
Oracle® Database
Database SecureFiles and Large Objects
Developer's Guide

18c
E90894-06
September 2019

Oracle Database Database SecureFiles and Large Objects Developer's Guide, 18c

E90894-06

Copyright © 1996, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Amith Kumar

Contributing Authors: Tulika Das, Tanmay Choudhury

Contributors: Bharath Aleti, Geeta Arora, Thomas H. Chang, Maria Chien, Subramanyam Chitti, Amit
Ganesh, Kevin Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff Lee, Scott Lynn, Jack
Melnick, Atrayee Mullick, Eric Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk, Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiii

Documentation Accessibility xxiii

Related Documents xxiii

Conventions xxiv

 Changes in Oracle Database 18c

New Features xxv

Deprecated Features xxv

Desupported Features xxvi

Part I Getting Started

1 Introduction to Large Objects and SecureFiles

What Are Large Objects? 1-1

Why Use Large Objects? 1-1

Data Types that Use Large Objects 1-2

LOBs Used for Semistructured Data 1-2

LOBs Used for Unstructured Data 1-3

Why Not Use LONGs? 1-3

Different Kinds of LOBs 1-4

Internal LOBs 1-4

External LOBs and the BFILE Data Type 1-5

LOB Locators 1-5

Database Semantics for Internal and External LOBs 1-6

Large Object Data Types 1-6

About Object Data Types and LOBs 1-7

Storage and Creation of Other Data Types with LOBs 1-7

VARRAYs Stored as LOBs 1-8

BasicFiles and SecureFiles LOBs 1-8

iii

Database File System (DBFS) 1-8

2 Working with LOBs

LOB Column States 2-1

Locking a Row Containing a LOB 2-2

LOB Open and Close Operations 2-2

LOB Locator and LOB Value 2-2

Using the Data Interface for LOBs 2-3

Use the LOB Locator to Access and Modify LOB Values 2-3

LOB Locators and BFILE Locators 2-3

Table for LOB Examples: The PM Schema print_media Table 2-4

LOB Column Initialization 2-4

Initializing a Persistent LOB Column 2-5

Initializing BFILEs 2-6

LOB Access 2-7

Accessing a LOB Using SQL 2-7

Accessing a LOB Using the Data Interface 2-7

Accessing a LOB Using the Locator Interface 2-8

LOB Rules and Restrictions 2-8

Rules for LOB Columns 2-8

Restrictions for LOB Operations 2-10

3 Using Oracle LOB Storage

LOB Storage 3-1

BasicFiles LOB Storage 3-2

SecureFiles LOB Storage 3-2

About Advanced LOB Compression 3-2

About Advanced LOB Deduplication 3-2

About SecureFiles Encryption 3-3

CREATE TABLE with LOB Storage 3-3

CREATE TABLE LOB Storage Parameters 3-7

CREATE TABLE and SecureFiles LOB Features 3-11

CREATE TABLE with Advanced LOB Compression 3-12

CREATE TABLE with Advanced LOB Deduplication 3-14

CREATE TABLE with SecureFiles Encryption 3-15

ALTER TABLE with LOB Storage 3-17

About ALTER TABLE and LOB Storage 3-17

BNF for the ALTER TABLE Statement 3-17

ALTER TABLE LOB Storage Parameters 3-19

iv

ALTER TABLE SecureFiles LOB Features 3-19

ALTER TABLE with Advanced LOB Compression 3-20

ALTER TABLE with Advanced LOB Deduplication 3-21

ALTER TABLE with SecureFiles Encryption 3-22

Initialization, Compatibility, and Upgrading 3-23

Compatibility and Upgrading 3-23

Initialization Parameter for SecureFiles LOBs 3-23

Migrating Columns from BasicFiles LOBs to SecureFiles LOBs 3-24

Preventing Generation of REDO Data When Migrating to SecureFiles LOBs 3-24

Online Redefinition for BasicFiles LOBs 3-25

Online Redefinition Example for Migrating Tables with BasicFiles LOBs 3-25

Redefining a SecureFiles LOB in Parallel 3-26

PL/SQL Packages for LOBs and DBFS 3-26

The DBMS_LOB Package Used with SecureFiles LOBs and DBFS 3-27

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS 3-27

DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS 3-28

DBMS_SPACE Package 3-34

DBMS_SPACE.SPACE_USAGE() 3-34

4 Operations Specific to Persistent and Temporary LOBs

Persistent LOB Operations 4-1

Inserting a LOB into a Table 4-1

Selecting a LOB from a Table 4-1

Temporary LOB Operations 4-2

Creating and Freeing a Temporary LOB 4-2

Creating Persistent and Temporary LOBs in PL/SQL 4-3

Freeing Temporary LOBs in OCI 4-4

5 Distributed LOBs

Working with Remote LOBs 5-1

Working with Remote LOB Columns 5-1

Create table as select or insert as select 5-1

Functions on remote LOBs returning scalars 5-2

Data Interface for remote LOBs 5-2

Working with Remote Locator 5-2

Using Local and Remote locators as bind with queries and DML on remote
tables 5-3

Restrictions when using remote LOB locators 5-4

SQL Semantics with LOBs in Remote Tables 5-4

Built-in Functions for Remote LOBs and BFILEs 5-4

v

Passing Remote Locator to Built in SQL Functions 5-6

Working with Remote LOBs in PL/SQL 5-6

PL/SQL Functions for Remote LOBs and BFILEs 5-7

Restrictions on Remote User-Defined Functions 5-7

Remote Functions in PL/SQL, OCI, and JDBC 5-7

Using Remote Locator in PL/SQL 5-8

Using Remote Locators with DBMS_LOB 5-8

Restrictions on Using Remote Locators with DBMS_LOB 5-8

Using Remote Locators with OCILOB API 5-9

6 DDL and DML Statements with LOBs

Creating a Table Containing One or More LOB Columns 6-1

Creating a Nested Table Containing a LOB 6-4

Inserting a Row by Selecting a LOB From Another Table 6-5

Inserting a LOB Value Into a Table 6-5

Inserting a Row by Initializing a LOB Locator Bind Variable 6-6

About Inserting Rows with LOB Locator Bind Variables 6-7

PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 6-7

C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable 6-8

COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable 6-9

C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable 6-10

Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable 6-11

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() 6-12

Updating a Row by Selecting a LOB From Another Table 6-13

Part II Value Semantics LOBs

7 SQL Semantics and LOBs

About Using LOBs in SQL 7-1

SQL Functions and Operators Supported for Use with LOBs 7-2

About SQL Functions and Operators for LOBs 7-2

Implicit Conversion of CLOB to CHAR Types 7-3

CLOBs and NCLOBs Do Not Follow Session Collation Settings 7-6

UNICODE Support 7-6

Codepoint Semantics 7-7

Return Values for SQL Semantics on LOBs 7-8

LENGTH Return Value for LOBs 7-8

Implicit Conversion of LOB Data Types in SQL 7-8

vi

Implicit Conversion Between CLOB and NCLOB Data Types in SQL 7-8

Unsupported Use of LOBs in SQL 7-10

VARCHAR2 and RAW Semantics for LOBs 7-11

About VARCHAR2 and RAW Semantics for LOBs 7-11

LOBs Returned from SQL Functions 7-11

IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs 7-12

WHERE Clause Usage with LOBs 7-12

Built-in Functions for Remote LOBs and BFILEs 7-13

8 PL/SQL Semantics for LOBs

PL/SQL Statements and Variables 8-1

Implicit Conversions Between CLOB and VARCHAR2 8-1

Explicit Conversion Functions 8-2

VARCHAR2 and CLOB in PL/SQL Built-In Functions 8-3

PL/SQL Functions for Remote LOBs and BFILEs 8-5

9 Data Interface for Persistent LOBs

Overview of the Data Interface for Persistent LOBs 9-1

Benefits of Using the Data Interface for Persistent LOBs 9-2

Using the Data Interface for Persistent LOBs in PL/SQL 9-2

About Using the Data Interface for Persistent LOBs in PL/SQL 9-3

Guidelines for Accessing LOB Columns Using the Data Interface in SQL and
PL/SQL 9-3

Implicit Assignment and Parameter Passing 9-4

Passing CLOBs to SQL and PL/SQL Built-In Functions 9-5

Explicit Conversion Functions 9-5

Calling PL/SQL and C Procedures from SQL 9-5

Calling PL/SQL and C Procedures from PL/SQL 9-6

Binds of All Sizes in INSERT and UPDATE Operations 9-6

4000 Byte Limit on Results of a SQL Operator 9-7

Example of 4000 Byte Result Limit of a SQL Operator 9-7

Restrictions on Binds of More Than 4000 Bytes 9-7

Parallel DML (PDML) Support for LOBs 9-8

Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and
UPDATE 9-8

Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT
Operations 9-9

Using the Data Interface for LOBs in Assignments and Parameter Passing 9-10

Using the Data Interface for LOBs with PL/SQL Built-In Functions 9-10

The Data Interface Used for Persistent LOBs in OCI 9-11

vii

LOB Data Types Bound in OCI 9-11

LOB Data Types Defined in OCI 9-12

Multibyte Character Sets Used in OCI with the Data Interface for LOBs 9-12

OCI Functions Used to Perform INSERT or UPDATE on LOB Columns 9-12

Performing Simple INSERTs or UPDATEs in One Piece 9-12

Using Piecewise INSERTs and UPDATEs with Polling 9-13

Performing Piecewise INSERTs and UPDATEs with Callback 9-13

Array INSERT and UPDATE Operations 9-13

The Data Interface Used to Fetch LOB Data in OCI 9-13

Simple Fetch in One Piece 9-13

Performing a Piecewise Fetch with Polling 9-14

Performing a Piecewise with Callback 9-14

Array Fetch 9-14

PL/SQL and C Binds from OCI 9-14

Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE 9-15

Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs 9-15

Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes 9-16

Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling 9-17

Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback 9-18

Binding LONG Data to LOB Columns Using an Array INSERT 9-19

Selecting a LOB Column into a LONG Buffer Using a Simple Fetch 9-20

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
9-21

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with
Callback 9-22

Selecting a LOB Column into a LONG Buffer Using an Array Fetch 9-23

The Data Interface Used with Persistent LOBs in Java 9-24

The Data Interface Used with Remote LOBs 9-24

About the Data Interface with Remote LOBs 9-24

Non-Supported Syntax 9-25

Remote Data Interface Example in PL/SQL 9-25

Remote Data Interface Example in OCI 9-26

Remote Data Interface Examples in JDBC 9-26

Part III Reference Semantics LOBs

10

Overview of Supplied LOB APIs

Programmatic Environments That Support LOBs 10-1

Comparing the LOB Interfaces 10-2

Using PL/SQL (DBMS_LOB Package) to Work With LOBs 10-5

viii

Provide a LOB Locator Before Running the DBMS_LOB Routine 10-5

Guidelines for Offset and Amount Parameters in DBMS_LOB Operations 10-6

Determining Character Set ID 10-7

PL/SQL Functions and Procedures for LOBs 10-7

PL/SQL Functions and Procedures to Modify LOB Values 10-8

PL/SQL Functions and Procedures for Introspection of LOBs 10-8

PL/SQL Operations on Temporary LOBs 10-9

PL/SQL Read-Only Functions and Procedures for BFILEs 10-9

PL/SQL Functions and Procedures to Open and Close Internal and External
LOBs 10-9

Using OCI to Work With LOBs 10-10

Prefetching of LOB Data, Length, and Chunk Size 10-10

Setting the CSID Parameter for OCI LOB APIs 10-10

Fixed-Width and Varying-Width Character Set Rules for OCI 10-10

Other Operations 10-11

NCLOBs in OCI 10-11

OCILobLoadFromFile2() Amount Parameter 10-12

OCILobRead2() Amount Parameter 10-12

OCILobLocator Pointer Assignment 10-12

LOB Locators in Defines and Out-Bind Variables in OCI 10-12

OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 10-12

OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-13

OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE)
Values 10-13

OCI Functions for Temporary LOBs 10-14

OCI Read-Only Functions for BFILEs 10-14

OCI LOB Locator Functions 10-14

OCI Functions to Open and Close Internal and External LOBs 10-14

OCI LOB Examples 10-15

Further Information About OCI 10-15

Using C++ (OCCI) to Work With LOBs 10-15

OCCI Classes for LOBs 10-16

Clob Class 10-16

Blob Class 10-17

Bfile Class 10-17

Fixed-Width Character Set Rules 10-17

Varying-Width Character Set Rules 10-17

Offset and Amount Parameters for Other OCCI Operations 10-18

NCLOBs in OCCI 10-18

Amount Parameter for OCCI LOB copy() Methods 10-19

Amount Parameter for OCCI read() Operations 10-19

Further Information About OCCI 10-19

ix

OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 10-19

OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-20

OCCI Methods to Read or Examine Persistent LOB and BFILE Values 10-20

OCCI Read-Only Methods for BFILEs 10-20

Other OCCI LOB Methods 10-21

OCCI Methods to Open and Close Internal and External LOBs 10-21

Using C/C++ (Pro*C) to Work With LOBs 10-21

Providing an Allocated Input Locator Pointer That Represents LOB 10-21

Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs 10-22

Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values 10-22

Pro*C/C++ Embedded SQL Statements for Introspection of LOBs 10-23

Pro*C/C++ Embedded SQL Statements for Temporary LOBs 10-23

Pro*C/C++ Embedded SQL Statements for BFILEs 10-23

Pro*C/C++ Embedded SQL Statements for LOB Locators 10-24

Pro*C/C++ Embedded SQL Statements to Open and Close LOBs 10-24

Using COBOL (Pro*COBOL) to Work With LOBs 10-24

Providing an Allocated Input Locator Pointer That Represents LOB 10-24

Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and
BFILEs 10-25

Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values 10-25

Pro*COBOL Embedded SQL Statements for Introspection of LOBs 10-26

Pro*COBOL Embedded SQL Statements for Temporary LOBs 10-26

Pro*COBOL Embedded SQL Statements for BFILEs 10-26

Pro*COBOL Embedded SQL Statements for LOB Locators 10-27

Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and
BFILEs 10-27

Using Java (JDBC) to Work With LOBs 10-27

Modifying Internal Persistent LOBs Using Java 10-27

Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java 10-28

BLOB, CLOB, and BFILE Classes 10-28

Calling DBMS_LOB Package from Java (JDBC) 10-28

Prefetching LOBs to Improve Performance 10-28

Zero-Copy Input/Output for SecureFiles to Improve Performance 10-29

Zero-Copy Input/Output on the Server 10-29

Zero-Copy Input/Output in the JDBC Thin Driver 10-29

JDBC-OCI Driver Considerations 10-29

Referencing LOBs Using Java (JDBC) 10-29

Using OracleResultSet: BLOB and CLOB Objects Retrieved 10-30

JDBC Syntax References and Further Information 10-30

JDBC Methods for Operating on LOBs 10-30

JDBC oracle.sql.BLOB Methods to Modify BLOB Values 10-31

JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values 10-31

x

JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data 10-31

JDBC oracle.sql.CLOB Methods to Modify CLOB Values 10-32

JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value 10-32

JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data 10-32

JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE)
Values 10-33

JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data 10-33

JDBC Temporary LOB APIs 10-34

JDBC: Opening and Closing LOBs 10-34

JDBC: Opening and Closing BLOBs 10-35

Opening the BLOB Using JDBC 10-35

Checking If the BLOB Is Open Using JDBC 10-35

Closing the BLOB Using JDBC 10-36

JDBC: Opening and Closing CLOBs 10-36

Opening the CLOB Using JDBC 10-36

Checking If the CLOB Is Open Using JDBC 10-37

Closing the CLOB Using JDBC 10-37

JDBC: Opening and Closing BFILEs 10-37

Opening BFILEs 10-37

Checking If the BFILE Is Open 10-38

Closing the BFILE 10-38

Usage Example (OpenCloseLob.java) 10-38

Truncating LOBs Using JDBC 10-40

JDBC: Truncating BLOBs 10-40

JDBC: Truncating CLOBs 10-41

JDBC BLOB Streaming APIs 10-41

JDBC CLOB Streaming APIs 10-42

BFILE Streaming APIs 10-43

JDBC BFILE Streaming Example (NewStreamLob.java) 10-43

JDBC and Empty LOBs 10-47

Oracle Provider for OLE DB (OraOLEDB) 10-47

Overview of Oracle Data Provider for .NET (ODP.NET) 10-48

11

LOB APIs for BFILE Operations

Supported Environments for BFILE APIs 11-2

About Accessing BFILEs 11-3

Directory Objects 11-3

Initializing a BFILE Locator 11-4

How to Associate Operating System Files with a BFILE 11-4

BFILENAME and Initialization 11-5

Characteristics of the BFILE Data Type 11-5

xi

DIRECTORY Name Specification 11-6

On Windows Platforms 11-6

BFILE Security 11-6

Ownership and Privileges 11-6

Read Permission on a DIRECTORY Object 11-7

SQL DDL for BFILE Security 11-8

SQL DML for BFILE Security 11-8

Catalog Views on Directories 11-8

Guidelines for DIRECTORY Usage 11-8

BFILEs in Shared Server (Multithreaded Server) Mode 11-9

External LOB (BFILE) Locators 11-9

When Two Rows in a BFILE Table Refer to the Same File 11-10

BFILE Locator Variable 11-10

Guidelines for BFILEs 11-10

About Loading a LOB with BFILE Data 11-11

About Opening a BFILE with OPEN 11-13

About Opening a BFILE with FILEOPEN 11-14

About Determining Whether a BFILE Is Open Using ISOPEN 11-15

About Determining Whether a BFILE Is Open with FILEISOPEN 11-16

About Displaying BFILE Data 11-17

About Reading Data from a BFILE 11-18

About Reading a Portion of BFILE Data Using SUBSTR 11-19

Comparing All or Parts of Two BFILES 11-20

Checking If a Pattern Exists in a BFILE Using INSTR 11-20

Determining Whether a BFILE Exists 11-21

Getting the Length of a BFILE 11-22

About Assigning a BFILE Locator 11-22

Getting Directory Object Name and File Name of a BFILE 11-23

About Updating a BFILE by Initializing a BFILE Locator 11-24

Closing a BFILE with FILECLOSE 11-25

Closing a BFILE with CLOSE 11-25

Closing All Open BFILEs with FILECLOSEALL 11-27

About Inserting a Row Containing a BFILE 11-27

12

Using LOB APIs

Supported Environments 12-2

About Appending One LOB to Another 12-3

About Determining Character Set Form 12-4

About Determining Character Set ID 12-5

Loading a LOB with Data from a BFILE 12-5

xii

About Loading a BLOB with Data from a BFILE 12-7

Loading a CLOB or NCLOB with Data from a BFILE 12-8

About PL/SQL: Loading Character Data from a BFILE into a LOB 12-9

About PL/SQL: Loading Segments of Character Data into Different LOBs 12-10

Determining Whether a LOB is Open 12-10

Java (JDBC): Checking If a LOB Is Open 12-11

Checking If a CLOB Is Open 12-11

Checking If a BLOB Is Open 12-11

About Displaying LOB Data 12-11

About Reading Data from a LOB 12-13

About LOB Array Read 12-14

Reading a Portion of a LOB (SUBSTR) 12-20

Comparing All or Part of Two LOBs 12-21

Patterns: Checking for Patterns in a LOB Using INSTR 12-21

Length: Determining the Length of a LOB 12-22

Copying All or Part of One LOB to Another LOB 12-23

Copying a LOB Locator 12-24

Equality: Checking If One LOB Locator Is Equal to Another 12-25

About Determining Whether LOB Locator Is Initialized 12-25

About Appending to a LOB 12-26

About Writing Data to a LOB 12-27

LOB Array Write 12-30

About Trimming LOB Data 12-35

About Erasing Part of a LOB 12-36

Determining Whether a LOB instance Is Temporary 12-37

Java (JDBC): Determining Whether a BLOB Is Temporary 12-38

Converting a BLOB to a CLOB 12-38

Converting a CLOB to a BLOB 12-39

Ensuring Read Consistency 12-39

Part IV Application Design with LOBs

13

LOB Storage with Applications

Tables That Contain LOBs 13-1

Persistent LOBs Initialized to NULL or Empty 13-1

Setting a Persistent LOB to NULL 13-2

Setting a Persistent LOB to Empty 13-2

Initializing LOBs 13-2

Initializing Persistent LOB Columns and Attributes to a Value 13-3

Initializing BFILEs to NULL or a File Name 13-3

xiii

Restriction on First Extent of a LOB Segment 13-3

Data Types for LOB Columns 13-3

LOBs Compared to LONG and LONG RAW Types 13-4

Varying-Width Character Data Storage in LOBs 13-4

Converting Character Sets Implicitly with LOBs 13-4

LOB Storage Parameters 13-5

Inline and Out-of-Line LOB Storage 13-6

Defining Tablespace and Storage Characteristics for Persistent LOBs 13-7

Assigning a LOB Data Segment Name 13-7

LOB Storage Characteristics for LOB Column or Attribute 13-8

TABLESPACE and LOB Index 13-8

Tablespace for LOB Index in Non-Partitioned Table 13-8

PCTVERSION 13-9

RETENTION Parameter for BasicFiles LOBs 13-10

RETENTION Parameter for SecureFiles LOBs 13-10

CACHE / NOCACHE / CACHE READS 13-11

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache 13-11

LOGGING / NOLOGGING Parameter for BasicFiles LOBs 13-11

LOBs Always Generate Undo for LOB Index Pages 13-12

When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages 13-12

LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs 13-12

CACHE Implies LOGGING 13-13

SecureFiles and an Efficient Method of Generating REDO and UNDO 13-13

FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts 13-13

CHUNK 13-13

The Value of CHUNK 13-14

Set INITIAL and NEXT to Larger than CHUNK 13-15

ENABLE or DISABLE STORAGE IN ROW Clause 13-15

Guidelines for ENABLE or DISABLE STORAGE IN ROW 13-15

LOB Columns Indexing 13-16

Domain Indexing on LOB Columns 13-16

Text Indexes on LOB Columns 13-16

Function-Based Indexes on LOBs 13-17

Extensible Indexing on LOB Columns 13-17

Extensible Optimizer 13-18

Oracle Text Indexing Support for XML 13-18

LOB Manipulation in Partitioned Tables 13-18

About Manipulating LOBs in Partitioned Tables 13-19

Partitioning a Table Containing LOB Columns 13-19

Creating an Index on a Table Containing Partitioned LOB Columns 13-20

Moving Partitions Containing LOBs 13-20

xiv

Splitting Partitions Containing LOBs 13-20

Merging Partitions Containing LOBs 13-20

LOBs in Index Organized Tables 13-21

Restrictions for LOBs in Partitioned Index-Organized Tables 13-22

Updating LOBs in Nested Tables 13-22

14

Advanced Design Considerations

Opening Persistent LOBs with the OPEN and CLOSE Interfaces 14-1

Index Performance Benefits of Explicitly Opening a LOB 14-1

Closing Explicitly Open LOB Instances 14-2

Read-Consistent Locators 14-2

A Selected Locator Becomes a Read-Consistent Locator 14-3

Example of Updating LOBs and Read-Consistency 14-3

Example of Updating LOBs Through Updated Locators 14-5

Example of Updating a LOB Using SQL DML and DBMS_LOB 14-6

Example of Using One Locator to Update the Same LOB Value 14-8

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 14-9

LOB Locators and Transaction Boundaries 14-11

About LOB Locators and Transaction Boundaries 14-11

Read and Write Operations on a LOB Using Locators 14-12

Selecting the Locator Outside of the Transaction Boundary 14-12

Selecting the Locator Within a Transaction Boundary 14-13

LOB Locators Cannot Span Transactions 14-14

Example of Locator Not Spanning a Transaction 14-14

LOBs in the Object Cache 14-15

Terabyte-Size LOB Support 14-16

About Terabyte-Size LOB Support 14-16

Maximum Storage Limit for Terabyte-Size LOBs 14-17

Using Terabyte-Size LOBs with JDBC 14-18

Using Terabyte-Size LOBs with the DBMS_LOB Package 14-18

Using Terabyte-Size LOBs with OCI 14-18

Guidelines for Creating Gigabyte LOBs 14-19

Creating a Tablespace and Table to Store Gigabyte LOBs 14-19

15

Performance Guidelines

LOB Performance Guidelines 15-1

All LOBs 15-1

Chunk Size 15-1

LOB Pre-fetching 15-1

xv

Small LOBs 15-2

Large LOBs 15-2

Persistent LOBs 15-2

Performance Guidelines for Small BasicFiles LOBs 15-2

General Performance Guidelines for BasicFiles LOBs 15-2

Temporary LOB Performance Guidelines 15-3

Moving Data to LOBs in a Threaded Environment 15-5

LOB Access Statistics 15-6

Example of Retrieving LOB Access Statistics 15-7

Part V LOB Administration

16

Managing LOBs: Database Administration

Database Utilities for Loading Data into LOBs 16-1

About Using SQL*Loader to Load LOBs 16-1

About Using SQL*Loader to Populate a BFILE Column 16-3

About Using Oracle Data Pump to Transfer LOB Data 16-5

Temporary LOB Management 16-6

BFILEs Management 16-6

Rules for Using Directory Objects and BFILEs 16-6

Setting Maximum Number of Open BFILEs 16-7

Changing Tablespace Storage for a LOB 16-7

17

Migrating Columns from LONGs to LOBs

Benefits of Migrating LONG Columns to LOB Columns 17-1

Preconditions for Migrating LONG Columns to LOB Columns 17-2

Dropping a Domain Index on a LONG Column Before Converting to a LOB 17-2

Preventing Generation of Redo Space on Tables Converted to LOB Data Types 17-2

Determining how to Optimize the Application Using utldtree.sql 17-3

Converting Tables from LONG to LOB Data Types 17-3

Migration Issues 17-3

Using ALTER TABLE to Convert LONG Columns to LOB Columns 17-4

Copying a LONG to a LOB Column Using the TO_LOB Operator 17-4

Online Redefinition of Tables with LONG Columns 17-5

Using Oracle Data Pump to Migrate a Database 17-8

Migrating Applications from LONGs to LOBs 17-8

About Migrating Applications from Longs to LOBs 17-8

LOB Columns Are Not Allowed in Clustered Tables 17-9

LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers 17-9

xvi

Rebuilding Indexes on Columns Converted from LONG to LOB Data Types 17-9

Empty LOBs Compared to NULL and Zero Length LONGs 17-10

Overloading with Anchored Types 17-10

Some Implicit Conversions Are Not Supported for LOB Data Types 17-11

Part VI Oracle File System (OFS) Server

18

Introducing Network File System (NFS)

Prerequisites to Access Storage Through NFS Server 18-1

NFS Security 18-1

Kerberos 18-2

Configuring Kerberos Server in Linux 18-2

19

Using OFS

Limitations of using OFS 19-1

OFS Configuration Parameters 19-1

OFS Client Interface 19-1

DBMS_FS Package 19-1

Views for OFS 19-2

Part VII Database File System (DBFS)

20

Introducing the Database File System

Why a Database File System? 20-1

What Is Database File System (DBFS)? 20-1

About DBFS 20-1

DBFS Server 20-2

DBFS Client 20-3

What Is a Content Store? 20-4

21

DBFS SecureFiles Store

Setting Up a SecureFiles Store 21-1

About Managing Permissions 21-1

Creating or Setting Permissions 21-2

Creating a SecureFiles File System Store 21-2

Accessing Tables that Hold SecureFiles System Store Data 21-4

xvii

Initializing SecureFiles Store File Systems 21-4

Comparison of SecureFiles LOBs to BasicFiles LOBs 21-4

Using a DBFS SecureFiles Store File System 21-5

DBFS Content API Working Example 21-5

Dropping SecureFiles Store File Systems 21-6

About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 21-6

Database File System (DBFS)— POSIX File Locking 21-7

About Advisory Locking 21-8

About Mandatory Locking 21-8

File Locking Support 21-8

Compatibility and Migration Factors of Database Filesystem—File Locking 21-9

Examples of Database Filesystem—File Locking 21-9

File Locking Behavior 21-10

Scheduling File Locks 21-11

Greedy Scheduling 21-11

Fair Scheduling 21-12

22

DBFS Hierarchical Store

About the Hierarchical Store Package, DBMS_DBFS_HS 22-1

Ways to Use DBFS Hierarchial Store 22-1

Setting up the Store 22-2

Managing a HS Store Wallet 22-2

Creating, Registering, and Mounting the Store 22-3

Using the Hierarchical Store 22-3

Using Hierarchical Store as a File System 22-4

Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 22-4

Dropping a Hierarchical Store 22-4

Compression to Use with the Hierarchical Store 22-4

Program Example Using Tape 22-5

Program Example Using Amazon S3 22-9

Database File System Links 22-14

About Database File System Links 22-14

Ways to Create Database File System Links 22-15

Database File System Links Copy 22-16

Copying a Linked LOB Between Tables 22-17

Online Redefinition and DBFS Links 22-17

Transparent Read 22-17

The DBMS_DBFS_HS Package 22-17

Constants for DBMS_DBFS_HS Package 22-17

Methods for DBMS_DBFS_HS Package 22-18

xviii

Views for DBFS Hierarchical Store 22-19

DBA Views 22-19

User Views 22-20

23

DBFS Content API

Overview of DBFS Content API 23-1

Stores and DBFS Content API 23-2

Getting Started with DBMS_DBFS_CONTENT Package 23-3

DBFS Content API Role 23-3

Path Name Constants and Types 23-3

Path Properties 23-3

Content IDs 23-4

Path Name Types 23-4

Store Features 23-4

Lock Types 23-5

Standard Properties 23-5

Optional Properties 23-6

User-Defined Properties 23-6

Property Access Flags 23-6

Exceptions 23-6

Property Bundles 23-7

Store Descriptors 23-7

Administrative and Query APIs 23-8

Registering a Content Store 23-8

Unregistering a Content Store 23-9

Mounting a Registered Store 23-9

Unmounting a Previously Mounted Store 23-10

Listing all Available Stores and Their Features 23-10

Listing all Available Mount Points 23-10

Looking Up Specific Stores and Their Features 23-11

Querying DBFS Content API Space Usage 23-11

DBFS Content API Session Defaults 23-12

DBFS Content API Interface Versioning 23-12

Notes on DBFS Content API Path Names 23-12

DBFS Content API Creation Operations 23-13

DBFS Content API Deletion Operations 23-14

DBFS Content API Path Get and Put Operations 23-14

DBFS Content API Rename and Move Operations 23-15

Directory Listings 23-16

DBFS Content API Directory Navigation and Search 23-16

xix

DBFS Content API Locking Operations 23-17

DBFS Content API Access Checks 23-17

DBFS Content API Abstract Operations 23-17

DBFS Content API Path Normalization 23-18

DBFS Content API Statistics Support 23-18

DBFS Content API Tracing Support 23-19

Resource and Property Views 23-20

24

Creating Your Own DBFS Store

Overview of DBFS Store Creation and Use 24-1

DBFS Content Store Provider Interface (DBFS Content SPI) 24-2

Creating a Custom Provider 24-3

Mechanics 24-4

Installation and Setup 24-4

TBFS Use 24-4

TBFS Internals 24-5

TBFS.SQL 24-6

TBL.SQL 24-6

spec.sql 24-7

body.sql 24-16

capi.sql 24-29

25

Using DBFS

DBFS Installation 25-1

Creating a DBFS File System 25-1

Privileges Required to Create a DBFS File System 25-1

Advantages of Non-Partitioned Versus Partitioned DBFS File Systems 25-2

Creating a Non-Partitioned File System 25-2

Creating a Partitioned File System 25-2

Dropping a File System 25-3

DBFS File System Access 25-3

DBFS Client Prerequisites 25-3

DBFS Client Command-Line Interface Operations 25-4

About the DBFS Client Command-Line Interface 25-4

Creating Content Store Paths 25-4

Creating a Directory 25-5

Listing a Directory 25-5

Copying Files and Directories 25-5

Removing Files and Directories 25-6

xx

DBFS Mounting Interface (Linux and Solaris Only) 25-6

Installing FUSE on Solaris 11 SRU7 and Later 25-7

Mounting the DBFS Store 25-7

Solaris-Specific Privileges 25-7

About the Mount Command for Solaris and Linux 25-7

Mounting a File System with a Wallet 25-8

Mounting a File System with Password at Command Prompt 25-9

Mounting a File System with Password Read from a File 25-9

Unmounting a File System 25-9

Mounting DBFS Through fstab Utility for Linux 25-10

Mounting DBFS Through the vfstab Utility for Solaris 25-10

Restrictions on Mounted File Systems 25-11

File System Security Model 25-11

About the File System Security Model 25-11

Enabling Shared Root Access 25-12

About DBFS Access Among Multiple Database Users 25-12

Establishing DBFS Access Sharing Across Multiple Database Users 25-12

HTTP, WebDAV, and FTP Access to DBFS 25-16

Internet Access to DBFS Through XDB 25-16

Web Distributed Authoring and Versioning (WebDAV) Access 25-17

FTP Access to DBFS 25-17

HTTP Access to DBFS 25-18

DBFS Administration 25-18

Using Oracle Wallet with DBFS Client 25-18

DBFS Diagnostics 25-19

Preventing Data Loss During Failover Events 25-20

Bypassing Client-Side Write Caching 25-20

Backing up DBFS 25-20

DBFS Backup at the Database Level 25-21

DBFS Backup Through a File System Utility 25-21

Small File Performance of DBFS 25-21

Enabling Advanced SecureFiles LOB Features for DBFS 25-21

Shrinking and Reorganizing DBFS Filesystems 25-22

About Changing DBFS Filesystems 25-22

Advantages of Online Filesystem Reorganization 25-22

Determining Availability of Online Filesystem Reorganization 25-23

Invoking Online Filesystem Reorganization 25-24

A LOB Demonstration Files

PL/SQL LOB Demonstration Files A-1

xxi

OCI LOB Demonstration Files A-3

Java LOB Demonstration Files A-4

Glossary

Index

xxii

Preface

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS).
The information in this guide applies to all platforms, and does not include system-
specific information.

Audience
Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who
have previously implemented this technology and now want to take advantage of new
features.

Efficient and secure storage of multimedia and unstructured data is increasingly
important, and this guide is a key resource for this topic within the Oracle Application
Developers documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains
information that describes the SecureFiles LOB and BasicFiles LOB features and
functionality of Oracle Database 12c Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application;
however, there are some restrictions, described in "LOB Rules and Restrictions" and
"Restrictions for LOBs in Partitioned Index-Organized Tables ".

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following manuals:

xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database 2 Day Developer's Guide

• Oracle Database Development Guide

• Oracle Database Utilities

• Oracle XML DB Developer’s Guide

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database Data Cartridge Developer's Guide

• Oracle Call Interface Programmer's Guide

• Oracle C++ Call Interface Programmer's Guide

• Pro*C/C++ Programmer's Guide

• Pro*COBOL Programmer's Guide

• Oracle Database Programmer's Guide to the Oracle Precompilers

• Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java

The Oracle Java documentation set includes the following:

• Oracle Database JDBC Developer’s Guide

• Oracle Database Java Developer’s Guide

• Oracle Database JPublisher User's Guide

Oracle Multimedia

To use Oracle Multimedia applications, refer to the following:

• Oracle Multimedia Reference

• Oracle Multimedia User's Guide

Basic References

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxiv

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Changes in Oracle Database 18c

The following are changes in Oracle Database SecureFiles and Large Objects
Developer's Guide for Oracle Database 18c .

• New Features

• Deprecated Features

• Desupported Features

New Features
• Performance improvements:

– Oracle Database has improved the performance of Inline LOBs to accelerate
the DML operations, SQL operators used in SELECT clauses with LOB
columns, and other built-in SQL functions that support LOB columns.

– Oracle Database allows LOBs and LOBs related functionality to be used with
Oracle Database In-Memory and Big Data SQL.

– Oracle Database extends Exadata support for LOBs to Compressed LOBs.

– Oracle Database has addressed the overheads of temporary LOBs upto 4k.

– Oracle Database provides IMC support for LOBs that are stored inline.

• Oracle Database lists the best practices to use LOBs in database applications.

Deprecated Features
Oracle Multimedia is deprecated in Oracle Database Release 18c, and may be
desupported in a future release. Oracle recommends that you stop using deprecated
features as soon as possible.

The following list of features is deprecated in Oracle Database 12c Release 2 (12.2),
and may be desupported in a future release.

• DBMS_LOB.LOADFROMFILE Procedure.

Use DBMS_LOB.LoadClobFromFile or DBMS_LOB.LoadBlobFromFile instead.

• LOB Buffering subsystem APIs

The following functions are deprecated beginning with Oracle 12c Release 2
(12.2):

– OCILobEnableBuffering()

– OCILobDisableBuffering()

– OCILobFlushBuffer()

xxv

In place of using these LOB buffering functions, use the LOB prefetch feature
described in Prefetching of LOB Data, Length, and Chuck Size.

• DBMS_XSLPROCESSOR.CLOB2FILE procedure.

Use DBMS_LOB.CLOB2FILE procedure instead.

Desupported Features

List of desupported features in Oracle® Database SecureFiles and Large
Objects 19c

Oracle Multimedia has been desupported in its entirety. Oracle recommends that you
store multimedia content in SecureFiles LOBs and use third-party products.

See Also:

Oracle Database Upgrade Guide for more information.

List of desupported features in Oracle® Database SecureFiles and Large
Objects 18c

The following functions related to LOB Buffering subsystem APIs are desupported in
its entirety:

• OCILobEnableBuffering()

• OCILobDisableBuffering()

• OCILobFlushBuffer()

List of desupported features in Oracle® Database SecureFiles and Large
Objects 12c, Release (2) 12.2

• Desupport of Advanced Replication

The Oracle Database Advanced Replication feature is desupported in its entirety.

See Also:

– Oracle Database Upgrade Guide for more information.

Changes in Oracle Database 18c

xxvi

Part I
Getting Started

This part introduces Large Objects (LOBs) and discusses general concepts for using
them in your applications.

This part contains these chapters:

• Introduction to Large Objects and SecureFiles

• Working with LOBs

• Using Oracle LOB Storage

• Operations Specific to Persistent and Temporary LOBs

• Distributed LOBs

• DDL and DML Statements with LOBs

1
Introduction to Large Objects and
SecureFiles

Large Objects (LOBs), SecureFiles LOBs, and Database File System (DBFS) work
together with various database features to support application development.

Large Objects are used to hold large amounts of data inside Oracle Database,
SecureFiles provides performance equal to or better than file system performance
when using Oracle Database to store and manage Large Objects, and DBFS provides
file system access to files stored in Oracle Database.

Topics:

• What Are Large Objects?

• Why Use Large Objects?

• Why Not Use LONGs?

• Different Kinds of LOBs

• LOB Locators

• Database Semantics for Internal and External LOBs

• Large Object Data Types

• About Object Data Types and LOBs

• Storage and Creation of Other Data Types with LOBs

• BasicFiles and SecureFiles LOBs

• Database File System (DBFS)

What Are Large Objects?
Large Objects (LOBs) are a set of data types that are designed to hold large amounts
of data.

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

Why Use Large Objects?
Large objects allow you to store large amounts of data in several types of structures.

Topics:

• Data Types that Use Large Objects

• LOBs Used for Semistructured Data

• LOBs Used for Unstructured Data

1-1

Data Types that Use Large Objects
Large objects are suitable for semistructured and unstructured data.

Large object features allow you to store these kinds of data in the database and in
operating system files that are accessed from the database.

• Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the
database, for example, an XML document that your application or an external
service processes. Oracle Database provides features such as Oracle XML DB,
Oracle Multimedia, and Oracle Spatial and Graph to help your application work
with semistructured data.

Note:

Oracle Multimedia is deprecated in Oracle Database Release 18c, and
may be desupported in a future release. Oracle recommends that you
stop using deprecated features as soon as possible.

• Unstructured data

Unstructured data is easily not broken down into smaller logical structures and is
not typically interpreted by the database or your application, such as a
photographic image stored as a binary file.

When you develop applications, you encounter different types of data, not all of which
are suitable for large objects. For example, there is no need for the following to be
created as large objects:

• Simple structured data

Simple structured data can be organized into relational tables that are structured
based on business rules.

• Complex structured data

Complex structured data is more complex than simple structured data and is
suited for the object-relational features of the Oracle database such as collections,
references, and user-defined types.

With the growth of the Internet and content-rich applications, it has become imperative
for Oracle Database to provide LOB support that:

• Can store unstructured and semistructured data in an efficient manner

• Is optimized for large amounts of data

• Provides a uniform way of accessing data stored within the database or outside
the database

LOBs Used for Semistructured Data
Semistructured data include document files such as XML documents or word
processor files, which contain data in a logical structure that is processed or

Chapter 1
Why Use Large Objects?

1-2

interpreted by an application, and is not broken down into smaller logical units when
stored in the database.

Applications that use semistructured data often use large amounts of character data.
The Character Large Object (CLOB) and National Character Large Object (NCLOB) data
types are ideal for storing and manipulating this kind of data.

Binary File objects (BFILE data types) can also store character data. You can use
BFILEs to load read-only data from operating system files into CLOB or NCLOB instances
that you then manipulate in your application.

LOBs Used for Unstructured Data
Unstructured data is data that cannot be decomposed into standard components.

This is in contrast to structured data, such as data about an employee typically
containing these components: a name, stored as a string; an identifier, such as an ID
number; a salary; and so on.

Unstructured data, such as a photograph, consists of a long stream of 1s and 0s.
These bits are used to switch pixels on or off so that you can see the picture on a
display, but the bits are not broken down into any standard components for database
storage.

Also, unstructured data such as text, graphic images, still video clips, full motion video,
and sound waveforms tends to be large in size. A typical employee record may be a
few hundred bytes, while even small amounts of multimedia data can be thousands of
times larger.

SQL data types that are ideal for large amounts of unstructured binary data include the
BLOB data type (Binary Large Object) and the BFILE data type (Binary File object).

Why Not Use LONGs?
Oracle Database supports LONG and LOB data types. However, LOBs provide added
benefits described below.

Using LOB data types is recommended for storing large amounts of structured and
semistructured data (from Oracle8i and on). Applications developed for use with
Oracle7 and earlier used the LONG or LONG RAW data type to store large amounts of
unstructured data.

You can use LONG-to-LOB migration to easily migrate your existing applications that
access LONG columns, to use LOB columns.

Advantages of LOB data types over LONG and LONG RAW types:

• LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4
GB of data or more depending on your system configuration. LONG and LONG RAW
types are limited to 2 GB of data.

• Number of LOB columns in a table: A table can have multiple LOB columns. LOB
columns in a table can be of any LOB type. In Oracle7 Release 7.3 and higher,
tables are limited to a single LONG or LONG RAW column.

• Random piece-wise access: LOBs support random access to data, but LONGs
support only sequential access.

Chapter 1
Why Not Use LONGs?

1-3

• LOBs can also be object attributes.

See Also:

Migrating Columns from LONGs to LOBs

Different Kinds of LOBs
Different kinds of LOBs can be stored in the database or in external files.

LOBs in the database are sometimes also referred to as internal LOBs or internal
persistent LOBs.

LOBs can be internal or external:

• Internal LOBs

• External LOBs and the BFILE Data Type

Internal LOBs
LOBs in the database are stored inside database tablespaces in a way that optimizes
space and provides efficient access.

SQL Data Types for Internal LOBs

The following SQL data types are supported for declaring internal LOBs: BLOB, CLOB,
and NCLOB.

See Also:

Large Object Data Types

Persistent and Temporary LOBs

Persistent and temporary LOBs are both internal LOBs (LOBs in the database).

• A persistent LOB is a LOB instance that exists in a table row in the database.

• A temporary LOB instance is created when you instantiate a LOB only within the
scope of your local application.

A temporary instance becomes a persistent instance when you insert the instance into
a table row.

Persistent LOBs use copy semantics and participate in database transactions. You
can recover persistent LOBs in the event of transaction or media failure, and any
changes to a persistent LOB value can be committed or rolled back. In other words, all
the Atomicity, Consistency, Isolation, and Durability (ACID) properties that apply to
database objects apply to persistent LOBs.

Chapter 1
Different Kinds of LOBs

1-4

External LOBs and the BFILE Data Type
External LOBs are data objects stored in operating system files, outside the database
tablespaces.

BFILE is the SQL data type that the database uses to access external LOBs and is the
only SQL data type available for external LOBs.

BFILEs are read-only data types. The database allows read-only byte stream access to
data stored in BFILEs. You cannot write to or update a BFILE from within your
application.

The database uses reference semantics with BFILE columns. Data stored in a table
column of type BFILE is physically located in an operating system file, not in the
database.

You typically use BFILEs to hold:

• Binary data that does not change while your application is running, such as
graphics

• Data that is loaded into other large object types, such as a BLOB or CLOB, where the
data can then be manipulated

• Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFILE data, including
hard disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFILEs
provided the operating system supports stream-mode access to the operating system
files.

Note:

External LOBs do not participate in transactions. Any support for integrity
and durability must be provided by the underlying file system as governed by
the operating system.

LOB Locators
A LOB instance has a locator and a value.

A LOB locator is a reference to where the LOB value is physically stored. The LOB
value is the data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are
actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is
no requirement to dereference LOB locators, as is required with pointers in some
programming languages.

Chapter 1
LOB Locators

1-5

See Also:

• "LOB Locator and LOB Value"

• "LOB Locators and BFILE Locators"

• "LOB Storage Parameters"

Database Semantics for Internal and External LOBs
In all programmatic environments, database semantics differ between internal LOBs
and external LOBs as follows:

• Internal LOBs use copy semantics

With copy semantics, both the LOB locator and LOB value are logically copied
during insert, update, or assignment operations. This ensures that each table cell
or each variable containing a LOB, holds a unique LOB instance.

• External LOBs use reference semantics

With reference semantics, only the LOB locator is copied during insert operations.
Note that update operations do not apply to external LOBs because external LOBs
are read-only.

See Also:

External LOBs and the BFILE Data Type

Large Object Data Types
The database provides a set of large object data types as SQL data types where the
term LOB generally refers to the set.

In general, the descriptions given for the data types in this table and related sections
also apply to the corresponding data types provided for other programmatic
environments.

Table 1-1 describes each large object data type that the database supports and
describes the kind of data that uses it.

Chapter 1
Database Semantics for Internal and External LOBs

1-6

Table 1-1 Large Object Data Types

SQL Data Type Description

BLOB Binary Large Object

Stores any kind of data in binary format. Typically used for multimedia data
such as images, audio, and video.

Note:

Oracle Multimedia is deprecated in Oracle
Database Release 18c, and may be
desupported in a future release. Oracle
recommends that you stop using deprecated
features as soon as possible.

CLOB Character Large Object

Stores string data in the database character set format. Used for large
strings or documents that use the database character set exclusively.
Characters in the database character set are in a fixed width format.

NCLOB National Character Set Large Object

Stores string data in National Character Set format, typically large strings
or documents. Supports characters of varying width format.

BFILE External Binary File

A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFILEs can be accessed
from your application on a read-only basis. Use BFILEs to store static
data, such as image data, that is not manipulated in applications.

Any kind of data, that is, any operating system file, can be stored in a
BFILE. For example, you can store character data in a BFILE and then
load the BFILE data into a CLOB, specifying the character set upon
loading.

About Object Data Types and LOBs
In general, there is no difference in the use of a LOB instance in a LOB column or as a
member of an object data type. When used in this guide, the term LOB attribute
refers to a LOB instance that is a member of an object data type. Unless otherwise
specified, discussions that apply to LOB columns also apply to LOB attributes.

Storage and Creation of Other Data Types with LOBs
You can use LOBs to create other user-defined data types or store other data types as
LOBs.

These are examples of data types provided with the database that are stored or
created with LOB types.

Topics:

Chapter 1
About Object Data Types and LOBs

1-7

• VARRAYs Stored as LOBs

VARRAYs Stored as LOBs
An instance of type VARRAY in the database is stored as an array of LOBs when you
create a table in the following scenarios:

• If the VARRAY storage clause is not specified, and the declared size of varray data
is more than 4000 bytes: VARRAY varray_item STORE AS

• If the VARRAY column properties are specified using the STORE AS LOB clause:
VARRAY varray_item STORE AS LOB ...

BasicFiles and SecureFiles LOBs
BasicFiles LOB and SecureFiles LOB are the two storage types used with Oracle
Database 12c.

Certain advanced features can be applied to SecureFiles LOBs, including
compression and deduplication (part of the Advanced Compression Option), and
encryption (part of the Advanced Security Option).

SecureFiles LOBs can only be created in a tablespace managed with Automatic
Segment Space Management (ASSM).

SecureFiles is the default storage mechanism for LOBs starting with Oracle Database
12c, and Oracle strongly recommends SecureFiles for storing and managing LOBs,
rather then BasicFiles. BasicFiles will be deprecated in a future release.

See Also:

Using Oracle LOB Storage for a discussion of both storage types

Database File System (DBFS)
Database File System (DBFS) provides a file system interface to files that are stored in
an Oracle database.

Files stored in an Oracle database are usually stored as SecureFiles LOBs, and
pathnames, directories, and other filesystem information is stored in database tables.
SecureFiles LOBs is the default storage method for DBFS, but BasicFiles LOBs can
be used in some situations.

See Also:

What Is Database File System (DBFS)?

With DBFS, you can make references from SecureFiles LOB locators to files stored
outside the database. These references are called DBFS Links or Database File
System Links.

Chapter 1
BasicFiles and SecureFiles LOBs

1-8

See Also:

Database File System Links

Chapter 1
Database File System (DBFS)

1-9

2
Working with LOBs

Working with LOBs for application development requires that you understand LOB
semantics and various techniques used with LOBs.

Most of the discussions regarding persistent LOBs assume that you are dealing with
existing LOBs in tables. The task of creating tables with LOB columns is typically
performed by your database administrator.

See Also:

• Using Oracle LOB Storage for creating LOBs using the SecureFiles
paradigm

• LOB Storage with Applications for storage parameters used in creating
LOBs

Topics:

• LOB Column States

• Locking a Row Containing a LOB

• LOB Open and Close Operations

• LOB Locator and LOB Value

• LOB Locators and BFILE Locators

• LOB Access

• LOB Rules and Restrictions

LOB Column States
The techniques you use when accessing a cell in a LOB column differ depending on
the state of the given cell.

A cell in a LOB Column can be in one of the following states:

• NULL

The table cell is created, but the cell holds no locator or value.

• Empty

A LOB instance with a locator exists in the cell, but it has no value. The length of
the LOB is zero.

• Populated

A LOB instance with a locator and a value exists in the cell.

2-1

Locking a Row Containing a LOB
You can lock a row containing a LOB to prevent other database users from writing to
the LOB during a transaction.

• To lock the row, specify the FOR UPDATE clause when you select the row. While the
row is locked, other users cannot lock or update the LOB until you end your
transaction.

LOB Open and Close Operations
The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

You can open and close a persistent LOB instance of any type: BLOB, CLOB, NCLOB, or
BFILE. You open a LOB to achieve one or both of the following results:

• Open the LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform the
operation, you can then close the LOB.

• Open the LOB in read write/mode, for persistent BLOB, CLOB, or NCLOB instances
only

Opening a LOB in read/write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read/write mode is only useful if
there is an extensible index on the LOB column, and you do not want the database
to perform index maintenance every time you write to the LOB. This technique can
increase the performance of your application if you are doing several write
operations on the LOB while it is open.

If you open a LOB, then you must close the LOB at some point later in your session.
This is the only requirement for an open LOB. While a LOB instance is open, you can
perform as many operations as you want on the LOB—provided the operations are
allowed in the given mode.

See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for more
information about usage of these APIs

LOB Locator and LOB Value
You can use two different techniques to access and modify LOB values.

Topics:

• Using the Data Interface for LOBs

Chapter 2
Locking a Row Containing a LOB

2-2

• Use the LOB Locator to Access and Modify LOB Values

Using the Data Interface for LOBs
You can perform bind and define operations on CLOB and BLOB columns in C
applications using the data interface for LOBs in OCI.

Using the data interface enables you to insert or select out data in a LOB column
without using a LOB locator as follows:

• Use a bind variable associated with a LOB column to insert character data into a
CLOB, or RAW data into a BLOB.

• Use a define operation to define an output buffer in your application that holds
character data selected from a CLOB or RAW data selected from a BLOB.

See Also:

Data Interface for Persistent LOBs for more information on implicit
assignment of LOBs to other data types

Use the LOB Locator to Access and Modify LOB Values
You can use the LOB locator to access and modify LOB values.

A LOB locator, which is a reference to the location of the LOB value, can access the
value of a LOB instanced stored in the database. Database tables store only locators
in CLOB, BLOB, NCLOB and BFILE columns.

Note the following with respect to LOB locators and values:

• LOB locators are passed to various LOB APIs to access or manipulate a LOB
value.

• A LOB locator can be assigned to any LOB instance of the same type.

• LOB instances are characterized as temporary or persistent, but the locator is not.

LOB Locators and BFILE Locators
There are differences between the semantics of locators for the LOB types BLOB, CLOB,
and NCLOB, and the semantics of locators for the BFILE type:

• For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the LOB
value. Each LOB instance has its own distinct LOB locator and also a distinct copy
of the LOB value.

• For initialized BFILE columns, the row stores a locator to the external operating
system file that holds the value of the BFILE. Each BFILE instance in a given row
has its own distinct locator; however, two different rows can contain a BFILE
locator that points to the same operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row
of any initialized LOB column. Also, when you select a LOB from a table, the LOB
returned is always a temporary LOB.

Chapter 2
LOB Locators and BFILE Locators

2-3

Note:

When the term locator is used without an identifying prefix term, it refers to
both LOB locators and BFILE locators.

See Also:

LOBs Returned from SQL Functions for more information on locators for
temporary LOBs

Topics:

• Table for LOB Examples: The PM Schema print_media Table

• LOB Column Initialization

Table for LOB Examples: The PM Schema print_media Table
Many Oracle LOB examples use the print_media table of the Oracle Database
Sample Schema PM.

The print_media table is defined as:

CREATE TABLE print_media
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

See Also:

"Creating a Table Containing One or More LOB Columns" for information
about creating print_media and its associated tables and files

LOB Column Initialization
LOB instances that are NULL do not have a locator.

Before you can pass a LOB instance to any LOB API routine, the instance must
contain a locator. For example, you can select a NULL LOB from a row, but you cannot
pass the instance to the PL/SQL DBMS_LOB.READ procedure. You must initialize a LOB

Chapter 2
LOB Locators and BFILE Locators

2-4

instance, which provides it with a locator, to make it non-NULL. Then you can pass the
LOB instance.

Topics:

• Initializing a Persistent LOB Column

• Initializing BFILEs

Initializing a Persistent LOB Column
Before you can start writing data to a persistent LOB using supported programmatic
environment interfaces such as PL/SQL, OCI, Visual Basic, or Java, you must make
the LOB column/attribute non-NULL.

You can make a LOB column/attribute non-NULL by initializing the persistent LOB to
empty, using an INSERT/UPDATE statement with the function EMPTY_BLOB for BLOBs or
EMPTY_CLOB for CLOBs and NCLOBs.

Note:

You can use SQL to populate a LOB column with data even if it contains a
NULL value.

See Also:

• LOB Storage with Applications for more information on initializing LOB
columns

• "Programmatic Environments That Support LOBs" for all supported
interfaces

Running the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not raise an
exception. However, using a LOB locator that was set to empty to access or
manipulate the LOB value in any PL/SQL DBMS_LOB or OCI function raises an
exception.

Valid places where empty LOB locators may be used include the VALUES clause of an
INSERT statement and the SET clause of an UPDATE statement.

See Also:

• "Directory Objects" for details of CREATE DIRECTORY and BFILENAME
usage

• Oracle Database SQL Language Reference, CREATE DIRECTORY
statement

Chapter 2
LOB Locators and BFILE Locators

2-5

Note:

Character strings are inserted using the default character set for the
instance.

The INSERT statement in the next example uses the print_media table described in
"Table for LOB Examples: The PM Schema print_media Table" and does the following:

• Populates ad_sourcetext with the character string 'my Oracle'

• Sets ad_composite, ad_finaltext, and ad_fltextn to an empty value

• Sets ad_photo to NULL

• Initializes ad_graphic to point to the file my_picture located under the logical
directory my_directory_object

CREATE OR REPLACE DIRECTORY my_directory_object AS 'oracle/work/tklocal';
INSERT INTO print_media VALUES (1726, 1, EMPTY_BLOB(),
 'my Oracle', EMPTY_CLOB(), EMPTY_CLOB(),
 NULL, NULL, BFILENAME('my_directory_object', 'my_picture'), NULL);

Similarly, the LOB attributes for the ad_header column in print_media can be
initialized to NULL, empty, or a character/raw literal, which is shown in the following
statement:

INSERT INTO print_media (product_id, ad_id, ad_header)
 VALUES (1726, 1, adheader_typ('AD FOR ORACLE', sysdate,
 'Have Grid', EMPTY_BLOB()));

See Also:

• "Inserting a Row by Selecting a LOB From Another Table"

• "Inserting a LOB Value Into a Table"

• "Inserting a Row by Initializing a LOB Locator Bind Variable"

• "OCILobLocator Pointer Assignment" for details on LOB locator
semantics in OCI

Initializing BFILEs
Before you can access BFILE values using LOB APIs, the BFILE column or attribute
must be made non-NULL.

You can initialize the BFILE column to point to an external operating system file by
using the BFILENAME function.

See Also:

"About Accessing BFILEs" for more information on initializing BFILE columns

Chapter 2
LOB Locators and BFILE Locators

2-6

LOB Access
You can access a LOB instance with several techniques.

Topics:

• Accessing a LOB Using SQL

• Accessing a LOB Using the Data Interface

• Accessing a LOB Using the Locator Interface

Accessing a LOB Using SQL
You can access LOBs using SQL.

The support for columns that use LOB data types that is built into many SQL functions
enables you to use SQL semantics to access LOB columns. In most cases, you can
use the same SQL semantics on a LOB column that you would use on a VARCHAR2
column.

See Also:

For details on SQL semantics support for LOBs, see SQL Semantics and
LOBs

Accessing a LOB Using the Data Interface
You can access LOBs using the data interface.

You can select a LOB directly into CHAR or RAW buffers using LONG-to-LOB APIs in
OCI and PL/SQL interfaces. In the following PL/SQL example, ad_finaltext is
selected into a VARCHAR2 buffer final_ad.

DECLARE
 final_ad VARCHAR2(32767);
BEGIN
 SELECT ad_finaltext INTO final_ad FROM print_media
 WHERE product_id = 2056 and ad_id = 12001 ;
 /* PUT_LINE can only output up to 255 characters at a time */
 ...
 DBMS_OUTPUT.PUT_LINE(final_ad);
 /* more calls to read final_ad */
 ...
END;

See Also:

For more details on accessing LOBs using the data interface, see Data
Interface for Persistent LOBs

Chapter 2
LOB Access

2-7

Accessing a LOB Using the Locator Interface
You can access and manipulate a LOB instance by passing the LOB locator to the
LOB APIs supplied with the database.

To access the LOB instance, use the extensive set of LOB APIs provided with each
supported programmatic environment. In OCI, a LOB locator is mapped to a locator
pointer, which is used to access the LOB value.

Note:

In all environments, including OCI, the LOB APIs operate on the LOB value
implicitly—there is no requirement to dereference the LOB locator.

See Also:

• Overview of Supplied LOB APIs

• "OCILobLocator Pointer Assignment" for details on LOB locator
semantics in OCI

LOB Rules and Restrictions
This section provides details on LOB rules and restrictions.

Topics:

• Rules for LOB Columns

• Restrictions for LOB Operations

Rules for LOB Columns
LOB columns are subject to the following rules and restrictions:

• You cannot specify a LOB as a primary key column.

• Oracle Database has limited support for remote LOBs and ORA-22992 errors can
occur when remote LOBs are used in ways that are not supported.

• Clusters cannot contain LOBs, either as key or nonkey columns.

• The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

– VARRAY of any LOB type

– VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

– ANYDATA of any LOB type

– ANYDATA of any type containing a LOB

Chapter 2
LOB Rules and Restrictions

2-8

• You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY
clause of a query, or an aggregate function.

• You cannot specify a LOB column in a SELECT... DISTINCT or SELECT... UNIQUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DISTINCT statement, a query that uses the UNION, or a MINUS
set operator if the object type of the column has a MAP or ORDER function defined on
it.

• The first (INITIAL) extent of a LOB segment must contain at least three database
blocks.

• The minimum extent size is 14 blocks. For an 8K block size (the default), this is
equivalent to 112K.

• When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in
the UPDATE OF clause.

• You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In addition,
Oracle Text lets you define an index on a CLOB column.

• In an INSERT... AS SELECT operation, you can bind up to 4000 bytes of data to LOB
columns and attributes. There is no length restriction when you doINSERT... AS
SELECT from one table to another table using SQL with no bind variables.

• If a table has both LONG and LOB columns, you cannot bind more than 4000 bytes
of data to both the LONG and LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONG or the LOB column.

Note:

For a table on which you have defined an AFTER UPDATE DML trigger, if you
use OCI functions or the DBMS_LOB package to change the value of a LOB
column or the LOB attribute of an object type column, the database does not
fire the DML trigger.

See Also:

• Using Oracle LOB Storage for SecureFiles capabilities (encryption,
compression, and deduplication)

• Working with Remote LOB Columns for more information about Remote
LOBs.

• Restrictions for LOBs in Partitioned Index-Organized Tables

• Migrating Columns from LONGs to LOBs for migration limitations on
clustered tables, domain indexes, and function-based indexes

• Unsupported Use of LOBs in SQL for restrictions on SQL semantics

• Restriction on First Extent of a LOB Segment

• The Data Interface Used with Remote LOBs

Chapter 2
LOB Rules and Restrictions

2-9

Restrictions for LOB Operations
LOB operations have certain restrictions.

General LOB restrictions include the following:

• In SQL Loader, a field read from a LOB cannot be used as an argument to a
clause.

• Case-insensitive searches on CLOB columns often do not succeed. For example, to
do a case-insensitive search on a CLOB column:

ALTER SESSION SET NLS_COMP=LINGUISTIC;
ALTER SESSION SET NLS_SORT=BINARY_CI;
SELECT * FROM ci_test WHERE LOWER(clob_col) LIKE 'aa%';

The select fails without the LOWER function. You can do case-insensitive searches
with Oracle Text or DBMS_LOB.INSTR().

• Session migration is not supported for BFILEs in shared server (multithreaded
server) mode. This implies that operations on open BFILEs can persist beyond the
end of a call to a shared server. In shared server sessions, BFILE operations are
bound to one shared server, they cannot migrate from one server to another.

• Symbolic links are not allowed in the directory paths or file names when opening
BFILEs. The entire directory path and filename is checked and the following error
is returned if any symbolic link is found:

ORA-22288: file or LOB operation FILEOPEN failed soft link in path

See Also:

• Database Utilities for Loading Data into LOBs

• SQL Semantics and LOBs

Chapter 2
LOB Rules and Restrictions

2-10

3
Using Oracle LOB Storage

Oracle LOB storage has two types, SecureFiles LOB storage and BasicFiles LOB
storage, which are used with different types of tablespaces.

You design, create, and modify tables with LOB column types.

Topics:

• LOB Storage

• CREATE TABLE with LOB Storage

• ALTER TABLE with LOB Storage

• Initialization_ Compatibility_ and Upgrading

• Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

• PL/SQL Packages for LOBs and DBFS

LOB Storage
Earlier Oracle database releases supported only one type of LOB storage. In Oracle
Database 11g, SecureFiles LOB storage was introduced; the original storage type was
given the name BasicFiles LOB storage and became the default.

LOBs created using BasicFiles LOB storage became known as BasicFiles LOBs and
LOBs created using SecureFiles LOB storage were named SecureFiles LOBs. The
CREATE TABLE statement added new keywords to indicate the differences: BASICFILE
specifies BasicFiles LOB storage and SECUREFILE specifies SecureFiles LOB storage.

Beginning with Oracle Database 12c, SecureFiles LOB storage became the default in
the CREATE TABLE statement. If no storage type is explicitly specified, new LOB
columns use SecureFiles LOB storage.

The term LOB can represent LOBs of either storage type unless the storage type is
explicitly indicated, by name or by reference to archiving or linking (can only apply to
the SecureFiles LOB storage type).

See Also:

Initialization, Compatibility, and Upgrading for more information about
Initialization and compatibility.

The following sections discuss the two storage types in detail:

• BasicFiles LOB Storage

• SecureFiles LOB Storage

3-1

BasicFiles LOB Storage
You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

SecureFiles LOB Storage
SecureFiles LOBs can only be created in tablespaces managed with Automatic
Segment Space Management (ASSM), unlike BasicFiles LOB storage.

SecureFiles LOB storage is designed to provide much better performance and
scalability compared to BasicFiles LOBs and to meet or exceed the performance
capabilities of traditional network file systems.

SecureFiles LOB storage supports three features that are not available with the
BasicFiles LOB storage option: compression, deduplication, and encryption.

Oracle recommends that you enable compression, deduplication, and encryption
through the CREATE TABLE statement. If you enable these features through the
ALTER TABLE statement, all SecureFiles LOB data in the table is read, modified, and
written; this can cause the database to lock the table during a potentially lengthy
operation, though there are online capabilities in the ALTER TABLE statement which can
help you avoid this issue.

Topics:

• About Advanced LOB Compression

• About Advanced LOB Deduplication

• About SecureFiles Encryption

About Advanced LOB Compression
Advanced LOB Compression transparently analyzes and compresses SecureFiles
LOB data to save disk space and improve performance.

License Requirement: You must have a license for the Oracle Advanced
Compression Option to implement Advanced LOB Compression.

See Also:

• "CREATE TABLE with Advanced LOB Compression"

• "ALTER TABLE with Advanced LOB Compression"

About Advanced LOB Deduplication
Advanced LOB Deduplication enables Oracle Database to automatically detect
duplicate LOB data within a LOB column or partition, and conserve space by storing
only one copy of the data.

Chapter 3
LOB Storage

3-2

License Requirement: You must have a license for the Oracle Advanced
Compression Option to implement Advanced LOB Deduplication.

Note also that Oracle Streams does not support SecureFiles LOBs that are
deduplicated.

See Also:

• "CREATE TABLE with Advanced LOB Deduplication"

• "ALTER TABLE with Advanced LOB Deduplication"

About SecureFiles Encryption
SecureFiles Encryption introduces a new encryption facility for LOBs. The data is
encrypted using Transparent Data Encryption (TDE), which allows the data to be
stored securely, and still allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security
Option to implement SecureFiles Encryption.

See Also:

• "CREATE TABLE with SecureFiles Encryption"

• "ALTER TABLE with SecureFiles Encryption"

CREATE TABLE with LOB Storage
The CREATE TABLE statement works with LOB storage using parameters that are
specific to SecureFiles or BasicFiles LOB storage, or both.

Example 3-1 provides the syntax for CREATE TABLE in Backus Naur (BNF) notation, with
LOB-specific parameters in bold.

The SHRINK option is not supported for SecureFiles LOBs.

See Also:

• CREATE TABLE LOB Storage Parameters for parameter descriptions
and the CREATE TABLE statement

• Oracle Database SQL Language Reference

Example 3-1 BNF for CREATE TABLE

CREATE [GLOBAL TEMPORARY] TABLE
 [schema.]table OF

Chapter 3
CREATE TABLE with LOB Storage

3-3

 [schema.]object_type
 [(relational_properties)]
 [ON COMMIT { DELETE | PRESERVE } ROWS]
 [OID_clause]
 [OID_index_clause]
 [physical_properties]
 [table_properties] ;
<relational_properties> ::=
{ column_definition
| { out_of_line_constraint
 | out_of_line_ref_constraint
 | supplemental_logging_props
 }
}
 [, { column_definition
 | { out_of_line_constraint
 | out_of_line_ref_constraint
 | supplemental_logging_props
 }
]...
 <column_definition> ::=
column data_type [SORT]
 [DEFAULT expr]
 [ENCRYPT encryption_spec]
 [(inline_constraint [inline_constraint] ...)
 | inline_ref_constraint
]
<data_type> ::=
{ Oracle_built_in_datatypes
| ANSI_supported_datatypes
| user_defined_types
| Oracle_supplied_types
}

<Oracle_built_in_datatypes> ::=
{ character_datatypes
| number_datatypes
| long_and_raw_datatypes
| datetime_datatypes
| large_object_datatypes
| rowid_datatypes
}
<large_object_datatypes> ::=
{ BLOB | CLOB | NCLOB| BFILE }
<table_properties> ::=
 [column_properties]
 [table_partitioning_clauses]
 [CACHE | NOCACHE]
 [parallel_clause]
 [ROWDEPENDENCIES | NOROWDEPENDENCIES]
 [enable_disable_clause]
 [enable_disable_clause]...
 [row_movement_clause]
 [AS subquery]
<column_properties> ::=

Chapter 3
CREATE TABLE with LOB Storage

3-4

 { object_type_col_properties
 | nested_table_col_properties
 | { varray_col_properties | LOB_storage_clause }
 [(LOB_partition_storage
 [, LOB_partition_storage]...
)
]
 | XMLType_column_properties
 }
 [{ object_type_col_properties
 | nested_table_col_properties
 | { varray_col_properties | LOB_storage_clause }
 [(LOB_partition_storage
 [, LOB_partition_storage]...
)
]
 | XMLType_column_properties
 }
]...
<LOB_partition_storage> ::=
 PARTITION partition
 { LOB_storage_clause | varray_col_properties }
 [LOB_storage_clause | varray_col_properties]...
 [(SUBPARTITION subpartition
 { LOB_storage_clause | varray_col_properties }
 [LOB_storage_clause
 | varray_col_properties
]...
)
]
<LOB_storage_clause> ::=
 LOB
 { (LOB_item [, LOB_item]...)
 STORE AS [SECUREFILE | BASICFILE] (LOB_storage_parameters)
 | (LOB_item)
 STORE AS [SECUREFILE | BASICFILE]
 { LOB_segname (LOB_storage_parameters)
 | LOB_segname
 | (LOB_storage_parameters)
 }
 }
<LOB_storage_parameters> ::=
 { TABLESPACE tablespace
 | { LOB_parameters [storage_clause]
 }
 | storage_clause
 }
 [TABLESPACE tablespace
 | { LOB_parameters [storage_clause]
 }
]...
<LOB_parameters> ::=
 [{ ENABLE | DISABLE } STORAGE IN ROW
 | CHUNK integer
 | PCTVERSION integer

Chapter 3
CREATE TABLE with LOB Storage

3-5

 | RETENTION [{ MAX | MIN integer | AUTO | NONE }]
 | FREEPOOLS integer
 | LOB_deduplicate_clause
 | LOB_compression_clause
 | LOB_encryption_clause
 | { CACHE | NOCACHE | CACHE READS } [logging_clause] } }
]
<logging_clause> ::=
 { LOGGING | NOLOGGING | FILESYSTEM_LIKE_LOGGING }
<storage_clause> ::=
 STORAGE
 ({ INITIAL integer [K | M]
 | NEXT integer [K | M]
 | MINEXTENTS integer
 | MAXEXTENTS { integer | UNLIMITED }
 | PCTINCREASE integer
 | FREELISTS integer
 | FREELIST GROUPS integer
 | OPTIMAL [integer [K | M]
 | NULL
]
 | BUFFER_POOL { KEEP | RECYCLE | DEFAULT }
 }
 [INITIAL integer [K | M]
 | NEXT integer [K | M]
 | MINEXTENTS integer
 | MAXEXTENTS { integer | UNLIMITED }
 | MAXSIZE { { integer { K | M | G | T | P } } | UNLIMITED }
 | PCTINCREASE integer
 | FREELISTS integer
 | FREELIST GROUPS integer
 | OPTIMAL [integer [K | M]
 | NULL
]
 | BUFFER_POOL { KEEP | RECYCLE | DEFAULT }
]...
)
<LOB_deduplicate_clause> ::=
 { DEDUPLICATE
 | KEEP_DUPLICATES
 }
<LOB_compression_clause> ::=
 { COMPRESS [HIGH | MEDIUM | LOW]
 | NOCOMPRESS
 }
<LOB_encryption_clause> ::=
 { ENCRYPT [USING 'encrypt_algorithm']
 [IDENTIFIED BY password]
 | DECRYPT
 }
<XMLType_column_properties> ::=
XMLTYPE [COLUMN] column
 [XMLType_storage]
 [XMLSchema_spec]
<XMLType_storage> ::=

Chapter 3
CREATE TABLE with LOB Storage

3-6

 STORE AS
 { OBJECT RELATIONAL
 | [SECUREFILE | BASICFILE] { CLOB | BINARY XML }
 [{ LOB_segname [(LOB_parameters)]
 | LOB_parameters
 }
]
<varray_col_properties> ::=

 VARRAY varray_item
 { [substitutable_column_clause]
 STORE AS [SECUREFILE | BASICFILE] LOB
 { [LOB_segname] (LOB_parameters)
 | LOB_segname
 }
 | substitutable_column_clause
 }

CREATE TABLE LOB Storage Parameters
The CREATE TABLE statement uses parameters relating to LOB storage, and more
specifically to either BasicFiles LOB or SecureFiles LOB.

Table 3-1 summarizes the parameters of the CREATE TABLE statement that relate to
LOB storage, where necessary noting whether a parameter is specific to BasicFiles
LOB or SecureFiles LOB storage.

Table 3-1 Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

BASICFILE Specifies BasicFiles LOB storage, the original architecture for
LOBs.

If you set the compatibility mode to Oracle Database 11g,
then BASICFILE functionality is enabled by default and
specified for completeness.

Starting with Oracle Database 12c, you must explicitly specify
the parameter BASICFILE to use the BasicFiles LOB storage
type. Otherwise, the CREATE TABLE statement uses
SecureFiles LOB, the current default.

For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

See Also:

Initialization, Compatibility, and
Upgrading

Chapter 3
CREATE TABLE with LOB Storage

3-7

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

SECUREFILE Specifies SecureFiles LOBs storage.

Starting with Oracle Database 12c, the SecureFiles LOB
storage type, specified by the parameter SECUREFILE, is the
default.

A SecureFiles LOB can only be created in a tablespace
managed with Automatic Segment Space Management
(ASSM).

CHUNK For BasicFiles LOBs, specifies the chunk size when creating
a table that stores LOBs.

CHUNK is one or more Oracle blocks and corresponds to the
data size used by Oracle Database when accessing or
modifying the LOB.

For SecureFiles LOBs, it is an advisory size provided for
backward compatibility.

RETENTION Configures the LOB column to store old versions of LOB data
in a specified manner.

In Oracle Database Release 12c, this parameter specifies the
retention policy.

RETENTION has these possible values:

• MAX specifies that the system keep old versions of LOB
data blocks until the space used by the segment has
reached the size specified in the MAXSIZE parameter. If
MAXSIZE is not specified, MAX behaves like AUTO.

• MIN specifies that the system keep old versions of LOB
data blocks for the specified number of seconds.

• NONE specifies that there is no retention period and
space can be reused in any way deemed necessary.

• AUTO specifies that the system manage the space as
efficiently as possible weighing both time and space
needs.

See Also:

RETENTION Parameter for
BasicFiles LOBs for more
information about RETENTION
parameter used with BasicFiles
LOBs.

MAXSIZE Specifies the upper limit of storage space that a LOB may
use.

If this amount of space is consumed, new LOB data blocks
are taken from the pool of old versions of LOB data blocks as
needed, regardless of time requirements.

Chapter 3
CREATE TABLE with LOB Storage

3-8

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

FREEPOOLS Specifies the number of FREELIST groups for BasicFiles
LOBs, if the database is in automatic undo mode. Under
Release 12c compatibility, this parameter is ignored when
SecureFiles LOBs are created.

Chapter 3
CREATE TABLE with LOB Storage

3-9

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

LOGGING, NOLOGGING, or
FILESYSTEM_LIKE_LOGGING

Specifies logging options:

• LOGGING specifies logging the creation of the LOB and
subsequent inserts into the LOB, in the redo log file.
LOGGING is the default.

• NOLOGGING specifies no logging.
• FILESYSTEM_LIKE_LOGGING specifies that the system

only logs the metadata. This is similar to metadata
journaling of file systems, which reduces mean time to
recovery from failures. FILESYSTEM_LIKE_LOGGING
ensures that data is completely recoverable (an instance
recovery) after a server failure.

This option is invalid for BasicFiles LOBs.
For SecureFiles LOBs, the following applies:

• The NOLOGGING setting is converted internally to
FILESYSTEM_LIKE_LOGGING.

• The LOGGING setting is similar to the data journaling of
file systems.

• Both the LOGGING and FILESYSTEM_LIKE_LOGGING
settings provide a complete transactional file system.

For a non-partitioned object, the value specified for this
clause is the actual physical attribute of the segment
associated with the object.

For partitioned objects, the value specified for this clause is
the default physical attribute of the segments associated with
all partitions specified in the CREATE statement (and in
subsequent ALTER ... ADD PARTITION statements), unless
you specify the logging attribute in the PARTITION
description.

CAUTION:
For LOB segments with NOLOGGING or
FILESYSTEM_LIKE_LOGGING settings, it is possible that data
can change on the disk during a backup operation. This
results in read inconsistency. To avoid this situation, ensure
that changes to LOB segments are saved in the redo log file
by setting LOGGING for LOB storage.

NOLOGGING and FILESYSTEM_LIKE_LOGGING SecureFiles
are recoverable after an instance failure, but not after a
media failure. LOGGING SecureFiles are recoverable after
both instance and media failures.

See Also:

• Oracle Database Backup
and Recovery User’s Guide
for a discussion of data
protection, media failure,
and instance failure.

Chapter 3
CREATE TABLE with LOB Storage

3-10

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description

• LOGGING / NOLOGGING
Parameter for BasicFiles
LOBs

• Ensuring Read
Consistency

FREELISTS or FREELIST
GROUPS

Specifies the number of process freelists or freelist groups,
respectively, allocated to the segment; NULL for partitioned
tables. Under Release 12c compatibility, these parameters
are ignored when SecureFiles LOBs are created.

PCTVERSION Specifies the percentage of used BasicFiles LOB data space
that may be occupied by old versions of the LOB data pages.

Under Release 12c compatibility, this parameter is ignored
when SecureFiles LOBs are created.

COMPRESS or NOCOMPRESS The COMPRESS option turns on Advanced LOB Compression,
and NOCOMPRESS turns it off.

Note that setting table or index compression does not affect
Advanced LOB Compression.

DEDUPLICATE or
KEEP_DUPLICATES

The DEDUPLICATE option enables Advanced LOB
Deduplication; it specifies that SecureFiles LOB data that is
identical in two or more rows in a LOB column, partition or
subpartition must share the same data blocks. The database
combines SecureFiles LOBs with identical content into a
single copy, reducing storage and simplifying storage
management. The opposite of this option is
KEEP_DUPLICATES.

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and
encrypts all SecureFiles LOB data using Oracle Transparent
Data Encryption (TDE). The DECRYPT options turns off
SecureFiles Encryption.

CREATE TABLE and SecureFiles LOB Features
Note usage notes and examples for SecureFiles LOBs used with theCREATE TABLE.

This section provides usage notes and examples for features specific to SecureFiles
LOBs used with CREATE TABLE.

Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
Example 3-1.

Chapter 3
CREATE TABLE with LOB Storage

3-11

See Also:

CREATE TABLE LOB Storage Parameters for more information about
parameters

Topics:

• CREATE TABLE with Advanced LOB Compression

• CREATE TABLE with Advanced LOB Deduplication

• CREATE TABLE with SecureFiles Encryption

CREATE TABLE with Advanced LOB Compression
You can use Advanced LOB Compression with the CREATE TABLE statement under
certain circumstances.

Topics:

• Usage Notes for Advanced LOB Compression

• Examples of CREATE TABLE and Advanced LOB Compression

Usage Notes for Advanced LOB Compression
Consider these issues when using the CREATE TABLE statement and Advanced LOB
Compression.

• Advanced LOB Compression is performed on the server and enables random
reads and writes to LOB data. Compression utilities on the client, like
utl_compress, cannot provide random access.

• Advanced LOB Compression does not enable table or index compression.
Conversely, table and index compression do not enable Advanced LOB
Compression.

• The LOW, MEDIUM, and HIGH options provide varying degrees of compression. The
higher the compression, the higher the latency incurred. The HIGH setting incurs
more work, but compresses the data better. The default is MEDIUM.

The LOW compression option uses an extremely lightweight compression algorithm
that removes the majority of the CPU cost that is typical with file compression.
Compressed SecureFiles LOBs at the LOW level provide a very efficient choice for
SecureFiles LOB storage. SecureFiles LOBs compressed at LOW generally
consume less CPU time and less storage than BasicFiles LOBs, and typically help
the application run faster because of a reduction in disk I/O.

• Compression can be specified at the partition level. The CREATE TABLE
lob_storage_clause enables specification of compression for partitioned tables
on a per-partition basis.

• The DBMS_LOB.SETOPTIONS procedure can enable and disable compression on
individual SecureFiles LOBs.

Chapter 3
CREATE TABLE with LOB Storage

3-12

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_LOB.SETOPTIONS procedure

Examples of CREATE TABLE and Advanced LOB Compression
These examples demonstrate how to issue CREATE TABLE statements for specific
compression scenarios.

Example 3-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE(
 COMPRESS LOW
 CACHE
 NOLOGGING
);

Example 3-3 Creating a SecureFiles LOB Column with MEDIUM (default)
Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 COMPRESS
 CACHE
 NOLOGGING
);

Example 3-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 COMPRESS HIGH
 CACHE
);

Example 3-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 NOCOMPRESS
 CACHE
);

Example 3-6 Creating a SecureFiles LOB Column with Compression on One
Partition

CREATE TABLE t1 (REGION VARCHAR2(20), a BLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE
)
 PARTITION BY LIST (REGION) (
 PARTITION p1 VALUES ('x', 'y')
 LOB(a) STORE AS SECUREFILE (
 COMPRESS
),

Chapter 3
CREATE TABLE with LOB Storage

3-13

 PARTITION p2 VALUES (DEFAULT)
);

CREATE TABLE with Advanced LOB Deduplication
You can use Advanced LOB Deduplication with the CREATE TABLE statement.

Topics:

• Usage Notes for Advanced LOB Deduplication

• Examples of CREATE TABLE and Advanced LOB Deduplication

Usage Notes for Advanced LOB Deduplication
Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

• Identical LOBs are good candidates for deduplication. Copy operations can avoid
data duplication by enabling deduplication.

• Duplicate detection happens within a LOB segment. Duplicate detection does not
span partitions or subpartitions for partitioned and subpartitioned LOB columns.

• Deduplication can be specified at a partition level. The CREATE TABLE
lob_storage_clause enables specification for partitioned tables on a per-partition
basis.

• The DBMS_LOB.SETOPTIONS procedure can enable or disable deduplication on
individual LOBs.

Examples of CREATE TABLE and Advanced LOB Deduplication
These examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios.

Example 3-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 DEDUPLICATE
 CACHE
);

Example 3-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 KEEP_DUPLICATES
 CACHE
);

Example 3-9 Creating a SecureFiles LOB Column with Deduplication on One
Partition

CREATE TABLE t1 (REGION VARCHAR2(20), a BLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE
)
PARTITION BY LIST (REGION) (
 PARTITION p1 VALUES ('x', 'y')
 LOB(a) STORE AS SECUREFILE (

Chapter 3
CREATE TABLE with LOB Storage

3-14

 DEDUPLICATE
),
 PARTITION p2 VALUES (DEFAULT)
);

Example 3-10 Creating a SecureFiles LOB column with Deduplication Disabled
on One Partition

CREATE TABLE t1 (REGION VARCHAR2(20), ID NUMBER, a BLOB)
 LOB(a) STORE AS SECUREFILE (
 DEDUPLICATE
 CACHE
)
PARTITION BY RANGE (REGION)
 SUBPARTITION BY HASH(ID) SUBPARTITIONS 2 (
 PARTITION p1 VALUES LESS THAN (51)
 lob(a) STORE AS a_t2_p1
 (SUBPARTITION t2_p1_s1 lob(a) STORE AS a_t2_p1_s1,
 SUBPARTITION t2_p1_s2 lob(a) STORE AS a_t2_p1_s2),
 PARTITION p2 VALUES LESS THAN (MAXVALUE)
 lob(a) STORE AS a_t2_p2 (KEEP_DUPLICATES)
 (SUBPARTITION t2_p2_s1 lob(a) STORE AS a_t2_p2_s1,
 SUBPARTITION t2_p2_s2 lob(a) STORE AS a_t2_p2_s2)
);

CREATE TABLE with SecureFiles Encryption
You can use SecureFiles Encryption with the CREATE TABLE statement.

Topics:

• Usage Notes for SecureFiles Encryption

• Examples of CREATE TABLE and SecureFiles Encryption

Usage Notes for SecureFiles Encryption
Consider these issues when using CREATE TABLE and SecureFiles Encryptions

• Transparent Data Encryption (TDE) supports encryption of LOB data types.

• Encryption is performed at the block level.

• The encrypt_algorithm indicates the name of the encryption algorithm. Valid
algorithms are: AES192 (default), 3DES168, AES128, and AES256.

• The column encryption key is derived from PASSWORD, if specified.

• The default for LOB encryption is SALT. NO SALT is not supported.

• All LOBs in the LOB column are encrypted.

• DECRYPT keeps the LOBs in clear text.

• LOBs can be encrypted only on a per-column basis, similar to TDE. All partitions
within a LOB column are encrypted.

• Key management controls the ability to encrypt or decrypt.

• TDE is not supported by the traditional import and export utilities or by
transportable-tablespace-based export. Use the Data Pump expdb and impdb
utilities with encrypted columns instead.

Chapter 3
CREATE TABLE with LOB Storage

3-15

See Also:

"Oracle Database Advanced Security Guide for information about using
the ADMINISTER KEY MANAGEMENT statement to create TDE keystores

Examples of CREATE TABLE and SecureFiles Encryption
These examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios.

Example 3-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE t1 (a CLOB ENCRYPT USING 'AES128')
 LOB(a) STORE AS SECUREFILE (
 CACHE
);

Example 3-12 Creating a SecureFiles LOB column with encryption for all
partitions

CREATE TABLE t1 (REGION VARCHAR2(20), a BLOB)
 LOB(a) STORE AS SECUREFILE (
 ENCRYPT USING 'AES128'
 NOCACHE
 FILESYSTEM_LIKE_LOGGING
)
PARTITION BY LIST (REGION) (
PARTITION p1 VALUES ('x', 'y'),
PARTITION p2 VALUES (DEFAULT)
);

Example 3-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE t1 (a CLOB ENCRYPT IDENTIFIED BY foo)
 LOB(a) STORE AS SECUREFILE (
 CACHE
);

The following example has the same result because the encryption option can be set
in the LOB_deduplicate_clause section of the statement:

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE
 ENCRYPT
 IDENTIFIED BY foo
);

Example 3-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE t1 (a CLOB)
 LOB(a) STORE AS SECUREFILE (
 CACHE DECRYPT
);

Chapter 3
CREATE TABLE with LOB Storage

3-16

ALTER TABLE with LOB Storage
You can modify LOB storage with an ALTER TABLE statement and specific LOB-related
parameters.

Topics:

• About ALTER TABLE and LOB Storage

• BNF for the ALTER TABLE Statement

• ALTER TABLE LOB Storage Parameters

• ALTER TABLE SecureFiles LOB Features

About ALTER TABLE and LOB Storage
You can use ALTER TABLE to enable compression, deduplication, or encryption features
for a LOB column.

The ALTER TABLE statement supports online operations and Oracle Database supports
parallel operations on SecureFiles LOBs columns, making this a resource-efficient
approach.

As an alternative to ALTER TABLE, you can use online redefinition to enable one or
more of these features. As with ALTER TABLE, online redefinition of SecureFiles LOB
columns can be executed in parallel.

Note that the SHRINK option is not supported for SecureFiles LOBs.

See Also:

• Oracle Database SQL Language Reference for more information about
ALTER TABLE statement

• Migrating Columns from BasicFiles LOBs to SecureFiles LOBs for more
information about online redefinition

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_REDEFINITION package

BNF for the ALTER TABLE Statement
This Backus Naur (BNF) notation provides the syntax for ALTER TABLE with LOB-
specific parameters in bold.

See Also:

• CREATE TABLE LOB Storage Parameters for parameter descriptions

Chapter 3
ALTER TABLE with LOB Storage

3-17

• Oracle Database SQL Language Reference for more information about ALTER
TABLE statement

ALTER TABLE [schema.]table
[alter_table_properties
| column_clauses
| constraint_clauses
| alter_table_partitioning
| alter_external_table_clauses
| move_table_clause
]
[enable_disable_clause
| { ENABLE | DISABLE }
{ TABLE LOCK | ALL TRIGGERS }
[enable_disable_clause
| { ENABLE | DISABLE }
{ TABLE LOCK | ALL TRIGGERS }
]...
] ;
<column_clauses> ::=
{ { add_column_clause
| modify_column_clause
| drop_column_clause
}
[add_column_clause
| modify_column_clause
| drop_column_clause
]...
| rename_column_clause
| modify_collection_retrieval
[modify_collection_retrieval]...
| modify_LOB_storage_clause
[modify_LOB_storage_clause] ...
| alter_varray_col_properties
[alter_varray_col_properties]
}
<modify_LOB_storage_clause> ::=
MODIFY LOB (LOB_item) (modify_LOB_parameters)
<modify_LOB_parameters> ::=
{ storage_clause
| PCTVERSION integer
| FREEPOOLS integer
| REBUILD FREEPOOLS
| LOB_retention_clause
| LOB_deduplicate_clause
| LOB_compression_clause
| { ENCRYPT encryption_spec | DECRYPT }
| { CACHE
| { NOCACHE | CACHE READS } [logging_clause]
}
| allocate_extent_clause
| shrink_clause
| deallocate_unused_clause
} ...

Chapter 3
ALTER TABLE with LOB Storage

3-18

ALTER TABLE LOB Storage Parameters
You must use specific parameters of the ALTER TABLE statement that relate to LOB
storage.

