
Oracle® Database
Database Development Guide

19c
E96334-02
January 2019

Oracle Database Database Development Guide, 19c

E96334-02

Copyright © 1996, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jayashree Sharma

Contributing Authors: Amith Kumar, Louise Morin, Chuck Murray, Tom Kyte, D. Adams, L. Ashdown, S.
Moore, E. Paapanen, R. Strohm, R. Ward

Contributors: D. Alpern, G. Arora, T. Chang, B. Cheng, R. Day, R. Decker, G. Doherty, A. Ganesh, M.
Hartstein, Y. Hu, J. Huang, C. Iyer, N. Jain, V. Krishnaswamy, R. Kumar, S. Kumar, C. Lei, B. Llewellyn, K.
Mohan, V. Moore, J. Muller, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxi

Documentation Accessibility xxxi

Related Documents xxxi

Conventions xxxii

 Changes in Oracle Database Release

New Features in Oracle Database xxxiii

Deprecated Features xxxiii

Desupported Features xxxiii

Part I Database Development Fundamentals

1 Design Basics

Design for Performance 1-1

Design for Scalability 1-2

Design for Extensibility 1-2

Data Cartridges 1-3

External Procedures 1-3

User-Defined Functions and Aggregate Functions 1-3

Object-Relational Features 1-4

Design for Security 1-4

Design for Availability 1-4

Design for Portability 1-5

Design for Diagnosability 1-5

Design for Special Environments 1-6

Data Warehousing 1-6

Online Transaction Processing (OLTP) 1-7

Features for Special Scenarios 1-8

SQL Analytic Functions 1-8

iii

Materialized Views 1-9

Partitioning 1-10

Temporal Validity Support 1-11

2 Connection Strategies for Database Applications

Design Guidelines for Connection Pools 2-1

Connection Storms 2-1

Guideline for Preventing Connection Storms: Use Static Pools 2-2

Design Guideline for Login Strategy 2-3

Design Guideline for Preventing Programmatic Session Leaks 2-4

Drained Connection Pools 2-4

Checking for Session Leaks 2-4

Lock Leaks 2-4

Logical Corruption 2-5

Using Runtime Connection Load Balancing 2-5

About Runtime Connection Load Balancing 2-5

Enabling and Disabling Runtime Connection Load Balancing 2-6

OCI 2-6

OCCI 2-7

JDBC 2-7

ODP.NET 2-8

Receiving Load Balancing Advisory FAN Events 2-8

3 Performance and Scalability

Performance Strategies 3-1

Designing Your Data Model to Perform Well 3-1

Analyze the Data Requirements of the Application 3-2

Create the Database Design for the Application 3-2

Implement the Database Application 3-3

Maintain the Database and Database Application 3-4

Setting Performance Goals (Metrics) 3-4

Benchmarking Your Application 3-4

Tools for Performance 3-5

DBMS_APPLICATION_INFO Package 3-5

SQL Trace Facility (SQL_TRACE) 3-6

EXPLAIN PLAN Statement 3-7

Monitoring Database Performance 3-8

Automatic Database Diagnostic Monitor (ADDM) 3-8

Monitoring Real-Time Database Performance 3-9

iv

Responding to Performance-Related Alerts 3-9

SQL Advisors and Memory Advisors 3-9

Testing for Performance 3-10

Using Client Result Cache 3-11

About Client Result Cache 3-12

Benefits of Client Result Cache 3-13

Guidelines for Using Client Result Cache 3-13

SQL Hints 3-15

Table Annotation 3-15

Session Parameter 3-16

Effective Table Result Cache Mode 3-16

Displaying Effective Table Result Cache Mode 3-17

Result Cache Mode Use Cases 3-17

Queries Never Result Cached in Client Result Cache 3-18

Client Result Cache Consistency 3-18

Deployment-Time Settings for Client Result Cache 3-19

Server Initialization Parameters 3-19

Client Configuration Parameters 3-21

Client Result Cache Statistics 3-21

Validation of Client Result Cache 3-22

Measure Execution Times 3-22

Query V$MYSTAT 3-22

Query V$SQLAREA 3-23

Client Result Cache and Server Result Cache 3-23

