Oracle® Data Guard
Concepts and Administration

19c
E96244-03
May 2019

ORACLE"

Oracle Data Guard Concepts and Administration, 19¢

E96244-03

Copyright © 1999, 2019, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Padmaja Potineni, Kathy Rich

Contributors: Andy Adams, Beldalker Anand, Chipper Brown, Larry Carpenter, Jin-Jwei Chen, Laurence
Clarke, Jeff Detjen, Ray Dutcher, David Gagne, B.G. Garin, Mahesh Girkar, Yuhong Gu, Joydip Kundu,
Steven Lee, Steven Lim, Nitin Karkhanis, Goutam Kulkarni, Jonghyun Lee, Yunrui Li, Shashi Mangalat,
Steven McGee, Bob McGuirk, Joe Meeks, Steve Moriarty, Muthu Olagappan, Ashish Ray, Mike Schloss,
Mike Smith, Lawrence To, Stephen Vivian, Doug Voss, Hongjie Yang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXil
Documentation Accessibility XXii
Related Documents XXil
Conventions Xxiil

Changes in This Release for Oracle Data Guard Concepts and
Administration

Changes in Oracle Database Release 19c XXiv
Changes in Oracle Database Release 18c, Version 18.1 XXV

Part | Concepts and Administration

1 Introduction to Oracle Data Guard
1.1 Oracle Data Guard Configurations 1-1
1.1.1 Primary Database 1-2
1.1.2 Standby Databases 1-2
1.1.3 Far Sync Instances 1-3
1.1.4 Zero Data Loss Recovery Appliance 1-4
1.1.5 Configuration Example 1-4
1.2 Oracle Data Guard Services 1-4
1.2.1 Redo Transport Services 1-5
1.2.2 Apply Services 1-5
1.2.3 Role Transitions 1-6
1.3 Oracle Data Guard Broker 1-7
1.3.1 Using Oracle Enterprise Manager Cloud Control 1-8
1.3.2 Using the Oracle Data Guard Command-Line Interface 1-8
1.4 Oracle Data Guard Protection Modes 1-8
1.5 Client Failover 1-9
1.5.1 Application Continuity 1-10

ORACLE iii

1.6 Oracle Data Guard and Complementary Technologies 1-10
1.7 Oracle Active Data Guard Supports Oracle Sharding 1-12
1.8 Summary of Oracle Data Guard Benefits 1-16
2 Getting Started with Oracle Data Guard
2.1 Standby Database Types 2-1
2.1.1 Physical Standby Databases 2-1
2.1.2 Logical Standby Databases 2-2
2.1.3 Snapshot Standby Databases 2-3
2.2 User Interfaces for Administering Oracle Data Guard Configurations 2-4
2.3 Oracle Data Guard Operational Prerequisites 2-5
2.3.1 Hardware and Operating System Requirements 2-5
2.3.2 Oracle Software Requirements 2-5
2.4 Standby Database Directory Structure Considerations 2-7
2.5 Moving the Location of Online Data Files 2-10
2.5.1 Restrictions When Moving the Location of Online Data Files 2-11
3 Creating a Physical Standby Database
3.1 Preparing the Primary Database for Standby Database Creation 3-2
3.1.1 Enable an Appropriate Logging Mode 3-2
3.1.2 Configure Redo Transport Authentication 3-3
3.1.3 Configure the Primary Database to Receive Redo Data 3-4
3.1.4 Set Primary Database Initialization Parameters 3-5
3.1.5 Enable Archiving 3-7
3.2 Step-by-Step Instructions for Creating a Physical Standby Database 3-7
3.2.1 Creating a Physical Standby Task 1: Create a Backup Copy of the
Primary Database Data Files 3-8
3.2.2 Creating a Physical Standby Task 2: Create a Control File for the
Standby Database 3-8
3.2.3 Creating a Physical Standby Task 3: Create a Parameter File for the
Standby Database 3-9
3.2.4 Creating a Physical Standby Task 4: Copy Files from the Primary
System to the Standby System 3-11
3.2.5 Creating a Physical Standby Task 5: Set Up the Environment to Support
the Standby Database 3-11
3.2.6 Creating a Physical Standby Task 6: Start the Physical Standby
Database 3-12
3.2.7 Creating a Physical Standby Task 7: Verify the Physical Standby
Database Is Performing Properly 3-13
3.3 Creating a Physical Standby: Post-Creation Steps 3-13
3.4 Using DBCA to Create a Data Guard Standby 3-14

ORACLE

3.5 Creating a Physical Standby of a CDB 3-16
3.6 Creating a PDB in a Primary Database 3-17

4 Creating a Logical Standby Database

4.1 Prerequisite Conditions for Creating a Logical Standby Database 4-1
4.1.1 Determine Support for Data Types and Storage Attributes for Tables 4-2
4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

4-2
4.2 Step-by-Step Instructions for Creating a Logical Standby Database 4-4
4.2.1 Creating a Logical Standby Task 1: Create a Physical Standby
Database 4-4
4.2.2 Creating a Logical Standby Task 2: Stop Redo Apply on the Physical
Standby Database 4-4
4.2.3 Creating a Logical Standby Task 3: Prepare the Primary Database to
Support a Logical Standby Database 4-4
4.2.3.1 Prepare the Primary Database for Role Transitions 4-5
4.2.3.2 Build a Dictionary in the Redo Data 4-6
4.2.4 Creating a Logical Standby Task 4: Transition to a Logical Standby
Database 4-7
4.2.4.1 Convertto a Logical Standby Database 4-7
4.2.4.2 Adjust Initialization Parameters for the Logical Standby Database 4-8
4.2.5 Creating a Logical Standby Task 5: Open the Logical Standby Database
4-10
4.2.6 Creating a Logical Standby Task 6: Verify the Logical Standby
Database Is Performing Properly 4-12
4.3 Creating a Logical Standby: Post-Creation Steps 4-12
4.4 Creating a Logical Standby of a CDB 4-13
5 Using Far Sync Instances

5.1 Creating a Far Sync Instance 5-2
5.1.1 Creating and Configuring a Far Sync Instance 5-2

5.2 Alternate Destinations 5-5
5.2.1 Assigning Log Archive Destinations to a Group 5-6
5.2.2 Assigning Priorities to Log Archive Destinations in a Group 5-7
5.2.3 Shipping to Multiple Active Destinations in a Group 5-8
5.2.4 Using Multiple Log Archive Destination Groups 5-8
5.2.5 Determining the Availability Status of Log Archive Destinations 5-9

5.3 Configuring Alternate Destinations 5-9
5.3.1 Reduced Protection After a Far Sync Failure 5-10
5.3.2 Far Sync Instance High Availability 5-11
5.3.3 Maintaining Protection After a Role Change 5-12

ORACLE Y

5.4 Supported Protection Modes for Far Sync Instances 5-13
5.4.1 Far Sync Instances in Maximum Availability Mode Configurations 5-14
5.4.2 Far Sync Instances in Maximum Performance Mode Configurations 5-14

6 Oracle Data Guard Protection Modes
6.1 Oracle Data Guard Protection Modes 6-1
6.2 Setting the Data Protection Mode of a Primary Database 6-3
7 Redo Transport Services

7.1 Introduction to Redo Transport Services 7-1

7.2 Configuring Redo Transport Services 7-2
7.2.1 Redo Transport Security 7-2

7.2.1.1 Redo Transport Authentication Using SSL 7-3
7.2.1.2 Redo Transport Authentication Using a Password File 7-3
7.2.2 Configuring an Oracle Database to Send Redo Data 7-4
7.2.2.1 Viewing Attributes With VSARCHIVE_DEST 7-7
7.2.3 Configuring an Oracle Database to Receive Redo Data 7-7
7.2.3.1 Managing Standby Redo Logs 7-7

7.2.3.2 Cases Where Redo Is Written Directly To an Archived Redo Log
File 7-8

7.3 Cascaded Redo Transport Destinations 7-8
7.3.1 Configuring a Terminal Destination 7-9
7.3.2 Cascading Scenarios 7-10

7.3.2.1 Cascading to a Physical Standby 7-11
7.3.2.2 Cascading to Multiple Physical Standbys 7-11

7.4 Data Protection Considerations for Cascading Standbys 7-11

7.5 Validating a Configuration 7-12

7.6 Monitoring Redo Transport Services 7-12
7.6.1 Monitoring Redo Transport Status 7-12
7.6.2 Monitoring Synchronous Redo Transport Response Time 7-13
7.6.3 Redo Gap Detection and Resolution 7-14

7.6.3.1 Manual Gap Resolution 7-14
7.6.4 Redo Transport Services Wait Events 7-17
7.7 Tuning Redo Transport 7-17
8 Apply Services

8.1 Introduction to Apply Services 8-1

8.2 Apply Services Configuration Options 8-1
8.2.1 Using Real-Time Apply to Apply Redo Data Immediately 8-2

ORACLE

Vi

8.2.2 Specifying a Time Delay for the Application of Archived Redo Log Files 8-3
8.2.2.1 Using Flashback Database as an Alternative to Setting a Time
Delay 8-4
8.3 Applying Redo Data to Physical Standby Databases 8-4
8.3.1 Starting Redo Apply 8-5
8.3.2 Stopping Redo Apply 8-5
8.3.3 Monitoring Redo Apply on Physical Standby Databases 8-5
8.4 Applying Redo Data to Logical Standby Databases 8-5
8.4.1 Starting SQL Apply 8-6
8.4.2 Stopping SQL Apply on a Logical Standby Database 8-6
8.4.3 Monitoring SQL Apply on Logical Standby Databases 8-6
8.5 Standby Considerations When Removing or Renaming a PDB at a Primary 8-6
O Role Transitions
9.1 Introduction to Role Transitions 9-2
9.1.1 Preparing for a Role Transition 9-2
9.1.2 Choosing a Target Standby Database for a Role Transition 9-3
9.1.3 Switchovers 9-4
9.1.4 Failovers 9-7
9.1.5 Role Transition Triggers 9-8
9.2 Role Transitions Involving Physical Standby Databases 9-9
9.2.1 Performing a Switchover to a Physical Standby Database 9-10
9.2.2 Performing a Failover to a Physical Standby Database 9-13
9.3 Role Transitions Involving Logical Standby Databases 9-16
9.3.1 Performing a Switchover to a Logical Standby Database 9-16
9.3.2 Performing a Failover to a Logical Standby Database 9-19
9.4 Using Flashback Database After a Role Transition 9-21
9.4.1 Using Flashback Database After a Switchover 9-21
9.4.2 Using Flashback Database After a Failover 9-21
10 Managing Physical and Snapshot Standby Databases
10.1 Starting Up and Shutting Down a Physical Standby Database 10-1
10.1.1 Starting Up a Physical Standby Database 10-1
10.1.2 Shutting Down a Physical Standby Database 10-2
10.2 Opening a Physical Standby Database 10-2
10.2.1 Real-time Query 10-3
10.2.1.1 Monitoring Apply Lag in a Real-time Query Environment 10-4
10.2.1.2 Configuring Apply Lag Tolerance in a Real-time Query
Environment 10-4

ORACLE

Vii

10.2.1.3 Forcing Redo Apply Synchronization in a Real-time Query

Environment 10-5
10.2.1.4 Real-time Query Restrictions 10-5
10.2.1.5 Automatic Block Media Recovery 10-6
10.2.1.6 Manual Block Media Recovery 10-7
10.2.1.7 Tuning Queries on a Physical Standby Database 10-7
10.2.1.8 Adding Temp Files to a Physical Standby 10-8
10.2.2 Using SQL and PL/SQL on Active Data Guard Standbys 10-8
10.2.2.1 Performing DML Operations on Active Data Guard Standby
Databases 10-9
10.2.2.2 Running Top-level PL/SQL Operations on Active Data Guard
Standby Databases 10-10
10.2.2.3 Automatic Recompliation of Modified PL/SQL Objects 10-10
10.2.3 Using Temporary Tables on Active Data Guard Instances 10-11
10.2.3.1 Global Temporary Tables on Active Data Guard Instances 10-11
10.2.3.2 Private Temporary Tables on Active Data Guard Instances 10-13
10.2.4 IM Column Store in an Active Data Guard Environment 10-13
10.2.5 In-Memory External Tables in an Active Data Guard Environment 10-14
10.2.6 Using Sequences in Oracle Active Data Guard 10-14
10.2.6.1 Session Sequences 10-16
10.3 Primary Database Changes That Require Manual Intervention at a Physical
Standby 10-18
10.3.1 Adding a Data File or Creating a Tablespace 10-19
10.3.2 Dropping Tablespaces and Deleting Data Files 10-19
10.3.2.1 Using DROP TABLESPACE INCLUDING CONTENTS AND
DATAFILES 10-20
10.3.3 Using Transportable Tablespaces with a Physical Standby Database 10-20
10.3.4 Renaming a Data File in the Primary Database 10-21
10.3.5 Add or Drop a Redo Log File Group 10-22
10.3.6 NOLOGGING or Unrecoverable Operations 10-23
10.3.7 Refresh the Password File 10-23
10.3.8 Reset the TDE Master Encryption Key 10-23
10.4 Recovering Through the OPEN RESETLOGS Statement 10-24
10.5 Automatic Flashback of a Mounted Standby After a Primary RESETLOGS
Operation 10-25
10.6 Monitoring Primary, Physical Standby, and Snapshot Standby Databases 10-26
10.6.1 Using Views to Monitor Primary, Physical, and Snapshot Standby
Databases 10-27
10.6.1.1 V$DATABASE 10-28
10.6.1.2 V$DATAGUARD_PROCESS 10-28
10.6.1.3 V$MANAGED_STANDBY 10-29
10.6.1.4 V$ARCHIVED_LOG 10-29
10.6.1.5 V$LOG_HISTORY 10-29

ORACLE viii

10.6.1.6 V$DATAGUARD_STATUS 10-30
10.6.1.7 V$ARCHIVE_DEST 10-30
10.7 Replicating Restore Points from Primary to Standby 10-30
10.8 Tuning Redo Apply 10-31
10.9 Tuning Databases in an Active Data Guard Environment with SQL Tuning
Advisor 10-31
10.10 Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys 10-32
10.11 Managing a Snapshot Standby Database 10-32
10.11.1 Converting a Physical Standby Database into a Snapshot Standby
Database 10-33
10.11.2 Using a Snapshot Standby Database 10-33
10.11.3 Converting a Snapshot Standby Database into a Physical Standby
Database 10-34
11 Managing a Logical Standby Database
11.1 Overview of the SQL Apply Architecture 11-1
11.1.1 Various Considerations for SQL Apply 11-2
11.1.1.1 Transaction Size Considerations 11-3
11.1.1.2 Pageout Considerations 11-3
11.1.1.3 Restart Considerations 11-4
11.1.1.4 DML Apply Considerations 11-4
11.1.1.5 DDL Apply Considerations 11-4
11.1.1.6 Password Verification Functions 11-6
11.2 Controlling User Access to Tables in a Logical Standby Database 11-6
11.3 Views Related to Managing and Monitoring a Logical Standby Database 11-7
11.3.1 DBA_LOGSTDBY_EVENTS View 11-7
11.3.2 DBA_LOGSTDBY_LOG View 11-8
11.3.3 V$DATAGUARD_STATS View 11-9
11.3.4 V$LOGSTDBY_PROCESS View 11-9
11.3.5 V$LOGSTDBY_PROGRESS View 11-10
11.3.6 V$LOGSTDBY_STATE View 11-11
11.3.7 V$LOGSTDBY_STATS View 11-12
11.4 Monitoring a Logical Standby Database 11-13
11.4.1 Monitoring SQL Apply Progress 11-13
11.4.2 Automatic Deletion of Log Files 11-15
11.5 Customizing a Logical Standby Database 11-17
11.5.1 Customizing Logging of Events in the DBA LOGSTDBY_EVENTS
View 11-17
11.5.2 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to Specific
Schema Obijects 11-18
11.5.3 Setting up a Skip Handler for a DDL Statement 11-18
11.5.4 Modifying a Logical Standby Database 11-19
ORACLE iX

11.5.4.1 Performing DDL on a Logical Standby Database 11-20

11.5.4.2 Modifying Tables That Are Not Maintained by SQL Apply 11-21
11.5.5 Adding or Re-Creating Tables On a Logical Standby Database 11-22
11.6 Managing Specific Workloads In the Context of a Logical Standby Database 11-23
11.6.1 Importing a Transportable Tablespace to the Primary Database 11-24
11.6.2 Using Materialized Views 11-24
11.6.3 How Triggers and Constraints Are Handled on a Logical Standby
Database 11-25
11.6.4 Using Triggers to Replicate Unsupported Tables 11-25
11.6.5 Recovering Through the Point-in-Time Recovery Performed at the
Primary 11-28
11.6.6 Running an Oracle Streams Capture Process on a Logical Standby
Database 11-29
11.7 Tuning a Logical Standby Database 11-30
11.7.1 Create a Primary Key RELY Constraint 11-30
11.7.2 Gather Statistics for the Cost-Based Optimizer 11-31
11.7.3 Adjust the Number of Processes 11-31
11.7.3.1 Adjusting the Number of APPLIER Processes 11-32
11.7.3.2 Adjusting the Number of PREPARER Processes 11-33
11.7.4 Adjust the Memory Used for LCR Cache 11-34
11.7.5 Adjust How Transactions are Applied On the Logical Standby
Database 11-35
11.8 Backup and Recovery in the Context of a Logical Standby Database 11-36

12 Using RMAN to Back Up and Restore Files

12.1 About RMAN File Management in an Oracle Data Guard Configuration 12-2
12.1.1 Interchangeability of Backups in an Oracle Data Guard Environment 12-2
12.1.2 Association of Backups in an Oracle Data Guard Environment 12-2
12.1.3 Accessibility of Backups in an Oracle Data Guard Environment 12-3

12.2 About RMAN Configuration in an Oracle Data Guard Environment 12-3

12.3 Recommended RMAN and Oracle Database Configurations 12-4
12.3.1 Oracle Database Configurations on Primary and Standby Databases 12-5
12.3.2 RMAN Configurations at the Primary Database 12-6
12.3.3 RMAN Configurations at a Standby Database Where Backups are

Performed 12-7
12.3.4 RMAN Configurations at a Standby Where Backups Are Not
Performed 12-7

12.4 Backup Procedures 12-8

12.4.1 Using Disk as Cache for Tape Backups 12-8
12.4.1.1 Commands for Daily Tape Backups Using Disk as Cache 12-9
12.4.1.2 Commands for Weekly Tape Backups Using Disk as Cache 12-10

12.4.2 Performing Backups Directly to Tape 12-10

ORACLE X

12.4.2.1 Commands for Daily Backups Directly to Tape 12-11

12.4.2.2 Commands for Weekly Backups Directly to Tape 12-11
12.5 Registering and Unregistering Databases in an Oracle Data Guard
Environment 12-12
12.6 Reporting in an Oracle Data Guard Environment 12-12
12.7 Performing Backup Maintenance in an Oracle Data Guard Environment 12-12
12.7.1 Changing Metadata in the Recovery Catalog 12-13
12.7.2 Deleting Archived Logs or Backups 12-14
12.7.3 Validating Recovery Catalog Metadata 12-14
12.8 Recovery Scenarios in an Oracle Data Guard Environment 12-15
12.8.1 Recovery from Loss of Files on the Primary or Standby Database 12-15
12.8.2 Recovery from Loss of Online Redo Log Files 12-16
12.8.3 Incomplete Recovery of the Primary Database 12-16
12.8.4 Actions Needed on Standby After TSPITR or Tablespace Plugin at
Primary 12-18
12.9 Additional Backup Situations 12-18
12.9.1 Standby Databases Too Geographically Distant to Share Backups 12-18
12.9.2 Standby Database Does Not Contain Data Files, Used as a FAL
Server 12-19
12.9.3 Standby Database File Names Are Different From Primary Database 12-19
12.10 Restoring and Recovering Files Over the Network 12-20
12.11 Rolling Forward a Standby With One Command 12-21
12.12 RMAN Support for CDBs In an Oracle Data Guard Environment 12-21

13 Using SQL Apply to Upgrade the Oracle Database

13.1 Benefits of a Rolling Upgrade Using SQL Apply 13-1
13.2 Requirements to Perform a Rolling Upgrade Using SQL Apply 13-2
13.3 Figures and Conventions Used in the Upgrade Instructions 13-2
13.4 Performing a Rolling Upgrade By Creating a New Logical Standby Database 13-3
13.5 Performing a Rolling Upgrade With an Existing Logical Standby Database 13-5
13.6 Performing a Rolling Upgrade With an Existing Physical Standby Database 13-11

14 Using DBMS_ROLLING to Perform a Rolling Upgrade

14.1 Concepts New to Rolling Upgrades 14-2

14.1.1 Data Guard Broker Support for DBMS_ROLLING Upgrades 14-3
14.2 DBMS_ROLLING Upgrades and CDBs 14-5
14.3 Overview of Using DBMS_ROLLING 14-6
14.4 Planning a Rolling Upgrade 14-7
14.5 Performing a Rolling Upgrade 14-14
14.6 Monitoring a Rolling Upgrade 14-16

ORACLE Xi

14.7 Rolling Back a Rolling Upgrade 14-17
14.8 Handling Role Changes That Occur During a Rolling Upgrade 14-17
14.9 Examples of Rolling Upgrades 14-17

15 Oracle Data Guard Scenarios

15.1 Configuring Logical Standby Databases After a Failover 15-1
15.1.1 When the New Primary Database Was Formerly a Physical Standby
Database 15-1
15.1.2 When the New Primary Database Was Formerly a Logical Standby
Database 15-2
15.2 Converting a Failed Primary Into a Standby Database Using Flashback
Database 15-4
15.2.1 Flashing Back a Failed Primary Database into a Physical Standby
Database 15-4
15.2.2 Flashing Back a Failed Primary Database into a Logical Standby
Database 15-5
15.2.3 Flashing Back a Logical Standby Database to a Specific Applied SCN 15-7
15.3 Using Flashback Database After Issuing an Open Resetlogs Statement 15-7
15.3.1 Flashing Back a Physical Standby Database to a Specific Point-in-
Time 15-7
15.3.2 Flashing Back a Logical Standby Database to a Specific Point-in-Time 15-8
15.4 Recovering After the NOLOGGING Clause Is Specified 15-9
15.4.1 Recovery Steps for Logical Standby Databases 15-10
15.4.2 Recovery Steps for Physical Standby Databases 15-10
15.4.3 Determining If a Backup Is Required After Unrecoverable Operations 15-12
15.4.4 Recovery Steps for Part of a Physical Standby Database 15-12
15.5 Creating a Standby Database That Uses OMF or Oracle ASM 15-13
15.6 Recovering From Lost-Write Errors on a Primary Database 15-15
15.7 Using the DBCOMP Procedure to Detect Lost Writes and Other
Inconsistencies 15-18
15.8 Converting a Failed Primary into a Standby Database Using RMAN Backups 15-19
15.8.1 Converting a Failed Primary into a Physical Standby Using RMAN
Backups 15-20
15.8.2 Converting a Failed Primary into a Logical Standby Using RMAN
Backups 15-22
15.9 Changing the Character Set of a Primary Without Re-Creating Physical
Standbys 15-23
15.10 Actions Needed On a Standby After a PDB PITR or PDB Flashback On a
Primary 15-24

Part Il Reference

ORACLE Xii

16 Initialization Parameters

17 LOG_ARCHIVE_DEST_ n Parameter Attributes

17.1 AFFIRM and NOAFFIRM 17-2
17.2 ALTERNATE 17-3
17.3 COMPRESSION 17-5
17.4 DB_UNIQUE_NAME 17-6
17.5 DELAY 17-7
17.6 ENCRYPTION 17-9
17.7 GROUP 17-10
17.8 LOCATION and SERVICE 17-11
17.9 MANDATORY 17-12
17.10 MAX_FAILURE 17-13
17.11 NET_TIMEOUT 17-15
17.12 NOREGISTER 17-16
17.13 PRIORITY 17-17
17.14 REOPEN 17-18
17.15 SYNC and ASYNC 17-19
17.16 TEMPLATE 17-20
17.17 VALID_FOR 17-21

18 SQL Statements Relevant to Oracle Data Guard

18.1 ALTER DATABASE Statements 18-1
18.2 ALTER SESSION Statements 18-4
18.3 ALTER SYSTEM Statements 18-5

19 Views Relevant to Oracle Data Guard

Part Il Appendixes

A Troubleshooting Oracle Data Guard

A.1 Common Problems A-1
A.1.1 Renaming Data Files with the ALTER DATABASE Statement A-1
A.1.2 Standby Database Does Not Receive Redo Data from the Primary

Database A-2

ORACLE" Xiii

A.1.3 You Cannot Mount the Physical Standby Database A-3

A.2 Log File Destination Failures A-3
A.3 Handling Logical Standby Database Failures A-3
A.4 Problems Switching Over to a Physical Standby Database A-4
A.4.1 Switchover Fails Because Redo Data Was Not Transmitted A-4
A.4.2 Switchover Fails with the ORA-01102 Error A-5
A.4.3 Redo Data Is Not Applied After Switchover A-5
A.4.4 Roll Back After Unsuccessful Switchover and Start Over A-6
A.5 Problems Switching Over to a Logical Standby Database A-7
A.5.1 Failures During the Prepare Phase of a Switchover Operation A-7
A.5.1.1 Failure While Preparing the Primary Database A-7

A.5.1.2 Failure While Preparing the Logical Standby Database A-8

A.5.2 Failures During the Commit Phase of a Switchover Operation A-8
A.5.2.1 Failure to Convert the Original Primary Database A-8

A.5.2.2 Failure to Convert the Target Logical Standby Database A-9

A.6 What to Do If SQL Apply Stops A-10
A.7 Network Tuning for Redo Data Transmission A-11
A.8 Slow Disk Performance on Standby Databases A-12
A.9 Log Files Must Match to Avoid Primary Database Shutdown A-12
A.10 Troubleshooting a Logical Standby Database A-12
A.10.1 Recovering from Errors A-12
A.10.1.1 DDL Transactions Containing File Specifications A-13
A.10.1.2 Recovering from DML Failures A-14

A.10.2 Troubleshooting SQL*Loader Sessions A-14
A.10.3 Troubleshooting Long-Running Transactions A-16
A.10.4 Troubleshooting ORA-1403 Errors with Flashback Transactions A-19

B Patching, Upgrading, and Downgrading Databases in an Oracle
Data Guard Configuration

B.1 Before You Patch or Upgrade the Oracle Database Software B-1
B.2 Patching Oracle Database with Standby First Patching B-2
B.3 Upgrading Oracle Database with a Physical Standby Database in Place B-3
B.4 Upgrading Oracle Database with a Logical Standby Database in Place B-4
B.5 Modifying the COMPATIBLE Initialization Parameter After Upgrading B-5
B.6 Downgrading Oracle Database with No Logical Standby in Place B-6
B.7 Downgrading Oracle Database with a Logical Standby in Place B-7

C Data Type and DDL Support on a Logical Standby Database

C.1 Datatype Considerations C-1

ORACLE Xiv

C.1.1 Supported Datatypes in a Logical Standby Database
C.1.1.1 Compatibility Requirements
C.1.1.2 Opagque Type Restrictions
C.1.2 Unsupported Datatypes in a Logical Standby Database
C.2 Support for Data Types That Lack Native Redo-Based Support
C.3 Support for Transparent Data Encryption (TDE)
C.4 Support for Tablespace Encryption
C.5 Support For Row-level Security and Fine-Grained Auditing
C.5.1 Row-level Security
C.5.2 Fine-Grained Auditing
C.5.3 Skipping and Enabling PL/SQL Replication
C.6 Oracle Label Security
C.7 Oracle Database Vault
C.8 Oracle E-Business Suite
C.9 Supported Table Storage Types
C.10 Unsupported Table Storage Types
C.10.1 Unsupported Tables as a Result of Partitioning
C.11 PL/SQL Supplied Packages Considerations
C.11.1 Supported PL/SQL Supplied Packages
C.11.2 Unsupported PL/SQL Supplied Packages
C.11.2.1 Support for DBMS_JOB
C.11.2.2 Support for DBMS_SCHEDULER

C.11.3 Handling XML and XDB PL/SQL Packages in Logical Standby

C.11.3.1 The DBMS_XMLSCHEMA Schema

C.11.3.2 The DBMS_XMLINDEX Package

C.11.3.3 Dealing With Unsupported PL/SQL Procedures
C.11.3.4 Manually Compensating for Unsupported PL/SQL

C.11.3.5 Compensating for Ordering Sensitive Unsupported PL/SQL

C.12 Unsupported Tables
C.12.1 Unsupported Tables During Rolling Upgrades

C.12.2 Unsupported Tables As a Result of DML Performed In a PL/SQL

Function
C.13 Skipped SQL Statements on a Logical Standby Database
C.14 DDL Statements Supported by a Logical Standby Database
C.14.1 DDL Statements that Use DBLINKS

C.14.2 Replication of AUD$ and FGA_LOG$ on Logical Standbys

C.15 Distributed Transactions and XA Support
C.16 Support for SecureFiles LOBs

C.17 Support for Database File System (DBFS)
C.18 Character Set Considerations

ORACLE

C-2
C-3
c-4
C-4
C-4
C-5

C-6
C-6
C-7
C-7
C-8
C-8
C-8
C-8
C-9
C-10
C-10
C-10
C-11
C-11
C-11
C-12
C-13
C-13
C-13
C-13
C-14
C-16
C-18

C-19
C-19
C-20
C-23
C-23
C-23
C-24
C-24
C-24

XV

C.19 Additional PL/SQL Package Support Available Only in the Context of

DBMS_ROLLING Upgrades C-25
D Oracle Data Guard and Oracle Real Application Clusters
D.1 Configuring Standby Databases in an Oracle RAC Environment D-1
D.1.1 Setting Up Multi-Instance Redo Apply D-1
D.1.2 Setting Up a Multi-Instance Primary with a Single-Instance Standby D-2
D.1.3 Setting Up Oracle RAC Primary and Standby Databases D-3
D.1.3.1 Configuring an Oracle RAC Standby Database to Receive Redo
Data D-3
D.1.3.2 Configuring an Oracle RAC Primary Database to Send Redo
Data D-4
D.2 Configuration Considerations in an Oracle RAC Environment D-4
D.2.1 Format for Archived Redo Log Filenames D-4
D.2.2 Data Protection Modes D-5
E Creating a Standby Database with Recovery Manager
E.1 Prerequisites E-1
E.2 Overview of Standby Database Creation with RMAN E-1
E.2.1 Purpose of Standby Database Creation with RMAN E-1
E.2.2 Basic Concepts of Standby Creation with RMAN E-2
E.2.2.1 Active Database and Backup-Based Duplication E-2
E.2.2.2 DB_UNIQUE_NAME Values in an RMAN Environment E-2
E.2.2.3 Recovery of a Standby Database E-3
E.2.2.4 Password Files for the Standby Database E-4
E.3 Using the DUPLICATE Command to Create a Standby Database E-4
E.3.1 Using Active Database Duplication to Create a Standby Database or
Far Sync Instance E-5
E.3.2 Creating a Standby Database with Backup-Based Duplication E-7
F Setting Archive Tracing
F.1 Setting the LOG_ARCHIVE_TRACE Initialization Parameter F-1
G Performing Role Transitions Using Old Syntax
G.1 SQL Syntax for Role Transitions Involving Physical Standbys G-1
G.1.1 New Features When Using the Old Syntax G-2
G.2 Role Transitions Involving Physical Standby Databases G-2
G.2.1 Performing a Switchover to a Physical Standby Database Using Old
Syntax G-3
ORACLE XVi

G.2.2 Performing a Failover to a Physical Standby Database Using Old
Syntax G-4
G.3 Troubleshooting Switchovers to Physical Standby Databases G-7
G.3.1 Switchover Fails Because Redo Data Was Not Transmitted G-7
G.3.2 Switchover Fails with the ORA-01102 Error G-8
G.3.3 Redo Data Is Not Applied After Switchover G-8
G.3.4 Roll Back After Unsuccessful Switchover and Start Over G-9
H Using the ALTERNATE Attribute to Configure Remote Alternate
Destinations
H.1 Configuring an Alternate Destination H-1

Index

ORACLE"

XVii

List of Examples

3-1 Modifying Initialization Parameters for a Physical Standby Database

4-1 Primary Database: Logical Standby Role Initialization Parameters

4-2 Modifying Initialization Parameters for a Logical Standby Database

5-1 Some of the Initialization Parameters Used for Far Sync Instances

5-2 Configuring for Single Destination Failover

5-3 Configuring for Multiple Standby Database Redo Destination Failover

5-4 Parameters Used to Set Up the High Availability Far Sync Instance

5-5 Parameters Used to Set Up Protection After a Role Change

7-1 Some of the Initialization Parameters Used When Cascading Redo

10-1 Performing DML Operations on a Physical Standby Database

10-2 Automatically Recompiling Modified PL/SQL Objects

14-1 Setting Switchover to Enforce Apply Lag Requirements

14-2 Resetting Logging Back to Its Default Value

14-3 Designating a Database as an Optional Participant

14-4 Setting a Database to Protect the Transient Logical Standby

14-5 Basic Rolling Upgrade Steps

14-6 Rolling Upgrade Between Two Databases

14-7 Rolling Upgrade Between Three Databases

14-8 Rolling Upgrade Between Four Databases

14-9 Rolling Upgrade on a Reader Farm

14-10 Rolling Upgrade for Application Testing

14-11 Resuming a Rolling Upgrade After a Failover to a New Primary

14-12 Resuming a Rolling Upgrade After a Failover to a New Transient Logical

15-1 Primary and All Standbys Are Mounted or Open and DBCOMP Is Executed From the
Primary

15-2 Primary and All Standbys Are Mounted or Open and DBCOMP Is Executed From a
Standby

15-3 Primary Is Mounted or Open, But Not All Standbys Are, and DBCOMP is Executed
From the Primary

15-4 Primary Is Mounted or Open, But Not All Standbys Are, and DBCOMP is Executed
From a Standby

15-5 Primary is Not Mounted, But Multiple Standbys Are Mounted or Open

15-6 Primary Is Mounted or Open, But No Standbys Are Mounted or Open

17-1 Automatically Failing Over to an Alternate Local Destination

17-2 Automatic Local Alternate Fallback

ORACLE

39
4-5
4-10
5-4
5-10
5-10
5-12
5-13
7-10
10-9
10-10
14-13
14-13
14-14
14-14
14-18
14-18
14-19
14-19
14-19
14-20
14-21
14-21

15-18

15-18

15-19

15-19

15-19

15-19

17-4
17-5

XVIii

A-1 Setting a Retry Time and Limit A-3
A-2 Specifying an Alternate Destination A-3
C-1 PL/SQL Skip Procedure for RegisterSchema C-15

ORACLE' Yix

List of Figures

1-1 Typical Oracle Data Guard Configuration

1-2 Automatic Updating of a Physical Standby Database

1-3 Automatic Updating of a Logical Standby Database

1-4 System-Managed Sharding With Oracle Data Guard Replication

1-5 Composite Sharding With Oracle Data Guard Replication

2-1 Possible Standby Configurations

8-1 Applying Redo Data to a Standby Destination Using Real-Time Apply
9-1 Oracle Data Guard Configuration Before Switchover

9-2 Standby Databases Before Switchover to the New Primary Database
9-3 Oracle Data Guard Environment After Switchover

9-4 Failover to a Standby Database

11-1 SQL Apply Processing

11-2 Progress States During SQL Apply Processing

13-1 Oracle Data Guard Configuration Before Upgrade

13-2 Upgrade the Logical Standby Database Release

13-3 Running Mixed Releases

13-4 After a Switchover

13-5 Both Databases Upgraded

D-1 Transmitting Redo Data from a Multi-Instance Primary Database
ORACLE

1-4
1-6
1-6

1-13
1-15
2-9
8-3
9-5
9-6
9-6
9-7
11-1
11-13
13-3
13-6
13-6
13-9

13-10
D-2

XX

List of Tables

2-1 Standby Database Location and Directory Options

3-1 Creating a Physical Standby Database

4-1 Creating a Logical Standby Database

6-1 Required Redo Transport Attributes for Data Protection Modes

7-1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Values

7-2 Redo Transport Wait Events

10-1 Primary Database Changes That Require Manual Intervention at a Physical Standby
10-2 Sources of Information About Common Primary Database Management Actions
13-1 Steps to Perform a Rolling Upgrade by Creating a New Logical Standby

13-2 Steps to Perform a Rolling Upgrade With an Existing Logical Standby

13-3 Steps to Perform a Rolling Upgrade With an Existing Physical Standby

14-1 Trailing Group Physicals (TGP) Versus Leading Group Physicals (LGP)

14-2 Steps to Perform Rolling Upgrade Using DBMS_ROLLING

16-1 Initialization Parameters for Instances in an Oracle Data Guard Configuration
17-1 Directives for the TEMPLATE Attribute

18-1 ALTER DATABASE Statements Used in Data Guard Environments

18-2 ALTER SESSION Statements Used in Oracle Data Guard Environments
18-3 ALTER SYSTEM Statements Used in Oracle Data Guard Environments

19-1 Views That Are Pertinent to Oracle Data Guard Configurations

A-1 Fixing Typical SQL Apply Errors

C-1 Values for stmt Parameter of the DBMS_LOGSTDBY.SKIP procedure

D-1 Directives for the LOG_ARCHIVE_FORMAT Initialization Parameter
ORACLE

2-10
3-8
4-4
6-3
7-4

7-17

10-18
10-26
13-3
135
13-11
14-3
14-14
16-1
17-20

18-1

18-4

18-5

19-1

A-11

C-20
D-4

XXi

Preface

Preface

Oracle Data Guard is the most effective solution available today to protect the core
asset of any enterprise—its data, and make it available on a 24x7 basis even in the
face of disasters and other calamities. This guide describes Oracle Data Guard
technology and concepts, and helps you configure and implement standby databases.

Audience

Oracle Data Guard Concepts and Administration is intended for database
administrators (DBAs) who administer the backup, restoration, and recovery
operations of an Oracle database system.

To use this document, you should be familiar with relational database concepts and
basic backup and recovery administration. You should also be familiar with the
operating system environment under which you are running Oracle software.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

Readers of Oracle Data Guard Concepts and Administration should also read:

* The beginning of Oracle Database Concepts, that provides an overview of the
concepts and terminology related to the Oracle database and serves as a
foundation for the more detailed information in this guide.

* The chapters in the Oracle Database Administrator's Guide that deal with
managing the control files, online redo log files, and archived redo log files.

* The chapter in the Oracle Database Utilities that discusses LogMiner technology.

* Oracle Data Guard Broker that describes the graphical user interface and
command-line interface for automating and centralizing the creation, maintenance,
and monitoring of Oracle Data Guard configurations.

* Oracle Enterprise Manager Cloud Control online Help system

ORACLE XXii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions

The following text conventions are used in this document:

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

XXiii

Changes in This Release for Oracle Data Guard Concepts and Administration

Changes in This Release for Oracle Data
Guard Concepts and Administration

This preface lists changes in Oracle Data Guard Concepts and Administration.

Changes in Oracle Database Release 19¢

These are the changes in Oracle Data Guard Concepts and Administration for Oracle
Database Release 19c.

New Features

The process of flashing back a physical standby to a point in time that was
captured on the primary is simplified by automatically replicating restore points
from primary to the standby. See Replicating Restore Points from Primary to
Standby.

When flashback or point-in-time recovery is performed on the primary database, a
standby that is in mounted mode can automatically follow the same recovery
procedure performed on the primary. See Automatic Flashback of a Mounted
Standby After a Primary RESETLOGS Operation.

You can enable the Oracle Database In-Memory Column Store and Data
Guard Multi-Instance Redo Apply at the same time on an Active Data Guard
standby database.

DML operations can be performed on Active Data Guard standby instances. When
an invalid PL/SQL object is run on an ADG standby database, the object is
automatically recompiled. See Performing DML Operations on Active Data Guard
Standby Databases and Running Top-level PL/SQL Operations on Active Data
Guard Standby Databases.

Desupported Features

e The MAX_CONNECTI ONS attribute for the LOG_ARCHI VE_DEST n initialization parameter
is desupported.

* Extended Datatype Support (EDS) is desupported. All EDS-supported Oracle data
types are now supported natively by logical standbys or Oracle GoldenGate.

Changes in Oracle Database Release 18c, Version 18.1

These are the changes in Oracle Data Guard Concepts and Administration for
Changes in Oracle Database Release 18c, Version 18.1.

ORACLE XXiV

ORACLE

Changes in This Release for Oracle Data Guard Concepts and Administration

The database buffer cache state is now maintained on an Oracle Active Data
Guard standby during a role change. See Role Transitions Involving Physical
Standby Databases.

Global temporary tables can now be dynamically created on an Oracle Active Data
Guard standby database. See Global Temporary Tables on Active Data Guard
Instances.

A new initialization parameter, ADG_ACCOUNT _| NFO TRACKI NG, extends control of
user account security against login attacks across a production database and all
Oracle Active Data Guard standby databases. See Oracle Database Reference.

A new view VSDATAGUARD PROCESS (which replaces VEMANAGED STANDBY) provides
information that can be queried to verify that redo is being transmitted from the
primary database and applied to the standby database. See Creating a Physical
Standby Task 7: Verify the Physical Standby Database Is Performing Properly.

Metadata for private temporary tables (also known as local temporary tables) can
be stored in memory. This allows private temporary tables to be enabled on read-
only databases, hence allowing reporting applications to run on Oracle Active Data
Guard standby databases. See Private Temporary Tables on Active Data Guard
Instances.

Database nologging has been extended with two new modes: St andby Nol oggi ng
for Load Performance and St andby Nol oggi ng for Data Availability. These
modes provide better support for use in an Oracle Active Data Guard environment
without significantly increasing the amount of redo generated. See Enable an
Appropriate Logging Mode.

A standby database can now be refreshed over the network using one RMAN
command, RECOVER STANDBY DATABASE. See Rolling Forward a Standby With One
Command.

Enhancements have been made to Data Guard broker support for upgrades
performed using the DBMS_ROLLI NG PL/SQL package. See Data Guard Broker
Support for DBMS_ROLLING Upgrades.

Block Change Tracking is now supported with multi-instance redo apply. See
Setting Up Multi-Instance Redo Apply.

XXV

Concepts and Administration

The following topics provide information about Oracle Data Guard concepts and
administration:

* Introduction to Oracle Data Guard

e Getting Started with Oracle Data Guard

e Creating a Physical Standby Database

e Creating a Logical Standby Database

e Using Far Sync Instances

» Oracle Data Guard Protection Modes

* Redo Transport Services

e Apply Services

* Role Transitions

e Managing Physical and Snapshot Standby Databases
* Managing a Logical Standby Database

e Using RMAN to Back Up and Restore Files

e Using SQL Apply to Upgrade the Oracle Database

e Using DBMS_ROLLING to Perform a Rolling Upgrade

e Oracle Data Guard Scenarios

ORACLE

Introduction to Oracle Data Guard

Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data.

Oracle Data Guard provides a comprehensive set of services that create, maintain,
manage, and monitor one or more standby databases to enable production Oracle
databases to survive disasters and data corruptions. Oracle Data Guard maintains
these standby databases as copies of the production database. Then, if the production
database becomes unavailable because of a planned or an unplanned outage, Oracle
Data Guard can switch any standby database to the production role, minimizing the
downtime associated with the outage. Oracle Data Guard can be used with traditional
backup, restoration, and cluster techniques to provide a high level of data protection
and data availability. Oracle Data Guard transport services are also used by other
Oracle features such as Oracle Streams and Oracle GoldenGate for efficient and
reliable transmission of redo from a source database to one or more remote
destinations.

With Oracle Data Guard, administrators can optionally improve production database
performance by offloading resource-intensive backup and reporting operations to
standby systems.

See the following topics which describe the highlights of Oracle Data Guard:

e Oracle Data Guard Configurations

* Oracle Data Guard Services

e Oracle Data Guard Broker

* Oracle Data Guard Protection Modes

e Client Failover

* Oracle Data Guard and Complementary Technologies
e Oracle Active Data Guard Supports Oracle Sharding

e Summary of Oracle Data Guard Benefits

1.1 Oracle Data Guard Configurations

ORACLE

An Oracle Data Guard configuration can contain one primary database and up to
thirty destinations.

The members of an Oracle Data Guard configuration are connected by Oracle Net and
may be dispersed geographically. There are no restrictions on where the members of
an Oracle Data Guard configuration are located as long as they can communicate with
each other. For example, you can have a standby database in the same data center
as the primary database, along with two standbys in another data center.

You can manage primary and standby databases using either the SQL command-line
interface or the Oracle Data Guard broker interfaces. The broker provides a command-

1-1

Chapter 1
Oracle Data Guard Configurations

line interface (DGMGRL) and a graphical user interface that is integrated in Oracle
Enterprise Manager Cloud Control.

1.1.1 Primary Database

An Oracle Data Guard configuration contains one production database, also referred
to as the primary database, that functions in the primary role.

The primary database is the database that is accessed by most of your applications.

The primary database can be either a single-instance Oracle database or an Oracle
Real Application Clusters (Oracle RAC) database.

1.1.2 Standby Databases

ORACLE

A standby database is a transactionally consistent copy of the primary database.

Using a backup copy of the primary database, you can create up to thirty standby
databases and incorporate them into an Oracle Data Guard configuration. Oracle Data
Guard automatically maintains each standby database by transmitting redo data from
the primary database and then applying the redo to the standby database.

Similar to a primary database, a standby database can be either a single-instance
Oracle database or an Oracle RAC database.

The types of standby databases are as follows:

* Physical standby database

Provides a physically identical copy of the primary database, with on-disk
database structures that are identical to the primary database on a block-for-block
basis. The database schema, including indexes, are the same. A physical standby
database is kept synchronized with the primary database, through Redo Apply,
which recovers the redo data received from the primary database and applies the
redo to the physical standby database.

As of Oracle Database 11g Release 1 (11.1), a physical standby database can
receive and apply redo while it is open for read-only access. A physical standby
database can therefore be used concurrently for data protection and reporting.

Additionally, as of Oracle Database 11g Release 2 (11.2.0.1), a physical standby
database can be used to install eligible one-off patches, patch set updates (PSUs),
and critical patch updates (CPUSs), in rolling fashion. For more information about
this functionality, see the My Oracle Support note 1265700.1 at http://
support.oracl e.com

* Logical standby database

Contains the same logical information as the production database, although the
physical organization and structure of the data can be different. The logical
standby database is kept synchronized with the primary database through SQL
Apply, which transforms the data in the redo received from the primary database
into SQL statements and then executes the SQL statements on the standby
database.

The flexibility of a logical standby database lets you upgrade Oracle Database
software (patch sets and new Oracle Database releases) and perform other
database maintenance in rolling fashion with almost no downtime. From Oracle

1-2

http://support.oracle.com
http://support.oracle.com

Chapter 1
Oracle Data Guard Configurations

Database 11g onward, the transient logical database rolling upgrade process can
also be used with existing physical standby databases.

* Snapshot Standby Database
A snapshot standby database is a fully updatable standby database.

Like a physical or logical standby database, a snapshot standby database
receives and archives redo data from a primary database. Unlike a physical or
logical standby database, a snapshot standby database does not apply the redo
data that it receives. The redo data received by a snapshot standby database is
not applied until the snapshot standby is converted back into a physical standby
database, after first discarding any local updates made to the snapshot standby
database.

A snapshot standby database is best used in scenarios that require a temporary,
updatable snapshot of a physical standby database. For example, you can use the
Oracle Real Application Testing option to capture the database workload on a
primary and then replay it for test purposes on the snapshot standby. Because
redo data received by a snapshot standby database is not applied until it is
converted back into a physical standby, the time needed to recover from a primary
database failure is directly proportional to the amount of redo data that needs to be
applied.

¢ See Also:

e Oracle Database Testing Guide for more information about Oracle Real
Application Testing and the license required to use it

1.1.3 Far Sync Instances

ORACLE

An Oracle Data Guard far sync instance is a remote Oracle Data Guard destination
that accepts redo from the primary database and then ships that redo to other
members of the Oracle Data Guard configuration.

A far sync instance manages a control file, receives redo into standby redo logs
(SRLs), and archives those SRLs to local archived redo logs, but that is where the
similarity with standbys ends. A far sync instance does not have user data files, cannot
be opened for access, cannot run redo apply, and can never function in the primary
role or be converted to any type of standby database.

Far sync instances are part of the Oracle Active Data Guard Far Sync feature, which
requires an Oracle Active Data Guard license.

¢ See Also:

e Far Sync

1-3

Chapter 1
Oracle Data Guard Services

1.1.4 Zero Data Loss Recovery Appliance

Zero Data Loss Recovery Appliance (Recovery Appliance) is an enterprise-level
backup solution that provides a single repository for backups of all of your Oracle
databases.

Recovery Appliance offloads most Oracle Database backup and restore processing to
a centralized backup system. It enables you to achieve significant efficiencies in
storage utilization, performance, and manageability of backups.

¢ See Also:

e Zero Data Loss Recovery Appliance Administrator's Guide

1.1.5 Configuration Example

Figure 1-1 shows a typical Oracle Data Guard configuration that contains a primary
database that transmits redo data to a standby database. The standby database is
remotely located from the primary database for disaster recovery and backup
operations. You can configure the standby database at the same location as the
primary database. However, for disaster recovery purposes, Oracle recommends you
configure standby databases at remote locations.

Figure 1-1 Typical Oracle Data Guard Configuration

Primary
Database

Transmit
Redo

Apply Redo

Redo
Stream

Standby
Database

~-

Standby
Redo Log

Disaster Recovery
Database Backup
Operations

1.2 Oracle Data Guard Services

ORACLE

Oracle Data Guard uses Redo Transport Services and Apply Services to manage the
transmission of redo data, the application of redo data, and changes to the database

roles.

e Redo Transport Services

Control the automated transfer of redo data from the production database to one
or more archival destinations.

e Apply Services

1-4

Chapter 1
Oracle Data Guard Services

Redo data is applied directly from standby redo log files as they are filled using
real-time apply. If standby redo log files are not configured, then redo data must
first be archived at the standby database before it is applied.

Role Transitions

Change the role of a database from a standby database to a primary database, or
from a primary database to a standby database using either a switchover or a
failover operation.

1.2.1 Redo Transport Services

Redo transport services control the automated transfer of redo data from the
production database to one or more archival destinations.

Redo transport services perform the following tasks:

Transmit redo data from the primary system to the standby systems in the
configuration

Manage the process of resolving any gaps in the archived redo log files due to a
network failure

Automatically detect missing or corrupted archived redo log files on a standby
system and automatically retrieve replacement archived redo log files from the
primary database or another standby database.

1.2.2 Apply Services

Apply services automatically apply the redo data on the standby database to
maintain consistency with the primary database.

ORACLE

The redo data is transmitted from the primary database and written to the standby
redo log on the standby database. Apply services also allows read-only access to the
data.

The main difference between physical and logical standby databases is the manner in
which apply services apply the archived redo data:

For physical standby databases, Oracle Data Guard uses Redo Apply
technology, which applies redo data on the standby database using standard
recovery techniques of an Oracle database, as shown in Figure 1-2.

1-5

Figure 1-2 Automatic Updating of a Physical Standby Database

Read / Write

Transactions >

3

Figure 1-3 Automatic Updating of a Logical Standby Database

Read / Write
Transactions

Primary
Database

L]
—\/_,

Redo
Transport

Redo
Stream

Redo Apply

Physical
Standby
Database

*---..I

Chapter 1
Oracle Data Guard Services

Read-only
Access

For logical standby databases, Oracle Data Guard uses SQL Apply technology,
which first transforms the received redo data into SQL statements and then

executes the generated SQL statements on the logical standby database, as
shown in Figure 1-3.

Redo
Transport

:_\/_>

Primary
Database

1.2.3 Role Transitions

Using Oracle Data Guard, you can change the role of a database using either a
switchover or a failover operation.

Redo
Stream

SQL Apply

3

ead / Write
Transactions

I (cannot
modify
tables)

Logical
Standby

|

Database

Reports

An Oracle database operates in one of two roles: primary or standby.

ORACLE

replicated

1-6

Chapter 1
Oracle Data Guard Broker

A switchover is a role reversal between the primary database and one of its standby
databases. A switchover ensures no data loss. This is typically done for planned
maintenance of the primary system. During a switchover, the primary database
transitions to a standby role, and the standby database transitions to the primary role.

A failover is when the primary database is unavailable. Failover is performed only in
the event of a failure of the primary database, and the failover results in a transition of
a standby database to the primary role. The database administrator can configure
Oracle Data Guard to ensure no data loss.

The role transitions described in this documentation are invoked manually using SQL
statements. You can also use the Oracle Data Guard broker to simplify role transitions
and automate failovers using Oracle Enterprise Manager Cloud Control or the
DGMGRL command-line interface, as described in Oracle Data Guard Broker.

1.3 Oracle Data Guard Broker

ORACLE

The Oracle Data Guard broker is a distributed management framework that automates
the creation, maintenance, and monitoring of Oracle Data Guard configurations.

You can use either the Oracle Enterprise Manager Cloud Control graphical user
interface (GUI) or the Oracle Data Guard command-line interface (DGMGRL) to:

e Create and enable Oracle Data Guard configurations, including setting up redo
transport services and apply services

* Manage an entire Oracle Data Guard configuration from any system in the
configuration

* Manage and monitor Oracle Data Guard configurations that contain Oracle RAC
primary or standby databases

» Simplify switchovers and failovers by allowing you to invoke them using either a
single key click in Oracle Enterprise Manager Cloud Control or a single command
in the DGMGRL command-line interface.

» Enable Oracle Data Guard fast-start failover to fail over automatically when the
primary database becomes unavailable. When fast-start failover is enabled, the
Oracle Data Guard broker determines if a failover is necessary and initiates the
failover to the specified target standby database automatically, with no need for
DBA intervention.

In addition, Oracle Enterprise Manager Cloud Control automates and simplifies:

e Creating a physical or logical standby database from a backup copy of the primary
database

e Adding new or existing standby databases to an existing Oracle Data Guard
configuration

e Monitoring log apply rates, capturing diagnostic information, and detecting
problems quickly with centralized monitoring, testing, and performance tools

¢ See Also:

Oracle Data Guard Broker for more information

1-7

Chapter 1
Oracle Data Guard Protection Modes

1.3.1 Using Oracle Enterprise Manager Cloud Control

Oracle Enterprise Manager Cloud Control provides a web-based interface for viewing,
monitoring, and administering primary and standby databases in an Oracle Data
Guard configuration.

Oracle Enterprise Manager Cloud Control is sometimes referred to simply as Cloud
Control.

Enterprise Manager's easy-to-use interfaces, combined with the broker's centralized
management and monitoring of the Oracle Data Guard configuration, enhance the
Oracle Data Guard solution for high availability, site protection, and data protection of
an enterprise.

Using Enterprise Manager, you can perform all management operations either locally
or remotely. You can view home pages for Oracle databases, including primary and
standby databases and instances, create or add existing standby databases, start and
stop instances, monitor instance performance, view events, schedule jobs, and
perform backup and recovery operations.

1.3.2 Using the Oracle Data Guard Command-Line Interface

The Oracle Data Guard command-line interface (DGMGRL) enables you to control
and monitor an Oracle Data Guard configuration from the DGMGRL prompt or within
scripts.

You can perform most of the activities required to manage and monitor the databases
in the configuration using DGMGRL. See Oracle Data Guard Broker for complete
DGMGRL reference information and examples.

1.4 Oracle Data Guard Protection Modes

ORACLE

Oracle Data Guard provides three distinct modes of data protection.

In some situations, a business cannot afford to lose data regardless of the
circumstances. In other situations, the availability of the database may be more
important than any potential data loss in the unlikely event of a multiple failure. Finally,
some applications require maximum database performance at all times, and can
therefore tolerate a small amount of data loss if any component fails. The following are
brief descriptions of the protection modes available for each of these situations:

Maximum Availability

This protection mode provides the highest level of data protection that is possible
without compromising the availability of a primary database. With Oracle Data Guard,
transactions do not commit until all redo data needed to recover those transactions
has either been received in memory or written to the standby redo log (depending
upon configuration) on at least one synchronized standby database. If the primary
database cannot write its redo stream to at least one synchronized standby database,
it operates as if it were in maximum performance mode to preserve primary database
availability until it is again able to write its redo stream to a synchronized standby
database.

This protection mode ensures zero data loss except in the case of certain double
faults, such as failure of a primary database after failure of the standby database.

1-8

Chapter 1
Client Failover

Maximum Performance

This is the default protection mode. It provides the highest level of data protection that
is possible without affecting the performance of a primary database. This is
accomplished by allowing transactions to commit as soon as all redo data generated
by those transactions has been written to the online log. Redo data is also written to
one or more standby databases, but this is done asynchronously with respect to
transaction commitment, so primary database performance is unaffected by delays in
writing redo data to the standby database(s).

This protection mode offers slightly less data protection than maximum availability
mode and has minimal impact on primary database performance.

Maximum Protection

This protection mode ensures that no data loss occurs if the primary database fails. To
provide this level of protection, the redo data needed to recover a transaction must be
written to both the online redo log and to the standby redo log on at least one
synchronized standby database before the transaction commits. To ensure that data
loss cannot occur, the primary database shuts down, rather than continue processing
transactions, if it cannot write its redo stream to at least one synchronized standby
database.

All three protection modes require that specific redo transport options be used to send
redo data to at least one standby database.

¢ See Also:

e Oracle Data Guard Protection Modes for more detailed descriptions of
these modes and for information about setting the protection mode of a
primary database

1.5 Client Failover

A high availability architecture requires a fast failover capability for databases and
database clients. Client failover encompasses failure notification, stale connection
cleanup, and transparent reconnection to the new primary database.

Oracle Database provides the capability to integrate database failover with failover
procedures that automatically redirect clients to a new primary database within
seconds of a database failover.

ORACLE 1-9

Chapter 1
Oracle Data Guard and Complementary Technologies

" See Also:

e Oracle Data Guard Broker for information about configuration
requirements specific to Oracle Data Guard for Fast Application
Notification (FAN), Fast Connection Failover (FCF), and role-specific
database services

e The Maximum Availability Architecture client failover best practices white
paper at

http://ww. oracl e. cont got o/ maa

1.5.1 Application Continuity

Application Continuity is an Oracle Database feature that enables rapid and
nondisruptive replays of requests against the database after a recoverable error that
made the database session unavailable.

Application Continuity is supported for Oracle Data Guard switchovers to physical
standby databases. It is also supported for fast-start failover to physical standbys in
maximum availability data protection mode. To use Application Continuity, the primary
and standby databases must be licensed for Oracle Real Application Clusters (Oracle
RAC) or Oracle Active Data Guard.

" See Also:

* Oracle Real Application Clusters Administration and Deployment Guide
for information about Application Continuity

1.6 Oracle Data Guard and Complementary Technologies

ORACLE

Oracle Database provides several unique technologies that complement Oracle Data
Guard to help keep business critical systems running with greater levels of availability
and data protection than when using any one solution by itself.

The following list summarizes some Oracle high-availability technologies:

* Oracle Real Application Clusters (Oracle RAC)

Oracle RAC enables multiple independent servers that are linked by an
interconnect to share access to an Oracle database, providing high availability,
scalability, and redundancy during failures. Oracle RAC and Oracle Data Guard
together provide the benefits of both system-level, site-level, and data-level
protection, resulting in high levels of availability and disaster recovery without loss
of data:

— Oracle RAC addresses system failures by providing rapid and automatic
recovery from failures, such as node failures and instance crashes. It also
provides increased scalability for applications.

1-10

http://www.oracle.com/goto/maa

ORACLE

Chapter 1
Oracle Data Guard and Complementary Technologies

— Oracle Data Guard addresses site failures and data protection through
transactionally consistent primary and standby databases that do not share
disks, enabling recovery from site disasters and data corruption.