Parameters may be specific to BasicFiles LOB or SecureFiles LOB storage, as
indicated.

Table 3-2 Parameters of ALTER TABLE Statement Related to LOBs

Parameter Description

RETENTION Configures the LOB column to store old versions of LOB data
in a specified manner. Altering RETENTION only affects space
created after the ALTER TABLE statement runs.

COMPRESS or NOCOMPRESS Enables or disables Advanced LOB Compression. All LOBs
in the LOB segment are altered with the new setting.

DEDUPLICATE or
KEEP_DUPLICATES

Enables or disables Advanced LOB Deduplication.

The option DEDUPLICATE enables you to specify that LOB
data that is identical in two or more rows in a LOB column
share the same data blocks. The database combines LOBs
with identical content into a single copy, reducing storage and
simplifying storage management. The opposite of this option
is KEEP_DUPLICATES.

ENCRYPT or DECRYPT Enables or disables SecureFiles LOB encryption. Alters all
LOBs in the LOB segment with the new setting. A LOB
segment can be only altered to enable or disable LOB
encryption. That is, ALTER cannot be used to update the
encryption algorithm or the encryption key. Update the
encryption algorithm or encryption key using the ALTER
TABLE REKEY syntax.

ALTER TABLE SecureFiles LOB Features
Certain features specific to SecureFiles LOBs work with the ALTER TABLEstatement.

These SecureFiles LOBs features work with ALTER TABLE as described in the usage
notes and examples.

Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
"BNF for the ALTER TABLE Statement".

Parameters are described in "ALTER TABLE LOB Storage Parameters".

Topics:

• ALTER TABLE with Advanced LOB Compression

• ALTER TABLE with Advanced LOB Deduplication

Chapter 3
ALTER TABLE with LOB Storage

3-19

• ALTER TABLE with SecureFiles Encryption

ALTER TABLE with Advanced LOB Compression
Advanced LOB Compression works with the ALTER TABLE statement.

Topics:

• Usage Notes for Advanced LOB Compression

• Examples of ALTER TABLE and Advanced LOB Compression

Usage Notes for Advanced LOB Compression
Consider these issues when using ALTER TABLE and Advanced LOB Compression.

• This syntax alters the compression mode of the LOB column.

• The DBMS_LOB.SETOPTIONS procedure can enable or disable compression on
individual LOBs.

• Compression may be specified either at the table level or the partition level.

• The LOW, MEDIUM, and HIGH options provide varying degrees of compression. The
higher the compression, the higher the latency incurred. The HIGH setting incurs
more work, but compresses the data better. The default is MEDIUM.

See Also:

CREATE TABLE with Advanced LOB Compression

Examples of ALTER TABLE and Advanced LOB Compression
These examples demonstrate how to issue ALTER TABLE statements for specific
compression scenarios.

Example 3-15 Altering a SecureFiles LOB Column to Enable LOW
Compression

ALTER TABLE t1 MODIFY
 LOB(a) (
 COMPRESS LOW
);

Example 3-16 Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE t1 MODIFY
 LOB(a) (
 NOCOMPRESS
);

Example 3-17 Altering a SecureFiles LOB Column to Enable HIGH
Compression

ALTER TABLE t1 MODIFY
 LOB(a) (
 COMPRESS HIGH
);

Chapter 3
ALTER TABLE with LOB Storage

3-20

Example 3-18 Altering a SecureFiles LOB Column to Enable Compression on
One partition

ALTER TABLE t1 MODIFY PARTITION p1
 LOB(a) (
 COMPRESS HIGH
);

ALTER TABLE with Advanced LOB Deduplication
Advanced LOB Deduplication works with the ALTER TABLE statement.

Topics:

• Usage Notes for Advanced LOB Deduplication

• Examples of ALTER TABLE and Advanced LOB Deduplication

Usage Notes for Advanced LOB Deduplication
Consider these issues when using ALTER TABLE and Advanced LOB Deduplication.

• The ALTER TABLE syntax can enable or disable LOB-level deduplication.

• This syntax alters the deduplication mode of the LOB column.

• The DBMS_LOB.SETOPTIONS procedure can enable or disable deduplication on
individual LOBs.

• Deduplication can be specified at a table level or partition level. Deduplication
does not span across partitioned LOBs.

Examples of ALTER TABLE and Advanced LOB Deduplication
These examples demonstrate how to issue ALTER TABLE statements for specific
deduplication scenarios.

Example 3-19 Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE t1 MODIFY
 LOB(a) (
 KEEP_DUPLICATES
);

Example 3-20 Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE t1 MODIFY
 LOB(a) (
 DEDUPLICATE
);

Example 3-21 Altering a SecureFiles LOB Column to Enable Deduplication on
One Partition

ALTER TABLE t1 MODIFY PARTITION p1
 LOB(a) (
 DEDUPLICATE
);

Chapter 3
ALTER TABLE with LOB Storage

3-21

ALTER TABLE with SecureFiles Encryption
SecureFiles Encryption works with the ALTER TABLE statement.

Topics:

• Usage Notes for SecureFiles Encryption

• Examples of ALTER TABLE and SecureFiles Encryption

Usage Notes for SecureFiles Encryption
Consider these issues when using ALTER TABLE and SecureFiles Encryption.

• ALTER TABLE enables and disables SecureFiles Encryption. This syntax also allows
the user to re-key LOB columns with a new key or algorithm.

• ENCRYPT and DECRYPT options enable or disable encryption on all LOBs in the
specified SecureFiles LOB column.

• The default for LOB encryption is SALT. NO SALT is not supported.

• The DECRYPT option converts encrypted columns to clear text form.

• Key management controls the ability to encrypt or decrypt.

• LOBs can be encrypted only on a per-column basis. A partitioned LOB has either
all partitions encrypted or not encrypted.

Examples of ALTER TABLE and SecureFiles Encryption
These examples demonstrate how to issue ALTER TABLE statements for specific
encryption scenarios.

Example 3-22 Altering a SecureFiles LOB Column by Encrypting Based on a
Specific Algorithm

Enable LOB encryption using 3DES168.

ALTER TABLE t1 MODIFY
 (a CLOB ENCRYPT USING '3DES168');

This is another example of enabling LOB encryption using 3DES168.

ALTER TABLE t1 MODIFY LOB(a)
 (ENCRYPT USING '3DES168');

Example 3-23 Altering a SecureFiles LOB Column by Encrypting Based on a
Password Key

Enable encryption on a SecureFiles LOB column and build the encryption key using a
password.

ALTER TABLE t1 MODIFY
 (a CLOB ENCRYPT IDENTIFIED BY foo);

Example 3-24 Altering a SecureFiles LOB Column by Re-keying the Encryption

To re-encrypt the LOB column with a new key, re-key the table.

ALTER TABLE t1 REKEY USING '3DES168';

Chapter 3
ALTER TABLE with LOB Storage

3-22

Initialization, Compatibility, and Upgrading
You must perform LOB initialization using appropriate compatibility parameters.

Topics:

• Compatibility and Upgrading

• Initialization Parameter for SecureFiles LOBs

Compatibility and Upgrading
All features described in this document are enabled with compatibility set to
11.2.0.0.0 or higher. There is no downgrade capability after 11.2.0.0.0 is set.

If you want to upgrade BasicFiles LOBs to SecureFiles LOBs, you must use typical
methods for upgrading data (CTAS/ITAS, online redefinition, export/import, column to
column copy, or using a view and a new column). Most of these solutions require twice
the disk space used by the data in the input LOB column. However, partitioning and
taking these actions on a partition-by-partition basis lowers the disk space
requirements.

Initialization Parameter for SecureFiles LOBs
You, as database administrator, using the DB_SECUREFILE initialization parameter, can
modify the initial settings that the COMPATIBILITY parameter sets as default.

By changing the intial settings, you change the circumstances under which
SecureFiles LOBs or BasicFiles LOBs are created or allowed. The DB_SECUREFILE
parameter is typically set in the file init.ora.

See Also:

• Oracle Database Reference

• Compatibility and Upgrading

The DB_SECUREFILE initialization parameter is dynamic and can be modified with the
ALTER SYSTEM statement. Example 3-25 shows the format for changing the parameter
value:

The valid values for DB_SECUREFILE are:

• NEVER prevents SecureFiles LOBs from being created. If NEVER is specified, any
LOBs that are specified as SecureFiles LOBs are created as BasicFiles LOBs. If
storage options are not specified, the BasicFiles LOB defaults are used. All
SecureFiles LOB-specific storage options and features such as compress,
encrypt, or deduplicate throw an exception.

• IGNORE disallows SecureFiles LOBs and ignores any errors that forcing BasicFiles
LOBs with SecureFiles LOBs options might cause. If IGNORE is specified, the
SECUREFILE keyword and all SecureFiles LOB options are ignored.

Chapter 3
Initialization, Compatibility, and Upgrading

3-23

• PERMITTED allows SecureFiles LOBs to be created, if specified by users.
Otherwise, BasicFiles LOBs are created.

• PERFERRED attempts to create a SecureFiles LOB unless BasicFiles LOB is
explicitly specified for the LOB or the parent LOB (if the LOB is in a partition or
sub-partition). PREFERRED is the default value starting with Oracle Database 12c.

• ALWAYS attempts to create SecureFiles LOBs but creates any LOBs not in ASSM
tablespaces as BasicFiles LOBs, unless the SECUREFILE parameter is explicitly
specified. Any BasicFiles LOB storage options specified are ignored, and the
SecureFiles LOB defaults are used for all storage options not specified.

• FORCE attempts to create all LOBs as SecureFiles LOBs even if users specify
BASICFILE. This option is not recommended. Instead, PREFERRED or ALWAYS should
be used.

Example 3-25 Setting DB_SECUREFILE parameter through ALTER SYSTEM

ALTER SYSTEM SET DB_SECUREFILE = 'ALWAYS';

Migrating Columns from BasicFiles LOBs to SecureFiles
LOBs

You can use several methods of migrating LOBs columns.

Topics:

• Preventing Generation of REDO Data When Migrating to SecureFiles LOBs

• Online Redefinition for BasicFiles LOBs

• Online Redefinition Example for Migrating Tables with BasicFiles LOBs

• Redefining a SecureFiles LOB in Parallel

Preventing Generation of REDO Data When Migrating to SecureFiles
LOBs

Migrating BasicFiles LOB columns generates redo data, which can cause performance
problems.

Redo changes for the table are logged during the migration process if the CREATE
TABLE statement had the LOGGING clause set.

Redo changes for a column being converted from BasicFiles LOB to SecureFiles LOB
are logged if LOGGING is the storage setting for the SecureFiles LOB column. The
logging setting (LOGGING or NOLOGGING) for the LOB column is inherited from the
tablespace in which the LOB is created.

You can prevent redo space generation during migration to SecureFiles LOB.

• Specify the NOLOGGING storage parameter for any new SecureFiles LOB columns.

You may turn LOGGING on when the migration is complete.

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

3-24

Online Redefinition for BasicFiles LOBs
Online redefinition is the recommended method for migration of BasicFiles LOBs to
SecureFiles LOBs.

You can perform online redefinition at the table or partition level.

Online Redefinition Advantage

• No requirement to take the table or partition offline

• Can be done in parallel

Online Redefinition Disadvantages

• Additional storage equal to the entire table or partition required and all LOB
segments must be available

• Global indexes must be rebuilt

Online Redefinition Example for Migrating Tables with BasicFiles
LOBs

You can migrate a table using Online Redefinition.

Online Redefinition has the advantage of not requiring the table to be off line, but it
requires additional free space equal to or even slightly greater than the space used by
the table. Example 3-26 demonstrates how to migrate a table using Online
Redefinition.

Example 3-26 Example of Online Redefinition

REM Grant privileges required for online redefinition.
GRANT EXECUTE ON DBMS_REDEFINITION TO pm;
GRANT ALTER ANY TABLE TO pm;
GRANT DROP ANY TABLE TO pm;
GRANT LOCK ANY TABLE TO pm;
GRANT CREATE ANY TABLE TO pm;
GRANT SELECT ANY TABLE TO pm;
REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;
CONNECT pm
// ALTER SESSION FORCE parallel dml;
DROP TABLE cust;
CREATE TABLE cust(c_id NUMBER PRIMARY KEY,
 c_zip NUMBER,
 c_name VARCHAR(30) DEFAULT NULL,
 c_lob CLOB
);
INSERT INTO cust VALUES(1, 94065, 'hhh', 'ttt');
-- Creating Interim Table
-- There is no requirement to specify constraints because they are
-- copied over from the original table.
CREATE TABLE cust_int(c_id NUMBER NOT NULL,
 c_zip NUMBER,
 c_name VARCHAR(30) DEFAULT NULL,
 c_lob CLOB

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

3-25

) LOB(c_lob) STORE AS SECUREFILE (NOCACHE FILESYSTEM_LIKE_LOGGING);
DECLARE
 col_mapping VARCHAR2(1000);
BEGIN
-- map all the columns in the interim table to the original table
 col_mapping :=
 'c_id c_id , '||
 'c_zip c_zip , '||
 'c_name c_name, '||
 'c_lob c_lob';
DBMS_REDEFINITION.START_REDEF_TABLE('pm', 'cust', 'cust_int', col_mapping);
END;
/
DECLARE
 error_count pls_integer := 0;
BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS('pm', 'cust', 'cust_int',
 1, TRUE,TRUE,TRUE,FALSE, error_count);
 DBMS_OUTPUT.PUT_LINE('errors := ' || TO_CHAR(error_count));
END;
/
EXEC DBMS_REDEFINITION.FINISH_REDEF_TABLE('pm', 'cust', 'cust_int');
-- Drop the interim table
DROP TABLE cust_int;
DESC cust;
-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id column is
-- preserved after migration.
INSERT INTO cust VALUES(1, 94065, 'hhh', 'ttt');
SELECT * FROM cust;

Redefining a SecureFiles LOB in Parallel
You can redefine a SecureFiles LOB column in parallel, if the system has sufficient
resources for parallel execution.

To set up parallel execution of online redefinition, run ALTER SESSION.

• Add the following statement after the connect statementExample 3-26 in the last
section:

ALTER SESSION FORCE PARALLEL DML;

PL/SQL Packages for LOBs and DBFS
There are PL/SQL packages that can be used with BasicFiles LOBs and SecureFiles
LOBs.

Changes made to accommodate SecureFiles LOBs and DBFS are emphasized.

Topics:

• The DBMS_LOB Package Used with SecureFiles LOBs and DBFS

• DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

• DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS

• DBMS_SPACE Package

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-26

The DBMS_LOB Package Used with SecureFiles LOBs and DBFS
The DBMS_LOB package provides subprograms to operate on, or access and
manipulate specific parts of a LOB or complete LOBs.

The DBMS_LOB package applies to both SecureFiles LOB and BasicFiles LOB.

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS and DBMS_LOB
Subprograms Used with SecureFiles LOBs and DBFS describe modifications made to
the DBMS_LOB constants and subprograms with the addition of SecureFiles LOB and
Database File System (DBFS).

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_LOB package

• Introducing the Database File System

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS
Certain constants support DBFS link interfaces.

Table 3-3 lists constants that support DBFS Link interfaces.

See Also:

Oracle Database PL/SQL Packages and Types Reference for complete
information about constants used in the PL/SQL DBMS_LOB package

Table 3-3 DBMS_LOB Constants That Support DBFS Link Interfaces

Constant Description

DBFS_LINK_NEVER
DBFS link state value

DBFS_LINK_YES
DBFS link state value

DBFS_LINK_NO
DBFS link state value

DBFS_LINK_CACHE Flag used by COPY_DBFS_LINK() and MOVE_DBFS_LINK().

DBFS_LINK_NOCACHE Flag used by COPY_DBFS_LINK() and MOVE_DBFS_LINK().

DBFS_LINK_PATH_MAX_SIZE The maximum length of DBFS pathnames; 1024.

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-27

Table 3-3 (Cont.) DBMS_LOB Constants That Support DBFS Link Interfaces

Constant Description

CONTENTTYPE_MAX_SIZE The maximum 1-byte ASCII characters for content type; 128.

DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
You should note that some changes have been made to the DBMS_LOB subprograms
over time.

Table 3-4 summarizes changes made to PL/SQL package DBMS_LOB subprograms.

Be aware that some of the DBMS_LOB operations that existed before Oracle Database
11g Release 2 throw an exception error if the LOB is a DBFS link. To remedy this
problem, modify your applications to explicitly replace the DBFS link with a LOB by
calling the DBMS_LOB.COPY_FROM_LINK procedure before they make these calls. When
the call completes, then the application can move the updated LOB back to DBFS
using the DBMS_LOB.MOVE_TO_DBFS_LINK procedure, if necessary.

Other DBMS_LOB operations that existed before Oracle Database 11g Release 2 work
transparently if the DBFS Link is in a file system that supports streaming. Note that
these operations fail if streaming is either not supported or disabled.

Table 3-4 DBMS_LOB Subprograms

Subprogram Description

APPEND Appends the contents of the source LOB to the destination LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

COMPARE Compares two LOBs in full or in parts

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-28

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

CONVERTTOBLOB Converts the character data of a CLOB or NCLOB into the
specified character set and writes it in binary format to a
destination BLOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

CONVERTTOCLOB Converts the binary data of a BLOB into the specified character
set and writes it in character format to a destination CLOB or
NCLOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

COPY Copies all or part of the source LOB to the destination LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

COPY_DBFS_LINK Copies an existing DBFS link into a new LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

COPY_FROM_DBFS_LINK Copies the specified LOB data from DBFS HSM Store into the
database

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-29

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

DBFS_LINK_GENERATE_PAT
HNAME

Returns a unique file path name for creating a DBFS Link

See Also:

Oracle Database PL/SQL
Packages and Types Reference

ERASE Erases all or part of a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

FRAGMENT_DELETE Deletes a specified fragment of the LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

FRAGMENT_INSERT Inserts a fragment of data into the LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

FRAGMENT_MOVE Moves a fragment of a LOB from one location in the LOB to
another location

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-30

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

FRAGMENT_REPLACE Replaces a fragment of a LOB with new data

See Also:

Oracle Database PL/SQL
Packages and Types Reference

GET_DBFS_LINK Returns the DBFS path name for a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

GET_DBFS_LINK_STATE Returns the linking state of a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

GETCONTENTTYPE Retrieves the content type string of the LOB data

See Also:

Oracle Database PL/SQL
Packages and Types Reference

GETOPTIONS Retrieves the previously set options of a specific LOB

See Also:

• Oracle Database PL/SQL Packages and Types Oracle
Database PL/SQL Packages and Types Reference

• Oracle Call Interface Programmer's Guidefor more
information on the corresponding
OCILobGetContentType() an OCI LOB function

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-31

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

ISSECUREFILE Determines if a LOB is a SecureFiles LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

LOADBLOBFROMFILE Loads BFILE data into a BLOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

LOADCLOBFROMFILE Loads BFILE data into a CLOB

If the CLOB is linked, an exception is thrown.

See Also:

Oracle Database PL/SQL
Packages and Types Reference

LOADFROMFILE Loads BFILE data into a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

MOVE_TO_DBFS_LINK Moves the specified LOB data from the database into DBFS
HSM Store

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-32

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

READ Reads data from a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

SET_DBFS_LINK Links a LOB with a DBFS path name

See Also:

Oracle Database PL/SQL
Packages and Types Reference

SETCONTENTTYPE Sets the content type string of the LOB data

See Also:

Oracle Database PL/SQL
Packages and Types Reference

SETOPTIONS Sets new options for a specific LOB

See Also:

• Oracle Database PL/SQL
Packages and Types
Reference

• Oracle Call Interface
Programmer's Guidefor more
information on the
corresponding
OCILobSetContentType()

(OCI LOB function)

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-33

Table 3-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

SUBSTR Returns a fragment of a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

TRIM Trims the LOB to a specified length

See Also:

Oracle Database PL/SQL
Packages and Types Reference

WRITE Writes data to a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

WRITEAPPEND Appends data to the end of a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

DBMS_SPACE Package
You can analyze segment growth and space requirements using the DBMS_SPACE
PL/SQL package.

The DBMS_SPACE PL/SQL package enables you to analyze segment growth and space
requirements.

DBMS_SPACE.SPACE_USAGE()
The existing DBMS_SPACE.SPACE_USAGE procedure is overloaded to return information
about LOB space usage.

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-34

It returns the amount of disk space in blocks used by all the SecureFiles LOBs in the
LOB segment.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Chapter 3
PL/SQL Packages for LOBs and DBFS

3-35

4
Operations Specific to Persistent and
Temporary LOBs

LOB operations between persistent and temporary LOB instances can differ.

Topics:

• Persistent LOB Operations

• Temporary LOB Operations

• Creating Persistent and Temporary LOBs in PL/SQL

• Freeing Temporary LOBs in OCI

See Also:

• Using LOB APIs gives details and examples of API usage for LOB APIs
that can be used with either temporary or persistent LOBs.

• LOB APIs for BFILE Operations gives details and examples for usage of
LOB APIs that operate on BFILEs.

Persistent LOB Operations
This section describes operations that apply only to persistent LOBs.

Inserting a LOB into a Table
You can insert LOB instances into persistent LOB columns using by multiple methods.

See Also:

DDL and DML Statements with LOBs for more information about the different
methods available to insert LOB instances into persistent LOB columns

Selecting a LOB from a Table
You can select a persistent LOB from a table just as you would any other data type. In
the following example, persistent LOB instances of different types are selected into
PL/SQL variables.

declare

4-1

 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 SELECT ad_photo INTO blob1 FROM print_media WHERE Product_id = 2268
 FOR UPDATE;
 SELECT ad_photo INTO blob2 FROM print_media WHERE Product_id = 3106;

 SELECT ad_sourcetext INTO clob1 FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 SELECT ad_fltextn INTO nclob1 FROM Print_media
 WHERE product_id=3060 and ad_id=11001 FOR UPDATE;

END;
/
show errors;

Temporary LOB Operations
This section describes operations that apply only to temporary LOB instances.

Creating and Freeing a Temporary LOB
To create a temporary LOB instance, you must declare a variable of the given LOB
data type and pass the variable to the CREATETEMPORARY API.

The temporary LOB instance exists in your application until it goes out of scope, your
session terminates, or you explicitly free the instance. Freeing a temporary LOB
instance is recommended to free system resources.

The following example demonstrates how to create and free a temporary LOB in the
PL/SQL environment using the DBMS_LOB package.

declare
 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 -- create temp LOBs
 DBMS_LOB.CREATETEMPORARY(blob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(blob2,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(clob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(nclob1,TRUE, DBMS_LOB.SESSION);

 -- fill with data
 writeDataToLOB_proc(blob1);
 writeDataToLOB_proc(blob2);

 -- CHAR->LOB conversion
 clob1 := 'abcde';
 nclob1 := TO_NCLOB(clob1);

 -- Other APIs
 call_lob_apis(blob1, blob2, clob1, nclob1);

 -- free temp LOBs

Chapter 4
Temporary LOB Operations

4-2

 DBMS_LOB.FREETEMPORARY(blob1);
 DBMS_LOB.FREETEMPORARY(blob2);
 DBMS_LOB.FREETEMPORARY(clob1);
 DBMS_LOB.FREETEMPORARY(nclob1);

END;
/
show errors;

Creating Persistent and Temporary LOBs in PL/SQL
The code example that follows illustrates how to create persistent and temporary
LOBs in PL/SQL. This code is in the demonstration file:

$ORACLE_HOME/rdbms/demo/lobs/plsql/lobdemo.sql

This demonstration file also calls procedures in separate PL/SQL files that illustrate
usage of other LOB APIs.

See Also:

PL/SQL LOB Demonstration Files for a list of demonstration files and links
for more information about related LOB APIs

------------------------- Persistent LOB operations ------------------------

declare
 blob1 BLOB;
 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 SELECT ad_photo INTO blob1 FROM print_media WHERE Product_id = 2268
 FOR UPDATE;
 SELECT ad_photo INTO blob2 FROM print_media WHERE Product_id = 3106;

 SELECT ad_sourcetext INTO clob1 FROM Print_media
 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

 SELECT ad_fltextn INTO nclob1 FROM Print_media
 WHERE product_id=3060 and ad_id=11001 FOR UPDATE;

 call_lob_apis(blob1, blob2, clob1, nclob1);
 rollback;
END;
/
show errors;

------------------------- Temporary LOB operations ------------------------

declare
 blob1 BLOB;

Chapter 4
Creating Persistent and Temporary LOBs in PL/SQL

4-3

 blob2 BLOB;
 clob1 CLOB;
 nclob1 NCLOB;
BEGIN
 -- create temp LOBs
 DBMS_LOB.CREATETEMPORARY(blob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(blob2,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(clob1,TRUE, DBMS_LOB.SESSION);
 DBMS_LOB.CREATETEMPORARY(nclob1,TRUE, DBMS_LOB.SESSION);

 -- fill with data
 writeDataToLOB_proc(blob1);
 writeDataToLOB_proc(blob2);

 -- CHAR->LOB conversion
 clob1 := 'abcde';
 nclob1 := TO_NCLOB(clob1);

 -- Other APIs
 call_lob_apis(blob1, blob2, clob1, nclob1);

 -- free temp LOBs
 DBMS_LOB.FREETEMPORARY(blob1);
 DBMS_LOB.FREETEMPORARY(blob2);
 DBMS_LOB.FREETEMPORARY(clob1);
 DBMS_LOB.FREETEMPORARY(nclob1);

END;
/
show errors;

Freeing Temporary LOBs in OCI
Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, check
that the locator is temporary. If it is, free the locator when your application is finished
with it. The locator can be from a define during a select or an out bind. A temporary
LOB duration is always upgraded to session when it is shipped to the client side. The
application must do the following before the locator is overwritten by the locator of the
next row:

OCILobIsTemporary(env, err, locator, is_temporary);
if(is_temporary)
 OCILobFreeTemporary(svc, err, locator);

See Also:

Oracle Call Interface Programmer's Guide chapter 16, section "LOB
Functions."

Chapter 4
Freeing Temporary LOBs in OCI

4-4

5
Distributed LOBs

Topics:

• Working with Remote LOBs

• SQL Semantics with LOBs in Remote Tables

• Working with Remote LOBs in PL/SQL

• Using Remote Locators with OCILOB API

Working with Remote LOBs
You can work with LOB data in remote tables is the following ways:

• Directly referencing LOB columns in remote tables (Remote LOB Columns)
accessed using a database link.

• Selecting remote LOB columns into a local LOB locator variable (Remote locator)

Topics

• Working with Remote LOB Columns

• Working with Remote Locator

Working with Remote LOB Columns
Remote LOBs are supported in these ways:

• Create table as select or insert as select

• Functions on remote LOBs returning scalars

• Data Interface for remote LOBs

Create table as select or insert as select

Only standalone LOB columns are allowed in the select list for statements that are
structured in the following manner:

CREATE TABLE t AS SELECT * FROM table1@remote_site;
INSERT INTO t SELECT * FROM table1@remote_site;
UPDATE t SET lobcol = (SELECT lobcol FROM table1@remote_site);
INSERT INTO table1@remote_site SELECT * FROM local_table;
UPDATE table1@remote_site SET lobcol = (SELECT lobcol FROM local_table);
DELETE FROM table1@remote_site <WHERE clause involving non_lob_columns>

5-1

Functions on remote LOBs returning scalars

SQL and PL/SQL functions having a LOB parameter and returning a scalar data type
are supported. Other SQL functions and DBMS_LOB APIs are not supported for use with
remote LOB columns. For example, the following statement is supported:

CREATE TABLE tab AS SELECT DBMS_LOB.GETLENGTH@dbs2(clob_col) len FROM
tab@dbs2;
CREATE TABLE tab AS SELECT LENGTH(clob_col) len FROM tab@dbs2;

However, the following statement is not supported because DBMS_LOB.SUBSTR returns
a LOB:

CREATE TABLE tab AS SELECT DBMS_LOB.SUBSTR(clob_col) from tab@dbs2;

Data Interface for remote LOBs
You can insert a character or binary buffer into a remote CLOB or BLOB, and select a
remote CLOB or BLOB into a character or binary buffer, for example, using PL/SQL:

SELECT clobcol1, type1.blobattr INTO varchar_buf1, raw_buf2 FROM
table1@remote_site;
INSERT INTO table1@remotesite (clobcol1, type1.blobattr) VALUES
varchar_buf1, raw_buf2;
INSERT INTO table1@remotesite (lobcol) VALUES ('test');
UPDATE table1 SET lobcol = 'xxx';

Working with Remote Locator
You can select a persistent LOB locator from a remote table into a local variable and
this can be done in PL/SQL or in OCI. The remote columns can be of type BLOB,
CLOB or NCLOB. The following SQL statement is the basis for all the examples with
remote LOB locator in this chapter.

CREATE TABLE lob_tab (c1 NUMBER, c2 CLOB);

In the following example, the table lob_tab (with columns c2 of type CLOB and c1 of
type number) defined in the remote database is accessible using database link db2
and a local CLOB variable lob_var1.

SELECT c2 INTO lob_var1 FROM lob_tab@db2 WHERE c1=1;
SELECT c2 INTO lob_var1 FROM lob_tab@db2 WHERE c1=1 for update;

In PL/SQL, the function dbms_lob.isremote can be used to check if a particular LOB
belongs to a remote table. Similarly, in OCI, you can use the OCI_ATTR_LOB_REMOTE

Chapter 5
Working with Remote LOBs

5-2

attribute of OCILobLocator to check if a particular LOB belongs to a remote table. For
example,

IF(dbms_lob.isremote(lob_var1)) THEN
dbms_output.put_line(‘LOB locator is remote)
ENDIF;

See Also:

• ISREMOTE Function

• OCI_ATTR_LOB_REMOTE Attribute

Topics:

• Using Local and Remote locators as bind with queries and DML on remote tables

• Restrictions when using remote LOB locators

Using Local and Remote locators as bind with queries and DML on remote
tables

For the Queries and DMLs (INSERT, UPDATE, DELETE) with bind values, the following
four cases are possible. The first case involves local tables and locators and is the
standard LOB functionality. The other three cases are part of the distributed LOBs
functionality and have restrictions listed at the end of this section.

• Local table with local locator as bind value.

• Local table with remote locator as bind value

• Remote table with local locator as bind value

• Remote table with remote locator as bind value

Queries of the following form which use remote lob locator as bind value will be
supported:

SELECT name FROM lob_tab@db2 WHERE length(c1)=length(:lob_v1);

In the above query, c1 is an LOB column and lob_v1 is a remote locator.

DMLs of the following forms using a remote LOB locator will be supported. Here, the
bind values can be local or remote persistent LOB locators.

UPDATE lob_tab@db2 SET c1=:lob_v1;

INSERT into lob_tab@db2 VALUES (:1, :2);

Chapter 5
Working with Remote LOBs

5-3

Note:

DMLs with returning clause are not supported on remote tables for both
scalar and LOB columns.

Restrictions when using remote LOB locators

General restrictions while using remote LOB locators include the following:

• You cannot select a remote temporary LOB locator into a local variable using
SELECT statement. For example,

select substr(c2, 3, 1) from lob_tab@db2 where c1=1

The above query returns an error.

• Remote lob functionality will not be supported for Index Organized tables (IOT). An
attempt to get a locator from remote an IOT table will result in an error.

• Both local database and remote database have to be of Database release 12.2 or
higher version.

• With distributed LOBs functionality, tables mentioned in the from clause or where
clause should be collocated on the same database. If remote locators are used as
bind variables in the where clauses, they should belong to the same remote
database. You cannot have one locator from DB1 and another locator from DB2 to
be used as bind variables.

• Collocated tables or locators use the same database link. It is possible to have 2
different DB Links pointing to the same database. In the example below, both
dblink1 and dblink2 point to the same remote database, but perhaps with
different authentication method. Oracle Database does not support such
operations.

INSERT into tab1@dblink1 SELECT * from tab2@dblink2;

• Bind values should be the same LOB type as the column LOB type. For example,
NCLOB locators should be bound to NCLOB column and CLOB locators should be
bound to CLOB column. Implicit conversion between NCLOB and CLOB types is not
supported in remote LOBs case.

• DMLs (INSERTs/ UPDATEs) with Array Binds is not supported when bind involves a
remote locator or if table involved is a remote table

• You cannot select a BFILE column from a remote table into a local variable.

SQL Semantics with LOBs in Remote Tables
Topics:

• Built-in Functions for Remote LOBs and BFILEs

• Passing Remote Locator to Built in SQL Functions

Built-in Functions for Remote LOBs and BFILEs

Chapter 5
SQL Semantics with LOBs in Remote Tables

5-4

Any SQL built-in functions and user-defined functions that are supported on local
LOBs and BFILEs are also supported on remote LOBs and BFILEs, as long as the
final value returned by nested functions is not a LOB type. This includes functions for
remote persistent and temporary LOBs and for BFILEs.

Built-in SQL functions which are executed on a remote site can be part of any SQL
statement, like SELECT, INSERT, UPDATE, and DELETE. For example:

SELECT LENGTH(ad_sourcetext) FROM print_media@remote_site -- CLOB
SELECT LENGTH(ad_fltextn) FROM print_media@remote_site; -- NCLOB
SELECT LENGTH(ad_composite) FROM print_media@remote_site; -- BLOB
SELECT product_id from print_media@remote_site WHERE LENGTH(ad_sourcetext)
> 3;

UPDATE print_media@remote_site SET product_id = 2 WHERE
LENGTH(ad_sourcetext) > 3;

SELECT TO_CHAR(foo@dbs2(...)) FROM dual@dbs2;
-- where foo@dbs2 returns a temporary LOB

The SQL functions fall under the following (not necessarily exclusive) categories:

• SQL functions that are not supported on LOBs:

These functions are relevant only for CLOBs: an example is DECODE.

These functions cannot be supported on remote LOBs because they are not
supported on local LOBs.

• Functions taking exactly one LOB argument (all other arguments are of other data
types) and not returning a LOB:

These functions are relevant only for CLOBs, NCLOBs, and BLOBs: an example is
LENGTH and it is supported. For example:

SELECT LENGTH(ad_composite) FROM print_media@remote_site;
SELECT LENGTH(ad_header.logo) FROM print_media@remote_site; -- LOB in
object
SELECT product_id from print_media@remote_site WHERE
LENGTH(ad_sourcetext) > 3;

• Functions that return a LOB:

All these functions are relevant only for CLOBs and NCLOBs. These functions
may return the original LOB or produce a temporary LOB. These functions can be
performed on the remote site, as long as the result returned to the local site is not
a LOB.

Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM,
LTRIM, RTRIM, LOWER, UPPER, NLS_LOWER, NLS_UPPER, LPAD, and RPAD.

Functions returning the original LOB locator are: NVL, DECODE, and CASE. Note that
even though DECODE and CASE are not supported currently to operate on LOBs,
they could operate on other data types and return a LOB.

Chapter 5
SQL Semantics with LOBs in Remote Tables

5-5

For example, the following statements are supported:

SELECT TO_CHAR(CONCAT(ad_sourcetext, ad_sourcetext)) FROM
print_media@remote_site;
SELECT TO_CHAR(SUBSTR(ad_fltextnfs, 1, 3)) FROM print_media@remote_site;

But the following statements are not supported:

SELECT CONCAT(ad_sourcetext, ad_sourcetext) FROM
print_media@remote_site;
SELECT SUBSTR(ad_sourcetext, 1, 3) FROM print_media@remote_site;

• Functions that take in more than one LOB argument:

These are: INSTR, LIKE, REPLACE, CONCAT, ||, SUBSTR, TRIM, LTRIM, RTRIM, LPAD, and
RPAD. All these functions are relevant only for CLOBs and NCLOBs.

These functions are supported only if all the LOB arguments are in the same
dblink, and the value returned is not a LOB. For example, the following is
supported:

SELECT TO_CHAR(CONCAT(ad_sourcetext, ad_sourcetext)) FROM
print_media@remote_site; -- CLOB
SELECT TO_CHAR(CONCAT(ad_fltextn, ad_fltextn)) FROM
print_media@remote_site; -- NCLOB

But the following is not supported:

SELECT TO_CHAR(CONCAT(a.ad_sourcetext, b.ad_sourcetext)) FROM
print_media@db1 a, print_media@db2 b WHERE a.product_id = b.product_id;

Passing Remote Locator to Built in SQL Functions

You can pass a remote locator to most built-in SQL functions such as LENGTH, INSTR,
SUBSTR, and UPPER. For example,

Var lob1 CLOB;
BEGIN
 select c2 into lob1 from lob_tab@db2 where c1=1;
END;
/
select length(:lob1) from dual;

Working with Remote LOBs in PL/SQL
Topics:

• PL/SQL Functions for Remote LOBs and BFILEs

• Using Remote Locators with DBMS_LOB

Chapter 5
Working with Remote LOBs in PL/SQL

5-6

PL/SQL Functions for Remote LOBs and BFILEs

Built-in and user-defined PL/SQL functions that are executed on the remote site and
operate on remote LOBs and BFILEs are allowed, as long as the final value returned
by nested functions is not a LOB.

The following example uses the print_media table described in "Table for LOB
Examples: The PM Schema print_media Table"

SELECT product_id FROM print_media@dbs2 WHERE foo@dbs2(ad_sourcetext,
'aa') > 0;
-- foo is a user-define function returning a NUMBER

DELETE FROM print_media@dbs2 WHERE DBMS_LOB.GETLENGTH@dbs2(ad_graphic) = 0;

Restrictions on Remote User-Defined Functions
• The restrictions that apply to SQL functions apply here also.

See Also:

Built-in Functions for Remote LOBs and BFILEs

• A function in one dblink cannot operate on LOB data in another dblink.For
example, the following statement is not supported:

SELECT a.product_id FROM print_media@dbs1 a, print_media@dbs2 b WHERE
 CONTAINS@dbs1(b.ad_sourcetext, 'aa') > 0;

• One query block cannot contain tables and functions at different dblinks. For
example, the following statement is not supported:

SELECT a.product_id FROM print_media@dbs2 a, print_media@dbs3 b
 WHERE CONTAINS@dbs2(a.ad_sourcetext, 'aa') > 0 AND
 foo@dbs3(b.ad_sourcetext) > 0;
-- foo is a user-defined function in dbs3

• There is no support for performing remote LOB operations (that is, DBMS_LOB) from
within PL/SQL, other than issuing SQL statements from PL/SQL.

Remote Functions in PL/SQL, OCI, and JDBC
All the SQL statements listed in Restrictions on Remote User-Defined Functions work
the same if they are executed from inside PL/SQL, OCI, and JDBC. No additional
functionality is provided.

Chapter 5
Working with Remote LOBs in PL/SQL

5-7

Using Remote Locator in PL/SQL
A remote locator can be passed as a parameter to built in PL/SQL functions like
LENGTH, INSTR, SUBSTR, UPPER and so on which accepts LOB as input. For example,

DECLARE
substr_data varchar2(4000);
remote_loc CLOB;
BEGIN
SELECT c2 into remote_loc
FROM lob_tab@db2 WHERE c1=1;
substr_data := substr(remote_loc, position, length)
END;

Using Remote Locators with DBMS_LOB

All DBMS_LOB APIs other than the APIs targeted for BFILEs support operations on
remote LOB locators.

The following example shows how to pass remote locator as input to dbms_lob
operations.

DECLARE
 lob CLOB;
 buf VARCHAR2(120) := 'TST';
 amt NUMBER(2);
 len NUMBER(2);
BEGIN
 amt :=30;
 select c2 into lob from lob_tab@db2 where c1=3 for update;
 dbms_lob.write(lob, amt, 1, buf);
 amt :=30;
 dbms_lob.read(lob, amt, 1, buf);
 len := dbms_lob.getlength(lob);
 dbms_output.put_line(buf);
 dbms_output.put_line(amt);
 dbms_output.put_line('get length output = ' || len);
END;
/

Topics:

• Restrictions on Using Remote Locators with DBMS_LOB

Restrictions on Using Remote Locators with DBMS_LOB

All the APIs that accepts two LOB locators must have both LOBs collocated at one
database.

Chapter 5
Working with Remote LOBs in PL/SQL

5-8

See Also:

• Oracle Database PL/SQL Packages and Types Reference to view the
complete list of DBMS_LOB APIs.

Using Remote Locators with OCILOB API
All OCILOB APIs (except APIs meant for BFILEs) support operations on remote LOB
locators.

Note:

All the APIs that accept two locators must obtain both the LOB locators
through the same database link.

The following list of OCILOB functions will give an error when a remote LOB locator is
passed to them:

• OCILobAssign

• OCILobLocatorAssign

• OCILobArrayRead()

• OCILobArrayWrite()

• OCILobLoadFromFile2()

The following example shows how to pass a remote locator to OCILOB API.

void select_read_remote_lob()
{
 text *select_sql = (text *)"SELECT c2 lob_tab@dbs1 where c1=1";
 ub4 amtp = 10;
 ub4 nbytes = 0;
 ub4 loblen=0;
 OCILobLocator * one_lob;
 text strbuf[40];

 /* initialize single locator */
 OCIDescriptorAlloc(envhp, (dvoid **) &one_lob,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0)

 OCIStmtPrepare(stmthp, errhp, select_sql, (ub4)strlen((char*)select_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &defp, errhp, (ub4) 1,
 (dvoid *) &one_lob,
 (sb4) -1,
 (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0,

Chapter 5
Using Remote Locators with OCILOB API

5-9

 (ub2 *) 0, (ub4) OCI_DEFAULT));

 /* fetch the remote locator into the local variable one_lob */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (OCISnapshot *)0,
 (OCISnapshot *)0, OCI_DEFAULT);

 /* Get the length of the remote LOB */
 OCILobGetLength(svchp, errhp,
 (OCILobLocator *) one_lob, (ub4 *)&loblen)

 printf("LOB length = %d\n", loblen);

 memset((void*)strbuf, (int)'\0', (size_t)40);

 / * Read the data from the remote LOB */
 OCILobRead(svchp, errhp, one_lob, &amtp,
 (ub4) 1, (dvoid *) strbuf, (ub4)& nbytes, (dvoid *)0,
 (OCICallbackLobRead) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT));
 printf("LOB content = %s\n", strbuf);

}

See Also:

OCI Programmer’s Guide, for the complete list of OCILOB APIs

Chapter 5
Using Remote Locators with OCILOB API

5-10

6
DDL and DML Statements with LOBs

DDL and DML statements work with LOBs.

Topics:

• Creating a Table Containing One or More LOB Columns

• Creating a Nested Table Containing a LOB

• Inserting a Row by Selecting a LOB From Another Table

• Inserting a LOB Value Into a Table

• Inserting a Row by Initializing a LOB Locator Bind Variable

• Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

• Updating a Row by Selecting a LOB From Another Table

See Also:

For guidelines on how to INSERT into a LOB when binds of more than 4000
bytes are involved, see the following sections in "Binds of All Sizes in
INSERT and UPDATE Operations".

Creating a Table Containing One or More LOB Columns
You can create a table containing one or more LOB columns.

When you use functions, EMPTY_BLOB() and EMPTY_CLOB(), the resulting LOB is
initialized, but not populated with data. Also note that LOBs that are empty are not
NULL.

See Also:

Oracle Database SQL Language Referencefor a complete specification of
syntax for using LOBs in CREATE TABLE and ALTER TABLE with:

• BLOB, CLOB, NCLOB and BFILE columns

• EMPTY_BLOB and EMPTY_CLOB functions

• LOB storage clause for persistent LOB columns, and LOB attributes of
embedded objects

6-1

Scenario

These examples use the following Sample Schemas:

• Human Resources (HR)

• Order Entry (OE)

• Product Media (PM)

Note:

Note HR and OE schemas must exist before the PM schema is created.

Note:

Because you can use SQL DDL directly to create a table containing one or
more LOB columns, it is not necessary to use the DBMS_LOB package.

See Also:

Oracle Database Sample Schemas for more information about sample
schemas

/* Setup script for creating Print_media,
 Online_media and associated structures
*/

DROP USER pm CASCADE;
DROP DIRECTORY ADPHOTO_DIR;
DROP DIRECTORY ADCOMPOSITE_DIR;
DROP DIRECTORY ADGRAPHIC_DIR;
DROP INDEX onlinemedia CASCADE CONSTRAINTS;
DROP INDEX printmedia CASCADE CONSTRAINTS;
DROP TABLE online_media CASCADE CONSTRAINTS;
DROP TABLE print_media CASCADE CONSTRAINTS;
DROP TYPE textdoc_typ;
DROP TYPE textdoc_tab;
DROP TYPE adheader_typ;
DROP TABLE adheader_typ;
CREATE USER pm identified by password;
GRANT CONNECT, RESOURCE to pm;

CREATE DIRECTORY ADPHOTO_DIR AS '/tmp/';
CREATE DIRECTORY ADCOMPOSITE_DIR AS '/tmp/';
CREATE DIRECTORY ADGRAPHIC_DIR AS '/tmp/';
CREATE DIRECTORY media_dir AS '/tmp/';
GRANT READ ON DIRECTORY ADPHOTO_DIR to pm;
GRANT READ ON DIRECTORY ADCOMPOSITE_DIR to pm;
GRANT READ ON DIRECTORY ADGRAPHIC_DIR to pm;
GRANT READ ON DIRECTORY media_dir to pm;

Chapter 6
Creating a Table Containing One or More LOB Columns

6-2

CONNECT pm/password (or &pass);
COMMIT;

CREATE TABLE a_table (blob_col BLOB);

CREATE TYPE adheader_typ AS OBJECT (
 header_name VARCHAR2(256),
 creation_date DATE,
 header_text VARCHAR(1024),
 logo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
 document_typ VARCHAR2(32),
 formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

CREATE TABLE adheader_tab of adheader_typ (
Ad_finaltext DEFAULT EMPTY_CLOB(), CONSTRAINT
Take CHECK (Take IS NOT NULL), DEFAULT NULL);

CREATE TABLE online_media
(product_id NUMBER(6),
product_photo ORDSYS.ORDImage,
product_photo_signature ORDSYS.ORDImageSignature,
product_thumbnail ORDSYS.ORDImage,
product_video ORDSYS.ORDVideo,
product_audio ORDSYS.ORDAudio,
product_text CLOB,
product_testimonials ORDSYS.ORDDoc);

CREATE UNIQUE INDEX onlinemedia_pk
 ON online_media (product_id);

ALTER TABLE online_media
ADD (CONSTRAINT onlinemedia_pk
PRIMARY KEY (product_id), CONSTRAINT loc_c_id_fk
FOREIGN KEY (product_id) REFERENCES oe.product_information(product_id)
);

CREATE TABLE print_media
(product_id NUMBER(6),
ad_id NUMBER(6),
ad_composite BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fktextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_photo BLOB,
ad_graphic BFILE,
ad_header adheader_typ,
press_release LONG) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

CREATE UNIQUE INDEX printmedia_pk
 ON print_media (product_id, ad_id);

ALTER TABLE print_media
ADD (CONSTRAINT printmedia_pk
PRIMARY KEY (product_id, ad_id),
CONSTRAINT printmedia_fk FOREIGN KEY (product_id)

Chapter 6
Creating a Table Containing One or More LOB Columns

6-3

REFERENCES oe.product_information(product_id)
);

Creating a Nested Table Containing a LOB
You can create a nested table containing a LOB.

You must create the object type that contains the LOB attributes before you create a
nested table based on that object type. In the example that follows, table Print_media
contains nested table ad_textdoc_ntab that has type textdoc_tab. This type uses two
LOB data types:

• BFILE - an advertisement graphic

• CLOB - an advertisement transcript

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by the NESTED TABLE
statement when the Print_media table is created as shown in the following example:

/* Create type textdoc_typ as the base type
 for the nested table textdoc_ntab,
 where textdoc_ntab contains a LOB:
*/
CREATE TYPE textdoc_typ AS OBJECT
(
 document_typ VARCHAR2(32),
 formatted_doc BLOB
);
/

/* The type has been created. Now you need a */
/* nested table of that type to embed in */
/* table Print_media, so: */
CREATE TYPE textdoc_ntab AS TABLE of textdoc_typ;
/

CREATE TABLE textdoc_ntable (
 id NUMBER,
 ntab_col textdoc_ntab)
NESTED TABLE ntab_col STORE AS textdoc_nestedtab;

DROP TYPE textdoc_typ force;
DROP TYPE textdoc_ntab;
DROP TABLE textdoc_ntable;

See Also:

• "Creating a Table Containing One or More LOB Columns"

• Oracle Database SQL Language Reference for further information on
CREATE TABLE

Chapter 6
Creating a Nested Table Containing a LOB

6-4

Inserting a Row by Selecting a LOB From Another Table
You can insert a row containing a LOB as SELECT.

Note:

Persistent LOB types BLOB, CLOB, and NCLOB, use copy semantics, as
opposed to reference semantics that apply to BFILEs. When a BLOB, CLOB, or
NCLOB is copied from one row to another in the same table or a different
table, the actual LOB value is copied, not just the LOB locator.

For LOBs, one of the advantages of using an object-relational approach is that you
can define a type as a common template for related tables. For instance, it makes
sense that both the tables that store archival material and working tables that use
those libraries, share a common structure.

For example, assuming Print_media and Online_media have identical schemas. The
statement creates a new LOB locator in table Print_media. It also copies the LOB
data from Online_media to the location pointed to by the new LOB locator inserted in
table Print_media.

The following code fragment is based on the fact that the table Online_media is of the
same type as Print_media referenced by the ad_textdocs_ntab column of table
Print_media. It inserts values into the library table, and then inserts this same data
into Print_media by means of a SELECT.

/* Store records in the archive table Online_media: */
INSERT INTO Online_media
 VALUES (3060, NULL, NULL, NULL, NULL,
 'some text about this CRT Monitor', NULL);

/* Insert values into Print_media by selecting from Online_media: */
INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
 (SELECT product_id, 11001, product_text
 FROM Online_media WHERE product_id = 3060);

See Also:

• Oracle Database SQL Language Reference for more information on
INSERT

• Oracle Database Sample Schemas for a description of the PM Schema
and the Print_media table used in this example

Inserting a LOB Value Into a Table
You can insert a LOB value using EMPTY_CLOB() or EMPTY_BLOB().

Chapter 6
Inserting a Row by Selecting a LOB From Another Table

6-5

Usage Notes

Here are guidelines for inserting LOBs:

Before Inserting Make the LOB Column Non-Null

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the
LOB column must contain a locator that points to an empty or populated LOB value.
You can initialize a BLOB column value by using the function EMPTY_BLOB() as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

INSERT INTO Print_media (product_id, ad_id, ad_sourcetext)
 VALUES (1, 1, 'This is a One Line Advertisement');

Note that you can also perform this initialization during the CREATE TABLE operation.

See Also:

Creating a Table Containing One or More LOB Columns

These functions are special functions in Oracle SQL, and are not part of the DBMS_LOB
package.

/* In the new row of table Print_media,
 the columns ad_sourcetext and ad_fltextn are initialized using EMPTY_CLOB(),
 the columns ad_composite and ad_photo are initialized using EMPTY_BLOB(),
 the column formatted-doc in the nested table is initialized using
 EMPTY_BLOB(),
 the column logo in the column object is initialized using EMPTY_BLOB(): */
INSERT INTO Print_media
 VALUES (3060,11001, EMPTY_BLOB(), EMPTY_CLOB(),EMPTY_CLOB(),EMPTY_CLOB(),
 textdoc_tab(textdoc_typ ('HTML', EMPTY_BLOB())), EMPTY_BLOB(), NULL,
 adheader_typ('any header name', <any date>, 'ad header text goes here',
 EMPTY_BLOB()),
 'Press release goes here');

Inserting a Row by Initializing a LOB Locator Bind Variable
You can insert a row by initializing a LOB locator bind variable.

Examples for this use case are provided in several programmatic environments:

Topics:

• About Inserting Rows with LOB Locator Bind Variables

• PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

• C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

• COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable

• C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6-6

• Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

• SQL: Oracle Database SQL Language Reference, the INSERT statement

• C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions"

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives
— INSERT.

• C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide INSERT

• Java (JDBC):Oracle Database JDBC Developer's Guide "Working With LOBs" —
Creating and Populating a BLOB or CLOB Colum

About Inserting Rows with LOB Locator Bind Variables
You need to consider these points.

Preconditions

Before you can insert a row using this technique, the following conditions must be met:

• The table containing the source row must exist.

• The destination table must exist.

For details on creating tables containing LOB columns, see "LOB Storage
Parameters".

Usage Notes

For guidelines on how to INSERT and UPDATE a row containing a LOB when binds of
more than 4000 bytes are involved, see "Binds of All Sizes in INSERT and UPDATE
Operations".

Syntax

Review these syntax references for details on using this operation in each
programmatic environment:

PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
You can insert a row by initializing a LOB locator bind variable in PL/SQL

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/plsql/linsert.sql */

/* inserting a row through an insert statement */

CREATE OR REPLACE PROCEDURE insertLOB_proc (Lob_loc IN BLOB) IS
BEGIN
 /* Insert the BLOB into the row */
 DBMS_OUTPUT.PUT_LINE('------------ LOB INSERT EXAMPLE ------------');
 INSERT INTO print_media (product_id, ad_id, ad_photo)
 values (3106, 60315, Lob_loc);
END;
/

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6-7

C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
You can insert a row by initializing a LOB locator bind variable in C (OCI).

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/oci/linsert.c */

/* Insert the Locator into table using Bind Variables. */
#include <oratypes.h>
#include <lobdemo.h>
void insertLOB_proc(OCILobLocator *Lob_loc, OCIEnv *envhp,
 OCIError *errhp, OCISvcCtx *svchp, OCIStmt *stmthp)
{
 int product_id;
 OCIBind *bndhp3;
 OCIBind *bndhp2;
 OCIBind *bndhp1;
 text *insstmt =
 (text *) "INSERT INTO Print_media (product_id, ad_id, ad_sourcetext) \
 VALUES (:1, :2, :3)";

 printf ("----------- OCI Lob Insert Demo --------------\n");
 /* Insert the locator into the Print_media table with product_id=3060 */
 product_id = (int)3060;

 /* Prepare the SQL statement */
 checkerr (errhp, OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)
 strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));

 /* Binds the bind positions */
 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1,
 (void *) &product_id, (sb4) sizeof(product_id),
 SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 2,
 (void *) &product_id, (sb4) sizeof(product_id),
 SQLT_INT, (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 checkerr (errhp, OCIBindByPos(stmthp, &bndhp2, errhp, (ub4) 3,
 (void *) &Lob_loc, (sb4) 0, SQLT_CLOB,
 (void *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* Execute the SQL statement */
 checkerr (errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT));
}

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6-8

COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator
Bind Variable

You can insert a row by initializing a LOB locator bind variable in COBOL
(Pro*COBOL).

 * This file is installed in the following path when you install
 * the database: $ORACLE_HOME/rdbms/demo/lobs/procob/linsert.pco

 IDENTIFICATION DIVISION.
 PROGRAM-ID. INSERT-LOB.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 BLOB1 SQL-BLOB.
 01 USERID PIC X(11) VALUES "PM/password".
 EXEC SQL INCLUDE SQLCA END-EXEC.

 PROCEDURE DIVISION.
 INSERT-LOB.

 EXEC SQL WHENEVER SQLERROR DO PERFORM SQL-ERROR END-EXEC.
 EXEC SQL CONNECT :USERID END-EXEC.
 * Initialize the BLOB locator
 EXEC SQL ALLOCATE :BLOB1 END-EXEC.
 * Populate the LOB
 EXEC SQL WHENEVER NOT FOUND GOTO END-OF-BLOB END-EXEC.
 EXEC SQL
 SELECT AD_PHOTO INTO :BLOB1 FROM PRINT_MEDIA
 WHERE PRODUCT_ID = 2268 AND AD_ID = 21001 END-EXEC.

 * Insert the value with PRODUCT_ID of 3060
 EXEC SQL
 INSERT INTO PRINT_MEDIA (PRODUCT_ID, AD_PHOTO)
 VALUES (3060, 11001, :BLOB1)END-EXEC.

 * Free resources held by locator
 END-OF-BLOB.
 EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.
 EXEC SQL FREE :BLOB1 END-EXEC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

 SQL-ERROR.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 DISPLAY " ".
 DISPLAY "ORACLE ERROR DETECTED:".
 DISPLAY " ".
 DISPLAY SQLERRMC.
 EXEC SQL ROLLBACK WORK RELEASE END-EXEC.
 STOP RUN.

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6-9

Note:

For simplicity in demonstrating this feature, this example does not perform
the password management techniques that a deployed system normally
uses. In a production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and other
security recommendations.

C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind
Variable

You can insert a row by initializing a LOB locator bind variable in C/C++ (Pro*C/C++).

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/proc/linsert.pc */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertUseBindVariable_proc(Rownum, Lob_loc)
 int Rownum, Rownum2;
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL INSERT INTO Print_media (product_id, ad_id, ad_photo)
 VALUES (:Rownum, :Rownum2, :Lob_loc);
}
void insertBLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Lob_loc;

 /* Select the LOB from the row where product_id = 2268 and ad_id=21001: */
 EXEC SQL SELECT ad_photo INTO :Lob_loc
 FROM Print_media WHERE product_id = 2268 AND ad_id = 21001;

 /* Insert into the row where product_id = 3106 and ad_id = 13001: */
 insertUseBindVariable_proc(3106, 13001, Lob_loc);

 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6-10

void main()
{
 char *samp = "pm/password";
 EXEC SQL CONNECT :pm;
 insertBLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind
Variable

You can insert a row by initializing a LOB locator bind variable in Java (JDBC).

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/java/linsert.java */

// Core JDBC classes:
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

// Oracle Specific JDBC classes:
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class linsert
{
 public static void main (String args [])
 throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());
 // Connect to the database:
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "pm", "password");

 // It's faster when auto commit is off:
 conn.setAutoCommit (false);

 // Create a Statement:
 Statement stmt = conn.createStatement ();
 try
 {
 ResultSet rset = stmt.executeQuery (
 "SELECT ad_photo FROM Print_media WHERE product_id = 3106 AND ad_id = 13001");
 if (rset.next())
 {
 // retrieve the LOB locator from the ResultSet
 BLOB adphoto_blob = ((OracleResultSet)rset).getBLOB (1);
 OraclePreparedStatement ops =
 (OraclePreparedStatement) conn.prepareStatement(
"INSERT INTO Print_media (product_id, ad_id, ad_photo) VALUES (2268, "
+ "21001, ?)");
 ops.setBlob(1, adphoto_blob);
 ops.execute();
 conn.commit();

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

6-11

 conn.close();
 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
}

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
You can UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB().

Note:

Performance improves when you update the LOB with the actual value,
instead of using EMPTY_CLOB() or EMPTY_BLOB().

Preconditions

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the
LOB column must contain a locator that points to an empty or populated LOB value.
You can initialize a BLOB column value by using the function EMPTY_BLOB() as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

UPDATE Print_media
 SET ad_sourcetext = 'This is a One Line Story'
 WHERE product_id = 2268;

You can perform this initialization during CREATE TABLE (see "Creating a Table
Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

The following example shows a series of updates using the EMPTY_CLOB operation to
different data types.

UPDATE Print_media SET ad_sourcetext = EMPTY_CLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

UPDATE Print_media SET ad_fltextn = EMPTY_CLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

UPDATE Print_media SET ad_photo = EMPTY_BLOB()
 WHERE product_id = 3060 AND ad_id = 11001;

Chapter 6
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

6-12

See Also:

SQL: Oracle Database SQL Language Reference for more information on
UPDATE

Updating a Row by Selecting a LOB From Another Table
You can use the SQL UPDATE AS SELECT statement to update a row containing a LOB
column by selecting a LOB from another table.

To use this technique, you must update by means of a reference. For example, the
following code updates data from online_media:

Rem Updating a row by selecting a LOB from another table (persistent LOBs)

UPDATE Print_media SET ad_sourcetext =
 (SELECT * product_text FROM online_media WHERE product_id = 3060);
 WHERE product_id = 3060 AND ad_id = 11001;

Chapter 6
Updating a Row by Selecting a LOB From Another Table

6-13

Part II
Value Semantics LOBs

This part describes SQL semantics for LOBs supported in the SQL and PL/SQL
environments.

This part contains these chapters:

• SQL Semantics and LOBs

• PL/SQL Semantics for LOBs

• Migrating Columns from LONGs to LOBs

7
SQL Semantics and LOBs

Various SQL semantics are supported for LOBs.

These techniques allow you to use LOBs directly in SQL code and provide an
alternative to using LOB-specific APIs for some operations.

Topics:

• About Using LOBs in SQL

• SQL Functions and Operators Supported for Use with LOBs

• Implicit Conversion of LOB Data Types in SQL

• Unsupported Use of LOBs in SQL

• VARCHAR2 and RAW Semantics for LOBs

• Built-in Functions for Remote LOBs and BFILEs

About Using LOBs in SQL
You can access CLOB and NCLOB data types using SQL VARCHAR2 semantics, such as
SQL string operators and functions. (LENGTH functions can be used with BLOB data
types and CLOB and NCLOBs.) These techniques are beneficial in the following
situations:

• When performing operations on LOBs that are relatively small in size (up to about
100K bytes).

• After migrating your database from LONG columns to LOB data types, any SQL
string functions, contained in your existing PL/SQL application, continue to work
after the migration.

SQL semantics are not recommended in the following situations:

• When you use advanced features such as random access and piece-wise fetch,
you must use LOB APIs.

• When performing operations on LOBs that are relatively large in size (greater than
1MB) using SQL semantics can impact performance. Using the LOB APIs is
recommended in this situation.

Note:

SQL semantics are used with persistent and temporary LOBs. (SQL
semantics do not apply to BFILE columns because BFILE is a read-only
data type.)

7-1

SQL Functions and Operators Supported for Use with LOBs
Many SQL operators and functions that take VARCHAR2 columns as arguments also
accept LOB columns.

About SQL Functions and Operators for LOBs
This list summarizes those categories of SQL functions and operators that are
supported for use with LOBs. Details on individual functions and operators are given in
Table 7-1.

• Concatenation

• Comparison

(Some comparison functions are not supported for use with LOBs.)

• Character functions

• Conversion

(Some conversion functions are not supported for use with LOBs.)

The following categories of functions are not supported for use with LOBs:

• Aggregate functions

Note that although pre-defined aggregate functions are not supported for use with
LOBs, you can create user-defined aggregate functions to use with LOBs.

• Unicode functions

Details on individual functions and operators are in Table 7-1, which lists SQL
operators and functions that take VARCHAR2 types as operands or arguments, or return
a VARCHAR2 value. The SQL column identifies the functions and operators that are
supported for CLOB and NCLOB data types. (The LENGTH function is also supported for
the BLOB data type.)

The DBMS_LOB PL/SQL package supplied with Oracle Database supports using LOBs
with most of the functions listed in Table 7-1 as indicated in the PL/SQL column.

Note:

Operators and functions with No indicated in the SQL column of Table 7-1 do
not work in SQL queries used in PL/SQL blocks - even though some of these
operators and functions are supported for use directly in PL/SQL code.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information
about user-defined aggregate functions

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7-2

Implicit Conversion of CLOB to CHAR Types
Functions designated as CNV in the SQL or PL/SQL column of Table 7-1 are
performed by converting the CLOB to a character data type, such as VARCHAR2. In the
SQL environment, only the first 4K bytes of the CLOB are converted and used in the
operation; in the PL/SQL environment, only the first 32K bytes of the CLOB are
converted and used in the operation.

Table 7-1 SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Concatenation ||, CONCAT() Select clobCol || clobCol2 from tab; Yes Yes

Comparison = , !=, >, >=, <, <=, <>,
^=

if clobCol=clobCol2 then... No Yes

Comparison IN, NOT IN if clobCol NOT IN (clob1, clob2, clob3)
then...

No Yes

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol2
from...) then...

No N/A

Comparison BETWEEN if clobCol BETWEEN clobCol2 and
clobCol3 then...

No Yes

Comparison LIKE [ESCAPE] if clobCol LIKE '%pattern%' then... Yes Yes

Comparison IS [NOT] NULL where clobCol IS NOT NULL Yes Yes

Character
Functions

INITCAP, NLS_INITCAP select INITCAP(clobCol) from... CNV CNV

Character
Functions

LOWER, NLS_LOWER,
UPPER, NLS_UPPER

...where LOWER(clobCol1) =
LOWER(clobCol2)

Yes Yes

Character
Functions

LPAD, RPAD select RPAD(clobCol, 20, ' La') from... Yes Yes

Character
Functions

TRIM, LTRIM, RTRIM ...where RTRIM(LTRIM(clobCol,'ab'),
'xy') = 'cd'

Yes Yes

Character
Functions

REPLACE select REPLACE(clobCol, 'orig','new')
from...

Yes Yes

Character
Functions

SOUNDEX ...where SOUNDEX(clobCOl) =
SOUNDEX('SMYTHE')

CNV CNV

Character
Functions

SUBSTR ...where substr(clobCol, 1,4) = like
'THIS'

Yes Yes

Character
Functions

TRANSLATE select TRANSLATE(clobCol,
'123abc','NC') from...

CNV CNV

Character
Functions

ASCII select ASCII(clobCol) from... CNV CNV

Character
Functions

INSTR ...where instr(clobCol, 'book') = 11 Yes Yes

Character
Functions

LENGTH ...where length(clobCol) != 7; Yes Yes

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7-3

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Character
Functions

NLSSORT ...where NLSSORT (clobCol,'NLS_SORT =
German') > NLSSORT ('S','NLS_SORT =
German')

CNV CNV

Character
Functions

INSTRB, SUBSTRB,
LENGTHB

These functions are supported only for CLOBs that
use single-byte character sets. (LENGTHB is
supported for BLOBs and CLOBs.)

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_LIKE This function searches a character column for a
pattern. Use this function in the WHERE clause of a
query to return rows matching the regular
expression you specify.

See Also:

• Oracle Database SQL Language Reference
for syntax details on SQL functions for regular
expressions.

• Oracle Database Development Guide for
information on using regular expressions with
the database.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_REPLACE This function searches for a pattern in a character
column and replaces each occurrence of that
pattern with the pattern you specify.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_INSTR This function searches a string for a given
occurrence of a regular expression pattern. You
specify which occurrence you want to find and the
start position to search from. This function returns
an integer indicating the position in the string
where the match is found.

Yes Yes

Character
Functions -
Regular
Expressions

REGEXP_SUBSTR This function returns the actual substring matching
the regular expression pattern you specify.

Yes Yes

Conversion CHARTOROWID CHARTOROWID(clobCol) CNV CNV

Conversion COMPOSE COMPOSE('string')

Returns a Unicode string given a string in the data
type CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR2,
NCLOB. An o code point qualified by an umlaut
code point is returned as the o-umlaut code point.

CNV CNV

Conversion DECOMPOSE DECOMPOSE('str' [CANONICAL |
COMPATIBILITY])

Valid for Unicode character arguments. Returns a
Unicode string after decomposition in the same
character set as the input. o-umlaut code point is
returned as the o code point followed by the umlaut
code point.

CNV CNV

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7-4

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs

Category Operator / Function SQL Example / Comments SQL PL/SQL

Conversion HEXTORAW HEXTORAW(CLOB) No CNV

Conversion CONVERT select
CONVERT(clobCol,'WE8DEC','WE8HP')
from...

Yes CNV

Conversion TO_DATE TO_DATE(clobCol) CNV CNV

Conversion TO_NUMBER TO_NUMBER(clobCol) CNV CNV

Conversion TO_TIMESTAMP TO_TIMESTAMP(clobCol) No CNV

Conversion TO_MULTI_BYTE

TO_SINGLE_BYTE

TO_MULTI_BYTE(clobCol)

TO_SINGLE_BYTE(clobCol)

CNV CNV

Conversion TO_CHAR TO_CHAR(clobCol) Yes Yes

Conversion TO_NCHAR TO_NCHAR(clobCol) Yes Yes

Conversion TO_LOB INSERT INTO... SELECT
TO_LOB(longCol)...

Note that TO_LOB can only be used to create or
insert into a table with LOB columns as SELECT
FROM a table with a LONG column.

N/A N/A

Conversion TO_CLOB TO_CLOB(varchar2Col) Yes Yes

Conversion TO_NCLOB TO_NCLOB(varchar2Clob) Yes Yes

Aggregate
Functions

COUNT select count(clobCol) from... No N/A

Aggregate
Functions

MAX, MIN select MAX(clobCol) from... No N/A

Aggregate
Functions

GROUPING select grouping(clobCol) from... group
by cube (clobCol);

No N/A

Other
Functions

GREATEST, LEAST select GREATEST (clobCol1, clobCol2)
from...

No CNV

Other
Functions

DECODE select DECODE(clobCol, condition1,
value1, defaultValue) from...

CNV CNV

Other
Functions

NVL select NVL(clobCol,'NULL') from... Yes Yes

Other
Functions

DUMP select DUMP(clobCol) from... No N/A

Other
Functions

VSIZE select VSIZE(clobCol) from... No N/A

Unicode INSTR2, SUBSTR2,
LENGTH2, LIKE2

These functions use UCS2 code point semantics. No CNV

Unicode INSTR4, SUBSTR4,
LENGTH4, LIKE4

These functions use UCS4 code point semantics. No CNV

Unicode INSTRC, SUBSTRC,
LENGTHC, LIKEC

These functions use complete character
semantics.

No CNV

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7-5

CLOBs and NCLOBs Do Not Follow Session Collation Settings
Standard operators that operate on CLOBs and NCLOBs without first converting them to
VARCHAR2 or NVARCHAR2, (those marked Yes in the SQL or PL/SQL columns of
Table 7-1), do not behave linguistically, except for REGEXP functions. Binary
comparison of the character data is performed irrespective of the NLS_COMP and
NLS_SORT parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in,
the linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR2
values.

• REGEXP_LIKE

• REGEXP_REPLACE

• REGEXP_INSTR

• REGEXP_SUBSTR

• REGEXP_COUNT

Note:

CLOBs and NCLOBs support the default USING NLS_COMP option.

See Also:

Oracle Database Reference for more information about NLS_COMP

UNICODE Support
Variations on certain functions are provided for Unicode support.

Variations on the INSTR, SUBSTR, LENGTH, and LIKE functions are provided for Unicode
support. (These variations are indicated as Unicode in the Category column of
Table 7-1.)

See Also:

• Oracle Database Globalization Support Guide

• Oracle Database Development Guide

• Oracle Database SQL Language Reference

Oracle Database PL/SQL Packages and Types Referencefor a detailed
description on the usage of UNICODE functions

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7-6

Codepoint Semantics
Codepoint semantics of the INSTR, SUBSTR, LENGTH, and LIKE functions, described in
Table 7-1, differ depending on the data type of the argument passed to the function.
These functions use different codepoint semantics depending on whether the
argument is a VARCHAR2 or a CLOB type as follows:

• When the argument is a CLOB, UCS2 codepoint semantics are used for all
character sets.

• When the argument is a character type, such as VARCHAR2, the default codepoint
semantics are used for the given character set:

– UCS2 codepoint semantics are used for AL16UTF16 and UTF8 character
sets.

– UCS4 codepoint semantics are used for all other character sets, such as
AL32UTF8.

• If you are storing character data in a CLOB or NCLOB, then note that the amount and
offset parameters for any APIs that read or write data to the CLOB or NCLOB are
specified in UCS2 codepoints. In some character sets, a full character consists
one or more UCS2 codepoints called a surrogate pair. In this scenario, you must
ensure that the amount or offset you specify does not cut into a full character. This
avoids reading or writing a partial character.

• Oracle Database helps to detect half surrogate pair on read or write boundaries in
case of SQL functions and in case of read/write through LOB APIs. The behavior
is as follows:

– If the starting offset is in the middle of a surrogate pair, an error is raised for
both read and write operations.

– If the read amount reads only a partial character, increment or decrement the
amount by 1 to read complete characters.

Note:

The output amount may vary from the input amount.

– If the write amount overwrites a partial character, an error is raised to prevent
the corruption of existing data caused by overwriting of a partial character in
the destination CLOB or NCLOB.

Note:

This check only applies to the existing data in the CLOB or NCLOB.
You must make sure that the incoming buffer for the write operation
starts and ends in complete characters.

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

7-7

Return Values for SQL Semantics on LOBs
The return type of a function or operator that takes a LOB or VARCHAR2 is the same as
the data type of the argument passed to the function or operator.

Functions that take more than one argument, such as CONCAT, return a LOB data type
if one or more arguments is a LOB. For example, CONCAT(CLOB, VARCHAR2) returns a
CLOB.

See Also:

Oracle Database SQL Language Reference for details on the CONCAT
function and the concatenation operator (||).

A LOB instance is always accessed and manipulated through a LOB locator. This is
also true for return values: SQL functions and operators return a LOB locator when the
return value is a LOB instance.

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB
instances in tables (persistent LOBs) are not modified by SQL functions, even when
the function is used in the SELECT list of a query.

LENGTH Return Value for LOBs
The return value of the LENGTH function differs depending on whether the argument
passed is a LOB or a character string:

• If the input is a character string of length zero, then LENGTH returns NULL.

• For a CLOB of length zero, or an empty locator such as that returned by
EMPTY_CLOB(), the LENGTH and DBMS_LOB.GETLENGTH functions return 0.

Implicit Conversion of LOB Data Types in SQL
Some LOB data types support implicit conversion and can be used in operations such
as cross-type assignment and parameter passing. These conversions are processed
at the SQL layer and can be performed in all client interfaces that use LOB types.

Implicit Conversion Between CLOB and NCLOB Data Types in SQL
The database enables you to perform operations such as cross-type assignment and
cross-type parameter passing between CLOB and NCLOB data types. The database
performs implicit conversions between these types when necessary to preserve
properties such as character set formatting.

Note that, when implicit conversions occur, each character in the source LOB is
changed to the character set of the destination LOB, if needed. In this situation, some
degradation of performance may occur if the data size is large. When the character set
of the destination and the source are the same, there is no degradation of
performance.

Chapter 7
Implicit Conversion of LOB Data Types in SQL

7-8

After an implicit conversion between CLOB and NCLOB types, the destination LOB is
implicitly created as a temporary LOB. This new temporary LOB is independent from
the source LOB. If the implicit conversion occurs as part of a define operation in a
SELECT statement, then any modifications to the destination LOB do not affect the
persistent LOB in the table that the LOB was selected from as shown in the following
example:

SQL> -- check lob length before update
SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

SQL>
SQL> declare
 2 clob1 clob;
 3 amt number:=10;
 4 BEGIN
 5 -- select a clob column into a clob, no implicit convesion
 6 SELECT ad_sourcetext INTO clob1 FROM Print_media
 7 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;
 8
 9 dbms_lob.trim(clob1, amt); -- Trim the selected lob to 10 bytes
 10 END;
 11 /

PL/SQL procedure successfully completed.

SQL> -- Modification is performed on clob1 which points to the
SQL> -- clob column in the table
SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 10

SQL>
SQL> rollback;

Rollback complete.

SQL> -- check lob length before update
SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

SQL>
SQL> declare
 2 nclob1 nclob;
 3 amt number:=10;
 4 BEGIN
 5
 6 -- select a clob column into a nclob, implicit conversion occurs
 7 SELECT ad_sourcetext INTO nclob1 FROM Print_media
 8 WHERE product_id=3106 and ad_id=13001 FOR UPDATE;

Chapter 7
Implicit Conversion of LOB Data Types in SQL

7-9

 9
 10 dbms_lob.trim(nclob1, amt); -- Trim the selected lob to 10 bytes
 11 END;
 12 /

PL/SQL procedure successfully completed.

SQL> -- Modification to nclob1 does not affect the clob in the table,
SQL> -- because nclob1 is a independent temporary LOB

SQL> select dbms_lob.getlength(ad_sourcetext) from Print_media
 2 where product_id=3106 and ad_id = 13001;

DBMS_LOB.GETLENGTH(AD_SOURCETEXT)

 205

See Also:

• "Implicit Conversions Between CLOB and VARCHAR2" for information
on PL/SQL semantics support for implicit conversions between CLOB and
VARCHAR2 types.

• "Converting Character Sets Implicitly with LOBs" for more information on
implicit character set conversions when loading LOBs from BILEs.

• Oracle Database SQL Language Reference for details on implicit
conversions supported for all data types.

Unsupported Use of LOBs in SQL
Table 7-2 lists SQL operations that are not supported on LOB columns.

Table 7-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

SELECT DISTINCT SELECT DISTINCT clobCol from...

SELECT clause

ORDER BY

SELECT... ORDER BY clobCol

SELECT clause

GROUP BY

SELECT avg(num) FROM...

GROUP BY clobCol

UNION, INTERSECT, MINUS

(Note that UNION ALL works for LOBs.)

SELECT clobCol1 from tab1 UNION SELECT clobCol2 from
tab2;

Join queries SELECT... FROM... WHERE tab1.clobCol = tab2.clobCol

Index columns CREATE INDEX clobIndx ON tab(clobCol)...

Chapter 7
Unsupported Use of LOBs in SQL

7-10

VARCHAR2 and RAW Semantics for LOBs
Semantics used with VARCHAR2 and RAW data types also apply to LOBs.

About VARCHAR2 and RAW Semantics for LOBs
These semantics, used with VARCHAR2 and RAW data types, also apply to LOBs:

• Defining a CHAR buffer on a CLOB

You can define a VARCHAR2 for a CLOB and RAW for a BLOB column. You can also
define CLOB and BLOB types for VARCHAR2 and RAW columns.

• Selecting a CLOB column into a CHAR buffer or VARCHAR2

If a CLOB column is selected into a VARCHAR2 variable, then data stored in the CLOB
column is retrieved and put into the CHAR buffer. If the buffer is not large enough to
contain all the CLOB data, then a truncation error is thrown and no data is written to
the buffer. After successful completion of the SELECT operation, the VARCHAR2
variable holds as a regular character buffer.

In contrast, when a CLOB column is selected into a local CLOB variable, the CLOB
locator is fetched.

• Selecting a BLOB column into a RAW

When a BLOB column is selected into a RAW variable, the BLOB data is copied into
the RAW buffer. If the size of the BLOB exceeds the size of the buffer, then a
truncation error is thrown and no data is written to the buffer.

LOBs Returned from SQL Functions
When a LOB is returned from a SQL function, the result returned is a temporary LOB.

Your application should view the temporary LOB as local storage for the data returned
from the SELECT operation as follows:

• In PL/SQL, the temporary LOB has the same lifetime (duration) as other local
PL/SQL program variables. It can be passed to subsequent SQL or PL/SQL
VARCHAR2 functions or queries as a PL/SQL local variable. The temporary LOB
goes out of scope at the end of the program block at which time, the LOB is freed.
These are the same semantics as those for PL/SQL VARCHAR2 variables. At any
time, nonetheless, you can use a DBMS_LOB.FREETEMPORARY() call to release the
resources taken by the local temporary LOBs.

Note:

If the SQL statement returns a LOB or a LOB is an OUT parameter for a
PL/SQL function or procedure, you must test if it is a temporary LOB,
and if it is, then free it after you are done with it.

• In OCI, the temporary LOBs returned from SQL queries are always in session
duration, unless a user-defined duration is present, in which case, the temporary
LOBs are in the user-defined duration.

Chapter 7
VARCHAR2 and RAW Semantics for LOBs

7-11

WARNING:

Ensure that your temporary tablespace is large enough to store all
temporary LOB results returned from queries in your program(s).

The following example illustrates selecting out a CLOB column into a VARCHAR2 and
returning the result as a CHAR buffer of declared size:

DECLARE
 vc1 VARCHAR2(32000);
 lb1 CLOB;
 lb2 CLOB;
BEGIN
 SELECT clobCol1 INTO vc1 FROM tab WHERE colID=1;
 -- lb1 is a temporary LOB
 SELECT clobCol2 || clobCol3 INTO lb1 FROM tab WHERE colID=2;

 lb2 := vc1|| lb1;
 -- lb2 is a still temporary LOB, so the persistent data in the database
 -- is not modified. An update is necessary to modify the table data.
 UPDATE tab SET clobCol1 = lb2 WHERE colID = 1;

DBMS_LOB.FREETEMPORARY(lb2); -- Free up the space taken by lb2

<... some more queries ...>

END; -- at the end of the block, lb1 is automatically freed

IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs
You can use the IS NULL and IS NOT NULL operators with LOB columns.

When used with LOBs, the IS NULL and IS NOT NULL operators determine whether a
LOB locator is stored in the row.

Note:

In the SQL 92 standard, a character string of length zero is distinct from a
NULL string. The return value of IS NULL differs when you pass a LOB
compared to a VARCHAR2:

• When you pass an initialized LOB of length zero to the IS NULL function,
zero (FALSE) is returned. These semantics are compliant with the SQL
standard.

• When you pass a VARCHAR2 of length zero to the IS NULL function, TRUE
is returned.

WHERE Clause Usage with LOBs
SQL functions with LOBs as arguments, except functions that compare LOB values,
are allowed in predicates of the WHERE clause.

Chapter 7
VARCHAR2 and RAW Semantics for LOBs

7-12

The LENGTH function, for example, can be included in the predicate of the WHERE
clause:

CREATE TABLE t (n NUMBER, c CLOB);
INSERT INTO t VALUES (1, 'abc');

SELECT * FROM t WHERE c IS NOT NULL;
SELECT * FROM t WHERE LENGTH(c) > 0;
SELECT * FROM t WHERE c LIKE '%a%';
SELECT * FROM t WHERE SUBSTR(c, 1, 2) LIKE '%b%';
SELECT * FROM t WHERE INSTR(c, 'b') = 2;

Built-in Functions for Remote LOBs and BFILEs

See Also:

Built-in Functions for Remote LOBs and BFILEs for more information about
built-in functions and user-defined functions supported on remote LOBs and
BFILEs

Chapter 7
Built-in Functions for Remote LOBs and BFILEs

7-13

8
PL/SQL Semantics for LOBs

Topics:

• PL/SQL Statements and Variables

• Implicit Conversions Between CLOB and VARCHAR2

• Explicit Conversion Functions

• PL/SQL Functions for Remote LOBs and BFILEs

PL/SQL Statements and Variables
In PL/SQL, semantic changes have been made.

Note:

Most discussions concerning PL/SQL semantics, and CLOBs and VARCHAR2s,
also apply to BLOBs and RAWs, unless otherwise noted. In the text, BLOB and
RAW are not explicitly mentioned.

PL/SQL semantics support is described in the following sections:

• Implicit Conversions Between CLOB and VARCHAR2

• Explicit Conversion Functions

• VARCHAR2 and CLOB in PL/SQL Built-In Functions

Implicit Conversions Between CLOB and VARCHAR2
Implicit conversions from CLOB to VARCHAR2 and from VARCHAR2 to CLOB data types are
allowed in PL/SQL.

These conversions enable you to perform the following operations in your application:

• CLOB columns can be selected into VARCHAR2 PL/SQL variables

• VARCHAR2 columns can be selected into CLOB variables

• Assignment and parameter passing between CLOBs and VARCHAR2s

Accessing a CLOB as a VARCHAR2 in PL/SQL

The following example illustrates the way CLOB data is accessed when the CLOBs are
treated as VARCHAR2s:

declare
 myStoryBuf VARCHAR2(4001);
BEGIN

8-1

 SELECT ad_sourcetext INTO myStoryBuf FROM print_media WHERE ad_id = 12001;
 -- Display Story by printing myStoryBuf directly
END;
/

Assigning a CLOB to a VARCHAR2 in PL/SQL

declare
myLOB CLOB;
BEGIN
SELECT 'ABCDE' INTO myLOB FROM print_media WHERE ad_id = 11001;
-- myLOB is a temporary LOB.
-- Use myLOB as a lob locator
 DBMS_OUTPUT.PUT_LINE('Is temp? '||DBMS_LOB.ISTEMPORARY(myLOB));
END;
/

Explicit Conversion Functions
In SQL and PL/SQL, the certain explicit conversion functions convert other data types
to and from CLOB, NCLOB, and BLOB as part of the LONG-to-LOB migration:

• TO_CLOB(): Converting from VARCHAR2, NVARCHAR2, or NCLOB to a CLOB

• TO_NCLOB(): Converting from VARCHAR2, NVARCHAR2, or CLOB to an NCLOB

• TO_BLOB(): Converting from RAW to a BLOB

• TO_CHAR() converts a CLOB to a CHAR type. When you use this function to convert a
character LOB into the database character set, if the LOB value to be converted is
larger than the target type, then the database returns an error. Implicit conversions
also raise an error if the LOB data does not fit.

• TO_NCHAR() converts an NCLOB to an NCHAR type. When you use this function to
convert a character LOB into the national character set, if the LOB value to be
converted is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

• CAST does not directly support any of the LOB data types. When you use CAST to
convert a CLOB value into a character data type, an NCLOB value into a national
character data type, or a BLOB value into a RAW data type, the database implicitly
converts the LOB value to character or raw data and then explicitly casts the
resulting value into the target data type. If the resulting value is larger than the
target type, then the database returns an error.

Other explicit conversion functions are not supported, such as, TO_NUMBER(), see
Table 7-1.

Note:

LOBs do not support duplicate LONG binds.

Chapter 8
Explicit Conversion Functions

8-2

See Also:

Migrating Columns from LONGs to LOBs for more information about
conversion functions

VARCHAR2 and CLOB in PL/SQL Built-In Functions
CLOB and VARCHAR2 are two distinct types.

However, depending on the usage, a CLOB can be passed to SQL and PL/SQL
VARCHAR2 built-in functions, used exactly like a VARCHAR2. Or the variable can be
passed into DBMS_LOB APIs, acting like a LOB locator. See the following combined
example,"CLOB Variables in PL/SQL".

PL/SQL VARCHAR2 functions and operators can take CLOBs as arguments or operands.

When the size of a VARCHAR2 variable is not large enough to contain the result from a
function that returns a CLOB, or a SELECT on a CLOB column, an error is raised and no
operation is performed. This is consistent with VARCHAR2 semantics.

CLOB Variables in PL/SQL

1 declare
2 myStory CLOB;
3 revisedStory CLOB;
4 myGist VARCHAR2(100);
5 revisedGist VARCHAR2(100);
6 BEGIN
7 -- select a CLOB column into a CLOB variable
8 SELECT Story INTO myStory FROM print_media WHERE product_id=10;
9 -- perform VARCHAR2 operations on a CLOB variable
10 revisedStory := UPPER(SUBSTR(myStory, 100, 1));
11 -- revisedStory is a temporary LOB
12 -- Concat a VARCHAR2 at the end of a CLOB
13 revisedStory := revisedStory || myGist;
14 -- The following statement raises an error because myStory is
15 -- longer than 100 bytes
16 myGist := myStory;
17 END;

Please note that in line 10 of "CLOB Variables in PL/SQL", a temporary CLOB is
implicitly created and is pointed to by the revisedStory CLOB locator. In the current
interface the line can be expanded as:

buffer VARCHAR2(32000)
DBMS_LOB.CREATETEMPORARY(revisedStory);
buffer := UPPER(DBMS_LOB.SUBSTR(myStory,100,1));
DBMS_LOB.WRITE(revisedStory,length(buffer),1, buffer);

In line 13, myGist is appended to the end of the temporary LOB, which has the same
effect of:

DBMS_LOB.WRITEAPPEND(revisedStory, myGist, length(myGist));

Chapter 8
Explicit Conversion Functions

8-3

In some occasions, implicitly created temporary LOBs in PL/SQL statements can
change the representation of LOB locators previously defined. Consider the next
example.

Change in Locator-Data Linkage

1 declare
2 myStory CLOB;
3 amt number:=100;
4 buffer VARCHAR2(100):='some data';
5 BEGIN
6 -- select a CLOB column into a CLOB variable
7 SELECT Story INTO myStory FROM print_media WHERE product_id=10;
8 DBMS_LOB.WRITE(myStory, amt, 1, buf);
9 -- write to the persistent LOB in the table
10
11 myStory:= UPPER(SUBSTR(myStory, 100, 1));
12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.
13 -- Changes are not reflected in the database table from this point on.
14
15 update print_media set Story = myStory WHERE product_id = 10;
16 -- an update is necessary to synchronize the data in the table.
17 END;

After line 7, myStory represents a persistent LOB in print_media.

The DBMS_LOB.WRITE call in line 8 directly writes the data to the table.

No UPDATE statement is necessary. Subsequently in line 11, a temporary LOB is
created and assigned to myStory because myStory is now used like a local VARCHAR2
variable. The LOB locator myStory now points to the newly-created temporary LOB.

Therefore, modifications to myStory are no longer reflected in the database. To
propagate the changes to the database table, an UPDATE statement becomes
necessary now. Note again that for the previous persistent LOB, the UPDATE is not
required.

Note:

If the SQL statement returns a LOB or a LOB is an OUT parameter for a
PL/SQL function or procedure, you must test if it is a temporary LOB, and if it
is, then free it after you are done with it.

Freeing Temporary LOBs Automatically and Manually

Temporary LOBs created in a program block as a result of a SELECT or an assignment
are freed automatically at the end of the PL/SQL block or function or procedure. You
must also free the temporary LOBs that were created with DBMS_LOB.CREATETEMPORARY
to reclaim system resources and temporary tablespace. Do this by calling
DBMS_LOB.FREETEMPORARY on the CLOB variable.

declare
 Story1 CLOB;
 Story2 CLOB;
 StoryCombined CLOB;
 StoryLower CLOB;

Chapter 8
Explicit Conversion Functions

8-4

BEGIN
 SELECT Story INTO Story1 FROM print_media WHERE product_ID = 1;
 SELECT Story INTO Story2 FROM print_media WHERE product_ID = 2;
 StoryCombined := Story1 || Story2; -- StoryCombined is a temporary LOB
 -- Free the StoryCombined manually to free up space taken
 DBMS_LOB.FREETEMPORARY(StoryCombined);
 StoryLower := LOWER(Story1) || LOWER(Story2);
END; -- At the end of block, StoryLower is freed.