Client Result Cache Demo Files 3-24

Client Result Cache Compatibility with Previous Releases 3-24

Statement Caching 3-25

OCI Client Statement Cache Auto-Tuning 3-25

Client-Side Deployment Parameters 3-26

Using Query Change Notification 3-26

Using Database Resident Connection Pool 3-27

About Database Resident Connection Pool 3-27

Configuring DRCP 3-29

Sharing Proxy Sessions 3-30

Using JDBC with DRCP 3-30

Using OCI Session Pool APIs with DRCP 3-30

Session Purity and Connection Class 3-31

Session Purity 3-31

Connection Class 3-32

Example: Setting the Connection Class as HRMS 3-33

Example: Setting the Connection Class as RECMS 3-33

v

Session Purity and Connection Class Defaults 3-33

Starting Database Resident Connection Pool 3-34

Enabling DRCP 3-34

Benefiting from the Scalability of DRCP in an OCI Application 3-34

Benefiting from the Scalability of DRCP in a Java Application 3-35

Best Practices for Using DRCP 3-35

Compatibility and Migration 3-37

DRCP Restrictions 3-37

Using DRCP with Custom Pools 3-38

Explicitly Marking Sessions Stateful or Stateless 3-39

Using DRCP with Oracle Real Application Clusters 3-40

Using DRCP with Pluggable Databases 3-40

DRCP with Data Guard 3-40

Memoptimize Pool 3-40

Oracle RAC Sharding 3-41

4 Designing Applications for Oracle Real-World Performance

Using Bind Variables 4-1

Using Instrumentation 4-2

Using Set-Based Processing 4-2

Iterative Data Processing 4-3

About Iterative Data Processing 4-3

Iterative Data Processing: Row-By-Row 4-3

Iterative Data Processing: Arrays 4-4

Iterative Data Processing: Manual Parallelism 4-6

Set-Based Processing 4-9

5 Security

Enabling User Access with Grants, Roles, and Least Privilege 5-1

Automating Database Logins 5-2

Controlling User Access with Fine-Grained Access Control 5-3

Using Invoker's and Definer's Rights for Procedures and Functions 5-4

What Are Invoker's Rights and Definer's Rights? 5-5

Protecting Users Who Run Invoker's Rights Procedures and Functions 5-5

How Default Rights Are Handled for Java Stored Procedures 5-6

Managing External Procedures for Your Applications 5-6

Auditing User Activity 5-7

vi

6 High Availability

Transparent Application Failover (TAF) 6-1

About Transparent Application Failover 6-1

Configuring Transparent Application Failover 6-2

Using Transparent Application Failover Callbacks 6-2

Oracle Connection Manager in Traffic Director Mode 6-3

Fast Application Notification (FAN) and Fast Connection Failover (FCF) 6-4

About Fast Application Notification (FAN) 6-4

About Receiving FAN Event Notifications 6-5

About Fast Connection Failover (FCF) 6-6

Application Continuity and Transaction Guard 6-7

Overview of Application Continuity 6-7

Overview of Transaction Guard 6-8

Service and Load Management for Database Clouds 6-9

About Service and Load Management for Database Clouds 6-9

7 Advanced PL/SQL Features

PL/SQL Data Types 7-1

Dynamic SQL 7-1

PL/SQL Optimize Level 7-2

Compiling PL/SQL Units for Native Execution 7-2

Exception Handling 7-2

Conditional Compilation 7-2

Bulk Binding 7-3

Part II SQL for Application Developers

8 SQL Processing for Application Developers

Description of SQL Statement Processing 8-1

Stages of SQL Statement Processing 8-2

Shared SQL Areas 8-4

Grouping Operations into Transactions 8-4

Deciding How to Group Operations in Transactions 8-4

Improving Transaction Performance 8-5

Managing Commit Redo Action 8-6

Determining Transaction Outcome After a Recoverable Outage 8-8

Understanding Transaction Guard 8-8

Understanding DBMS_APP_CONT.GET_LTXID_OUTCOME 8-10

vii

Using Transaction Guard 8-13