Many different architectures using Oracle RAC and Oracle Data Guard are
possible depending on the use of local and remote sites and the use of nodes and
a combination of logical and physical standby databases. See Oracle Data Guard
and Oracle Real Application Clusters for Oracle RAC and Oracle Data Guard
integration.

Oracle Real Application Clusters One Node (Oracle RAC One Node)

Oracle RAC One Node provides enhanced high availability for noncluster
databases, protecting them from both planned and unplanned downtime. Oracle
RAC One Node provides the following:

— Always-on noncluster database services

— Better consolidation for database servers

— Enhanced server virtualization

— Lower cost development and test platform for full Oracle RAC

In addition, Oracle RAC One Node facilitates the consolidation of database
storage, standardizes your database environment, and, when necessary, enables
you to upgrade to a full, multinode Oracle RAC database without downtime or
disruption.

As of Oracle Database 11g Release 2 (11.2.0.2), Oracle Data Guard and Oracle
Data Guard broker are fully integrated with Oracle Real Application Clusters One
Node (Oracle RAC One Node).

Flashback Database

The Flashback Database feature provides fast recovery from logical data
corruption and user errors. By allowing you to flash back in time, previous versions
of business information that might have been erroneously changed or deleted can
be accessed once again. This feature:

— Eliminates the need to restore a backup and roll forward changes up to the
time of the error or corruption. Instead, Flashback Database can roll back an
Oracle database to a previous point-in-time, without restoring data files.

— Provides an alternative to delaying the application of redo to protect against
user errors or logical corruptions. Therefore, standby databases can be more
closely synchronized with the primary database, thus reducing failover and
switchover times.

— Avoids the need to completely re-create the original primary database after a
failover. The failed primary database can be flashed back to a point in time
before the failover and converted to be a standby database for the new
primary database.

See Oracle Database Backup and Recovery User's Guide for information about
Flashback Database, and Specifying a Time Delay for the Application of Archived
Redo Log Files for information describing the application of redo data.

Recovery Manager (RMAN)

RMAN is an Oracle utility that simplifies backing up, restoring, and recovering
database files. Like Oracle Data Guard, RMAN is a feature of the Oracle database
and does not require separate installation. Oracle Data Guard is well integrated
with RMAN, allowing you to:

1-11

Chapter 1
Oracle Active Data Guard Supports Oracle Sharding

— Use the Recovery Manager DUPLI CATE command to create a standby
database from backups of your primary database.

— Take backups on a physical standby database instead of the production
database, relieving the load on the production database and enabling efficient
use of system resources on the standby site. Moreover, backups can be taken
while the physical standby database is applying redo.

— Help manage archived redo log files by automatically deleting the archived
redo log files used for input after performing a backup.

See Creating a Standby Database with Recovery Manager.
e Oracle Global Data Services (GDS)

Oracle Global Data Services (GDS) applies the Oracle RAC service model to
pools of globally distributed databases, providing dynamic load balancing, failover,
and centralized service management for a set of replicated databases that offer
common services. The set of databases can include Oracle RAC and single-
instance Oracle databases interconnected through Oracle Data Guard, Oracle
GoldenGate, or any other replication technology.

GDS is integrated with Oracle Data Guard broker. This allows role-specific global
services to be automatically started and stopped as appropriate when role
transitions occur within an Oracle Data Guard broker configuration.

GDS allows the specification of a replication lag limit for a global service. If the lag
limit is exceeded at a given replica, the global service is temporarily stopped at
that replica and new client requests are routed to a replica that satisfies the lag
limit. The global service is automatically restarted at the original replica when the
replication lag becomes less than the lag limit.

1.7 Oracle Active Data Guard Supports Oracle Sharding

ORACLE

Oracle Sharding allows you to horizontally partition data across multiple independent
Oracle databases and route database connection requests to databases that contain
appropriate data. Oracle Data Guard and Oracle Sharding are integrated technologies.

Sharding splits data into multiple independent databases (shards) that do not share
any physical resources. Sharding is usually combined with data replication, such as
that provided by Oracle Data Guard. Oracle Data Guard provides fast single-master
replication of an entire Oracle Database. In an Oracle Data Guard configuration there
is an updateable primary database and one or more standby databases which can be
open for read-only access. Replication can improve performance and scalability of a
sharded database and provide high-availability and disaster recovery. Replication
topology in a sharded database is specified using the - r epl option on the GDSCTL
create shardcat al og command. The default replication topology is Oracle Data
Guard.

Oracle Sharding supports two methods of sharding: system-managed and composite.
The sharding method is specified with the GDSCTL command CREATE SHARDCATALOG.

Shards that belong to a shardgroup are usually located in the same data center. An
entire shardgroup can be fully replicated to one or more shardgroups in the same or
different data centers.

1-12

ORACLE

Chapter 1
Oracle Active Data Guard Supports Oracle Sharding

System-Managed Sharding With Oracle Data Guard Replication

In system-managed sharding, the logical unit of replication is a group of shards called
shardgroup. In system-managed sharding, a shardgroup contains all data stored in the
sharded database. The data is automatically distributed across shards using
partitioning by consistent hash (consistent hash is a partitioning strategy commonly
used in scalable distributed systems). The partitioning algorithm evenly and randomly
distributes data across shards. The following figure illustrates how Oracle Data Guard
replication is used with system-managed sharding. There is a primary shardgroup —
Shardgroup 1 and two standby shardgroups - Shardgroup 2 and Shardgroup 3.

Figure 1-4 System-Managed Sharding With Oracle Data Guard Replication

: 1 2 3 |

|
I Shardgroup 1 :
: |

|
| |
Datacenter _ _ _ _ _ _ _ _ ___¥_ _________ Yoo ___ ¢____\

|
: 4 5 6 :
|
:Shardgroupz I
|

|
|

|
|

|
s l ___________ l ___________l___ﬂ

Shardgroup 1 consists of Oracle Data Guard primary databases (shards 1, 2, 3).
Shardgroup 2 consists of local standby databases (shards 4, 5, 6) which are located in
the same datacenter and configured for synchronous replication. And Shardgroup 3
consists of remote standbys (shards 7, 8, 9) located in a different datacenter and
configured for asynchronous replication. The default replication topology is Oracle
Data Guard. To open each standby in the configuration in read-only mode, you must
enable Oracle Active Data Guard. This is done using the - depl oy_as ACTI VE_STANDBY
option on the GDSCTL add shar dgr oup command.

The sharded database shown in the previous figure consists of three sets of replicated
shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards is managed as an
Oracle Data Guard broker configuration with fast-start failover enabled.

To deploy replication, you only need to specify the properties of shardgroups (region,
role, etc) and add shards to them. Oracle Sharding automatically configures Oracle
Data Guard and starts a fast-start failover observer for each set of replicated shards. It
also provides load balancing of read-only workloads, role-based global services, and
replication lag and locality-based routing.

1-13

ORACLE

Chapter 1
Oracle Active Data Guard Supports Oracle Sharding

To deploy the configuration shown in the previous figure, execute the following
GDSCTL commands:

CREATE SHARDCATALQOG -dat abase host 00: 1521: shardcat -region dcl, dc2

ADD GSM -gsmgsml -listener 1571 —catal og host00: 1521: shardcat -regi on dcl
ADD GSM -gsm gsn? -listener 1571 —catal og host 00: 1521: shardcat -regi on dc2

ADD SHARDGROUP - shardgroup shardgroupl -region dcl -deploy_as primry
ADD SHARDGROUP - shar dgroup shardgroup2 -region dcl -depl oy _as standby
ADD SHARDGROUP - shar dgroup shardgroup3 -region dc2 -depl oy _as standby

CREATE SHARD -shardgroup shardgroupl -destination host0l -credentia
oracle_cred -netparanfile /hone/oracle/netca_dbhone.rsp
CREATE SHARD -shardgroup shardgroupl -destination host02 -credentia
oracle_cred -netparanfile /hone/oracle/netca_dbhone.rsp
CREATE SHARD -shardgroup shardgroupl -destination host03 -credentia
oracle_cred -netparanfile /hone/oracle/netca_dbhone.rsp
CREATE SHARD -shardgroup shardgroup3 -destination host09 -credentia
oracle_cred -netparanfile /hone/oracl e/ netca_dbhone. rsp

DEPLOY

Composite Sharding With Oracle Data Guard Replication

Composite sharding combines features of system-managed sharding and user-
managed sharding. In composite sharding the logical unit of replication is a group of
shards called a shardgroup (as in system-managed sharding). Also in composite
sharding, a sharded database consists of multiple shardspaces (as in user-managed
sharding), however, each shardspace, instead of replicated shards, contains replicated
shardgroups as shown in the following figure.

1-14

Chapter 1
Oracle Active Data Guard Supports Oracle Sharding

Figure 1-5 Composite Sharding With Oracle Data Guard Replication

[
| Shardspace A : ! Shardspace B
| | :
| | |
| | |
: Shardgroup : I'| Shardgroup
|| Al ! B1
| | :
| | |
| |
Datacenter , T
1 | ! ! . : |
| | |
| |
I'| Shardgroup I : Shardgroup
| A2 1, B2
	i v
Datacenter !	
2	I B3
y v v Iy	
Datacenter 1	Shardgroup : :
1	A3
	:
! |

To deploy the configuration shown in the previous figure, execute the following
GDSCTL commands:

CREATE SHARDCATALQG - sharding conposite —database host00: 1521: cat —regi on
dcl, dc2, dc3

ADD GSM -gsmgsml -listener 1571 —catal og host00: 1521: cat -region dcl
ADD GSM -gsm gsn? -listener 1571 —catal og host00: 1521: cat -region dc2
ADD GSM -gsm gsnB -listener 1571 -catal og host00: 1521: cat -region dc3

ADD SHARDSPACE - shar dspace shardspace_a
ADD SHARDSPACE - shar dspace shardspace_b

ADD SHARDGROUP - shar dgroup shardgroup_al -shardspace shardspace_a -region
dcl

-depl oy_as primary

ADD SHARDGROUP - shar dgroup shardgroup_a2 -shardspace shardspace_a -region

dcl -depl oy_as st andby
ADD SHARDGROUP - shar dgroup shardgroup_a3 -shardspace shardspace_a -region
dc3 -depl oy_as standby

ADD SHARDGROUP - shar dgroup shardgroup_bl -shardspace shardspace_a -region

ORACLE 1-15

Chapter 1
Summary of Oracle Data Guard Benefits

dcl
-depl oy_as primary
ADD SHARDGROUP - shar dgroup shardgroup_b2 -shardspace shardspace_a -region

dcl -depl oy_as standby
ADD SHARDGROUP - shar dgroup shardgroup_b3 -shardspace shardspace_a -region
dc2 -depl oy_as standby

CREATE SHARD -shardgroup shardgroup_al -destination host0l —credenti al
orcl _cred -netparanfile /honme/oracle/netca_dbhone.rsp

CREATE SHARD -shardgroup shardgroup_b3 -destination host09 -credential
orcl _cred -netparanfile /home/oracl e/ net ca_dbhome. rsp

DEPLOY

Related Topics
* Oracle Database Administrator’s Guide

* Oracle Database Global Data Services Concepts and Administration Guide

1.8 Summary of Oracle Data Guard Benefits

Oracle Data Guard provides an efficient and comprehensive disaster recovery and
high availability solution.

Oracle Data Guard offers these benefits:
e High availability

Oracle Data Guard’s easy-to-manage switchover and failover capabilities allow
role reversals between primary and standby databases, minimizing the downtime
of the primary database for planned and unplanned outages.

e Complete data protection

Oracle Data Guard can ensure zero data loss, even in the face of unforeseen
disasters. A standby database provides a safeguard against unplanned outages of
all types, including data corruption and administrative error. Because the redo data
received from a primary database is validated at a standby database, physical
corruptions that can occur at a primary database are not propagated to the
standby database. Additional validation performed at a standby database also
prevents logical intra-block corruptions and lost-write corruptions from propagating
to the standby. Similarly, administrative errors such as accidental file deletions by
a storage administrator are not propagated to a standby database. A physical
standby database can also be used to protect against user errors either by
delaying the redo apply or by using Flashback Database to rewind the standby
and extract a good copy of the data.

- Efficient use of system resources

The standby database tables that are updated with redo data received from the
primary database can be used for other tasks such as backups, reporting,
summations, and queries, thereby reducing the primary database workload
necessary to perform these tasks, saving valuable CPU and /O cycles.

e Flexibility in data protection to balance availability against performance
requirements

ORACLE 1-16

Chapter 1
Summary of Oracle Data Guard Benefits

Oracle Data Guard offers maximum protection, maximum availability, and
maximum performance modes to help enterprises balance data availability against
system performance requirements.

* Automatic gap detection and resolution

If connectivity is lost between the primary and one or more standby databases (for
example, due to network problems), then redo data being generated on the
primary database cannot be sent to those standby databases. After a connection
is reestablished, the missing archived redo log files (referred to as a gap) are
automatically detected by Oracle Data Guard, which then automatically transmits
the missing archived redo log files to the standby databases. The standby
databases are synchronized with the primary database, without manual
intervention by the DBA.

» Centralized and simple management

The Oracle Data Guard broker provides a graphical user interface and a
command-line interface to automate management and operational tasks across
multiple databases in an Oracle Data Guard configuration. The broker also
monitors all of the systems within a single Oracle Data Guard configuration.

* Integration with Oracle Database

Oracle Data Guard is a feature of Oracle Database Enterprise Edition and does
not require separate installation.

e Automatic role transitions

When fast-start failover is enabled, the Oracle Data Guard broker automatically
fails over to a synchronized standby site in the event of a disaster at the primary
site, requiring no intervention by the DBA. In addition, applications are
automatically notified of the role transition.

ORACLE 1-17

Getting Started with Oracle Data Guard

The information in this section describes how to get started using Oracle Data Guard.
See the following topics:

» Standby Database Types

* User Interfaces for Administering Oracle Data Guard Configurations
e Oracle Data Guard Operational Prerequisites

» Standby Database Directory Structure Considerations

* Moving the Location of Online Data Files

2.1 Standby Database Types

A standby database is a transactionally consistent copy of an Oracle production
database that is initially created from a backup copy of the primary database.

Once the standby database is created and configured, Oracle Data Guard
automatically maintains the standby database by transmitting primary database redo
data to the standby system, where the redo data is applied to the standby database.

A standby database can be one of these types: a physical standby database, a logical
standby database, or a snapshot standby database. If needed, either a physical or a
logical standby database can assume the role of the primary database and take over
production processing. An Oracle Data Guard configuration can include any
combination of these types of standby databases.

2.1.1 Physical Standby Databases

ORACLE

A physical standby database is an exact, block-for-block copy of a primary database.

A physical standby is maintained as an exact copy through a process called Redo
Apply, in which redo data received from a primary database is continuously applied to
a physical standby database using the database recovery mechanisms.

A physical standby database can be opened for read-only access and used to offload
gueries from a primary database. If a license for the Oracle Active Data Guard option
has been purchased, Redo Apply can be active while the physical standby database is
open, thus allowing queries to return results that are identical to what would be
returned from the primary database. This capability is known as the real-time query
feature.

2-1

Chapter 2
Standby Database Types

¢ See Also:

e "Opening a Physical Standby Database "

e Oracle Database Licensing Information for more information about
Oracle Active Data Guard

Benefits of a Physical Standby Database
A physical standby database provides the following benefits:

» Disaster recovery and high availability

A physical standby database is a robust and efficient disaster recovery and high
availability solution. Easy-to-manage switchover and failover capabilities allow
easy role reversals between primary and physical standby databases, minimizing
the downtime of the primary database for planned and unplanned outages.

» Data protection

A physical standby database can prevent data loss, even in the face of unforeseen
disasters. A physical standby database supports all datatypes, and all DDL and
DML operations that the primary database can support. It also provides a
safeguard against data corruptions and user errors. Storage level physical
corruptions on the primary database are not propagated to a standby database.
Similarly, logical corruptions or user errors that would otherwise cause data loss
can be easily resolved.

* Reduction in primary database workload

Oracle Recovery Manager (RMAN) can use a physical standby database to off-
load backups from a primary database, saving valuable CPU and I/O cycles.

A physical standby database can also be queried while Redo Apply is active,
which allows queries to be offloaded from the primary to a physical standby,
further reducing the primary workload.

Performance

The Redo Apply technology used by a physical standby database is the most
efficient mechanism for keeping a standby database updated with changes being
made at a primary database because it applies changes using low-level recovery
mechanisms which bypass all SQL level code layers.

2.1.2 Logical Standby Databases

A logical standby database is initially created as an identical copy of the primary
database, but it later can be altered to have a different structure.

The logical standby database is updated by executing SQL statements. The flexibility
of a logical standby database lets you upgrade Oracle Database software (patch sets
and new Oracle Database releases) and perform other database maintenance in
rolling fashion with almost no downtime. From Oracle Database 11g onward, the
transient logical database rolling upgrade process can also be used with existing
physical standby databases.

ORACLE 2-2

Chapter 2
Standby Database Types

Oracle Data Guard automatically applies information from the archived redo log file or
standby redo log file to the logical standby database by transforming the data in the
log files into SQL statements and then executing the SQL statements on the logical
standby database. Because the logical standby database is updated using SQL
statements, it must remain open. Although the logical standby database is opened in
read/write mode, its target tables for the regenerated SQL are available only for read-
only operations. While those tables are being updated, they can be used
simultaneously for other tasks such as reporting, summations, and queries.

A logical standby database has some restrictions on data types, types of tables, and
types of DDL and DML operations. See Data Type and DDL Support on a Logical
Standby Database for information on data type and DDL support on logical standby
databases.

Benefits of a Logical Standby Database

A logical standby database is ideal for high availability (HA) while still offering data
recovery (DR) benefits. Compared to a physical standby database, a logical standby
database provides significant additional HA benefits:

e Minimizing downtime on software upgrades

A logical standby database is ideal for upgrading an Oracle Data Guard
configuration in a rolling fashion. Logical standby can be used to greatly reduce
downtime associated with applying patchsets and new software releases. A logical
standby can be upgraded to the new release and then switched over to become
the active primary. This allows full availability while the old primary is converted to
a logical standby and the patchset is applied. Logical standbys provide the
underlying platform for the DBMS_ROLLI NG PL/SQL package, which provides
functionality that allows you to make your Oracle Data Guard configuration highly
available in the context of rolling upgrades and other storage reorganization.

e Support for reporting and decision support requirements

A key benefit of logical standby is that significant auxiliary structures can be
created to optimize the reporting workload; structures that could have a prohibitive
impact on the primary's transactional response time. A logical standby can have its
data physically reorganized into a different storage type with different partitioning,
have many different indexes, have on-demand refresh materialized views created
and maintained, and can be used to drive the creation of data cubes and other
OLAP data views. However, a logical standby database does not allow for any
transformation of your data (such as replicating only a subset of columns or
allowing additional columns on user tables). For those types of reporting activities,
Oracle GoldenGate is Oracle's preferred solution.

2.1.3 Snapshot Standby Databases

A snapshot standby database is a type of updatable standby database that provides
full data protection for a primary database.

A snapshot standby database receives and archives, but does not apply, redo data
from its primary database. Redo data received from the primary database is applied
when a snapshot standby database is converted back into a physical standby
database, after discarding all local updates to the snapshot standby database.

A snapshot standby database diverges from its primary database over time because
redo data from the primary database is not applied as it is received. Local updates to
the snapshot standby database cause additional divergence. The data in the primary

ORACLE 2-3

Chapter 2
User Interfaces for Administering Oracle Data Guard Configurations

database is fully protected however, because a snapshot standby can be converted
back into a physical standby database at any time, and the redo data received from
the primary is then applied.

Benefits of a Snapshot Standby Database

A snapshot standby database is a fully updatable standby database that provides
disaster recovery and data protection benefits that are similar to those of a physical
standby database. Snapshot standby databases are best used in scenarios where the
benefit of having a temporary, updatable snapshot of the primary database justifies the
increased time to recover from primary database failures.

The benefits of using a snapshot standby database include the following:

e It provides an exact replica of a production database for development and testing
purposes, while maintaining data protection at all times. You can use the Oracle
Real Application Testing option to capture primary database workload and then
replay it for test purposes on the snapshot standby.

e It can be easily refreshed to contain current production data by converting to a
physical standby and resynchronizing.

The ability to create a snapshot standby, test, resynchronize with production, and then
again create a snapshot standby and test, is a cycle that can be repeated as often as
desired. The same process can be used to easily create and regularly update a
snhapshot standby for reporting purposes where read/write access to data is required.

¢ See Also:

e Oracle Database Testing Guide for more information about Oracle Real
Application Testing and the license required to use it

2.2 User Interfaces for Administering Oracle Data Guard
Configurations

ORACLE

Oracle Data Guard provides several interfaces that you can use to configure,
implement, and manage an Oracle Data Guard configuration.

» Oracle Enterprise Manager Cloud Control

Oracle Enterprise Manager Cloud Control provides a GUI interface for the Oracle
Data Guard broker that automates many of the tasks involved in creating,
configuring, and monitoring an Oracle Data Guard environment. See the Oracle
Enterprise Manager Cloud Control online Help for information about the GUI and
its wizards.

e SQL*Plus Command-line interface

Several SQL*Plus statements use the STANDBY keyword to specify operations on a
standby database. Other SQL statements do not include standby-specific syntax,
but they are useful for performing operations on a standby database. See SQL
Statements Relevant to Oracle Data Guard for a list of the relevant statements.

e Initialization parameters

2-4

Chapter 2
Oracle Data Guard Operational Prerequisites

Several initialization parameters are used to define the Oracle Data Guard
environment. See Initialization Parameters for a list of the relevant initialization
parameters.

* Oracle Data Guard broker command-line interface (DGMGRL)

The DGMGRL command-line interface is an alternative to using Oracle Enterprise
Manager Cloud Control. The DGMGRL command-line interface is useful if you
want to use the broker to manage an Oracle Data Guard configuration from batch
programs or scripts. See Oracle Data Guard Broker for complete information.

2.3 Oracle Data Guard Operational Prerequisites

The use of Oracle Data Guard requires certain hardware and software prerequisites.

e Hardware and Operating System Requirements

e Oracle Software Requirements

2.3.1 Hardware and Operating System Requirements

The same release of Oracle Database Enterprise Edition must be installed on the
primary database and all standby databases, except during rolling database upgrades
using logical or transient logical standby databases.

As of Oracle Database 11g, Oracle Data Guard provides increased flexibility for Oracle
Data Guard configurations in which the primary and standby systems may have
different CPU architectures, operating systems (for example, Windows and Linux),
operating system binaries (32-bit/64-bit), or Oracle database binaries (32-bit/64-bit).

This increased mixed-platform flexibility is subject to the current restrictions
documented in the My Oracle Support notes 413484.1 and 1085687.1 at http://
support. oracl e.com

Note 413484.1 discusses mixed-platform support and restrictions for physical
standbys.

Note 1085687.1 discusses mixed-platform support and restrictions for logical
standbys.

" See Also:

e Using SQL Apply to Upgrade the Oracle Database for information about
rolling database upgrades

2.3.2 Oracle Software Requirements

To use Oracle Data Guard, you must meet certain Oracle software requirements.

» Oracle Data Guard is available only as a feature of Oracle Database Enterprise
Edition. It is not available with Oracle Database Standard Edition.

ORACLE 2-5

http://support.oracle.com
http://support.oracle.com

ORACLE

Chapter 2
Oracle Data Guard Operational Prerequisites

Note:

It is possible to simulate a standby database environment with
databases running Oracle Database Standard Edition. You can do this
by manually transferring archived redo log files using an operating
system copy utility or using custom scripts that periodically send
archived redo log files from one database to the other, registering them,
and using media recovery to roll forward the copy of the database at the
disaster recovery site. Such a configuration does not provide the ease-
of-use, manageability, performance, and disaster-recovery capabilities
available with Oracle Data Guard.

In general, a physical standby database must have the same Database Home
version as the primary database including Patch Set Exceptions (PSEs), Critical
Patch Updates (CPUs), and Patch Set Updates (PSUs), unless an Oracle Data
Guard Standby-First Patch Apply process is in progress (as described in My
Oracle Support note 1265700.1 at htt p: // support. oracl e. com

Additionally, as of Oracle Database 11g Release 2 (11.2.0.1), a physical standby
database can be used to install eligible one-off patches, patch set updates (PSUs),
and critical patch updates (CPUSs), in rolling fashion. For more information about
this functionality, see the My Oracle Support note 1265700.1 at http://
support.oracl e.com

Using Oracle Data Guard SQL Apply, you can perform a rolling upgrade of the
Oracle database software from patch set release n (minimally, this must be
release 10.1.0.3) to any higher versioned patch set or major version release.
During a rolling upgrade, you can run different releases of the Oracle database on
the primary and logical standby databases while you upgrade them, one at a time.
For complete information, see Using SQL Apply to Upgrade the Oracle Database
and the ReadMe file for the applicable Oracle Database 10g patch set release.

The COWPATI BLE database initialization parameter must be set to the same value
on all databases in an Oracle Data Guard configuration, except when using a
logical standby database, which can have a higher COVPATI BLE setting than the
primary database.

The primary database must run in ARCH VELOG mode. See Oracle Database
Administrator's Guide for more information.

The primary database can be a single instance database or an Oracle Real
Application Clusters (Oracle RAC) database. The standby databases can be
single instance databases or Oracle RAC databases, and these standby
databases can be a mix of physical, logical, and snapshot types.

Each primary database and standby database must have its own control file.

If a standby database is located on the same system as the primary database, the
archival directories for the standby database must use a different directory
structure than the primary database. Otherwise, the standby database may
overwrite the primary database files.

To protect against unlogged direct writes in the primary database that cannot be
propagated to the standby database, turn on FORCE LOGGE NG at the primary
database before performing data file backups for standby creation. Keep the
database in FORCE LOGE NG mode as long as the standby database is required.

2-6

http://support.oracle.com
http://support.oracle.com
http://support.oracle.com

Chapter 2
Standby Database Directory Structure Considerations

* The user accounts you use to manage the primary and standby database
instances must have either the SYSDG or SYSDBA administrative privilege.

e For operational simplicity, Oracle recommends that when you set up Oracle
Automatic Storage Management (Oracle ASM) and Oracle Managed Files (OMF)
in an Oracle Data Guard configuration that you set it up symmetrically on the
primary and standby database(s). If any database in the Oracle Data Guard
configuration uses Oracle ASM, OMF, or both, then every database in the
configuration should use Oracle ASM, OMF, or both, respectively, unless you are
purposely implementing a mixed configuration for migration or maintenance
purposes. See the scenario in Creating a Standby Database That Uses OMF or
Oracle ASM for more information.

Note:

Because some applications that perform updates involving time-based
data cannot handle data entered from multiple time zones, consider
setting the time zone for the primary and remote standby systems to be
the same to ensure the chronological ordering of records is maintained
after a role transition.

2.4 Standby Database Directory Structure Considerations

ORACLE

The directory structure of the various standby databases is important because it
determines the path names for the standby data files, archived redo log files, and
standby redo log files.

If possible, the data files, log files, and control files on the primary and standby
systems should have the same names and path names and use Optimal Flexible
Architecture (OFA) naming conventions. The archival directories on the standby
database should also be identical between sites, including size and structure. This
strategy allows other operations such as backups, switchovers, and failovers to
execute the same set of steps, reducing the maintenance complexity.

¢ See Also:

Your operating system-specific Oracle documentation for more information
about Optimal Flexible Architecture (OFA)

Otherwise, you must set the filename conversion parameters (as shown in Table 2-1)
or rename the data file. Nevertheless, if you need to use a system with a different
directory structure or place the standby and primary databases on the same system,
you can do so with a minimum of extra administration.

The three basic configuration options are illustrated in Figure 2-1. These include:

* A standby database on the same system as the primary database that uses a
different directory structure than the primary system. This is illustrated in
Figure 2-1 as St andby1.

2-7

ORACLE

Chapter 2
Standby Database Directory Structure Considerations

If you have a standby database on the same system as the primary database, you
must use a different directory structure. Otherwise, the standby database attempts
to overwrite the primary database files.

A standby database on a separate system that uses the same directory structure
as the primary system. This is illustrated in Figure 2-1 as St andby?2. This is the
recommended method.

A standby database on a separate system that uses a different directory structure
than the primary system. This is illustrated in Figure 2-1 as St andby3.

" Note:

For operational simplicity, Oracle recommends that when you set up
Oracle Automatic Storage Management (Oracle ASM) and Oracle
Managed Files (OMF) in an Oracle Data Guard configuration that you set
it up symmetrically on the primary and standby database(s). If any
database in the Oracle Data Guard configuration uses Oracle ASM,
OMF, or both, then every database in the configuration should use
Oracle ASM, OMF, or both, respectively, unless you are purposely
implementing a mixed configuration for migration or maintenance
purposes. See the scenario in Creating a Standby Database That Uses
OMF or Oracle ASM for more information.

2-8

ORACLE

Chapter 2
Standby Database Directory Structure Considerations

Figure 2-1 Possible Standby Configurations

Computer System at
Location 1

/oracle/dbs

Oracle . Oracle
Net
/oracle/standby/dbs

pzd
o

/oracle/dbs /disk2/FS3/oracle/dbs
Computer System at Computer System at
Location 2 Location 3

Table 2-1 describes possible configurations of primary and standby databases and the
consequences of each.

2-9

Chapter 2
Moving the Location of Online Data Files

Table 2-1 Standby Database Location and Directory Options

Standby Directory Consequences
System Structure

Same as Different * You can either manually rename files or set up the
primary than primary DB_FI LE_NAME_CONVERT and LOG_FI LE_NAME_CONVERT
system system initialization parameters on the standby database to

(required) automatically update the path names for primary database data

files and archived redo log files and standby redo log files in the
standby database control file. (See Set Primary Database
Initialization Parameters.)

» The standby database does not protect against disasters that
destroy the system on which the primary and standby
databases reside, but it does provide switchover capabilities for
planned maintenance.

Separate Same as * You do not need to rename primary database files, archived
system primary redo log files, and standby redo log files in the standby
system database control file, although you can still do so if you want a
new naming scheme (for example, to spread the files among
different disks).

* By locating the standby database on separate physical media,
you safeguard the data on the primary database against
disasters that destroy the primary system.

Separate Different * You can either manually rename files or set up the
system than primary DB_FI LE_NAME_CONVERT and LOG_FI LE_NAME_CONVERT
system initialization parameters on the standby database to

automatically rename the data files (see Set Primary Database
Initialization Parameters).

* By locating the standby database on separate physical media,
you safeguard the data on the primary database against
disasters that destroy the primary system.

2.5 Moving the Location of Online Data Files

ORACLE

You can move the location of an online data file from one physical file to another
physical file while the database is actively accessing the file.

To move the location of the file, you use the SQL statement ALTER DATABASE MOVE
DATAFI LE.

An operation performed with the ALTER DATABASE MOVE DATAFI LE statement increases
the availability of the database because it does not require that the database be shut
down to move the location of an online data file.

You can perform an online move data file operation independently on the primary and
on the standby (either physical or logical). The standby is not affected when a data file
is moved on the primary, and vice versa.

On a physical standby, an online move data file operation can be executed while
standby recovery is running if the instance that opens the database is in read-only
mode. This functionality requires an Oracle Active Data Guard license.

2-10

Chapter 2
Moving the Location of Online Data Files

2.5.1 Restrictions When Moving the Location of Online Data Files

There are restrictions when you move the location of online data files.

e You cannot use the SQL ALTER DATABASE MOVE DATAFI LE command to rename or
relocate an online data file on a physical standby that is a fast-start failover target
if the standby is mounted, but not open.

* The online move data file operation cannot be executed on physical standby while
standby recovery is running in a mounted but not open instance.

* The online move data file operation may get aborted if the standby recovery
process takes the data file offline, shrinks the file, or drops the tablespace.

* On a primary database, the online move data file operation cannot be executed on
a file that belongs to a pluggable database (PDB) that has been closed on all
instances of the primary database.

" See Also:

e Oracle Database Administrator's Guide for more information about
renaming and relocating online data files

e Oracle Database SQL Language Reference for more information about
the ALTER DATABASE MOVE DATAFI LE statement

ORACLE 2-11

Creating a Physical Standby Database

ORACLE

You can manually create a physical standby database in maximum performance mode
using asynchronous redo transport and real-time apply, the default Oracle Data Guard
configuration.

See the following main topics:

Preparing the Primary Database for Standby Database Creation
Step-by-Step Instructions for Creating a Physical Standby Database
Post-Creation Steps

Using DBCA to Create a Data Guard Standby

Creating a Physical Standby of a CDB

Creating a PDB in a Primary Database

" See Also:

e Oracle Database Administrator's Guide for information about creating
and using server parameter files

* Enterprise Manager online help system for information about using the
Oracle Data Guard broker graphical user interface (GUI) to automatically
create a physical standby database

e Creating a Standby Database with Recovery Manager for information
about alternative methods of creating a physical standby database that
automate much of the process by using Oracle Recovery Manager
(RMAN) and either backup based duplication or active duplication over a
network

e Oracle Data Guard Broker for information about configuring a database
so that it can be managed by Oracle Data Guard broker

" Note:

If you are working in a multitenant container database (CDB) environment,
then see Creating a Physical Standby of a CDB for information about
behavioral differences from non-CDB environments. For instance, in a CDB
environment, many DBA views have analogous CDB views that you should
use instead.

3-1

Chapter 3
Preparing the Primary Database for Standby Database Creation

3.1 Preparing the Primary Database for Standby Database

Creation

Before you create a standby database you must first ensure the primary database is
properly configured.

Perform the following tasks on the primary database to prepare for physical standby
database creation:

e Enable an Appropriate Logging Mode
e Configure Redo Transport Authentication
e Configure the Primary Database to Receive Redo Data

e Set Primary Database Initialization Parameters

Enable Archiving

< Note:

Perform these preparatory tasks only once. After you complete these steps,
the database is prepared to serve as the primary database for one or more
standby databases.

3.1.1 Enable an Appropriate Logging Mode

ORACLE

As part of preparing the primary database for standby database creation, you must
enable a logging mode appropriate to the way you plan to use the Data Guard
configuration.

The default logging mode of a database that is not part of a Data Guard configuration
allows certain data loading operations to be performed in a nonlogged manner. This
default mode is not appropriate to a database with a standby because it leads to the
loaded data being missing from the standby, which requires manual intervention to fix.
In addition to the default logging mode, there are three other modes that are
appropriate for a primary database:

e FORCE LOGAE NGmode prevents any load operation from being performed in a
nonlogged manner. This can slow down the load process because the loaded data
must be copied into the redo logs. FORCE LOGE NG mode is enabled using the
following command:

SQ.> ALTER DATABASE FORCE LOGG NG,
e STANDBY NOLOGGE NG FOR DATA AVAI LABI LI TY mode causes the load operation to

send the loaded data to each standby through its own connection to the standby.
The commit is delayed until all the standbys have applied the data as part of

3-2

Chapter 3
Preparing the Primary Database for Standby Database Creation

running managed recovery in an Active Data Guard environment. It is enabled with
the following command:

SQL> ALTER DATABASE SET STANDBY NOLOGG NG FOR DATA AVAI LABI LI TY;

STANDBY NOLOGGE NG FOR LOAD PERFORMANCE is similar to the previous mode
except that the loading process can stop sending the data to the standbys if the
network cannot keep up with the speed at which data is being loaded to the
primary. In this mode it is possible that the standbys may have missing data, but
each standby automatically fetches the data from the primary as a normal part of
running managed recovery in an Active Data Guard environment. It is enabled with
the following command:

SQ> ALTER DATABASE SET STANDBY NOLOGG NG FOR LOAD PERFCRMVANCE;

When you issue any of these statements, the primary database must at least be
mounted (and it can also be open). The statement can take a considerable amount of
time to complete, because it waits for all unlogged direct write 1/O to finish.

Note:

When you enable STANDBY NOLOGA NG FOR DATA AVAI LABI LI TY or STANDBY
NOLOGAE NG FOR LOAD PERFORMANCE on the primary database, any standbys
that are using multi-instance redo apply functionality will stop applying redo
with the error ORA-10892. You must first restart redo apply and allow the
affected standbys to progress past the NOLOGGING operation period and
then enable multi-instance redo apply.

¢ See Also:

e Oracle Database Administrator's Guide for more information about the
ramifications of specifying FORCE LOGE NG mode

3.1.2 Configure Redo Transport Authentication

ORACLE

Oracle Data Guard uses Oracle Net sessions to transport redo data and control
messages between the members of an Oracle Data Guard configuration.

These redo transport sessions are authenticated using either the Secure Sockets
Layer (SSL) protocol or a remote login password file.

SSL is used to authenticate redo transport sessions between two databases if:

The databases are members of the same Oracle Internet Directory (OID)
enterprise domain and it allows the use of current user database links

3-3

Chapter 3
Preparing the Primary Database for Standby Database Creation

* The LOG_ARCH VE_DEST n, and FAL_SERVER database initialization parameters that
correspond to the databases use Oracle Net connect descriptors configured for
SSL

e Each database has an Oracle wallet or supported hardware security module that
contains a user certificate with a distinguished name (DN) that matches the DN in
the OID entry for the database

If the SSL authentication requirements are not met, then each member of an Oracle
Data Guard configuration must be configured to use a remote login password file and
every physical standby database in the configuration must have an up-to-date copy of
the password file from the primary database.

Note:

As of Oracle Database 12¢ Release 2 (12.2.0.1) password file changes done
on a primary database are automatically propagated to standby databases.
The only exception to this is far sync instances. Updated password files must
still be manually copied to far sync instances because far sync instances
receive redo, but do not apply it. Once the password file is up-to-date at the
far sync instance, the redo is automatically propagated to any standby
databases that are set up to receive redo logs from that far sync instance.
The password file is updated on the standby when the redo is applied.

¢ See Also:

* Oracle Database Administrator's Guide and Oracle Database Reference
for more information about remote login password files

e Oracle Database Security Guide for more information about SSL

* Oracle Database Net Services Administrator's Guide for more
information about Oracle Net Services

3.1.3 Configure the Primary Database to Receive Redo Data

ORACLE

It is a best practice to configure the primary database to receive redo if this is the first
time a standby database is added to the configuration.

The primary database can then quickly transition to the standby role and begin
receiving redo data, if necessary.

To create a standby redo log, use the SQL ALTER DATABASE ADD STANDBY LOGFI LE
statement. For example:

SQL> ALTER DATABASE ADD STANDBY LOGFILE ('/oracle/dbs/slogl.rdo") SIZE 500M
SQL> ALTER DATABASE ADD STANDBY LOGFILE ('/oracle/dbs/slog2.rdo") SIZE 500M

See Configuring an Oracle Database to Receive Redo Data for a discussion of how to
determine the size of each log file and the number of log groups, as well as other
background information about managing standby redo logs.

3-4

Chapter 3
Preparing the Primary Database for Standby Database Creation

3.1.4 Set Primary Database Initialization Parameters

ORACLE

On the primary database, you define initialization parameters that control redo
transport services while the database is in the primary role.

There are additional parameters you need to add that control the receipt of the redo
data and apply services when the primary database is transitioned to the standby role.

The following example shows the primary role initialization parameters that you
maintain on the primary database. This example represents an Oracle Data Guard
configuration with a primary database located in Chicago and one physical standby
database located in Boston. The parameters shown in this example are valid for the
Chicago database when it is running in either the primary or the standby database
role. The configuration examples use the names shown in the following table:

Database DB_UNIQUE_NAME Oracle Net Service Name
Primary chicago chicago
Physical standby boston boston

DB_NAME=chi cago
DB_UNI QUE_NAME=chi cago
LOG_ARCHI VE_CONFI G=' DG_CONFI G=(chi cago, bost on)'
CONTROL_FI LES=' / ar ch1/ chi cago/ control 1. ctl', '/arch2/chicago/control 2. ctl'
LOG_ARCHI VE_DEST 1=
" LOCATI ON=USE_DB_RECOVERY_FI LE_DEST
VALI D_FOR=(ALL_LOGFI LES, ALL_ROLES)
DB_UNI QUE_NAME=chi cago'
LOG_ARCHI VE_DEST 2=
' SERVI CE=bost on ASYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE)
DB_UNI QUE_NAME=bost on'
REMOTE_LOG N_PASSWORDFI LE=EXCLUSI VE
LOG_ARCHI VE_FORMAT=% _%_% . arc

These parameters control how redo transport services transmit redo data to the
standby system and the archiving of redo data on the local file system. Note that the
example specifies asynchronous (ASYNC) network transmission to transmit redo data
on the LOG_ARCHI VE_DEST 2 initialization parameter. These are the recommended
settings and require standby redo log files (see Configure the Primary Database to
Receive Redo Data).

The following shows the additional standby role initialization parameters on the
primary database. These parameters take effect when the primary database is
transitioned to the standby role.

FAL_SERVER=bost on

DB_FI LE_NAME_CONVERT='/boston/", "/ chi cago/"
LOG_FI LE_NAME_CONVERT='/boston/", '/ chi cago/"
STANDBY_FI LE_MANAGEMENT=AUTO

Specifying the initialization parameters shown above sets up the primary database to
resolve gaps, converts new data file and log file path names from a new primary
database, and archives the incoming redo data when this database is in the standby
role. With the initialization parameters for both the primary and standby roles set as
described, none of the parameters need to change after a role transition.

3-5

Chapter 3
Preparing the Primary Database for Standby Database Creation

The following table provides a brief explanation about each parameter setting shown in
the previous two examples.

Parameter Recommended Setting

DB_NAME On a primary database, specify the name used when the database was created.
On a physical standby database, use the DB_NAVE of the primary database.

DB_UNI QUE_NAME Specify a unique name for each database. This name stays with the database

LOG_ARCH VE_CONFI G

CONTROL_FI LES

LOG_ARCHI VE_DEST n

REMOTE_LOG N_PASSWORDFI LE

LOG_ARCH VE_FORMAT

FAL_SERVER

DB_FI LE_NAVE_CONVERT

LOG_FI LE_NAVE_CONVERT

STANDBY_FI LE_MANAGEMENT

and does not change, even if the primary and standby databases reverse roles.

The DG_CONFI Gattribute of this parameter must be explicitly set on each
database in an Oracle Data Guard configuration to enable full Oracle Data
Guard functionality. Set DG_CONFI Gto a text string that contains the

DB_UNI QUE_NAME of each database in the configuration, with each name in this
list separated by a comma.

Specify the path name for the control files on the primary database. It is
recommended that a second copy of the control file is available so an instance
can be easily restarted after copying the good control file to the location of the
bad control file.

Specify where the redo data is to be archived on the primary and standby
systems.

* LOG_ARCHI VE_DEST _1 archives redo data generated by the primary
database from the local online redo log files to the local archived redo log
files in /arch1/chicago/.

* LOG_ARCHI VE_DEST_2 is valid only for the primary role. This destination
transmits redo data to the remote physical standby destination bost on.

Note: If a fast recovery area was configured (with the

DB _RECOVERY_FI LE DEST initialization parameter) and you have not explicitly

configured a local archiving destination with the LOCATI ON attribute, Oracle Data

Guard automatically uses the LOG_ARCHI VE_DEST 1 initialization parameter (if

it has not already been set) as the default destination for local archiving. Also,

see LOG_ARCHIVE_DEST_n Parameter Attributes for complete

LOG_ARCHI VE_DEST _n information.

This parameter must be set to EXCLUSI VE or SHARED if a remote login password
file is used to authenticate administrative users or redo transport sessions.

Specify the format for the archived redo log files using a thread (%t), sequence
number (%s), and resetlogs ID (%r).

Specify the Oracle Net service name of the FAL server (typically this is the
database running in the primary role). When the Chicago database is running in
the standby role, it uses the Boston database as the FAL server from which to
fetch (request) missing archived redo log files if Boston is unable to
automatically send the missing log files.

Specify the path name and filename location of the standby database data files
followed by the primary location. This parameter converts the path names of the
primary database data files to the standby data file path names. This parameter
is used only to convert path names for physical standby databases. Multiple
pairs of paths may be specified by this parameter.

Specify the location of the standby database online redo log files followed by the
primary location. This parameter converts the path names of the primary
database log files to the path names on the standby database. Multiple pairs of
paths may be specified by this parameter.

Set to AUTO so when data files are added to or dropped from the primary
database, corresponding changes are made automatically to the standby
database.

ORACLE

3-6

Chapter 3
Step-by-Step Instructions for Creating a Physical Standby Database

< Note:

Review the initialization parameter file for additional parameters that may
need to be modified. For example, you may need to modify the dump
destination parameters if the directory location on the standby database is
different from those specified on the primary database.

3.1.5 Enable Archiving

If archiving is not enabled, then you must put the primary database in ARCH VELOG
mode and enable automatic archiving.

Issue the following SQL statements:

SQL> SHUTDOWN | MVEDI ATE;

SQL> STARTUP MOUNT;

SQL> ALTER DATABASE ARCH VELOG
SQL> ALTER DATABASE OPEN;

" Note:

The standby database must be in ARCH VELOG mode for standby redo log
archival to be performed.

See Oracle Database Administrator's Guide for information about archiving.

3.2 Step-by-Step Instructions for Creating a Physical
Standby Database

These are the tasks you perform to create a physical standby database.

The information in this topic is written at a level of detail that requires you to already
have a thorough understanding of the following topics:

o Database administrator authentication

» Database initialization parameters

* Managing redo logs, data files, and control files
* Managing archived redo logs

» Fastrecovery areas

* Oracle Net configuration

Table 3-1 provides a checklist of the tasks that you perform to create a physical
standby database and the database or databases on which you perform each task.

ORACLE 3.7

Chapter 3
Step-by-Step Instructions for Creating a Physical Standby Database

Table 3-1 Creating a Physical Standby Database

Task Database
Create a Backup Copy of the Primary Database Data Primary
Files

Create a Control File for the Standby Database Primary
Create a Parameter File for the Standby Database Primary
Copy Files from the Primary System to the Standby Primary
System

Set Up the Environment to Support the Standby Standby
Database

Start the Physical Standby Database Standby
Verify the Physical Standby Database Is Performing Standby
Properly

3.2.1 Creating a Physical Standby Task 1: Create a Backup Copy of
the Primary Database Data Files

You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database.

You can use any backup copy of the primary database to create the physical standby
database, as long as you have the necessary archived redo log files to completely
recover the database. Oracle recommends that you use the Recovery Manager utility
(RMAN).

See Oracle Database Backup and Recovery User's Guide for information about
performing a database backup operation.

3.2.2 Creating a Physical Standby Task 2: Create a Control File for the
Standby Database

Create the control file for the standby database (the primary database does not have
to be open, but it must at least be mounted).

The following is an example of creating the control file for the standby database:

SQ> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tnp/boston.ctl";

The ALTER DATABASE command designates the database that is to operate in the
standby role; in this case, a database named bost on.

You cannot use a single control file for both the primary and standby databases. They
must each have their own file.

ORACLE 3-8

Chapter 3
Step-by-Step Instructions for Creating a Physical Standby Database

Note:

If a control file backup is taken on the primary and restored on a standby (or
vice versa), then the location of the snapshot control file on the restored
system is configured to be the default. (The default value for the snapshot
control file name is platform-specific and dependent on Oracle home.)
Manually reconfigure it to the correct value using the RMAN CONFI GURE
SNAPSHOT CONTRCLFI LE command.

3.2.3 Creating a Physical Standby Task 3: Create a Parameter File for
the Standby Database

ORACLE

Create a parameter file (PFILE) from the server parameter file (SPFILE) used by the
primary database.

Perform the following steps:

1. Issue a SQL statement such as the following:

SQL> CREATE PFILE="/tnp/initboston.ora" FROM SPFI LE;

In Set Up the Environment to Support the Standby Database, you then create a
server parameter file from this parameter file, after it has been modified to contain
parameter values appropriate for use at the physical standby database.

2. Modify the parameter values in the parameter file created in the previous step.

Although most of the initialization parameter settings in the parameter file are also
appropriate for the physical standby database, some modifications must be made.

Example 3-1 shows, in bold typeface, the parameters created earlier on the
primary that must be changed.

Example 3-1 Modifying Initialization Parameters for a Physical Standby
Database

DB_NAME=chi cago
DB_UNIQUE_NAME=boston
LOG_ARCHI VE_CONFI G=' DG_CONFI G=(chi cago, bost on)'
CONTROL_FILES="/archl/boston/controll.ctl', ' /arch2/boston/control2.ctl'
DB_FILE_NAME_CONVERT="/chicago/", "/boston/*
LOG_FILE_NAME_CONVERT="/chicago/", "/boston/"
LOG_ARCHI VE_FORMAT=| 0g% % % . arc
LOG_ARCHIVE_DEST 1=
* LOCATI ONEUSE_DB_RECOVERY_FI LE_DEST
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=boston"
LOG_ARCHIVE_DEST 2=
"SERVICE=chicago ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=chicago"
REMOTE_LOG N_PASSWORDFI LE=EXCLUSI VE
STANDBY_FI LE_MANAGEMENT=AUTO
FAL_SERVER=chicago

3-9

Chapter 3
Step-by-Step Instructions for Creating a Physical Standby Database

Ensure the COVPATI BLE initialization parameter is set to the same value on both the
primary and standby databases. If the values differ, then redo transport services may
be unable to transmit redo data from the primary database to the standby databases.

It is always a good practice to use the SHOW PARAMETERS command to verify no other
parameters need to be changed.

The following table provides a brief explanation about the parameter settings shown in
Example 3-1 that have different settings from the primary database.

Parameter Recommended Setting

DB_UNI QUE_NAME Specify a unique name for this database. This name stays with the
database and does not change even if the primary and standby databases
reverse roles.

CONTRCOL_FI LES Specify the path name for the control files on the standby database.

DB_FI LE_NAVE_CONVERT

LOG_FI LE_NAVE_CONVERT

LOG_ARCHI VE_DEST n

FAL_SERVER

Example 3-1 shows how to do this for two control files. It is recommended
that a second copy of the control file is available so an instance can be
easily restarted after copying the good control file to the location of the bad
control file.

Specify the path name and filename location of the primary database data
files followed by the standby location. This parameter converts the path
names of the primary database data files to the standby data file path
names.

Specify the location of the primary database online redo log files followed
by the standby location. This parameter converts the path names of the
primary database log files to the path names on the standby database.

Specify where the redo data is to be archived. In Example 3-1:

* LOG_ARCHI VE_DEST 1 archives redo data received from the primary
database to archived redo log files in /arch1/boston/.

* LOG_ARCHI VE_DEST_2 is currently ignored because this destination is
valid only for the primary role. If a switchover occurs and this instance
becomes the primary database, then it transmits redo data to the
remote Chicago destination.

Note: If a fast recovery area was configured (with the

DB_RECOVERY_FI LE_DEST initialization parameter) and you have not

explicitly configured a local archiving destination with the LOCATI ON

attribute, then Oracle Data Guard automatically uses the

LOG_ARCHI VE_DEST _1 initialization parameter (if it has not already been

set) as the default destination for local archiving. Also, see

LOG_ARCHIVE_DEST_n Parameter Attributes for complete information

about LOG_ARCHI VE_DEST n.

Specify the Oracle Net service name of the FAL server (typically this is the
database running in the primary role). When the Boston database is
running in the standby role, it uses the Chicago database as the FAL
server from which to fetch (request) missing archived redo log files if
Chicago is unable to automatically send the missing log files.

ORACLE

3-10

Chapter 3
Step-by-Step Instructions for Creating a Physical Standby Database

Note:

Review the initialization parameter file for additional parameters that may
need to be modified. For example, you may need to modify the dump
destination parameters if the directory location on the standby database is
different from those specified on the primary database.

3.2.4 Creating a Physical Standby Task 4: Copy Files from the Primary
System to the Standby System

Ensure that all required directories are created. Use an operating system copy utility to
copy binary files from the primary system to their correct locations on the standby
system.

The binary files to copy are as follows:

Database backup created in Create a Backup Copy of the Primary Database Data
Files

Standby control file created in Create a Control File for the Standby Database

Initialization parameter file created in Create a Parameter File for the Standby
Database

3.2.5 Creating a Physical Standby Task 5: Set Up the Environment to
Support the Standby Database

Set up the environment by creating a Windows-based service, a password file and an
SPFILE, and setting up the Oracle Net environment.

ORACLE

Perform the following steps:

1.

If the standby database is going to be hosted on a Windows system, then use the
ORADIM utility to create a Windows service. For example:

oradi m —-NEW -S| D bost on —STARTMODE nanual

The ORADIM utility automatically determines the username for which this service
should be created and prompts for a password for that username (if that username
needs a password). See Oracle Database Platform Guide for Microsoft Windows
for more information about using the ORADIM ultility.

Copy the remote login password file from the primary database system to the
standby database system.

This step is optional if operating system authentication is used for administrative
users and if SSL is used for redo transport authentication. If not, then copy the
remote login password file from the primary database to the appropriate directory
on the physical standby database system.

Any subsequent changes to the password file on the primary are automatically
propagated to the standby. Changes to a password file can include when
administrative privileges (SYSDG, SYSOPER, SYSDBA, and so on) are granted or
revoked, and when passwords of any user with administrative privileges is

3-11

Chapter 3
Step-by-Step Instructions for Creating a Physical Standby Database

changed. Updated password files must still be manually copied to far sync
instances because far sync instances receive redo, but do not apply it. Once the
password file is up-to-date at the far sync instance, the redo containing the
password update at the primary is automatically propagated to any standby
databases that are set up to receive redo from that far sync instance. The
password file is updated on the standby when the redo is applied.

3. Configure and start a listener on the standby system if one is not already
configured.

See Oracle Database Net Services Administrator's Guide.
4. Create Oracle Net service names.

On both the primary and standby systems, use Oracle Net Manager to create a
network service name for the primary and standby databases that are to be used
by redo transport services. The Net service nhames in this example are chi cago
and bost on.

The Oracle Net service name must resolve to a connect descriptor that uses the
same protocol, host address, port, and service that you specified when you
configured the listeners for the primary and standby databases. The connect
descriptor must also specify that a dedicated server be used.

See the Oracle Database Net Services Administrator's Guide for more information
about service names.

5. On an idle standby database, use the SQL CREATE statement to create a server
parameter file for the standby database from the text initialization parameter file
that was edited in Task 3. For example:

SQL> CREATE SPFI LE FROM PFI LE="initboston.ora';

6. If the primary database has a database encryption wallet, then copy it to the
standby database system and configure the standby database to use this wallet.

¢ Note:

The database encryption wallet must be copied from the primary
database system to each standby database system whenever the
master encryption key is updated.

Encrypted data in a standby database cannot be accessed unless the
standby database is configured to point to a database encryption wallet
or hardware security module that contains the current master encryption
key from the primary database.

3.2.6 Creating a Physical Standby Task 6: Start the Physical Standby
Database

These are the steps to start the physical standby database and Redo Apply.

1. On the standby database, issue the following SQL statement to start and mount
the database:

SQL> STARTUP MOUNT;

ORACLE 3-12

Chapter 3
Creating a Physical Standby: Post-Creation Steps

2. Restore the backup of the data files taken in Create a Backup Copy of the Primary
Database Data Files and copied in Copy Files from the Primary System to the
Standby System on the standby system.

3. On the standby database, issue the following command to start Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DI SCONNECT FROM SESSI ON,

The statement includes the DI SCONNECT FROM SESSI ON option so that Redo Apply
runs in a background session.

3.2.7 Creating a Physical Standby Task 7: Verify the Physical Standby
Database Is Performing Properly

After you create the physical standby database and set up redo transport services, you
may want to verify database modifications are being successfully transmitted from the
primary database to the standby database.

On the standby database, query the V$DATAGUARD PROCESS view to verify that redo is
being transmitted from the primary database and applied to the standby database.

SQ> SELECT ROLE, THREAD#, SEQUENCE#, ACTI ON FROM V$DATAGUARD PRCCESS;

ROLE THREAD# SEQUENCE# ACTI ON

RFS ping 1 9 IDLE
recovery apply slave 0 0 IDLE
recovery apply slave 0 0 IDLE

managed recovery 0 0 IDLE
recovery | ogmerger 1 9 APPLYI NG LOG
RFS archive 0 0 IDLE

RFS async 1 9 IDLE

The recovery | ogner ger role shows that redo is being applied at the standby.

Note:

Oracle recommends that you use the V$DATAGUARD_PROCESS view instead of
the VSMANAGED_STANDBY view, which is deprecated as of Oracle Database
12¢ Release 2 (12.2.0.1) and may be desupported in a future release.

3.3 Creating a Physical Standby: Post-Creation Steps

ORACLE

After the physical standby database is running, you can upgrade the data protection
mode, and you can enable Flashback Database.

» Upgrade the data protection mode

Oracle Data Guard Protection Modes provides information about configuring the
different data protection modes.

3-13

Chapter 3
Using DBCA to Create a Data Guard Standby

 Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a
failover. Flashback Database enables you to return a database to its state at a
time in the recent past much faster than traditional point-in-time recovery, because
it does not require restoring data files from backup nor the extensive application of
redo data. You can enable Flashback Database on the primary database, the
standby database, or both.

" See Also:

e Converting a Failed Primary Into a Standby Database Using Flashback
Database and Using Flashback Database After Issuing an Open
Resetlogs Statement for scenarios showing how to use Flashback
Database in an Oracle Data Guard environment

e Oracle Database Backup and Recovery User's Guide for more
information about Flashback Database

3.4 Using DBCA to Create a Data Guard Standby

ORACLE

The Database Configuration Assistant (DBCA) can also be used as a simple
command-line method to create an Oracle Data Guard physical standby database.

The DBCA command qualifier used to create the physical standby database is
createDuplicateDB.

DBCA can only be used to create standby databases for non-multitenant primary
databases. In addition, this capability creates only single instance standby databases,
not Oracle Real Application Clusters (Oracle RAC) databases. If required, the standby
can then be converted to an Oracle RAC standby database, either manually or using
Oracle Enterprise Manager Cloud Control.

The basic cr eat eDupl i cat eDB command has the following syntax:

dbca -createDuplicateDB
-gdbName gl obal _dat abase_name
- pri maryDBConnectionString easy_connect_string_to_primry
-sid database system.identifier
[- creat eAsSt andby
[- dbUni queName db_uni que_nane_for _st andby]]
[-custonBeripts scripts_list]

For more information about cr eat eDupl i cat eDB options, including the use of custom
scripts, see Oracle Database Administrator’'s Guide.

In the following two examples the primary database is chi cago and it resides on the
primary system nypri nary. donmai n. Each example creates a physical standby on the
system on which the command is executed, bost on. The i ni t Par ans parameter is
used in the examples to show how other DBCA parameters can be used in the
standby creation command. In these examples, i ni t Par ans is used to explicitly set the
| NSTANCE_NAME of the standby to match the DB_UNI QUE_NAME, bost on.

3-14

Chapter 3
Using DBCA to Create a Data Guard Standby

This first example creates the standby database without any custom scripts being
executed afterward.

dbca -silent -createDuplicateDB -primryDBConnectionString

myprimary. domai n: 1523/ chi cago. domai n

- gdbNanme chi cago. domain -sid boston -initParans instance_name=boston -
creat eAsSt andby

Enter SYS user password:

Li stener config step

33% conpl ete

Auxiliary instance creation

66% conpl et e

RVAN duplicate

100% conpl et e

Look at the log file " /u0l/app/oracl e/ product/12.2.0/ dbhone_1/cf gt ool | ogs/
dbcal chi cago/ chi cago. | og" for further details.