PL/SQL Functions for Remote LOBs and BFILEs

See Also:

PL/SQL Functions for Remote LOBs and BFILEs for PL/SQL functions that
support remote LOBs and BFILEs

Chapter 8
PL/SQL Functions for Remote LOBs and BFILEs

8-5

9
Data Interface for Persistent LOBs

Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

Topics:

• Overview of the Data Interface for Persistent LOBs

• Benefits of Using the Data Interface for Persistent LOBs

• Using the Data Interface for Persistent LOBs in PL/SQL

• The Data Interface Used for Persistent LOBs in OCI

• The Data Interface Used with Persistent LOBs in Java

• The Data Interface Used with Remote LOBs

Overview of the Data Interface for Persistent LOBs
The data interface for persistent LOBs includes a set of Java, PL/SQL, and OCI APIs
that are extended to work with LOB data types.

These APIs, originally designed for use with legacy data types such as LONG, LONG RAW,
and VARCHAR2, can also be used with the corresponding LOB data types shown in
Table 9-1 and Table 9-2. These tables show the legacy data types in the bind or define
type column and the corresponding supported LOB data type in the LOB column type
column. You can use the data interface for LOBs to store and manipulate character
data and binary data in a LOB column just as if it were stored in the corresponding
legacy data type.

Note:

The data interface works for LOB columns and LOBs that are attributes of
objects. In this chapter LOB columns means LOB columns and LOB
attributes.

You can use array bind and define interfaces to insert and select multiple
rows in one round-trip.

While most of this discussion focuses on character data types, the same concepts
apply to the full set of character and binary data types listed in Table 9-1 and
Table 9-2. CLOB also means NCLOB in these tables.

9-1

Table 9-1 Corresponding LONG and LOB Data Types in SQL and PL/SQL

Bind or Define Type LOB Column Type Used For Storing

CHAR CLOB Character data

LONG CLOB Character data

VARCHAR2 CLOB Character data

LONG RAW BLOB Binary data

RAW BLOB Binary data

Table 9-2 Corresponding LONG and LOB Data Types in OCI

Bind or Define Type LOB Column Type Used For Storing

SQLT_AFC(n) CLOB Character data

SQLT_CHR CLOB Character data

SQLT_LNG CLOB Character data

SQLT_VCS CLOB Character data

SQLT_BIN BLOB Binary data

SQLT_LBI BLOB Binary data

SQLT_LVB BLOB Binary data

Benefits of Using the Data Interface for Persistent LOBs
Using the data interface for persistent LOBs has the following benefits:

• If your application uses LONG data types, then you can use the same application
with LOB data types with little or no modification of your existing application
required. To do so, just convert LONG audiotape columns in your tables to LOB
audiotape columns as discussed in Migrating Columns from LONGs to LOBs.

• Performance is better for OCI applications that use sequential access techniques.
A piecewise INSERT or fetch using the data interface has comparable performance
to using OCI functions like OCILobRead2() and OCILobWrite2(). Because the data
interface allows more than 4K bytes of data to be inserted into a LOB in a single
OCI call, a round-trip to the server is saved.

• You can read LOB data in one OCIStmtFetch() call, instead of fetching the LOB
locator first and then calling OCILobRead2(). This improves performance when you
want to read LOB data starting at the beginning.

• You can use array bind and define interfaces to insert and select multiple rows
with LOBs in one round trip.

Using the Data Interface for Persistent LOBs in PL/SQL
The data interface enables you to use LONG and LOB data types listed in Table 9-1 to
perform the following operations in PL/SQL:

Chapter 9
Benefits of Using the Data Interface for Persistent LOBs

9-2

About Using the Data Interface for Persistent LOBs in PL/SQL
• INSERT or UPDATE character data stored in datatypes such as VARCHAR2, CHAR, or

LONG into a CLOB column.

• INSERT or UPDATE binary data stored in datatypes such as RAW or LONG RAW into a
BLOB column.

• Use the SELECT statement on CLOB columns to select data into a character buffer
variable such as CHAR, LONG, or VARCHAR2.

• Use the SELECT statement on BLOB columns to select data into a binary buffer
variable such as RAW and LONG RAW.

• Make cross-type assignments (implicit type conversions) between CLOB and
VARCHAR2, CHAR, or LONG variables.

• Make cross-type assignments (implicit type conversions) between BLOB and RAW or
LONG RAW variables.

• Pass LOB datatypes to functions defined to accept LONG datatypes or pass LONG
datatypes to functions defined to accept LOB datatypes. For example, you can
pass a CLOB instance to a function defined to accept another character type, such
as VARCHAR2, CHAR, or LONG.

• Use CLOBs with other PL/SQL functions and operators that accept VARCHAR2
arguments such as INSTR and SUBSTR.

Note:

When using the data interface for LOBs with the SELECT statement in PL/
SQL, you cannot specify the amount you want to read. You can only
specify the buffer length of your buffer. If your buffer length is smaller
than the LOB data length, then the database throws an exception.

See Also:

– SQL Semantics and LOBs for details on LOB support in SQL
statements

– Some Implicit Conversions Are Not Supported for LOB Data Types

– Passing CLOBs to SQL and PL/SQL Built-In Functions for the
complete list of functions that accept VARCHAR2 arguments such as
INSTR and SUBSTR

Guidelines for Accessing LOB Columns Using the Data Interface in
SQL and PL/SQL

This section describes techniques you use to access LOB columns or attributes using
the data interface for persistent LOBs.

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-3

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL
statements, such as INSERT, UPDATE, and SELECT.

There is no piecewise INSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the
amount of data that can be accessed from a LOB column or attribute is limited by the
maximum character buffer size. PL/SQL supports character buffer sizes up to 32KB - 1
(32767 bytes). For this reason, only LOBs less than 32K bytes in size can be
accessed by PL/SQL applications using the data interface for persistent LOBs.

If you must access more than 32KB -1 using the data interface, then you must make
OCI calls from the PL/SQL code to use the APIs for piece-wise insert and fetch.

Use the following guidelines for using the data interface to access LOB columns or
attributes:

• INSERT operations

You can INSERT into tables containing LOB columns or attributes using regular
INSERT statements in the VALUES clause. The field of the LOB column can be a
literal, a character datatype, a binary datatype, or a LOB locator.

• UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET
statements. In the SET clause, the new value can be a literal, a character datatype,
a binary datatype, or a LOB locator.

• 4000 byte limit on hexadecimal to raw and raw to hexadecimal conversions

The database does not do implicit hexadecimal to RAW or RAW to hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a buffer
of character data to a binary datatype column, and you cannot bind a buffer of
binary data to a character datatype column if the buffer is over 4000 bytes in size.
Attempting to do so results in your column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR2 buffer to a LONG RAW or a BLOB column if
the buffer is more than 4000 bytes in size. Similarly, you cannot bind a RAW buffer
to a LONG or a CLOB column if the buffer is more than 4000 bytes in size.

• SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/
SQL. If the LOB column or attribute is longer than the buffer size, then an
exception is raised without filling the buffer with any data. LOB columns or
attributes can also be selected into LOB locators.

Implicit Assignment and Parameter Passing
Implicit assignment and parameter passing are supported for LOB columns.

For the data types listed in Table 9-1 and Table 9-2, you can pass or assign: any
character type to any other character type, or any binary type to any other binary type
using the data interface for persistent LOBs.

Implicit assignment works for variables declared explicitly and for variables declared
by referencing an existing column type using the %TYPE attribute as show in the
following example. This example assumes that column long_col in table t has been
migrated from a LONG to a CLOB column.

CREATE TABLE t (long_col LONG); -- Alter this table to change LONG column to LOB
DECLARE

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-4

 a VARCHAR2(100);
 b t.long_col%type; -- This variable changes from LONG to CLOB
BEGIN
 SELECT * INTO b FROM t;
 a := b; -- This changes from "VARCHAR2 := LONG to VARCHAR2 := CLOB
 b := a; -- This changes from "LONG := VARCHAR2 to CLOB := VARCHAR2
END;

Implicit parameter passing is allowed between functions and procedures. For example,
you can pass a CLOB to a function or procedure where the formal parameter is defined
as a VARCHAR2.

Note:

The assigning a VARCHAR2 buffer to a LOB variable is somewhat less efficient
than assigning a VARCHAR2 to a LONG variable because the former involves
creating a temporary LOB. Therefore, PL/SQL users experience a slight
deterioration in the performance of their applications.

Passing CLOBs to SQL and PL/SQL Built-In Functions
Implicit parameter passing is also supported for built-in PL/SQL functions that accept
character data. For example, INSTR can accept a CLOB and other character data.

Any SQL or PL/SQL built-in function that accepts a VARCHAR2 can accept a CLOB as an
argument. Similarly, a VARCHAR2 variable can be passed to any DBMS_LOB API for any
parameter that takes a LOB locator.

See Also:

SQL Semantics and LOBs

Explicit Conversion Functions
In PL/SQL, these explicit conversion functions convert other data types to CLOB and
BLOB datatypes as follows:

• TO_CLOB() converts LONG, VARCHAR2, and CHAR to CLOB

• TO_BLOB() converts LONG RAW and RAW to BLOB

Also note that the conversion function TO_CHAR() can convert a CLOB to a CHAR type.

Calling PL/SQL and C Procedures from SQL
When a PL/SQL or C procedure is called from SQL, buffers with more than 4000 bytes
of data are not allowed.

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-5

Calling PL/SQL and C Procedures from PL/SQL
You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an
actual parameter where CHR is the formal parameter, or vice versa. The same holds for
BLOBs and RAWs.

One example of when these cases can arise is when either the formal or the actual
parameter is an anchored type, that is, the variable is declared using the
table_name.column_name%type syntax.

PL/SQL procedures or functions can accept a CLOB or a VARCHAR2 as a formal
parameter. For example the PL/SQL procedure could be one of the following:

• When the formal parameter is a CLOB:

CREATE OR REPLACE PROCEDURE get_lob(table_name IN VARCHAR2, lob INOUT
CLOB) AS
 ...
BEGIN
 ...
END;
/

• When the formal parameter is a VARCHAR2:

CREATE OR REPLACE PROCEDURE get_lob(table_name IN VARCHAR2, lob INOUT
VARCHAR2) AS
 ...
BEGIN
 ...
END;
/

The calling function could be of any of the following types:

• When the actual parameter is a CHR:

create procedure ...
declare
c VARCHAR2[200];
BEGIN
 get_lob('table_name', c);
END;

• When the actual parameter is a CLOB:

create procedure ...
declare
c CLOB;
BEGIN
 get_lob('table_name', c);
END;

Binds of All Sizes in INSERT and UPDATE Operations
Binds of all sizes are supported for INSERT and UPDATE operations on LOB columns.
Multiple binds of any size are allowed in a single INSERT or UPDATE statement.

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-6

Note:

When you create a table, the length of the default value you specify for any
LOB column is restricted to 4000 bytes.

4000 Byte Limit on Results of a SQL Operator
If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of
a SQL operator, then Oracle Database limits the size of the result to at most 4000
bytes.

The following statement inserts only 4000 bytes because the result of LPAD is limited to
4000 bytes:

INSERT INTO print_media (ad_sourcetext) VALUES (lpad('a', 5000, 'a'));

The following statement inserts only 2000 bytes because the result of LPAD is limited to
4000 bytes, and the implicit hexadecimal to raw conversion converts it to 2000 bytes of
RAW data:

INSERT INTO print_media (ad_photo) VALUES (lpad('a', 5000, 'a'));

Example of 4000 Byte Result Limit of a SQL Operator
This example illustrates how the result for SQL operators is limited to 4000 bytes.

/* The following command inserts only 4000 bytes because the result of
 * LPAD is limited to 4000 bytes */
INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 VALUES (2004, 5, lpad('a', 5000, 'a'));
SELECT LENGTH(ad_sourcetext) FROM print_media
 WHERE product_id=2004 AND ad_id=5;
ROLLBACK;

/* The following command inserts only 2000 bytes because the result of
 * LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
 * converts it to 2000 bytes of RAW data. */
INSERT INTO print_media(product_id, ad_id, ad_composite)
 VALUES (2004, 5, lpad('a', 5000, 'a'));
SELECT LENGTH(ad_composite) from print_media
 WHERE product_id=2004 AND ad_id=5;
ROLLBAACK;

Restrictions on Binds of More Than 4000 Bytes
There are restrictions for binds of more than 4000 bytes:

• If a table has both LONG and LOB columns, then you can bind more than 4000
bytes of data to either the LONG or LOB columns, but not both in the same
statement.

• In an INSERT AS SELECT operation, binding of any length data to LOB columns is
not allowed.

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-7

Parallel DML (PDML) Support for LOBs
Oracle supports parallel execution of most of the following DML operations when
performed on partitioned tables with SecureFiles LOBs or BasicFiles LOBs, and non-
partitioned tables with SecureFiles LOBs only:

• INSERT

• INSERT AS SELECT

• CREATE TABLE AS SELECT

• DELETE

• UPDATE

• MERGE (conditional UPDATE and INSERT)

• Multi-table INSERT

• SQL Loader

• Import/Export

Starting with release 12c, enhanced support for parallel DML includes the following:

• LOB columns stored as SecureFiles LOBs in non-partitioned tables. (Previous
releases already included partitioned tables)

• Direct load support for SecureFiles LOB columns that have context index defined
on them.

Restrictions

• Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB
column, in addition to a SecureFiles LOB column.

• Some domain index implementations may limit load distribution and degrade
performance due to their design.

• Parallelism must be specified only for top-level non-partitioned tables.

See Also:

Oracle Database Administrator's Guide section "Managing Processes for
Parallel SQL Execution"

Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT
and UPDATE

This example demonstrates using binds larger than 4000 bytes in INSERT and UPDATE
operations.

DECLARE
 bigtext VARCHAR2(32767);
 smalltext VARCHAR2(2000);
 bigraw RAW (32767);
BEGIN

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-8

 bigtext := LPAD('a', 32767, 'a');
 smalltext := LPAD('a', 2000, 'a');
 bigraw := utl_raw.cast_to_raw (bigtext);

 /* Multiple long binds for LOB columns are allowed for INSERT: */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext, ad_composite)
 VALUES (2004, 1, bigtext, bigraw);

 /* Single long bind for LOB columns is allowed for INSERT: */
 INSERT INTO print_media (product_id, ad_id, ad_sourcetext)
 VALUES (2005, 2, smalltext);

 bigtext := LPAD('b', 32767, 'b');
 smalltext := LPAD('b', 20, 'a');
 bigraw := utl_raw.cast_to_raw (bigtext);

 /* Multiple long binds for LOB columns are allowed for UPDATE: */
 UPDATE print_media SET ad_sourcetext = bigtext, ad_composite = bigraw,
 ad_finaltext = smalltext;

 /* Single long bind for LOB columns is allowed for UPDATE: */
 UPDATE print_media SET ad_sourcetext = smalltext, ad_finaltext = bigtext;

 /* The following is NOT allowed because we are trying to insert more than
 4000 bytes of data in a LONG and a LOB column: */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext, press_release)
 VALUES (2030, 3, bigtext, bigtext);

 /* Insert of data into LOB attribute is allowed */
 INSERT INTO print_media(product_id, ad_id, ad_header)
 VALUES (2049, 4, adheader_typ(null, null, null, bigraw));

 /* The following is not allowed because we try to perform INSERT AS
 SELECT data INTO LOB */
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 SELECT 2056, 5, bigtext FROM dual;

END;
/

Using the Data Interface for LOBs with INSERT, UPDATE, and
SELECT Operations

INSERT and UPDATE statements on LOBs are used in the same way as on LONGs. For
example:

DECLARE
 ad_buffer VARCHAR2(100);
BEGIN
 INSERT INTO print_media(product_id, ad_id, ad_sourcetext)
 VALUES(2004, 5, 'Source for advertisement 1');
 UPDATE print_media SET ad_sourcetext= 'Source for advertisement 2'
 WHERE product_id=2004 AND ad_id=5;
 /* This retrieves the LOB column if it is up to 100 bytes, otherwise it
 * raises an exception */
 SELECT ad_sourcetext INTO ad_buffer FROM print_media
 WHERE product_id=2004 AND ad_id=5;
END;
/

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-9

Using the Data Interface for LOBs in Assignments and Parameter
Passing

The data interface for LOBs enables implicit assignment and parameter passing as
shown in the following example:

CREATE TABLE t (clob_col CLOB, blob_col BLOB);
INSERT INTO t VALUES('abcdefg', 'aaaaaa');

DECLARE
 var_buf VARCHAR2(100);
 clob_buf CLOB;
 raw_buf RAW(100);
 blob_buf BLOB;
BEGIN
 SELECT * INTO clob_buf, blob_buf FROM t;
 var_buf := clob_buf;
 clob_buf:= var_buf;
 raw_buf := blob_buf;
 blob_buf := raw_buf;
END;
/

CREATE OR REPLACE PROCEDURE FOO (a IN OUT CLOB) IS
BEGIN
 -- Any procedure body
 a := 'abc';
END;
/

CREATE OR REPLACE PROCEDURE BAR (b IN OUT VARCHAR2) IS
BEGIN
 -- Any procedure body
 b := 'xyz';
END;
/

DECLARE
 a VARCHAR2(100) := '1234567';
 b CLOB;
BEGIN
 FOO(a);
 SELECT clob_col INTO b FROM t;
 BAR(b);
END;
/

Using the Data Interface for LOBs with PL/SQL Built-In Functions
This example illustrates the use of CLOBs in PL/SQL built-in functions, using the data
interface for LOBs:

DECLARE
 my_ad CLOB;
 revised_ad CLOB;
 myGist VARCHAR2(100):= 'This is my gist.';
 revisedGist VARCHAR2(100);
BEGIN

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

9-10

 INSERT INTO print_media (product_id, ad_id, ad_sourcetext)
 VALUES (2004, 5, 'Source for advertisement 1');

 -- select a CLOB column into a CLOB variable
 SELECT ad_sourcetext INTO my_ad FROM print_media
 WHERE product_id=2004 AND ad_id=5;

 -- perform VARCHAR2 operations on a CLOB variable
 revised_ad := UPPER(SUBSTR(my_ad, 1, 20));

 -- revised_ad is a temporary LOB
 -- Concat a VARCHAR2 at the end of a CLOB
 revised_ad := revised_ad || myGist;

 -- The following statement raises an error if my_ad is
 -- longer than 100 bytes
 myGist := my_ad;
END;
/

The Data Interface Used for Persistent LOBs in OCI
This section discusses OCI functions included in the data interface for persistent
LOBs. These OCI functions work for LOB datatypes exactly the same way as they do
for LONG datatypes. Using these functions, you can perform INSERT, UPDATE, fetch,
bind, and define operations in OCI on LOBs using the same techniques you would use
on other datatypes that store character or binary data.

Note:

You can use array bind and define interfaces to insert and select multiple
rows with LOBs in one round trip.

See Also:

Oracle Call Interface Programmer's Guide, section "Runtime Data Allocation
and Piecewise Operations in OCI"

LOB Data Types Bound in OCI
You can bind LOB datatypes in the following operations:

• Regular, piecewise, and callback binds for INSERT and UPDATE operations

• Array binds for INSERT and UPDATE operations

• Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To
support these operations, the following OCI functions accept the LONG and LOB data
types listed in Table 9-2.

• OCIBindByName() and OCIBindByPos()

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-11

These functions create an association between a program variable and a
placeholder in the SQL statement or a PL/SQL block for INSERT and UPDATE
operations.

• OCIBindDynamic()

You use this call to register callbacks for dynamic data allocation for INSERT and
UPDATE operations

• OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()

These calls are used to get or set piece information for piecewise operations.

LOB Data Types Defined in OCI
The data interface for persistent LOBs allows the following OCI functions to accept the
LONG and LOB data types listed in Table 9-2.

• OCIDefineByPos()

This call associates an item in a SELECT list with the type and output data buffer.

• OCIDefineDynamic()

This call registers user callbacks for SELECT operations if the OCI_DYNAMIC_FETCH
mode was selected in OCIDefineByPos() function call.

When you use these functions with LOB types, the LOB data, and not the locator, is
selected into your buffer. Note that in OCI, you cannot specify the amount you want to
read using the data interface for LOBs. You can only specify the buffer length of your
buffer. The database only reads whatever amount fits into your buffer and the data is
truncated.

Multibyte Character Sets Used in OCI with the Data Interface for LOBs
When the client character set is in a multibyte format, functions included in the data
interface operate the same way with LOB datatypes as they do for LONG datatypes as
follows:

• For a piecewise fetch in a multibyte character set, a multibyte character could be
cut in the middle, with some bytes at the end of one buffer and remaining bytes in
the next buffer.

• For a regular fetch, if the buffer cannot hold all bytes of the last character, then
Oracle returns as many bytes as fit into the buffer, hence returning partial
characters.

OCI Functions Used to Perform INSERT or UPDATE on LOB Columns
This section discusses the various techniques you can use to perform INSERT or
UPDATE operations on LOB columns or attributes using the data interface. The
operations described in this section assume that you have initialized the OCI
environment and allocated all necessary handles.

Performing Simple INSERTs or UPDATEs in One Piece
To perform simple INSERT or UPDATE operations in one piece using the data interface
for persistent LOBs, perform the following steps:

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-12

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DEFAULT mode to bind a
placeholder for LOB as character data or binary data.

3. Call OCIStmtExecute() to do the actual INSERT or UPDATE operation.

Using Piecewise INSERTs and UPDATEs with Polling
To perform piecewise INSERT or UPDATE operations with polling using the data interface
for persistent LOBs, do the following steps:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DATA_AT_EXEC mode to bind a
LOB as character data or binary data.

3. Call OCIStmtExecute() in default mode. Do each of the following in a loop while
the value returned from OCIStmtExecute() is OCI_NEED_DATA. Terminate your loop
when the value returned from OCIStmtExecute() is OCI_SUCCESS.

• Call OCIStmtGetPieceInfo() to retrieve information about the piece to be
inserted.

• Call OCIStmtSetPieceInfo() to set information about piece to be inserted.

Performing Piecewise INSERTs and UPDATEs with Callback
To perform piecewise INSERT or UPDATE operations with callback using the data
interface for persistent LOBs, do the following steps:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIBindByName() or OCIBindbyPos() in OCI_DATA_AT_EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

3. Call OCIBindDynamic() to specify the callback.

4. Call OCIStmtExecute() in default mode.

Array INSERT and UPDATE Operations
To perform array INSERT or UPDATE operations using the data interface for persistent
LOBs, use any of the techniques discussed in this section in conjunction with
OCIBindArrayOfStruct(), or by specifying the number of iterations (iter), with iter
value greater than 1, in the OCIStmtExecute() call.

The Data Interface Used to Fetch LOB Data in OCI
This section discusses techniques you can use to fetch data from LOB columns or
attributes in OCI using the data interface for persistent LOBs.

Simple Fetch in One Piece
To perform a simple fetch operation on LOBs in one piece using the data interface for
persistent LOBs, do the following:

1. Call OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT mode.

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-13

2. Call OCIDefineByPos() to define a select list position in OCI_DEFAULT mode to
define a LOB as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIStmtFetch() to do the actual fetch.

Performing a Piecewise Fetch with Polling
To perform a piecewise fetch operation on a LOB column with polling using the data
interface for LOBs, do the following steps:

1. Call OCIStmtPrepare() to prepare the SELECT statement in OCI_DEFAULT mode.

2. Call OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_FETCH mode
to define the LOB column as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIStmtFetch() in default mode. Do each of the following in a loop while the
value returned from OCIStmtFetch() is OCI_NEED_DATA. Terminate your loop when
the value returned from OCIStmtFetch() is OCI_SUCCESS.

• Call OCIStmtGetPieceInfo() to retrieve information about the piece to be
fetched.

• Call OCIStmtSetPieceInfo() to set information about piece to be fetched.

Performing a Piecewise with Callback
To perform a piecewise fetch operation on a LOB column with callback using the data
interface for persistent LOBs, do the following:

1. Call OCIStmtPrepare() to prepare the statement in OCI_DEFAULT mode.

2. Call OCIDefinebyPos() to define a select list position in OCI_DYNAMIC_FETCH mode
to define the LOB column as character data or binary data.

3. Call OCIStmtExecute() to run the SELECT statement.

4. Call OCIDefineDynamic() to specify the callback.

5. Call OCIStmtFetch() in default mode.

Array Fetch
To perform an array fetch in OCI using the data interface for persistent LOBs, use any
of the techniques discussed in this section in conjunction with
OCIDefineArrayOfStruct(), or by specifying the number of iterations (iter), with the
value of iter greater than 1, in the OCIStmtExecute() call.

PL/SQL and C Binds from OCI
When you call a PL/SQL procedure from OCI, and have an IN or OUT or IN OUT bind,
you should be able to:

• Bind a variable as SQLT_CHR or SQLT_LNG where the formal parameter of the
PL/SQL procedure is SQLT_CLOB, or

• Bind a variable as SQLT_BIN or SQLT_LBI where the formal parameter is SQLT_BLOB

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-14

The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sqlstmt = (text *)"BEGIN get_lob(:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner

Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sqlstmt = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;
OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

The PL/SQL procedure, get_lob(), is as follows:

procedure get_lob(c INOUT CLOB) is -- This might have been column%type
 BEGIN
 ... /* The procedure body could be in PL/SQL or C*/
 END;

Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and
UPDATE

You can use binds of more than 4000 byes for INSERT and UPDATE operations.

void insert3()
{
/* Insert of data into LOB attributes is allowed. */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Print_media (ad_header) \
 VALUES (adheader_typ(NULL, NULL, NULL,:1))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, (const OCISnapshot*) 0,
 (OCISnapshot*)0, OCI_DEFAULT);
}

Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs
The data interface for LOBs allows LOB PL/SQL binds from OCI to work. When you
call a PL/SQL procedure from OCI, and have an IN or OUT or IN OUT bind, you should
be able to bind a variable as SQLT_CHR, where the formal parameter of the PL/SQL
procedure is SQLT_CLOB.

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-15

Note:

C procedures are wrapped inside a PL/SQL stub, so the OCI application
always calls the PL/SQL stub.

For the OCI calling program, the following are likely cases:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

For example:

text *sqlstmt = (text *)"BEGIN PKG1.P5 (:c); END; " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner

For example:

text *sqlstmt = (text *)"CALL PKG1.P5(:c);" ;

In both these cases, the rest of the program is as follows:

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 curlen = 0;

 OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":c4", (sb4) strlen((char *) ":c"),
 (dvoid *) buf5, (sb4) LONGLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 1, (ub4 *) &curlen, (ub4) OCI_DATA_AT_EXEC);

 OCIStmtExecute(svchp, stmthp, errhp,(ub4) 0,(ub4) 0, (const OCISnapshot*) 0,
 (OCISnapshot*) 0,(ub4) OCI_DEFAULT);

The PL/SQL procedure PKG1.P5 is as follows:

 CREATE OR REPLACE PACKAGE BODY pkg1 AS
 ...
 procedure p5 (c OUT CLOB) is
 -- This might have been table%rowtype (so it is CLOB now)
 BEGIN
 ...
 END p5;

END pkg1;

Binding LONG Data for LOB Columns in Binds Greater Than 4000
Bytes

This example illustrates binding character data for a LOB column:

void simple_insert()
{
 word buflen;
 text buf[5000];
 text *insstmt = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (2004, 1, :SRCTXT)";

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-16

 OCIStmtPrepare(stmthp, errhp, insstmt, (ub4)strlen((char *)insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
 (dvoid *) buf, (sb4) sizeof(buf), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 memset((void *)buf, (int)'A', (size_t)5000);
 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT);
}

Binding LONG Data to LOB Columns Using Piecewise INSERT with
Polling

This example illustrates using piecewise INSERT with polling using the data interface
for LOBs.

void piecewise_insert()
{
 text *sqlstmt = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:1, :2, :3)";
 ub2 rcode;
 ub1 piece, i;
 word product_id = 2004;
 word ad_id = 2;
 ub4 buflen;
 char buf[5000];

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &product_id, (sb4) sizeof(product_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) &ad_id, (sb4) sizeof(ad_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) 0, (sb4) 15000, SQLT_LNG,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);

 i = 0;
 while (1)
 {
 i++;
 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 switch(retval)
 {
 case OCI_NEED_DATA:
 memset((void *)buf, (int)'A'+i, (size_t)5000);
 buflen = 5000;

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-17

 if (i == 1) piece = OCI_FIRST_PIECE;
 else if (i == 3) piece = OCI_LAST_PIECE;
 else piece = OCI_NEXT_PIECE;

 if (OCIStmtSetPieceInfo((dvoid *)bndhp[2],
 (ub4)OCI_HTYPE_BIND, errhp, (dvoid *)buf,
 &buflen, piece, (dvoid *) 0, &rcode))
 {
 printf("ERROR: OCIStmtSetPieceInfo: %d \n", retval);
 break;
 }

 break;
 case OCI_SUCCESS:
 break;
 default:
 printf("oci exec returned %d \n", retval);
 report_error(errhp);
 retval = OCI_SUCCESS;
 } /* end switch */
 if (retval == OCI_SUCCESS)
 break;
 } /* end while(1) */
}

Binding LONG Data to LOB Columns Using Piecewise INSERT with
Callback

This example illustrates binding LONG data to LOB columns using a piecewise INSERT
with callback:

void callback_insert()
{
 word buflen = 15000;
 word product_id = 2004;
 word ad_id = 3;
 text *sqlstmt = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:1, :2, :3)";
 word pos = 3;

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT)

 OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &product_id, (sb4) sizeof(product_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) &ad_id, (sb4) sizeof(ad_id), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) 0, (sb4) buflen, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC);

 OCIBindDynamic(bndhp[2], errhp, (dvoid *) (dvoid *) &pos,
 insert_cbk, (dvoid *) 0, (OCICallbackOutBind) 0);

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-18

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
} /* end insert_data() */

/* Inbind callback to specify input data. */
static sb4 insert_cbk(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 *alenpp, ub1 *piecep, dvoid **indpp)
{
 static int a = 0;
 word j;
 ub4 inpos = *((ub4 *)ctxp);
 char buf[5000];

 switch(inpos)
 {
 case 3:
 memset((void *)buf, (int) 'A'+a, (size_t) 5000);
 *bufpp = (dvoid *) buf;
 *alenpp = 5000 ;
 a++;
 break;
 default: printf("ERROR: invalid position number: %d\n", inpos);
 }

 *indpp = (dvoid *) 0;
 *piecep = OCI_ONE_PIECE;
 if (inpos == 3)
 {
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf("Insert callback: 1st piece\n");
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf("Insert callback: %d'th piece\n", a);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf("Insert callback: %d'th piece\n", a);
 a = 0;
 }
 }
 return OCI_CONTINUE;
}

Binding LONG Data to LOB Columns Using an Array INSERT
This example illustrates binding character data for LOB columns using an array INSERT
operation:

void array_insert()
{
 ub4 i;
 word buflen;
 word arrbuf1[5];
 word arrbuf2[5];
 text arrbuf3[5][5000];

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-19

 text *insstmt = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
 Ad_sourcetext) VALUES (:PID, :AID, :SRCTXT)";

 OCIStmtPrepare(stmthp, errhp, insstmt,
 (ub4)strlen((char *)insstmt), (ub4) OCI_NTV_SYNTAX,
 (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[0], errhp,
 (text *) ":PID", (sb4) strlen((char *) ":PID"),
 (dvoid *) &arrbuf1[0], (sb4) sizeof(arrbuf1[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[1], errhp,
 (text *) ":AID", (sb4) strlen((char *) ":AID"),
 (dvoid *) &arrbuf2[0], (sb4) sizeof(arrbuf2[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":SRCTXT", (sb4) strlen((char *) ":SRCTXT"),
 (dvoid *) arrbuf3[0], (sb4) sizeof(arrbuf3[0]), SQLT_CHR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);

 OCIBindArrayOfStruct(bndhp[0], errhp sizeof(arrbuf1[0]),
 indsk, rlsk, rcsk);
 OCIBindArrayOfStruct(bndhp[1], errhp, sizeof(arrbuf2[0]),
 indsk, rlsk, rcsk);
 OCIBindArrayOfStruct(bndhp[2], errhp, sizeof(arrbuf3[0]),
 indsk, rlsk, rcsk);

 for (i=0; i<5; i++)
 {
 arrbuf1[i] = 2004;
 arrbuf2[i] = i+4;
 memset((void *)arrbuf3[i], (int)'A'+i, (size_t)5000);
 }
 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 5, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

}

Selecting a LOB Column into a LONG Buffer Using a Simple Fetch
This example illustrates selecting a LOB column using a simple fetch:

void simple_fetch()
{
 word retval;
 text buf[15000];
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE\
 Product_id = 2004";

 OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-20

 (ub4) OCI_DEFAULT);
 while (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 OCIDefineByPos(stmthp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
 (sb4) sizeof(buf), (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 printf("buf = %.*s\n", 15000, buf);
 }
}

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch
with Polling

This example illustrates selecting a LOB column into a LONG buffer using a piecewise
fetch with polling:

void piecewise_fetch()
{
 text buf[15000];
 ub4 buflen=5000;
 word retval;
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media
 WHERE Product_id = 2004 AND Ad_id = 2";

 OCIStmtPrepare(stmthp, errhp, selstmt,
 (ub4) strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &dfnhp, errhp, (ub4) 1,
 (dvoid *) NULL, (sb4) 100000, SQLT_LNG,
 (dvoid *) 0, (ub2 *) 0,
 (ub2 *) 0, (ub4) OCI_DYNAMIC_FETCH);

 retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);

 while (retval != OCI_NO_DATA && retval != OCI_SUCCESS)
 {
 ub1 piece;
 ub4 iter;
 ub4 idx;

 genclr((void *)buf, 5000);
 switch(retval)
 {
 case OCI_NEED_DATA:
 OCIStmtGetPieceInfo(stmthp, errhp, &hdlptr, &hdltype,
 &in_out, &iter, &idx, &piece);
 buflen = 5000;
 OCIStmtSetPieceInfo(hdlptr, hdltype, errhp,
 (dvoid *) buf, &buflen, piece,
 (CONST dvoid *) &indp1, (ub2 *) 0);

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-21

 retval = OCI_NEED_DATA;
 break;
 default:
 printf("ERROR: piece-wise fetching, %d\n", retval);
 return;
 } /* end switch */
 retval = OCIStmtFetch(stmthp, errhp, (ub4) 1 ,
 (ub2) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 printf("Data : %.5000s\n", buf);
 } /* end while */
}

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch
with Callback

This example illustrates selecting a LONG column into a LOB buffer when using a
piecewise fetch with callback:

char buf[5000];
void callback_fetch()
{
 word outpos = 1;
 text *sqlstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE
 Product_id = 2004 AND Ad_id = 3";

 OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIDefineByPos(stmthp, &dfnhp[0], errhp, (ub4) 1,
 (dvoid *) 0, (sb4)3 * sizeof(buf), SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) OCI_DYNAMIC_FETCH);

 OCIDefineDynamic(dfnhp[0], errhp, (dvoid *) &outpos,
 (OCICallbackDefine) fetch_cbk);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT);
 buf[4999] = '\0';
 printf("Select callback: Last piece: %s\n", buf);
}

/* -- */
/* Fetch callback to specify buffers. */
/* -- */
static sb4 fetch_cbk(dvoid *ctxp, OCIDefine *dfnhp, ub4 iter, dvoid **bufpp,
 ub4 **alenpp, ub1 *piecep, dvoid **indpp, ub2 **rcpp)
{
 static int a = 0;
 ub4 outpos = *((ub4 *)ctxp);
 ub4 len = 5000;
 switch(outpos)
 {
 case 1:
 a ++;
 *bufpp = (dvoid *) buf;
 *alenpp = &len;
 break;
 default:

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-22

 *bufpp = (dvoid *) 0;
 *alenpp = (ub4 *) 0;
 printf("ERROR: invalid position number: %d\n", outpos);
 }
 *indpp = (dvoid *) 0;
 *rcpp = (ub2 *) 0;

 buf[len] = '\0';
 if (a<=1)
 {
 *piecep = OCI_FIRST_PIECE;
 printf("Select callback: 0th piece\n");
 }
 else if (a<3)
 {
 *piecep = OCI_NEXT_PIECE;
 printf("Select callback: %d'th piece: %s\n", a-1, buf);
 }
 else {
 *piecep = OCI_LAST_PIECE;
 printf("Select callback: %d'th piece: %s\n", a-1, buf);
 a = 0;
 }
 return OCI_CONTINUE;
}

Selecting a LOB Column into a LONG Buffer Using an Array Fetch
This example illustrates selecting a LOB column into a LONG buffer using an array
fetch:

void array_fetch()
{
 word i;
 text arrbuf[5][5000];
 text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_media WHERE
 Product_id = 2004 AND Ad_id >=4";

 OCIStmtPrepare(stmthp, errhp, selstmt, (ub4)strlen((char *)selstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

 OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0, (ub4) 0,
 (const OCISnapshot*) 0, (OCISnapshot*) 0, (ub4) OCI_DEFAULT);

 OCIDefineByPos(stmthp, &defhp1, errhp, (ub4) 1,
 (dvoid *) arrbuf[0], (sb4) sizeof(arrbuf[0]),
 (ub2) SQLT_CHR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);

 OCIDefineArrayOfStruct(dfnhp1, errhp, sizeof(arrbuf[0]), indsk,
 rlsk, rcsk);

 retval = OCIStmtFetch(stmthp, errhp, (ub4) 5,
 (ub4) OCI_FETCH_NEXT, (ub4) OCI_DEFAULT);
 if (retval == OCI_SUCCESS || retval == OCI_SUCCESS_WITH_INFO)
 {
 printf("%.5000s\n", arrbuf[0]);
 printf("%.5000s\n", arrbuf[1]);
 printf("%.5000s\n", arrbuf[2]);
 printf("%.5000s\n", arrbuf[3]);

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

9-23

 printf("%.5000s\n", arrbuf[4]);
 }
}

The Data Interface Used with Persistent LOBs in Java
You can also read and write CLOB and BLOB data using the same streaming mechanism
as for LONG and LONG RAW data.

To read, use defineColumnType(nn, Types.LONGVARCHAR) or defineColumnType(nn,
Types.LONGVARBINARY)on the column. This produces a direct stream on the data as if
it is a LONG or LONG RAW column. For input in a PreparedStatement, you may use
setBinaryStream(), setCharacterStream(), or setAsciiStream() for a parameter
which is a BLOB or CLOB. These methods use the stream interface to create a LOB in
the database from the data in the stream. If the length of the data is known, for better
performance, use the versions of setBinaryStream() or setCharacterStream
functions which accept the length parameter. The data interface also supports
standard JDBC methods such as getString/getBytes on ResultSet and
CallableStatement and setString/setBytes on PreparedStatement to read and write
LOB data. It is easier to code, and in many cases faster, to use these APIs for LOB
access. All these techniques reduce database round trips and may result in improved
performance in some cases. See the Javadoc on stream data for the significant
restrictions which apply, at http://www.oracle.com/technology/.

Refer to the following in the JDBC Developer's Guide and Reference:

See Also:

• Oracle Database JDBC Developer's Guide, "Working with LOBs and
BFILEs", section "Data Interface for LOBs"

• Oracle Database JDBC Developer's Guide, "JDBC Standards Support"

The Data Interface Used with Remote LOBs
The data interface for insert, update, and select of remote LOBs (access over a
dblink) is supported after Oracle Database 10g Release 2.

About the Data Interface with Remote LOBs
The examples discussed use the print_media table created in two schemas: dbs1 and
dbs2. The CLOB column of that table used in the examples shown is ad_finaltext. The
examples to be given for PL/SQL, OCI, and Java use binds and defines for this one
column, but multiple columns can also be accessed. Here is the functionality
supported and its limitations:

• You can define a CLOB as CHAR or NCHAR and an NCLOB as CHAR or NCHAR. CLOB
and NCLOB can be defined as a LONG. A BLOB can be defined as a RAW or a LONG
RAW.

• Array binds and defines are supported.

Chapter 9
The Data Interface Used with Persistent LOBs in Java

9-24

http://www.oracle.com/technology/

See Also:

"Remote Data Interface Example in PL/SQL" and the sections following it.

Non-Supported Syntax
Certain syntax is not supported for remote LOBs.

• Queries involving more than one database are not supported:

SELECT t1.lobcol, a2.lobcol FROM t1, t2.lobcol@dbs2 a2 WHERE
LENGTH(t1.lobcol) = LENGTH(a2.lobcol);

Neither is this query (in a PL/SQL block):

SELECT t1.lobcol INTO varchar_buf1 FROM t1@dbs1
UNION ALL
SELECT t2.lobcol INTO varchar_buf2 FROM t2@dbs2;

• Only binds and defines for data going into remote persistent LOB columns are
supported, so that parameter passing in PL/SQL where CHAR data is bound or
defined for remote LOBs is not allowed because this could produce a remote
temporary LOB, which are not supported. These statements all produce errors:

SELECT foo() INTO varchar_buf FROM table1@dbs2; -- foo returns a LOB

SELECT foo()@dbs INTO char_val FROM DUAL; -- foo returns a LOB

SELECT XMLType().getclobval INTO varchar_buf FROM table1@dbs2;

• If the remote object is a view such as

CREATE VIEW v AS SELECT foo() a FROM ... ; -- foo returns a LOB
/* The local database then tries to get the CLOB data and returns an error */
SELECT a INTO varchar_buf FROM v@dbs2;

This returns an error because it produces a remote temporary LOB, which is not
supported.

• RETURNING INTO does not support implicit conversions between CHAR and CLOB.

• PL/SQL parameter passing is not allowed where the actual argument is a LOB
type and the remote argument is a VARCHAR2, NVARCHAR2, CHAR, NCHAR, or RAW.

Remote Data Interface Example in PL/SQL
The data interface only supports data of size less than 32KB in PL/SQL. The following
snippet shows a PL/SQL example:

CONNECT pm
declare
 my_ad varchar(6000) := lpad('b', 6000, 'b');
BEGIN
 INSERT INTO print_media@dbs2(product_id, ad_id, ad_finaltext)
 VALUES (10000, 10, my_ad);
 -- Reset the buffer value
 my_ad := 'a';
 SELECT ad_finaltext INTO my_ad FROM print_media@dbs2

Chapter 9
The Data Interface Used with Remote LOBs

9-25

 WHERE product_id = 10000;
END;
/

If ad_finaltext were a BLOB column instead of a CLOB, my_ad has to be of type RAW. If
the LOB is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the
contents of the buffer are undefined.

Remote Data Interface Example in OCI
The data interface only supports data of size less than 2 GBytes (the maximum value
possible of a variable declared as sb4) for OCI. The following pseudocode can be
enhanced to be a part of an OCI program:

...
text *sql = (text *)"insert into print_media@dbs2
 (product_id, ad_id, ad_finaltext)
 values (:1, :2, :3)";
OCIStmtPrepare(...);
OCIBindByPos(...); /* Bind data for positions 1 and 2
 * which are independent of LOB */
OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) charbuf1, (sb4) len_charbuf1, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCI_DEFAULT);
OCIStmtExecute(...);

...

text *sql = (text *)"select ad_finaltext from print_media@dbs2
 where product_id = 10000";
OCIStmtPrepare(...);
OCIDefineByPos(stmthp, &dfnhp[2], errhp, (ub4) 1,
 (dvoid *) charbuf2, (sb4) len_charbuf2, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT);
OCIStmtExecute(...);
...

If ad_finaltext were a BLOB instead of a CLOB, then you bind and define using type
SQLT_BIN. If the LOB is greater than 2GB - 1 in size, then OCI raises a truncation error
and the contents of the buffer are undefined.

Remote Data Interface Examples in JDBC
The following code snippets works with all three JDBC drivers (OCI, Thin, and kprb in
the database):

Bind:

This is for the non-streaming mode:

...
String sql = "insert into print_media@dbs2 (product_id, ad_id, ad_final_text)" +
 " values (:1, :2, :3)";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setInt(1, 2);
 pstmt.setInt(2, 20);
 pstmt.setString(3, "Java string");
 int rows = pstmt.executeUpdate();
...

Chapter 9
The Data Interface Used with Remote LOBs

9-26

For the streaming mode, the same code as the preceding works, except that the
setString() statement is replaced by one of the following:

pstmt.setCharacterStream(3, new LabeledReader(), 1000000);
pstmt.setAsciiStream(3, new LabeledAsciiInputStream(), 1000000);

Here, LabeledReader() and LabeledAsciiInputStream() produce character and
ASCII streams respectively. If ad_finaltext were a BLOB column instead of a CLOB,
then the preceding example works if the bind is of type RAW:

pstmt.setBytes(3, <some byte[] array>);

pstmt.setBinaryStream(3, new LabeledInputStream(), 1000000);

Here, LabeledInputStream() produces a binary stream.

Define:

For non-streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.VARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media@dbs2");
 while(rst.next())
 {
 String s = rst.getString(1);
 System.out.println(s);
 }

For streaming mode:

OracleStatement stmt = (OracleStatement)(conn.createStatement());
 stmt.defineColumnType(1, Types.LONGVARCHAR);
 ResultSet rst = stmt.executeQuery("select ad_finaltext from print_media@dbs2");
 while(rst.next())
 {
 Reader reader = rst.getCharacterStream(1);
 while(reader.ready())
 {
 System.out.print((char)(reader.next()));
 }
 System.out.println();
 }

If ad_finaltext were a BLOB column instead of a CLOB, then the preceding examples
work if the define is of type LONGVARBINARY:

...
 OracleStatement stmt = (OracleStatement)conn.createStatement();

 stmt.defineColumnType(1, Types.INTEGER);
 stmt.defineColumnType(2, Types.LONGVARBINARY);

 ResultSet rset = stmt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB@MYSELF");

 while(rset.next())
 {
 /* using getBytes() */
 /*
 byte[] b = rset.getBytes("LOBCOL");
 System.out.println("ID: " + rset.getInt("ID") + " length: " + b.length);
 */

Chapter 9
The Data Interface Used with Remote LOBs

9-27

 /* using getBinaryStream() */
 InputStream byte_stream = rset.getBinaryStream("LOBCOL");
 byte [] b = new byte [100000];
 int b_len = byte_stream.read(b);
 System.out.println("ID: " + rset.getInt("ID") + " length: " + b_len);

 byte_stream.close();
 }
...

See Also:

Oracle Database JDBC Developer's Guide

Chapter 9
The Data Interface Used with Remote LOBs

9-28

Part III
Reference Semantics LOBs

This part provides details on using LOB APIs in supported environments. Examples of
LOB API usage are given.

This part contains these chapters:

• Overview of Supplied LOB APIs

• LOB APIs for BFILE Operations

• Using LOB APIs

10
Overview of Supplied LOB APIs

There are APIs supplied to support LOBs.

Topics:

• Programmatic Environments That Support LOBs

• Comparing the LOB Interfaces

• Using PL/SQL (DBMS_LOB Package) to Work With LOBs

• Using OCI to Work With LOBs

• Using C++ (OCCI) to Work With LOBs

• Using C/C++ (Pro*C) to Work With LOBs

• Using COBOL (Pro*COBOL) to Work With LOBs

• Using Java (JDBC) to Work With LOBs

• Oracle Provider for OLE DB (OraOLEDB)

• Overview of Oracle Data Provider for .NET (ODP.NET)

Programmatic Environments That Support LOBs
Table 10-1 lists the programmatic environments that support LOB functionality.

See Also:

APIs for supported LOB operations are described in detail in the following
chapters:

• Operations Specific to Persistent and Temporary LOBs

• Using LOB APIs

• LOB APIs for BFILE Operations

Table 10-1 Programmatic Environments That Support LOBs

Language Precompiler or
Interface
Program

Related Sections Related Books

PL/SQL DBMS_LOB
Package

"Using PL/SQL (DBMS_LOB
Package) to Work With LOBs".

Oracle Database PL/SQL Packages
and Types Reference

C Oracle Call
Interface for C
(OCI)

"Using OCI to Work With LOBs". Oracle Call Interface Programmer's
Guide

10-1

Table 10-1 (Cont.) Programmatic Environments That Support LOBs

Language Precompiler or
Interface
Program

Related Sections Related Books

C++ Oracle Call
Interface for C++
(OCCI)

"Using C++ (OCCI) to Work With
LOBs" .

Oracle C++ Call Interface
Programmer's Guide

C/C++ Pro*C/C++
Precompiler

"Using C/C++ (Pro*C) to Work With
LOBs".

Pro*C/C++ Programmer's Guide

COBOL Pro*COBOL
Precompiler

"Using COBOL (Pro*COBOL) to
Work With LOBs".

Pro*COBOL Programmer's Guide

Java JDBC Application
Programmatic
Interface (API)

"Using Java (JDBC) to Work With
LOBs".

Oracle Database JDBC Developer’s
Guide.

ADO/OLE DB Oracle Provider
for OLE DB
(OraOLEDB).

"Oracle Provider for OLE DB
(OraOLEDB)"

Oracle Provider for OLE DB
Developer's Guide for Microsoft
Windows

.NET Oracle Data
Provider for .NET
(ODP.NET)

"Overview of Oracle Data Provider
for .NET (ODP.NET) "

Oracle Data Provider for .NET
Developer's Guide for Microsoft
Windows

Comparing the LOB Interfaces
Table 10-2 and Table 10-3 compare the eight LOB programmatic interfaces by listing
their functions and methods used to operate on LOBs. The tables are split in two
simply to accommodate all eight interfaces. The functionality of the interfaces, with
regards to LOBs, is described in the following sections.

Table 10-2 Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)
(ociap.h)

C++ (OCCI)
(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

DBMS_LOB.COMPARE N/A N/A N/A

DBMS_LOB.INSTR N/A N/A N/A

DBMS_LOB.SUBSTR N/A N/A N/A

DBMS_LOB.APPEND OCILobAppend() Blob.append() APPEND

N/A (use PL/SQL assign
operator)

OCILobAssign() ASSIGN

N/A OCILobCharSetForm() Clob.getCharsetForm
(CLOB only)

N/A

N/A OCILobCharSetId() Clob.getCharsetId()

(CLOB only)

N/A

DBMS_LOB.CLOSE OCILobClose() Blob.close() CLOSE

N/A N/A Clob.closeStream() N/A

DBMS_LOB.COPY OCILobCopy2() Blob.copy() COPY

Chapter 10
Comparing the LOB Interfaces

10-2

Table 10-2 (Cont.) Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)
(ociap.h)

C++ (OCCI)
(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

DBMS_LOB.ERASE OCILobErase2() N/A ERASE

DBMS_LOB.FILECLOSE OCILobFileClose() Clob.close() CLOSE

DBMS_LOB.FILECLOSEALL OCILobFileCloseAll(
)

N/A FILE CLOSE ALL

DBMS_LOB.FILEEXISTS OCILobFileExist() Bfile.fileExists() DESCRIBE
[FILEEXISTS]

DBMS_LOB.GETCHUNKSIZE OCILobGetChunkSize() Blob.getChunkSize() DESCRIBE
[CHUNKSIZE]

DBMS_LOB.GET_STORAGE_LIMIT OCILobGetStorageLim
it()

N/A N/A

DBMS_LOB.GETOPTIONS OCILobGetOptions() Blob/Clob::getOptions N/A

DBMS_LOB.FILEGETNAME OCILobFileGetName() Bfile.getFileName()
and
Bfile.getDirAlias()

DESCRIBE DIRECTORY,
FILENAME

DBMS_LOB.FILEISOPEN OCILobFileIsOpen() Bfile.isOpen() DESCRIBE ISOPEN

DBMS_LOB.FILEOPEN OCILobFileOpen() Bfile.open() OPEN

N/A (use BFILENAME operator) OCILobFileSetName() Bfile.setName() FILE SET

DBMS_LOB.GETLENGTH OCILobGetLength2() Blob.length() DESCRIBE LENGTH

N/A OCILobIsEqual() Use operator = ()=/!= N/A

DBMS_LOB.ISOPEN OCILobIsOpen() Blob.isOpen() DESCRIBE ISOPEN

DBMS_LOB.LOADFROMFILE OCILobLoadFromFile
2()

Use overloadedcopy() LOAD FROM FILE

N/A OCILobLocatorIsIni
t()

Clob.isinitialized(
)

N/A

DBMS_LOB.OPEN OCILobOpen() Blob.open OPEN

DBMS_LOB.READ OCILobRead() Blob.read READ

DBMS_LOB.SETOPTIONS OCILobSetOptions() Blob/Clob::setOptions N/A

DBMS_LOB.TRIM OCILobTrim2() Blob.trim TRIM

DBMS_LOB.WRITE OCILobWrite2 Blob.write WRITEORALOB.

DBMS_LOB.WRITEAPPEND OCILobWriteAppend2(
)

N/A WRITE APPEND

DBMS_LOB.CREATETEMPORARY OCILobCreateTempora
ry()

N/A N/A

DBMS_LOB.FREETEMPORARY OCILobFreeTemporar
y()

N/A N/A

DBMS_LOB.ISTEMPORARY OCILobIsTemporary() N/A N/A

Chapter 10
Comparing the LOB Interfaces

10-3

Table 10-2 (Cont.) Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

C (OCI)
(ociap.h)

C++ (OCCI)
(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

N/A OCILobLocatorAssig
n()

use operator = () or copy
constructor

N/A

Table 10-3 Comparing the LOB Interfaces, 2 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

Java (JDBC) ODP.NET

DBMS_LOB.COMPARE Use DBMS_LOB. OracleClob.Compare

DBMS_LOB.INSTR position OracleClob.Search

DBMS_LOB.SUBSTR getBytes for BLOBs or
BFILEsgetSubString for
CLOBs

N/A

DBMS_LOB.APPEND Use length and then
putBytes() or
PutString()

OracleClob.Append

OCILobAssign() N/A [use equal sign] OracleClob.Clone

OCILobCharSetForm() N/A N/A

OCILobCharSetId() N/A N/A

DBMS_LOB.CLOSE use DBMS_LOB. OracleClob.Close

DBMS_LOB.COPY Use read and write OracleClob.CopyTo

DBMS_LOB.ERASE Use DBMS_LOB. OracleClob.Erase

DBMS_LOB.FILECLOSE closeFile OracleBFile.CloseFile

DBMS_LOB.FILECLOSEALL Use DBMS_LOB. N/A

DBMS_LOB.FILEEXISTS fileExists OracleBFile.FileExists

DBMS_LOB.GETCHUNKSIZE getChunkSize OracleClob.OptimumChunkSi
ze

DBMS_LOB.FILEGETNAME getDirAlias

getName

OracleBFile.DirectoryName
Oracle.BFile.FileName

DBMS_LOB.FILEISOPEN Use DBMS_LOB.ISOPEN OracleBFile.IsOpen

DBMS_LOB.FILEOPEN openFile OracleBFile.OpenFile

OCILobFileSetName() Use BFILENAME OracleBFile.DirectoryName

Oracle.BFile.FileName

OCILobFlushBuffer() N/A N/A

DBMS_LOB.GETLENGTH length OracleClob.Length

N/A equals() N/A

DBMS_LOB.ISOPEN use DBMS_LOB.ISOPEN() OracleClob.IsInChunkWrite
Mode

Chapter 10
Comparing the LOB Interfaces

10-4

Table 10-3 (Cont.) Comparing the LOB Interfaces, 2 of 2

PL/SQL: DBMS_LOB
(dbmslob.sql)

Java (JDBC) ODP.NET

DBMS_LOB.LOADFROMFILE Use read and then write N/A

DBMS_LOB.OPEN Use DBMS_LOB.OPEN() OracleClob.BeginChunkWrit
e

DBMS_LOB.READ BLOB or BFILE:
getBytes() and
getBinaryStream()

CLOB: getString() and
getSubString() and
getCharacterStream()

OracleClob.Read

DBMS_LOB.TRIM Use DBMS_LOB.TRIM() OracleClob.SetLength

DBMS_LOB.WRITE BLOB: setBytes() and
setBinaryStream()

CLOB: setString() and
setCharacterStream()

OracleClob.Write

DBMS_LOB.WRITEAPPEND Use length() and then
putString() or
putBytes()

OracleClob.Append

DBMS_LOB.CREATETEMPORARY N/A OracleClob constructors

DBMS_LOB.FREETEMPORARY N/A OracleClob.Dispose

DBMS_LOB.ISTEMPORARY N/A OracleClob.IsTemporary

Using PL/SQL (DBMS_LOB Package) to Work With LOBs
The PL/SQL DBMS_LOB package can be used for the following operations:

• Internal persistent LOBs and Temporary LOBs: Read and modify operations,
either entirely or in a piece-wise manner.

• BFILEs: Read operations

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
documentation, including parameters, parameter types, return values,
and example code.

Provide a LOB Locator Before Running the DBMS_LOB Routine
DBMS_LOB routines work based on LOB locators. For the successful completion of
DBMS_LOB routines, you must provide an input locator representing a LOB that exists in
the database tablespaces or external file system, before you call the routine.

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10-5

• Persistent LOBs: First use SQL to define tables that contain LOB columns, and
subsequently you can use SQL to initialize or populate the locators in these LOB
columns.

• External LOBs: Define a DIRECTORY object that maps to a valid physical directory
containing the external LOBs that you intend to access. These files must exist, and
have READ permission for Oracle Server to process. If your operating system
uses case-sensitive path names, then specify the directory in the correct case.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a
local PL/SQL LOB variable and use this variable as an input parameter to DBMS_LOB for
access to the LOB value.

Examples provided with each DBMS_LOB routine illustrate this in the following sections.

See Also:

Directory Objects

Guidelines for Offset and Amount Parameters in DBMS_LOB
Operations

The following guidelines apply to offset and amount parameters used in procedures in
the DBMS_LOB PL/SQL package:

• For character data—in all formats, fixed-width and varying-width—the amount and
offset parameters are in characters. This applies to operations on CLOB and
NCLOB data types.

• For binary data, the offset and amount parameters are in bytes. This applies to
operations on BLOB data types.

• When using the following procedures:

– DBMS_LOB.LOADFROMFILE

– DBMS_LOB.LOADBLOBFROMFILE

– DBMS_LOB.LOADCLOBFROMFILE

you cannot specify an amount parameter with a value larger than the size of the
BFILE you are loading from. To load the entire BFILE with these procedures, you
must specify either the exact size of the BFILE, or the maximum allowable storage
limit.

• When using DBMS_LOB.READ, the amount parameter can be larger than the size of
the data. The amount should be less than or equal to the size of the buffer. The
buffer size is limited to 32K.

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10-6

See Also:

– Loading a LOB with Data from a BFILE

– About Loading a BLOB with Data from a BFILE

– Loading a CLOB or NCLOB with Data from a BFILE

– About Reading Data from a LOB

Determining Character Set ID
To determine the character set ID, you must know the character set name.

A user can select from the V$NLS_VALID_VALUES view, which lists the names of the
character sets that are valid as database and national character sets. Then call the
function NLS_CHARSET_ID with the desired character set name as the one string
argument. The character set ID is returned as an integer. UTF16 does not work
because it has no character set name. Use character set ID = 1000 for UTF16.
Although UTF16 is not allowed as a database or national character set, the APIs in
DBMS_LOB support it for database conversion purposes. DBMS_LOB.LOADCLOBFROMFILE
and other procedures in DBMS_LOB take character set ID, not character set name, as an
input.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details
and supported Unicode encodings

• Oracle Database Globalization Support Guide for supported languages

PL/SQL Functions and Procedures for LOBs

See Also:

PL/SQL functions and procedures that operate on BLOBs, CLOBs, NCLOBs, and
BFILEs

• Table 10-4 to modify persistent LOB values

• Table 10-5 to read or examine LOB values

• Table 10-6 to create, free, or check on temporary LOBs

• Table 10-7 for read-only functions on external LOBs (BFILEs)

• Table 10-8 to open or close a LOB, or check if LOB is open

• PL/SQL Packages for LOBs and DBFS to perform archive management
on SecureFiles

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10-7

PL/SQL Functions and Procedures to Modify LOB Values
Here is a table of DBMS_LOB procedures:

Table 10-4 PL/SQL: DBMS_LOB Procedures to Modify LOB Values

Function/Procedure Description

APPEND Appends the LOB value to another LOB

CONVERTTOBLOB Converts a CLOB to a BLOB

CONVERTTOCLOB Converts a BLOB to a CLOB

COPY Copies all or part of a LOB to another LOB

ERASE Erases part of a LOB, starting at a specified offset

FRAGMENT_DELETE Delete the data from the LOB at the given offset for the given length

FRAGMENT_INSERT Insert the given data (< 32KBytes) into the LOB at the given offset

FRAGMENT_MOVE Move the given amount of bytes from the given offset to the new given offset

FRAGMENT_REPLACE Replace the data at the given offset with the given data (< 32kBytes)

LOADFROMFILE Load BFILE data into a persistent LOB

LOADCLOBFROMFILE Load character data from a file into a LOB

LOADBLOBFROMFILE Load binary data from a file into a LOB

SETOPTIONS Sets LOB features (deduplication and compression)

TRIM Trims the LOB value to the specified shorter length

WRITE Writes data to the LOB at a specified offset

WRITEAPPEND Writes data to the end of the LOB

PL/SQL Functions and Procedures for Introspection of LOBs

Table 10-5 PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB
values

Function/Procedure Description

COMPARE Compares the value of two LOBs

GETCHUNKSIZE Gets the chunk size used when reading and writing. This only works on
persistent LOBs and does not apply to external LOBs (BFILEs).

GETLENGTH Gets the length of the LOB value.

GETOPTIONS Returns options (deduplication, compression, encryption) for SecureFiles.

GET_STORAGE_LIMIT Gets the LOB storage limit for the database configuration.

INSTR Returns the matching position of the nth occurrence of the pattern in the LOB.

ISSECUREFILE Returns TRUE if the BLOB or CLOB locator passed to it is for a SecureFiles or
FALSE if it is not.

READ Reads data from the LOB starting at the specified offset.

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10-8

Table 10-5 (Cont.) PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External
LOB values

Function/Procedure Description

SETOPTIONS Sets options (deduplication and compression) for a SecureFiles, overriding the
default LOB column settings. Incurs a server round trip.

SUBSTR Returns part of the LOB value starting at the specified offset.

PL/SQL Operations on Temporary LOBs

Table 10-6 PL/SQL: DBMS_LOB Procedures to Operate on Temporary LOBs

Function/Procedure Description

CREATETEMPORARY Creates a temporary LOB

ISTEMPORARY Checks if a LOB locator refers to a temporary LOB

FREETEMPORARY Frees a temporary LOB

PL/SQL Read-Only Functions and Procedures for BFILEs

Table 10-7 PL/SQL: DBMS_LOB Read-Only Procedures for BFILEs

Function/Procedure Description

FILECLOSE Closes the file. Use CLOSE() instead.

FILECLOSEALL Closes all previously opened files

FILEEXISTS Checks if the file exists on the server

FILEGETNAME Gets the directory object name and file name

FILEISOPEN Checks if the file was opened using the input BFILE locators. Use
ISOPEN() instead.

FILEOPEN Opens a file. Use OPEN() instead.

PL/SQL Functions and Procedures to Open and Close Internal and
External LOBs

Table 10-8 PL/SQL: DBMS_LOB Procedures to Open and Close Internal and External LOBs

Function/Procedure Description

OPEN Opens a LOB

ISOPEN Sees if a LOB is open

CLOSE Closes a LOB

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

10-9

See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for detailed
information about these procedures for specific LOB operations, such as,
INSERT a row containing a LOB

Using OCI to Work With LOBs
Oracle Call Interface (OCI) LOB functions enable you to access and make changes to
LOBs and to read data from BFILEs in C.

See Also:

Oracle Call Interface Programmer's Guide chapter "LOB and BFILE
Operations" for the details of all topics discussed in this section.

Prefetching of LOB Data, Length, and Chunk Size
To improve OCI access of smaller LOBs, LOB data can be prefetched and cached
while also fetching the locator. This applies to internal LOBs, temporary LOBs, and
BFILEs.

Setting the CSID Parameter for OCI LOB APIs
If you want to read or write data in 2-byte Unicode format, then set the csid (character
set ID) parameter in OCILobRead2() and OCILobWrite2() to OCI_UTF16ID.

The csid parameter indicates the character set id for the buffer parameter. You can
set the csid parameter to any character set ID. If the csid parameter is set, then it
overrides the NLS_LANG environment variable.

See Also:

• Oracle Call Interface Programmer's Guidefor information on the
OCIUnicodeToCharSet() function and details on OCI syntax in general.

• Oracle Database Globalization Support Guidefor detailed information
about implementing applications in different languages.

Fixed-Width and Varying-Width Character Set Rules for OCI
In OCI, for fixed-width client-side character sets, the following rules apply:

• CLOBs and NCLOBs: offset and amount parameters are always in characters

• BLOBs and BFILEs: offset and amount parameters are always in bytes

Chapter 10
Using OCI to Work With LOBs

10-10

The following rules apply only to varying-width client-side character sets:

• Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset
parameter is always as follows:

– CLOBs and NCLOBs: in characters

– BLOBs and BFILEs: in bytes

• Amount parameter:

The amount parameter is always as follows:

– When referring to a server-side LOB: in characters

– When referring to a client-side buffer: in bytes

• OCILobFileGetLength():

Regardless of whether the client-side character set is varying-width, the output
length is as follows:

– CLOBs and NCLOBs: in characters

– BLOBs and BFILEs: in bytes

• OCILobRead2():

With client-side character set of varying-width, CLOBs and NCLOBs:

– Input amount is in characters. Input amount refers to the number of
characters to read from the server-side CLOB or NCLOB.

– Output amount is in bytes. Output amount indicates how many bytes were
read into the buffer bufp.

• OCILobWrite2(): With client-side character set of varying-width, CLOBs and
NCLOBs:

– Input amount is in bytes. The input amount refers to the number of bytes of
data in the input buffer bufp.

– Output amount is in characters. The output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

Other Operations
For all other LOB operations, irrespective of the client-side character set, the amount
parameter is in characters for CLOBs and NCLOBs. These include OCILobCopy2(),
OCILobErase2(), OCILobLoadFromFile2(), and OCILobTrim2(). All these operations
refer to the amount of LOB data on the server.

See Also:

Oracle Database Globalization Support Guide

NCLOBs in OCI
NCLOBs are allowed as parameters in methods.

Chapter 10
Using OCI to Work With LOBs

10-11

OCILobLoadFromFile2() Amount Parameter
When using OCILobLoadFromFile2() you cannot specify amount larger than the length
of the BFILE. To load the entire BFILE, you can pass the value returned by
OCILobGetStorageLimit().

OCILobRead2() Amount Parameter
To read to the end of a LOB using OCILobRead2(), you specify an amount equal to the
value returned by OCILobGetStorageLimit().

See Also:

About Reading Data from a LOB

OCILobLocator Pointer Assignment
Special care must be taken when assigning OCILobLocator pointers in an OCI
program—using the "=" assignment operator. Pointer assignments create a shallow
copy of the LOB. After the pointer assignment, the source and target LOBs point to the
same copy of data.

These semantics are different from using LOB APIs, such as OCILobAssign() or
OCILobLocatorAssign() to perform assignments. When the these APIs are used, the
locators logically point to independent copies of data after assignment.

For temporary LOBs, before performing pointer assignments, you must ensure that
any temporary LOB in the target LOB locator is freed by calling OCIFreeTemporary().
In contrast, when OCILobLocatorAssign() is used, the original temporary LOB in the
target LOB locator variable, if any, is freed automatically before the assignment
happens.

LOB Locators in Defines and Out-Bind Variables in OCI
Before you reuse a LOB locator in a define or an out-bind variable in a SQL statement,
you must free any temporary LOB in the existing LOB locator buffer using
OCIFreeTemporary().

OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and
BFILEs

OCI functions that operate on BLOBs, CLOBs, NCLOBs, and BFILEs are as follows:

• To modify persistent LOBs, see #unique_279/
unique_279_Connect_42_G1039025

• To read or examine LOB values, see #unique_280/
unique_280_Connect_42_G1039053

Chapter 10
Using OCI to Work With LOBs

10-12

• To create or free temporary LOB, or check if Temporary LOB exists, see
#unique_281/unique_281_Connect_42_G1039069

• For read only functions on external LOBs (BFILEs), see #unique_282/
unique_282_Connect_42_G1039085

• To operate on LOB locators, see #unique_283/
unique_283_Connect_42_G1039110

• To open and close LOBs, see #unique_284/unique_284_Connect_42_G1039151

OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB)
Values

Table 10-9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure Description

OCILobAppend() Appends LOB value to another LOB.

OCILobArrayWrite() Writes data using multiple locators in one round trip.

OCILobCopy2() Copies all or part of a LOB to another LOB.

OCILobErase2() Erases part of a LOB, starting at a specified offset.

OCILobLoadFromFile2() Loads BFILE data into a persistent LOB.

OCILobSetContentType() Sets a content string in a SecureFiles.

OCILObSetOptions() Enables option settings (deduplication and compression) for a SecureFiles.

OCILobTrim2() Truncates a LOB.

OCILobWrite2() Writes data from a buffer into a LOB, overwriting existing data.

OCILobWriteAppend2() Writes data from a buffer to the end of the LOB.

OCI Functions to Read or Examine Persistent LOB and External LOB
(BFILE) Values

Table 10-10 OCI Functions to Read or Examine persistent LOB and external LOB (BFILE)
Values

Function/Procedure Description

OCILobArrayRead() Reads data using multiple locators in one round trip.

OCILobGetChunkSize() Gets the chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFILEs).

OCILobGetContentType() Gets the content string for a SecureFiles.

OCILobGetLength2() Returns the length of a LOB or a BFILE.

OCILObGetOptions() Obtains the enabled settings (deduplication, compression, encryption)
for a given SecureFiles.

OCILobGetStorageLimit() Gets the maximum length of an internal LOB.

OCILobRead2() Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Chapter 10
Using OCI to Work With LOBs

10-13

OCI Functions for Temporary LOBs

Table 10-11 OCI Functions for Temporary LOBs

Function/Procedure Description

OCILobCreateTemporary() Creates a temporary LOB.

OCILobIsTemporary() Sees if a temporary LOB exists.

OCILobFreeTemporary() Frees a temporary LOB.

OCI Read-Only Functions for BFILEs

Table 10-12 OCI Read-Only Functions for BFILES

Function/Procedure Description

OCILobFileClose() Closes an open BFILE.

OCILobFileCloseAll() Closes all open BFILEs.

OCILobFileExists() Checks whether a BFILE exists.

OCILobFileGetName() Returns the name of a BFILE.

OCILobFileIsOpen() Checks whether a BFILE is open.

OCILobFileOpen() Opens a BFILE.

OCI LOB Locator Functions

Table 10-13 OCI LOB-Locator Functions

Function/Procedure Description

OCILobAssign() Assigns one LOB locator to another.

OCILobCharSetForm() Returns the character set form of a LOB.

OCILobCharSetId() Returns the character set ID of a LOB.

OCILobFileSetName() Sets the name of a BFILE in a locator.

OCILobIsEqual() Checks whether two LOB locators refer to the same LOB.

OCILobLocatorIsInit() Checks whether a LOB locator is initialized.

OCI Functions to Open and Close Internal and External LOBs

Table 10-14 OCI Functions to Open and Close Internal and External LOBs

Function/Procedure Description

OCILobOpen() Opens a LOB.

OCILobIsOpen() Sees if a LOB is open.

Chapter 10
Using OCI to Work With LOBs

10-14

Table 10-14 (Cont.) OCI Functions to Open and Close Internal and External LOBs

Function/Procedure Description

OCILobClose() Closes a LOB.

OCI LOB Examples
Further OCI examples are provided in:

• Using LOB APIs

• LOB APIs for BFILE Operations

See Also:

Oracle Call Interface Programmer's Guide for further OCI demonstration
script listings

Further Information About OCI

See Also:

http://www.oracle.com/technology/ for more information about OCI
features and frequently asked questions.

Using C++ (OCCI) to Work With LOBs
Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle
database. OCCI is organized as an easy-to-use set of C++ classes that enable a C++
program to connect to a database, run SQL statements, insert/update values in
database tables, retrieve results of a query, run stored procedures in the database,
and access metadata of database schema objects. OCCI also provides a seamless
interface to manipulate objects of user-defined types as C++ class instances.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI
together to build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

• OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

• OCCI provides compiled performance. With compiled programs, the source code
is written as close to the computer as possible. Because JDBC is an interpreted
API, it cannot provide the performance of a compiled API. With an interpreted
program, performance degrades as each line of code must be interpreted
individually into code that is close to the computer.

Chapter 10
Using C++ (OCCI) to Work With LOBs

10-15

http://www.oracle.com/technology/

• OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

• Navigational access of OCCI enables you to intuitively access objects and call
methods. Changes to objects persist without writing corresponding SQL
statements. If you use the client side cache, then the navigational interface
performs better than the object interface.

• With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on
the C language, OCCI has all the advantages C++ provides over C. Moreover,
ODBC has a reputation as being difficult to learn. The OCCI, by contrast, is
designed for ease of use.

You can use OCCI to make changes to an entire persistent LOB, or to pieces of the
beginning, middle, or end of it, as follows:

• For reading from internal and external LOBs (BFILEs)

• For writing to persistent LOBs

OCCI Classes for LOBs
OCCI provides these classes that allow you to use different types of LOB instances as
objects in your C++ application:

• Clob class to access and modify data stored in internal CLOBs and NCLOBs

• Blob class to access and modify data stored in internal BLOBs

• Bfile class to access and read data stored in external LOBs (BFILEs)

See Also:

Syntax information on these classes and details on OCCI in general is
available in theOracle C++ Call Interface Programmer's Guide.

Clob Class
The Clob driver implements a CLOB object using an SQL LOB locator. This means that
a CLOB object contains a logical pointer to the SQL CLOB data rather than the data
itself.

The CLOB interface provides methods for getting the length of an SQL CLOB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the
ResultSet and Statement interfaces such as getClob() and setClob() allow you to
access SQL CLOB values.

See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on
the Clob class.

Chapter 10
Using C++ (OCCI) to Work With LOBs

10-16

Blob Class
Methods in the ResultSet and Statement interfaces, such as getBlob() and
setBlob(), allow you to access SQL BLOB values. The Blob interface provides
methods for getting the length of a SQL BLOB value, for materializing a BLOB value on
the client, and for extracting a part of the BLOB.

See Also:

• Oracle C++ Call Interface Programmer's Guide for detailed information
on the Blob class methods and details on instantiating and initializing a
Blob object in your C++ application.

• Oracle Database Globalization Support Guidefor detailed information
about implementing applications in different languages.

Bfile Class
The Bfile class enables you to instantiate a Bfile object in your C++ application. You
must then use methods of the Bfile class, such as the setName() method, to initialize
the Bfile object which associates the object properties with an object of type BFILE in
a BFILE column of the database.

See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on
the Bfile class methods and details on instantiating and initializing an Bfile
object in your C++ application.

Fixed-Width Character Set Rules
In OCCI, for fixed-width client-side character sets, these rules apply:

• Clob: offset and amount parameters are always in characters

• Blob: offset and amount parameters are always in bytes

• Bfile: offset and amount parameters are always in bytes

Varying-Width Character Set Rules
The following rules apply only to varying-width client-side character sets:

• Offset parameter: Regardless of whether the client-side character set is varying-
width, the offset parameter is always as follows:

– Clob(): in characters

– Blob(): in bytes

Chapter 10
Using C++ (OCCI) to Work With LOBs

10-17

– Bfile(): in bytes

• Amount parameter: The amount parameter is always as indicated:

– Clob: in characters, when referring to a server-side LOB

– Blob: in bytes, when referring to a client-side buffer

– Bfile: in bytes, when referring to a client-side buffer

• length(): Regardless of whether the client-side character set is varying-width, the
output length is as follows:

– Clob.length(): in characters

– Blob.length(): in bytes

– Bfile.length(): in bytes

• Clob.read() and Blob.read(): With client-side character set of varying-width,
CLOBs and NCLOBs:

– Input amount is in characters. Input amount refers to the number of
characters to read from the server-side CLOB or NCLOB.

– Output amount is in bytes. Output amount indicates how many bytes were
read into the OCCI buffer parameter, buffer.

• Clob.write() and Blob.write(): With client-side character set of varying-width,
CLOBs and NCLOBs:

– Input amount is in bytes. Input amount refers to the number of bytes of data
in the OCCI input buffer, buffer.

– Output amount is in characters. Output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

Offset and Amount Parameters for Other OCCI Operations
For all other OCCI LOB operations, irrespective of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBs. These include the following:

• Clob.copy()

• Clob.erase()

• Clob.trim()

• For LoadFromFile functionality, overloaded Clob.copy()

All these operations refer to the amount of LOB data on the server.

See also:

Oracle Database Globalization Support Guide

NCLOBs in OCCI
• NCLOB instances are allowed as parameters in methods

• NCLOB instances are allowed as attributes in object types.

Chapter 10
Using C++ (OCCI) to Work With LOBs

10-18

Amount Parameter for OCCI LOB copy() Methods
The copy() method on Clob and Blob enables you to load data from a BFILE. You can
pass one of the following values for the amount parameter to this method:

• An amount smaller than the size of the BFILE to load a portion of the data

• An amount equal to the size of the BFILE to load all of the data

• The UB8MAXVAL constant to load all of the BFILE data

You cannot specify an amount larger than the length of the BFILE.

Amount Parameter for OCCI read() Operations
The read() method on an Clob, Blob, or Bfile object, reads data from a BFILE. You
can pass one of these values for the amount parameter to specify the amount of data
to read:

• An amount smaller than the size of the BFILE to load a portion of the data

• An amount equal to the size of the BFILE to load all of the data

• 0 (zero) to read until the end of the BFILE in streaming mode

You cannot specify an amount larger than the length of the BFILE.

Further Information About OCCI

See Also:

• Oracle C++ Call Interface Programmer's Guide

• http://www.oracle.com/ search for articles and product information
featuring OCCI.

OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and
BFILEs

OCCI methods that operate on BLOBs, CLOBs, NCLOBs, and BFILEs are as follows:

• To modify persistent LOBs, see Table 10-15

• To read or examine LOB values, see Table 10-16

• For read only methods on external LOBs (BFILEs), see Table 10-17

• Other LOB OCCI methods are described in Table 10-18

• To open and close LOBs, see Table 10-19

Chapter 10
Using C++ (OCCI) to Work With LOBs

10-19

http://www.oracle.com/

OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB)
Values

Table 10-15 OCCI Clob and Blob Methods to Modify Persistent LOB (BLOB, CLOB, and
NCLOB) Values

Function/Procedure Description

Blob/Clob.append() Appends CLOB or BLOB value to another LOB.

Blob/Clob.copy() Copies all or part of a CLOB or BLOB to another LOB.

Blob/Clob.copy() Loads BFILE data into a persistent LOB.

Blob/Clob.trim() Truncates a CLOB or BLOB.

Blob/Clob.write() Writes data from a buffer into a LOB, overwriting existing data.

OCCI Methods to Read or Examine Persistent LOB and BFILE Values

Table 10-16 OCCI Blob/Clob/Bfile Methods to Read or Examine persistent LOB and BFILE
Values

Function/Procedure Description

Blob/Clob.getChunkSize() Gets the chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFILEs).

Blob/Clob.getOptions() Obtains settings for existing and newly created LOBs.

Blob/Clob.length() Returns the length of a LOB or a BFILE.

Blob/Clob.read() Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Blob/Clob.setOptions() Enables LOB settings for existing and newly created LOBs.

OCCI Read-Only Methods for BFILEs

Table 10-17 OCCI Read-Only Methods for BFILES

Function/Procedure Description

Bfile.close() Closes an open BFILE.

Bfile.fileExists() Checks whether a BFILE exists.

Bfile.getFileName() Returns the name of a BFILE.

Bfile.getDirAlias() Gets the directory object name.

Bfile.isOpen() Checks whether a BFILE is open.

Bfile.open() Opens a BFILE.

Chapter 10
Using C++ (OCCI) to Work With LOBs

10-20

Other OCCI LOB Methods

Table 10-18 Other OCCI LOB Methods

Methods Description

Clob/Blob/Bfile.operator=() Assigns one LOB locator to another. Use = or the copy constructor.

Clob.getCharSetForm() Returns the character set form of a LOB.

Clob.getCharSetId() Returns the character set ID of a LOB.

Bfile.setName() Sets the name of a BFILE.

Clob/Blob/Bfile.operator==() Checks whether two LOB refer to the same LOB.

Clob/Blob/Bfile.isInitialized() Checks whether a LOB is initialized.

OCCI Methods to Open and Close Internal and External LOBs

Table 10-19 OCCI Methods to Open and Close Internal and External LOBs

Function/Procedure Description

Clob/Blob/Bfile.Open() Opens a LOB

Clob/Blob/Bfile.isOpen() Sees if a LOB is open

Clob/Blob/Bfile.Close() Closes a LOB

Using C/C++ (Pro*C) to Work With LOBs
You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of a LOB by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFILEs. These statements are listed in the following tables, and are discussed in
greater detail later in the chapter.

See Also:

Pro*C/C++ Programmer's Guidefor detailed documentation, including syntax,
host variables, host variable types and example code.

Providing an Allocated Input Locator Pointer That Represents LOB
Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers which
are then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the
following:

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

10-21

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable.

3. Use this variable in the embedded SQL LOB statement to access and manipulate
the LOB value.

See Also:

APIs for supported LOB operations are described in detail in:

• Operations Specific to Persistent and Temporary LOBs

• Using LOB APIs

• LOB APIs for BFILE Operations

Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs,
and BFILEs

Pro*C/C++ statements that operate on BLOBs, CLOBs, and NCLOBs are listed in the
following tables:

• To modify persistent LOBs, see #unique_306/
unique_306_Connect_42_G1039287

• To read or examine LOB values, see #unique_307/
unique_307_Connect_42_G1039315

• To create or free temporary LOB, or check if Temporary LOB exists, see
#unique_308/unique_308_Connect_42_G1039331

• To operate close and 'see if file exists' functions on BFILEs, see #unique_309/
unique_309_Connect_42_G1039347

• To operate on LOB locators, see #unique_310/
unique_310_Connect_42_G1039363

• To open or close LOBs or BFILEs, see #unique_311/
unique_311_Connect_42_G1039392

Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB
Values

Table 10-20 Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or a part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into a persistent LOB at a specified offset.

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

10-22

Table 10-20 (Cont.) Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset.

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Pro*C/C++ Embedded SQL Statements for Introspection of LOBs

Table 10-21 Pro*C/C++: Embedded SQL Statements for Introspection of LOBs

Statement Description

DESCRIBE [CHUNKSIZE] Gets the chunk size used when writing. This works for persistent LOBs only. It
does not apply to external LOBs (BFILEs).

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE.

READ reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Pro*C/C++ Embedded SQL Statements for Temporary LOBs

Table 10-22 Pro*C/C++: Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Pro*C/C++ Embedded SQL Statements for BFILEs

Table 10-23 Pro*C/C++: Embedded SQL Statements for BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILEs.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE
[DIRECTORY,FILENAME]

Returns the directory object name and filename of a BFILE.

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

10-23

Pro*C/C++ Embedded SQL Statements for LOB Locators

Table 10-24 Pro*C/C++ Embedded SQL Statements for LOB Locators

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory object name and filename of a BFILE in a locator.

Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

Table 10-25 Pro*C/C++ Embedded SQL Statements to Open and Close Persistent LOBs and
External LOBs (BFILEs)

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.

Using COBOL (Pro*COBOL) to Work With LOBs
You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of it by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can also write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFILEs. These statements are listed in the following tables, and are discussed in
greater detail later in the manual.

Providing an Allocated Input Locator Pointer That Represents LOB
Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers
which are then used to refer to the LOB or BFILE value. For the successful completion
of an embedded SQL LOB statement you must perform the following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in an embedded SQL LOB statement to access and manipulate
the LOB value.

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

10-24

See Also:

APIs for supported LOB operations are described in detail in:

• Operations Specific to Persistent and Temporary LOBs

• Using LOB APIs

• LOB APIs for BFILE Operations

Where the Pro*COBOL interface does not supply the required functionality, you can
call OCI using C. Such an example is not provided here because such programs are
operating system dependent.

See Also:

Pro*COBOL Programmer's Guidefor detailed documentation, including
syntax, host variables, host variable types, and example code.

Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs,
and BFILEs

The following Pro*COBOL statements operate on BLOBs, CLOBs, NCLOBs, and
BFILEs:

• To modify persistent LOBs, see #unique_314/
unique_314_Connect_42_G1039412

• To read or examine internal and external LOB values, see #unique_315/
unique_315_Connect_42_G1039440

• To create or free temporary LOB, or check LOB locator, see #unique_316/
unique_316_Connect_42_G1039456

• To operate close and 'see if file exists' functions on BFILEs, see #unique_317/
unique_317_Connect_42_G1039472

• To operate on LOB locators, see #unique_318/
unique_318_Connect_42_G1039488

• To open or close persistent LOBs or BFILEs, see #unique_319/
unique_319_Connect_42_G1039517

Pro*COBOL Embedded SQL Statements to Modify Persistent LOB
Values

Table 10-26 Pro*COBOL Embedded SQL Statements to Modify LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

10-25

Table 10-26 (Cont.) Pro*COBOL Embedded SQL Statements to Modify LOB Values

Statement Description

COPY Copies all or part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into a persistent LOB at a specified offset.

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Table 10-27 Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing.

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE.

READ Reads a specified portion of a non-NULL LOB or a BFILE into a buffer.

Pro*COBOL Embedded SQL Statements for Temporary LOBs

Table 10-28 Pro*COBOL Embedded SQL Statements for Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE [ISTEMPORARY] Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Pro*COBOL Embedded SQL Statements for BFILEs

Table 10-29 Pro*COBOL Embedded SQL Statements for BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILEs.

DESCRIBE [FILEEXISTS] Checks whether a BFILE exists.

DESCRIBE [DIRECTORY,
FILENAME]

Returns the directory object name and filename of a BFILE.

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

10-26

Pro*COBOL Embedded SQL Statements for LOB Locators

Table 10-30 Pro*COBOL Embedded SQL Statements for LOB Locator Statements

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory object name and filename of a BFILE in a locator.

Pro*COBOL Embedded SQL Statements for Opening and Closing
LOBs and BFILEs

Table 10-31 Pro*COBOL Embedded SQL Statements for Opening and Closing Persistent LOBs
and BFILEs

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.

Using Java (JDBC) to Work With LOBs
You can perform the following tasks on LOBs with Java (JDBC):

• Modifying Internal Persistent LOBs Using Java

• Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java

• Calling DBMS_LOB Package from Java (JDBC)

• Referencing LOBs Using Java (JDBC)

• Create and Manipulate Temporary LOBs and Store Them in Tables as Permanent
LOBs. See JDBC Temporary LOB APIs

Modifying Internal Persistent LOBs Using Java
You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle, or end of a persistent LOB in Java by means of the JDBC API using the
classes:

• oracle.sql.BLOB

• oracle.sql.CLOB

These classes implement java.sql.Blob and java.sql.Clob interfaces according to
the JDBC 3.0 specification, which has methods for LOB modification. They also
include legacy Oracle proprietary methods for LOB modification. These legacy
methods are marked as deprecated.

Chapter 10
Using Java (JDBC) to Work With LOBs

10-27

Starting in Oracle Database Release 11.1, the minimum supported version of the JDK
is JDK5. To use JDK5, place ojdbc5.jar in your CLASSPATH. To use JDK6, place
ojdbc6.jar in your CLASSPATH. ojdbc5.jar supports the JDBC 3.0 specification and
ojdbc6.jar supports the JDBC4.0 specification which is new with JDK6.

Reading Internal Persistent LOBs and External LOBs (BFILEs) With
Java

With JDBC you can use Java to read both internal persistent LOBs and external LOBs
(BFILEs).

BLOB, CLOB, and BFILE Classes
• BLOB and CLOB Classes: In JDBC theses classes provide methods for performing

operations on large objects in the database including BLOB and CLOB data types.

• BFILE Class: In JDBC this class provides methods for performing operations on
BFILE data in the database.

The BLOB, CLOB, and BFILE classes encapsulate LOB locators, so you do not deal with
locators but instead use methods and properties provided to perform operations and
get state information.

Calling DBMS_LOB Package from Java (JDBC)
Any LOB functionality not provided by these classes can be accessed by a call to the
PL/SQL DBMS_LOB package. This technique is used repeatedly in the examples
throughout this manual.

Prefetching LOBs to Improve Performance
The number of server round trips can be reduced by prefetching part of the data and
metadata (length and chunk size) along with the LOB locator during the fetch.

The SELECT parse, execution, and fetch occurs in one round trip. For large LOBs
(larger than five times the prefetch size) less improvement is seen.

To configure the prefetch size, a connection property,
oracle.jdbc.defaultLobPrefetchSize, defined as a constant in
oracle.jdbc.OracleConnection can be used. Values can be -1 to disable prefetching,
0 to enable prefetching for metadata only, or any value greater than 0 which
represents the number of bytes for BLOBs and characters for CLOBs, to be prefetched
along with the locator during fetch operations.

You can change the prefetch size for a particular statement by using a method defined
in oracle.jdbc.OracleStatement:

void setLobPrefetchSize(int size) throws SQLException;

The statement level setting overrides the setting at the connection level. This setting
can also be overriden at the column level through the extended defineColumnType
method, where the size represents the number of bytes (or characters for CLOB) to
prefetch. The possible values are the same as for the connection property. The type
must be set to OracleTypes.CLOB for a CLOB column and OracleTypes.BLOB for a BLOB

Chapter 10
Using Java (JDBC) to Work With LOBs

10-28

column. This method throws SQLException if the value is less than -1. To complement
the statement there is in oracle.jdbc.OracleStatement:

int getLobPrefetchSize();

Zero-Copy Input/Output for SecureFiles to Improve Performance
To improve the performance of SecureFiles, there is a Zero-copy Input/Output protocol
on the server that is only available to network clients that support the new Net NS Data
transfer protocol.

To determine if a LOB is a SecureFiles or not, use the method

public boolean isSecureFile() throws SQLException

If it is a SecureFiles, TRUE is returned.

Use this thin connection property to disable (by setting to FALSE) the Zero-copy Input/
Output protocol:

oracle.net.useZeroCopyIO

Zero-Copy Input/Output on the Server
Oracle Net Services is now able to use data buffers provided by the users of Oracle
Net Services without transferring the data into or out of its local buffers.

The network buffers (at the NS layer) are bypassed and internal lob buffers are directly
written on the network. The same applies to buffer reads.