Ensuring Repeatable Reads with Read-Only Transactions 8-13

Locking Tables Explicitly 8-14

Privileges Required to Acquire Table Locks 8-15

Choosing a Locking Strategy 8-16

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE 8-17

When to Lock with SHARE MODE 8-17

When to Lock with SHARE ROW EXCLUSIVE MODE 8-18

When to Lock with EXCLUSIVE MODE 8-18

Letting Oracle Database Control Table Locking 8-18

Explicitly Acquiring Row Locks 8-19

Examples of Concurrency Under Explicit Locking 8-20

Using Oracle Lock Management Services (User Locks) 8-28

When to Use User Locks 8-28

Viewing and Monitoring Locks 8-29

Using Serializable Transactions for Concurrency Control 8-29

Transaction Interaction and Isolation Level 8-30

Setting Isolation Levels 8-32

Serializable Transactions and Referential Integrity 8-33

READ COMMITTED and SERIALIZABLE Isolation Levels 8-35

Transaction Set Consistency Differences 8-35

Choosing Transaction Isolation Levels 8-36

Nonblocking and Blocking DDL Statements 8-37

Autonomous Transactions 8-38

Examples of Autonomous Transactions 8-41

Ordering a Product 8-41

Withdrawing Money from a Bank Account 8-41

Declaring Autonomous Routines 8-44

Resuming Execution After Storage Allocation Errors 8-45

What Operations Have Resumable Storage Allocation? 8-45

Handling Suspended Storage Allocation 8-46

Using an AFTER SUSPEND Trigger in the Application 8-46

Checking for Suspended Statements 8-48

9 Using SQL Data Types in Database Applications

Using the Correct and Most Specific Data Type 9-1

How the Correct Data Type Increases Data Integrity 9-2

How the Most Specific Data Type Decreases Storage Requirements 9-2

How the Correct Data Type Improves Performance 9-3

Representing Character Data 9-6

viii

Representing Numeric Data 9-7

Floating-Point Number Components 9-8

Floating-Point Number Formats 9-8

Binary Floating-Point Formats 9-9

Representing Special Values with Native Floating-Point Data Types 9-10

Comparing Native Floating-Point Values 9-11

Arithmetic Operations with Native Floating-Point Data Types 9-12

Conversion Functions for Native Floating-Point Data Types 9-12

Client Interfaces for Native Floating-Point Data Types 9-13

Representing Date and Time Data 9-14

Displaying Current Date and Time 9-15

Inserting and Displaying Dates 9-16

Inserting and Displaying Times 9-17

Arithmetic Operations with Datetime Data Types 9-18

Conversion Functions for Datetime Data Types 9-19

Importing, Exporting, and Comparing Datetime Types 9-20

Representing Specialized Data 9-20

Representing Spatial Data 9-20

Representing Large Amounts of Data 9-21

Large Objects (LOBs) 9-21

LONG and LONG RAW Data Types 9-22

Representing Searchable Text 9-22

Representing XML Data 9-22

Representing Dynamically Typed Data 9-23

Representing ANSI, DB2, and SQL/DS Data 9-25

Identifying Rows by Address 9-25

Displaying Metadata for SQL Operators and Functions 9-27

ARGn Data Type 9-28

DISP_TYPE Data Type 9-28

SQL Data Type Families 9-29

10

Using Regular Expressions in Database Applications

Overview of Regular Expressions 10-1

Oracle SQL Support for Regular Expressions 10-2

Oracle SQL and POSIX Regular Expression Standard 10-4

Operators in Oracle SQL Regular Expressions 10-5

POSIX Operators in Oracle SQL Regular Expressions 10-5

Oracle SQL Multilingual Extensions to POSIX Standard 10-9

Oracle SQL PERL-Influenced Extensions to POSIX Standard 10-9

Using Regular Expressions in SQL Statements: Scenarios 10-11

ix

Using a Constraint to Enforce a Phone Number Format 10-11

Example: Enforcing a Phone Number Format with Regular Expressions 10-12

