queue-to-queue propagation cannot be altered.

DBMVS_AQADM ALTER PROPAGATI ON_SCHEDULE(

queue_nane IN VARCHAR?,

destination IN VARCHAR2 DEFAULT NULL,
duration IN NUMBER DEFAULT NULL,
next tine IN VARCHAR2 DEFAULT NULL,
| at ency IN NUMBER DEFAULT 60,

destination_queue |N VARCHAR2 DEFAULT NULL);

Example 8-52 Altering a Propagation Schedule to Queues in the Same
Database

BEG N
DBVS_AQADM ALTER_PROPAGATI ON_SCHEDULE(
queue_name = "test.mul ticonsunmer_queue',
duration = ' 2000,
next _time = ' SYSDATE + 3600/ 86400,
| atency = '32');
END;

/

Example 8-53 Altering a Propagation Schedule to Queues in Another Database

BEG N
DBNMS_AQADM ALTER_PROPAGATI ON_SCHEDULE(
queue_narme = "test.nul ticonsumer_queue',
destination => "anot her _db.world",
duration = ' 2000',
next _tine = ' SYSDATE + 3600/ 86400',
| at ency = '32');
END;

8.7.4 Enabling a Propagation Schedule

ORACLE

DBMS_AQADM ENABLE_PRCPAGATI ON_SCHEDULE enables a previously disabled propagation
schedule.

DBMS_AQADM ENABLE_PROPAGATI ON_SCHEDULE(
queue_nane IN VARCHAR?,
destination IN VARCHAR2 DEFAULT NULL,
destination_queue IN VARCHAR2 DEFAULT NULL);

Example 8-54 Enabling a Propagation to Queues in the Same Database

BEG N
DBMS_AQADM ENABLE_PROPAGATI ON_SCHEDULE(
queue_name => 'test.nulticonsuner_queue');
END;
/

Example 8-55 Enabling a Propagation to Queues in Another Database

BEG N
DBVS_AQADM ENABLE_PROPAGATI ON_SCHEDULE(

8-35

Chapter 8
Managing Propagations

queue_narme = "test.nul ticonsumer_queue',
destination => "anot her _db.world");

END;

/

8.7.5 Disabling a Propagation Schedule

DBMS_AQADM DI SABLE_PROPAGATI ON_SCHEDULE disables a previously enabled propagation
schedule.

DBVS_AQADM DI SABLE_PROPAGATI ON_SCHEDUL E(
queue_name IN VARCHAR?Z,
destination IN VARCHAR2 DEFAULT NULL,
destination_queue IN VARCHAR2 DEFAULT NULL);

Example 8-56 Disabling a Propagation to Queues in the Same Database

BEG N
DBMS_AQADM DI SABLE_PROPAGATI ON_SCHEDULE(
queue_name => 'test.nulticonsunmer_queue');
END;
/

Example 8-57 Disabling a Propagation to Queues in Another Database

BEG N
DBMS_AQADM DI SABLE_PROPAGATI ON_SCHEDULE(
queue_narme = "test.nul ticonsumer_queue',
destination => "anot her _db.world");
END;

/

8.7.6 Unscheduling a Queue Propagation

ORACLE

DBMS_AQADM UNSCHEDULE_PROPAGATI ON unschedules a previously scheduled propagation of
messages from a queue to a destination. The destination is identified by a specific
database link in the desti nati on parameter or by name in the desti nati on_queue
parameter.

DBMS_AQADM UNSCHEDULE_PROPAGATI ON (
queue_nane IN VARCHARZ,
destination IN VARCHAR2 DEFAULT NULL,
destination_queue IN VARCHAR2 DEFAULT NULL);

Example 8-58 Unscheduling a Propagation to Queues in the Same Database

BEG N
DBMS_AQADM UNSCHEDULE_PROPAGATI ON(
queue_name => 'test.nulticonsunmer_queue');
END;
/

Example 8-59 Unscheduling a Propagation to Queues in Another Database

BEG N
DBMS_AQADM UNSCHEDULE_PROPAGATI ON(
queue_narme => 'test.nulticonsumer_queue',
destination => ‘'another_db.world");
END;
/

8-36

Chapter 8
Managing Oracle Database Advanced Queuing Agents

8.8 Managing Oracle Database Advanced Queuing Agents

These topics describe how to manage Oracle Database Advanced Queuing Agents.
e Creating an Oracle Database Advanced Queuing Agent

» Altering an Oracle Database Advanced Queuing Agent

» Dropping an Oracle Database Advanced Queuing Agent

* Enabling Database Access

» Disabling Database Access

8.8.1 Creating an Oracle Database Advanced Queuing Agent

DBMS_AQADM CREATE_AQ AGENT registers an agent for Oracle Database Advanced Queuing
Internet access using HTTP protocols.

DBVB_AQADM CREATE_AQ AGENT (

agent _nane I'N VARCHAR2,

certificate_location IN VARCHAR2 DEFAULT NULL,
enabl e_http I N BOOLEAN DEFAULT FALSE,
enabl e_anyp I N BOOLEAN DEFAULT FALSE);

The SYS. AQSI NTERNET_USERS view has a list of all Oracle Database Advanced Queuing
Internet agents. When an agent is created, altered, or dropped, an LDAP entry is
created for the agent if the following are true:

e GLOBAL_TOPI C_ENABLED = TRUE

e certificate_location is specified

8.8.2 Altering an Oracle Database Advanced Queuing Agent

DBMS_AQADM ALTER_AQ AGENT alters an agent registered for Oracle Database Advanced
Queuing Internet access.

DBMS_AQADM ALTER AQ AGENT (

agent _nane I'N VARCHARZ,

certificate_location IN VARCHAR2 DEFAULT NULL,
enabl e_http I N BOOLEAN DEFAULT FALSE,
enabl e_anyp I N BOOLEAN DEFAULT FALSE);

When an Oracle Database Advanced Queuing agent is created, altered, or dropped,
an LDAP entry is created for the agent if the following are true:

* GLOBAL_TOPI C_ENABLED = TRUE

e certificate_|l ocation is specified

8.8.3 Dropping an Oracle Database Advanced Queuing Agent

DBMS_AQADM DROP_AQ AGENT drops an agent that was previously registered for Oracle
Database Advanced Queuing Internet access.

DBVB_AQADM DROP_AQ AGENT (
agent _name I'N VARCHAR2) ;

ORACLE 8-37

Chapter 8
Adding an Alias to the LDAP Server

When an Oracle Database Advanced Queuing agent is created, altered, or dropped,
an LDAP entry is created for the agent if the following are true:

e GLOBAL_TOPI C_ENABLED = TRUE

e certificate_|l ocation is specified

8.8.4 Enabling Database Access

DBMS_AQADM ENABLE_DB_ACCESS grants an Oracle Database Advanced Queuing Internet
agent the privileges of a specific database user. The agent should have been
previously created using the CREATE_AQ AGENT procedure.

DBMS_AQADM ENABLE_DB_ACCESS (
agent _nane I'N VARCHARZ,
db_user nanme I N VARCHAR?2)

The SYS. AQSI NTERNET_USERS view has a list of all Oracle Database Advanced Queuing
Internet agents and the names of the database users whose privileges are granted to
them.

¢ See Also:

Oracle Streams Concepts and Administration for information about secure
queues

8.8.5 Disabling Database Access

DBMS_AQADM DI SABLE_DB_ACCESS revokes the privileges of a specific database user from
an Oracle Database Advanced Queuing Internet agent. The agent should have been
previously granted those privileges using the ENABLE_DB_ACCESS procedure.

DBMS_AQADM DI SABLE_DB_ACCESS (

agent _nane I'N VARCHAR2,
db_user nane I'N VARCHAR2)
¢ See Also:

Oracle Streams Concepts and Administration for information about secure
queues

8.9 Adding an Alias to the LDAP Server

ORACLE

DBMS_AQADM ADD ALI AS TO LDAP adds an alias to the LDAP server.
DBMS_AQADM ADD_ALI AS_TO LDAP(

alias I N VARCHAR?,
obj _location I N VARCHAR?) ;

This call takes the name of an alias and the distinguished name of an Oracle
Database Advanced Queuing object in LDAP, and creates the alias that points to the

8-38

Chapter 8
Deleting an Alias from the LDAP Server

Oracle Database Advanced Queuing object. The alias is placed immediately under the
distinguished name of the database server. The object to which the alias points can be
a queue, an agent, or a ConnectionFactory.

" See Also:

Oracle Streams Concepts and Administration for information about secure
queues

8.10 Deleting an Alias from the LDAP Server

DBMS_AQADM DEL_ALI AS_FROM LDAP removes an alias from the LDAP server.

DBMS_AQADM DEL_ALI AS_FROM LDAP(
alias IN VARCHAR?) ;

This call takes the name of an alias as the argument, and removes the alias entry in
the LDAP server. It is assumed that the alias is placed immediately under the
database server in the LDAP directory.

ORACLE 8-39

Oracle Database Advanced Queuing and
Messaging Gateway Views

ORACLE

These topics describe the Oracle Database Advanced Queuing (AQ) administrative
interface views and Oracle Messaging Gateway (MGW) views.

" Note:

All views not detailed in the following sections are described in the Oracle
Database Reference.

Oracle AQ Views

* V$AQ_MESSAGE_CACHE_STAT: Memory Management for Sharded Queues
* V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics
* V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

* V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

e DBA _QUEUE_TABLES: All Queue Tables in Database

e USER_QUEUE_TABLES: Queue Tables in User Schema

e ALL QUEUE_TABLES: Queue Tables Accessible to the Current User

e DBA_QUEUES: All Queues in Database

e USER_QUEUES: Queues In User Schema

e ALL QUEUES: Queues for Which User Has Any Privilege

e DBA QUEUE_SCHEDULES: All Propagation Schedules

e USER_QUEUE_SCHEDULES: Propagation Schedules in User Schema

e QUEUE_PRIVILEGES: Queues for Which User Has Queue Privilege

* AQ$<Queue_Table_Name>: Messages in Queue Table

* AQ$<Queue_Table_Name_S>: Queue Subscribers

* AQ$<Queue_Table_Name_R>: Queue Subscribers and Their Rules

e DBA _QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

e USER_QUEUE_SUBSCRIBERS: Queue Subscribers in User Schema

e ALL QUEUE_SUBSCRIBERS: Subscribers for Queues Where User Has Queue
Privileges

e DBA_TRANSFORMATIONS: All Transformations
e DBA_ ATTRIBUTE_TRANSFORMATIONS: All Transformation Functions
e USER_TRANSFORMATIONS: User Transformations

9-1

Chapter 9

e USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions
« DBA_SUBSCR_REGISTRATIONS: All Subscription Registrations
* USER_SUBSCR_REGISTRATIONS: User Subscription Registrations

* AQSINTERNET_USERS: Oracle Database Advanced Queuing Agents Registered
for Internet Access

* V$AQ: Number of Messages in Different States in Database
* V$BUFFERED_QUEUES: All Buffered Queues in the Instance.

* V$BUFFERED_SUBSCRIBERS: Subscribers for All Buffered Queues in the
Instance

* V$BUFFERED_PUBLISHERS: All Buffered Publishers in the Instance
* V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

* V$PERSISTENT_SUBSCRIBERS: All Active Subscribers of the Persistent
Queues in the Instance

* V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in
the Instance

* V$PROPAGATION_SENDER: Buffer Queue Propagation Schedules on the
Sending (Source) Side

* V$PROPAGATION_RECEIVER: Buffer Queue Propagation Schedules on the
Receiving (Destination) Side

* V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications
* VSMETRICGROUP: Information About the Metric Group

* V$AQ_BACKGROUND_COORDINATOR: Performance Statistics for AQ's Master
Background Coordinator Process (AQPC)

* V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator
* V$AQ_SERVER_POOL: Performance Statistics for all Servers

* V$AQ_CROSS_INSTANCE_JOBS: Cross Process Jobs Description

* V$AQ_IPC_ACTIVE_MSGS

* V$AQ_IPC_MSG_STATS

* V$AQ_IPC_PENDING_MSGS

* V$AQ_NONDUR_REGISTRATIONS: Non-Durable Registrations

* V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

* V$AQ_SUBSCRIBER_LOAD: Durable Subscribers

* V$AQ_NONDUR_SUBSCRIBER: Non-Durable Subscribers
V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber
* V$AQ_MESSAGE_CACHE: Performance Statistics

Oracle Messaging Gateway Views

* MGW_GATEWAY: Configuration and Status Information
* MGW_AGENT_OPTIONS: Supplemental Options and Properties
* MGW_LINKS: Names and Types of Messaging System Links

ORACLE 9-2

Chapter 9
DBA_QUEUE_TABLES: All Queue Tables in Database

* MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links
* MGW_TIBRV_LINKS: TIB/Rendezvous Messaging System Links

* MGW_FOREIGN_QUEUES: Foreign Queues

« MGW_JOBS: Messaging Gateway Propagation Jobs

* MGW_SUBSCRIBERS: Information for Subscribers

e MGW_SCHEDULES: Information About Schedules

9.1 DBA_QUEUE_TABLES: All Queue Tables in Database

This view contains information about the owner instance for a queue table.

A queue table can contain multiple queues. In this case, each queue in a queue table
has the same owner instance as the queue table. The DBA_QUEUE_TABLES columns are
the same as those in ALL_QUEUE_TABLES.

¢ See Also:

Oracle Database Reference for more information about DBA QUEUE TABLES.

9.2 USER_QUEUE_TABLES: Queue Tables in User
Schema

This view is the same as DBA_ QUEUE_TABLES with the exception that it only shows queue
tables in the user's schema.

USER_QUEUE_TABLES does not contain a column for OANER.

" See Also:

Oracle Database Reference for more information about USER QUEUE_TABLES.

9.3 ALL_ QUEUE_TABLES: Queue Tables Accessible to the
Current User

This view describes queue tables accessible to the current user.

" See Also:

Oracle Database Reference for more information about ALL_QUEUE_TABLES.

ORACLE' 9-3

Chapter 9
DBA QUEUES: All Queues in Database

9.4 DBA_QUEUES: All Queues in Database

The DBA_QUEUES view specifies operational characteristics for every queue in a
database.

Its columns are the same as those ALL_QUEUES. Oracle Database 12¢ Release 1 (12.1)
introduces a new column SHARDED with data type VARCHAR2(5) . The value for this column
is TRUE for sharded queue, otherwise FALSE.

¢ See Also:

Oracle Database Reference for more information about DBA QUEUES.

9.5 USER_QUEUES: Queues In User Schema

The USER_QUEUES view is the same as DBA_QUEUES with the exception that it only shows
gueues in the user's schema.

Oracle Database 12c Release 1 (12.1) introduces a new column SHARDED with data type
VARCHAR2(5) . The value for this column is TRUE for sharded queue, otherwise FALSE.

¢ See Also:

Oracle Database Reference for more information about USER_QUEUES.

9.6 ALL_QUEUES: Queues for Which User Has Any

Privilege

ORACLE

The ALL_QUEUES view describes all queues on which the current user has enqueue or
dequeue privileges.

If the user has any Advanced Queuing system privileges, like MANAGE ANY QUEUE, ENQUEUE
ANY QUEUE or DEQUEUE ANY QUEUE, this view describes all queues in the database. Oracle
Database 12c Release 1 (12.1) introduces a new column SHARDED with data type
VARCHAR2(5) . The value for this column is TRUE for sharded queue, otherwise FALSE.

¢ See Also:

Oracle Database Reference for more information about ALL_QUEUES.

9-4

Chapter 9
DBA_QUEUE_SCHEDULES: All Propagation Schedules

9.7 DBA QUEUE_SCHEDULES: All Propagation Schedules

The DBA_QUEUE_SCHEDULES view describes all the current schedules in the database for
propagating messages.

¢ See Also:

Oracle Database Reference for more information about DBA QUEUE_SCHEDULES.

9.8 USER_QUEUE_SCHEDULES: Propagation Schedules
In User Schema

The USER_QUEUE_SCHEDULES view is the same as DBA QUEUE_SCHEDULES with the exception
that it only shows queue schedules in the user's schema.

¢ See Also:

Oracle Database Reference for more information about USER_QUEUE_SCHEDULES.

9.9 QUEUE_PRIVILEGES: Queues for Which User Has
Queue Privilege

The QUEUE_PRI VI LEGES view describes queues for which the user is the grantor, grantee,
or owner.

It also shows queues for which an enabled role on the queue is granted to PUBLI C.

¢ See Also:

Oracle Database Reference for more information about QUEUE PRI VI LEGES.

9.10 AQ$<Queue_Table _Name>: Messages in Queue
Table

The AQS<Queue_Tabl e_Name> view describes the queue table in which message data is
stored.

This view is automatically created with each queue table and should be used for
guerying the queue data. The dequeue history data (time, user identification and
transaction identification) is only valid for single-consumer queues.

ORACLE' 9-5

ORACLE

Chapter 9
AQ$<Queue_Table_Name>: Messages in Queue Table

In a queue table that is created with the conpat i bl e parameter set to '8.1' or higher,
messages that were not dequeued by the consumer are shown as "UNDELI VERABLE".
You can dequeue these messages by nsgi d. If the Oracle Database Advanced
Queuing queue process monitor is running, then the messages are eventually moved
to an exception queue. You can dequeue these messages from the exception queue
with an ordinary dequeue.

A multiconsumer queue table created without the conpat i bl e parameter, or with the
conpat i bl e parameter set to '8.0', does not display the state of a message on a
consumer basis, but only displays the global state of the message.

" Note:

Queues created in a queue table with conpati bl e set to 8. 0 (referred to in this
guide as 8.0-style queues) are deprecated in Oracle Database Advanced
Queuing 10g Release 2 (10.2). Oracle recommends that any new queues you
create be 8.1-style or newer and that you migrate existing 8.0-style queues at
your earliest convenience.

When a message is dequeued using the REMOVE mode, DEQ TI ME, DEQ USER I D, and
DEQ TXN I D are updated for the consumer that dequeued the message.

You can use M@ D and ORI G NAL_MsG D to chain propagated messages. When a
message with message identifier nl is propagated to a remote queue, nt is stored in
the ORI G NAL_MS@ D column of the remote queue.

Beginning with Oracle Database 10g, AGQueue_Tabl e_Nare includes buffered
messages. For buffered messages, the value of MSG_STATE is one of the following:

e | N MEMORY
Buffered messages enqueued by a user
e DEFERRED
Buffered messages enqueued by a capture process
e SPILLED
User-enqueued buffered messages that have been spilled to disk
e DEFERRED SPI LLED
Capture-enqueued buffered messages that have been spilled to disk
* BUFFERED EXPI RED
Expired buffered messages

For JMS Sharded Queues, the columns RETRY_COUNT, EXCEPTI ON_QUEUE_OWRNER,
EXCEPTI ON_QUEUE, PROPAGATED MSG D, SENDER_NAME, SENDER ADDRESS, SENDER PROTOCOL,
ORI G NAL_M5G D, ORI G NAL_QUEUE_NAME, ORI G NAL_QUEUE_OWNER, EXPI RATI ON_REASON are
always NULL.

For JMS Sharded Queues, this view shows messages only for durable subscribers
because non durable subscribers are session specific. The view returns data from the
in-memory Sharded Queue message cache if available, otherwise from the values on
disk. A user is required to be one of the following in order to query from
AQb<queue_name> view for Sharded Queues:

9-6

user is the owner

Chapter 9

AQ$<Queue_Table Name>: Messages in Queue Table

user has "dequeue" privilege on queue

user has "dequeue any queue" privilege

The view has the following difference for Sharded Queues for 12c¢ and future releases:

MSG_PRI ORI TY is defined as NUVBER(38)

MSG_STATE in a queue table does not have BUFFERED EXPI RED hence the max length
of UNDELI VERABLE is taken as length got MSG_STATE.

EXPI RATI ON is defined as TI MESTAMP(6) W TH TI ME ZONE in a queue table.

USER_DATA column is defined using a decode on USERDATA_RAWand USERDATA BLOB

with UTL_RAW CAST_TO VARCHAR?.

CONSUVER_NAME is defined as VARCHAR2(128)

Table 9-1 AQ$<Queue_Table_Name> View
|

Column Datatype NULL For JMS Sharded Description
Queues 12c Release
1(12.1)
QUEUE VARCHAR2(30) - Queue name
SHARD | D NUVBER - N A for 11g
SUBSHARD_|I D NUMBER - N A for 11g
MSG_ I D RAW 16) NOT NULL Unique identifier of the
message
CORR_ID VARCHAR2(128) - User-provided correlation
identifier
MSG_PRIORITY NUMBER - NUMBER(38) Message priority
MSG_STATE VARCHAR2(16) - Message state. 12¢ Release 1
(12.1) queue table doesnt have
BUFFERED_EXPI RED. Hence for
12c Release 1 (12.1) the max
length of UNDEL| VERABLE is
taken as length got M5G_STATE
DELAY DATE - Time in date format at which
the message in waiting state
would become ready. Equals
ENQUEUE_TI ME + user specified
DELAY
DELAY_TI MESTAMP TI MESTAMP - Time as a timestamp format at
which the message in waiting
state would become ready.
Equals ENQUEUE_TI MESTAMP +
user specified DELAY
EXPI RATI ON NUMBER - TI MESTAMP(6) W TH Number of seconds in which
TI ME ZONE the message expires after
being READY
RETENTI ON_TI MESTAMP TI MESTAMP(6) - N A for 11g
ENQ TI ME DATE - Enqueue time
ENQ TI MESTAWP TI MESTAMP - Enqueue time
ORACLE 9-7

Chapter 9

AQ$<Queue_Table_Name>: Messages in Queue Table

Table 9-1 (Cont.) AQ$<Queue_Table_Name> View
]

Column Datatype NULL For JMS Sharded Description
Queues 12c Release
1(12.1)

ENQ USER I D NUMBER - Enqueue user ID

ENQ USER | D(10.1 VARCHAR2(30) - Enqueue user name

queue tables)

ENQ_TXN_I D VARCHAR2(30) - Enqueue transaction ID

DEQ TI ME DATE - Dequeue time

DEQ TI MESTAWP TI MESTAMP - Dequeue time

DEQ USER I D NUMBER - Dequeue user ID

DEQ USER | D(10.1 VARCHAR2(30) - Dequeue user name

gueue tables)

DEQ TXN_I D VARCHAR2(30) - Dequeue transaction ID

RETRY_COUNT NUMBER - NULL Number of retries

EXCEPTI ON_QUEUE_OME VARCHAR2(30) - NULL Exception queue schema

R

EXCEPTI ON_QUEUE VARCHAR2(30) - NULL Exception queue name

USER_DATA - - User data. USER_DATA column
is defined using a decode on
USERDATA RAWand
USERDATA_BLOB with
UTL_RAW CAST_TO_VARCHARZ for
12c Release 1 (12.1).