This feature is only available to network clients that support the new NS Data packet
(this is negotiated during the NS handshake). The thin driver supports the new NS
protocol so that the server can use the zero-copy protocol and JavaNet exposes the
zero-copy IO mechanism to the upper layer so that data copies are no longer required
in the thin driver code.

Zero-Copy Input/Output in the JDBC Thin Driver
When you call the BLOB.getBytes(long pos, int length, byte[] buffer) API, the
buffer provided is used at the JavaNet layer to read the bytes from the socket.

The data is retrieved in one single round trip. Similarly, during a write operation, when
you call BLOB.setBytes(long pos, byte[] bytes), the buffer is directly written on the
network at the JavaNet layer. So the data is written in one single round trip. The user
buffer is sent as a whole.

JDBC-OCI Driver Considerations
The JDBC-OCI driver supports Zero-copy Input/Output in the server and in the
network layer.

Referencing LOBs Using Java (JDBC)
You can get a reference to any of the preceding LOBs in the following two ways:

• As a column of an OracleResultSet

Chapter 10
Using Java (JDBC) to Work With LOBs

10-29

• As an OUT type PL/SQL parameter from an OraclePreparedStatement

Using OracleResultSet: BLOB and CLOB Objects Retrieved
When BLOB and CLOB objects are retrieved as a part of an OracleResultSet, these
objects represent LOB locators of the currently selected row.

If the current row changes due to a move operation, for example, rset.next(), then the
retrieved locator still refers to the original LOB row.

To retrieve the locator for the most current row, you must call getBLOB(), getCLOB(),
or getBFILE() on the OracleResultSet each time a move operation is made
depending on whether the instance is a BLOB, CLOB or BFILE.

JDBC Syntax References and Further Information
For further JDBC syntax and information about using JDBC with LOBs:

See Also:

• Oracle Database JDBC Developer's Guide,for detailed documentation,
including parameters, parameter types, return values, and example
code.

• http://www.oracle.com/technology/

JDBC Methods for Operating on LOBs
The following JDBC methods operate on BLOBs, CLOBs, and BFILEs:

• BLOBs:

– To modify BLOB values, see Table 10-32

– To read or examine BLOB values, see Table 10-33

– For streaming BLOB data, see Table 10-34

– Temporary BLOBs: Creating, checking if BLOB is open, and freeing. See
#unique_337/unique_337_Connect_42_G1039847

– Opening, closing, and checking if BLOB is open, see #unique_337/
unique_337_Connect_42_G1039847

– Truncating BLOBs, see #unique_338/unique_338_Connect_42_G1039898

– BLOB streaming API, see #unique_339/unique_339_Connect_42_G1039922

• CLOBs:

– To read or examine CLOB values, see Table 10-36

– For streaming CLOB data, see Table 10-37

– To modify CLOBs, see #unique_339/unique_339_Connect_42_G1039922

• Temporary CLOBs:

Chapter 10
Using Java (JDBC) to Work With LOBs

10-30

http://www.oracle.com/technology/

– Opening, closing, and checking if CLOB is open, see #unique_342/
unique_342_Connect_42_G1039863

– Truncating CLOBs, see #unique_343/unique_343_Connect_42_G1039908

– CLOB streaming API, see #unique_344/unique_344_Connect_42_G1039935

• BFILEs:

– To read or examine BFILEs, see Table 10-38

– For streaming BFILE data, see Table 10-39

– Opening, closing, and checking if BFILE is open, see #unique_347/
unique_347_Connect_42_G1039879

– BFILE streaming API, see #unique_348/unique_348_Connect_42_G1039954

JDBC oracle.sql.BLOB Methods to Modify BLOB Values

Table 10-32 JDBC oracle.sql.BLOB Methods To Modify BLOB Values

Method Description

int setBytes(long, byte[]) Inserts the byte array into the BLOB, starting at the
given offset

JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Table 10-33 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Method Description

byte[] getBytes(long, int) Gets the contents of the LOB as an array of bytes,
given an offset

long position(byte[],long) Finds the given byte array within the LOB, given an
offset

long position(Blob,long) Finds the given BLOB within the LOB

public boolean equals(java.lang.Object) Compares this LOB with another. Compares the LOB
locators.

public long length() Returns the length of the LOB

public int getChunkSize() Returns the ChunkSize of the LOB

JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB
Data

Table 10-34 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data

Method Description

public java.io.InputStream getBinaryStream()) Streams the LOB as a binary stream

Chapter 10
Using Java (JDBC) to Work With LOBs

10-31

Table 10-34 (Cont.) JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data

Method Description

public java.io.OutputStream setBinaryStream() Retrieves a stream that can be used to
write to the BLOB value that this Blob
object represents

JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Table 10-35 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Method Description

int setString(long, java.lang.String) JDBC 3.0: Writes the given Java String to the CLOB
value that this Clob object designates at the position
pos.

int putChars(long, char[]) Inserts the character array into the LOB, starting at the
given offset

JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value

Table 10-36 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Values

Method Description

java.lang.String getSubString(long, int) Returns a substring of the LOB as a string

int getChars(long, int, char[]) Reads a subset of the LOB into a character array

long position(java.lang.String, long) Finds the given String within the LOB, given an offset

long position(oracle.jdbc2.Clob, long) Finds the given CLOB within the LOB, given an offset

long length() Returns the length of the LOB

int getChunkSize() Returns the ChunkSize of the LOB

JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB
Data

Table 10-37 JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data

Method Description

java.io.InputStream getAsciiStream() Implements the Clob interface method. Gets the
CLOB value designated by this Clob object as a
stream of ASCII bytes

java.io.OutputStream setAsciiStream(long pos) JDBC 3.0: Retrieves a stream to be used to write
ASCII characters to the CLOB value that this Clob
object represents, starting at position pos

Chapter 10
Using Java (JDBC) to Work With LOBs

10-32

Table 10-37 (Cont.) JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data

Method Description

java.io.Reader getCharacterStream() Reads the CLOB as a character stream

java.io.Writer setCharacterStream(long pos) JDBC 3.0: Retrieves a stream to be used to write
Unicode characters to the CLOB value that this
Clob object represents, starting at position pos

JDBC oracle.sql.BFILE Methods to Read or Examine External LOB
(BFILE) Values

Table 10-38 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values

Method Description

byte[] getBytes(long, int) Gets the contents of the BFILE as an array of bytes,
given an offset

int getBytes(long, int, byte[]) Reads a subset of the BFILE into a byte array

long position(oracle.sql.BFILE, long) Finds the first appearance of the given BFILE
contents within the LOB, from the given offset

long position(byte[], long) Finds the first appearance of the given byte array
within the BFILE, from the given offset

long length() Returns the length of the BFILE

boolean fileExists() Checks if the operating system file referenced by this
BFILE exists

public void openFile() Opens the operating system file referenced by this
BFILE

public void closeFile() Closes the operating system file
referenced by this BFILE

public boolean isFileOpen() Checks if this BFILE is open

public java.lang.String getDirAlias() Gets the directory object name for this
BFILE

public java.lang.String getName() Gets the file name referenced by this
BFILE

JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE
Data

Table 10-39 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data

Method Description

public java.io.InputStream getBinaryStream() Reads the BFILE as a binary stream

Chapter 10
Using Java (JDBC) to Work With LOBs

10-33

JDBC Temporary LOB APIs
Oracle Database JDBC drivers contain APIs to create and close temporary LOBs.
These APIs can replace workarounds that use the following procedures from the
DBMS_LOB PL/SQL package in prior releases:

• DBMS_LOB.createTemporary()

• DBMS_LOB.isTemporary()

• DBMS_LOB.freeTemporary()

Table 10-40 JDBC: Temporary BLOB APIs

Methods Description

public static BLOB createTemporary(Connection conn,

boolean cache, int duration) throws SQLException

Creates a temporary BLOB

public static boolean isTemporary(BLOB blob)

throws SQLException

Checks if the specified BLOB locator refers
to a temporary BLOB

public boolean isTemporary() throws SQLException Checks if the current BLOB locator refers
to a temporary BLOB

public static void freeTemporary(BLOB temp_blob)

throws SQLException

Frees the specified temporary BLOB

public void freeTemporary() throws SQLException Frees the temporary BLOB

Table 10-41 JDBC: Temporary CLOB APIs

Methods Description

public static CLOB createTemporary(Connection conn,

boolean cache, int duration) throws SQLException

Creates a temporary CLOB

public static boolean isTemporary(CLOB clob)

throws SQLException

Checks if the specified CLOB locator
refers to a temporary CLOB

public boolean isTemporary() throws SQLException Checks if the current CLOB locator
refers to a temporary CLOB

public static void freeTemporary(CLOB temp_clob)

throws SQLException

Frees the specified temporary CLOB

public void freeTemporary() throws SQLException Frees the temporary CLOB

JDBC: Opening and Closing LOBs
oracle.sql.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 10-41 lists the Oracle extension APIs in
oracle.sql.CLOB for accessing temporary CLOBs.

Oracle Database JDBC drivers contain APIs to explicitly open and close LOBs. These
APIs replace previous techniques that use DBMS_LOB.open() and DBMS_LOB.close().

Chapter 10
Using Java (JDBC) to Work With LOBs

10-34

JDBC: Opening and Closing BLOBs
oracle.sql.BLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Blob interface. Table 10-42 lists the Oracle extension APIs in
oracle.sql.BLOB that open and close BLOBs.

Table 10-42 JDBC: Opening and Closing BLOBs

Methods Description

public void open(int mode) throws SQLException Opens the BLOB

public boolean isOpen() throws SQLException Sees if the BLOB is open

public void close() throws SQLException Closes the BLOB

Opening the BLOB Using JDBC
To open a BLOB, your JDBC application can use the open method as defined in
oracle.sql.BLOB class as follows:

/**
 * Open a BLOB in the indicated mode. Valid modes include MODE_READONLY,
 * and MODE_READWRITE. It is an error to open the same LOB twice.
 */
public void open (int mode) throws SQLException

Possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRITE

Each call to open opens the BLOB. For example:

BLOB blob = ...
blob.open (BLOB.MODE_READWRITE);

Checking If the BLOB Is Open Using JDBC
To see if a BLOB is opened, your JDBC application can use the isOpen method defined
in oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BLOB is opened.
 * @return true if the LOB is opened.
 */
 public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();

Chapter 10
Using Java (JDBC) to Work With LOBs

10-35

Closing the BLOB Using JDBC
To close a BLOB, your JDBC application can use the close method defined in
oracle.sql.BLOB. The close API is defined as follows:

/**
 * Close a previously opened BLOB.
 */
public void close () throws SQLException

The usage example is:

BLOB blob = ...
// close the BLOB
blob.close ();

JDBC: Opening and Closing CLOBs
Class oracle.sql.CLOB is the Oracle JDBC driver implementation of the standard
JDBC java.sql.Clob interface. Table 10-43 lists the Oracle extension APIs in
oracle.sql.CLOB to open and close CLOBs.

Table 10-43 JDBC: Opening and Closing CLOBs

Methods Description

public void open(int mode) throws SQLException Open the CLOB

public boolean isOpen() throws SQLException See if the CLOB is opened

public void close() throws SQLException Close the CLOB

Opening the CLOB Using JDBC
To open a CLOB, your JDBC application can use the open method defined in
oracle.sql.CLOB class as follows:

/**
 * Open a CLOB in the indicated mode. Valid modes include MODE_READONLY,
 * and MODE_READWRITE. It is an error to open the same LOB twice.
 */
public void open (int mode) throws SQLException

The possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRITE

Each call to open opens the CLOB. For example,

CLOB clob = ...
clob.open (CLOB.MODE_READWRITE);

Chapter 10
Using Java (JDBC) to Work With LOBs

10-36

Checking If the CLOB Is Open Using JDBC
To see if a CLOB is opened, your JDBC application can use the isOpen method defined
in oracle.sql.CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the CLOB is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
 // See if the CLOB is opened
 boolean isOpen = clob.isOpen ();

Closing the CLOB Using JDBC
To close a CLOB, the JDBC application can use the close method defined in
oracle.sql.CLOB. The close API is defined as follows:

/**
* Close a previously opened CLOB.
*/
public void close () throws SQLException

The usage example is:

CLOB clob = ...
// close the CLOB
clob.close ();

JDBC: Opening and Closing BFILEs
oracle.sql.BFILE class wraps the database BFILE object. Table 10-44 lists the
Oracle extension APIs in oracle.sql.BFILE for opening and closing BFILEs.

Table 10-44 JDBC API Extensions for Opening and Closing BFILEs

Methods Description

public void open() throws SQLException Opens the BFILE

public void open(int mode) throws SQLException Opens the BFILE

public boolean isOpen() throws SQLException Checks if the BFILE is open

public void close() throws SQLException Closes the BFILE

Opening BFILEs
To open a BFILE, your JDBC application can use the OPEN method defined in
oracle.sql.BFILE class as follows:

Chapter 10
Using Java (JDBC) to Work With LOBs

10-37

/**
 * Open a external LOB in the read-only mode. It is an error
 * to open the same LOB twice.
 */
public void open () throws SQLException

/**
 * Open a external LOB in the indicated mode. Valid modes include
 * MODE_READONLY only. It is an error to open the same
 * LOB twice.
 */
public void open (int mode) throws SQLException

The only possible value of the mode parameter is:

public static final int MODE_READONLY

Each call to open opens the BFILE. For example,

BFILE bfile = ...
bfile.open ();

Checking If the BFILE Is Open
To see if a BFILE is opened, your JDBC application can use the isOpen method
defined in oracle.sql.BFILE. The return Boolean value indicates whether the BFILE
has been previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BFILE is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

BFILE bfile = ...
// See if the BFILE is opened
boolean isOpen = bfile.isOpen ();

Closing the BFILE
To close a BFILE, your JDBC application can use the close method defined in
oracle.sql.BFILE. The close API is defined as follows:

/**
 * Close a previously opened BFILE.
*/
public void close () throws SQLException

The usage example is --

BFILE bfile = ...
// close the BFILE
bfile.close ();

Usage Example (OpenCloseLob.java)

/*

Chapter 10
Using Java (JDBC) to Work With LOBs

10-38

 * This sample shows how to open/close BLOB and CLOB.
 */

// You must import the java.sql package to use JDBC
import java.sql.*;

// You must import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class OpenCloseLob
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

 // Connect to the database
 Connection conn =
 DriverManager.getConnection (url, "scott", "password");
 // It is faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist.
 }

// Create a table containing a BLOB and a CLOB
stmt.execute ("create table basic_lob_table (x varchar2 (30), b blob, c clob)");

// Populate the table
stmt.execute (
 "insert into basic_lob_table values"
 + " ('one', '010101010101010101010101010101', 'onetwothreefour')");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

Chapter 10
Using Java (JDBC) to Work With LOBs

10-39

 // Open the lobs
 System.out.println ("Open the lobs");
 blob.open (BLOB.MODE_READWRITE);
 clob.open (CLOB.MODE_READWRITE);

 // Check if the lobs are opened
 System.out.println ("blob.isOpen()="+blob.isOpen());
 System.out.println ("clob.isOpen()="+clob.isOpen());

 // Close the lobs
 System.out.println ("Close the lobs");
 blob.close ();
 clob.close ();

 // Check if the lobs are opened
 System.out.println ("blob.isOpen()="+blob.isOpen());
 System.out.println ("clob.isOpen()="+clob.isOpen());
 }

 // Close the ResultSet
 rset.close ();

 // Close the Statement
 stmt.close ();

 // Close the connection
 conn.close ();
 }
}

Truncating LOBs Using JDBC
Oracle Database JDBC drivers contain APIs to truncate persistent LOBs. These APIs
replace previous techniques that used DBMS_LOB.trim().

JDBC: Truncating BLOBs
oracle.sql.BLOB class is Oracle JDBC driver implementation of the standard JDBC
java.sql.Blob interface. Table 10-45 lists the Oracle extension API in
oracle.sql.BLOB that truncates BLOBs.

Table 10-45 JDBC: Truncating BLOBs

Methods Description

public void truncate(long newlen) throws SQLException Truncates the BLOB

The truncate API is defined as follows:

/**
*Truncate the value of the BLOB to the length you specify in the newlen parameter.
 * @param newlen the new length of the BLOB.
 */
public void truncate (long newlen) throws SQLException

The newlen parameter specifies the new length of the BLOB.

Chapter 10
Using Java (JDBC) to Work With LOBs

10-40

JDBC: Truncating CLOBs
oracle.sql.CLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Clob interface. Table 10-46 lists the Oracle extension API in
oracle.sql.CLOB that truncates CLOBs.

Table 10-46 JDBC: Truncating CLOBs

Methods Description

public void truncate(long newlen) throws SQLException Truncates the CLOB

The truncate API is defined as follows:

/**
*Truncate the value of the CLOB to the length you specify in the newlen parameter.
 * @param newlen the new length of the CLOB.
 */
public void truncate (long newlen) throws SQLException

The newlen parameter specifies the new length of the CLOB.

See:

"About Trimming LOB Data", for an example.

JDBC BLOB Streaming APIs
The JDBC interface provided with the database includes LOB streaming APIs that
enable you to read from or write to a LOB at the requested position from a Java
stream.

The oracle.sql.BLOB class implements the standard JDBC java.sql.Blob interface.
Table 10-47 lists BLOB Streaming APIs.

Table 10-47 JDBC: BLOB Streaming APIs

Methods Description

public java.io.OutputStream

setBinaryStream (long pos) throws SQLException

JDBC 3.0: Retrieves a stream that can
be used to write to the BLOB value that
this Blob object represents, starting at
position pos

public java.io.InputStream

getBinaryStream() throws SQLException

JDBC 3.0: Retrieves a stream that can
be used to read the BLOB value that this
Blob object represents, starting at the
beginning

public java.io.InputStream

getBinaryStream(long pos) throws SQLException

Oracle extension: Retrieves a stream
that can be used to read the BLOB value
that this Blob object represents, starting
at position pos

Chapter 10
Using Java (JDBC) to Work With LOBs

10-41

These APIs are defined as follows:

/**
 * Write to the BLOB from a stream at the requested position.
 *
 * @param pos is the position data to be put.
 * @return a output stream to write data to the BLOB
 */
public java.io.OutputStream setBinaryStream(long pos) throws SQLException

/**
 * Read from the BLOB as a stream at the requested position.
 *
 * @param pos is the position data to be read.
 * @return a output stream to write data to the BLOB
 */
public java.io.InputStream getBinaryStream(long pos) throws SQLException

JDBC CLOB Streaming APIs
The oracle.sql.CLOB class is the Oracle JDBC driver implementation of standard
JDBC java.sql.Clob interface. Table 10-48 lists the CLOB streaming APIs.

Table 10-48 JDBC: CLOB Streaming APIs

Methods Description

public java.io.OutputStream

setAsciiStream (long pos) throws SQLException

JDBC 3.0: Retrieves a stream to be used
to write ASCII characters to the CLOB
value that this Clob object represents,
starting at position pos

public java.io.Writer

setCharacterStream (long pos) throws SQLException

JDBC 3.0: Retrieves a stream to be used
to write Unicode characters to the CLOB
value that this Clob object represents,
starting, at position pos

public java.io.InputStream

getAsciiStream() throws SQLException

JDBC 3.0: Retrieves a stream that can be
used to read ASCII characters from the
CLOB value that this Clob object
represents, starting at the beginning

public java.io.InputStream

getAsciiStream(long pos) throws SQLException

Oracle extension: Retrieves a stream that
can be used to read ASCII characters
from the CLOB value that this Clob object
represents, starting at position pos

public java.io.Reader

getCharacterStream() throws SQLException

JDBC 3.0: Retrieves a stream that can be
used to read Unicode characters from the
CLOB value that this Clob object
represents, starting at the beginning

public java.io.Reader

getCharacterStream(long pos) throws SQLException

Oracle extension: Retrieves a stream that
can be used to read Unicode characters
from the CLOB value that this Clob object
represents, starting at position pos

These APIs are defined as follows:

/**
 * Write to the CLOB from a stream at the requested position.

Chapter 10
Using Java (JDBC) to Work With LOBs

10-42

 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
public java.io.OutputStream setAsciiStream(long pos) throws SQLException

/**

 * Write to the CLOB from a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.Writer setCharacterStream(long pos) throws SQLException

 /**
 * Read from the CLOB as a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.InputStream getAsciiStream(long pos) throws SQLException

 /**
 * Read from the CLOB as a stream at the requested position.
 * @param pos is the position data to be put.
 * @return a output stream to write data to the CLOB
 */
 public java.io.Reader getCharacterStream(long pos) throws SQLException

BFILE Streaming APIs
oracle.sql.BFILE class wraps the database BFILEs. Table 10-49 lists the Oracle
extension APIs in oracle.sql.BFILE that reads BFILE content from the requested
position.

Table 10-49 JDBC: BFILE Streaming APIs

Methods Description

public java.io.InputStream

getBinaryStream(long pos) throws SQLException

Reads from the BFILE as a stream

These APIs are defined as follows:

/**
 * Read from the BLOB as a stream at the requested position.
 *
 * @param pos is the position data to be read.
 * @return a output stream to write data to the BLOB
 */
public java.io.InputStream getBinaryStream(long pos) throws SQLException

JDBC BFILE Streaming Example (NewStreamLob.java)

/*
 * This sample shows how to read/write BLOB and CLOB as streams.
 */

import java.io.*;

Chapter 10
Using Java (JDBC) to Work With LOBs

10-43

// You must import the java.sql package to use JDBC
import java.sql.*;

// You must import the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class NewStreamLob
{
 public static void main (String args []) throws Exception
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 String url = "jdbc:oracle:oci8:@";
 try {
 String url1 = System.getProperty("JDBC_URL");
 if (url1 != null)
 url = url1;
 } catch (Exception e) {
 // If there is any security exception, ignore it
 // and use the default
 }

 // Connect to the database
 Connection conn =
 DriverManager.getConnection (url, "scott", "password");
 // It is faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist.
 }

 // Create a table containing a BLOB and a CLOB
 stmt.execute (
 "create table basic_lob_table"
 + "(x varchar2 (30), b blob, c clob)");

 // Populate the table
 stmt.execute (
 "insert into basic_lob_table values"
 + "('one', '010101010101010101010101010101', 'onetwothreefour')");

 System.out.println ("Dumping lobs");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

Chapter 10
Using Java (JDBC) to Work With LOBs

10-44

 // Print the lob contents
 dumpBlob (conn, blob, 1);
 dumpClob (conn, clob, 1);

 // Change the lob contents
 fillClob (conn, clob, 11, 50);
 fillBlob (conn, blob, 11, 50);
 }
 rset.close ();

 System.out.println ("Dumping lobs again");

 rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = (BLOB) rset.getObject (2);
 CLOB clob = (CLOB) rset.getObject (3);

 // Print the lobs contents
 dumpBlob (conn, blob, 11);
 dumpClob (conn, clob, 11);
 }
 // Close all resources
 rset.close();
 stmt.close();
 conn.close();
 }

 // Utility function to dump Clob contents
 static void dumpClob (Connection conn, CLOB clob, long offset)
 throws Exception
 {
 // get character stream to retrieve clob data
 Reader instream = clob.getCharacterStream(offset);

 // create temporary buffer for read
 char[] buffer = new char[10];

 // length of characters read
 int length = 0;

 // fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " chars: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]);
 System.out.println();
 }

 // Close input stream
 instream.close();
 }

 // Utility function to dump Blob contents
 static void dumpBlob (Connection conn, BLOB blob, long offset)
 throws Exception
 {

Chapter 10
Using Java (JDBC) to Work With LOBs

10-45

 // Get binary output stream to retrieve blob data
 InputStream instream = blob.getBinaryStream(offset);
 // Create temporary buffer for read
 byte[] buffer = new byte[10];
 // length of bytes read
 int length = 0;
 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]+" ");
 System.out.println();
 }

 // Close input stream
 instream.close();
 }

 // Utility function to put data in a Clob
 static void fillClob (Connection conn, CLOB clob, long offset, long length)
 throws Exception
 {
 Writer outstream = clob.setCharacterStream(offset);

 int i = 0;
 int chunk = 10;

 while (i < length)
 {
 outstream.write("aaaaaaaaaa", 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 }

 // Utility function to put data in a Blob
 static void fillBlob (Connection conn, BLOB blob, long offset, long length)
 throws Exception
 {
 OutputStream outstream = blob.setBinaryStream(offset);

 int i = 0;
 int chunk = 10;

 byte [] data = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

 while (i < length)
 {
 outstream.write(data, 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();

Chapter 10
Using Java (JDBC) to Work With LOBs

10-46

 }
}

JDBC and Empty LOBs
An empty BLOB can be created from the following API from oracle.sql.BLOB:

public static BLOB empty_lob () throws SQLException

Similarly, the following API from oracle.sql.CLOB creates an empty CLOB:

public static CLOB empty_lob () throws SQLException

Empty LOB instances are created by JDBC drivers without making database round
trips. Empty LOBs can be used in the following cases:

• set APIs of PreparedStatement

• update APIs of updatable result set

• attribute value of STRUCTs

• element value of ARRAYs

Note:

Empty LOBs are special marker LOBs but not real LOB values.

JDBC applications cannot read or write to empty LOBs created from the preceding
APIs. An ORA-17098 "Invalid empty lob operation" results if your application attempts
to read/write to an empty LOB.

Oracle Provider for OLE DB (OraOLEDB)
Oracle Provider for OLE DB (OraOLEDB) offers high performance and efficient access
to Oracle data for OLE DB and ADO developers.

Developers programming with COM, C++, or any COM client can use OraOLEDB to
access Oracle databases.

OraOLEDB is an OLE DB provider for Oracle. It offers high performance and efficient
access to Oracle data including LOBs, and also allows updates to certain LOB types.

The following LOB types are supported by OraOLEDB:

• For Persistent LOBs:

READ/WRITE through the rowset.

• For BFILEs:

READ-ONLY through the rowset.

• Temporary LOBs:

Are not supported through the rowset.

Chapter 10
Oracle Provider for OLE DB (OraOLEDB)

10-47

See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows

Overview of Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
the Oracle database.

ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and
features from any .NET application. ODP.NET also uses and inherits classes and
interfaces available in the Microsoft .NET Framework Class Library. The ODP.NET
supports the following LOBs as native data types with .NET: BLOB, CLOB, NCLOB, and
BFILE.

COM and .NET are complementary development technologies. Microsoft recommends
that developers use the .NET Framework rather than COM for new development.

See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

Chapter 10
Overview of Oracle Data Provider for .NET (ODP.NET)

10-48

11
LOB APIs for BFILE Operations

APIs for operations that use BFILEs are listed in Table 11-1.

This information is given for each operation described:

• Usage Notes provide implementation guidelines such as information specific to a
given programmatic environment or data type.

• Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

• Examples describe any setup tasks necessary to run the examples given.
Demonstration files listed are available in subdirectories under $ORACLE_HOME/
rdbms/demo/lobs/ named plsql, oci, vb, and java. The driver program
lobdemo.sql is in /plsql and the driver program lobdemo.c is in /oci.

Note:

LOB APIs do not support loading data into BFILEs.

See Also:

About Using SQL*Loader to Load LOBs for details about techniques to
load data into BFILEs.

Topics:

• Supported Environments for BFILE APIs

• About Accessing BFILEs

• Directory Objects

• BFILENAME and Initialization

• Characteristics of the BFILE Data Type

• BFILE Security

• About Loading a LOB with BFILE Data

• About Opening a BFILE with OPEN

• About Opening a BFILE with FILEOPEN

• About Determining Whether a BFILE Is Open Using ISOPEN

• About Determining Whether a BFILE Is Open with FILEISOPEN

• About Displaying BFILE Data

• About Reading Data from a BFILE

11-1

• About Reading a Portion of BFILE Data Using SUBSTR

• Comparing All or Parts of Two BFILES

• Checking If a Pattern Exists in a BFILE Using INSTR

• Determining Whether a BFILE Exists

• Getting the Length of a BFILE

• About Assigning a BFILE Locator

• Getting Directory Object Name and File Name of a BFILE

• About Updating a BFILE by Initializing a BFILE Locator

• Closing a BFILE with FILECLOSE

• Closing a BFILE with CLOSE

• Closing All Open BFILEs with FILECLOSEALL

• About Inserting a Row Containing a BFILE

Supported Environments for BFILE APIs
Those programmatic environments that are supported for the APIs are listed in
Table 11-1. The first column describes the operation that the API performs. The
remaining columns indicate with Yes or No whether the API is supported in PL/SQL,
OCI, COBOL, Pro*C/C++, and JDBC.

Table 11-1 Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*C/C++ JDBC

About Inserting a Row Containing a BFILE Yes Yes Yes Yes Yes

About Loading a LOB with BFILE Data Yes Yes Yes Yes Yes

About Opening a BFILE with FILEOPEN Yes Yes No No Yes

About Opening a BFILE with OPEN Yes Yes Yes Yes Yes

About Determining Whether a BFILE Is Open Using
ISOPEN

Yes Yes Yes Yes Yes

About Determining Whether a BFILE Is Open with
FILEISOPEN

Yes Yes No No Yes

About Displaying BFILE Data Yes Yes Yes Yes Yes

About Reading Data from a BFILE Yes Yes Yes Yes Yes

About Reading a Portion of BFILE Data Using
SUBSTR

Yes No Yes Yes Yes

Comparing All or Parts of Two BFILES Yes No Yes Yes Yes

Checking If a Pattern Exists in a BFILE Using
INSTR

Yes No Yes Yes Yes

Determining Whether a BFILE Exists Yes Yes Yes Yes Yes

Getting the Length of a BFILE Yes Yes Yes Yes Yes

About Assigning a BFILE Locator Yes Yes Yes Yes Yes

Getting Directory Object Name and File Name of a
BFILE

Yes Yes Yes Yes Yes

Chapter 11
Supported Environments for BFILE APIs

11-2

Table 11-1 (Cont.) Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*C/C++ JDBC

About Updating a BFILE by Initializing a BFILE
Locator

Yes Yes Yes Yes Yes

Closing a BFILE with FILECLOSE Yes Yes No No Yes

Closing a BFILE with CLOSE Yes Yes Yes Yes Yes

Closing All Open BFILEs with FILECLOSEALL Yes Yes Yes Yes Yes

About Accessing BFILEs
To access BFILEs use one of the following interfaces:

• OCI (Oracle Call Interface)

• PL/SQL (DBMS_LOB package)

• Precompilers, such as Pro*C/C++ and Pro*COBOL

• Java (JDBC)

See Also:

Overview of Supplied LOB APIs for information about supported
environments for accessing BFILEs.

Directory Objects
The DIRECTORY object facilitates administering access and usage of BFILE data types.

A DIRECTORY object specifies a logical alias name for a physical directory on the
database server file system under which the file to be accessed is located. You can
access a file in the server file system only if granted the required access privilege on
DIRECTORY object. You can also use Oracle Enterprise Manager Cloud Control to
manage DIRECTORY objects.

See Also:

• CREATE DIRECTORY in Oracle Database SQL Language Reference

• See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

Chapter 11
About Accessing BFILEs

11-3

Initializing a BFILE Locator
The DIRECTORY object provides the flexibility to manage the locations of the files,
instead of forcing you to hard-code the absolute path names of physical files in your
applications.

A directory object name is used in conjunction with the BFILENAME function, in SQL and
PL/SQL, or the OCILobFileSetName() in OCI, for initializing a BFILE locator.

WARNING:

The database does not verify that the directory and path name you specify
actually exist. You should take care to specify a valid directory in your
operating system. If your operating system uses case-sensitive path names,
then be sure you specify the directory in the correct format. There is no
requirement to specify a terminating slash (for example, /tmp/ is not
necessary, simply use /tmp).

Directory specifications cannot contain ".." anywhere in the path (for
example, /abc/def/hij..).

How to Associate Operating System Files with a BFILE
To associate an operating system file to a BFILE, first create a DIRECTORY object which
is an alias for the full path name to the operating system file.

To associate existing operating system files with relevant database records of a
particular table use Oracle SQL DML (Data Manipulation Language). For example:

• Use INSERT to initialize a BFILE column to point to an existing file in the server file
system.

• Use UPDATE to change the reference target of the BFILE.

• Initialize a BFILE to NULL and then update it later to refer to an operating system
file using the BFILENAME function.

• OCI users can also use OCILobFileSetName() to initialize a BFILE locator variable
that is then used in the VALUES clause of an INSERT statement.

Directory Example

The following statements associate the files Image1.gif and image2.gif with records
having key_value of 21 and 22 respectively. 'IMG' is a DIRECTORY object that
represents the physical directory under which Image1.gif and image2.gif are stored.

You may be required to set up data structures similar to the following for certain
examples to work:

CREATE TABLE Lob_table (
 Key_value NUMBER NOT NULL,
 F_lob BFILE)
 INSERT INTO Lob_table VALUES
 (21, BFILENAME('IMG', 'Image1.gif'));

Chapter 11
Directory Objects

11-4

 INSERT INTO Lob_table VALUES
 (22, BFILENAME('IMG', 'image2.gif'));

The following UPDATE statement changes the target file to image3.gif for the row with
key_value of 22.

 UPDATE Lob_table SET f_lob = BFILENAME('IMG', 'image3.gif')
 WHERE Key_value = 22;

WARNING:

The database does not expand environment variables specified in the
DIRECTORY object or file name of a BFILE locator. For example, specifying:

BFILENAME('WORK_DIR', '$MY_FILE')

where MY_FILE, an environment variable defined in the operating system, is
not valid.

BFILENAME and Initialization
BFILENAME is a built-in function that you use to initialize a BFILE column to point to an
external file.

Once physical files are associated with records using SQL DML, subsequent read
operations on the BFILE can be performed using PL/SQL DBMS_LOB package and OCI.
However, these files are read-only when accessed through BFILEs, and so they cannot
be updated or deleted through BFILEs.

As a consequence of the reference-based semantics for BFILEs, it is possible to have
multiple BFILE columns in the same record or different records referring to the same
file. For example, the following UPDATE statements set the BFILE column of the row
with key_value = 21 in lob_table to point to the same file as the row with key_value =
22.

UPDATE lob_table
 SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
 WHERE key_value = 21;

Think of BFILENAME in terms of initialization — it can initialize the value for the
following:

• BFILE column

• BFILE (automatic) variable declared inside a PL/SQL module

Characteristics of the BFILE Data Type
Using the BFILE data type has the following advantages:

• If your need for a particular BFILE is temporary and limited within the module on
which you are working, then you can use the BFILE related APIs on the variable
without ever having to associate this with a column in the database.

Chapter 11
BFILENAME and Initialization

11-5

• Because you are not forced to create a BFILE column in a server side table,
initialize this column value, and then retrieve this column value using a SELECT,
you save a round-trip to the server.

About Loading a LOB with BFILE Data for examples related
toDBMS_LOB.LOADFROMFILE .

The OCI counterpart for BFILENAME is OCILobFileSetName(), which can be used in a
similar fashion.

DIRECTORY Name Specification
You must have CREATE ANY DIRECTORY system privilege to create directories.

Path names cannot contain two dots (".."). The naming convention for DIRECTORY
objects is the same as that for tables and indexes. That is, normal identifiers are
interpreted in uppercase, but delimited identifiers are interpreted as is. For example,
the following statement:

CREATE OR REPLACE DIRECTORY scott_dir AS '/usr/home/scott';

creates or redefines a DIRECTORY object whose name is 'SCOTT_DIR' (in uppercase).
But if a delimited identifier is used for the DIRECTORY name, as shown in the following
statement

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

then the directory object name is 'Mary_Dir'. Use 'SCOTT_DIR' and 'Mary_Dir' when
calling BFILENAME. For example:

BFILENAME('SCOTT_DIR', 'afile')
BFILENAME('Mary_Dir', 'afile')

On Windows Platforms
On Windows platforms the directory names are case-insensitive. Therefore the
following two statements refer to the same directory:

CREATE DIRECTORY "big_cap_dir" AS "g:\data\source";

CREATE DIRECTORY "small_cap_dir" AS "G:\DATA\SOURCE";

BFILE Security
BEFILE security concerns the BFILE security model and associated SQL statements.
The main SQL statements associated with BFILE security are:

• SQL DDL: CREATE and REPLACE or ALTER a DIRECTORY object

• SQL DML: GRANT and REVOKE the READ system and object privileges on DIRECTORY
objects

Ownership and Privileges
The DIRECTORY object is a system owned object.

Chapter 11
BFILE Security

11-6

For more information on system owned objects, see Oracle Database SQL Language
Reference. Oracle Database supports two new system privileges, which are granted
only to DBA:

• CREATE ANY DIRECTORY: For creating or altering the DIRECTORY object creation

• DROP ANY DIRECTORY: For deleting the DIRECTORY object

Read Permission on a DIRECTORY Object
READ permission on the DIRECTORY object enables you to read files located under that
directory. The creator of the DIRECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn
grant this privilege to other users/roles and add them to your privilege domains.

Note:

The READ permission is defined only on the DIRECTORY object, not on
individual files. Hence there is no way to assign different privileges to files in
the same directory.

The physical directory that it represents may or may not have the corresponding
operating system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

• That the physical directory exists

• Read permission for the Oracle Server process is enabled on the file, the
directory, and the path leading to it

• The directory remains available, and read permission remains enabled, for the
entire duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read
from files in the directory. These privileges are checked and enforced by the PL/SQL
DBMS_LOB package and OCI APIs at the time of the actual file operations.

WARNING:

Because CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges
potentially expose the server file system to all database users, the DBA
should be prudent in granting these privileges to normal database users to
prevent security breach.

Chapter 11
BFILE Security

11-7

SQL DDL for BFILE Security

See Also:

Oracle Database SQL Language Reference for information about the
following SQL DDL statements that create, replace, and drop DIRECTORY
objects:

• CREATE DIRECTORY

• DROP DIRECTORY

SQL DML for BFILE Security

See Also:

Oracle Database SQL Language Reference for information about the
following SQL DML statements that provide security for BFILEs:

• GRANT (system privilege)

• GRANT (object privilege)

• REVOKE (system privilege)

• REVOKE (object privilege)

• AUDIT (new statements)

• AUDIT (schema objects)

Catalog Views on Directories
Catalog views are provided for DIRECTORY objects to enable users to view object
names and corresponding paths and privileges. Supported views are:

• ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories accessible to the user.

• DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories specified for the entire database.

Guidelines for DIRECTORY Usage
The main goal of the DIRECTORY feature is to enable a simple, flexible, non-intrusive,
yet secure mechanism for the DBA to manage access to large files in the server file
system. But to realize this goal, it is very important that the DBA follow these
guidelines when using DIRECTORY objects:

Chapter 11
BFILE Security

11-8

• Do not map a DIRECTORY object to a data file directory. A DIRECTORY object should
not be mapped to physical directories that contain Oracle data files, control files,
log files, and other system files. Tampering with these files (accidental or
otherwise) could corrupt the database or the server operating system.

• Only the DBA should have system privileges. The system privileges such as
CREATE ANY DIRECTORY (granted to the DBA initially) should be used carefully and
not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

• Use caution when granting the DIRECTORY privilege. Privileges on DIRECTORY
objects should be granted to different users carefully. The same holds for the use
of the WITH GRANT OPTION clause when granting privileges to users.

• Do not drop or replace DIRECTORY objects when database is in operation.
DIRECTORY objects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, then operations from all sessions
on all files associated with this DIRECTORY object fail. Further, if a DROP or REPLACE
command is executed before these files could be successfully closed, then the
references to these files are lost in the programs, and system resources
associated with these files are not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, is to either run a program
block that calls DBMS_LOB.FILECLOSEALL and restart their file operations, or exit
their sessions altogether. Hence, it is imperative that you use these commands
with prudence, and preferably during maintenance downtimes.

• Use caution when revoking a user's privilege on DIRECTORY objects. Revoking a
user's privilege on a DIRECTORY object using the REVOKE statement causes all
subsequent operations on dependent files from the user's session to fail. Either
you must re-acquire the privileges to close the file, or run a FILECLOSEALL in the
session and restart the file operations.

In general, using DIRECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be
logically organized into suitable directories that have READ privileges for the Oracle
process.

DIRECTORY objects can be created with READ privileges that map to these physical
directories, and specific database users granted access to these directories.

BFILEs in Shared Server (Multithreaded Server) Mode
The database does not support session migration for BFILE data types in shared
server (multithreaded server) mode. This implies that operations on open BFILE
instances can persist beyond the end of a call to a shared server.

In shared server sessions, BFILE operations are bound to one shared server, they
cannot migrate from one server to another.

External LOB (BFILE) Locators
For BFILEs, the value is stored in a server-side operating system file; in other words,
external to the database. The BFILE locator that refers to that file is stored in the row.

Chapter 11
BFILE Security

11-9

When Two Rows in a BFILE Table Refer to the Same File
If a BFILE locator variable that is used in a DBMS_LOB.FILEOPEN (for example L1) is
assigned to another locator variable, (for example L2), then both L1 and L2 point to the
same file.

This means that two rows in a table with a BFILE column can refer to the same file or
to two distinct files — a fact that the canny developer might turn to advantage, but
which could well be a pitfall for the unwary.

BFILE Locator Variable
A BFILE locator variable operates like any other automatic variable. With respect to file
operations, it operates like a file descriptor available as part of the standard input/
output library of most conventional programming languages.

This implies that once you define and initialize a BFILE locator, and open the file
pointed to by this locator, all subsequent operations until the closure of this file must
be done from within the same program block using this locator or local copies of this
locator.

Guidelines for BFILEs
Note the following guidelines when working with BFILEs:

• Open and close a file from the same program block at same nesting level. The
BFILE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is
recommended that you open and close a file from the same program block at the
same nesting level.

• Set the BFILE value before flushing the object to the database. If an object
contains a BFILE, then you must set the BFILE value before flushing the object to
the database, thereby inserting a new row. In other words, you must call
OCILobFileSetName() after OCIObjectNew() and before OCIObjectFlush().

• Indicate the DIRECTORY object name and file name before inserting or updating of a
BFILE. It is an error to insert or update a BFILE without indicating a DIRECTORY
object name and file name.

This rule also applies to users using an OCI bind variable for a BFILE in an insert
or update statement. The OCI bind variable must be initialized with a DIRECTORY
object name and file name before issuing the insert or update statement.

• Initialize BFILE Before insert or update

Note:

OCISetAttr() does not allow the user to set a BFILE locator to NULL.

• Before using SQL to insert or update a row with a BFILE, you must initialize the
BFILE to one of the following:

– NULL (not possible if using an OCI bind variable)

Chapter 11
BFILE Security

11-10

– A DIRECTORY object name and file name

• A path name cannot contain two dots ("..") anywhere in its specification. A file
name cannot start with two dots.

About Loading a LOB with BFILE Data
You can load a LOB with data from a BFILE.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Oracle Database JDBC Developer’s Guide for details of working with BFILE
functions in this chapter.

Preconditions

The following preconditions must exist before calling this procedure:

• The source BFILE instance must exist.

• The destination LOB instance must exist.

Usage Notes

Note:

The LOADBLOBFROMFILE and LOADCLOBFROMFILE procedures implement the
functionality of this procedure and provide improved features for loading
binary data and character data. The improved procedures are available in
the PL/SQL environment only. When possible, using one of the improved
procedures is recommended.

See Also:

• About Loading a BLOB with Data from a BFILE

• Loading a CLOB or NCLOB with Data from a BFILE

Character Set Conversion

In using OCI, or any of the programmatic environments that access OCI functionality,
character set conversions are implicitly performed when translating from one character
set to another.

Chapter 11
About Loading a LOB with BFILE Data

11-11

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set

When you use the DBMS_LOB.LOADFROMFILE procedure to populate a CLOB or NCLOB,
you are populating the LOB with binary data from the BFILE. No implicit translation is
performed from binary data to a character set. For this reason, you should use the
LOADCLOBFROMFILE procedure when loading text.

See Also:

• Loading a CLOB or NCLOB with Data from a BFILE

• Oracle Database Globalization Support Guide for character set
conversion issues.

Amount Parameter

Note the following with respect to the amount parameter:

• DBMS_LOB.LOADFROMFILE

If you want to load the entire BFILE, then pass the constant DBMS_LOB.LOBMAXSIZE.
If you pass any other value, then it must be less than or equal to the size of the
BFILE.

• OCILobLoadFromFile()

If you want to load the entire BFILE, then you can pass the constant UB4MAXVAL. If
you pass any other value, then it must be less than or equal to the size of the
BFILE.

• OCILobLoadFromFile2()

If you want to load the entire BFILE, then you can pass the constant UB8MAXVAL. If
you pass any other value, then it must be less than or equal to the size of the
BFILE.

See Also:

Table 12-2 for details on the maximum value of the amount parameter.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — LOADFROMFILE

• C (OCI): Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes and examples. Chapter 16, "LOB Functions" —
OCILobLoadFromFile2().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB LOAD (executable embedded SQL
extension).

Chapter 11
About Loading a LOB with BFILE Data

11-12

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements" "Embedded SQL Statements and Directives"— LOB LOAD.

• Java (JDBC) Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): floaddat.sql

• OCI: floaddat.c

• Java (JDBC): No example.

About Opening a BFILE with OPEN
You can open a BFILE using the OPEN function.

Note:

You can also open a BFILE using the FILEOPEN function; however, using the
OPEN function is recommended for new development.

See Also:

• About Opening a BFILE with FILEOPEN for more information about
FILEOPEN function

• Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — OPEN

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes. Chapter 16, section "LOB Functions" —
OCILobOpen(), OCILobClose().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

• Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Chapter 11
About Opening a BFILE with OPEN

11-13

Scenario

These examples open an image in operating system file ADPHOTO_DIR.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL(DBMS_LOB): fopen.sql

• OCI: fopen.c

• Java (JDBC): fopen.java

About Opening a BFILE with FILEOPEN
You can open a BFILE using the FILEOPEN function.

Note:

The FILEOPEN function is not recommended for new application
development. The OPEN function is recommended for new development.

See Also:

• About Opening a BFILE with OPEN

• Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Usage Notes for Opening a BFILE

While you can continue to use the older FILEOPEN form, Oracle strongly recommends
that you switch to using OPEN, because this facilitates future extensibility.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEOPEN, FILECLOSE

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations, for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileOpen(), OCILobFileClose(), OCILobFileSetName().

• COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

• C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

• Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Chapter 11
About Opening a BFILE with FILEOPEN

11-14

Scenario for Opening a BFILE

These examples open keyboard_logo.jpg in DIRECTORY object MEDIA_DIR.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): ffilopen.sql

• OCI: ffilopen.c

• Java (JDBC): ffilopen.java

About Determining Whether a BFILE Is Open Using
ISOPEN

You can determine whether a BFILE is open using ISOPEN.

Note:

This function (ISOPEN) is recommended for new application development.
The older FILEISOPEN function, is not recommended for new development.

See Also:

• About Determining Whether a BFILE Is Open with FILEISOPEN

• Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — ISOPEN

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileIsOpen().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Large Objects (LOBs)", "LOB Statements", "Embedded SQL
Statements and Directives" — LOB DESCRIBE

• Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Chapter 11
About Determining Whether a BFILE Is Open Using ISOPEN

11-15

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): fisopen.sql

• OCI: fisopen.c

• Java (JDBC): fisopen.java

About Determining Whether a BFILE Is Open with
FILEISOPEN

You can determine whether a BFILE is OPEN using the FILEISOPEN function.

Note:

The FILEISOPEN function is not recommended for new application
development. The ISOPEN function is recommended for new development.

See Also:

• About Determining Whether a BFILE Is Open Using ISOPEN

• Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Usage Notes

While you can continue to use the older FILEISOPEN form, Oracle strongly
recommends that you switch to using ISOPEN, because this facilitates future
extensibility.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEISOPEN

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileIsOpen().

• COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

• C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

• Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Chapter 11
About Determining Whether a BFILE Is Open with FILEISOPEN

11-16

Scenario

These examples query whether a BFILE associated with ad_graphic is open.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL(DBMS_LOB): ffisopen.sql

• OCI: ffisopen.c

• Java (JDBC): ffisopen.java

About Displaying BFILE Data
You can display BFILE data using various operations that differ by programmatic
environment..

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — READ. Chapter 29, "DBMS_OUTPUT" - PUT_LINE

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileOpen(), OCILobRead2().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements" — READ

• Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:

• PL/SQL (DBMS_LOB): fdisplay.sql

• OCI: fdisplay.c

• Java (JDBC): fdisplay.java

Chapter 11
About Displaying BFILE Data

11-17

About Reading Data from a BFILE
You can read data from a BFILE.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of BFILE data is by OCILobRead2() with
the streaming mechanism enabled, and using polling or callback. To do so, specify the
starting point of the read using the offset parameter as follows:

ub8 char_amt = 0;
ub8 byte_amt = 0;
ub4 offset = 1000;

OCILobRead2(svchp, errhp, locp, &byte_amt, &char_amt, offset, bufp, bufl,
 OCI_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte_amt parameter after
each OCILobRead2() call to see how many bytes were read into the buffer, because
the buffer may not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, indicates
how many bytes are filled in the buffer. Be sure to check the lenp parameter during
your callback processing because the entire buffer may not be filled with data.

Amount Parameter

• When calling DBMS_LOB.READ, the amount parameter can be larger than the size of
the data; however, the amount parameter should be less than or equal to the size
of the buffer. In PL/SQL, the buffer size is limited to 32K.

• When calling OCILobRead2(), you can pass a value of 0 (zero) for the byte_amt
parameter to read to the end of the BFILE.

See Also:

Oracle Call Interface Programmer's Guide

Syntax

Use the following syntax references for each programmatic environment:

Chapter 11
About Reading Data from a BFILE

11-18

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — READ

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobRead2().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB READ

• Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): fread.sql

• OCI: fread.c

• Java (JDBC): fread.java

About Reading a Portion of BFILE Data Using SUBSTR
You can read a portion of BFILE data using SUBSTR.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — SUBSTR

• OCI: A syntax reference is not applicable in this release.

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB CLOSE executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

• Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:

Chapter 11
About Reading a Portion of BFILE Data Using SUBSTR

11-19

• PL/SQL (DBMS_LOB): freadprt.sql

• C (OCI): No example is provided with this release.

• Java (JDBC): freadprt.java

Comparing All or Parts of Two BFILES
You can compare all or parts of two BFILEs.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — COMPARE

• C (OCI): A syntax reference is not applicable in this release.

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

• Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:

• PL/SQL(DBMS_LOB): fcompare.sql

• OCI: No example is provided with this release.

• Java (JDBC): fcompare.java

Checking If a Pattern Exists in a BFILE Using INSTR
You can determine whether a pattern exists in a BFILE using the INSTRoperation.

See Also:

Table 11-1for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Chapter 11
Comparing All or Parts of Two BFILES

11-20

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — INSTR

• C (OCI): A syntax reference is not applicable in this release.

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

• Java (JDBC) (Oracle Database JDBC Developer's Guide):"Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

These examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): fpattern.sql

• OCI: No example is provided with this release.

• Java (JDBC): fpattern.java

Determining Whether a BFILE Exists
This procedure determines whether a BFILE locator points to a valid BFILE instance.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEEXISTS

• C (OCI) Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileExists().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

• C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB
DESCRIBE.

Chapter 11
Determining Whether a BFILE Exists

11-21

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): fexists.sql

• OCI: fexists.c

• Java (JDBC): fexists.java

Getting the Length of a BFILE
You can get the length of a BFILE.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — GETLENGTH

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations". Chapter 16, section "LOB Functions" — OCILobGetLength2().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB
DESCRIBE

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in these programmatic environments:

• PL/SQL (DBMS_LOB): flength.sql

• OCI: flength.c

• Java (JDBC): flength.java

About Assigning a BFILE Locator
You can assign one BFILE locator to another.

Chapter 11
Getting the Length of a BFILE

11-22

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• SQL (Oracle Database SQL Language Reference): Chapter 7, "SQL Statements"
— CREATE PROCEDURE

• PL/SQL (DBMS_LOB): Refer to Advanced Design Considerations of this manual
for information on assigning one lob locator to another.

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobLocatorAssign().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB ASSIGN executable embedded SQL
extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB ASSIGN

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

The examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): fcopyloc.sql

• OCI: fcopyloc.c

• Java (JDBC): fcopyloc.java

Getting Directory Object Name and File Name of a BFILE
You can get the DIRECTORY object name and file name of a BFILE.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEGETNAME

Chapter 11
Getting Directory Object Name and File Name of a BFILE

11-23

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileGetName().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension.

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB
DESCRIBE ... GET DIRECTORY ...

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

Examples of this procedure are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB): fgetdir.sql

• OCI: fgetdir.c

• Java (JDBC): fgetdir.java

About Updating a BFILE by Initializing a BFILE Locator
You can update a BFILE by initializing a BFILE locator.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB): See the (Oracle Database SQL Language Reference),
Chapter 7, "SQL Statements" — UPDATE

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileSetName().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and ALLOCATE executable embedded SQL
extension. See also Oracle Database PL/SQL Packages and Types Reference for
more information on SQL UPDATE statement

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives"

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Chapter 11
About Updating a BFILE by Initializing a BFILE Locator

11-24

Examples

• PL/SQL (DBMS_LOB): fupdate.sql

• OCI: fupdate.c

• Java (JDBC): fupdate.java

Closing a BFILE with FILECLOSE
You can close a BFILE with FILECLOSE.

Note:

This function (FILECLOSE) is not recommended for new development. For
new development, use the CLOSE function instead.

See Also:

Closing a BFILE with CLOSE

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB)(Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEOPEN, FILECLOSE

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileClose().

• COBOL (Pro*COBOL): A syntax reference is not applicable in this release.

• C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

• PL/SQL (DBMS_LOB): fclose_f.sql

• OCI: fclose_f.c

• Java (JDBC): fclose_f.java

Closing a BFILE with CLOSE
You can close a BFILE with the CLOSE function.

Chapter 11
Closing a BFILE with FILECLOSE

11-25

Note:

This function (CLOSE) is recommended for new application development. The
older FILECLOSE function, is not recommended for new development.

See Also:

Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Usage Notes

Opening and closing a BFILE is mandatory. You must close the instance later in the
session.

See Also:

• About Opening a BFILE with OPEN

• About Determining Whether a BFILE Is Open Using ISOPEN

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — CLOSE

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobClose().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB CLOSE executable embedded SQL
extension

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB CLOSE

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

• PL/SQL (DBMS_LOB): fclose_c.sql

• OCI: fclose_c.c

• Java (JDBC): fclose_c.java

Chapter 11
Closing a BFILE with CLOSE

11-26

Closing All Open BFILEs with FILECLOSEALL
You can close all open BFILEs.

You are responsible for closing any BFILE instances before your program terminates.
For example, you must close any open BFILE instance before the termination of a
PL/SQL block or OCI program.

You must close open BFILE instances even in cases where an exception or
unexpected termination of your application occurs. In these cases, if a BFILE instance
is not closed, then it is still considered open by the database. Ensure that your
exception handling strategy does not allow BFILE instances to remain open in these
situations.

See Also:

• Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

• "Setting Maximum Number of Open BFILEs "

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILECLOSEALL

• C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCILobFileCloseAll().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB FILE CLOSE ALL executable
embedded SQL extension

• C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB FILE
CLOSE ALL

• Java (JDBC) Oracle Database JDBC Developer's Guide: Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILEs.

Examples

• PL/SQL (DBMS_LOB): fclosea.sql

• OCI: fclosea.c

• Java (JDBC): fclosea.java

About Inserting a Row Containing a BFILE
You can insert a row containing a BFILE by initializing a BFILE locator.

Chapter 11
Closing All Open BFILEs with FILECLOSEALL

11-27

See Also:

• Table 11-1, for a list of operations on BFILEs and APIs provided for each
programmatic environment.

Usage Notes

You must initialize the BFILE locator bind variable to NULL or a DIRECTORY object and
file name before issuing the INSERT statement.

Syntax

See the following syntax references for each programmatic environment:

• SQL(Oracle Database SQL Language Reference, Chapter 7 "SQL Statements" —
INSERT

• C (OCI) Oracle Call Interface Programmer's Guide: Chapter 7, "LOB and File
Operations".

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, embedded SQL, and precompiler directives. See
also Oracle Database SQL Language Reference, for related information on the
SQL INSERT statement.

• C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide: "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB FILE
SET. See also (Oracle Database SQL Language Reference), Chapter 7 "SQL
Statements" — INSERT

• Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples

• PL/SQL (DBMS_LOB): finsert.sql

• OCI: finsert.c

• Java (JDBC): finsert.java

Chapter 11
About Inserting a Row Containing a BFILE

11-28

12
Using LOB APIs

APIs that perform operations on BLOB, CLOB, and NCLOB data types appear in
Table 12-1. These operations can be used with either persistent or temporary LOB
instances. Note that these do not apply to BFILEs.

See Also:

• Operations Specific to Persistent and Temporary LOBs for information
on how to create temporary and persistent LOB instances and other
operations specific to temporary or persistent LOBs.

• LOB APIs for BFILE Operations for information on operations specific to
BFILE instances.

This information is given for each of these operations:

• Preconditions describe dependencies that must be met and conditions that must
exist before calling each operation.

• Usage Notes provide implementation guidelines such as information specific to a
given programmatic environment or data type.

• Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

• Examples describe any setup tasks necessary to run the examples given.
Demonstration files listed are available in subdirectories under $ORACLE_HOME/
rdbms/demo/lobs/ named plsql, oci, vb, and java. The driver program
lobdemo.sql is in /plsql and the driver program lobdemo.c is in /oci.

Topics:

• Supported Environments

• About Appending One LOB to Another

• About Determining Character Set Form

• About Determining Character Set ID

• Loading a LOB with Data from a BFILE

• About Loading a BLOB with Data from a BFILE

• Loading a CLOB or NCLOB with Data from a BFILE

• Determining Whether a LOB is Open

• About Displaying LOB Data

• About Reading Data from a LOB

• About LOB Array Read

12-1

• Reading a Portion of a LOB (SUBSTR)

• Comparing All or Part of Two LOBs

• Patterns: Checking for Patterns in a LOB Using INSTR

• Length: Determining the Length of a LOB

• Copying All or Part of One LOB to Another LOB

• Copying a LOB Locator

• Equality: Checking If One LOB Locator Is Equal to Another

• About Determining Whether LOB Locator Is Initialized

• About Appending to a LOB

• About Writing Data to a LOB

• LOB Array Write

• About Trimming LOB Data

• About Erasing Part of a LOB

• Determining Whether a LOB instance Is Temporary

• Converting a BLOB to a CLOB

• Converting a CLOB to a BLOB

• Ensuring Read Consistency

Supported Environments
Table 12-1 indicates which programmatic environments are supported for the APIs
discussed in this chapter. The first column describes the operation that the API
performs. The remaining columns indicate with Yes or No whether the API is
supported in PL/SQL, OCI, OCCI, COBOL, Pro*C/C++, and JDBC.

Table 12-1 Environments Supported for LOB APIs

Operation PL/SQL OCI OCCI COBOL Pro*C/C++ JDBC

About Appending One LOB to Another Yes Yes No Yes Yes Yes

About Determining Character Set Form No Yes No No No No

About Determining Character Set ID No Yes No No No No

Determining Chunk Size, See: About Writing Data
to a LOB

Yes Yes Yes Yes Yes Yes

Comparing All or Part of Two LOBs Yes No No Yes Yes Yes

Converting a BLOB to a CLOB Yes No No No No No

Converting a CLOB to a BLOB Yes No No No No No

Copying a LOB Locator Yes Yes No Yes Yes Yes

Copying All or Part of One LOB to Another LOB Yes Yes No Yes Yes Yes

About Displaying LOB Data Yes Yes No Yes Yes Yes

Equality: Checking If One LOB Locator Is Equal
to Another

No Yes No No Yes Yes

About Erasing Part of a LOB Yes Yes No Yes Yes Yes

Chapter 12
Supported Environments

12-2

Table 12-1 (Cont.) Environments Supported for LOB APIs

Operation PL/SQL OCI OCCI COBOL Pro*C/C++ JDBC

About Determining Whether LOB Locator Is
Initialized

No Yes No No Yes No

Length: Determining the Length of a LOB Yes Yes No Yes Yes Yes

Loading a LOB with Data from a BFILE Yes Yes No Yes Yes Yes

About Loading a BLOB with Data from a BFILE Yes No No No No No

Loading a CLOB or NCLOB with Data from a
BFILE

Yes No No No No No

About LOB Array Read No Yes No No No No

LOB Array Write No Yes No No No No

Opening Persistent LOBs with the OPEN and
CLOSE Interfaces

Yes Yes Yes Yes Yes Yes

Open: Determining Whether a LOB is Open Yes Yes Yes Yes Yes Yes

Patterns: Checking for Patterns in a LOB Using
INSTR

Yes No No Yes Yes Yes

Reading a Portion of a LOB (SUBSTR) Yes No No Yes Yes Yes

About Reading Data from a LOB Yes Yes No Yes Yes Yes

Storage Limit, Determining: Maximum Storage
Limit for Terabyte-Size LOBs

Yes No No No No No

About Trimming LOB Data Yes Yes No Yes Yes Yes

WriteNoAppend, see About Appending to a LOB . No No No No No No

About Writing Data to a LOB Yes Yes Yes Yes Yes Yes

About Appending One LOB to Another
This operation appends one LOB instance to another.

Preconditions

Before you can append one LOB to another, the following conditions must be met:

• Two LOB instances must exist.

• Both instances must be of the same type, for example both BLOB or both CLOB
types.

• You can pass any combination of persistent or temporary LOB instances to this
operation.

Usage Notes

Persistent LOBs: You must lock the row you are selecting the LOB from prior to
updating a LOB value if you are using the PL/SQL DBMS_LOB Package or OCI. While
the SQL INSERT and UPDATE statements implicitly lock the row, locking the row can be
done explicitly using the SQL SELECT FOR UPDATE statement in SQL and PL/SQL
programs, or by using an OCI pin or lock function in OCI programs.

Chapter 12
About Appending One LOB to Another

12-3

Syntax

See the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — APPEND

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAppend()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB APPEND executable embedded SQL
extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on embedded
SQL statements and directives — LOB APPEND

• Java (JDBC):Oracle Database JDBC Developer’s Guidefor information on creating
and populating LOB columns in Java.

Examples

To run the following examples, you must create two LOB instances and pass them
when you call the given append operation.

Examples for this use case are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lappend.sql

• OCI: lappend.c

• Java (JDBC): lappend.java

See Also:

• Example of Updating LOBs Through Updated Locators for more details
on the state of the locator after an update

• Operations Specific to Persistent and Temporary LOBs for more
information about Creating a LOB instance

About Determining Character Set Form
This section describes how to get the character set form of a LOB instance.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCharSetForm()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

Chapter 12
About Determining Character Set Form

12-4

• COBOL (Pro*COBOL): There is no applicable syntax reference for this operation

• C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation.

• Java (JDBC): There is no applicable syntax reference for this operation.

Example

The example demonstrates how to determine the character set form of the foreign
language text (ad_fltextn).

This functionality is currently available only in OCI:

• OCI: lgetchfm.c

About Determining Character Set ID
This section describes how to determine the character set ID.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

• C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions" — LOB
Functions, OCILobCharSetId()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL): There is no applicable syntax reference for this operation.

• C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation

• Java (JDBC): There is no applicable syntax reference for this operation.

Example

This functionality is currently available only in OCI:

• OCI: lgetchar.c

Loading a LOB with Data from a BFILE
This operation loads a LOB with data from a BFILE. This procedure can be used to
load data into any persistent or temporary LOB instance of any LOB data type.

Preconditions

Before you can load a LOB with data from a BFILE, the following conditions must be
met:

• The BFILE must exist.

• The target LOB instance must exist.

Usage Notes

Note the following issues regarding this operation.

Chapter 12
About Determining Character Set ID

12-5

Use LOADCLOBFROMFILE When Loading Character Data

When you use the DBMS_LOB.LOADFROMFILE procedure to load a CLOB or NCLOB
instance, you are loading the LOB with binary data from the BFILE and no implicit
character set conversion is performed. For this reason, using the
DBMS_LOB.LOADCLOBFROMFILE procedure is recommended when loading character
data.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in Table 12-2 must be
one of the following:

• An amount less than or equal to the actual size (in bytes) of the BFILE you are
loading.

• The maximum allowable LOB size (in bytes). Passing this value, loads the entire
BFILE. You can use this technique to load the entire BFILE without determining the
size of the BFILE before loading. To get the maximum allowable LOB size, use the
technique described in Table 12-2.

Table 12-2 Maximum LOB Size for Load from File Operations

Environment Function To pass maximum LOB size,
get value of:

DBMS_LOB DBMS_LOB.LOADBLOBFROMFILE DBMS_LOB.LOBMAXSIZE

DBMS_LOB DBMS_LOB.LOADCLOBFROMFILE DBMS_LOB.LOBMAXSIZE

OCI OCILobLoadFromFile2() UB8MAXVAL

OCI OCILobLoadFromFile() (For LOBs less
than 4 gigabytes in size.)

UB4MAXVAL

Syntax

See the following syntax references for details on using this operation in each
programmatic environment:

• PL/SQL (DBMS_LOB Package):Oracle Database PL/SQL Packages and Types
Reference"DBMS_LOB" — LOADFROMFILE.

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobLoadFromFile()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB LOAD, LOB OPEN, and LOB CLOSE
executable embedded SQL extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide, for more information on LOB
LOAD executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

Chapter 12
Loading a LOB with Data from a BFILE

12-6

• PL/SQL (DBMS_LOB Package): lloaddat.sql

• OCI: lloaddat.c

• Java (JDBC): lloaddat.java

See Also:

• The LOADBLOBFROMFILE and LOADCLOBFROMFILE procedures implement
the functionality of this procedure and provide improved features for
loading binary data and character data. (These improved procedures are
available in the PL/SQL environment only.) When possible, using one of
the improved procedures is recommended. See "About Loading a BLOB
with Data from a BFILE" and "Loading a CLOB or NCLOB with Data from
a BFILE" for more information.

• As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

• Loading a CLOB or NCLOB with Data from a BFILE for more information
about DBMS_LOB.LOADCLOBFROMFILE procedure

About Loading a BLOB with Data from a BFILE
This procedure loads a BLOB with data from a BFILE. This procedure can be used to
load data into any persistent or temporary BLOB instance.

See Also:

• "Loading a LOB with Data from a BFILE"

• To load character data, use DBMS_LOB.LOADCLOBFROMFILE. See "Loading
a CLOB or NCLOB with Data from a BFILE" for more information.

• As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

Preconditions

The following conditions must be met before calling this procedure:

• The target BLOB instance must exist.

• The source BFILE must exist.

• You must open the BFILE. (After calling this procedure, you must close the BFILE
at some point.)

Usage Notes

Note the following with respect to this operation:

Chapter 12
About Loading a BLOB with Data from a BFILE

12-7

New Offsets Returned

Using DBMS_LOB.LOADBLOBFROMFILE to load binary data into a BLOB achieves the same
result as using DBMS_LOB.LOADFROMFILE, but also returns the new offsets of BLOB.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBMS_LOB.LOADBLOBFROMFILE
function must be one of the following:

• An amount less than or equal to the actual size (in bytes) of the BFILE you are
loading.

• The maximum allowable LOB size: DBMS_LOB.LOBMAXSIZE. Passing this value
causes the function to load the entire BFILE. This is a useful technique for loading
the entire BFILE without introspecting the size of the BFILE.

See Also:

Table 12-2

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADBLOBFROMFILE procedure for syntax details on this procedure.

Examples

This example is available in PL/SQL only. This API is not provided in other
programmatic environments. The online file is lldblobf.sql. This example illustrates:

• How to use LOADBLOBFROMFILE to load the entire BFILE without getting its length
first.

• How to use the return value of the offsets to calculate the actual amount loaded.

Loading a CLOB or NCLOB with Data from a BFILE
This procedure loads a CLOB or NCLOB with character data from a BFILE. This
procedure can be used to load data into a persistent or temporary CLOB or NCLOB
instance.

See Also:

• "Loading a LOB with Data from a BFILE"

• To load binary data, use DBMS_LOB.LOADBLOBFROMFILE. See "About
Loading a BLOB with Data from a BFILE" for more information.

• As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

12-8

Preconditions

The following conditions must be met before calling this procedure:

• The target CLOB or NCLOB instance must exist.

• The source BFILE must exist.

• You must open the BFILE. (After calling this procedure, you must close the BFILE
at some point.)

Usage Notes

You can specify the character set id of the BFILE when calling this procedure. Doing
so, ensures that the character set is properly converted from the BFILE data character
set to the destination CLOB or NCLOB character set.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBMS_LOB.LOADCLOBFROMFILE
function must be one of the following:

• An amount less than or equal to the actual size (in characters) of the BFILE data
you are loading.

• The maximum allowable LOB size: DBMS_LOB.LOBMAXSIZE

Passing this value causes the function to load the entire BFILE. This is a useful
technique for loading the entire BFILE without introspecting the size of the BFILE.

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADCLOBFROMFILE procedure for syntax details on this procedure.

Examples

The following examples illustrate different techniques for using this API:

• "About PL/SQL: Loading Character Data from a BFILE into a LOB"

• "About PL/SQL: Loading Segments of Character Data into Different LOBs"

About PL/SQL: Loading Character Data from a BFILE into a LOB
The following example illustrates:

• How to use default csid (0).

• How to load the entire file without calling getlength for the BFILE.

• How to find out the actual amount loaded using return offsets.

This example assumes that ad_source is a BFILE in UTF8 character set format and the
database character set is UTF8. The online file is lldclobf.sql.

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

12-9

About PL/SQL: Loading Segments of Character Data into Different
LOBs

The following example illustrates:

• How to get the character set ID from the character set name using the
NLS_CHARSET_ID function.

• How to load a stream of data from a single BFILE into different LOBs using the
returned offset value and the language context lang_ctx.

• How to read a warning message.

This example assumes that ad_file_ext_01 is a BFILE in JA16TSTSET format and the
database national character set is AL16UTF16. The online file is lldclobs.sql.

Determining Whether a LOB is Open
This operation determines whether a LOB is open.

Preconditions

The LOB instance must exist before executing this procedure.

Usage Notes

When a LOB is open, it must be closed at some point later in the session.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, ISOPEN.

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobIsOpen().

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension.

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB DESCRIBE executable
embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lisopen.sql

• OCI: lisopen.c

• C++ (OCCI): No example is provided with this release.

Chapter 12
Determining Whether a LOB is Open

12-10

• Java (JDBC): lisopen.java

Java (JDBC): Checking If a LOB Is Open
Here is how to check a BLOB or a CLOB.

Checking If a CLOB Is Open
To see if a CLOB is open, your JDBC application can use the isOpen method defined in
oracle.sql.CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the CLOB is opened.
 * @return true if the LOB is opened.
 */
public boolean isOpen () throws SQLException

The usage example is:

CLOB clob = ...
 // See if the CLOB is opened
 boolean isOpen = clob.isOpen ();
...

Checking If a BLOB Is Open
To see if a BLOB is open, your JDBC application can use the isOpen method defined in
oracle.sql.BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The isOpen method is defined as follows:

/**
 * Check whether the BLOB is opened.
 * @return true if the LOB is opened.
 */
 public boolean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
// See if the BLOB is opened
boolean isOpen = blob.isOpen ();
...

About Displaying LOB Data
This section describes APIs that allow you to read LOB data. You can use this
operation to read LOB data into a buffer. This is useful if your application requires
displaying large amounts of LOB data or streaming data operations.

Usage Notes

Note the following when using these APIs.

Chapter 12
About Displaying LOB Data

12-11

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use OCILobRead2() with
the streaming mechanism enabled.

Amount Parameter

The value you pass for the amount parameter is restricted for the APIs described in
Table 12-3.

Table 12-3 Maximum LOB Size for Amount Parameter

Environment Function Value of amount parameter is
limited to:

DBMS_LOB DBMS_LOB.READ The size of the buffer, 32Kbytes.

OCI OCILobRead()

(For LOBs less than 4 gigabytes in
size.)

UB4MAXVAL

Specifying this amount reads the
entire file.

OCI OCILobRead2()

(For LOBs of any size.)

UB8MAXVAL

Specifying this amount reads the
entire file.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, READ, CLOSE.

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —,
OCILobOpen(), OCILobRead2(), OCILobClose().

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB READ
executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): ldisplay.sql

• OCI: ldisplay.c

• C++ (OCCI): No example is provided in this release.

• Java (JDBC): ldisplay.java

Chapter 12
About Displaying LOB Data

12-12

About Reading Data from a LOB
This section describes how to read data from LOBs using OCILobRead2().

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use OCILobRead2()
with the streaming mechanism enabled using polling or callback. To do so, specify the
starting point of the read using the offset parameter as follows:

ub8 char_amt = 0;
ub8 byte_amt = 0;
ub4 offset = 1000;

OCILobRead2(svchp, errhp, locp, &byte_amt, &char_amt, offset, bufp, bufl,
 OCI_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byte_amt parameter after
each OCILobRead2() call to see how many bytes were read into the buffer because the
buffer may not be entirely full.

When using callbacks, the lenp parameter, which is input to the callback, indicates
how many bytes are filled in the buffer. Be sure to check the lenp parameter during
your callback processing because the entire buffer may not be filled with data.

See Also:

Oracle Call Interface Programmer's Guide

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the
BasicFiles LOB when creating the table that contains the LOB. This corresponds to the
data size used by Oracle Database when accessing or modifying the LOB value. Part
of the chunk is used to store system-related information and the rest stores the LOB
value. The API you are using has a function that returns the amount of space used in
the LOB chunk to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In
OCI, use OCILobGetChunkSize(). For SecureFiles, CHUNK is an advisory size and is
provided for backward compatibility purposes.

To improve performance, you may run write requests using a multiple of the value
returned by one of these functions. The reason for this is that you are using the same
unit that the Oracle database uses when reading data from disk. If it is appropriate for
your application, then you should batch reads until you have enough for an entire
chunk instead of issuing several LOB read calls that operate on the same LOB chunk.

Syntax

Use the following syntax references for each programmatic environment:

Chapter 12
About Reading Data from a LOB

12-13

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, GETCHUNKSIZE, READ, CLOSE

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobOpen(), OCILobRead2(), OCILobClose().

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information about LOB
READ executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lread.sql

• OCI: lread.c

• Java (JDBC): lread.java

About LOB Array Read
This section describes how to read LOB data for multiple locators in one round trip,
using OCILobArrayRead().

Usage Notes

This function improves performance in reading LOBs in the size range less than about
512 Kilobytes. For an OCI application example, assume that the program has a
prepared SQL statement such as:

SELECT lob1 FROM lob_table for UPDATE;

where lob1 is the LOB column and lob_array is an array of define variables
corresponding to a LOB column:

OCILobLocator * lob_array[10];

...
 for (i=0; i<10, i++) /* initialize array of locators */
 lob_array[i] = OCIDescriptorAlloc(..., OCI_DTYPE_LOB, ...);

...

OCIDefineByPos(..., 1, (dvoid *) lob_array, ... SQLT_CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCIStmtExecute (<service context>, <statement handle>, <error handle>,
 10, /* iters */
 0, /* row offset */
 NULL, /* snapshot IN */
 NULL, /* snapshot out */
 OCI_DEFAULT /* mode */);

Chapter 12
About LOB Array Read

12-14

...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 1000; /* Single byte fixed width char set. */
 }

/* Read the 1st 1000 characters for all 10 locators in one
 * round trip. Note that offset and amount need not be
 * same for all the locators. */

OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_ONE_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);/* character set form */

 ...

for (i=0; i<10; i++)
 {
 /* Fill bufp[i] buffers with data to be written */
 strncpy (bufp[i], "Test Data------", 15);
 bufl[i] = 1000;
 offset[i] = 50;
 char_amtp[i] = 15; /* Single byte fixed width char set. */
 }

/* Write the 15 characters from offset 50 to all 10
 * locators in one round trip. Note that offset and
 * amount need not be same for all the locators. */
 */

OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_ONE_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */

Chapter 12
About LOB Array Read

12-15

 0, /* character set ID - default */
 SQLCS_IMPLICIT);/* character set form */
...

Streaming Support

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be
done by using polling method or a callback function.Here data is read/written in
multiple pieces sequentially for the array of locators. For polling, the API would return
to the application after reading/writing each piece with the array_iter parameter
(OUT) indicating the index of the locator for which data is read/written. With a callback,
the function is called after reading/writing each piece with array_iter as IN
parameter.

Note that:

• It is possible to read/write data for a few of the locators in one piece and read/write
data for other locators in multiple pieces. Data is read/written in one piece for
locators which have sufficient buffer lengths to accommodate the whole data to be
read/written.

• Your application can use different amount value and buffer lengths for each
locator.

• Your application can pass zero as the amount value for one or more locators
indicating pure streaming for those locators. In the case of reading, LOB data is
read to the end for those locators. For writing, data is written until OCI_LAST_PIECE
is specified for those locators.

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read the complete data.
OCILobArrayRead() must be called 100 (10*10) times to fetch all the data.First we call
OCILobArrayRead() with OCI_FIRST_PIECE as piece parameter. This call returns the
first 1K piece for the first locator.Next OCILobArrayRead() is called in a loop until the
application finishes reading all the pieces for the locators and returns OCI_SUCCESS. In
this example it loops 99 times returning the pieces for the locators sequentially.

/* Fetch the locators */
...

 /* array_iter parameter indicates the number of locators in the array read.
 * It is an IN parameter for the 1st call in polling and is ignored as IN
 * parameter for subsequent calls. As OUT parameter it indicates the locator
 * index for which the piece is read.
 */

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;

Chapter 12
About LOB Array Read

12-16

 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 /* First piece for the first locator is read here.
 * bufp[0] => Buffer pointer into which data is read.
 * char_amtp[0] => Number of characters read in current buffer
 *
 */

 While (st == OCI_NEED_DATA)
 {
 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is read. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on.
 *
 * lob_array[array_iter - 1]=> Lob locator for which data is read.
 * bufp[array_iter - 1] => Buffer pointer into which data is read.
 * char_amtp[array_iter - 1] => Number of characters read in current buffer
 */

...
 /* Consume the data here */
...
 }

LOB Array Read with Callback

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read all the data. The callback function is
called 100 (10*10) times to return the pieces sequentially.

/* Fetch the locators */
...

Chapter 12
About LOB Array Read

12-17

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 ctx, /* callback context */
 cbk_read_lob, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);
...
/* Callback function for LOB array read. */
sb4 cbk_read_lob(dvoid *ctxp, ub4 array_iter, CONST dvoid *bufxp, oraub8 len,
 ub1 piece, dvoid **changed_bufpp, oraub8 *changed_lenp)
{
 static ub4 piece_count = 0;
 piece_count++;
 switch (piece)
 {
 case OCI_LAST_PIECE:
 /*--- buffer processing code goes here ---*/
(void) printf("callback read the %d th piece(last piece) for %dth locator \n\n",
 piece_count, array_iter);
 piece_count = 0;
 break;
 case OCI_FIRST_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the 1st piece for %dth locator\n",
 array_iter);
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer needs
 to be changed dynamically --*/
 break;
 case OCI_NEXT_PIECE:
 /*--- buffer processing code goes here ---*/
 (void) printf("callback read the %d th piece for %dth locator\n",
 piece_count, array_iter);
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer
 must be changed dynamically --*/
 break;
 default:
 (void) printf("callback read error: unkown piece = %d.\n", piece);
 return OCI_ERROR;
 }

Chapter 12
About LOB Array Read

12-18

 return OCI_CONTINUE;
}
...

Polling LOB Array Read

The next example is polling LOB data in OCILobArrayRead() with variable amtp, bufl,
and offset.

/* Fetch the locators */
...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 /* For 3rd locator read data in 500 bytes piece from offset 101. Amount
 * is 2000, that is, total number of pieces is 2000/500 = 4.
 */
 offset[2] = 101; bufl[2] = 500; char_amtp[2] = 2000;

 /* For 6th locator read data in 100 bytes piece from offset 51. Amount
 * is 0 indicating pure polling, that is, data is read till the end of
 * the LOB is reached.
 */
 offset[5] = 51; bufl[5] = 100; char_amtp[5] = 0;

 /* For 8th locator read 100 bytes of data in one piece. Note amount
 * is less than buffer length indicating single piece read.
 */
 offset[7] = 61; bufl[7] = 200; char_amtp[7] = 100;

 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 /* First piece for the first locator is read here.
 * bufp[0] => Buffer pointer into which data is read.
 * char_amtp[0] => Number of characters read in current buffer
 *

Chapter 12
About LOB Array Read

12-19

 */

 while (st == OCI_NEED_DATA)
 {
 st = OCILobArrayRead(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of read buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is read. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on.
 *
 * lob_array[array_iter - 1]=> Lob locator for which data is read.
 * bufp[array_iter - 1] => Buffer pointer into which data is read.
 * char_amtp[array_iter - 1]=>Number of characters read in current buffer
 */

...
 /* Consume the data here */
...
 }

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobArrayRead().

Example

An example is provided in the following programmatic environment:

OCI: lreadarr.c

Reading a Portion of a LOB (SUBSTR)
This section describes how to read a portion of a LOB using SUBSTR.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — SUBSTR, OPEN, CLOSE

• C (OCI): There is no applicable syntax reference for this use case

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

Chapter 12
Reading a Portion of a LOB (SUBSTR)

12-20

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guide for information on LOBs,
usage notes on LOB Statements, and ALLOCATE, LOB OPEN, LOB READ, LOB
CLOSE executable embedded SQL extensions

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB READ executable
embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lsubstr.sql

• OCI: No example is provided with this release.

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): lsubstr.java

Comparing All or Part of Two LOBs
This section describes how to compare all or part of two LOBs.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COMPARE.

• C (OCI): There is no applicable syntax reference for this use case.

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guideor information on LOBs,
usage notes on LOB Statements, and EXECUTE executed embedded SQL

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
EXECUTE executed embedded SQL

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lcompare.sql

• C (OCI): No example is provided with this release.

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): lcompare.java

Patterns: Checking for Patterns in a LOB Using INSTR
This section describes how to see if a pattern exists in a LOB using INSTR.

Chapter 12
Comparing All or Part of Two LOBs

12-21

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — INSTR

• C (OCI): There is no applicable syntax reference for this use case.

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and EXECUTE executed embedded SQL

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
EXECUTE executed embedded SQL

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): linstr.sql

• C (OCI): No example is provided with this release.

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): linstr.java

Length: Determining the Length of a LOB
This section describes how to determine the length of a LOB.

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — GETLENGTH

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobGetLength2()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

Chapter 12
Length: Determining the Length of a LOB

12-22

• PL/SQL (DBMS_LOB Package) llength.sql

• OCI: llength.c

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): llength.java

Copying All or Part of One LOB to Another LOB
This section describes how to copy all or part of a LOB to another LOB. These APIs
copy an amount of data you specify from a source LOB to a destination LOB.

Usage Notes

Note the following issues when using this API.

Specifying Amount of Data to Copy

The value you pass for the amount parameter to the DBMS_LOB.COPY function must be
one of the following:

• An amount less than or equal to the actual size of the data you are loading.

• The maximum allowable LOB size: DBMS_LOB.LOBMAXSIZE.Passing this value
causes the function to read the entire LOB. This is a useful technique for reading
the entire LOB without introspecting the size of the LOB.

Note that for character data, the amount is specified in characters, while for binary
data, the amount is specified in bytes.

Locking the Row Prior to Updating

If you plan to update a LOB value, then you must lock the row containing the LOB prior
to updating. While the SQL INSERT and UPDATE statements implicitly lock the row,
locking is done explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or by using an OCI pin or lock function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Syntax

See the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COPY

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCopy2

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

Chapter 12
Copying All or Part of One LOB to Another LOB

12-23

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB COPY executable embedded SQL
extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB COPY
executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lcopy.sql

• OCI: lcopy.c

• Java (JDBC): lcopy.java

Copying a LOB Locator
This section describes how to copy a LOB locator. Note that different locators may
point to the same or different data, or to current or outdated data.

See Also:

Read-Consistent Locators for more details about how to assign one LOB to
another using PL/SQL using the := operator

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Refer to "Read-Consistent Locators" for
information on assigning one lob locator to another

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAssign(), OCILobIsEqual()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and ALLOCATE and LOB ASSIGN executable
embedded SQL extensions

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideSELECT, LOB ASSIGN
executable embedded SQL extensions

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lcopyloc.sql

Chapter 12
Copying a LOB Locator

12-24

• OCI: lcopyloc.c

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): lcopyloc.java

Equality: Checking If One LOB Locator Is Equal to Another
This section describes how to determine whether one LOB locator is equal to another.
If two locators are equal, then this means that they refer to the same version of the
LOB data.

See Also:

• Table 12-1

• "Read-Consistent Locators"

Syntax

Use the following syntax references for each programmatic environment:

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAssign(), OCILobIsEqual()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB ASSIGN executable
embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL: No example is provided with this release.

• OCI: lequal.c

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): lequal.java

About Determining Whether LOB Locator Is Initialized
This section describes how to determine whether a LOB locator is initialized.

See Also:

Table 12-1

Chapter 12
Equality: Checking If One LOB Locator Is Equal to Another

12-25

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
use case.

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobLocatorIsInit()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

• C/C++ (Pro*C/C++)Pro*C/C++ Programmer's Guide

• Java (JDBC): There is no applicable syntax reference for this use case.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): No example is provided with this release.

• OCI: linit.c

• C (OCCI)): No example is provided with this release.

• Java (JDBC): No example is provided with this release.

About Appending to a LOB
This section describes how to write-append the contents of a buffer to a LOB.

See Also:

Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Writing Singly or Piecewise

The writeappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call;
alternatively, it can be rendered piecewise using callbacks or a standard polling
method.

Writing Piecewise: When to Use Callbacks or Polling

If the value of the piece parameter is OCI_FIRST_PIECE, then data must be provided
through callbacks or polling.

• If a callback function is defined in the cbfp parameter, then this callback function is
called to get the next piece after a piece is written to the pipe. Each piece is written
from bufp.

Chapter 12
About Appending to a LOB

12-26

• If no callback function is defined, then OCILobWriteAppend2() returns the
OCI_NEED_DATA error code. The application must call OCILobWriteAppend2() again
to write more pieces of the LOB. In this mode, the buffer pointer and the length
can be different in each call if the pieces are of different sizes and from different
locations. A piece value of OCI_LAST_PIECE terminates the piecewise write.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS_LOB package or the OCI, you
must lock the row containing the LOB. While the SQL INSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of an SQL SELECT FOR
UPDATE statement in SQL and PL/SQL programs, or by using an OCI pin or lock
function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITEAPPEND

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobWriteAppend2()

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
Embedded SQL Statements and Directives

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lwriteap.sql

• OCI: lwriteap.c

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): lwriteap.java

About Writing Data to a LOB
This section describes how to write the contents of a buffer to a LOB.

Chapter 12
About Writing Data to a LOB

12-27

See Also:

• Table 12-1

• About Reading Data from a LOB

Usage Notes

Note the following issues regarding usage of this API.

Stream Write

The most efficient way to write large amounts of LOB data is to use OCILobWrite2()
with the streaming mechanism enabled, and using polling or a callback. If you know
how much data is written to the LOB, then specify that amount when calling
OCILobWrite2(). This ensures that LOB data on the disk is contiguous. Apart from
being spatially efficient, the contiguous structure of the LOB data makes reads and
writes in subsequent operations faster.

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use
OCILobGetChunkSize().

Use a Multiple of the Returned Value to Improve Write Performance

To improve performance, run write requests using a multiple of the value returned by
one of these functions. The reason for this is that the LOB chunk is versioned for every
write operation. If all writes are done on a chunk basis, then no extra or excess
versioning is incurred or duplicated. If it is appropriate for your application, then you
should batch writes until you have enough for an entire chunk instead of issuing
several LOB write calls that operate on the same LOB chunk.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS_LOB Package or OCI, you must
lock the row containing the LOB. While the SQL INSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of a SQL SELECT FOR UPDATE
statement in SQL and PL/SQL programs, or by using an OCI pin or lock function in
OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Chapter 12
About Writing Data to a LOB

12-28

Using DBMS_LOB.WRITE to Write Data to a BLOB

When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to a
BLOB, use the following guidelines:

• The amount parameter should be <= the buffer length parameter

• The length of the buffer should be ((amount*2) - 1). This guideline exists because
the two characters of the string are seen as one hexadecimal character (and an
implicit hexadecimal-to-raw conversion takes place), that is, every two bytes of the
string are converted to one raw byte.

The following example is correct:

declare
 blob_loc BLOB;
 rawbuf RAW(10);
 an_offset INTEGER := 1;
 an_amount BINARY_INTEGER := 10;
BEGIN
 select blob_col into blob_loc from a_table
where id = 1;
 rawbuf := '1234567890123456789';
 dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);
 commit;
END;

Replacing the value for an_amount in the previous example with the following values,
yields error message, ora_21560:

 an_amount BINARY_INTEGER := 11;

or

 an_amount BINARY_INTEGER := 19;

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITE

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobWrite2().

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB WRITE executable embedded SQL
extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB WRITE executable
embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column.

Chapter 12
About Writing Data to a LOB

12-29

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lwrite.sql

• OCI: lwrite.c

• Java (JDBC): lwrite.java

LOB Array Write
This section describes how to write LOB data for multiple locators in one round trip,
using OCILobArrayWrite().

Usage Notes

See Also:

"About LOB Array Read" for examples of array read/write.

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. OCILobArrayWrite() has to be called 100 (10 times 10) times to write all the data.
The function is used in a similar manner to OCILobWrite2().

/* Fetch the locators */
...