The following example is exactly the same as the previous example, except that it runs
a SQL script named / t np/ t est . sql which can be used to perform post-creation
operations.

dbca -silent -createDuplicateDB -primryDBConnectionString

mypri mary. domai n: 1523/ chi cago. domai n

- gdbName chi cago. domain -sid boston -initParans instance_name=boston -
createAsStandby -custonBScripts /tnp/test.sql

Enter SYS user password:

Li stener config step

25% conpl et e

Auxiliary instance creation

50% conpl et e

RVAN duplicate

75% conpl et e

Runni ng Custom Scripts

100% conpl et e

Look at the log file " /u0l/app/oracl e/ product/12.2.0/ dbhone_1/cf gt ool | ogs/
dbcal chi cago/ chi cago. | og" for further details.

ORACLE 3-15

Chapter 3
Creating a Physical Standby of a CDB

Note:

Even though it is required to have a listener running on the physical standby
system, it is not necessary to configure the Oracle Net service hames for the
databases on either system to execute these commands. In these examples,
the Easy Connect naming method was used to create a connection to the
primary database, Chi cago, to complete creation of the standby, Bost on .
Before adding the new standby to the Data Guard configuration you would
first configure Oracle Net service name descriptors on both systems, as
described in Step 4 in Creating a Physical Standby Task 5: Set Up the
Environment to Support the Standby Database.

When these commands complete without any errors, the physical standby Bost on is
ready to be added to your Data Guard configuration. As part of adding it, you would
need to define the Data Guard parameters in Chi cago and Bost on as shown in
Creating a Physical Standby Task 3: Create a Parameter File for the Standby
Database. Optionally, if you have an Oracle Data Guard broker configuration, you
could use the broker ADD DATABASE command to add the new standby to your
configuration (see Oracle Data Guard Broker).

3.5 Creating a Physical Standby of a CDB

ORACLE

You can create a physical standby of a multitenant container database (CDB) just as
you can create a physical standby of a regular primary database.

The following are some of the behavioral differences to be aware of when you create
and use a physical standby of a CDB:

» If you execute a switchover or failover operation, the entire CDB undergoes the
role change. If you used the ENABLED PDBS_ON_STANDBY intialization parameter,
then be aware of the possibility that not every PDB is present in both the primary
and the standby databases.

 The database role is defined at the CDB level, not at the individual container level.

* Any DDL related to role changes must be executed in the root container because
a role is associated with an entire CDB. Individual pluggable databases (PDBs) do
not have their own roles.

* In a physical standby of a CDB, the syntax of SQL statements is generally the
same as for noncontainer databases. However, the effect of some statements,
including the following, may be different:

— ALTER DATABASE RECOVER MANAGED STANDBY functions only in the root
container; it is not allowed in a PDB.

— Avrole is associated with an entire CDB; individual PDBs do not have their own
roles. Therefore, the following role change DDL associated with physical
standbys affect the entire CDB:

ALTER DATABASE SW TCHOVER TO target db_name
ALTER DATABASE ACTI VATE PHYSI CAL STANDBY

* The ALTER PLUGGABLE DATABASE [OPEN CLOSE] SQL statement is supported on
the standby, provided you have already opened the root container.

3-16

Chapter 3
Creating a PDB in a Primary Database

 The ALTER PLUGGABLE DATABASE RECOVER statement is not supported on the
standby. (Standby recovery is always at the CDB level.)

e To administer a multitenant environment, you must have the CDB_DBA role.
* Oracle recommends that the standby database have its own keystore.

* In a multitenant environment, the redo must be shipped to the root container of the
standby database.

The following is an example of how to determine whether redo is being shipped to
the root container. Suppose your primary database has the following settings:

LOG ARCH VE_DEST_2=' SERVI CE=bost on ASYNC VALI D_FOR=(ONLI NE_LOGFI LES,
PRI MARY_ROLE) DB_UNI QUE_NAME=host on'

Redo is being shipped to bost on. The container ID (CON_I D) for the root container
is always 1, so you must make sure that the CON_| Dis 1 for the service bost on. To
do this, check the service name in the t nsnames. or a file. For example:

boston = (DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=bost on- ser ver) (PORT=1521))
(CONNECT_DATA=(SERVI CE_NAME=bost on. us. exanpl e. conj)

The service name for bost on is bost on. us. exanpl e. com

On the standby database, query the CDB_SERVI CES view to determine the CON | D.
For example:

SQL> SELECT NAME, CON_ID FROM CDB_SERVI CES;

bost on. us. exanpl e. com 1

The query result shows that the CON_I D for bost on is 1.

¢ See Also:

e Oracle Database Concepts for more information about CDBs

e Oracle Database Advanced Security Guide for more information about
creating keystores

3.6 Creating a PDB in a Primary Database

In an Oracle Data Guard configuration, a pluggable database (PDB) on a primary
database is created in the same way that a PDB on a regular database is created.

This topic lists key points about how Data Guard and the Oracle Multitenant option
interact when any type of PDB creation is performed. For detailed information and
examples, see My Oracle Support note 2049127.1 at http://support. oracl e. com

The steps to create a PDB on a regular database are documented in the Oracle
Multitenant Administrator's Guide. Before following those steps, be sure to read the
following:

ORACLE 3-17

http://support.oracle.com

ORACLE

Chapter 3
Creating a PDB in a Primary Database

You can specify a subset of PDBs to be replicated on a physical standby of a
multitenant container database (CDB). To do so, use the

ENABLED PDBS_ON_STANDBY initialization parameter to specify a list of PDBs or use
the STANDBYS clause on the CREATE PLUGGABLE DATABASE statement, or both.

The ENABLED PDBS_ON_STANDBY parameter (see
ENABLED_PDBS_ON_STANDBY) is valid only on a physical standby; it is
ignored by primary databases. (It can be set on a primary database for use if that
database ever becomes a standby database.) It can be used to specify which
PDBs should or should not be enabled on a physical standby database. If the
parameter is not specified, then all PDBs in the CDB are created on the standby
unless the STANDBYS clause is used.

The STANDBYS clause has no effect on whether recovery is later enabled or
disabled. The STANDBYS clause of the SQL CREATE PLUGGABLE DATABASE statement
has the following syntax:

CREATE PLUGGABLE DATABASE ... STANDBYS={('cdb_nane', 'cdb_name', ...) |
NONE | ALL [EXCEPT ('cdb_nanme', 'cdb_nane', ...)]}

— cdb_nane is the DB_UNI QUE_NAME for the physical standbys in which the PDB is
to be included.

— NONE excludes the PDB from being created in any of the standby CDBs. When
a PDB is excluded from all standby CDBs, the PDB's data files are offline and
marked as unnamed on all of the standby CDBs. Any new standby CDBs that
are instantiated after the PDB has been created must disable the PDB for
recovery explicitly to exclude it from the standby CDB. It is possible to enable
a PDB on a standby CDB after it was excluded on that standby CDB.

— ALL (the default) includes the PDB being created in all standby CDBs.

— EXCEPT cdb_nane includes the PDB being created in all standby CDBs except
for those CDBs listed in this clause by their DB_UNI QUE_NAME.

When a list of CDB names is provided on the STANDBYS clause, the list must be
enclosed in parentheses and each name must be enclosed within single quotation
marks. The value of DB_UNI QUE_NAME can be up to 30 characters and is case
insensitive. The following characters are valid in a database name: alphanumeric
characters, underscore (_), number sign (#), and dollar sign ($).

The standbys in the list must be pre-populated with the required files unless the
PDB is being created from seed, or a local clone with the standby running Active
Data Guard, or a remote clone using the STANDBY_PDB_SCOURCE_FI LE_DBLI NK
parameter.

When you create a PDB as a local clone from a different PDB or from the seed
PDB within the same primary CDB, note the following:

— When a new PDB is created from seed, the standby automatically instantiates
the files.

— In an Active Data Guard environment, when a PDB is cloned in the same
CDB, Data Guard automatically instantiates the files.

— In a non-Active Data Guard environment, when a PDB is cloned in the same
CDB, use the STANDBYS clause on the CREATE PLUGGABLE DATABASE statement
and enable recovery later.

3-18

Chapter 3
Creating a PDB in a Primary Database

* To automatically maintain standby databases when performing PDB remote
clones or plugins, use the following initialization parameters:

— STANDBY_PDB_SCURCE_FI LE_DBLI NK—For use with remote cloning. Specifies
the name of the database link used to clone the PDB at the primary. When
the redo for the PDB clone operation is applied at the standby, it uses that
database link to connect to the source database to repeat the clone process to
the destination standby database. This parameter is available only in Active
Data Guard because it accesses the database dictionary for specific
information about the link.

The source PDB for the cloning operation must be in read only mode for the
duration of both the clone to the primary and the clone to the standby.

On remote clones that do not use the STANDBY PDB_SOURCE _FI LE DBLI NK
parameter, the SQL CREATE PLUGGABLE DATABASE statement used to create
the PDB must use the STANDBYS=NONE clause.

— STANDBY_PDB_SCURCE_FI LE_DI RECTORY—For use with plugins. Specifies the
directory location where files of a PDB being used for repeated plugins are
stored. When the redo for the PDB plugin operation is applied at the standby,
it searches the directory location for the data files and after finding them,
copies them to the location the standby requires them to be based on the
settings of the DB_CREATE_FI LE_DEST and DB_FI LE_NAME_CONVERT parameters.

Note:

The files must be image copies of the source PDB data files. The
copies should be created after creation of the manifest XML file for
the source PDB.

These parameters should be reset after they have been used and are no longer
needed. There is no runtime impact from setting and resetting these parameters
because doing so does not require that instances be restarted.

See My Oracle Support note 2274735.1 at htt p: // support. oracl e. comfor
detailed information about using these parameters.

e To create a PDB from an XML file, copy the data files specified in the XML file to
the standby database.

When a PDB is plugged into a primary database from an XML file, all standby
databases in the configuration must be given access to the source PDB's files.
(The only exceptions to this are standbys that have recovery deferred by use of
either the STANDBYS clause on the CREATE PLUGGABLE DATABASE statement or the
ENABLED PDBS ON_STANDBY initialization parameter.)

To provide standbys in the configuration with access to the source PDB's files,
either use the STANDBY_PDB_SOURCE_FI LE_DI RECTCRY initialization parameter or
copy the files of the source PDB to the standby site, typically the same set of PDB
files that are to be plugged into the primary database. The files should be copied
to the standby prior to the plugin operation being performed at the primary to
minimize disruptions to managed standby recovery. Ensure the files are copied to
the appropriate location at the standby where managed standby recovery can find
them, as follows:

— If data files reside in standard operating system file systems, then the location
of the files at the standby database are based on the value of the

ORACLE 3-19

http://support.oracle.com

ORACLE

Chapter 3
Creating a PDB in a Primary Database

DB _FI LE_NAVE_CONVERT parameter. For more details about setting primary
database initialization parameters, see Set Primary Database Initialization
Parameters

— If data files reside in ASM, then use the ASMCMD utility to copy the files to the
following location at the standby database:

db_create file_dest/db_uni que_nane/ QU D datafil e

The GUI D parameter is the global unique identifier assigned to the PDB; once
assigned, it does not change. To find the value of the GUI D parameter, query
the V$CONTAI NERS view before unplugging the PDB from its original source
container. The following example shows how to find the value of the GUI D
parameter for the PDB whose PDB container ID in the source container is 3:

SELECT guid
FROM V$CONTAI NERS
VHERE con_i d=3;

GUD
D98C12257A951FCAE043B623F00A7AFS

In this example, if the value of the DB_CREATE FI LE_DEST parameter is
+DATAFI LE and the value of the DB_UNI QUE_NAME parameter is BOSTON, then the
data files are copied to:

+DATAFI LE/ BOSTON D98C12257A951FCAE043B623F00ATAFS/ dat afi | e

The path name of the data files on the standby database must be the same as the
resultant path name when you create the PDB on the primary, unless the

DB _FI LE_NAVE_CONVERT database initialization parameter has been configured on the
standby. In that case, the path name of the data files on the standby database is the
path name on the primary with DB_FI LE_NAVE_CONVERT applied.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
the SQL statement CREATE PLUGGABLE DATABASE

3-20

Creating a Logical Standby Database

There are a number of steps involved in creating a logical standby database, including
prerequisites and post-creation tasks.

See the following topics for information about creating a logical standby database.

* Prerequisite Conditions for Creating a Logical Standby Database
e Step-by-Step Instructions for Creating a Logical Standby Database
* Post-Creation Steps

* Creating a Logical Standby of a CDB

" See Also:

e Oracle Database Administrator's Guide for information about creating
and using server parameter files

* Oracle Enterprise Manager Cloud Control online help system for
information about using the Oracle Data Guard broker graphical user
interface (GUI) to automatically create a logical standby database.

" Note:

If you are working in a multitenant container database (CDB) environment,
then see Creating a Logical Standby of a CDB for information about
behavioral differences from non-CDB environments. For instance, in a CDB
environment, many DBA views have analogous CDB views that you should
use instead. For example, the view CDB_LOGSTDBY_NOT_UNI QUE contains the
same data as shown in DBA_LOGSTDBY_NOT_UNI QUE view, but it has an
additional column indicating the PDB name.

4.1 Prerequisite Conditions for Creating a Logical Standby
Database

Before you create a logical standby database, you must first ensure the primary
database is properly configured.

Perform the following tasks on the primary database to prepare for logical standby
database creation:

» Determine Support for Data Types and Storage Attributes for Tables

» Ensure Table Rows in the Primary Database Can Be Uniquely Identified

ORACLE 4-1

Chapter 4
Prerequisite Conditions for Creating a Logical Standby Database

A logical standby database uses standby redo logs (SRLs) for redo received from the
primary database, and also writes to online redo logs (ORLS) as it applies changes to
the standby database. Thus, logical standby databases often require additional ARCn
processes to simultaneously archive SRLs and ORLs. Additionally, because archiving
of ORLs takes precedence over archiving of SRLs, a greater number of SRLs may be
needed on a logical standby during periods of very high workload.

Note:

Logical standby databases must be run in ARCH VELOG mode for standby
redo log archival to be performed.
See Oracle Database Administrator's Guide for information about archiving.

4.1.1 Determine Support for Data Types and Storage Attributes for

Tables

Before setting up a logical standby database, ensure the logical standby database can
maintain the data types and tables in your primary database.

See Unsupported Tables for information about specific SQL queries you can use to
determine if there are any unsupported data types or storage attributes.

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely

|dentified

ORACLE

The ROWIDs contained in the redo records generated by the primary database cannot
be used to identify the corresponding row in the logical standby database.

This is because the physical organization in a logical standby database is different
from that of the primary database, even though the logical standby database is created
from a backup copy of the primary database.

Oracle uses primary-key or unique-constraint/index supplemental logging to logically
identify a modified row in the logical standby database. When database-wide primary-
key and unique-constraint/index supplemental logging is enabled, each UPDATE
statement also writes the column values necessary in the redo log to uniquely identify
the modified row in the logical standby database.

» If atable has a primary key defined, then the primary key is logged along with the
modified columns as part of the UPDATE statement to identify the modified row.

* Inthe absence of a primary key, the shortest nonnull unique-constraint/index is
logged along with the modified columns as part of the UPDATE statement to identify
the modified row.

e If there is no primary key and no nonnull unique constraint/index, then all columns
with a declared maximum length of 4000 bytes are logged as part of the UPDATE
statement to help identify the modified row. There are some requirements and
restrictions with respect to supported data types. See the following sections for
more information:

— Supported Table Storage Types

4-2

ORACLE

Chapter 4
Prerequisite Conditions for Creating a Logical Standby Database

— Unsupported Table Storage Types

* A function-based index, even though it is declared as unique, cannot be used to
uniquely identify a modified row. However, logical standby databases support
replication of tables that have function-based indexes defined, as long as modified
rows can be uniquely identified.

Oracle recommends that you add a primary key or a nonnull unique index to tables in
the primary database, whenever possible, to ensure that SQL Apply can efficiently
apply redo data updates to the logical standby database.

Perform the following steps to ensure SQL Apply can uniquely identify rows of each
table being replicated in the logical standby database.

1. Query the DBA LOGSTDBY_NOT_UNI QUE view to display a list of tables that SQL
Apply may not be able to uniquely identify. For example:

SQL> SELECT OMER, TABLE NAMVE FROM DBA LOGSTDBY NOT_UNI QUE
2> WHERE (OMER, TABLE NAME) NOT IN
3> (SELECT DI STINCT OMRER, TABLE_NAVE FROM DBA LOGSTDBY UNSUPPORTED)
4> AND BAD COLUWN = 'Y';

This query may take a few minutes to run.

2. If your application ensures the rows in a table are unique, then you can create a
disabled primary key RELY constraint on the table. This avoids the overhead of
maintaining a primary key on the primary database.

To create a disabled RELY constraint on a primary database table, use the ALTER
TABLE statement with a RELY DI SABLE clause. The following example creates a
disabled RELY constraint on a table named nyt ab, for which rows can be uniquely
identified using the i d and nane columns:

SQ.> ALTER TABLE mytab ADD PRI MARY KEY (id, name) RELY DI SABLE;

When you specify the RELY constraint, the system assumes that rows are unigue.
Because you are telling the system to rely on the information, but are not validating it
on every modification done to the table, you must be careful to select columns for the
disabled RELY constraint that uniquely identify each row in the table. If such
unigueness is not present, then SQL Apply does not correctly maintain the table.

To improve the performance of SQL Apply, add a unique-constraint/index to the
columns to identify the row on the logical standby database. Failure to do so results in
full table scans during UPDATE or DELETE statements carried out on the table by SQL

Apply.

¢ See Also:

e Oracle Database Reference for information about the
DBA LOGSTDBY_NOT_UNI QUE view

e Oracle Database SQL Language Reference for information about the
ALTER TABLE statement syntax

e Create a Primary Key RELY Constraint for information about RELY
constraints and actions you can take to increase performance on a
logical standby database

4-3

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

4.2 Step-by-Step Instructions for Creating a Logical Standby
Database

These are the tasks you perform to create a logical standby database.

Table 4-1 Creating a Logical Standby Database

Task Database
Create a Physical Standby Database Primary
Stop Redo Apply on the Physical Standby Database Standby
Prepare the Primary Database to Support a Logical Primary
Standby Database

Transition to a Logical Standby Database Standby
Open the Logical Standby Database Standby

Verify the Logical Standby Database Is Performing Standby
Properly

4.2.1 Creating a Logical Standby Task 1: Create a Physical Standby
Database

You create a logical standby database by first creating a physical standby database
and then transitioning it to a logical standby database.

Follow the instructions in Creating a Physical Standby Database to create a physical
standby database.

4.2.2 Creating a Logical Standby Task 2: Stop Redo Apply on the
Physical Standby Database

You can run Redo Apply on the new physical standby database for any length of time
before converting it to a logical standby database.

However, before converting to a logical standby database, stop Redo Apply on the
physical standby database. Stopping Redo Apply is hecessary to avoid applying
changes past the redo that contains the LogMiner dictionary (described in Build a
Dictionary in the Redo Data).

To stop Redo Apply, issue the following statement on the physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

4.2.3 Creating a Logical Standby Task 3: Prepare the Primary
Database to Support a Logical Standby Database

As part of creating a logical standby database, you must prepare the primary database
to support a logical standby.

See the following topics:

ORACLE 4-4

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

* Prepare the Primary Database for Role Transitions

» Build a Dictionary in the Redo Data

4.2.3.1 Prepare the Primary Database for Role Transitions

You may have to modify certain parameters when you prepare to switch the role of a
primary database.

In Set Primary Database Initialization Parameters, you set up several standby role
initialization parameters to take effect when the primary database is transitioned to the
physical standby role.

Note:

This step is necessary only if you plan to perform switchovers.

If you plan to transition the primary database to the logical standby role, then you must
also modify the parameters shown in bold typeface in Example 4-1, so that no
parameters need to change after a role transition:

e Change the VALI D_FOR attribute in the original LOG_ARCH VE_DEST 1 destination to
archive redo data only from the online redo log and not from the standby redo log.

* Include the LOG_ARCHI VE_DEST_3 destination on the primary database. This
parameter only takes effect when the primary database is transitioned to the
logical standby role.

The following table describes the archival processing defined by the changed
initialization parameters shown in Example 4-1.

LOG_ARCHIVE_DEST_n When the Chicago Database Is When the Chicago Database Is Running
Running in the Primary Role in the Logical Standby Role
LOG_ARCHI VE_DEST 1 Directs archiving of redo data Directs archiving of redo data generated by

generated by the primary database the logical standby database from the local
from the local online redo log files to online redo log files to the local archived
the local archived redo log filesin/ redo log files in / arch1/ chi cago/ .
archl/chi cago/ .

LOG_ARCHI VE_DEST_3 Is ignored; LOG_ARCHI VE_DEST 3 is Directs archiving of redo data from the
valid only when chi cago is running standby redo log files to the local archived
in the standby role. redo log files in [arch2/ chi cago/ .

Example 4-1 Primary Database: Logical Standby Role Initialization Parameters

LOG ARCHI VE_DEST 1=
' LOCATI ON=/ ar chl/ chi cago/
VALI D_FOR=(ONLINE_LOGFILES, ALL_ROLES)
DB_UNI QUE_NAME=chi cago'
LOG_ARCHIVE_DEST_3=
"LOCATION=/arch2/chicago/
VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
DB_UNIQUE_NAME=chicago"
LOG_ARCHIVE_DEST_STATE_3=ENABLE

ORACLE 4.5

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

To dynamically set these initialization parameters, use the SQL ALTER SYSTEM SET
statement and include the SCOPE=BOTH clause so that the changes take effect
immediately and persist after the database is shut down and started up again.

4.2.3.2 Build a Dictionary in the Redo Data

ORACLE

A LogMiner dictionary must be built into the redo data so that the LogMiner component
of SQL Apply can properly interpret changes it sees in the redo.

As part of building the LogMiner dictionary, supplemental logging is automatically set
up to log primary key and unique-constraint/index columns. The supplemental logging
information ensures each update contains enough information to logically identify each
row that is modified by the statement.

To build the LogMiner dictionary, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY. BUI LD;

The DBMS_LOGSTDBY. BUI LD procedure waits for all existing transactions to complete.
Long-running transactions executed on the primary database affect the timeliness of
this command.

¢ Note:

In databases created using Oracle Database 11g Release 2 (11.2) or later,
supplemental logging information is automatically propagated to any existing
physical standby databases. However, for databases in earlier releases, or if
the database was created using an earlier release and then upgraded to
11.2, you must check whether supplemental logging is enabled at the
physical standby(s) if it is also enabled at the primary database. If it is not
enabled at the physical standby(s), then before performing a switchover or
failover, you must enable supplemental logging on all existing physical
standby databases. To do so, issue the following SQL statement on each
physical standby:

SQ.> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRI MARY KEY, UNI QUE | NDEX)
COLUWNS;

If you do not do this, then any logical standby that is also in the same Oracle
Data Guard configuration is unusable if a switchover or failover is performed
to one of the physical standby databases. If a switchover or failover has
already occurred and supplemental logging was not enabled, then you must
recreate all logical standby databases.

" See Also:

e The DBVM5_LOGSTDBY. BUI LD PL/SQL package in Oracle Database PL/SQL
Packages and Types Reference

e The UNDO_RETENTI ONinitialization parameter in Oracle Database
Reference

4-6

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

4.2.4 Creating a Logical Standby Task 4: Transition to a Logical
Standby Database

There are some necessary tasks you must perform to prepare the physical standby
database to transition to a logical standby database.

The following topics describe these tasks:

e Convert to a Logical Standby Database

e Adjust Initialization Parameters for the Logical Standby Database

4.2.4.1 Convert to a Logical Standby Database

The redo logs contain the information necessary to convert your physical standby
database to a logical standby database.

Note:

If you have an Oracle RAC physical standby database, then shut down all
but one instance, set CLUSTER _DATABASE to FALSE, and start the standby
database as a single instance in MOUNT EXCLUSI VE mode, as follows:

SQL> ALTER SYSTEM SET CLUSTER DATABASE=FALSE SCOPE=SPFI LE;
SQL> SHUTDOAN ABORT;
SQL> STARTUP MOUNT EXCLUSI VE;

To continue applying redo data to the physical standby database until it is ready to
convert to a logical standby database, issue the following SQL statement:

SQ> ALTER DATABASE RECOVER TO LOG CAL STANDBY db_nane;

For db_name, specify a database name that is different from the primary database to
identify the new logical standby database. If you are using a server parameter file
(spfile) at the time you issue this statement, then the database updates the file with
appropriate information about the new logical standby database. If you are not using
an spfile, then the database issues a message reminding you to set the name of the
DB_NAME parameter after shutting down the database.

ORACLE 4.7

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

Note:

If you are creating a logical standby database in the context of performing a
rolling upgrade of Oracle software with a physical standby database, then
issue the following command instead:

SQL> ALTER DATABASE RECOVER TO LOG CAL STANDBY KEEP | DENTI TY;

A logical standby database created with the KEEP | DENTI TY clause retains
the same DB_NAME and DBI D as that of its primary database. Such a logical
standby database can only participate in one switchover operation, and thus
should only be created in the context of a rolling upgrade with a physical
standby database.

The KEEP | DENTI TY clause is available only if the database being upgraded
is running Oracle Database release 11.1 or later.

The statement waits, applying redo data until the LogMiner dictionary is found in the
log files. This may take several minutes, depending on how long it takes redo
generated in Build a Dictionary in the Redo Data to be transmitted to the standby
database, and how much redo data needs to be applied. If a dictionary build is not
successfully performed on the primary database, then this command never completes.
You can cancel the SQL statement by issuing the ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE CANCEL statement from another SQL session.

Caution:

In releases prior to Oracle Database 11g, you needed to create a new
password file before you opened the logical standby database. This is no
longer needed. Creating a new password file at the logical standby database
causes redo transport services to not work properly.

4.2.4.2 Adjust Initialization Parameters for the Logical Standby Database

ORACLE

" Note:

If you started with an Oracle RAC physical standby database, then set
CLUSTER DATABASE back to TRUE, as follows:

SQL> ALTER SYSTEM SET CLUSTER DATABASE=TRUE SCOPE=SPFI LE;

On the logical standby database, shutdown the instance and issue the STARTUP MOUNT
statement to start and mount the database. Do not open the database; it should
remain closed to user access until later in the creation process. For example:

SQ.> SHUTDOWN;
SQL> STARTUP MOUNT;

4-8

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

You need to modify the LOG_ARCHI VE_DEST_n parameters because, unlike physical
standby databases, logical standby databases are open databases that generate redo
data and have multiple log files (online redo log files, archived redo log files, and
standby redo log files). It is good practice to specify separate local destinations for:

* Archived redo log files that store redo data generated by the logical standby
database. In Example 4-2, this is configured as the
LOG _ARCHI VE_DEST_1=LOCATI ON=/ ar chl/ bost on destination.

e Archived redo log files that store redo data received from the primary database. In
Example 4-2, this is configured as the LOG_ARCHI VE_DEST 3=LQCATI ON=/ ar ch2/
bost on destination.

Example 4-2 shows the initialization parameters that were modified for the logical
standby database. The parameters shown are valid for the Boston logical standby
database when it is running in either the primary or standby database role.

d

Note:

If database compatibility is set to 11.1 or later, you can use the fast recovery
area to store remote archived logs. To do this, you need to set only the
following parameters (assuming you have already set the

DB_RECOVERY_FI LE_DEST and DB_RECOVERY_FI LE_DEST_SI ZE parameters):

LOG_ARCHI VE_DEST_1=
' LOCATI ONEUSE_DB_RECOVERY_FI LE_DEST
DB_UNI QUE_NAME=host on'

Because you are using the fast recovery area, it is not necessary to specify
the VALI D_FOR parameter. Its default value is (ALL_LOGFI LES, ALL_ROLES) and
that is the desired behavior in this case. LOG ARCHI VE_DEST 1 is used for all
log files, both online (primary) and standby.

The following table describes the archival processing defined by the initialization
parameters shown in Example 4-2.

LOG_ARCHIVE_DEST_n When the Boston Database Is When the Boston Database Is Running
Running in the Primary Role in the Logical Standby Role
LOG_ARCHI VE_DEST_1 Directs archival of redo data Directs archival of redo data generated by

LOG_ARCHI VE_DEST 2

LOG ARCHI VE_DEST 3

generated by the primary database the logical standby database from the
from the local online redo log files to local online redo log files to the local
the local archived redo log filesin/ archived redo log files in / ar ch1/
archl/ boston/. bost on/ .

Directs transmission of redo data to Is ignored; LOG_ARCHI VE_DEST 2 is
the remote logical standby database valid only when bost on is running in the
chi cago. primary role.

Is ignored; LOG_ARCHI VE_DEST 3is Directs archival of redo data received

valid only when bost on is running in from the primary database to the local
the standby role. archived redo log files in / ar ch2/

boston/ .

ORACLE

4-9

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

Note:

The DB_FI LE_NAMVE_CONVERT initialization parameter is not honored once a
physical standby database is converted to a logical standby database. If
necessary, register a skip handler and provide SQL Apply with a
replacement DDL string to execute by converting the path names of the
primary database data files to the standby data file path names. See the
DBMS_LOGSTDBY package for information about the SKI P procedure.

Example 4-2 Modifying Initialization Parameters for a Logical Standby
Database

LOG_ARCH VE_DEST 1=
' LOCATI ON=/ ar ch1/ bost on/
VALI D_FOR=(ONLI NE_LOGFI LES, ALL_ROLES)
DB_UNI QUE_NAME=bost on'
LOG_ARCHI VE_DEST 2=
' SERVI CE=chi cago ASYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE)
DB_UNI QUE_NAME=chi cago'
LOG_ARCHI VE_DEST 3=
' LOCATI ON=/ ar ch2/ bost on/
VALI D_FOR=(STANDBY_LOGFI LES, STANDBY ROLE)
DB_UNI QUE_NAME=bost on'
LOG_ARCHI VE_DEST_STATE_1=ENABLE
LOG_ARCHI VE_DEST_STATE_2=ENABLE
LOG_ARCHI VE_DEST_STATE_3=ENABLE

4.2.5 Creating a Logical Standby Task 5: Open the Logical Standby

Database

ORACLE

Use an ALTER DATABASE SQL statement to open the newly created logical standby.

For example, issue the following statement (do not supply the RESETLOGS option if the
logical standby was created using the KEEP | DENTI TY option):

SQL> ALTER DATABASE OPEN RESETLCCGS;

Note:

If you started with an Oracle RAC physical standby database, then you can
start up all other standby instances at this point.

4-10

Chapter 4
Step-by-Step Instructions for Creating a Logical Standby Database

Caution:

If you are co-locating the logical standby database on the same computer
system as the primary database, then you must issue the following SQL
statement before starting SQL Apply for the first time, so that SQL Apply
skips the file operations performed at the primary database. The reason this
is necessary is that SQL Apply has access to the same directory structure as
the primary database, and data files that belong to the primary database
could possibly be damaged if SQL Apply attempted to re-execute certain file-
specific operations.

SQ.> EXECUTE DBMS_LOGSTDBY. SKI P(" ALTER TABLESPACE');

The DB_FI LENAME_CONVERT parameter that you set up while co-locating the
physical standby database on the same system as the primary database, is
ignored by SQL Apply. See Oracle Database PL/SQL Packages and Types
Reference for information about DBVS_LOGSTDBY. SKI P and equivalent
behavior in the context of a logical standby database.

Because this is the first time the database is being opened, the database's global
name is adjusted automatically to match the new DB_NAME initialization parameter.
(This is not true if the logical standby was created using the KEEP | DENTI TY option.)

Note:

If you are creating the logical standby database to perform a rolling upgrade
of the Oracle Database software, and you are concerned about updates to
objects that may not be supported by SQL Apply, then Oracle recommends
that you use the DBMS_LOGSTDBY PL/SQL procedure. At the logical standby
database, run the following procedures to capture and record the information
as events in the DBA_LOGSTDBY_EVENTS table:

EXEC DBMS_LOGSTDBY. APPLY_SET(' MAX_EVENTS_RECORDED ,
DBVS_LOGSTDBY. MAX_EVENTS) ;

EXEC DBMS_LOGSTDBY. APPLY_SET(' RECORD UNSUPPORTED OPERATI ONS', ' TRUE) ;

This captures information about any transactions running on the primary that
are not supported by logical standby. When the upgrade is complete and
before you switch production to the new version, check this table. If nothing
is recorded, then you know everything was replicated. If something is
recorded, then you can choose to either take corrective action or abandon
the upgrade.

See Also:

e Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View
for more information about the DBA LOGSTDBY _EVENTS view

e Oracle Database PL/SQL Packages and Types Reference for complete
information about the DBVMS_LOGSTDBY package

ORACLE 4-11

Chapter 4
Creating a Logical Standby: Post-Creation Steps

Issue the following statement to begin applying redo data to the logical standby
database:

SQ> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

4.2.6 Creating a Logical Standby Task 6: Verify the Logical Standby
Database Is Performing Properly

After you create a logical standby database, it is important to verify that it is performing
properly.

See the following topics:

Redo Transport Services

Managing a Logical Standby Database

4.3 Creating a Logical Standby: Post-Creation Steps

ORACLE

< Note:

The conversion of the physical standby database to a logical standby
database happens in two phases:

1. As part of the ALTER DATABASE RECOVER TO LOG CAL STANDBY statement
(unless you have specified the KEEP | DENTI TY clause), the DBID of the
database is changed.

2. As part of the first successful invocation of ALTER DATABASE START
LOG CAL STANDBY APPLY statement, the control file is updated to make it
consistent with that of the newly created logical standby database.

After you have successfully invoked the ALTER DATABASE START LOG CAL
STANDBY APPLY statement, take a full backup of the logical standby
database, because the backups taken from the primary database cannot
be used to restore the logical standby database.

At this point, the logical standby database is running and can provide the maximum
performance level of data protection. The following list describes additional
preparations you can take on the logical standby database:

Upgrade the data protection mode

The Oracle Data Guard configuration is initially set up in the maximum
performance mode (the default).

Enable Flashback Database

Flashback Database removes the need to re-create the primary database after a
failover. Flashback Database enables you to return a database to its state at a
time in the recent past much faster than traditional point-in-time recovery, because
it does not require restoring data files from backup nor the extensive application of
redo data. You can enable Flashback Database on the primary database, the
standby database, or both.

4-12

Chapter 4
Creating a Logical Standby of a CDB

¢ See Also:

e Converting a Failed Primary Into a Standby Database Using Flashback
Database and Using Flashback Database After Issuing an Open
Resetlogs Statement for scenarios showing how to use Flashback
Database in an Oracle Data Guard environment.

e Oracle Database Backup and Recovery User's Guide for more
information about Flashback Database

4.4 Creating a Logical Standby of a CDB

ORACLE

You can create a logical standby of a multitenant container database (CDB) just as
you can create a logical standby of a regular primary database.

The following are some of the behavioral differences to be aware of when you create
and use a logical standby of a CDB:

* The database role is defined at the CDB level, not at the pluggable database
(PDB) container level.

» If you execute a switchover or failover operation, then the entire CDB undergoes
the role change.

* Any DDL related to role changes must be executed while connected to the root
container of the CDB.

» As with a regular logical standby, a logical standby of a CDB operates a single
pool of processes that mine the redo stream once, but the responsibility is shared
for updating all of the PDBs and the root container of the CDB.

* You are not required to have the same set of PDBs at the primary and standby.
However, only tables that exist in the same container at both the primary and
standby are replicated.

» In general, logical standby PL/SQL interfaces which modify global configuration
attributes, such as DBMS_LOGSTDBY. APPLY_SET, are executed in the root container.
However, DBMS_LOGSTDBY. | NSTANTI ATE_TABLE must be called inside the container
where the table of interest resides, and the DBMS_LOGSTDBY. SKI P procedure must
be called inside the container of interest.

* Logical standby views are enhanced to provide container names where
appropriate. Many DBA views have analogous CDB views whose names begin
with CDB. For example, the view CDB_LOGSTDBY_NOT_UNI QUE contains the same
data as shown in DBA LOGSTDBY_NOT_UNI QUE view, but it has an additional column
indicating the PDB name. When the CDB_LOGSTDBY_NOT_UN QUE view is queried in
the root it shows data for all databases in the CDB.

* In alogical standby of a CDB, the syntax of SQL statements is generally the same
as for noncontainer databases. However, the effect of some statements, including
the following, may be different:

— ALTER DATABASE RECOVER TO LOG CAL STANDBY functions only in the CDB; it is
not allowed in a PDB.

4-13

ORACLE

Chapter 4
Creating a Logical Standby of a CDB

— Avrole is associated with an entire CDB; individual PDBs do not have their own
roles. Therefore, the following role change DDL associated with logical
standbys affect the entire CDB:

ALTER DATABASE [PREPARE| COWM T] TO SW TCHOVER
ALTER DATABASE ACTI VATE LOGI CAL STANDBY

— ALTER DATABASE [START| STOP] LOG CAL STANDBY APPLY functions only in the
root container and affects the entire CDB. This statement is not allowed on a
PDB.

— ALTER DATABASE GUARD functions only in the root container and affects the
entire CDB. For example, if an ALTER DATABASE GUARD ALL statement is
issued, then user activity in the root and in all PDBs is restricted.

— To administer a multitenant environment, you must have the CDB_DBA role.

¢ See Also:

e Oracle Database Concepts for more information about CDBs

e Oracle Database PL/SQL Packages and Types Reference for more
information about using the DBVMS_LOGSTDBY. SKI P procedure in
containers

4-14

Using Far Sync Instances

An Oracle Data Guard far sync instance is a remote Oracle Data Guard destination
that accepts redo from the primary database and then ships that redo to other
members of the Oracle Data Guard configuration.

A far sync instance manages a control file, receives redo into standby redo logs
(SRLs), and archives those SRLs to local archived redo logs, but that is where the
similarity with standbys ends. A far sync instance does not have user data files, cannot
be opened for access, cannot run redo apply, and can never function in the primary
role or be converted to any type of standby database.

Far sync instances are part of the Oracle Active Data Guard Far Sync feature, which
requires an Oracle Active Data Guard license.

A far sync instance consumes very little disk and processing resources, yet provides
the ability to failover to a terminal destination with zero data loss, as well as offload the
primary database of other types of overhead (for example, redo transport).

All redo transport options available to a primary when servicing a typical standby
destination are also available to it when servicing a far sync instance. And all redo
transport options are available to a far sync instance when servicing terminal
destinations (for example, performing redo transport compression, if you have a
license for the Oracle Advanced Compression option).

Many configurations have a primary database shipping redo to a standby database
using asynchronous transport at the risk of some data loss at failover time. Using
synchronous redo transport to achieve zero data loss may not be a viable option
because of the impact on the commit response times at the primary due to network
latency between the two databases.

Creating a far sync instance close to the primary has the benefit of minimizing impact
on commit response times to an acceptable threshold (due to the smaller network
latency between primary and far sync instance) while allowing for higher data
protection guarantees -- if the primary were to fail, and assuming the far sync instance
was synchronized at the time of the failure, the far sync instance and the terminal
standby would coordinate a final redo shipment from the far sync instance to the
standby to ship any redo not yet available to the standby and then perform a zero-
data-loss failover.

See the following topics:

e Creating a Far Sync Instance
* Alternate Destinations
e Configuring Alternate Destinations

e Supported Protection Modes for Far Sync Instances

ORACLE 5-1

Chapter 5
Creating a Far Sync Instance

5.1 Creating a Far Sync Instance

Creating a far sync instance is similar to creating a physical standby except that data
files do not exist at the far sync instance.

Therefore, on a far sync instance there is no need to copy data files or restore data
files from a backup. Once the far sync instance has been created, the configuration is
modified to send redo synchronously from the primary database to the far sync
instance in Maximum Availability mode and the far sync instance then forwards the
redo asynchronously in real time. Lastly, the original asynchronous standby (referred
to as the terminal standby) is configured to act as the alternate to the far sync instance
in the event that communication with the far sync instance is interrupted.

Note:

In a configuration that contains a far sync instance, there must still be a
direct network connection between the primary database and the remote
standby database. The direct connection between the primary and the
remote standby is used to perform health checks and switchover processing
tasks. It is not used for redo transport unless the standby has been
configured as an alternate destination in case the far sync instance fails and
there is no alternate far sync configured to maintain the protection level.

5.1.1 Creating and Configuring a Far Sync Instance

Take the following steps to create a far sync instance:

ORACLE

1.

Create the control file for the far sync instance, as shown in the following example
(the primary database does not have to be open, but it must at least be mounted):

SQL> ALTER DATABASE CREATE FAR SYNC | NSTANCE CONTROLFILE AS -
> '[arch2/ chi cagoFS/control 01.ctl';

The resulting control file enables chi cagoFS to operate as a far sync instance that
receives redo from primary database chi cago. The path and file name shown are
just an example; you could use any path or file name that you want.

Create a parameter file (PFILE) from the server parameter file (SPFILE) used by
the primary database. Although most of the initialization settings in the parameter
file are also appropriate for the far sync instance, some modifications must be
made. For example, on a far sync instance, the DB_FI LE_NAME_CONVERT and

LOG _FI LE_NAME_CONVERT parameters must be set, and the DB_UNI QUE_NAME of the
far sync instance and the location of the far sync instance control file must be
modified. Example 5-1 shows sample parameter file content for a far sync instance
with a DB_UNI QUE_NAME of chi cagoFsS.

Create a server parameter file (SPFILE) from the edited parameter file (PFILE) to
facilitate any subsequent changes to parameter values. If you do not use an
SPFILE, then a warning is returned in the SHONCONFI GURATI ON output when the far
sync instance is added to an Oracle Data Guard broker configuration.

5-2

ORACLE

Chapter 5
Creating a Far Sync Instance

Use an operating system copy utility to copy the far sync instance control file
created in Step 1 and the server parameter file (SPFILE) created in Step 3 from
the primary system to the appropriate locations on the far sync instance system.

Create standby redo logs in the same way they are created for a regular standby.
See Managing Standby Redo Logs.

Because the LOG FI LE_NAME CONVERT parameter was specified on the far sync
instance (see Example 5-1), the standby redo logs are created automatically when
redo transport begins from the primary, if they were created on the primary as
described in Configure the Primary Database to Receive Redo Data.

Note:

Standby redo log files used at the far sync instance cannot be shared
with other databases. Therefore, all relevant considerations discussed in
Standby Database Directory Structure Considerations for standby redo
log files also apply at the far sync instance.

If the far sync instance is to be hosted on a Windows system, use the ORADIM
utility to create a Windows service. For example:

oradi m —-NEW -SI D Chi cagoFS —STARTMODE manual

After the far sync instance is created and running you can change the STARTMODE
to aut o to enable automatic startup of the far sync instance

The ORADIM utility automatically determines the username for which this service
should be created and prompts for a password for that username (if that username
needs a password). See Oracle Database Platform Guide for Microsoft Windows
for more information about using the ORADIM ultility.

This step is optional if operating system authentication is used for administrative
users and if SSL is used for redo transport authentication. If not, then copy the
primary database's remote login password file to the appropriate directory on the
far sync instance. The password file must be recopied whenever an administrative
privilege (SYSDG, SYSOPER, SYSDBA, and so on) is granted or revoked, and after the
password of any user with administrative privileges is changed.

As of Oracle Database 12c Release 2 (12.2.0.1), when a password file is manually
updated at a far sync instance, the redo containing the same password changes
from the primary database is automatically propagated to any standby databases
that are set up to receive redo from that far sync instance. The password file is
updated on the standby when the redo is applied.

On the far sync instance site, use Oracle Net Manager to configure a listener for
the far sync instance.

See Oracle Database Net Services Administrator's Guide for more information
about the listener.

On the primary system, use Oracle Net Manager to create a network service name
for the far sync instance (chi cagoFS) that is to be used by redo transport services.

On the far sync instance system, use Oracle Net Manager to create a network
service name for the primary (chi cago) and the terminal standby (bost on) to be
used by redo transport services.

5-3

ORACLE

Chapter 5
Creating a Far Sync Instance

The Oracle Net service name must resolve to a connect descriptor that uses the
same protocol, host address, port, and service that you specified when you
configured the listeners for the primary database, the far sync instance, and the
terminal standby database. The connect descriptor must also specify that a
dedicated server be used.

See the Oracle Database Net Services Administrator's Guide for more information
about service names.

10. Start the far sync instance in mount mode.
11. Verify that the far sync instance is operating properly.

For information about validating a configuration after you create a far sync
instance, see Validating a Configuration.

12. Increase the protection mode of the configuration to Maximum Availability. On the
primary database, execute the following command:

SQL> ALTER DATABASE SET STANDBY TO MAXI M ZE AVAI LABI LI TY;

¢ See Also:

e Supported Protection Modes for Far Sync Instances for more
information about far sync and protection modes

¢ Oracle Data Guard Protection Modes for more information about
configuring different data protection modes

Example 5-1 Some of the Initialization Parameters Used for Far Sync Instances
Primary Database chicago

DB_UNI QUE_NAME=chi cago

CONTROL_FI LES=' / ar chl/ chi cago/ control 01. ctl"'

DB_FI LE_NAME_CONVERT='/hoston/"',"/chi cago/'

LOG_FI LE_NAME_CONVERT='/ boston/"', "'/ chi cago/"

FAL_SERVER=bost on

LOG_ARCHI VE_CONFI G=' DG_CONFI G=(chi cago, chi cagoFS, bost on)'

LOG ARCH VE_DEST_1=' LOCATI ON=USE_DB_RECOVERY_FI LE_DEST
VALI D FOR=(ALL_LOGFI LES, ALL_ROLES) DB_UNI QUE_NAME=chi cago'

LOG ARCH VE_DEST_2=' SERVI CE=chi cagoFS SYNC AFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cagoFS

Far Sync Instance chicagoFS

DB_UNI QUE_NAME=chi cagoFS

CONTROL_FI LES="/ ar ch2/ chi cagoFS/ control 01.ct !’

DB_FI LE_NAME_CONVERT='/ chi cago/','/chicagoFS/'," /boston/","/chicagoFS/"

LOG FI LE_NAME_CONVERT='/ chi cago/ ', ' /chicagoFS/'," /boston/","/chicagoFS/"

5-4

Chapter 5
Alternate Destinations

FAL_SERVER=chi cago
LOG_ARCHI VE_CONFI G=' DG_CONFI G=(chi cago, chi cagoFS, bost on)'

LOG_ARCHI VE_DEST_1=' LOCATI ON= USE_DB_RECOVERY_FI LE_DEST
VALI D_FOR=(ALL_LOGFI LES, ALL_ROLES) DB_UNI QUE_NAME=chi cagoFS

LOG ARCH VE_DEST_2=' SERVI CE=host on ASYNC
VALI D_FOR=(STANDBY_LOGFI LES, STANDBY_ROLE) DB_UNI QUE_NAME=bost on'

Physical Standby boston

DB_UNI QUE_NAME=bost on

CONTROL_FI LES=' / ar ch3/ bost on/ control 01. ctl"

DB_FI LE_NAME_CONVERT='/ chi cago/ ', "'/ boston/'

LOG FI LE_NAME_CONVERT='/ chi cago/"', '/ boston/*

FAL_SERVER=' chi cagoFS', ' chi cago’

LOG_ARCHI VE_CONFI G=' DG_CONFI G=(chi cago, chi cagoFS, bost on)'

LOG ARCH VE_DEST_1=' LOCATI ON= USE_DB_RECOVERY_FI LE_DEST
VALI D_FOR=(ALL_LOGFI LES, ALL_ROLES) DB_UNI QUE_NAME=bost on'

LOG ARCH VE_DEST_2=' SERVI CE=chi cago ASYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cago'

5.2 Alternate Destinations

After you perform the steps in Creating and Configuring a Far Sync Instance, the far
sync instance provides zero data loss capability for the configuration by forwarding the
redo to the terminal standby at a remote site over the WAN. For the configuration to
remain protected in the event the far sync instance is not reachable, you must
configure alternate redo transport paths to the standby databases. This is
accomplished using the GROUP and PRI ORI TY attributes of the LOG_ARCH VE_DEST n
parameter. (As of Oracle Database 12c Release 2 (12.2.0.1), the GROUP and PRI ORI TY
attributes have replaced the ALTERNATE attribute for remote redo destinations.)

The number of possible alternate remote destinations has been increased with the
concept of log archive destination groups. A log archive destination group specifies
multiple archive destinations that can be used to distribute redo to multiple
destinations, either from a far sync instance or through cascading. The destinations in
the group can then be prioritized so that only one destination is active at a time on the
primary database. Other destinations are available to become active if the active
destination becomes unavailable. To expand the number of possible archive
destinations for your database, you can specify multiple groups.

ORACLE 5-5

Chapter 5
Alternate Destinations

¢ See Also:

e Using the ALTERNATE Attribute to Configure Remote Alternate
Destinations for information about configuring alternate remote
destinations using the old ALTERNATE syntax.

5.2.1 Assigning Log Archive Destinations to a Group

ORACLE

Use the GROUP attribute of the LOG_ARCHI VE_DEST _n initialization parameter to assign
log archive destinations to groups.

If log archive destination groups are used, then as long as at least one destination
within the group remains available, at least one destination remains enabled and
active. Log archive destinations that are not assigned to a group behave the same as
log archive destinations did prior to Oracle Database 12c¢ Release 2 (12.2.0.1).

There can be up to 30 log archive destinations in a group. Log archive destination
groups are referenced by their group number, which is assigned when the group is
created. Groups are numbered from 1 through 8. A log archive destination group
contains a set of remote (SERVI CE=...) destinations. (Local archival (LOCATI ON=...)
destinations are not supported in log archive destination groups and must use the
ALTERNATE attribute for alternate local archiving locations. See ALTERNATE.

One log archive destination in the group is always active and the others are available
for use in the event of a failure of the active log archive destination. When a failed
destination again becomes available it becomes eligible if the currently active
destination fails, but it does not become active immediately, unless all other group
members are also unavailable. For example, the following declaration can be used to
specify three far sync instances as members of the same group and having the same
priority (Priority within a group is described in the next section). These are example
parameter definitions and do not contain all the necessary attributes. Do not use them
verbatim. In this example only the first destination is active with the second destination
available to take over if destination 1 becomes unavailable.

LOG_ARCH VE_DEST_2=' SERVI CE=chi cagoFS SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1'

LOG_ARCH VE_DEST_STATE_2=ENABLE

LOG_ARCH VE_DEST_3=' SERVI CE=chi cagoFS1 SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1'

LOG ARCHI VE_DEST_STATE_3=ALTERNATE

" Note:

Because log archive destination groups replace the LOG_ARCHI VE_DEST n
ALTERNATE attribute, use of the ALTERNATE attribute with log archive
destinations that are not in the default group (where GROUP is specified as 1
to 8) is not allowed.

5-6

Chapter 5
Alternate Destinations

5.2.2 Assigning Priorities to Log Archive Destinations in a Group

ORACLE

Using the PRI ORI TY attribute of the LOG_ARCH VE_DEST _n initialization parameter to
assign destination preferences within a log archive destination group allows you to
control the fail back mechanism, especially with multiple members within a group.

In the previous section, the two far sync instance destinations did not have a priority,
which means that when the alternate destination is activated after a failure of the first
destination it remains as the active destination until it fails. The priority is used to
determine which log archive destination within a group to make active when the
database or far sync instance is started or when a destination fails. Log archive
destinations become active in the following cases: The primary database is opened in
read/write mode, a far sync instance is mounted, or a standby database is mounted or
opened in read-only mode. The same priority value can be assigned to more than one
log archive destination in a group. The priority value is an integer in the range of 1
through 8. Lower numbers indicate higher priorities. The default priority is 1 (the
highest priority).

The priority comes into play when a previously failed destination becomes available
again. A set of log archive destinations assigned to the same group have the same
priority, by default. Therefore, if one destination fails then a failover occurs to another
member of the set. When the failed destination becomes available again, it does not
become the active destination since both destinations have the same priority. If the
second destination fails after the first destination has again become available, then the
database fails over to the first destination or to another destination in the group at the
same priority. This cycle can repeat indefinitely, provided that another destination is
always available before the active destination fails.

Continuing with the previous example, priorities can be added to the log archive
destinations to control when a destination might become active. In the following
example, a third far sync instance is added, but at a lower priority:

LOG_ARCH VE_DEST_2=" SERVI CE=chi cagoFS SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=1'

LOG_ARCHI VE_DEST_STATE_2=ENABLE

LOG_ARCH VE_DEST_3=" SERVI CE=chi cagoFS1 SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=1'

LOG_ARCH VE_DEST_STATE_3=ALTERNATE

LOG_ARCH VE_DEST_4=" SERVI CE=chi cagoFS2 ASYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=2'

LOG_ARCHI VE_DEST_STATE_4=ALTERNATE

This declaration results in the following behavior:
» The primary ships redo to the first of two preferred far sync instances, chi cagoFS
» If chi cagoFS become unavailable, then the primary ships to chi cagoFS1.

» If chi cagoFS becomes available again, no fail back occurs. It becomes the
alternate to chi cagoFS1 because the priority is the same.

5-7

Chapter 5
Alternate Destinations

» If both chi cagoFS and chi cagoFS1 become unavailable, then the primary ships to
chi cagoFS2 (in this case via the ASYNC redo transmission mode).

» If either chi cagoFS or chi cagoFS1 become available while the primary is shipping
to chi cagoFS2, then the primary fails back to that available preferred log archive
destination.

5.2.3 Shipping to Multiple Active Destinations in a Group

You can also use the PRI ORI TY attribute to configure a group so that it ships to multiple
destinations if a preferred destination fails.

The mechanism that supports multiple active destinations within a single group is that
the lowest priority (PRI ORI TY=8) is defined to activate destinations within that group at
that priority, generally used to send the redo directly to the target standby databases.
The following log archive destination declaration shows how this could be configured.
In this example , there is one far sync instance that forwards redo to two terminal
standby databases:

LOG_ARCH VE_DEST 2= SERVI CE=chi cagoFS SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=1'

LOG_ARCHI VE_DEST_STATE_2=ENABLE

LOG ARCHI VE_DEST 3=' SERVI CE=host on ASYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=8'

LOG ARCH VE_DEST_STATE_3=ALTERNATE

LOG_ARCHI VE_DEST_4=" SERVI CE=newyor k ASYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) CGROUP=1 PRI CRI TY=8'

LOG ARCHI VE_DEST_STATE_4=ALTERNATE

This declaration results in the following behavior:

e The primary ships redo to the preferred far sync instance, chi cagoFsS.

* If chi cagoFSis unavailable, then the primary ships directly to both terminal
standbys bost on and newyor k in ASYNC mode.

* While shipping to bost on and newyor k, if chi cagoFS becomes available, then the
primary stops shipping directly to bost on and newyor k and begins shipping instead
to chi cagoFS.

5.2.4 Using Multiple Log Archive Destination Groups

Multiple log archive destination groups can be used for site-specific high availability
considerations or to distribute service over large cascaded (reader farm)
configurations.

ORACLE 5-8

Chapter 5
Configuring Alternate Destinations

The following declaration sets up multiple log archive destination groups with
chi cagoFS and chi cagoFS1 in group 1 and chi cagoFS3 and chi cagoFS4 in group 2:

LOG_ARCH VE_DEST_2=" SERVI CE=chi cagoFS SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=1'

LOG_ARCHI VE_DEST_STATE_2=ENABLE

LOG_ARCH VE_DEST_3=" SERVI CE=chi cagoFS1 SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=1 PRI ORI TY=1'

LOG_ARCH VE_DEST_STATE_3=ALTERNATE

LOG_ARCH VE_DEST_4=" SERVI CE=chi cagoFS3 SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=2 PRI ORI TY=1'

LOG_ARCHI VE_DEST_STATE_4=ENABLE

LOG_ARCH VE_DEST_5=" SERVI CE=chi cagoFS4 SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) GROUP=2 PRI ORI TY=1'

LOG_ARCH VE_DEST_STATE_5=ALTERNATE

5.2.5 Determining the Availability Status of Log Archive
Destinations

Oracle Data Guard keeps track of the current status of available but inactive
destinations in log archive destination groups by periodically polling configured
destinations to determine their availability.

The information used to determine availability is derived from the MAX_FAI LURE
attribute which specifies the consecutive number of times redo transport services
attempt to reestablish communication and transmit redo data to a failed destination
before the primary database gives up on the destination. The default value for
MAX_FAI LURE is 1 when the GROUP and PRI ORI TY attributes are used.

The behavior of the MAX FAI LURE attribute is different between Oracle Database 12¢
Release 1 (12.1) and Oracle Database 12c Release 2 (12.2). It is important to
understand the differences.

¢ See Also:

« MAX_FAILURE

5.3 Configuring Alternate Destinations

Far sync instance configurations can be set up to provide varying levels of data
protection.

ORACLE 5-9

Chapter 5
Configuring Alternate Destinations

The following topics expand on the examples provided in the previous section and
provide examples of two additional far sync instance configurations that provide better
data protection when you use far sync instances.

* Reduced Protection After a Far Sync Failure
* Far Sync Instance High Availability

* Maintaining Protection After a Role Change

5.3.1 Reduced Protection After a Far Sync Failure

ORACLE

With all far sync instance configurations it is important that redo continues to ship to
the terminal standbys to continue to provide protection of the primary database.

In the simplest configuration there is one far sync instance (chi cagoFS) and one
terminal standby database (bost on).

If the far sync instance fails, then redo should be shipped directly to the terminal
standby by adding an additional log archive destination to the primary database,

chi cago. This does reduce the protection level because redo transmission is then in
ASYNC mode instead of SYNC mode.

Example 5-2 Configuring for Single Destination Failover

Primary Database chicago

LOG_ARCHI VE_DEST_2=" SERVI CE=chi cagoFS SYNC AFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cagoFS GROUP=1
PRI ORI TY=1'

LOG_ARCHI VE_DEST_STATE_2=ENABLE

LOG ARCH VE_DEST 3=' SERVI CE=host on ASYNC NOAFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=bost on GROUP=1
PRI ORI TY=2"

LOG ARCH VE_DEST_STATE_3=ALTERNATE

This declaration causes the primary database to ship redo directly to the terminal
standby if the far sync instance chi cagoFsS fails. If the far sync instance becomes
available again, then it becomes the active destination and redo transmission goes to
the far sync instance.

If the far sync instance had multiple terminal standby databases, then you would use
PRI ORI TY=8 to ensure that all of those destinations received redo directly from the
primary database if the far sync instance failed.

Example 5-3 Configuring for Multiple Standby Database Redo Destination
Failover

Primary Database chicago

As in the previous example, modify the log archive destination on the primary
database for the far sync instance to add it to a group with a Priority of 1 and then add

5-10

Chapter 5
Configuring Alternate Destinations

a new log archive destination for each standby the far sync instance services at
Priority 8 in ASYNC mode.

LOG ARCH VE_DEST_2=' SERVI CE=chi cagoFS SYNC AFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cagoFS GROUP=1
PRI ORI TY=1'

LOG_ARCH VE_DEST_STATE_2=ENABLE

LOG_ARCHI VE_DEST_3=' SERVI CE=host on ASYNC NOAFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=bost on GROUP=1
PRI ORI TY=8'

LOG_ARCHI VE_DEST_STATE_3=ALTERNATE

LOG_ARCH VE_DEST_4=' SERVI CE=newyor k ASYNC NOAFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=newyor k GROUP=1
PRI ORI TY=8'

LOG_ARCHI VE_DEST_STATE_3=ALTERNATE

This declaration causes the primary database to ship redo directly to both terminal
standby databases if the far sync instance chi cagoFsS fails. If the far sync instance
becomes available again, then it becomes the active destination and redo
transmission goes to the far sync instance.

5.3.2 Far Sync Instance High Availability

ORACLE

Configuring an alternate far sync instance keeps the protection level of the
configuration at the configured protection level of Maximum Availability if the preferred
far sync instance fails for some reason.