SENDER_NAVE VARCHAR2(30) - NULL Name of the agent enqueuing
the message (valid only for
8.1-compatible queue tables)

SENDER_ADDRESS VARCHAR2(1024) - NULL Queue name and database
name of the source (last
propagating) queue (valid only
for 8.1-compatible queue
tables). The database name is
not specified if the source
queue is in the local database.

SENDER_PROTOCOL NUVBER - NULL Protocol for sender address
(reserved for future use and
valid only for 8.1-compatible
queue tables)

ORI G NAL_MsG D RAW 16) - NULL Message ID of the message in
the source queue (valid only
for 8.1-compatible queue
tables)

CONSUMVER_NAMVE VARCHAR2(30) - VARCHAR2(128) Name of the agent receiving

ORACLE

the message (valid only for
8.1-compatible multiconsumer
queue tables)

9-8

Chapter 9

AQ$<Queue_Table Name>: Messages in Queue Table

Table 9-1 (Cont.) AQ$<Queue_Table_Name> View
]

Column Datatype

NULL For JMS Sharded
Queues 12c Release

1(12.1)

Description

ADDRESS VARCHAR?(1024)

PROTOCCL NUMBER

PROPAGATED_MSG D RAW 16)

ORI G NAL_QUEUE_NAME VARCHAR2(30)

ORI G NAL_QUEUE_OWKER VARCHAR?(30)

EXPI RATI ON_REASON VARCHAR2(19)

- NULL

- NULL

- NULL

- NULL

Queue name and database link
name of the agent receiving
the message.The database link
name is not specified if the
address is in the local
database. The address is NULL
if the receiving agent is local to
the queue (valid only for 8.1-
compatible multiconsumer
queue tables)

Protocol for address of
receiving agent (valid only for
8.1-compatible queue tables)

Message ID of the message in
the queue of the receiving
agent (valid only for 8.1-
compatible queue tables)

Name of the queue the
message came from

Owner of the queue the
message came from

Reason the message came
into exception queue. Possible
values are Tl ME_EXPI RATI ON
(message expired after the
specified expired time),
MAX_RETRY_EXCEEDED
(maximum retry count
exceeded), and

PROPAGATI ON_FAI LURE
(message became
undeliverable during
propagation).

¢ Note:

ORACLE

A message is moved to an exception queue if RETRY_COUNT is greater than

MAX_RETRI ES. If a dequeue transaction fails because the server process dies
(including ALTER SYSTEMKI LL SESSI ON) or SHUTDOAN ABORT on the instance, then
RETRY_COUNT is not incremented.

9-9

Chapter 9
AQ$<Queue_Table_Name_S>: Queue Subscribers

9.11 AQ$<Queue _Table Name S>: Queue Subscribers

The AQS<Queue_Tabl e_Nane_S> view provides information about subscribers for all the
gueues in any given queue table.

It shows subscribers created by users with DBM5_AQADM ADD_SUBSCRI BER and subscribers
created for the apply process to apply user-created events. It also displays the
transformation for the subscriber, if it was created with one. It is generated when the
gueue table is created.

This view provides functionality that is equivalent to the

DBMS_AQADM QUEUE_SUBSCRI BERS() procedure. For these queues, Oracle recommends
that the view be used instead of this procedure to view queue subscribers. This view is
created only for 8.1-compatible queue tables.

Table 9-2 AQ$<Queue_Table_Name_S> View
|

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT Name of queue for which subscriber is defined
NULL

NAVE VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCCL NUMBER - Protocol of agent

TRANSFORMATI ON VARCHAR2(61) - Name of the transformation (can be null)

9.12 AQ$<Queue_Table Name R>: Queue Subscribers
and Their Rules

The AQS<Queue_Tabl e_Name_R> view displays only the subscribers based on rules for all
gueues in a given queue table, including the text of the rule defined by each
subscriber.

It also displays the transformation for the subscriber, if one was specified. It is
generated when the queue table is created.

This view is created only for 8.1-compatible queue tables.

Table 9-3 AQ$<Queue_Table_Name_R> View
|

Column Datatype NULL Description

QUEUE VARCHAR2(30) NOT Name of queue for which subscriber is defined
NULL

NAVE VARCHAR2(30) - Name of agent

ADDRESS VARCHAR2(1024) - Address of agent

PROTOCCL NUMBER - Protocol of agent

RULE CLOB - Text of defined rule

RULE_SET VARCHAR2(65) - Set of rules

ORACLE 9-10

Chapter 9
AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

Table 9-3 (Cont.) AQ$<Queue_Table_Name_R> View

Column Datatype NULL Description
TRANSFORMATI ON VARCHAR2(61) - Name of the transformation (can be null)

9.13 AQ$Queue_Name_R: Queue Subscribers and Their
Rules for Multi-consumer Queue

This table shows queue subscribers and their rules for multi-consumer queue.

Table 9-4 AQ$Queue_Name_R: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL
QUEUE VARCHAR2(30) NOT NULL
NAME VARCHAR2(30)

ADDRESS VARCHAR2(1024)

PROTOCCL NUMBER

RULE CLOB

RULE_SET VARCHAR2(65)

TRANSFORVATI ON VARCHAR2(65)

9.14 AQ$Queue_Name_S: Queue Subscribers and Their
Rules for Multi-consumer Queue

This table shows queue subscribers and their rules for multi-consumer queue.

Table 9-5 AQ$Queue_Name_S: Queue Subscribers and Their Rules for Multi-consumer Queue

Column Datatype NULL
QUEUE VARCHAR2(30) NOT NULL
NANVE VARCHAR2(30) -
ADDRESS VARCHAR?2(1024) -
PROTOCCL NUMBER -
TRANSFORMATI ON VARCHAR2(65) -
QUEUE_TO QUEUE VARCHAR2(5) -

ORACLE 9-11

Chapter 9
DBA QUEUE_SUBSCRIBERS: All Queue Subscribers in Database

9.15 DBA QUEUE_SUBSCRIBERS: All Queue Subscribers
in Database

The DBA_QUEUE_SUBSCRI BERS view returns a list of all subscribers on all queues in the
database.

Its columns are the same as those in ALL_QUEUE_SUBSCRI BERS.

¢ See Also:

Oracle Database Reference for more information about DBA QUEUE_SUBSCRI BERS.

9.16 USER_QUEUE_SUBSCRIBERS: Queue Subscribers
In User Schema

The USER_QUEUE_SUBSCRI BERS view returns a list of subscribers on queues in the schema
of the current user.

Its columns are the same as those in ALL_QUEUE_SUBSCRI BERS except that it does not
contain the OAKNER column.

¢ See Also:

Oracle Database Reference for more information about USER_QUEUE_SUBSCRI BERS.

9.17 ALL QUEUE_SUBSCRIBERS: Subscribers for
Queues Where User Has Queue Privileges

The ALL_QUEUE_SUBSCRI BERS view returns a list of subscribers to queues that the current
user has privileges to dequeue from.

" See Also:

Oracle Database Reference for more information about ALL_QUEUE_SUBSCRI BERS.

ORACLE 9-12

Chapter 9
DBA_TRANSFORMATIONS: All Transformations

9.18 DBA TRANSFORMATIONS: All Transformations

The DBA_TRANSFORMATI ONS view displays all the transformations in the database.

These transformations can be specified with Advanced Queue operations like
enqueue, dequeue and subscribe to automatically integrate transformations in
messaging. This view is accessible only to users having DBA privileges.

See Also:

Oracle Database Reference for more information about DBA TRANSFORMATI ONS.

9.19 DBA_ATTRIBUTE_TRANSFORMATIONS: All
Transformation Functions

The DBA_ATTRI BUTE_TRANSFORMATI ONS view displays the transformation functions for all
the transformations in the database.

¢ See Also:

Oracle Database Reference for more information about
DBA ATTRI BUTE_TRANSFORMATI ONS.

9.20 USER_TRANSFORMATIONS: User Transformations

The USER_TRANSFORMATI ONS view displays all the transformations owned by the user.

To view the transformation definition, query USER_ATTRI BUTE_TRANSFORVATI ONS.

¢ See Also:

Oracle Database Reference for more information about USER_TRANSFORMATI ONS.

ORACLE 0-13

Chapter 9
USER_ATTRIBUTE_TRANSFORMATIONS: User Transformation Functions

9.21 USER_ATTRIBUTE_TRANSFORMATIONS: User
Transformation Functions

The USER_ATTRI BUTE_TRANSFCRMATI ONS view displays the transformation functions for all
the transformations of the user.

" See Also:

Oracle Database Reference for more information about
USER_ATTRI BUTE_TRANSFCRVATI ONS.

9.22 DBA SUBSCR_REGISTRATIONS: All Subscription
Registrations

The DBA SUBSCR_REG STRATI ONS view lists all the subscription registrations in the
database.

¢ See Also:

Oracle Database Reference for more information about
DBA_SUBSCR_REG STRATI ONS.

9.23 USER_SUBSCR_REGISTRATIONS: User
Subscription Registrations

The USER_SUBSCR REG STRATI ONS view lists the subscription registrations in the database
for the current user.

Its columns are the same as those in DBA SUBSCR REG STRATI ONS.

¢ See Also:

Oracle Database Reference for more information about
USER SUBSCR REGH STRATI ONS.

ORACLE 9-14

Chapter 9
AQS$INTERNET_USERS: Oracle Database Advanced Queuing Agents Registered for Internet Access

9.24 AQSINTERNET _USERS: Oracle Database Advanced
Queuing Agents Registered for Internet Access

The AQSI NTERNET_USERS view provides information about the agents registered for
Internet access to Oracle Database Advanced Queuing. It also provides the list of
database users that each Internet agent maps to.

Table 9-6 AQSINTERNET_USERS View

Column Datatype NULL Description

AGENT_NAME VARCHAR2(30) - Name of the Oracle Database Advanced Queuing Internet
agent

DB_USERNAMVE VARCHAR2(30) - Name of database user that this Internet agent maps to

HTTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle
Database Advanced Queuing through HTTP (YES or NO)

FTP_ENABLED VARCHAR2(4) - Indicates whether this agent is allowed to access Oracle

Database Advanced Queuing through FTP (always NOin
current release)

9.25 V$AQ: Number of Messages in Different States in
Database

The V$AQ view provides information about the number of messages in different states
for the whole database.

In a Oracle Real Application Clusters environment, each instance keeps its own
Oracle Database Advanced Queuing statistics information in its own System Global
Area (SGA), and does not have knowledge of the statistics gathered by other
instances. When a Gv$AQ view is queried by an instance, all other instances funnel their
Oracle Database Advanced Queuing statistics information to the instance issuing the

query.

" See Also:

Oracle Database Reference for more information about V$AQ.

ORACLE' 9-15

Chapter 9
V$BUFFERED_QUEUES: All Buffered Queues in the Instance

9.26 VSBUFFERED QUEUES: All Buffered Queues in the
Instance

The V$BUFFERED_QUEUES view displays information about all buffered queues in the
instance. There is one row per queue.

See Also:

Oracle Database Reference for more information about V$BUFFERED QUEUES.

9.27 VSBUFFERED SUBSCRIBERS: Subscribers for All
Buffered Queues in the Instance

The V$BUFFERED_SUBSCRI BERS view displays information about the subscribers for all
buffered queues in the instance. There is one row per subscriber per queue.

¢ See Also:

Oracle Database Reference for more information about V$BUFFERED SUBSCRI BERS.

9.28 VSBUFFERED PUBLISHERS: All Buffered Publishers
In the Instance

The V$BUFFERED_PUBLI SHERS view displays information about all buffered publishers in
the instance.

There is one row per queue per sender. The values are reset to zero when the
database (or instance in an Oracle RAC environment) restarts.

" See Also:

Oracle Database Reference for more information about V$BUFFERED PUBLI SHERS.

ORACLE 9-16

Chapter 9
V$PERSISTENT_QUEUES: All Active Persistent Queues in the Instance

9.29 VSPERSISTENT_QUEUES: All Active Persistent
Queues in the Instance

The V$PERSI STENT_QUEUES view displays information about all active persistent queues in
the database since the queues' first activity time.

There is one row per queue. The rows are deleted when the database (or instance in
an Oracle RAC environment) restarts.

" See Also:

Oracle Database Reference for more information about V$PERSI STENT QUEUES.

9.30 VSPERSISTENT _QMN_CACHE: Performance
Statistics on Background Tasks for Persistent Queues

The V$PERSI STENT_QWN_CACHE view displays detailed statistics about all background
activities relating to all queue tables in the database.

There is one row per queue table. The values are reset when the database (or
instance in an Oracle RAC environment) restarts.

See Also:

Oracle Database Reference for more information about V$PERSI STENT_QW_CACHE.

9.31 VSPERSISTENT SUBSCRIBERS: All Active
Subscribers of the Persistent Queues in the Instance

The V$PERSI STENT_SUBSCRI BERS view displays information about all active subscribers of
the persistent queues in the database.

There is one row per instance per queue per subscriber. The rows are deleted when
the database (or instance in an Oracle RAC environment) restarts.

¢ See Also:

Oracle Database Reference for more information about
V$PERSI STENT SUBSCRI BERS.

ORACLE 9-17

Chapter 9
V$PERSISTENT_PUBLISHERS: All Active Publishers of the Persistent Queues in the Instance

9.32 VSPERSISTENT _PUBLISHERS: All Active Publishers
of the Persistent Queues in the Instance

The V$PERSI STENT_PUBLI SHERS view displays information about all active publishers of
the persistent queues in the database.

There is one row per instance per queue per publisher. The rows are deleted when the
database (or instance in an Oracle RAC environment) restarts.

" See Also:

Oracle Database Reference for more information about
V$PERSISTENT_ PUBLISHERS.

9.33 VSPROPAGATION_SENDER: Buffer Queue
Propagation Schedules on the Sending (Source) Side

The V$PROPAGATI ON_SENDER view displays information about buffer queue propagation
schedules on the sending (source) side.

The values are reset to zero when the database (or instance in a Oracle Real
Application Clusters (Oracle RAC) environment) restarts, when propagation migrates
to another instance, or when an unscheduled propagation is attempted.

¢ See Also:

Oracle Database Reference for more information about V$PROPAGATI ON_SENDER .

9.34 VSPROPAGATION_RECEIVER: Buffer Queue
Propagation Schedules on the Receiving (Destination) Side

ORACLE

The V$PROPAGATI ON_RECEI VER view displays information about buffer queue propagation
schedules on the receiving (destination) side.

The values are reset to zero when the database (or instance in a Oracle Real
Application Clusters (Oracle RAC) environment) restarts, when propagation migrates
to another instance, or when an unscheduled propagation is attempted.

" See Also:

Oracle Database Reference for more information about V$PROPAGATI ON_RECE! VER.

9-18

Chapter 9
V$SUBSCR_REGISTRATION_STATS: Diagnosability of Notifications

9.35 V$SUBSCR_REGISTRATION_STATS: Diagnosability
of Notifications

The V$SUBSCR_REG STRATI ON_STATS view provides information for diagnosability of
notifications.

" See Also:

Oracle Database Reference for more information about
V$SUBSCR_REG STRATI ON_STATS.

9.36 VSMETRICGROUP: Information About the Metric
Group

This V$METRI CGROUP view displays information about the metric group for each of the
four major Streams components: capture, propagation, apply, and queue.

¢ See Also:

Oracle Database Reference for more information about V$METRI CGROUP.

9.37 VSAQ MESSAGE_CACHE_STAT: Memory
Management for Sharded Queues

The V$AQ MESSAGE_CACHE_STAT view displays statistics about memory management for
sharded queues in st reams_pool within the System Global Area (SGA). Sharded queue
uses streans_pool in units of subshards. Thus columns of this view shows statistics at
subshard level irrespective of the queue. This view shows statistics across all sharded
gueues.

Table 9-7 V$AQ_MESSAGE_CACHE_STAT View

Column Datatype Description

INST_I D NUMBER The instance id of the sharded queue

NUM EVI CTED NUMBER Number of evicted subshards across all sharded
gueues

NUM_PREFETCHED NUVBER Number of subshards pre-fetched by AQ background
Process

NUM_UNEVI CTI ON NUMBER Number of subshards un-evicted by foreground

process. (like dequeue process)

ORACLE' 9-19

Chapter 9

V$AQ_SHARDED_SUBSCRIBER_STAT: Sharded Queue Subscriber Statistics

Table 9-7 (Cont.) VSAQ_MESSAGE_CACHE_STAT View
]

Column Datatype Description

NUM_UNCACHED NUMBER Number of subshards stored as uncached.

NUM_TRACKED NUMBER Number of subshards which are actively tracking
dequeue rates

NUM_CACHED NUMBER Number of subshards stored cached in memory

MAX_SUBSH_SI ZE NUMBER Maximum subshard size seen till now, in terms of
number of messages per subshard

M N_SUBSH_SI ZE NUMBER Minimum subshard size seen till now, in terms of
number of messages per subshard

MEAN_SUBSH_SI ZE NUMBER Mean subshard size seen till now, in terms of number
of messages per subshard

AVG_EVI CTI ON_RATE NUMBER Average number of subshard evicted per second

AVG_LOAD RATE NUMBER Average number of subshards pre-fetched or un-
evicted per second

AVG _EVI CTI ON_TI ME NUMBER Average time taken to evict one subshard (in
milliseconds)

AVG _LOAD TI ME NUMBER Average time taken to un-evict one subshard (in
milliseconds)

AVG_M SS_RATI O NUMBER Average ratio of number of foreground un-evictions
versus background pre-fetch

AVG_THRASH_RATI O NUMBER Average ratio of number of subshard pre-fetched by
background without dequeue attempt versus total
number of subshards prefetched

CON_ID NUMBER The ID of the container to which the data pertains.

Possible values include:

e 0: This value is used for rows containing data
that pertain to the entire CDB. This value is also
used for rows in non-CDBs.

e 1: This value is used for rows containing data
that pertain to only the root

e n:Where n is the applicable container ID for the
rows containing data

" Note:

Some of the above mentioned columns will be used by sharded queue memory

advisor during analysis.

0.38 V$AQ SHARDED SUBSCRIBER STAT: Sharded

Queue Subscriber Statistics

The V$AQ SHARDED SUBSCRI BER STAT view displays statistical information about the
subscribers of sharded queues. This statistics is used by the memory advisor.

ORACLE

9-20

Chapter 9
V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

Table 9-8 V$AQ_SHARDED_SUBSCRIBER_STAT View
L]

Column Datatype Description

INST_ID NUMBER Instance ldentifier

QUEUE_ID NUMBER Queue ldentifier

SUBSCRI BER_I D NUMBER Subscriber Identifier

SHARD | D NUMBER Shard Identifier

PRIORI TY NUMBER Priority value of the shard

DEQUEUE_SUBSHARD NUMBER Last known dequeue position in this shard

ENQUEUED _MBGS NUMBER Number of enqueued messages

DEQUEUED MSGS NUMBER Number of dequeued messages

ELAPSED DEQUEUE_TI ME NUMBER Amount of time spent performing dequeues (in
seconds)

CPU_DEQUEUE_TI ME NUMBER Actual amount of CPU time spent performing
dequeues (in seconds)

DEQUEUE_RATE NUMBER Number of messages dequeued per second

TI ME_SI NCE_LAST_DEQUEUE NUMBER Time since last dequeue activity (in seconds)

ESTD_TI ME_TO DRAI N NUMBER Estimated amount of time to drain the shard (in

seconds) with current enqueue and dequeue rates.
Null, if enqueue rate is greater than dequeue rate

ESTD TI ME_TO DRAIN NO ENQ NUVBER Estimated amount of time to drain the shard (in
seconds) with no new enqueues
CON_ID NUVBER The ID of the container to which the data pertains.

9.39 VSAQ MESSAGE_CACHE_ADVICE: Simulated
Metrics

The V$AQ MESSAGE_CACHE_ADVI CE view shows simulated metrics for a range of potential
message cache sizes. This view assists in cache sizing by providing information in
form of metrics as described below.