/* array_iter parameter indicates the number of locators in the array read.
 * It is an IN parameter for the 1st call in polling and is ignored as IN
 * parameter for subsequent calls. As an OUT parameter it indicates the locator
 * index for which the piece is written.
 */

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_amtp[10];
oraub8 offset[10];
sword st;
int i, j;

for (i=0; i<10; i++)
{
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 /* Fill bufp here. */
...
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
}

for (i = 1; i <= 10; i++)
{

Chapter 12
LOB Array Write

12-30

 /* Fill up bufp[i-1] here. The first piece for ith locator would be written from
 bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 for (j = 2; j < 10; j++)
 {
 /* Fill up bufp[i-1] here. The jth piece for ith locator would be written from
 bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is being written. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on. Here i = array_iter.
 *
 * lob_array[array_iter - 1] => Lob locator for which data is written.
 * bufp[array_iter - 1] => Buffer pointer from which data is written.
 * char_amtp[array_iter - 1] => Number of characters written in
 * the piece just written
 */
}

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
 bufp[i -1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_LAST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */

Chapter 12
LOB Array Write

12-31

 0, /* character set ID - default */
 SQLCS_IMPLICIT);
}

...

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. A total of 100 pieces must be written (10 pieces for each locator). The first piece
is provided by the OCILobArrayWrite() call. The callback function is called 99 times to
get the data for subsequent pieces to be written.

/* Fetch the locators */
...

 ub4 array_iter = 10;
 char *bufp[10];
 oraub8 bufl[10];
 oraub8 char_amtp[10];
 oraub8 offset[10];
 sword st;

 for (i=0; i<10; i++)
 {
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
 }

 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 ctx, /* callback context */
 cbk_write_lob /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

...

/* Callback function for LOB array write. */
sb4 cbk_write_lob(dvoid *ctxp, ub4 array_iter, dvoid *bufxp, oraub8 *lenp,
 ub1 *piecep, ub1 *changed_bufpp, oraub8 *changed_lenp)
{
 static ub4 piece_count = 0;
 piece_count++;

 printf (" %dth piece written for %dth locator \n\n", piece_count, array_iter);

 /*-- code to fill bufxp with data goes here. *lenp should reflect the size and
 * should be less than or equal to MAXBUFLEN -- */
 /* --Optional code to set changed_bufpp and changed_lenp if the buffer must
 * be changed dynamically --*/

Chapter 12
LOB Array Write

12-32

 if (this is the last data buffer for current locator)
 *piecep = OCI_LAST_PIECE;
 else if (this is the first data buffer for the next locator)
 *piecep = OCI_FIRST_PIECE;
 piece_count = 0;
 else
 *piecep = OCI_NEXT_PIECE;

 return OCI_CONTINUE;
 }
...

Polling LOB Data in Array Write

The next example is polling LOB data in OCILobArrayWrite() with variable amtp, bufl,
and offset.

/* Fetch the locators */
...

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_amtp[10];
oraub8 offset[10];
sword st;
int i, j;
int piece_count;

for (i=0; i<10; i++)
{
 bufp[i] = (char *)malloc(1000);
 bufl[i] = 1000;
 /* Fill bufp here. */
...
 offset[i] = 1;
 char_amtp[i] = 10000; /* Single byte fixed width char set. */
}

 /* For 3rd locator write data in 500 bytes piece from offset 101. Amount
 * is 2000, that is, total number of pieces is 2000/500 = 4.
 */
 offset[2] = 101; bufl[2] = 500; char_amtp[2] = 2000;

 /* For 6th locator write data in 100 bytes piece from offset 51. Amount
 * is 0 indicating pure polling, that is, data is written
 * till OCI_LAST_PIECE
 */
 offset[5] = 51; bufl[5] = 100; char_amtp[5] = 0;

 /* For 8th locator write 100 bytes of data in one piece. Note amount
 * is less than buffer length indicating single piece write.
 */
 offset[7] = 61; bufl[7] = 200; char_amtp[7] = 100;

for (i = 1; i <= 10; i++)
{
 /* Fill up bufp[i-1] here. The first piece for ith locator would be written from
 bufp[i-1] */
...
 /* Calculate number of pieces that must be written */

Chapter 12
LOB Array Write

12-33

 piece_count = char_amtp[i-1]/bufl[i-1];

 /* Single piece case */
 if (char_amtp[i-1] <= bufl[i-1])
 piece_count = 1;

 /* Zero amount indicates pure polling. So we can write as many
 * pieces as needed. Let us write 50 pieces.
 */
 if (char_amtp[i-1] == 0)
 piece_count = 50;

 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_FIRST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT); /* character set form */

 for (j = 2; j < piece_count; j++)
 {
 /* Fill up bufp[i-1] here. The jth piece for ith locator would be written
 * from bufp[i-1] */
...
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_NEXT_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);

 /* array_iter returns the index of the current array element for which
 * data is being written. for example, aray_iter = 1 implies first locator,
 * array_iter = 2 implies second locator and so on. Here i = array_iter.
 *
 * lob_array[array_iter - 1] => Lob locator for which data is written.
 * bufp[array_iter - 1] => Buffer pointer from which data is written.
 * char_amtp[array_iter - 1] => Number of characters written in
 * the piece just written
 */
}

/* Fill up bufp[i-1] here. The last piece for ith locator would be written from
 * bufp[i -1] */
...

/* If piece_count is 1 it is a single piece write. */

Chapter 12
LOB Array Write

12-34

if (piece_count[i] != 1)
 st = OCILobArrayWrite(<service context>, <error handle>,
 &array_iter, /* array size */
 lob_array, /* array of locators */
 NULL, /* array of byte amounts */
 char_amtp, /* array of char amounts */
 offset, /* array of offsets */
 (void **)bufp, /* array of write buffers */
 bufl, /* array of buffer lengths */
 OCI_LAST_PIECE, /* piece information */
 NULL, /* callback context */
 NULL, /* callback function */
 0, /* character set ID - default */
 SQLCS_IMPLICIT);
}

...

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobArrayWrite().

Example

An example is provided in the following programmatic environment:

OCI: lwritearr.c

About Trimming LOB Data
This section describes how to trim a LOB to the size you specify.

See Also:

Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS_LOB Package, or OCI, you must
lock the row containing the LOB. While the SQL INSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of:

• A SELECT FOR UPDATE statement in SQL and PL/SQL programs.

• An OCI pin or lock function in OCI programs.

Chapter 12
About Trimming LOB Data

12-35

See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — TRIM

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobTrim2().

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB TRIM executed embedded SQL
extension

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide for more information on LOB
TRIM executed embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): ltrim.sql

• OCI: ltrim.c

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): ltrim.java

About Erasing Part of a LOB
This section describes how to erase part of a LOB.

See Also:

Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS_LOB Package or OCI, you must
lock the row containing the LOB. While INSERT and UPDATE statements implicitly lock

Chapter 12
About Erasing Part of a LOB

12-36

the row, locking is done explicitly by means of a SELECT FOR UPDATE statement in SQL
and PL/SQL programs, or by using the OCI pin or lock function in OCI programs.

See Also:

Example of Updating LOBs Through Updated Locators f or more details on
the state of the locator after an update

Syntax

Use the following syntax references for each programmatic environment:

• PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — ERASE

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobErase2().

• C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB ERASE executable embedded SQL
extension.

• C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB
ERASE executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): lerase.sql

• OCI: lerase.c

• C++ (OCCI): No example is provided with this release.

• Java (JDBC): lerase.java

Determining Whether a LOB instance Is Temporary
This section describes how to determine whether a LOB instance is temporary.

See Also:

Table 12-1

Syntax

Use the following syntax references for each programmatic environment:

Chapter 12
Determining Whether a LOB instance Is Temporary

12-37

• PL/SQL (DBMS_LOB): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — ISTEMPORARY, FREETEMPORARY

• C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobIsTemporary().

• COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and embedded SQL and LOB DESCRIBE
executable embedded SQL extension

• C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

• Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

• PL/SQL (DBMS_LOB Package): listemp.sql

• OCI: listemp.c

Java (JDBC): Determining Whether a BLOB Is Temporary
To see if a BLOB is temporary, the JDBC application can either use the isTemporary
instance method to determine whether the current BLOB object is temporary, or pass
the BLOB object to the static isTemporary method to determine whether the specified
BLOB object is temporary. These two methods are defined inlistempb.java.

This JDBC API replaces previous work-arounds that use DBMS_LOB.isTemporary().

To determine whether a CLOB is temporary, the JDBC application can either use the
isTemporary instance method to determine whether the current CLOB object is
temporary, or pass the CLOB object to the static isTemporary method. These two
methods are defined in listempc.java.

Converting a BLOB to a CLOB
You can convert a BLOB instance to a CLOB using the PL/SQL procedure
DBMS_LOB.CONVERTTOCLOB.

This technique is convenient if you have character data stored in binary format that
you want to store in a CLOB. You specify the character set of the binary data when
calling this procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details on
syntax and usage of this procedure

Chapter 12
Converting a BLOB to a CLOB

12-38

Converting a CLOB to a BLOB
You can convert a CLOB instance to a BLOB instance using the PL/SQL procedure
DBMS_LOB.CONVERTTOBLOB. This technique is a convenient way to convert character
data to binary data using LOB APIs. See

See Also:

Oracle Database PL/SQL Packages and Types Reference for details on
syntax and usage of this procedure

Ensuring Read Consistency
This script can be used to ensure that hot backups can be taken of tables that have
NOLOGGING or FILESYSTEM_LIKE_LOGGING LOBs and have a known recovery point with
no read inconsistencies:

ALTER DATABASE FORCE LOGGING;
SELECT CHECKPOINT_CHANGE# FROM V$DATABASE; --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at
the time that a transaction is committed.

Perform the backup.

Run the next script:

ALTER SYSTEM CHECKPOINT GLOBAL;
SELECT CHECKPOINT_CHANGE# FROM V$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGGING;

Back up the archive logs generated by the database. At the minimum, archive logs
between start SCN and end SCN (including both SCN points) must be backed up.

To restore to a point with no read inconsistency, restore to end SCN as your
incomplete recovery point. If recovery is done to an SCN after end SCN, there can be
read inconsistency in the NOLOGGING LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database
treats the inconsistent blocks as holes and fills BLOBs with 0's and CLOBs with fill
characters.

Chapter 12
Converting a CLOB to a BLOB

12-39

Part IV
Application Design with LOBs

This part covers issues that you must consider when designing LOB applications.

This part contains these chapters:

• LOB Storage with Applications

• Advanced Design Considerations

• Overview of Supplied LOB APIs

• Performance Guidelines

13
LOB Storage with Applications

Applications that contain tables with LOB columns may use both SECUREFILE and
BASICFILE LOBs. If a feature applies to only one kind of LOB, this is stated.

Topics:

• Tables That Contain LOBs

• Data Types for LOB Columns

• LOB Storage Parameters

• LOB Columns Indexing

• LOB Manipulation in Partitioned Tables

• LOBs in Index Organized Tables

• Restrictions for LOBs in Partitioned Index-Organized Tables

• Updating LOBs in Nested Tables

Tables That Contain LOBs
When creating tables that contain LOBs, use these guidelines:

Topics:

• Persistent LOBs Initialized to NULL or Empty

• Initializing LOBs

• Initializing Persistent LOB Columns and Attributes to a Value

• Initializing BFILEs to NULL or a File Name

Persistent LOBs Initialized to NULL or Empty
You can set a persistent LOB — that is, a LOB column in a table, or a LOB attribute in
an object type that you defined— to be NULL or empty:

• Set a Persistent LOB to NULL: A LOB set to NULL has no locator. A NULL value is
stored in the row in the table, not a locator. This is the same process as for all
other data types.

• Set a Persistent LOB to Empty: By contrast, an empty LOB stored in a table is a
LOB of zero length that has a locator. So, if you SELECT from an empty LOB
column or attribute, then you get back a locator which you can use to populate the
LOB with data using supported programmatic environments, such as OCI or PL/
SQL(DBMS_LOB).

13-1

See Also:

Overview of Supplied LOB APIs for more information on supported
environments

Setting a Persistent LOB to NULL
You may want to set a persistent LOB value to NULL upon inserting the row.

These are possible situations where this is useful:

• In cases where you do not have the LOB data at the time of the INSERT.

• If you want to use a SELECT statement, such as the following, to determine whether
or not the LOB holds a NULL value:

SELECT COUNT (*) FROM print_media WHERE ad_graphic IS NOT NULL;

SELECT COUNT (*) FROM print_media WHERE ad_graphic IS NULL;

Note that you cannot call OCI or DBMS_LOB functions on a NULL LOB, so you must then
use an SQL UPDATE statement to reset the LOB column to a non-NULL (or empty)
value.

The point is that you cannot make a function call from the supported programmatic
environments on a LOB that is NULL. These functions only work with a locator, and if
the LOB column is NULL, then there is no locator in the row.

Setting a Persistent LOB to Empty
You can initialize a persistent LOB to EMPTY rather that NULL. Doing so, enables you to
obtain a locator for the LOB instance without populating the LOB with data.

• You set a persistent LOB to EMPTY, using the SQL function EMPTY_BLOB() or
EMPTY_CLOB() in the INSERT statement, as follows.

INSERT INTO a_table VALUES (EMPTY_BLOB());

As an alternative, you can use the RETURNING clause to obtain the LOB locator in one
operation rather than calling a subsequent SELECT statement:

DECLARE
 Lob_loc BLOB;
BEGIN
 INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
 /* Now use the locator Lob_loc to populate the BLOB with data */
END;

Initializing LOBs
You can initialize the LOBs in print_media by using the following INSERT statement:

INSERT INTO print_media VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of ad_sourcetext, ad_fltextn, ad_composite, and ad_photo to an
empty value, and sets ad_graphic to NULL.

Chapter 13
Tables That Contain LOBs

13-2

See Also:

Table for LOB Examples: The PM Schema print_media Table for the
print_media table.

Initializing Persistent LOB Columns and Attributes to a Value
You can initialize the LOB column or LOB attributes to a value that contains more than
4G bytes of data, the limit before release 10.2.

See Also:

Data Interface for Persistent LOBs

Initializing BFILEs to NULL or a File Name
A BFILE can be initialized to NULL or to a filename. To do so, you can use the
BFILENAME() function.

See Also:

"BFILENAME and Initialization".

Restriction on First Extent of a LOB Segment
The first extent of any segment requires at least 2 blocks (if FREELIST GROUPS was 0).
That is, the initial extent size of the segment should be at least 2 blocks. LOBs
segments are different because they need at least 3 blocks in the first extent if the
LOB is a BasicFiles LOB and 16 blocks if the LOB is a SecureFiles LOB.

If you try to create a LOB segment in a permanent dictionary managed tablespace with
initial = 2 blocks, then it still works because it is possible for segments in permanent
dictionary-managed tablespaces to override the default storage setting of the
tablespaces.

But if uniform, locally managed tablespaces or dictionary managed tablespaces of the
temporary type, or locally managed temporary tablespaces have an extent size of 2
blocks, then LOB segments cannot be created in these tablespaces. This is because
in these tablespace types, extent sizes are fixed and the default storage setting of the
tablespaces is not ignored.

Data Types for LOB Columns
When selecting a data type, consider the following three topics:

• LOBs Compared to LONG and LONG RAW Types

Chapter 13
Data Types for LOB Columns

13-3

• Varying-Width Character Data Storage in LOBs

• Converting Character Sets Implicitly with LOBs

LOBs Compared to LONG and LONG RAW Types
Table 13-1 lists the similarities and differences between LOBs, LONGs, and LONG
RAW types.

Table 13-1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAW in each
row.

LOBs can be attributes of a user-defined
data type

This is not possible with either a LONG or LONG
RAW

Only the LOB locator is stored in the table
column; BLOB and CLOB data can be stored
in separate tablespaces and BFILE data is
stored as an external file.

For inline LOBs, the database stores LOBs
that are less than approximately 4000 bytes
of data in the table column.

In the case of a LONG or LONG RAW the entire
value is stored in the table column.

When you access a LOB column, you can
choose to fetch the locator or the data.

When you access a LONG or LONG RAW, the entire
value is returned.

A LOB can be up to 128 terabytes or more
in size depending on your block size.

A LONG or LONG RAW instance is limited to 2
gigabytes in size.

There is greater flexibility in manipulating
data in a random, piece-wise manner with
LOBs. LOBs can be accessed at random
offsets.

Less flexibility in manipulating data in a random,
piece-wise manner with LONG or LONG RAW
data.LONGs must be accessed from the
beginning to the desired location.

You can use Oracle Golden Gate to
replicate LOBs.

Replication is not possible with LONG or LONG
RAW.

Varying-Width Character Data Storage in LOBs
Varying-width character data in CLOB and NCLOB data types is stored in an internal
format that is compatible with UCS2 Unicode character set format. This ensures that
there is no storage loss of character data in a varying-width format. Also note the
following if you are using LOBs to store varying-width character data:

• You can create tables containing CLOB and NCLOB columns even if you use a
varying-width CHAR or NCHAR database character set.

• You can create a table containing a data type that has a CLOB attribute regardless
of whether you use a varying-width CHAR database character set.

Converting Character Sets Implicitly with LOBs
For CLOB and NCLOB instances used in OCI (Oracle Call Interface), or any of the
programmatic environments that access OCI functionality, character set conversions
are implicitly performed when translating from one character set to another.

Chapter 13
Data Types for LOB Columns

13-4

• Use the DBMS_LOB.LOADCLOBFROMFILE API to perform an implicit conversion from
binary data to character data when loading to a CLOB or NCLOB.

With the exception of DBMS_LOB.LOADCLOBFROMFILE, LOB APIs do not perform implicit
conversions from binary data to character data.

For example, when you use the DBMS_LOB.LOADFROMFILE API to populate a CLOB or
NCLOB, you are populating the LOB with binary data from a BFILE. In this case, you
must perform character set conversions on the BFILE data before calling
DBMS_LOB.LOADFROMFILE.

See Also:

Oracle Database Globalization Support Guide for more detail on character
set conversions.

Note:

The database character set cannot be changed from a single-byte to a
multibyte character set if there are populated user-defined CLOB columns in
the database tables. The national character set cannot be changed between
AL16UTF16 and UTF8 if there are populated user-defined NCLOB columns in the
database tables.

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to
Relocating a PDB Using CREATE PLUGGABLE DATABASE.

LOB Storage Parameters
You should consider certain LOB storage characteristics when designing tables with
LOB storage. For a discussion of SECUREFILE parameters:

See Also:

• "CREATE TABLE with LOB Storage"

• "ALTER TABLE with LOB Storage"

Topics:

• Inline and Out-of-Line LOB Storage

• Defining Tablespace and Storage Characteristics for Persistent LOBs

Chapter 13
LOB Storage Parameters

13-5

Inline and Out-of-Line LOB Storage
LOB columns store locators that reference the location of the actual LOB value.

Actual LOB values are stored either in the table row (inline) or outside of the table row
(out-of-line), depending on the column properties you specify when you create the
table, and depending the size of the LOB.

LOB values are stored out-of-line when any of the following situations apply:

• If you explicitly specify DISABLE STORAGE IN ROW for the LOB storage clause when
you create the table.

• If the size of the LOB is greater than approximately 4000 bytes (4000 minus
system control information), regardless of the LOB storage properties for the
column.

• If you update a LOB that is stored out-of-line and the resulting LOB is less than
approximately 4000 bytes, it is still stored out-of-line.

LOB values are stored inline when any of the following conditions apply:

• When the size of the LOB stored in the given row is small, approximately 4000
bytes or less, and you either explicitly specify ENABLE STORAGE IN ROW or the LOB
storage clause when you create the table, or when you do not specify this
parameter (which is the default).

• When the LOB value is NULL (regardless of the LOB storage properties for the
column).

Using the default LOB storage properties (inline storage) can allow for better database
performance; it avoids the overhead of creating and managing out-of-line storage for
smaller LOB values. If LOB values stored in your database are frequently small in size,
then using inline storage is recommended.

Note:

• LOB locators are always stored in the row.

• A LOB locator always exists for any LOB instance regardless of the LOB
storage properties or LOB value - NULL, empty, or otherwise.

• If the LOB is created with DISABLE STORAGE IN ROW properties and the
BasicFiles LOB holds any data, then a minimum of one CHUNK of out-of-
line storage space is used; even when the size of the LOB is less than
the CHUNK size.

• If a LOB column is initialized with EMPTY_CLOB() or EMPTY_BLOB(), then
no LOB value exists, not even NULL. The row holds a LOB locator only.
No additional LOB storage is used.

• LOB storage properties do not affect BFILE columns. BFILE data is
always stored in operating system files outside the database.

Chapter 13
LOB Storage Parameters

13-6

Defining Tablespace and Storage Characteristics for Persistent LOBs
When defining LOBs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column.

To create a BasicFiles LOB, the BASICFILE keyword is optional but is recommended
for clarity, as shown in the following example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS BASICFILE segname (TABLESPACE lobtbs1 CHUNK 4096
 PCTVERSION 5
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

For SecureFiles, the SECUREFILE keyword is necessary, as shown in the following
example (assuming TABLESPACE lobtbs1 is ASSM):

CREATE TABLE ContainsLOB_tab1 (n NUMBER, c CLOB)
 lob (c) STORE AS SECUREFILE sfsegname (TABLESPACE lobtbs1
 RETENTION AUTO
 CACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

Note:

There are no tablespace or storage characteristics that you can specify for
external LOBs (BFILEs) as they are not stored in the database.

If you must modify the LOB storage parameters on an existing LOB column, then use
the ALTER TABLE ... MOVE statement. You can change the RETENTION, PCTVERSION,
CACHE, NOCACHE LOGGING, NOLOGGING, or STORAGE settings. You can also change the
TABLESPACE using the ALTER TABLE ... MOVE statement.

Assigning a LOB Data Segment Name
As shown in the previous example, specifying a name for the LOB data segment
makes for a much more intuitive working environment. When querying the LOB data
dictionary views USER_LOBS, ALL_LOBS, DBA_LOBS , you see the LOB data segment that
you chose instead of system-generated names.

See Also:

Oracle Database Reference for more information about initialization
parameters

Chapter 13
LOB Storage Parameters

13-7

LOB Storage Characteristics for LOB Column or Attribute
LOB storage characteristics that can be specified for a LOB column or a LOB attribute
include the following:

• TABLESPACE

• PCTVERSION or RETENTION

Note that you can specify either PCTVERSION or RETENTION for BasicFiles LOBs, but
not both. For SecureFiles, only the RETENTION parameter can be specified.

• CACHE/NOCACHE/CACHE READS

• LOGGING/NOLOGGING

• CHUNK

• ENABLE/DISABLE STORAGE IN ROW

• STORAGE

For most users, defaults for these storage characteristics are sufficient. If you want to
fine-tune LOB storage, then consider the following guidelines.

See Also:

• STORAGE clause in Oracle Database SQL Language Reference

• RETENTION parameter in Oracle Database SQL Language Reference

TABLESPACE and LOB Index
The LOB index is an internal structure that is strongly associated with LOB storage.
This implies that a user may not drop the LOB index and rebuild it.

Note:

The LOB index cannot be altered.

The system determines which tablespace to use for LOB data and LOB index
depending on your specification in the LOB storage clause:

• If you do not specify a tablespace for the LOB data, then the tablespace of the
table is used for the LOB data and index.

• If you specify a tablespace for the LOB data, then both the LOB data and index
use the tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table
When creating a table, if you specify a tablespace for the LOB index for a non-
partitioned table, then your specification of the tablespace is ignored and the LOB

Chapter 13
LOB Storage Parameters

13-8

index is co-located with the LOB data. Partitioned LOBs do not include the LOB index
syntax.

Specifying a separate tablespace for the LOB storage segments enables a decrease
in contention on the tablespace of the table.

PCTVERSION
When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is
produced in order to support consistent read of prior versions of the BasicFiles LOB
value.

PCTVERSION is the percentage of all used BasicFiles LOB data space that can be
occupied by old versions of BasicFiles LOB data pages. As soon as old versions of
BasicFiles LOB data pages start to occupy more than the PCTVERSION amount of used
BasicFiles LOB space, Oracle Database tries to reclaim the old versions and reuse
them. In other words, PCTVERSION is the percent of used BasicFiles LOB data blocks
that is available for versioning old BasicFiles LOB data.

PCTVERSION has a default of 10 (%), a minimum of 0, and a maximum of 100.

To decide what value PCTVERSION should be set to, consider the following:

• How often BasicFiles LOBs are updated?

• How often the updated BasicFiles LOBs are read?

Table 13-2 provides some guidelines for determining a suitable PCTVERSION value
given an update percentage of 'X'.

Table 13-2 Recommended PCTVERSION Settings

BasicFiles LOB Update
Pattern

BasicFiles LOB Read Pattern PCTVERSION

Updates X% of LOB data Reads updated LOBs X%

Updates X% of LOB data Reads LOBs but not the updated LOBs 0%

Updates X% of LOB data Reads both updated and non-updated LOBs 2X%

Never updates LOB Reads LOBs 0%

If your application requires several BasicFiles LOB updates concurrent with heavy
reads of BasicFiles LOB columns, then consider using a higher value for PCTVERSION,
such as 20%.

Setting PCTVERSION to twice the default value allows more free pages to be used for
old versions of data pages. Because large queries may require consistent reads of
BasicFiles LOB columns, it may be useful to retain old versions of BasicFiles LOB
pages. In this case, BasicFiles LOB storage may grow because the database does not
reuse free pages aggressively.

If persistent BasicFiles LOB instances in your application are created and written just
once and are primarily read-only afterward, then updates are infrequent. In this case,
consider using a lower value for PCTVERSION, such as 5% or lower.

The more infrequent and smaller the BasicFiles LOB updates are, the less space must
be reserved for old copies of BasicFiles LOB data. If existing BasicFiles LOBs are

Chapter 13
LOB Storage Parameters

13-9

known to be read-only, then you could safely set PCTVERSION to 0% because there
would never be any pages needed for old versions of data.

RETENTION Parameter for BasicFiles LOBs
You can specify the RETENTION parameter in the LOB storage clause of the CREATE
TABLE or ALTER TABLE statement as an alternative to the PCTVERSION parameter,.
Doing so, configures the LOB column to store old versions of LOB data for a period of
time, rather than using a percentage of the table space. For example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS BASICFILE segname (TABLESPACE lobtbs1 CHUNK 4096
 RETENTION
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);

The RETENTION parameter is designed for use with UNDO features of the database, such
as Flashback Versions Query. When a LOB column has the RETENTION property set,
old versions of the LOB data are retained for the amount of time specified by the
UNDO_RETENTION parameter.

Note the following with respect to the RETENTION parameter:

• UNDO SQL is not enabled for LOB columns as it is with other data types. You must
set the RETENTION property on a LOB column to use Undo SQL on LOB data.

• You cannot set the value of the RETENTION parameter explicitly. The amount of
time for retention of LOB versions in determined by the UNDO_RETENTION
parameter.

• Usage of the RETENTION parameter is only supported in Automatic Undo
Management mode. You must configure your table for use with Automatic Undo
Management before you can set RETENTION on a LOB column. ASSM is required
for LOB RETENTION to be in effect for BasicFiles LOBs. The RETENTION parameter
of the SQL (in the STORE AS clause) is silently ignored if the BasicFiles LOB resides
in an MSSM tablespace.

• The LOB storage clause can specify RETENTION or PCTVERSION, but not both.

See Also:

– Oracle Database Development Guide for more information on using
flashback features of the database.

– Oracle Database SQL Language Reference for details on LOB
storage clause syntax.

RETENTION Parameter for SecureFiles LOBs
Specifying the RETENTION parameter for SecureFiles indicates that the database
manages consistent read data for the SecureFiles storage dynamically, taking into
account factors such as the UNDO mode of the database.

Chapter 13
LOB Storage Parameters

13-10

• Specify MAX if the database is in FLASHBACK mode to limit the size of the LOB UNDO
retention in bytes. If you specify MAX, then you must also specify the MAXSIZE
clause in the storage_clause.

• Specify AUTO if you want to retain UNDO sufficient for consistent read purposes only.
This is the default.

• Specify NONE if no UNDO is required for either consistent read or flashback
purposes.

The default RETENTION for SecureFiles is AUTO.

CACHE / NOCACHE / CACHE READS
When creating tables that contain LOBs, use the cache options according to the
guidelines in Table 13-3:

Table 13-3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read Write

CACHE READS Frequently Once or occasionally

CACHE Frequently Frequently

NOCACHE (default) Once or occasionally Never

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
• CACHE: LOB pages are placed in the buffer cache for faster access.

• NOCACHE: As a parameter in the STORE AS clause, NOCACHE specifies that LOB
values are not brought into the buffer cache.

• CACHE READS: LOB values are brought into the buffer cache only during read
and not during write operations.

NOCACHE is the default for both SecureFiles and BasicFiles LOBs.

Note:

Using the CACHE option results in improved performance when reading and
writing data from the LOB column. However, it can potentially age other non-
LOB pages out of the buffer cache prematurely.

LOGGING / NOLOGGING Parameter for BasicFiles LOBs
The [NO]LOGGING parameter is applied to using LOBs in the same manner as for other
table operations. In the usual case, if the [NO]LOGGING clause is omitted, then this
means that neither NOLOGGING nor LOGGING is specified and the logging attribute of the
table or table partition defaults to the logging attribute of the tablespace in which it
resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

Chapter 13
LOB Storage Parameters

13-11

• CACHE is specified and [NO]LOGGING clause is omitted. LOGGING is automatically
implemented (because you cannot have CACHE NOLOGGING).

• CACHE is not specified and [NO]LOGGING clause is omitted. The process defaults
in the same way as it does for tables and partitioned tables. That is, the
[NO]LOGGING value is obtained from the tablespace in which the LOB segment
resides.

The following issues should also be kept in mind.

LOBs Always Generate Undo for LOB Index Pages
Regardless of whether LOGGING or NOLOGGING is set, LOBs never generate rollback
information (undo) for LOB data pages because old LOB data is stored in versions.

Rollback information that is created for LOBs tends to be small because it is only for
the LOB index page changes.

When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages
NOLOGGING is intended to be used when a customer does not care about media
recovery.

Thus, if the disk/tape/storage media fails, then you cannot recover your changes from
the log because the changes were never logged.

NOLOGGING is Useful for Bulk Loads or Inserts.
For instance, when loading data into the LOB, if you do not care about redo and can
just start the load over if it fails, set the LOB data segment storage characteristics to
NOCACHE NOLOGGING. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the
LOB storage characteristics for the LOB data segment for normal LOB operations, for
example, to CACHE or NOCACHE LOGGING.

Note:

CACHE implies that you also get LOGGING.

LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
The NOLOGGING and LOGGING parameters are applied to using LOBs in the same
manner as for other table operations.

In the usual case, if the logging_clause is omitted, then the SecureFiles inherits its
logging attribute from the tablespace in which it resides. In this case, if NOLOGGING is
the default value, the SecureFiles defaults to FILESYSTEM_LIKE_LOGGING.

Chapter 13
LOB Storage Parameters

13-12

Note:

Using the CACHE option results in improved performance when reading and
writing data from the LOB column. However, it can potentially age other non-
LOB pages out of the buffer cache prematurely.

CACHE Implies LOGGING
For SecureFiles, there is a further alternative depending on how CACHE is specified:

• If CACHE is specified and the LOGGING clause is omitted, then LOGGING is used.

• If CACHE is not specified and the logging_clause is omitted. Then the process
defaults in the same way as it does for tables and partitioned tables. That is, the
LOGGING value is obtained from the tablespace in which the LOB value resides. If
the tablespace is NOLOGGING, then the SecureFiles defaults to
FILESYSTEM_LIKE_LOGGING.

Keep the following issues in mind.

SecureFiles and an Efficient Method of Generating REDO and UNDO
This means that Oracle Database determines if it is more efficient to generate REDO
and UNDO for the change to a block, similar to heap blocks, or if it generates a version
and full REDO of the new block similar to BasicFiles LOBs.

FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts
For instance, when loading data into the LOB, if you do not care about REDO and can
just start the load over if it fails, set the LOB data segment storage characteristics to
FILESYSTEM_LIKE_LOGGING. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the
LOB storage characteristics for the LOB data segment for normal LOB operations. For
example, to CACHE or NOCACHE LOGGING.

CHUNK
A chunk is one or more Oracle blocks.

You can specify the chunk size for the BasicFiles LOB when creating the table that
contains the LOB. This corresponds to the data size used by Oracle Database when
accessing or modifying the LOB value. Part of the chunk is used to store system-
related information and the rest stores the LOB value. The API you are using has a
function that returns the amount of space used in the LOB chunk to store the LOB
value. In PL/SQL use DBMS_LOB.GETCHUNKSIZE. In OCI, use OCILobGetChunkSize().

Chapter 13
LOB Storage Parameters

13-13

Note:

If the tablespace block size is the same as the database block size, then
CHUNK is also a multiple of the database block size. The default CHUNK size is
equal to the size of one tablespace block, and the maximum value is 32K.

See Also:

"Terabyte-Size LOB Support" for information about maximum LOB sizes

The Value of CHUNK
Once the value of CHUNK is chosen (when the LOB column is created), it cannot be
changed.

Because you cannot change the value CHUNK, it is important that you choose a value
which optimizes your storage and performance requirements. For SecureFiles, CHUNK
is an advisory size and is provided for backward compatibility purposes.

Space Considerations
The value of CHUNK does not matter for LOBs that are stored inline.

Inline storage occurs when ENABLE STORAGE IN ROW is set, and the size of the LOB
locator and the LOB data is less than approximately 4000 bytes. However, when the
LOB data is stored out-of-line, it always takes up space in multiples of the CHUNK
parameter. This can lead to a large waste of space if your data is small, but the CHUNK
is set to a large number. Table 13-4 illustrates this point:

Table 13-4 Data Size and CHUNK Size

Data Size CHUNK Size Disk Space Used to Store the LOB Space Utilization
(Percent)

3500 enable storage in row irrelevant 3500 in row 100

3500 disable storage in row 32 KB 32 KB 10

3500 disable storage in row 4 KB 4 KB 90

33 KB 32 KB 64 KB 51

2 GB +10 32 KB 2 GB + 32 KB 99+

Performance Considerations
It is more efficient to access LOBs in big chunks.

You can set CHUNK to the data size most frequently accessed or written. For example, if
only one block of LOB data is accessed at a time, then set CHUNK to the size of one
block. If you have big LOBs, and read or write big amounts of data, then choose a
large value for CHUNK.

Chapter 13
LOB Storage Parameters

13-14

Set INITIAL and NEXT to Larger than CHUNK
If you explicitly specify storage characteristics for the LOB, then make sure that
INITIAL and NEXT for the LOB data segment storage are set to a size that is larger
than the CHUNK size.

For example, if the database block size is 2KB and you specify a CHUNK of 8KB, then
make sure that INITIAL and NEXT are bigger than 8KB and preferably considerably
bigger (for example, at least 16KB).

Put another way: If you specify a value for INITIAL, NEXT, or the LOB CHUNK size, then
make sure they are set in the following manner:

• CHUNK <= NEXT

• CHUNK <= INITIAL

ENABLE or DISABLE STORAGE IN ROW Clause
The ENABLE | DISABLE STORAGE IN ROW clause is used to indicate whether the LOB
should be stored inline (in the row) or out-of-line. If the LOB is saved IN ROW,

• Exadata pushdown is enabled for LOBs without compression and encryption, and
LOBs with securefile compression

• In-Memory is enabled for LOBs without compression and encryption

Note:

You may not alter this specification once you have made it: if you ENABLE
STORAGE IN ROW, then you cannot alter it to DISABLE STORAGE IN ROW and
vice versa.

The default is ENABLE STORAGE IN ROW.

Guidelines for ENABLE or DISABLE STORAGE IN ROW
The maximum amount of LOB data stored in the row is the maximum VARCHAR2 size
(4000). This includes the control information and the LOB value. If you indicate that the
LOB should be stored in the row, once the LOB value and control information is larger
than approximately 4000, then the LOB value is automatically moved out of the row.

This suggests the following guidelines:

The default, ENABLE STORAGE IN ROW, is usually the best choice for the following
reasons:

• Small LOBs: If the LOB is small (less than approximately 4000 bytes), then the
whole LOB can be read while reading the row without extra disk I/O.

• Large LOBs: If the LOB is big (greater than approximately 4000 bytes), then the
control information is still stored in the row if ENABLE STORAGE IN ROW is set,
even after moving the LOB data out of the row. This control information could
enable us to read the out-of-line LOB data faster.

Chapter 13
LOB Storage Parameters

13-15

However, in some cases DISABLE STORAGE IN ROW is a better choice. This is because
storing the LOB in the row increases the size of the row. This impacts performance if
you are doing a lot of base table processing, such as full table scans, multi-row
accesses (range scans), or many UPDATE/SELECT to columns other than the LOB
columns.

LOB Columns Indexing
There are different techniques you can use to index LOB columns.

Note:

After you move a LOB column any existing table indexes must be rebuilt.

Topics:

• Domain Indexing on LOB Columns

• Text Indexes on LOB Columns

• Function-Based Indexes on LOBs

• Extensible Indexing on LOB Columns

• Oracle Text Indexing Support for XML

Domain Indexing on LOB Columns
You might be able to improve the performance of queries by building indexes
specifically attuned to your domain. Extensibility interfaces provided with the database
allow for domain indexing, a framework for implementing such domain specific
indexes.

Note:

You cannot build a B-tree or bitmap index on a LOB column.

See Also:

Oracle Database Data Cartridge Developer's Guide for information on
building domain specific indexes.

Text Indexes on LOB Columns
Depending on the nature of the contents of the LOB column, one of the Oracle Text
options could also be used for building indexes.

Chapter 13
LOB Columns Indexing

13-16

For example, if a text document is stored in a CLOB column, then you can build a text
index to speed up the performance of text-based queries over the CLOB column.

See Also:

Oracle Text Application Developer's Guide for an example of using a CLOB
column to store text data

Function-Based Indexes on LOBs
A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Function-based indexes cannot be built on nested tables or LOB columns. However,
you can build function-based indexes on VARRAYs.

Like extensible indexes and domain indexes on LOB columns, function-based indexes
are also automatically updated when a DML operation is performed on the LOB
column. Function-based indexes are also updated when any extensible index is
updated.

See Also:

Oracle Database Development Guide for more information on using function-
based indexes.

Extensible Indexing on LOB Columns
The database provides extensible indexing, a feature which enables you to define new
index types as required. This is based on the concept of cooperative indexing where a
data cartridge and the database build and maintain indexes for data types such as text
and spatial for example, for On-line-Analytical Processing (OLAP).

The cartridge is responsible for defining the index structure, maintaining the index
content during load and update operations, and searching the index during query
processing. The index structure can be stored in Oracle as heap-organized, or an
index-organized table, or externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an
indextype is to enable efficient search and retrieval functions for complex domains
such as text, spatial, image, and OLAP by means of a data cartridge. An indextype is
analogous to the sorted or bit-mapped index types that are built-in within the Oracle
Server. The difference is that an indextype is implemented by the data cartridge
developer, whereas the Oracle kernel implements built-in indexes. Once a new
indextype has been implemented by a data cartridge developer, end users of the data
cartridge can use it just as they would built-in indextypes.

When the database system handles the physical storage of domain indexes, data
cartridges

Chapter 13
LOB Columns Indexing

13-17

• Define the format and content of an index. This enables cartridges to define an
index structure that can accommodate a complex data object.

• Build, delete, and update a domain index. The cartridge handles building and
maintaining the index structures. Note that this is a significant departure from the
medicine indexing features provided for simple SQL data types. Also, because an
index is modeled as a collection of tuples, in-place updating is directly supported.

• Access and interpret the content of an index. This capability enables the data
cartridge to become an integral component of query processing. That is, the
content-related clauses for database queries are handled by the data cartridge.

By supporting extensible indexes, the database significantly reduces the effort needed
to develop high-performance solutions that access complex data types such as LOBs.

Extensible Optimizer
The extensible optimizer functionality allows authors of user-defined functions and
indexes to create statistics collections, selectivity, and cost functions. This information
is used by the optimizer in choosing a query plan. The cost-based optimizer is thus
extended to use the user-supplied information.

Extensible indexing functionality enables you to define new operators, index types,
and domain indexes. For such user-defined operators and domain indexes, the
extensible optimizer functionality allows users to control the three main components
used by the optimizer to select an execution plan: statistics, selectivity, and cost.

See Also:

Oracle Database Data Cartridge Developer's Guide

Oracle Text Indexing Support for XML
You can create Oracle Text indexes on CLOB columns and perform queries on XML
data.

See Also:

• Oracle XML Developer's Kit Programmer's Guide

• Oracle Text Reference

• Oracle Text Application Developer's Guide

LOB Manipulation in Partitioned Tables
You can partition tables that contain LOB columns.

Topics:

• About Manipulating LOBs in Partitioned Tables

Chapter 13
LOB Manipulation in Partitioned Tables

13-18

• Partitioning a Table Containing LOB Columns

• Creating an Index on a Table Containing Partitioned LOB Columns

• Moving Partitions Containing LOBs

• Splitting Partitions Containing LOBs

• Merging Partitions Containing LOBs

About Manipulating LOBs in Partitioned Tables
As a result, LOBs can take advantage of all of the benefits of partitioning including the
following:

• LOB segments can be spread between several tablespaces to balance I/O load
and to make backup and recovery more manageable.

• LOBs in a partitioned table become easier to maintain.

• LOBs can be partitioned into logical groups to speed up operations on LOBs that
are accessed as a group.

This section describes some of the ways you can manipulate LOBs in partitioned
tables.

Partitioning a Table Containing LOB Columns
LOBs are supported in RANGE partitioned, LIST partitioned, and HASH partitioned
tables. Composite heap-organized tables can also have LOBs.

You can partition a table containing LOB columns using the following techniques:

• When the table is created using the PARTITION BY ... clause of the CREATE
TABLE statement.

• Adding a partition to an existing table using the ALTER TABLE ... ADD PARTITION
clause.

• Exchanging partitions with a table that has partitioned LOB columns using the
ALTER TABLE ... EXCHANGE PARTITION clause. Note that EXCHANGE PARTITION
can only be used when both tables have the same storage attributes, for example,
both tables store LOBs out-of-line.

Creating LOB partitions at the same time you create the table (in the CREATE TABLE
statement) is recommended. If you create partitions on a LOB column when the table
is created, then the column can hold LOBs stored either inline or out-of-line LOBs.

After a table is created, new LOB partitions can only be created on LOB columns that
are stored out-of-line. Also, partition maintenance operations, SPLIT PARTITION and
MERGE PARTITIONS, only work on LOB columns that store LOBs out-of-line.

Note:

Once a table is created, storage attributes cannot be changed

Chapter 13
LOB Manipulation in Partitioned Tables

13-19

See Also:

• LOB Storage Parameters for more information about LOB storage
attributes

• Restrictions for LOBs in Partitioned Index-Organized Tables for
additional information on LOB restrictions

Creating an Index on a Table Containing Partitioned LOB Columns
To improve the performance of queries, you can create indexes on partitioned LOB
columns. For example:

CREATE INDEX index_name
 ON table_name (LOB_column_1, LOB_column_2, ...) LOCAL;

Note that only domain and function-based indexes are supported on LOB columns.
Other types of indexes, such as unique indexes are not supported with LOBs.

Moving Partitions Containing LOBs
You can move a LOB partition into a different tablespace. This is useful if the
tablespace is no longer large enough to hold the partition. To do so, use the ALTER
TABLE ... MOVE PARTITION clause. For example:

ALTER TABLE current_table MOVE PARTITION partition_name
 TABLESPACE destination_table_space
 LOB (column_name) STORE AS (TABLESPACE current_tablespace);

Splitting Partitions Containing LOBs
You can split a partition containing LOBs into two equally sized partitions using the
ALTER TABLE ... SPLIT PARTITION clause. Doing so permits you to place one or both
new partitions in a new tablespace. For example:

ALTER TABLE table_name SPLIT PARTITION partition_name
 AT (partition_range_upper_bound)
 INTO (PARTITION partition_name,
 PARTITION new_partition_name TABLESPACE new_tablespace_name
 LOB (column_name) STORE AS (TABLESPACE tablespace_name)
 ... ;

Merging Partitions Containing LOBs
You can merge partitions that contain LOB columns using the ALTER TABLE ... MERGE
PARTITIONS clause.

This technique is useful for reclaiming unused partition space. For example:

ALTER TABLE table_name
 MERGE PARTITIONS partition_1, partition_2
 INTO PARTITION new_partition TABLESPACE new_tablespace_name
 LOB (column_name) store as (TABLESPACE tablespace_name)
 ... ;

Chapter 13
LOB Manipulation in Partitioned Tables

13-20

LOBs in Index Organized Tables
Index Organized Tables (IOTs) support internal and external LOB columns. For the
most part, SQL DDL, DML, and piece wise operations on LOBs in IOTs produce the
same results as those for normal tables. The only exception is the default semantics of
LOBs during creation. The main differences are:

• Tablespace Mapping: By default, or unless specified otherwise, the LOB data
and index segments are created in the tablespace in which the primary key index
segments of the index organized table are created.

• Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index
organized table created without an overflow segment are stored out of line. In
other words, if an index organized table is created without an overflow segment,
then the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN ROW. If you forcibly try to specify an ENABLE STORAGE IN ROW clause for
such LOBs, then SQL raises an error.

On the other hand, if an overflow segment has been specified, then LOBs in index
organized tables exactly mimic their semantics in conventional tables.

See Also:

Defining Tablespace and Storage Characteristics for Persistent LOBs

Example of Index Organized Table (IOT) with LOB Columns

Consider the following example:

CREATE TABLE iotlob_tab (c1 INTEGER PRIMARY KEY, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
 ORGANIZATION INDEX
 TABLESPACE iot_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
 PCTTHRESHOLD 50 INCLUDING c2
 OVERFLOW
 TABLESPACE ioto_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
 STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
 CHUNK 16384 PCTVERSION 10 CACHE STORAGE (INITIAL 2M)
 INDEX lobidx_c1 (TABLESPACE lobidx_ts STORAGE (INITIAL 4K)));

Executing these statements results in the creation of an index organized table
iotlob_tab with the following elements:

• A primary key index segment in the tablespace iot_ts,

• An overflow data segment in tablespace ioto_ts

• Columns starting from column C3 being explicitly stored in the overflow data
segment

• BLOB (column C2) data segments in the tablespace lob_ts

• BLOB (column C2) index segments in the tablespace lobidx_ts

Chapter 13
LOBs in Index Organized Tables

13-21

• CLOB (column C3) data segments in the tablespace iot_ts

• CLOB (column C3) index segments in the tablespace iot_ts

• CLOB (column C3) stored in line by virtue of the IOT having an overflow segment

• BLOB (column C2) explicitly forced to be stored out of line

Note:

If no overflow had been specified, then both C2 and C3 would have been
stored out of line by default.

Other LOB features, such as BFILEs and varying character width LOBs, are also
supported in index organized tables, and their usage is the same as for conventional
tables.

Restrictions for LOBs in Partitioned Index-Organized Tables
LOB columns are supported in range-, list-, and hash-partitioned index-organized
tables with the following restrictions:

• Composite partitioned index-organized tables are not supported.

• Relational and object partitioned index-organized tables (partitioned by range,
hash, or list) can hold LOBs stored as follows; however, partition maintenance
operations, such as MOVE, SPLIT, and MERGE are not supported with:

– VARRAY data types stored as LOB data types

– Abstract data types with LOB attributes

– Nested tables with LOB types

See Also:

Additional restrictions for LOB columns in general are given in "LOB
Rules and Restrictions".

Updating LOBs in Nested Tables
To update LOBs in a nested table, you must lock the row containing the LOB explicitly.
To do so, you must specify the FOR UPDATE clause in the subquery prior to updating
the LOB value.

Note that locking the row of a parent table does not lock the row of a nested table
containing LOB columns.

Chapter 13
Restrictions for LOBs in Partitioned Index-Organized Tables

13-22

Note:

Nested tables containing LOB columns are the only data structures
supported for creating collections of LOBs. You cannot create a VARRAY of
any LOB data type.

Chapter 13
Updating LOBs in Nested Tables

13-23

14
Advanced Design Considerations

There are design considerations for more advanced application development issues.

Topicss:

• Opening Persistent LOBs with the OPEN and CLOSE Interfaces

• Read-Consistent Locators

• LOB Locators and Transaction Boundaries

• LOBs in the Object Cache

• Terabyte-Size LOB Support

• Guidelines for Creating Gigabyte LOBs

Opening Persistent LOBs with the OPEN and CLOSE
Interfaces

The OPEN and CLOSE interfaces enable you to explicitly open a persistent LOB
instance.

When you open a LOB instance with the OPEN interface, the instance remains open
until you explicitly close the LOB using the CLOSE interface. The ISOPEN interface
enables you to determine whether a persistent LOB is open.

Note that the open state of a LOB is associated with the LOB instance, not the LOB
locator. The locator does not save any information indicating whether the LOB
instance that it points to is open.

See Also:

"LOB Open and Close Operations0.".

Topics:

• Index Performance Benefits of Explicitly Opening a LOB

• Closing Explicitly Open LOB Instances

Index Performance Benefits of Explicitly Opening a LOB
Explicitly opening a LOB instance can benefit performance of a persistent LOB in an
indexed column.

If you do not explicitly open the LOB instance, then every modification to the LOB
implicitly opens and closes the LOB instance. Any triggers on a domain index are fired

14-1

each time the LOB is closed. Note that in this case, any domain indexes on the LOB
are updated as soon as any modification to the LOB instance is made; the domain
index is always valid and can be used at any time.

When you explicitly open a LOB instance, index triggers do not fire until you explicitly
close the LOB. Using this technique can increase performance on index columns by
eliminating unneeded indexing events until you explicitly close the LOB. Note that any
index on the LOB column is not valid until you explicitly close the LOB.

Closing Explicitly Open LOB Instances
If you explicitly open a LOB instance, then you must close the LOB before you commit
the transaction.

Committing a transaction on the open LOB instance causes an error. When this error
occurs, the LOB instance is closed implicitly, any modifications to the LOB instance
are saved, and the transaction is committed, but any indexes on the LOB column are
not updated. In this situation, you must rebuild your indexes on the LOB column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

You must close any LOB instance that you explicitly open:

• Between DML statements that start a transaction, including SELECT ... FOR UPDATE
and COMMIT

• Within an autonomous transaction block

• Before the end of a session (when there is no transaction involved)

If you do not explicitly close the LOB instance, then it is implicitly closed at the end
of the session and no index triggers are fired.

Keep track of the open or closed state of LOBs that you explicitly open. The following
actions cause an error:

• Explicitly opening a LOB instance that has been explicitly open earlier.

• Explicitly closing a LOB instance that is has been explicitly closed earlier.

This occurs whether you access the LOB instance using the same locator or different
locators.

Read-Consistent Locators
Oracle Database provides the same read consistency mechanisms for LOBs as for all
other database reads and updates of scalar quantities.

Read consistency has some special applications to LOB locators that you must
understand. The following sections discuss read consistency and include examples
which should be looked at in relationship to each other.

Chapter 14
Read-Consistent Locators

14-2

See Also:

• Oracle Database Concepts for general information about read
consistency

• Table for LOB Examples: The PM Schema print_media Table

Topics:

• A Selected Locator Becomes a Read-Consistent Locator

• Example of Updating LOBs and Read-Consistency

• Example of Updating LOBs Through Updated Locators

• Example of Updating a LOB Using SQL DML and DBMS_LOB

• Example of Using One Locator to Update the Same LOB Value

• Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

A Selected Locator Becomes a Read-Consistent Locator
A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a
read-consistent locator, and remains a read-consistent locator until the LOB value is
updated through that locator.

A read-consistent locator contains the snapshot environment as of the point in time of
the SELECT operation.

This has some complex implications. Suppose you have created a read-consistent
locator (L1) by way of a SELECT operation. In reading the value of the persistent LOB
through L1, note the following:

• The LOB is read as of the point in time of the SELECT statement even if the SELECT
statement includes a FOR UPDATE.

• If the LOB value is updated through a different locator (L2) in the same
transaction, then L1 does not see the L2 updates.

• L1 does not see committed updates made to the LOB through another transaction.

• If the read-consistent locator L1 is copied to another locator L2 (for example, by a
PL/SQL assignment of two locator variables — L2:= L1), then L2 becomes a read-
consistent locator along with L1 and any data read is read as of the point in time of
the SELECT for L1.

You can use the existence of multiple locators to access different transformations of
the LOB value. However, in doing so, you must keep track of the different values
accessed by different locators.

Example of Updating LOBs and Read-Consistency
Read-consistent locators provide the same LOB value regardless of when the SELECT
occurs.

The following example demonstrates the relationship between read-consistency and
updating in a simple example. Using the print_media table described in "Table for

Chapter 14
Read-Consistent Locators

14-3

LOB Examples: The PM Schema print_media Table" and PL/SQL, three CLOB
instances are created as potential locators: clob_selected, clob_update, and
clob_copied.

Observe these progressions in the code, from times t1 through t6:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_selected.

• In the second operation (at t2), the value in ad_sourcetext is associated with the
locator clob_updated. Because there has been no change in the value of
ad_sourcetext between t1 and t2, both clob_selected and clob_updated are
read-consistent locators that effectively have the same value even though they
reflect snapshots taken at different moments in time.

• The third operation (at t3) copies the value in clob_selected to clob_copied. At
this juncture, all three locators see the same value. The example demonstrates
this with a series of DBMS_LOB.READ() calls.

• At time t4, the program uses DBMS_LOB.WRITE() to alter the value in clob_updated,
and a DBMS_LOB.READ() reveals a new value.

• However, a DBMS_LOB.READ() of the value through clob_selected (at t5) reveals
that it is a read-consistent locator, continuing to refer to the same value as of the
time of its SELECT.

• Likewise, a DBMS_LOB.READ() of the value through clob_copied (at t6) reveals that
it is a read-consistent locator, continuing to refer to the same value as
clob_selected.

Example 14-1

INSERT INTO PRINT_MEDIA VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM Print_media
 WHERE ad_id = 20020;

 -- At time t2:
 SELECT ad_sourcetext INTO clob_updated
 FROM Print_media
 WHERE ad_id = 20020
 FOR UPDATE;

 -- At time t3:

Chapter 14
Read-Consistent Locators

14-4

 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selected have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied does
 -- return the same LOB value. clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t6:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Example of Updating LOBs Through Updated Locators
When you update the value of the persistent LOB through the LOB locator (L1), L1 is
updated to contain the current snapshot environment.

This snapshot is as of the time after the operation was completed on the LOB value
through locator L1. L1 is then termed an updated locator. This operation enables you
to see your own changes to the LOB value on the next read through the same locator,
L1.

Chapter 14
Read-Consistent Locators

14-5

Note:

The snapshot environment in the locator is not updated if the locator is used
to merely read the LOB value. It is only updated when you modify the LOB
value through the locator using the PL/SQL DBMS_LOB package or the OCI
LOB APIs.

Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB value
after the other transaction committed.

Note:

When you update a persistent LOB value, the modification is always made to
the most current LOB value.

Updating the value of the persistent LOB through any of the available methods, such
as OCI LOB APIs or PL/SQL DBMS_LOB package, updates the LOB value and then
reselects the locator that refers to the new LOB value.

Note:

Once you have selected out a LOB locator by whatever means, you can read
from the locator but not write into it.

Note that updating the LOB value through SQL is merely an UPDATE
statement. It is up to you to do the reselect of the LOB locator or use the
RETURNING clause in the UPDATE statement so that the locator can see the
changes made by the UPDATE statement. Unless you reselect the LOB locator
or use the RETURNING clause, you may think you are reading the latest value
when this is not the case. For this reason you should avoid mixing SQL DML
with OCI and DBMS_LOB piecewise operations.

See Also:

Oracle Database PL/SQL Language Reference

Example of Updating a LOB Using SQL DML and DBMS_LOB
Using the Print_media table in the following example, a CLOB locator is created as
clob_selected. Note the following progressions in the example, from times t1 through
t3:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_selected.

Chapter 14
Read-Consistent Locators

14-6

• In the second operation (at t2), the value in ad_sourcetext is modified through the
SQL UPDATE statement, without affecting the clob_selected locator. The locator still
sees the value of the LOB as of the point in time of the original SELECT. In other
words, the locator does not see the update made using the SQL UPDATE
statement. This is illustrated by the subsequent DBMS_LOB.READ() call.

• The third operation (at t3) re-selects the LOB value into the locator
clob_selected. The locator is thus updated with the latest snapshot environment
which allows the locator to see the change made by the previous SQL UPDATE
statement. Therefore, in the next DBMS_LOB.READ(), an error is returned because
the LOB value is empty, that is, it does not contain any data.

INSERT INTO Print_media VALUES (3247, 20010, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT ad_sourcetext INTO clob_selected
 FROM Print_media
 WHERE ad_id = 20010;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 UPDATE Print_media SET ad_sourcetext = empty_clob()
 WHERE ad_id = 20010;
 -- although the most current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT ad_sourcetext INTO clob_selected FROM Print_media WHERE
 ad_id = 20010;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 -- ERROR: ORA-01403: no data found
END;
/

Chapter 14
Read-Consistent Locators

14-7

Example of Using One Locator to Update the Same LOB Value

Note:

Avoid updating the same LOB with different locators. You may avoid many
pitfalls if you use only one locator to update a given LOB value.

In the following example, using table Print_media, two CLOBs are created as potential
locators: clob_updated and clob_copied.

Note these progressions in the example at times t1 through t5:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_updated.

• The second operation (at time t2) copies the value in clob_updated to
clob_copied. At this time, both locators see the same value. The example
demonstrates this with a series of DBMS_LOB.READ() calls.

• At time t3, the program uses DBMS_LOB.WRITE() to alter the value in clob_updated,
and a DBMS_LOB.READ() reveals a new value.

• However, a DBMS_LOB.READ() of the value through clob_copied (at time t4)
reveals that it still sees the value of the LOB as of the point in time of the
assignment from clob_updated (at t2).

• It is not until clob_updated is assigned to clob_copied (t5) that clob_copied sees
the modification made by clob_updated.

INSERT INTO PRINT_MEDIA VALUES (2049, 20030, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:
 SELECT ad_sourcetext INTO clob_updated FROM PRINT_MEDIA
 WHERE ad_id = 20030
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;

Chapter 14
Read-Consistent Locators

14-8

 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'
END;
/

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind
Variable

When a LOB locator is used as the source to update another persistent LOB (as in a
SQL INSERT or UPDATE statement, the DBMS_LOB.COPY routine, and so on), the snapshot
environment in the source LOB locator determines the LOB value that is used as the
source.

If the source locator (for example L1) is a read-consistent locator, then the LOB value
as of the time of the SELECT of L1 is used. If the source locator (for example L2) is an
updated locator, then the LOB value associated with the L2 snapshot environment at
the time of the operation is used.

In the following example, three CLOBs are created as potential locators:
clob_selected, clob_updated, and clob_copied.

Note these progressions in the example at times t1 through t5:

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_updated.

Chapter 14
Read-Consistent Locators

14-9

• The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value.

• Then (at t3), the program uses DBMS_LOB.WRITE() to alter the value in
clob_updated, and a DBMS_LOB.READ() reveals a new value.

• However, a DBMS_LOB.READ() of the value through clob_copied (at t4) reveals that
clob_copied does not see the change made by clob_updated.

• Therefore (at t5), when clob_copied is used as the source for the value of the
INSERT statement, the value associated with clob_copied (for example, without
the new changes made by clob_updated) is inserted. This is demonstrated by the
subsequent DBMS_LOB.READ() of the value just inserted.

INSERT INTO PRINT_MEDIA VALUES (2056, 20020, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

 -- At time t1:
 SELECT ad_sourcetext INTO clob_updated FROM PRINT_MEDIA
 WHERE ad_id = 20020
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied does not see the write made before
 -- clob_updated

 -- At time t4:

Chapter 14
Read-Consistent Locators

14-10

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO PRINT_MEDIA VALUES (2056, 20022, EMPTY_BLOB(),
 clob_copied, EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL)
 RETURNING ad_sourcetext INTO clob_selected;

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

LOB Locators and Transaction Boundaries
LOB locators can be used in transactions and transaction IDs.

See Also:

LOB Locators and BFILE Locators for more information about LOB locators

Topics:

• About LOB Locators and Transaction Boundaries

• Read and Write Operations on a LOB Using Locators

• Selecting the Locator Outside of the Transaction Boundary

• Selecting the Locator Within a Transaction Boundary

• LOB Locators Cannot Span Transactions

• Example of Locator Not Spanning a Transaction

About LOB Locators and Transaction Boundaries
Note the following regarding LOB locators and transactions:

• Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator: If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note
that you can implicitly be in a transaction without explicitly beginning one. For
example, SELECT... FOR UPDATE implicitly begins a transaction. In such a case, the
locator contains a transaction ID.

• Locators Do Not Contain Transaction IDs When...

– You are Outside the Transaction, Then Select Locator: By contrast, if you
select a locator outside of a transaction, then the locator does not contain a
transaction ID.

Chapter 14
LOB Locators and Transaction Boundaries

14-11

– When Selected Prior to DML Statement Execution: A transaction ID is not
assigned until the first DML statement executes. Therefore, locators that are
selected prior to such a DML statement do not contain a transaction ID.

Read and Write Operations on a LOB Using Locators
You can always read LOB data using the locator irrespective of whether or not the
locator contains a transaction ID.

• Cannot Write Using Locator:

If the locator contains a transaction ID, then you cannot write to the LOB outside of
that particular transaction.

• Can Write Using Locator:

If the locator does not contain a transaction ID, then you can write to the LOB after
beginning a transaction either explicitly or implicitly.

• Cannot Read or Write Using Locator With Serializable Transactions:

If the locator contains a transaction ID of an older transaction, and the current
transaction is serializable, then you cannot read or write using that locator.

• Can Read, Not Write Using Locator With Non-Serializable Transactions:

If the transaction is non-serializable, then you can read, but not write outside of
that transaction.

The examples Selecting the Locator Outside of the Transaction Boundary, Selecting
the Locator Within a Transaction Boundary, LOB Locators Cannot Span Transactions,
and Example of Locator Not Spanning a Transaction show the relationship between
locators and non-serializable transactions

Selecting the Locator Outside of the Transaction Boundary
Two scenarios describe techniques for using locators in non-serializable transactions
when the locator is selected outside of a transaction.

First Scenario:

1. Select the locator with no current transaction. At this point, the locator does not
contain a transaction id.

2. Begin the transaction.

3. Use the locator to read data from the LOB.

4. Commit or rollback the transaction.

5. Use the locator to read data from the LOB.

6. Begin a transaction. The locator does not contain a transaction id.

7. Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id.

Second Scenario:

1. Select the locator with no current transaction. At this point, the locator does not
contain a transaction id.

Chapter 14
LOB Locators and Transaction Boundaries

14-12

2. Begin the transaction. The locator does not contain a transaction id.

3. Use the locator to read data from the LOB. The locator does not contain a
transaction id.

4. Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id. You can continue to read from or write to the LOB.

5. Commit or rollback the transaction. The locator continues to contain the
transaction id.

6. Use the locator to read data from the LOB. This is a valid operation.

7. Begin a transaction. The locator contains the previous transaction id.

8. Use the locator to write data to the LOB. This write operation fails because the
locator does not contain the transaction id that matches the current transaction.

Selecting the Locator Within a Transaction Boundary
Two scenarios describe techniques for using locators in non-serializable transactions
when the locator is selected within a transaction.

First Scenario:

1. Select the locator within a transaction. At this point, the locator contains the
transaction id.

2. Begin the transaction. The locator contains the previous transaction id.

3. Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

See Also:

"Read-Consistent Locators" for more information about using the locator
to read LOB data.

4. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator does not match the current transaction.

Second Scenario:

1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was selected
within a transaction.

3. Use the locator to read from or write to the LOB. These operations are valid.

4. Commit or rollback the transaction. The locator continues to contain the
transaction id.

5. Use the locator to read data from the LOB. This operation is valid even though
there is a transaction id in the locator and the transaction was previously
committed or rolled back.

Chapter 14
LOB Locators and Transaction Boundaries

14-13

6. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator is for a transaction that was previously committed or
rolled back.

LOB Locators Cannot Span Transactions
Modifying a persistent LOB value through the LOB locator using DBMS_LOB, OCI, or
SQL INSERT or UPDATE statements changes the locator from a read-consistent locator
to an updated locator.

The INSERT or UPDATE statement automatically starts a transaction and locks the row.
Once this has occurred, the locator cannot be used outside the current transaction to
modify the LOB value. In other words, LOB locators that are used to write data cannot
span transactions. However, the locator can be used to read the LOB value unless you
are in a serializable transaction.

See Also:

"LOB Locators and Transaction Boundaries ", for more information about the
relationship between LOBs and transaction boundaries.

In Example of Locator Not Spanning a Transaction , a CLOB locator is created:
clob_updated

• At the time of the first SELECT INTO (at t1), the value in ad_sourcetext is
associated with the locator clob_updated.

• The second operation (at t2), uses the DBMS_LOB.WRITE function to alter the value
in clob_updated, and a DBMS_LOB.READ reveals a new value.

• The commit statement (at t3) ends the current transaction.

• Therefore (at t4), the subsequent DBMS_LOB.WRITE operation fails because the
clob_updated locator refers to a different (already committed) transaction. This is
noted by the error returned. You must re-select the LOB locator before using it in
further DBMS_LOB (and OCI) modify operations.

Example of Locator Not Spanning a Transaction
The example uses the print_media table described in "Table for LOB Examples: The
PM Schema print_media Table"

INSERT INTO PRINT_MEDIA VALUES (2056, 20010, EMPTY_BLOB(),
 'abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

Chapter 14
LOB Locators and Transaction Boundaries

14-14

BEGIN
 -- At time t1:
 SELECT ad_sourcetext
 INTO clob_updated
 FROM PRINT_MEDIA
 WHERE ad_id = 20010
 FOR UPDATE;
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset, buffer);
 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 dbms_lob.write(clob_updated , write_amount, write_offset, buffer);
 -- ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

LOBs in the Object Cache
When you copy one object to another in the object cache with a LOB locator attribute,
only the LOB locator is copied.

This means that the LOB attribute in these two different objects contain exactly the
same locator which refers to one and the same LOB value. Only when the target
object is flushed is a separate, physical copy of the LOB value made, which is distinct
from the source LOB value.

See Also:

"Example of Updating LOBs and Read-Consistency" for a description of what
version of the LOB value is seen by each object if a write is performed
through one of the locators.

Therefore, in cases where you want to modify the LOB that was the target of the copy,
you must flush the target object, refresh the target object, and then write to the
LOB through the locator attribute.

Consider these object cache issues for internal and external LOB attributes:

Chapter 14
LOBs in the Object Cache

14-15

• Persistent LOB attributes: Creating an object in object cache, sets the LOB
attribute to empty.

When you create an object in the object cache that contains a persistent LOB
attribute, the LOB attribute is implicitly set to empty. You may not use this empty
LOB locator to write data to the LOB. You must first flush the object, thereby
inserting a row into the table and creating an empty LOB — that is, a LOB with 0
length. Once the object is refreshed in the object cache (use OCI_PIN_LATEST), the
real LOB locator is read into the attribute, and you can then call the OCI LOB API
to write data to the LOB.

• External LOB (BFILE) attributes: Creating an object in object cache, sets the BFILE
attribute to NULL.

When creating an object with an external LOB (BFILE) attribute, the BFILE is set to
NULL. It must be updated with a valid directory object name and file name before
reading from the BFILE.

Terabyte-Size LOB Support
Terabyte-size LOBs are LOBs that are up to a maximum size of 8 to 128 terabytes
depending on database block size.

Topics:

• About Terabyte-Size LOB Support

• Maximum Storage Limit for Terabyte-Size LOBs

• Using Terabyte-Size LOBs with JDBC

• Using Terabyte-Size LOBs with the DBMS_LOB Package

• Using Terabyte-Size LOBs with OCI

About Terabyte-Size LOB Support
Terabyte-size LOBs are supported by the following APIs:

• Java using JDBC (Java Database Connectivity)

• PL/SQL using the DBMS_LOB Package

• C using OCI (Oracle Call Interface)

You cannot create and use LOB instances of size greater than 4 gigabytes "terabyte-
size LOBs"— in the following programmatic environments:

• COBOL using the Pro*COBOL Precompiler

• C or C++ using the Pro*C/C++ Precompiler

Note:

Oracle Database does not support BFILEs larger than 2^64-1 bytes
(UB8MAXVAL in OCI) in any programmatic environment. Any additional file size
limit imposed by your operating system also applies to BFILEs.

Chapter 14
Terabyte-Size LOB Support

14-16

Maximum Storage Limit for Terabyte-Size LOBs
In supported environments, you can create and manipulate LOBs that are up to the
maximum storage size limit for your database configuration.

Oracle Database lets you create tablespaces with block sizes different from the
database block size, and the maximum size of a LOB depends on the size of the
tablespace blocks. CHUNK is a parameter of LOB storage whose value is controlled by
the block size of the tablespace in which the LOB is stored.

Note:

The CHUNK parameter does not apply to SecureFiles. It is only used for
BasicFiles LOBs.

When you create a LOB column, you can specify a value for CHUNK, which is the
number of bytes to be allocated for LOB manipulation. The value must be a multiple of
the tablespace block size, or Oracle Database rounds up to the next multiple. (If the
tablespace block size is the same as the database block size, then CHUNK is also a
multiple of the database block size.)

The maximum allowable storage limit for your configuration depends on the
tablespace block size setting, and is calculated as (4 gigabytes - 1) times the value
obtained from DBMS_LOB.GETCHUNKSIZE or OCILobGetChunkSize(). This value, in
number of bytes for BLOBs or number of characters for CLOBs, is actually less than the
size of the CHUNK parameter due to internal storage overhead. With the current
allowable range for the tablespace block size from 2K to 32K, the storage limit ranges
from 8 terabytes to 128 terabytes.

For example, suppose your database block size is 32K bytes and you create a
tablespace with a nonstandard block size of 8K. Further suppose that you create a
table with a LOB column and specify a CHUNK size of 16K (which is a multiple of the
8K tablespace block size). Then the maximum size of a LOB in this column is (4
gigabytes - 1) * 16K.

See Also:

• Oracle Database Administrator's Guide for details on the initialization
parameter setting for your database installation

• "CHUNK"

This storage limit applies to all LOB types in environments that support terabyte-size
LOBs. However, note that CLOB and NCLOB types are sized in characters, while the
BLOB type is sized in bytes.

Chapter 14
Terabyte-Size LOB Support

14-17

Using Terabyte-Size LOBs with JDBC
You can use the LOB APIs included in the Oracle JDBC classes to access terabyte-
size LOBs.

See Also:

"Using Java (JDBC) to Work With LOBs"

Using Terabyte-Size LOBs with the DBMS_LOB Package
You can access terabyte-size LOBs with all APIs in the DBMS_LOB PL/SQL package.

Use DBMS_LOB.GETCHUNKSIZE to obtain the value to be used in reading and writing
LOBs. The number of bytes stored in a chunk is actually less than the size of the
CHUNK parameter due to internal storage overhead. The DBMS_LOB.GET_STORAGE_LIMIT
function returns the storage limit for your database configuration. This is the maximum
allowable size for LOBs. BLOBs are sized in bytes, while CLOBs and NCLOBs are sized in
characters.

See Also:

Oracle Database PL/SQL Packages and Types Referencefor details on the
initialization parameter setting for your database installation.

Using Terabyte-Size LOBs with OCI
The Oracle Call Interface API provides a set of functions for operations on LOBs of all
sizes.

OCILobGetChunkSize() returns the value, in bytes for BLOBs, or in characters for CLOBs,
to be used in reading and writing LOBs. For varying-width character sets, the value is
the number of Unicode characters that fit. The number of bytes stored in a chunk is
actually less than the size of the CHUNK parameter due to internal storage overhead.
The function OCILobGetStorageLimit() returns the maximum allowable size, in bytes,
of internal LOBs in the current database installation. If streaming mode is used, where
the whole LOB is read, there is no requirement to get the chunk size.

See Also:

Oracle Call Interface Programmer's Guide for details about OCI functions
that support LOBs

Chapter 14
Terabyte-Size LOB Support

14-18

Guidelines for Creating Gigabyte LOBs
To create gigabyte LOBs in supported environments, use the following guidelines to
make use of all available space in the tablespace for LOB storage:

• Single Data File Size Restrictions:

There are restrictions on the size of a single data file for each operating system.
For example, Solaris 2.5 only allows operating system files of up to 2 gigabytes.
Hence, add more data files to the tablespace when the LOB grows larger than the
maximum allowed file size of the operating system on which your Oracle Database
runs.

• Set PCT INCREASE Parameter to Zero:

PCTINCREASE parameter in the LOB storage clause specifies the percent growth of
the new extent size. When a LOB is being filled up piece by piece in a tablespace,
numerous new extents get created in the process. If the extent sizes keep
increasing by the default value of 50 percent every time, then extents become
unmanageable and eventually waste space in the tablespace. Therefore, the
PCTINCREASE parameter should be set to zero or a small value.

• Set MAXEXTENTS to a Suitable Value or UNLIMITED:

The MAXEXTENTS parameter limits the number of extents allowed for the LOB
column. A large number of extents are created incrementally as the LOB size
grows. Therefore, the parameter should be set to a value that is large enough to
hold all the LOBs for the column. Alternatively, you could set it to UNLIMITED.

• Use a Large Extent Size:

For every new extent created, Oracle generates undo information for the header
and other metadata for the extent. If the number of extents is large, then the
rollback segment can be saturated. To get around this, choose a large extent size,
say 100 megabytes, to reduce the frequency of extent creation, or commit the
transaction more often to reuse the space in the rollback segment.

Creating a Tablespace and Table to Store Gigabyte LOBs
The following example illustrates how to create a tablespace and table to store
gigabyte LOBs.

CREATE TABLESPACE lobtbs1 DATAFILE '/your/own/data/directory/lobtbs_1.dat'
SIZE 2000M REUSE ONLINE NOLOGGING DEFAULT STORAGE (MAXEXTENTS UNLIMITED);
ALTER TABLESPACE lobtbs1 ADD DATAFILE
'/your/own/data/directory/lobtbs_2.dat' SIZE 2000M REUSE;

CREATE TABLE print_media_backup
 (product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_composite BLOB,
 ad_sourcetext CLOB,
 ad_finaltext CLOB,
 ad_fltextn NCLOB,
 ad_textdocs_ntab textdoc_tab,
 ad_photo BLOB,
 ad_graphic BLOB,
 ad_header adheader_typ)
 NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab5

Chapter 14
Guidelines for Creating Gigabyte LOBs

14-19

 LOB(ad_sourcetext) STORE AS (TABLESPACE lobtbs1 CHUNK 32768 PCTVERSION 0
 NOCACHE NOLOGGING
 STORAGE(INITIAL 100M NEXT 100M MAXEXTENTS
 UNLIMITED PCTINCREASE 0));

Note the following with respect to this example:

• The storage clause in this example is specified in the CREATE TABLESPACE
statement.

• You can specify the storage clause in the CREATE TABLE statement as an
alternative.

• The storage clause is not allowed in the CREATE TEMPORARY TABLESPACE
statement.

• Setting the PCTINCREASE parameter to 0 is recommended for gigabyte LOBs. For
small, or medium size lobs, the default PCTINCREASE value of 50 is recommended
as it reduces the number of extent allocations.

Chapter 14
Guidelines for Creating Gigabyte LOBs

14-20

15
Performance Guidelines

There are performance guidelines for applications that use LOB data types.

• LOB Performance Guidelines

• Moving Data to LOBs in a Threaded Environment

• LOB Access Statistics

LOB Performance Guidelines
There are various performance guidelines that apply to applications that use LOB data
types.

All LOBs

This section explains guidelines for using LOBs.

Related Topics

• Chunk Size

• LOB Pre-fetching

• Small LOBs

• Large LOBs

Chunk Size
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB.

This corresponds to the data size used by Oracle Database when accessing or
modifying the LOB value. Part of the chunk is used to store system-related information
and the rest stores the LOB value. The API you are using has a function that returns
the amount of space used in the LOB chunk to store the LOB value. In PL/SQL use
DBMS_LOB.GETCHUNKSIZE. In OCI, use OCILobGetChunkSize(). For SecureFiles, the
usable data area of the tablespace block size is returned.

LOB Pre-fetching
LOB pre-fetching allows to preview initial part of the data or use LOB locator interface
to access the stored data

LOB pre-fetching allows to perform the following operations:

• Preview the initial part of the data

• Use the locator interface to access the stored data

15-1

Related Topics

• Prefetching of LOB Data, Length, and Chunk Size

• Prefetching LOBs to Improve Performance

Small LOBs
Oracle Database allow LOBs to use Data Interface for read and write operations
provided the LOB size is smaller than the available buffer size.

Oracle Database allow LOBs to use Data Interface for data read and write operations
if the LOB size is smaller than the available buffer size.

Related Topics

• Data Interface for Persistent LOBs

Large LOBs

Starting from Oracle Database 19c release, piecewise or callback mechanism can be
used for OCILobRead and OCILobWrite operations.

Persistent LOBs
Related Topics

• Performance Guidelines for Small BasicFiles LOBs

• General Performance Guidelines for BasicFiles LOBs

Performance Guidelines for Small BasicFiles LOBs
If most LOBs in your database tables are small in size, use these guidelines.

For LOBs in your database tables that are 8K bytes or less, with only a few rows
containing LOBs larger than 8K bytes, then use these guidelines to maximize
database performance:

• Use ENABLE STORAGE IN ROW.

• Set the DB_BLOCK_SIZE initialization parameter to 8K bytes and use a chunk size of
8K bytes.

• See Also:

LOB Storage Parameters for more information on tuning other
parameters such as CACHE, PCTVERSION, and CHUNK for the LOB segment

General Performance Guidelines for BasicFiles LOBs
You can achieve maximum performance with BasicFiles LOBs.

Use these guidelines for maximum performance with BasicFiles LOBs:

• When Possible, Read/Write Large Data Chunks at a Time:

Chapter 15
LOB Performance Guidelines

15-2

Because LOBs are big, you can obtain the best performance by reading and
writing large pieces of a LOB value at a time. This helps in several respects:

1. If accessing the LOB from the client side and the client is at a different node
than the server, then large reads/writes reduce network overhead.

2. If using the NOCACHE option, then each small read/write incurs an I/O. Reading/
writing large quantities of data reduces the I/O.

3. Writing to the LOB creates a new version of the LOB chunk. Therefore, writing
small amounts at a time incurs the cost of a new version for each small write.
If logging is on, then the chunk is also stored in the redo log.

• Use OCILobRead2() and OCILobWrite2() with Callback:

So that data is streamed to and from the LOB. Ensure the length of the entire write
is set in the amount parameter on input. Whenever possible, read and write in
multiples of the LOB chunk size.

• Use a Checkout/Check-in Model for LOBs:

LOBs are optimized for the following operations:

– SQL UPDATE which replaces the entire LOB value

– Copy the entire LOB data to the client, modify the LOB data on the client side,
copy the entire LOB data back to the database. This can be done using
OCILobRead2() and OCILobWrite2() with streaming.

• Commit changes frequently.

Temporary LOB Performance Guidelines
In addition to the guidelines described in "LOB Performance Guidelines" on LOB
performance in general, here are some guidelines for using temporary LOBs:

• Use a separate temporary tablespace for temporary LOB storage instead of the
default system tablespace

This avoids device contention when copying data from persistent LOBs to
temporary LOBs.

If you use the newly provided enhanced SQL semantics functionality in your
applications, then there are many more temporary LOBs created silently in SQL
and PL/SQL than before. Ensure that temporary tablespace for storing these
temporary LOBs is large enough for your applications. In particular, these
temporary LOBs are silently created when you use the following:

– SQL functions on LOBs

– PL/SQL built-in character functions on LOBs

– Variable assignments from VARCHAR2/RAW to CLOBs/BLOBs, respectively.

– Perform a LONG-to-LOB migration

• In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference
whenever possible.

Chapter 15
LOB Performance Guidelines

15-3

See Also:

Oracle Database PL/SQL Language Referencefor more information on
passing parameters by reference and parameter aliasing

• Take advantage of buffer cache on temporary LOBs.

Temporary LOBs created with the CACHE parameter set to true move through the
buffer cache. Otherwise temporary LOBs are read directly from, and written
directly to, disk.

• For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the
physical LOB data is not copied. Subsequent READ operations using either of the
LOB locators refer to the same physical LOB data. On the first WRITE operation
after the assignment, the physical LOB data is copied in order to preserve LOB
value semantics, that is, to ensure that each locator points to a unique LOB value.
This performance consideration mainly applies to the PL/SQL and OCI
environments.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

LOCATOR1 BLOB;
LOCATOR2 BLOB;
DBMS_LOB.CREATETEMPORARY (LOCATOR1,TRUE,DBMS_LOB.SESSION);

-- LOB data is not copied in this assignment operation:
LOCATOR2 := LOCATOR;
-- These read operations refer to the same physical LOB copy:
DBMS_LOB.READ(LOCATOR1, ...);
DBMS_LOB.GETLENGTH(LOCATOR2, ...);

-- A physical copy of the LOB data is made on WRITE:
DBMS_LOB.WRITE(LOCATOR2, ...);

In OCI, to ensure value semantics of LOB locators and data,
OCILobLocatorAssign() is used to copy temporary LOB locators and the LOB
Data. OCILobLocatorAssign() does not make a round trip to the server. The
physical temporary LOB copy is made when LOB updates happen in the same
round trip as the LOB update API as illustrated in the following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOC1, ... TRUE,OCI_DURATION_SESSION);

/* No round-trip is incurred in the following call. */
OCILobLocatorAssign(... LOC1, LOC2);

/* Read operations refer to the same physical LOB copy. */
OCILobRead2(... LOC1 ...)

/* One round-trip is incurred to make a new copy of the
 * LOB data and to write to the new LOB copy.
 */
OCILobWrite2(... LOC1 ...)

/* LOC2 does not see the same LOB data as LOC1. */

Chapter 15
LOB Performance Guidelines

15-4

OCILobRead2(... LOC2 ...)

If LOB value semantics are not intended, then you can use C pointers to achieve
reference semantics as illustrated in the following:

OCILobLocator *LOC1;
OCILobLocator *LOC2;
OCILobCreateTemporary(... LOC1, ... TRUE,OCI_DURATION_SESSION);

/* Pointer is copied. LOC1 and LOC2 refer to the same LOB data. */
LOC2 = LOC1;

/* Write to LOC2. */
OCILobWrite2(...LOC2...)

/* LOC1 sees the change made to LOC2. */
OCILobRead2(...LOC1...)

• Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use
OCI_OBJECT mode for OCILobLocatorAssign(). In OCI_OBJECT mode, the database
tries to minimize the number of deep copies to be done. Hence, after
OCILobLocatorAssign() is done on a source temporary LOB in OCI_OBJECT mode,
the source and the destination locators point to the same LOB until any
modification is made through either LOB locator.

• Free up temporary LOBs returned from SQL queries and PL/SQL programs

In PL/SQL, C (OCI), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls on
LOBs. For example:

SELECT substr(CLOB_Column, 4001, 32000) FROM ...

If the query is executed in PL/SQL, then the returned temporary LOBs are
automatically freed at the end of a PL/SQL program block. You can also explicitly
free the temporary LOBs at any time. In OCI and Java, the returned temporary
LOB must be explicitly freed.

Without proper deallocation of the temporary LOBs returned from SQL queries,
temporary tablespace is filled and you may observe performance degradation.

Moving Data to LOBs in a Threaded Environment
There are two possible procedures that you can use to move data to LOBs in a
threaded environment, one of which should be avoided.

Chapter 15
Moving Data to LOBs in a Threaded Environment

15-5

Recommended Procedure

Note:

• There is no requirement to create an empty LOB in this procedure.

• You can use the RETURNING clause as part of the INSERT/UPDATE
statement to return a locked LOB locator. This eliminates the need for
doing a SELECT-FOR-UPDATE, as mentioned in step 3.

The recommended procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the ROW locks and makes the LOB data persistent.

Alternatively, you can insert more than 4000 bytes of data directly for the LOB columns
or LOB attributes.

Procedure to Avoid

The following sequence requires a new connection when using a threaded
environment, adversely affects performance, and is not recommended:

1. Create an empty (non-NULL) LOB

2. Perform INSERT using the empty LOB

3. SELECT-FOR-UPDATE of the row just entered

4. Move data into the LOB

5. COMMIT. This releases the ROW locks and makes the LOB data persistent.

LOB Access Statistics
After Oracle Database 10g Release 2, three session-level statistics specific to LOBs
are available to users: LOB reads, LOB writes, and LOB writes unaligned.

Session statistics are accessible through the V$MYSTAT, V$SESSTAT, and V$SYSSTAT
dynamic performance views. To query these views, the user must be granted the
privileges SELECT_CATALOG_ROLE, SELECT ON SYS.V_$MYSTAT view, and SELECT ON
SYS.V_$STATNAME view.

LOB reads is defined as the number of LOB API read operations performed in the
session/system. A single LOB API read may correspond to multiple physical/logical
disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the
session/system. A single LOB API write may correspond to multiple physical/logical
disk block writes.

LOB writes unaligned is defined as the number of LOB API write operations whose
start offset or buffer size is not aligned to the internal chunk size of the LOB. Writes

Chapter 15
LOB Access Statistics

15-6

aligned to chunk boundaries are the most efficient write operations. The internal chunk
size of a LOB is available through the LOB API (for example, using PL/SQL, by
DBMS_LOB.GETCHUNKSIZE()).

The following simple example demonstrates how LOB session statistics are updated
as the user performs read/write operations on LOBs.

It is important to note that session statistics are aggregated across operations to all
LOBs accessed in a session; the statistics are not separated or categorized by objects
(that is, table, column, segment, object numbers, and so on).

In these examples, you reconnect to the database for each demonstration to clear the
V$MYSTAT. This enables you to see how the lob statistics change for the specific
operation you are testing, without the potentially obscuring effect of past LOB
operations within the same session.

See also:

Oracle Database Reference, appendix E, "Statistics Descriptions"

Example of Retrieving LOB Access Statistics
This example demonstrates retrieving LOB access statistics.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA;
SET ECHO ON;
GRANT SELECT_CATALOG_ROLE TO pm;
GRANT SELECT ON sys.v_$mystat TO pm;
GRANT SELECT ON sys.v_$statname TO pm;

rem
rem Create a simplified view for statistics queries
rem

CONNECT pm;
SET ECHO ON;

DROP VIEW mylobstats;
CREATE VIEW mylobstats
AS
SELECT SUBSTR(n.name,1,20) name,
 m.value value
FROM v$mystat m,
 v$statname n
WHERE m.statistic# = n.statistic#
 AND n.name LIKE 'lob%';

rem
rem Create a test table
rem

DROP TABLE t;

Chapter 15
LOB Access Statistics

15-7

CREATE TABLE t (i NUMBER, c CLOB)
 lob(c) STORE AS (DISABLE STORAGE IN ROW);

rem
rem Populate some data
rem
rem This should result in unaligned writes, one for
rem each row/lob populated.
rem

CONNECT pm
SELECT * FROM mylobstats;
INSERT INTO t VALUES (1, 'a');
INSERT INTO t VALUES (2, rpad('a',4000,'a'));
COMMIT;
SELECT * FROM mylobstats;

rem
rem Get the lob length
rem
rem Computing lob length does not read lob data, no change
rem in read/write stats.
rem

CONNECT pm;
SELECT * FROM mylobstats;
SELECT LENGTH(c) FROM t;
SELECT * FROM mylobstats;

rem
rem Read the lobs
rem
rem Lob reads are performed, one for each lob in the table.
rem

CONNECT pm;
SELECT * FROM mylobstats;
SELECT * FROM t;
SELECT * FROM mylobstats;

rem
rem Read and manipulate the lobs (through temporary lobs)
rem
rem The use of complex operators like "substr()" results in
rem the implicit creation and use of temporary lobs. operations
rem on temporary lobs also update lob statistics.
rem

CONNECT pm;
SELECT * FROM mylobstats;
SELECT substr(c, length(c), 1) FROM t;
SELECT substr(c, 1, 1) FROM t;
SELECT * FROM mylobstats;

rem
rem Perform some aligned overwrites
rem
rem Only lob write statistics are updated because both the
rem byte offset of the write, and the size of the buffer
rem being written are aligned on the lob chunksize.
rem

Chapter 15
LOB Access Statistics

15-8

CONNECT pm;
SELECT * FROM mylobstats;
DECLARE
 loc CLOB;
 buf LONG;
 chunk NUMBER;
BEGIN
 SELECT c INTO loc FROM t WHERE i = 1
 FOR UPDATE;

 chunk := DBMS_LOB.GETCHUNKSIZE(loc);
 buf := rpad('b', chunk, 'b');

 -- aligned buffer length and offset
 DBMS_LOB.WRITE(loc, chunk, 1, buf);
 DBMS_LOB.WRITE(loc, chunk, 1+chunk, buf);
 COMMIT;
END;
/
SELECT * FROM mylobstats;

rem
rem Perform some unaligned overwrites
rem
rem Both lob write and lob unaligned write statistics are
rem updated because either one or both of the write byte offset
rem and buffer size are unaligned with the lob's chunksize.
rem

CONNECT pm;
SELECT * FROM mylobstats;
DECLARE
 loc CLOB;
 buf LONG;
BEGIN
 SELECT c INTO loc FROM t WHERE i = 1
 FOR UPDATE;

 buf := rpad('b', DBMS_LOB.GETCHUNKSIZE(loc), 'b');

 -- unaligned buffer length
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc)-1, 1, buf);

 -- unaligned start offset
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc), 2, buf);

 -- unaligned buffer length and start offset
 DBMS_LOB.WRITE(loc, DBMS_LOB.GETCHUNKSIZE(loc)-1, 2, buf);

 COMMIT;
END;
/
SELECT * FROM mylobstats;
DROP TABLE t;
DROP VIEW mylobstats;

CONNECT / AS SYSDBA
REVOKE SELECT_CATALOG_ROLE FROM pm;
REVOKE SELECT ON sys.v_$mystat FROM pm;
REVOKE SELECT ON sys.v_$statname FROM pm;

Chapter 15
LOB Access Statistics

15-9

QUIT;

Chapter 15
LOB Access Statistics

15-10

Part V
LOB Administration

This part introduces Large Objects (LOBs) and discusses general concepts for using
them in your applications.