In both of the preceding examples the protection level of the configuration would fall
out of Maximum Availability because redo is no longer being shipped in SYNC mode.
For more protection from system or network failures, an additional far sync instance
can be configured that provides high availability for the active far sync instance. In this
configuration one is the preferred active far sync instance and the other is the alternate
far sync instance.

The primary automatically starts shipping to the alternate far sync instance if it detects
a failure at the preferred far sync instance. In these types of configurations, the
primary uses only one far sync instance to redistribute redo at any given time.

To maintain the Maximum Availability protection level, configure two far sync instances
near to the primary database and set them up to protect each other. Then, if the active
far sync instance becomes unavailable, the primary database can automatically begin
sending redo in synchronous mode to the alternate far sync instance, thereby
maintaining the elevated protection level of Maximum Availability. In this case though,
the two far sync instances have the same priority and when one takes over for the
other it remains the active far sync instance until it fails. To ensure that redo continues
to be shipped to the terminal standby database in the event that both far sync
instances fail, the terminal standby database is configured as before with PRI ORI TY=2.
(If there is more than one terminal standby database, then use PRI ORI TY=8 for them).

5-11

Chapter 5
Configuring Alternate Destinations

The high availability far sync instance would be created using the same steps as given
in Creating and Configuring a Far Sync Instance, and configured to forward redo to the
terminal standby boston.

Example 5-4 Parameters Used to Set Up the High Availability Far Sync
Instance

Primary Database chicago
LOG_ARCH VE_CONFI G=' DG_CONFI G=(chi cago, chi cagoFS, chi cagoFS1, bost on)’

LOG_ARCH VE_DEST_2=" SERVI CE=chi cagoFS SYNC AFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cagoFS GROUP-1
PRI ORI TY=1

LOG_ARCHI VE_DEST_STATE_2=ENABLE

LOG_ARCH VE_DEST_3=" SERVI CE=chi cagoFS1 SYNC AFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cagoFS1 GROUP-=1
PRI ORI TY=1

LOG_ARCH VE_DEST_STATE_3=ALTERNATE

LOG_ARCH VE_DEST_4=" SERVI CE=bost on ASYNC NOAFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=bost on GROUP-=1
PRI ORI TY=2'

LOG_ARCH VE_DEST_STATE_4=ALTERNATE

Oracle Data Guard can now continue synchronously sending redo to a far sync
instance, maintaining the required zero data loss protection mode of Maximum
Availability if a far sync instance fails. If both far sync instances fail, then redo ships in
ASYNC mode directly to bost on, at a reduced protection level. As before, when either of
the failed far sync instances becomes available again, Oracle Data Guard
automatically resynchronizes it and returns to the original configuration, in which the
primary sends redo to an active far sync instance, which then forwards that redo to the
terminal standby. When the synchronization is complete, the alternate destination for
the standby (LOG_ARCHI VE_DEST 4 in the preceding example) again becomes dormant
as the alternate.

5.3.3 Maintaining Protection After a Role Change

ORACLE

These examples describe how to maintain data protection after a role change.

The configuration described in the preceding sections works well to keep the
configuration running at Maximum Availability until all far sync instances fail and redo
is shipped to the standby database directly. But it would be inappropriate after a role
transition where bost on becomes the primary database and chi cago becomes the
terminal standby. The far sync instances chi cagoFS and chi cagoFS1 would be too
remote for bost on to use as a synchronous destination because the network latency
between two sites is sufficiently large that it would impact commit response times. To
maintain the protection level of Maximum Availability for zero data loss, a second far
sync instance configuration close to bost on must be established, in readiness for a
future role transition event.

5-12

Chapter 5
Supported Protection Modes for Far Sync Instances

Using the same procedure as described in Creating and Configuring a Far Sync
Instance, create two far sync instances named bost onFS and bost onFS1 close to the
standby database bost on and configure them both to ship redo to chi cago in ASYNC
mode when they are active. Then add them to bost on so that when bost on is the
primary it ships redo to one of the far sync instances in SYNC mode with all the failover
capabilities that were configured for chi cago and its far sync instances. You need to
add the new bost on far sync instances to the LOG_ARCH VE_CONFI G on both bost on and
chi cago.

Example 5-5 Parameters Used to Set Up Protection After a Role Change

Primary Database boston

LOG_ARCH VE_CONFI G=' DG_CONFI G=(chi cago, chi cagoFS, chi cagoFSL, bost on,
bost onFS, bost onFS1)’

LOG_ARCHI VE_DEST_2=' SERVI CE=host onFS SYNC AFFI RM
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=bost onFS GROUP=1
PRI ORI TY=1'

LOG_ARCHI VE_DEST_STATE_2=ENABLE

LOG_ARCHI VE_DEST_3=' SERVI CE=host onFS1 SYNC AFFI RM

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=bost onFS1 GROUP=1
PRI ORI TY=1'

LOG_ARCH VE_DEST_STATE_3=ALTERNATE

LOG_ARCHI VE_DEST_4=" SERVI CE=chi cago ASYNC NOAFFI RM

VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_ROLE) DB_UNI QUE_NAME=chi cago GROUP=1
PRI ORI TY=2'

LOG_ARCHI VE_DEST_STATE_4=ALTERNATE

Primary Database chicago

LOG_ARCH VE_CONFI G=' DG_CONFI G=(chi cago, chi cagoFS, chi cagoFSL, bost on,
bost onFS, bostonFS1)'

Given these declarations, the far sync instance, bost onFS, receives redo from bost on
and ships it to chi cago only when bost on is the primary database. However, even if
bost on is not the primary database, Oracle recommends keeping far sync instance
bost onFS and bost onFS1 mounted in readiness for a future role transition.

5.4 Supported Protection Modes for Far Sync Instances

A far sync instance is supported in either maximum performance or maximum
availability mode.

ORACLE 5-13

Chapter 5
Supported Protection Modes for Far Sync Instances

5.4.1 Far Sync Instances in Maximum Availability Mode Configurations

In maximum availability mode, the far sync instance is relatively close to the primary
database to minimize network latency, and the primary services the far sync instance
using SYNC transport.

Note:

There is no architectural limit to the distance that can separate the primary
and far sync instance in maximum availability mode. The practical distance
limit varies depending upon a given application's tolerance to the impact of
network latency in a synchronous configuration. Also, it is possible to reduce
the performance impact for any given distance by using the new Oracle Data
Guard FastSync feature (SYNC/ NOAFFI RM). See "Performance Versus
Protection in Maximum Availability Mode".

Both SYNC/ AFFI RMand SYNC/ NOAFFI RMsemantics are supported on the
LOG_ARCHI VE_DEST_n established at the primary for the far sync instance. See Oracle
Data Guard Protection Modes for information about the trade-offs of using each one.

When a primary services a far sync instance using SYNC transport, all committed redo
resides on disk at the far sync instance. This allows the far sync instance to use one of
the terminal standby destinations for a no data loss failover if the primary database is
lost.

The far sync instance uses ASYNC transport to ship the incoming redo to terminal
standbys that can be much farther away. This extends no data loss protection to
destinations that are too far away for a primary database to feasibly service directly
with SYNC transport because of the degradation in transaction throughput that would
result. This is a case where a far sync instance is beneficial even if there is only one
standby destination in the configuration.

5.4.2 Far Sync Instances in Maximum Performance Mode
Configurations

ORACLE

In maximum performance mode, the primary database services the far sync instance
destination using ASYNC redo transport.

This is true regardless of the physical distance between the primary and the far sync
instance because high network latencies do not affect transaction throughput when a
destination is serviced with ASYNC transport.

In maximum performance mode, a far sync instance can benefit Oracle Data Guard
configurations that manage more than one remote destination. Although each ASYNC
destination has a near-zero effect on primary database performance, if there are many
remote destinations (for example, multiple Oracle Active Data Guard standbys that
form a reader farm), then the effect can become measurable. When a far sync
instance is used, there is zero incremental effect for each remote destination added to
the configuration. Additionally, redo transport compression can also be offloaded to the
far sync instance. When a far sync instance is used, the primary only has to service

5-14

Chapter 5
Supported Protection Modes for Far Sync Instances

the far sync instance, which then services the rest of the configuration; the greater the
number of destinations, the greater the performance benefit.

ORACLE' 5.15

Oracle Data Guard Protection Modes

Oracle Data Guard lets you set different data protection modes.

See the following topics for information about these modes and how to set them on a
primary database:

¢ Oracle Data Guard Protection Modes

e Setting the Data Protection Mode of a Primary Database

6.1 Oracle Data Guard Protection Modes

ORACLE

Oracle Data Guard provides three protection modes: maximum availability, maximum
performance, and maximum protection.

In the following descriptions of the protection modes, a synchronized standby
database is meant to be one that meets the minimum requirements of the configured
data protection mode and that does not have a redo gap. Redo gaps are discussed in
Redo Gap Detection and Resolution.

Maximum Availability

This protection mode provides the highest level of data protection that is possible
without compromising the availability of a primary database. Under normal operations,
transactions do not commit until all redo data needed to recover those transactions
has been written to the online redo log AND based on user configuration, one of the
following is true:

* redo has been received at the standby, 1/O to the standby redo log has been
initiated, and acknowledgement sent back to primary

* redo has been received and written to standby redo log at the standby and
acknowledgement sent back to primary

If the primary does not receive acknowledgement from at least one synchronized
standby, then it operates as if it were in maximum performance mode to preserve
primary database availability until it is again able to write its redo stream to a
synchronized standby database.

If the primary database fails, then this mode ensures no data loss occurs provided
there is at least one synchronized standby in the Oracle Data Guard configuration.
See "Performance Versus Protection in Maximum Availability Mode" for information
about the redo transport settings necessary to support Maximum Availability and
associated trade-offs.

Transactions on the primary are considered protected as soon as Oracle Data Guard
has written the redo data to persistent storage in a standby redo log file. Once that is
done, acknowledgment is quickly made back to the primary database so that it can
proceed to the next transaction. This minimizes the impact of synchronous transport
on primary database throughput and response time. To fully benefit from complete
Oracle Data Guard validation at the standby database, be sure to operate in real-time
apply mode so that redo changes are applied to the standby database as fast as they

6-1

ORACLE

Chapter 6
Oracle Data Guard Protection Modes

are received. Oracle Data Guard signals any corruptions that are detected so that
immediate corrective action can be taken.

Performance Versus Protection in Maximum Availability Mode

When you use Maximum Availability mode, it is important to understand the possible
results of using the LOG_ARCHI VE_DEST _n attributes SYNC/AFFI RMversus SYNC/NOAFFI RM
(FastSync) so that you can make the choice best suited to your needs.

When a transport is performed using SYNC/ AFFI RM the primary performs write
operations and waits for acknowledgment that the redo has been transmitted
synchronously to the physical standby and written to disk. A SYNC/ AFFI RMtransport
provides an additional protection benefit at the expense of a performance impact
caused by the time required to complete the 1/O to the standby redo log.

When a transport is performed using SYNC/ NOAFFI RM the primary performs write
operations and waits only for acknowledgement that the data has been received on
the standby, not that it has been written to disk. The SYNC/ NOAFFI RMtransport can
provide a performance benefit at the expense of potential exposure to data loss in a
special case of multiple simultaneous failures.

With those definitions in mind, suppose you experience a catastrophic failure at the
primary site at the same time that power is lost at the standby site. Whether data is
lost depends on the transport mode being used. In the case of SYNC/ AFFI RM in which
there is a check to confirm that data is written to disk on the standby, there would be
no data loss because the data would be available on the standby when the system
was recovered. In the case of SYNC/ NOAFFI RM in which there is no check that data has
been written to disk on the standby, there may be some data loss.

2 See Also:

e LOG_ARCHIVE_DEST n Parameter Attributes for more information
about the SYNC, AFFI RM and NOAFFI RMattributes

e Oracle Data Guard Broker for information about transporting redo in a
broker configuration using FASTSYNC mode (using SYNC and NOAFFI RM
together in maximum availability mode)

Maximum Performance

This protection mode provides the highest level of data protection that is possible
without affecting the performance of a primary database. This is accomplished by
allowing transactions to commit as soon as all redo data generated by those
transactions has been written to the online log. Redo data is also written to one or
more standby databases, but this is done asynchronously with respect to transaction
commitment, so primary database performance is unaffected by the time required to
transmit redo data and receive acknowledgment from a standby database.

This protection mode offers slightly less data protection than maximum availability
mode and has minimal impact on primary database performance.

This is the default protection mode.

6-2

Chapter 6
Setting the Data Protection Mode of a Primary Database

Maximum Protection

Maximum protection is similar to maximum availability but provides an additional level
of data protection in the event of multiple failure events. Unlike maximum availability,
which allows the primary to continue processing if it is unable to receive
acknowledgement from a standby database, maximum protection shuts the primary
database down rather than allowing it to continue processing transactions that are
unprotected.

Because this data protection mode prioritizes data protection over primary database
availability, Oracle recommends that a minimum of two standby databases be used to
protect a primary database that runs in maximum protection mode to prevent a single
standby database failure from causing the primary database to shut down.

Note:

Asynchronously committed transactions are not protected by Oracle Data
Guard against loss until the redo generated by those transactions has been
written to the standby redo log of at least one synchronized standby
database.

For more information about the asynchronous commit feature, see:

e Oracle Database Concepts

e Oracle Database PL/SQL Language Reference

6.2 Setting the Data Protection Mode of a Primary Database

ORACLE

Protection mode settings can be set and changed on an open database as long as the
configuration meets the requirements of the protection mode (including going from
maximum performance mode to maximum availability mode).

Perform the following steps to set the data protection mode of a primary database:

1. Select a data protection mode that meets your availability, performance, and data
protection requirements. See Oracle Data Guard Protection Modes for a
description of the data protection modes.

2. Verify that at least one standby database meets the redo transport requirements
for the desired data protection mode.

The LOG_ARCHI VE_DEST_n database initialization parameter that corresponds to at
least one standby database must include the redo transport attributes listed in the
following table for the desired data protection mode.

The standby database must also have a standby redo log.

Table 6-1 Required Redo Transport Attributes for Data Protection Modes
]

Maximum Availability Maximum Performance Maximum Protection
AFFI RMor NOCAFFI RM NOAFFI RM AFFI RM
SYNC ASYNC SYNC

6-3

ORACLE

Chapter 6
Setting the Data Protection Mode of a Primary Database

Table 6-1 (Cont.) Required Redo Transport Attributes for Data Protection
Modes

__|
Maximum Availability Maximum Performance Maximum Protection

DB_UNI QUE_NAME DB_UNI QUE_NAME DB_UNI QUE_NAME

Verify that the DB_UNI QUE_NAME database initialization parameter has been set to a
unique value on the primary database and on each standby database.

Verify that the LOG_ARCHI VE_CONFI G database initialization parameter has been
defined on the primary database and on each standby database, and that its value
includes a DG_CONFI Glist that includes the DB_UNI QUE_NAME of the primary
database and each standby database.

The following sample SQL statement configures the LOG ARCH VE_CONFI G
parameter:

SQL> ALTER SYSTEM SET LOG ARCH VE_CONFI G=' DG_CONFI G=(CHI CAGO, BOSTON) ' ;

Set the data protection mode by executing the following SQL statement on the
primary database:

SQL> ALTER DATABASE -
> SET STANDBY DATABASE TO MAXIM ZE { AVAI LABI LI TY | PERFORMANCE | PROTECTI ON};

The data protection mode can be set to MAXI MUMPROTECTI ON on an open database
only if the current data protection mode is MAXI MUMAVAI LABI LI TY and if there is at
least one synchronized standby database.

Perform the following query on the primary database to confirm that it is operating
in the new protection mode:

SQL> SELECT PROTECTI ON_MODE FROM V$DATABASE;

6-4

Redo Transport Services

An Oracle Data Guard configuration requires that Oracle redo transport services be
configured and monitored.

See the following topics:

* Introduction to Redo Transport Services

* Configuring Redo Transport Services

» Cascaded Redo Transport Destinations

» Data Protection Considerations for Cascading Standbys
* Validating a Configuration

* Monitoring Redo Transport Services

e Tuning Redo Transport

7.1 Introduction to Redo Transport Services

ORACLE

Redo transport services performs the automated transfer of redo data between
members of an Oracle Data Guard configuration and other databases.

The following redo transport destinations are supported:

e Oracle Data Guard standby databases

This guide describes how to create and manage physical, logical, and snapshot
standby databases.

* Archive log repository

This destination type is used for temporary offsite storage of archived redo log
files. An archive log repository consists of an Oracle database instance and a
physical standby control file. An archive log repository does not contain data files,
S0 it cannot support role transitions.

The procedure used to create an archive log repository is identical to the
procedure used to create a physical standby database, except for the copying of
data files.

e Oracle Streams downstream capture databases
e Far sync instances

See Using Far Sync Instances for more information about far sync instances.
e Zero Data Loss Recovery Appliance (Recovery Appliance)

Each redo transport destination is individually configured to receive redo data via one
of two redo transport modes:

e Synchronous

7-1

Chapter 7
Configuring Redo Transport Services

The synchronous redo transport mode transmits redo data synchronously with
respect to transaction commitment. A transaction cannot commit until all redo
generated by that transaction has been successfully sent to every enabled redo
transport destination that uses the synchronous redo transport mode.

Although there is no limit on the distance between a primary database and a SYNC
redo transport destination, transaction commit latency increases as network
latency increases between a primary database and a SYNC redo transport
destination.

This transport mode is used by the Maximum Protection and Maximum Availability
data protection modes described in Oracle Data Guard Protection Modes.

" Note:

Synchronous redo transport is not supported for Zero Data Loss
Recovery Appliance.

e Asynchronous

The asynchronous redo transport mode transmits redo data asynchronously with
respect to transaction commitment. A transaction can commit without waiting for
the redo generated by that transaction to be successfully sent to any redo
transport destination that uses the asynchronous redo transport mode.

This transport mode is used by the Maximum Performance data protection mode
described in Oracle Data Guard Protection Modes.

7.2 Configuring Redo Transport Services

Oracle databases must be configured before they can send and receive redo data.
Part of the configuration process involves setting up redo transport security.

See the following topics:

* Redo Transport Security
» Configuring an Oracle Database to Send Redo Data
» Configuring an Oracle Database to Receive Redo Data

These topics assume that you have a thorough understanding of the following:

o Database administrator authentication
e Database initialization parameters

e Managing a redo log

e Managing archived redo logs

« Fast recovery areas

e Oracle Net Configuration

7.2.1 Redo Transport Security

ORACLE

Redo transport uses Oracle Net sessions to transport redo data.

7-2

Chapter 7
Configuring Redo Transport Services

These redo transport sessions are authenticated using either the Secure Socket Layer
(SSL) protocol or a remote login password file.

7.2.1.1 Redo Transport Authentication Using SSL

Secure Sockets Layer (SSL) is an industry standard protocol for securing network
connections.

SSL uses RSA public key cryptography and symmetric key cryptography to provide
authentication, encryption, and data integrity. SSL is automatically used for redo
transport authentication between two Oracle databases if:

e The databases are members of the same Oracle Internet Directory (OID)
enterprise domain and that domain allows the use of current user database links.

e The LOG_ARCH VE_DEST n, and FAL_SERVER database initialization parameters that
correspond to the databases use Oracle Net connect descriptors configured for
SSL.

» Each database has an Oracle wallet or a supported hardware security module that
contains a user certificate with a distinguished name (DN) that matches the DN in
the OID entry for the database.

¢ See Also:

e Oracle Database Security Guide for more information about SSL

e Oracle Database Enterprise User Security Administrator's Guide for
more information about administering enterprise domains

e Oracle Label Security Administrator's Guide for information about
administering Oracle Internet Directory

7.2.1.2 Redo Transport Authentication Using a Password File

ORACLE

If the SSL authentication requirements are not met, then each database must use a
remote login password file.

In an Oracle Data Guard configuration, all physical and snapshot standby databases
must use a copy of the password file from the primary database. If database
compatibility is set to 12.2 or higher on both the source and target database, then the
copy of the password file is automatically refreshed whenever an administrative
privilege (SYSDG, SYSOPER, SYSDBA, and so on) is granted or revoked, and after the
password of any user with administrative privileges is changed. The only exception to
this is far sync instances. Updated password files must still be manually copied to far
sync instances because far sync instances receive redo, but do not apply it. Once the
password file is up-to-date at the far sync instance the redo containing the password
update at the primary is automatically propagated to any standby databases that are
set up to receive redo from that far sync instance. The password file is updated on the
standby when the redo is applied.

When a password file is used for redo transport authentication, the password of the
user account used for redo transport authentication is compared between the
database initiating a redo transport session and the target database. The password
must be the same at both databases to create a redo transport session.

7-3

Chapter 7
Configuring Redo Transport Services

By default, the password of the SYS user is used to authenticate redo transport
sessions when a password file is used. The REDO TRANSPORT _USER database
initialization parameter can be used to select a different user password for redo
transport authentication by setting this parameter to the name of any user who has
been granted the SYSOPER privilege. For administrative ease, Oracle recommends that
the REDO_TRANSPORT _USER parameter be set to the same value on the redo source
database and at each redo transport destination.

¢ See Also:

Oracle Database Administrator's Guide for more information creating and
maintaining remote login password files

7.2.2 Configuring an Oracle Database to Send Redo Data

ORACLE

To specify a redo transport destination, use the LOG ARCHI VE_DEST n database
initialization parameter (where n is an integer from 1 to 31).

There is a LOG_ARCHI VE_DEST_STATE n database initialization parameter (where n is an
integer from 1 to 31) that corresponds to each LOG_ARCH VE_DEST_n parameter. This
parameter is used to enable or disable the corresponding redo destination. Table 7-1
shows the valid values that can be assigned to this parameter.

Table 7-1 LOG_ARCHIVE_DEST STATE_n Initialization Parameter Values
]

Value Description

ENABLE Redo transport services can transmit redo data to this destination. This is the
default.

DEFER Redo transport services do not transmit redo data to this destination.

ALTERNATE This destination becomes enabled if communication to its associated

destination fails.

A redo transport destination is configured by setting the LOG_ARCHI VE_DEST _n
parameter to a character string that includes one or more attributes. This section
briefly describes the most commonly used attributes. See LOG_ARCHIVE_DEST n
Parameter Attributes for a full description of all LOG_ARCH VE_DEST n parameter
attributes.

The SERVI CE attribute, which is a mandatory attribute for a redo transport destination,
must be the first attribute specified in the attribute list. The SERVI CE attribute is used to
specify the Oracle Net service name used to connect to the redo transport destination.
The service name must be resolvable through an Oracle Net naming method to an
Oracle Net connect descriptor that matches the Oracle Net listener(s) at the redo
transport destination. The connect descriptor must specify that a dedicated server
connection be used, unless that is the default connection type for the redo transport
destination.

7-4

ORACLE

Chapter 7
Configuring Redo Transport Services

¢ See Also:

Oracle Database Net Services Administrator's Guide for information about
Oracle Net service names, connect descriptors, listeners, and network
security

The SYNC attribute specifies that the synchronous redo transport mode be used to send
redo data to a redo transport destination.

The ASYNC attribute specifies that the asynchronous redo transport mode be used to
send redo data to a redo transport destination. The asynchronous redo transport mode
is used if neither the SYNC nor the ASYNC attribute is specified.

The NET_TI MEQUT attribute specifies how long the LGAR process waits for an
acknowledgement that redo data has been successfully received by a destination that
uses the synchronous redo transport mode. If an acknowledgement is not received
within NET_TI MEQUT seconds, the redo transport connection is terminated and an error
is logged.

Oracle recommends that the NET_TI MEQUT attribute be specified whenever the
synchronous redo transport mode is used, so that the maximum duration of a redo
source database stall caused by a redo transport fault can be precisely controlled. See
Monitoring Synchronous Redo Transport Response Time for information about
monitoring synchronous redo transport mode response time.

Note:

You could also set the database initialization parameter,
DATA_GUARD _SYNC LATENCY, which is global for all synchronous standby
destinations. It defines the maximum amount of time (in seconds) that the
primary database may wait before disconnecting subsequent destinations
after at least one synchronous standby has acknowledged receipt of the
redo.

For example, suppose you have three synchronous standby destinations and
you set DATA GUARD_SYNC LATENCY to a value of 2. If the first standby
acknowledges receipt of the redo immediately, then the primary database
waits no longer than 2 seconds for the other two standbys to respond. If one
or both respond within 2 seconds, then they are maintained as active
destinations. Destinations that do not respond in time are marked as failed.
In both cases the primary remains in zero data loss protection mode because
one synchronous standby has acknowledged receipt of the redo. Any failed
synchronous standbys are reconnected as normal after the number of
seconds specified for the REOPEN attribute have passed.

The AFFI RMattribute is used to specify that redo received from a redo source database
is not acknowledged until it has been written to the standby redo log. The NOAFFI RM
attribute is used to specify that received redo is acknowledged without waiting for
received redo to be written to the standby redo log.

The DB_UNI QUE_NAME attribute is used to specify the DB_UNI QUE_NAME of a redo
transport destination. The DB_UN QUE_NAME attribute must be specified if the

7-5

Chapter 7
Configuring Redo Transport Services

LOG_ARCHI VE_CONFI G database initialization parameter has been defined and its value
includes a DG_CONFI Glist.

If the DB_UNI QUE_NAME attribute is specified, its value must match one of the

DB_UNI QUE_NAME values in the DG_CONFI Glist. It must also match the value of the
DB_UNI QUE_NAME database initialization parameter at the redo transport destination. If
either match fails, an error is logged and redo transport is not possible to that
destination.

The VALI D_FOR attribute is used to specify when redo transport services transmits redo
data to a redo transport destination. Oracle recommends that the VALI D_FOR attribute
be specified for each redo transport destination at every site in an Oracle Data Guard
configuration so that redo transport services continue to send redo data to all standby
databases after a role transition, regardless of which standby database assumes the
primary role.

The RECPEN attribute is used to specify the minimum number of seconds between
automatic reconnect attempts to a redo transport destination that is inactive because
of a previous error.

The COVWPRESSI ON attribute is used to specify that redo data is transmitted to a redo
transport destination in compressed form. Redo transport compression can
significantly improve redo transport performance on network links with low bandwidth
and high latency.

Redo transport compression is a feature of the Oracle Advanced Compression option.
You must purchase a license for this option before using the redo transport
compression feature.

The following example uses all of the LOG_ARCHI VE_DEST _n attributes described in this
section. A DB_UNI QUE_NAME has been specified for both destinations, as has the use of
compression. If a redo transport fault occurs at either destination, then redo transport
attempts to reconnect to that destination, but not more frequently than once every 60
seconds.

DB_UNI QUE_NAME=BOSTON
LOG_ARCH VE_CONFI G=' DG_CONFI G=(BOSTON, CH CAGO, HARTFORD) '

LOG_ARCH VE_DEST_2=' SERVI CE=CH CAGO ASYNC NOAFFI RM VALI D_FOR=(ONLI NE_LOGFI LE,
PRI MARY_ROLE) REOPEN=60 COVPRESS| ON=ENABLE DB_UNI QUE_NAVE=CHI CAGO

LOG_ARCHI VE_DEST_STATE_2=' ENABLE

LOG_ARCH VE_DEST _3=' SERVI CE=HARTFORD SYNC AFFI RM NET_TI MEQUT=30

VALI D_FOR=(ONLI NE_LOGFI LE, PRI MARY_ROLE) REOPEN=60 COVPRESS| ON=ENABLE

DB_UNI QUE_NAME=HARTFORD

LOG_ARCH VE_DEST_STATE_3=' ENABLE

Note:

Configuration for Zero Data Loss Recovery Appliance (Recovery Appliance)
is identical to configuration for any standby database. So in the preceding
example, because Chicago is an ASYNC destination, it could be either a
standby database or a Recovery Appliance. (Synchronous redo transport is
not supported for Recovery Appliance)

ORACLE 7-6

Chapter 7
Configuring Redo Transport Services

7.2.2.1 Viewing Attributes With VSARCHIVE_DEST

The VSARCH VE_DEST view can be queried to see the current settings and status for
each redo transport destination.

7.2.3 Configuring an Oracle Database to Receive Redo Data

Redo transport destination must be configured to receive and to archive redo data
from a redo source database.

See the following:

e Managing Standby Redo Logs
e Cases Where Redo Is Written Directly To an Archived Redo Log File

7.2.3.1 Managing Standby Redo Logs

ORACLE

The synchronous and asynchronous redo transport modes require that a redo
transport destination have a standby redo log. A standby redo log is used to store redo
received from another Oracle database. Standby redo logs are structurally identical to
redo logs, and are created and managed using the same SQL statements used to
create and manage redo logs.

Redo received from another Oracle database via redo transport is written to the
current standby redo log group by a remote file server (RFS) foreground process.
When a log switch occurs on the redo source database, incoming redo is then written
to the next standby redo log group, and the previously used standby redo log group is
archived by an ARCn background process.

The process of sequentially filling and then archiving redo log file groups at a redo
source database is mirrored at each redo transport destination by the sequential filling
and archiving of standby redo log groups.

Each standby redo log file must be at least as large as the largest redo log file in the
redo log of the redo source database. For administrative ease, Oracle recommends
that all redo log files in the redo log at the redo source database and the standby redo
log at a redo transport destination be of the same size.

The standby redo log must have at least one more redo log group than the redo log at
the redo source database, for each redo thread at the redo source database. At the
redo source database, query the V3LOG view to determine how many redo log groups
are in the redo log at the redo source database and query the V$THREAD view to
determine how many redo threads exist at the redo source database.

Perform the following query on a redo source database to determine the size of each
log file and the number of log groups in the redo log:

SQL> SELECT GROUP#, BYTES FROM V$LOG

Perform the following query on a redo destination database to determine the size of
each log file and the number of log groups in the standby redo log:

SQ> SELECT GROUP#, BYTES FROM V$STANDBY_LOG

7-7

Chapter 7
Cascaded Redo Transport Destinations

If the redo source database is an Oracle Real Applications Cluster (Oracle RAC) or
Oracle Real Application Clusters One Node (Oracle RAC One Node) database, query
the VSLOG view at the redo source database to determine how many redo threads exist
and specify the corresponding thread numbers when adding redo log groups to the
standby redo log.

The following sample SQL statements create a standby redo log at a database that is
to receive redo from a redo source database that has two redo threads:

SQ.> ALTER DATABASE ADD STANDBY LOGFI LE THREAD 1 SIZE 500M
SQ.> ALTER DATABASE ADD STANDBY LOGFI LE THREAD 1 SIZE 500M
SQ.> ALTER DATABASE ADD STANDBY LOGFI LE THREAD 1 SI ZE 500M
SQ.> ALTER DATABASE ADD STANDBY LOGFI LE THREAD 2 SI ZE 500M
SQ.> ALTER DATABASE ADD STANDBY LOGFI LE THREAD 2 SI ZE 500M
SQ.> ALTER DATABASE ADD STANDBY LOGFI LE THREAD 2 SI ZE 500M

" Note:

Whenever a redo log group is added to a primary database, a log group must
also be added to the standby redo log of each standby database in the
configuration. Otherwise, the standby database may become
unsynchronized after a primary log switch, which could temporarily prevent a
zero data loss failover or cause a primary database operating in maximum
protection mode to shut down.

7.2.3.2 Cases Where Redo Is Written Directly To an Archived Redo Log File

Redo received by a standby database is written directly to an archived redo log file if a
standby redo log group is not available or if the redo was sent to resolve a redo gap.
When this occurs, redo is written to the location specified by the LOCATI ON attribute of
one LOG_ARCHI VE_DEST_n parameter that is valid for archiving redo received from
another database. The LOG ARCHI VE_DEST n parameter that is used for this purpose is
determined when the standby database is mounted, and this choice is reevaluated
each time a LOG_ARCHI VE_DEST_n parameter is modified.

7.3 Cascaded Redo Transport Destinations

ORACLE

A cascaded redo transport destination (also known as a terminal destination) receives
primary database redo indirectly from a standby database rather than directly from a
primary database.

A physical standby database that cascades primary database redo to one or more
terminal destinations at the same time it is applying changes to its local database files
is known as a cascading standby database.

With cascading, the overhead associated with performing redo transport is offloaded
from a primary database to a cascading standby database.

A cascading standby database can cascade primary database redo to up to 30
terminal destinations.

A cascading standby database can either cascade redo in real-time (as it is being
written to the standby redo log file) or non-real-time (as complete standby redo log files
are being archived on the cascading standby).

7-8

Chapter 7
Cascaded Redo Transport Destinations

Cascading has the following restrictions:

Only physical standby databases can cascade redo.
Real-time cascading requires a license for the Oracle Active Data Guard option.

Non-real-time cascading is supported on destinations 1 through 10 only. (Real-
time cascading is supported on all destinations.)

" Note:

See Before You Patch or Upgrade the Oracle Database Software for
information about how to handle cascaded redo transport destinations during
an Oracle Database upgrade.

Also see the following topics:

Configuring a Terminal Destination

Cascading Scenarios

7.3.1 Configuring a Terminal Destination

These steps describe how to configure a terminal destination.

ORACLE

1.
2.

Select a physical standby database to configure as a cascading standby database.

On the cascading standby database, configure the FAL_SERVER database
initialization parameter with the Oracle Net alias of the primary database or of a
standby database that receives redo directly from the primary database.

On the cascading standby database, configure a LOG_ARCH VE_DEST n database
initialization parameter for one or more terminal destinations. Configure the

SERVI CE attribute of this destination with the Oracle Net alias of the terminal
destination, and the VALI D attribute to be valid for archival of the standby redo log
while in the standby role.

If you specify ASYNC transport mode on destinations 1 through 10, then redo is
shipped in real-time. If you do not specify a transport mode or you specify SYNC on
destinations 1 through 10, then redo is shipped in non-real-time. Destinations 11
through 31 operate only in ASYNC (real-time) transport mode.

At the terminal destination, configure the FAL_SERVER database initialization
parameter with the Oracle Net alias of the cascading standby database or of
another standby database that is directly connected to the primary database.
Although it is also possible to specify the primary database, this would defeat the
purpose of cascading, which is to reduce the redo transport overhead on the
primary database.

Example 7-1 shows some of the database initialization parameters used by the
members of an Oracle Data Guard configuration that includes a primary database
named bost on that sends redo to a local physical standby database named

bost on2, which then cascades primary database redo to a remote physical
standby database named denver.

A LOG_ARCH VE_DEST n database initialization parameter could also be configured
on database bost on that is valid for standby redo log archival to database denver

7-9

Chapter 7
Cascaded Redo Transport Destinations

when database bost on is in the standby role. This would allow redo cascading to
database denver to continue if a switchover is performed between database
bost on and database bost on2.

Example 7-1 Some of the Initialization Parameters Used When Cascading Redo
Primary Database

DB_UNI QUE_NAME=bost on

FAL_SERVER=bost on2

LOG_ARCHI VE_CONFI G=' DG_CONFI G=(bost on, bost on2, denver)'

LOG ARCHI VE_DEST_1=' LOCATI ON=USE_DB_RECOVERY_FI LE_DEST
VALI D_FOR=(ALL_LOGFI LES, ALL_ROLES) DB_UNI QUE_NAME=bost on'

LOG_ARCHI VE_DEST_2=" SERVI CE=host on2 SYNC
VALI D_FOR=(ONLI NE_LOGFI LES, PRI MARY_RCLE) DB_UNI QUE_NAME=bost on2'

Cascading Physical Standby Database
DB_UNI QUE_NAME=bost on2

FAL_SERVER=bost on
LOG_ARCHI VE_CONFI G= ' DG_CONFI G=(bost on, bost on2, denver)'

LOG ARCHI VE_DEST 1=' LOCATI ON= USE_DB_RECOVERY_FI LE_DEST
VALI D_FOR=(ALL_LOGFI LES, ALL_ROLES) DB_UNI QUE_NAME=bost on2'

LOG ARCHI VE_DEST 2= ' SERVI CE=denver
VALI D_FOR=(STANDBY_LOGFI LES, STANDBY_ROLE) DB UNI QUE_NAME=denver'

Cascaded Physical Standby Database
DB_UNI QUE_NAME=denver

FAL_SERVER=bost on2
LOG_ARCHI VE_CONFI G=' DG_CONFI G=(bost on, bost on2, denver)"'

LOG_ARCHI VE_DEST_1=" LOCATI ON= USE_DB_RECOVERY_FI LE_DEST
VALI D_FOR=(ALL_LOGFI LES, ALL_RCLES) DB_UNI QUE_NAME=denver'

For information about validating a configuration after you set up a cascading
environment, see "Validating a Configuration”.

7.3.2 Cascading Scenarios

ORACLE

A Data Guard configuration can be set up to cascade to a single physical standby or to
multiple physical standbys.

See the following topics:

e Cascading to a Physical Standby
e Cascading to Multiple Physical Standbys

7-10

Chapter 7
Data Protection Considerations for Cascading Standbys

7.3.2.1 Cascading to a Physical Standby

These steps provide an example of cascading to a physical standby database.

In this scenario, you have a mission-critical primary database. This database has
stringent performance and data protection requirements, so you have decided to
deploy a local physical standby database to provide zero data loss protection and a
remote, cascaded physical standby database to protect against regional disasters at
the primary and local standby database sites.

You can achieve the objectives described above by performing the following steps:

1. Create a physical standby database at a local site.

2. Create a physical standby database at a site that is sufficiently remote to provide
protection against regional disasters at the primary and local standby database
sites.

3. Configure the local standby database as a SYNC redo transport destination of the
primary database.

4. Configure the remote physical standby database as a terminal destination of the
local standby database.

7.3.2.2 Cascading to Multiple Physical Standbys

These steps provide an example of cascading to multiple physical standby databases.

In this scenario, you have a primary database in North America and you want to
deploy three replicas of this database in Europe to support read-only reporting
applications. For cost and performance reasons, you do not want to maintain network
links from North America to each of your European sites.

You can achieve the objectives described above by performing the following steps:

1. Create a network link between your North American site and one of your European
sites.

2. Create a physical standby database at each of your European sites.

3. Open your physical standby databases in real-time query mode, as described in
Opening a Physical Standby Database .

4. Configure the physical standby database at the European endpoint of your
transatlantic network link to cascade redo to your other European standby
databases.

5. Configure the other two physical standby databases as terminal destinations of the
cascading standby database configured in step 4.

7.4 Data Protection Considerations for Cascading Standbys

ORACLE

When your configuration includes cascading standbys, each destination should have a
LOG_ARCHI VE_DEST_n parameter defined that points back to its source for use during a
failover.

Real-time cascade enables a cascaded standby database to provide nearly the same
level of data protection as any standby database that receives redo directly from a
primary database using asynchronous redo transport. However, although redo is

7-11

Chapter 7
Validating a Configuration

forwarded in real-time, the fact that there is a second network hop creates the potential
for additional data loss if an outage prevents all redo from reaching the terminal
destination.

7.5 Validating a Configuration

To validate an Oracle Data Guard configuration after you create it, query the
V$DATAGUARD_CONFI G view from any database in the configuration.

The view displays the unique database names defined with the DB_UNI QUE_NAME and
LOG_ARCHI VE_CONFI Ginitialization parameters.

¢ See Also:

e Oracle Database Reference for more information about the
V$DATAGUARD CONFI G view

7.6 Monitoring Redo Transport Services

You can monitor redo transport status, as well as redo transport response time.

See the following topics:

Monitoring Redo Transport Status
Monitoring Synchronous Redo Transport Response Time
Redo Gap Detection and Resolution

Redo Transport Services Wait Events

7.6.1 Monitoring Redo Transport Status

You can query views to monitor redo transport status on a redo source database.

ORACLE

Take the following steps to monitor redo transport status on a redo source database.

1.

Perform the following query on the redo source database to determine the most
recently archived sequence number for each thread:

SQL> SELECT MAX(SEQUENCE#), THREAD# FROM VSARCHI VED LOG -
> VHERE RESETLOGS CHANGE# = (SELECT MAX(RESETLOGS_CHANGE#) FROM V$ARCH VED LOG) -
> GROUP BY THREAD;

Perform the following query on the redo source database to determine the most
recently archived redo log file at each redo transport destination:

SQL> SELECT DESTI NATI ON, STATUS, ARCH VED THREAD#, ARCH VED SEQ# -
> FROM V$ARCH VE_DEST_STATUS -
> WHERE STATUS <> ' DEFERRED AND STATUS <> ' | NACTI VE' ;

DESTI NATI ON STATUS ARCH VED THREAD# ARCHI VED_SEQ#
[privatel/prny/lad VALID 1 947
st andbyl VALI D 1 947

7-12

Chapter 7
Monitoring Redo Transport Services

The most recently archived redo log file should be the same for each destination. If
it is not, a status other than VALI D may identify an error encountered during the
archival operation to that destination.

3. Perform a query at a redo source database to find out if an archived redo log file
has been received at a particular redo transport destination. Each destination has
an ID number associated with it. You can query the DEST_| D column of the
V$ARCHI VE_DEST view on a database to identify each destination's ID number.

Assume that destination 1 points to the local archived redo log and that destination
2 points to a redo transport destination. Perform the following query at the redo
source database to find out if any log files are missing at the redo transport
destination:

SQL> SELECT LOCAL. THREAD#, LOCAL. SEQUENCE# FROM -

> (SELECT THREAD#, SEQUENCE# FROM V$ARCHI VED_LOG WHERE DEST_|D=1) -
> LOCAL WHERE -

> LOCAL. SEQUENCE# NOT IN -

> (SELECT SEQUENCE# FROM V$ARCH VED_LOG WHERE DEST_[D=2 AND -

> THREAD# = LOCAL. THREADH) ;

THREAD# SEQUENCE#

1 12
1 13
1 14

4. Setthe LOG_ARCH VE_TRACE database initialization parameter at a redo source
database and at each redo transport destination to trace redo transport progress.
See Setting Archive Tracing for complete details and examples.

7.6.2 Monitoring Synchronous Redo Transport Response Time

ORACLE

The V$REDO DEST_RESP_H STOGRAMview contains response time data for each redo
transport destination.

The response time data is maintained for redo transport messages sent via the
synchronous redo transport mode.

The data for each destination consists of a series of rows, with one row for each
response time. To simplify record keeping, response times are rounded up to the
nearest whole second for response times less than 300 seconds. Response times
greater than 300 seconds are round up to 600, 1200, 2400, 4800, or 9600 seconds.

Each row contains four columns: FREQUENCY, DURATI ON, DEST | D, and Tl ME.

The FREQUENCY column contains the number of times that a given response time has
been observed. The DURATI ON column corresponds to the response time. The DEST_I D
column identifies the destination. The Tl ME column contains a timestamp taken when
the row was last updated.

The response time data in this view is useful for identifying synchronous redo transport
mode performance issues that can affect transaction throughput on a redo source
database. It is also useful for tuning the NET_TI MEQUT attribute.

The next three examples show example queries for destination 2, which corresponds
to the LOG_ARCHI VE_DEST_2 parameter. To display response time data for a different
destination, simply change the DEST_I D in the query.

7-13

Chapter 7
Monitoring Redo Transport Services

Perform the following query on a redo source database to display the response time
histogram for destination 2:

SQL> SELECT FREQUENCY, DURATI ON FROM -
> V$REDO DEST_RESP_HI STOGRAM WHERE DEST | D=2 AND FREQUENCY>1;

Perform the following query on a redo source database to display the slowest
response time for destination 2:

SQL> SELECT max(DURATI ON) FROM VSREDO DEST_RESP_HI STOGRAM -
> \HERE DEST | D=2 AND FREQUENCY>1;

Perform the following query on a redo source database to display the fastest response
time for destination 2:

SQL> SELECT nin(DURATI ON) FROM V$REDO DEST RESP_HI STOGRAM -
> \HERE DEST | D=2 AND FREQUENCY>1;

Note:

The highest observed response time for a destination cannot exceed the
highest specified NET_TI MEQUT value specified for that destination, because
synchronous redo transport mode sessions are terminated if a redo transport
destination does not respond to a redo transport message within

NET_TI MEQUT seconds.

7.6.3 Redo Gap Detection and Resolution

A redo gap occurs whenever redo transmission is interrupted.

When redo transmission resumes, redo transport services automatically detects the
redo gap and resolves it by sending the missing redo to the destination.

The time needed to resolve a redo gap is directly proportional to the size of the gap
and inversely proportional to the effective throughput of the network link between the
redo source database and the redo transport destination. Use redo transport
compression to reduce the redo gap resolution time. The COWRESSI ON attribute of the
LOG_ARCHI VE_DEST_n parameter is used to specify that redo data be compressed
before transmission to the destination.

See LOG_ARCHIVE_DEST_n Parameter Attributes for more information about the
COVPRESSI ON attribute.

7.6.3.1 Manual Gap Resolution

ORACLE

In some situations, gap resolution cannot be performed automatically and it must be
performed manually.

For example, redo gap resolution must be performed manually on a logical standby
database if the primary database is unavailable.

Perform the following query at the physical standby database to determine if there is
redo gap on a physical standby database:

7-14

Chapter 7
Monitoring Redo Transport Services

SQL> SELECT * FROM V$ARCH VE_GAP;

THREAD# LOW SEQUENCE# HI GH_SEQUENCE#

The output from the previous example indicates that the physical standby database is
currently missing log files from sequence 7 to sequence 10 for thread 1.

Perform the following query on the primary database to locate the archived redo log
files on the primary database (assuming the local archive destination on the primary
database is LOG_ARCH VE_DEST_1):

SQL> SELECT NAME FROM V$ARCHI VED_LOG WHERE THREAD#=1 AND -
> DEST_I D=1 AND SEQUENCE# BETWEEN 7 AND 10;

[primary/threadl_dest/arcr_1 7.arc
[primary/threadl_dest/arcr_1 8.arc
[primary/threadl_dest/arcr_1 9.arc

Note:

This query may return consecutive sequences for a given thread. In that
case, there is no actual gap, but the associated thread was disabled and
enabled within the time period of generating these two archived logs. The
query also does not identify the gap that may exist at the tail end for a given
thread. For instance, if the primary database has generated archived logs up
to sequence 100 for thread 1, and the latest archived log that the logical
standby database has received for the given thread is the one associated
with sequence 77, then this query does not return any rows, although there is
a gap for the archived logs associated with sequences 78 to 100.

Copy these log files to the physical standby database and register them using the
ALTER DATABASE REG STER LOGFI LE. For example:

SQ.> ALTER DATABASE REG STER LOGFILE -
> ' [physical _standbyl/threadl_dest/arcr_1 7.arc';

SQ.> ALTER DATABASE REG STER LOGFI LE -
> ' [physical _standbyl/threadl_dest/arcr_1 8.arc';

SQ.> ALTER DATABASE REG STER LOGFI LE -
> ' [physical _standbyl/threadl_dest/arcr_1 9.arc';

ORACLE 7-15

Chapter 7
Monitoring Redo Transport Services

Note:

The V$ARCH VE_GAP view on a physical standby database only returns the
gap that is currently blocking Redo Apply from continuing. After resolving the
gap, query the V$ARCH VE_GAP view again on the physical standby database
to determine if there is another gap sequence. Repeat this process until
there are no more gaps.

To determine if there is a redo gap on a logical standby database, query the

DBA _LOGSTDBY_LOGview on the logical standby database. For example, the following
query indicates there is a gap in the sequence of archived redo log files because it
displays two files for THREAD 1 on the logical standby database. (If there are no gaps,
then the query shows only one file for each thread.) The output shows that the highest
registered file is sequence number 10, but there is a gap at the file shown as
sequence number 6:

SQ> COLUWN FI LE_NAME FORMAT a55

SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L -

> WHERE NEXT_CHANGE# NOT IN -

> (SELECT FI RST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L. THREAD# = THREADH) -
> ORDER BY THREAD#, SEQUENCE#

THREAD# SEQUENCE# FI LE_NAME

1 6 /diskl/oracl e/ dbs/|og-1292880008_6. arc
1 10 /diskl1/oracl e/ dbs/ | 0og-1292880008_10. arc

Copy the missing log files, with sequence numbers 7, 8, and 9, to the logical standby
system and register them using the ALTER DATABASE REGQ STER LOG CAL LOGFI LE
statement. For example:

SQL> ALTER DATABASE REG STER LOG CAL LOGFI LE -
> '/ diskl/oracl e/ dbs/| 0g- 1292880008 7. arc';

SQL> ALTER DATABASE REG STER LOG CAL LOGFI LE -
> '/ diskl/oracl e/ dbs/| og- 1292880008 8. arc';

SQL> ALTER DATABASE REG STER LOG CAL LOGFI LE -
> '/ diskl/oracl e/ dbs/| og- 1292880008 9. arc';

" Note:

A query based on the DBA LOGSTDBY _LOGview on a logical standby database,
as specified above, only returns the gap that is currently blocking SQL Apply
from continuing. After resolving the gap, query the DBA_LOGSTDBY_LOG view
again on the logical standby database to determine if there is another gap
sequence. Repeat this process until there are no more gaps.

ORACLE 7-16

Chapter 7
Tuning Redo Transport

7.6.4 Redo Transport Services Wait Events

You can use Oracle wait events to track redo transport wait time on a redo source
database.

Table 7-2 lists several of these Oracle wait events, which are found in the
V$SYSTEM EVENT dynamic performance view.

For a complete list of the Oracle wait events used by redo transport, see the Oracle
Data Guard Redo Transport and Network Best Practices white paper on the Oracle
Maximum Availability Architecture (MAA) home page at:

http://ww. oracl e. conl got o/ naa

Table 7-2 Redo Transport Wait Events

__|
Wait Event Description

LNS wait on ATTACH Total time spent waiting for redo transport sessions to be
established to all ASYNC and SYNC redo transport destinations

LNS wait on SENDREQ Total time spent waiting for redo data to be written to all ASYNC
and SYNC redo transport destinations

LNS wait on DETACH Total time spent waiting for redo transport connections to be
terminated to all ASYNC and SYNC redo transport destinations

7.7 Tuning Redo Transport

You can optimize redo transport for best performance.

Data Guard automatically tunes redo transport to optimize performance. However, if
you want more control over the tuning, you can use tune the following areas that are
used in redo transport:

* network configuration

» storage configuration

» fastrecovery area

» redo transport configuration

See the Oracle Data Guard Redo Transport and Network Configuration Best Practices
white paper available on the Oracle Maximum Availability Architecture (MAA) home
page at:

http://ww. oracl e. com got o/ maa

ORACLE 7-17

http://www.oracle.com/goto/maa
http://www.oracle.com/goto/maa

Apply Services

These concepts describe how redo data is applied to a standby database.

e Introduction to Apply Services

« Apply Services Configuration Options

e Applying Redo Data to Physical Standby Databases
e Applying Redo Data to Logical Standby Databases

« Standby Considerations When Removing or Renaming a PDB at a Primary

8.1 Introduction to Apply Services

Apply services automatically apply redo to standby databases to maintain
synchronization with the primary database and allow transactionally consistent access
to the data.

By default, apply services waits for a standby redo log file to be archived before
applying the redo that it contains. However, you can enable real-time apply, which
allows apply services to apply the redo in the current standby redo log file as it is being
filled. Real-time apply is described in more detail in Using Real-Time Apply to Apply
Redo Data Immediately.

Apply services use the following methods to maintain physical and logical standby
databases:

» Redo Apply (physical standby databases only)

Uses media recovery to keep the primary and physical standby databases
synchronized.

* SQL Apply (logical standby databases only)

Reconstitutes SQL statements from the redo received from the primary database
and executes the SQL statements against the logical standby database.

8.2 Apply Services Configuration Options

You can apply redo data immediately or you can specify a time delay to apply archived
redo log files.

See the following topics:

* Using Real-Time Apply to Apply Redo Data Immediately
» Specifying a Time Delay for the Application of Archived Redo Log Files

ORACLE 8-1

Chapter 8
Apply Services Configuration Options

8.2.1 Using Real-Time Apply to Apply Redo Data Immediately

ORACLE

If the real-time apply feature is enabled, then apply services can apply redo data as it
is received, without waiting for the current standby redo log file to be archived.

This results in faster switchover and failover times because the standby redo log files
have already been applied to the standby database by the time the failover or
switchover begins. It also enables real-time reporting on an Oracle Active Data Guard
standby by keeping it more closely synchronized with the primary database.

Use the ALTER DATABASE statement to enable the real-time apply feature, as follows:

e For physical standby databases, issue the ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE statement. (As of Oracle Database 12¢ Release 1 (12.1), the
USI NG CURRENT LOGFI LE clause is deprecated and no longer necessary to start
real-time apply.)

» For logical standby databases, issue the ALTER DATABASE START LOGQ CAL
STANDBY APPLY | MVEDI ATE statement.

Real-time apply requires a standby database that is configured with a standby redo log
and that is in ARCHIVELOG mode.

Figure 8-1 shows an Oracle Data Guard configuration with a local destination and a
standby destination. As the remote file server (RFS) process writes the redo data to
standby redo log files on the standby database, apply services can recover redo from
standby redo log files as they are being filled.

8-2

Chapter 8
Apply Services Configuration Options

Figure 8-1 Applying Redo Data to a Standby Destination Using Real-Time Apply

Primary System ' Standby System

Primary
Database
Transactions

Real Time Apply

MRP or
LSP

Synchronous
Oracle Net

Standby
Database

W

Standby
Redo Log Files

LGWR

Oracle Net

Online
Redo Log Files

Archived
Redo Log Archived
Files Redo Log Files

ARCn

8.2.2 Specifying a Time Delay for the Application of Archived Redo
Log Files

In some cases, you may want to create a time lag between the time when redo data is
received from the primary site and when it is applied to the standby database.

You can specify a time interval (in minutes) to protect against the application of
corrupted or erroneous data to the standby database. When you set a DELAY interval, it
does not delay the transport of the redo data to the standby database. Instead, the
time lag you specify begins when the redo data is completely archived at the standby
destination.

ORACLE 8-3

Chapter 8
Applying Redo Data to Physical Standby Databases

Note:

If you define a delay for a destination that has real-time apply enabled, the
delay is ignored. If you define a delay as described in the following
paragraph, then you must start the apply using the USI NG ARCHI VED LOGFI LE
clause as shown in Starting Redo Apply .

Specifying a Time Delay

You can set a time delay on primary and standby databases using the DELAY=nmi nut es
attribute of the LOG_ARCHI VE_DEST _n initialization parameter to delay applying archived
redo log files to the standby database. By default, there is no time delay. If you specify
the DELAY attribute without specifying a value, then the default delay interval is 30
minutes.

Canceling a Time Delay
You can cancel a specified delay interval as follows:

e For physical standby databases, use the NODELAY keyword of the RECOVER MANAGED
STANDBY DATABASE clause:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;
» For logical standby databases, specify the following SQL statement:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY NODELAY;

These commands result in apply services immediately beginning to apply archived
redo log files to the standby database, before the time interval expires.

8.2.2.1 Using Flashback Database as an Alternative to Setting a Time Delay

As an alternative to setting an apply delay, you can use Flashback Database to
recover from the application of corrupted or erroneous data to the standby database.

Flashback Database can quickly and easily flash back a standby database to an
arbitrary point in time.

See Oracle Data Guard Scenarios for scenarios showing how to use Oracle Data
Guard with Flashback Database, and Oracle Database Backup and Recovery User's
Guide for more information about enabling and using Flashback Database.

8.3 Applying Redo Data to Physical Standby Databases

ORACLE

When performing Redo Apply, a physical standby database can use the real-time
apply feature to apply redo directly from the standby redo log files as they are being
written by the remote file server (RFS) process.

This section contains the following topics:

e Starting Redo Apply
* Stopping Redo Apply
* Monitoring Redo Apply on Physical Standby Databases

8-4

Chapter 8
Applying Redo Data to Logical Standby Databases

8.3.1 Starting Redo Apply

To start apply services on a physical standby database, ensure the physical standby
database is started and mounted and then start Redo Apply.

Start apply services on a physical standby database as follows:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

This also automatically enables real-time apply provided the standby database is
configured with a standby redo log and is in ARCHI VELOG mode.

Redo Apply can be run either as a foreground session or as a background process. To
start Redo Apply in the foreground, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

If you start a foreground session, control is not returned to the command prompt until
recovery is canceled by another session.

To start Redo Apply in the background, include the DI SCONNECT keyword on the SQL
statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DI SCONNECT;

or

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USI NG ARCH VED LOGFI LE
DI SCONNECT;

This statement starts a detached server process and immediately returns control to the
user. While the managed recovery process is performing recovery in the background,
the foreground process that issued the RECOVER statement can continue performing
other tasks. This command does not disconnect the current SQL session.

8.3.2 Stopping Redo Apply

Use an ALTER DATABASE SQL statement to stop Redo Apply.

For example, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

8.3.3 Monitoring Redo Apply on Physical Standby Databases

You can monitor the status of apply services on a physical standby database.

See Using Views to Monitor Primary_ Physical _and Snapshot Standby Databases.
You can also monitor the standby database using Oracle Enterprise Manager Cloud
Control.

8.4 Applying Redo Data to Logical Standby Databases

SQL Apply converts the data from the archived redo log or standby redo log into SQL
statements and then executes these SQL statements on the logical standby database.

ORACLE 8-5

Chapter 8
Standby Considerations When Removing or Renaming a PDB at a Primary

Because the logical standby database remains open, tables that are maintained can
be used simultaneously for other tasks such as reporting, summations, and queries.

See the following topics:

e Starting SQL Apply

e Stopping SQL Apply on a Logical Standby Database
e Monitoring SQL Apply on Logical Standby Databases

8.4.1 Starting SQL Apply

Use an ALTER DATABASE SQL statement to start SQL Apply.

For example, to start SQL Apply, start the logical standby database and issue the
following statement:

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY;,

To start real-time apply on the logical standby database to immediately apply redo
data from the standby redo log files on the logical standby database, include the
| MVEDI ATE keyword as shown in the following statement:

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

8.4.2 Stopping SQL Apply on a Logical Standby Database

Use an ALTER DATABASE SQL statement to stop SQL Apply on a logical standby
database.

For example, issue the following statement on the logical standby database:

SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;

When you issue this statement, SQL Apply waits until it has committed all complete
transactions that were in the process of being applied. Thus, this command may not
stop the SQL Apply processes immediately.

8.4.3 Monitoring SQL Apply on Logical Standby Databases

There are views that provide information you can use to manage and monitor SQL
Apply on logical standby databases.

See Views Related to Managing and Monitoring a Logical Standby Database. You can
also monitor the standby database using Oracle Enterprise Manager Cloud Control.
See Troubleshooting Oracle Data Guard.

8.5 Standby Considerations When Removing or Renaming a
PDB at a Primary

Restrictions apply when you are removing or renaming a pluggable database (PDB) at
the primary, if the primary is a multitenant container database (CDB).

e To perform DDL UNPLUG and DRCP operations on a PDB, the PDB must first be
closed on the primary as well as on all standby databases.

ORACLE 8-6

ORACLE

Chapter 8
Standby Considerations When Removing or Renaming a PDB at a Primary

* To perform a DDL RENAME operation on a PDB, the PDB must first be put in open
restricted mode on the primary, and closed on all standby databases.

If you do not close the PDB at the standby before removing it or renaming it at the
primary database, then the standby stops the recovery process for all PDBs. You must
close the dropped PDB at the standby and then restart recovery using the following
SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

8-7

Role Transitions

ORACLE

An Oracle Data Guard configuration consists of one database that functions in the
primary role and one or more databases that function in the standby role.

To see the current role of the databases, query the DATABASE ROLE column in the
V$DATABASE view.

The number, location, and type of standby databases in an Oracle Data Guard
configuration and the way in which redo data from the primary database is propagated
to each standby database determine the role-management options available to you in
response to a primary database outage.

See the following topics for information about how to manage role transitions in an
Oracle Data Guard configuration:

e Introduction to Role Transitions
* Role Transitions Involving Physical Standby Databases
* Role Transitions Involving Logical Standby Databases

e Using Flashback Database After a Role Transition

Note:

These topics describe how to perform role transitions manually, using SQL
statements. Do not use these manual procedures to perform role transitions
in an Oracle Data Guard configuration that is managed by the broker. Use
the role transition procedures provided in Oracle Data Guard Broker instead.