Table 9-9 V$AQ_MESSAGE_CACHE_ADVICE View

Column Datatype Description

INST_ID NUMBER Instance id

SI ZE_FOR_ESTI MATE NUMBER Cache size for simulation (in megabytes)

SI ZE_FACTOR NUVBER Size factor with respect to the current cache
size (in %)

ORACLE 9-21

Chapter 9

V$AQ_MESSAGE_CACHE_ADVICE: Simulated Metrics

Table 9-9 (Cont.) VSAQ_MESSAGE_CACHE_ADVICE View
]

Column Datatype Description
ESTD_SI ZE_TYPE VARCHAR2 This column can have one of the following
values:

M N MUM- This cache size is required to
have all dequeues in-memory (no
uncached)

* CURRENT - This is current size of message
cache

e MAXI MIM- This cache size is required to
have zero evictions

* Null - otherwise

ESTD_CACHED_SUBSHARDS NUVBER Estimated number of cached subshards for this
size

ESTD_UNCACHED SUBSHARDS NUMBER Estimated number of uncached subshards for
this size

ESTD EVI CTI ONS NUMBER Estimated number of subshards evicted for this
size

ESTD_EVI CTI ON_RATE NUVBER Estimated number of subshards getting evicted
per minute

ESTD_FG_UNEVI CTI ONS NUMBER Estimated number of subshards unevicted by
foreground processes

ESTD_FG_UNEVI CTI ON_RATE NUMBER Estimated number of subshards getting
unevicted by foreground processes

ESTD_BG_UNEVI CTI ONS NUMBER Estimated number of subshards unevicted by
background processes

ESTD_BG_UNEVI CTI ON_RATE NUMBER Estimated number of subshards getting
unevicted by background processes

ESTD_BG_PROCESSES NUMBER Estimated number of background processes
required for this size

TOTAL_ENQUEUE_RATE NUMBER Simulated number of messages being
enqueued per second

TOTAL_DEQUEUE_RATE NUMBER Simulated number of messages being
dequeued per second

AVG_SUBSHARD SI ZE NUMBER Simulated average number of messages per
cached subshard

AVG_SUBSHARD MEMORY NUMBER Simulated average memory per cached
subshard (in megabytes)

AVG_EVI CTI ON_TI ME NUMBER Simulated average time to evict a cached
subshard (in milliseconds)

AVG_UNEVI CTI ON_TI ME NUMBER Simulated average time to unevict a cached
subshard (in milliseconds)

FLAGS NUVBER Reserved for internal and future use

SI MULATI ON_TI ME NUMBER Amount of time that was simulated for (in
minutes)

CONID NUMBER The ID of the container to which the data
pertains.

ORACLE 9-22

Chapter 9
V$AQ_REMOTE_DEQUEUE_AFFINITY: Dequeue Affinity Instance List

9.40 VSAQ_REMOTE_DEQUEUE_AFFINITY: Dequeue
Affinity Instance List

The V$AQ REMOTE_DEQUEUE_AFFI NI TY view lists the dequeue affinity instance of the
subscribers not dequeuing locally from the shard's owner instance. Cross instance
message forwarding is used for these subscribers.

Table 9-10 V$AQ_REMOTE_DEQUEUE_AFFINITY View

Column Datatype Description

QUEUE_ID NUMBER Queue Identifier

QUEUE_SCHEMA VARCHAR2 Queue schema name

QUEUE_NAVE VARCHAR2 Queue name

SUBSCRI BER_I D NUMBER Subscriber identifier

SHARD I D NUMBER Shard identifier which is being forwarded from
SOURCE_I NSTANCE to | NST_I D for the subscriber

SOURCE_| NSTANCE NUMBER Owner instance from where the shard is being
forwarded

INST_I D NUMBER Dequeue instance id of the subscriber for the shard.

Destination instance where shard is forwarded for
the subscriber

¢ See Also:

Oracle Database Reference for more information about
V$AQ REMOTE_DEQUEUE_AFFI NI TY.

9.41 VSAQ _BACKGROUND_ COORDINATOR:
Performance Statistics for AQ's Master Background
Coordinator Process (AQPC)

ORACLE

The V$AQ BACKGROUND_COORDI NATOR view is applicable for Oracle Database 12c¢ Release
1 (12.1) onwards.

This view lists performance statistics for the Oracle Database Advanced Queueing
master background coordinator process (AQPC).

" See Also:

Oracle Database Reference for more information about
V$AQ BACKGROUND_COCRDI NATCR.

9-23

Chapter 9
V$AQ_JOB_COORDINATOR: Performance Statistics per Coordinator

9.42 V$AQ JOB_COORDINATOR: Performance Statistics
per Coordinator

The V$AQ JOB_COORDI NATCR view is applicable for Oracle Database 12c Release 1 (12.1)
onwards.

This view lists performance statistics per coordinator, for every AQ coordinator
controlled by the AQ's Master coordinator.

¢ See Also::

Oracle Database Reference for more information about V$AQ JOB_COORDI NATCR.

9.43 V$AQ SERVER_POOL: Performance Statistics for all
Servers

The V$AQ SERVER POCOL view is applicable for Oracle Database 12c¢ Release 1 (12.1)
onwards. This view lists performance statistics for all the servers in the pool.

¢ See Also::

Oracle Database Reference for more information about V$AQ SERVER POQOL.

9.44 V$AQ CROSS INSTANCE_JOBS: Cross Process
Jobs Description

The V$AQ CROSS_| NSTANCE_JOBS view is applicable for Oracle Database 12c¢ Release 1
(12.1) onwards. This view describes each of the cross process jobs.

Each job serves for forwarding messages for a shard from source instance to
destination instance for a set of subscribers.

¢ See Also::

Oracle Database Reference for more information about
V$AQ CROSS_| NSTANCE_JOBS.

ORACLE 9-24

Chapter 9
V$AQ IPC_ACTIVE_MSGS

9.45 V$AQ IPC_ACTIVE_MSGS

V$AQ | PC_ACTI VE_MSGS displays information about long and priority messages being
processed by slaves and the short message being processed by the master.

" See Also:

Oracle Database Reference for more information about V$AQ | PC_ACTI VE_MSGS.

0.46 V$AQ IPC MSG STATS

V$AQ_IPC_MSG_STATS displays cumulative statistics for each message class, for
example., cumulative calls, average pending/processing time, and last failure.

¢ See Also:

Oracle Database Reference for more information about V$AQ | PC_MSG_STATS.

9.47 V$AQ IPC_PENDING_MSGS

V$AQ IPC_PENDING_MSGS displays information about pending messages, present
in the local master context.

¢ See Also:

Oracle Database Reference for more information about V$AQ | PC_PENDI NG MSGS.

9.48 VSAQ _NONDUR_REGISTRATIONS: Non-Durable
Registrations

The V$AQ NONDUR_REG STRATI ONS view is applicable for Oracle Database 12¢ Release 1
(12.1) onwards. This view provides information about non-durable subscriptions.

" See Also::

Oracle Database Reference for more information about
V$AQ NONDUR_REGH STRATI ONS.

ORACLE 9-25

Chapter 9
V$AQ_NOTIFICATION_CLIENTS: Secure OCI Client Connections

9.49 VSAQ NOTIFICATION_CLIENTS: Secure OCI Client
Connections

The V$AQ NOTI FI CATI ON_CLI ENTS view is applicable for Oracle Database 12c Release 1
(12.1) onwards. This view displays performance statistics for secure OCI client
connections.

See Also::

Oracle Database Reference for more information about
V$AQ NOTI FI CATI ON_CLI ENTS.

9.50 VSAQ SUBSCRIBER_LOAD: Durable Subscribers

The V$AQ SUBSCRI BER_LOAD view is applicable for Oracle Database 12c Release 1 (12.1)
onwards. This view describes the load of all subscribers of sharded queues in terms of
latency at every instance in an Oracle RAC environment.

Latency denotes the predicted amount of time (in seconds) required from the current
time to drain all the messages for that subscriber at each respective instance. The
latency calculation considers past enqueue/dequeue rates and future enqueue/
dequeue rates based on history.

¢ See Also::

Oracle Database Reference for more information about V$AQ SUBSCRI BER LOAD.

9.51 VSAQ NONDUR_SUBSCRIBER: Non-Durable
Subscribers

The V$AQ NONDUR_SUBSCRI BER view is applicable for Oracle Database 12c¢ Release 1
(12.1) onwards. V$AQ NONDUR_SUBSCRI BER provides information about non-durable
subscribers on sharded queues.

¢ See Also::

Oracle Database Reference for more information about V$AQ NONDUR SUBSCRI BER.

ORACLE 9-26

Chapter 9
V$AQ_NONDUR_SUBSCRIBER_LWM: LWM of Non Durable Subscriber

9.52 VSAQ NONDUR_SUBSCRIBER_LWM: LWM of Non
Durable Subscriber

The V$AQ NONDUR_SUBSCRI BER LW view is applicable for Oracle Database 12c Release 1
(12.1) onwards. The LWM of a non durable subscriber is a combination of shard,
priority and LWM (sub-shard).

See Also::

Oracle Database Reference for more information about
V$AQ NONDUR_SUBSCRI BER LM

9.53 VSAQ MESSAGE_CACHE: Performance Statistics

The V$AQ MESSAGE_CACHE view provides performance statistics of the message cache for
sharded queues at the subshard level in the instance.

¢ See Also::

Oracle Database Reference for more information about V$AQ MESSAGE_CACHE.

9.54 MGW_GATEWAY: Configuration and Status
Information

This view lists configuration and status information for Messaging Gateway.

Table 9-11 MGW_GATEWAY View Properties

Name Type Description

AGENT_DATABASE VARCHAR2 The database connect string used by the Messaging Gateway agent.
NULL indicates that a local connection is used.

AGENT_| NSTANCE NUMBER The database instance on which the Messaging Gateway agent is
currently running. This should be NULL if the agent is not running.

AGENT_JCB NUMBER [Deprecated] Job number of the queued job used to start the

Messaging Gateway agent process. The job number is set when
Messaging Gateway is started and cleared when it shuts down.

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent

ORACLE 9-27

Chapter 9
MGW_GATEWAY: Configuration and Status Information

Table 9-11 (Cont.) MGW_GATEWAY View Properties

__|]
Name Type Description

AGENT_PI NG VARCHAR2 Gateway agent ping status. Values:
* NULL means no ping attempt was made.
* REACHABLE means ping attempt was successful.
e UNREACHABLE means ping attempt failed.
AGENT_PI NG attempts to contact the Messaging Gateway agent. There

is a short delay (up to 5 seconds) if the ping attempt fails. No ping is
attempted if the AGENT_STATUS is NOT_STARTED or START _SCHEDULED.

AGENT_START_TI ME TI MESTAMP The time when the Messaging Gateway agent job currently running
was started. This should be NULL if the agent is not running.
AGENT_STATUS VARCHAR2 Status of the Messaging Gateway agent. Values:
* NOT_STARTED means the Messaging Gateway agent has not been
started

e START_SCHEDULED means Messaging Gateway agent has been
scheduled to start. That is, Messaging Gateway has been started
using DBMS_MGADM STARTUP, but the queued job used to start the
Messaging Gateway agent has not yet run.

e STARTI NG means Messaging Gateway agent is starting. That is,
Messaging Gateway has been started using
DBMS_MGAADM STARTUP, the queued job has run, and the Messaging
Gateway agent is starting up.

e INITIALI ZI NG means the Messaging Gateway agent has started
and is initializing

* RUNNI NG means the Messaging Gateway agent is running

e SHUTTI NG_DOMN means the Messaging Gateway agent is shutting
down

» BROKEN means an unexpected condition has been encountered
that prevents the Messaging Gateway agent from starting.
DBMS_MGAADM CLEANUP_GATEWAY must be called before the agent
can be started.

AGENT_USER VARCHAR2 Database user name used by the Messaging Gateway agent to
connect to the database

COMMENTS VARCHAR2 Comments for the agent

CONNTYPE VARCHAR2 Connection type used by the agent:

« JDBC OC if the JDBC OCI driver is used
e JDBC_TH Nif the JDBC Thin driver is used

I NI TFI LE VARCHAR2 Name of the Messaging Gateway initialization file used by the agent.
NULL indicates that the default initialization file is used.

LAST_ERROR DATE DATE Date of last Messaging Gateway agent error. The last error information
is cleared when Messaging Gateway is started. It is set if the
Messaging Gateway agent fails to start or terminates due to an
abnormal condition.

LAST_ERROR_MSG VARCHAR2 Message for last Messaging Gateway agent error

LAST_ERROR_TI ME VARCHAR2 Time of last Messaging Gateway agent error

MAX_CONNECTI ONS NUMBER [Deprecated] Maximum number of messaging connections to Oracle
Database

MAX_MEMORY NUMBER Maximum heap size used by the Messaging Gateway agent (in MB)

ORACLE 9-28

Chapter 9
MGW_AGENT_OPTIONS: Supplemental Options and Properties

Table 9-11 (Cont.) MGW_GATEWAY View Properties

Name Type Description

MAX_THREADS NUVBER Maximum number of messaging threads created by the Messaging
Gateway agent

SERVI CE VARCHAR2 Name of the database service that is associated with an Oracle
Scheduler job class used by the agent

9.55 MGW_AGENT_OPTIONS: Supplemental Options and
Properties

This view lists supplemental options and properties for a Messaging Gateway agent.

Table 9-12 MGW_AGENT_OPTIONS View

Column Type Description
AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent
ENCRYPTED VARCHAR2 Indicates whether the value is stored as encrypted:

e TRUE if the value is stored encrypted
. FALSE if the value is stored as cleartext

NAVE VARCHAR2 Name of the option

TYPE VARCHAR2 Option type or usage: JAVA_SYSTEM PRCP if the option is used to set a
Java System property

VALUE VARCHAR2 Value for the option. This will be <<ENCRYPTED>> if the value is stored

in an encrypted form.

9.56 MGW_LINKS: Names and Types of Messaging System
Links

This view lists the names and types of messaging system links currently defined.

Table 9-13 MGW_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

LI NK_COMMVENT VARCHAR2 User comment for the link

LI NK_NAVE VARCHAR2 Name of the messaging system link

LI NK_TYPE VARCHAR2 Type of messaging system link. Values

* MXERI ES is for WebSphere MQ links.
* TIBRVis for TIB/Rendezvous links.

ORACLE 9-29

Chapter 9
MGW_MQSERIES_LINKS: WebSphere MQ Messaging System Links

9.57 MGW_MQSERIES LINKS: WebSphere MQ
Messaging System Links

This view lists information for the WebSphere MQ messaging system links. The view
includes most of the messaging system properties specified when the link is created.

Table 9-14 MGW_MQSERIES_LINKS View Properties

Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process
propagation jobs for this link

CHANNEL VARCHAR2 Connection channel

HOSTNAMVE VARCHAR2 Name of the WebSphere MQ host

| NBOUND_LOG_QUEUE VARCHAR2 Inbound propagation log queue

| NTERFACE_TYPE VARCHAR2 Messaging interface type. Values:

e BASE_JAVAis for WebSphere MQ Base Java interface

e JMS_CONNECTI ONis for WebSphere MQ JMS unified, domain-
independent connections
e JMS_QUEUE_CONNECTI ONis for WebSphere MQ JMS queue

connections
e JMS_TOPI C_CONNECTI ONiis for WebSphere MQ JMS topic

connections
LI NK_COMMVENT VARCHAR2 User comment for the link
LI NK_NAMVE VARCHAR2 Name of the messaging system link
MAX_CONNECTI ONS NUMBER Maximum number of messaging connections
OPTI ONS SYS. MBW PROPER Link options

TIES

QUTBOUND_LOG_QUEUE VARCHAR2 Outbound propagation log queue
PORT NUVBER Port number
QUEUE_MANAGER VARCHAR2 Name of the WebSphere MQ queue manager

9.58 MGW_TIBRV_LINKS: TIB/Rendezvous Messaging
System Links

This view lists information for TIB/Rendezvous messaging system links. The view

includes most of the messaging system properties specified when the link was
created.

Table 9-15 MGW_TIBRV_LINKS View Properties

Property Name Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that will process propagation
jobs for this link

CM_LEDGER VARCHAR2 TIB/Rendezvous CM ledger file name

ORACLE 9-30

Chapter 9
MGW_FOREIGN_QUEUES: Foreign Queues

Table 9-15 (Cont.) MGW_TIBRV_LINKS View Properties
]

Property Name Type Description
CM_NAMVE VARCHAR2 TIB/Rendezvous CM correspondent name
DAEMON VARCHAR2 TIB/Rendezvous daemon parameter for RVD transport
L1 NK_COMMENT VARCHAR2 User comment for the link
LI NK_NAVE VARCHAR2 Name of the messaging system link
NETWORK VARCHAR2 TIB/Rendezvous network parameter for rvd transport
OPTI ONS SYS. MGW PROPERT Link options
I ES
SERVI CE VARCHAR2 TIB/Rendezvous service parameter for rvd transport

9.59 MGW_FOREIGN_QUEUES: Foreign Queues

This view lists information for foreign queues. The view includes most of the queue
properties specified when the queue is registered.

Table 9-16 MGW_FOREIGN_QUEUES View Properties

Name Type Description

DOVAI N VARCHAR2 Queue domain type. Values:
* NULL means the queue domain type is automatically determined
by the messaging system
* QUEUE is for a queue (point-to-point) model
* TOPI Cis for a topic (publish-subscribe) model

L1 NK_NAVE VARCHAR2 Name of the messaging system link
NAMVE VARCHAR2 Name of the registered queue
OPTI ONS SYS. MGW PROPER Optional queue properties

TIES
PROVI DER_QUEUE VARCHAR2 Message provider (native) queue name
QUEUE_COMVENT VARCHAR2 User comment for the foreign queue

9.60 MGW_JOBS: Messaging Gateway Propagation Jobs

This view lists information for Messaging Gateway propagation jobs. The view includes
most of the job properties specified when the propagation job was created, as well as
other status and statistical information.

Table 9-17 MGW_JOBS View

Column Type Description

AGENT_NAME VARCHAR2 Name of the Messaging Gateway agent that processes this job
COMMENTS VARCHAR2 Comments for the propagation job

DESTI NATI ON VARCHAR2 Destination queue to which messages are propagated

ORACLE 9-31

Table 9-17 (Cont.) MGW_JOBS View

Chapter 9
MGW_JOBS: Messaging Gateway Propagation Jobs

Column Type Description
ENABLED VARCHAR2 Indicates whether the job is enabled or not:
e TRUEIf the job is enabled
e FALSE f the job is disabled
EXCEPTI ON_QUEUE VARCHAR2 Exception queue used for propagation logging purposes
EXCEPTI ONQ_MSGS NUMBER Option type or usage: JAVA_SYSTEM PRCP if the option is used to set a
Java System property
FAI LURES NUMBER Number of messages moved to exception queue since the last time
the agent was started
JOB_NAME VARCHAR2 Name of the propagation job
LAST_ERROR_MSG VARCHAR2 Message for the last propagation error
LAST_ERRCR DATE DATE Date of the last propagation error
LAST_ERRCR TI ME VARCHAR2 Time of the last propagation error
LI NK_NAVE VARCHAR2 Name of the Messaging Gateway link used by this job
OPTI ONS SYS. MGW PROPERT Job options
| ES
PCOLL_| NTERVAL | NTEGER Propagation poll interval (in seconds)
PROPAGATED _MSGS NUMBER Number of messages propagated since the last time the agent was
started
PROP_STYLE VARCHAR2 Message propagation style:
e NATI VE for native message propagation
e JMSfor IMS message propagation
PROPAGATI ON_TYPE VARCHAR2 Propagation type:
e QOUTBOUNDis for Oracle Database AQ to non-Oracle propagation
e | NBOUNDis for non-Oracle to Oracle Database AQ propagation
RULE VARCHAR2 Subscription rule used for the propagation source
SOURCE VARCHAR2 Source queue from which messages are propagated
STATUS VARCHAR2 Job status:

ORACLE

e READY means the job is ready for propagation. The job must be
enabled and the Messaging Gateway agent running before
messages are actually propagated.

e RETRY means the agent encountered errors when attempting to
propagate messages for the job and will retry the operation

e FAI LED means the job has failed and agent has stopped trying to
propagate messages. Usually this is due to an unrecoverable
error or the propagation failure limit being reached. The job must
be reset before the agent will attempt to propagate messages.
The job is automatically reset each time the agent is started and
can be manually reset by DBMS_MGWADM RESET_JOB.

e DELETE_PENDI NG means that job removal is pending.
DBVS_MGAADM REMOVE_JOB has been called but certain cleanup
tasks for this job are still outstanding.

e SUBSCRI BER_DELETE_PENDI NG means that removal is pending for
the subscriber associated with the job.

DBVS_MAMADM REMOVE_SUBSCRI BER has been called but certain
cleanup tasks are still outstanding.

9-32

Chapter 9
MGW_SUBSCRIBERS: Information for Subscribers

Table 9-17 (Cont.) MGW_JOBS View

Column
TRANSFORMATI ON

9.61 MGW_SUBSCRIBERS: Information for Subscribers

This view lists configuration and status information for Messaging Gateway
subscribers. The view includes most of the subscriber properties specified when the
subscriber is added, as well as other status and statistical information.