This part contains these chapters:

• Managing LOBs: Database Administration

• Migrating Applications from LONGs to LOBs

16
Managing LOBs: Database Administration

You must perform various administrative tasks to set up, maintain, and use a database
that contains LOBs.

Topics:

• Database Utilities for Loading Data into LOBs

• Temporary LOB Management

• BFILEs Management

• Changing Tablespace Storage for a LOB

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to
Relocating a PDB Using CREATE PLUGGABLE DATABASE.

Database Utilities for Loading Data into LOBs
Certain utilities are recommended for bulk loading data into LOB columns as part of
database setup or maintenance tasks.

The following utilities are recommended for bulk loading data into LOB columns as
part of database setup or maintenance tasks:

• SQL*Loader

• Oracle Data Pump

Note:

Application Developers: If you are loading data into a LOB in your
application, then using the LOB APIs is recommended. See Using LOB
APIs .

About Using SQL*Loader to Load LOBs
There are two general techniques for using SQL*Loader to load data into LOBs

You can use SQL*Loader to load data into LOBs in these ways:

• Loading data from a primary data file

• Loading from a secondary data file using LOB files

16-1

Consider the following issues when loading LOBs with SQL*Loader:

• For SQL*Loader conventional path loads, failure to load a particular LOB does not
result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs
are sent in pieces to the server for loading. If there is an error, then the LOB piece
with the error is discarded and the rest of that LOB is not loaded. In other words, if
the entire LOB with the error is contained in the first piece, then that LOB column
is either empty or truncated.

• When loading from LOB files, specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then it is
taken as a hint to help optimize memory usage. It is important that the maximum
length specification does not underestimate the true maximum length.

• When using SQL*Loader direct-path load, loading LOBs can take up substantial
memory. If the message "SQL*Loader 700 (out of memory)" appears when loading
LOBs, then internal code is probably batching up more rows in each load call than
can be supported by your operating system and process memory. A work-around
is to use the ROWS option to read a smaller number of rows in each data save.

• You can also use the Direct Path API to load LOBs.

• Using LOB files is recommended when loading columns containing XML data in
CLOBs or XMLType columns. Consider the following validation criteria for XML
documents in determining whether to use direct-path load or conventional path
load with SQL*Loader:

– If the XML document must be validated upon loading, then use conventional
path load.

– If it is not necessary to ensure that the XML document is valid, or if you can
safely assume that the XML document is valid, then you can perform a direct-
path load. Direct-path load performs better because you avoid the overhead of
XML validation.

A conventional path load executes SQL INSERT statements to populate tables in
an Oracle database.

A direct-path load eliminates much of the Oracle database overhead by formatting
Oracle data blocks and writing the data blocks directly to the database files.
Additionally, it does not compete with other users for database resources, so it can
usually load data at near disk speed. Considerations inherent to direct path loads,
such as restrictions, security, and backup implications, are discussed in Oracle
Database Utilities.

• Tables to be loaded must already exist in the database. SQL*Loader never
creates tables. It loads existing tables that either contain data or are empty.

• The following privileges are required for a load:

– You must have INSERT privileges on the table to be loaded.

– You must have DELETE privileges on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty out the old data before loading the new
data in its place.

Chapter 16
Database Utilities for Loading Data into LOBs

16-2

See Also:

* Oracle Call Interface Programmer's Guide for more information
about Direct Path API

* Oracle Database Utilities for more information about using
SQL*Loader to load LOBs

About Using SQL*Loader to Populate a BFILE Column
You can load data from files in the file system into a BFILE column.

You can load data from files in the file system into a BFILE column.

See Also:

"Supported Environments for BFILE APIs"

Note that the BFILE data type stores unstructured binary data in operating system files
outside the database. A BFILE column or attribute stores a file locator that points to a
server-side external file containing the data.

Note:

A particular file to be loaded as a BFILE does not have to actually exist at the
time of loading.

SQL*Loader assumes that the necessary DIRECTORY objects have been created.

See Also:

See "Directory Objects" and the sections following it for more information on
creating directory objects

A control file field corresponding to a BFILE column consists of the column name
followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a BFILE
name. Both of these can be provided as string constants, or they can be dynamically
sourced through some other field.

Chapter 16
Database Utilities for Loading Data into LOBs

16-3

See Also:

Oracle Database Utilities for details on SQL*Loader syntax

The following two examples illustrate the loading of BFILEs.

Note:

You may be required to set up the following data structures for certain
examples to work (you are prompted for the password):

CONNECT system
Enter password:
Connected.
GRANT CREATE ANY DIRECTORY to samp;
CONNECT samp
Enter password:
Connected.
CREATE OR REPLACE DIRECTORY adgraphic_photo as '/tmp';
CREATE OR REPLACE DIRECTORY adgraphic_dir as '/tmp';

In the following example based on the "Table for LOB Examples: The PM Schema
print_media Table", only the file name is specified dynamically.

Control file:

LOAD DATA
INFILE sample9.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ','
(product_id INTEGER EXTERNAL(6),
 FileName FILLER CHAR(30),
 ad_graphic BFILE(CONSTANT "modem_graphic_2268_21001", FileName))

Data file:

007, modem_2268.jpg,
008, monitor_3060.jpg,
009, keyboard_2056.jpg,

Note:

product_ID defaults to (255) if a size is not specified. It is mapped to the file
names in the data file. ADGRAPHIC_PHOTO is the directory where all files are
stored. ADGRAPHIC_DIR is a DIRECTORY object created previously.

In the following example, the BFILE and the DIRECTORY objects are specified
dynamically.

Control file:

Chapter 16
Database Utilities for Loading Data into LOBs

16-4

LOAD DATA
INFILE sample10.dat
INTO TABLE Print_media
FIELDS TERMINATED BY ','
(
 product_id INTEGER EXTERNAL(6),
 ad_graphic BFILE (DirName, FileName),
 FileName FILLER CHAR(30),
 DirName FILLER CHAR(30)
)

Data file:

007,monitor_3060.jpg,ADGRAPHIC_PHOTO,
008,modem_2268.jpg,ADGRAPHIC_PHOTO,
009,keyboard_2056.jpg,ADGRAPHIC_DIR,

Note:

DirName FILLER CHAR (30) is mapped to the data file field containing the
directory name corresponding to the file being loaded.

About Using Oracle Data Pump to Transfer LOB Data
You can use Oracle Data Pump to transfer LOB data from one database to another.

Oracle Data Pump can transfer LOB data from one database to another.

Beginning with Oracle Database 12c, Data Pump has an option to create all LOB
columns as SecureFiles LOBs.

See Also:

"SecureFiles LOB Storage" for an introduction to SecureFiles LOBs

When Data Pump recreates tables, however, it recreates them as they existed in the
source database, by default. Therefore, if a LOB column was a BasicFiles LOB in the
source database, Data Pump attempts to recreate it as a BasicFiles LOB in the
imported database. You can force creation of LOBs as SecureFiles LOBs in the tables
being recreated using a TRANSFORM parameter for the command line or a LOB_STORAGE
parameter for the DBMS_DATAPUMP and DBMS_METADATA packages.

Note:

The transform name is not valid in transportable import.

Chapter 16
Database Utilities for Loading Data into LOBs

16-5

See Also:

• Oracle Database Utilities for specific table syntax used with SecureFiles
LOBs

• Oracle Database Utilities for details on using Oracle Data Pump

Temporary LOB Management
The database keeps track of temporary LOBs in each session, and the application can
determine which user owns the temporary LOB by using the session ID.

The database provides a v$ view called v$temporary_lobs. As a database
administrator, you can use this view to monitor and guide any emergency cleanup of
temporary space used by temporary LOBs.

Temporary LOB data is stored in temporary tablespaces. As a database administrator,
you control data storage resources for temporary LOB data by controlling user access
to temporary tablespaces and by the creation of different temporary tablespaces.

See Also:

Oracle Database Administrator's Guide for details on managing temporary
tablespaces

BFILEs Management
You need to perform various administrative tasks to manage databases that contain
BFILEs.

Topics:

• Rules for Using Directory Objects and BFILEs

• Setting Maximum Number of Open BFILEs

Rules for Using Directory Objects and BFILEs
You can create a directory object or BFILE objects if these conditions are met.

When you create a directory object or BFILE objects, ensure that the following
conditions are met:

• The operating system file must not be a symbolic or hard link.

• The operating system directory path named in the Oracle DIRECTORY object
must be an existing operating system directory path.

• The operating system directory path named in the Oracle DIRECTORY object
should not contain any symbolic links in its components.

Chapter 16
Temporary LOB Management

16-6

Setting Maximum Number of Open BFILEs
A limited number of BFILEs can be open simultaneously in each session.

The initialization parameter, SESSION_MAX_OPEN_FILES, defines an upper limit on the
number of simultaneously open files in a session.

The default value for this parameter is 10. Using this default, you can open a
maximum of 10 files at the same time in each session. To alter this limit, the database
administrator must change the parameter value in the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files reaches the SESSION_MAX_OPEN_FILES value, then you
cannot open additional files in the session. To close all open files, use the
DBMS_LOB.FILECLOSEALL call.

Changing Tablespace Storage for a LOB
Database administrators use certain techniques to change the default storage for a
LOB.

As the database administrator, you can use the following techniques to change the
default storage for a LOB after the table has been created:

• Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as
follows:

ALTER TABLE test MODIFY
 LOB (lob1)
 STORAGE (
 NEXT 4M
 MAXEXTENTS 100
 PCTINCREASE 50
)

Note:

The ALTER TABLE syntax for modifying an existing LOB column uses the
MODIFY LOB clause, not the LOB...STORE AS clause. The LOB...STORE AS
clause is only for newly added LOB columns.

There are two kinds of LOB storage clauses: LOB_storage_clause and
modify_LOB_storage_clause. In the ALTER TABLE MODIFY LOB statement,
you can only specify the modify_LOB_storage_clause.

• Using ALTER TABLE... MOVE: You can also use the MOVE clause of the ALTER
TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
 TABLESPACE tbs1
 LOB (lob1, lob2)
 STORE AS (

Chapter 16
Changing Tablespace Storage for a LOB

16-7

 TABLESPACE tbs2
 DISABLE STORAGE IN ROW);

Chapter 16
Changing Tablespace Storage for a LOB

16-8

17
Migrating Columns from LONGs to LOBs

There are techniques for migrating tables that use LONG data types to LOB data types.

Topics:

• Benefits of Migrating LONG Columns to LOB Columns

• Preconditions for Migrating LONG Columns to LOB Columns

• Determining how to Optimize the Application Using utldtree.sql

• Converting Tables from LONG to LOB Data Types

• Migrating Applications from LONGs to LOBs

See Also:

For support for LOB data types in various programming environments:

– SQL Semantics and LOBs

– PL/SQL Semantics for LOBs

– Data Interface for Persistent LOBs

Benefits of Migrating LONG Columns to LOB Columns
There are many benefits to migrating table columns from LONG data types to LOB data
types.

Note:

You can use various techniques to do either of the following:

• Convert columns of type LONG to either CLOB or NCLOB columns

• Convert columns of type LONG RAW to BLOB type columns

Unless otherwise noted, discussions in this chapter regarding LONG to LOB
conversions apply to both of these data type conversions.

These items compare the semantics of LONG and LOB data types in various application
development scenarios:

• The number of LONG type columns is limited. Any given table can have a maximum
of only one LONG type column. The number of LOB type columns in a table is not
limited.

17-1

Preconditions for Migrating LONG Columns to LOB
Columns

Various preconditions must be met before converting a LONG column to a LOB column.

See Also:

"Migrating Applications from LONGs to LOBs" before converting your table to
determine whether any limitations on LOB columns prevent you from
converting to LOBs.

Dropping a Domain Index on a LONG Column Before Converting to a
LOB

Any domain index on a LONG column must be dropped before converting the LONG
column to LOB column.

See Also:

Rebuilding Indexes on Columns Converted from LONG to LOB Data Types

Preventing Generation of Redo Space on Tables Converted to LOB
Data Types

Generation of redo space can cause performance problems during the process of
converting LONG columns. Redo changes for the table are logged during the conversion
process only if the table has LOGGING on.

Redo changes for the column being converted from LONG to LOB are logged only if the
storage characteristics of the LOB column indicate LOGGING. The logging setting
(LOGGING or NOLOGGING) for the LOB column is inherited from the tablespace in which
the LOB is created.

To prevent generation of redo space during migration, do the following before
migrating your table (syntax is in BNF):

1. ALTER TABLE Long_tab NOLOGGING;

2. ALTER TABLE Long_tab MODIFY (long_col CLOB [DEFAULT <default_val>])
LOB (long_col) STORE AS (NOCACHE NOLOGGING);

Note that you must also specify NOCACHE when you specify NOLOGGING in the STORE
AS clause.

3. ALTER TABLE Long_tab MODIFY LOB (long_col) (CACHE);

4. ALTER TABLE Long_tab LOGGING;

Chapter 17
Preconditions for Migrating LONG Columns to LOB Columns

17-2

5. Make a backup of the tablespaces containing the table and the LOB column.

Determining how to Optimize the Application Using
utldtree.sql

When you migrate your table from LONG to LOB column types, in PL/SQL, certain parts
of your application may require rewriting. You can use the utility, rdbms/admin/
utldtree.sql, to determine which parts.

The utldtree.sql utility enables you to recursively see all objects that are dependent
on a given object. For example, you can see all objects which depend on a table with a
LONG column. You can only see objects for which you have permission.

Instructions on how to use utldtree.sql are documented in the file itself. Also,
utldtree.sql is only needed for PL/SQL. For SQL and OCI, you have no requirement
to change your applications.

Converting Tables from LONG to LOB Data Types
There are various issues and techniques for migrating existing tables from LONG to
LOB data types.

Topics:

• Migration Issues

• "Using ALTER TABLE to Convert LONG Columns to LOB Columns"

• "Copying a LONG to a LOB Column Using the TO_LOB Operator"

• "Online Redefinition of Tables with LONG Columns" where high availability is
critical

• "Using Oracle Data Pump to Migrate a Database" when you can convert using this
utility

Migration Issues
General issues concerning migration include the following:

• All constraints of your previous LONG columns are maintained for the new LOB
columns. The only constraint allowed on LONG columns are NULL and NOT NULL. To
alter the constraints for these columns, or alter any other columns or properties of
this table, you have to do so in a subsequent ALTER TABLE statement.

• If you do not specify a default value, then the default value for the LONG column
becomes the default value of the LOB column.

• Most of the existing triggers on your table are still usable, however UPDATE OF
triggers can cause issues.

See Also:

Migrating Applications from LONGs to LOBs

Chapter 17
Determining how to Optimize the Application Using utldtree.sql

17-3

Using ALTER TABLE to Convert LONG Columns to LOB Columns
You can use the ALTER TABLE statement in SQL to convert a LONG column to a LOB
column.

To do so, use the following syntax:

ALTER TABLE [<schema>.]<table_name>
 MODIFY (<long_column_name> { CLOB | BLOB | NCLOB }
 [DEFAULT <default_value>]) [LOB_storage_clause];

For example, if you had a table that was created as follows:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

then you can change the column long_col in table Long_tab to data type CLOB using
following ALTER TABLE statement:

ALTER TABLE Long_tab MODIFY (long_col CLOB);

Note:

The ALTER TABLE statement copies the contents of the table into a new
space, and frees the old space at the end of the operation. This temporarily
doubles the space requirements.

Note that when using the ALTER TABLE statement to convert a LONG column to a LOB
column, only the following options are allowed:

• DEFAULT which enables you to specify a default value for the LOB column.

• The LOB_storage_clause, which enables you to specify the LOB storage
characteristics for the converted column, can be specified in the MODIFY clause.

Other ALTER TABLE options are not allowed when converting a LONG column to a LOB
type column.

Copying a LONG to a LOB Column Using the TO_LOB Operator
If you do not want to use ALTER TABLE, then you can use the TO_LOB operator on a LONG
column to copy it to a LOB column. You can use the CREATE TABLE AS SELECT
statement or the INSERT AS SELECT statement with the TO_LOB operator to copy data
from a LONG column to a CLOB or NCLOB column, or from a LONG RAW column to a BLOB
column. For example, if you have a table with a LONG column that was created as
follows:

CREATE TABLE Long_tab (id NUMBER, long_col LONG);

then you can do the following to copy the column to a LOB column:

CREATE TABLE Lob_tab (id NUMBER, clob_col CLOB);
INSERT INTO Lob_tab SELECT id, TO_LOB(long_col) FROM long_tab;
COMMIT;

Chapter 17
Converting Tables from LONG to LOB Data Types

17-4

If the INSERT returns an error (because of lack of undo space), then you can
incrementally migrate LONG data to the LOB column using the WHERE clause. After you
ensure that the data is accurately copied, you can drop the original table and create a
view or synonym for the new table using one of the following sequences:

DROP TABLE Long_tab;
CREATE VIEW Long_tab (id, long_col) AS SELECT * from Lob_tab;

or

DROP TABLE Long_tab;
CREATE SYNONYM Long_tab FOR Lob_tab;

This series of operations is equivalent to changing the data type of the column
Long_col of table Long_tab from LONG to CLOB. With this technique, you have to re-
create any constraints, triggers, grants and indexes on the new table.

Use of the TO_LOB operator is subject to the following limitations:

• You can use TO_LOB to copy data to a LOB column, but not to a LOB attribute of
an object type.

• You cannot use TO_LOB with a remote table. For example, the following statements
do not work:

INSERT INTO tb1@dblink (lob_col) SELECT TO_LOB(long_col) FROM tb2;
INSERT INTO tb1 (lob_col) SELECT TO_LOB(long_col) FROM tb2@dblink;
CREATE TABLE tb1 AS SELECT TO_LOB(long_col) FROM tb2@dblink;

• The TO_LOB operator cannot be used in the CREATE TABLE AS SELECT statement to
convert a LONG or LONG RAW column to a LOB column when creating an index
organized table.

To work around this limitation, create the index organized table, and then do an
INSERT AS SELECT of the LONG or LONG RAW column using the TO_LOB operator.

• You cannot use TO_LOB inside any PL/SQL block.

Online Redefinition of Tables with LONG Columns
Tables with LONG and LONG RAW columns can be migrated using online table
redefinition. This technique is suitable for migrating LONG columns in database tables
where high availability is critical.

To use this technique, you must convert LONG columns to LOB types during the
redefinition process as follows:

• Any LONG column must be converted to a CLOB or NCLOB column.

• Any LONG RAW column must be converted to a BLOB column.

This conversion is performed using the TO_LOB() operator in the column mapping of
the DBMS_REDEFINITION.START_REDEF_TABLE() procedure.

Chapter 17
Converting Tables from LONG to LOB Data Types

17-5

Note:

You cannot perform online redefinition of tables with LONG or LONG RAW
columns unless you convert the columns to LOB types as described in this
section.

General tasks involved in the online redefinition process are given in the following list.
Issues specific to converting LONG and LONG RAW columns are called out. See the
related documentation referenced at the end of this section for additional details on the
online redefinition process that are not described here.

• Create an empty interim table. This table holds the migrated data when the
redefinition process is done. In the interim table:

– Define a CLOB or NCLOB column for each LONG column in the original table that
you are migrating.

– Define a BLOB column for each LONG RAW column in the original table that you
are migrating.

• Start the redefinition process. To do so, call
DBMS_REDEFINITION.START_REDEF_TABLE and pass the column mapping using the
TO_LOB operator as follows:

DBMS_REDEFINITION.START_REDEF_TABLE(
 'schema_name',
 'original_table',
 'interim_table',
 'TO_LOB(long_col_name) lob_col_name',
 'options_flag',
 'orderby_cols');

where long_col_name is the name of the LONG or LONG RAW column that you are
converting in the original table and lob_col_name is the name of the LOB column
in the interim table. This LOB column holds the converted data.

• Call the DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS procedure as described in
the related documentation.

• Call the DBMS_REDEFINITION.FINISH_REDEF_TABLE procedure as described in the
related documentation.

Parallel Online Redefinition

On a system with sufficient resources for parallel execution, redefinition of a LONG
column to a LOB column can be executed in parallel under the following conditions:

In the case where the destination table is non-partitioned:

• The segment used to store the LOB column in the destination table belongs to a
locally managed tablespace with Automatic Segment Space Management (ASSM)
enabled, which is now the default.

• There is a simple mapping from one LONG column to one LOB column, and the
destination table has only one LOB column.

Chapter 17
Converting Tables from LONG to LOB Data Types

17-6

In the case where the destination table is partitioned, the normal methods for parallel
execution for partitioning apply. When the destination table is partitioned, then online
redefinition is executed in parallel.

Example of Online Redefinition

The following example demonstrates online redefinition with LOB columns.

REM Grant privileges required for online redefinition.
GRANT execute ON DBMS_REDEFINITION TO pm;
GRANT ALTER ANY TABLE TO pm;
GRANT DROP ANY TABLE TO pm;
GRANT LOCK ANY TABLE TO pm;
GRANT CREATE ANY TABLE TO pm;
GRANT SELECT ANY TABLE TO pm;

REM Privileges required to perform cloning of dependent objects.
GRANT CREATE ANY TRIGGER TO pm;
GRANT CREATE ANY INDEX TO pm;

connect pm/passwd

drop table cust;
create table cust(c_id number primary key,
 c_zip number,
 c_name varchar(30) default null,
 c_long long
);
insert into cust values(1, 94065, 'hhh', 'ttt');

-- Creating Interim Table
-- There is no requirement to specify constraints because they are
-- copied over from the original table.
create table cust_int(c_id number not null,
 c_zip number,
 c_name varchar(30) default null,
 c_long clob
);

declare
 col_mapping varchar2(1000);
BEGIN
-- map all the columns in the interim table to the original table
 col_mapping :=
 'c_id c_id , '||
 'c_zip c_zip , '||
 'c_name c_name, '||
 'to_lob(c_long) c_long';

dbms_redefinition.start_redef_table('pm', 'cust', 'cust_int', col_mapping);
END;
/

declare
 error_count pls_integer := 0;
BEGIN
 dbms_redefinition.copy_table_dependents('pm', 'cust', 'cust_int',
 1, true, true, true, false,
 error_count);

 dbms_output.put_line('errors := ' || to_char(error_count));

Chapter 17
Converting Tables from LONG to LOB Data Types

17-7

END;
/

exec dbms_redefinition.finish_redef_table('pm', 'cust', 'cust_int');

-- Drop the interim table
drop table cust_int;

desc cust;

-- The following insert statement fails. This illustrates
-- that the primary key constraint on the c_id column is
-- preserved after migration.

insert into cust values(1, 94065, 'hhh', 'ttt');

select * from cust;

Note:

Related documentation provides additional details on the redefinition
process:

• Oracle Database Administrator's Guide gives detailed procedures and
examples of redefining tables online.

• Oracle Database PL/SQL Packages and Types Reference includes
information on syntax and other details on usage of procedures in the
DBMS_REDEFINITION package.

Using Oracle Data Pump to Migrate a Database
If you are exporting data as part of a migration to a new database, create a table on
the destination database with LOB columns and Data Pump calls the LONG-to-LOB
function implicitly.

See Also:

Oracle Database Utilities for more information about using Oracle Data
Pump

Migrating Applications from LONGs to LOBs
There are differences between LONG and LOB data types that may impact your
application migration plans or require you to modify your application.

About Migrating Applications from Longs to LOBs
Most APIs that work with LONG data types in the PL/SQL and OCI environments are
enhanced to also work with LOB data types.

Chapter 17
Migrating Applications from LONGs to LOBs

17-8

These APIs are collectively referred to as the data interface for persistent LOBs, or
simply the data interface. Among other things, the data interface provides the following
benefits:

• Changes needed are minimal in PL/SQL and OCI applications that use tables with
columns converted from LONG to LOB data types.

• You can work with LOB data types in your application without having to deal with
LOB locators.

See Also:

– Data Interface for Persistent LOBs for details on PL/SQL and OCI
APIs included in the data interface.

– SQL Semantics and LOBs for details on SQL syntax supported for
LOB data types.

– PL/SQL Semantics for LOBs for details on PL/SQL syntax supported
for LOB data types.

LOB Columns Are Not Allowed in Clustered Tables
LOB columns are not allowed in clustered tables, whereas LONGs are allowed. If a table
is a part of a cluster, then any LONG or LONG RAW column cannot be changed to a LOB
column.

LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers
You cannot have LOB columns in the UPDATE OF list of an AFTER UPDATE OF trigger.
LONG columns are allowed in such triggers. For example, the following create trigger
statement is not valid:

CREATE TABLE t(lobcol CLOB);
CREATE TRIGGER trig AFTER UPDATE OF lobcol ON t ...;

All other triggers work on LOB columns.

Rebuilding Indexes on Columns Converted from LONG to LOB Data
Types

Indexes on any column of the table being migrated must be manually rebuilt after
converting any LONG column to a LOB column. This includes function-based indexes.

Any function-based index on a LONG column is unusable during the conversion process
and must be rebuilt after converting. Application code that uses function-based
indexing should work without modification after converting.

Note that, any domain indexes on a LONG column must be dropped before converting
the LONG column to LOB column. You can rebuild the domain index after converting.

To rebuild an index after converting, use the following steps:

Chapter 17
Migrating Applications from LONGs to LOBs

17-9

1. Select the index from your original table as follows:

SELECT index_name FROM user_indexes WHERE table_name='LONG_TAB';

Note:

The table name must be capitalized in this query.

2. For the selected index, use the command:

ALTER INDEX <index> REBUILD

Empty LOBs Compared to NULL and Zero Length LONGs
A LOB column can hold an empty LOB. An empty LOB is a LOB locator that is fully
initialized, but not populated with data. Because LONG data types do not use locators,
the empty concept does not apply to LONG data types.

Both LOB column values and LONG column values, inserted with an initial value of NULL
or an empty string literal, have a NULL value. Therefore, application code that uses
NULL or zero-length values in a LONG column functions exactly the same after you
convert the column to a LOB type column.

In contrast, a LOB initialized to empty has a non-NULL value as illustrated in the
following example:

CREATE TABLE long_tab(id NUMBER, long_col LONG);
CREATE TABLE lob_tab(id NUMBER, lob_col CLOB);

INSERT INTO long_tab values(1, NULL);

REM A zero length string inserts a NULL into the LONG column:
INSERT INTO long_tab values(1, '');

INSERT INTO lob_tab values(1, NULL);

REM A zero length string inserts a NULL into the LOB column:
INSERT INTO lob_tab values(1, '');

REM Inserting an empty LOB inserts a non-NULL value:
INSERT INTO lob_tab values(1, empty_clob());

DROP TABLE long_tab;
DROP TABLE lob_tab;

Overloading with Anchored Types
For applications using anchored types, some overloaded variables resolve to different
targets during the conversion to LOBs. For example, given the procedure p overloaded
with specifications 1 and 2:

procedure p(l long) is ...; -- (specification 1)
procedure p(c clob) is ...; -- (specification 2)

and the procedure call:

Chapter 17
Migrating Applications from LONGs to LOBs

17-10

declare
 var longtab.longcol%type;
 BEGIN
 ...
 p(var);
 ...
END;

Prior to migrating from LONG to LOB columns, this call would resolve to specification 1.
Once longtab is migrated to LOB columns this call resolves to specification 2. Note
that this would also be true if the parameter type in specification 1 were a CHAR,
VARCHAR2, RAW, LONG RAW.

If you have migrated you tables from LONG columns to LOB columns, then you must
manually examine your applications and determine whether overloaded procedures
must be changed.

Some applications that included overloaded procedures with LOB arguments before
migrating may still break. This includes applications that do not use LONG anchored
types. For example, given the following specifications (1 and 2) and procedure call for
procedure p:

procedure p(n number) is ...; -- (1)
procedure p(c clob) is ...; -- (2)

p('123'); -- procedure call

Before migrating, the only conversion allowed was CHAR to NUMBER, so specification 1
would be chosen. After migrating, both conversions are allowed, so the call is
ambiguous and raises an overloading error.

Some Implicit Conversions Are Not Supported for LOB Data Types
PL/SQL permits implicit conversion from NUMBER, DATE, ROW_ID, BINARY_INTEGER, and
PLS_INTEGER data types to a LONG; however, implicit conversion from these data types
to a LOB is not allowed.

If your application uses these implicit conversions, then you have to explicitly convert
these types using the TO_CHAR operator for character data or the TO_RAW operator for
binary data. For example, if your application has an assignment operation such as:

number_var := long_var; -- The RHS is a LOB variable after converting.

then you must modify your code as follows:

number_var := TO_CHAR(long_var);
-- Assuming that long_var is of type CLOB after conversion

The following conversions are not supported for LOB types:

• BLOB to VARCHAR2, CHAR, or LONG

• CLOB to RAW or LONG RAW

This applies to all operations where implicit conversion takes place. For example if you
have a SELECT statement in your application as follows:

SELECT long_raw_column INTO my_varchar2 VARIABLE FROM my_table

Chapter 17
Migrating Applications from LONGs to LOBs

17-11

and long_raw_column is a BLOB after converting your table, then the SELECT statement
produces an error. To make this conversion work, you must use the TO_RAW operator to
explicitly convert the BLOB to a RAW as follows:

SELECT TO_RAW(long_raw_column) INTO my_varchar2 VARIABLE FROM my_table

The same holds for selecting a CLOB into a RAW variable, or for assignments of CLOB to
RAW and BLOB to VARCHAR2.

Chapter 17
Migrating Applications from LONGs to LOBs

17-12

Part VI
Oracle File System (OFS) Server

The OFS server is a new background process that will be created as part of instance
startup and it will contain several pools of Oracle threads to work as file system server
threads. The main job of this background process is to manage the worker threads.

This part contains the following chapters:

• Introducing Network File System (NFS)

• Using OFS

18
Introducing Network File System (NFS)

NFS protocol is a widely used file system protocol to access storage across network.

Note:

Oracle objects exported through OFS server can be accessed by NFS clients
by mounting them on the client machines

Topics:

• Prerequisites to Access Storage Through NFS Server

• NFS Security

Prerequisites to Access Storage Through NFS Server
The prerequisites to access storage through NFS server are as follows:

• DBFS file system must be created before using OFS.

• You should be able to mount the file systems exported by the database.

• NFS server must be configured with KERNEL module.

Note:

The KERNEL module is supported through FUSE driver for Linux.

NFS Security
Starting from Oracle Database 12c Release 2 (12.2.0.1), OFS will use the OS
authentication model to authorize NFS client users. If the user is accessing a local
node (where the Oracle instance is running), the access to each file in the file system
is controlled through Unix Access Control List set for each object. On Linux, OFS
uses FUSE to receive file system requests from the OS kernel or NFS client. This
requires user_allow_other parameter to be set in /etc/fuse.conf configuration file if
an OS user other than the root user and oracle user need to access the file system.

Note:

Users can also be configured with an Oracle password to log into Oracle
client tools like SQL* Plus to execute SQL's.

18-1

If the network is not secure, the customer is advised to setup Kerberos to authenticate
the user using OS NFS.

Note:

• The Kerberos authentication is available from NFS version 4 onwards. If
the OFS is exported via NFS version 3, the authentication is performed
using AUTH_SYS.

• For local node, the authentication is performed using AUTH_SYS
irrespective of how the OFS is exported (NFS version 3 or NFS version
4).

This section contains the following topic:

• Kerberos

Kerberos
Kerberos is the widely used security mechanism that provides all three flavors of
security:

• Authentication

• Integrity check

• Privacy

Kerberos uses encryption technology, Key Distribution Center(KDC), and an arbitrator
to perform secure authentication on open networks. Kerberos Infrastructure consists of
Kerberos software, secured authentication servers, centralized account and password
store, and systems configured to authenticate through the Kerberos protocol. The OS
NFS server handles the complete authentication and integrity checks by using
kerberos principal name as the user name. Once the authentication is performed, the
requests passed to the Oracle kernel are handled based on the user name passed
through the VFS I/O request.

Topics:

• Configuring Kerberos Server in Linux

Configuring Kerberos Server in Linux

The steps to configure Kerberos server in a Linux system is as follows:

1. Install Kerberos software in the Linux system.

2. Check if the daemons are running using the following commands.

/sbin/chkconfig krb5kdc on
/sbin/chkconfig kadmin on

Chapter 18
NFS Security

18-2

3. If the daemons are not running use the following commands to start the daemons
manually:

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

4. Add user principal using the kadmin.local command.

Example:

kadmin.local: addprinc <scott>

Chapter 18
NFS Security

18-3

19
Using OFS

The OFS implementation includes creating and accessing the file system and
managing it.

Topics:

• Limitations of using OFS

• OFS Configuration Parameters

• OFS Client Interface

Limitations of using OFS
Use of OFS is subjected to the following limitations:

• DBFS mounted with ASM storage shows wrong mount size.

• OFS mounted with local storage shows wrong mount size.

OFS Configuration Parameters
Table Table 19-1 specifies all the parameters that enable NFS access in the database.

Table 19-1 OFS Configuration Parameters

Parameter Name Description

OFS_THREADS This parameter is used to set the number of
OFS worker threads to handle OFS requests.

Possible values:

• An integer value in the range of 2–128
• Default value is 4

OFS Client Interface
The OFS interface includes views and procedures that support OFS operations.

Topics:

• DBMS_FS Package

• Views for OFS

DBMS_FS Package

19-1

The DBMS_FS package enables users to perform operations on Oracle file system
(make, mount, unmount and destroy) in the Oracle database.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about Oracle OFS procedures.

Views for OFS

The views that support OFS operations start with V$OFS .

See Also:

Oracle Database Reference for the columns and data types of these views.

Chapter 19
OFS Client Interface

19-2

Part VII
Database File System (DBFS)

This part covers issues that you must consider when designing applications that use
Database File System (DBFS) and DBFS content stores. Note: In most situations, the
DBFS requires SecureFiles LOBs, which are discussed in Using Oracle LOB Storage.
SecureFiles is the default storage mechanism for LOBs starting with Oracle Database
12c.

This part contains these chapters:

• Introducing the Database File System

• DBFS SecureFiles Store

• DBFS Hierarchical Store

• DBFS Content API

• Creating Your Own DBFS Store

• Using DBFS

20
Introducing the Database File System

Topics:

• Why a Database File System?

• What Is Database File System (DBFS)?

• What Is a Content Store?

Why a Database File System?
Conceptually, a database file system is a file system interface placed on top of files
and directories that are stored in database tables.

Applications commonly use the standard SQL data types, BLOBs and CLOBs, to store
and retrieve files in the Oracle Database, files such as medical images, invoice
images, documents, videos, and other files. Oracle Database provides much better
security, availability, robustness, transactional capability, and scalability than
traditional file systems. Files stored in the database along with relational data are
automatically backed up, synchronized to the disaster recovery site using Data Guard,
and recovered together.

Database File System (DBFS) is a feature of Oracle Database that makes it easier for
users to access and manage files stored in the database. With this interface, access to
files in the database is no longer limited to programs specifically written to use BLOB
and CLOB programmatic interfaces. Files in the database can now be transparently
accessed using any operating system (OS) program that acts on files. For example,
ETL (extraction, transformation, and loading) tools can transparently store staging files
in the database and file-based applications can benefit from database features such
as Maximum Availability Architecture (MAA) without any changes to the applications.

What Is Database File System (DBFS)?
Database File System (DBFS) creates a standard file system interface on top of files
and directories that are stored in database tables.

Database File System (DBFS) creates a standard file system interface using a server
and clients.

• About DBFS

• DBFS Server

• DBFS Client

About DBFS
DBFS is similar to NFS in that it provides a shared network file system that looks like a
local file system and has both a server component and a client component.

20-1

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle
Database. It connects to the DBFS Content SPI, a programmatic interface which
allows for the support of different types of storage.

At the programming level, the client calls the DBFS Content API to perform a specific
function, such as delete a file. The DBFS Content API delete file function then calls the
DBFS Content SPI to perform that function.

In a user-defined DBFS, the user must implement a delete function based on the
specifications in the DBFS Content SPI, along with other functions in the specification.

Figure 20-1 Database File System (DBFS)

DatabaseDBFS Content API

Cloud�
Storage

DBFS�
SecureFile�

Store

DBFS�
Hierarchical�

Store

DBFS Content SPI

User�
Defined�
Store

File System�
Mount�

Interface

DBFS�
Command�

Line Interface�
Client

DBFS�
PL/SQL�
Client PL/SQL�

LOB�
Interface

Java�
LOB�

Interface

OCI�
LOB�

Interface

DBFS�
Links

DBFS Server
In DBFS, the file server is the Oracle database.

Files are stored as SecureFiles LOBs in database tables. An implementation of a file
system in the database is called a DBFS content store, for example, the DBFS
SecureFiles Store. A DBFS content store allows each database user to create one or
more file systems that can be mounted by clients. Each file system has its own
dedicated tables that hold the file system content.

The DBFS Content SPI supports different types of stores, as follows:

Chapter 20
What Is Database File System (DBFS)?

20-2

• DBFS SecureFiles Store: A DBFS content store that uses a table with a
SecureFiles LOB column to store the file system data. It implements POSIX-like
filesystem capabilities.

• DBFS Hierarchical Store: A DBFS content store that allows files to be written to
any tape storage units supported by Oracle Recovery Manager (RMAN) or to a
cloud storage system.

• User-defined Store: A content store defined by the user. This allows users to
program their own filesystems inside Oracle Database without writing any OS
code.

See Also:

• Creating Your Own DBFS Store

• DBFS Content API

• DBFS Hierarchical Store

DBFS Client
For client systems, the Database File System offers several access methods.

The Database File System offers several access methods.

• PL/SQL Client Interface

Database applications can access files in the DBFS store directly, through the
PL/SQL interface. The PL/SQL interface allows database transactions and read
consistency to span relational and file data.

• DBFS Client Command-Line Interface

A client command-line interface named dbfs_client runs on each file system
client computer. dbfs_client allows users to copy files in and out of the database
from any host on the network. It implements simple file system commands such as
list and copy in a manner that is similar to shell utilities ls and rcp. The command
interface creates a direct connection to the database without requiring an OS
mount of DBFS.

• File System Mount Interface

On Linux and Solaris, the dbfs_client also includes a mount interface that uses
the Filesystem in User Space (FUSE) kernel module to implement a file-system
mount point with transparent access to the files stored in the database. This does
not require any changes to the Linux or Solaris kernels. It receives standard file
system calls from the FUSE kernel module and translates them into OCI calls to the
PL/SQL procedures in the DBFS content store.

• DBFS Links

DBFS Links, Database File System Links, are references from SecureFiles LOB
locators to files stored outside the database.

DBFS Links can be used to migrate SecureFiles from existing tables to other
storage.

Chapter 20
What Is Database File System (DBFS)?

20-3

See Also:

• Using DBFS

• DBFS Mounting Interface (Linux and Solaris Only)

• Database File System Links for information about using DBFS Links

• PL/SQL Packages for LOBs and DBFS for lists of useful DBMS_LOB
constants and methods

What Is a Content Store?
A content store is a collection of documents.

Each content store is identified by a unique absolute path name, represented as a
slash (/) followed by one or more component names that are each separated by a
slash. Some stores may implement only a flat namespace, others might implement
directories or folders implicitly, while still others may implement a comprehensive file
system-like collection of entities. These may include hierarchical directories, files,
symbolic links, hard links, references, and so on. They often include a rich set of
metadata associated with documents, and a rich set of behaviors with respect to
security, access control, locking, versioning, content addressing, retention control, and
so on.

Because stores are typically designed and evolve independently of each other,
applications that use a specific store are either written and packaged by the
developers of the store or else require the user to employ a store-specific API.
Designers who create a store-specific API must have a detailed knowledge of the
schema of the database tables that are used to implement the store.

Chapter 20
What Is a Content Store?

20-4

21
DBFS SecureFiles Store

There are certain procedures for setting up and using a DBFS SecureFiles Store.

Topics:

• Setting Up a SecureFiles Store

• Using a DBFS SecureFiles Store File System

• About DBFS SecureFiles Store Package_ DBMS_DBFS_SFS

Setting Up a SecureFiles Store
There are several aspects to setting up a SecureFiles Store.

This section shows how to set up a SecureFiles Store.

Topics:

• About Managing Permissions

• Creating or Setting Permissions

• Creating a SecureFiles File System Store

• Accessing Tables that Hold SecureFiles System Store Data

• Initializing SecureFiles Store File Systems

• Comparison of SecureFiles LOBs to BasicFiles LOBs

About Managing Permissions
You must use a regular database user for all operational access to the Content API
and stores.

Do not use SYS or SYSTEM users or SYSDBA or SYSOPER system privileges. For better
security and separation of duty, only allow specific trusted users the ability to manage
DBFS Content API operations.

You must grant each user the DBFS_ROLE role. Otherwise, the user is not authorized to
use the DBFS Content API. A user with suitable administrative privileges (or SYSDBA)
can grant the role to additional users as needed.

Because of the way roles, access control, and definer and invoker rights interact in the
database, it may be necessary to explicitly grant various permissions (typically execute
permissions) on DBFS Content API types (SQL types with the DBMS_DBFS_CONTENT_
xxx prefix) and packages (typically only DBMS_DBFS_CONTENT and DBMS_DBFS_SFS) to
users who might otherwise have the DBFS_ROLE role.

These explicit, direct grants are normal and to be expected, and can be provided as
needed and on demand.

21-1

Creating or Setting Permissions
You must grant the DBFS_ROLE role to any user that needs to use the DBFS content
API.

1. Create or determine DBFS Content API target users.

This example uses this user and password: sfs_demo/password

At minimum, this database user must have the CREATE SESSION, CREATE
RESOURCE, and CREATE VIEW privileges.

2. Grant the DBFS_ROLE role to the user.

CONNECT / as sysdba
GRANT dbfs_role TO sfs_demo;

This sets up the DBFS Content API for any database user who has the DBFS_ROLE
role.

Creating a SecureFiles File System Store
You must create the SecureFiles file system stores that the DBFS Content API
accesses.

The CREATEFILESYSTEM procedure auto-commits before and after its execution (like a
DDL). The method CREATESTORE is a wrapper around CREATEFILESYSTEM.

See Also:

Oracle Database PL/SQL Packages and Types Reference for
DBMS_DBFS_SFS syntax details

To create a SecureFiles File System Store:

1. Create the necessary stores to be accessed using the DBFS Content API:

DECLARE
 BEGIN
 DBMS_DBFS_SFS.CREATEFILESYSTEM(
 store_name => 'FS1',
 tbl_name => 'T1',
 tbl_tbs => null,
 use_bf => false
);
 COMMIT;
 END;
/

where:

• store_name is any arbitrary, user-unique name.

• tbl_name is a valid table name, created in the current schema.

Chapter 21
Setting Up a SecureFiles Store

21-2

• tbl_tbs is a valid tablespace name used for the store table and its dependent
segments, such as indexes, LOBs, or nested tables. The default is NULL and
specifies a tablespace of the current schema.

• use_bf specifies that BasicFiles LOBs should be used, if true, or not used, if
false.

2. Register this store with the DBFS Content API as a new store managed by the
SecureFiles Store provider.

CONNECT sfs_demo
Enter password:password
DECLARE
 BEGIN
 DBMS_DBFS_CONTENT.REGISTERSTORE(
 store_name => 'FS1',
 provider_name => 'anything',
 provider_package => 'dbms_dbfs_sfs'
);
 COMMIT;
 END;
/

where:

• store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

• provider_name is ignored.

• provider_package is DBMS_DBFS_SFS, for SecureFiles Store reference
provider.

This operation associates the SecureFiles Store FS1 with the DBMS_DBFS_SFS
provider.

3. Mount the store at suitable a mount-point.

CONNECT sfs_demo
Enter password: password
DECLARE
 BEGIN
 DBMS_DBFS_CONTENT.MOUNTSTORE(
 store_name => 'FS1',
 store_mount => 'mnt1'
);
 COMMIT;
 END;
/

where:

• store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

• store_mount is the mount point.

4. [Optional] To see the results of the preceding steps, you can use the following
statements.

• To verify SecureFiles Store tables and file systems:

SELECT * FROM TABLE(DBMS_DBFS_SFS.LISTTABLES);
SELECT * FROM TABLE(DBMS_DBFS_SFS.LISTFILESYSTEMS);

• To verify ContentAPI Stores and mounts:

Chapter 21
Setting Up a SecureFiles Store

21-3

SELECT * FROM TABLE(DBMS_DBFS_CONTENT.LISTSTORES);
SELECT * FROM TABLE(DBMS_DBFS_CONTENT.LISTMOUNTS);

• To verify SecureFiles Store features:

var fs1f number;
exec :fs1f := dbms_dbfs_content.getFeaturesByName('FS1');
select * from table(dbms_dbfs_content.decodeFeatures(:fs1f));

• To verify resource and property views:

SELECT * FROM DBFS_CONTENT;
SELECT * FROM DBFS_CONTENT_PROPERTIES;

Accessing Tables that Hold SecureFiles System Store Data
You should never directly access tables that hold data for a SecureFiles Store file
systems, even through the DBMS_DBFS_SFS package methods.

This is the correct way to access the file systems.

• For procedural operations: Use the DBFS Content API (DBMS_DBFS_CONTENT
methods).

• For SQL operations: Use the resource and property views (DBFS_CONTENT and
DBFS_CONTENT_PROPERTIES).

Initializing SecureFiles Store File Systems
You can truncate and re-initialize tables associated with an SecureFiles Store.

• Use the procedure INITFS().

The procedure executes like a DDL, auto-committing before and after its
execution.

The following example uses file system FS1 and table SFS_DEMO.T1, which is
associated with the SecureFiles Store store_name.

CONNECT sfs_demo;
Enter password: password
EXEC DBMS_DBFS_SFS.INITFS(store_name => 'FS1');

Comparison of SecureFiles LOBs to BasicFiles LOBs
SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher.
They are not available in earlier releases.

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

Compatibility must be at least 11.1.0.0 to use SecureFiles LOBs.

Additionally, you need to specify the following in DBMS_DBFS_SFS.CREATEFILESYSTEM:

• To use SecureFiles LOBs (the default), specify use_bf => false.

• To use BasicFiles LOBs, specify use_bf => true.

Chapter 21
Setting Up a SecureFiles Store

21-4

Using a DBFS SecureFiles Store File System
The DBFS Content API provides methods to populate a SecureFiles Store file system
and otherwise manage it.

Topics:

• DBFS Content API Working Example

• Dropping SecureFiles Store File Systems

DBFS Content API Working Example
You can create new file and directory elements to populate a SecureFiles Store file
system.

If you have executed the steps in "Setting Up a SecureFiles Store", set the DBFS
Content API permissions, created at least one SecureFiles Store reference file system,
and mounted it under the mount point /mnt1, then you can create a new file and
directory elements as demonstrated in Example 21-1.

Example 21-1 Working with DBFS Content API

CONNECT tjones
Enter password: password

DECLARE
 ret integer;
 b blob;
 str varchar2(1000) := '' || chr(10) ||

'#include <stdio.h>' || chr(10) ||
'' || chr(10) ||
'int main(int argc, char** argv)' || chr(10) ||
'{' || chr(10) ||
' (void) printf("hello world\n");' || chr(10) ||
' RETURN 0;' || chr(10) ||
'}' || chr(10) ||
'';

 BEGIN
 ret := dbms_fuse.fs_mkdir('/mnt1/FS1');
 ret := dbms_fuse.fs_creat('/mnt1/FS1/hello.c', content => b);
 dbms_lob.writeappend(b, length(str), utl_raw.cast_to_raw(str));
 COMMIT;
 END;
 /
 SHOW ERRORS;

 -- verify newly created directory and file
 SELECT pathname, pathtype, length(filedata),
 utl_raw.cast_to_varchar2(filedata)
 FROM dbfs_content
 WHERE pathname LIKE '/mnt1/FS1%'
 ORDER BY pathname;

Chapter 21
Using a DBFS SecureFiles Store File System

21-5

The file system can be populated and accessed from PL/SQL with
DBMS_DBFS_CONTENT. The file system can be accessed read-only from SQL using the
dbfs_content and dbfs_content_properties views.

The file system can also be populated and accessed using regular file system APIs
and UNIX utilities when mounted using FUSE, or by the standalone dbfs_client tool
(in environments where FUSE is either unavailable or not set up).

Dropping SecureFiles Store File Systems
You can use the unmountStore method to drop SecureFiles Store file systems.

This method removes all stores referring to the file system from the metadata tables,
and drops the underlying file system table. The procedure executes like a DDL, auto-
committing before and after its execution.

1. Unmount the store.

CONNECT sfs_demo
Enter password: password
DECLARE
 BEGIN
 DBMS_DBFS_CONTENT.UNMOUNTSTORE(
 store_name => 'FS1',
 store_mount => 'mntl';
);
 COMMIT;
END;
/

where:

• store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

• store_mount is the mount point.

2. Unregister the stores.

CONNECT sfs_demo
Enter password: password
EXEC DBMS_DBFS_CONTENT.UNREGISTERSTORE(store_name => 'FS1');
COMMIT;

where store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

3. Drop the file system.

CONNECT sfs_demo/******;
EXEC DBMS_DBFS_SFS.DROPFILESYSTEM(store_name => 'FS1');
COMMIT;

where store_name is SecureFiles Store FS1, which uses table SFS_DEMO.T1.

About DBFS SecureFiles Store Package,
DBMS_DBFS_SFS

The DBFS SecureFiles Store package (DBMS_DBFS_SFS) is a store provider for
DBMS_DBFS_CONTENT that supports SecureFiles LOB storage for DBFS content.

Chapter 21
About DBFS SecureFiles Store Package, DBMS_DBFS_SFS

21-6

To use the DBMS_DBFS_SFS package, you must be granted the DBFS_ROLE role.

The SecureFiles Store provider is a default implementation of the DBFS Content API
(and is a standard example of a store provider that conforms to the Provider SPI) that
enables applications that already use LOBs as columns in their schema, to access the
BLOB columns. This enables existing applications to easily add PL/SQL provider
implementations and provide access through the DBFS Content API without changing
their schemas or their business logic.

Applications can also read and write content that is stored in other (third party) stores
through the standard DBFS Content API interface.

In a SecureFiles Store, the underlying user data is stored in SecureFiles LOBs and
metadata such as pathnames, IDs, and properties are stored as columns in relational
tables.

See Also:

• See Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_DBFS_SFS package.

• Creating Your Own DBFS Store and Oracle Database PL/SQL Packages
and Types Reference for more information about the Provider SPI
defined in DBMS_DBFS_CONTENT_SPI.

• SecureFiles LOB Storagefor advanced features of SecureFiles LOBs.

Database File System (DBFS)— POSIX File Locking
Starting from Oracle Database 12c Release 2(12.2), Oracle supports the Database
File system POSIX File locking feature. The DBFS provides file locking support for:

• POSIX applications using DBFS_CLIENT (in mount mode) as a front-end interface to
DBFS.

• Applications using PL/SQL as an interface to DBFS.

Note:

Oracle supports only Full-file locks in DBFS. Full-file lock implies locking the
entire file from byte zero offset to the end of file.

Topics:

• About Advisory Locking

• About Mandatory Locking

• File Locking Support

• Compatibility and Migration Factors of Database Filesystem—File Locking

• Examples of Database Filesystem—File Locking

Chapter 21
Database File System (DBFS)— POSIX File Locking

21-7

About Advisory Locking
Advisory locking is a file locking mechanism that locks the file for a single process.

File locking mechanism cannot independently enforce any form of locking and requires
support from the participating processes. For example, if a process P1 has a write
lock on file F1, the locking API or the operating system does not perform any action to
prevent any other process P2 from issuing a read or write system call on the file F1.
This behavior of file locking mechanism is also applicable to other file system
operations. The processes that are involved (in file locking mechanism) must follow a
lock or unlock protocol provided in a suitable API form by the user-level library. File
locking semantics are guaranteed to work provided, the processes incorporate the
recommended usage of the locking protocol and respect the results of API calls.

About Mandatory Locking
Mandatory locking is a file locking mechanism that takes support from participating
processes.

Mandatory locking is an enforced locking scheme that does not rely on the
participating processes to cooperate and/or follow the locking API. For example, if a
process P1 has taken a write lock on file F1 and if a different process P2 attempts to
issue a read/write system call (or any other file system operation) on file F1 , the
request is blocked because the concerned file is exclusively locked by process P1.

File Locking Support
Enabling the file locking mechanism helps applications to block files for various file
system operations.

The fcntl(), lockf(), and flock() system calls in UNIX and LINUX provide file locking
support. These system calls enable applications to use the file locking facility through
dbfs_client-FUSE callback interface. File Locks provided by fcntl() are widely
known as POSIX file locks and the file locks provided by flock() are known as BSD
file locks. The semantics and behavior of POSIX and BSD file locks differ from each
other. The locks placed on the same file through fcntl() and flock() are orthogonal
to each other. The semantics of file locking functionality designed and implemented in
DBFS is similar to POSIX file locks. In DBFS, semantics of file locks placed through
flock() system call will be similar to POSIX file locks (such as fcntl()) and not BSD
file locks. lockf() is a library call that is implemented as a wrapper over fcntl()
system call on most of the UNIX systems, and hence, it provides POSIX file locking
semantics. In DBFS, file locks placed through fcntl(), flock(), and lockf() system-
calls provide same kind of behavior and semantics of POSIX file locks.

Note:

BSD file locking semantics are not supported.

Chapter 21
Database File System (DBFS)— POSIX File Locking

21-8

Compatibility and Migration Factors of Database Filesystem—File
Locking

The Database Filesystem File Locking feature does not impact the compatibility of
DBFS and SFS store provider with RDBMS.

DBFS_CLIENT is a standalone OCI Client and uses OCI calls and DBMS_FUSE API.

Note:

This feature will be compatible with OraSDK/RSF .

Examples of Database Filesystem—File Locking

The following examples illustrate the advisory locking and the locking functions
available on UNIX based systems. The following example uses two running processes
— Process A and Process B.

Example 21-2 No locking

Process A opens file:

file_desc = open(“/path/to/file”, O_RDONLY);
/* Reads data into bufffers */
read(fd, buf1, sizeof(buf));
read(fd, buf2, sizeof(buf));
close(file_desc);

Subjected to OS scheduling, process B can enter any time and issue a write system
call affecting the integrity of file data.

Example 21-3 Advisory locking used but process B does not follow the
protocol

Process A opens file:

file_desc = open(“/path/to/file”, O_RDONLY);
ret = AcquireLock(file_desc, RD_LOCK);
if(ret)
{
 read(fd, buf1, sizeof(buf));
 read(fd, buf2, sizeof(buf));
 ReleaseLock(file_desc);
}
close(file_desc);

Subjected to OS scheduling, process B can come in any time and still issue a write
system call ignoring that process A already holds a read lock.

Chapter 21
Database File System (DBFS)— POSIX File Locking

21-9

Process B opens file:

file_desc1 = open(“/path/to/file”, O_WRONLY);
write(file_desc1, buf, sizeof(buf));
close(file_desc1);

The above code is executed and leads to inconsistent data in the file.

Example 21-4 Advisory locking used and processes are following the protocol

Process A opens file:

file_desc = open(“/path/to/file”, O_RDONLY);
ret = AcquireLock(file_desc, RD_LOCK);
if(ret)
{
 read(fd, buf1, sizeof(buf));
 read(fd, buf2, sizeof(buf));
 ReleaseLock(file_desc);
}
close(file_desc);

Process B opens file:

file_desc1 = open(“/path/to/file”, O_WRONLY);
ret = AcquireLock(file_desc1, WR_LOCK);
/* The above call will take care of checking the existence of a lock */
if(ret)
{
 write(file_desc1, buf, sizeof(buf));
 ReleaseLock(file_desc1);
} close(file_desc1);

Process B follows the lock API and this API makes sure that the process does not
write to the file without acquiring a lock.

File Locking Behavior

The DBFS File Locking feature exhibits the following behaviors:

• File locks in DBFS are implemented with idempotent functions. If a process issues
“N” read or write lock calls on the same file, only the first call will have an effect,
and the subsequent “N-1” calls will be treated as redundant and returns No
Operation (NOOP).

• File can be unlocked exactly once. If a process issues “N” unlock calls on the
same file, only the first call will have an effect, and the subsequent “N-1” calls will
be treated as redundant and returns NOOP.

• Lock conversion is supported only from read to write. If a process P holds a read
lock on file F (and P is the only process holding the read lock), then a write lock
request by P on file F will convert the read lock to exclusive/write lock.

Chapter 21
Database File System (DBFS)— POSIX File Locking

21-10

Scheduling File Locks

DBFS File Locking feature supports lock scheduling. This facility is implemented
purely on the DBFS client side. Lock request scheduling is required when client
application uses blocking call semantics in their fcntl(), lockf(), and flock() calls.

There are two types of scheduling:

• Greedy Scheduling

• Fair Scheduling

Oracle provides the following command line option to switch the scheduling behavior.

Mount -o lock_sched_option = lock_sched_option Value;

Table 21-1 lock_sched_option Value Description

Value Description

1 Sets the scheduling type to Greedy Scheduling. (Default)

2 Sets the scheduling type to Fair Scheduling.

Note:

Lock Request Scheduling works only on per DBFS Client mount basis. For
example, lock requests are not scheduled across multiple mounts of the
same file system.

Greedy Scheduling

In this scheduling technique, the file lock requests does not follow any guaranteed
order.

Note:

This is the default scheduling option provided by DBFS Client.

 If a file F is read locked by process P1, and if processes P2 and P3 submit blocking
write lock requests on file F, the processes P2 and P3 will be blocked (using a form of
spin lock) and made to wait for its turn to acquire the lock. During the wait, if a process
P4 submits a read lock request (blocking call or a non-blocking call) on file F, P4 will be
granted the read lock even if there are two processes (P2 and P3) waiting to acquire
the write lock. Once both P1 and P4 release their respective read locks, one of P2 and
P3 will succeed in acquiring the lock. But, the order in which processes P2 and P3
acquire the lock is not determined. It is possible that process P2 would have requested
first, but the process P3’s request might get unblocked and acquire the lock and the
process P2 must wait for P3 to release the lock.

Chapter 21
Database File System (DBFS)— POSIX File Locking

21-11

Fair Scheduling

This scheduling technique is implemented using a queuing mechanism on per file
basis. For example, if a file F is read locked by process P1, and processes P2 and P3
submit blocking write lock requests on file F, these two processes will be blocked
(using a form of spin lock) and will wait to acquire the lock. The requests will be
queued in the order received by the DBFS client. If a process P4 submits a read lock
request (blocking call or a non-blocking call) on file F, this request will be queued even
though a read lock can be granted to this process.

DBFS Client ensures that after P1 releases its read lock, the order in which lock
requests are honored is P2->P3 -> P4.

This implies that P2 will be the first one to get the lock. Once P2 releases its lock, P3
will get the lock and so on.

Chapter 21
Database File System (DBFS)— POSIX File Locking

21-12

22
DBFS Hierarchical Store

The DBFS Hierarchical Store and related store wallet management work together to
store less frequently used data.

Topics:

• About the Hierarchical Store Package_ DBMS_DBFS_HS

• Ways to Use DBFS Hierarchial Store

• Setting up the Store

• Using the Hierarchical Store

• Database File System Links

• The DBMS_DBFS_HS Package

• Views for DBFS Hierarchical Store

About the Hierarchical Store Package, DBMS_DBFS_HS
The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBMS_DBFS_CONTENT that supports hierarchical storage for DBFS content.

The package stores content in two external storage devices: tape and the Amazon S3
web service, and associated metadata (or properties) in the database. The DBFS HS
may cache frequently accessed content in database tables to improve performance.

Ways to Use DBFS Hierarchial Store
The DBMS_DBFS_HS package must be used in conjunction with the DBMS_DBFS_CONTENT
package to manage Hierarchical Storage Management for SecureFiles LOBs using
DBFS Links.

Using this package, data that is less frequently used can be migrated to a cheaper
external device such as tape, achieving significant reduction in storage costs.

The DBMS_DBFS_HS package can also be plugged into the DBMS_DBFS_CONTENT
package, as a store provider, to implement a tape file system, if the associated
external storage device is tape, or a cloud file system, if the associated external
storage device is the Amazon S3 storage service.

The DBMS_DBFS_HS package provides you the ability to use tape as a storage tier when
implementing Information Lifecycle Management (ILM) for database tables or content.
The package also supports other forms of storage targets including Web Services like
Amazon S3. This service enables users to store data in the database on tape and
other forms of storage. The data on tape or Amazon S3 is part of the Oracle Database
and all standard APIs can access it, but only through the database.

DBMS_DBFS_HS has additional interfaces needed to manage the external storage device
and the cache associated with each store.

22-1

To use the package DBMS_DBFS_HS, you must be granted the DBFS_ROLE role.

See Also:

Oracle Database PL/SQL Packages and Types Reference, for details of the
DBMS_DBFS_HS Package

Setting up the Store
You manage a Hierarchical Store wallet and set up, register, and mount a hierarchical
Store.

Topics:

• Managing a HS Store Wallet

• Creating_ Registering_ and Mounting the Store

Managing a HS Store Wallet
Use the command-line utility mkstore to create and manage wallets.

Use the following commands to create wallets:

• Create a wallet

mkstore -wrl wallet_location -create

• Add a KEY alias

Specify the access_key and secret_key aliases by enclosing them within single
quotes.

mkstore -wrl wallet_location -createCredential alias 'access_key' 'secret_key'

For example:

mkstore -wrl /home/user1/mywallet -createCredential mykey 'abc' 'xyz'

• Delete a KEY alias

mkstore -wrl wallet_location -deleteCredential alias

For example:

mkstore -wrl /home/user1/mywallet -deleteCredential mykey

See Also:

• Oracle Database Advanced Security Guide for more about creation and
management of wallets

Chapter 22
Setting up the Store

22-2

Creating, Registering, and Mounting the Store
Setting up a hierarchical file system store requires creating, registering, and mounting
the store.

Creating, registering, and mounting the store.

1. Call createStore.

DBMS_DBFS_HS.createStore(store_name, store_type, tbl_name, tbs_name,
cache_size, lob_cache_quota, optimal_tarball_size, schema_name);

2. Set mandatory and optional properties using the following interface:

DBMS_DBFS_HS.setStoreProperty(StoreName, PropertyName, PropertyValue);

For store_type = STORETYPE_TAPE, mandatory properties are:

PROPNAME_DEVICELIBRARY, PROPNAME_MEDIAPOOL, PROPNAME_CACHESIZE.

PROPNAME_CACHESIZE is already set by createStore.

You can change the value of PROPNAME_CACHESIZE using reconfigCache.

Optional properties are:

PROPNAME_OPTTARBALLSIZE, PROPNAME_READCHUNKSIZE, PROPNAME_WRITECHUNKSIZE,
PROPNAME_STREAMABLE.

For store_type = STORETYPE_AMAZONS3 mandatory properties are:

PROPNAME_DEVICELIBRARY, PROPNAME_CACHESIZE, PROPNAME_S3HOST,PROPNAME_BUCKET,
PROPNAME_LICENSEID, PROPNAME_WALLET.

PROPNAME_CACHESIZE is set by createStore. You can change the value of
PROPNAME_CACHESIZE using reconfigCache.

Optional properties are:

PROPNAME_OPTTARBALLSIZE, PROPNAME_READCHUNKSIZE, PROPNAME_WRITECHUNKSIZE,
PROPNAME_STREAMABLE, PROPNAME_HTTPPROXY.

3. Register the store with DBFS Content API using:

DBMS_DBFS_CONTENT.registerStore(store_name, provider_name, provider_package);

Note: provider_package is the dbms_dbfs_hs package.

4. Mount the stores for access using:

DBMS_DBFS_CONTENT.mountStore(store_name, store_mount, singleton,principal,
 owner, acl, asof, read_only);

Using the Hierarchical Store
The Hierarchical Store can be used as an independent file system or as an archive
solution for SecureFiles LOBs.

Topics:

• Using Hierarchical Store as a File System

Chapter 22
Using the Hierarchical Store

22-3

• Using Hierarchical Store as an Archive Solution For SecureFiles LOBs

• Dropping a Hierarchical Store

• Compression to Use with the Hierarchical Store

• Program Example Using Tape

• Program Example Using Amazon S3

Using Hierarchical Store as a File System
Use the DBMS_DBFS_CONTENT package to create, update, read, and delete file system
entries in the store.

See Also:

DBFS Content API

Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
Use the DBMS_LOB package to archive SecureFiles LOBs in a tape or S3 store.

The DBMS_LOB package archives SecureFiles LOBs in a tape or S3 store, as described
in "PL/SQL Packages for LOBs and DBFS".

To free space in the cache or to force cache resident contents to be written to external
storage device, call:

DBMS_DBFS_HS.storePush(store_name);

Dropping a Hierarchical Store
You can drop a hierarchical store.

To drop a hierarchical store, call:

DBMS_DBFS_HS.dropStore(store_name, opt_flags);

Compression to Use with the Hierarchical Store
The DBFS hierarchical store can store its files in compressed forms.

The DBFS hierarchical store has the ability to store its files in compressed form using
the SETPROPERTY method and the property PROPNAME_COMPRESSLVL to specify the
compression level.

Valid values are:

• PROPVAL_COMPLVL_NONE: No compression

• PROPVAL_COMPLVL_LOW: LOW compression

• PROPVAL_COMPLVL_MEDIUM: MEDIUM compression

• PROPVAL_COMPLVL_HIGH: HIGH compression

Chapter 22
Using the Hierarchical Store

22-4

Generally, the compression level LOW performs best and still provides a good
compression ratio. Compression levels MEDIUM and HIGH provide significantly better
compression ratios, but compression times can be correspondingly longer. Oracle
recommends using NONE or LOW when write performance is critical, such as when files
in the DBFS HS store are updated frequently. If space is critical and the best possible
compression ratio is desired, use MEDIUM or HIGH.

Files are compressed as they are paged out of the cache into the staging area (before
they are subsequently pushed into the back end tape or S3 storage). Therefore,
compression also benefits by storing smaller files in the staging area and effectively
increasing the total available capacity of the staging area.

Program Example Using Tape
This example program configures and uses a tape store.

In the example, you must substitute valid values in some places, as indicated by <...>,
for the program to run successfully.

See Also:

Oracle Database PL/SQL Packages and Types Reference DBMS_DBFS_HS
documentation for complete details about the methods and their parameters

Rem Example to configure and use a Tape store.
Rem
Rem hsuser should be a valid database user who has been granted
Rem the role dbfs_role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE_TAPE store with
Rem DBMS_DBFS_HS acting as the store provider.

declare
storename varchar2(32) ;
tblname varchar2(30) ;
tbsname varchar2(30) ;
lob_cache_quota number := 0.8 ;
cachesz number ;
ots number ;
begin
cachesz := 50 * 1048576 ;
ots := 1048576 ;
storename := 'tapestore10' ;
tblname := 'tapetbl10' ;
tbsname := '<TBS_3>' ; -- Substitute a valid tablespace name

-- Create the store.
-- Here tbsname is the tablespace used for the store,
-- tblname is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tablespace,
-- lob_cache_quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is minimum amount of content that is accumulated

Chapter 22
Using the Hierarchical Store

22-5

-- in level-2 cache before being stored on tape
dbms_dbfs_hs.createStore(
 storename,
 dbms_dbfs_hs.STORETYPE_TAPE,
 tblname, tbsname, cachesz,
 lob_cache_quota, ots) ;

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_SBTLIBRARY,
 '<ORACLE_HOME/work/libobkuniq.so>') ;
 -- Substitute your ORACLE_HOME path

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_MEDIAPOOL,
 '<0>') ; -- Substitute valid value

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_COMPRESSLEVEL,
 'NONE') ;

-- Please refer to DBMS_DBFS_CONTENT documentation
-- for details about this method
dbms_dbfs_content.registerstore(
 storename,
 'tapeprvder10',
 'dbms_dbfs_hs') ;

-- Please refer to DBMS_DBFS_CONTENT documentation
-- for details about this method
dbms_dbfs_content.mountstore(storename, 'tapemnt10') ;
end ;
/

Rem The following code block does file operations
Rem using DBMS_DBFS_CONTENT on the store configured
Rem in the previous code block

connect hsuser/hsuser

declare
 path varchar2(256) ;
 path_pre varchar2(256) ;
 mount_point varchar2(32) ;
 store_name varchar2(32) ;
 prop1 dbms_dbfs_content_properties_t ;
 prop2 dbms_dbfs_content_properties_t ;
 mycontent blob := empty_blob() ;
 buffer varchar2(1050) ;
 rawbuf raw(1050) ;
 outcontent blob := empty_blob() ;
 itemtype integer ;
 pflag integer ;
 filecnt integer ;
 iter integer ;
 offset integer ;
 rawlen integer ;
begin

Chapter 22
Using the Hierarchical Store

22-6

 mount_point := '/tapemnt10' ;
 store_name := 'tapestore10' ;
 path_pre := mount_point ||'/file' ;

-- We create 10 empty files in the following loop
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 mycontent := empty_blob() ;
 prop1 := null ;

 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.createFile(
 path, prop1, mycontent) ; -- Create the file

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- We populate the newly created files with content
 -- in the following loop
 pflag := dbms_dbfs_content.prop_data +
 dbms_dbfs_content.prop_std +
 dbms_dbfs_content.prop_opt ;

 buffer := 'Oracle provides an integrated management ' ||
 'solution for managing Oracle database with '||
 'a unique top-down application management ' ||
 'approach. With new self-managing ' ||
 'capabilities, Oracle eliminates time-' ||
 'consuming, error-prone administrative ' ||
 'tasks, so database administrators can ' ||
 'focus on strategic business objectives ' ||
 'instead of performance and availability ' ||
 'fire drills. Oracle Management Packs for ' ||
 'Database provide signifiCant cost and time-'||
 'saving capabilities for managing Oracle ' ||
 'Databases. Independent studies demonstrate '||
 'that Oracle Database is 40 percent easier ' ||
 'to manage over DB2 and 38 percent over ' ||
 'SQL Server.';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;
 offset := 1 ;
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 prop1 := null;

 -- Append buffer to file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.putpath(
 path, prop1, rawlen,
 offset, rawbuf) ;

Chapter 22
Using the Hierarchical Store

22-7

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Clear out level 1 cache
 dbms_dbfs_hs.flushCache(store_name) ;
 commit ;

 -- Do write operation on even-numbered files.
 -- Do read operation on odd-numbered files.
 filecnt := 0 ;
 loop
 exit when filecnt = 10;
 path := path_pre || to_char(filecnt) ;
 if mod(filecnt, 2) = 0 then
 -- Get writable file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype,
 pflag, null, true) ;

 buffer := 'Agile businesses want to be able to ' ||
 'quickly adopt new technologies, whether '||
 'operating systems, servers, or ' ||
 'software, to help them stay ahead of ' ||
 'the competition. However, change often ' ||
 'introduces a period of instability into '||
 'mission-critical IT systems. Oracle ' ||
 'Real Application Testing-with Oracle ' ||
 'Database 11g Enterprise Edition-allows ' ||
 'businesses to quickly adopt new ' ||
 'technologies while eliminating the ' ||
 'risks associated with change. Oracle ' ||
 'Real Application Testing combines a ' ||
 'workload capture and replay feature ' ||
 'with an SQL performance analyzer to ' ||
 'help you test changes against real-life '||
 'workloads, and then helps you fine-tune '||
 'the changes before putting them into' ||
 'production. Oracle Real Application ' ||
 'Testing supports older versions of ' ||
 'Oracle Database, so customers running ' ||
 'Oracle Database 9i and Oracle Database ' ||
 '10g can use it to accelerate their ' ||
 'database upgrades. ';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;

 -- Modify file content
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_lob.write(outcontent, rawlen, 10, rawbuf);
 commit ;
 else
 -- Read the file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype, pflag) ;

Chapter 22
Using the Hierarchical Store

22-8

 end if ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Delete the first 2 files
 filecnt := 0;

 loop
 exit when filecnt = 2 ;
 path := path_pre || to_char(filecnt) ;
 -- Delete file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.deleteFile(path) ;
 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Move content staged in database to the tape store
 dbms_dbfs_hs.storePush(store_name) ;
 commit ;

end ;
/

Program Example Using Amazon S3
This example program configures and uses an Amazon S3 store.

Valid values must be substituted in some places, indicated by <...>, for the program to
run successfully.

See Also:

Oracle Database PL/SQL Packages and Types Reference DBMS_DBFS_HS
documentation for complete details about the methods and their parameters

Rem Example to configure and use an Amazon S3 store.
Rem
Rem hsuser should be a valid database user who has been granted
Rem the role dbfs_role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE_AMAZONS3 store with
Rem DBMS_DBFS_HS acting as the store provider.

declare
storename varchar2(32) ;
tblname varchar2(30) ;
tbsname varchar2(30) ;
lob_cache_quota number := 0.8 ;
cachesz number ;
ots number ;
begin
cachesz := 50 * 1048576 ;

Chapter 22
Using the Hierarchical Store

22-9

ots := 1048576 ;
storename := 's3store10' ;
tblname := 's3tbl10' ;
tbsname := '<TBS_3>' ; -- Substitute a valid tablespace name

-- Create the store.
-- Here tbsname is the tablespace used for the store,
-- tblname is the table holding all the store entities,
-- cachesz is the space used by the store to cache content
-- in the tablespace,
-- lob_cache_quota is the fraction of cachesz allocated
-- to level-1 cache and
-- ots is minimum amount of content that is accumulated
-- in level-2 cache before being stored in AmazonS3
dbms_dbfs_hs.createStore(
 storename,
 dbms_dbfs_hs.STORETYPE_AMAZONS3,
 tblname, tbsname, cachesz,
 lob_cache_quota, ots) ;

dbms_dbfs_hs.setstoreproperty(storename,
 dbms_dbfs_hs.PROPNAME_SBTLIBRARY,
 '<ORACLE_HOME/work/libosbws11.so>');
 -- Substitute your ORACLE_HOME path

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_S3HOST,
 's3.amazonaws.com') ;

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_BUCKET,
 'oras3bucket10') ;

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_WALLET,
 'LOCATION=file:<ORACLE_HOME>/work/wlt CREDENTIAL_ALIAS=a_key') ;
 -- Substitute your ORACLE_HOME path

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_LICENSEID,
 '<xxxxxxxxxxxxxxxx>') ; -- Substitute a valid SBT license id

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_HTTPPROXY,
 '<http://www-proxy.mycompany.com:80/>') ;
 -- Substitute valid value. If a proxy is not used,
 -- then this property need not be set.

dbms_dbfs_hs.setstoreproperty(
 storename,
 dbms_dbfs_hs.PROPNAME_COMPRESSLEVEL,
 'NONE') ;

dbms_dbfs_hs.createbucket(storename) ;

-- Please refer to DBMS_DBFS_CONTENT documentation

Chapter 22
Using the Hierarchical Store

22-10

-- for details about this method
dbms_dbfs_content.registerstore(
 storename,
 's3prvder10',
 'dbms_dbfs_hs') ;

-- Please refer to DBMS_DBFS_CONTENT documentation
-- for details about this method
dbms_dbfs_content.mountstore(
 storename,
 's3mnt10') ;
end ;
/

Rem The following code block does file operations
Rem using DBMS_DBFS_CONTENT on the store configured
Rem in the previous code block

connect hsuser/hsuser

declare
path varchar2(256) ;
path_pre varchar2(256) ;
mount_point varchar2(32) ;
store_name varchar2(32) ;
prop1 dbms_dbfs_content_properties_t ;
prop2 dbms_dbfs_content_properties_t ;
mycontent blob := empty_blob() ;
buffer varchar2(1050) ;
rawbuf raw(1050) ;
outcontent blob := empty_blob() ;
itemtype integer ;
pflag integer ;
filecnt integer ;
iter integer ;
offset integer ;
rawlen integer ;
begin

 mount_point := '/s3mnt10' ;
 store_name := 's3store10' ;
 path_pre := mount_point ||'/file' ;

 -- We create 10 empty files in the following loop
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 mycontent := empty_blob() ;
 prop1 := null ;

 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.createFile(
 path, prop1, mycontent) ; -- Create the file

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- We populate the newly created files with content

Chapter 22
Using the Hierarchical Store

22-11

 -- in the following loop
 pflag := dbms_dbfs_content.prop_data +
 dbms_dbfs_content.prop_std +
 dbms_dbfs_content.prop_opt ;

 buffer := 'Oracle provides an integrated management ' ||
 'solution for managing Oracle database with '||
 'a unique top-down application management ' ||
 'approach. With new self-managing ' ||
 'capabilities, Oracle eliminates time-' ||
 'consuming, error-prone administrative ' ||
 'tasks, so database administrators can ' ||
 'focus on strategic business objectives ' ||
 'instead of performance and availability ' ||
 'fire drills. Oracle Management Packs for ' ||
 'Database provide signifiCant cost and time-'||
 'saving capabilities for managing Oracle ' ||
 'Databases. Independent studies demonstrate '||
 'that Oracle Database is 40 percent easier ' ||
 'to manage over DB2 and 38 percent over ' ||
 'SQL Server.';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;
 offset := 1 ;
 filecnt := 0 ;
 loop
 exit when filecnt = 10 ;
 path := path_pre || to_char(filecnt) ;
 prop1 := null;

 -- Append buffer to file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.putpath(
 path, prop1, rawlen,
 offset, rawbuf) ;

 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Clear out level 1 cache
 dbms_dbfs_hs.flushCache(store_name) ;
 commit ;

 -- Do write operation on even-numbered files.
 -- Do read operation on odd-numbered files.
 filecnt := 0 ;
 loop
 exit when filecnt = 10;
 path := path_pre || to_char(filecnt) ;
 if mod(filecnt, 2) = 0 then
 -- Get writable file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype,
 pflag, null, true) ;

 buffer := 'Agile businesses want to be able to ' ||

Chapter 22
Using the Hierarchical Store

22-12

 'quickly adopt new technologies, whether '||
 'operating systems, servers, or ' ||
 'software, to help them stay ahead of ' ||
 'the competition. However, change often ' ||
 'introduces a period of instability into '||
 'mission-critical IT systems. Oracle ' ||
 'Real Application Testing-with Oracle ' ||
 'Database 11g Enterprise Edition-allows ' ||
 'businesses to quickly adopt new ' ||
 'technologies while eliminating the ' ||
 'risks associated with change. Oracle ' ||
 'Real Application Testing combines a ' ||
 'workload capture and replay feature ' ||
 'with an SQL performance analyzer to ' ||
 'help you test changes against real-life '||
 'workloads, and then helps you fine-tune '||
 'the changes before putting them into' ||
 'production. Oracle Real Application ' ||
 'Testing supports older versions of ' ||
 'Oracle Database, so customers running ' ||
 'Oracle Database 9i and Oracle Database ' ||
 '10g can use it to accelerate their ' ||
 'database upgrades. ';

 rawbuf := utl_raw.cast_to_raw(buffer) ;
 rawlen := utl_raw.length(rawbuf) ;

 -- Modify file content
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_lob.write(outcontent, rawlen, 10, rawbuf);
 commit ;
 else
 -- Read the file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.getPath(
 path, prop2, outcontent, itemtype, pflag) ;
 end if ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Delete the first 2 files
 filecnt := 0;

 loop
 exit when filecnt = 2 ;
 path := path_pre || to_char(filecnt) ;
 -- Delete file
 -- Please refer to DBMS_DBFS_CONTENT documentation
 -- for details about this method
 dbms_dbfs_content.deleteFile(path) ;
 commit ;
 filecnt := filecnt + 1 ;
 end loop ;

 -- Move content staged in database to Amazon S3 store
 dbms_dbfs_hs.storePush(store_name) ;
 commit ;

Chapter 22
Using the Hierarchical Store

22-13

end ;
/

Database File System Links
Database File System Links allow for storing SecureFiles LOBs in a different location
than usual.

Topics:

• About Database File System Links

• Ways to Create Database File System Links

• Database File System Links Copy

• Copying a Linked LOB Between Tables

• Online Redefinition and DBFS Links

• Transparent Read

About Database File System Links
DBFS Links allows storing SecureFiles LOBs transparently in a location separate from
the segment where the LOB is normally stored. Instead, you store a link to the LOB in
the segment.

The link in the segment must reference a path that uses DBFS to locate the LOB when
accessed. This means that the LOB could be stored on another file system, on a tape
system, in the cloud, or any other location that can be accessed using DBFS.

When a user or application tries to access a SecureFiles LOB that has been stored
outside the segment using a DBFS Link, the behavior can vary depending on the
attempted operation and the characteristics of the DBFS store that holds the LOB:

• Read:

If the LOB is not already cached in a local area in the database, then it can be
read directly from the DBFS content store that holds it, if the content store allows
streaming access based on the setting of the PROPNAME_STREAMABLE parameter. If
the content store does not allow streaming access, then the entire LOB will first be
read into a local area in the database, where it will be stored for a period of time
for future access.

• Write:

If the LOB is not already cached in a local area in the database, then it will first be
read into the database, modified as needed, and then written back to the DBFS
content store defined in the DBFS Link for the LOB in question.

• Delete:

When a SecureFiles LOB that is stored through a DBFS Link is deleted, the DBFS
Link is deleted from the table, but the LOB itself is NOT deleted from the DBFS
content store. Or it is more complex, based on the characteristics/settings, of the
DBFS content store in question.

DBFS Links enable the use of SecureFiles LOBs to implement Hierarchical Storage
Management (HSM) in conjunction with the DBFS Hierarchical Store (DBFS HS). HSM

Chapter 22
Database File System Links

22-14

is a process by which the database moves rarely used or unused data from faster,
more expensive, and smaller storage to slower, cheaper, and higher capacity storage.

Figure 22-1 Database File System Link

Cloud�
Storage

LOB

Content�
API

LOB

SecureFiles LOB column

/table1/lob1

/table1

OR OR

DBFS Link

Ways to Create Database File System Links
Database File System Links require the creation of a Database File System through
the use of the DBFS Content package, DBMS_DBFS_CONTENT.

Oracle provides several methods for creating a DBFS Link:

• Move SecureFiles LOB data into a specified DBFS pathname and store the
reference to the new location in the LOB.

Call DBMS_LOB.MOVE_TO_DBFS_LINK()with LOB and DBFS path name arguments,
and the system creates the specified DBFS HSM Store if it does not exist, copies
data from the SecureFiles LOB into the specified DBFS HSM Store, removes data
from the SecureFiles LOB, and stores the file path name for subsequent access
through this LOB.

• Copy or create a reference to an existing file.

Chapter 22
Database File System Links

22-15

Call DBMS_LOB.COPY_DBFS_LINK() to copy a link from an existing DBFS Link. If
there is any data in the destination SecureFiles LOB, the system removes this
data and stores a copy of the reference to the link in the destination SecureFiles
LOB.

• Call DBMS_LOB.SET_DBFS_LINK(), which assumes that the data for the link is stored
in the specified DBFS path name.

The system removes data in the specified SecureFiles LOB and stores the link to
the DBFS path name.

Creating a DBFS Link impacts which operations may be performed and how. Any
DBMS_LOB operations that modify the contents of a LOB will throw an exception if the
underlying LOB has been moved into a DBFS Link. The application must explicitly
replace the DBFS Link with a LOB by calling DBMS_LOB.COPY_FROM_LINK() before
making these calls.

When it is completed, the application can move the updated LOB back to DBFS using
DBMS_LOB.MOVE_TO_DBFS_LINK(), if needed. Other DBMS_LOB operations that existed
before Oracle Database 11g Release 2 work transparently if the DBFS Link is in a file
system that supports streaming. Note that these operations fail if streaming is either
not supported or disabled.

If the DBFS Link file is modified through DBFS interfaces directly, the change is
reflected in subsequent reads of the SecureFiles LOB. If the file is deleted through
DBFS interfaces, then an exception occurs on subsequent reads.

For the database, it is also possible that a DBA may not want to store all of the data
stored in a SecureFiles LOB HSM during export and import. Oracle has the ability to
export and import only the Database File System Links. The links are fully qualified
identifiers that provide access to the stored data, when entered into a SecureFiles
LOB or registered on a SecureFiles LOB in a different database. This ability to export
and import a link is similar to the common file system functionality of symbolic links.

The newly imported link is only available as long as the source, the stored data, is
available, or until the first retrieval occurs on the imported system. The application is
responsible for stored data retention. If the application system removes data from the
store that still has a reference to it, the database throws an exception when the
referencing SecureFiles LOB(s) attempt to access the data. Oracle also supports
continuing to keep the data in the database after migration out to a DBFS store as a
cached copy. It is up to the application to purge these copies in compliance with its
retention policies.

Database File System Links Copy
The API DBMS_LOB.COPY_DBFS_LINK(DSTLOB, SRCLOB, FLAGS) provides the ability to
copy a linked SecureFiles LOB.

sBy default, the LOB is not obtained from the DBFS HSM Store during this operation;
this is a copy-by-reference operation that exports the DBFS path name (at source
side) and imports it (at destination side). The flags argument can dictate that the
destination has a local copy in the database and references the LOB data in the DBFS
HSM Store.

Chapter 22
Database File System Links

22-16

Copying a Linked LOB Between Tables
You can copy DBFS links from source tables to destination tables.

Use the following code to copy any DBFS Links that are stored in any SecureFiles
LOBs in the source table to the destination table.

CREATE TABLE ... AS SELECT (CTAS) and INSERT TABLE ... AS SELECT (ITAS)

Online Redefinition and DBFS Links
Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in
the table being redefined.

Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in
the table being redefined.

Transparent Read
DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in
the database.

You can read data from the content store where the data is currently stored and
stream that data back to the user application as if it were being read from the
SecureFiles LOB segment. This allows seamless access to the DBFS Linked data
without the prerequisite first call to DBMS_LOB.COPY_FROM_DBFS_LINK().

Whether or not transparent read is available for a particular SecureFiles LOB is
determined by the DBFS_CONTENT store where the data resides. This feature is always
enabled for DBFS_SFS stores, and by default for DBFS_HS stores. To disable transparent
read for DBFS_HS store, set the PROPNAME_STREAMABLE parameter to FALSE.

See Also:

Oracle Database PL/SQL Packages and Types Reference

The DBMS_DBFS_HS Package
The DBMS_DBFS_HS package is a service provider that enables use of tape or Amazon
S3 Web service as storage for data.

Topics:

• Constants for DBMS_DBFS_HS Package

• Methods for DBMS_DBFS_HS Package

Constants for DBMS_DBFS_HS Package
The DBMS_DBFS_HS PL/SQL package constants are very detailed.

Chapter 22
The DBMS_DBFS_HS Package

22-17

See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of
constants used by DBMS_DBFS_HS PL/SQL package

Methods for DBMS_DBFS_HS Package
There are many methods in the DBMS_DBFS_HSpackage.

Table 22-1 summarizes the DBMS_DBFS_HS PL/SQL package methods.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Table 22-1 Methods of the DBMS_DBFS_HS PL/SQL Packages

Method Description

CLEANUPUNUSEDBACKUPFIL
ES

Removes files that are created on the external storage device if
they have no current content.

Oracle Database PL/SQL Packages and Types Reference

CREATEBUCKET Creates an AWS bucket, for use with the STORETYPE_AMAZON3
store.

Oracle Database PL/SQL Packages and Types Reference

CREATESTORE Creates a DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

DEREGSTORECOMMAND Removes a command (message) that was associated with a
store.

Oracle Database PL/SQL Packages and Types Reference

DROPSTORE Deletes a previously created DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

FLUSHCACHE Flushes out level 1 cache to level 2 cache, increasing space in
level 1.

Oracle Database PL/SQL Packages and Types Reference

GETSTOREPROPERTY Retrieves the values of a property of a store in the database.

Oracle Database PL/SQL Packages and Types Reference

RECONFIGCACHE Reconfigures the parameters of the database cache used by the
store.

Oracle Database PL/SQL Packages and Types Reference

REGISTERSTORECOMMAND Registers commands (messages) for a store so they are sent to
the Media Manager of an external storage device.

Oracle Database PL/SQL Packages and Types Reference .

SENDCOMMAND Sends a command (message) to the Media Manager of an
external storage device.

Oracle Database PL/SQL Packages and Types Reference

Chapter 22
The DBMS_DBFS_HS Package

22-18

Table 22-1 (Cont.) Methods of the DBMS_DBFS_HS PL/SQL Packages

Method Description

SETSTOREPROPERTY Associates name/value properties with a registered Hierarchical
Store.

Oracle Database PL/SQL Packages and Types Reference

STOREPUSH Pushes locally cached data to an archive store.

Oracle Database PL/SQL Packages and Types Reference

Views for DBFS Hierarchical Store
The BFS Hierarchical Stores have several types of views.

There are several types of view for DBFS Hierarchical Stores.

See Also:

Oracle Database Reference for the columns and data types of these views

Topics:

• DBA Views

• User Views

DBA Views
There are several views available for DBFS Hierarchical Store.

These views for DBFS Hierarchical Store are available:

• DBA_DBFS_HS

This view shows all Database File System (DBFS) hierarchical stores

• DBA_DBFS_HS_PROPERTIES

This view shows modifiable properties of all Database File System (DBFS)
hierarchical stores.

• DBA_DBFS_HS_FIXED_PROPERTIES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores.

• DBA_DBFS_HS_COMMANDS

This view shows all the registered store commands for all Database File System
(DBFS) hierarchical stores.

Chapter 22
Views for DBFS Hierarchical Store

22-19

User Views
There are several views available for the DBFS Hierarchical Store.

• USER_DBFS_HS

This view shows all Database File System (DBFS) hierarchical stores owned by
the current user.

• USER_DBFS_HS_PROPERTIES

This view shows modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

• USER_DBFS_HS_FIXED_PROPERTIES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

• USER_DBFS_HS_COMMANDS

This view shows all the registered store commands for all Database File system
(DBFS) hierarchical stores owned by current user.

• USER_DBFS_HS_FILES

This view shows files in the Database File System (DBFS) hierarchical store
owned by the current user and their location on the backend device.

Chapter 22
Views for DBFS Hierarchical Store

22-20

23
DBFS Content API

You can enable applications to use the Database File System (DBFS) in several
different programming environments.