¢ See Also:

Oracle Data Guard Broker for information about using the Oracle Data Guard
broker to:

« Simplify switchovers and failovers by allowing you to invoke them using
either a single key click in Oracle Enterprise Manager Cloud Control or a
single command in the DGMGRL command-line interface.

* Enable fast-start failover to fail over automatically when the primary
database becomes unavailable. When fast-start failover is enabled, the
Oracle Data Guard broker determines if a failover is necessary and
initiates the failover to the specified target standby database
automatically, with no need for DBA intervention.

9-1

Chapter 9
Introduction to Role Transitions

9.1 Introduction to Role Transitions

A database operates in one of the following mutually exclusive roles: primary or
standby.

Oracle Data Guard enables you to change these roles dynamically by using SQL
statements, or by using either of the Oracle Data Guard broker's interfaces. Oracle
Data Guard supports the following role transitions:

* Switchover

Allows the primary database to switch roles with one of its standby databases.
There is no data loss during a switchover. After a switchover, each database
continues to participate in the Oracle Data Guard configuration with its new role.

* Failover

Changes a standby database to the primary role in response to a primary
database failure. If the primary database was not operating in either maximum
protection mode or maximum availability mode before the failure, some data loss
may occur. If Flashback Database is enabled on the primary database, it can be
reinstated as a standby for the new primary database once the reason for the
failure is corrected.

¢ See Also:

* Preparing for a Role Transition for information that helps you choose the
role transition that best minimizes downtime and risk of data loss

* Switchovers for more information about switchovers.
* Failoversfor more information about failovers

e Oracle Data Guard Broker for information about event notification and
database connection failover support available to database clients when
a broker-managed failover occurs

9.1.1 Preparing for a Role Transition

Before starting any role transitions, you must verify that each database is properly
configured and that there are no redo transport errors or redo gaps at the standby
database.

* Verify that each database is properly configured for the role that it is about to
assume. See Creating a Physical Standby Database and Creating a Logical
Standby Database for information about how to configure database initialization
parameters, ARCH VELOG mode, standby redo logs, and online redo logs on primary
and standby databases.

ORACLE 9-2

Chapter 9
Introduction to Role Transitions

Note:

You must define the LOG_ARCHI VE_DEST n and

LOG _ARCHI VE_DEST_STATE n parameters on each standby database so
that when a switchover or failover occurs, all standby sites continue to
receive redo data from the new primary database.

» Verify that there are no redo transport errors or redo gaps at the standby database
by querying the V$ARCH VE_DEST STATUS view on the primary database.

For example, the following query would be used to check the status of the standby
database associated with LOG_ARCHI VE_DEST 2:

SQL> SELECT STATUS, GAP_STATUS FROM V$ARCH VE DEST_STATUS WHERE DEST_ID = 2;

STATUS GAP_STATUS

VALI D NO GAP

Do not proceed until the value of the STATUS column is VALI D and the value of the
GAP_STATUS column is NOGAP, for the row that corresponds to the standby
database.

e Ensure temporary files exist on the standby database that match the temporary
files on the primary database.

* Remove any delay in applying redo that may be in effect on the standby database
that is set to become the new primary database. Not removing the delay results in
a longer switchover time, and may cause the switchover to be disallowed.

» Before performing a switchover to a physical standby database that is in real-time
guery mode, consider bringing all instances of that standby database to the
mounted but not open state to achieve the fastest possible role transition and to
cleanly terminate any user sessions connected to the physical standby database
prior to the role transition.

e When you perform a switchover from an Oracle RAC primary database to a
physical standby database, it is not necessary to shut down all but one primary
database instance.

9.1.2 Choosing a Target Standby Database for a Role Transition

ORACLE

For an Oracle Data Guard configuration with multiple standby databases, there are a
number of factors to consider when choosing the target standby database for a role
transition.

These include the following:

* Locality of the standby database.

» The capability of the standby database (hardware specifications—such as the
number of CPUs, I/O bandwidth available, and so on).

* The time it takes to perform the role transition. This is affected by how far behind
the standby database is in applying redo data, and how much flexibility you have
in terms of trading off application availability with data loss.

» Standby database type.

9-3

Chapter 9
Introduction to Role Transitions

The type of standby chosen as the role transition target determines how other standby
databases in the configuration behave after the role transition. If the new primary was
a physical standby before the role transition, then all other standby databases in the
configuration become standbys of the new primary. If the new primary was a logical
standby before the role transition, then all other logical standbys in the configuration
become standbys of the new primary, but physical standbys in the configuration
continue to be standbys of the old primary and therefore, do not protect the new
primary. In the latter case, a future switchover or failover back to the original primary
database returns all standbys to their original role as standbys of the current primary.
For the reasons described above, a physical standby is generally the best role
transition target in a configuration that contains both physical and logical standbys.

" Note:

A snapshot standby cannot be the target of a role transition. To use a
shapshot standby database as a target for a role transition, first convert it to
a physical standby database and allow all redo received from the primary
database to be applied. See Converting a Snapshot Standby Database into a
Physical Standby Database.

Oracle Data Guard provides the V$DATAGUARD STATS view, which you can use to
evaluate each standby database in terms of the currency of the data in the standby
database, and the time needed to perform a role transition if all available redo data is
applied to the standby database. For example:

SQL> COLUWN NAME FORMAT A24

SQL> COLUWN VALUE FORMAT Al6

SQL> COLUWN DATUM TI ME FORMAT A24

SQ> SELECT NAME, VALUE, DATUM TI ME FROM VSDATAGUARD STATS;

NAMVE VALUE DATUM TI ME
transport |ag +00 00: 00: 00 06/ 18/ 2009 12:22: 06
apply |ag +00 00: 00: 00 06/ 18/ 2009 12:22:06
apply finish time +00 00: 00: 00. 000

estimated startup time 9

This query output shows that the standby database has received and applied all redo
generated by the primary database. These statistics were computed using data
received from the primary database as of 12:22.06 on 06/18/09.

The appl y | ag and transport | ag metrics are computed based on data received from
the primary database. These metrics become stale if communications between the
primary and standby database are disrupted. An unchanging value in the DATUM TI ME
column for the appl y | ag and t ransport | ag metrics indicates that these metrics are
not being updated and have become stale, possibly due to a communications fault
between the primary and standby databases.

9.1.3 Switchovers

A switchover is typically used to reduce primary database downtime during planned
outages.

ORACLE 9-4

ORACLE

Chapter 9
Introduction to Role Transitions

Planned outages are events such as operating system or hardware upgrades, or
rolling upgrades of the Oracle database software and patch sets.

A switchover takes place in two phases. In the first phase, the existing primary
database undergoes a transition to a standby role. In the second phase, a standby
database undergoes a transition to the primary role.

Figure 9-1 shows a two-site Oracle Data Guard configuration before the roles of the
databases are switched. The primary database is in San Francisco, and the standby
database is in Boston.

Figure 9-1 Oracle Data Guard Configuration Before Switchover

San Francisco

Online Redo 1
Log Files Archived |
Redo Log .

Local Files

Archiving

Primary
Database

Oracle Net

Boston

Archived
Redo Log
Files

Standby
Database

Figure 9-2 shows the Oracle Data Guard environment after the original primary
database was switched over to a standby database, but before the original standby
database has become the new primary database. At this stage, the Oracle Data Guard
configuration temporarily has two standby databases.

9-5

Chapter 9
Introduction to Role Transitions

Figure 9-2 Standby Databases Before Switchover to the New Primary Database

San Francisco

Archived
Redo Log
Files

Standby
Database

Boston

Archived
Redo Log
Files

Standby
Database

Figure 9-3 shows the Oracle Data Guard environment after a switchover took place.
The original standby database became the new primary database. The primary
database is now in Boston, and the standby database is now in San Francisco.

Figure 9-3 Oracle Data Guard Environment After Switchover

San Francisco

Archived
Redo Log
Files

Database

1
1
1
1
: Standby
1
1
1

Online Redo

Log Files Archived

Redo Log
Files

Primary
Database

Local
Archiving

Preparing for a Switchover

Ensure the prerequisites listed in Preparing for a Role Transition are satisfied. In
addition, the following prerequisites must be met for a switchover:

ORACLE 9-6

Chapter 9
Introduction to Role Transitions

* For switchovers involving a physical standby database, verify that the primary
database is open and that Redo Apply is active on the standby database.

» For switchovers involving a logical standby database, verify that both the primary
and standby database instances are open and that SQL Apply is active.

" See Also:

e Using SQL Apply to Upgrade the Oracle Database

e Applying Redo Data to Physical Standby Databases for more information
about Redo Apply

* Applying Redo Data to Logical Standby Databases for more information
about SQL Apply

9.1.4 Failovers

A failover is typically used only when the primary database becomes unavailable, and
there is no possibility of restoring it to service within a reasonable period of time.

The specific actions performed during a failover vary based on whether a logical or a
physical standby database is involved in the failover, the state of the Oracle Data
Guard configuration at the time of the failover, and on the specific SQL statements
used to initiate the failover.

Figure 9-4 shows the result of a failover from a primary database in San Francisco to a
physical standby database in Boston.

Figure 9-4 Failover to a Standby Database

San Francisco

Online Redo
Log Files

Archived !
Redo Log
Files

Primary
Database

Local
Archiving

Boston

Online Redo 1
Log Files Archived !

Redo Log
Files

Standby

Database
Becomes Local
Primary Archiving

Database

ORACLE o

Chapter 9
Introduction to Role Transitions

Preparing for a Failover

< Note:

If managed standby recovery at a physical standby database chosen for
failover has stopped with error ORA- 752 or ORA- 600 [3020] , then proceed
directly to Recovering From Lost-Write Errors on a Primary Database.

If possible, before performing a failover, transfer as much of the available and
unapplied primary database redo data as possible to the standby database.

Ensure the prerequisites listed in Preparing for a Role Transition are satisfied. In
addition, the following prerequisites must be met for a failover:

» If a standby database currently running in maximum protection mode is involved in
the failover, then first place it in maximum performance mode by issuing the
following statement on the standby database:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXI M ZE PERFCRVANCE;

Then, if appropriate standby databases are available, you can reset the desired
protection mode on the new primary database after the failover completes.

This is required because you cannot fail over to a standby database that is in
maximum protection mode. In addition, if a primary database in maximum
protection mode is still actively communicating with the standby database, then
issuing the ALTER DATABASE statement to change the standby database from
maximum protection mode to maximum performance mode does not succeed.
Because a failover removes the original primary database from the Oracle Data
Guard configuration, these features serve to protect a primary database operating
in maximum protection mode from the effects of an unintended failover.

Note:

Do not fail over to a standby database to test whether or not the standby
database is being updated correctly. Instead:

— See Verify the Physical Standby Database Is Performing Properly
— See Verify the Logical Standby Database Is Performing Properly

9.1.5 Role Transition Triggers

ORACLE

The DB_ROLE_CHANGE system event is signaled whenever a role transition occurs.

This system event is signaled immediately if the database is open when the role
transition occurs, or the next time the database is opened if it is closed when a role
transition occurs.

The DB_ROLE_CHANGE system event can be used to fire a trigger that performs a set of
actions whenever a role transition occurs.

9-8

Chapter 9
Role Transitions Involving Physical Standby Databases

9.2 Role Transitions Involving Physical Standby Databases

ORACLE

The procedures to perform switchovers and failovers to a physical standby database
have been simplified if you are running Oracle Database 12c¢ Release 1 (12.1) or later.

The former procedures are still supported, however Oracle recommends that you use
the new procedures as described in the following sections:

e Performing a Switchover to a Physical Standby Database

e Performing a Failover to a Physical Standby Database

< Note:

As of Oracle Database 18c, the database buffer cache state is maintained on
an Active Data Guard standby during a role transition so that application
performance is not affected by physical blocks read from disk to populate the
buffer cache. This results in improved application performance on the new
primary after a role transition.

Keeping Physical Standby Sessions Connected During Role Transition

As of Oracle Database 12¢ Release 2 (12.2.0.1), when a physical standby database is
converted into a primary you have the option to keep any sessions connected to the
physical standby connected, without disruption, during the switchover/failover.

To enable this feature, set the STANDBY DB PRESERVE STATES initialization parameter in
your init.ora file before the standby instance is started. This parameter applies to
physical standby databases only. The allowed values are:

* NONE — No user sessions or current buffers on the standby are retained during a
switchover/failover. This is the default value.

e ALL — Both user sessions and current buffers are retained during switchover/
failover.

e SESSI ON— User sessions are retained during switchover/failover.

* BUFFER — Current buffers are retained during switchover/failover.

¢ See Also:

e Troubleshooting Oracle Data Guard for information about how to
troubleshoot problems you might encounter when performing role
transitions to a physical standby database

* Performing Role Transitions Using Old Syntax for information about the
procedures used in prior releases, and a comparison of old and new
syntax

e Oracle Database Reference for a complete description of the
STANDBY_DB_PRESERVE_STATES initialization parameter.

9-9

Chapter 9
Role Transitions Involving Physical Standby Databases

9.2.1 Performing a Switchover to a Physical Standby Database

ORACLE

These steps describe how to perform a switchover to a physical standby database.

Note:

If there is a far sync instance (or a combination of preferred and alternate far
sync instances) connecting the primary and standby databases, then the
procedure to switchover to the standby is the same as described in this topic.
Whether the far sync instances are available or unavailable does not affect
switchover. During switchover, the primary and standby must be able to
communicate directly with each other and perform the switchover role
transition steps oblivious of the far sync instances. See “Using Far Sync
Instances” in Oracle Data Guard Concepts and Administration for examples
of how to set up such configurations correctly so that the far sync instances
can service the new roles of the two databases after switchover.

Verify that the target standby database is ready for switchover.

The new switchover statement has a VERI FY option that results in checks being
performed of many conditions required for switchover. Some of the items checked
are: whether Redo Apply is running on the switchover target; whether the release
version of the switchover target is 12.1 or later; whether the switchover target is
synchronized; and whether it has MRP running.

Suppose the primary database has a DB_UNI QUE_NAME of BOSTON and the
switchover target standby database has a DB_UNI QUE_NAME of CHI CAGO. On the
primary database BOSTON, issue the following SQL statement to verify that the
switchover target, CH CAGO, is ready for switchover:

SQL> ALTER DATABASE SW TCHOVER TO CHI CAGO VERI FY;
ERROR at line 1:
ORA-16470: Redo Apply is not running on switchover target

If this operation had been successful, a Dat abase Altered message would have
been returned but in this example an ORA- 16470 error was returned. This error
means that the switchover target CH CAGOis not ready for switchover. Redo Apply
must be started before the switchover operation.

After Redo Apply is started, issue the following statement again:

SQL> ALTER DATABASE SW TCHOVER TO CHI CAGO VERI FY;
ERROR at line 1:
ORA- 16475: succeeded with warnings, check alert log for nore details

The switchover target, CH CAGQ, is ready for switchover. However, the warnings
indicated by the ORA- 16475 error may affect switchover performance. The alert log
contains messages similar to the following:

SW TCHOVER VERI FY WARNING switchover target has dirty online redo logfiles that
require clearing. It takes time to clear online redo logfiles. This may slow
down switchover process.

9-10

ORACLE

Chapter 9
Role Transitions Involving Physical Standby Databases

You can fix the problems or if switchover performance is not important, those
warnings can be ignored. After making any fixes you determine are necessary,
issue the following SQL statement again:

SQL> ALTER DATABASE SW TCHOVER TO CHI CAGO VERI FY;
Dat abase al tered.

The switchover target, CH CAGO, is now ready for switchover.

Initiate the switchover on the primary database, BOSTON, by issuing the following
SQL statement:

SQL> ALTER DATABASE SW TCHOVER TO CHI CAGO,
Dat abase al tered.

If this statement completes without any errors, proceed to Step 3.

If an error occurs, mount the old primary database (BOSTON) and the old standby
database (CH CAGO). On both databases, query DATABASE ROLE from V$DATABASE.
There are three possible combinations of database roles for BOSTON and CHI CAGO.
The following table describes these combinations and provides the likely cause
and a high level remedial action for each situation. For details on specific error
situations, see “Troubleshooting Oracle Data Guard” in Oracle Data Guard
Concepts and Administration.

Value of DATABASE_ROLE Cause and Remedial Action
column in VSDATABASE

BOSTON database is primary, Cause: The BOSTON database failed to convert to a
CH CAQGDdatabase is standby standby database role.

Action: See the alert log for details on the error that
prevented BOSTON from switching to a standby role, take
the necessary actions to fix the error, reopen one of the
nodes of BOSTON if necessary, and repeat the switchover
process from Step 1.

9-11

ORACLE

Chapter 9
Role Transitions Involving Physical Standby Databases

Value of DATABASE_ROLE Cause and Remedial Action
column in VSDATABASE

BOSTON database is standby, Cause: The CH CAGO database failed to convert to a
CH CAQDOdatabase is standby primary database role.

Action: Issue the following SQL statement to convert
either BOSTON or CHI CAGOto a primary database:

SQL> ALTER DATABASE SW TCHOVER TO target _db_nane
FORCE;

For example:

» On the CH CAG)database, issue the following SQL
statement to convert it to a primary database:

ALTER DATABASE SW TCHOVER TO CHI CAGO FORCE;

« On the BOSTON database, issue the following SQL
statement to convert it to a primary database:

ALTER DATABASE SW TCHOVER TO BOSTON FORCE;

If the SQL statement fails with an ORA- 16473 error, then
you must start Redo Apply before reissuing the
command.

Restart Redo Apply as follows:

SQ> ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE DI SCONNECT;

Reissue the switchover command as follows:

SQL> ALTER DATABASE SWII CHOVER TO BOSTON FORCE;
Dat abase al tered.

BOSTON database is standby, Cause: The BOSTON and CHI CAGO databases have

CH CAQDdatabase is primary successfully switched to their new roles, but there was an
error communicating the final success status back to
BOSTON.

Action: Continue to Step 3 to finish the switchover
operation.

Issue the following SQL statement on the new primary database, CH CAGO, to open
it.

SQL> ALTER DATABASE OPEN,

Issue the following SQL statement to mount the new physical standby database,
BOSTON:

SQL> STARTUP MOUNT;

Or, if BOSTON is an Oracle Active Data Guard physical standby database, then
issue the following SQL statement to open it read only:

SQL> STARTUP;
Start Redo Apply on the new physical standby database. For example:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DI SCONNECT FROM SESSI ON;

9-12

Chapter 9
Role Transitions Involving Physical Standby Databases

Related Topics

Troubleshooting Oracle Data Guard
These are some of the problems that can occur on a standby database, and the
troubleshooting procedures to address them.

Related Topics

Using Far Sync Instances

An Oracle Data Guard far sync instance is a remote Oracle Data Guard
destination that accepts redo from the primary database and then ships that redo
to other members of the Oracle Data Guard configuration.

9.2.2 Performing a Failover to a Physical Standby Database

These steps describe how to perform a failover to a physical standby database.

ORACLE

1.

If the primary database can be mounted, then flush any unsent archived and
current redo from the primary database to the standby database. If this operation
is successful, a zero data loss failover is possible even if the primary database is
not in a zero data loss data protection mode.

First, ensure that Redo Apply is active at the target standby database. Then
mount, but do not open the primary database. If the primary database cannot be
mounted, go to Step 2.

If not already done, then set up the remote LOG ARCHI VE_DEST n configured at the
primary to point to the target destination. (You may not have any remote
LOG_ARCHI VE_DEST_n configured if the target destination was serviced by a far
sync instance, or was a terminal standby in a cascaded configuration.) Also,
ensure that the primary can connect to the target destination by verifying that the
NET_ALI AS TARGET_DB_NAME is valid and properly established.

SQL> ALTER SYSTEM SET LOG ARCH VE_DEST 6=' SERVI CE=NET_AL| AS_TARGET DB_NAME -
> ASYNC VALID FOR=(online_logfile, primary_role) -
> DB_UNI QUE_NAME="t arget _db_uni que_name"' SCOPE=nenory;

SQL> ALTER SYSTEM SET LOG ARCH VE_DEST_STATE_6=ENABLE;

It is also assumed that the LOG_ARCHI VE_CONFI G specification includes the

DB_UNI QUE_NAME of the target destination at the primary (and LOG_ARCH VE_CONFI G
at the target destination includes the DB_UN QUE_NAME of the primary). If not, then
add that information to the LOG_ARCHI VE_CONFI G at the primary and target
destination as required.

Issue the following SQL statement at the primary database:

SQL> ALTER SYSTEM FLUSH REDO TO target _db_nane;

For target db_name, specify the DB_UNI QUE_NAME of the standby database that is
to receive the redo flushed from the primary database.

This statement flushes any unsent redo from the primary database to the standby
database, and waits for that redo to be applied to the standby database.

If this statement completes without any errors, go to Step 5.1f the statement
completes with any error, or if it must be stopped because you cannot wait any
longer for the statement to complete, continue with Step 2.

Query the V$ARCH VED LOGview on the target standby database to obtain the
highest log sequence number for each redo thread.

9-13

ORACLE

Chapter 9
Role Transitions Involving Physical Standby Databases

For example:

SQL> SELECT UNI QUE THREAD# AS THREAD, MAX(SEQUENCE#) -
> OVER (PARTI TI ON BY thread#) AS LAST from V$ARCH VED_LOG

If possible, copy the most recently archived redo log file for each primary database
redo thread to the standby database if it does not exist there, and register it. This
must be done for each redo thread.

For example:
SQL> ALTER DATABASE REG STER PHYSI CAL LOGFI LE 'filespecl';

Query the VSARCH VE_GAP view on the target standby database to determine if
there are any redo gaps on the target standby database.

For example:

SQL> SELECT THREAD#, LOW SEQUENCE#, H GH SEQUENCE# FROM V$ARCH VE_GAP;

THREAD# LOW SEQUENCE# H GH_SEQUENCE#

In this example, the gap comprises archived redo log files with sequence numbers
90, 91, and 92 for thread 1.

If possible, copy any missing archived redo log files to the target standby database
from the primary database and register them at the target standby database. This
must be done for each redo thread.

For example:
SQ.> ALTER DATABASE REG STER PHYSI CAL LOGFI LE ' filespecl';

The query executed in Step 3 displays information for the highest gap only. After
resolving a gap, you must repeat the query until no more rows are returned.

If, after performing Step 2 through Step 4, you are not able to resolve all gaps in
the archived redo log files (for example, because you do not have access to the

system that hosted the failed primary database), then you can expect some data
loss during the failover.

Issue the following SQL statement on the target standby database:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
Issue the following SQL statement on the target standby database:

SQL> ALTER DATABASE FAI LOVER TO target _db_nane;

For example, suppose the target standby database is named CH CAGO.

SQL> ALTER DATABASE FAI LOVER TO CHI CAGO

If this statement completes without any errors, proceed to Step 10.
If there are errors, go to Step 7.

If an error occurs, try to resolve the cause of the error and then reissue the
statement.

9-14

ORACLE

10.

11.
12.

13.

Chapter 9
Role Transitions Involving Physical Standby Databases

» If successful, go to Step 10.
» If the error still occurs and it involves a far sync instance, go to Step 8.
» If the error still occurs and there is no far sync instance involved, go to Step 9.

This step is for far sync instance error cases only. If the error involves a far sync
instance (for example, it is unavailable) and you have tried resolving the issue and
reissuing the statement without success, then you can use the FORCE option. For
example:

SQL> ALTER DATABASE FAI LVOVER TO CH CAGO FORCE;
The FORCE option instructs the failover to ignore any failures encountered when
interacting with the far sync instance and proceed with the failover, if at all

possible. (The FORCE option has meaning only when the failover target is serviced
by a far sync instance.)

If the FORCE option is successful, go to Step 10.
If the FORCE option is unsuccessful, go to Step 9.
Perform a data loss failover.

If an error condition cannot be resolved, a failover can still be performed (with
some data loss) by issuing the following SQL statement on the target standby
database:

SQL> ALTER DATABASE ACTI VATE PHYSI CAL STANDBY DATABASE;
In the following example, the failover operation fails with an ORA- 16472 error. That

error means the database is configured in MaxAvailability or MaxProtection mode
but data loss is detected during failover.

SQL> ALTER DATABASE FAI LOVER TO CH CAGG,
ERROR at line 1:
ORA-16472: failover failed due to data |oss

You can complete the data loss failover by issuing the following SQL statement:

SQL> ALTER DATABASE ACTI VATE PHYSI CAL STANDBY DATABASE;
Dat abase al tered.

Open the new primary database:
SQL> ALTER DATABASE OPEN,
Oracle recommends that you perform a full backup of the new primary database.

If Redo Apply has stopped at any of the other physical standby databases in your
Data Guard configuration, then restart it. For example:

SQL.> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DI SCONNECT;

After a failover, the original primary database can be converted into a physical
standby database of the new primary database using the method described in
Converting a Failed Primary Into a Standby Database Using Flashback Database
or Converting a Failed Primary into a Standby Database Using RMAN Backups, or
it can be re-created as a physical standby database from a backup of the new
primary database using the method described in Step-by-Step Instructions for
Creating a Physical Standby Database.

Once the original primary database is running in the standby role, a switchover
can be performed to restore it to the primary role.

9-15

Chapter 9
Role Transitions Involving Logical Standby Databases

9.3 Role Transitions Involving Logical Standby Databases

Role transition steps differ depending on whether you are performing a switchover or a
failover.

See the following topics for information on how to perform switchovers and failovers
involving a logical standby database:

Performing a Switchover to a Logical Standby Database

Performing a Failover to a Logical Standby Database

¢ Note:

Logical standby does not replicate database services. In the event of a
failover or switchover to a logical standby, mid-tiers connecting to services in
the primary are not able to connect (since the creation of the service is not
replicated), or connect to an incorrect edition (since the modification of the
service attribute is not replicated).

Oracle Clusterware does not replicate the services it manages to logical
standbys. You must manually keep them synchronized between the primary
and standby. See Oracle Clusterware Administration and Deployment Guide
for more information about Oracle Clusterware.

9.3.1 Performing a Switchover to a Logical Standby Database

When you perform a switchover that changes roles between a primary database and a
logical standby database, always initiate the switchover on the primary database and
complete it on the logical standby database.

ORACLE

For the switchover to succeed, these steps must be performed in the order in which
they are described.

1.

On the current primary database, query the SW TCHOVER_STATUS column of the
V$DATABASE fixed view on the primary database to verify it is possible to perform a
switchover.

For example:

SQ> SELECT SW TCHOVER STATUS FROM V$DATABASE;

SW TCHOVER _STATUS

TO STANDBY
1 row sel ected

A value of TO STANDBY or SESSI ONS ACTI VE in the SW TCHOVER_STATUS column
indicates that it is possible to switch the primary database to the logical standby
role. If one of these values is not displayed, then verify the Oracle Data Guard
configuration is functioning correctly (for example, verify all LOG_ARCH VE_DEST n
parameter values are specified correctly). See Oracle Database Reference for
information about other valid values for the SW TCHOVER_STATUS column of the
V$DATABASE view.

9-16

ORACLE

Chapter 9
Role Transitions Involving Logical Standby Databases

To prepare the current primary database for a logical standby database role, issue
the following SQL statement on the primary database:

SQL> ALTER DATABASE PREPARE TO SW TCHOVER TO LOG CAL STANDBY;

This statement notifies the current primary database that it will soon switch to the
logical standby role and begin receiving redo data from a new primary database.
You perform this step on the primary database in preparation to receive the
LogMiner dictionary to be recorded in the redo stream of the current logical
standby database, as described in Step 3.

The value PREPARI NG SW TCHOVER is displayed in the
V$DATABASE. SW TCHOVER_STATUS column if this operation succeeds.

Use the following statement to build a LogMiner dictionary on the logical standby
database that is the target of the switchover:

SQ.> ALTER DATABASE PREPARE TO SW TCHOVER TO PRI MARY;

This statement also starts redo transport services on the logical standby database
that begins transmitting its redo data to the current primary database and to other
standby databases in the Oracle Data Guard configuration. The sites receiving
redo data from this logical standby database accept the redo data but they do not
apply it.

The V$DATABASE. SW TCHOVER_STATUS on the logical standby database initially
shows PREPARI NG DI CTI ONARY while the LogMiner dictionary is being recorded in
the redo stream. Once this has completed successfully, the SW TCHOVER_STATUS
column shows PREPARI NG SW TCHOVER.

Before you can complete the role transition of the primary database to the logical
standby role, verify the LogMiner dictionary was received by the primary database
by querying the SW TCHOVER _STATUS column of the V3DATABASE fixed view on the
primary database. Without the receipt of the LogMiner dictionary, the switchover
cannot proceed, because the current primary database must be able to interpret
the redo records sent from the future primary database. The SW TCHOVER _STATUS
column shows the progress of the switchover.

When the query returns the TO LOG CAL STANDBY value, you can proceed with
Step 5. For example:

SQL> SELECT SW TCHOVER STATUS FROM V$DATABASE;

SW TCHOVER _STATUS

TO LOG CAL STANDBY
1 row sel ected

9-17

ORACLE

Chapter 9
Role Transitions Involving Logical Standby Databases

Note:

You can cancel the switchover operation by issuing the following
statements in the order shown:

a. Cancel switchover on the primary database:
SQL> ALTER DATABASE PREPARE TO SW TCHOVER CANCEL,;
b. Cancel the switchover on the logical standby database:

SQL> ALTER DATABASE PREPARE TO SW TCHOVER CANCEL,;

To complete the role transition of the primary database to a logical standby
database, issue the following SQL statement:

SQL> ALTER DATABASE COWM T TO SW TCHOVER TO LOG CAL STANDBY;

This statement waits for all current transactions on the primary database to end,
prevents any new users from starting new transactions, and establishes a point in
time for the switchover to be committed.

Executing this statement also prevents users from making any changes to the data
being maintained in the logical standby database. To ensure faster execution,
ensure the primary database is in a quiet state with no update activity before
issuing the switchover statement (for example, have all users temporarily log off
the primary database). You can query the V3TRANSACTI ON view for information
about the status of any current in-progress transactions that could delay execution
of this statement.

The primary database has now undergone a role transition to run in the standby
database role.

When a primary database undergoes a role transition to a logical standby
database role, you do not have to shut down and restart the database.

After you complete the role transition of the primary database to the logical
standby role and the switchover notification is received by the standby databases
in the configuration, verify the switchover notification was processed by the target
standby database by querying the SW TCHOVER _STATUS column of the VSDATABASE
fixed view on the target standby database. Once all available redo records are
applied to the logical standby database, SQL Apply automatically shuts down in
anticipation of the expected role transition.

The SW TCHOVER_STATUS value is updated to show progress during the switchover.
When the status is TO PRI MARY, you can proceed with Step 7.

For example:

SQ> SELECT SW TCHOVER STATUS FROM V$DATABASE;

SW TCHOVER_STATUS

TO PRI MARY
1 row sel ected

See Oracle Database Reference for information about other valid values for the
SW TCHOVER _STATUS column of the VEDATABASE view.

9-18

Chapter 9
Role Transitions Involving Logical Standby Databases

7. On the logical standby database that you want to switch to the primary role, use
the following SQL statement to switch the logical standby database to the primary
role:

SQL> ALTER DATABASE COM T TO SW TCHOVER TO PRI MARY;

There is no need to shut down and restart any logical standby databases that are
in the Oracle Data Guard configuration. As described in Choosing a Target
Standby Database for a Role Transition, all other logical standbys in the

configuration become standbys of the new primary, but any physical standby
databases remain standbys of the original primary database.

8. On the new logical standby database, start SQL Apply:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

9.3.2 Performing a Failover to a Logical Standby Database

ORACLE

A failover role transition involving a logical standby database necessitates taking
corrective actions on the failed primary database and on all bystander logical standby
databases.

This topic describes how to perform failovers involving a logical standby database. If
Flashback Database was not enabled on the failed primary database, you must re-
create the database from backups taken from the current primary database.
Otherwise, you can follow the procedure described in Converting a Failed Primary Into
a Standby Database Using Flashback Database to convert a failed primary database
to be a logical standby database for the new primary database.

Depending on the protection mode for the configuration and the attributes you chose
for redo transport services, it might be possible to automatically recover all or some of
the primary database modifications.

1. If the primary database can be mounted, then flush any unsent archived and
current redo from the primary database to the standby database. If this operation
is successful, a zero data loss failover is possible even if the primary database is
not in a zero data loss data protection mode.

First, ensure that Redo Apply is active at the target standby database. Then
mount, but do not open the primary database.

Issue the following SQL statement at the primary database:

SQL> ALTER SYSTEM FLUSH REDO TO t ar get _db_nane;

For target _db_name, specify the DB_UNI QUE_NAME of the standby database that is
to receive the redo flushed from the primary database.

This statement flushes any unsent redo from the primary database to the standby
database, and waits for that redo to be applied to the standby database.

2. Depending on the condition of the components in the configuration, you might
have access to the archived redo log files on the primary database. If so, do the
following:

a. Determine if any archived redo log files are missing on the logical standby
database.

b. Copy missing log files from the primary database to the logical standby
database.

9-19

Chapter 9
Role Transitions Involving Logical Standby Databases

c. Register the copied log files.

You can register an archived redo log file with the logical standby database by
issuing the following statement, for example:

SQL> ALTER DATABASE REG STER LOG CAL LOGFI LE -
> '[diskl/oracle/dbs/log-% % _%.arc';
Dat abase al tered.

3. If you have not previously configured role-based destinations, identify the
initialization parameters that correspond to the remote logical standby destinations
for the new primary database, and manually enable archiving of redo data for each
of these destinations.

For example, to enable archiving for the remote destination defined by the
LOG_ARCHI VE_DEST_2 parameter, issue the following statement:

SQL> ALTER SYSTEM SET LOG_ARCHI VE_DEST_STATE_2=ENABLE SCOPE=BOTH,

To ensure that this change persists if the new primary database is later restarted,
update the appropriate text initialization parameter file or server parameter file. In
general, when the database operates in the primary role, you must enable
archiving to remote destinations, and when the database operates in the standby
role, you must disable archiving to remote destinations.

4. Issue the following statement on the target logical standby database (that you are
transitioning to the new primary role):

SQL> ALTER DATABASE ACTI VATE LOG CAL STANDBY DATABASE FI NI SH APPLY;

This statement stops the remote file server (RFS) process, applies remaining redo
data in the standby redo log file before the logical standby database becomes a
primary database, stops SQL Apply, and activates the database in the primary
database role.

If the FI NI SH APPLY clause is not specified, then unapplied redo from the current
standby redo log file is not applied before the standby database becomes the
primary database.

5. Follow the method described in Configuring Logical Standby Databases After a
Failover to ensure existing logical standby databases can continue to provide
protection for the new primary database.

6. Back up the new primary database immediately after the Oracle Data Guard
database failover. Immediately performing a backup is a necessary safety
measure, because you cannot recover changes made after the failover without a
complete backup copy of the database.

7. After a failover, the original primary database can be converted into a logical
standby database of the new primary database using the method described in
Converting a Failed Primary Into a Standby Database Using Flashback Database
or Converting a Failed Primary into a Standby Database Using RMAN Backups, or
it can be recreated as a logical standby database from a backup of the new
primary database as described in Creating a Logical Standby Database .

Once the original primary database has been converted into a standby database,
a switchover can be performed to restore it to the primary role.

ORACLE 9-20

Chapter 9
Using Flashback Database After a Role Transition

9.4 Using Flashback Database After a Role Transition

After a role transition, you can optionally use the FLASHBACK DATABASE command to
revert the databases to a point in time or system change number (SCN) prior to when
the role transition occurred.

If you flash back a primary database, you must flash back all of its standby databases
to either the same (or earlier) SCN or time.When flashing back primary or standby
databases in this way, you do not have to be aware of past switchovers. Oracle can
automatically flashback across past switchovers if the SCN/time is before any past
switchover.

Note:

Flashback Database must be enabled on the databases before the role
transition occurs. See Oracle Database Backup and Recovery User's Guide
for more information

9.4.1 Using Flashback Database After a Switchover

After a switchover, you can return databases to a time or system change number
(SCN) prior to when the switchover occurred using the FLASHBACK DATABASE
command.

If the switchover involved a physical standby database, the primary and standby
database roles are preserved during the flashback operation. The role in which the
database is running does not change when the database is flashed back to the target
SCN or time to which you flashed back the database. A database running in the
physical standby role after the switchover but prior to the flashback still runs in the
physical standby database role after the Flashback Database operation.

If the switchover involved a logical standby database, flashing back changes the role
of the standby database to what it was at the target SCN or time to which you flashed
back the database.

9.4.2 Using Flashback Database After a Failover

You can use Flashback Database to convert the failed primary database to a point in
time before the failover occurred and then convert it into a standby database.

See Converting a Failed Primary Into a Standby Database Using Flashback Database
for the complete step-by-step procedure.

ORACLE 9-21

Managing Physical and Snapshot Standby
Databases

This chapter discusses the various ways that physical and snapshot standby
databases need to be managed.

See the following topics:

e Starting Up and Shutting Down a Physical Standby Database
* Opening a Physical Standby Database

* Primary Database Changes That Require Manual Intervention at a Physical
Standby

* Recovering Through the OPEN RESETLOGS Statement

e Monitoring Primary, Physical Standby, and Snapshot Standby Databases

* Replicating Restore Points from Primary to Standby

e Tuning Redo Apply

e Tuning Databases in an Active Data Guard Environment with SQL Tuning Advisor
* Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys

e Managing a Snapshot Standby Database

See Oracle Data Guard Broker to learn how the Oracle Data Guard broker simplifies
the management of physical and snapshot standby databases.

10.1 Starting Up and Shutting Down a Physical Standby
Database

This section describes how to start up and shut down a physical standby database.

10.1.1 Starting Up a Physical Standby Database

Use the SQL*Plus STARTUP command to start a physical standby database.

The SQL*Plus STARTUP command starts, mounts, and opens a physical standby
database in read-only mode when it is invoked without any arguments.

After it has been mounted or opened, a physical standby database can receive redo
data from the primary database.

See Applying Redo Data to Physical Standby Databases for information about Redo
Apply and Opening a Physical Standby Database for information about opening a
physical standby database in read-only mode.

ORACLE 10-1

Chapter 10
Opening a Physical Standby Database

Note:

When Redo Apply is started on a physical standby database that has not yet
received redo data from the primary database, an ORA- 01112 message may
be returned. This indicates that Redo Apply is unable to determine the
starting sequence number for media recovery. If this occurs, manually
retrieve an archived redo log file from the primary database and register it on
the standby database, or wait for redo transport to begin before starting
Redo Apply.

10.1.2 Shutting Down a Physical Standby Database

Use the SQL*Plus SHUTDOMN command to stop Redo Apply and shut down a physical
standby database.

Control is not returned to the session that initiates a database shutdown until
shutdown is complete.

If the primary database is up and running, defer the standby destination on the primary
database and perform a log switch before shutting down the physical standby
database.

10.2 Opening a Physical Standby Database

ORACLE

A physical standby database can be opened for read-only access and used to offload
gueries from a primary database.

¢ Note:

A physical standby database that is opened in read-only mode is subject to
the same restrictions as any other Oracle database opened in read-only
mode. For more information, see Oracle Database Administrator's Guide.

If a license for the Oracle Active Data Guard option has been purchased, Redo Apply
can be active while the physical standby database is open, thus allowing queries to
return results that are identical to what would be returned from the primary database.
This capability is known as the real-time query feature. See Real-time query for more
details.

If a license for the Oracle Active Data Guard option has not been purchased, a
physical standby database cannot be open while Redo Apply is active, so the following
rules must be observed when opening a physical standby database instance or
starting Redo Apply:

» Redo Apply must be stopped before any physical standby database instance is
opened.

e If one or more physical standby instances are open, those instances must be
stopped or restarted in a mounted state before starting Redo Apply.

10-2

Chapter 10
Opening a Physical Standby Database

¢ See Also:

e Oracle Database Licensing Information for more information about
Oracle Active Data Guard

10.2.1 Real-time Query

ORACLE

The COWPATI BLE database initialization parameter must be set to 11.0 or higher to use
the real-time query feature of the Oracle Active Data Guard option.

A physical standby database instance cannot be opened if Redo Apply is active on a
mounted instance of that database. Use the following SQL statements to stop Redo
Apply, open a standby instance read-only, and restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> ALTER DATABASE OPEN,
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DI SCONNECT;

" Note:

If Redo Apply is active on an open instance, additional instances can be
opened without having to stop Redo Apply.

Redo Apply cannot be started on a mounted physical standby instance if any instance
of that database is open. The instance must be opened before starting Redo Apply on
it.

Example: Querying VSDATABASE to Check the Standby's Open Mode

This example shows how the value of the V$DATABASE. OPEN_MODE column changes
when a physical standby is open in real-time query mode.

1. Start up and open a physical standby instance, and perform the following SQL
guery to show that the database is open in read-only mode:

SQL> SELECT open_nnde FROM V$DATABASE;

2. Issue the following SQL statement to start Redo Apply:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DI SCONNECT;

Dat abase al tered.

3. Now that the standby is in real-time query mode (the standby is open in read-only
mode and Redo Apply is active), the VEDATABASE. OPEN_MODE column changes to
indicate the following:

SQ.> SELECT open_nmode FROM V$DATABASE;

OPEN_MODE

10-3

Chapter 10
Opening a Physical Standby Database

READ ONLY W TH APPLY

10.2.1.1 Monitoring Apply Lag in a Real-time Query Environment

If you are using real-time query to offload queries from a primary database to a
physical standby database, you can monitor the apply lag to ensure that it is within
acceptable limits.

The current apply lag is the difference, in elapsed time, between when the last applied
change became visible on the standby and when that same change was first visible on
the primary. This metric is computed to the nearest second.

To obtain the apply lag, query the VEDATAGUARD_STATS view. For example:

SQ.> SELECT nane, value, datumtine, tinme_conputed FROM V$DATAGUARD STATS -
> WHERE nane like "apply |ag'

NAME VALUE DATUM TI ME TI ME_COMPUTED

apply |ag +00 00: 00: 00 05/ 27/ 2009 08:54: 16 05/ 27/ 2009 08:54: 17

The appl y | ag metric is computed using data that is periodically received from the
primary database. The DATUM TI ME column contains a timestamp of when this data
was last received by the standby database. The TI ME_COVPUTED column contains a
timestamp taken when the appl y | ag metric was calculated. The difference between
the values in these columns should be less than 30 seconds. If the difference is larger
than this, the appl y | ag metric may not be accurate.

To obtain a histogram that shows the history of apply lag values since the standby
instance was last started, query the VSSTANDBY_ EVENT HI STOGRAMview. For example:

SQL> SELECT * FROM V$STANDBY EVENT H STOGRAM WHERE NAME = 'apply lag' -
> AND COUNT > 0;

NAME TIME UNT COUNT LAST_TI ME_UPDATED

apply |ag 0 seconds 79681 06/ 18/ 2009 10: 05: 00
apply |ag 1 seconds 1006 06/ 18/ 2009 10: 03: 56
apply |ag 2 seconds 96 06/ 18/ 2009 09:51: 06
apply |ag 3 seconds 4 06/ 18/ 2009 04:12: 32
apply |ag 4 seconds 1 06/ 17/ 2009 11:43:51
apply |ag 5 seconds 1 06/ 17/ 2009 11:43:52

6 rows selected

To evaluate the apply lag over a time period, take a snapshot of
V$STANDBY_EVENT_HI STOGRAMat the beginning of the time period and compare that
snapshot with one taken at the end of the time period.

10.2.1.2 Configuring Apply Lag Tolerance in a Real-time Query Environment

The STANDBY_MAX_DATA DELAY session parameter can be used to specify a session
specific apply lag tolerance, measured in seconds, for queries issued by non-
administrative users to a physical standby database that is in real-time query mode.

This capability allows queries to be safely offloaded from the primary database to a
physical standby database, because it is possible to detect if the standby database
has become unacceptably stale.

ORACLE 10-4

Chapter 10
Opening a Physical Standby Database

If STANDBY_MAX_DATA DELAY is set to the default value of NONE, than queries issued to a
physical standby database are executed regardless of the apply lag on that database.

If STANDBY_MAX_DATA DELAY is set to a nonzero value, then queries issued to a physical
standby database are executed only if the apply lag is less than or equal to
STANDBY_MAX DATA DELAY. Otherwise, an ORA- 3172 error is returned to alert the client
that the apply lag is too large.

If STANDBY_ MAX DATA DELAY is set to 0, a query issued to a physical standby database
is guaranteed to return the exact same result as if the query were issued on the
primary database, unless the standby database is lagging behind the primary
database, in which case an ORA- 3172 error is returned.

Use the ALTER SESSI ON SQL statement to set STANDBY_MAX_DATA_DELAY. For example:

SQL> ALTER SESSI ON SET STANDBY_MAX_DATA_DELAY=2

10.2.1.3 Forcing Redo Apply Synchronization in a Real-time Query

Environment

To ensure that all redo data received from the primary database has been applied to a
physical standby database, you can use a SQL ALTER SESSI ON statement.

Issue the following SQL statement:

SQL> ALTER SESSI ON SYNC W TH PRI MARY;

This statement blocks until all redo data received by the standby database at the time
that this command is issued has been applied to the physical standby database. An
ORA- 3173 error is returned immediately, and synchronization does not occur, if the
redo transport status at the standby database is not SYNCHRONI ZED or if Redo Apply is
not active.

To ensure that Redo Apply synchronization occurs in specific cases, use the
SYS_CONTEXT(' USERENV' , ' DATABASE_RCLE') function to create a standby-only trigger
(enabled on the primary but that only takes certain actions if it is running on a
standby). For example, you could create the following trigger that would execute the
ALTER SESSI ON SYNC W TH PRI MARY statement for a specific user connection at logon:

CREATE TRI GGER adg_| ogon_sync_tri gger
AFTER LOGON ON user. schema
begin
i f (SYS_CONTEXT(' USERENV' , ' DATABASE ROLE') IN (' PHYSI CAL STANDBY')) then
execute immediate 'alter session sync with primry';
end if;
end;

10.2.1.4 Real-time Query Restrictions

ORACLE

This list discusses restrictions related to real-time query mode.

e The apply lag control and Redo Apply synchronization mechanisms described
above require that the client be connected and issuing queries to a physical
standby database that is in real-time query mode.

* The following additional restrictions apply if STANDBY_MAX_DATA_DELAY is set to O or
if the ALTER SESSI ON SYNC W TH PRI MARY SQL statement is used:

— The standby database must receive redo data via the SYNC transport.

10-5

Chapter 10
Opening a Physical Standby Database

— The redo transport status at the standby database must be SYNCHRONIZED
and the primary database must be running in either maximum protection mode
or maximum availability mode.

— Real-time apply must be enabled.

» Oracle Active Data Guard achieves high performance of real-time queries in an
Oracle RAC environment through the use of cache fusion. This allows the Oracle
Data Guard apply instance and queries to work out of cache and not be slowed
down by disk I/O limitations. A consequence of this is that an unexpected failure of
the apply instance leaves buffers in inconsistent states across all the open Oracle
RAC instances. To ensure data consistency and integrity, Oracle Data Guard
closes all the other open instances in the Oracle RAC configuration, and brings
them to a mounted state. You must manually reopen the instances - at which time
the data is automatically made consistent, followed by restarting redo apply on one
of the instances. In an Oracle Data Guard broker configuration, the instances are
automatically reopened and redo apply is automatically restarted on one of the
instances.

" See Also:

— Oracle Data Guard Broker for more information about how the broker
handles apply instance failures

— The My Oracle Support note 1357597.1 at http://
support. oracl e. comfor additional information about apply instance
failures in an Oracle Active Data Guard Oracle RAC standby

10.2.1.5 Automatic Block Media Recovery

ORACLE

If corrupt data blocks are encountered when a database is accessed, they can be
automatically replaced with uncorrupted copies of those blocks.

This requires the following conditions:

* The physical standby database must be operating in real-time query mode, which
requires an Oracle Active Data Guard license.

» The physical standby database must be running real-time apply.
Automatic block media recovery works in two directions depending on whether the
corrupted blocks are encountered on the primary or on the standby.

Corrupted Blocks On the Primary

If corrupt data blocks are encountered at a primary database, then the primary
automatically searches for good copies of those blocks on a standby and, if they are
found, has them shipped back to the primary.

The primary requires a LOG_ARCHI VE_DEST n to the standby only (a physical standby, a
cascading physical standby, or a far sync instance). The primary does not require a
LOG_ARCHI VE_DEST_n to any terminal destinations; it is able to automatically ascertain
their service names.

10-6

http://support.oracle.com
http://support.oracle.com

Chapter 10
Opening a Physical Standby Database

Corrupted Blocks On a Standby

If corrupt data blocks are encountered at a standby, then the standby automatically
initiates communication with the primary and requests uncorrupted copies of those
blocks. For the primary to be able to ship the uncorrupted blocks to the standby, the
following database initialization parameters must be configured on the standby. This is
true even if the primary does not directly service the standby (for example, in
cascading configurations).

* The LOG_ARCH VE_CONFI G parameter is configured with a DG_CONFI Glist and a
LOG_ARCHI VE_DEST_n parameter is configured for the primary database.

or
e The FAL_SERVER parameter is configured and its value contains an Oracle Net
service name for the primary database.

Additional Automatic Block Media Repair Considerations

e Automatic repair is supported with any Oracle Data Guard protection mode.
However, the effectiveness of repairing a corrupt block at the primary using the
non-corrupt version of the block from the standby depends on how closely the
standby apply is synchronized with the redo generated by the primary.

* When an automatic block repair has been performed, a message is written to the
database alert log.

* If automatic block repair is not possible, an ORA- 1578 error is returned.

10.2.1.6 Manual Block Media Recovery

The RMAN RECOVER BLOCK command is used to manually repair a corrupted data
block.

This command searches several locations for an uncorrupted copy of the data block.
By default, one of the locations is any available physical standby database operating in
real-time query mode. The EXCLUDE STANDBY option of the RMAN RECOVER BLOCK
command can be used to exclude physical standby databases as a source for
replacement blocks.

¢ See Also:

Oracle Database Backup and Recovery Reference for more information
about the RMAN RECOVER BLOCK command

10.2.1.7 Tuning Queries on a Physical Standby Database

ORACLE

Queries on a physical standby database can be tuned for optimal performance.

For details about tuning queries, see the Active Data Guard Best Practices white
paper available on the Oracle Maximum Availability Architecture (MAA) home page at:

http://ww. oracl e. com got o/ maa

10-7

http://www.oracle.com/goto/maa

Chapter 10
Opening a Physical Standby Database

Force Full Database Caching Mode

The use of force full database caching mode can potentially improve performance
because queries are executed faster.

The enabling and disabling of force full database caching mode is not recorded in
redo, so the status of in-memory caching is not necessarily the same on all members
of a Data Guard configuration.

For more information about the Force Full Database In-Memory Caching feature,
including guidelines on how and when to enable and disable it, see Oracle Database
Performance Tuning Guide.

10.2.1.8 Adding Temp Files to a Physical Standby

If you are using a standby to offload queries from the primary database, then the
standby must be configured with the minimum of one temp tablespace with at least
one temporary data file.

If the nature of the workload requires more temp table space than is automatically
created when the standby is first created, then you may need to manually add
additional space.

To add temporary files to the physical standby database, perform the following tasks:

1. ldentify the tablespaces that contain temporary files. Do this by entering the
following command on the standby database:

SQL.> SELECT TABLESPACE_NAME FROM DBA_TABLESPACES
2> WWHERE CONTENTS = ' TEMPORARY" ;

TABLESPACE_NAME

2. For each tablespace identified in the previous query, add a new temporary file to
the standby database. The following example adds a new temporary file called
TEMP1 with size and reuse characteristics that match the primary database
temporary files:

SQL> ALTER TABLESPACE TEMP1 ADD TEMPFI LE
2> '[archl/boston/tenp0l. dbf'
3> SI ZE 40M REUSE;

10.2.2 Using SQL and PL/SQL on Active Data Guard Standbys

ORACLE

Starting with Oracle Database Release 19c, you can perform SQL and PL/SQL
operations in Active Data Guard standby databases.

Related Topics

e Performing DML Operations on Active Data Guard Standby Databases
You can run DML operations on Active Data Guard standby databases. This
enables you to run read-mostly applications, which occasionally execute DMLs, on
the standby database.

10-8

Chapter 10
Opening a Physical Standby Database

* Running Top-level PL/SQL Operations on Active Data Guard Standby Databases
Top-level PL/SQL blocks that you run on Active Data Guard standby databases
can be redirected to and run on the primary database, if they do not contain bind
variables.

* Automatic Recompliation of Modified PL/SQL Objects
PL/SQL objects that are run on standby instances can be recompiled, if they are
invalid.

10.2.2.1 Performing DML Operations on Active Data Guard Standby Databases

ORACLE

You can run DML operations on Active Data Guard standby databases. This enables
you to run read-mostly applications, which occasionally execute DMLs, on the standby
database.

DML operations on a standby can be transparently redirected to and run on the
primary database. This includes DML statements that are part of PL/SQL blocks. The
Active Data Guard session waits until the corresponding changes are shipped to and
applied to the Active Data Guard standby. Read consistency is maintained during the
DML operation and the standby database on which the DML is run can view its
uncommitted changes. However, all the other standby database instances can view
these changes only after the transaction is committed.

Note:

Avoid running too may DML operations on Active Data Guard standby
databases. Because the operations are actually performed on the primary,
too many DMLs may impact the performance of the primary.

Note:

DML operations in Oracle XA transactions are not supported on Active Data
Guard standby databases.

Automatic redirection of DML operations to the primary can be configured at the
system level or the session level. The session level setting overrides the system level
setting.

To configure automatic redirection of DML operations for all standby sessions in an
Active Data Guard environment:

e Set the ADG REDI RECT_DM. initialization parameter to TRUE.

To configure automatic redirection of DML operations for the current session, use the
following command:

e ALTER SESSI ON ENABLE ADG REDI RECT_DM;
Example 10-1 Performing DML Operations on a Physical Standby Database

The physical standby database in an Active Data Guard setup contains a table named
enpl oyees. You can insert rows into this table by running DML on a physical standby
database in the Active Data Guard environment.

10-9

Chapter 10
Opening a Physical Standby Database

On the standby database, enable DML redirection for the current session:

SQL> ALTER SESSI ON ENABLE ADG_REDI RECT_DM.;

Add a row to the enpl oyees table using the following command:

SQ.> I NSERT | NTO enpl oyees VALUES (.......);

At this point, the changed data is visible only to the standby database on which the
command was run. After the insert operation is committed on the primary database,
the changes are shipped back and applied to all the standby databases.

10.2.2.2 Running Top-level PL/SQL Operations on Active Data Guard Standby

Databases

Top-level PL/SQL blocks that you run on Active Data Guard standby databases can be
redirected to and run on the primary database, if they do not contain bind variables.

To redirect top-level PL/SQL operations that are run on a standby to the primary,
configure automatic redirection using the following command on the standby database:

e ALTER SESSI ON ENABLE ADG REDI RECT_PLSQL;

You can configure automatic redirection for top-level PL/SQL operations only at the
session level.

10.2.2.3 Automatic Recompliation of Modified PL/SQL Objects

ORACLE

PL/SQL objects that are run on standby instances can be recompiled, if they are
invalid.

PL/SQL objects become invalid when their dependent objects are modified or
dropped. Starting with Oracle Database Release 19c, invalidated PL/SQL objects run
on a standby database can be automatically recomplied by setting the

ADG_REDI RECT_DM. initialization parameter to TRUE. The DDL corresponding to these
PL/SQL objects is redirected to and executed on the primary database. The standby
session waits until the operation is completed.

Example 10-2 Automatically Recompiling Modified PL/ISQL Objects

On the primary database in an Active DataGuard environment, a procedure named
i nsert_enpl is created. This procedure is used to update the enpl oyees table.

CREATE OR REPLACE PROCEDURE update_sal (enmp_id I N NUMBER sal | N NUVBER)
AS BEG N

UPDATE enpl oyees SET sal ary=sal WHERE enpl oyee_id=enp_i d);
END;

The structure of the enpl oyees table is subsequently modified using an ALTER TABLE
command. This invalidates the updat e_sal procedure.

10-10

Chapter 10
Opening a Physical Standby Database

On a standby database in the Active DataGuard environment, you want to use the
updat e_sal procedure to update the salary of an employee. Run the following
commands on the physical standby:

SQ.> ALTER SESSI ON ENABLE ADG REDI RECT_DM.;
SQL> exec update_sal (105, 6000);

The user running these commands has been granted permission to execute the
updat e_sal procedure.

10.2.3 Using Temporary Tables on Active Data Guard Instances

You can create both global temporary tables and private temporary tables on an Active
Data Guard instance.

A temporary table holds data that exists only for the duration of a transaction or
session. Data in a temporary table is private to the session. Each session can only see
and modify its own data.

" See Also:

e Oracle Database Concepts for descriptions of global temporary tables,
private temporary tables, and the differences between them

10.2.3.1 Global Temporary Tables on Active Data Guard Instances

ORACLE

DML and DDL operations are allowed on temporary tables on Oracle Active Data
Guard instances.

DML Operations

When a global temporary table is changed by a DML operation, the change itself does
not generate redo because it is only a temporary table. But the undo generated for the
change does in turn generate redo. Redo generation on a read-only database (such as
an Active Data Guard standby) is not allowed. However, DML operations on global
temporary tables are allowed on Oracle Active Data Guard standbys because the
temporary undo feature allows the undo for changes to a global temporary table to be
stored in the temporary tablespace as opposed to the undo tablespace. And undo
stored in the temporary tablespace does not generate redo.

This feature benefits Oracle Data Guard in the following ways:

» Read-mostly reporting applications that use global temporary tables for storing
temporary data can be offloaded to an Oracle Active Data Guard instance.

e When temporary undo is enabled on the primary database, undo for changes to a
global temporary table are not logged in the redo and thus, the primary database
generates less redo. Therefore, the amount of redo that Oracle Data Guard must
ship to the standby is also reduced, thereby reducing network bandwidth
consumption and storage consumption.

10-11

ORACLE

Chapter 10
Opening a Physical Standby Database

To enable temporary undo on the primary database, use the TEMP_UNDO_ENABLED
initialization parameter. On an Oracle Active Data Guard standby, temporary undo is
always enabled by default so the TEMP_UNDO_ENABLED parameter has no effect.

Restrictions

* The temporary undo feature requires that the database initialization parameter
COVPATI BLE be set to 12.0.0 or higher.

* The temporary undo feature on Oracle Active Data Guard instances does not
support temporary BLOBs or temporary CLOBs.

» Distributed transactions on an Oracle Active Data Guard instance are not
permitted if they involve changes to local objects. For example, you cannot commit
a transaction that modifies a global temporary table on the Oracle Active Data
Guard instance and also updates a remote table on another database using a
database link. You must commit or roll back any outstanding DML operations to
global temporary tables on the Active Data Guard instance before issuing a
remote DML operation, or vice versa. This also includes implicit writes to global
temporary tables made by operations such as EXPLAI N PLAN statements.

" See Also:

e Oracle Database Administrator's Guide for more information about
temporary undo

e Oracle Database Reference for more information about the
TEMP_UNDO_ENABLED initialization parameter

DDL Operations

Global temporary tables can be created on, and dropped from, Active Data Guard
standby databases. The DDL for these operations is transparently redirected to the
primary database. The Active Data Guard session then waits until the corresponding
changes are shipped and applied to the Active Data Guard standby. The following is
an example of creating a global temporary table:

SQ.> CREATE GLOBAL TEMPORARY TABLE tab2(cl nunber, c2 varchar(10)) ON
COW T PRESERVE ROWS;

Tabl e created.