Type Description

VARCHAR2

Transformation used for message conversion

Table 9-18 MGW_SUBSCRIBERS View Properties

Name Type Description

DESTI NATI ON VARCHAR2 Destination queue to which messages are propagated

EXCEPTI ONQ_MSGS NUMBER Number of messages moved to the propagation exception queue
since the last time the agent was started

EXCEPTI ON_QUEUE VARCHAR2 Exception queue used for logging purposes

FAI LURES NUMBER Number of propagation failures

LAST_ERRCR DATE DATE Date of last propagation error

LAST_ERROR_MSG VARCHAR2 Message for last propagation error

LAST_ERRCR_TI ME VARCHAR2 Time of last propagation error

OPTI ONS

PROP_STYLE

PROPAGATED MSGS

PROPAGATI ON_TYPE

QUEUE_NAME
RULE
STATUS

SUBSCRI BER_| D
TRANSFORMATI ON

SYS. MGW PROPERT
IES

VARCHAR2

NUMBER

VARCHAR2

VARCHAR2
VARCHAR2
VARCHAR2

VARCHAR2
VARCHAR2

Subscriber options

Message propagation style. Values:

* NATI VE is for native message propagation

* JMsis for IMS message propagation

Number of messages propagated to the destination queue since the
last time the agent was started

Propagation type. Values:

* QOUTBOUND is for Oracle Database AQ to non-Oracle propagation
| NBOUND s for non-Oracle to Oracle Database AQ propagation
Subscriber source queue

Subscription rule

Subscriber status. Values:

» ENABLED means the subscriber is enabled

» DELETE_PENDI NG means subscriber removal is pending, usually
because DBMS_MGWADM REMOVE_SUBSCRI BER has been called but
certain cleanup tasks pertaining to this subscriber are still
outstanding

Propagation subscriber identifier

Transformation used for message conversion

ORACLE

9-33

Chapter 9
MGW_SCHEDULES: Information About Schedules

9.62 MGW_SCHEDULES: Information About Schedules

This view lists configuration and status information for Messaging Gateway schedules.
The view includes most of the schedule properties specified when the schedule is
created, as well as other status information.

Table 9-19 MGW_SCHEDULES View Properties

Name Type Description

DESTI NATI ON VARCHAR2 Propagation destination

LATENCY NUMBER Propagation window latency (in seconds)

NEXT_TI ME VARCHAR2 Reserved for future use

PROPAGATI ON_TYPE VARCHAR2 Propagation type. Values:
e QUTBOUNDis for Oracle Database AQ to non-Oracle propagation
e | NBOUND s for non-Oracle to Oracle Database AQ propagation

PROPAGATI ON_W NDOW NUVBER Reserved for future use

SCHEDULE_DI SABLED VARCHAR2 Indicates whether the schedule is disabled. Y means the schedule is
disabled. N means the schedule is enabled.

SCHEDULE_| D VARCHAR2 Propagation schedule identifier

SOURCE VARCHAR2 Propagation source

START_DATE DATE Reserved for future use

START_TI ME VARCHAR2 Reserved for future use

ORACLE 9-34

Oracle Database Advanced Queuing
Operations Using PL/SQL

These topics describes the Oracle Database Advanced Queuing (AQ) PL/SQL
operational interface.

Using Secure Queues

Enqueuing Messages

Enqueuing an Array of Messages
Listening to One or More Queues
Dequeuing Messages

Dequeuing an Array of Messages
Registering for Notification

Posting for Subscriber Notification
Adding an Agent to the LDAP Server

Removing an Agent from the LDAP Server

¢ See Also:

Oracle Database Advanced Queuing: Programmatic Interfaces for a list of
available functions in each programmatic interface

"DBMS_AQ" in Oracle Database PL/SQL Packages and Types Reference
for more information on the PL/SQL interface

Oracle Database Advanced Queuing Java API Reference for more
information on the Java interface

"More OCI Relational Functions" in Oracle Call Interface Programmer's
Guide

"OCI Programming Advanced Topics" in Oracle Call Interface
Programmer's Guide for more information on the Oracle Call Interface
(OCl)

10.1 Using Secure Queues

For secure queues, you must specify the sender _i d in the nessages_properties

ORACLE

parameter.

See "MESSAGE_PROPERTIES_T Type" in Oracle Database PL/SQL Packages and
Types Reference for more information about sender _i d.

10-1

Chapter 10
Enqueuing Messages

When you use secure queues, the following are required:

* You must have created a valid Oracle Database Advanced Queuing agent using
DBVS_AQADM CREATE_AQ AGENT.

* You must map sender_i d to a database user with enqueue privileges on the secure
gueue. Use DBVS_AQADM ENABLE_DB_ACCESS to do this.

¢ See Also:

— "Creating an Oracle Database Advanced Queuing Agent"
— "Enabling Database Access"

— Oracle Streams Concepts and Administration for information about
secure queues

10.2 Enqueuing Messages

ORACLE

This procedure adds a message to the specified queue.

DBVS_AQ ENQUEUE(

queue_nane IN VARCHAR?,
enqueue_opti ons IN enqueue_options_t,
message_properties IN message_properties_t,
payl oad I'N "type_nane",

megi d aut RAW ;

It is not possible to update the message payload after a message has been enqueued.
If you want to change the message payload, then you must dequeue the message and
engueue a new message.

To store a payload of type RAW Oracle Database Advanced Queuing creates a queue
table with LOB column as the payload repository. The maximum size of the payload is
determined by which programmatic interface you use to access Oracle Database
Advanced Queuing. For PL/SQL, Java and precompilers the limit is 32K; for the OCI
the limit is 4G.

If a message is enqueued to a multiconsumer queue with no recipient and the queue
has no subscribers (or rule-based subscribers that match this message), then Oracle
error ORA 24033 is raised. This is a warning that the message will be discarded
because there are no recipients or subscribers to whom it can be delivered.

If several messages are enqueued in the same second, then they all have the same
eng_tine. In this case the order in which messages are dequeued depends on step_no,
a variable that is monotonically increasing for each message that has the same

eng_ti me. There is no situation when both eng_ti ne and st ep_no are the same for two
messages enqueued in the same session.

Enqueue Options

The enqueue_opt i ons parameter specifies the options available for the enqueue
operation. It has the following attributes:

e visibility

10-2

ORACLE

Chapter 10
Enqueuing Messages

The visi bi ity attribute specifies the transactional behavior of the enqueue
request. ON_COW T (the default) makes the enqueue is part of the current
transaction. | MVEDI ATE makes the enqueue operation an autonomous transaction
which commits at the end of the operation.

Do not use the | MVEDI ATE option when you want to use LOB locators. LOB locators
are valid only for the duration of the transaction. Your locator will not be valid,
because the i medi at e option automatically commits the transaction.

You must set the vi si bi | i ty attribute to | MVEDI ATE to use buffered messaging.
relative_nsgid

The rel ative_nsgi d attribute specifies the message identifier of the message
referenced in the sequence deviation operation. This parameter is ignored unless
sequence_devi ati on is specified with the BEFORE attribute.

sequence_devi ation

The sequence_devi ati on attribute specifies when the message should be
dequeued, relative to other messages already in the queue. BEFORE puts the
message ahead of the message specified by rel ative_nsgi d. TOP puts the
message ahead of any other messages.

Specifying sequence_devi at i on for a message introduces some restrictions for the
delay and priority values that can be specified for this message. The delay of this
message must be less than or equal to the delay of the message before which this
message is to be enqueued. The priority of this message must be greater than or
equal to the priority of the message before which this message is to be enqueued.

Note:

The sequence_devi ati on attribute has no effect in releases prior to Oracle
Database Advanced Queuing 10g Release 1 (10.1) if message_gr oupi ng is
set to TRANSACTI ONAL.

The sequence deviation feature is deprecated in Oracle Database
Advanced Queuing 10g Release 2 (10.2).

transformation

The transf ormati on attribute specifies a transformation that will be applied before
enqueuing the message. The return type of the transformation function must
match the type of the queue.

del i very_node

If the del i very_node attribute is the default PERSI STENT, then the message is
enqueued as a persistent message. If it is set to BUFFERED, then the message is
enqueued as an buffered message. Null values are not allowed.

Message Properties

The message_properties parameter contains the information that Oracle Database
Advanced Queuing uses to manage individual messages. It has the following
attributes:

priority

10-3

ORACLE

Chapter 10
Enqueuing Messages

The priority attribute specifies the priority of the message. It can be any number,
including negative numbers. A smaller number indicates higher priority.

del ay

The del ay attribute specifies the number of seconds during which a message is in
the WAI TI NG state. After this number of seconds, the message is in the READY state
and available for dequeuing. If you specify NO DELAY, then the message is available
for immediate dequeuing. Dequeuing by nsgi d overrides the del ay specification.

" Note:

Delay is not supported with buffered messaging.

expiration

The expi rati on attribute specifies the number of seconds during which the
message is available for dequeuing, starting from when the message reaches the
READY state. If the message is not dequeued before it expires, then it is moved to
the exception queue in the EXPI RED state. If you specify NEVER, then the message
does not expire.

Note:

Message delay and expiration are enforced by the queue monitor (QWN)
background processes. You must start the QMN processes for the
database if you intend to use the delay and expiration features of Oracle
Database Advanced Queuing.

correlation

The correl ati on attribute is an identifier supplied by the producer of the message
at enqueue time.

attenpts

The at t enps attribute specifies the number of attempts that have been made to
dequeue the message. This parameter cannot be set at enqueue time.

recipient_|ist

The reci pi ent _I i st parameter is valid only for queues that allow multiple
consumers. The default recipients are the queue subscribers.

exception_queue

The except i on_gueue attribute specifies the name of the queue into which the
message is moved if it cannot be processed successfully. If the exception queue
specified does not exist at the time of the move, then the message is moved to the
default exception queue associated with the queue table, and a warning is logged
in the alert log.

del i very_node

Any value for del i very_node specified in message properties at enqueue time is
ignored. The value specified in enqueue options is used to set the delivery mode

10-4

ORACLE

Chapter 10
Enqueuing Messages

of the message. If the delivery mode in enqueue options is left unspecified, then it
defaults to persistent.

enqueue_tine

The enqueue_ti ne attribute specifies the time the message was enqueued. This
value is determined by the system and cannot be set by the user at enqueue time.

" Note:

Because information about seasonal changes in the system clock
(switching between standard time and daylight-saving time, for example) is
stored with each queue table, seasonal changes are automatically reflected
in enqueue_ti me. If the system clock is changed for some other reason, then
you must restart the database for Oracle Database Advanced Queuing to
pick up the changed time.

state

The st at e attribute specifies the state of the message at the time of the dequeue.
This parameter cannot be set at enqueue time.

sender_id

The sender _i d attribute is an identifier of type ag$_agent specified at enqueue time
by the message producer.

original _nmsgid
The original_msgid attribute is used by Oracle Database AQ for propagating
messages.

transaction_group

The transaction_group attribute specifies the transaction group for the message.
This attribute is set only by DBMS_AQ DEQUEUE_ARRAY. This attribute cannot be used to
set the transaction group of a message through DBMS_AQ ENQUEUE or

DBMS_AQ ENQUEUE_ARRAY.

user_property

The user_property attribute is optional. It is used to store additional information
about the payload.

The examples in the following topics use the same users, message types, queue
tables, and queues as do the examples in Oracle Database Advanced Queuing
Administrative Interface. If you have not already created these structures in your test
environment, then you must run the following examples:

Example 8-1
Example 8-2
Example 8-3
Example 8-5
Example 8-7
Example 8-8
Example 8-23

10-5

ORACLE

Chapter 10
Enqueuing Messages

* Example 8-25
* Example 8-26
* Example 8-27
* Example 8-28
* Example 8-36

For Example 8-1, you must connect as a user with administrative privileges. For the
other examples in the preceding list, you can connect as user t est_adm After you have
created the queues, you must start them as shown in "Starting a Queue". Except as
noted otherwise, you can connect as ordinary queue user ' test' to run all examples.

Enqueuing a LOB Type Message

Example 10-3 creates procedure bl obenqueue() using the test. | ob_t ype message
payload object type created in Example 8-1. On enqueue, the LOB attribute is set to
EMPTY_BLOB. After the enqueue completes, but before the transaction is committed, the
LOB attribute is selected from the user _dat a column of the test. | ob_gt ab queue table.
The LOB data is written to the queue using the LOB interfaces (which are available
through both OCI and PL/SQL). The actual enqueue operation is shown in

On dequeue, the message payload will contain the LOB locator. You can use this LOB
locator after the dequeue, but before the transaction is committed, to read the LOB
data. This is shown in Example 10-14.

Enqueuing Multiple Messages to a Single-Consumer Queue

Example 10-5 enqueues six messages to t est. obj _queue. These messages are
dequeued in Example 10-17.

Enqueuing Multiple Messages to a Multiconsumer Queue

Example 10-6 requires that you connect as user ' t est _adni to add subscribers RED and
GREENto queue test. nul ti consumer _queue. The subscribers are required for
Example 10-7.

Example 10-7 enqueues multiple messages from sender 001. MESSAGE 1 is
intended for all queue subscribers. MESSAGE 2 is intended for RED and BLUE.
These messages are dequeued in Example 10-17.

Enqueuing Grouped Messages

Example 10-8 enqueues three groups of messages, with three messages in each
group. These messages are dequeued in Example 10-16.

Enqueuing a Message with Delay and Expiration

In Example 10-9, an application wants a message to be dequeued no earlier than a
week from now, but no later than three weeks from now. Because expiration is
calculated from the earliest dequeue time, this requires setting the expiration time for
two weeks.

Example 10-1 Enqueuing a Message, Specifying Queue Name and Payload

DECLARE
enqueue_options DBMS_AQ enqueue_options_t;
message_properties DBMS_AQ message_properties_t;
message_handl e RAW 16) ;

10-6

Chapter 10
Enqueuing Messages

nmessage test. message_typ;

BEG N
message : = test.nmessage_typ(001, ' TEST MESSAGE', 'First message to obj_queue');
DBNVS_AQ. ENQUEUE(

queue_narme => 'test.obj _queue',

enqueue_options => enqueue_opti ons,

nmessage_properties => message_properties,

payl oad => nmessage,

nsgi d => message_handl e) ;
COWM T,

END;
/

Example 10-2 Enqueuing a Message, Specifying Priority

DECLARE
enqueue_opti ons DBVS_AQ enqueue_options_t;
message_properties DBVS_AQ nessage_properties_t;
message_handl e RAW 16) ;
message test.order_typ;

BEG N

message : = test.order_typ(002, 'PRIORITY MESSAGE , 'priority 30');
message_properties.priority := 30;
DBNVS_AQ ENQUEUE(

queue_name => "test.priority_queue',

enqueue_opti ons => enqueue_opti ons,

nmessage_properties => nessage_properties,

payl oad => nessage,

msgi d => nessage_handl e);
COWMT;

END;
/

Example 10-3 Creating an Enqueue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE bl obenqueue(nmsgno | N NUMBER) AS

eng_userdata test.lob_typ;
eng_msgi d RAW 16) ;
enqueue_options DBMS_AQ. enqueue_options_t;
message_properties DBVS_AQ nmessage_properties_t;
I ob_I oc BLOB;
buf f er RAW 4096) ;
BEG N
buffer HEXTORAW RPAD(' FF', 4096, 'FF'));

eng_userdata :
DBMS_AQ. ENQUEUE(

test.lob_typ(nsgno, 'Large Lob data', EMPTY_BLOB(), nsgno);

queue_narme => 'test.|ob_queue',
enqueue_options => enqueue_opti ons,
nessage_properties => nessage_properties,
payl oad => eng_userdat a,
nsgi d => enq_nsgid);

SELECT t.user_data.data INTO [ob_l oc
FROM | ob_qgtab t

VHERE t.nsgid = eng_nsgi d;
DBVS_LOB. WRI TE(| ob_| oc, 2000, 1, buffer);
COW T;
END;
/

ORACLE 10-7

ORACLE

Chapter 10
Enqueuing Messages

Example 10-4 Enqueuing a LOB Type Message

BEG N
FORi IN1..5 LOOP
bl obenqueue(i)
END LOCP
END;

/

Example 10-5 Enqueuing Multiple Messages

SET SERVEROUTPUT ON

DECLARE
enqueue_options
message_properties
message_handl e
message

DBMS_AQ enqueue_opti ons_t
DBMS_AQ nmessage_properties_t;
RAW 16) ;

test. message_typ

BEG N
message
DBMS_AQ. ENQUEUE(
queue_name
enqueue_options
message_properties
payl oad
msgi d

message

DBMS_AQ. ENQUEUE(
queue_name
enqueue_options
message_properties
payl oad
msgi d

message

DBMS_AQ. ENQUEUE(
queue_name
enqueue_options
message_properties
payl oad
msgi d

message

DBMS_AQ. ENQUEUE(
queue_name
enqueue_options
message_properties
payl oad
msgi d

message

DBMS_AQ. ENQUEUE(
queue_name
enqueue_options
message_properties
payl oad
msgi d

message

DBMS_AQ. ENQUEUE(
queue_name
enqueue_options
message_properties
payl oad
msgi d

COW T;

:= test.message_typ(001, 'ORANGE , ' ORANGE enqueued first.")

=> 'test.obj _queue'
=> enqueue_options

=> message_properties
=> nessage

=> message_handl e)

1= test.message_typ(001, 'ORANGE , ' ORANGE al so enqueued second.')

=> 'test.obj _queue'
=> enqueue_options

=> message_properties
=> nessage

=> message_handl e)

:= test.message_typ(001, 'YELLOW, ' YELLOW enqueued third.")

=> 'test.obj _queue'
=> enqueue_options

=> message_properties
=> nessage

=> message_handl e)

1= test.message_typ(001, 'VICLET', 'VIOLET enqueued fourth.")

=> 'test.obj _queue'
=> enqueue_options

=> message_properties
=> nessage

=> message_handl e)

1= test.message_typ(001, 'PURPLE , 'PURPLE enqueued fifth.")

=> 'test.obj _queue'
=> enqueue_options

=> message_properties
=> nessage

=> message_handl e)

1= test.message_typ(001, 'PINK', 'PINK enqueued sixth.")

=> 'test.obj _queue'
=> enqueue_options

=> message_properties
=> nessage

=> message_handl e)

10-8

ORACLE

Chapter 10
Enqueuing Messages

END;
/

Example 10-6 Adding Subscribers RED and GREEN

DECLARE
subscri ber sys. aq$_agent;
BEG N
subscri ber := sys.ag$_agent (' RED', NULL, NULL);

DBMS_AQADM ADD_SUBSCRI BER(
queue_name => ‘'test.nulticonsunmer_queue',
subscriber => subscriber);

subscri ber := sys.ag$_agent (' GREEN , NULL, NULL);
DBMS_AQADM ADD_SUBSCRI BER(
queue_name => ‘'test.nulticonsunmer_queue',
subscriber => subscriber);
END;
/

Example 10-7 Enqueuing Multiple Messages to a Multiconsumer Queue

DECLARE
enqueue_options DBMS_AQ enqueue_options_t;
message_properties DBMS_AQ message_properties_t;
recipients DBMS_AQ ag$_recipient _list_t;
message_handl e RAW 16) ;
message test. message_typ;

BEG N

message : = test.message_typ(001, 'MESSAGE 1','For queue subscribers');
DBMS_AQ. ENQUEUE(

queue_narme => '"test.mlticonsuner_queue',
enqueue_options => enqueue_opti ons,
nessage_properties => nessage_properties,

payl oad => message,

msgi d => message_handl e) ;

message : = test.nmessage_typ(001, ' MESSAGE 2', 'For two recipients');
recipients(l) := sys.ag$_agent (' RED', NULL, NULL);
recipients(2) := sys.ag$_agent('BLUE', NULL, NULL);

message_properties.recipient_list := recipients;

DBMS_AQ. ENQUEUE(
queue_narme => "test.mlticonsuner_queue',
enqueue_options => enqueue_opti ons,
nessage_properties => nessage_properties,
payl oad => message,
msgi d => message_handl e) ;

COW T;

END;

/

Example 10-8 Enqueuing Grouped Messages

DECLARE
enqueue_options DBMS_AQ enqueue_options_t;
message_properties DBMS_AQ nessage_properties_t;
message_handl e RAW 16) ;
message test. message_typ;

BEG N

FOR groupno in 1..3 LOOP
FOR nmsgno in 1..3 LOCP
message : = test.nmessage_typ(

10-9

ORACLE

Chapter 10
Enqueuing Messages

001,
"GROUP ' || groupno,
"Message ' || msgno || ' in group ' || groupno);
DBVS_AQ ENQUEUE(
queue_name => 'test.group_queue',
enqueue_options => enqueue_opti ons,
message_properties => nessage_properti es,
payl oad => nessage,
msgi d => message_handl e) ;
END LOOP;
COWM T,
END LOOP;

END;
/

Example 10-9 Enqueuing a Message, Specifying Delay and Expiration

DECLARE
enqueue_opti ons DBMS_AQ. enqueue_options_t;
message_properties DBMS_AQ message_properties_t;
message_handl e RAW 16) ;
nmessage test. nessage_typ;

BEG N

message : = test.nmessage_typ(001, 'DELAYED , 'Message is del ayed one week.');

message_properties. del ay = 7*24*60* 60;
message_properties.expiration := 2*7*24*60*60;
DBMVS_AQ. ENQUEUE(
queue_name => 'test.obj _queue',
enqueue_opti ons => enqueue_opti ons,
message_properties => message_properties,
payl oad => nessage,
msgi d => nessage_handl e);
COWM T;
END;

/

Example 10-10 Enqueuing a Message, Specifying a Transformation

DECLARE
enqueue_options DBMS_AQ enqueue_options_t;
message_properties DBMS_AQ message_properties_t;
message_handl e RAW 16) ;
message test. message_typ;
BEG N
message : = test.nmessage_typ(001, ' NORMAL MESSAGE , 'enqueued to obj _queue');
enqueue_options.transformation := 'nmessage_order_transforn;
DBMS_AQ. ENQUEUE(
queue_narme => 'test.priority_queue',
enqueue_options => enqueue_opti ons,
message_properties => message_properties,
payl oad => message,
nsgi d => message_handl e) ;
COWM T;
END;

/

10-10

Chapter 10
Enqueuing an Array of Messages

10.3 Enqueuing an Array of Messages

Use the ENQUEUE_ARRAY function to enqueue an array of payloads using a corresponding
array of message properties.