Topics:

• Overview of DBFS Content API

• Stores and DBFS Content API

• Getting Started with DBMS_DBFS_CONTENT Package

• Administrative and Query APIs

• Querying DBFS Content API Space Usage

• DBFS Content API Session Defaults

• DBFS Content API Interface Versioning

• Notes on DBFS Content API Path Names

• DBFS Content API Creation Operations

• DBFS Content API Deletion Operations

• DBFS Content API Path Get and Put Operations

• DBFS Content API Rename and Move Operations

• Directory Listings

• DBFS Content API Directory Navigation and Search

• DBFS Content API Locking Operations

• DBFS Content API Access Checks

• DBFS Content API Abstract Operations

• DBFS Content API Path Normalization

• DBFS Content API Statistics Support

• DBFS Content API Tracing Support

• Resource and Property Views

Overview of DBFS Content API
You can enable applications to use DBFS using the DBFS Content API
(DBMS_DBFS_CONTENT), which is a client-side programmatic API package.

You can write applications in SQL, PL/SQL, JDBC, OCI, and other programming
environments.

The DBFS Content API is a collection of methods that provide a file system-like
abstraction. It is backed by one or more DBFS Store Providers. The Content in the
DBFS Content interface refers to a file, including metadata, and it can either map to a

23-1

SecureFiles LOB (and other columns) in a table or be dynamically created by user-
written plug-ins in Java or PL/SQL that run inside the database. The plug-in form is
referred to as a provider.

Note:

The DBFS Content API includes the SecureFiles Store Provider,
DBMS_DBFS_SFS, a default implementation that enables applications that
already use LOBs as columns in their schema, to access the LOB columns as
files.

See Also:

DBFS SecureFiles Store

Examples of possible providers include:

• Packaged applications that want to surface data through files.

• Custom applications developers use to leverage the file system interface, such as
an application that stores medical images.

Stores and DBFS Content API
The DBFS Content API takes the common features of various stores and forms them
into a simple interface that can be used to build portable client applications, while
allowing different stores to implement the set of features they choose.

The DBFS Content API aggregates the path namespace of one or more stores into a
single unified namespace, using the first component of the path name to disambiguate
the namespace and then presents it to client applications. This allows clients to access
the underlying documents using either a full absolute path name represented by a
single string, in this form:

/store-name/store-specific-path-name

or a store-qualified path name as a string 2-tuple, in this form:

["store-name","/store-specific-path-name"]

The DBFS Content API then takes care of correctly dispatching various operations on
path names to the appropriate stores and integrating the results back into the client-
desired namespace.

Store providers must conform to the store provider interface (SPI) as declared by the
package DBMS_DBFS_CONTENT_SPI.

• Creating Your Own DBFS Store

• Oracle Database PL/SQL Packages and Types Reference for DBMS_DBFS_CONTENT
package syntax reference

Chapter 23
Stores and DBFS Content API

23-2

Getting Started with DBMS_DBFS_CONTENT Package
DBMS_DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 11g
Release 2, and does not need to be installed.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information

DBFS Content API Role
Access to the content operational and administrative API (packages, types, tables, and
so on) is available through DBFS_ROLE.

The DBFS_ROLE can be granted to all users as needed.

Path Name Constants and Types
Path name constants are modeled after their SecureFiles LOBs store counterparts.

See Also:

Oracle Database PL/SQL Packages and Types Reference for path name
constants and their types

Path Properties
Every path name in a store is associated with a set of properties.

For simplicity and generality, each property is identified by a string name, has a string
value (possibly null if not set or undefined or unsupported by a specific store
implementation), and a value typecode, a numeric discriminant for the actual type of
value held in the value string.

Coercing property values to strings has the advantage of making the various interfaces
uniform and compact (and can even simplify implementation of the underlying stores),
but has the potential for information loss during conversions to and from strings.

It is expected that clients and stores use well-defined database conventions for these
conversions and use the typecode field as appropriate.

PL/SQL types path_t and name_t are portable aliases for strings that can represent
pathnames and component names,

A typecode is a numeric value representing the true type of a string-coerced property
value. Simple scalar types (numbers, dates, timestamps, etc.) can be depended on by
clients and must be implemented by stores.

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

23-3

Since standard RDBMS typecodes are positive integers, the DBMS_DBFS_CONTENT
interface allows negative integers to represent client-defined types by negative
typecodes. These typecodes do not conflict with standard typecodes, are maintained
persistently and returned to the client as needed, but need not be interpreted by the
DBFS content API or any particular store. Portable client applications should not use
user-defined typecodes as a back door way of passing information to specific stores.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and properties and the
DBMS_DBFS_CONTENT_PROPERTY_T package

Content IDs
Content IDs are unique identifiers that represent a path in the store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT Content ID constants and properties

Path Name Types
Stores can store and provide access to four types of entities.

The four types of entities are: type_file, type_directory, type_directory, and
type_reference.

Not all stores must implement all directories, links, or references.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and path name types

Store Features
In order to provide a common programmatic interface to as many different types of
stores as possible, the DBFS Content API leaves some of the behavior of various
operations to individual store providers to define and implement.

The DBFS Content API remains rich and conducive to portable applications by
allowing different store providers (and different stores) to describe themselves as a
feature set. A feature set is a bit mask indicating which features they support and
which ones they do not. With this, it is possible, although tricky, for client applications

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

23-4

to compensate for the feature deficiencies of specific stores by implementing
additional logic on the client side, and deferring complex operations to stores capable
of supporting them.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
store features and constants

Lock Types
Stores that support locking should implement three types of locks.

The three types of locks are: lock_read_only, lock_write_only, lock_read_write.

User locks (any of these types) can be associated with user-supplied lock_data. The
store does not interpret the data, but client applications can use it for their own
purposes (for example, the user data could indicate the time at which the lock was
placed, and the client application might use this later to control its actions.

In the simplest locking model, a lock_read_only prevents all explicit modifications to a
path name (but allows implicit modifications and changes to parent/child path names).
A lock_write_only prevents all explicit reads to the path name, but allows implicit
reads and reads to parent/child path names. A lock_read_write allows both.

All locks are associated with a principal user who performs the locking operation;
stores that support locking are expected to preserve this information and use it to
perform read/write lock checking (see opt_locker).

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
lock types and constants.

Standard Properties
Standard properties are well-defined, mandatory properties associated with all content
path names, which all stores must support, in the manner described by the DBFS
Content API. Stores created against tables with a fixed schema may choose
reasonable defaults for as many of these properties as needed, and so on.

All standard properties informally use the std namespace. Clients and stores should
avoid using this namespace to define their own properties to prevent conflicts in the
future.

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

23-5

See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of
the standard properties and constants

Optional Properties
Optional properties are well-defined but non-mandatory properties associated with all
content path names that all stores are free to support (but only in the manner
described by the DBFS Content API).

Clients should be prepared to deal with stores that support none of the optional
properties.

All optional properties informally use the opt namespace. Clients and stores must
avoid using this namespace to define their own properties to prevent conflicts in the
future.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
optional properties and constants

User-Defined Properties
You can define your own properties for use in your application.

Ensure that the namespace prefixes do not conflict with each other or with the DBFS
standard or optional properties.

Property Access Flags
DBFS Content API methods to get and set properties can use combinations of
property access flags to fetch properties from different namespaces in a single API
call.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
property access flags and constants

Exceptions
DBFS Content API operations can raise any one of the top-level exceptions.

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

23-6

Clients can program against these specific exceptions in their error handlers without
worrying about the specific store implementations of the underlying error signalling
code.

Store service providers, should try to trap and wrap any internal exceptions into one of
the exception types, as appropriate.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
Exceptions

Property Bundles
Property bundles are discussed as property_t record type and properties_t.

• The property_t record type describes a single (value, typecode) property value
tuple; the property name is implied.

• properties_t is a name-indexed hash table of property tuples. The implicit hash-
table association between the index and the value allows the client to build up the
full dbms_dbfs_content_property_t tuples for a properties_t.

There is an approximate correspondence between dbms_dbfs_content_property_t
and property_t. The former is a SQL object type that describes the full property tuple,
while the latter is a PL/SQL record type that describes only the property value
component.

There is an approximate correspondence between dbms_dbfs_content_properties_t
and properties_t. The former is a SQL nested table type, while the latter is a PL/SQL
hash table type.

Dynamic SQL calling conventions force the use of SQL types, but PL/SQL code may
be implemented more conveniently in terms of the hash-table types.

DBFS Content API provides convenient utility functions to convert between
dbms_dbfs_content_properties_t and properties_t.

The function DBMS_DBFS_CONTENT.PROPERTIEST2H converts a
DBMS_DBFS_CONTENT_PROPERTIES_T value to an equivalent properties_t value, and
the function DBMS_DBFS_CONTENT.PROPERTIESH2T converts a properties_t value to an
equivalent DBMS_DBFS_CONTENT_PROPERTIES_T value.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
PROPERTY_T record type

Store Descriptors
Store descriptors are discussed as store_t and mount_t records.

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

23-7

• A store_t is a record that describes a store registered with, and managed by the
DBFS Content API .

• A mount_t is a record that describes a store mount point and its properties.

Clients can query the DBFS Content API for the list of available stores, determine
which store handles accesses to a given path name, and determine the feature set for
the store.

See Also:

• Administrative and Query APIs

• Oracle Database PL/SQL Packages and Types Reference for details of
the STORE_T record type

Administrative and Query APIs
Administrative clients and content providers are expected to register content stores
with the DBFS Content API. Additionally, administrative clients are expected to mount
stores into the top-level namespace of their choice.

The registration and unregistration of a store is separated from the mount and
unmount of a store because it is possible for the same store to be mounted multiple
times at different mount points (and this is under client control).

See Also:

Oracle Database PL/SQL Packages and Types Reference for the summary
of DBMS_DBFS_CONTENT package methods

This section covers the following topics:

• Registering a Content Store

• Unregistering a Content Store

• Mounting a Registered Store

• Unmounting a Previously Mounted Store

• Listing all Available Stores and Their Features

• Listing all Available Mount Points

• Looking Up Specific Stores and Their Features

Registering a Content Store
You can register a new store that is backed by a provider that uses the
provider_package procedure as the store service provider. The method of registration
conforms to the DBMS_DBFS_CONTENT_SPI package signature.

Chapter 23
Administrative and Query APIs

23-8

• Use the REGISTERSTORE() procedure.

This method is designed for use by service providers after they have created a new
store. Store names must be unique.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
REGISTERSTORE() method

Unregistering a Content Store
You can unregister a previously registered store, which invalidates all mount points
associated with it. Once the store is unregistered, access to the store and its mount
points is no longer guaranteed, although a consistent read may provide a temporary
illusion of continued access.

• Use the UNREGISTERSTORE() procedure.

If the ignore_unknown argument is true, attempts to unregister unknown stores do not
raise an exception.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNREGISTERSTORE() method

Mounting a Registered Store
You can mount a registered store and bind it to the mount point.

• Use the MOUNTSTORE()procedure.

After you mount the store, access to the path names in the form /store_mount/xyz is
redirected to store_name and its content provider.

Store mount points must be unique, and a syntactically valid path name component
(that is, a name_t with no embedded /).

If you do not specify a mount point and therefore, it is null, the DBFS Content API
attempts to use the store name itself as the mount point name (subject to the
uniqueness and syntactic constraints).

A special empty mount point is available for single stores, that is in a scenario where
the DBFS Content API manages a single back-end store. Then, the client can directly
deal with full path names of the form /xyz because there is no ambiguity in how to
redirect these accesses.

The same store can be mounted multiple times, obviously at different mount points.

Chapter 23
Administrative and Query APIs

23-9

You can use mount properties to specify the DBFS Content API execution
environment, that is, the default values of the principal, owner, ACL, and asof, for a
particular mount point. You can also use mount properties to specify a read-only store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
MOUNTSTORE() method

Unmounting a Previously Mounted Store
You can unmount a previously mounted store, either by name or by mount point. You
can only unmount single stores by store name because they have no mount points.
Attempting to unmount a store by name unmounts all mount points associated with the
store.

• Use the UNMOUNTSTORE() procedure.

Once unmounted, access to the store or mount-point is no longer guaranteed to work
although a consistent read may provide a temporary illusion of continued access. If the
ignore_unknown argument is true, attempts to unregister unknown stores or mounts
does not raise an exception.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNMOUNTSTORE method

Listing all Available Stores and Their Features
You can list all the available stores. The store_mount field of the returned records is
set to null because mount points are separate from stores themselves.

• Use the LISTSTORES() function.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LISTSTORES Function

Listing all Available Mount Points
You can list all available mount points, their backing stores, and the store features. A
single mount returns a single row, with the store_mount field set to null.

• Use the LISTMOUNTS() function.

Chapter 23
Administrative and Query APIs

23-10

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LISTMOUNTS() method

Looking Up Specific Stores and Their Features
You can look up the path name, store name, or mount point of a store.

• Use GETSTOREBYXXX() or GETFEATUREBYXXX() functions.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

Querying DBFS Content API Space Usage
You can query file system space usage statistics.

Providers are expected to support this method for their stores and to make a best
effort determination of space usage, especially if the store consists of multiple tables,
indexes, LOBs, and so on.

• Use the SPACEUSAGE() method

where:

• blksize is the natural tablespace block size that holds the store; if multiple
tablespaces with different block sizes are used, any valid block size is acceptable.

• tbytes is the total size of the store in bytes, and fbytes is the free or unused size
of the store in bytes. These values are computed over all segments that comprise
the store.

• nfile, ndir, nlink, and nref count the number of currently available files,
directories, links, and references in the store.

Database objects can grow dynamically, so it is not easy to estimate the division
between free space and used space.

A space usage query on the top level root directory returns a combined summary of
the space usage of all available distinct stores under it. If the same store is mounted
multiple times, it is counted only once.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
SPACEUSAGE() method

Chapter 23
Querying DBFS Content API Space Usage

23-11

DBFS Content API Session Defaults
Normal client access to the DBFS Content API executes with an implicit context that
consists of certain objects.

• The principal invoking the current operation.

• The owner for all new elements created (implicitly or explicitly) by the current
operation.

• The ACL for all new elements created (implicitly or explicitly) by the current
operation.

• The ASOF timestamp at which the underlying read-only operation (or its read-only
sub-components) execute.

All of this information can be passed in explicitly through arguments to the various
DBFS Content API method calls, allowing the client fine-grained control over individual
operations.

The DBFS Content API also allows clients to set session duration defaults for the
context that are automatically inherited by all operations for which the defaults are not
explicitly overridden.

All of the context defaults start out as null and can be cleared by setting them to null.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Interface Versioning
To allow for the DBFS Content API itself to evolve, an internal numeric API version
increases with each change to the public API.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
GETVERSION() method

Notes on DBFS Content API Path Names
Clients of the DBFS Content API refer to store items through absolute path names.

Absolute path names may be:

• fully qualified (a single string of the form /mount_point/pathname)

Chapter 23
DBFS Content API Session Defaults

23-12

• store-qualified (a tuple of the form (store_name, pathname), where the path name
is rooted within the store namespace)

Clients may use either naming scheme and can use both naming methods within their
programs.

If path names are returned by DBFS Content API calls, the exact values being
returned depend on the naming scheme used by the client in the call. For example, a
listing or search on a fully qualified directory name returns items with their fully
qualified path names, while a listing or search on a store-qualified directory name
returns items whose path names are store-specific, and the store-qualification is
implied.

The implementation of the DBFS Content API internally manages the normalization
and inter-conversion between these two naming schemes.

DBFS Content API Creation Operations
You must implement the provider SPI so that when clients invoke the DBFS Content
API, it causes the SPI to create directory, file, link, and reference elements (subject to
store feature support).

All of the creation methods require a valid path name and can optionally specify
properties to be associated with the path name as it is created. It is also possible for
clients to fetch back item properties after the creation completes, so that automatically
generated properties, such as std_creation_time, are immediately available to
clients. The exact set of properties fetched back is controlled by the various prop_xxx
bit masks in prop_flags.

Links and references require an additional path name associated with the primary path
name. File path names can optionally specify a BLOB value to initially populate the
underlying file content, and the provided BLOB may be any valid LOB, either temporary
or permanent. On creation, the underlying LOB is returned to the client if prop_data is
specified in prop_flags.

Non-directory path names require that their parent directory be created first. Directory
path names themselves can be recursively created. This means that the path name
hierarchy leading up to a directory can be created in one call.

Attempts to create paths that already exist produce an error, except for path names
that are soft-deleted. In these cases, the soft-deleted item is implicitly purged, and the
new item creation is attempted.

Stores and their providers that support contentID-based access accept an explicit
store name and a NULL path to create a new content element. The contentID
generated for this element is available by means of the OPT_CONTENT_ID property. The
PROP_OPT property in the prop_flags parameter automatically implies contentID-based
creation.

The newly created element may also have an internally generated path name if the
FEATURE_LAZY_PATH property is not supported and this path is available by way of the
STD_CANONICAL_PATH property.

Only file elements are candidates for contentID-based access.

Chapter 23
DBFS Content API Creation Operations

23-13

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_DBFS_CONTENT() methods, DBMS_DBFS_CONTENT()Constants -
Optional Properties, and DBMS_DBFS_CONTENT Constants - Standard
Properties

DBFS Content API Deletion Operations
You must implement the provider SPI so that when clients invoke the DBFS Content
API, it causes the SPI to delete directory, file, link, and reference elements (subject to
store feature support).

By default, the deletions are permanent, and remove successfully deleted items on
transaction commit. However, repositories may also support soft-delete features. If
requested by the client, soft-deleted items are retained by the store. They are not,
however, typically visible in normal listings or searches. Soft-deleted items may be
restored or explicitly purged.

Directory path names may be recursively deleted; the path name hierarchy below a
directory may be deleted in one call. Non-recursive deletions can be performed only
on empty directories. Recursive soft-deletions apply the soft-delete to all of the items
being deleted.

Individual path names or all soft-deleted path names under a directory may be
restored or purged using the RESTOREXXX() and PURGEXXX() methods.

Providers that support filtering can use the provider filter to identify subsets of items to
delete; this makes most sense for bulk operations such as deleteDirectory(),
RESTOREALL(), and PURGEALL(), but all of the deletion-related operations accept a filter
argument.

Stores and their providers that support contentID-based access can also allow deleting
file items by specifying their contentID.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT() methods

DBFS Content API Path Get and Put Operations
You can query existing path items or update them using simple GETXXX() and
PUTXXX() methods.

All path names allow their metadata to be read and modified. On completion of the
call, the client can request that specific properties be fetched through prop_flags.

Chapter 23
DBFS Content API Deletion Operations

23-14

File path names allow their data to be read and modified. On completion of the call,
the client can request a new BLOB locator through the prop_data bit masks in
prop_flags; these may be used to continue data access.

Files can also be read and written without using BLOB locators, by explicitly specifying
logical offsets, buffer amounts, and a suitably sized buffer.

Update accesses must specify the forUpdate flag. Access to link path names may be
implicitly and internally dereferenced by stores, subject to feature support, if the deref
flag is specified. Oracle does not recommend this practice because symbolic links are
not guaranteed to resolve.

The read method GETPATH() where forUpdate is false accepts a valid asof
timestamp parameter that can be used by stores to implement flashback-style queries.

Mutating versions of the GETPATH() and the PUTPATH() methods do not support asof
modes of operation.

The DBFS Content API does not have an explicit COPY() operation because a copy is
easily implemented as a combination of a GETPATH() followed by a CREATEXXX() with
appropriate data or metadata transfer across the calls. This allows copies across
stores, while an internalized copy operation cannot provide this facility.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Rename and Move Operations
You can rename or move path names, possibly across directory hierarchies and
mount points, but only within the same store.

Non-directory path names previously accessible by oldPath can be renamed as a
single item subsequently accessible by newPath, assuming that newPath does not
exist.

If newPath exists and is not a directory, the rename implicitly deletes the existing item
before renaming oldPath. If newPath exists and is a directory, oldPath is moved into
the target directory.

Directory path names previously accessible by oldPath can be renamed by moving
the directory and all of its children to newPath (if it does not exist) or as children of
newPath (if it exists and is a directory).

Because the semantics of rename and move is complex with respect to non-existent
or existent and non-directory or directory targets, clients may choose to implement
complex rename and move operations as sequences of simpler moves or copies.

Stores and their providers that support contentID-based access and lazy path name
binding also support the Oracle Database PL/SQL Packages and Types Reference
SETPATH procedure that associates an existing contentID with a new "path".

Chapter 23
DBFS Content API Rename and Move Operations

23-15

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT.RENAMEPATH() methods

Directory Listings
Directory listings are handled several different ways.

• A list_item_t is a tuple of path name, component name, and type representing a
single element in a directory listing.

• A path_item_t is a tuple describing a store, mount qualified path in a content
store, with all standard and optional properties associated with it.

• A prop_item_t is a tuple describing a store, mount qualified path in a content
store, with all user-defined properties associated with it, expanded out into
individual tuples of name, value, and type.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of data
structures

DBFS Content API Directory Navigation and Search
Clients of the DBFS Content API can list or search the contents of directory path
names, with optional modes.

Optional Modes:

• searching recursively in sub-directories

• seeing soft-deleted items

• using flashback asof a provided timestamp

• filtering items in and out within the store based on list or search predicates.

The DBFS Content API currently only returns list items; clients explicitly use one of the
getPath() methods to access the properties or content associated with an item, as
appropriate.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

Chapter 23
Directory Listings

23-16

DBFS Content API Locking Operations
DBFS Content API clients can apply user-level locks,depending on certain criteria.

Clients of the DBFS Content API can apply user-level locks to any valid path name,
subject to store feature support, associate the lock with user data, and subsequently
unlock these path names. The status of locked items is available through various
optional properties.

If a store supports user-defined lock checking, it is responsible for ensuring that lock
and unlock operations are performed in a consistent manner.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Access Checks
The DBFS Content API checks the access of specific path names by operations.

Function CHECKACCESS() checks if a given path name (path, pathtype, store_name)
can be manipulated by an operation, such as the various op_xxx opcodes) by
principal, as described in "DBFS Content API Locking Operations"

This is a convenience function for the client; a store that supports access control still
internally performs these checks to guarantee security.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Abstract Operations
All of the operations in the DBFS Content API are represented as abstract opcodes.

Clients can useopcodes to directly and explicitly invoke the CHECKACCESS() method
which verifies if a particular operation can be invoked by a given principal on a
particular path name.

An op_acl() is an implicit operation invoked during an op_create() or op_put() call,
which specifies a std_acl property. The operation tests to see if the principal is
allowed to set or change the ACL of a store item.

op_delete() represents the soft-deletion, purge, and restore operations.

Chapter 23
DBFS Content API Locking Operations

23-17

The source and destination operations of a rename or move operation are separated,
although stores are free to unify these opcodes and to also treat a rename as a
combination of delete and create.

op_store is a catch-all category for miscellaneous store operations that do not fall
under any of the other operational APIs.

See Also:

• DBFS Content API Access Checks

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_DBFS_CONTENT Constants - Operation Codes.

DBFS Content API Path Normalization
There is a process for performing API path normalization.

Function NORMALIZEPATH() performs the following steps:

1. Verifies that the path name is absolute (starts with a /).

2. Collapses multiple consecutive /s into a single /.

3. Strips trailing /s.

4. Breaks store-specific normalized path names into two components: the parent
path name and the trailing component name.

5. Breaks fully qualified normalized path names into three components: store name,
parent path name, and trailing component name.

Note that the root path / is special: its parent path name is also /, and its component
name is null. In fully qualified mode, it has a null store name unless a singleton
mount has been created, in which case the appropriate store name is returned.

The return value is always the completely normalized store-specific or fully qualified
path name.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT.RENAMEPATH() methods

DBFS Content API Statistics Support
DBFS provides support to reduce the expense of collecting DBFS Content API
statistics.

DBFS Content API statistics are expensive to collect and maintain persistently. DBFS
has support for buffering statistics in memory for a maximum of flush_time

Chapter 23
DBFS Content API Path Normalization

23-18

centiseconds or a maximum of flush_count operations, whichever limit is reached
first), at which time the buffers are implicitly flushed to disk.

Clients can also explicitly invoke a flush using flushStats. An implicit flush also
occurs when statistics collection is disabled.

setStats is used to enable and disable statistics collection; the client can optionally
control the flush settings by specifying non-null values for the time and count
parameters.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Tracing Support
Any DBFS Content API user (both clients and providers) can use DBFS Content API
tracing, a generic tracing facility.

The DBFS Content API dispatcher itself uses the tracing facility.

Trace information is written to the foreground trace file, with varying levels of detail as
specified by the trace level arguments. The global trace level consists of two
components: severity and detail. These can be thought of as additive bit masks.

The severity component allows the separation of top-level as compared to low-level
tracing of different components, and allows the amount of tracing to be increased as
needed. There are no semantics associated with different levels, and users are free to
set the trace level at any severity they choose, although a good rule of thumb would be
to use severity 1 for top-level API entry and exit traces, severity 2 for internal
operations, and severity 3 or greater for very low-level traces.

The detail component controls how much additional information the trace reports with
each trace record: timestamps, short-stack, and so on.

See Also:

• Example 23-1 for more information about how to enable tracing using the
DBFS Content APIs.

• Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_DBFS_CONTENT methods

Example 23-1 DBFS Content Tracing

function getTrace
 return integer;
 procedure setTrace(
 trclvl in integer);
 function traceEnabled(
 sev in integer)

Chapter 23
DBFS Content API Tracing Support

23-19

 return integer;
 procedure trace(
 sev in integer,
 msg0 in varchar2,
 msg1 in varchar default '',
 msg2 in varchar default '',
 msg3 in varchar default '',
 msg4 in varchar default '',
 msg5 in varchar default '',
 msg6 in varchar default '',
 msg7 in varchar default '',
 msg8 in varchar default '',
 msg9 in varchar default '',
 msg10 in varchar default '');

Resource and Property Views
You can see descriptions of Content API structure and properties in certain views.

Certain views describe the structure and properties of Content API.

See Also:

• Oracle Database Reference for more information about DBFS_CONTENT
views

• Oracle Database Reference for more information about
DBFS_CONTENT_PROPERTIES views

Chapter 23
Resource and Property Views

23-20

24
Creating Your Own DBFS Store

You can create your own DBFS Store using DBFS Content SPI
(DBMS_DBFS_CONTENT_SPI).

Topics:

• Overview of DBFS Store Creation and Use

• DBFS Content Store Provider Interface (DBFS Content SPI)

• Creating a Custom Provider

Overview of DBFS Store Creation and Use
In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBMS_DBFS_CONTENT_SPI). It is the basis for existing stores such as the DBFS
SecureFiles Store and the DFFS Hierarchical Store, as well as any user-defined DBFS
stores that you create.

Client-side applications, such the PL/SQL interface, invoke functions and procedures
in the DBFS Content API. The DBFS Content API then invokes corresponding
subprograms in the DBFS Content SPI to create stores and perform other related
functions.

Once you create your DBFS store, you run it much the same way that you would a
SecureFiles Store.

See Also:

• DBFS Content API

• DBFS SecureFiles Store

24-1

Figure 24-1 Database File System (DBFS)

DatabaseDBFS Content API

Cloud�
Storage

DBFS�
SecureFile�

Store

DBFS�
Hierarchical�

Store

DBFS Content SPI

User�
Defined�
Store

File System�
Mount�

Interface

DBFS�
Command�

Line Interface�
Client

DBFS�
PL/SQL�
Client PL/SQL�

LOB�
Interface

Java�
LOB�

Interface

OCI�
LOB�

Interface

DBFS�
Links

DBFS Content Store Provider Interface (DBFS Content SPI)
The DBFS Content SPI (Store Provider Interface) is a specification only and has no
package body.

You must implement the package body in order to respond to calls from the DBFS
Content API. In other words, DBFS Content SPI is a collection of required program
specifications which you must implement using the method signatures and semantics
indicated.

You may add additional functions and procedures to the DBFS Content SPI package
body as needed. Your implementation may implement other methods and expose
other interfaces, but the DBFS Content API will not use these interfaces.

Chapter 24
DBFS Content Store Provider Interface (DBFS Content SPI)

24-2

The DBFS Content SPI references various elements such as constants, types, and
exceptions defined by the DBFS Content API (package DBMS_DBFS_CONTENT).

Note that all path name references must be store-qualified, that is, the notion of mount
points and full absolute path names has been normalized and converted to store-
qualified path names by the DBFS Content API before it invokes any of the Provider
SPI methods.

Because the DBFS Content API and Provider SPI is a one-to-many pluggable
architecture, the DBFS Content API uses dynamic SQL to invoke methods in the
Provider SPI; this may lead to run time errors if your Provider SPI implementation does
not follow the Provider SPI specification in this document.

There are no explicit initial or final methods to indicate when the DBFS Content API
plugs and unplugs a particular Provider SPI. Provider SPIs must be able to auto-
initialize themselves at any SPI entry wpoint.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for syntax of
the DBMS_DBFS_CONTENT_SPI package

• See the file $ORACLE_HOME/rdbms/admin/dbmscapi.sql for more
information

Creating a Custom Provider
You can use this example store provider for DBFS, TaBleFileSystem Store Provider
("tbfs"), as a skeleton for custom providers or as a learning tool, to become familiar
with the DBFS and its SPI.

This example store provider for DBFS, exposes a relational table containing a BLOB
column as a flat, non-hierarchical filesystem, that is, a collection of named files.

To use this example, it is assumed that you have installed the Oracle Database 12c
and are familiar with DBFS concepts, and have installed and used dbfs_client and
FUSE to mount and access filesystems backed by the standard SFS store provider.

The TaBleFileSystem Store Provider ("tbfs") does not aim to be feature-rich or even
complete, it does however provide a sufficient demonstration of what it takes for users
of DBFS to write their own custom providers that expose their table(s) through
dbfs_client to traditional filesystem programs.

Topics:

• Mechanics

• TBFS.SQL

• TBL.SQL

• spec.sql

• body.sql

• capi.sql

Chapter 24
Creating a Custom Provider

24-3

Mechanics
These are the mechanics of the example store provider for DBFS, TaBleFileSystem
Store Provider ("tbfs").

Topics:

• Installation and Setup

• TBFS Use

• TBFS Internals

Installation and Setup
You will need certain files for installation and setup of the DBFS TaBleFileSystem
Store Provider ("tbfs").

The TBFS consists of the following SQL files:

tbfs.sql top-level driver script

tbl.sql script to create a test user, tablespace, the table backing the filesystem,
and so on.

spec.sql the SPI specification of the tbfs

body.sql the SPI implementation of the tbfs

capi.sql DBFS register/mount script

To install the TBFS, just run tbfs.sql as SYSDBA, in the directory that contains all of
the above files. tbfs.sql will load the other SQL files in the proper sequence.

Ignoring any name conflicts, all of the SQL files should load without any compilation
errors. All SQL files should also load without any run time errors, depending on the
value of the "plsql_warnings" init.ora parameter, you may see various innocuous
warnings.

If there are any name conflicts (tablespace name TBFS, datafile name"tbfs.f", user
name TBFS, package name TBFS), the appropriate references in the various SQL
files must be changed consistently.

TBFS Use
Once the example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs") is
installed, files can be added or removed in several different ways and other changes
can be made to the TBFS.

A dbfs_client connected as user TBFS will see a simple, non-hierarchical, filesystem
backed by an RDBMS table (TBFS.TBFST).

Files can be added or removed from this filesystem through SQL (that is, through DML
on the underlying table), through Unix utilities (mediated by dbfs_client), or through
PL/SQL (using the DBFS APIs).

Chapter 24
Creating a Custom Provider

24-4

Changes to the filesystem made through any of the access methods will be visible, in
a transactionally consistent manner (that is, at commit/rollback boundaries) to all of the
other access methods.

TBFS Internals
The TBFS is simple because its primary purpose is to serve as a teaching and
learning example.

However, the implementation shows the path towards a robust, production-quality
custom SPI that can plug into the DBFS, and expose existing relational data as Unix
filesystems.

The TBFS makes various simplifications in order to remain concise (however, these
should not be taken as inviolable limitations of DBFS or the SPI):

• The TBFS SPI package handles only a single table with a hard-coded name
(TBFS.TBFST). It is possible to use dynamic SQL and additional configuration
information to have a single SPI package support multiple tables, each as a
separate filesystem (or even to unify data in multiple tables into a single
filesystem).

• The TBFS does not support filesystem hierarchies; it imposes a flat namespace: a
collection of files, identified by a simple item name, under a virtual "/" root
directory. Implementing directory hierarchies is significantly more complex
because it requires the store provider to manage parent/child relationships in a
consistent manner.

Moreover, existing relational data (the kind of data that TBFS is attempting to
expose as a filesystem) does not typically have inter-row relationships that form a
natural directory/file hierarchy.

• Because the TBFS supports only a flat namespace, most methods in the SPI are
unimplemented, and the method bodies raise a
dbms_dbfs_content.unsupported_operation exception. This exception is also a
good starting point for you to write your own custom SPI. You can start with a
simple SPI skeleton cloned from the DBMS_DBFS_CONTENT_SPI package, default all
method bodies to ones that raise this exception, and subsequently fill in more
realistic implementations incrementally.

• The table underlying the TBFS is close to being the simplest possible structure (a
key/name column and a LOB column). This means that various properties used or
expected by DBFS and dbfs_client must be generated dynamically (the TBFS
implementation shows how this is done for the std:guid property).

Other properties (such as Unix-style timestamps) are not implemented at all. This
still allows a surprisingly functional filesystem to be implemented, but when you
write your own custom SPIs, you can easily incorporate support for additional
DBFS properties by expanding the structure of their underlying table(s) to include
additional columns as needed, or by using existing columns in their existing tables
to provide the values for these DBFS properties.

• The TBFS does not implement a rename/move method; adding support for this (a
suitable UPDATE statement in the renamePath method) is left as an exercise for the
user.

• The TBFS example uses the string "tbfs" in multiple places (tablespace, datafile,
user, package, and even filesystem name). All these uses of "tbfs" belong in
different namespaces—identifying which namespace corresponds to a specific

Chapter 24
Creating a Custom Provider

24-5

occurrence of the string. "tbfs" in these examples is also a good learning exercise
to make sure that the DBFS concepts are clear in your mind.

TBFS.SQL
The TBFS.SQL script is the top level driver script.

The TBFS.SQL script:

set echo on;

@tbl
@spec
@body
@capi

quit;

TBL.SQL
The TBL.SQL script creates a test user, a tablespace, the table that backs the
filesystem and so on.

The TBL.SQL script :

connect / as sysdba

create tablespace tbfs datafile 'tbfs.f' size 100m
 reuse autoextend on
 extent management local
 segment space management auto;

create user tbfs identified by tbfs;
alter user tbfs default tablespace tbfs;
grant connect, resource, dbfs_role to tbfs;

connect tbfs/tbfs;

drop table tbfst;
purge recyclebin;

create table tbfst(
 key varchar2(256)
 primary key
 check (instr(key, '/') = 0),
 data blob)
 tablespace tbfs
 lob(data)
 store as securefile
 (tablespace tbfs);

grant select on tbfst to dbfs_role;
grant insert on tbfst to dbfs_role;
grant delete on tbfst to dbfs_role;
grant update on tbfst to dbfs_role;

Chapter 24
Creating a Custom Provider

24-6

spec.sql
The spec.sql script provide the SPI specification of the tbfs.

The spec.sql script:

connect / as sysdba;

create or replace package tbfs
 authid current_user
as

 /*
 * Lookup store features (see dbms_dbfs_content.feature_XXX). Lookup
 * store id.
 *
 * A store ID identifies a provider-specific store, across
 * registrations and mounts, but independent of changes to the store
 * contents.
 *
 * I.e. changes to the store table(s) should be reflected in the
 * store ID, but re-initialization of the same store table(s) should
 * preserve the store ID.
 *
 * Providers should also return a "version" (either specific to a
 * provider package, or to an individual store) based on a standard
 * <a.b.c> naming convention (for <major>, <minor>, and <patch>
 * components).
 *
 */

 function getFeatures(
 store_name in varchar2)
 return integer;

 function getStoreId(
 store_name in varchar2)
 return number;

 function getVersion(
 store_name in varchar2)
 return varchar2;

 /*
 * Lookup pathnames by (store_name, std_guid) or (store_mount,
 * std_guid) tuples.
 *
 * If the underlying "std_guid" is found in the underlying store,
 * this function returns the store-qualified pathname.
 *
 * If the "std_guid" is unknown, a "null" value is returned. Clients
 * are expected to handle this as appropriate.
 *
 */

 function getPathByStoreId(

Chapter 24
Creating a Custom Provider

24-7

 store_name in varchar2,
 guid in integer)
 return varchar2;

 /*
 * DBFS SPI: space usage.
 *
 * Clients can query filesystem space usage statistics via the
 * "spaceUsage()" method. Providers are expected to support this
 * method for their stores (and to make a best effort determination
 * of space usage---esp. if the store consists of multiple
 * tables/indexes/lobs, etc.).
 *
 * "blksize" is the natural tablespace blocksize that holds the
 * store---if multiple tablespaces with different blocksizes are
 * used, any valid blocksize is acceptable.
 *
 * "tbytes" is the total size of the store in bytes, and "fbytes" is
 * the free/unused size of the store in bytes. These values are
 * computed over all segments that comprise the store.
 *
 * "nfile", "ndir", "nlink", and "nref" count the number of
 * currently available files, directories, links, and references in
 * the store.
 *
 * Since database objects are dynamically growable, it is not easy
 * to estimate the division between "free" space and "used" space.
 *
 */

 procedure spaceUsage(
 store_name in varchar2,
 blksize out integer,
 tbytes out integer,
 fbytes out integer,
 nfile out integer,
 ndir out integer,
 nlink out integer,
 nref out integer);

 /*
 * DBFS SPI: notes on pathnames.
 *
 * All pathnames used in the SPI are store-qualified, i.e. a 2-tuple
 * of the form (store_name, pathname) (where the pathname is rooted
 * within the store namespace).
 *
 *
 * Stores/providers that support contentID-based access (see
 * "feature_content_id") also support a form of addressing that is
 * not based on pathnames. Items are identified by an explicit store
 * name, a "null" pathname, and possibly a contentID specified as a
 * parameter or via the "opt_content_id" property.
 *
 * Not all operations are supported with contentID-based access, and
 * applications should depend only on the simplest create/delete
 * functionality being available.

Chapter 24
Creating a Custom Provider

24-8

 *
 */

 /*
 * DBFS SPI: creation operations
 *
 * The SPI must allow the DBFS API to create directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * All of the creation methods require a valid pathname (see the
 * special exemption for contentID-based access below), and can
 * optionally specify properties to be associated with the pathname
 * as it is created. It is also possible for clients to fetch-back
 * item properties after the creation completes (so that
 * automatically generated properties (e.g. "std_creation_time") are
 * immediately available to clients (the exact set of properties
 * fetched back is controlled by the various "prop_xxx" bitmasks in
 * "prop_flags").
 *
 *
 * Links and references require an additional pathname to associate
 * with the primary pathname.
 *
 * File pathnames can optionally specify a BLOB value to use to
 * initially populate the underlying file content (the provided BLOB
 * may be any valid lob: temporary or permanent). On creation, the
 * underlying lob is returned to the client (if "prop_data" is
 * specified in "prop_flags").
 *
 * Non-directory pathnames require that their parent directory be
 * created first. Directory pathnames themselves can be recursively
 * created (i.e. the pathname hierarchy leading up to a directory
 * can be created in one call).
 *
 *
 * Attempts to create paths that already exist is an error; the one
 * exception is pathnames that are "soft-deleted" (see below for
 * delete operations)---in these cases, the soft-deleted item is
 * implicitly purged, and the new item creation is attempted.
 *
 *
 * Stores/providers that support contentID-based access accept an
 * explicit store name and a "null" path to create a new element.
 * The contentID generated for this element is available via the
 * "opt_content_id" property (contentID-based creation automatically
 * implies "prop_opt" in "prop_flags").
 *
 * The newly created element may also have an internally generated
 * pathname (if "feature_lazy_path" is not supported) and this path
 * is available via the "std_canonical_path" property.
 *
 * Only file elements are candidates for contentID-based access.
 *
 */

 procedure createFile(
 store_name in varchar2,
 path in varchar2,

Chapter 24
Creating a Custom Provider

24-9

 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure createLink(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure createReference(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure createDirectory(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: deletion operations
 *
 * The SPI must allow the DBFS API to delete directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * By default, the deletions are "permanent" (get rid of the
 * successfully deleted items on transaction commit), but stores may
 * also support "soft-delete" features. If requested by the client,
 * soft-deleted items are retained by the store (but not typically
 * visible in normal listings or searches).
 *
 * Soft-deleted items can be "restore"d, or explicitly purged.
 *
 *
 * Directory pathnames can be recursively deleted (i.e. the pathname
 * hierarchy below a directory can be deleted in one call).
 * Non-recursive deletions can be performed only on empty
 * directories. Recursive soft-deletions apply the soft-delete to
 * all of the items being deleted.
 *
 *
 * Individual pathnames (or all soft-deleted pathnames under a
 * directory) can be restored or purged via the restore and purge
 * methods.
 *
 *
 * Providers that support filtering can use the provider "filter" to
 * identify subsets of items to delete---this makes most sense for

Chapter 24
Creating a Custom Provider

24-10

 * bulk operations (deleteDirectory, restoreAll, purgeAll), but all
 * of the deletion-related operations accept a "filter" argument.
 *
 *
 * Stores/providers that support contentID-based access can also
 * allow file items to be deleted by specifying their contentID.
 *
 */

 procedure deleteFile(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure deleteContent(
 store_name in varchar2,
 contentID in raw,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure deleteDirectory(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure restorePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure purgePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure restoreAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure purgeAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: path get/put operations.
 *
 * Existing path items can be accessed (for query or for update) and

Chapter 24
Creating a Custom Provider

24-11

 * modified via simple get/put methods.
 *
 * All pathnames allow their metadata (i.e. properties) to be
 * read/modified. On completion of the call, the client can request
 * (via "prop_flags") specific properties to be fetched as well.
 *
 * File pathnames allow their data (i.e. content) to be
 * read/modified. On completion of the call, the client can request
 * (via the "prop_data" bitmaks in "prop_flags") a new BLOB locator
 * that can be used to continue data access.
 *
 * Files can also be read/written without using BLOB locators, by
 * explicitly specifying logical offsets/buffer-amounts and a
 * suitably sized buffer.
 *
 *
 * Update accesses must specify the "forUpdate" flag. Access to link
 * pathnames can be implicitly and internally deferenced by stores
 * (subject to feature support) if the "deref" flag is
 * specified---however, this is dangerous since symbolic links are
 * not always resolvable.
 *
 *
 * The read methods (i.e. "getPath" where "forUpdate" is "false"
 * also accepts a valid "asof" timestamp parameter that can be used
 * by stores to implement "as of" style flashback queries. Mutating
 * versions of the "getPath" and the "putPath" methods do not
 * support as-of modes of operation.
 *
 *
 * "getPathNowait" implies a "forUpdate", and, if implemented (see
 * "feature_nowait"), allows providers to return an exception
 * (ORA-54) rather than wait for row locks.
 *
 */

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 forUpdate in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure getPathNowait(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,

Chapter 24
Creating a Custom Provider

24-12

 amount in out number,
 offset in number,
 buffer out nocopy raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,
 offset in number,
 buffers out nocopy dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in number,
 offset in number,
 buffer in raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 written out number,
 offset in number,
 buffers in dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: rename/move operations.
 *
 * Pathnames can be renamed or moved, possibly across directory
 * hierarchies and mount-points, but within the same store.
 *
 *
 * Non-directory pathnames previously accessible via "oldPath" are
 * renamed as a single item subsequently accessible via "newPath";
 * assuming that "newPath" does not already exist.
 *
 * If "newPath" exists and is not a directory, the rename implicitly
 * deletes the existing item before renaming "oldPath". If "newPath"
 * exists and is a directory, "oldPath" is moved into the target

Chapter 24
Creating a Custom Provider

24-13

 * directory.
 *
 *
 * Directory pathnames previously accessible via "oldPath" are
 * renamed by moving the directory and all of its children to
 * "newPath" (if it does not already exist) or as children of
 * "newPath" (if it exists and is a directory).
 *
 *
 * Stores/providers that support contentID-based access and lazy
 * pathname binding also support the "setPath" method that
 * associates an existing "contentID" with a new "path".
 *
 */

 procedure renamePath(
 store_name in varchar2,
 oldPath in varchar2,
 newPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t);

 procedure setPath(
 store_name in varchar2,
 contentID in raw,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: directory navigation and search.
 *
 * The DBFS API can list or search the contents of directory
 * pathnames, optionally recursing into sub-directories, optionally
 * seeing soft-deleted items, optionally using flashback "as of" a
 * provided timestamp, and optionally filtering items in/out within
 * the store based on list/search predicates.
 *
 */

 function list(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined;

 function search(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined;

Chapter 24
Creating a Custom Provider

24-14

 /*
 * DBFS SPI: locking operations.
 *
 * Clients of the DBFS API can apply user-level locks to any valid
 * pathname (subject to store feature support), associate the lock
 * with user-data, and subsequently unlock these pathnames.
 *
 * The status of locked items is available via various optional
 * properties (see "opt_lock*" above).
 *
 *
 * It is the responsibility of the store (assuming it supports
 * user-defined lock checking) to ensure that lock/unlock operations
 * are performed in a consistent manner.
 *
 */

 procedure lockPath(
 store_name in varchar2,
 path in varchar2,
 lock_type in integer,
 lock_data in varchar2,
 ctx in dbms_dbfs_content_context_t);

 procedure unlockPath(
 store_name in varchar2,
 path in varchar2,
 ctx in dbms_dbfs_content_context_t);

 /*
 * DBFS SPI: access checks.
 *
 * Check if a given pathname (store_name, path, pathtype) can be
 * manipulated by "operation (see the various
 * "dbms_dbfs_content.op_xxx" opcodes) by "principal".
 *
 * This is a convenience function for the DBFS API; a store that
 * supports access control still internally performs these checks to
 * guarantee security.
 *
 */

 function checkAccess(
 store_name in varchar2,
 path in varchar2,
 pathtype in integer,
 operation in varchar2,
 principal in varchar2)
 return integer;
end;
/
show errors;

create or replace public synonym tbfs
 for sys.tbfs;

grant execute on tbfs
 to dbfs_role;

Chapter 24
Creating a Custom Provider

24-15

body.sql
The body.sql script provides the SPI implementation of the tbfs.

The body.sql script:

connect / as sysdba;

create or replace package body tbfs
as

 /*
 * Lookup store features (see dbms_dbfs_content.feature_XXX). Lookup
 * store id.
 *
 * A store ID identifies a provider-specific store, across
 * registrations and mounts, but independent of changes to the store
 * contents.
 *
 * I.e. changes to the store table(s) should be reflected in the
 * store ID, but re-initialization of the same store table(s) should
 * preserve the store ID.
 *
 * Providers should also return a "version" (either specific to a
 * provider package, or to an individual store) based on a standard
 * <a.b.c> naming convention (for <major>, <minor>, and <patch>
 * components).
 *
 */

 function getFeatures(
 store_name in varchar2)
 return integer
 is
 begin
 return dbms_dbfs_content.feature_locator;
 end;

 function getStoreId(
 store_name in varchar2)
 return number
 is
 begin
 return 1;
 end;

 function getVersion(
 store_name in varchar2)
 return varchar2
 is
 begin
 return '1.0.0';
 end;

 /*
 * Lookup pathnames by (store_name, std_guid) or (store_mount,

Chapter 24
Creating a Custom Provider

24-16

 * std_guid) tuples.
 *
 * If the underlying "std_guid" is found in the underlying store,
 * this function returns the store-qualified pathname.
 *
 * If the "std_guid" is unknown, a "null" value is returned. Clients
 * are expected to handle this as appropriate.
 *
 */

 function getPathByStoreId(
 store_name in varchar2,
 guid in integer)
 return varchar2
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: space usage.
 *
 * Clients can query filesystem space usage statistics via the
 * "spaceUsage()" method. Providers are expected to support this
 * method for their stores (and to make a best effort determination
 * of space usage---esp. if the store consists of multiple
 * tables/indexes/lobs, etc.).
 *
 * "blksize" is the natural tablespace blocksize that holds the
 * store---if multiple tablespaces with different blocksizes are
 * used, any valid blocksize is acceptable.
 *
 * "tbytes" is the total size of the store in bytes, and "fbytes" is
 * the free/unused size of the store in bytes. These values are
 * computed over all segments that comprise the store.
 *
 * "nfile", "ndir", "nlink", and "nref" count the number of
 * currently available files, directories, links, and references in
 * the store.
 *
 * Since database objects are dynamically growable, it is not easy
 * to estimate the division between "free" space and "used" space.
 *
 */

 procedure spaceUsage(
 store_name in varchar2,
 blksize out integer,
 tbytes out integer,
 fbytes out integer,
 nfile out integer,
 ndir out integer,
 nlink out integer,
 nref out integer)
 is
 nblks number;
 begin
 select count(*) into nfile
 from tbfs.tbfst;

Chapter 24
Creating a Custom Provider

24-17

 ndir := 0;
 nlink := 0;
 nref := 0;

 select sum(bytes) into tbytes
 from user_segments;
 select sum(blocks) into nblks
 from user_segments;
 blksize := tbytes/nblks;
 fbytes := 0; /* change as needed */
 end;

 /*
 * DBFS SPI: notes on pathnames.
 *
 * All pathnames used in the SPI are store-qualified, i.e. a 2-tuple
 * of the form (store_name, pathname) (where the pathname is rooted
 * within the store namespace).
 *
 *
 * Stores/providers that support contentID-based access (see
 * "feature_content_id") also support a form of addressing that is
 * not based on pathnames. Items are identified by an explicit store
 * name, a "null" pathname, and possibly a contentID specified as a
 * parameter or via the "opt_content_id" property.
 *
 * Not all operations are supported with contentID-based access, and
 * applications should depend only on the simplest create/delete
 * functionality being available.
 *
 */

 /*
 * DBFS SPI: creation operations
 *
 * The SPI must allow the DBFS API to create directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * All of the creation methods require a valid pathname (see the
 * special exemption for contentID-based access below), and can
 * optionally specify properties to be associated with the pathname
 * as it is created. It is also possible for clients to fetch-back
 * item properties after the creation completes (so that
 * automatically generated properties (e.g. "std_creation_time") are
 * immediately available to clients (the exact set of properties
 * fetched back is controlled by the various "prop_xxx" bitmasks in
 * "prop_flags").
 *
 *
 * Links and references require an additional pathname to associate
 * with the primary pathname.
 *
 * File pathnames can optionally specify a BLOB value to use to
 * initially populate the underlying file content (the provided BLOB
 * may be any valid lob: temporary or permanent). On creation, the
 * underlying lob is returned to the client (if "prop_data" is

Chapter 24
Creating a Custom Provider

24-18

 * specified in "prop_flags").
 *
 * Non-directory pathnames require that their parent directory be
 * created first. Directory pathnames themselves can be recursively
 * created (i.e. the pathname hierarchy leading up to a directory
 * can be created in one call).
 *
 *
 * Attempts to create paths that already exist is an error; the one
 * exception is pathnames that are "soft-deleted" (see below for
 * delete operations)---in these cases, the soft-deleted item is
 * implicitly purged, and the new item creation is attempted.
 *
 *
 * Stores/providers that support contentID-based access accept an
 * explicit store name and a "null" path to create a new element.
 * The contentID generated for this element is available via the
 * "opt_content_id" property (contentID-based creation automatically
 * implies "prop_opt" in "prop_flags").
 *
 * The newly created element may also have an internally generated
 * pathname (if "feature_lazy_path" is not supported) and this path
 * is available via the "std_canonical_path" property.
 *
 * Only file elements are candidates for contentID-based access.
 *
 */

 procedure createFile(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.invalid_path;
 end if;

 if content is null then
 content := empty_blob();
 end if;

 begin
 insert into tbfs.tbfst values (substr(path,2), content)
 returning data into content;
 exception
 when dup_val_on_index then
 raise dbms_dbfs_content.path_exists;
 end;

 select ora_hash(path) into guid from dual;

 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),

Chapter 24
Creating a Custom Provider

24-19

 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure createLink(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure createReference(
 store_name in varchar2,
 srcPath in varchar2,
 dstPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure createDirectory(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 prop_flags in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: deletion operations
 *
 * The SPI must allow the DBFS API to delete directory, file, link,
 * and reference elements (subject to store feature support).
 *
 *
 * By default, the deletions are "permanent" (get rid of the
 * successfully deleted items on transaction commit), but stores may
 * also support "soft-delete" features. If requested by the client,
 * soft-deleted items are retained by the store (but not typically
 * visible in normal listings or searches).
 *
 * Soft-deleted items can be "restore"d, or explicitly purged.
 *
 *
 * Directory pathnames can be recursively deleted (i.e. the pathname

Chapter 24
Creating a Custom Provider

24-20

 * hierarchy below a directory can be deleted in one call).
 * Non-recursive deletions can be performed only on empty
 * directories. Recursive soft-deletions apply the soft-delete to
 * all of the items being deleted.
 *
 *
 * Individual pathnames (or all soft-deleted pathnames under a
 * directory) can be restored or purged via the restore and purge
 * methods.
 *
 *
 * Providers that support filtering can use the provider "filter" to
 * identify subsets of items to delete---this makes most sense for
 * bulk operations (deleteDirectory, restoreAll, purgeAll), but all
 * of the deletion-related operations accept a "filter" argument.
 *
 *
 * Stores/providers that support contentID-based access can also
 * allow file items to be deleted by specifying their contentID.
 *
 */

 procedure deleteFile(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 if (path = '/') then
 raise dbms_dbfs_content.invalid_path;
 end if;

 if ((soft_delete <> 0) or
 (filter is not null)) then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 delete from tbfs.tbfst t
 where ('/' || t.key) = path;

 if sql%rowcount <> 1 then
 raise dbms_dbfs_content.invalid_path;
 end if;
 end;

 procedure deleteContent(
 store_name in varchar2,
 contentID in raw,
 filter in varchar2,
 soft_delete in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure deleteDirectory(
 store_name in varchar2,
 path in varchar2,

Chapter 24
Creating a Custom Provider

24-21

 filter in varchar2,
 soft_delete in integer,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure restorePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure purgePath(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure restoreAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure purgeAll(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: path get/put operations.
 *
 * Existing path items can be accessed (for query or for update) and
 * modified via simple get/put methods.
 *
 * All pathnames allow their metadata (i.e. properties) to be
 * read/modified. On completion of the call, the client can request
 * (via "prop_flags") specific properties to be fetched as well.
 *

Chapter 24
Creating a Custom Provider

24-22

 * File pathnames allow their data (i.e. content) to be
 * read/modified. On completion of the call, the client can request
 * (via the "prop_data" bitmaks in "prop_flags") a new BLOB locator
 * that can be used to continue data access.
 *
 * Files can also be read/written without using BLOB locators, by
 * explicitly specifying logical offsets/buffer-amounts and a
 * suitably sized buffer.
 *
 *
 * Update accesses must specify the "forUpdate" flag. Access to link
 * pathnames can be implicitly and internally deferenced by stores
 * (subject to feature support) if the "deref" flag is
 * specified---however, this is dangerous since symbolic links are
 * not always resolvable.
 *
 *
 * The read methods (i.e. "getPath" where "forUpdate" is "false"
 * also accepts a valid "asof" timestamp parameter that can be used
 * by stores to implement "as of" style flashback queries. Mutating
 * versions of the "getPath" and the "putPath" methods do not
 * support as-of modes of operation.
 *
 *
 * "getPathNowait" implies a "forUpdate", and, if implemented (see
 * "feature_nowait"), allows providers to return an exception
 * (ORA-54) rather than wait for row locks.
 *
 */

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 forUpdate in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 guid number;
 begin
 if (deref <> 0) then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 select ora_hash(path) into guid from dual;

 if (path = '/') then
 if (forUpdate <> 0) then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 content := null;
 item_type := dbms_dbfs_content.type_directory;
 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));

Chapter 24
Creating a Custom Provider

24-23

 return;
 end if;

 begin
 if (forUpdate <> 0) then
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path
 for update;
 else
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path;
 end if;
 exception
 when no_data_found then
 raise dbms_dbfs_content.invalid_path;
 end;

 item_type := dbms_dbfs_content.type_file;
 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure getPathNowait(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 deref in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,
 offset in number,
 buffer out nocopy raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 content blob;
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

Chapter 24
Creating a Custom Provider

24-24

 begin
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path;
 exception
 when no_data_found then
 raise dbms_dbfs_content.invalid_path;
 end;

 select ora_hash(path) into guid from dual;
 dbms_lob.read(content, amount, offset, buffer);

 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure getPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in out number,
 offset in number,
 buffers out nocopy dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 content in out nocopy blob,
 item_type out integer,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 if content is null then
 content := empty_blob();
 end if;

 update tbfs.tbfst t
 set t.data = content
 where ('/' || t.key) = path
 returning t.data into content;

 if sql%rowcount <> 1 then

Chapter 24
Creating a Custom Provider

24-25

 raise dbms_dbfs_content.invalid_path;
 end if;

 select ora_hash(path) into guid from dual;

 item_type := dbms_dbfs_content.type_file;
 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 amount in number,
 offset in number,
 buffer in raw,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 content blob;
 guid number;
 begin
 if (path = '/') then
 raise dbms_dbfs_content.unsupported_operation;
 end if;

 begin
 select t.data into content from tbfs.tbfst t
 where ('/' || t.key) = path
 for update;
 exception
 when no_data_found then
 raise dbms_dbfs_content.invalid_path;
 end;

 select ora_hash(path) into guid from dual;
 dbms_lob.write(content, amount, offset, buffer);

 properties := dbms_dbfs_content_properties_t(
 dbms_dbfs_content_property_t(
 'std:length',
 to_char(dbms_lob.getlength(content)),
 dbms_types.TYPECODE_NUMBER),
 dbms_dbfs_content_property_t(
 'std:guid',
 to_char(guid),
 dbms_types.TYPECODE_NUMBER));
 end;

 procedure putPath(
 store_name in varchar2,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,

Chapter 24
Creating a Custom Provider

24-26

 written out number,
 offset in number,
 buffers in dbms_dbfs_content_raw_t,
 prop_flags in integer,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: rename/move operations.
 *
 * Pathnames can be renamed or moved, possibly across directory
 * hierarchies and mount-points, but within the same store.
 *
 *
 * Non-directory pathnames previously accessible via "oldPath" are
 * renamed as a single item subsequently accessible via "newPath";
 * assuming that "newPath" does not already exist.
 *
 * If "newPath" exists and is not a directory, the rename implicitly
 * deletes the existing item before renaming "oldPath". If "newPath"
 * exists and is a directory, "oldPath" is moved into the target
 * directory.
 *
 *
 * Directory pathnames previously accessible via "oldPath" are
 * renamed by moving the directory and all of its children to
 * "newPath" (if it does not already exist) or as children of
 * "newPath" (if it exists and is a directory).
 *
 *
 * Stores/providers that support contentID-based access and lazy
 * pathname binding also support the "setPath" method that
 * associates an existing "contentID" with a new "path".
 *
 */

 procedure renamePath(
 store_name in varchar2,
 oldPath in varchar2,
 newPath in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure setPath(
 store_name in varchar2,
 contentID in raw,
 path in varchar2,
 properties in out nocopy dbms_dbfs_content_properties_t,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;

Chapter 24
Creating a Custom Provider

24-27

 end;

 /*
 * DBFS SPI: directory navigation and search.
 *
 * The DBFS API can list or search the contents of directory
 * pathnames, optionally recursing into sub-directories, optionally
 * seeing soft-deleted items, optionally using flashback "as of" a
 * provided timestamp, and optionally filtering items in/out within
 * the store based on list/search predicates.
 *
 */

 function list(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined
 is
 begin
 for rws in (select * from tbfs.tbfst)
 loop
 pipe row(dbms_dbfs_content_list_item_t(
 '/' || rws.key, rws.key, dbms_dbfs_content.type_file));
 end loop;
 end;

 function search(
 store_name in varchar2,
 path in varchar2,
 filter in varchar2,
 recurse in integer,
 ctx in dbms_dbfs_content_context_t)
 return dbms_dbfs_content_list_items_t
 pipelined
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: locking operations.
 *
 * Clients of the DBFS API can apply user-level locks to any valid
 * pathname (subject to store feature support), associate the lock
 * with user-data, and subsequently unlock these pathnames.
 *
 * The status of locked items is available via various optional
 * properties (see "opt_lock*" above).
 *
 *
 * It is the responsibility of the store (assuming it supports
 * user-defined lock checking) to ensure that lock/unlock operations
 * are performed in a consistent manner.

Chapter 24
Creating a Custom Provider

24-28

 *
 */

 procedure lockPath(
 store_name in varchar2,
 path in varchar2,
 lock_type in integer,
 lock_data in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 procedure unlockPath(
 store_name in varchar2,
 path in varchar2,
 ctx in dbms_dbfs_content_context_t)
 is
 begin
 raise dbms_dbfs_content.unsupported_operation;
 end;

 /*
 * DBFS SPI: access checks.
 *
 * Check if a given pathname (store_name, path, pathtype) can be
 * manipulated by "operation (see the various
 * "dbms_dbfs_content.op_xxx" opcodes) by "principal".
 *
 * This is a convenience function for the DBFS API; a store that
 * supports access control still internally performs these checks to
 * guarantee security.
 *
 */

 function checkAccess(
 store_name in varchar2,
 path in varchar2,
 pathtype in integer,
 operation in varchar2,
 principal in varchar2)
 return integer
 is
 begin
 return 1;
 end;
end;
/
show errors;

capi.sql
The capi.sql script registers and mounts the DBFS.

The capi.sql script:

connect tbfs/tbfs;

Chapter 24
Creating a Custom Provider

24-29

exec dbms_dbfs_content.registerStore('MY_TBFS', 'table', 'TBFS');
exec dbms_dbfs_content.mountStore('MY_TBFS', singleton => true);
commit;

Chapter 24
Creating a Custom Provider

24-30

25
Using DBFS

The DBFS File System implementation includes creating and accessing the file system
and managing it.

Topics:

• DBFS Installation

• Creating a DBFS File System

• DBFS File System Access

• DBFS Administration

• Shrinking and Reorganizing DBFS Filesystems

DBFS Installation
DBFS is a part of the Oracle database installation and is installed under ORACLE_HOME.

$ORACLE_HOME/rdbms/admin contains these DBFS utility scripts:

• Content API (CAPI)

• SecureFiles Store (SFS)

$ORACLE_HOME/bin contains:

• dbfs_client executable

$ORACLE_HOME/rdbms/admin contains:

• SQL (.plb extension) scripts for the content store

Creating a DBFS File System
A DBFS File system can be partitioned or non-partitioned. It may require users to have
certain privileges.

Topics:

• Privileges Required to Create a DBFS File System

• Advantages of Non-Partitioned Versus Partitioned DBFS File Systems

• Creating a Non-Partitioned File System

• Creating a Partitioned File System

• Dropping a File System

Privileges Required to Create a DBFS File System
Database users must have a minimum set of privileges to create a file system.

25-1

Users must have these privileges:

• GRANT CONNECT

• CREATE SESSION

• RESOURCE, CREATE TABLE

• CREATE PROCEDURE

• DBFS_ROLE

Advantages of Non-Partitioned Versus Partitioned DBFS File Systems
You can create either non-partitioned or partitioned file systems. Partitioning is the
best performing and most scalable way to create a file system in DBFS and is the
default.

Space cannot be shared between partitions, so it is possible for one partition to run out
of space even when other partitions have space. This is usually not an issue if the file
system size is big compared to the size of the individual files. However, if file sizes are
a big percentage of the file system size, it may result in the ENOSPC error even if the file
system is not full.

Another implication of partitioning is that a rename operation can require rewriting the
file, which can be expensive if the file is big.

Creating a Non-Partitioned File System
You can create a file system by running DBFS_CREATE_FILESYSTEM.SQL while logged in
as a user with DBFS administrator privileges.

These steps enable you to create a file system.

1. Log in to the database instance:

$ sqlplus dbfs_user/@db_server

2. Enter the following command:

@$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem.sql tablespace_name
 file_system_name

For example, to create a file system called staging_area in an existing tablespace
dbfs_tbspc:

$ sqlplus dbfs_user/db_server
 @$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem.sql
 dbfs_tbspc staging_area

Creating a Partitioned File System
Partitioning creates multiple physical segments in the database, and files are
distributed randomly in these partitions.

You can create a partitioned file system by running
DBFS_CREATE_FILESYSTEM_ADVANCED.SQL while logged in as a user with DBFS
administrator privileges.

1. Log in to the database instance:

Chapter 25
Creating a DBFS File System

25-2

$ sqlplus dbfs_user/@db_server

2. Enter the following command:

@$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem_advanced.sql tablespace_name
 file_system_name nocompress nodeduplicate noencrypt partition

For example, to create a partitioned file system called staging_area in an existing
tablespace dbfs_tbspc:

$ sqlplus dbfs_user/@db_server
 @$ORACLE_HOME/rdbms/admin/dbfs_create_filesystem_advanced.sql dbfs_tbspc
 staging_area nocompress nodeduplicate noencrypt partition

Dropping a File System
You can drop a file system by running DBFS_DROP_FILESYSTEM.SQL.

1. Log in to the database instance:

$ sqlplus dbfs_user/@db_server

2. Enter the following command:

@$ORACLE_HOME/rdbms/admin/dbfs_drop_filesystem.sql file_system_name

DBFS File System Access
You access a DBFS file system by means of prerequisites, access interfaces, the
DBFS security model, and XML DB server protocols.

Topics:

• DBFS Client Prerequisites

• DBFS Client Command-Line Interface Operations

• DBFS Mounting Interface (Linux and Solaris Only)

• File System Security Model

• HTTP_ WebDAV_ and FTP Access to DBFS

DBFS Client Prerequisites
The DBFS File System Client, which is named dbfs_client, runs on each system that
will access DBFS filesystems, using certain prerequisites.

The prerequisites for the DBFS File System Client, dbfs_client, are:

• The dbfs_client host must have the Oracle client libraries installed.

• The dbfs_client can be used as a direct RDBMS client using the DBFS
Command Interface on Linux, Linux.X64, Solaris, Solaris64, AIX, HPUX and
Windows platforms.

• The dbfs_client can only be used as a mount client on Linux, Linux.X64, and
Solaris 11 platforms. This requires the following:

– dbfs_client host must have the FUSE Linux package or the Solaris libfuse
package installed.

Chapter 25
DBFS File System Access

25-3

– A group named fuse must be created, with the user name that runs the
dbfs_client as a member.

See Also:

DBFS Mounting Interface (Linux and Solaris Only) for further details.

DBFS Client Command-Line Interface Operations
The DBFS client command-line interface allows you to directly access files stored in
DBFS.

Topics:

• About the DBFS Client Command-Line Interface

• Creating Content Store Paths

• Creating a Directory

• Listing a Directory

• Copying Files and Directories

• Removing Files and Directories

About the DBFS Client Command-Line Interface
The DBFS client command-line interface allows you to perform many pre-defined
commands, such as copy files in and out of the DBFS filesystem from any host on the
network.

The command-line interface has slightly better performance than the DBFS client
mount interface because it does not mount the file system, thus bypassing the user
space file system. However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system
mount point thus providing transparent access to files stored in DBFS with generic file
system operations.

To run DBFS commands, specify --command to the DBFS client.

Creating Content Store Paths
You can create a content store path by providing a path name

All DBFS content store paths must be preceded by dbfs: .This is an example: dbfs:/
staging_area/file1. All database path names specified must be absolute paths.

dbfs_client db_user@db_server --command command [switches] [arguments]

where:

• command is the executable command, such as ls, cp, mkdir, or rm.

• switches are specific for each command.

Chapter 25
DBFS File System Access

25-4

• arguments are file names or directory names, and are specific for each command.

Note that dbfs_client returns a nonzero value in case of failure.

Creating a Directory
You can use the mkdir command to create a new directory.

Use this syntax:

dbfs_client db_user@db_server --command mkdir directory_name

where:

• directory_name is the name of the directory created. For example:

$ dbfs_client ETLUser@DBConnectString --command mkdir dbfs:/staging_area/dir1

Listing a Directory
You can use the ls command to list the contents of a directory.

Use this syntax:

dbfs_client db_user@db_server --command ls [switches] target

where

• target is the listed directory.

• switches is any combination of the following:

– -a shows all files, including '.' and '..'.

– -l shows the long listing format: name of each file, the file type, permissions,
and size.

– -R lists subdirectories recursively.

For example:

$ dbfs_client ETLUser@DBConnectString --command ls dbfs:/staging_area/dir1

or

$ dbfs_client ETLUser@DBConnectString --command ls -l -a -R dbfs:/staging_area/dir1

Copying Files and Directories
You can use the cp command to copy files or directories from the source location to
the destination location.

The cp command also supports recursive copy of directories.

dbfs_client db_user@db_server --command cp [switches] source destination

where:

• source is the source location.

• destination is the destination location.

Chapter 25
DBFS File System Access

25-5

• switches is either -R or -r, the options to recursively copy all source contents into
the destination directory.

The following example copies the contents of the local directory, 01-01-10-dump
recursively into a directory in DBFS:

$ dbfs_client ETLUser@DBConnectString --command cp -R 01-01-10-dump dbfs:/staging_area/

The following example copies the file hello.txt from DBFS to a local file Hi.txt:

$ dbfs_client ETLUser@DBConnectString --command cp dbfs:/staging_area/hello.txt Hi.txt

Removing Files and Directories
You can use the command rm to delete a file or directory.

The command rm also supports recursive delete of directories.

dbfs_client db_user@db_server --command rm [switches] target

where:

• target is the listed directory.

• switches is either -R or -r, the options to recursively delete all contents.

For example:

$ dbfs_client ETLUser@DBConnectString --command rm dbfs:/staging_area/srcdir/hello.txt

or

$ dbfs_client ETLUser@DBConnectString --command rm -R dbfs:/staging_area/dir1

DBFS Mounting Interface (Linux and Solaris Only)
You can mount DBFS using the dbfs_client in Linux and Solaris only.

The instructions indicate the different requirements for the Linux and Solaris platforms.

Topics:

• Installing FUSE on Solaris 11 SRU7 and Later

• Mounting the DBFS Store

• Solaris-Specific Privileges

• About the Mount Command for Solaris and Linux

• Mounting a File System with a Wallet

• Mounting a File System with Password at Command Prompt

• Mounting a File System with Password Read from a File

• Unmounting a File System

• Mounting DBFS Through fstab Utility for Linux

• Mounting DBFS Through the vfstab Utility for Solaris

• Restrictions on Mounted File Systems

Chapter 25
DBFS File System Access

25-6

Installing FUSE on Solaris 11 SRU7 and Later
You can use dbfs_client as a mount client in Solaris 11 SRU7 and later, if you install
FUSE

Install FUSE to use dbfs_client as a mount client in Solaris 11 SRU7 and later.

• Run the following package as root.

pkg install libfuse

Mounting the DBFS Store
You can mount the DBFS store by running the dbfs_client program.

To run the dbfs_client program.

1. Ensure that LD_LIBRARY_PATH has the correct path to the Oracle client libraries.

2. Run the dbfs_client program.

The dbfs_client program does not return until the file system is unmounted.

See Also:

Using Oracle Wallet with DBFS Client for the most secure method of
specifying the password

Solaris-Specific Privileges
On Solaris, the user must have the Solaris privilege PRIV_SYS_MOUNT to perform mount
and unmount operations on DBFS filesystems.

Give the user the Solaris privilege PRIV_SYS_MOUNT .

1. Edit /etc/user_attr.

2. Add or modify the user entry (assuming the user is Oracle) as follows:

oracle::::type=normal;project=group.dba;defaultpriv=basic,priv_sys_mount;;auth
s=solaris.smf.*

About the Mount Command for Solaris and Linux
The dbfs_client mount command for Solaris and Linux uses specific syntax.

Syntax:

dbfs_client db_user@db_server [-o option_1 -o option_2 ...] mount_point

where the mandatory parameters are:

• db_user is the name of the database user who owns the DBFS content store file
system.

Chapter 25
DBFS File System Access

25-7

• db_server is a valid connect string to the Oracle Database server, such as
hrdb_host:1521/hrservice.

• mount_point is the path where the Database File System is mounted. Note that all
file systems owned by the database user are visible at the mount point.

The options are:

• direct_io: To bypass the OS page cache and provide improved performance for
large files. Programs in the file system cannot be executed with this option. Oracle
recommends this option when DBFS is used as an ETL staging area.

• wallet: To run the DBFS client in the background. The Wallet must be configured
to get its credentials.

• failover: To fail over the DBFS client to surviving database instances without
data loss. Expect some performance cost on writes, especially for small files.

• allow_root: To allow the root user to access the filesystem. You must set the
user_allow_other parameter in the /etc/fuse.conf configuration file.

• allow_other: To allow other users to access the filesystem. You must set the
user_allow_other parameter in the /etc/fuse.conf configuration file.

• rw: To mount the filesystem as read-write. This is the default setting.

• ro: To mount the filesystem as read-only. Files cannot be modified.

• trace_level=n sets the trace level. Trace levels are:

– 1 DEBUG

– 2 INFO

– 3 WARNING

– 4 ERROR: The default tracing level. It outputs diagnostic information only when
an error happens. It is recommended that this tracing level is always enabled.

– 5 CRITICAL

• trace_file=STR: Specifies the tracing log file, where STR can be either a
file_name or syslog.

• trace_size=trcfile_size: Specifies size of the trace file in MB. By default,
dbfs_client rotates tracing output between two 10MB files. Specifying 0 for
trace_size sets the maximum size of the trace file to unlimited.

Mounting a File System with a Wallet
You can mount a file system with a wallet after configuring various environment
variables.

You must first configure the LD_LIBRARY_PATH and ORACLE_HOME environment variables
correctly before mounting a file system with a wallet.

1. Login as admin user.

2. Mount the DBFS store. (Oracle recommends that you do not perform this step as
root user.)

% dbfs_client @/dbfsdb -o wallet,rw,user,direct_io /mnt/dbfs

Chapter 25
DBFS File System Access

25-8

3. [Optional] To test if the previous step was successful, as admin user, list the dbfs
directory.

$ ls /mnt/tdbfs

See Also:

Using Oracle Wallet with DBFS Client

Mounting a File System with Password at Command Prompt
You can mount a file system using dbfs_client.

You must enter a password on the command prompt to mount a file system using
dbfs_client.

• Run the following:

$ dbfs_client ETLUser@DBConnectString /mnt/dbfs
 password: xxxxxxx

Mounting a File System with Password Read from a File
You can mount a file system with a password read from a file.

The following example mounts a file system and frees the terminal. It reads the
password from a file:

• Run the following:

$ nohup dbfs_client ETLUser@DBConnectString /mnt/dbfs < passwordfile.f &
$ ls -l /mnt/dbfs
drwxrwxrwx 10 root root 0 Feb 9 17:28 staging_area

Unmounting a File System
In Linux, you can run fusermount to unmount file systems.

To run fusermount in Linux, do the following:

• Run the following:

 $ fusermount -u <mount point>

In Solaris, you can run umount to unmount file systems.

• Run the following:

 $ umount -u <mount point>

Chapter 25
DBFS File System Access

25-9

Mounting DBFS Through fstab Utility for Linux
In Linux, you can configure fstab utility to use dbfs_client to mount a DBFS
filesystem.

To mount DBFS through /etc/fstab, you must use Oracle Wallet for authentication.

1. Login as root user.

2. Change the user and group of dbfs_client to user root and group fuse.

chown root.fuse $ORACLE_HOME/bin/dbfs_client

3. Set the setuid bit on dbfs_client and restrict execute privileges to the user and
group only.

chmod u+rwxs,g+rx-w,o-rwx dbfs_client

4. Create a symbolic link to dbfs_client in /sbin as "mount.dbfs".

$ ln -s $ORACLE_HOME/bin/dbfs_client /sbin/mount.dbfs

5. Create a new Linux group called "fuse".

6. Add the Linux user that is running the DBFS Client to the fuse group.

7. Add the following line to /etc/fstab:

/sbin/mount.dbfs#db_user@db_server mount_point fuse rw,user,noauto 0 0

For example:

/sbin/mount.dbfs#/@DBConnectString /mnt/dbfs fuse rw,user,noauto 0 0

8. The Linux user can mount the DBFS file system using the standard Linux mount
command. For example:

$ mount /mnt/dbfs

Note that FUSE does not currently support automount.

Mounting DBFS Through the vfstab Utility for Solaris
On Solaris, file systems are commonly configured using the vfstab utility.

1. Create a mount shell script mount_dbfs.sh to use to start dbfs_client. All the
environment variables that are required for Oracle RDBMS must be exported.
These environment variables include TNS_ADMIN, ORACLE_HOME, and
LD_LIBRARY_PATH. For example:

#!/bin/ksh
export TNS_ADMIN=/export/home/oracle/dbfs/tnsadmin
export ORACLE_HOME=/export/home/oracle/11.2.0/dbhome_1
export DBFS_USER=dbfs_user
export DBFS_PASSWD=/tmp/passwd.f
export DBFS_DB_CONN=dbfs_db
export O=$ORACLE_HOME
export LD_LIBRARY_PATH=$O/lib:$O/rdbms/lib:/usr/lib:/lib:$LD_LIBRARY_PATH
export NOHUP_LOG=/tmp/dbfs.nohup

(nohup $ORACLE_HOME/bin/dbfs_client $DBFS_USER@$DBFS_DB_CONN < $DBFS_PASSWD
 2>&1 &) &

Chapter 25
DBFS File System Access

25-10

2. Add an entry for DBFS to /etc/vfstab. Specify the mount_dbfs.sh script for the
device_to_mount. Specify uvfs for the FS_type. Specify no formount_at_boot.
Specify mount options as needed. For example:

/usr/local/bin/mount_dbfs.sh - /mnt/dbfs uvfs - no rw,allow_other

3. User can mount the DBFS file system using the standard Solaris mount command.
For example:

$ mount /mnt/dbfs

4. User can unmount the DBFS file system using the standard Solaris umount
command. For example:

$ umount /mnt/dbfs

Restrictions on Mounted File Systems
DBFS supports most file system operations with exceptions. Exceptions are:

• ioctl

• range locking (file locking is supported)

• asynchronous I/O through libaio

• O_DIRECT file opens

• hard links, pipes

• other special file modes

Memory-mapped files are supported except in shared-writable mode. For performance
reasons, DBFS does not update the file access time every time file data or the file data
attributes are read.

You cannot run programs from a DBFS-mounted file system if the direct_io option is
specified.

Oracle does not support exporting DBFS file systems using NFS or Samba.

File System Security Model
The database manages security in DBFS. It does not use the operating system
security model.

• About the File System Security Model

• Enabling Shared Root Access

• About DBFS Access Among Multiple Database Users

• Establishing DBFS Access Sharing Across Multiple Database Users

About the File System Security Model
DBFS operates under a security model where all file systems created by a user are
private to that user, by default.

Oracle recommends maintaining this model. Because operating system users and
Oracle Database users are different, it is possible to allow multiple operating system
users to mount a single DBFS filesystem. These mounts may potentially have different
mount options and permissions. For example, user1 may mount a DBFS filesystem as

Chapter 25
DBFS File System Access

25-11

READ ONLY, and user2 may mount it as READ WRITE. However, Oracle Database views
both users as having the same privileges because they would be accessing the
filesystem as the same database user.

Access to a database file system requires a database login as a database user with
privileges on the tables that underlie the file system.The database administrator grants
access to a file system to database users, and different database users may have
different READ or UPDATE privileges to the file system. The database administrator has
access to all files stored in the DBFS file system.

On each client computer, access to a DBFS mount point is limited to the operating
system user that mounts the file system. This, however, does not limit the number of
users who can access the DBFS file system, because many users may separately
mount the same DBFS file system.

DBFS only performs database privilege checking. Linux performs operating system
file-level permission checking when a DBFS file system is mounted. DBFS does not
perform this check either when using the command interface or when using the
PL/SQL interface directly.

Enabling Shared Root Access
As an operating system user who mounts the file system, you can allow root access to
the file system by specifying the allow_root option. This option requires that the /etc/
fuse.conf file contain the user_allow_other field, as demonstrated in Example 25-1.

Example 25-1 Enabling Root Access for Other Users

Allow users to specify the 'allow_root' mount option.
user_allow_other

About DBFS Access Among Multiple Database Users
Some circumstances may require that multiple database users access the same
filesystem. For example, the database user that owns the filesystem may be a
privileged user and sharing its user credentials may pose a security risk. To mitigate
this, DBFS allows multiple database users to share a subset of the filesystem state.

While DBFS registrations and mounts made through the DBFS content API are private
to each user, the underlying filesystem and the tables on which they rely may be
shared across users. After this is done, the individual filesystems may be
independently mounted and used by different database users, either through SQL/
PLSQL, or through dbfs_client APIs.

Establishing DBFS Access Sharing Across Multiple Database Users
You can share DBFS across multiple database users.

In the following example, user user1 is able to modify the filesystem, and user user2
can see these changes. Here, user1 is the database user that creates a filesystem,
and user2 is the database user that eventually uses dbfs_client to mount and access
the filesystem. Both user1 and user2 must have the DBFS_ROLE privilege.

1. Connect as the user who creates the filesystem.

sys@tank as sysdba> connect user1
Connected.

Chapter 25
DBFS File System Access

25-12

2. Create the filesystem user1_FS, register the store, and mount it as user1_mt.

user1@tank> exec dbms_dbfs_sfs.createFilesystem('user1_FS');
user1@tank> exec dbms_dbfs_content.registerStore('user1_FS', 'posix',
'DBMS_DBFS_SFS');
user1@tank> exec dbms_dbfs_content.mountStore('user1_FS', 'user1_mnt');
user1@tank> commit;

3. [Optional] You may check that the previous step has completed successfully by
viewing all mounts.

user1@tank> select * from table(dbms_dbfs_content.listMounts);

STORE_NAME | STORE_ID|PROVIDER_NAME
---------------------|- ---------|--
PROVIDER_PKG	PROVIDER_ID	PROVIDER_VERSION	STORE_FEATURES
STORE_GUID

STORE_MOUNT
--
CREATED
--
MOUNT_PROPERTIES(PROPNAME, PROPVALUE, TYPECODE)
--
user1_FS | 1362968596|posix
"DBMS_DBFS_SFS" | 3350646887|0.5.0 | 12714135 141867344
user1_mnt
01-FEB-10 09.44.25.357858 PM
DBMS_DBFS_CONTENT_PROPERTIES_T(
 DBMS_DBFS_CONTENT_PROPERTY_T('principal', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('owner', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('asof', (null), 187),
 DBMS_DBFS_CONTENT_PROPERTY_T('read_only', '0', 2))

4. [Optional] Connect as the user who will use the dbfs_client.

user1@tank> connect user2
Connected.

5. [Optional] Note that user2 cannot see user1's DBFS state, as he has no mounts.

user2@tank> select * from table(dbms_dbfs_content.listMounts);

6. While connected as user1, export filesystem user1_FS for access to any user with
DBFS_ROLE privilege.

user1@tank> exec dbms_dbfs_sfs.exportFilesystem('user1_FS');
user1@tank> commit;

7. Connect as the user who will use the dbfs_client.

user1@tank> connect user2
Connected.

8. As user2, view all available tables.

user2@tank> select * from table(dbms_dbfs_sfs.listTables);

SCHEMA_NAME	TABLE_NAME	PTABLE_NAME
VERSION#
--------------------------------CREATED

Chapter 25
DBFS File System Access

25-13

FORMATTED

PROPERTIES(PROPNAME, PROPVALUE, TYPECODE)

user1 |SFS$_FST_11 |SFS$_FSTP_11
0.5.0
01-FEB-10 09.43.53.497856 PM
01-FEB-10 09.43.53.497856 PM
(null)

9. As user2, register and mount the store, but do not re-create the user1_FS
filesystem.

user2@tank> exec dbms_dbfs_sfs.registerFilesystem(
 'user2_FS', 'user1', 'SFS$_FST_11');
user2@tank> exec dbms_dbfs_content.registerStore(
 'user2_FS', 'posix', 'DBMS_DBFS_SFS');
user2@tank> exec dbms_dbfs_content.mountStore(
 'user2_FS', 'user2_mnt');
user2@tank> commit;

10. [Optional] As user2, you may check that the previous step has completed
successfully by viewing all mounts.

user2@tank> select * from table(dbms_dbfs_content.listMounts);

STORE_NAME | STORE_ID|PROVIDER_NAME
---------------------|- ---------|--
PROVIDER_PKG	PROVIDER_ID	PROVIDER_VERSION	STORE_FEATURES
STORE_GUID

STORE_MOUNT
--
CREATED
--
MOUNT_PROPERTIES(PROPNAME, PROPVALUE, TYPECODE)
--
user2_FS | 1362968596|posix
"DBMS_DBFS_SFS" | 3350646887|0.5.0 | 12714135 141867344
user1_mnt
01-FEB-10 09.46.16.013046 PM
DBMS_DBFS_CONTENT_PROPERTIES_T(
 DBMS_DBFS_CONTENT_PROPERTY_T('principal', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('owner', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
 DBMS_DBFS_CONTENT_PROPERTY_T('asof', (null), 187),
 DBMS_DBFS_CONTENT_PROPERTY_T('read_only', '0', 2))

11. [Optional] List path names for user2 and user1. Note that another mount,
user2_mnt,for store user2_FS, is available for user2. However, the underlying
filesystem data is the same for user2 as for user1.

user2@tank> select pathname from dbfs_content;

PATHNAME

/user2_mnt
/user2_mnt/.sfs/tools
/user2_mnt/.sfs/snapshots
/user2_mnt/.sfs/content

Chapter 25
DBFS File System Access

25-14

/user2_mnt/.sfs/attributes
/user2_mnt/.sfs/RECYCLE
/user2_mnt/.sfs

user2@tank> connect user1
Connected.

user1@tank> select pathname from dbfs_content;

PATHNAME

/user1_mnt
/user1_mnt/.sfs/tools
/user1_mnt/.sfs/snapshots
/user1_mnt/.sfs/content
/user1_mnt/.sfs/attributes
/user1_mnt/.sfs/RECYCLE
/user1_mnt/.sfs

12. In filesystem user1_FS, user1 creates file xxx.

user1@tank> var ret number;
user1@tank> var data blob;
user1@tank> exec :ret := dbms_fuse.fs_create('/user1_mnt/xxx', content => :data);
user1@tank> select :ret from dual;
 :RET

 0

13. [Optional] Write to file xxx, created in the previous step.

user1@tank> var buf varchar2(100);
user1@tank> exec :buf := 'hello world';
user1@tank> exec dbms_lob.writeappend(:data, length(:buf),
utl_raw.cast_to_raw(:buf));
user1@tank> commit;

14. [Optional] Show that file xxx exists, and contains the appended data.

user1@tank> select pathname, utl_raw.cast_to_varchar2(filedata)
 from dbfs_content where filedata is not null;

PATHNAME

UTL_RAW.CAST_TO_VARCHAR2(FILEDATA)

/user1_mnt/xxx
hello world

15. User user2 sees the same file in their own DBFS-specific path name and mount
prefix.

user1@tank> connect user2
Connected.

user2@tank> select pathname, utl_raw.cast_to_varchar2(filedata) from
 dbfs_content where filedata is not null;

PATHNAME

UTL_RAW.CAST_TO_VARCHAR2(FILEDATA)

Chapter 25
DBFS File System Access

25-15

/user2_mnt/xxx
hello world

After the export and register pairing completes, both users behave as equals with
regard to their usage of the underlying tables. The exportFilesystem() procedure
manages the necessary grants for access to the same data, which is shared between
schemas. After user1 calls exportFilesystem(), filesystem access may be granted to
any user with DBFS_ROLE. Note that a different role can be specified.

Subsequently, user2 may create a new DBFS filesystem that shares the same
underlying storage as the user1_FS filesystem, by invoking
dbms_dbfs_sfs.registerFilesystem(), dbms_dbfs_sfs.registerStore(), and
dmbs_dbfs_sfs.mountStore() procedure calls.

When multiple database users share a filesystem, they must ensure that all database
users unregister their interest in the filesystem before the owner (here, user1) drops
the filesystem.

Oracle does not recommend that you run the DBFS as root.

HTTP, WebDAV, and FTP Access to DBFS
Components that enable HTTP, WebDAV, and FTP access to DBFS over the Internet
use various XML DB server protocols.

Topics:

• Internet Access to DBFS Through XDB

• Web Distributed Authoring and Versioning (WebDAV) Access

• FTP Access to DBFS

• HTTP Access to DBFS

Internet Access to DBFS Through XDB
To provide database users who have DBFS authentication with a hierarchical file
system-like view of registered and mounted DBFS stores, stores are displayed under
the path /dbfs.

The /dbfs folder is a virtual folder because the resources in its subtree are stored in
DBFS stores, not the XDB repository. XDB issues a dbms_dbfs_content.list()
command for the root path name "/" (with invoker rights) and receives a list of store
access points as subfolders in the /dbfs folder. The list is comparable to store_mount
parameters passed to dbms_dbfs_content.mountStore(). FTP and WebDAV users
can navigate to these stores, while HTTP and HTTPS users access URLs from
browsers.

Note that features implemented by the XDB repository, such as repository events,
resource configurations, and ACLs, are not available for the /dbfs folder.

DBFS Content API for guidelines on DBFS store creation, registration, deregistration,
mount, unmount and deletion

Chapter 25
DBFS File System Access

25-16

Web Distributed Authoring and Versioning (WebDAV) Access
WebDAV is an IETF standard protocol that provides users with a file-system-like
interface to a repository over the Internet.

WebDAV server folders are typically accessed through Web Folders on Microsoft
Windows (2000/NT/XP/Vista/7, and so on). You can access a resource using its fully
qualified name, for example, /dbfs/sfs1/dir1/file1.txt, where sfs1 is the name of
a DBFS store.

You need to set up WebDAV on Windows to access the DBFS filesystem.

See Also:

Oracle XML DB Developer's Guide

The user authentication required to access the DBFS virtual folder is the same as for
the XDB repository.