SQL>

Note:

For the DDL redirection to succeed, managed standby recovery at the Active
Data Guard standby database must be started with the real-time apply option
and the Active Data Guard standby database must be in sync with the
primary database.

10-12

Chapter 10
Opening a Physical Standby Database

Note:

Data definition language (DDL) operations on global temporary tables (for
example, CREATE and DRCP) can still be issued from the primary database.
DDL changes are visible on the standby when it catches up with the primary
database.

10.2.3.2 Private Temporary Tables on Active Data Guard Instances

You can create private temporary tables on Oracle Active Data Guard instances even
though they are read-only.

The reason private temporary tables can be created in read-only databases is that
their metadata is stored in memory, rather than on disk. The lifetime of a private
temporary table is only during the session which created it and it gets dropped
automatically when the session ends. This functionality allows reporting applications to
run on Active Data Guard standby databases.

Note:

e Oracle Database Administrator’s Guide for information about creating
private temporary tables

10.2.4 IM Column Store in an Active Data Guard Environment

As of Oracle Database 12¢ Release 2 (12.2.0.1), the Oracle Database In-Memory
column store (IM column store) is supported on a standby database in an Active Data
Guard (ADG) environment.

A reporting workload executing on an Active Data Guard standby database can use
the IM column store. Using the IM column store improves the execution performance
of the workload because it can take full advantage of accessing data in a compressed
columnar format, in memory. Additionally, it is possible to populate a completely
different set of data in the IM column store on the primary and standby databases,
effectively doubling the size of the IM column store available to the application. To
enable IM column store support with multi-instance redo apply, set the initialization
parameter enabl e_i nc_wi th_ni ra to TRUE.

Note the following restrictions:

* In-Memory Expressions are captured based only on the queries executed on the
primary database.

* In-Memory Information Lifecycle Management (ILM) polices based on access
criteria are triggered based only on access recorded on the primary database.

ORACLE 10-13

Chapter 10
Opening a Physical Standby Database

Note:

e In-Memory FastStart is not supported on a standby database in an ADG
environment.

e In-Memory Join-Groups are not supported on a standby database in an
ADG environment.

Related Topics
e Oracle Database In-Memory Guide

e Oracle Database Reference

10.2.5 In-Memory External Tables in an Active Data Guard
Environment

Oracle Active Data Guard supports In-Memory external tables.

In-Memory external tables, both on a primary and standby database, are loaded in

parallel. Queries that are run in an Active Data Guard environment use the In-Memory
external table segments with parallel query. Using | NVEMORY or NO | NVEMORY results in
the In-Memory external table segment on an active standby database being released.

Note:

Using the FOR SERVI CE subclause of the | NVEMCRY. . . DI STRI BUTE clause
when populating an | NVEMORY object in the IM column store is not supported
for the primary database, standby database, or both.

¢ See Also:

Oracle Database In-Memory Guide

10.2.6 Using Sequences in Oracle Active Data Guard

ORACLE

In an Oracle Active Data Guard environment, sequences created by the primary
database with the default CACHE and NOORDER options can be accessed from standby
databases as well.

When a standby database accesses such a sequence for the first time, it requests that
the primary database allocate a range of sequence numbers. The range is based on
the cache size and other sequence properties specified when the sequence was
created. Then the primary database allocates those sequence numbers to the
requesting standby database by adjusting the corresponding sequence entry in the
data dictionary. When the standby has used all the numbers in the range, it requests
another range of numbers.

10-14

Chapter 10
Opening a Physical Standby Database

The primary database ensures that each range request from a standby database gets
a range of sequence numbers that do not overlap with the ones previously allocated
for both the primary and standby databases. This generates a unique stream of
sequence numbers across the entire Oracle Data Guard configuration.

Because the standby's requests for a range of sequences involve a round-trip to the
primary, be sure to specify a large enough value for the CACHE keyword when you
create a sequence to be used on an Oracle Active Data Guard standby. Otherwise,
performance could suffer.

Also, be sure the terminal standby has a LOG_ARCH VE_DEST n parameter defined that
points back to the primary.

Example: Assigning a Range of Sequence Values In a Multi-standby
Configuration

This example shows how a range of sequence values can be assigned to a database
when it references NEXTVAL on the sequence either for the first time or after it uses up
all of the previously assigned sequence values. In this example, there are two standby
databases.

1. On the primary database, issue the following SQL statements to create a global
temporary table named gt t, and a sequence named g with a cache size of 10:

SQL> CREATE GLOBAL TEMPORARY TABLE gtt (a int):
Tabl e created.
SQL> CREATE SEQUENCE g CACHE 10;

Sequence creat ed.
2. On the first standby database, issue the following SQL statements:

SQ.> I NSERT INTO gtt VALUES (g. NEXTVAL);
1 row created.
SQ.> I NSERT INTO gtt VALUES (g. NEXTVAL);
1 row created.

SQL> SELECT * FROM gtt;

Because the sequence cache size was set to 10 (in Step 1) and because this is
the first time the sequence was accessed, the results of the SELECT statement
show that the first standby database is assigned sequence numbers 1 to 10.

3. On the primary database, issue the following SQL statements:

SQL> SELECT g. NEXTVAL FROM dual ;

ORACLE 10-15

Chapter 10
Opening a Physical Standby Database

SQL> SELECT g. NEXTVAL FROM dual ;

The results of the SELECT statements show that the primary database is assigned
the next range of sequence values, 11-20.

4. On the second standby database, issue the following SQL statements:

SQL> I NSERT INTO gtt VALUES (g. NEXTVAL);
1 row created.
SQ> I NSERT INTO gtt VALUES (g. NEXTVAL);
1 row created.

SQL> SELECT * FROM gtt;

The results of the SELECT statement show that the second standby is assigned the
next range of sequence values, 21-30.

" Note:

Sequences created with the ORDER or NOCACHE options cannot be
accessed on an Oracle Active Data Guard standby.

10.2.6.1 Session Sequences

ORACLE

A session sequence is a special type of sequence that is specifically designed to be
used with global temporary tables that have session visibility.

Unlike the existing regular sequences (referred to as "global" sequences for the sake
of comparison), a session sequence returns a unique range of sequence numbers only
within a session, but not across sessions. Another difference is that session
sequences are not persistent. If a session goes away, so does the state of the session
sequences that were accessed during the session.

Session sequences support most of the sequence properties that are specified when
the sequence is defined. However, the CACHE/NOCACHE and ORDER/NOORDER options are
not relevant to session sequences and are ignored.

Session sequences must be created by a read/write database but can be accessed on
any read/write or read-only databases (either a regular database temporarily open
read-only or a standby database).

Creating and Altering Session Sequences
To create a session sequence, issue the following SQL statement:

SQL> CREATE SEQUENCE ... SESSI ON;

10-16

ORACLE

Chapter 10
Opening a Physical Standby Database

To alter an existing session sequence to be a regular ("global”) sequence, issue the
following SQL statement:

SQL> ALTER SEQUENCE ... GLOBAL;

To alter a regular sequence to be a session sequence, issue the following SQL
statement:

SQL> ALTER SEQUENCE ... SESSI O\

Example: Using Session Sequences

This example shows how session sequence values are unique to each database
session.

1.

On the primary database, issue the following SQL statements to create a global
temporary table named gtt and a session sequence named s:

SQL> CREATE GLOBAL TEMPORARY TABLE gtt (a int);
Tabl e created.
SQL> CREATE SEQUENCE s SESSI ON,

Sequence creat ed.
On the standby database, issue the following SQL statements:

SQ.> I NSERT INTO gtt VALUES (s. NEXTVAL);
1 row created.
SQ.> I NSERT INTO gtt VALUES (s. NEXTVAL);

1 row created.

SQL> SELECT * FROM gtt;

From another session of the same standby database, issue the following SQL
statements:

SQ.> I NSERT INTO gtt VALUES (s. NEXTVAL);
1 row created.
SQ.> I NSERT INTO gtt VALUES (s. NEXTVAL);

1 row created.

SQ> SELECT * FROM gtt;

10-17

Chapter 10

Primary Database Changes That Require Manual Intervention at a Physical Standby

The results of the SELECT statement show that the sequence values assigned are
the same as those assigned for the first session in the previous step. This is
because sequence values are unique to each database session.

10.3 Primary Database Changes That Require Manual
Intervention at a Physical Standby

Most structural changes made to a primary database are automatically propagated
through redo data to a physical standby database, but there are some changes that

require manual intervention.

The following table lists primary database structural and configuration changes that
require manual intervention at a physical standby database.

Table 10-1 Primary Database Changes That Require Manual Intervention at a Physical Standby

Primary Database Change

Action Required on Physical Standby Database

Adding a Data File or Creating a Tablespace

Dropping Tablespaces and Deleting Data Files

Using Transportable Tablespaces with a Physical
Standby Database

Renaming a Data File in the Primary Database
Add or Drop a Redo Log File Group

NOLOGGING or Unrecoverable Operations

Refresh the Password File

Reset the TDE Master Encryption Key

Initialization Parameters

No action is required if the STANDBY_FI LE_MANAGEMENT
database initialization parameter is set to AUTQ. If this
parameter is set to MANUAL, the new data file must be
copied to the physical standby database.

Delete data file from primary and physical standby
database after the redo data containing the DROP or DELETE
command is applied to the physical standby.

Move tablespace between the primary and the physical
standby database.

Rename the data file on the physical standby database.

Evaluate the configuration of the redo log and standby redo
log on the physical standby database and adjust as
necessary.

Use the RMAN command RECOVER ... NONLOGGED
BLOCK to replace the invalid blocks on the standby with the
changed blocks from the primary.

As of Oracle Database 12c¢ Release 2 (12.2.0.1), password
file changes done on the primary database are
automatically propagated to standby databases. The only
exception to this is far sync instances. Updated password
files must still be manually copied to far sync instances
because far sync instances receive redo, but do not apply
it. After the password file is up-to-date at the far sync
instance, the redo containing the password update at the
primary is automatically propagated to any standby
databases that are set up to receive redo from that far sync
instance. The password file is updated on the standby when
the redo is applied.

Replace the database encryption wallet on the physical
standby database with a fresh copy of the database
encryption wallet from the primary database.

Evaluate whether a corresponding change must be made to
the initialization parameters on the physical standby
database.

ORACLE

10-18

Chapter 10
Primary Database Changes That Require Manual Intervention at a Physical Standby

10.3.1 Adding a Data File or Creating a Tablespace

The STANDBY_FI LE_MANAGEMENT database initialization parameter controls whether the
addition of a data file to the primary database is automatically propagated to a physical
standby databases.

If the STANDBY_FI LE_MANAGEMENT database parameter on the physical standby
database is set to AUTQ, any new data files created on the primary database are
automatically created on the physical standby database.

If the STANDBY_FI LE_MANAGEMENT database parameter on the physical standby
database is set to MANUAL, a new data file must be manually copied from the
primary database to the physical standby databases after it is added to the primary
database.

" Note:

On a physical standby for which the Oracle Active Data Guard option
has been enabled, you cannot use the manual copy method. Instead,
you must execute the following SQL statement on the standby to create
an empty data file:

SQL> ALTER DATABASE CREATE DATAFI LE [filename | filenunber] -
AS [NEW| new_filenane];
You must specify which one to rename: the fi | ename or the fi | enunber.

Also specify either the new filename or NEW The NEWkeyword lets Oracle
automatically choose a name, if Oracle Managed Files (OMF) is
enabled.

If an existing data file from another database is copied to a primary database, it must
also be copied to the standby database and the standby control file must be re-
created, regardless of the setting of STANDBY_FI LE_MANAGEMENT parameter.

10.3.2 Dropping Tablespaces and Deleting Data Files

When a tablespace is dropped or a data file is deleted from a primary database, the
corresponding data file(s) must be deleted from the physical standby database.

ORACLE

The following example shows how to drop a tablespace:

SQL> DROP TABLESPACE tbs_4;
SQL> ALTER SYSTEM SW TCH LOGFI LE;

To verify that deleted data files are no longer part of the database, query the

V$DATAFI LE view.

Delete the corresponding data file on the standby system after the redo data that
contains the previous changes is applied to the standby database. For example:

% rm /di sk1/ oracl e/ oradat a/ payrol | / s2t bs_4. dbf

10-19

Chapter 10
Primary Database Changes That Require Manual Intervention at a Physical Standby

On the primary database, after ensuring the standby database applied the redo
information for the dropped tablespace, you can remove the data file for the
tablespace. For example:

% rm/di sk1/oracl e/ oradatal/ payrol | /tbs_4. dbf

10.3.2.1 Using DROP TABLESPACE INCLUDING CONTENTS AND
DATAFILES

You can issue the SQL DROP TABLESPACE | NCLUDI NG CONTENTS AND DATAFI LES
statement on the primary database to delete the data files on both the primary and
standby databases.

To use this statement, the STANDBY _FI LE_MANAGEMENT initialization parameter must be
set to AUTO. For example, to drop the tablespace at the primary site:

SQL> DROP TABLESPACE ths_4 | NCLUDI NG CONTENTS AND DATAFI LES;
SQ> ALTER SYSTEM SW TCH LOGFI LE;

10.3.3 Using Transportable Tablespaces with a Physical Standby
Database

You can use the Oracle transportable tablespaces feature to move a subset of an
Oracle database and plug it in to another Oracle database, essentially moving
tablespaces between the databases.

To move or copy a set of tablespaces into a primary database when a physical
standby is being used, perform the following steps:

1. Generate a transportable tablespace set that consists of data files for the set of
tablespaces being transported and an export file containing structural information
for the set of tablespaces.

2. Transport the tablespace set:
a. Copy the data files and the export file to the primary database.
b. Copy the data files to the standby database.

The data files must have the same path name on the primary and standby
databases unless the DB_FI LE_NAME_CONVERT database initialization parameter
has been configured. If DB_FI LE_NAME_CONVERT has not been configured and the
path names of the data files are not the same on the primary and standby
databases, issue the ALTER DATABASE RENAME FI LE statement to rename the data
files. Do this after Redo Apply has failed to apply the redo generated by plugging
the tablespace into the primary database. The STANDBY FI LE_MANAGEMENT
initialization parameter must be set to MANUAL before renaming the data files, and
then reset to the previous value after renaming the data files.

3. Plug in the tablespace.

Invoke the Data Pump utility to plug the set of tablespaces into the primary
database. Redo data is generated and applied at the standby site to plug the
tablespace into the standby database.

For more information about transportable tablespaces, see Oracle Database
Administrator's Guide.

ORACLE 10-20

Chapter 10
Primary Database Changes That Require Manual Intervention at a Physical Standby

10.3.4 Renaming a Data File in the Primary Database

ORACLE

When you rename one or more data files in the primary database, the change is not
propagated to the standby database. It must be done manually.

To rename the same data files on the standby database, you must manually make the
equivalent modifications on the standby database because the modifications are not
performed automatically, even if the STANDBY_FI LE_MANAGENVENT initialization parameter
is set to AUTO.

The following steps describe how to rename a data file in the primary database and
manually propagate the changes to the standby database.

1. Torename the data file in the primary database, take the tablespace offline:
SQL> ALTER TABLESPACE ths_4 OFFLI NE;

2. Exit from the SQL prompt and issue an operating system command, such as the
following UNIX nv command, to rename the data file on the primary system:

% mv /di sk1/oracl e/ oradat a/ payrol | /tbs_4. dbf
/ di sk1/ oracl e/ oradat a/ payrol | / t bs_x. dbf

3. Rename the data file in the primary database and bring the tablespace back
online:

SQ> ALTER TABLESPACE tbs_4 RENAME DATAFILE -
> ' [diskl/oracl e/ oradat a/ payrol | /tbs_4. dbf" -
> TO '/diskl/oracl el oradatal payrol|/tbs_x.dbf";

SQL> ALTER TABLESPACE ths_4 ONLI NE;

¢ Note:

An alternative to these first three steps is to use the ALTER DATABASE MOVE
DATAFI LE command to rename a datafile. This command lets you
rename a datafile while allowing read/write access to the datafile.
Adequate storage area is a prerequisite for moving a datafile because
during the execution of the MOVE DATAFI LE command, the database
maintains both the original and the renamed datafiles as two separate
files. See Moving the Location of Online Data Files for more information.

4. Connect to the standby database and stop Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
5. Shut down the standby database:

SQL> SHUTDOM;

6. Rename the data file at the standby site using an operating system command,
such as the UNIX nv command:

% mv /diskl/oracl e/ oradatal/ payrol | /ths_4.dbf /diskl/oracle/oradata/payroll/
tbs_x. dbf

7. Start and mount the standby database:

SQL> STARTUP MOUNT;

10-21

Chapter 10
Primary Database Changes That Require Manual Intervention at a Physical Standby

8. Rename the data file in the standby control file. To rename a data file, you must
set the STANDBY_FI LE_MANAGEMENT database initialization parameter to MANUAL.
You can then reset the parameter to its previous value after renaming the data file.

SQL> ALTER DATABASE RENAME FILE '/diskl/oracle/oradatal/payroll/tbhs_4.dbf" -
> TO '/ di skl/oracl e/ oradat a/ payrol | / tbs_x. dbf";

9. On the standby database, restart Redo Apply:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE -
> DI SCONNECT FROM SESSI ON,

If you do not rename the corresponding data file at the standby system, and then try to
refresh the standby database control file, the standby database attempts to use the
renamed data file, but will not find it. Error messages similar to the following are written
to the alert log:

ORA-00283: recovery session cancel ed due to errors
ORA-01157: cannot identify/lock datafile 4 - see DBWR trace file
ORA-01110: datafile 4: '/Diskl/oracleloradatalpayroll/tbhs_x.dbf'

Note:

An alternative to steps 4-9 is to use the ALTER DATABASE MOVE DATAFI LE
command to rename a datafile at the standby. See Moving the Location of
Online Data Files for more information.

10.3.5 Add or Drop a Redo Log File Group

ORACLE

The configuration of the redo log and standby redo log on a physical standby database
should be reevaluated and adjusted as necessary after adding or dropping a log file
group on the primary database.

Take the following steps to add or drop a log file group or standby log file group on a
physical standby database:

1. Stop Redo Apply.

2. If the STANDBY_FI LE_MANAGEMENT initialization parameter is set to AUTO, change the
value to MANUAL.

3. Add or drop a log file group.

Note:

An online logfile group must always be manually cleared before it can be
dropped from a physical standby database. For example:

ALTER DATABASE CLEAR LOGFI LE GROUP 3;
An online lodfile group that has a status of CURRENT or CLEARI NG_CURRENT

cannot be dropped from a physical standby database. An online logfile
group that has this status can be dropped after a role transition.

10-22

Chapter 10
Primary Database Changes That Require Manual Intervention at a Physical Standby

4. Restore the STANDBY_FI LE_MANAGEMENT initialization parameter and the Redo
Apply options to their original states.

5. Restart Redo Apply.

In Oracle RAC environments, keep the following in mind:

* When an online redo log group is added to a primary database, you must manually
add an online redo log group to the standby database. It is not done automatically.

* When a new redo thread is added to a primary database, a new redo thread is
automatically added to the standby. By default, the new thread is configured with 2
log groups of 100 MB each. This cannot be changed or overridden.

* When a new log group is added to an existing redo thread, a new log group is not
automatically added to its existing thread.

10.3.6 NOLOGGING or Unrecoverable Operations

When you perform a DML or DDL operation using the NOLOGG NG or UNRECOVERABLE
clause, blocks on the standby may be marked as invalid (also known as nonlogged
blocks).

See Precedence of FORCE LOGGING Settings for details about when an operation is
actually performed in a nonlogged fashion.

See Recovering After the NOLOGGING Clause Is Specified for information about
recovering after the NOLOGA NG clause is used.

See the Oracle Database Administrator's Guide. for information about specifying FORCE
LOGAE NG mode.

10.3.7 Refresh the Password File

If the REMOTE_LOG N_PASSWORDFI LE database initialization parameter is set to SHARED or
EXCLUSI VE, then the password file on a physical standby database is automatically
replaced with a fresh copy from the primary database.

The file is replaced after administrative privileges are granted or revoked, or the
password of a user with administrative privileges is changed. The only exception to
this is far sync instances. Updated password files must still be manually copied to far
sync instances because far sync instances receive redo, but do not apply it. When a
password file is manually updated at a far sync instance, the redo containing the same
password changes from the primary database is automatically propagated to any
standby databases that are set up to receive redo from that far sync instance. The
password file is updated on the standby when the redo is applied.

10.3.8 Reset the TDE Master Encryption Key

ORACLE

The database encryption wallet on a physical standby database must be replaced with
a fresh copy of the database encryption wallet from the primary database whenever
the TDE master encryption key is reset on the primary database.

Failure to refresh the database encryption wallet on the physical standby database
prevents access to encrypted columns on the physical standby database that are
modified after the master encryption key is reset on the primary database.

10-23

Chapter 10
Recovering Through the OPEN RESETLOGS Statement

For online tablespaces and databases, as of Oracle Database 12¢ Release 2
(12.2.0.1), you can encrypt, decrypt, and re-key both new and existing tablespaces,
and existing databases within an Oracle Data Guard environment.

For offline tablespaces and databases, as of Oracle Database 12c¢ Release 2
(12.2.0.1), you can encrypt and decrypt both new and existing tablespaces, and
existing databases within an Oracle Data Guard environment.

In online conversion, the encryption, decryption, or re-keying on the standby is
automatic after it is performed on the primary. An online encryption, decryption, or re-
keying cannot be performed directly on a standby database.

In an offline conversion, the encryption or decryption must be performed manually on
both the primary and standby. An offline conversion affects the data files on the
particular primary or standby database only. Both the primary and physical standby
should be kept at the same state. You can minimize downtime by encrypting (or
decrypting) the tablespaces on the standby first, switching over to the primary, and
then encrypting (or decrypting) the tablespaces on the primary.

" See Also:

e Oracle Database Advanced Security Guide

10.4 Recovering Through the OPEN RESETLOGS
Statement

Oracle Data Guard allows recovery on a physical standby database to continue after
the primary database has been opened with the RESETLOGS option.

When an ALTER DATABASE OPEN RESETLOGS statement is issued on the primary
database, the incarnation of the database changes, creating a new branch of redo
data.

When a physical standby database receives a new branch of redo data, Redo Apply
automatically takes the new branch of redo data. For physical standby databases, no
manual intervention is required if the standby database did not apply redo data past
the new resetlogs SCN (past the start of the new branch of redo data). The following
table describes how to resynchronize the standby database with the primary database
branch.

ORACLE 10-24

Chapter 10

Automatic Flashback of a Mounted Standby After a Primary RESETLOGS Operation

If the standby database. . .

Perform these steps. ..

Has not applied redo data past the
new resetlogs SCN (past the start of
the new branch of redo data) and the
new redo branch from OPEN
RESETLOGS has been registered at
the standby

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is enabled on
the standby database

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is not enabled
on the standby database

Is missing intervening archived redo
log files from the new branch of redo
data

Is missing archived redo log files from
the end of the previous branch of
redo data.

Redo Apply automatically takes the
new branch of redo.

The standby database is recovered
in the future of the new branch of

The primary database has diverged
from the standby on the indicated
primary database branch.

The MRP cannot continue until the
missing log files are retrieved.

The MRP cannot continue until the
missing log files are retrieved.

No manual intervention is necessary.
The managed redo process (MRP)
automatically resynchronizes the
standby database with the new
branch of redo data.

Note: To check whether the new redo
branch has been registered at the
standby, perform the following query
at the primary and standby and verify
that the results match:

SELECT resetlogs_id,

resetl ogs_change# FROM
VSDATABASE_| NCARNATI ON WHERE
stat us=" CURRENT'

Follow the procedure in Flashing
Back a Physical Standby
Database to a Specific Point-in-
Time to flash back a physical
standby database.

2. Restart Redo Apply to continue
application of redo data onto new
reset logs branch.

The managed redo process (MRP)
automatically resynchronizes the
standby database with the new
branch.

Re-create the physical standby
database following the procedures in
Creating a Physical Standby
Database .

Locate and register missing archived
redo log files from each branch.

Locate and register missing archived
redo log files from the previous
branch.

See Oracle Database Backup and Recovery User's Guide for more information about
database incarnations, recovering through an OPEN RESETLQOGS operation, and

Flashback Database.

10.5 Automatic Flashback of a Mounted Standby After a

Primary RESETLOGS Operation

A standby database that is in a mounted state can automatically follow the primary
database after a RESETLOGS operation on the primary. This simplifies standby
management after a RESETLOGS operation on the primary.

ORACLE

10-25

Chapter 10
Monitoring Primary, Physical Standby, and Snapshot Standby Databases

When flashback or point-in-time recovery is performed either on a primary database or
a PDB in the primary database, the primary database or PDB is moved to a previous
point in time and the primary is then opened with the RESETLOGS option. A new
incarnation of the primary or the PDB in the primary is created. For the standby to
automatically follow the primary, the MRP performs the following actions:

e detects the new incarnation

» flashes back the standby or the PDB on the standby to the same point in time as
that of the primary or the PDB on the primary

» restarts the standby recovery and moves the standby to the new branch of redo

The flashback operation will succeed only when the standby database has sufficient
flashback data.

If you do not want the standby to automatically follow the primary, either keep the
standby database in OPEN mode or stop the MRP process on the standby.

If the standby database is open in read only mode, the corresponding error messages
are recorded in the alert log. When you restart the MRP after closing the physical
standby, the recovery process automatically flashes back the standby database and
continues to apply the new branch of redo.

Related Topics

* Actions Needed On a Standby After a PDB PITR or PDB Flashback On a Primary
After you perform a PDB PITR or PDB Flashback on a primary, you can either
restore the PDB or flashback the PDB on the standby to let the standby follow the
primary.

» Flashing Back a Physical Standby Database to a Specific Point-in-Time
These steps describe how to avoid re-creating a physical standby database after
you issue the OPEN RESETLOGS statement on the primary database.

10.6 Monitoring Primary, Physical Standby, and Snapshot
Standby Databases

This table summarizes common primary database management actions and where to
find information related to these actions.

Table 10-2 Sources of Information About Common Primary Database Management Actions

Primary Database Action

Primary Site Information Standby Site Information

Enable or disable a redo thread

Display database role, protection
mode, protection level, switchover
status, fast-start failover information,
and so forth

Add or drop a redo log file group

CREATE CONTROLFI LE

ORACLE

* Alertlog Alert log

* V$THREAD

V$DATABASE V$DATABASE
* Alertlog Alert log

* VSLOG

* STATUS column of V$LOGFI LE

Alert log Alert log

10-26

Chapter 10

Monitoring Primary, Physical Standby, and Snapshot Standby Databases

Table 10-2 (Cont.) Sources of Information About Common Primary Database Management

Actions

__|]
Standby Site Information

Primary Database Action

Primary Site Information

Monitor Redo Apply

Change tablespace status

Add or drop a data file or tablespace

Rename a data file

Unlogged or unrecoverable operations

Monitor redo transport

Issue OPEN RESETLOGS or CLEAR

UNARCHI VED LOGFI LES statements

Change initialization parameter

e Alertlog e Alertlog
* V$ARCH VE_DEST_STATUS * V3ARCH VED LOG
* V$LOG HI STORY

* V$RECOVER_FI LE
e DBA_TABLESPACES

VSMANAGED STANDBY

V$RECOVER FI LE
DBA_TABLESPACES

e Alertlog

* DBA_DATA FILES * V3DATAFI LE
e Alertlog e Alertlog

* V3DATAFI LE * V$DATAFI LE
* Alertlog e Alertlog

* V3DATAFI LE Alert log

* V$DATABASE

* V$ARCHI VE_DEST_STATUS

V$ARCH VED_LOG

* V$ARCH VED LOG e Alertlog
* V$ARCH VE DEST

* Alertlog

Alert log Alert log
Alert log Alert log

10.6.1 Using Views to Monitor Primary, Physical, and Snapshot

Standby Databases

You can use dynamic performance views to monitor primary, physical standby, and
shapshot standby databases.

The following dynamic performance views are discussed:

ORACLE

V$DATABASE
V$MANAGED_STANDBY
V$ARCHIVED_LOG
V$LOG_HISTORY
V$DATAGUARD_STATUS
V$ARCHIVE_DEST

¢ See Also:

Oracle Database Reference for complete reference information about views

10-27

Chapter 10
Monitoring Primary, Physical Standby, and Snapshot Standby Databases

10.6.1.1 V$DATABASE

You can use the V$DATABASE view to display information about data protection,
switchover status, and fast-start failover status.

The following query displays the data protection mode, data protection level, database
role, and switchover status for a primary, physical standby or snapshot standby
database:

SQL> SELECT PROTECTI ON_MODE, PROTECTI ON LEVEL, -
> DATABASE ROLE ROLE, SW TCHOVER STATUS -
> FROM V$DATABASE;

The following query displays fast-start failover status:

SQL> SELECT FS_FAI LOVER_STATUS "FSFO STATUS', -

> FS_FAI LOVER CURRENT_TARGET TARGET, -

> FS_FAI LOVER_THRESHOLD THRESHOLD, -

> FS_FAI LOVER_OBSERVER _PRESENT "OBSERVER PRESENT" -
> FROM V$DATABASE;

10.6.1.2 V$DATAGUARD_PROCESS

The V$DATAGUARD_PROCESS view displays one row for each Oracle Data Guard process
that is currently running.

The VSDATAGUARD PROCESS view replaces the VEMANAGED STANDBY view which is
deprecated as of Oracle Database 12¢ Release 2 (12.2.0.1) and may be desupported
in a future release.

The following is an example query of this view:

SQ.> SELECT ROLE, THREAD#, SEQUENCE#, ACTI ON FROM V$DATAGUARD PRCCESS;

ROLE THREAD# SEQUENCE# ACTI ON

RFS pi ng 1 9 IDLE
recovery apply slave 0 0 IDLE
recovery apply slave 0 0 IDLE

managed recovery 0 0 IDLE
recovery | ognerger 1 9 APPLYI NG _LOG
RFS archive 0 0 IDLE

RFS async 1 9 IDLE

ORACLE 10-28

Chapter 10
Monitoring Primary, Physical Standby, and Snapshot Standby Databases

10.6.1.3 VSMANAGED_STANDBY

You can use the VSMANAGED STANDBY view to query Redo Apply and redo transport
status on a physical standby database.

Note:

This view is deprecated as of Oracle Database 12¢ Release 2 (12.2.0.1) and
may be desupported in a future release. The V$DATAGUARD PROCESS view
should be used instead.

The following is a sample query of the VEMANAGED_STANDBY view:

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE# -
> BLOCK#, BLOCKS FROM VSMANAGED STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
RFS ATTACHED 1 947 72 72
VRPO APPLYI NG _LOG 1 946 10 72

The sample output shows that a remote file server (RFS) process completed archiving
a redo log file with a sequence number of 947 and that Redo Apply is actively applying
an archived redo log file with a sequence number of 946. Redo Apply is currently
recovering block number 10 of the 72-block archived redo log file.

10.6.1.4 VSARCHIVED _LOG

You can use the V$ARCH VED_LOG view to query information about archived redo log
files that have been received by a physical or snapshot standby database from a
primary database.

For example, issue the following query:

SQL> SELECT THREADH, SEQUENCE#, FIRST CHANGEH, -
> NEXT_CHANGE# FROM V$ARCH VED_LOG

THREAD# SEQUENCE# FI RST_CHANGE# NEXT_CHANGE#

1 945 74651 74739
1 946 74739 74772
1 947 74772 74795

The sample output shows that three archived redo log files have been received from
the primary database.

10.6.1.5 VSLOG_HISTORY

You can use the V$LOG_HI STORY view to query archived log history information.

For example, issue the following query:

SQL> SELECT THREADH, SEQUENCE#, FIRST CHANGEH, -
> NEXT_CHANGE# FROM V$LOG HI STORY:

ORACLE 10-29

Chapter 10
Replicating Restore Points from Primary to Standby

10.6.1.6 VSDATAGUARD_STATUS

You can use the VEDATAGUARD STATUS view to display messages generated by Oracle
Data Guard events that caused a message to be written to the alert log or to a server
process trace file.

For example, issue the following query :

SQL> SELECT MESSAGE FROM V$DATAGUARD STATUS;

10.6.1.7 VSARCHIVE_DEST

You can query the V$ARCH VE_DEST view to show the status of each redo transport
destination, and for redo transport destinations that are standby databases, the SCN
of the last primary database redo applied at that standby database.

For example, issue the following query:

SQ> SELECT DEST_I D, STATUS, APPLIED SCN FROM V$ARCH VE_DEST WHERE TARGET=' STANDBY' ;

DEST_ID STATUS APPLI ED_SCN

2 VALI D 439054
3 VALI D 439054

10.7 Replicating Restore Points from Primary to Standby

ORACLE

Restore points that are created on a primary database are automatically replicated to
the standby database. The restore points created on the standby database are called
replicated restore points. Irrespective of whether a restore point on the primary
database is a guaranteed restore point or a normal restore point, the corresponding
replicated restore point is always a normal restore point.

Oracle Database automatically replicates restore points from a primary database to
the standby database when the following conditions are met:

e COWPATI BLE initialization parameter for both the primary database and the standby
database is set to 19.0.0 or higher

e primary database is open

A restore point that is created on a primary database when the primary is in mount
mode is not replicated. This restriction is because the restore point information is
replicated though the redo.

The naming convention for a replicated restore point uses the name of the restore
point on the primary database suffixed with _PRI MARY. If a replicated restore point with
the same name exists on the standby database, then a replicated restore point is not
created. For example, when you create a restore point named PRE_MYTBS on the
primary database, the replicated restore point is named PRE_MYTBS_PRI MARY. When
you delete a restore point on the primary, the corresponding replicated restore point on
the standby is also deleted.

The managed redo process (MRP) manages the creation and maintenance of
replicated restore points. If restore points are created on the primary database when

10-30

Chapter 10
Tuning Redo Apply

MRP is not running, then these restore points are replicated to the standby database
after MRP is started.

To determine if a restore point is automatically replicated, query the VSRESTORE_PO NT
view.

10.8 Tuning Redo Apply

Oracle white papers are available that describe how to optimize Redo Apply and
media recovery performance.

In particular, see Active Data Guard 11g Best Practices (includes best practices for
Redo Apply) . This paper is available on the Oracle Maximum Availability Architecture
(MAA) home page at:

http://ww. oracl e. conl got o/ naa

¢ See Also:

My Oracle Support note 454848.1 at htt p: // support . oracl e. comfor
information about the installation and use of the Standby Statspack, which
can be used to collect Redo Apply performance data from a physical standby
database

10.9 Tuning Databases in an Active Data Guard
Environment with SQL Tuning Advisor

ORACLE

In an Active Data Guard environment, SQL Tuning Advisor can tune a standby
workload on a primary database.

Using database links, you can issue SQL Tuning Advisor statements on one database,
but execute the statements on a different database.

Tuning a Standby Database Workload on a Primary Database

In some cases, a standby database can assume a reporting role in addition to its data
protection role. The standby database can have its own workload of queries, some of
which may require tuning. In this scenario, you tune a standby database workload by
issuing every tuning statement on the standby database, but SQL Tuning Advisor
performs its analysis on the primary database by using a standby-to-primary database
link.

The following are the tasks that must be performed to tune a standby database
workload on a primary database. The tasks must be performed at the standby
database in the order given, using the DBMS_SQLTUNE PL/SQL package:

1. Execute the DBMS_SQLTUNE. CREATE_TUNI NG _TASK statement to fetch the data from
the primary database needed to create a task. Because the standby is a read-only
database, the data about the task is written remotely to the primary database. A
database link parameter is required in this step to write to the primary. (A database
link parameter is optional in subsequent steps, because it is tied to the task
created in this step.)

10-31

http://www.oracle.com/goto/maa
http://support.oracle.com

Chapter 10
Using Oracle Diagnostic Pack to Tune Oracle Active Data Guard Standbys

2. Execute the DBMS_SQLTUNE. EXECUTE_TUNI NG_TASK statement. Initially, the data

required to execute a task is fetched from the remote primary database. The
tuning analysis process to find the possible recommendations is executed.
Because the standby is a read-only database, when the results are available they
are stored remotely at the primary.

3. Execute the DBMS_SQLTUNE. REPORT_TUNI NG_TASK statement. The data needed to
construct a report is stored remotely at the primary database. The data is fetched
remotely from the primary and constructed locally at the standby.

4. Execute the DBMS_SQLTUNE. ACCEPT_SQ._PRCFI LE statement. The profile data is
written to the remote primary database because the standby is read-only.

5. The SQL Profiles are made available at the standby using Redo Apply.

" See Also:
e Oracle Database PL/SQL Packages and Types Reference for more
information about the DBM5S_SQLTUNE package

e Oracle Database SQL Tuning Guidefor more information about local and
remote SQL tuning

10.10 Using Oracle Diagnostic Pack to Tune Oracle Active
Data Guard Standbys

The Oracle Diagnostic Pack can be used with an Oracle Active Data Guard standby
database that is open in read-only mode.

This enables you to capture performance data to the Automatic Workload Repository
(AWR) for an Oracle Active Data Guard standby and to run Automatic Database
Diagnostic Monitor (ADDM) analysis on the AWR data. For details about how to
perform these operations, see Oracle Database Performance Tuning Guide.

10.11 Managing a Snapshot Standby Database

ORACLE

A snapshot standby database is a fully updatable standby database. It receives and
archives redo data from a primary database, but does not apply it.

Redo data received from the primary database is applied when a snapshot standby
database is converted back into a physical standby database, after discarding all local
updates to the snapshot standby database.

A snapshot standby database typically diverges from its primary database over time
because redo data from the primary database is not applied as it is received. Local
updates to the snapshot standby database cause additional divergence. The data in
the primary database is fully protected however, because a snapshot standby can be
converted back into a physical standby database at any time, and the redo data
received from the primary is then applied.

A snapshot standby database provides disaster recovery and data protection benefits
that are similar to those of a physical standby database. Snapshot standby databases
are best used in scenarios where the benefit of having a temporary, updatable

10-32

Chapter 10
Managing a Snapshot Standby Database

shapshot of the primary database justifies increased time to recover from primary
database failures.

10.11.1 Converting a Physical Standby Database into a Snapshot
Standby Database

These steps describe how to convert a physical standby database into a snapshot
standby database.

1.
2.
3.

Stop Redo Apply, if it is active.
Ensure that the database is mounted, but not open.

Ensure that a fast recovery area has been configured. It is not necessary for
flashback database to be enabled.

Issue the following SQL statement to perform the conversion:
SQL> ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;

Open the snapshot standby in read/write mode by issuing the following SQL
statement:

SQL> ALTER DATABASE OPEN READ WRI TE;

Note:

A physical standby database that is managed by the Oracle Data Guard
broker can be converted into a snapshot standby database using either
DGMGRL or Oracle Enterprise Manager Cloud Control. See Oracle Data
Guard Broker for more details.

10.11.2 Using a Snapshot Standby Database

A snapshot standby database can be opened in read-write mode and is fully
updatable.

A snapshot standby database has the following characteristics:

ORACLE

A snapshot standby database cannot be the target of a switchover or failover. A
shapshot standby database must first be converted back into a physical standby
database before performing a role transition to it.

A snapshot standby database cannot be the only standby database in a Maximum
Protection Oracle Data Guard configuration.

10-33

Chapter 10
Managing a Snapshot Standby Database

Note:

Flashback Database is used to convert a snapshot standby database back
into a physical standby database. Any operation that cannot be reversed
using Flashback Database technology prevents a snapshot standby from
being converted back to a physical standby.

For information about some of the limitations of Flashback Database, see
Oracle Database Backup and Recovery User's Guide.

10.11.3 Converting a Snapshot Standby Database into a Physical
Standby Database

These steps describe how to convert a snapshot standby database into a physical
standby database.

1. On an Oracle Real Applications Cluster (Oracle RAC) database, shut down all but
one instance.

2. Ensure that the database is mounted, but not open.
3. Issue the following SQL statement to perform the conversion;
SQL> ALTER DATABASE CONVERT TO PHYSI CAL STANDBY;

Redo data received while the database was a snapshot standby database is
automatically applied when Redo Apply is started.

< Note:

A snapshot standby database must be opened at least once in read-write
mode before it can be converted into a physical standby database.

ORACLE 10-34

Managing a Logical Standby Database

An understanding of these concepts will help you to successfully manage a logical
standby database.

e Overview of the SQL Apply Architecture

e Controlling User Access to Tables in a Logical Standby Database

* Views Related to Managing and Monitoring a Logical Standby Database

e Monitoring a Logical Standby Database

e Customizing a Logical Standby Database

e Managing Specific Workloads In the Context of a Logical Standby Database
e Tuning a Logical Standby Database

« Backup and Recovery in the Context of a Logical Standby Database

11.1 Overview of the SQL Apply Architecture

SQL Apply uses a collection of background processes to apply changes from the
primary database to the logical standby database.

Figure 11-1 shows the flow of information and the role that each process performs.

Figure 11-1 SQL Apply Processing

Redo Data
from Primary
Database
J\ /I: Logical Change
Redo Shared Pool Rlecorq_s Not Grouped
R nto Transactions
Reader ers’ Preparer LCR tgg | Builder
LCR
’ Transaction
Groups

Log Mining
Apply Processing

< - Coordinator | «¢ - Analyzer
Applier Transactions Transactions
to be Applied Sorted in
! ! Dependency Order

Datafiles

ORACLE 11-1

Chapter 11
Overview of the SQL Apply Architecture

The different processes involved and their functions during log mining and apply
processing are as follows:

During log mining:

e The READER process reads redo records from the archived redo log files or standby
redo log files.

* The PREPARER process converts block changes contained in redo records into
logical change records (LCRs). Multiple PREPARER processes can be active for a
given redo log file. The LCRs are staged in the system global area (SGA), known
as the LCR cache.

e The BU LDER process groups LCRs into transactions, and performs other tasks,
such as memory management in the LCR cache, checkpointing related to SQL
Apply restart and filtering out of uninteresting changes.

During apply processing:
* The ANALYZER process identifies dependencies between different transactions.

» The COORDI NATOR process (LSP) assigns transactions to different appliers and
coordinates among them to ensure that dependencies between transactions are
honored.

* The APPLI ER processes applies transactions to the logical standby database under
the supervision of the coordinator process.

You can query the V$LOGSTDBY_PROCESS view to examine the activity of the SQL Apply
processes. Another view that provides information about current activity is the
V$LOGSTDBY_STATS view that displays statistics, current state, and status information
for the logical standby database during SQL Apply activities. These and other relevant
views are discussed in more detail in Views Related to Managing and Monitoring a
Logical Standby Database.

" Note:

All SQL Apply processes (including the coordinator process | sp0) are true
background processes. They are not regulated by resource manager.
Therefore, creating resource groups at the logical standby database does not
affect the SQL Apply processes.

11.1.1 Various Considerations for SQL Apply

ORACLE

Understanding these concepts about transaction size, pageouts, restarts, DML Apply,
and password verification will help you to manage logical standbys to their best
advantage.

See the following:

e Transaction Size Considerations
» Pageout Considerations
¢ Restart Considerations

DML Apply Considerations

11-2

Chapter 11
Overview of the SQL Apply Architecture

» DDL Apply Considerations

» Password Verification Functions

11.1.1.1 Transaction Size Considerations

SQL Apply categorizes transactions into two classes: small and large.
Definitions of each class are as follows:

e Small transactions—SQL Apply starts applying LCRs belonging to a small
transaction once it has encountered the commit record for the transaction in the
redo log files.

e Large transactions—SQL Apply breaks large transactions into smaller pieces
called transaction chunks, and starts applying the chunks before the commit
record for the large transaction is seen in the redo log files. This is done to reduce
memory pressure on the LCR cache and to reduce the overall failover time.

For example, without breaking into smaller pieces, a SQL*Loader load of ten
million rows, each 100 bytes in size, would use more than 1 GB of memory in the
LCR cache. If the memory allocated to the LCR cache was less than 1 GB, it
would result in pageouts from the LCR cache.

Apart from the memory considerations, if SQL Apply did not start applying the
changes related to the ten million row SQL*Loader load until it encountered the
COW T record for the transaction, it could stall a role transition. A switchover or a
failover that is initiated after the transaction commit cannot finish until SQL Apply
has applied the transaction on the logical standby database.

Despite the use of transaction chunks, SQL Apply performance may degrade
when processing transactions that modify more than eight million rows. For
transactions larger than 8 million rows, SQL Apply uses the temporary segment to
stage some of the internal metadata required to process the transaction. Be sure
to allocate enough space in your temporary segment for SQL Apply to successfully
process transactions larger than 8 million rows.

All transactions start out categorized as small transactions. Depending on the amount
of memory available for the LCR cache and the amount of memory consumed by
LCRs belonging to a transaction, SQL Apply determines when to recategorize a
transaction as a large transaction.

11.1.1.2 Pageout Considerations

Pageouts occur in the context of SQL Apply when memory in the LCR cache is
exhausted and space needs to be released for SQL Apply to make progress.

For example, assume the memory allocated to the LCR cache is 100 MB and SQL
Apply encounters an | NSERT transaction to a table with a LONG column of size 300 MB.
In this case, the log-mining component pages out the first part of the LONG data to read
the later part of the column madification. In a well-tuned logical standby database,
pageout activities occur occasionally and should not affect the overall throughput of
the system.

ORACLE 11-3

Chapter 11
Overview of the SQL Apply Architecture

¢ See Also:

See Customizing a Logical Standby Database for more information about
how to identify problematic pageouts and perform corrective actions

11.1.1.3 Restart Considerations

Modifications made to the logical standby database do not become persistent until the
commit record of the transaction is mined from the redo log files and applied to the
logical standby database.

Thus, every time SQL Apply is stopped, whether as a result of a user directive or
because of a system failure, SQL Apply must go back and mine the earliest
uncommitted transaction again.

In cases where a transaction does little work but remains open for a long period of
time, restarting SQL Apply from the start could be prohibitively costly because SQL
Apply would have to mine a large number of archived redo log files again, just to read
the redo data for a few uncommitted transactions. To mitigate this, SQL Apply
periodically checkpoints old uncommitted data. The SCN at which the checkpoint is
taken is reflected in the RESTART_SCN column of VELOGSTDBY _PROGRESS view. Upon
restarting, SQL Apply starts mining redo records that are generated at an SCN greater
than value shown by the RESTART_SCN column. Archived redo log files that are not
needed for restart are automatically deleted by SQL Apply.

Certain workloads, such as large DDL transactions, parallel DML statements (PDML),
and direct-path loads, prevent the RESTART _SCN from advancing for the duration of the
workload.

11.1.1.4 DML Apply Considerations

SQL Apply has the following characteristics when applying DML transactions that
affect the throughput and latency on the logical standby database:

» Batch updates or deletes done on the primary database, where a single statement
results in multiple rows being modified, are applied as individual row modifications
on the logical standby database. Thus, it is imperative for each maintained table to
have a unique index or a primary key. See Ensure Table Rows in the Primary
Database Can Be Uniquely Identified for more information.

» Direct path inserts performed on the primary database are applied using a
conventional | NSERT statement on the logical standby database.

« Parallel DML (PDML) transactions are not executed in parallel on the logical
standby database.

11.1.1.5 DDL Apply Considerations

ORACLE

SQL Apply has the following characteristics when applying DDL transactions that
affect the throughput and latency on the logical standby database:

» DDL transactions are applied serially on the logical standby database. Thus, DDL
transactions applied concurrently on the primary database are applied one at a
time on the logical standby database.

11-4

Chapter 11
Overview of the SQL Apply Architecture

* CREATE TABLE AS SELECT (CTAS) statements are executed such that the DML
activities (that are part of the CTAS statement) are suppressed on the logical
standby database. The rows inserted in the newly created table as part of the
CTAS statement are mined from the redo log files and applied to the logical
standby database using | NSERT statements.

* SQL Apply reissues the DDL that was performed at the primary database, and
ensures that DMLs that occur within the same transaction on the same object that
is the target of the DDL operation are not replicated at the logical standby
database. Thus, the following two cases cause the primary and standby sites to
diverge from each other:

— The DDL contains a non-literal value that is derived from the state at the
primary database. An example of such a DDL is:

ALTER TABLE hr. enpl oyees ADD (start_date date default sysdate);

Because SQL Apply reissues the same DDL at the logical standby, the
function sysdat e() is reevaluated at the logical standby. Thus, the column
start_dat e is created with a different default value than at the primary
database.

— The DDL fires DML triggers defined on the target table. Since the triggered
DMLs occur in the same transaction as the DDL, and operate on the table that
is the target of the DDL, these triggered DMLs are not replicated at the logical
standby.

For example, assume you create a table as follows:

create table HR TEMP_EMPLOYEES (
enp_id nunber primry key,
first_name varchar2(64),

| ast _nane var char 2(64),

modi fy_date tinestanp);

Assume you then create a trigger on the table such that any time the table is
updated the modi fy_dat e is updated to reflect the time of change:

CREATE OR REPLACE TRI GGER TRG_TEST_MOD_DT BEFCRE UPDATE ON
HR TEST_EMPLOYEES

REFERENCI NG
NEW AS NEWROW FOR EACH ROW

BEGI N

: NEW RON MODI FY_DATE: = SYSTI MESTAWP;
END;

/

This table is maintained correctly under the usual DML/DDL workload.
However if you add a column with the default value to the table, the ADD
COLUWN DDL fires this update trigger and changes the MODI FY_DATE column of
all rows in the table to a new timestamp. These changes to the MODI FY_DATE
column are not replicated at the logical standby database. Subsequent DMLs
to the table stop SQL Apply because the MODI FY_DATE column data recorded
in the redo stream does not match the data that exists at the logical standby
database.

ORACLE 11-5

Chapter 11
Controlling User Access to Tables in a Logical Standby Database

11.1.1.6 Password Verification Functions

Password verification functions that check for the complexity of passwords must be
created in the SYS schema.

Because SQL Apply does not replicate objects created in the SYS schema, such
verification functions are not replicated to the logical standby database. You must
create the password verification function manually at the logical standby database,
and associate it with the appropriate profiles.

11.2 Controlling User Access to Tables in a Logical Standby
Database

The SQL ALTER DATABASE GUARD statement controls user access to tables in a logical
standby database.

The database guard is set to ALL by default on a logical standby database.
The ALTER DATABASE GUARD statement allows the following keywords:
e AL

Specify ALL to prevent all users, other than SYS, from making changes to any data
in the logical standby database.

» STANDBY

Specify STANDBY to prevent all users, other than SYS, from making DML and DDL
changes to any table or sequence being maintained through SQL Apply.

* NONE
Specify NONE to use typical security for all data in the database.

For example, use the following statement to enable users to modify tables not
maintained by SQL Apply:

SQL> ALTER DATABASE GUARD STANDBY;

Privileged users can temporarily turn the database guard off and on for the current
session using the ALTER SESSI ON DI SABLE GUARD and ALTER SESSI ON ENABLE GUARD
statements, respectively. This statement replaces the DBMS_LOGSTDBY. GUARD BYPASS
PL/SQL procedure that performed the same function in Oracle9i. The ALTER SESSI ON

[ENABLE| DI SABLE] GUARD statement is useful when you want to temporarily disable the
database guard to make changes to the database, as described in Modifying a Logical
Standby Database.

Note:

Do not let the primary and logical standby databases diverge while the
database guard is disabled.

ORACLE 11-6

Chapter 11
Views Related to Managing and Monitoring a Logical Standby Database

11.3 Views Related to Managing and Monitoring a Logical
Standby Database

You can use performance views to monitor the behavior of SQL Apply maintaining a
logical standby database.

The following topics describe the key views that can be used to monitor a logical
standby database:

« DBA_LOGSTDBY_EVENTS View
« DBA_LOGSTDBY_LOG View

* V$DATAGUARD_STATS View

* V$LOGSTDBY_PROCESS View

* V$LOGSTDBY_PROGRESS View
* V$LOGSTDBY_STATE View

* V$LOGSTDBY_STATS View

" See Also:

Oracle Database Reference for complete reference information about views

11.3.1 DBA_LOGSTDBY_EVENTS View

ORACLE

The DBA_LOGSTDBY_EVENTS view records interesting events that occurred during the
operation of SQL Apply.

By default, the view records the most recent 10,000 events. However, you can change
the number of recorded events by calling DBMS_LOGSTDBY. APPLY_SET() PL/SQL
procedure. If SQL Apply stops unexpectedly, the reason for the problem is also
recorded in this view.

Note:

Errors that cause SQL Apply to stop are recorded in the events table These
events are put into the ALERT. LOGfile as well, with the LOGSTDBY keyword
included in the text. When querying the view, select the columns in order by
EVENT_TI ME_STAMP, COW T_SCN, and CURRENT _SCN to ensure the desired
ordering of events.

The view can be customized to contain other information, such as which DDL
transactions were applied and which were skipped. For example:

SQL> ALTER SESSI ON SET NLS_DATE FORMAT = 'DD- MON-YY HH24: M :SS';
Session al tered.
SQL> COLUWN STATUS FORMAT A60

11-7

Chapter 11
Views Related to Managing and Monitoring a Logical Standby Database

SQL> SELECT EVENT TIME, STATUS, EVENT FROM DBA LOGSTDBY EVENTS -
> ORDER BY EVENT TI MESTAVP, COMM T_SCN, CURRENT SCN;

EVENT_TI ME STATUS

23-JUL-02 18:20:12 ORA-16111: log mining and apply setting up

23-JUL-02 18:25:12 ORA-16128: User initiated shut down successfully conpleted
23-JUL-02 18:27:12 ORA-16112: log mining and apply stopping

23-JUL-02 18:55:12 ORA-16128: User initiated shut down successfully conpleted
23-JUL-02 18:57:09 ORA-16111: log mining and apply setting up

23-JUL- 02 20: 21: 47 ORA-16204: DDL successfully applied

create table hr.test_enp (enpno number, enane varchar2(64))

23-JUL- 02 20:22:55 ORA-16205: DDL skipped due to skip setting

create database |ink link_to_boston connect to systemidentified by change_on_inst
7 rows selected.

This query shows that SQL Apply was started and stopped a few times. It also shows
what DDL was applied and skipped.

11.3.2 DBA_LOGSTDBY_LOG View

ORACLE

The DBA_LOGSTDBY_LOG view provides dynamic information about archived logs being
processed by SQL Apply.

For example:

SQL> COLUWN DI CT_BEG N FORMAT AL0;

SQL> SET NUMF 99999999;

SQL> SELECT FILE_NAMVE, SEQUENCE# AS SEQ#, FIRST CHANGE# AS F_SOM#, -
> NEXT_CHANGE# AS N_SCN#, TIMESTAWP, -

> DICT_BEG N AS BEG DICT_END AS END, -

> THREAD# AS THR#, APPLIED FROM DBA LOGSTDBY LOG -

> ORDER BY SEQUENCE#

FI LE_NAME SEQ# F_SCN N_SCN TI MESTAM BEG END THR# APPLI ED
loracle/dbs/hg_nyc_2.1og 2 101579 101588 11:02:58 NO NO 1 YES
loracle/dbs/hg_nyc_3.1og 3 101588 142065 11:02:02 NO NO 1 YES
loracle/dbs/hg_nyc_4.1og 4 142065 142307 11:02:10 NO NO 1 YES
loracle/dbs/hg_nyc 5.10og 5 142307 142739 11:02:48 YES YES 1 YES
loracl e/ dbs/hg_nyc_6.1og 6 142739 143973 12:02:10 NO NO 1 YES
loracle/dbs/hg_nyc_7.1og 7 143973 144042 01:02:11 NO NO 1 YES
loracle/dbs/hg_nyc 8.1og 8 144042 144051 01:02:01 NO NO 1 YES
loracle/dbs/hg_nyc 9.1og 9 144051 144054 01:02:16 NO NO 1 YES
[oracl e/ dbs/hg_nyc_10.10g 10 144054 144057 01:02:21 NO NO 1 YES
loracle/dbs/hg_nyc_11.log 11 144057 144060 01:02:26 NO NO 1 CURRENT
[oracl e/ dbs/hg_nyc_12.10g 12 144060 144089 01:02:30 NO NO 1 CURRENT
[oracl e/ dbs/hg_nyc_13.10g 13 144089 144147 01:02:41 NO NO 1 NO

The YES entries in the BEG and END columns indicate that a LogMiner dictionary build
starts at log file sequence number 5. The most recent archived redo log file is
sequence number 13, and it was received at the logical standby database at
01:02:41.The APPLI ED column indicates that SQL Apply has applied all redo before
SCN 144057. Since transactions can span multiple archived log files, multiple archived
log files may show the value CURRENT in the APPLI ED column.

11-8

Chapter 11
Views Related to Managing and Monitoring a Logical Standby Database

11.3.3 VSDATAGUARD_STATS View

This view provides information related to the failover characteristics of the logical
standby database, including:

* The time to failover (apply finish tine)

* How current is the committed data in the logical standby database (appl y | ag)
* What the potential data loss will be in the event of a disaster (transport |ag).
For example:

SQ> COL NAME FORMAT A20
SQ> COL VALUE FORMAT Al12
SQ> COL UNIT FORMAT A30
SQL> SELECT NAME, VALUE, UNIT FROM VSDATAGUARD STATS;

NAME VALUE UNIT

apply finish tinme +00 00: 00: 00 day(2) to second(1l) interval
apply lag +00 00: 00: 00 day(2) to second(0) interval
transport |ag +00 00: 00: 00 day(2) to second(0) interval

This output is from a logical standby database that has received and applied all redo
generated from the primary database.

11.3.4 V$LOGSTDBY_PROCESS View

ORACLE

This view provides information about the current state of the various processes
involved with SQL Apply, including;

* ldentifying information (si d | seri al # | spi d)

* SQL Apply process: COORDI NATOR, READER, BUI LDER, PREPARER, ANALYZER, or
APPLI ER (t ype)

e Status of the process's current activity (st at us_code | st at us)
» Highest redo record processed by this process (hi gh_scn)
For example:

SQL> COLUWN SERI AL# FCRMAT 9999
SQ.> COLUWN SI D FORMAT 9999
SQ> SELECT SID, SERIAL#, SPID, TYPE, H GH SCN FROM V$LOGSTDBY_PROCESS;

SID SERIAL# SPID TYPE H GH SCN
48 6 11074 COORDI NATOR 7178242899
56 56 10858 READER 7178243497
46 1 10860 BU LDER 7178242901
45 1 10862 PREPARER 7178243295
37 1 10864 ANALYZER 7178242900
36 1 10866 APPLI ER 7178239467
35 3 10868 APPLI ER 7178239463
34 7 10870 APPLI ER 7178239461
33 1 10872 APPLI ER 7178239472

9 rows selected.

11-9

Chapter 11
Views Related to Managing and Monitoring a Logical Standby Database

The H GH_SCN column shows that the reader process is ahead of all other processes,
and the PREPARER and BUI LDER process ahead of the rest.

SQ> COLUWN STATUS FORMAT A40
SQ.> SELECT TYPE, STATUS CODE, STATUS FROM V$LOGSTDBY_PROCESS;

TYPE STATUS_CODE STATUS

COORDI NATCR 16117 ORA-16117: processing

READER 16127 ORA-16127: stalled waiting for additional
transactions to be applied

BU LDER 16116 ORA-16116: no work avail able

PREPARER 16116 ORA-16117: processing

ANALYZER 16120 ORA-16120: dependencies being conputed for
transaction at SCN 0x0001. abdb440a

APPLI ER 16124 ORA-16124: transaction 1 13 1427 is waiting
on anot her transaction

APPLI ER 16121 ORA-16121: applying transaction with comit
SCN 0x0001. abdb4390

APPLI ER 16123 ORA-16123: transaction 1 23 1231 is waiting
for commit approval

APPLI ER 16116 ORA-16116: no work avail able

The output shows a snapshot of SQL Apply running. On the mining side, the READER
process is waiting for additional memory to become available before it can read more,
the PREPARER process is processing redo records, and the BU LDER process has no
work available. On the apply side, the COORDI NATCR is assigning more transactions to
APPLI ER processes, the ANALYZER is computing dependencies at SCN 7178241034,
one APPLI ER has no work available, while two have outstanding dependencies that are
not yet satisfied.