DBMVS_AQ ENQUEUE_ARRAY(

queue_name IN VARCHAR?Z,

enqueue_options IN enqueue_options_t,
array_size IN PLS_I NTECGER,
message_properties_array |IN message _properties_array_t,
payl oad_array IN VARRAY,

msi d_array QUT nsgid_ array_t)

RETURN PLS_| NTEGER,

The output is an array of message identifiers of the enqueued messages. The function
returns the number of messages successfully enqueued.

Array enqueuing is not supported for buffered messages, but you can still use
DBMS_AQ ENQUEUE_ARRAY() to enqueue buffered messages by setting array_si ze to 1.

The nessage_properties_array parameter is an array of message properties. Each
element in the payload array must have a corresponding element in this record. All
messages in an array have the same delivery mode.

The payload structure can be a VARRAY or nested table. The message IDs are
returned into an array of RAW(16) entries of type DBVS_AQ nsgid_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

" See Also:

e "Enqueue Options"

e "Message Properties"

Example 10-11 Enqueuing an Array of Messages

DECLARE
enqueue_options DBMS_AQ enqueue_options_t;
msg_prop_array DBMS_AQ nessage_properties_array_t;
msg_prop DBMS_AQ nessage_properties_t;
payl oad_array test.nsg_table;
msgi d_array DBVMS_AQ nsgi d_array_t;
retval PLS | NTEGER,
BEG N
payl oad_array := nsg_table(

message_typ(001, 'MESSAGE 1', 'array enqueued to obj_queue'),
message_typ(001, 'MESSAGE 2', 'array enqueued to obj_queue'));
nmsg_prop_array := DBMS_AQ nessage_properties_array_t(msg_prop, nsg_prop);

retval := DBMS_AQ ENQUEUE_ARRAY(
queue_narme => 'test.obj _queue',

ORACLE 10-11

Chapter 10
Listening to One or More Queues

enqueue_options => enqueue_opti ons,
array_size = 2,
message_properties_array => nsg_prop_array,
payl oad_array => payl oad_array,
megi d_array => nsgi d_array);
COWM T,
END; /

10.4 Listening to One or More Queues

ORACLE

This procedure specifies which queue or queues to monitor.

DBVS_AQ LI STEN(
agent _|ist I'N ag$_agent _list_t,
wai t I'N Bl NARY_| NTEGER DEFAULT FOREVER,
listen_delivery_mode IN PLS | NTEGER DEFAULT PERSI STENT,
agent OUT sys.ag$_agent

message_del ivery_mode OUT PLS_INTEGER);
TYPE ag$_agent list_t IS TABLE of ag$_agent |NDEXED BY BI NARY | NTEGER,

This call takes a list of agents as an argument. Each agent is identified by a unique
combination of name, address, and protocol.

You specify the queue to be monitored in the address field of each agent listed.
Agents must have dequeue privileges on each monitored queue. You must specify the
name of the agent when monitoring multiconsumer queues; but you must not specify
an agent name for single-consumer queues. Only local queues are supported as
addresses. Protocol is reserved for future use.

Note:

Listening to multiconsumer queues is not supported in the Java API.

The listen_delivery_node parameter specifies what types of message interest the
agent. If it is the default PERSI STENT, then the agent is informed about persistent
messages only. If it is set to BUFFERED, then the agent is informed about buffered
messages only. If it is set to PERSI STENT_CR_BUFFERED, then the agent is informed about
both types.

This is a blocking call that returns the agent and message type when there is a
message ready for consumption for an agent in the list. If there are messages for more
than one agent, then only the first agent listed is returned. If there are no messages
found when the wait time expires, then an error is raised.

A successful return from the |i sten call is only an indication that there is a message
for one of the listed agents in one of the specified queues. The interested agent must
still dequeue the relevant message.

Note:

You cannot call LI STEN on nonpersistent queues.

10-12

Chapter 10
Dequeuing Messages

Even though both test. obj _queue and test. priority_gqueue contain messages
(enqueued in Example 10-1 and Example 10-2 respectively) Example 10-12 returns
only:

Message in Queue: "TEST"."OBJ_QUEUE"

If the order of agents in test _agent _| i st is reversed, sotest.priority_gqueue appears
before test. obj _queue, then the example returns:

Message in Queue: "TEST"."PRI ORI TY_QUEUE"

¢ See Also:
"AQ Agent Type"

Example 10-12 Listening to a Single-Consumer Queue with Zero Timeout

SET SERVERCUTPUT ON

DECLARE
agent sys. aq$_agent;
test_agent_|ist DBVS_AQ ag$_agent list_t;
BEG N

test_agent _list(1l) :
test_agent _list(2) :
DBMVS_AQ. LI STEN(

sys.ag$_agent (NULL, 'test.obj_queue', NULL);
sys.ag$_agent (NULL, "test.priority_queue', NULL);

agent _list => test_agent_list,
wai t = 0,
agent => agent);
DBMS_QUTPUT. PUT_LI NE(' Message in Queue: ' || agent.address);

END;
/

10.5 Dequeuing Messages

ORACLE

This procedure dequeues a message from the specified queue.

DBMS_AQ DEQUEUE(

queue_nane IN VARCHAR?,
dequeue_options IN dequeue_options_t,
message_properties OUT message_properties_t,
payl oad auT "type_name",

megi d auT RAW ;

You can choose to dequeue only persistent messages, only buffered messages, or
both. See del i very_node in the following list of dequeue options.

¢ See Also:

"Message Properties”

10-13

Chapter 10
Dequeuing Messages

Dequeue Options

The dequeue_opt i ons parameter specifies the options available for the dequeue
operation. It has the following attributes:

ORACLE

consuner _nane

A consumer can dequeue a message from a queue by supplying the name that
was used in the AQS_AGENT type of the DBMS_AQADMADD_SUBSCRI BER procedure or the
recipient list of the message properties. If a value is specified, then only those
messages matching consuner _nane are accessed. If a queue is not set up for
multiple consumers, then this field must be set to NULL (the default).

dequeue_node

The dequeue_node attribute specifies the locking behavior associated with the
dequeue. If BROASE is specified, then the message is dequeued without acquiring
any lock. If LOCKED is specified, then the message is dequeued with a write lock that
lasts for the duration of the transaction. If REMOVE is specified, then the message is
dequeued and deleted (the default). The message can be retained in the queue
table based on the retention properties. If REMOVE_NO DATA is specified, then the
message is marked as updated or deleted.

navi gation

The navi gati on attribute specifies the position of the dequeued message. If

FI RST_MESSAGE is specified, then the first available message matching the search
criteria is dequeued. If NEXT_MESSAGE is specified, then the next available message
matching the search criteria is dequeued (the default). If the previous message
belongs to a message group, then the next available message matching the
search criteria in the message group is dequeued.

If NEXT_TRANSACTI ON is specified, then any messages in the current transaction
group are skipped and the first message of the next transaction group is
dequeued. This setting can only be used if message grouping is enabled for the
gueue.

visibility

The visibility attribute specifies when the new message is dequeued. If
ON_COWM T is specified, then the dequeue is part of the current transaction (the
default). If | MEDI ATE is specified, then the dequeue operation is an autonomous

transaction that commits at the end of the operation. The vi si bi | i ty attribute is
ignored in BROASE dequeue mode.

Visibility must always be | MEDI ATE when dequeuing messages with delivery mode
DBVS_AQ BUFFERED or DBMS_AQ PERSI STENT_OR_BUFFERED.

wai t
The wai t attribute specifies the wait time if there is currently no message available
matching the search criteria. If a number is specified, then the operation waits that

number of seconds. If FOREVER is specified, then the operation waits forever (the
default). If NO WAl T is specified, then the operation does not wait.

megi d

The msgi d attribute specifies the message identifier of the dequeued message.
Only messages in the READY state are dequeued unless nmsgi d is specified.

correlation

10-14

ORACLE

Chapter 10
Dequeuing Messages

The correlation attribute specifies the correlation identifier of the dequeued
message. The correlation identifier cannot be changed between successive
dequeue calls without specifying the FI RST_MESSAGE havigation option.

Correlation identifiers are application-defined identifiers that are not interpreted by
Oracle Database Advanced Queuing. You can use special pattern matching
characters, such as the percent sign and the underscore. If more than one
message satisfies the pattern, then the order of dequeuing is indeterminate, and
the sort order of the queue is not honored.

Note:

Although dequeue options correl ati on and deq_condi ti on are both
supported for buffered messages, it is not possible to create indexes to
optimize these queries.

deq_condi tion

The deq_condi ti on attribute is a Boolean expression similar to the WHERE clause
of a SQL query. This Boolean expression can include conditions on message
properties, user data properties (object payloads only), and PL/SQL or SQL
functions.

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with

tab. user_data as a qualifier to indicate the specific column of the queue table that
stores the payload.

The deq_condi ti on attribute cannot exceed 4000 characters. If more than one
message satisfies the dequeue condition, then the order of dequeuing is
indeterminate, and the sort order of the queue is not honored.

transformation

The transformati on attribute specifies a transformation that will be applied after the
message is dequeued but before returning the message to the caller.

del i very_node

The del i very_node attribute specifies what types of messages to dequeue. If itis
set to DBVS_AQ PERSI STENT, then only persistent messages are dequeued. If it is set
to DBMS_AQ BUFFERED, then only buffered messages are dequeued.

If it is the default DBMS_AQ PERSI STENT_OR BUFFERED, then both persistent and
buffered messages are dequeued. The del i very_node attribute in the message
properties of the dequeued message indicates whether the dequeued message
was buffered or persistent.

The dequeue order is determined by the values specified at the time the queue table is
created unless overridden by the message identifier and correlation identifier in
dequeue options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROABE call may not see a message that is enqueued after the beginning of
the browsing transaction.

In a commit-time queue, messages are not visible to BROASE or DEQUEUE calls until a
deterministic order can be established among them based on an approximate CSCN.

10-15

Chapter 10
Dequeuing Messages

If the navi gati on attribute of the dequeue_condi ti ons parameter is NEXT_MESSAGE (the
default), then subsequent dequeues retrieve messages from the queue based on the
shapshot obtained in the first dequeue. A message enqueued after the first dequeue
command, therefore, will be processed only after processing all remaining messages
in the queue. This is not a problem if all the messages have already been enqueued or
if the queue does not have priority-based ordering. But if an application must process
the highest-priority message in the queue, then it must use the FI RST_MESSAGE
navigation option.

" Note:

It can also be more efficient to use the FI RST_MESSAGE navigation option when
there are messages being concurrently enqueued. If the FI RST_MESSAGE option is
not specified, then Oracle Database Advanced Queuing continually generates
the snapshot as of the first dequeue command, leading to poor performance. If
the FI RST_MESSAGE option is specified, then Oracle Database Advanced Queuing
uses a new snapshot for every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping form a group. If only one message is enqueued in the transaction,
then this effectively forms a group of one message. There is no upper limit to the
number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or
REMOVE mode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group locks the entire group. This is
useful when all the messages in a group must be processed as a unit.

When all the messages in a group have been dequeued, the dequeue returns an error
indicating that all messages in the group have been processed. The application can
then use NEXT_TRANSACTI ON to start dequeuing messages from the next available group.
In the event that no groups are available, the dequeue times out after the period
specified in the wai t attribute of dequeue_opt i ons.

Typically, you expect the consumer of messages to access messages using the
dequeue interface. You can view processed messages or messages still to be
processed by browsing by message ID or by using SELECT commands.

Example 10-13 returns the message enqueued in Example 10-1. It returns:

From Sender No. 1
Subj ect: TEST MESSAGE
Text: First nmessage to obj _queue

¢ See Also:

e "Commit-Time Queues" in Oracle Streams Concepts and Administration

e "Dequeue Modes"

ORACLE 10-16

ORACLE

Chapter 10
Dequeuing Messages

Dequeuing LOB Type Messages

Example 10-14 creates procedure bl obdequeue() to dequeue the LOB type messages
enqueued in Example 10-4. The actual dequeue is shown in Example 10-15. It returns:

Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000
Amount of data read: 2000

Dequeuing Grouped Messages

You can dequeue the grouped messages enqueued in Example 10-8 by running
Example 10-16. It returns:

GROUP 1: Message 1 in group 1
GROUP 1: Message 2 in group 1
GROUP 1: Message 3 in group 1
Fi ni shed GROUP 1
GROUP 2: Message 1 in group 2
GROUP 2: Message 2 in group 2
GROUP 2: Message 3 in group 2
Fi ni shed GROUP 2
GROUP 3: Message 1 in group 3
GROUP 3: Message 2 in group 3
GROUP 3: Message 3 in group 3
Fi ni shed GROUP 3
No nore nessages

Dequeuing from a Multiconsumer Queue

You can dequeue the messages enqueued for RED in Example 10-7 by running
Example 10-17. If you change RED to GREEN and then to BLUE, you can use it to dequeue
their messages as well. The output of the example will be different in each case.

RED is a subscriber to the multiconsumer queue and is also a specified recipient of
MESSAGE 2, so it gets both messages:

Message: MESSAGE 1 .. For queue subscribers
Message: MESSAGE 2 .. For two recipients
No nore nessages for RED

GREEN is only a subscriber, so it gets only those messages in the queue for which no
recipients have been specified (in this case, MESSAGE 1):

Message: MESSAGE 1 .. For queue subscribers
No nore nessages for GREEN

BLUE, while not a subscriber to the queue, is nevertheless specified to receive
MESSAGE 2.

Message: MESSACGE 2 .. For two recipients
No nore nessages for BLUE

Example 10-18 browses messages enqueued in Example 10-5 until it finds PINK,
which it removes. The example returns:

Browsed Message Text: ORANGE enqueued first.
Browsed Message Text: ORANGE al so enqueued second.

10-17

ORACLE

Chapter 10
Dequeuing Messages

Browsed Message Text: YELLOW enqueued third.
Browsed Message Text: VI OLET enqueued fourth.
Browsed Message Text: PURPLE enqueued fifth.
Browsed Message Text: PINK enqueued sixth.
Removed Message Text: PINK enqueued sixth.

Dequeue Modes

Example 10-19 previews in locked mode the messages enqueued in Example 10-5
until it finds PURPLE, which it removes. The example returns:

Locked Message Text: ORANGE enqueued first.
Locked Message Text: ORANGE al so enqueued second.
Locked Message Text: YELLOW enqueued third.
Locked Message Text: VIOLET enqueued fourth.
Locked Message Text: PURPLE enqueued fifth.
Removed Message Text: PURPLE enqueued fifth.

Example 10-13 Dequeuing Object Type Messages
SET SERVERCQUTPUT ON

DECLARE

dequeue_options DBMS_AQ dequeue_options_t;
message_properties DBMS_AQ nmessage_properties_t;
message_handl e RAW 16) ;

message test. message_typ;

BEG N

dequeue_options. navigation := DBVMS_AQ Fl RST_MESSAGE;
DBMS_AQ. DEQUEUE(

queue_narme = "test.obj_queue',
dequeue_options = dequeue_options,
nmessage_properties => message_properties,
payl oad = message,
nsgi d = message_handl e) ;
DBMS_QUTPUT. PUT_LI NE(' From Sender No.'|| message.sender _id);
DBMS_QUTPUT. PUT_LI NE(' Subj ect: '|| message. subject);
DBMS_OUTPUT. PUT_LI NE(' Text: '||message.text);
COW T;

END;
/

Example 10-14 Creating a Dequeue Procedure for LOB Type Messages

CREATE OR REPLACE PROCEDURE bl obdequeue(nmsgno | N NUMBER) AS
dequeue_options DBMS_AQ dequeue_options_t;
message_properties DBMS_AQ nessage_properties_t;

megi d RAW 16) ;

payl oad test.lob_typ;

I ob_l oc BLOB;

amunt Bl NARY_| NTEGER,

buf f er RAW 4096) ;

BEG N

DBMS_AQ DEQUEUE(
queue_narme => 'test.lob_queue',
dequeue_options => dequeue_options,
nmessage_properties => nessage_properties,
payl oad => payl oad,
nsgi d => negid);

| ob_I oc = payload. dat a;

amount ©= 2000;

DBVS_LOB. READ(| ob_| oc, anount, 1, buffer);

DBVS_QUTPUT. PUT_LI NE("' Amount of data read: '|| anount);

10-18

ORACLE

Chapter 10
Dequeuing Messages

COW T;
END;
/

Example 10-15 Dequeuing LOB Type Messages

BEG N
FORi IN1..5 LOOP
bl obdequeue(i);
END LOOP;
END;
/

Example 10-16 Dequeuing Grouped Messages
SET SERVERCQUTPUT ON

DECLARE
dequeue_options DBMVS_AQ. dequeue_options_t;
message_properties DBVS_AQ nmessage_properties_t;
message_handl e RAW 16) ;
message test. message_typ;
no_nessages exception;
end_of _group exception;

PRAGVA EXCEPTION_INIT (no_messages, -25228);

PRAGVA EXCEPTION_INI'T (end_of _group, -25235);
BEG N

dequeue_options. wai t

dequeue_options. navigation :

DBMS_AQ NO WAI T;
DBMS_AQ FI RST_MESSAGE;

Loop
BEG N
DBMVB_AQ. DEQUEUE(
queue_nane => "test.group_queue',
dequeue_options => dequeue_opti ons,
nmessage_properties => message_properties,
payl oad => nmessage,
msgi d => message_handl e) ;
DBVS_QUTPUT. PUT_LI NE(message. subject || ': " || message.text);
dequeue_options. navigation := DBMS_AQ NEXT_MESSAGE;
EXCEPTI ON
VHEN end_of _group THEN
DBVS_QUTPUT. PUT_LINE (' Finished ' || message. subject);
COW T;
dequeue_options. navi gation := DBMS_AQ NEXT_TRANSACTI O\,
END;
END LOOP;
EXCEPTI ON

VWHEN no_nessages THEN
DBMS_QUTPUT. PUT_LINE (' No nore messages');
END;
/

Example 10-17 Dequeuing Messages for RED from a Multiconsumer Queue

SET SERVERQUTPUT ON

DECLARE
dequeue_options DBMS_AQ dequeue_options_t;
message_properties DBMS_AQ nessage_properties_t;
message_handl e RAW16) ;
message test. message_typ;
no_messages exception;
PRAGVA EXCEPTION_INIT (no_messages, -25228);

BEG N

10-19

ORACLE

Chapter 10
Dequeuing Messages

dequeue_options. wai t
dequeue_opt i ons. consumer _nane :
dequeue_options. navi gation

DBVS_AQ NO WA T;
'RED ;
DBVS_AQ FI RST_MESSAGE;

LOOP
BEG N
DBMS_AQ. DEQUEUE(
queue_narme => 'test.nulticonsuner_queue',
dequeue_options => dequeue_opti ons,
nmessage_properties => message_properties,
payl oad => nessage,
nsgi d => message_handl e) ;
DBVS_QUTPUT. PUT_LI NE(' Message: '|| nessage.subject ||" .. "|| message.text);
dequeue_options. navigation := DBMS_AQ NEXT_MESSACE;
END;
END LOOP;
EXCEPTI ON

WHEN no_nessages THEN
DBMS_QUTPUT. PUT_LINE (' No nore messages for RED);
COWM T,
END;
/

Example 10-18 Dequeue in Browse Mode and Remove Specified Message

SET SERVERCUTPUT ON

DECLARE
dequeue_opti ons DBMS_AQ. dequeue_options_t;
message_properties DBMS_AQ message_properties_t;

message_handl e RAW 16) ;
message test. nessage_typ;
BEG N
dequeue_opti ons. dequeue_node : = DBVS_AQ BROWSE;
LooP
DBVB_AQ. DEQUEUE(
queue_name => 'test.obj _queue',
dequeue_opti ons => dequeue_opti ons,
message_properties => nessage_properties,
payl oad => nessage,
msgi d => nessage_handl e) ;
DBVS_QUTPUT. PUT_LINE (' Browsed Message Text: ' || nessage.text);
EXIT WHEN nmessage. subject = "PINK ;
END LOOP;

dequeue_opt i ons. dequeue_node :
dequeue_opti ons. nsgi d
DBMS_AQ. DEQUEUE(

DBMS_AQ REMOVE;
message_handl e;

queue_nanme => 'test.obj _queue',
dequeue_opti ons => dequeue_opti ons,
message_properties => message_properties,
payl oad => nessage,
msgi d => nessage_handl e) ;
DBMS_QUTPUT. PUT_LI NE(' Renoved Message Text: ' || nessage.text);
COWM T;
END;

/

Example 10-19 Dequeue in Locked Mode and Remove Specified Message

SET SERVERQUTPUT ON

DECLARE
dequeue_options DBVS_AQ dequeue_options_t;
message_properties DBMS_AQ message_properties_t;

10-20

Chapter 10
Dequeuing an Array of Messages

message_handl e RAW 16) ;
nmessage test. message_typ;
BEG N
dequeue_options. dequeue_node : = DBVS_AQ LOCKED,
LooP
DBVS_AQ. dequeue(
queue_nane => 'test.obj _queue',
dequeue_options => dequeue_opti ons,
message_properties => message_properties,
payl oad => nessage,
msgi d => nmessage_handl e) ;
DBVS_QUTPUT. PUT_LI NE(' Locked Message Text: ' || message.text);
EXI T WHEN nessage. subj ect = ' PURPLE';
END LOOP;

dequeue_opti ons. dequeue_node :
dequeue_options. nsgid
DBNMS_AQ. DEQUEUE(

DBMS_AQ REMOVE;
message_handl e;

queue_nanme => 'test.obj _queue',

dequeue_options => dequeue_opti ons,

message_properties => message_properties,

payl oad => nessage,

msgi d => message_handl e) ;
DBMS_QUTPUT. PUT_LI NE(' Renoved Message Text: ' || message.text);
COWM T,

END;
/

10.6 Dequeuing an Array of Messages

ORACLE

Use the DEQUEUE_ARRAY function to dequeue an array of payloads and a corresponding
array of message properties.