When a WebDAV client connects to a WebDAV server for the first time, the user is
typically prompted for a username and password, which the client uses for all
subsequent requests. From a protocol point-of-view, every request contains
authentication information, which XDB uses to authenticate the user as a valid
database user. If the user does not exist, the client does not get access to the DBFS
store or the XDB repository. Upon successful authentication, the database user
becomes the current user in the session.

XDB supports both basic authentication and digest authentication. For security
reasons, it is highly recommended that HTTPS transport be used if basic
authentication is enabled.

FTP Access to DBFS
FTP access to DBFS uses the standard FTP clients found on most Unix-based
distributions. FTP is a file transfer mechanism built on client-server architecture with
separate control and data connections.

FTP users are authenticated as database users. The protocol, as outlined in RFC 959,
uses clear text user name and password for authentication. Therefore, FTP is not a
secure protocol.

The following commands are supported for DBFS:

• USER: Authentication username

• PASS: Authentication password

• CWD: Change working directory

• CDUP: Change to Parent directory

• QUIT: Disconnect

• PORT: Specifies an address and port to which the server should connect

• PASV: Enter passive mode

Chapter 25
DBFS File System Access

25-17

• TYPE: Sets the transfer mode, such as, ASCII or Binary

• RETR: Transfer a copy of the file

• STOR: Accept the data and store the data as a file at the server site

• RNFR: Rename From

• RNTO: Rename To

• DELE: Delete file

• RMD: Remove directory

• MKD: Make a directory

• PWD: Print working directory

• LIST: Listing of a file or directory. Default is current directory.

• NLST: Returns file names in a directory

• HELP: Usage document

• SYST: Return system type

• FEAT: Gets the feature list implemented by the server

• NOOP: No operation (used for keep-alives)

• EPRT: Extended address (IPv6) and port to which the server should connect

• EPSV: Enter extended passive mode (IPv6)

HTTP Access to DBFS
Users have read-only access through HTTP/HTTPS protocols. Users point their
browsers to a DBFS store using the XDB HTTP server with a URL such as https://
hostname:port/dbfs/sfs1 where sfs1 is a DBFS store name.

DBFS Administration
DBFS administration includes tools that perform diagnostics, manage failover, perform
backup and so on.

Topics:

• Using Oracle Wallet with DBFS Client

• DBFS Diagnostics

• Preventing Data Loss During Failover Events

• Bypassing Client-Side Write Caching

• Backing up DBFS

• Small File Performance of DBFS

• Enabling Advanced SecureFiles LOB Features for DBFS

Using Oracle Wallet with DBFS Client
An Oracle Wallet allows the DBFS client to mount a DBFS store without requiring the
user to enter a password.

Chapter 25
DBFS Administration

25-18

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information about creation and management of wallets

The "/@" syntax means to use the wallet, as shown in Step 7.

1. Create a directory for the wallet. For example:

mkdir $ORACLE_HOME/oracle/wallet

2. Create an auto-login wallet.

mkstore -wrl $ORACLE_HOME/oracle/wallet -create

3. Add the wallet location in the client's sqlnet.ora file:

WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY =
 $ORACLE_HOME/oracle/wallet)))

4. Add the following parameter in the client's sqlnet.ora file:

SQLNET.WALLET_OVERRIDE = TRUE

5. Create credentials:

mkstore -wrl wallet_location -createCredential db_connect_string username
password

For example:

mkstore -wrl $ORACLE_HOME/oracle/wallet -createCredential DBConnectString scott
password

6. Add the connection alias to your tnsnames.ora file.

7. Use dbfs_client with Oracle Wallet.

For example:

$ dbfs_client -o wallet /@DBConnectString /mnt/dbfs

DBFS Diagnostics
The dbfs_client program supports multiple levels of tracing to help diagnose
problems. It can either output traces to a file or to /var/log/messages using the
syslog daemon on Linux.

When you trace to a file, the dbfs_client program keeps two trace files on disk.
dbfs_client, rotates the trace files automatically, and limits disk usage to 20 MB.

By default, tracing is turned off except for critical messages which are always logged
to /var/log/messages.

If dbfs_client cannot connect to the Oracle Database, enable tracing using the
trace_level and trace_file options. Tracing prints additional messages to log file for
easier debugging.

DBFS uses Oracle Database for storing files. Sometimes Oracle server issues are
propagated to dbfs_client as errors. If there is a dbfs_client error, please view the
Oracle server logs to see if that is the root cause.

Chapter 25
DBFS Administration

25-19

Preventing Data Loss During Failover Events
The dbfs_client program can failover to one of the other existing database instances
if one of the database instances in an Oracle RAC cluster fails.

For dbfs_client failover to work correctly, you must modify the Oracle database
service and specify failover parameters. Run the DBMS_SERVICE.MODIFY_SERVICE
procedure to modify the service as shown Example 25-2

Example 25-2 Enabling DBFS Client Failover Events

exec DBMS_SERVICE.MODIFY_SERVICE(service_name => 'service_name',
 aq_ha_notifications => true,
 failover_method => 'BASIC',
 failover_type => 'SELECT',
 failover_retries => 180,
 failover_delay => 1);

Once you have completed the prerequisite, you can prevent data loss during a failover
of the DBFS connection after a failure of the back-end Oracle database instance. In
this case, cached writes may be lost if the client loses the connection. However, back-
end failover to other Oracle RAC instances or standby databases does not cause lost
writes.

• Specify the -o failover mount option:

$ dbfs_client database_user@database_server -o failover /mnt/dbfs

Bypassing Client-Side Write Caching
The sharing and caching semantics for dbfs_client are similar to NFS in using the
close-to-open cache consistency behavior. This allows multiple copies of dbfs_client
to access the same shared file system. The default mode caches writes on the client
and flushes them after a timeout or after the user closes the file. Also, writes to a file
only appear to clients that open the file after the writer closed the file.

You can bypass client-side write caching.

• Specify O_SYNC when the file is opened.

To force writes in the cache to disk call fsync.

Backing up DBFS
You have two alternatives for backing up DBFS. You can back up the tables that
underlie the file system at the database level or use a file system backup utility, such
as Oracle Secure Backup, through a mount point.

Topics:

• DBFS Backup at the Database Level

• DBFS Backup Through a File System Utility

Chapter 25
DBFS Administration

25-20

DBFS Backup at the Database Level
An advantage of backing up the tables at the database level is that the files in the file
system are always consistent with the relational data in the database. A full restore
and recover of the database also fully restores and recovers the file system with no
data loss. During a point-in-time recovery of the database, the files are recovered to
the specified time. As usual with database backup, modifications that occur during the
backup do not affect the consistency of a restore. The entire restored file system is
always consistent with respect to a specified time stamp.

DBFS Backup Through a File System Utility
The advantage of backing up the file system using a file system backup utility is that
individual files can be restored from backup more easily. Any changes made to the
restored files after the last backup are lost.

Specify the allow_root mount option if backups are scheduled using the Oracle
Secure Backup Administrative Server.

Small File Performance of DBFS
Like any shared file system, the performance of DBFS for small files lags the
performance of a local file system.

Each file data or metadata operation in DBFS must go through the FUSE user mode file
system and then be forwarded across the network to the database. Therefore, each
operation that is not cached on the client takes a few milliseconds to run in DBFS.

For operations that involve an input/output (IO) to disk, the time delay overhead is
masked by the wait for the disk IO. Naturally, larger IOs have a lower percentage
overhead than smaller IOs. The network overhead is more noticeable for operations
that do not issue a disk IO.

When you compare the operations on a few small files with a local file system, the
overhead is not noticeable, but operations that affect thousands of small files incur a
much more noticeable overhead. For example, listing a single directory or looking at a
single file produce near instantaneous response, while searching across a directory
tree with many thousands of files results in a larger relative overhead.

Enabling Advanced SecureFiles LOB Features for DBFS
DBFS offers advanced features available with SecureFiles LOBs: compression,
deduplication, encryption, and partitioning.

For example, DBFS can be configured as a compressed file system with partitioning.
At the time of creating a DBFS file system, you must specify the set of enabled
features for the file system.

See Also:

Using Oracle LOB Storage and Creating a Partitioned File System for more
information about the features of SecureFiles LOBs.

Chapter 25
DBFS Administration

25-21

Example 25-3 Enabling Advanced Secure Files LOB Features for DBFS

$ sqlplus @dbfs_create_filesystem_advanced tablespace_name file_systemname
 [compress-high | compress-medium | compress-low | nocompress]
 [deduplicate | nodeduplicate]
 [encrypt | noencrypt]
 [partition | non-partition]

Shrinking and Reorganizing DBFS Filesystems
A DBFS Filesystem uses Online Filesystem Reorganization to shrink itself, enabling
the release of allocated space back to the containing tablespace.

Topics:

• About Changing DBFS Filesystems

• Advantages of Online Filesystem Reorganization

• Determining Availability of Online Filesystem Reorganization

• Invoking Online Filesystem Reorganization

About Changing DBFS Filesystems
DBFS filesystems, like other database segments, grow dynamically with the addition
or enlargement of files and directories. Growth occurs with the allocation of space from
the tablespace that holds the DBFS filesystem to the various segments that make up
the filesystem.

However, even if files and directories in the DBFS filesystem are deleted, the allocated
space is not released back to the containing tablespace, but continues to exist and be
available for other DBFS entities. A process called Online Filesystem Reorganization
solves this problem by shrinking the DBFS Filesystem.

The DBFS Online Filesystem Reorganization utility internally uses the Oracle
Database online redefinition facility, with the original filesystem and a temporary
placeholder corresponding to the base and interim objects in the online redefinition
model.

See Also:

Oracle Database Administrator's Guide for further information about online
redefinition

Advantages of Online Filesystem Reorganization
DBFS Online Filesystem Reorganization is a powerful data movement facility with
these certain advantages.

These are:

• It is online: When reorganization is taking place, the filesystem remains fully
available for read and write operations for all applications.

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

25-22

• It can reorganize the structure: The underlying physical structure and
organization of the DBFS filesystem can be changed in many ways, such as:

– A non-partitioned filesystem can be converted to a partitioned filesystem and
vice-versa.

– Special SecureFiles LOB properties can be selectively enabled or disabled in
any combination, including the compression, encryption, and deduplication
properties.

– The data in the filesystem can be moved across tablespaces or within the
same tablespace.

• It can reorganize multiple filesystems concurrently: Multiple different
filesystems can be reorganized at the same time, if no temporary filesystems have
the same name and the tablespaces have enough free space, typically, twice the
space requirement for each filesystem being reorganized.

Determining Availability of Online Filesystem Reorganization
DBFS for Oracle Database 12c and later supports online filesystem reorganization.
Some earlier versions also support the facility. To determine if your version does,
query for a specific function in the DBFS PL/SQL packages, as shown below:

• Query for a specific function in the DBFS PL/SQL packages.

$ sqlplus / as sysdba
SELECT * FROM dba_procedures
WHERE owner = 'SYS'
 and object_name = 'DBMS_DBFS_SFS'
 and procedure_name = 'REORGANIZEFS';

If this query returns a single row similar to the one in this output, the DBFS installation
supports Online Filesystem Reorganization. If the query does not return any rows,
then the DBFS installation should either be upgraded or requires a patch for
bug-10051996.

OWNER
--
OBJECT_NAME
--
PROCEDURE_NAME
--
OBJECT_ID|SUBPROGRAM_ID|OVERLOAD |OBJECT_TYPE |AGG|
PIP
----------|-------------|-----------------------------------|-------------|---|---
IMPLTYPEOWNER
--
IMPLTYPENAME
--
PAR	INT	DET	AUTHID
SYS
DBMS_DBFS_SFS
REORGANIZEFS
 11424| 52|(null) |PACKAGE |NO |
NO
(null)
(null)
NO |NO |NO |CURRENT_USER

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

25-23

Invoking Online Filesystem Reorganization
You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

1. Create a temporary DBFS filesystem with the desired new organization and
structure: including the desired target tablespace (which may be the same
tablespace as the filesystem being reorganized), desired target SecureFiles LOB
storage properties (compression, encryption, or deduplication), and so on.

2. Invoke the PL/SQL procedure to reorganize the DBFS filesystem using the newly-
created temporary filesystem for data movement.

3. Once the reorganization procedure completes, drop the temporary filesystem.

The example below reorganizes DBFS filesystem FS1 in tablespace TS1 into a new
tablespace TS2, using a temporary filesystem named TMP_FS, where all filesystems
belong to database user dbfs_user:

$ cd $ORACLE_HOME/rdbms/admin
$ sqlplus dbfs_user/***

@dbfs_create_filesystem TS2 TMP_FS
EXEC DBMS_DBFS_SFS.REORGANIZEFS('FS1', 'TMP_FS');
@dbfs_drop_filesystem TMP_FS
QUIT;

where:

• TMP_FS can have any valid name. It is intended as a temporary placeholder and
can be dropped (as shown in the example above) or retained as a fully
materialized point-in-time snapshot of the original filesystem.

• FS1 is the original filesystem and is unaffected by the attempted reorganization. It
remains usable for all DBFS operations, including SQL, PL/SQL, and dbfs_client
mounts and commandline, during the reorganization. At the end of the
reorganization, FS1 has the new structure and organization used to create TMP_FS
and vice versa (TMP_FS will have the structure and organization originally used for
FS1). If the reorganization fails for any reason, DBFS attempts to clean up the
internal state of FS1.

• TS2 needs enough space to accommodate all active (non-deleted) files and
directories in FS1.

• TS1 needs at least twice the amount of space being used by FS1 if the filesystem is
moved within the same tablespace as part of a shrink.

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

25-24

A
LOB Demonstration Files

This appendix describes files distributed with the database that demonstrate how
LOBs are used in supported programmatic environments. This appendix contains
these topics:

• PL/SQL LOB Demonstration Files

• OCI LOB Demonstration Files

• Java LOB Demonstration Files

PL/SQL LOB Demonstration Files
The following table lists PL/SQL demonstration files. These files are installed
in $ORACLE_HOME/rdbms/demo/lobs/plsql/. A driver program, lobdemo.sql, that calls
these files is found in the same directory.

Table A-1 PL/SQL Demonstration Examples

File Name Description Usage Information

fclose_c.sql Closing a BFILE with CLOSE Closing a BFILE with CLOSE

fclose_f.sql Closing a BFILE with FILECLOSE Closing a BFILE with FILECLOSE

fclosea.sql Closing all open BFILEs Closing All Open BFILEs with
FILECLOSEALL

fcompare.sql Comparing all or parts of two BFILEs Comparing All or Parts of Two BFILES

fcopyloc.sql Copying a LOB locator for a BFILE About Assigning a BFILE Locator

fdisplay.sql Displaying BFILE data About Displaying BFILE Data

fexists.sql Checking if a BFILE exists Determining Whether a BFILE Exists

ffilopen.sql Opening a BFILE with FILEOPEN About Opening a BFILE with FILEOPEN

ffisopen.sql Checking if the BFILE is OPEN with FILEISOPEN About Determining Whether a BFILE Is
Open with FILEISOPEN

fgetdir.sql Getting the directory object name and filename of
a BFILE

Getting Directory Object Name and File
Name of a BFILE

finsert.sql Inserting row containing a BFILE by initializing a
BFILE locator

About Inserting a Row Containing a
BFILE

fisopen.sql Checking if the BFILE is open with ISOPEN About Determining Whether a BFILE Is
Open Using ISOPEN

flength.sql Getting the length of a BFILE Getting the Length of a BFILE

floadlob.sql Loading a LOB with BFILE data About Loading a LOB with BFILE Data

fopen.sql Opening a BFILE with OPEN About Opening a BFILE with OPEN

fpattern.sql Checking if a pattern exists in a BFILE using
instr

Checking If a Pattern Exists in a BFILE
Using INSTR

A-1

Table A-1 (Cont.) PL/SQL Demonstration Examples

File Name Description Usage Information

fread.sql Reading data from a BFILE About Reading Data from a BFILE

freadprt.sql Reading portion of a BFILE data using substr About Reading a Portion of BFILE Data
Using SUBSTR

fupdate.sql Updating a BFILE by initializing a BFILE locator About Updating a BFILE by Initializing a
BFILE Locator

lappend.sql Appending one LOB to another About Appending One LOB to Another

lcompare.sql Comparing all or part of LOB Comparing All or Part of Two LOBs

lcopy.sql Copying all or part of a LOB to another LOB Copying All or Part of One LOB to
Another LOB

lcopyloc.sql Copying a LOB locator Copying All or Part of One LOB to
Another LOB

ldisplay.sql Displaying LOB data About Displaying LOB Data

lerase.sql Erasing part of a LOB About Erasing Part of a LOB

linsert.sql Inserting a row by initializing LOB locator bind
variable

Inserting a Row by Initializing a LOB
Locator Bind Variable

linstr.sql Seeing if pattern exists in LOB (instr) Patterns: Checking for Patterns in a LOB
Using INSTR

lisopen.sql Seeing if LOB is open Determining Whether a LOB is Open

listemp.sql Seeing if LOB is temporary Determining Whether a LOB instance Is
Temporary

lldblobf.sql Using DBMS_LOB.LOADBLOBFROMFILE to load a
BLOB with data from a BFILE

About Loading a BLOB with Data from a
BFILE

lldclobf.sql Using DBMS_LOB.LOADCLOBFROMFILE to load a
CLOB or NCLOB with data from a BFILE

Loading a CLOB or NCLOB with Data
from a BFILE

lldclobs.sql Using DBMS_LOB.LOADCLOBFROMFILE to load
segments of a stream of data from a BFILE into
different CLOBs

Loading a CLOB or NCLOB with Data
from a BFILE

llength.sql Getting the length of a LOB Length: Determining the Length of a LOB

lloaddat.sql Loading a LOB with BFILE data Loading a LOB with Data from a BFILE

lobuse.sql Examples of LOB API usage. Creating Persistent and Temporary LOBs
in PL/SQL

lread.sql Reading data from LOB About Reading Data from a LOB

lsubstr.sql Reading portion of LOB (substr) Reading a Portion of a LOB (SUBSTR)

ltrim.sql Trimming LOB data About Trimming LOB Data

lwrite.sql Writing data to a LOB About Writing Data to a LOB

lwriteap.sql Writing to the end of LOB (write append) About Appending to a LOB

Appendix A
PL/SQL LOB Demonstration Files

A-2

OCI LOB Demonstration Files
The following table lists OCI demonstration files. These files are installed
in $ORACLE_HOME/rdbms/demo/lobs/oci/. A driver program, lobdemo.c, that calls
these files is found in the same directory, as is the header file lobdemo.h.

Table A-2 OCI Demonstration Examples

File Name Description Usage Information

fclose_c.c Closing a BFILE with CLOSE Closing a BFILE with CLOSE

fclose_f.c Closing a BFILE with FILECLOSE Closing a BFILE with FILECLOSE

fclosea.c Closing all open BFILEs Closing All Open BFILEs with
FILECLOSEALL

fcopyloc.c Copying a LOB locator for a BFILE About Assigning a BFILE Locator

fdisplay.c Displaying BFILE data About Displaying BFILE Data

fexists.c Checking if a BFILE exists Determining Whether a BFILE Exists

ffilopen.c Opening a BFILE with FILEOPEN About Opening a BFILE with FILEOPEN

ffisopen.c Checking if the BFILE is OPEN with
FILEISOPEN

About Determining Whether a BFILE Is
Open with FILEISOPEN

fgetdir.c Getting the directory object name and
filename of a BFILE

Getting Directory Object Name and File
Name of a BFILE

finsert.c Inserting row containing a BFILE by
initializing a BFILE locator

About Inserting a Row Containing a BFILE

fisopen.c Checking if the BFILE is open with
ISOPEN

About Determining Whether a BFILE Is
Open Using ISOPEN

flength.c Getting the length of a BFILE Getting the Length of a BFILE

floadlob.c Loading a LOB with BFILE data About Loading a LOB with BFILE Data

fopen.c Opening a BFILE with OPEN About Opening a BFILE with OPEN

fread.c Reading data from a BFILE About Reading Data from a BFILE

fupdate.c Updating a BFILE by initializing a
BFILE locator

About Updating a BFILE by Initializing a
BFILE Locator

lappend.c Appending one LOB to another About Appending One LOB to Another

lcopy.c Copying all or part of a LOB to another
LOB

Copying All or Part of One LOB to Another
LOB

lcopyloc.c Copying a LOB locator Copying All or Part of One LOB to Another
LOB

ldisplay.c Displaying LOB data About Displaying LOB Data

lequal.c Seeing if one LOB locator is equal to
another

Equality: Checking If One LOB Locator Is
Equal to Another

lerase.c Erasing part of a LOB About Erasing Part of a LOB

lgetchar.c Getting character set id About Determining Character Set ID

lgetchfm.c Getting character set form of the
foreign language ad text, ad_fltextn

About Determining Character Set Form

Appendix A
OCI LOB Demonstration Files

A-3

Table A-2 (Cont.) OCI Demonstration Examples

File Name Description Usage Information

linit.c Seeing if a LOB locator is initialized About Determining Whether LOB Locator Is
Initialized

linsert.c Inserting a row by initializing LOB
locator bind variable

Inserting a Row by Initializing a LOB
Locator Bind Variable

lisopen.c Seeing if LOB is open Determining Whether a LOB is Open

listemp.c Seeing if LOB is temporary Determining Whether a LOB instance Is
Temporary

llength.c Getting the length of a LOB Length: Determining the Length of a LOB

lloaddat.c Loading a LOB with BFILE data Loading a LOB with Data from a BFILE

lread.c Reading data from LOB About Reading Data from a LOB

lreadarr.c Reading data from an array of LOB
locators

About LOB Array Read

ltrim.c Trimming LOB data About Trimming LOB Data

lwrite.c Writing data to a LOB About Writing Data to a LOB

lwritearr.c Writing data into an array of LOB
locators

LOB Array Write

lwriteap.c Writing to the end of LOB (write
append)

About Appending to a LOB

Java LOB Demonstration Files
The following table lists Java demonstration files. These files are installed
in $ORACLE_HOME/rdbms/demo/lobs/java/.

Table A-3 Java Demonstration Examples

File Name Description Usage Information

Readme.txt - See Oracle Database JDBC Developer's Guide
for information on setting up your system to be
able to compile and run JDBC programs with the
Oracle Driver

LobDemoConnectionFactory.java - As written LobDemoConnectionFactory uses
the JDBC OCI driver with a local connection. You
should edit the URL "jdbc:oracle:oci8:@" to
match your setup. Again see Oracle Database
JDBC Developer's Guide.

fclose_c.java Closing a BFILE with
CLOSE

Closing a BFILE with CLOSE

fclose_f.java Closing a BFILE with
FILECLOSE

Closing a BFILE with FILECLOSE

fclosea.java Closing all open BFILEs Closing All Open BFILEs with FILECLOSEALL

fcompare.java Comparing all or parts of
two BFILEs

Comparing All or Parts of Two BFILES

Appendix A
Java LOB Demonstration Files

A-4

Table A-3 (Cont.) Java Demonstration Examples

File Name Description Usage Information

fexists.java Checking if a BFILE
exists

Determining Whether a BFILE Exists

ffilopen.java Opening a BFILE with
FILEOPEN

About Opening a BFILE with FILEOPEN

ffisopen.java Checking if the BFILE is
OPEN with FILEISOPEN

About Determining Whether a BFILE Is Open with
FILEISOPEN

fgetdir.java Getting the directory
object name and filename
of a BFILE

Getting Directory Object Name and File Name of
a BFILE

finsert.java Inserting row containing a
BFILE by initializing a
BFILE locator

About Inserting a Row Containing a BFILE

fisopen.java Checking if the BFILE is
open with ISOPEN

About Determining Whether a BFILE Is Open
Using ISOPEN

flength.java Getting the length of a
BFILE

Getting the Length of a BFILE

fopen.java Opening a BFILE with
OPEN

About Opening a BFILE with OPEN

fpattern.java Checking if a pattern
exists in a BFILE using
instr

Checking If a Pattern Exists in a BFILE Using
INSTR

fread.java Reading data from a
BFILE

About Reading Data from a BFILE

fupdate.java Updating a BFILE by
initializing a BFILE
locator

About Updating a BFILE by Initializing a BFILE
Locator

lappend.java Appending one LOB to
another

About Appending One LOB to Another

lcompare.java Comparing all or part of
LOB

Comparing All or Part of Two LOBs

lcopy.java Copying all or part of a
LOB to another LOB

Copying All or Part of One LOB to Another LOB

lerase.java Erasing part of a LOB About Erasing Part of a LOB

linsert.java Inserting a row by
initializing LOB locator
bind variable

Inserting a Row by Initializing a LOB Locator Bind
Variable

linstr.java Seeing if pattern exists in
LOB (instr)

Patterns: Checking for Patterns in a LOB Using
INSTR

lisopen.java Seeing if LOB is open Determining Whether a LOB is Open

listempb.java Seeing if LOB is
temporary

Determining Whether a LOB instance Is
Temporary

listempc.java Seeing if LOB is
temporary

Determining Whether a LOB instance Is
Temporary

Appendix A
Java LOB Demonstration Files

A-5

Table A-3 (Cont.) Java Demonstration Examples

File Name Description Usage Information

llength.java Getting the length of a
LOB

Length: Determining the Length of a LOB

lloaddat.java Loading a LOB with
BFILE data

Loading a LOB with Data from a BFILE

lread.java Reading data from LOB About Reading Data from a LOB

lsubstr.java Reading portion of LOB
(substr)

Reading a Portion of a LOB (SUBSTR)

ltrim.java Trimming LOB data About Trimming LOB Data

lwrite.java Writing data to a LOB About Writing Data to a LOB

lwriteap.java Writing to the end of LOB
(write append)

About Appending to a LOB

Appendix A
Java LOB Demonstration Files

A-6

Glossary

BFILE
A Large Object datatype that is a binary file residing in the file system, outside of the
database data files and tablespace. Note that the BFILE datatype is also referred to as
an external LOB in some documentation.

Binary Large Object (BLOB)
A Large Object datatype that has content consisting of binary data and is typically
used to hold unstructured data. The BLOB datatype is included in the category
Persistent LOBs because it resides in the database.

BLOB
See Binary Large Object (BLOB) .

Character Large Object (CLOB)
The LOB data type that has content consisting of character data in the database
character set. A CLOB can be indexed and searched by the Oracle Text search
engine.

CLOB
See Character Large Object (CLOB).

data interface
Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

deduplication
Deduplication enables Oracle Database to automatically detect duplicate LOB data
and conserve space by only storing one copy (if storage parameter is SECUREFILE).

DBFS
The Database Filesystem, which is visible to end-users as the client-side API
(dbms_dbfs_content).

DBFS Link
Database File System Links (DBFS Links) are references from SecureFiles LOBs to
data stored outside the segment where the SecureFiles LOB resides.

Glossary-1

external LOB
A Large Object datatype that is stored outside of the database tablespace. The BFILE
datatype is the only external LOB datatype. See also BFILE.

internal persistent LOB
A large object (LOB) that is stored in the database in a BLOB/CLOB/NCLOB column.

introspect
To examine attributes or value of an object.

Large Objects (LOBs)
Large Objects include the following SQL datatypes: BLOB, CLOB, NCLOB, and BFILE.
These datatypes are designed for storing data that is large in size. See also BFILE,
Binary Large Object, Character Large Object, and National Character Large Object.

LOB
See Large Objects (LOBs)

LOB attribute
A large object datatype that is a field of an object datatype. For example a CLOB field of
an object type.

LOB value
The actual data stored by the Large Object. For example, if a BLOB stores a picture,
then the value of the BLOB is the data that makes up the image.

mount point
The path where the Database File System is mounted. Note that all file systems
owned by the database user are seen at the mount point.

National Character Large Object
The LOB data type that has content consisting of Unicode character data in the
database national character set. An NCLOB can be indexed and searched by the Oracle
Text search engine.

NCLOB
See National Character Large Object.

persistent LOB
A BLOB, CLOB, or NCLOB that is stored in the database. A persistent LOB instance can
be selected out of a table and used within the scope of your application. The ACID
(atomic, consistent, isolated, durable) properties of the instance are maintained just as
for any other column type. Persistent LOBs are sometimes also referred to as internal
persistent LOBs or just, internal LOBs.

A persistent LOB can exist as a field of an object data type and an instance in a LOB-
type column. For example a CLOB attribute of an instance of type object.

Glossary

Glossary-2

See also temporary LOB and external LOB.

SECUREFILE
LOB storage parameter that allows deduplication, encryption, and compression. The
opposite parameter, that does not allow these features, is BASICFILE.

SPI
The DBFS Store Provider Interface, visible to end-users as the server-side SPI
(dbms_dbfs_content_spi).

Store
A unified content repository, visible to the DBFS, and managed by a single store
provider. The store itself may be a single relational table, a collection of tables, or even
a collection of relational and non-relational entities (e.g., hierarchical stores like tapes
and the cloud, elements inside an XML file, components of HDF-style documents, and
so on.

Store Provider
An entity, embodied as a P L/SQL package, that implements the DBFS SPI.

tablespace
A database storage unit that groups related logical structures together.

temporary LOB
A BLOB, CLOB, or NCLOB that is accessible and persists only within the application scope
in which it is declared. A temporary LOB does not exist in database tables.

Glossary

Glossary-3

Index

A
access statistics for LOBs, 15-6
accessing a LOB

using the LOB APIs, 2-8
accessing external LOBs, 11-3
accessing LOBs, 7-1
administrative APIs, 23-8
Advanced LOB compression, 3-2
Advanced LOB Deduplication, 3-2
ALTER TABLE parameters for SecureFiles

LOBs, 3-17
amount, 11-18
amount parameter

used with BFILEs, 11-11
appending

writing to the end of a LOB, 12-26
array read, 12-14
array write, 12-30
assigning OCILobLocator pointers, 10-12
ASSM tablespace, 3-2, 3-8, 3-24, 13-10, 17-6
available LOB methods, 10-4, 10-5

B
BASICFILE

LOB storage parameter, 3-7
BasicFiles LOB Storage, 3-2
BasicFiles LOBs and SecureFiles LOBs, 1-8
BFILE class, See JDBC, 10-28
BFILE-streaming, See JDBC, 10-33
BFILENAME function, 2-6, 11-5
BFILEs, 1-5

accessing, 11-3
converting to CLOB or NCLOB, 11-11
creating an object in object cache, 14-15
DBMS_LOB read-only procedures, 10-9
DBMS_LOB, offset and amount parameters

in bytes, 10-6
locators, 2-3
maximum number of open, 11-22, 16-7
maximum size, 14-16
multithreaded server mode, 2-10, 11-9
not affected by LOB storage properties, 13-6

BFILEs (continued)
OCI functions to read/examine values, 10-13,

10-20
OCI read-only functions, 10-14, 10-20
opening and closing using JDBC, 10-37
Pro*C/C++ precompiler statements, 10-23
Pro*COBOL precompiler embedded SQL

statements, 10-26
reading with DBMS_LOB, 10-8
security, 11-6
storage devices, 1-5
streaming APIs, 10-43
using JDBC to read/examine, 10-33
using Pro*C/C++ precompiler to open and

close, 10-24
bind variables, used with LOB locators in OCI,

10-12
binds

See also INSERT statements and UPDATE
statements, 9-6

BLOB-streaming, See JDBC, 10-31
BLOBs

class, 10-17, 10-28
DBMS_LOB, offset and amount parameters

in bytes, 10-6
maximum size, 14-16
modify using DBMS_LOB, 10-8
using JDBC to modify, 10-31
using JDBC to read/examine BLOB values,

10-31
using oracle.sql.BLOB methods to modify,

10-31
body.sql script, 24-16
built-in functions, remote, 5-4

C
C, See OCI, 10-1
C++, See Pro*C/C++ precompiler, 10-2
CACHE / NOCACHE, 13-11
caches

object cache, 14-16
callback, 11-18, 12-13, 12-26
capi.sql script, 24-29

Index-1

catalog views
v$temporary_lobs, 16-6

character data
varying width, 13-4

character set ID, 10-7, 10-10
See CSID parameter, 10-10

character set ID, getting
persistent LOBs, 12-5

charactersets
multibyte, LONG and LOB datatypes, 9-12

CHECKACCESS, 23-17
CHUNK, 3-8, 13-13
chunk size, 12-27

and LOB storage properties, 13-6
multiple of, to improve performance, 12-13

CLOB
session collation settings, 7-6

CLOB-streaminng, See JDBC, 10-32
CLOBs

class, See JDBC, 10-28
columns

varying- width character data, 13-4
datatype

varying-width columns, 13-4
DBMS_LOB, offset and amount parameters

in characters, 10-6
modify using DBMS_LOB, 10-8
opening and closing using JDBC, 10-36
reading/examining with JDBC, 10-32
using JDBC to modify, 10-32

closing
all open BFILEs, 11-27
BFILEs with CLOSE, 11-25
BFILEs with FILECLOSE, 11-25

clustered tables, 17-9
COBOL, See Pro*COBOL precompiler, 10-2
codepoint semantics, 7-7
comparing

all or parts of two BFILEs, 11-20
comparing, all or part of two LOBs

persistent LOBs, 12-21
COMPRESS, 3-11, 3-19
compression

Advanced LOB, 3-2
content store

listing, 23-10
looking up, 23-11
registering, 23-8
unmounting, 23-10

conventional path load, 16-2
conversion

explicit functions for PL/SQL, 8-2
conversion, implicit from CLOB to character type,

7-3

conversions
character set, 11-11
from binary data to character set, 11-11
implicit, between CLOB and VARCHAR2, 8-1

converting
to CLOB, 8-2

copy semantics, 1-6
internal LOBs, 6-5

copying
directories, 25-5
files, 25-5
LOB locator

persistent LOBs, 12-24
LOB locator for BFILE, 11-22

copying, all or part of a LOB to another LOB
persistent LOBs, 12-23

CREATE TABLE and SecureFiles LOB features,
3-11

CREATE TABLE parameters for SecureFiles
LOBs, 3-3

CREATE TABLE syntax and notes, 3-3
creating

a directory, 25-5
partitioned file system, 25-2

creating a non-partitioned file system, 25-2
creating SecureFiles File System Store, 21-2
CSID parameter

setting OCILobRead and OCILobWrite to
OCI_UCS2ID, 10-10

D
data interface for persistent LOBs, 9-1, 17-8

multibyte charactersets, 9-12
data interface for remote LOBs, 9-24
data interface in Java, 9-24
Data Pump, 17-8

SecureFiles LOBs, 16-5
Data Pumping

transferring LOB data, 16-5
database file system links, 22-14
db_securefile init.ora parameter, 3-23
DBFS

administration, 25-18
backing up, 25-20
body.sql script, 24-16
caching, 25-20
capi.sql script, 24-29
client, 20-2
command-Line interface, 25-4
Content SPI (Store Provider Interface), 24-2
content store, 20-4
creating a custom provider, 24-3
creating a custom provider, mechanics, 24-4
creating SecureFiles File System Store, 21-2

Index

Index-2

DBFS (continued)
custom provider sample installation and

setup, 24-4
DBFS Server, 20-2
diagnostics, 25-19
example store provider, 24-3
FTP access, 25-17
hierachical store, setting up, 22-2
Hierarchical Store Package,

DBMS_DBFS_HS, 22-1
hierarchical store, dropping, 22-4
hierarchical store, setting up, 22-3
hierarchical store, using, 22-3
hierarchical store, using compression, 22-4
hierarchical store, using tape, 22-5
HS store wallet, setting up, 22-2
HTTP access to, 25-18
internet access, 25-16
managing client failover, 25-20
Online Filesystem Reorganization, 25-22
overview, 20-1
RAC cluster, 25-20
reorganizing file systemsDBFS

online redefinition, 25-22
SecureFiles LOB advanced features, 25-21
SecureFiles Store

setting up, 21-1
SecureFiles Store File Systems, dropping,

21-6
SecureFiles Store File Systems, initializing,

21-4
sharing, 25-20
shrinking file systems, 25-22
small file performance, 25-21
spec.sql script, 24-7
store creation, 24-1
TaBleFileSystem Store Provider ("tbfs"), 24-3
TBFS.SQL script, 24-6
TBL.SQL script, 24-6
using a SecureFiles Store File System, 21-5
using Oracle Wallet, 25-18
XDB internet access, 25-16

DBFS Content API
abstract operations, 23-17
access checks, 23-17
and stores, 23-2
content IDs, 23-4
creation operations, 23-13
deletion operations, 23-14
directory listings, 23-16
exceptions, 23-6
get operations, 23-14
getting started, 23-3
interface versioning, 23-12
lock types, 23-5

DBFS Content API (continued)
locking operations, 23-17
move operations, 23-15
navigation, 23-16
optional properties, 23-6
overview, 23-1
path name types, 23-4
path names, 23-12
path normalization, 23-18
path properties, 23-3
property access flags, 23-6
property bundles, 23-7
put operations, 23-14
rename operations, 23-15
role, 23-3
search, 23-16
session defaults, 23-12
space usage, 23-11
standard properties, 23-5
statistics support, 23-18
store descriptors, 23-7
store features, 23-4
structure, properties, 23-20
tracing support, 23-19
types and constants, 23-3
user-defined properties, 23-6
using, 21-5

DBFS content store path
creating, 25-4

DBFS file system
accessing, 25-3
client prerequisites, 25-3
creating, 25-1

creating a DBFS file system, 25-1
dropping, 25-3
partitioned versus non-partitioned, 25-2

DBFS installation, 25-1
DBFS links, 22-14
DBFS mounting interface

Linux and Solaris, 25-6
DBFS Mounting Interface (Linux Only), 25-6
DBFS SecureFiles Store

setting up permissions, 21-1
DBFS SecureFiles Store Package,

DBMS_DBFS_SFS, 21-6
DBFS SPI (DBMS_DBFS_CONTENT_SPI), 24-1
DBFS Store

mounting, 25-7
DBMS_DBFS_CONTENT_SPI, 24-1
DBMS_DBFS_HS, 22-1
DBMS_DBFS_HS package, 22-17

methods, 22-18
views, 22-19

DBMS_LOB
updating LOB with bind variable, 14-9

Index

3

DBMS_LOB functions on a NULL LOB
restriction, 13-2

DBMS_LOB package
available LOB procedures/functions,

10-2–10-5
for temporary LOBs, 10-9
functions/procedures to modify BLOB, CLOB,

and NCLOB, 10-8
functions/procedures to read/examine

internal and external LOBs, 10-8
multithreaded server, 2-10
multithreaded server mode, 11-9
offset and amount parameter guidelines,

10-6
open and close, JDBC replacements for,

10-34
opening/closing internal and external LOBs,

10-9
provide LOB locator before invoking, 10-5
read-only functions/procedures for BFILEs,

10-9
to work with LOBs, using, 10-5
using with SecureFiles and DBFS, 3-27
WRITE()

guidelines, 12-27
DBMS_LOB.GET_STORAGE_LIMIT, 14-18
DBMS_LOB.GETCHUNKSIZE, 14-17
DBMS_LOB.GETLENGTH return value, 7-8
DBMS_LOB.LOADCLOBFROMFILE, 10-6
DBMS_LOB.WRITE()

passing hexadecimal string to, 12-29
DBMS_REDEFINITION package, 3-17
DBMS_SPACE package, 3-34
DECRYPT, 3-11, 3-19
DEDUPLICATE, 3-11, 3-19
deduplication

Advanced LOB, 3-2
diagnostics

DBFS, 25-19
direct-path load, 16-2
directories

catalog views, 11-8
creating, 25-5
guidelines for usage, 11-8
listing, 25-5
ownership and privileges, 11-6

DIRECTORY object, 11-3
catalog views, 11-8
getting the alias and filename, 11-23
guidelines for usage, 11-8
name specification, 11-6
names on Windows platforms, 11-6
READ permission on object not individual

files, 11-7
rules for using, 16-6

DIRECTORY object (continued)
symbolic links, and, 16-6

DISABLE STORAGE IN ROW, 13-6
displaying

LOB data for persistent LOBs, 12-11
domain indexing on LOB columns, 13-16

E
embedded SQL statements, See Pro*C/C++

precompiler and Pro*COBOL
precompiler, 10-22

empty LOBs
creating using JDBC, 10-47
JDBC, 10-47

EMPTY_BLOB() and EMPTY_CLOB, LOB
storage properties for, 13-6

EMPTY_CLOB()/BLOB()
to initialize internal LOB, 2-5

ENABLE STORAGE IN ROW, 13-6
ENCRYPT, 3-11, 3-19
encryption

SecureFiles, 3-3
equal, one LOB locator to another

persistent LOBs, 12-25
erasing, part of LOB

persistent LOBs, 12-36
examples

repercussions of mixing SQL DML with
DBMS_LOB, 14-6

updated LOB locators, 14-8
updating a LOB with a PL/SQL variable, 14-9

examples, LOB access statistics, 15-7
existence

check for BFILE, 11-21
extensible indexes, 13-17
external LOBs (BFILEs), 1-5

See BFILEs, 1-5
external LOBs (BFILEs), See BFILEs, 1-5

F
file system

links, 22-14
security model, 25-11

FILESYSTEM_LIKE_LOGGING
LOB storage parameter, 3-10

FOR UPDATE clause
LOB locator, 14-3

FREELIST GROUPS, 3-11
FREELISTS, 3-11
FREEPOOLS, 3-9, 3-11
FTP

access to DBFS, 25-16

Index

Index-4

function-based indexes, 13-17
on LOB columns, 13-17

FUSE
installing, 25-7

G
getting started with DBFS Content API, 23-3
getting started with DBMS_DBFS_CONTENT,

23-3

H
hexadecimal string

passing to DBMS_LOB.WRITE(), 12-29
hierarchical store

dropping, 22-4
setting up, 22-3
using, 22-3
using compression, 22-4
using tape, 22-5

Hierarchical Store Package, DBMS_DBFS_HS,
22-1

HS store wallet, 22-2
HTTP

access to DBFS, 25-16
HTTP access to DBFS, 25-18

I
implicit assignment and parameter passing for

LOB columns, 9-4
implicit conversion of CLOB to character type,

7-3
improved LOB usability, 7-1
index-organized tables, restrictions for LOB

columns, 13-22
indexes

function-based, 13-17
rebuilding after LONG-to-LOB migration,

17-9
restrictions, 17-9

indexes on LOB columns
B-tree index not supported, 13-16
bitmap index not supported, 13-16
domain indexing, 13-16
restriction, 13-16

Information Lifecycle Management (ILM), 22-1
init.ora parameter db_securefile, 3-23
INITFS, 21-4
initialization parameters for SecureFiles LOBs,

3-23
initializing

during CREATE TABLE or INSERT, 6-6

initializing (continued)
using EMPTY_CLOB(), EMPTY_BLOB(), 2-5

initializing a LOB column to a non-NULLvalue,
13-2

inline storage, 13-6
maximum size, 13-6

INSERT statements
binds of greater than 4000 bytes, 9-6

inserting
a row by initializing a LOB locator

internal persistent LOBs, 6-6
a row by initializing BFILE locator, 11-27

installing
DBFS, 25-1
FUSE, 25-7
Oracle Database, 25-1

interfaces for LOBs, see programmatic
environments, 10-2

ioctl, 25-11
IS NULL return value for LOBs, 7-12
IS NULL usage with LOBs, 7-12
ISNULL usage with LOBs, 7-12

J
Java, See JDBC, 10-2
JDBC

available LOB methods/properties, 10-4,
10-5

BFILE class, 10-28
BFILE streaming APIs, 10-43
BFILE-streaming, 10-33
BLOB and CLOB classes, 10-28
calling DBMS_LOB package, 10-28
checking if BLOB is temporary, 12-38
CLOB streaming APIs, 10-42
empty LOBs, 10-47
encapsulating locators, 10-28
methods/properties for BLOB-streaming,

10-31
methods/properties for CLOBs

streaming, 10-32
modifying BLOB values, 10-31
modifying CLOB values, 10-32
modifyng internal LOBs with Java using

oracle.sql.BLOB/CLOB, 10-27
newStreamLob.java, 10-43
opening and closing BFILEs, 10-37
opening and closing CLOBs, 10-36
opening and closing LOBs, 10-34
reading internal LOBs and external LOBs

(BFILEs) with Java, 10-28
reading/examining BLOB values, 10-31
reading/examining CLOB values, 10-32

Index

5

JDBC (continued)
reading/examining external LOB (BFILE)

values, 10-33
referencing LOBs, 10-29
streaming APIs for LOBs, 10-41
syntax references, 10-30
trimming LOBs, 10-40
using OracleResultSet to reference LOBs,

10-30
using OUT parameter from

OraclePreparedStatement to
reference LOBs, 10-30

writing to empty LOBs, 10-47
JDBC 3.0, 10-27
JDBC and Empty LOBs, 10-47

K
KEEP_DUPLICATES, 3-11, 3-19

L
length

getting BFILE, 11-22
persistent LOB, 12-22

LENGTH return value for LOBs, 7-8
libaio

asynchronous I/O through, 25-11
Linux

DBFS mounting interface, 25-6
listing

a directory, 25-5
loading

a LOB with BFILE data, 11-11
LOB with data from a BFILE, 12-5

loading BEFILEs
using SQL*Loader, 16-3

loading data into LOBs
utilities, 16-1

LOB column cells
accessing, 2-1

LOB column states, 2-1
LOB columns

initializing to contain locator, 2-4
initializing to NULL or Empty, 13-1

LOB locator
copy semantics, 1-6
external LOBs (BFILEs), 1-6
internal LOBs, 1-6
out-bind variables in OCI, 10-12
reference semantics, 1-6

LOB locators, 1-5
LOB locators, always stored in row, 13-6
LOB prefetching

JDBC, 10-28

LOB reads, 15-6
LOB restrictions, 2-8
LOB storage

format of varying width character data, 13-4
inline and out-of-line storage properties, 13-6

LOB streaming
BLOB-streaming with JDBC, 10-31

LOB writes, 15-6
LOB writes unaligned, 15-6
LOBs

accesing with SQL, 2-7
accessing, 2-7
accessing using the data interface, 2-7
accessing using the locator interface, 2-8
attributes and object cache, 14-15
changing default tablespace storage, 16-7
data types versus LONG, 1-3
external (BFILEs), 1-5
in the object cache, 14-15
interfaces, See programmatic environments,

10-2
internal

creating an object in object cache, 14-15
internal LOBs

CACHE / NOCACHE, 13-11
CHUNK, 13-13
ENABLE | DISABLE STORAGE IN

ROW, 13-15
initializing, 11-18
introduced, 1-4
locators, 2-3
locking before updating, 12-3, 12-23,

12-27, 12-28, 12-35, 12-36
LOGGING / NOLOGGING, 13-11
PCTVERSION, 13-9
setting to empty, 13-2
tablespace and LOB index, 13-8
tablespace and storage characteristics,

13-7
transactions, 1-4

loading data into, using SQL*Loader, 16-1
locator, 2-2
locators, 2-3, 14-3
locking rows, 2-2
maximum sizes allowed, 14-16
object cache, 14-16
piecewise operations, 14-6
read-consistent locators, 14-3
reason for using, 1-1
setting to contain a locator, 2-4
setting to NULL, 13-2
tables

creating indexes, 13-20
moving partitions, 13-20
splitting partitions, 13-20

Index

Index-6

LOBs (continued)
unstructured data, 1-3
updated LOB locators, 14-5
value, 2-2
varying-width character data, 13-4

LOBS
opening and closing, 2-2

LOBs, data interface for remote, 9-24
LOBs, data interface in Java, 9-24
locators, 2-3

BFILE guidelines, 11-10
BFILEs, 11-9
BFILEs, two rows can refer to the same file,

11-10
external LOBs (BFILEs), 2-3
LOB, 1-5
LOB, cannot span transactions, 14-14
multiple, 14-3
OCI functions, 10-14, 10-21
Pro*COBOL precompiler statements, 10-27
providing in Pro*COBOL precompiler, 10-24
read consistent, updating, 14-3
read-consistent, 14-3, 14-9, 14-14
reading and writing to a LOB using, 14-12
selecting within a transaction, 14-13
selecting without current transaction, 14-12
setting column to contain, 2-4
transaction boundaries, 14-11
updated, 14-5, 14-9
updating, 14-14

locators, see if LOB locator is initialized
persistent LOBs, 12-25

locking, 25-11
locking a row containing a LOB, 2-2
LOGGING

LOB storage parameter, 3-10
migrating LONG-to-LOBs, 17-2

LOGGING / NOLOGGING, 13-11
LONG versus LOB data types, 1-3
LONG-to-LOB migration

ALTER TABLE, 17-4
benefits and concepts, 17-1
clustered tables, 17-9
LOGGING, 17-2
NULLs, 17-10
rebuilding indexes, 17-9
triggers, 17-9

M
MAXSIZE, 3-8
migrating

LONG to LOBs, see LONG-to-LOB, 17-1
LONG-to-LOB using ALTER TABLE, 17-4
LONG-to-LOBs, constraints maintained, 17-3

migrating (continued)
LONG-to-LOBs, indexing, 17-9

migrating to SecureFiles LOBs, 3-24, 3-25
migration of LONG to LOB in parallel, 17-5
mount points

listing, 23-10
mounted file systems

restrictions, 25-11
mounting

DBFS through fstab for Linux, 25-10
DBFS through fstab for Solaris, 25-10
the DBFS store, 25-7

multibyte character sets, using with the data
interface for LOBs, 9-12

multithreaded server
BFILEs, 2-10, 11-9

N
NCLOB

session collation settings, 7-6
NCLOBs

DBMS_LOB, offset and amount parameters
in characters, 10-6

modify using DBMS_LOB, 10-8
NewStreamLob.java, 10-43
NOCOMPRESS, 3-11, 3-19
NOCOPY, using to pass temporary LOB

parameters by reference, 15-3
NOLOGGING

LOB storage parameter, 3-10
non-partitioned file system

creating, 25-2
NORMALIZEPATH, 23-18
NULL LOB value, LOB storage for, 13-6
NULL LOB values, LOB storage properties for,

13-6
NULL LOB, restrictions calling OCI and

DBMS_LOB functions, 13-2

O
object cache, 14-15

creating an object in, 14-15
LOBs, 14-16

OCCI
compared to other interfaces, 10-2–10-4
LOB functionality, 10-15

OCCI Blob class
read, 10-17
write, 10-17

OCCI Clob class
read, 10-17
write, 10-17

Index

7

OCI
available LOB functions, 10-2–10-4
character set rules, fixed-width and varying-

width, 10-10
functions for BFILEs, 10-14, 10-20
functions for temporary LOBs, 10-14, 10-20
functions to modify internal LOB values,

10-13, 10-20
functions to open/close internal and external

LOBs, 10-14, 10-21
functions to read or examine internal and

external LOB values, 10-13, 10-20
LOB locator functions, 10-14, 10-21
NCLOB parameters, 10-11, 10-18
OCILobFileGetLength

CLOB and NCLOB input and output
length, 10-10

OCILobRead2()
varying-width CLOB and NCLOB input

and amount amounts, 10-10
OCILobWrite2()

varying-width CLOB and NCLOB input
and amount amounts, 10-10,
10-17

offset and amount parameter rules
fixed-width character sets, 10-17

setting OCILobRead2(), OCILobWrite2() to
OCI_UCS2ID, 10-10

using to work LOBs, 10-10
OCI functions on a NULL LOB restriction, 13-2
OCILobArrayRead(), 12-14
OCILobArrayWrite(), 12-30
OCILobGetChunkSize(), 14-17
OCILobLocator in assignment "=" operations,

10-12
OCILobLocator, out-bind variables, 10-12
ODP.NET, 10-4, 10-5
offset parameter, in DBMS_LOB operations, 10-6
OLEDB, 10-47
Online Filesystem Reorganization, 25-22
online redefinition

DBFS, 25-22
open

checking for open BFILEs with
FILEISOPEN(), 11-16

checking if BFILE is open with ISOPEN,
11-15

open, determining whether a LOB is open, 12-10
OpenCloseLob.java example, 10-38
opening

BFILEs using FILEOPEN, 11-14
BFILEs with OPEN, 11-13

opening and closing LOBs, 2-2
using JDBC, 10-34

ORA-17098
empty LOBs and JDBC, 10-47

ORA-22992, 2-8
Oracle Call Interface, See OCI, 10-10
Oracle Database Installation, 25-1
oracle.sql.BFILE

BFILE-streaming, 10-33
JDBC methods to read/examine BFILEs,

10-33
oracle.sql.BLOB

for modifying BLOB values, 10-31
reading/examining BLOB values, 10-31
See JDBC, 10-27

oracle.sql.BLOBs
BLOB-streaming, 10-31

oracle.sql.CLOB
CLOBs

streaming, 10-32
JDBC methods to read/examine CLOB

values, 10-32
modifying CLOB values, 10-32

oracle.sql.CLOBs
See JDBC, 10-27

OraclePreparedStatement, See JDBC, 10-29
OracleResultSet, See JDBC, 10-29
OraOLEDB, 10-47
out-of-line storage, 13-6

P
parallel DML support, 9-8
parallel LONG-to-LOB migration, 17-5
Parallel Online Redefinition, 3-26
partitioned DBFS file system

versus non-partitioned, 25-2
partitioned file system

creating, 25-2
partitioned index-organized tables

restrictions for LOB columns, 13-22
pattern

check if it exists in BFILE using instr, 11-20
pattern, if it exists IN LOB using (instr)

persistent LOBs, 12-21
PCTVERSION, 3-11, 13-9
performance

guidelines
reading/writing large data chunks,

temporary LOBs, 15-4
performance guidelines, 15-2

reading/writing large data chunks, 15-2
persistent LOBs, 12-26, 12-27
pipes, 25-11
PL/SQL, 10-1

and LOBs, semantics changes, 8-1
changing locator-data linkage, 8-3

Index

Index-8

PL/SQL (continued)
CLOB variables in, 8-3
CLOB variables in PL/SQL, 8-3
CLOBs passed in like VARCHAR2s, 8-3
defining a CLOB Variable on a VARCHAR,

8-1
freeing temporary LOBs automatically and

manually, 8-3
PL/SQL functions, remote, 5-7, 8-5
PL/SQL packages for SecureFiles LOB, 3-26
PM schema, 2-4
polling, 11-18, 12-13, 12-26
prefetching data, 10-10
prerequisites

DBFS file system client, 25-3
print_media creation, 6-1
print_media table definition, 2-4
privileges

to create DBFS file system, 25-1
Pro*C/C++ precompiler

available LOB functions, 10-2–10-4
locators, 10-24
modifying internal LOB values, 10-22
opening and closing internal LOBs and

external LOBs (BFILEs), 10-24
providing an allocated input locator pointer,

10-22
reading or examining internal and external

LOB values, 10-23
statements for BFILEs, 10-23
statements for temporary LOBs, 10-23

Pro*COBOL precompiler
available LOB functions, 10-2–10-4
locators, 10-27
modifying internal LOB values, 10-25
providing an allocated input locator, 10-24
reading or examining internal and external

LOBs, 10-26
statements for BFILEs, 10-26
temporary LOBs, 10-26

programmatic environments
available functions, 10-2
compared, 10-2

programmatic environments for LOBs, 10-1

Q
Query APIs, 23-8

R
read consistency

LOBs, 14-3
read-consistent locators, 14-2, 14-3, 14-9, 14-14

reading
large data chunks, 15-2
large data chunks, temporary LOBs, 15-4
portion of BFILE data using substr, 11-19

reading, data from a LOB
persistent LOBs, 12-13

reading, portion of LOB using substr
persistent LOBs, 12-20

reference semantics, 6-5
BFILEs enables multiple BFILE columns for

each record, 11-5
registered store

mounting, 23-9
unregistering, 23-9

remote built-in functions, 5-4
remote LOBs, 2-8
remote PL/SQL functions, 5-7, 8-5
removing

directories, 25-6
files, 25-6

restrictions
binds of more than 4000 bytes, 9-7
cannot call OCI or DBMS_LOB functions on

a NULL LOB, 13-2
clustered tables, 17-9
index-organized tables and LOBs, 13-22
indexes, 17-9
LOBs, 2-8
triggers, 17-9

restrictions on mounted file systems, 25-11
restrictions on remote LOBs, 2-8
RETENTION, 3-8, 3-19
RETENTION ignored in an MSSM tablespace,

13-10
retrieving LOB access statistics, 15-7
RETURNING clause, using with INSERT to

initialize a LOB, 13-2

S
Samba, 25-11
sample schema for examples, 6-1
SECUREFILE

ALTER TABLE parameters, 3-17
LOB storage parameter, 3-8

SecureFiles Encryption, 3-3
SecureFiles LOB

CREATE TABLE parameter, 3-3
PL/SQL, 3-26

SecureFiles LOB Storage, 3-2
SecureFiles LOBs

initialization parameters, 3-23
SecureFiles LOBs and BasicFiles LOBs, 1-8
SecureFiles Store

setting up, 21-1

Index

9

security
BFILEs, 11-6
BFILEs using SQL DDL, 11-8
BFILEs using SQL DML, 11-8

SELECT statement
read consistency, 14-3

semantics
copy-based for internal LOBs, 6-5
copying and referencing, 1-6
for internal and external LOBs, 1-6
reference based for BFILEs, 11-5

semistructured data, 1-1
session collation settings

CLOB and NCLOB, 7-6
SESSION_MAX_OPEN_FILES parameter, 16-7
setting

internal LOBs to empty, 13-2
LOBs to NULL, 13-2
overrides for NLS_LANG variable, 10-10

simple structured data, complex structured data,
1-1

Solaris
mounting interface, 25-6
Solaris-Specific privileges, 25-7

Solaris 11 SRU7
installing FUSE, 25-7

spec.sql script, 24-7
SQL

character functions, improved, 7-1
features where LOBs cannot be used, 7-10

SQL DDL
BFILE security, 11-8

SQL DML
BFILE security, 11-8

SQL functions on LOBs
return type, 7-8
return value, 7-8
temporary LOBs returned, 7-8

SQL semantics and LOBs, 7-10
SQL semantics supported for use with LOBs, 7-2
SQL*Loader, 16-3

conventional path load, 16-2
direct-path load, 16-2
LOBs

loading data into, 16-1
statistics, access, 15-6
streaming

write, 12-27
streaming APIs

NewStreamLob.java, 10-43
using JDBC and BFILEs, 10-43
using JDBC and CLOBs, 10-42
using JDBC and LOBs, 10-41

symbolic links, rules with DIRECTORY objects
and BFILEs, 16-6

system owned object, See DIRECTORY object,
11-6

T
TaBleFileSystem Store Provider ("tbfs"), 24-3
tablespace storage

changing, 16-7
TBFS.SQL script, 24-6
TBL.SQL script, 24-6
TDE, 3-3
temporary BLOB

checking if temporary using JDBC, 12-38
temporary LOBs, 16-6

checking if LOB is temporary, 12-37
DBMS_LOB available functions/procedures,

10-9
OCI functions, 10-14, 10-20
Pro*C/C++ precompiler embedded SQL

statements, 10-23
Pro*COBOL precompiler statements, 10-26
returned from SQL functions, 7-8

TO_BLOB(),TO_CHAR(), TO_NCHAR(), 8-2
TO_CLOB()

converting
VARCHAR2,NVARCHAR2,NCLOB
to CLOB, 8-2

TO_NCLOB(), 8-2
transaction boundaries

LOB locators, 14-11
transaction IDs, 14-12
transactions

external LOBs do not participate in, 1-5
IDs of locators, 14-11
internal LOBs participate in database

transactions, 1-4
LOB locators cannot span, 14-14
locators with non-serializable, 14-12
locators with serializable, 14-12

transferring LOB data, 16-5
Transparent Data Encryption (TDE), 3-3
transparent read, 22-17
triggers

LONG-to-LOB migration, 17-9
trimming LOB data

persistent LOBs, 12-35
trimming LOBs using JDBC, 10-40

U
UCS2 Unicode character set

varying width character data, 13-4
UNICODE

VARCHAR2 and CLOBs support, 7-6

Index

Index-10

unmounting
a file system, 25-9

unstructured data, 1-1, 1-3
UPDATE statements

binds of greater than 4000 bytes, 9-6
updated locators, 14-5, 14-9
updating

avoid the LOB with different locators, 14-8
LOB values using one locator, 14-8
LOB values, read consistent locators, 14-3
LOB with PL/SQL bind variable, 14-9
LOBs using SQL and DBMS_LOB, 14-6
locators, 14-14
locking before, 12-23
locking prior to, 12-3, 12-35, 12-36

using SQL character functions, 7-1

V
V$NLS_VALID_VALUES, 10-7
VARCHAR2

accessing CLOB data when treated as, 8-1
also RAW, applied to CLOBs and BLOBs,

7-11
defining CLOB variable on, 8-1

VARCHAR2, using SQL functions and operators
with LOBs, 7-2

VARRAY
LOB restriction, 2-8

VARRAYs
stored as LOBs, 1-8

varying-width character data, 13-4
views on DIRECTORY object, 11-8

W
wallet

HS store wallet, 22-2
Wallet,Oracle, 25-18
WebDAV

access to DBFS, 25-16
WHERE Clause Usage with LOBs, 7-12
writing

data to a LOB, 12-27
large data chunks, temporary LOBs, 15-4
singly or piecewise, 12-26

Z
Zero-copy Input/Output for SecureFiles LOBs,

10-29

Index

11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in Oracle Database 18c
	New Features
	Deprecated Features
	Desupported Features

	Part I Getting Started
	1 Introduction to Large Objects and SecureFiles
	What Are Large Objects?
	Why Use Large Objects?
	Data Types that Use Large Objects
	LOBs Used for Semistructured Data
	LOBs Used for Unstructured Data

	Why Not Use LONGs?
	Different Kinds of LOBs
	Internal LOBs
	External LOBs and the BFILE Data Type

	LOB Locators
	Database Semantics for Internal and External LOBs
	Large Object Data Types
	About Object Data Types and LOBs
	Storage and Creation of Other Data Types with LOBs
	VARRAYs Stored as LOBs

	BasicFiles and SecureFiles LOBs
	Database File System (DBFS)

	2 Working with LOBs
	LOB Column States
	Locking a Row Containing a LOB
	LOB Open and Close Operations
	LOB Locator and LOB Value
	Using the Data Interface for LOBs
	Use the LOB Locator to Access and Modify LOB Values

	LOB Locators and BFILE Locators
	Table for LOB Examples: The PM Schema print_media Table
	LOB Column Initialization
	Initializing a Persistent LOB Column
	Initializing BFILEs

	LOB Access
	Accessing a LOB Using SQL
	Accessing a LOB Using the Data Interface
	Accessing a LOB Using the Locator Interface

	LOB Rules and Restrictions
	Rules for LOB Columns
	Restrictions for LOB Operations

	3 Using Oracle LOB Storage
	LOB Storage
	BasicFiles LOB Storage
	SecureFiles LOB Storage
	About Advanced LOB Compression
	About Advanced LOB Deduplication
	About SecureFiles Encryption

	CREATE TABLE with LOB Storage
	CREATE TABLE LOB Storage Parameters
	CREATE TABLE and SecureFiles LOB Features
	CREATE TABLE with Advanced LOB Compression
	Usage Notes for Advanced LOB Compression
	Examples of CREATE TABLE and Advanced LOB Compression

	CREATE TABLE with Advanced LOB Deduplication
	Usage Notes for Advanced LOB Deduplication
	Examples of CREATE TABLE and Advanced LOB Deduplication

	CREATE TABLE with SecureFiles Encryption
	Usage Notes for SecureFiles Encryption
	Examples of CREATE TABLE and SecureFiles Encryption

	ALTER TABLE with LOB Storage
	About ALTER TABLE and LOB Storage
	BNF for the ALTER TABLE Statement
	ALTER TABLE LOB Storage Parameters
	ALTER TABLE SecureFiles LOB Features
	ALTER TABLE with Advanced LOB Compression
	Usage Notes for Advanced LOB Compression
	Examples of ALTER TABLE and Advanced LOB Compression

	ALTER TABLE with Advanced LOB Deduplication
	Usage Notes for Advanced LOB Deduplication
	Examples of ALTER TABLE and Advanced LOB Deduplication

	ALTER TABLE with SecureFiles Encryption
	Usage Notes for SecureFiles Encryption
	Examples of ALTER TABLE and SecureFiles Encryption

	Initialization, Compatibility, and Upgrading
	Compatibility and Upgrading
	Initialization Parameter for SecureFiles LOBs

	Migrating Columns from BasicFiles LOBs to SecureFiles LOBs
	Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
	Online Redefinition for BasicFiles LOBs
	Online Redefinition Example for Migrating Tables with BasicFiles LOBs
	Redefining a SecureFiles LOB in Parallel

	PL/SQL Packages for LOBs and DBFS
	The DBMS_LOB Package Used with SecureFiles LOBs and DBFS
	DBMS_LOB Constants Used with SecureFiles LOBs and DBFS
	DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
	DBMS_SPACE Package
	DBMS_SPACE.SPACE_USAGE()

	4 Operations Specific to Persistent and Temporary LOBs
	Persistent LOB Operations
	Inserting a LOB into a Table
	Selecting a LOB from a Table

	Temporary LOB Operations
	Creating and Freeing a Temporary LOB

	Creating Persistent and Temporary LOBs in PL/SQL
	Freeing Temporary LOBs in OCI

	5 Distributed LOBs
	Working with Remote LOBs
	Working with Remote LOB Columns
	Create table as select or insert as select
	Functions on remote LOBs returning scalars
	Data Interface for remote LOBs

	Working with Remote Locator
	Using Local and Remote locators as bind with queries and DML on remote tables
	Restrictions when using remote LOB locators

	SQL Semantics with LOBs in Remote Tables
	Built-in Functions for Remote LOBs and BFILEs
	Passing Remote Locator to Built in SQL Functions

	Working with Remote LOBs in PL/SQL
	PL/SQL Functions for Remote LOBs and BFILEs
	Restrictions on Remote User-Defined Functions
	Remote Functions in PL/SQL, OCI, and JDBC

	Using Remote Locator in PL/SQL
	Using Remote Locators with DBMS_LOB
	Restrictions on Using Remote Locators with DBMS_LOB

	Using Remote Locators with OCILOB API

	6 DDL and DML Statements with LOBs
	Creating a Table Containing One or More LOB Columns
	Creating a Nested Table Containing a LOB
	Inserting a Row by Selecting a LOB From Another Table
	Inserting a LOB Value Into a Table
	Inserting a Row by Initializing a LOB Locator Bind Variable
	About Inserting Rows with LOB Locator Bind Variables
	PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
	C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
	COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
	C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

	Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Updating a Row by Selecting a LOB From Another Table

	Part II Value Semantics LOBs
	7 SQL Semantics and LOBs
	About Using LOBs in SQL
	SQL Functions and Operators Supported for Use with LOBs
	About SQL Functions and Operators for LOBs
	Implicit Conversion of CLOB to CHAR Types
	CLOBs and NCLOBs Do Not Follow Session Collation Settings
	UNICODE Support
	Codepoint Semantics
	Return Values for SQL Semantics on LOBs
	LENGTH Return Value for LOBs

	Implicit Conversion of LOB Data Types in SQL
	Implicit Conversion Between CLOB and NCLOB Data Types in SQL

	Unsupported Use of LOBs in SQL
	VARCHAR2 and RAW Semantics for LOBs
	About VARCHAR2 and RAW Semantics for LOBs
	LOBs Returned from SQL Functions
	IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs
	WHERE Clause Usage with LOBs

	Built-in Functions for Remote LOBs and BFILEs

	8 PL/SQL Semantics for LOBs
	PL/SQL Statements and Variables
	Implicit Conversions Between CLOB and VARCHAR2
	Explicit Conversion Functions
	VARCHAR2 and CLOB in PL/SQL Built-In Functions

	PL/SQL Functions for Remote LOBs and BFILEs

	9 Data Interface for Persistent LOBs
	Overview of the Data Interface for Persistent LOBs
	Benefits of Using the Data Interface for Persistent LOBs
	Using the Data Interface for Persistent LOBs in PL/SQL
	About Using the Data Interface for Persistent LOBs in PL/SQL
	Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL
	Implicit Assignment and Parameter Passing
	Passing CLOBs to SQL and PL/SQL Built-In Functions
	Explicit Conversion Functions
	Calling PL/SQL and C Procedures from SQL
	Calling PL/SQL and C Procedures from PL/SQL
	Binds of All Sizes in INSERT and UPDATE Operations
	4000 Byte Limit on Results of a SQL Operator
	Example of 4000 Byte Result Limit of a SQL Operator
	Restrictions on Binds of More Than 4000 Bytes
	Parallel DML (PDML) Support for LOBs
	Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE
	Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations
	Using the Data Interface for LOBs in Assignments and Parameter Passing
	Using the Data Interface for LOBs with PL/SQL Built-In Functions

	The Data Interface Used for Persistent LOBs in OCI
	LOB Data Types Bound in OCI
	LOB Data Types Defined in OCI
	Multibyte Character Sets Used in OCI with the Data Interface for LOBs
	OCI Functions Used to Perform INSERT or UPDATE on LOB Columns
	Performing Simple INSERTs or UPDATEs in One Piece
	Using Piecewise INSERTs and UPDATEs with Polling
	Performing Piecewise INSERTs and UPDATEs with Callback
	Array INSERT and UPDATE Operations

	The Data Interface Used to Fetch LOB Data in OCI
	Simple Fetch in One Piece
	Performing a Piecewise Fetch with Polling
	Performing a Piecewise with Callback
	Array Fetch

	PL/SQL and C Binds from OCI
	Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE
	Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs
	Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes
	Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling
	Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback
	Binding LONG Data to LOB Columns Using an Array INSERT
	Selecting a LOB Column into a LONG Buffer Using a Simple Fetch
	Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
	Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback
	Selecting a LOB Column into a LONG Buffer Using an Array Fetch

	The Data Interface Used with Persistent LOBs in Java
	The Data Interface Used with Remote LOBs
	About the Data Interface with Remote LOBs
	Non-Supported Syntax
	Remote Data Interface Example in PL/SQL
	Remote Data Interface Example in OCI
	Remote Data Interface Examples in JDBC

	Part III Reference Semantics LOBs
	10 Overview of Supplied LOB APIs
	Programmatic Environments That Support LOBs
	Comparing the LOB Interfaces
	Using PL/SQL (DBMS_LOB Package) to Work With LOBs
	Provide a LOB Locator Before Running the DBMS_LOB Routine
	Guidelines for Offset and Amount Parameters in DBMS_LOB Operations
	Determining Character Set ID
	PL/SQL Functions and Procedures for LOBs
	PL/SQL Functions and Procedures to Modify LOB Values
	PL/SQL Functions and Procedures for Introspection of LOBs
	PL/SQL Operations on Temporary LOBs
	PL/SQL Read-Only Functions and Procedures for BFILEs
	PL/SQL Functions and Procedures to Open and Close Internal and External LOBs

	Using OCI to Work With LOBs
	Prefetching of LOB Data, Length, and Chunk Size
	Setting the CSID Parameter for OCI LOB APIs
	Fixed-Width and Varying-Width Character Set Rules for OCI
	Other Operations
	NCLOBs in OCI

	OCILobLoadFromFile2() Amount Parameter
	OCILobRead2() Amount Parameter
	OCILobLocator Pointer Assignment
	LOB Locators in Defines and Out-Bind Variables in OCI
	OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values
	OCI Functions for Temporary LOBs
	OCI Read-Only Functions for BFILEs
	OCI LOB Locator Functions
	OCI Functions to Open and Close Internal and External LOBs
	OCI LOB Examples
	Further Information About OCI

	Using C++ (OCCI) to Work With LOBs
	OCCI Classes for LOBs
	Clob Class
	Blob Class
	Bfile Class

	Fixed-Width Character Set Rules
	Varying-Width Character Set Rules
	Offset and Amount Parameters for Other OCCI Operations
	NCLOBs in OCCI

	Amount Parameter for OCCI LOB copy() Methods
	Amount Parameter for OCCI read() Operations
	Further Information About OCCI
	OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
	OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	OCCI Methods to Read or Examine Persistent LOB and BFILE Values
	OCCI Read-Only Methods for BFILEs
	Other OCCI LOB Methods
	OCCI Methods to Open and Close Internal and External LOBs

	Using C/C++ (Pro*C) to Work With LOBs
	Providing an Allocated Input Locator Pointer That Represents LOB
	Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values
	Pro*C/C++ Embedded SQL Statements for Introspection of LOBs
	Pro*C/C++ Embedded SQL Statements for Temporary LOBs
	Pro*C/C++ Embedded SQL Statements for BFILEs
	Pro*C/C++ Embedded SQL Statements for LOB Locators
	Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

	Using COBOL (Pro*COBOL) to Work With LOBs
	Providing an Allocated Input Locator Pointer That Represents LOB
	Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values
	Pro*COBOL Embedded SQL Statements for Introspection of LOBs
	Pro*COBOL Embedded SQL Statements for Temporary LOBs
	Pro*COBOL Embedded SQL Statements for BFILEs
	Pro*COBOL Embedded SQL Statements for LOB Locators
	Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs

	Using Java (JDBC) to Work With LOBs
	Modifying Internal Persistent LOBs Using Java
	Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
	BLOB, CLOB, and BFILE Classes

	Calling DBMS_LOB Package from Java (JDBC)
	Prefetching LOBs to Improve Performance
	Zero-Copy Input/Output for SecureFiles to Improve Performance
	Zero-Copy Input/Output on the Server
	Zero-Copy Input/Output in the JDBC Thin Driver
	JDBC-OCI Driver Considerations

	Referencing LOBs Using Java (JDBC)
	Using OracleResultSet: BLOB and CLOB Objects Retrieved

	JDBC Syntax References and Further Information
	JDBC Methods for Operating on LOBs
	JDBC oracle.sql.BLOB Methods to Modify BLOB Values
	JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
	JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data
	JDBC oracle.sql.CLOB Methods to Modify CLOB Values
	JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value
	JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data
	JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
	JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data
	JDBC Temporary LOB APIs
	JDBC: Opening and Closing LOBs
	JDBC: Opening and Closing BLOBs
	Opening the BLOB Using JDBC
	Checking If the BLOB Is Open Using JDBC
	Closing the BLOB Using JDBC

	JDBC: Opening and Closing CLOBs
	Opening the CLOB Using JDBC
	Checking If the CLOB Is Open Using JDBC
	Closing the CLOB Using JDBC

	JDBC: Opening and Closing BFILEs
	Opening BFILEs
	Checking If the BFILE Is Open
	Closing the BFILE
	Usage Example (OpenCloseLob.java)

	Truncating LOBs Using JDBC
	JDBC: Truncating BLOBs
	JDBC: Truncating CLOBs

	JDBC BLOB Streaming APIs
	JDBC CLOB Streaming APIs
	BFILE Streaming APIs
	JDBC BFILE Streaming Example (NewStreamLob.java)

	JDBC and Empty LOBs

	Oracle Provider for OLE DB (OraOLEDB)
	Overview of Oracle Data Provider for .NET (ODP.NET)

	11 LOB APIs for BFILE Operations
	Supported Environments for BFILE APIs
	About Accessing BFILEs
	Directory Objects
	Initializing a BFILE Locator
	How to Associate Operating System Files with a BFILE

	BFILENAME and Initialization
	Characteristics of the BFILE Data Type
	DIRECTORY Name Specification
	On Windows Platforms

	BFILE Security
	Ownership and Privileges
	Read Permission on a DIRECTORY Object
	SQL DDL for BFILE Security
	SQL DML for BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Shared Server (Multithreaded Server) Mode
	External LOB (BFILE) Locators
	When Two Rows in a BFILE Table Refer to the Same File
	BFILE Locator Variable
	Guidelines for BFILEs

	About Loading a LOB with BFILE Data
	About Opening a BFILE with OPEN
	About Opening a BFILE with FILEOPEN
	About Determining Whether a BFILE Is Open Using ISOPEN
	About Determining Whether a BFILE Is Open with FILEISOPEN
	About Displaying BFILE Data
	About Reading Data from a BFILE
	About Reading a Portion of BFILE Data Using SUBSTR
	Comparing All or Parts of Two BFILES
	Checking If a Pattern Exists in a BFILE Using INSTR
	Determining Whether a BFILE Exists
	Getting the Length of a BFILE
	About Assigning a BFILE Locator
	Getting Directory Object Name and File Name of a BFILE
	About Updating a BFILE by Initializing a BFILE Locator
	Closing a BFILE with FILECLOSE
	Closing a BFILE with CLOSE
	Closing All Open BFILEs with FILECLOSEALL
	About Inserting a Row Containing a BFILE

	12 Using LOB APIs
	Supported Environments
	About Appending One LOB to Another
	About Determining Character Set Form
	About Determining Character Set ID
	Loading a LOB with Data from a BFILE
	About Loading a BLOB with Data from a BFILE
	Loading a CLOB or NCLOB with Data from a BFILE
	About PL/SQL: Loading Character Data from a BFILE into a LOB
	About PL/SQL: Loading Segments of Character Data into Different LOBs

	Determining Whether a LOB is Open
	Java (JDBC): Checking If a LOB Is Open
	Checking If a CLOB Is Open
	Checking If a BLOB Is Open

	About Displaying LOB Data
	About Reading Data from a LOB
	About LOB Array Read
	Reading a Portion of a LOB (SUBSTR)
	Comparing All or Part of Two LOBs
	Patterns: Checking for Patterns in a LOB Using INSTR
	Length: Determining the Length of a LOB
	Copying All or Part of One LOB to Another LOB
	Copying a LOB Locator
	Equality: Checking If One LOB Locator Is Equal to Another
	About Determining Whether LOB Locator Is Initialized
	About Appending to a LOB
	About Writing Data to a LOB
	LOB Array Write
	About Trimming LOB Data
	About Erasing Part of a LOB
	Determining Whether a LOB instance Is Temporary
	Java (JDBC): Determining Whether a BLOB Is Temporary

	Converting a BLOB to a CLOB
	Converting a CLOB to a BLOB
	Ensuring Read Consistency

	Part IV Application Design with LOBs
	13 LOB Storage with Applications
	Tables That Contain LOBs
	Persistent LOBs Initialized to NULL or Empty
	Setting a Persistent LOB to NULL
	Setting a Persistent LOB to Empty

	Initializing LOBs
	Initializing Persistent LOB Columns and Attributes to a Value
	Initializing BFILEs to NULL or a File Name
	Restriction on First Extent of a LOB Segment

	Data Types for LOB Columns
	LOBs Compared to LONG and LONG RAW Types
	Varying-Width Character Data Storage in LOBs
	Converting Character Sets Implicitly with LOBs

	LOB Storage Parameters
	Inline and Out-of-Line LOB Storage
	Defining Tablespace and Storage Characteristics for Persistent LOBs
	Assigning a LOB Data Segment Name

	LOB Storage Characteristics for LOB Column or Attribute
	TABLESPACE and LOB Index
	Tablespace for LOB Index in Non-Partitioned Table

	PCTVERSION
	RETENTION Parameter for BasicFiles LOBs
	RETENTION Parameter for SecureFiles LOBs
	CACHE / NOCACHE / CACHE READS
	CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

	LOGGING / NOLOGGING Parameter for BasicFiles LOBs
	LOBs Always Generate Undo for LOB Index Pages
	When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages
	NOLOGGING is Useful for Bulk Loads or Inserts.

	LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
	CACHE Implies LOGGING
	SecureFiles and an Efficient Method of Generating REDO and UNDO
	FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts

	CHUNK
	The Value of CHUNK
	Space Considerations
	Performance Considerations

	Set INITIAL and NEXT to Larger than CHUNK

	ENABLE or DISABLE STORAGE IN ROW Clause
	Guidelines for ENABLE or DISABLE STORAGE IN ROW

	LOB Columns Indexing
	Domain Indexing on LOB Columns
	Text Indexes on LOB Columns
	Function-Based Indexes on LOBs
	Extensible Indexing on LOB Columns
	Extensible Optimizer

	Oracle Text Indexing Support for XML

	LOB Manipulation in Partitioned Tables
	About Manipulating LOBs in Partitioned Tables
	Partitioning a Table Containing LOB Columns
	Creating an Index on a Table Containing Partitioned LOB Columns
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs

	LOBs in Index Organized Tables
	Restrictions for LOBs in Partitioned Index-Organized Tables
	Updating LOBs in Nested Tables

	14 Advanced Design Considerations
	Opening Persistent LOBs with the OPEN and CLOSE Interfaces
	Index Performance Benefits of Explicitly Opening a LOB
	Closing Explicitly Open LOB Instances

	Read-Consistent Locators
	A Selected Locator Becomes a Read-Consistent Locator
	Example of Updating LOBs and Read-Consistency
	Example of Updating LOBs Through Updated Locators
	Example of Updating a LOB Using SQL DML and DBMS_LOB
	Example of Using One Locator to Update the Same LOB Value
	Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

	LOB Locators and Transaction Boundaries
	About LOB Locators and Transaction Boundaries
	Read and Write Operations on a LOB Using Locators
	Selecting the Locator Outside of the Transaction Boundary
	Selecting the Locator Within a Transaction Boundary
	LOB Locators Cannot Span Transactions
	Example of Locator Not Spanning a Transaction

	LOBs in the Object Cache
	Terabyte-Size LOB Support
	About Terabyte-Size LOB Support
	Maximum Storage Limit for Terabyte-Size LOBs
	Using Terabyte-Size LOBs with JDBC
	Using Terabyte-Size LOBs with the DBMS_LOB Package
	Using Terabyte-Size LOBs with OCI

	Guidelines for Creating Gigabyte LOBs
	Creating a Tablespace and Table to Store Gigabyte LOBs

	15 Performance Guidelines
	LOB Performance Guidelines
	All LOBs
	Chunk Size
	LOB Pre-fetching
	Small LOBs
	Large LOBs

	Persistent LOBs
	Performance Guidelines for Small BasicFiles LOBs
	General Performance Guidelines for BasicFiles LOBs

	Temporary LOB Performance Guidelines

	Moving Data to LOBs in a Threaded Environment
	LOB Access Statistics
	Example of Retrieving LOB Access Statistics

	Part V LOB Administration
	16 Managing LOBs: Database Administration
	Database Utilities for Loading Data into LOBs
	About Using SQL*Loader to Load LOBs
	About Using SQL*Loader to Populate a BFILE Column
	About Using Oracle Data Pump to Transfer LOB Data

	Temporary LOB Management
	BFILEs Management
	Rules for Using Directory Objects and BFILEs
	Setting Maximum Number of Open BFILEs

	Changing Tablespace Storage for a LOB

	17 Migrating Columns from LONGs to LOBs
	Benefits of Migrating LONG Columns to LOB Columns
	Preconditions for Migrating LONG Columns to LOB Columns
	Dropping a Domain Index on a LONG Column Before Converting to a LOB
	Preventing Generation of Redo Space on Tables Converted to LOB Data Types

	Determining how to Optimize the Application Using utldtree.sql
	Converting Tables from LONG to LOB Data Types
	Migration Issues
	Using ALTER TABLE to Convert LONG Columns to LOB Columns
	Copying a LONG to a LOB Column Using the TO_LOB Operator
	Online Redefinition of Tables with LONG Columns
	Using Oracle Data Pump to Migrate a Database

	Migrating Applications from LONGs to LOBs
	About Migrating Applications from Longs to LOBs
	LOB Columns Are Not Allowed in Clustered Tables
	LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers
	Rebuilding Indexes on Columns Converted from LONG to LOB Data Types
	Empty LOBs Compared to NULL and Zero Length LONGs
	Overloading with Anchored Types
	Some Implicit Conversions Are Not Supported for LOB Data Types

	Part VI Oracle File System (OFS) Server
	18 Introducing Network File System (NFS)
	Prerequisites to Access Storage Through NFS Server
	NFS Security
	Kerberos
	Configuring Kerberos Server in Linux

	19 Using OFS
	Limitations of using OFS
	OFS Configuration Parameters
	OFS Client Interface
	DBMS_FS Package
	Views for OFS

	Part VII Database File System (DBFS)
	20 Introducing the Database File System
	Why a Database File System?
	What Is Database File System (DBFS)?
	About DBFS
	DBFS Server
	DBFS Client

	What Is a Content Store?

	21 DBFS SecureFiles Store
	Setting Up a SecureFiles Store
	About Managing Permissions
	Creating or Setting Permissions
	Creating a SecureFiles File System Store
	Accessing Tables that Hold SecureFiles System Store Data
	Initializing SecureFiles Store File Systems
	Comparison of SecureFiles LOBs to BasicFiles LOBs

	Using a DBFS SecureFiles Store File System
	DBFS Content API Working Example
	Dropping SecureFiles Store File Systems

	About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
	Database File System (DBFS)— POSIX File Locking
	About Advisory Locking
	About Mandatory Locking
	File Locking Support
	Compatibility and Migration Factors of Database Filesystem—File Locking
	Examples of Database Filesystem—File Locking
	File Locking Behavior
	Scheduling File Locks
	Greedy Scheduling
	Fair Scheduling

	22 DBFS Hierarchical Store
	About the Hierarchical Store Package, DBMS_DBFS_HS
	Ways to Use DBFS Hierarchial Store
	Setting up the Store
	Managing a HS Store Wallet
	Creating, Registering, and Mounting the Store

	Using the Hierarchical Store
	Using Hierarchical Store as a File System
	Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
	Dropping a Hierarchical Store
	Compression to Use with the Hierarchical Store
	Program Example Using Tape
	Program Example Using Amazon S3

	Database File System Links
	About Database File System Links
	Ways to Create Database File System Links
	Database File System Links Copy
	Copying a Linked LOB Between Tables
	Online Redefinition and DBFS Links
	Transparent Read

	The DBMS_DBFS_HS Package
	Constants for DBMS_DBFS_HS Package
	Methods for DBMS_DBFS_HS Package

	Views for DBFS Hierarchical Store
	DBA Views
	User Views

	23 DBFS Content API
	Overview of DBFS Content API
	Stores and DBFS Content API
	Getting Started with DBMS_DBFS_CONTENT Package
	DBFS Content API Role
	Path Name Constants and Types
	Path Properties
	Content IDs
	Path Name Types
	Store Features
	Lock Types
	Standard Properties
	Optional Properties
	User-Defined Properties
	Property Access Flags
	Exceptions
	Property Bundles
	Store Descriptors

	Administrative and Query APIs
	Registering a Content Store
	Unregistering a Content Store
	Mounting a Registered Store
	Unmounting a Previously Mounted Store
	Listing all Available Stores and Their Features
	Listing all Available Mount Points
	Looking Up Specific Stores and Their Features

	Querying DBFS Content API Space Usage
	DBFS Content API Session Defaults
	DBFS Content API Interface Versioning
	Notes on DBFS Content API Path Names
	DBFS Content API Creation Operations
	DBFS Content API Deletion Operations
	DBFS Content API Path Get and Put Operations
	DBFS Content API Rename and Move Operations
	Directory Listings
	DBFS Content API Directory Navigation and Search
	DBFS Content API Locking Operations
	DBFS Content API Access Checks
	DBFS Content API Abstract Operations
	DBFS Content API Path Normalization
	DBFS Content API Statistics Support
	DBFS Content API Tracing Support
	Resource and Property Views

	24 Creating Your Own DBFS Store
	Overview of DBFS Store Creation and Use
	DBFS Content Store Provider Interface (DBFS Content SPI)
	Creating a Custom Provider
	Mechanics
	Installation and Setup
	TBFS Use
	TBFS Internals

	TBFS.SQL
	TBL.SQL
	spec.sql
	body.sql
	capi.sql

	25 Using DBFS
	DBFS Installation
	Creating a DBFS File System
	Privileges Required to Create a DBFS File System
	Advantages of Non-Partitioned Versus Partitioned DBFS File Systems
	Creating a Non-Partitioned File System
	Creating a Partitioned File System
	Dropping a File System

	DBFS File System Access
	DBFS Client Prerequisites
	DBFS Client Command-Line Interface Operations
	About the DBFS Client Command-Line Interface
	Creating Content Store Paths
	Creating a Directory
	Listing a Directory
	Copying Files and Directories
	Removing Files and Directories

	DBFS Mounting Interface (Linux and Solaris Only)
	Installing FUSE on Solaris 11 SRU7 and Later
	Mounting the DBFS Store
	Solaris-Specific Privileges
	About the Mount Command for Solaris and Linux
	Mounting a File System with a Wallet
	

	Mounting a File System with Password at Command Prompt
	Mounting a File System with Password Read from a File
	Unmounting a File System
	Mounting DBFS Through fstab Utility for Linux
	Mounting DBFS Through the vfstab Utility for Solaris
	Restrictions on Mounted File Systems

	File System Security Model
	About the File System Security Model
	Enabling Shared Root Access
	About DBFS Access Among Multiple Database Users
	Establishing DBFS Access Sharing Across Multiple Database Users

	HTTP, WebDAV, and FTP Access to DBFS
	Internet Access to DBFS Through XDB
	Web Distributed Authoring and Versioning (WebDAV) Access
	FTP Access to DBFS
	HTTP Access to DBFS

	DBFS Administration
	Using Oracle Wallet with DBFS Client
	DBFS Diagnostics
	Preventing Data Loss During Failover Events
	Bypassing Client-Side Write Caching
	Backing up DBFS
	DBFS Backup at the Database Level
	DBFS Backup Through a File System Utility

	Small File Performance of DBFS
	Enabling Advanced SecureFiles LOB Features for DBFS

	Shrinking and Reorganizing DBFS Filesystems
	About Changing DBFS Filesystems
	Advantages of Online Filesystem Reorganization
	Determining Availability of Online Filesystem Reorganization
	Invoking Online Filesystem Reorganization

	A LOB Demonstration Files
	PL/SQL LOB Demonstration Files
	OCI LOB Demonstration Files
	Java LOB Demonstration Files

	Glossary
	BFILE
	Binary Large Object (BLOB)
	BLOB
	Character Large Object (CLOB)
	CLOB
	data interface
	deduplication
	DBFS
	DBFS Link
	external LOB
	internal persistent LOB
	introspect
	Large Objects (LOBs)
	LOB
	LOB attribute
	LOB value
	mount point
	National Character Large Object
	NCLOB
	persistent LOB
	SECUREFILE
	SPI
	Store
	Store Provider
	tablespace
	temporary LOB

	Index