¢ See Also:

Monitoring SQL Apply Progress for example output

11.3.5 VSLOGSTDBY_PROGRESS View

ORACLE

This view provides detailed information regarding progress made by SQL Apply,
including:

* SCN and time at which all transactions that have been committed on the primary
database have been applied to the logical standby database (appl i ed_scn,
applied_tine)

e SCN and time at which SQL Apply would begin reading redo records
(restart_scn,restart _tine)on restart

* SCN and time of the latest redo record received on the logical standby database
(latest_scn, latest_time)

* SCN and time of the latest record processed by the BUI LDER process (ni ni ng_scn,
m ning_timnme)

For example:

SQL> SELECT APPLIED_SCN, LATEST_SCN, M NI NG SCN, RESTART_SCN -
> FROM V$LOGSTDBY_PROGRESS;

11-10

Chapter 11
Views Related to Managing and Monitoring a Logical Standby Database

APPLI ED_SCN LATEST_SCN M NI NG_SCN RESTART_SCN

7178240496 7178240507 7178240507 7178219805

According to the output:

* SQL Apply has applied all transactions committed on or before SCN of
7178240496

* The latest redo record received at the logical standby database was generated at
SCN 7178240507

* The mining component has processed all redo records generate on or before SCN
7178240507

* If SQL Apply stops and restarts for any reason, it will start mining redo records
generated on or after SCN 7178219805

SQ.> ALTER SESSI ON SET NLS_DATE_FORMAT='yy-nmdd hh24:mi:ss';
Session altered

SQL> SELECT APPLIED TIME, LATEST_TIME, M N NG TIME, RESTART_TIME -
> FROM V3LOGSTDBY_PROGRESS;

APPLI ED_TI ME LATEST_TI ME M NING_TI ME RESTART_TI ME

05-05-12 10:38:21 05-05-12 10:41:53 05-05-12 10:41:21 05-05-12 10:09: 30

According to the output:

e SQL Apply has applied all transactions committed on or before the time 05-05-12
10:38:21 (APPLI ED_TI ME)

* The last redo was generated at time 05-05-12 10:41:53 at the primary database
(LATEST_TI ME)

* The mining engine has processed all redo records generated on or before
05-05-12 10:41:21 (M NI NG_TI ME)

* Inthe event of a restart, SQL Apply will start mining redo records generated after
the time 05-05-12 10:09:30

¢ See Also:

Monitoring SQL Apply Progress for example output

11.3.6 VSLOGSTDBY_STATE View

This view provides a synopsis of the current state of SQL Apply, including:
* The DBID of the primary database (pri mary_dbi d).

e The LogMiner session ID allocated to SQL Apply (sessi on_i d).

* Whether or not SQL Apply is applying in real time (real ti me_appl y).

For example:

ORACLE 11-11

Chapter 11
Views Related to Managing and Monitoring a Logical Standby Database

SQ> COLUWN REALTI ME_APPLY FORMAT al5
SQL> COLUWN STATE FORMAT al6
SQ> SELECT * FROM V$LOGSTDBY_STATE

PRI MARY_DBI D SESSI ON_I D REALTI ME_APPLY STATE

1562626987

1Y APPLYI NG

The output shows that SQL Apply is running in the real-time apply mode and is
currently applying redo data received from the primary database, the primary
database's DBl Dis 1562626987 and the LogMiner session identifier associated the

SQL Apply session is 1.

¢ See Also:

Monitoring SQL Apply Progress for example output

11.3.7 VSLOGSTDBY_STATS View

The VSLOGSTDBY_STATS view displays statistics, current state, and status information
related to SQL Apply. No rows are returned from this view when SQL Apply is not
running. This view is only meaningful in the context of a logical standby database.

For example:

SQL> ALTER SESSI ON SET NLS_DATE_FORMAT=' dd- nmyyyy hh24:mi:ss';

Session al tered

SQL> SELECT SUBSTR(name, 1, 40) AS NAME, SUBSTR(value, 1,32) AS VALUE FROM V$LOGSTDBY STATS;

| ogmi ner session id

nunber of preparers

nunber of appliers

Server processes in use
maxi mum SGA for LCR cache (M)
maxi mum events recorded
preserve conmt order
transaction consistency
record skipped errors

record ski pped DDLs

record applied DDLs

record unsupported operations
realtine apply

apply delay (m nutes)
coordinator state

coordinator startup tine
coordi nator uptime (seconds)
txns received from | ogm ner
txns assigned to apply

txns applied

txns discarded during restart
large txns waiting to be assigned
rolled back txns m ned

DDL txns mi ned

ORACLE

APPLYI NG
19- 06- 2007 09: 55: 47
3593

56

23

22

33

2

4

40

11-12

CTAS txns mined

bytes of redo ni ned

bytes paged out

pageout tine (seconds)
byt es checkpoi nt ed
checkpoint time (seconds)
systemidle tine (seconds)
standby redo | ogs nined
archived | ogs nined

gap fetched I ogs m ned

standby redo | og reuse detected

logfile open failures

current logfile wait (seconds)
total logfile wait (seconds)
thread enabl e mned

thread disable mined

40 rows sel ected

0
60164040
0

0

4845

0

2921

0

OO NOO K OoOuU

Chapter 11
Monitoring a Logical Standby Database

11.4 Monitoring a Logical Standby Database

When working with logical standby databases, you can monitor SQL Apply progress,

and also the automatic deletion of log files.
See the following topics:
e Monitoring SQL Apply Progress

e Automatic Deletion of Log Files

11.4.1 Monitoring SQL Apply Progress

SQL Apply can be in any of six states of progress: initializing SQL Apply, waiting for
dictionary logs, loading the LogMiner dictionary, applying (redo data), waiting for an

archive gap to be resolved, and idle.

Figure 11-2 shows the flow of these states.

Figure 11-2 Progress States During SQL Apply Processing

Waiting for Dictionary Logs

T

l

Initializing fe—)p Dli'gt?gr':;?y
Applying

i

i

Waiting
for Gap

Idle

ORACLE

11-13

ORACLE

Chapter 11
Monitoring a Logical Standby Database

The following subsections describe each state in more detail.

Initializing State

When you start SQL Apply by issuing an ALTER DATABASE START LOG CAL STANDBY
APPLY statement, it goes into the initializing state.

To determine the current state of SQL Apply, query the V3LOGSTDBY_STATE view. For
example:

SQL> SELECT SESSION_| D, STATE FROM V$LOGSTDBY_STATE;

SESSION_I D STATE

1 I NI TIALI ZI NG

The SESSI ON_| D column identifies the persistent LogMiner session created by SQL
Apply to mine the archived redo log files generated by the primary database.

Waiting for Dictionary Logs

The first time the SQL Apply is started, it needs to load the LogMiner dictionary
captured in the redo log files. SQL Apply stays in the WAI TI NG FOR DI CTI ONARY LOGS
state until it has received all redo data required to load the LogMiner dictionary.

Loading Dictionary State

This loading dictionary state can persist for a while. Loading the LogMiner dictionary
on a large database can take a long time. Querying the VSLOGSTDBY_STATE view
returns the following output when loading the dictionary:

SQ> SELECT SESSION_| D, STATE FROM V$LOGSTDBY_STATE;

SESSION_I D STATE

1 LOADI NG DI CTI ONARY

Only the COORDI NATOR process and the mining processes are spawned until the
LogMiner dictionary is fully loaded. Therefore, if you query the V$LOGSTDBY PROCESS at
this point, you do not see any of the APPLI ER processes. For example:

SQL> SELECT SID, SERIAL#, SPID, TYPE FROM V$LOGSTDBY_ PROCESS;

SID SERI AL# SPI D TYPE

47 3 11438 COORDI NATCR
50 7 11334 READER

45 1 11336 BU LDER

44 2 11338 PREPARER

43 2 11340 PREPARER

You can get more detailed information about the progress in loading the dictionary by
querying the VELOGWNR_DI CTl ONARY_LQAD view. The dictionary load happens in three
phases:

1. The relevant archived redo log files or standby redo logs files are mined to gather
the redo changes relevant to load the LogMiner dictionary.

2. The changes are processed and loaded in staging tables inside the database.

3. The LogMiner dictionary tables are loaded by issuing a series of DDL statements.

11-14

Chapter 11
Monitoring a Logical Standby Database

For example:

SQL> SELECT PERCENT DONE, COMMVAND -
> FROM V$LOGVNR DI CTI ONARY_LOAD -
> WHERE SESSI ON_I D = (SELECT SESSI ON | D FROM V$LOGSTDBY_STATE) ;

PERCENT_DONE COVVAND

40 alter table SYSTEM LOGWR_CCOL$ exchange partition
P101 with table SYS. LOGWNRLT_101_CCOL$ excl uding
i ndexes without validation

If the PERCENT _DONE or the COMMAND column does not change for a long time, query the
V$SESSI ON_LONGOPS view to monitor the progress of the DDL transaction in question.
Applying State

In this state, SQL Apply has successfully loaded the initial snapshot of the LogMiner
dictionary, and is currently applying redo data to the logical standby database.

For detailed information about the SQL Apply progress, query the
V$LOGSTDBY_PROGRESS view:

SQL> ALTER SESSI ON SET NLS_DATE_FORMAT = ' DD- MON- YYYY HH24: M : SS';
SQ.> SELECT APPLIED_TI ME, APPLIED SCN, M NING TIME, M N NG_SCN -
> FROM V$LOGSTDBY_PROGRESS;

APPLI ED_TI ME APPLIED_SCN M NING_TI ME M NI NG_SCN

10- JAN-2005 12:00: 05 346791023 10- JAN-2005 12:10:05 3468810134

All committed transactions seen at or before APPLI ED_SCN (or APPLI ED_TI ME) on the
primary database have been applied to the logical standby database. The mining
engine has processed all redo records generated at or before M NI NG_SCN (and

M NI NG_TI ME) on the primary database. At steady state, the value of M NI NG_SCN (and
M NI NG _TI ME) is always ahead of APPLI ED_SCN (and APPLI ED_TI ME).

Waiting On Gap State

This state occurs when SQL Apply has mined and applied all available redo records,
and is waiting for a new log file (or a missing log file) to be archived by the RFS
process.

SQ> SELECT STATUS FROM V$LOGSTDBY_PROCESS WHERE TYPE = ' READER ;

ORA-16240: waiting for log file (thread# 1, sequence# 99)

Idle State

SQL Apply enters this state once it has applied all redo generated by the primary
database.

11.4.2 Automatic Deletion of Log Files

Foreign archived logs contain redo that was shipped from the primary database.

There are two ways to store foreign archive logs:

ORACLE 11-15

ORACLE

Chapter 11
Monitoring a Logical Standby Database

* Inthe fast recovery area
* In adirectory outside of the fast recovery area

Foreign archived logs stored in the fast recovery area are always managed by SQL
Apply. After all redo records contained in the log have been applied at the logical
standby database, they are retained for the time period specified by the
DB_FLASHBACK RETENTI ON_TARGET parameter (or for 1440 minutes if

DB_FLASHBACK RETENTI ON_TARGET is not specified). You cannot override automatic
management of foreign archived logs that are stored in the fast recovery area.

Foreign archived logs that are not stored in fast recovery area are by default managed
by SQL Apply. Under automatic management, foreign archived logs that are not stored
in the fast recovery area are retained for the time period specified by the

LOG_AUTO DEL_RETENTI ON_TARGET parameter once all redo records contained in the log
have been applied at the logical standby database. You can override automatic
management of foreign archived logs not stored in fast recovery area by executing the
following PL/SQL procedure:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' LOG AUTO DELETE', 'FALSE')

Note:

Use the DBMS_LOGTSDBY. APPLY_SET procedure to set this parameter. If you
do not specify LOG_ AUTO DEL_RETENTI ON_TARGET explicitly, it defaults to

DB _FLASHBACK_RETENTI ON_TARGET set in the logical standby database, or to
1440 minutes in case DB_FLASHBACK RETENTI ON_TARGET is not set.

If you are overriding the default automatic log deletion capability, periodically perform
the following steps to identify and delete archived redo log files that are no longer
needed by SQL Apply:

1. To purge the logical standby session of metadata that is no longer needed, enter
the following PL/SQL statement:

SQL> EXECUTE DBMS_LOGSTDBY. PURGE_SESSI ON;

This statement also updates the DBA LOGWNR_PURGED LOGview that displays the
archived redo log files that are no longer needed.

2. Query the DBA LOGWNR PURGED LOGview to list the archived redo log files that can
be removed:

SQL> SELECT * FROM DBA LOGMWNR PURGED LOG

FI LE_NAME

/' boston/arc_dest/arc_1 40 _509538672. 1 og
/boston/arc_dest/arc_1 41 509538672. 1 og
/boston/arc_dest/arc_1 42 509538672. 1 og
/boston/arc_dest/arc_1 43 509538672. 1 og
/' boston/arc_dest/arc_1 44 509538672. 1 og
/boston/arc_dest/arc_1 45 509538672. 1 og
/boston/arc_dest/arc_1 46 509538672. 1 og
/' boston/arc_dest/arc_1 47 509538672. 1 og

11-16

Chapter 11
Customizing a Logical Standby Database

3. Use an operating system-specific command to delete the archived redo log files
listed by the query.

11.5 Customizing a Logical Standby Database

A logical standby database can be customized in several ways, including logging of
events, preventing changes to specific schema objects, and adding or re-creating
tables.

See the following topics:

e Customizing Logging of Events in the DBA_LOGSTDBY_EVENTS View

e Using DBMS_ LOGSTDBY.SKIP to Prevent Changes to Specific Schema Objects
e Setting up a Skip Handler for a DDL Statement

e Modifying a Logical Standby Database

e Adding or Re-Creating Tables On a Logical Standby Database

" See Also:

The DBV5_LOGSTDBY package in Oracle Database PL/SQL Packages and
Types Reference

11.5.1 Customizing Logging of Events in the
DBA_LOGSTDBY_EVENTS View

ORACLE

The DBA LOGSTDBY_EVENTS view can be thought of as a circular log containing the most
recent interesting events that occurred in the context of SQL Apply.

By default the last 10,000 events are remembered in the event view. You can change
the number of events logged by invoking the DBMS_LOGSTDBY. APPLY_SET procedure.
For example, to ensure that the last 100,000 events are recorded, you can issue the
following statement:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET (' MAX_EVENTS_RECORDED , '100000');

Errors that cause SQL Apply to stop are always recorded in the DBA_LOGSTDBY EVENTS
view (unless there is insufficient space in the SYSTEMtablespace). These events are
always put into the alert file as well, with the keyword LOGSTDBY included in the text.
When querying the view, select the columns in order by EVENT_TI ME, COW T_SCN, and
CURRENT_SCN. This ordering ensures a shutdown failure appears last in the view.

The following examples show DBMS _LOGSTDBY subprograms that specify events to be
recorded in the view.

Example 1: Determining if DDL Statements Have Been Applied

For example, to record applied DDL transactions to the DBA LOGSTDBY EVENTS view,
issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY SET (' RECORD APPLIED DDL', ' TRUE');

11-17

Chapter 11
Customizing a Logical Standby Database

Example 2: Checking the DBA_LOGSTDBY_EVENTS View for Unsupported
Operations

To capture information about transactions running on the primary database that are
not supported by a logical standby database, issue the following statements:

SQL> ALTER DATABASE STCP LOG CAL STANDBY APPLY; SQL> EXEC
DBMS_LOGSTDBY. APPLY_SET(' RECORD_UNSUPPORTED_OPERATI ONS', ' TRUE'); SQL> ALTER DATABASE
START LOG CAL STANDBY APPLY | MVEDI ATE;

Then, check the DBA_LOGSTDBY_EVENTS view for any unsupported operations. Usually,
an operation on an unsupported table is silently ignored by SQL Apply. However,
during rolling upgrade (while the standby database is at a higher version and mining
redo generated by a lower versioned primary database), if you performed an
unsupported operation on the primary database, the logical standby database may not
be the one to which you want to perform a switchover. Oracle Data Guard logs at least
one unsupported operation per table in the DBA_ LOGSTDBY_EVENTS view. Using SQL
Apply to Upgrade the Oracle Database provides detailed information about rolling
upgrades.

11.5.2 Using DBMS_LOGSTDBY.SKIP to Prevent Changes to
Specific Schema Objects

By default, all supported tables in the primary database are replicated in the logical
standby database.

You can change the default behavior by specifying rules to skip applying modifications
to specific tables. For example, to omit changes to the HR. EMPLOYEES table, you can
specify rules to prevent application of DML and DDL changes to the specific table. For
example:

1. Stop SQL Apply:
SQL> ALTER DATABASE STCP LOG CAL STANDBY APPLY;
2. Reqgister the SKI P rules:

SQL> EXECUTE DBMS_LOGSTDBY. SKIP (stnt =>'DM.', schema_name => 'HR, -
> obj ect_nane => ' EMPLOYEES);

SQL> EXECUTE DBMS_LOGSTDBY. SKI P (stnt => ' SCHEMA DDL', schema_name => 'HR, -
> obj ect_nanme => ' EMPLOYEES);

3. Start SQL Apply:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MMEDI ATE;

11.5.3 Setting up a Skip Handler for a DDL Statement

ORACLE

You can create a procedure to intercept certain DDL statements and replace the
original DDL statement with a different one.

For example, if the file system organization in the logical standby database is different
than that in the primary database, you can write a DBMS_LOGSTDBY. SKI P procedure to
transparently handle DDL transactions with file specifications.

11-18

Chapter 11
Customizing a Logical Standby Database

The following procedure can handle different file system organization between the
primary database and standby database, as long as you use a specific haming
convention for your file-specification string.

1. Create the skip procedure to handle tablespace DDL transactions:

CREATE OR REPLACE PROCEDURE SYS. HANDLE TBS DDL (
QLD STMI IN VARCHARZ,
STMI_TYP IN VARCHAR?,
SCHEMA IN VARCHAR2,
NAME IN VARCHAR2,
Xl DUSN N NUMBER,
XIDSLT N NUMBER,
Xl DSQN I'N NUMBER,
ACTI ON QUT NUMBER,
NEW STMI' QUT VARCHAR2

) AS

BEG N

- Al primary file specification that contains a directory
-- Jusr/orcl/primry/dbs
- should go to /usr/orcl/stdby directory specification

NEW STMT : = REPLACE(OLD_STM,
"lusr/orcl/primary/dbs',
"lusr/orcl/stdby');

ACTI ON : = DBMS_LOGSTDBY. SKI P_ACTI ON_REPLACE;

EXCEPTI ON
WHEN OTHERS THEN
ACTI ON : = DBMS_LOGSTDBY. SKI P_ACTI ON_ERROR,
NEW STMT : = NULL;
END HANDLE_TBS_DDL;

2. Stop SQL Apply:
SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;
3. Register the skip procedure with SQL Apply:

SQ.> EXECUTE DBMS_LOGSTDBY. SKI P (stnt => ' TABLESPACE , -
> proc_nanme => 'sys.handle_tbs_ddl");

4. Start SQL Apply:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

11.5.4 Modifying a Logical Standby Database

Logical standby databases can be used for reporting activities, even while SQL
statements are being applied.

The database guard controls user access to tables in a logical standby database, and
the ALTER SESSI ON DI SABLE GUARD statement is used to bypass the database guard
and allow modifications to the tables in the logical standby database.

ORACLE 11-19

Chapter 11
Customizing a Logical Standby Database

Note:

To use a logical standby database to host other applications that process
data being replicated from the primary database while creating other tables
of their own, the database guard must be set to STANDBY. For such
applications to work seamlessly, make sure that you are running with
PRESERVE_COWM T_ORDER set to TRUE (the default setting for SQL Apply). (See
Oracle Database PL/SQL Packages and Types Reference for information
about the PRESERVE_COWM T_ORDER parameter in the DBMS_LOGSTDBY PL/SQL
package.)

Issue the following SQL statement to set the database guard to STANDBY:

SQL> ALTER DATABASE GUARD STANDBY;

Under this guard setting, tables being replicated from the primary database
are protected from user modifications, but tables created on the standby
database can be modified by the applications running on the logical standby.

By default, a logical standby database operates with the database guard set to ALL,
which is its most restrictive setting, and does not allow any user changes to be
performed to the database. You can override the database guard to allow changes to
the logical standby database by executing the ALTER SESSI ON DI SABLE GUARD
statement. Privileged users can issue this statement to turn the database guard off for
the current session.

The following sections provide some examples. The discussions in these sections
assume that the database guard is set to ALL or STANDBY.

11.5.4.1 Performing DDL on a Logical Standby Database

ORACLE

You can add a constraint to a table maintained through SQL Apply.

By default, only accounts with SYS privileges can modify the database while the
database guard is set to ALL or STANDBY. If you are logged in as SYSDG, SYSTEM or
another privileged account, you cannot issue DDL statements on the logical standby
database without first bypassing the database guard for the session.

The following example shows how to stop SQL Apply, bypass the database guard,
execute SQL statements on the logical standby database, and then reenable the
guard. In this example, a soundex index is added to the surname column of SCOTT. EMP
to speed up partial match queries. A soundex index could be prohibitive to maintain on
the primary server.

SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;
Dat abase al tered.

SQL> ALTER SESSI ON DI SABLE GUARD;
PL/ SQL procedure successfully conpl et ed.

SQL> CREATE | NDEX EMP_SOUNDEX ON SCOTT. EMP(SOUNDEX(ENAME)) ;
Tabl e al tered.

SQL> ALTER SESSI ON ENABLE GUARD;
PL/ SQL procedure successfully conpl eted.

11-20

Chapter 11
Customizing a Logical Standby Database

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;
Dat abase al tered.

SQL> SELECT ENAME, MGR FROM SCOTT. EMP WHERE SOUNDEX(ENAME) = SOUNDEX(' CLARKE') ;

Oracle recommends that you do not perform DML operations on tables maintained by
SQL Apply while the database guard bypass is enabled. Doing so introduces
deviations between the primary and standby databases that make it impossible for the
logical standby database to be maintained.

11.5.4.2 Modifying Tables That Are Not Maintained by SQL Apply

ORACLE

Sometimes, a reporting application must collect summary results and store them
temporarily or track the number of times a report was run. Although the main purpose
of the application is to perform reporting activities, the application might need to issue
DML (insert, update, and delete) operations on a logical standby database. It might
even need to create or drop tables. You can set up the database guard to allow
reporting operations to modify data as long as the data is not being maintained
through SQL Apply.

To do this, you must:

e Specify the set of tables on the logical standby database to which an application
can write data by executing the DBMS_LOGSTDBY. SKI P procedure. Skipped tables
are not maintained through SQL Apply.

» Set the database guard to protect only standby tables.

In the following example, it is assumed that the tables to which the report is writing are
also on the primary database.

The example stops SQL Apply, skips the tables, and then restarts SQL Apply. The
reporting application writes to TESTEMP%in HR. The tables are no longer maintained
through SQL Apply.

SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;
Dat abase altered.

SQL> EXECUTE DBMS_LOGSTDBY. SKI P(stnt => ' SCHEMA_DDL', -
schema_nane => 'HR, -
obj ect _name => ' TESTEMP%) ;

PL/ SQL procedure successful ly conpl eted.

SQ.> EXECUTE DBMS_LOGSTDBY. SKI P(' DM.', ' HR , ' TESTEMP%) ;
PL/ SQL procedure successful ly conpl eted.

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;
Dat abase altered.

Once SQL Apply starts, it needs to update metadata on the standby database for the
newly specified tables added in the skip rules. Attempts to modify the newly skipped
table until SQL Apply has had a chance to update the metadata fail. You can find out if
SQL Apply has successfully taken into account the SKI P rule you just added by issuing
the following query:

11-21

Chapter 11
Customizing a Logical Standby Database

SQ.> SELECT VALUE FROM SYSTEM LOGSTDBY$PARAMETERS WHERE NAME = ' GUARD_STANDBY' ;

When the VALUE column displays Ready, SQL Apply has successfully updated all
relevant metadata for the skipped table, and it is safe to modify the table.

¢ See Also:

DDL Statements Supported by a Logical Standby Database and the
DBMS_LOGSTDBY package in Oracle Database PL/SQL Packages and Types
Reference

11.5.5 Adding or Re-Creating Tables On a Logical Standby Database

ORACLE

Typically, you use the DBM5_LOGSTDBY. | NSTANTI ATE_TABLE procedure to re-create a
table after an unrecoverable operation.

You can also use this procedure to enable SQL Apply on a table that was formerly
skipped.

Before you can create a table, it must meet the requirements described in Ensure
Table Rows in the Primary Database Can Be Uniquely Identified. Then, you can use
the following steps to re-create a table named HR. EMPLOYEES and resume SQL Apply.
The directions assume that there is already a database link BOSTON defined to access
the primary database.

The following list shows how to re-create a table and restart SQL Apply on that table:
1. Stop SQL Apply:
SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;

2. Ensure no operations are being skipped for the table in question by querying the
DBA LOGSTDBY_SKI P view:

SQL> SELECT * FROM DBA LOGSTDBY SKI P;

ERROR STATEMENT CPT OMER NANE PROC
N SCHEMA_DDL HR ENPLOYEES

N DML HR EMPLOYEES

N SCHEMA_DDL CE TEST_ORDER

N DML CE TEST_ORDER

Because you already have skip rules associated with the table that you want to re-
create on the logical standby database, you must first delete those rules. You can
accomplish that by calling the DBMS_LOGSTDBY. UNSKI P procedure. For example:

SQL> EXECUTE DBMS_LOGSTDBY. UNSKI P(stnt => 'DM.', -
> schema_nanme => 'HR, -
> obj ect_nanme => ' EMPLOYEES);

11-22

Chapter 11
Managing Specific Workloads In the Context of a Logical Standby Database

SQL> EXECUTE DBMS_LOGSTDBY. UNSKI P(stnt => ' SCHEMA DDL', -
> schema_nanme => 'HR, -
> obj ect_name => ' EMPLOYEES);

3. Re-create the table HR EMPLOYEES with all its data in the logical standby database
by using the DBMS_LOGSTDBY. | NSTANTI ATE_TABLE procedure. For example:

SQL> EXECUTE DBMS_LOGSTDBY. | NSTANTI ATE_TABLE(schema_nane => 'HR', -
> table_name => ' EMPLOYEES' , -
> dblink => 'BOSTON);

4. Start SQL Apply:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for
information about the DBVS_LOGSTDBY. UNSKI P and the
DBMS _LOGSTDBY. | NSTANTI ATE_TABLE procedures

To ensure a consistent view across the newly instantiated table and the rest of the
database, wait for SQL Apply to catch up with the primary database before querying
this table. You can do this by performing the following steps:

1. On the primary database, determine the current SCN by querying the V$DATABASE
view:

SQL> SELECT CURRENT_SCN FROM V$DATABASE@BOSTON,

345162788

2. Make sure SQL Apply has applied all transactions committed before the
CURRENT_SCN returned in the previous query:

SQL> SELECT APPLI ED_SCN FROM V$LOGSTDBY PROGRESS;
APPLI ED_SCN

345161345

When the APPLI ED_SCN returned in this query is greater than the CURRENT _SCN
returned in the first query, it is safe to query the newly re-created table.

11.6 Managing Specific Workloads In the Context of a
Logical Standby Database

You can manage specific workloads in the context of a logical standby.
See the following:

e Importing a Transportable Tablespace to the Primary Database
e Using Materialized Views

e How Triggers and Constraints Are Handled on a Logical Standby Database

ORACLE 11-23

Chapter 11
Managing Specific Workloads In the Context of a Logical Standby Database

» Using Triggers to Replicate Unsupported Tables
* Recovering Through the Point-in-Time Recovery Performed at the Primary

* Running an Oracle Streams Capture Process on a Logical Standby Database

11.6.1 Importing a Transportable Tablespace to the Primary Database

A transportable tablespace can be imported to a primary database.

Perform the following steps:

1. Disable the guard setting so that you can modify the logical standby database:
SQL> ALTER DATABASE GUARD STANDBY;

2. Import the tablespace at the logical standby database.

3. Enable the database guard setting:
SQL> ALTER DATABASE GUARD ALL;

4. Import the tablespace at the primary database.

11.6.2 Using Materialized Views

ORACLE

Logical standby automatically skips DDL statements related to materialized views.
For example, logical standby skips the following statements:

* CREATE, ALTER, or DROP NMATERI ALI ZED VI EW
» CREATE, ALTER or DROP MATERI ALI ZED VI EW LOG

New materialized views that are created, altered, or dropped on the primary database
after the logical standby database has been created are not created on the logical
standby database. However, materialized views created on the primary database prior
to the logical standby database being created are present on the logical standby
database.

Logical Standby supports the creation and maintenance of new materialized views
locally on the logical standby database in addition to other kinds of auxiliary data
structure. For example, online transaction processing (OLTP) systems frequently use
highly normalized tables for update performance but these can lead to slower
response times for complex decision support queries. Materialized views that
denormalize the replicated data for more efficient query support on the logical standby
database can be created, as follows (connect as user SYS before issuing these
statements):

SQL> ALTER SESSI ON DI SABLE GUARD;

SQL> CREATE MATERI ALI ZED VI EW LOG ON SCOTT. EMP -
> WTH ROND (EVMPNO, ENAME, MCR DEPTNO) | NCLUDI NG NEW VALUES,;

SQL> CREATE MATERI ALI ZED VI EW LOG ON SCOTT. DEPT -
> WTH RON D (DEPTNO, DNAME) | NCLUDI NG NEW VALUES;

SQL> CREATE MATERI ALI ZED VI EW SCOTT. MANAGED BY -

> REFRESH ON DEMAND -

> ENABLE QUERY REWRI TE -

> AS SELECT E. ENAME, M ENAME AS MANAGER -

> FROM SCOTT. EMP E, SCOIT. EMP M WHERE E. MGR=M EMPNO,

11-24

Chapter 11
Managing Specific Workloads In the Context of a Logical Standby Database

SQL> CREATE MATERI ALI ZED VI EW SCOTT. | N_DEPT -

> REFRESH FAST ON COWM T -

> ENABLE QUERY REWRI TE -

> AS SELECT E.ROWD AS ERID, D.ROND AS DRI D, E. ENAME, D. DNAME -
> FROM SCOTT. EMP E, SCOTT. DEPT D WHERE E. DEPTNO=D. DEPTNO,

On a logical standby database:

* An ON-COMMIT materialized view is refreshed automatically on the logical
standby database when the transaction commit occurs.

* An ON-DEMAND materialized view is not automatically refreshed: the
DBMS_MI EW REFRESH procedure must be executed to refresh it.

For example, issuing the following command would refresh the ON-DEMAND
materialized view created in the previous example:

SQL> ALTER SESSI ON DI SABLE GUARD,
SQL> EXECUTE DBMS_MVI EW REFRESH (LI ST => ' SCOTT. MANAGED BY', METHOD => 'C);

If DBMS_SCHEDULER jobs are being used to periodically refresh on-demand materialized
views, the database guard must be set to STANDBY. (It is not possible to use the ALTER
SESSI ON DI SABLE GUARD statement inside a PL/SQL block and have it take effect.)

11.6.3 How Triggers and Constraints Are Handled on a Logical
Standby Database

By default, triggers and constraints are automatically enabled and handled on logical
standby databases.

For triggers and constraints on tables maintained by SQL Apply:

e Constraints — Check constraints are evaluated on the primary database and do
not need to be re-evaluated on the logical standby database.

e Triggers — The effects of the triggers executed on the primary database are
logged and applied on the standby database.

For triggers and constraints on tables not maintained by SQL Apply:
* Constraints are evaluated

e Triggers are fired

11.6.4 Using Triggers to Replicate Unsupported Tables

ORACLE

DML triggers created on a table have their DBMS_DDL. SET_TRI GGER_FI Rl NG_PROPERTY
fire_once parameter set to TRUE by default.

The triggers fire only when the table is modified by a user process. They are
automatically disabled inside SQL Apply processes, and thus do not fire when a SQL
Apply process modifies the table. There are two ways to fire a trigger as a result of
SQL Apply process making a change to a maintained table:

e Setthe fire_once parameter of a trigger to FALSE, which allows it to fire in either
the context of a user process or a SQL Apply process

11-25

ORACLE

Chapter 11
Managing Specific Workloads In the Context of a Logical Standby Database

* Setthe appl y_server_only parameter to TRUE which results in the trigger firing
only in the context of a SQL Apply process and not in the context of a user

process

fire_once apply_server_only description

TRUE FALSE This is the default property setting for a DML trigger.
The trigger fires only when a user process modifies the
base table.

FALSE FALSE The trigger fires in the context of a user process and in
the context of a SQL Apply process modifying the base
table. You can distinguish the two contexts by using the
DBMS_LOGSTDBY. | S_APPLY_SERVER function.

TRUE/ TRUE The trigger only fires when a SQL Apply process

EALSE modifies the base table. The trigger does not fire when

a user process modifies the base table. Thus, the
appl y_server _only property overrides the
fire_once parameter of a trigger.

Tables that are unsupported due to simple object type columns can be replicated by
creating triggers that fire in the context of a SQL Apply process (either by setting the
fire_once parameter of such a trigger to FALSE or by setting the apply_server_only
parameter of such a trigger to TRUE). A regular DML trigger can be used on the primary
database to flatten the object type into a table that can be supported. The trigger that
fires in the context of a SQL Apply process on the logical standby reconstitutes the
object type and updates the unsupported table in a transactional manner.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for
descriptions of the DBM5S_DDL. SET_TRI GGER_FI RI NG_PROPERTY procedure
and the DBMS_LOGSTDBY. | S_APPLY_SERVER function

The following example shows how a table with a simple object type could be replicated
using triggers. This example shows how to handle inserts; the same principle can be
applied to updating and deleting. Nested tables and VARRAYs can also be replicated
using this technique with the additional step of a loop to normalize the nested data.

- sinple object type
create or replace type Person as object
(
Fi r st Nane var char 2(50),
Last Nane var char 2(50),
Bi rthbDate Dat e

)

- unsupported object table

create tabl e enpl oyees

(
| dNunber varchar 2(10) ,
Department varchar2(50),
Info Per son

)

11-26

ORACLE

Chapter 11
Managing Specific Workloads In the Context of a Logical Standby Database

-- supported table popul ated via trigger

create tabl e enpl oyees_transfer

(
t _I dNumber varchar2(10)
t _Department varchar2(50),
t_FirstNane varchar2(50)
t _LastNane varchar2(50)
t_BirthDate Date

)

-- create this trigger to flatten object table on the prinmary
-- this trigger will not fire on the standby
create or replace trigger flatten_enpl oyees
after insert on enployees for each row
declare
begin
insert into enployees_transfer
(t_I'dNunber, t_Department, t_FirstNane, t_LastName, t_BirthDate)
val ues
(:new. | dNumber, :new. Departnent,
:new. I nfo. Fi rstNane, : new. | nfo. Last Name, :new. |nfo.BirthDate)
end

-- Option#l (Better Option: Create a trigger and

-- set its apply-server-only property to TRUE)

-- create this trigger at the |ogical standby database

-- to popul ate object table on the standby

-- this trigger only fires when apply replicates rows

-- to the standby

create or replace trigger reconstruct_enpl oyees_aso
after insert on enployees_transfer for each row

begin

insert into enployees (IdNunber, Department, |nfo)
val ues (:new.t_ldNurmber, :new t_Departnent,
Person(:new.t _FirstNanme, :new.t_LastNane, :new.t_BirthDate))

end

-- set this trigger to fire fromthe apply server
execute dbms_ddl . set _trigger_firing_property(-
trig_owner => 'scott', -

trig_name => 'reconstruct_enpl oyees_aso'
property => dbns_ddl . appl y_server _only

setting => TRUE);

-- Option#2 (Create a trigger and set
-- its fire-once property to FALSE)
-- create this trigger at the |ogical standby database
-- to popul ate object table on the standby
-- this trigger will fire when apply replicates rows to -- the standby, but we will
need to make sure we are
-- are executing inside a SQL Apply process by invoking
-- dbns_| ogstdby.is_apply_server function
create or replace trigger reconstruct_enpl oyees_nfo
after insert on enployees_transfer for each row

11-27

begin

Chapter 11

Managing Specific Workloads In the Context of a Logical Standby Database

i f dbms_| ogstdby.is_apply_server() then
insert into enployees (IdNunber, Department, |nfo)
val ues (:new t_ldNunber, :newt_Departnent,

Person(:new. t_FirstName, :new t_LastName,

end if;
end

‘new.t_BirthDate));

- set this trigger to fire fromthe apply server
execute dbms_ddl . set _trigger_firing_property(-
trig_owner => 'scott', -
trig_name => 'reconstruct_enpl oyees_nfo',
property => dbns_ddl . fire_once,
setting => FALSE);

11.6.5 Recovering Through the Point-in-Time Recovery Performed at

the Primary

When a logical standby database receives a new branch of redo data, SQL Apply
automatically takes the new branch of redo data.

For logical standby databases, no manual intervention is required if the standby
database did not apply redo data past the new resetlogs SCN (past the start of the
new branch of redo data)

The following table describes how to resynchronize the standby database with the
primary database branch.

If the standby database. . .

Then. ..

Perform these steps. . .

Has not applied redo data past the
new resetlogs SCN (past the start
of the new branch of redo data)

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is enabled on
the standby database

Has applied redo data past the new
resetlogs SCN (past the start of the
new branch of redo data) and
Flashback Database is not enabled
on the standby database

Is missing archived redo log files
from the end of the previous branch
of redo data

SQL Apply automatically
takes the new branch of redo
data.

The standby database is
recovered in the future of the
new branch of redo data.

The primary database has
diverged from the standby on
the indicated primary
database branch.

SQL Apply cannot continue
until the missing log files are
retrieved.

No manual intervention is necessary. SQL
Apply automatically resynchronizes the
standby database with the new branch of redo
data.

Follow the procedure in Flashing Back a
Logical Standby Database to a Specific
Point-in-Time to flash back a logical
standby database.

2. Restart SQL Apply to continue
application of redo onto the new reset
logs branch.

SQL Apply automatically resynchronizes the
standby database with the new branch.

Re-create the logical standby database
following the procedures in Creating a Logical
Standby Database .

Locate and register missing archived redo log
files from the previous branch.

See Oracle Database Backup and Recovery User's Guide for more information about
database incarnations, recovering through an OPEN RESETLOGS operation, and
Flashback Database.

ORACLE

11-28

Chapter 11
Managing Specific Workloads In the Context of a Logical Standby Database

11.6.6 Running an Oracle Streams Capture Process on a Logical
Standby Database

ORACLE

You can run an Oracle Streams capture process on a logical standby database to
capture changes from any table that exists on the logical standby database (whether it
is a local table or a maintained table that is being replicated from the primary
database).

When changes are captured to a maintained table, there is additional latency as
compared to running an Oracle Streams capture process at the primary database. The
additional latency is because of the fact that when you are running at a logical
standby, the Oracle Streams capture process must wait for the changes to be shipped
from the primary to the logical standby and applied by SQL Apply. In most cases, if
you are running real time apply, it is no more than a few seconds.

The Oracle Streams capture process is associated with the database where it was
created; the role of the database is irrelevant. For example, suppose you have a
primary database named Bost on and a logical standby named London. You cannot
move the Oracle Streams capture process from one database to the other as you go
through role transitions. For instance, if you created an Oracle Streams capture
process on London when it was a logical standby, then it remains on London even
when London becomes the primary as a result of a role transition operation such as a
switchover or failover. For the Oracle Streams capture process to continue working
after a role transition, you must write a role transition trigger such as the following:

create or replace trigger streans_aq_job_rol e_changel
after DB_ROLE_CHANGE on dat abase
declare
cursor capture_ag_jobs is
sel ect job_nane, database role
from dba_schedul er _job_rol es
where job_nane |ike 'AQ JOB% ;
u capture_aq_j obs¥ROMYPE;
my_db_role varchar2(16);
begin

if (dbms_l ogstdby.db_is_logstdby() = 1) then ny_db_role :="'LOG CAL STANDBY';
else ny_db_role :="'PR MARY';
end if;

open capture_ag_j obs;
| oop
fetch capture_ag_jobs into u;
exit when capt ure_aq_j obsYNOTFOUND;

if (u.database_role !'= ny_db_role) then
dbms_schedul er. set _attribute(u.job_nane,
' dat abase_role',
my_db_role);

end if;
end | oop;
cl ose capture_aqg_j obs;

exception

when ot hers then
begin

11-29

Chapter 11
Tuning a Logical Standby Database

raise;
end;
end;

11.7 Tuning a Logical Standby Database

These topics provide information about various ways to tune logical standby
databases.

* Create a Primary Key RELY Constraint

* Gather Statistics for the Cost-Based Optimizer

e Adjust the Number of Processes

e Adjust the Memory Used for LCR Cache

» Adjust How Transactions are Applied On the Logical Standby Database

11.7.1 Create a Primary Key RELY Constraint

ORACLE

On the primary database, if a table does not have a primary key or a unique index and
you are certain the rows are unique, then create a primary key RELY constraint.

On the logical standby database, create an index on the columns that make up the
primary key. The following query generates a list of tables with no index information
that can be used by a logical standby database to apply to uniquely identify rows. By
creating an index on the following tables, performance can be improved significantly.

SQL> SELECT OMNER, TABLE_NAME FROM DBA TABLES -

VWHERE OWNER NOT I N (SELECT OAMNER FROM DBA_LOGSTDBY_SKIP -
VWHERE STATEMENT_OPT = '|INTERNAL SCHEMA') -

M NUS -

SELECT DI STINCT TABLE_OMNER, TABLE NAME FROM DBA_I NDEXES -
VWHERE | NDEX_TYPE NOT LI KE (' FUNCTI ON- BASED%) -

M NUS -

SELECT OMNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;

V V. V V V V V

You can add a rely primary key constraint to a table on the primary database, as
follows:

1. Add the primary key rely constraint at the primary database:

SQL> ALTER TABLE HR TEST_EMPLOYEES ADD PRI MARY KEY (EMPNO) RELY DI SABLE;

This ensures that the EMPNO column, which can be used to uniquely identify the
rows in HR. TEST_EMPLOYEES table, is supplementally logged as part of any updates
done on that table.

Note that the HR. TEST_EMPLOYEES table still does not have any unique index
specified on the logical standby database. This may cause UPDATE statements to
do full table scans on the logical standby database. You can remedy that by
adding a unigue index on the EMPNO column on the logical standby database.See
Ensure Table Rows in the Primary Database Can Be Uniquely Identified and
Oracle Database SQL Language Reference for more information about RELY
constraints.

Perform the remaining steps on the logical standby database.

11-30

Chapter 11
Tuning a Logical Standby Database

2. Stop SQL Apply:
SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;

3. Disable the guard so that you can modify a maintained table on the logical standby
database:

SQL> ALTER SESSI ON DI SABLE GUARD,
4. Add a unique index on EMPNO column:

SQ> CREATE UNI QUE | NDEX U _TEST_EMP ON HR TEST_EMPLOYEES (EMPNO);
5. Enable the guard:

SQL> ALTER SESSI ON ENABLE GUARD;
6. Start SQL Apply:

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

11.7.2 Gather Statistics for the Cost-Based Optimizer

Statistics should be gathered on the standby database because the cost-based
optimizer (CBO) uses them to determine the optimal query execution path.

New statistics should be gathered after the data or structure of a schema object is
modified in ways that make the previous statistics inaccurate. For example, after
inserting or deleting a significant number of rows into a table, collect new statistics on
the number of rows.

Statistics should be gathered on the standby database because DML and DDL
operations on the primary database are executed as a function of the workload. While
the standby database is logically equivalent to the primary database, SQL Apply might
execute the workload in a different way. This is why using the STATS pack on the
logical standby database and the V3SYSSTAT view can be useful in determining which
tables are consuming the most resources and table scans.

See Also:

e Ensure Table Rows in the Primary Database Can Be Uniquely Identified

11.7.3 Adjust the Number of Processes

ORACLE

There are three parameters that can be modified to control the number of processes
allocated to SQL Apply: MAX_SERVERS, APPLY_SERVERS, and PREPARE_SERVERS.

The following relationships must always hold true:

e APPLY_SERVERS + PREPARE_SERVERS = MAX_SERVERS - 3

This is because SQL Apply always allocates one process for the READER, BUI LDER,
and ANALYZER roles.

* By default, MAX_SERVERS is set to 9, PREPARE_SERVERS is set to 1, and
APPLY_SERVERS is set to 5.

11-31

Chapter 11
Tuning a Logical Standby Database

* Oracle recommends that you only change the MAX_SERVERS parameter through the
DBMS_LOGSTDBY. APPLY_SET procedure, and allow SQL Apply to distribute the
server processes appropriately between prepare and apply processes.

* SQL Apply uses a process allocation algorithm that allocates 1 PREPARE_SERVER
for every 20 server processes allocated to SQL Apply as specified by MAX_SERVER
and limits the number of PREPARE_SERVERS to 5. Thus, if you set MAX_SERVERS to
any value between 1 and 20, SQL Apply allocates 1 server process to act as a
PREPARER, and allocates the rest of the processes as APPLI ERS while satisfying the
relationship previously described. Similarly, if you set MAX_SERVERS to a value
between 21 and 40, SQL Apply allocates 2 server processes to act as PREPARERS
and the rest as APPLI ERS, while satisfying the relationship previously described.
You can override this internal process allocation algorithm by setting
APPLY_SERVERS and PREPARE_SERVERS directly, provided that the previously
described relationship is satisfied.

The following sections describe:

* Adjusting the Number of APPLIER Processes
e Adjusting the Number of PREPARER Processes

11.7.3.1 Adjusting the Number of APPLIER Processes

Before adjusting the number of APPLI ER processes, you should determine whether
doing so will help you achieve greater throughput.

To determine this, perform the following steps:
1. Check whether APPLI ER processes are busy by issuing the following query:

SQL> SELECT COUNT(*) AS | DLE_APPLIER -
> FROM V$LOGSTDBY_PROCESS -
> WHERE TYPE = ' APPLIER and status_code = 16116;

| DLE_APPLI ER

2. Once you are sure there are no idle APPLI ER processes, issue the following query
to ensure there is enough work available for additional APPLI ER processes if you
choose to adjust the number of APPLI ERS:

SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'txns applied OR NAME =
"distinct txns in queue';

These two statistics keep a cumulative total of transactions that are ready to be
applied by the APPLI ER processes and the number of transactions that have
already been applied.

If the number (di stinct txns in queue - txns applied) is higher than twice the
number of APPLI ER processes available, an improvement in throughput is possible
if you increase the number of APPLI ER processes.

ORACLE 11-32

Chapter 11
Tuning a Logical Standby Database

Note:

The number is a rough measure of ready work. The workload may be
such that an interdependency between ready transactions prevents
additional available APPLI ER processes from applying them. For
instance, if the majority of the transactions that are ready to be applied
are DDL transactions, then adding more APPLI ER processes does not
result in a higher throughput.

Suppose you want to adjust the number of APPLI ER processes to 20 from the
default value of 5, while keeping the number of PREPARER processes to 1. Because
you must satisfy the following equation:

APPLY_SERVERS + PREPARE_SERVERS = MAX_SERVERS - 3
you must first set MAX_SERVERS to 24. Once you have done that, you can set the
number of APPLY SERVERS to 20, as follows:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' MAX_SERVERS' , 24):
SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' APPLY_SERVERS , 20);

11.7.3.2 Adjusting the Number of PREPARER Processes

It is rare that you will need to adjust the number of PREPARER processes. Before
increasing their number, you must ensure that certain conditions are true.

ORACLE

The conditions that must be true are as follows:

All PREPARER processes are busy

The number of transactions ready to be applied is less than the number of APPLI ER
processes available

There are idle APPLI ER processes

The following steps show how to determine these conditions are true:

1.

Ensure all PREPARER processes are busy:

SQL> SELECT COUNT(*) AS | DLE_PREPARER -
> FROM V$LOGSTDBY_PRCCESS -
> WHERE TYPE = ' PREPARER and status_code = 16116;

| DLE_PREPARER

Ensure the number of transactions ready to be applied is less than the number of
APPLI ER processes:

SQ.> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'txns applied OR - >
NAME = "distinct txns in queue';

NAME VALUE
txns applied 27892
distinct txns in queue 12896

11-33

Chapter 11
Tuning a Logical Standby Database

SQL> SELECT COUNT(*) AS APPLIER COUNT -
> FROM V$LOGSTDBY _PROCESS WHERE TYPE = ' APPLIER ;

APPLI ER_COUNT

Note: Issue this query several times to ensure this is not a transient event.
3. Ensure there are idle APPLI ER processes:

SQ.> SELECT COUNT(*) AS IDLE APPLIER -
> FROM V$LOGSTDBY PROCESS -
> WHERE TYPE = ' APPLIER and status _code = 16116

| DLE_APPLI ER

In the example, all three conditions necessary for increasing the number of PREPARER
processes have been satisfied. Suppose you want to keep the number of APPLI ER
processes set to 20, and increase the number of PREPARER processes from 1 to 3.
Because you always have to satisfy the following equation:

APPLY_SERVERS + PREPARE_SERVERS = MAX_SERVERS - 3

you first need to increase the number MAX_SERVERS from 24 to 26 to accommodate the
increased number of preparers. You can then increase the number of PREPARER
processes, as follows:

SQL> EXECUTE DBVS_LOGSTDBY. APPLY_SET(' MAX_SERVERS , 26);
SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' PREPARE_SERVERS , 3);

11.7.4 Adjust the Memory Used for LCR Cache

ORACLE

For some workloads, SQL Apply may use a large number of pageout operations,
thereby reducing the overall throughput of the system. Increasing memory allocated to
the LCR cache may help.

To determine whether increasing memory allocated to the LCR cache would be
beneficial, perform the following steps:

1. Issue the following query to obtain a snapshot of pageout activity:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS VHERE NAME LIKE ' %page% -
> OR NAME LIKE ' %uptime% OR NAVE LIKE ' % dl e%;

NAVE VALUE

coordinator uptime (seconds) 894856
byt es paged out 20000
pageout tine (seconds) 2
systemidle tine (seconds) 1000

2. lIssue the query again in 5 minutes:

SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME LI KE ' %page% -
> OR NAME LIKE ' %uptime% OR NAVE LIKE ' % dl e%;

coordi nator uptime (seconds) 895156

11-34

Chapter 11
Tuning a Logical Standby Database

bytes paged out 1020000
pageout tine (seconds) 100
systemidle tine (seconds) 1000

3. Compute the normalized pageout activity. For example:

Change in coordinator uptime (C)= (895156 — 894856) = 300 secs
Amount of additional idle time (1)= (1000 — 1000) = 0

Change in time spent in pageout (P) = (100 - 2) = 98 secs

Pageout time in conparison to uptime = P/(C1) = 98/300 ~ 32.67%

Ideally, the pageout activity should not consume more than 5 percent of the total
uptime. If you continue to take snapshots over an extended interval and you find the
pageout activities continue to consume a significant portion of the apply time,
increasing the memory size may provide some benefits. You can increase the memory
allocated to SQL Apply by setting the memory allocated to LCR cache (for this
example, the SGA is set to 1 GB):

SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' MAX_SGA', 1024);
PL/ SQL procedure successful ly conpl eted

11.7.5 Adjust How Transactions are Applied On the Logical Standby

Database

ORACLE

By default, transactions are applied on the logical standby database in the exact order
in which they were committed on the primary database.

The strict default order of committing transactions allows any application to run
transparently on the logical standby database.

However, many applications do not require such strict ordering among all transactions.
Such applications do not require transactions containing non-overlapping sets of rows
to be committed in the same order that they were committed at the primary database.
This less strict ordering typically results in higher apply rates at the logical standby
database. You can change the default order of committing transactions by performing
the following steps:

1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;
Dat abase al tered

2. Issue the following to allow transactions to be applied out of order from how they
were committed on the primary databases:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY SET(' PRESERVE_COMM T_ORDER , ' FALSE');
PL/ SQL procedure successfully conpleted

3. Start SQL Apply:

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;
Dat abase al tered

You can change back the apply mode as follows:
1. Stop SQL Apply:

SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;
Dat abase altered

2. Restore the default value for the PRESERVE_COWM T_ORDER parameter:

11-35

Chapter 11
Backup and Recovery in the Context of a Logical Standby Database

SQL> EXECUTE DBMS_LOGSTDBY. APPLY UNSET(' PRESERVE_COMM T_CRDER);
PL/ SQL procedure successfully conpl eted

3. Start SQL Apply:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;
Dat abase altered

For a typical online transaction processing (OLTP) workload, the nondefault mode
can provide a 50 percent or better throughput improvement over the default apply
mode.

11.8 Backup and Recovery in the Context of a Logical
Standby Database

ORACLE

You can back up your logical standby database using the traditional methods available
and then recover it by restoring the database backup and performing media recovery
on the archived logs, in conjunction with the backup.

The following items are relevant in the context of a logical standby database.

Considerations When Creating and Using a Local RMAN Recovery Catalog

If you plan to create the RMAN recovery catalog or perform any RMAN activity that
modifies the catalog, you must be running with GUARD set to STANDBY at the logical
standby database.

You can leave GUARD set to ALL, if the local recovery catalog is kept only in the logical
standby control file.

Considerations For Control File Backup

Oracle recommends that you take a control file backup immediately after instantiating
a logical standby database.

Considerations For Point-in-Time Recovery

When SQL Apply is started for the first time following point-in-time recovery, it must be
able to either find the required archived logs on the local system or to fetch them from
the primary database. Use the V$LOGSTDBY_PROCESS view to determine if any archived
logs need to be restored on the primary database.

Considerations For Tablespace Point-in-Time Recovery

If you perform point-in-time recovery for a tablespace in a logical standby database,
you must ensure one of the following:

* The tablespace contains no tables or partitions that are being maintained by the
SQL Apply process

» If the tablespace contains tables or partitions that are being maintained by the
SQL Apply process, then either use the DBMS_LOGSTDBY. | NSTANTI ATE_TABLE
procedure to reinstantiate all of the maintained tables contained in the recovered
tablespace at the logical standby database, or use DBM5S_LOGSTDBY. SKI P procedure
to register all tables contained in the recovered tablespace to be skipped from the
maintained table list at the logical standby database.

11-36

Using RMAN to Back Up and Restore Files

ORACLE

You can create backup strategies using Oracle Recovery Manager (RMAN) with
Oracle Data Guard and standby databases.

RMAN can perform backups with minimal effect on the primary database and quickly
recover from the loss of individual data files, or the entire database. RMAN and Oracle
Data Guard can be used together to simplify the administration of an Oracle Data
Guard configuration.

See the following topics:

About RMAN File Management in an Oracle Data Guard Configuration

About RMAN Configuration in an Oracle Data Guard Environment
Recommended RMAN and Oracle Database Configurations

Backup Procedures

Registering and Unregistering Databases in an Oracle Data Guard Environment
Reporting in an Oracle Data Guard Environment

Performing Backup Maintenance in an Oracle Data Guard Environment
Recovery Scenarios in an Oracle Data Guard Environment

Additional Backup Situations

Restoring and Recovering Files Over the Network

RMAN Support for CDBs In an Oracle Data Guard Environment

" Note:

Because a logical standby database is not a block-for-block copy of the
primary database, you cannot use a logical standby database to back up the
primary database.

" See Also:

e Oracle Database Backup and Recovery User's Guide for more
information about RMAN concepts and about using RMAN in an Oracle
Data Guard environment

e Oracle Database Backup and Recovery Reference for detailed
information about RMAN commands

12-1

Chapter 12
About RMAN File Management in an Oracle Data Guard Configuration

12.1 About RMAN File Management in an Oracle Data
Guard Configuration

RMAN uses a recovery catalog to track filenames for all database files in an Oracle
Data Guard environment.

A recovery catalog is a database schema used by RMAN to store metadata about one
or more Oracle databases. The catalog also records where the online redo logs,
standby redo logs, tempfiles, archived redo logs, backup sets, and image copies are
created.

12.1.1 Interchangeability of Backups in an Oracle Data Guard
Environment

RMAN commands use the recovery catalog metadata to behave transparently across
different physical databases in the Oracle Data Guard environment.

For example, you can back up a tablespace on a physical standby database and
restore and recover it on the primary database. Similarly, you can back up a
tablespace on a primary database and restore and recover it on a physical standby
database.

Note:

Backups of logical standby databases are not usable at the primary
database.

Backups of standby control files and nonstandby control files are interchangeable. For
example, you can restore a standby control file on a primary database and a primary
control file on a physical standby database. This interchangeability means that you can
offload control file backups to one database in an Oracle Data Guard environment.
RMAN automatically updates the filenames for database files during restore and
recovery at the databases.

12.1.2 Association of Backups in an Oracle Data Guard Environment

ORACLE

The recovery catalog tracks the files in the Oracle Data Guard environment by
associating every database file or backup file with a DB_UNI QUE_NAME.

The database that creates a file is associated with the file. For example, if RMAN
backs up the database with the unique name of st andby1, then st andby1 is associated
with this backup. A backup remains associated with the database that created it unless
you use the CHANGE . . . RESET DB_UNI QUE_NAME to associate the backup with a
different database.

12-2

Chapter 12
About RMAN Configuration in an Oracle Data Guard Environment

12.1.3 Accessibility of Backups in an Oracle Data Guard Environment

By default, in an Oracle Data Guard environment, the recovery catalog considers disk
backups as accessible only to the database with which it is associated, whereas tape
backups created on one database are accessible to all databases.

You can override the default behavior by using the following RMAN command:

SET BACKUP FILES FOR DEVI CE TYPE devi ce_specifier TO [NOTACCESSI BLE |
ACCESSI BLE]

The accessibility setting is at the session level which means that after the RMAN
session is disconnected, the association of backups reverts back to default behavior.

If a backup file is not associated with any database, then the row describing it in the
recovery catalog view shows nul | for the SI TE_KEY column. By default, RMAN
associates files whose S| TE_KEY is nul | with the target database.

RMAN commands such as BACKUP, RESTORE, and CROSSCHECK work on any accessible
backup. For example, for a RECOVER COPY operation, RMAN considers only image
copies that are associated with the database as eligible to be recovered. RMAN
considers the incremental backups on disk and tape as eligible to recover the image
copies. In a database recovery, RMAN considers only the disk backups associated
with the database and all files on tape as eligible to be restored.

To illustrate the differences in backup accessibility, assume that databases pr od and
st andby1 reside on different hosts. RMAN backs up data file 1 on prod to / pr mhost/
di sk1/df 1. dbf on the production host and also to tape. RMAN backs up data file 1 on
st andby1l to / sbyhost / di sk2/ df 1. dbf on the standby host and also to tape. If RMAN
is connected to database pr od, then you cannot use RMAN commands to perform
operations with the / sbyhost / di sk2/ df 1. dbf backup located on the standby host.
However, RMAN does consider the tape backup made on st andby1 as eligible to be
restored.

" Note:

You can FTP a backup from a standby host to a primary host or vice versa,
connect as TARGET to the database on this host, and then CATALOG the
backup. After a file is cataloged by the target database, the file is associated
with the target database.

12.2 About RMAN Configuration in an Oracle Data Guard
Environment

ORACLE

In an Oracle Data Guard configuration, the process of backing up control files, data
files, and archived logs can be offloaded to the standby system, thereby minimizing
the effect of backups on the production system.

These backups can be used to recover the primary or standby database.

12-3

Chapter 12
Recommended RMAN and Oracle Database Configurations

RMAN uses the DB_UNI QUE_NAME initialization parameter to distinguish one database
site from another database site. Thus, it is critical that the uniqueness of
DB_UNI QUE_NAME be maintained in an Oracle Data Guard configuration.