DBMVS_AQ DEQUEUE_ARRAY(

queue_name IN VARCHAR?,

dequeue_options IN dequeue_options_t,
array_size IN PLS | NTEGER
message_properties_array OUJT message_properties_array_t,
payl oad_array aut VARRAY,

megi d_array aut megi d_array_t)

RETURN PLS_| NTEGER,

The output is an array of payloads, message IDs, and message properties of the
dequeued messages. The function returns the number of messages successfully
dequeued.

Array dequeuing is not supported for buffered messages, but you can still use
DBMS_AQ DEQUEUE_ARRAY() to dequeue buffered messages by setting array_si ze to 1.

The payload structure can be a VARRAY or nested table. The message identifiers are
returned into an array of RAW 16) entries of type DBVMS_AQ nsgi d_array_t. The message
properties are returned into an array of type DBMS_AQ message_properties_array_t.

As with array operations in the relational world, it is not possible to provide a single
optimum array size that will be correct in all circumstances. Application developers
must experiment with different array sizes to determine the optimal value for their
particular applications.

All dequeue options available with DBMS_AQ DEQUEUE are also available with
DBMS_AQ DEQUEUE_ARRAY. You can choose to dequeue only persistent messages, only

10-21

ORACLE

Chapter 10
Dequeuing an Array of Messages

buffered messages, or both. In addition, the navi gati on attribute of dequeue_opti ons
offers two options specific to DBMS_AQ DEQUEUE_ARRAY.

When dequeuing messages, you might want to dequeue all the messages for a
transaction group with a single call. You might also want to dequeue messages that
span multiple transaction groups. You can specify either of these methods by using
one of the following navigation methods:

« NEXT_MESSAGE_ONE_GROUP
FIRST_MESSAGE_ONE_GROUP

« NEXT_MESSAGE_MILTI _GROUP
FIRST_MESSAGE_ MULTI GROUP

Navigation method NEXT_MESSAGE_ONE_GROUP dequeues messages that match the search
criteria from the next available transaction group into an array. Navigation method

FI RST_MESSAGE_ONE_GROUP resets the position to the beginning of the queue and
dequeues all the messages in a single transaction group that are available and match
the search criteria.

The number of messages dequeued is determined by an array size limit. If the number
of messages in the transaction group exceeds array_si ze, then multiple calls to
DEQUEUE_ARRAY must be made to dequeue all the messages for the transaction group.

Navigation methods NEXT_MESSAGE_ MULTI _GROUP and FI RST_MESSAGE MULTI _GROUP work like
their ONE_GROUP counterparts, but they are not limited to a single transaction group.
Each message that is dequeued into the array has an associated set of message
properties. Message property transacti on_group determines which messages belong
to the same transaction group.

Example 10-20 dequeues the messages enqueued in Example 10-11. It returns:

Number of messages dequeued: 2

¢ See Also:

"Dequeuing Messages"

Example 10-20 Dequeuing an Array of Messages

SET SERVERQUTPUT ON

DECLARE
dequeue_options DBMS_AQ dequeue_options_t;
neg_prop_array DBMS_AQ nessage_properties_array_t :=
DBMS_AQ nessage_properties_array t();
payl oad_array test.nsg_table;
nsgi d_array DBVS_AQ nsgi d_array_t;
retval PLS | NTEGER;
BEG N
retval := DBMS_AQ DEQUEUE ARRAY(
queue_narme => 'test.obj _queue',
dequeue_options => dequeue_opti ons,
array_size = 2,
nmessage_properties_array => nsg_prop_array,
payl oad_array => payl oad_array,
nsgi d_array => nsgi d_array);

10-22

Chapter 10
Registering for Notification

DBVS_QUTPUT. PUT_LI NE(' Nunber of nessages dequeued: ' || retval);
END; /

10.7 Registering for Notification

This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP
URL for message notification.

DBMS_AQ REG STER(

reg_list I'N SYS. AQS_REG | NFO LI ST,
reg_count I N NUMBER) ;
Note:

Starting from 12c Release 2 (12.2.), the maximum length of user-generated
queue names is 122 bytes. See "Creating a Queue".

The reg_l i st parameter is a list of SYS. AQG5_REG | NFO objects. You can specify
notification quality of service with the gosf| ags attribute of SYS. AQs_REG | NFO.

The reg_count parameter specifies the number of entries in the reg_l i st. Each
subscription requires its own reg_l i st entry. Interest in several subscriptions can be
registered at one time.

When PL/SQL notification is received, the Oracle Database Advanced Queuing
message properties descriptor that the callback is invoked with specifies the
deli very_node of the message notified as DBMS_AQ PERSI STENT or DBMS_AQ BUFFERED.

If you register for e-mail notifications, then you must set the host name and port name
for the SMTP server that will be used by the database to send e-mail notifications. If
required, you should set the send-from e-mail address, which is set by the database
as the sent fromfield. You need a Java-enabled database to use this feature.

If you register for HTTP notifications, then you might want to set the host name and
port number for the proxy server and a list of no-proxy domains that will be used by the
database to post HTTP notifications.

An internal queue called SYS. AQ SRVNTFN_TABLE_Q stores the notifications to be
processed by the job queue processes. If notification fails, then Oracle Database
Advanced Queuing retries the failed notification up to MAX_RETRI ES attempts.

" Note:

You can change the MAX_RETRI ES and RETRY_DELAY properties of
SYS. AQ SRUNTFN TABLE Q. The new settings are applied across all notifications.

ORACLE 10-23

Chapter 10
Unregistering for Notification

" See Also:
* "AQ Registration Information Type" for more information on
SYS. AQS_REG | NFO objects

e "AQ Notification Descriptor Type" for more information on the message
properties descriptor

Example 10-21 Registering for Notifications

DECLARE
reginfo sys.ag$_reg_info;
reg_list sys.ag$_reg_info_list;
BEG N

reginfo := sys.aq$_reg_i nfo(
"test.obj _queue',
DBVS_AQ NAVESPACE_ANONYMOUS,
"http://wwmv. conpany. com 8080',

HEXTORAW ' FF')) ;
reg_list :=sys.agq$ reg_info_list(reginfo);
DBMS_AQ REG STER(

reg_list => reg_list,
reg_count = 1);
COWM T;
END;

/

10.8 Unregistering for Notification

This procedure unregisters an e-mail address, user-defined PL/SQL procedure, or
HTTP URL for message natification.

DBMVB_AQ UNREG STER(
reg_list IN SYS. AQs_REG | NFO LI ST,
reg_count I N NUMBER) ;

10.9 Posting for Subscriber Notification

This procedure posts to a list of anonymous subscriptions, allowing all clients who are
registered for the subscriptions to get notifications of persistent messages.

DBMS_AQ. POST(
post _list IN SYS. AQG_POST_I NFO_LI ST,
post _count IN NUMBER);

This feature is not supported with buffered messages.

The count parameter specifies the number of entries in the post _| i st. Each posted
subscription must have its own entry in the post _| i st. Several subscriptions can be
posted to at one time.

The post _| i st parameter specifies the list of anonymous subscriptions to which you
want to post. It has three attributes:

° nane

ORACLE 10-24

Chapter 10
Adding an Agent to the LDAP Server

The nane attribute specifies the name of the anonymous subscription to which you
want to post.

° nanespace

The namespace attribute specifies the namespace of the subscription. To receive
notifications from other applications through DBVS_AQ POST the namespace must be
DBVS_AQ. NAVESPACE._ANONYMOUS.

° payl oad

The payl oad attribute specifies the payload to be posted to the anonymous
subscription. It is possible for no payload to be associated with this call.

This call provides a best-effort guarantee. A notification goes to registered clients at
most once. This call is primarily used for lightweight notification. If an application
needs more rigid guarantees, then it can enqueue to a queue.

Example 10-22 Posting Object-Type Messages

DECLARE

postinfo sys. ag$_post _i nf o;

post _|ist sys. aqg$_post _info_list;
BEG N

postinfo := sys.ag$_post_info('test.obj_queue', 0, HEXTORAW' FF'));
post _|ist := sys.ag$_post_info_list(postinfo);

DBMB_AQ. POST(
post _Iist => post _|ist,
post _count = 1);
COWM T,
END;

/

10.10 Adding an Agent to the LDAP Server

ORACLE

This procedure creates an entry for an Oracle Database Advanced Queuing agent in
the LDAP server.

DBMS_AQ BI ND_AGENT(
agent IN SYS. AQS_AGENT,
certificate IN VARCHAR2 default NULL);

The agent parameter specifies the Oracle Database Advanced Queuing Agent that is
to be registered in Lightweight Directory Access Protocol (LDAP) server.

The certificate parameter specifies the location (LDAP distinguished name) of the
Organi zat i onal Person entry in LDAP whose digital certificate (attribute usercertificate)
is to be used for this agent. For example, "cn=CE, cn=ACME, cn=conl' is a distinguished
name for a Organi zat i onal Per son CE whose certificate will be used with the specified
agent. If the agent does not have a digital certificate, then this parameter is defaulted
to null.

" See Also:
"AQ Agent Type"

10-25

Chapter 10
Removing an Agent from the LDAP Server

10.11 Removing an Agent from the LDAP Server

This procedure removes the entry for an Oracle Database Advanced Queuing agent
from the LDAP server.

DBMS_AQ. UNBI ND_AGENT(
agent I N SYS. AQS_AGENT) ;

ORACLE" 10-26

Introduction to Oracle Java Message

Service

The following topics describe the Oracle Java Message Service (JMS) interface to

Oracle Database Advanced Queuing (AQ).

* General Features of JIMS and Oracle JMS
e Structured Payload/Message Types in IMS
- Buffered Messaging in JIMS

* JMS Point-to-Point Model Features

* JMS Publish/Subscribe Model Features

» JMS Message Producer Features

* JMS Message Consumer Features

e JMS Propagation

* Message Transformation with IMS AQ

e JMS Streaming

e Java EE Compliance

11.1 General Features of JMS and Oracle JMS

This section contains these topics:

* JMS Connection and Session

e JMS Destination

» System-Level Access Control in IMS

* Destination-Level Access Control in IMS

* Retention and Message History in JMS

» Supporting Oracle Real Application Clusters in IMS
e Supporting Statistics Views in JIMS

11.1.1 JMS Connection and Session

This section contains these topics:

» ConnectionFactory Objects

* Using AQjmsFactory to Obtain ConnectionFactory Objects
» Using JNDI to Look Up ConnectionFactory Objects

* JMS Connection

ORACLE

11-1

Chapter 11
General Features of JMS and Oracle JMS

« JMS Session

11.1.1.1 ConnectionFactory Objects

A Connect i onFact ory encapsulates a set of connection configuration parameters that
has been defined by an administrator. A client uses it to create a connection with a
JMS provider. In this case Oracle JMS, part of Oracle Database, is the JMS provider.

The three types of Connect i onFact ory objects are:

e ConnectionFactory
* QueueConnectionFactory

* Topi cConnecti onFact ory

11.1.1.2 Using AQjmsFactory to Obtain ConnectionFactory Objects

You can use the AQ nsFact ory class to obtain a handle to a Connect i onFactory,
QueueConnect i onFact ory, or Topi cConnect i onFact ory object.

To obtain a Connect i onFact ory, which supports both point-to-point and publish/
subscribe operations, use AQ msFact ory. get Connecti onFactory(). To obtain a
QueueConnect i onFact ory, use AQ nsFact ory. get QueueConnect i onFactory(). To obtain a
Topi cConnect i onFact ory, use AQ nsFact ory. get Topi cConnecti onFactory() .

The Connecti onFact ory, QueueConnect i onFact ory, or Topi cConnecti onFact ory can be
created using hostname, port number, and SID driver or by using JDBC URL and
properties.

11.1.1.3 Using JNDI to Look Up ConnectionFactory Objects

ORACLE

A JMS administrator can register Connect i onFact ory objects in a Lightweight Directory
Access Protocol (LDAP) server. The following setup is required to enable Java
Naming and Directory Interface (JNDI) lookup in JMS:

1. Register Database

When the Oracle Database server is installed, the database must be registered
with the LDAP server. This can be accomplished using the Database
Configuration Assistant (DBCA). Figure 11-1 shows the structure of Oracle
Database Advanced Queuing entries in the LDAP server. Connect i onFact ory
information is stored under <cn=0r acl eDBConnect i ons>, while topics and queues are
stored under <cn=0r acl eDBQueues>.

11-2

Chapter 11
General Features of JMS and Oracle JMS

Figure 11-1 Structure of Oracle Database Advanced Queuing Entries in

LDAP Server

<cn=acme, cn=com> | (administrative context)
|

<cn=0OracleContext> | (root of oracle RDBMS schema)
|

<ch=db1> (database)
<cn=0OracleDBConnections> <cn=0OracleDBQueue> <Cn=...>
(Connection Factories) (Queues / Topics) (Other db objects)

2. Set Parameter GLOBAL_TCPI C_ENABLED.

The GLOBAL_TOPI C_ENABLED system parameter for the database must be set to TRUE.
This ensures that all queues and topics created in Oracle Database Advanced
Queuing are automatically registered with the LDAP server. This parameter can be
set by using ALTER SYSTEM SET GLOBAL_TCPI C_ ENABLED = TRUE.

3. Register Connecti onFact ory Objects

After the database has been set up to use an LDAP server, the JMS administrator
can register Connect i onFact ory, QueueConnect i onFact ory, and

Topi cConnect i onFact ory objects in LDAP by using

AQ nsFactory. regi st er Connect i onFact ory() .

The registration can be accomplished in one of the following ways:
e Connect directly to the LDAP server

The user must have the GLOBAL_AQ USER ROLE to register connection factories in
LDAP.

To connect directly to LDAP, the parameters for the r egi st er Connect i onFact ory
method include the LDAP context, the name of the Connecti onFact ory,
QueueConnect i onFact ory, or Topi cConnecti onFact ory, hosthname, database SID,
port number, JDBC driver (thin or oci8) and factory type (queue or topic).

e Connect to LDAP through the database server

The user can log on to Oracle Database first and then have the database
update the LDAP entry. The user that logs on to the database must have the
AQ ADM NI STRATOR_ROLE to perform this operation.

To connect to LDAP through the database server, the parameters for the
regi st er Connect i onFact ory method include a JDBC connection (to a user
having AQ ADM NI STRATOR ROLE), the name of the Connect i onFactory,
QueueConnect i onFact ory, or Topi cConnecti onFact ory, hosthame, database SID,
port number, JDBC driver (thin or oci8) and factory type (queue or topic).

11.1.1.4 JMS Connection

A JMS Connecti on is an active connection between a client and its JMS provider. A
JMS Connecti on performs several critical services:

ORACLE 11-3

ORACLE

Chapter 11
General Features of JMS and Oracle JMS

* Encapsulates either an open connection or a pool of connections with a JMS
provider

» Typically represents an open TCP/IP socket (or a set of open sockets) between a
client and a provider's service daemon

* Provides a structure for authenticating clients at the time of its creation
e Creates Sessi ons

* Provides connection metadata

e Supports an optional Excepti onLi st ener

A JMS Connect i on to the database can be created by invoking cr eat eConnecti on(),
creat eQueueConnection(), or creat eTopi cConnection() and passing the parameters
user name and passwor d on the Connecti onFact ory, QueueConnect i onFactory, or

Topi cConnect i onFact ory object respectively.

Some of the methods that are supported on the Connecti on object are
e start()
This method starts or restart delivery of incoming messages.

* stop()

This method temporarily stops delivery of incoming messages. When a Connecti on
object is stopped, delivery to all of its message consumers is inhibited. Also,
synchronous receive's block and messages are not delivered to message listener.

* close()
This method closes the JMS session and releases all associated resources.
° createSession(true, 0)
This method creates a JMS Sessi on using a JMS Connecti on instance.
° createQueueSession(true, 0)
This method creates a QueueSessi on.
e createTopicSession(true, 0)
This method creates a Topi cSessi on.
* setExceptionListener(ExceptionListener)

This method sets an exception listener for the Connect i on. This allows a client to be
notified of a problem asynchronously. If a Connect i on only consumes messages,
then it has no other way to learn it has failed.

° getExceptionListener()
This method gets the Except i onLi st ener for this Connecti on.

A JMS client typically creates a Connecti on, a Sessi on and several MessagePr oducer and
MessageConsuner objects. In the current version only one open Sessi on for each
Connecti on is allowed, except in the following cases:

« |f the JIDBC oci8 driver is used to create the JMS connection

e If the user provides an Oracl eCCl Connect i onPool instance during JMS connection
creation

When a Connect i on is created it is in stopped mode. In this state no messages can be
delivered to it. It is typical to leave the Connecti on in stopped mode until setup is

11-4

Chapter 11
General Features of JMS and Oracle JMS

complete. At that point the Connection start () method is called and messages begin
arriving at the Connecti on consumers. This setup convention minimizes any client
confusion that can result from asynchronous message delivery while the client is still in
the process of setup.

It is possible to start a Connecti on and to perform setup subsequently. Clients that do
this must be prepared to handle asynchronous message delivery while they are still in
the process of setting up. A MessagePr oducer can send messages while a Connecti on is
stopped.

11.1.1.5 JMS Session

ORACLE

A JMS Sessi on is a single threaded context for producing and consuming messages.
Although it can allocate provider resources outside the Java Virtual Machine (JVM), it
is considered a lightweight JMS object.

A Sessi on serves several purposes:

e Constitutes a factory for MessagePr oducer and MessageConsuner objects
* Provides a way to get a handle to destination objects (queues/topics)
e Supplies provider-optimized message factories

e Supports a single series of transactions that combines work spanning session
MessagePr oducer and MessageConsumer objects, organizing these into units

» Defines a serial order for the messages it consumes and the messages it
produces

* Serializes execution of MessageLi st ener objects registered with it

In Oracle Database 10g, you can create as many JMS Sessi ons as resources allow
using a single JMS Connect i on, when using either JDBC thin or JDBC thick (OCI)
drivers.

Because a provider can allocate some resources on behalf of a Sessi on outside the
JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough. The same
is true for MessagePr oducer and MessageConsuner objects created by a Sessi on.

Methods on the Sessi on object include:
e comit()

This method commits all messages performed in the transaction and releases
locks currently held.

* rollback()

This method rolls back any messages accomplished in the transaction and release
locks currently held.

* close()
This method closes the Sessi on.
e get DBConnection()

This method gets a handle to the underlying JDBC connection. This handle can be
used to perform other SQL DML operations as part of the same Sessi on. The
method is specific to Oracle JMS.

e acknow edge()

11-5

Chapter 11
General Features of JMS and Oracle JMS

This method acknowledges message receipt in a nontransactional session.
recover()

This method restarts message delivery in a nontransactional session. In effect, the
series of delivered messages in the session is reset to the point after the last
acknowledged message.

The following are some Oracle JMS extensions:

creat eQueueTabl e()

This method creates a queue table.

get QueueTabl e()

This method gets a handle to an existing queue table.
creat eQueue()

This method creates a queue.

get Queue()

This method gets a handle to an existing queue.
creat eTopi c()

This method creates a topic.

get Topi c()

This method gets a handle to an existing topic.

The Sessi on object must be cast to AQ nsSessi on to use any of the extensions.

Note:

The JMS specification expects providers to return null messages when
receives are accomplished on a JMS Connecti on instance that has not been
started.

After you create a j avax. j ns. Connect i on instance, you must call the start ()
method on it before you can receive messages. If you add a line like
t_conn.start(); any time after the connection has been created, but before the
actual receive, then you can receive your messages.

11.1.2 JMS Destination

A Destination is an object a client uses to specify the destination where it sends
messages, and the source from which it receives messages. A Desti nati on object can
be a Queue or a Topi ¢. In Oracle Database Advanced Queuing, these map to a

schena. queue at a specific database. Queue maps to a single-consumer queue, and

Topi ¢ maps to a multiconsumer queue.

11.1.2.1 Using a JMS Session to Obtain Destination Objects

Desti nati on objects are created from a Sessi on object using the following domain-
specific Sessi on methods:

ORACLE

11-6

Chapter 11
General Features of JMS and Oracle JMS

AQ nsSessi on. get Queue(queue_owner, queue_nane)
This method gets a handle to a JMS queue.
AQ nsSessi on. get Topi ¢(topi c_owner, topic_nane)

This method gets a handle to a JMS topic.

11.1.2.2 Using JNDI to Look Up Destination Objects

The database can be configured to register schema objects with an LDAP server. If a
database has been configured to use LDAP and the GLOBAL_TOPIC_ENABLED
parameter has been set to TRUE, then all IMS queues and topics are automatically
registered with the LDAP server when they are created. The administrator can also
create aliases to the queues and topics registered in LDAP. Queues and topics that
are registered in LDAP can be looked up through JNDI using the name or alias of the
gueue or topic.

¢ See Also:
"Adding an Alias to the LDAP Server"

11.1.2.3 JMS Destination Methods

Methods on the Desti nati on object include:

ORACLE

alter()

This method alters a Queue or a Topi c.

schedul ePropagat i on()

This method schedules propagation from a source to a destination.
unschedul ePropagati on()

This method unschedules a previously scheduled propagation.
enabl ePropagat i onSchedul e()

This method enables a propagation schedule.

di sabl ePropagat i onSchedul e()

This method disables a propagation schedule.

start()

This method starts a Queue or a Topi c. The queue can be started for enqueue or
dequeue. The topic can be started for publish or subscribe.

stop()

This method stops a Queue or a Topi c. The queue is stopped for enqueue or
dequeue. The topic is stopped for publish or subscribe.

drop()
This method drops a Queue or a Topi c.