Example: Inserting Phone Numbers in Correct and Incorrect Formats 10-12

Using Back References to Reposition Characters 10-13

11

Using Indexes in Database Applications

Guidelines for Managing Indexes 11-1

Managing Indexes 11-2

When to Use Domain Indexes 11-2

When to Use Function-Based Indexes 11-2

Advantages of Function-Based Indexes 11-4

Disadvantages of Function-Based Indexes 11-4

Example: Function-Based Index for Precomputing Arithmetic Expression 11-6

Example: Function-Based Indexes on Object Column 11-7

Example: Function-Based Index for Faster Case-Insensitive Searches 11-8

Example: Function-Based Index for Language-Dependent Sorting 11-8

12

Maintaining Data Integrity in Database Applications

Enforcing Business Rules with Constraints 12-2

Enforcing Business Rules with Both Constraints and Application Code 12-3

Creating Indexes for Use with Constraints 12-4

When to Use NOT NULL Constraints 12-5

When to Use Default Column Values 12-6

Choosing a Primary Key for a Table (PRIMARY KEY Constraint) 12-8

When to Use UNIQUE Constraints 12-9

Enforcing Referential Integrity with FOREIGN KEY Constraints 12-10

FOREIGN KEY Constraints and NULL Values 12-12

Defining Relationships Between Parent and Child Tables 12-12

Rules for Multiple FOREIGN KEY Constraints 12-13

Deferring Constraint Checks 12-14

Minimizing Space and Time Overhead for Indexes Associated with Constraints 12-16

Guidelines for Indexing Foreign Keys 12-16

Referential Integrity in a Distributed Database 12-17

When to Use CHECK Constraints 12-17

Restrictions on CHECK Constraints 12-18

Designing CHECK Constraints 12-18

Rules for Multiple CHECK Constraints 12-19

Choosing Between CHECK and NOT NULL Constraints 12-19

Examples of Defining Constraints 12-19

x

Privileges Needed to Define Constraints 12-21

Naming Constraints 12-21

Enabling and Disabling Constraints 12-21

Why Disable Constraints? 12-22

Creating Enabled Constraints (Default) 12-22

Creating Disabled Constraints 12-23

Enabling Existing Constraints 12-23

Disabling Existing Constraints 12-24

Guidelines for Enabling and Disabling Key Constraints 12-25

Fixing Constraint Exceptions 12-25

Modifying Constraints 12-25

Renaming Constraints 12-26

Dropping Constraints 12-27

Managing FOREIGN KEY Constraints 12-28

Data Types and Names for Foreign Key Columns 12-28

Limit on Columns in Composite Foreign Keys 12-29

Foreign Key References Primary Key by Default 12-29

Privileges Required to Create FOREIGN KEY Constraints 12-29

Choosing How Foreign Keys Enforce Referential Integrity 12-29

Viewing Information About Constraints 12-30

Part III PL/SQL for Application Developers

13

Coding PL/SQL Subprograms and Packages

Overview of PL/SQL Subprograms 13-1

Overview of PL/SQL Packages 13-3

Overview of PL/SQL Units 13-4

PLSQL_OPTIMIZE_LEVEL Compilation Parameter 13-4

Creating PL/SQL Subprograms and Packages 13-6

Privileges Needed to Create Subprograms and Packages 13-7

Creating Subprograms and Packages 13-7

PL/SQL Object Size Limits 13-8

PL/SQL Data Types 13-9

PL/SQL Scalar Data Types 13-9

PL/SQL Composite Data Types 13-12

Abstract Data Types 13-12

Returning Result Sets to Clients 13-12

Advantages of Cursor Variables 13-13

Disadvantages of Cursor Variables 13-14

Returning Query Results Implicitly 13-17

xi

Returning Large Amounts of Data from a Function 13-17

PL/SQL Function Result Cache 13-18

Overview of Bulk Binding 13-18

DML Statements that Reference Collections 13-19

SELECT Statements that Reference Collections 13-20

FOR Loops that Reference Collections and Return DML 13-21

PL/SQL Dynamic SQL 13-22

Altering PL/SQL Subprograms and Packages 13-22