Only the primary database must be explicitly registered using the RMAN REG STER
DATABASE command. You do this after connecting RMAN to the recovery catalog and
primary database as target.

Use the RMAN CONFI GURE command to set the RMAN configurations. When the
CONFI GURE command is used with the FOR DB_UNI QUE_NAME option, it sets the RMAN
site-specific configuration for the database with the DB_UNIQUE_NAME you specify.

For example, after connecting to the recovery catalog, you could use the following
commands at an RMAN prompt to set the default device type to SBT for the BOSTON
database that has a DBID of 1625818158. The RMAN SET DBI D command is required
only if you are not connected to a database as target.

SET DBI D 1625818158,;
CONFI GURE DEFAULT DEVI CE TYPE TO SBT FCR DB_UNI QUE_NAME BOSTON,

12.3 Recommended RMAN and Oracle Database
Configurations

ORACLE

These configurations can simplify backup and recovery operations.

» Oracle Database Configurations on Primary and Standby Databases
 RMAN Configurations at the Primary Database

 RMAN Configurations at a Standby Database Where Backups are Performed
RMAN Configurations at a Standby Where Backups Are Not Performed

Configuration Assumptions
These configurations make the following assumptions:

e The standby database is a physical standby database, and backups are taken only
on the standby database. See Standby Databases Too Geographically Distant to
Share Backups for procedural changes if backups are taken on both primary and
standby databases.

 An RMAN recovery catalog is required so that backups taken on one database
server can be restored to another database server. It is not sufficient to use only
the control file as the RMAN repository because the primary database has no
knowledge of backups taken on the standby database.

The RMAN recovery catalog organizes backup histories and other recovery-
related metadata in a centralized location. The recovery catalog is configured in a
database and maintains backup metadata. A recovery catalog does not have the
space limitations of the control file and can store more historical data about
backups.

A catalog server, physically separate from the primary and standby sites, is
recommended in an Oracle Data Guard configuration because a disaster at either
site will not affect the ability to recover the latest backups.

12-4

Chapter 12
Recommended RMAN and Oracle Database Configurations

¢ See Also:

Oracle Database Backup and Recovery User's Guide for more
information about managing a recovery catalog

All databases in the configuration use Oracle Database 11g Release 1 (11.1) or
later.

Oracle Secure Backup software or 3rd-party media management software is
configured with RMAN to make backups to tape.

12.3.1 Oracle Database Configurations on Primary and Standby

Databases

ORACLE

These Oracle Database configurations are recommended on every primary and
standby database in the Oracle Data Guard environment.

Configure a fast recovery area for each database (the recovery area is local to a
database).

The fast recovery area is a single storage location on a file system or Oracle
Automatic Storage Management (Oracle ASM) disk group where all files needed
for recovery reside. These files include the control file, archived logs, online redo
logs, flashback logs, and RMAN backups. As new backups and archived logs are
created in the fast recovery area, older files (which are either outside of the
retention period, or have been backed up to tertiary storage) are automatically
deleted to make room for them. In addition, notifications can be set up to alert the
DBA when space consumption in the fast recovery area is nearing its predefined
limit. The DBA can then take action, such as increasing the recovery area space
limit, adding disk hardware, or decreasing the retention period.

Set the following initialization parameters to configure the fast recovery area:

DB_RECOVERY_FI LE_DEST = <file systemlocation or Oracle ASM Di sk G oup>
DB_RECOVERY_FI LE_DEST_SI ZE = <di sk space quot a>

¢ See Also:

Oracle Database Backup and Recovery User's Guide for more
information about configuring a fast recovery area

Use a server parameter file (SPFILE) so that it can be backed up to save instance
parameters in backups.

Enable Flashback Database on primary and standby databases.

When Flashback Database is enabled, Oracle Database maintains flashback logs
in the fast recovery area. These logs can be used to roll the database back to an
earlier point in time, without requiring a complete restore.

12-5

Chapter 12
Recommended RMAN and Oracle Database Configurations

¢ See Also:

Oracle Database Backup and Recovery User's Guide for more
information about enabling Flashback Database

12.3.2 RMAN Configurations at the Primary Database

To simplify ongoing use of RMAN, you can set a number of persistent configuration
settings for each database in the Oracle Data Guard environment.

ORACLE

These settings control many aspects of RMAN behavior. For example, you can
configure the backup retention policy, default destinations for backups to tape or disk,
default backup device type, and so on. You can use the CONFI GURE command to set
and change RMAN configurations. The following RMAN configurations are
recommended at the primary database:

1.
2.

Connect RMAN to the primary database and recovery catalog.
Configure the retention policy for the database as n days:

CONFI GURE RETENTI ON PQLI CY TO RECOVERY W NDOW OF <n> DAYS,

This configuration lets you keep the backups necessary to perform database
recovery to any point in time within the specified number of days.

Use the DELETE OBSOLETE command to delete any backups that are not required
(per the retention policy in place) to perform recovery within the specified number
of days.

Specify when archived logs can be deleted with the CONFI GURE ARCHI VELOG
DELETI ON POLI CY command. For example, to delete logs after ensuring that they
shipped to all destinations, use the following configuration:

CONFI GURE ARCHI VELOG DELETI ON PCLI CY TO SH PPED TO ALL STANDBY;

To delete logs after ensuring that they were applied on all standby destinations,
use the following configuration:

CONFI GURE ARCHI VELOG DELETI ON PCLI CY TO APPLI ED ON ALL STANDBY;

Configure the connect string for the primary database and all standby databases,
so that RMAN can connect remotely and perform resynchronization when the
RESYNC CATALOG FROM DB_UNI QUE_NAME command is used. When you connect to
the target instance, you must provide a net service name. This requirement
applies even if the other database instance from where the resynchronization is
done is on the local host. The target and remote instances must use the same
SYSDBA (or SYSBACKUP) password, which means that both instances must already
have password files. You can create the password file with a single password so
you can start all the database instances with that password file. For example, if the
TNS alias to connect to a standby in Boston is bost on_conn_str, you can use the
following command to configure the connect identifier for the BOSTON database site:

CONFI GURE DB_UNI QUE_NAME BOSTON CONNECT | DENTI FI ER ' bost on_conn_str";

Note that the ' bost on_conn_str' does not include a username and password. It
contains only the Oracle Net service name that can be used from any database
site to connect to the BOSTON database site.

12-6

Chapter 12
Recommended RMAN and Oracle Database Configurations

After connect identifiers are configured for all standby databases, you can verify
the list of standbys by using the LI ST DB_UNI QUE_NAME OF DATABASE command.

¢ See Also:

e Oracle Database Backup and Recovery User's Guide for more
information about RMAN configurations

e Oracle Database Backup and Recovery Reference for more information
about the RMAN CONFI GURE command

12.3.3 RMAN Configurations at a Standby Database Where Backups
are Performed

These RMAN configurations are recommended at a standby database where backups

are done.

1. Connect RMAN to the standby database (where backups are performed) as target,
and to the recovery catalog.

2. Enable automatic backup of the control file and the server parameter file:
CONFI GURE CONTRCLFI LE AUTOBACKUP ON,

3. Skip backing up data files for which there already exists a valid backup with the
same checkpoint:
CONFI GURE BACKUP OPTI M ZATI ON ON;

4. Configure the tape channels to create backups as required by media management
software:
CONFI GURE CHANNEL DEVI CE TYPE SBT PARMS ' <channel paraneters>';

5. Because the archived logs are backed up at the standby database, Oracle

recommends that you configure the BACKED UP option for the log deletion policy:

CONFI GURE ARCHI VELOG DELETI ON PQOLI CY BACKED UP n TIMES TO DEVI CE TYPE SBT;

¢ See Also:

Oracle Database Backup and Recovery User's Guide for more information
about enabling deletion policies for archived redo logs

12.3.4 RMAN Configurations at a Standby Where Backups Are Not

Performed

These RMAN configurations are recommended at a standby database where backups
are not done.

1.

ORACLE

Connect RMAN to the standby database as target, and to the recovery catalog.

12-7

Chapter 12
Backup Procedures

2. Enable automatic deletion of archived logs once they are applied at the standby
database (this is also applicable to all terminal databases when the cascading or
far sync instance features are in use):

CONFI GURE ARCHI VELOG DELETI ON POLI CY TO APPLI ED ON ALL STANDBY;

12.4 Backup Procedures

You can use RMAN scripts and procedures to back up Oracle Database in an Oracle
Data Guard configuration.

See the following topics:

e Using Disk as Cache for Tape Backups

e Performing Backups Directly to Tape

Note:

Oracle's Maximum Availability Architecture (MAA) best practices recommend
that backups be taken at both the primary and the standby databases to
reduce MTTR, in case of double outages and to avoid introducing new site
practices upon switchover and failover.

Backups of Server Parameter Files

All backup operations can be offloaded to a single standby database, except backups
of the SPFILE. Backups of the SPFILE can only be restored to the database from
which they were backed up.

For databases that are not backed up, Oracle recommends that you at least back up
the SPFILE to a known local disk location. If the SPFILE backups need to be further
backed up to tape, you can copy them to the database site where backups to tape
have been configured. The SPFILE backups can then be cataloged at that database
using the following RMAN command:

CATALOG START W TH ' <SPFI LE backup directory>";

Then back up the SPFILE backups to tape:
BACKUP BACKUPSET ALL;

When the SPFILE needs to be restored for a specific database, the appropriate
SPFILE backup is restored from disk or tape.

12.4.1 Using Disk as Cache for Tape Backups

ORACLE

The fast recovery area on the standby database can serve as a disk cache for tape
backup.

Disk is used as the primary storage for backups, with tape providing long term,
archival storage. Incremental tape backups are taken daily and full tape backups are
taken weekly. The commands used to perform these backups are described in the
following sections.

12-8

Chapter 12
Backup Procedures

12.4.1.1 Commands for Daily Tape Backups Using Disk as Cache

ORACLE

When deciding on your backup strategy, Oracle recommends that you take advantage
of daily incremental backups.

Data file image copies can be rolled forward with the latest incremental backups,
thereby providing up-to-date data file image copies at all times. RMAN uses the
resulting image copy for media recovery just as it would use a full image copy taken at
that system change number (SCN), without the overhead of performing a full image
copy of the database every day. An additional advantage is that the time-to-recover is
reduced because the image copy is updated with the latest block changes and fewer
redo logs are required to bring the database back to the current state.

To implement daily incremental backups, a full database backup is taken on the first
day, followed by an incremental backup on day two. Archived redo logs can be used to
recover the database to any point in either day. For day three and onward, the
previous day's incremental backup is merged with the data file copy and a current
incremental backup is taken, allowing fast recovery to any point within the last day.
Redo logs can be used to recover the database to any point during the current day.

The script to perform daily backups looks as follows (the last line, DELETE ARCHI VELOG
ALL is only needed if the fast recovery area is not used to store logs):

RESYNC CATALOG FROM DB_UNI QUE_NAME ALL,;

RECOVER COPY OF DATABASE WTH TAG ' GSS';

BACKUP DEVI CE TYPE DI SK | NCREMENTAL LEVEL 1 FOR RECOVER OF COPY WTH TAG ' GSS
DATABASE;

BACKUP DEVI CE TYPE DI SK DATAFI LECOPY ALL NOT BACKED UP AT ANY SCN,

BACKUP DEVI CE TYPE SBT ARCHI VELOG ALL,;

BACKUP BACKUPSET ALL,;

DELETE ARCH VELOG ALL;

The standby control file is automatically backed up at the conclusion of the backup
operation because the control file auto backup is enabled.

Explanations for what each command in the script does are as follows:

* RESYNC CATALOG FROM DB_UNI QUE_NAME ALL

Resynchronizes the information from all other database sites (primary and other
standby databases) in the Oracle Data Guard setup that are known to recovery
catalog. For RESYNC CATALOG FROM DB_UNI QUE_NAME to work, RMAN must be
connected to the target using the Oracle Net service name and all databases must
use the same password file.

» RECOVER CCPY OF DATABASE WTH TAG ' CSS'

Rolls forward level O copy of the database by applying the level 1 incremental
backup taken the day before. In the example script just shown, the previous day's
incremental level 1 was tagged CSS. This incremental is generated by the BACKUP
DEVI CE TYPE DI SK ... DATABASE command. On the first day this command is run
there is no roll forward because there is no incremental level 1 yet. A level 0
incremental is created by the BACKUP DEVI CE TYPE DI SK ... DATABASE command.
Again on the second day there is no roll forward because there is only a level 0
incremental. A level 1 incremental tagged CSS is created by the BACKUP DEVI CE
TYPE DI SK ... DATABASE command. On the third and following days, the roll
forward is performed using the level 1 incremental tagged OSS created on the
previous day.

12-9

Chapter 12
Backup Procedures

* BACKUP DEVICE TYPE DI SK | NCREMENTAL LEVEL 1 FOR RECOVER OF COPY W TH
TAG ' CSS' DATABASE

Create a new level 1 incremental backup. On the first day this command is run, a
base datafile copy is created. On the second and following days, this is a level 1
incremental.

e BACKUP DEVI CE TYPE DI SK DATAFI LECOPY ALL NOT BACKED UP AT ANY SCN
Backs up only the data files that have not yet been backed up.

* BACKUP DEVI CE TYPE SBT ARCHI VELOG ALL

Backs up archived logs to tape according to the deletion policy in place.
e BACKUP BACKUPSET ALL

Backs up any backup sets created as a result of incremental backup creation.
e DELETE ARCH VELOG ALL

Deletes archived logs according to the log deletion policy set by the CONFI GURE
ARCHI VELOG DELETI ON POLI CY command. If the archived logs are in a fast
recovery area, then they are automatically deleted when more open disk space is
required. Therefore, you only need to use this command if you explicitly want to
delete logs each day.

12.4.1.2 Commands for Weekly Tape Backups Using Disk as Cache

To back up all recovery-related files to tape, use the RMAN BACKUP RECOVERY FI LES
command once a week.

This ensures that all current incremental, image copy, and archived log backups on
disk are backed up to tape.

12.4.2 Performing Backups Directly to Tape

Oracle's Media Management Layer (MML) API lets third-party vendors build a media
manager, software that works with RMAN and the vendor's hardware to allow backups
to sequential media devices such as tape drives.

A media manager handles loading, unloading, and labeling of sequential media such
as tapes. You must install Oracle Secure Backup or third-party media management
software to use RMAN with sequential media devices.

Take the following steps to perform backups directly to tape, by default:

1. Connect RMAN to the standby database (as the target database) and recovery
catalog.

2. Execute the CONFI GURE command as follows:
CONFI GURE DEFAULT DEVI CE TYPE TO SBT;

In this scenario, full backups are taken weekly, with incremental backups taken daily
on the standby database.

ORACLE 12-10

Chapter 12
Backup Procedures

¢ See Also:

Oracle Database Backup and Recovery User's Guide for more information
about how to configure RMAN for use with a media manager

12.4.2.1 Commands for Daily Backups Directly to Tape

The RMAN commands used to perform daily backups directly to tape resynchronize
the information from all other databases in the Oracle Data Guard environment.

Take the following steps to perform daily backups directly to tape:

1. Connect RMAN to the standby database (as target database) and to the recovery
manager.

2. Execute the following RMAN commands:

RESYNC CATALOG FROM DB_UNI QUE_NAME ALL,;
BACKUP AS BACKUPSET | NCREMENTAL LEVEL 1 DATABASE PLUS ARCH VELOG
DELETE ARCH VELOG ALL;

These commands also create a level 1 incremental backup of the database, including
all archived logs. On the first day this script is run, if no level 0 backups are found, then
a level 0 backup is created.

The DELETE ARCHI VELOG ALL command is necessary only if all archived log files are
not in a fast recovery area.

12.4.2.2 Commands for Weekly Backups Directly to Tape

One day a week, perform a weekly backup directly to tape.
Take the following steps:

1. Connect RMAN to the standby database (as target database) and to the recovery
catalog.

2. Execute the following RMAN commands:

RESYNC CATALOG FROM DB_UNI QUE_NAME ALL;
BACKUP AS BACKUPSET | NCREMENTAL LEVEL 0 DATABASE PLUS ARCH VELOG
DELETE ARCH VELOG ALL;

These commands resynchronize the information from all other databases in the Oracle
Data Guard environment, and create a level 0 database backup that includes all
archived logs.

The DELETE ARCHI VELOG ALL command is necessary only if all archived log files are
not in a fast recovery area.

ORACLE 12-11

Chapter 12
Registering and Unregistering Databases in an Oracle Data Guard Environment

12.5 Registering and Unregistering Databases in an Oracle
Data Guard Environment

Only the primary database must be explicitly registered using the REG STER DATABASE
command. Do this after connecting RMAN to the recovery catalog and primary
database as TARGET.

A new standby is automatically registered in the recovery catalog when you connect to
a standby database or when the CONFI GURE DB_UNI QUE_NAME command is used to
configure the connect identifier.

To unregister information about a specific standby database, you can use the

UNREG STER DB _UNI QUE_NAME command. When a standby database is completely
removed from an Oracle Data Guard environment, the database information in the
recovery catalog can also be removed after you connect to another database in the
same Oracle Data Guard environment. The backups that were associated with the
database that was unregistered are still usable by other databases. You can associate
these backups with any other existing database by using the CHANGE BACKUP RESET
DB_UNI QUE_NAVE command.

When the UNREG STER DB_UNI QUE_NAME command is used with the | NCLUDI NG BACKUPS
option, the metadata for all the backup files associated with the database being
unregistered is also unregistered from the recovery catalog.

12.6 Reporting in an Oracle Data Guard Environment

Use the RMAN LI ST, REPORT, and SHONcommands with the FOR DB_UNI QUE_NAVE
clause to view information about a specific database.

For example, after connecting to the recovery catalog, you could use the following
commands to display information for a database with a DBID of 1625818158 and to list
the database in the Oracle Data Guard environment. The SET DBI D command is
required only if you are not connected to a database as TARGET. The last three
commands list archive logs, database file names, and RMAN configuration information
for a database with a DB_UNI QUE_NANME of BOSTON.

SET DBI D 1625818158;

LI ST DB_UNI QUE_NAME OF DATABASE;

LI ST ARCH VELOG ALL FOR DB_UNI QUE_NAVE BOSTON;
REPORT SCHEMA FOR DB_UNI QUE_NAME BOSTON;
SHOWALL FOR DB_UNI QUE_NAVE BOSTON;

12.7 Performing Backup Maintenance in an Oracle Data
Guard Environment

ORACLE

The files in an Oracle Data Guard environment (data files, archived logs, backup
pieces, image copies, and proxy copies) are associated with a database through use
of the DB_UNI QUE_NAME parameter.

Therefore, it is important that the value supplied for DB_UNI QUE_NAME be unique for
each database in an Oracle Data Guard environment. This information, along with file-

12-12

Chapter 12
Performing Backup Maintenance in an Oracle Data Guard Environment

sharing attributes, is used to determine which files can be accessed during various
RMAN operations.

File sharing attributes state that files on disk are accessible only at the database with
which they are associated, whereas all files on tape are assumed to be accessible by
all databases. RMAN commands such as BACKUP and RESTCRE, as well as other
maintenance commands, work according to this assumption. For example, during a
roll-forward operation of an image copy at a database, only image copies associated
with the database are rolled forward. The incremental backups on disk associated with
that database and any incremental backups on tape are used to roll forward the image
copies. Similarly, during recovery operations, only disk backups associated with the
database and files on tape are considered as sources for backups.

" See Also:

Oracle Database Backup and Recovery Reference for detailed information
about RMAN commands

12.7.1 Changing Metadata in the Recovery Catalog

The RMAN CHANGE command can be used with various operands to change metadata
in the recovery catalog.

For example:

* Changing File Association From One Standby Database to Another

Use the CHANGE command with the RESET DB_UNI QUE_NAME option to alter the
association of files from one database to another within an Oracle Data Guard
environment. The CHANGE command is useful when disk backups or archived logs
are transferred from one database to another and you want to use them on the
database to which they were transferred. The CHANGE command can also change
the association of a file from one database to another database, without having to
directly connect to either database using the FOR DB_UNI QUE_NAME and RESET
DB_UNI QUE_NAME TOoptions.

* Changing the DB_UNIQUE_NAME Initialization Parameter for a Database

If the value of the DB_UNI QUE_NAME initialization parameter changes for a database,
then the same change must be made in the Oracle Data Guard environment. The
RMAN recovery catalog, after connecting to that database instance, knows both
the old and new value for DB_UNI QUE_NAME. To merge the information for the old
and new values within the recovery catalog schema, you must use the RMAN
CHANGE DB_UNI QUE_NAME command. If the value of the DB_UNI QUE_NAME
initialization parameter changes for a database, the same change must be made
in RMAN so that it is aware of the new DB_UNI QUE_NAME. For example, perform the
following steps to change the database with DB_UNI QUE_NAME of BOSTON A to
BOSTON_B:

1. In the initialization parameter file or SQL, change the DB_UNI QUE_NAVE
initialization parameter from BOSTON_A to BOSTON_B.

ORACLE 12-13

Chapter 12
Performing Backup Maintenance in an Oracle Data Guard Environment

2. In RMAN, connect to any database in the Oracle Data Guard environment as
target database and connect to the recovery catalog. Then execute the CHANGE
command:

CHANGE DB_UNI QUE_NAME FROM BOSTON A TO BOSTON B;

* Making Backups Unavailable or Removing Their Metadata

Use CHANGE command options such as AVAI LABLE, UNAVAI LABLE, KEEP, and
UNCATALOG to make backups available or unavailable for restore and recovery
purposes, and to keep or remove their metadata.

¢ See Also:

Oracle Database Backup and Recovery Reference for more information
about the RMAN CHANGE command

12.7.2 Deleting Archived Logs or Backups

Use the RMAN DELETE command to delete backup sets, image copies, archived logs,
Or proxy copies.

To delete only files that are associated with a specific database, you must use the FOR
DB_UNI QUE_NANE option with the DELETE command.

File metadata is deleted for all successfully deleted files associated with the current
target database (or for files that are not associated with any known database). If a file
could not be successfully deleted, you can use the FORCE option to remove the file's
metadata.

When a file associated with another database is deleted successfully, its metadata in
the recovery catalog is also deleted. Any files that are associated with other
databases, and that could not be successfully deleted, are listed at the completion of
the DELETE command, along with instructions for you to perform the same operation at
the database with which the files are associated (files are grouped by database). The
FORCE option cannot be used to override this behavior. If you are certain that deleting
the metadata for the non-deletable files will not cause problems, you can use the
CHANGE RESET DB_UNI QUE_NAME command to change the metadata for association of
files with the database and use the DELETE command with the FORCE option to delete
the metadata for the file.

See Also:

Oracle Database Backup and Recovery Reference for more information
about the RMAN DELETE command

12.7.3 Validating Recovery Catalog Metadata

Use the CROSSCHECK command to validate and update file status in the recovery
catalog schema.

ORACLE 12-14

Chapter 12
Recovery Scenarios in an Oracle Data Guard Environment

Metadata for all files associated with the current target database (or for any files that
are not associated with any database), is marked AVAI LABLE or EXPI RED according to
the results of the CROSSCHECK operation.

If a file associated with another database is successfully inspected, its metadata in the
recovery catalog is also changed to AVAI LABLE. Any files that are associated with other
databases, and that could not be inspected successfully, are listed at the completion of
the CROSSCHECK command, along with instructions for you to perform the same
operation at the database with which the files are associated (files are grouped by
site). If you are certain of the configuration and still want to change status metadata for
unavailable files, you can use the CHANGE RESET DB_UNI QUE_NAME command to change
metadata for association of files with the database and execute the CROSSCHECK
command to update status metadata to EXPI RED.

¢ See Also:

Oracle Database Backup and Recovery Reference for more information
about the RMAN CROSSCHECK command

12.8 Recovery Scenarios in an Oracle Data Guard
Environment

These are some of recovery scenarios that can occur in an Oracle Data Guard
environment.

e Recovery from Loss of Files on the Primary or Standby Database
e Recovery from Loss of Online Redo Log Files
e Incomplete Recovery of the Primary Database

e Actions Needed on Standby After TSPITR or Tablespace Plugin at Primary

12.8.1 Recovery from Loss of Files on the Primary or Standby
Database

You can restore and recover files over the network by connecting to a physical
standby database that contains the required files.

This can be useful when you want to restore lost data files, control files, or tablespaces
on a primary database using the corresponding files on the physical standby database.
You can also use the same process to restore files on a physical standby database by
using the primary database.

ORACLE 12-15

Chapter 12
Recovery Scenarios in an Oracle Data Guard Environment

Note:

In releases prior to Oracle Database 12c, to recover from loss of files on the
primary, you used the RMAN recovery catalog, and the RMAN BACKUP,
CATALOG DATAFI LE, and SW TCH DATAFI LE commands. To recover from loss
of files on the standby, you used the RESTORE and RECOVER commands.
Those methods are no longer necessary as of Oracle Database 12c. If you
need information about using them, refer to Oracle Database 11g
documentation.

¢ See Also:

e Oracle Database Backup and Recovery User's Guide for more
information about using RMAN to restore and recover files over the
network

12.8.2 Recovery from Loss of Online Redo Log Files

If all online log members for the current ACTI VE group or for an inactive group which
has not yet been archived are lost, then you must fail over to the standby database.

Refer to Role Transitions for the failover procedure.

For information about how to recover from the loss of online redo log files in other
circumstances, see Oracle Database Backup and Recovery User's Guide.

12.8.3 Incomplete Recovery of the Primary Database

Incomplete recovery of the primary database is normally done in cases such as when
the database is logically corrupted (by a user or an application) or when a tablespace
or data file was accidentally dropped from database.

Depending on the current database checkpoint SCN on the standby database
instances, you can use one of the following procedures to perform incomplete
recovery of the primary database. All the procedures are in order of preference,
starting with the one that is the least time consuming.

Using Flashback Database

Using Flashback Database is the recommended procedure when the Flashback
Database feature is enabled on the primary database, none of the database files are
lost, and the point-in-time recovery is greater than the oldest flashback SCN or the
oldest flashback time. See Using Flashback Database After Issuing an Open
Resetlogs Statement for the procedure to use Flashback Database to do point-in-time
recovery.

ORACLE 12-16

Chapter 12
Recovery Scenarios in an Oracle Data Guard Environment

Using the standby database instance

This is the recommended procedure when the standby database is behind the desired
incomplete recovery time, and Flashback Database is not enabled on the primary or
standby databases:

1. Recover the standby database to the desired point in time. Be sure to stop the
managed redo process (MRP) before issuing the following command:

RECOVER DATABASE UNTIL TIME "tine';

Alternatively, incomplete recovery time can be specified using the SCN or log
sequence number:

RECOVER DATABASE UNTIL SCN inconpl ete recovery SCN ;
RECOVER DATABASE UNTIL LOGSEQ inconpl ete recovery |og sequence number THREAD
thread nunber;

2. Open the standby database in read-only mode to verify the state of database.

If the state is not what is desired, use the LogMiner utility to look at the archived
redo log files to find the right target time or SCN for incomplete recovery.
Alternatively, you can start by recovering the standby database to a point that you
know is before the target time, and then open the database in read-only mode to
examine the state of the data. Repeat this process until the state of the database
is verified to be correct. If you recover the database too far (past the SCN where
the error occurred) you cannot return it to an earlier SCN.

3. Activate the standby database using the SQL ALTER DATABASE ACTI VATE STANDBY
DATABASE statement. This converts the standby database to a primary database,
creates a new resetlogs branch, and opens the database. See Recovering
Through the OPEN RESETLOGS Statement to learn how the standby database
reacts to the new reset logs branch.

Using the primary database instance

If all of the standby database instances have already been recovered past the desired
point in time and Flashback Database is not enabled on the primary or standby
database, then this is your only option.

Use the following procedure to perform incomplete recovery on the primary database:

1. Use LogMiner or another means to identify the time or SCN at which all the data in
the database is known to be good.

2. Using the time or SCN, issue the following RMAN commands to do incomplete
database recovery and open the database with the RESETLOGS option (after
connecting to catalog database and primary instance that is in MOUNT state):

RUN

{
SET UNTIL TIME 'tine';

RESTORE DATABASE,
RECOVER DATABASE,

}
ALTER DATABASE OPEN RESETLOCGS,

After this process, all standby database instances must be reestablished in the Oracle
Data Guard configuration.

ORACLE 12-17

Chapter 12
Additional Backup Situations

12.8.4 Actions Needed on Standby After TSPITR or Tablespace
Plugin at Primary

After an RMAN tablespace point-in-time recovery (TSPITR) is performed at the
primary, the recovered data files have a nhew system change number (SCN), and are
therefore treated like new data files at the primary.

These data files cannot be automatically created at the standby.

Likewise, when a new plugged in tablespace is added to the primary database, the
data files are treated like new data files at the primary.

The managed redo process (MRP) at the standby stops when the Redo Apply process
encounters creation of these new files. The required new data files must be copied
and restored to the standby. You can do this using either backups or a direct copy
from the primary. For example, to copy all files that belong to a tablespace that has
undergone an RMAN TSPITR, you can use the following RMAN command:

RVAN> RESTORE TABLESPACE <t bs_nanel, ths_name2> FROM SERVI CE <tnsal i as- of - pri mary>

The number of disk channels allocated is per RMAN configurations. So, if CONFI GURE
DEVI CE TYPE DI SK PARALLELI SM 4 is executed, then 4 disk channels are used to pull
the files from the primary database.

When the new data files are available at the standby, restart the MRP to continue
applying the logs.
" See Also:

e Oracle Database Backup and Recovery User's Guide for more
information about RMAN TSPITR

12.9 Additional Backup Situations

You can modify the backup procedures for other configurations, such as when the
standby and primary databases cannot share backup files; the standby instance is
only used to remotely archive redo log files; or the standby database filenames are
different than the primary database.

12.9.1 Standby Databases Too Geographically Distant to Share

Backups

ORACLE

If the standby databases are far apart from one another, then the backups taken on
them may not be easily accessible by the primary system or other standby systems.

Perform a complete backup of the database on all systems to perform recovery
operations. The fast recovery area can reside locally on the primary and standby
systems; it does not have to be the same for the primary and standby databases.

12-18

Chapter 12
Additional Backup Situations

In this scenario, you can still use the general strategies described in Recovery
Scenarios in an Oracle Data Guard Environment, with the following exceptions:

» Backup files created by RMAN must be tagged with the local system name, and
with RESTORE operations that tag must be used to restrict RMAN from selecting
backups taken on the same host. In other words, the BACKUP command must use
the TAG system name option when creating backups; the RESTORE command must
use the FROM TAG system name option; and the RECOVER command must use the
FROM TAG system name ARCH VELOG TAG system name option.

» Disaster recovery of the standby site:

1. Start the standby instance in the NOVOUNT state using the same parameter files
with which the standby was operating earlier.

2. Create a standby control file on the primary instance using the SQL ALTER
DATABASE CREATE STANDBY CONTROLFI LE AS filename statement, and use the
created control file to mount the standby instance.

3. Issue the following RMAN commands to restore and recover the database
files:

RESTORE DATABASE FROM TAG ' system narme';
RECOVER DATABASE FROM TAG ' system nane' ARCH VELOG TAG ' system name';

4. Restart Redo Apply.

The standby instance fetches the remaining archived redo log files.

12.9.2 Standby Database Does Not Contain Data Files, Used as a

FAL Server

The FAL server can be used as a backup source for all archived redo log files, thus
off-loading backups of archived redo log files to the FAL server.

Use the same procedure described in Backup Procedures, with the exception that the
RMAN commands that back up database files cannot be run against the FAL server.

12.9.3 Standby Database File Names Are Different From Primary

Database

ORACLE

As of Oracle Database 11g, the recovery catalog can resynchronize the file names
from each standby database site.

However, if the database filenames are not the same on the primary and standby
databases that were never resynchronized, then the RESTORE and RECOVER commands
you use are slightly different. To obtain the actual data file names on the standby
database, query the V3DATAFI LE view and specify the SET NEWNAME option for all the
data files in the database:

RUN

{

SET NEWNAME FOR DATAFILE 1 TO 'existing file location for file#l from V$DATAFILE ;
SET NEWNAME FOR DATAFILE 2 TO 'existing file location for file#2 from V$DATAFILE' ;

SET NEWNAME FOR DATAFILE n TO 'existing file location for file#n from V$DATAFILE ;
RESTORE { DATAFI LE <n, m ..> | TABLESPACE tbs_nane_1, 2, .| DATABASE;
SW TCH DATAFI LE ALL;

12-19

Chapter 12
Restoring and Recovering Files Over the Network

RECOVER DATABASE { NOREDG} ;
}

Similarly, you use the SET NEWNAME option of the RMAN DUPLI CATE command to
specify new filenames during standby database creation. Or you could set the
LOG_FI LE_NAME_CONVERT and DB_FI LE_NAVE_CONVERT parameters.

¢ See Also:

Creating a Standby Database That Uses OMF or Oracle ASM for information
about precedence rules when both the DB_FI LE_NAME_CONVERT and
DB_CREATE_FI LE_DEST parameters are set on the standby

12.10 Restoring and Recovering Files Over the Network

ORACLE

As of Oracle Database 12c, RMAN lets you restore or recover files by connecting, over
the network, to a physical standby database that contains the required files.

You can restore an entire database, data files, control files, spfile, or tablespaces.
Restoring files over the network is very useful in scenarios where you need to
synchronize the primary and standby databases.

RMAN restores database files, over the network, from a physical standby database by
using the FROMSERVI CE clause of the RESTORE command. The FROMSERVI CE clause
provides the service name of the physical standby database from which the files must
be restored. During the restore operation, RMAN creates backup sets, on the physical
standby database, of the files that need to be restored and then transfers these
backup sets to the target database over the network.

Note:

In releases prior to Oracle Database 12c, to restore and recover files over
the network, you used the RMAN BACKUP | NCREMENTAL FROM SCN command
to create a backup on the primary database that started at the current SCN
of the standby, and was then used to roll the standby database forward in
time. That manual, multi-step method is not necessary as of Oracle
Database 12c. If you need information about using that method, refer to
Oracle Database 11g documentation.

¢ See Also:

e Oracle Database Backup and Recovery User's Guide for more
information about using RMAN to restore and recover files over the
network

e My Oracle Support note 2005729.1 at htt p: // support. oracl e. comfor
information about reducing transportable tablespace downtime using
cross-platform incremental backups.

12-20

http://support.oracle.com

Chapter 12
Rolling Forward a Standby With One Command

12.11 Rolling Forward a Standby With One Command

As of Oracle Database 18c, you can refresh a standby database over the network
using one RMAN command, RECOVER STANDBY DATABASE.

The RECOVER STANDBY DATABASE command restarts the standby instance, refreshes
the control file from the primary database, and automatically renames data files, temp
files, and online logs. It restores new data files that were added to the primary
database and recovers the standby database up to the current time.

When you use the RECOVER STANDBY DATABASE command to refresh a standby
database, you specify either a FROM SERVI CE clause or a NOREDO clause. The FROM
SERVI CE clause specifies the name of a primary service. The NOREDO clause specifies
that backups should be used for the refresh, which allows a standby to be rolled
forward to a specific time or SCN.

The MRP must be manually stopped on the standby before any attempt is made to
sync with primary database.

The following is an example of using the RECOVER STANDBY DATABASE command. It
shows optional usage of the PFI LE clause to specify a parameter file for the standby
database (used when the spfile is not available).

RECOVER STANDBY DATABASE FROM SERVI CE servi ce_name PFI LE=pfile_| ocati on;

" See Also:

e Oracle Database Backup and Recovery User’s Guide for more
information about using the RECOVER STANDBY DATABASE command to
refresh a physical standby database with changes made to the primary
database

12.12 RMAN Support for CDBs In an Oracle Data Guard
Environment

ORACLE

RMAN supports point-in-time recovery (PITR) of a multitenant container database
(CDB) at a standby. (Individual pluggable databases (PDBs) do not have their own
individual standbys.)

This is in addition to the support RMAN provides for complete database recovery and
complete data file recovery at a standby.

To perform a CDB PITR at a standby, connect to the CDB as root and issue the
RMAN BACKUP, RESTORE, and RECOVER commands as necessary.

Be aware that when a CDB PITR is performed on a standby, any pluggable databases
(PDBs) that were in a disabled state before the CDB PITR become enabled. To return
a PDB to a disabled state, connect to it, ensure it is closed (the OPEN_MODE column in
the V$PDBS view shows a value of MOUNTED), and then execute the SQL statement
ALTER PLUGGABLE DATABASE DI SABLE RECOVERY.

12-21

Chapter 12
RMAN Support for CDBs In an Oracle Data Guard Environment

The ALTER PLUGGABLE DATABASE DI SABLE RECOVERY statement takes all data files
belonging to the PDB offline and disables recovery for the PDB. The data files that
belong to the PDB are not part of any recovery session until the PDB is enabled again.
Any new data files created while recovery is disabled are created as unnamed files
and are marked offline.

To bring all data files that belong to a PDB back online and enable it for recovery,
connect to it, ensure it is closed (the OPEN_MXDE column in the V$PDBS view shows a
value of MOUNTED), and issue the SQL statement ALTER PLUGGABLE DATABASE ENABLE
RECOVERY.

To check whether recovery is enabled or disabled on a PDB, query the V$PDBS view as
follows:

SQL> SELECT RECOVERY_STATUS FROM V$PDBS;

Flashing Back a PDB

As of Oracle Database 12¢ Release 2 (12.2.0.1), you can use the FLASHBACK
PLUGGABLE DATABASE command (available through SQL or Recovery Manager) to
perform a flashback operation on a specific PDB. You can flashback to a specific
restore point — an alias for system change number (SCN)— in the past without
affecting other PDBs in a CDB. (Performing such an operation on a PDB is analogous
to FLASHBACK DATABASE in a non-CDB.)

You can also flashback a PDB on a standby. In effect, flashing back a PDB on a
standby rewinds the data files for the PDB to a previous point in time, as if restoring a
backup of the PDB. Flashing back a PDB on a standby allows the standby to quickly
follow the primary after you perform a PDB PITR/flashback operation on the primary,
as described in Actions Needed On a Standby After a PDB PITR On a Primary.

Note:

Files that are brought online or offline as a result of an ALTER PLUGGABLE
DATABASE [ENABLE | DI SABLE] operation remain in that state even if you
flashback the database to a point before the operation was performed.

" See Also:

e Actions Needed On a Standby After a PDB PITR On a Primary for
information about actions needed on a standby after a PDB PITR on a
primary

e Actions Needed on Standby After TSPITR or Tablespace Plugin at
Primary for information about actions needed on a standby after TSPITR
or tablespace plugin at the primary

ORACLE 12-22

Using SQL Apply to Upgrade the Oracle
Database

You can use a logical standby database to perform a rolling upgrade of Oracle
Database software.

During a rolling upgrade, you can run different releases of Oracle Database on the
primary and logical standby databases while you upgrade them, one at a time,
incurring minimal downtime on the primary database.

For databases originating with the first patch set of Oracle Database 12c¢ Release 1
(12.1), the preferred method for performing a rolling upgrade with an existing physical
standby database is to use the DBMS_ROLLI NG PL/SQL package, as described in Using
DBMS_ROLLING to Perform a Rolling Upgrade .

The following topics describe how to minimize downtime while upgrading an Oracle
database:

» Benefits of a Rolling Upgrade Using SQL Apply

* Requirements to Perform a Rolling Upgrade Using SQL Apply

» Figures and Conventions Used in the Upgrade Instructions

» Performing a Rolling Upgrade By Creating a New Logical Standby Database
» Performing a Rolling Upgrade With an Existing Logical Standby Database

» Performing a Rolling Upgrade With an Existing Physical Standby Database

Note:

These topics describe an alternative to the usual upgrade procedure
involving longer downtime, as described in Upgrading and Downgrading
Databases in an Oracle Data Guard Configuration. Do not attempt to
combine steps from the two procedures.

13.1 Benefits of a Rolling Upgrade Using SQL Apply

ORACLE

These are the advantages of performing a rolling upgrade with SQL Apply.

e Your production database incurs very little downtime. The overall downtime can be
as little as the time it takes to perform a switchover.

* You eliminate application downtime due to PL/SQL recompilation.

e You can validate the upgraded database release without affecting the primary
database.

e Alogical standby accepts archived logs while the upgrade is taking place, which
provides an added level of disaster protection.

13-1

Chapter 13
Requirements to Perform a Rolling Upgrade Using SQL Apply

Note:

e As of Oracle Database 12c¢ Release 1 (12.1), Oracle XML DB Repository
supports Oracle Data Guard rolling upgrades. See Oracle XML DB
Developer's Guide for more information about considerations and
restrictions to keep in mind with regard to this support.

e As of Oracle Database 12c¢ Release 1 (12.1), you can upgrade
databases that use Oracle Database Vault to new Oracle Database
releases and patch sets by using Oracle Data Guard database rolling
upgrades with a transient logical standby and the PL/SQL package,
DBMS_ROLLI NG.

e As of Oracle Database 12c¢ Release 1 (12.1), you can upgrade
databases that use Oracle Label Security (OLS) to new Oracle Database
releases and patch sets by using Oracle Data Guard database rolling
upgrades using a transient logical standby database and the PL/SQL
package, DBMS_ROLLI NG,

13.2 Requirements to Perform a Rolling Upgrade Using SQL

Apply

These are the requirements for performing a rolling upgrade using SQL Apply.

If the database is part of an Oracle Data Guard broker configuration, then disable
the broker configuration before the rolling upgrade. See Oracle Data Guard Broker
for information about disabling a broker configuration.

The Oracle Data Guard protection mode must be set to either maximum
availability or maximum performance. Query the PROTECTI ON_LEVEL column in the
V$DATABASE view to find out the current protection mode setting.

To ensure the primary database can proceed while the logical standby database is
being upgraded, the LOG_ARCHI VE_DEST n initialization parameter for the logical
standby database destination must not be set to MANDATCRY.

The COVPATI BLE initialization parameter set on the primary database must match
the software release prior to the upgrade. Therefore, a rolling upgrade from
release x to release y requires that the COVPATI BLE initialization parameter be set
to release x on the primary database. The rolling upgrade standby database must
have its COVPATI BLE initialization parameter set to x or higher.

13.3 Figures and Conventions Used in the Upgrade

Instructions

This background information will help you better understand instructions given for
performing upgrades.

ORACLE

Figure 13-1 shows an Oracle Data Guard configuration before the upgrade begins,
with the primary and logical standby databases both running the same Oracle
Database software release.

13-2

Chapter 13
Performing a Rolling Upgrade By Creating a New Logical Standby Database

Figure 13-1 Oracle Data Guard Configuration Before Upgrade

]]

Data Guard >
—— SQL Apply) E—

3

Database Database
% Release x Release x
Database
Clients A (Primary) B (Standby)

During the upgrade process, the Oracle Data Guard configuration operates with mixed
database releases at several points in this process. Data protection is not available
across releases. During these steps, consider having a second standby database in
the Oracle Data Guard configuration to provide data protection.

The steps and figures describing the upgrade procedure refer to the databases as
Database A and Database B rather than as the primary database and standby
database. This is because the databases switch roles during the upgrade procedure.
Initially, Database A is the primary database and Database B is the logical standby
database, as shown in Figure 13-1.

The following sections describe scenarios in which you can use the SQL Apply rolling
upgrade procedure:

» Performing a Rolling Upgrade By Creating a New Logical Standby Database
» Performing a Rolling Upgrade With an Existing Logical Standby Database
» Performing a Rolling Upgrade With an Existing Physical Standby Database

13.4 Performing a Rolling Upgrade By Creating a New
Logical Standby Database

This scenario assumes you do not have an existing Oracle Data Guard configuration,
but you are going to create a logical standby database solely for the purpose of
performing a rolling upgrade of the Oracle Database.

Table 13-1 lists the steps to prepare the primary and standby databases for upgrading.

Table 13-1 Steps to Perform a Rolling Upgrade by Creating a New Logical

Standby
__|
Step Description

Step 1 Identify unsupported data types and storage attributes

Step 2 Create a logical standby database

ORACLE 13-3

Chapter 13
Performing a Rolling Upgrade By Creating a New Logical Standby Database

Table 13-1 (Cont.) Steps to Perform a Rolling Upgrade by Creating a New
Logical Standby

___|
Step Description

Step 3 Perform a rolling upgrade

1. ldentify unsupported database objects on the primary database and decide how to
handle them by doing the following:

» Review the list of supported data types and storage attributes provided in Data
Type and DDL Support on a Logical Standby Database .

e Query the DBA LOGSTDBY_UNSUPPORTED and DBA LOGSTDBY_SKI P views on the
primary database. Changes that are made to the listed tables and schemas on
the primary database are not applied on the logical standby database. Use the
following query to see a list of unsupported tables:

SQL> SELECT DI STINCT OWNER, TABLE_NAVE FROM DBA_LOGSTDBY_UNSUPPORTED;

Use the following query to see a list of unsupported internal schemas:

SQL> SELECT OANER FROM DBA LOGSTDBY SKI P -
> \WHERE STATEMENT OPT = ' | NTERNAL SCHEMA ;

2. Create a logical standby database, following the instructions in Creating a Logical
Standby Database .

" Note:

Before you start SQL Apply for the first time, make sure you capture
information about transactions running on the primary database that will
not be supported by a logical standby database. Run the following
procedures to capture and record the information as events in the
DBA_LOGSTDBY_EVENTS view:

EXECUTE DBMS_LOGSTDBY. APPLY_SET(' MAX_EVENTS_RECORDED
DBVS_LOGSTDBY. MAX_EVENTS) ;

EXECUTE DBMS_LOGSTDBY. APPLY_SET(' RECORD_UNSUPPORTED_CPERATI ONS',
"TRUE) ;

Oracle recommends configuring a standby redo log on the logical standby
database to minimize downtime.

3. Perform a rolling upgrade now that you have created a logical standby database.
Follow the procedure described in Performing a Rolling Upgrade With an Existing
Logical Standby Database, which assumes that you have a logical standby
running the same Oracle software.

ORACLE 13-4

Chapter 13
Performing a Rolling Upgrade With an Existing Logical Standby Database

13.5 Performing a Rolling Upgrade With an Existing Logical

Standby Database

ORACLE

These steps show how to perform a rolling upgrade of Oracle Database on the logical
standby database and the primary database.

Table 13-2 lists the steps.

Table 13-2 Steps to Perform a Rolling Upgrade With an Existing Logical

Standby
]
Step Description

Step 1 Prepare for rolling upgrade

Step 2 Upgrade the logical standby database

Step 3 Restart SQL Apply on the upgraded logical standby database
Step 4 Monitor events on the upgraded standby database

Step 5 Begin a switchover

Step 6 Import any tables that were modified during the upgrade
Step 7 Complete the switchover and activate user applications

Step 8 Upgrade the old primary database

Step 9 Start SQL Apply on the old primary database

Step 10 Optionally, raise the compatibility level on both databases
Step 11 Monitor events on the new logical standby database

Step 12 Optionally, perform another switchover

1. Follow these steps to prepare to perform a rolling upgrade of Oracle Software:

a.

Stop SQL Apply by issuing the following statement on the logical standby
database (Database B):

SQL> ALTER DATABASE STOP LOG CAL STANDBY APPLY;
Set compatibility, if needed, to the highest value.

Ensure the COVPATI BLE initialization parameter specifies the release number
for the Oracle Database software running on the primary database prior to the

For example, if the primary database is running release 11.1, then set the
COMPATI BLE initialization parameter to 11.1 on both databases. Be sure to set
the COVPATI BLE initialization parameter on the standby database first before
you set it on the primary database.

2. Upgrade Oracle database software on the logical standby database (Database B)
to release y. While the logical standby database is being upgraded, it does not
accept redo data from the primary database.

To upgrade Oracle Database software, refer to the Oracle Database Upgrade
Guide for the applicable Oracle Database release.

Figure 13-2 shows Database A running release x, and Database B running release
y. During the upgrade, redo data accumulates on the primary system.

13-5

ORACLE

3.

Chapter 13
Performing a Rolling Upgrade With an Existing Logical Standby Database

Figure 13-2 Upgrade the Logical Standby Database Release

Database
Release y

Database
Release x

Database
Clients A (Primary) B (Standby)

Restart SQL Apply and operate with release x on Database A and release y on
Database B. To start SQL Apply, issue the following statement on Database B:

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

The redo data that was accumulating on the primary system is automatically
transmitted and applied on the newly upgraded logical standby database. The
Oracle Data Guard configuration can run the mixed releases shown in Figure 13-3
for an arbitrary period while you verify that the upgraded Oracle Database
software release is running properly in the production environment.

Figure 13-3 Running Mixed Releases

Data Guard >

SQL Apply

[:. Database
%5 e
Database

Clients A (Primary) B (Standby)

Database
Release y

To monitor how quickly Database B is catching up to Database A, query the
V$LOGSTDBY_PROGRESS view on Database B. For example:

SQL> ALTER SESSI ON SET NLS_DATE _FORMAT = ' DD- MON-YY HH24: M : SS' ;
Session al tered.

SQ> SELECT SYSDATE, APPLIED TI ME FROM V$LOGSTDBY_PROGRESS;
SYSDATE APPLI ED_TI ME

27-JUN-05 17:07:06 27-JUN-05 17:06: 50

13-6

Chapter 13
Performing a Rolling Upgrade With an Existing Logical Standby Database

4. Itis recommended that you frequently query the DBA_LOGSTDBY_EVENTS view to
learn if there are any DDL and DML statements that have not been applied on
Database B.

SQ> SET LONG 1000

SQL> SET PAGESI ZE 180

SQL> SET LI NESI ZE 79

SQL> SELECT EVENT_TI MESTAMP, EVENT, STATUS FROM DBA LOGSTDBY_EVENTS -
> ORDER BY EVENT_TI MESTANP,

EVENT_TI MESTAMP

24- MAY- 05 05. 18.29. 318912 PM
CREATE TABLE SYSTEM TST (one nunber)
ORA-16226: DDL ski pped due to |ack of support

24- MAY- 05 05. 18.29. 379990 PM
"SYSTEM'. "TST"
ORA-16129: unsupported dm encountered

In the preceding example:

e The ORA- 16226 error shows a DDL statement that could not be supported. In
this case, it could not be supported because it belongs to an internal schema.

* The ORA- 16129 error shows that a DML statement was not applied.

These types of errors indicate that not all of the changes that occurred on
Database A have been applied to Database B. At this point, you must decide
whether or not to continue with the upgrade procedure. If you are certain that this
difference between the logical standby database and the primary database is
acceptable, then continue with the upgrade procedure. If not, discontinue and
reinstantiate Database B and perform the upgrade procedure at another time.

5. When you are satisfied that the upgraded database software is operating properly,
perform a switchover to reverse the database roles by issuing the following
statement on Database A:

SQL> ALTER DATABASE COW T TO SW TCHOVER TO LOG CAL STANDBY;
This statement must wait for existing transactions to complete. To minimize the

time it takes to complete the switchover, users still connected to Database A
should log off immediately and reconnect to Database B.

ORACLE 13-7

Chapter 13
Performing a Rolling Upgrade With an Existing Logical Standby Database

Note:

The usual two-phased prepared switchover described in Performing a
Switchover to a Logical Standby Database cannot be used because it
requires both primary and standby databases to be running the same
version of the Oracle software and at this point, the primary database is
running a lower version of the Oracle software. Instead, the single-
phased unprepared switchover procedure documented above is used.
The unprepared switchover should only be used in the context of a
rolling upgrade using a logical standby database.

" Note:

If you suspended activity to unsupported tables or packages on
Database A when it was the primary database, you must continue to
suspend the same activities on Database B while it is the primary
database if you eventually plan to switch back to Database A.

6. Step 4 described how to list unsupported tables that are being modified. If
unsupported DML statements were issued on the primary database, then import
the latest version of those tables using an import utility such as Oracle Data Pump.

For example, the following import command truncates the scott . enp table and
populates it with data matching the former primary database (A):

i npdp SYSTEM NETWORK_LI NK=dat abasea TABLES=scott.enp TABLE EXI STS ACTI ON=TRUNCATE

This command prompts you for the i npdp password before executing.

7. When you are satisfied that the upgraded database software is operating properly,
complete the switchover to reverse the database roles:

a. On Database B, query the SW TCHOVER _STATUS column of the V$DATABASE
view, as follows:

SQL> SELECT SW TCHOVER STATUS FROM V$DATABASE;

SW TCHOVER _STATUS

TO PRI MARY

b. When the SW TCHOVER _STATUS column displays TO PRI MARY, complete the
switchover by issuing the following statement on Database B:

SQL> ALTER DATABASE COM T TO SW TCHOVER TO PRI MARY;

ORACLE 13-8

ORACLE

Chapter 13
Performing a Rolling Upgrade With an Existing Logical Standby Database

Note:

The usual two-phased prepared switchover described in Performing
a Switchover to a Logical Standby Database cannot be used
because it requires both primary and standby databases to be
running the same version of the Oracle software and at this point,
the primary database is running a lower version of the Oracle
software. Instead, the single-phased unprepared switchover
procedure documented above is used. The unprepared switchover
should only be used in the context of a rolling upgrade using a
logical standby database.

c. Activate the user applications and services on Database B, which is now
running in the primary database role.

After the switchover, you cannot send redo data from the new primary database
(B) that is running the new database software release to the new standby
database (A) that is running an older software release. This means the following:

* Redo data is accumulating on the new primary database.
* The new primary database is unprotected at this time.

Figure 13-4 shows Database B, the former standby database (running release y),
is now the primary database, and Database A, the former primary database
(running release Xx), is now the standby database. The users are connected to
Database B.

If Database B can adequately serve as the primary database and your business
does not require a logical standby database to support the primary database, then
you have completed the rolling upgrade process. Allow users to log in to Database
B and begin working there, and discard Database A when it is convenient.
Otherwise, continue with Step 8.

Figure 13-4 After a Switchover

Database
Release y

Database
Release x

Database <>
A (Standby) B (Primary) Clients

Database A is still running release x and cannot apply redo data from Database B
until you upgrade it and start SQL Apply.

For more information about upgrading Oracle Database software, see the Oracle
Database Upgrade Guide.

13-9

ORACLE

9.

10.

11.

Chapter 13
Performing a Rolling Upgrade With an Existing Logical Standby Database

Figure 13-5 shows the system after both databases have been upgraded.

Figure 13-5 Both Databases Upgraded

Data Guard
SQL Apply

Database Database |:.
Release y Release y %
Database

A (Standby) B (Primary) Clients

Issue the following statement to start SQL Apply on Database A and, if necessary,
create a database link to Database B:

SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE NEW PRI MARY db_link_to_b;

Note:

You must create a database link (if one has not already been set up) and
to use the NEW PRI MARY clause, because in Step 4 the single-phased
unprepared switchover was used to turn Database A into a standby
database.

You must connect as user SYSTEMor with an account with a similar level
of privileges.

When you start SQL Apply on Database A, the redo data that is accumulating on
the primary database (B) is sent to the logical standby database (A). The primary
database is protected against data loss once all the redo data is available on the
standby database.

Raise the compatibility level of both databases by setting the COVPATI BLE
initialization parameter. You must raise the compatibility level at the logical
standby database before you raise it at the primary database. Set the COVPATI BLE
parameter on the standby database before you set it on the primary database. See
Oracle Database Reference for more information about the COVPATI BLE
initialization parameter.

To ensure that all changes performed on Database B are properly applied to the
logical standby database (A), you should frequently query the
DBA LOGSTDBY_EVENTS view, as you did for Database A in step 4.

If changes were made that invalidate Database A as a copy of your existing
primary database, you can discard Database A and create a new logical standby
database in its place. See Creating a Logical Standby Database for complete
information.

13-10

Chapter 13
Performing a Rolling Upgrade With an Existing Physical Standby Database

12. Optionally, perform another switchover of the databases so Database A is once
again running in the primary database role (as shown in Figure 13-1).

Note:

You use the two-phased prepared switchover described in Performing a
Switchover to a Logical Standby Database since at this time, both
Database A and Database B are running the same version of the Oracle
software.

13.6 Performing a Rolling Upgrade With an Existing
Physical Standby Database

These steps show how to perform a rolling upgrade of Oracle Database software and
then get back to your original configuration in which A is the primary database and B is
the physical standby database, and both of them are running the upgraded Oracle

ORACLE

software.

Note:

These steps assume that you have a primary database (A) and a physical
standby database (B) already set up and using Oracle Database release
11.1 or later.

Table 13-3 summarizes the steps involved.

Table 13-3 Steps to Perform a Rolling Upgrade With an Existing Physical

Standby
__|
Step Description
Step 1 Prepare the primary database for a rolling upgrade (perform these steps on
Database A)
Step 2 Convert the physical standby database into a logical standby database (perform
these steps on Database B)
Step 3 Upgrade the logical standby database and catch up with the primary database
(perform these steps on Database B)
Step 4 Flashback Database A to the guaranteed restore point (perform these steps on
Database A)
Step 5 Mount Database A using the new version of Oracle software
Step 6 Convert Database A to a physical standby
Step 7 Start managed recovery on Database A
Step 8 Perform a switchover to make Database A the primary database
Step 9 Clean up the guaranteed restore point created in Database A

13-11

ORACLE

Chapter 13
Performing a Rolling Upgrade With an Existing Physical Standby Database

Prepare the primary database for a rolling upgrade (perform these steps on
Database A)

a.

Enable Flashback Database, if it is not already enabled:

SQL> SHUTDOWN | MVEDI ATE;
SQL> STARTUP MOUNT;

SQL> ALTER DATABASE FLASHBACK ON;
SQL> ALTER DATABASE OPEN;

Create a guaranteed restore point:

SQL> CREATE RESTORE PO NT pre_upgrade GUARANTEE FLASHBACK DATABASE;

Convert the physical standby database into a logical standby database (perform
these steps on Database B).

a.

Follow the steps outlined in Creating a Logical Standby Database except for
the following difference. In Convert to a Logical Standby Database you must
use a different command to convert the logical standby database. Instead of
ALTER DATABASE RECOVER TO LOG CAL STANDBY db_nane, issue the following
command:

SQL> ALTER DATABASE RECOVER TO LOG CAL STANDBY KEEP | DENTI TY;
SQL> ALTER DATABASE OPEN;

You must take the following actions before you start SQL Apply for the first
time:

i. Disable automatic deletion of foreign archived logs at the logical standby,
as follows:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' LOG AUTO DELETE', 'FALSE);

Note:

Do not delete any remote archived logs processed by the logical
standby database (Database B). These remote archived logs are
required later during the rolling upgrade process. If you are using
the recovery area to store the remote archived logs, you must
ensure that it has enough space to accommodate these logs
without interfering with the normal operation of the logical
standby database.

ii. Make sure you capture information about transactions running on the
primary database that will not be supported by a logical standby database.
Run the following procedures to capture and record the information as
events in the DBA LOGSTDBY_EVENTS table:

SQL> EXECUTE DBMS_LOGSTDBY. APPLY_SET(' MAX_EVENTS_RECORDED , -
> DBMS_LOGSTDBY. MAX_EVENTS);

SQL> EXECUTE DBMS_LOGSTDBY. APPLY SET(' RECORD_UNSUPPORTED OPERATI ONS'
' TRUE') ;

iii. Start SQL Apply for the first time, as follows:
SQL> ALTER DATABASE START LOG CAL STANDBY APPLY | MVEDI ATE;

13-12

ORACLE

Chapter 13
Performing a Rolling Upgrade With an Existing Physical Standby Database

¢ See Also:

e Customizing Logging of Events in the
DBA_LOGSTDBY_EVENTS View for more information about the
DBA_LOGSTDBY_EVENTS view

e Oracle Database PL/SQL Packages and Types Reference for
complete information about