11-7

Chapter 11
General Features of JMS and Oracle JMS

11.1.3 System-Level Access Control in IMS

Oracle8i or higher supports system-level access control for all queuing operations.
This feature allows an application designer or DBA to create users as queue
administrators. A queue administrator can invoke administrative and operational JIMS
interfaces on any queue in the database. This simplifies administrative work, because
all administrative scripts for the queues in a database can be managed under one
schema.

When messages arrive at the destination queues, sessions based on the source
gueue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you must grant enqueue privileges for the
destination queues to schemas of the source queues.

To propagate to a remote destination queue, the login user (specified in the database
link in the address field of the agent structure) should either be granted the ENQUEUE_ANY
privilege, or be granted the rights to enqueue to the destination queue. However, you
are not required to grant any explicit privileges if the login user in the database link
also owns the queue tables at the destination.

¢ See Also:

"Oracle Enterprise Manager Support"

11.1.4 Destination-Level Access Control in JMS

Oracle8i or higher supports access control for enqueue and dequeue operations at the
gueue or topic level. This feature allows the application designer to protect queues and
topics created in one schema from applications running in other schemas. You can
grant only minimal access privileges to the applications that run outside the schema of
the queue or topic. The supported access privileges on a queue or topic are ENQUEUE,
DEQUEUE and ALL.

" See Also:

"Oracle Enterprise Manager Support"”

11.1.5 Retention and Message History in JMS

ORACLE

Messages are often related to each other. For example, if a message is produced as a
result of the consumption of another message, then the two are related. As the
application designer, you may want to keep track of such relationships. Oracle
Database Advanced Queuing allows users to retain messages in the queue table,
which can then be queried in SQL for analysis.

Along with retention and message identifiers, Oracle Database Advanced Queuing lets
you automatically create message journals, also called tracking journals or event

11-8

Chapter 11
General Features of JMS and Oracle JMS

journals. Taken together, retention, message identifiers and SQL queries make it
possible to build powerful message warehouses.

11.1.6 Supporting Oracle Real Application Clusters in IMS

In Oracle Database 12c Release 1 (12.1), Advanced Queuing introduces high
performing and scalable JMS Sharded Queues. A sharded queue is a single logical
gueue that is divided into multiple, independent, physical queues through system-
maintained partitioning. Sharded queues are the preferred JMS queues for queues
used across Oracle RAC instances, for queues with high enqueue or dequeue rates,
or for queues with many subscribers. See "Sharded Queues and Oracle Real
Application Clusters (Oracle RAC)" for more information.

For non-sharded queues, Oracle Real Application Clusters (Oracle RAC) can be used
to improve Oracle Database Advanced Queuing performance by allowing different
gueues to be managed by different instances. You do this by specifying different
instance affinities (preferences) for the queue tables that store the queues. This allows
gueue operations (enqueue/dequeue) or topic operations (publish/subscribe) on
different queues or topics to occur in parallel.

The Oracle Database Advanced Queuing queue monitor process continuously
monitors the instance affinities of the queue tables. The queue monitor assigns
ownership of a queue table to the specified primary instance if it is available, failing
which it assigns it to the specified secondary instance.

If the owner instance of a queue table terminates, then the queue monitor changes
ownership to a suitable instance such as the secondary instance.

Oracle Database Advanced Queuing propagation can make use of Oracle Real
Application Clusters, although it is transparent to the user. The affinities for jobs
submitted on behalf of the propagation schedules are set to the same values as that of
the affinities of the respective queue tables. Thus, a j ob_gueue_pr ocess associated with
the owner instance of a queue table is handling the propagation from queues stored in
that queue table, thereby minimizing pinging.

" See Also:

e "Sharded Queues"
e "Scheduling a Queue Propagation”

e Oracle Real Application Clusters Administration and Deployment Guide

11.1.7 Supporting Statistics Views in JMS

ORACLE

Each instance keeps its own Oracle Database Advanced Queuing statistics
information in its own System Global Area (SGA), and does not have knowledge of the
statistics gathered by other instances. Then, when a GV$AQ view is queried by an
instance, all other instances funnel their statistics information to the instance issuing
the query.

The G/$AQview can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed.

11-9

Chapter 11
Structured Payload/Message Types in JIMS

" See Also:

"V$AQ: Number of Messages in Different States in Database"

11.2 Structured Payload/Message Types in IMS

JMS messages are composed of a header, properties, and a body.

The header consists of header fields, which contain values used by both clients and
providers to identify and route messages. All messages support the same set of
header fields.

Properties are optional header fields. In addition to standard properties defined by
JMS, there can be provider-specific and application-specific properties.

The body is the message payload. JMS defines various types of message payloads,
and a type that can store JMS messages of any or all IMS-specified message types.

This section contains these topics:

* JMS Message Headers

e JMS Message Properties

* JMS Message Bodies

e Using Message Properties with Different Message Types

- Buffered Messaging with Oracle JMS

11.2.1 JMS Message Headers

ORACLE

A JMS message header contains the following fields:

e JMSDestination

This field contains the destination to which the message is sent. In Oracle
Database Advanced Queuing this corresponds to the destination queue/topic. It is
a Desti nati on type set by JMS after the Send method has completed.

e JMBDel i veryMode

This field determines whether the message is logged or not. JIMS supports

PERSI STENT delivery (where messages are logged to stable storage) and

NONPERSI STENT delivery (messages not logged). It is a | NTEGER set by JMS after the
Send method has completed. JMS permits an administrator to configure JMS to
override the client-specified value for JMSDel i ver yMode.

e JMSMessagel D

This field uniquely identifies a message in a provider. All message IDs must begin
with the string I D . It is a Stri ng type set by JMS after the Send method has
completed.

e JMSTI neStanp

This field contains the time the message was handed over to the provider to be
sent. This maps to Oracle Database Advanced Queuing message enqueue time. It
is a Long type set by JMS after the Send method has completed.

11-10

Chapter 11
Structured Payload/Message Types in JIMS

JMSCorrel ationl D

This field can be used by a client to link one message with another. Itis a String
type set by the JMS client.

JMBRepl yTo

This field contains a Dest i nati on type supplied by a client when a message is sent.
Clients can use oracl e. j ns. AQ nmsAgent ; j avax. j ms. Queue; Or j avax. j ms. Topi C.

JMBType

This field contains a message type identifier supplied by a client at send time. It is
a String type. For portability Oracle recommends that the JMSType be symbolic
values.

JMVBExpi ration

This field is the sum of the enqueue time and the Ti meToLi ve in non-Java EE
compliance mode. In compliant mode, the JMSExpi rati on header value in a
dequeued message is the sum of JMSTi meSt anp when the message was enqueued
(Greenwich Mean Time, in milliseconds) and the Ti neToLi ve (in milliseconds). It is
a Long type set by JMS after the Send method has completed. JMS permits an
administrator to configure JMS to override the client-specified value for

JMBExpi rati on.

JMBPriority

This field contains the priority of the message. It is a | NTEGER set by JMS after the
Send method has completed. In Java EE-compliance mode, the permitted values
for priority are 0—-9, with 9 the highest priority and 4 the default, in conformance with
the Sun Microsystem JMS 1.1 standard. Noncompliant mode is the default. IMS
permits an administrator to configure JMS to override the client-specified value for
JMBPriority.

JMBRedel i ver ed
This field is a Boolean set by the JMS provider.

" See Also:

"Java EE Compliance"

11.2.2 IMS Message Properties

ORACLE

JMS properties are set either explicitly by the client or automatically by the IMS
provider (these are generally read-only). Some JMS properties are set using the
parameters specified in Send and Recei ve operations.

Properties add optional header fields to a message. Properties allow a client, using a
nessageSel ect or, to have a JMS provider select messages on its behalf using
application-specific criteria. Property names are strings and values can be: Bool ean,
byte, short,int, long, float, doubl e, and stri ng.

JMS-defined properties, which all begin with "JMX", include the following:

JMBXUser | D

11-11

Chapter 11
Structured Payload/Message Types in JMS

This field is the identity of the user sending the message. It is a Stri ng type set by
JMS after the Send method has completed.

« JNBXAppl D

This field is the identity of the application sending the message. Itis a Stri ng type
set by JMS after the Send method has completed.

° JMBXDel i veryCount

This field is the number of message delivery attempts. It is an I nt eger set by JIMS
after the Send method has completed.

* JNMBXG oupi d

This field is the identity of the message group that this message belongs to. It is a
String type set by the JMS client.

e JMSXGroupSeq

This field is the sequence number of a message within a group. It is an I nt eger set
by the JMS client.

e JMBXRevTi meSt anp

This field is the time the message was delivered to the consumer (dequeue time).
Itis a String type set by JMS after the Recei ve method has completed.

e JMSXState

This field is the message state, set by the provider. The message state can be
WAI TI NG, READY, EXPI RED, or RETAI NED.

Oracle-specific JMS properties, which all begin with JMs_Or acl e, include the following:

e JMS Oracl eExcpQ

This field is the queue name to send the message to if it cannot be delivered to the
original destination. Itis a Stri ng type set by the JMS client. Only destinations of
type EXCEPTI ON can be specified in the JM5_Or acl eExcpQ property.

e JM5_Oracl eDel ay

This field is the time in seconds to delay the delivery of the message. It is an
I nteger set by the JMS client. This can affect the order of message delivery.

e JMS Oracl eOrigi nal Messagel d

This field is set to the message identifier of the message in the source if the
message is propagated from one destination to another. It is a Stri ng type set by
the JMS provider. If the message is not propagated, then this property has the
same value as JMSMessagel d.

A client can add additional header fields to a message by defining properties. These
properties can then be used in a nessageSel ect or to select specific messages.

11.2.3 JMS Message Bodies

JMS provides five forms of message body:

e StreamMessage
* BytesMessage

e MapMessage

ORACLE 11-12

Chapter 11
Structured Payload/Message Types in JIMS

* TextMessage
* ObjectMessage
* AdtMessage

11.2.3.1 StreamMessage

A StreamMessage object is used to send a stream of Java primitives. It is filled and read
sequentially. It inherits from Message and adds a St reanivessage body. Its methods are
based largely on those found in j ava. i o. Dat al nput St reamand

java.io. DataQut put Stream

The primitive types can be read or written explicitly using methods for each type. They
can also be read or written generically as objects. To use St ream\essage objects, create
the queue table with the SYS. AQS_JMS_STREAM MESSAGE or AQS_JMS_MESSAGE payload types.

St reanMessage objects support the conversions shown in Table 11-1. A value written as
the row type can be read as the column type.

Table 11-1 StreamMessage Conversion

|
Input Boolean byte short char int long float double String byte[]

- - - X -

Bool ean X - - -
byte - X X
short - - X -

X X
xX X

X

char - -

i nt - - - - X

xX X

[ong - - - - -

X

fl oat - - - - -
doubl e - - - - - - -
string X X X X X X X
byte[] - - - - - - -

xX X X
X X X X X X X X

X

11.2.3.2 BytesMessage

A Byt esMessage object is used to send a message containing a stream of uninterpreted
bytes. It inherits Message and adds a Byt esMessage body. The receiver of the message
interprets the bytes. Its methods are based largely on those found in

java.io. Datal nput Streamand j ava. i 0. Dat aQut put St r eam

This message type is for client encoding of existing message formats. If possible, one
of the other self-defining message types should be used instead.

The primitive types can be written explicitly using methods for each type. They can
also be written generically as objects. To use Byt esMessage objects, create the queue
table with SYS. AQS_JMS_BYTES_MESSAGE or AQS_JMS_MESSAGE payload types.

11.2.3.3 MapMessage

A MapMessage object is used to send a set of name-value pairs where the names are
String types, and the values are Java primitive types. The entries can be accessed

ORACLE 11-13

Chapter 11
Structured Payload/Message Types in JMS

sequentially or randomly by name. The order of the entries is undefined. It inherits
from Message and adds a MapMessage body. The primitive types can be read or written
explicitly using methods for each type. They can also be read or written generically as
objects.

To use MapMessage objects, create the queue table with the SYS. AQS_JMS_MAP_NESSAGE or
AQS_JMS_MESSAGE payload types. MapMessage objects support the conversions shown in
Table 11-2. An "X" in the table means that a value written as the row type can be read
as the column type.

Table 11-2 MapMessage Conversion

Input Boolean byte short char int long float double String byte[]

Bool ean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - X X - - X -

| ong - - - - - X - - X -

fl oat - - - - - - X X X -

doubl e - - - - - - X X -

string X X X X X X X X X -

byt e[] - - - - - - - - - X

11.2.3.4 TextMessage
A Text Message object is used to send a message containing a j ava. | ang. StringBuffer.
It inherits from Message and adds a Text Message body. The text information can be read
or written using methods get Text () and set Text (...). To use Text Message objects, create
the queue table with the SYS. AQs_JMS_TEXT_MESSAGE or AGS_JMS_MESSAGE payload types.

11.2.3.5 ObjectMessage
An nj ect Message object is used to send a message that contains a serializable Java
object. It inherits from Message and adds a body containing a single Java reference.
Only serializable Java objects can be used. If a collection of Java objects must be
sent, then one of the collection classes provided in JDK 1.4 can be used. The objects
can be read or written using the methods get Qoj ect () and set Qoj ect(...).To use
Obj ect Message objects, create the queue table with the SYS. AQs_JMS_OBJECT_MESSAGE or
AQS_JMS_MESSAGE payload types.

11.2.3.6 AdtMessage

ORACLE

An Adt Message object is used to send a message that contains a Java object that maps
to an Oracle object type. These objects inherit from Message and add a body containing
a Java object that implements the Cust onDat umor ORADat a interface.

To use Adt Message objects, create the queue table with payload type as the Oracle
object type. The Adt Message payload can be read and written using the get Adt Payl oad
and set Adt Payl oad methods.

11-14

Chapter 11
Structured Payload/Message Types in JMS

You can also use an Adt Message object to send messages to queues of type
SYS. XM_Type. You must use the oracl e. xdb. XM.Type class to create the message.

For Adt Message objects, the client can get:
e JMBXDel i veryCount

* JMBXRecvTi meSt anp

e JMBXState

e JM5 _Oracl eExcpQ

* JMS _Oracl eDel ay

" See Also:

Oracle Database Java Developer's Guide for information about the Cust onDat um
and ORADat a interfaces

11.2.4 Using Message Properties with Different Message Types

ORACLE

The following message properties can be set by the client using the set Property call.
For StreamMessage, Byt esMessage, Obj ect Message, Text Message, and MapMessage objects,
the client can set:

« JNMBXAppl D
e JMBXG oupl D
e JMSXGroupSeq
e JMS _Oracl eExcpQ
e JM5 _Oracl eDel ay

For Adt Message objects, the client can set:

e JM5_Oracl eExcpQ
e JMS _Oracl eDel ay

The following message properties can be obtained by the client using the get Property
call. For Stream\essage, Byt esMessage, Obj ect Message, Text Message, and MapMessage
objects, the client can get:

e JMSXuserlD

e JMSXAppl D

e JMBXDel i veryCount
e JMSXGoupl D

e JMSXGoupSeq

e JMBXRecvTi meSt anp
e JMBXState

e JMB_Oracl eExcpQ

e JM5_Oracl eDel ay

11-15

Chapter 11
Structured Payload/Message Types in JMS

e JMS _Oracl eOrigi nal Messagel D

11.2.5 Buffered Messaging with Oracle JMS

ORACLE

Users can send a nonpersistent JMS message by specifying the del i ver yMode to be
NON_PERSI STENT when sending a message. JMS nonpersistent messages are not
required to be logged to stable storage, so they can be lost after a JIMS system failure.
JMS nonpersistent messages are similar to the buffered messages available in Oracle
Database Advanced Queuing, but there are also important differences between the
two.

Note:

Do not confuse Oracle JMS nonpersistent messages with Oracle Database
Advanced Queuing nonpersistent queues, which are deprecated in Oracle
Database 10g Release 2 (10.2).

¢ See Also:

- "Buffered Messaging"

e Nonpersistent Queues

Transaction Commits and Client Acknowledgments

The JMS del i ver yMvde is orthogonal to the transaction attribute of a message. JMS
nonpersistent messages can be sent and received by either a transacted session or a
nontransacted session. If a JMS nonpersistent message is sent and received by a
transacted session, then the effect of the JMS operation is only visible after the
transacted session commits. If it is received by a hontransacted session with

CLI ENT_ACKNOW.EDGE acknowledgment mode, then the effect of receiving this message is
only visible after the client acknowledges the message. Without the acknowledgment,
the message is not removed and will be redelivered if the client calls Sessi on. recover .

Oracle Database Advanced Queuing buffered messages, however, do not support
these transaction or acknowledgment concepts. Both sending and receiving a buffered
message must be in the | MVEDI ATE visibility mode. The effects of the sending and
receiving operations are therefore visible to the user immediately, no matter whether
the session is committed or the messages are acknowledged.

Different APIs

Messages sent with the regular IMS send and publish methods are treated by Oracle
Database Advanced Queuing as persistent messages. The regular JMS receive
methods receive only AQ persistent messages. To send and receive buffered
messages, you must use the Oracle extension APIs buf f er Send, buf f er Publ i sh, and
buf f er Recei ve.

11-16

Chapter 11
Buffered Messaging in JIMS

¢ See Also:

Oracle Database Advanced Queuing Java API Reference for more information
on buf f er Send, buf f er Publ i sh, and buf f er Recei ve

Payload Limits

The Oracle Database Advanced Queuing implementation of buffered messages does
not support LOB attributes. This places limits on the payloads for the five types of
standard JMS messages:

» JMS Text Message payloads cannot exceed 4000 bytes.

This limit might be even lower with some database character sets, because during
the Oracle JMS character set conversion, Oracle JMS sometimes must make a
conservative choice of using CLOB instead of VARCHAR to store the text payload in the
database.

* JMS Byt esMessage payloads cannot exceed 2000 bytes.

* JMS (bj ect Message, StreamMessage, and MapMessage data serialized by JAVA cannot
exceed 2000 bytes.

e For all other Oracle JMS ADT messages, the corresponding Oracle database ADT
cannot contain LOB attributes.

Different Constants

The Oracle Database Advanced Queuing and Oracle JMS APIs use different
numerical values to designate buffered and persistent messages, as shown in
Table 11-3.

Table 11-3 Oracle Database AQ and Oracle JMS Buffered Messaging

Constants

API Persistent Message Buffered Message
Oracle Database PERSI STENT : = 1 BUFFERED : =2
Advanced Queuing

Oracle JMS PERSI STENT : = 2 NON_PERSI STENT : = 1

11.3 Buffered Messaging in JMS

Buffered messaging fully supports JMS messaging standards. Oracle JMS extends
those standards in several ways.

¢ See Also:

"Buffered Messaging"

ORACLE 11-17

ORACLE

Chapter 11
Buffered Messaging in JMS

Enqueuing JMS Buffered Messages

Oracle JMS allows applications to send buffered messages by setting JMSDel i ver yMde
for individual messages, so persistent and buffered messages can be enqueued to the
same JMS queue/topic.

Oracle JMS buffered messages can be ordered by enqueue time, priority, or both. The
ordering does not extend across message types. So a persistent message sent later,
for example, can be delivered before an buffered message sent earlier. Expiration is
also supported for buffered messages in Oracle JMS.

¢ See Also:

"JMS Message Headers"

Dequeuing JMS Buffered Messages

JMS does not require subscribers to declare interest in just persistent messages or
just buffered messages, so JMS subscribers can be interested in both message types.

Oracle JMS supports fast and efficient dequeue of messages by JMsMessagel D,
selectors on message headers, and selectors on message properties. The Oracle IMS
dequeue call checks for both persistent and buffered messages.

Note:

Oracle JMS persistent messages have unique message identifiers. Oracle JIMS
buffered message identifiers are unique only within a queue/topic.

If concurrent dequeue processes are dequeuing from the same queue as the same
subscriber, then they will skip messages that are locked by the other process.

¢ See Also:

e "MessageSelector"

e "Receiving Messages "

Transactions Support

If buffered messages are enqueued in a transacted session, then JMS requires
transaction support for them. Oracle JMS guarantees that transacted sessions
involving buffered messages meet the following standards:

e Atomicity

Both persistent and buffered messages within an Oracle JMS transaction are
committed or rolled back atomically. Even if buffered messages were written to

11-18

Chapter 11
Buffered Messaging in JIMS

disk, as in the case of messages involving LOBs, rollback nevertheless removes
them.

* Consistency

If persistent and buffered messaging operations interleave in a transaction, then all
Oracle JMS users share a consistent view of the affected queues/topics. All
persistent and buffered messages enqueued by a transaction become visible at
commit time. If a process ends in the middle of a transaction, then both persistent
and buffered messages are undone. Oracle JMS users see either all persistent
and buffered messages in a transaction or none of them.

e Isolation

An buffered enqueue operation in a transaction is visible only to the owner
transaction before the transaction is committed. It is visible to all consumers after
the transaction is committed.

Messages locked by dequeue transaction may be browsed.

Acknowledging Message Receipt

Three values are defined for the ack_node parameter for acknowledging message
receipt in nontransacted sessions:

o DUPS_OK ACKNOW.EDGE
In this mode, duplicate messages are allowed.
+ AUTO ACKNOALEDGE
In this mode, the session automatically acknowledges messages.
e CLI ENT_ACKNONLEDGE

In this mode, the client explicitly acknowledges messages by calling the message
producer acknowledge method. Acknowledging a message acknowledges all
previously consumed messages.

¢ See Also:

"Creating a Session"

Buffered Messaging Quality of Service

JMS requires providers to support at-most-once delivery of unpropagated buffered
messages. If recovery of buffered messages is disabled, then Oracle JMS meets this
standard.

Duplicate delivery of messages is possible with the current implementation of
message propagation. But this does not violate the JMS standard, because message
propagation is an extension offered by Oracle JMS.

ORACLE 11-19

11.4 IMS

ORACLE

Chapter 11
JMS Point-to-Point Model Features

¢ See Also:

"Propagating Buffered Messages" for the causes of duplicate delivery of
buffered messages

JMS Types Support for Buffered Messages

Oracle JMS maps the JMS-defined types to Oracle user-defined types and creates
gueues of these user-defined types for storing JMS messages. Some of these types
have LOB attributes, which Oracle JMS writes to disk whether the message is
persistent or buffered.

The user-defined type SYS. AQS_JMS_TEXT_MESSAGE for JMS type JMSText Message, for
example, stores text strings smaller than 4k in a VARCHAR2 column. But it has a CLOB
attribute for storing text strings larger than 4k.

Because JMS messages are often larger than 4k, Oracle JMS offers a new ADT that
allows larger messages to be stored in memory. The disk representation of the ADT
remains unchanged, but several VARCHAR2/RAWattributes allow for IMS messages of
sizes up to 100k to be stored in memory. Messages larger than 100k can still be
published as buffered messages, but they are written to disk.

¢ See Also:

"Enqueuing Buffered Messages"

Point-to-Point Model Features

In the point-to-point model, clients exchange messages from one point to another.
Message producers and consumers send and receive messages using single-
consumer queues. An administrator creates the single-consumer queues with the

creat eQueue method in AQ nsSessi on. Before they can be used, the queues must be
enabled for enqueue/dequeue using the start call in AQ nsDest i nati on. Clients obtain a
handle to a previously created queue using the get Queue method on AQ nsSessi on.

In a single-consumer queue, a message can be consumed exactly once by a single
consumer. If there are multiple processes or operating system threads concurrently
dequeuing from the same queue, then each process dequeues the first unlocked
message at the head of the queue. A locked message cannot be dequeued by a
process other than the one that has created the lock.

After processing, the message is removed if the retention time of the queue is O, or it is
retained for a specified retention time. As long as the message is retained, it can be
either queried using SQL on the queue table view or dequeued by specifying the
message identifier of the processed message in a QueueBr owser .

QueueSender

A client uses a QueueSender to send messages to a queue. It is created by passing a
gueue to the creat eSender method in a client Sessi on. A client also has the option of

11-20

Chapter 11
JMS Point-to-Point Model Features

creating a QueueSender without supplying a queue. In that case a queue must be
specified on every send operation.

A client can specify a default delivery mode, priority and Ti neToLi ve for all messages
sent by the QueueSender . Alternatively, the client can define these options for each
message.

QueueReceiver

A client uses a QueueRecei ver to receive messages from a queue. It is created using
the creat eQueueRecei ver method in a client Sessi on. It can be created with or without a
messageSel ect or.

QueueBrowser

A client uses a QueueBr owser to view messages on a queue without removing them.
The browser method returns a j ava.util .Enunerati on that is used to scan messages in
the queue. The first call to next El enent gets a snapshot of the queue. A QueueBr owser
can be created with or without a messageSel ect or .

A QueueBrowser can also optionally lock messages as it is scanning them. This is
similar to a "SELECT... for UPDATE" command on the message. This prevents other
consumers from removing the message while they are being scanned.

MessageSelector

A nessageSel ect or allows the client to restrict messages delivered to the consumer to
those that match the nessageSel ect or expression. A nessageSel ect or for queues
containing payloads of type Text Message, StreanMessage, Byt esMessage, Qbj ect Message, Or
MapMessage can contain any expression that has one or more of the following:

* JMS message identifier prefixed with "ID:"
JMVBMessagel D =' | D: 23452345
* JMS message header fields or properties

JMSPriority < 3 AND JMSCorrel ationlD = 'Fiction'

JMSCorrel ationl D LI KE ' RE%
* User-defined message properties
color IN("RED, BLUE', 'GREEN) AND price < 30000

The nessageSel ect or for queues containing payloads of type Adt Message can contain
any expression that has one or more of the following:

e Message identifier without the "ID:" prefix
megi d = ' 23434556566767676'

e Priority, correlation identifier, or both
priority < 3 AND corrid = "Fiction'

e Message payload

tab. user_data.color = 'GREEN AND tab. user_data.price < 30000

ORACLE 11-21

Chapter 11
JMS Publish/Subscribe Model Features

11.5 JMS Publish/Subscribe Model Features

This section contains these topics:

e JMS Publish/Subscribe Overview

* DurableSubscriber

* RemoteSubscriber

e TopicPublisher

* Recipient Lists

* TopicReceiver

e TopicBrowser

e Setting Up JMS Publish/Subscribe Operations

11.5.1 JMS Publish/Subscribe Overview

JMS enables flexible and dynamic communication between applications functioning as
publishers and applications playing the role of subscribers. The applications are not
coupled together; they interact based on messages and message content.

In distributing messages, publisher applications are not required to handle or manage
message recipients explicitly. This allows new subscriber applications to be added
dynamically without changing any publisher application logic.

Similarly, subscriber applications receive messages based on message content
without regard to which publisher applications are sending messages. This allows new
publisher applications to be added dynamically without changing any subscriber
application logic.

Subscriber applications specify interest by defining a rule-based subscription on
message properties or the message content of a topic. The system automatically
routes messages by computing recipients for published messages using the rule-
based subscriptions.

In the publish/subscribe model, messages are published to and received from topics.
A topic is created using the Creat eTopi ¢() method in an AQ nsSessi on. A client can
obtain a handle to a previously-created topic using the get Topi ¢() method in

AQ nsSessi on.

11.5.2 DurableSubscriber

ORACLE

A client creates a Dur abl eSubscri ber with the creat eDur abl eSubscri ber () method in a
client Sessi on. It can be created with or without a messageSel ect or .

A nmessageSel ect or allows the client to restrict messages delivered to the subscriber to
those that match the selector. The syntax for the selector is described in detail in
creat eDur abl eSubscri ber in Oracle Database Advanced Queuing Java APl Reference.

When subscribers use the same name, durable subscriber action depends on the Java
EE compliance mode set for an Oracle Java Message Service (Oracle JMS) client at
runtime.

11-22

Chapter 11
JMS Publish/Subscribe Model Features

In noncompliant mode, two durable Topi cSubscri ber objects with the same name can
be active against two different topics. In compliant mode, durable subscribers with the
same name are not allowed. If two subscribers use the same name and are created
against the same topic, but the selector used for each subscriber is different, then the
underlying Oracle Database Advanced Queuing subscription is altered using the
internal DBVS_AQIMS. ALTER SUBSCRI BER() call.

If two subscribers use the same name and are created against two different topics,
and if the client that uses the same subscription name also originally created the
subscription name, then the existing subscription is dropped and the new subscription
is created.

If two subscribers use the same name and are created against two different topics,
and if a different client (a client that did not originate the subscription name) uses an
existing subscription name, then the subscription is not dropped and an error is
thrown. Because it is not known if the subscription was created by JMS or PL/SQL, the
subscription on the other topic should not be dropped.

¢ See Also:

* "MessageSelector"

e "Java EE Compliance"

11.5.3 RemoteSubscriber

Remote subscribers are defined using the cr eat eRenot eSubscri ber call. The remote
subscriber can be a specific consumer at the remote topic or all subscribers at the
remote topic

A remote subscriber is defined using the AQ msAgent structure. An AQ nsAgent consists
of a name and address. The name refers to the consuner _nane at the remote topic. The
address refers to the remote topic:

schema. t opi c_nane[@bl i nk]

To publish messages to a particular consumer at the remote topic, the

subscri pti on_name of the recipient at the remote topic must be specified in the name
field of AQ msAgent . The remote topic must be specified in the address field of

AQ nsAgent .

To publish messages to all subscribers of the remote topic, the name field of
AQ msAgent must be set to null. The remote topic must be specified in the address field
of AQ msAgent .

11.5.4 TopicPublisher

ORACLE

Messages are published using Topi cPubl i sher, which is created by passing a Topi ¢ to
a creat ePubl i sher method. A client also has the option of creating a Topi cPubl i sher
without supplying a Topi c. In this case, a Topi ¢ must be specified on every publish
operation. A client can specify a default delivery mode, priority and Ti neToLi ve for all
messages sent by the Topi cPubl i sher. It can also specify these options for each
message.

11-23

Chapter 11
JMS Publish/Subscribe Model Features

11.5.5 Recipient Lists

In the JMS publish/subscribe model, clients can specify explicit recipient lists instead
of having messages sent to all the subscribers of the topic. These recipients may or
may not be existing subscribers of the topic. The recipient list overrides the
subscription list on the topic for this message. Recipient lists functionality is an Oracle
extension to JMS.

11.5.6 TopicReceiver

If the recipient name is explicitly specified in the recipient list, but that recipient is not a
subscriber to the queue, then messages sent to it can be received by creating a

Topi cRecei ver . If the subscriber name is not specified, then clients must use durable
subscribers at the remote site to receive messages. Topi cRecei ver is an Oracle
extension to JMS.

A Topi cRecei ver can be created with a nessageSel ect or. This allows the client to restrict
messages delivered to the recipient to those that match the selector.

¢ See Also:

"MessageSelector"

11.5.7 TopicBrowser

ORACLE

A client uses a Topi cBrowser to view messages on a topic without removing them. The
browser method returns a j ava. util . Enunerati on that is used to scan topic messages.
Only durable subscribers are allowed to create a Topi cBr owser . The first call to

next El enent gets a snapshot of the topic.

A Topi cBrowser can optionally lock messages as it is scanning them. This is similar to a
SELECT... f or UPDATE command on the message. This prevents other consumers from
removing the message while it is being scanned.

A Topi cBrowser can be created with a nessageSel ect or . This allows the client to restrict
messages delivered to the browser to those that match the selector.

Topi cBrowser supports a purge feature. This allows a client using a Topi cBr owser to
discard all messages that have been seen during the current browse operation on the
topic. A purge is equivalent to a destructive receive of all of the seen messages (as if
performed using a Topi cSubscri ber).

For a purge, a message is considered seen if it has been returned to the client using a
call to the next El enent () operation on the j ava. | ang. Enuner at i on for the Topi cBrowser.
Messages that have not yet been seen by the client are not discarded during a purge.
A purge operation can be performed multiple times on the same Topi cBr owser.

The effect of a purge becomes stable when the JMS Sessi on used to create the
Topi cBrowser is committed. If the operations on the session are rolled back, then the
effects of the purge operation are also undone.

11-24

Chapter 11
JMS Publish/Subscribe Model Features

" See Also:

e "Creating a TopicBrowser for Standard JMS Messages"

e "Creating a TopicBrowser for Standard JMS Messages_ Locking
Messages"

* "MessageSelector"

e "Browsing Messages Using a TopicBrowser"

11.5.8 Setting Up JMS Publish/Subscribe Operations

Follow these steps to use the publish/subscribe model of communication in JMS:

1.

ORACLE

Set up one or more topics to hold messages. These topics represent an area or
subject of interest. For example, a topic can represent billed orders.

Enable enqueue/dequeue on the topic using the start call in AQ msDest i nati on.

Create a set of durable subscribers. Each subscriber can specify a

nessageSel ect or that selects the messages that the subscriber wishes to receive. A
null messageSel ect or indicates that the subscriber wishes to receive all messages
published on the topic.

Subscribers can be local or remote. Local subscribers are durable subscribers
defined on the same topic on which the message is published. Remote
subscribers are other topics, or recipients on other topics that are defined as
subscribers to a particular queue. In order to use remote subscribers, you must set
up propagation between the source and destination topics. Remote subscribers
and propagation are Oracle extensions to JMS.

" See Also:

"Managing Propagations"

Create Topi cPubl i sher objects using the creat ePubl i sher () method in the publisher
Sessi on. Messages are published using the publ i sh call. Messages can be
published to all subscribers to the topic or to a specified subset of recipients on the
topic.

Subscribers receive messages on the topic by using the recei ve method.

Subscribers can also receive messages asynchronously by using message
listeners.

" See Also:

"Listening to One or More Queues"

11-25

Chapter 11
JMS Message Producer Features

11.6 JMS Message Producer Features

* Priority and Ordering of Messages
* Specifying a Message Delay
* Specifying a Message Expiration

* Message Grouping

11.6.1 Priority and Ordering of Messages

Message ordering dictates the order in which messages are received from a queue or
topic. The ordering method is specified when the queue table for the queue or topic is
created. Currently, Oracle Database Advanced Queuing supports ordering on
message priority and enqueue time, producing four possible ways of ordering:

e First-In, First-Out (FIFO)

If enqueue time was chosen as the ordering criteria, then messages are received
in the order of the enqueue time. The enqueue time is assigned to the message by
Oracle Database Advanced Queuing at message publish/send time. This is also
the default ordering.

e Priority Ordering

If priority ordering was chosen, then each message is assigned a priority. Priority
can be specified as a message property at publish/send time by the
MessagePr oducer . The messages are received in the order of the priorities assigned.

e FIFO Priority

If FIFO priority ordering was chosen, then the topic/queue acts like a priority
gueue. If two messages are assigned the same priority, then they are received in
the order of their enqueue time.

* Enqueue Time Followed by Priority

Messages with the same enqueue time are received according to their priorities. If
the ordering criteria of two message is the same, then the order they are received
is indeterminate. However, Oracle Database Advanced Queuing does ensure that
messages produced in one session with a particular ordering criteria are received
in the order they were sent.

All ordering schemes available for persistent messages are also available for buffered
messages, but only within each message class. Ordering among persistent and
buffered messages enqueued/published in the same session is not currently
supported.

11.6.2 Specifying a Message Delay

ORACLE

Messages can be sent/published to a queue/topic with delay. The delay represents a
time interval after which the message becomes available to the message consumer. A
message specified with a delay is in a waiting state until the delay expires. Receiving
by message identifier overrides the delay specification.

Delay is an Oracle Database Advanced Queuing extension to JMS message
properties. It requires the Oracle Database Advanced Queuing background process
gueue monitor to be started.

11-26

Chapter 11
JMS Message Consumer Features

11.6.3 Specifying a Message Expiration

Producers of messages can specify expiration limits, or Ti neToLi ve for messages. This
defines the period of time the message is available for a Message Consumer.

Ti meToLi ve can be specified at send/publish time or using the set Ti neToLi ve method of
a MessagePr oducer , with the former overriding the latter. The Oracle Database
Advanced Queuing background process queue monitor must be running to implement
Ti meTolLi ve.

11.6.4 Message Grouping

Messages belonging to a queue/topic can be grouped to form a set that can be
consumed by only one consumer at a time. This requires the queue/topic be created in
a queue table that is enabled for transactional message grouping. All messages
belonging to a group must be created in the same transaction, and all messages
created in one transaction belong to the same group.

Message grouping is an Oracle Database Advanced Queuing extension to the JMS
specification.

You can use this feature to divide a complex message into a linked series of simple
messages. For example, an invoice directed to an invoices queue could be divided
into a header message, followed by several messages representing details, followed
by the trailer message.

Message grouping is also very useful if the message payload contains complex large
objects such as images and video that can be segmented into smaller objects.

The priority, delay, and expiration properties for the messages in a group are
determined solely by the message properties specified for the first message (head) of
the group. Properties specified for subsequent messages in the group are ignored.

Message grouping is preserved during propagation. The destination topic must be
enabled for transactional grouping.

¢ See Also:

"Dequeue Features" for a discussion of restrictions you must keep in mind if
message grouping is to be preserved while dequeuing messages from a queue
enabled for transactional grouping

11.7 JMS Message Consumer Features

ORACLE

This section contains these topics:
e Receiving Messages

e Message Navigation in Receive
e Browsing Messages

¢ Remove No Data

11-27

Chapter 11
JMS Message Consumer Features

* Retry with Delay Interval
* Asynchronously Receiving Messages Using MessageListener

* Exception Queues

11.7.1 Receiving Messages

A JMS application can receive messages by creating a message consumer. Messages
can be received synchronously using the recei ve call or asynchronously using a
message listener.

There are three modes of receive:

* Block until a message arrives for a consumer
» Block for a maximum of the specified time

* Nonblocking

11.7.2 Message Navigation in Receive

ORACLE

If a consumer does not specify a navigation mode, then its first recei ve in a session
retrieves the first message in the queue or topic, its second r ecei ve gets the next
message, and so on. If a high priority message arrives for the consumer, then the
consumer does not receive the message until it has cleared the messages that were
already there before it.

To provide the consumer better control in navigating the queue for its messages,
Oracle Database Advanced Queuing offers several navigation modes as JMS
extensions. These modes can be set at the Topi cSubscri ber, QueueRecei ver or the
Topi cRecei ver.

Two modes are available for ungrouped messages:

« FIRST_MESSAGE

This mode resets the position to the beginning of the queue. It is useful for priority
ordered queues, because it allows the consumer to remove the message on the
top of the queue.

e NEXT_MESSAGE

This mode gets whatever message follows the established position of the
consumer. For example, a NEXT_MESSAGE applied when the position is at the fourth
message will get the fifth message in the queue. This is the default action.

Three modes are available for grouped messages:
e FI RST_MESSAGE
This mode resets the position to the beginning of the queue.
e NEXT_MESSAGE
This mode sets the position to the next message in the same transaction.
* NEXT_TRANSACTI ON

This mode sets the position to the first message in the next transaction.

11-28

Chapter 11
JMS Message Consumer Features

Note:

Sharded queues does not support the three preceding modes.

The transaction grouping property can be negated if messages are received in the
following ways:

* Receive by specifying a correlation identifier in the selector
* Receive by specifying a message identifier in the selector
» Committing before all the messages of a transaction group have been received

If the consumer reaches the end of the queue while using the NEXT_MESSAGE or
NEXT_TRANSACTI ON option, and you have specified a blocking recei ve(), then the
navigating position is automatically changed to the beginning of the queue.

By default, a QueueRecei ver, Topi cRecei ver, Or Topi cSubscri ber uses FI RST_MESSAGE for
the first receive call, and NEXT_MESSAGE for subsequent recei ve() calls.

11.7.3 Browsing Messages

Aside from the usual recei ve, which allows the dequeuing client to delete the message
from the queue, JMS provides an interface that allows the JMS client to browse its
messages in the queue. A QueueBrowser can be created using the creat eBr owser
method from QueueSessi on.

If a message is browsed, then it remains available for further processing. That does
not necessarily mean that the message will remain available to the JMS session after
it is browsed, because a recei ve call from a concurrent session might remove it.

To prevent a viewed message from being removed by a concurrent JMS client, you
can view the message in the locked mode. To do this, you must create a QueueBr owser
with the locked mode using the Oracle Database Advanced Queuing extension to the
JMS interface. The lock on the message is released when the session performs a
commit or a rollback.

To remove a message viewed by a QueueBr owser, the session must create a
QueueRecei ver and use the JMBnesssagel D as the selector.

11.7.4 Remove No Data

The consumer can remove a message from a queue or topic without retrieving it using
the recei veNoDat a call. This is useful when the application has already examined the
message, perhaps using a QueueBr owser . This mode allows the JMS client to avoid the
overhead of retrieving a payload from the database, which can be substantial for a
large message.

11.7.5 Retry with Delay Interval

If a transaction receiving a message from a queue/topic fails, then it is regarded as an
unsuccessful attempt to remove the message. Oracle Database Advanced Queuing
records the number of failed attempts to remove the message in the message history.

ORACLE 11-29

Chapter 11
JMS Message Consumer Features

An application can specify the maximum number of retries supported on messages at
the queue/topic level. If the number of failed attempts to remove a message exceeds
this maximum, then the message is moved to an exception queue.

Oracle Database Advanced Queuing allows users to specify aretry_del ay along with
max_retri es. This means that a message that has undergone a failed attempt at
retrieving remains visible in the queue for dequeue after retry_del ay interval. Until then
it is in the WAl TI NG state. The Oracle Database Advanced Queuing background process
time manager enforces the retry delay property.

The maximum retries and retry delay are properties of the queue/topic. They can be
set when the queue/topic is created or by using the alter method on the queue/topic.
The default value for MAX_RETRI ES is 5.

Note:

Sharded queues does not support retry delay.

11.7.6 Asynchronously Receiving Messages Using MessageListener

The JMS client can receive messages asynchronously by setting the Messageli st ener
using the set MessagelLi st ener method.

When a message arrives for the consumer, the onMessage method of the message
listener is invoked with the message. The message listener can commit or terminate
the receipt of the message. The message listener does not receive messages if the
JMS Connecti on has been stopped. The recei ve call must not be used to receive
messages once the message listener has been set for the consumer.

The JMS client can receive messages asynchronously for all consumers in the session
by setting the MessagelLi st ener at the session. No other mode for receiving messages
must be used in the session once the message listener has been set.

11.7.7 Exception Queues

ORACLE

An exception queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. However, an application
that intends to handle these expired or unserviceable messages can receive/remove
them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the point-to-
point interface. The exception queue for messages intended for a topic must be
created in a queue table with multiple consumers enabled. Like any other queue, the
exception queue must be enabled for receiving messages using the start method in
the AQOracl eQueue class. You get an exception if you try to enable it for enqueue.

Sharded queues now supports Exception Queues through the
DBMS_AQADM CREATE_EXCEPTI ON_QUEUE API.

PROCEDURE CREATE_EXCEPTI ON_QUEUE(

shar ded_queue_name I'N VARCHAR2,

exception_queue_name | N VARCHAR2 DEFAULT NULL,
mul tipl e_consuners | N BOOLEAN DEFAULT FALSE,
storage_cl ause I N VARCHAR2 DEFAULT NULL,

11-30