Deprecating Packages, Subprograms, and Types 13-23

Dropping PL/SQL Subprograms and Packages 13-23

Compiling PL/SQL Units for Native Execution 13-24

Invoking Stored PL/SQL Subprograms 13-24

Privileges Required to Invoke a Stored Subprogram 13-25

Invoking a Subprogram Interactively from Oracle Tools 13-26

Invoking a Subprogram from Another Subprogram 13-27

Invoking a Remote Subprogram 13-28

Synonyms for Remote Subprograms 13-29

Transactions That Invoke Remote Subprograms 13-31

Invoking Stored PL/SQL Functions from SQL Statements 13-31

Why Invoke PL/SQL Functions from SQL Statements? 13-32

Where PL/SQL Functions Can Appear in SQL Statements 13-33

When PL/SQL Functions Can Appear in SQL Expressions 13-33

Controlling Side Effects of PL/SQL Functions Invoked from SQL Statements 13-34

Restrictions on Functions Invoked from SQL Statements 13-35

PL/SQL Functions Invoked from Parallelized SQL Statements 13-35

PRAGMA RESTRICT_REFERENCES 13-36

Analyzing and Debugging Stored Subprograms 13-40

PL/Scope 13-40

PL/SQL Hierarchical Profiler 13-40

Debugging PL/SQL and Java 13-41

Compiling Code for Debugging 13-41

Privileges for Debugging PL/SQL and Java Stored Subprograms 13-42

Package Invalidations and Session State 13-43

Example: Raising an ORA-04068 Error 13-43

Example: Trapping ORA-04068 13-44

14

Using PL/Scope

Overview of PL/Scope 14-1

Privileges Required for Using PL/Scope 14-2

Specifying Identifier and Statement Collection 14-2

xii

How Much Space is PL/Scope Data Using? 14-3

Viewing PL/Scope Data 14-4

Static Data Dictionary Views for PL/SQL and SQL Identifiers 14-4

PL/SQL and SQL Identifier Types that PL/Scope Collects 14-4

About Identifiers Usages 14-6

Identifiers Usage Unique Keys 14-8

About Identifiers Usage Context 14-9

About Identifiers Signature 14-11

Static Data Dictionary Views for SQL Statements 14-13

SQL Statement Types that PL/Scope Collects 14-13

Statements Location Unique Keys 14-14

About SQL Statement Usage Context 14-15

About SQL Statements Signature 14-16

SQL Developer 14-17

Overview of Data Dictionary Views Useful to Manage PL/SQL Code 14-17

Sample PL/Scope Session 14-18

15

Using the PL/SQL Hierarchical Profiler

Overview of PL/SQL Hierarchical Profiler 15-1

Collecting Profile Data 15-2

Understanding Raw Profiler Output 15-4

Namespaces of Tracked Subprograms 15-7

Special Function Names 15-8

Analyzing Profile Data 15-8

Creating Hierarchical Profiler Tables 15-9

Understanding Hierarchical Profiler Tables 15-10

Hierarchical Profiler Database Table Columns 15-10

Distinguishing Between Overloaded Subprograms 15-12

Hierarchical Profiler Tables for Sample PL/SQL Procedure 15-13

Examples of Calls to DBMS_HPROF.analyze with Options 15-14

plshprof Utility 15-16

plshprof Options 15-16

HTML Report from a Single Raw Profiler Output File 15-16

First Page of Report 15-17

Function-Level Reports 15-18

Module-Level Reports 15-19

Namespace-Level Reports 15-19

Parents and Children Report for a Function 15-20

Understanding PL/SQL Hierarchical Profiler SQL-Level Reports 15-21

HTML Difference Report from Two Raw Profiler Output Files 15-22

xiii

Difference Report Conventions 15-22

First Page of Difference Report 15-23

Function-Level Difference Reports 15-24

Module-Level Difference Reports 15-25

Namespace-Level Difference Reports 15-26

Parents and Children Difference Report for a Function 15-26

16

Using PL/SQL Basic Block Coverage to Maintain Quality

Overview of PL/SQL Basic Block Coverage 16-1

Collecting PL/SQL Code Coverage Data 16-2

PL/SQL Code Coverage Tables Description 16-2

17

Developing PL/SQL Web Applications

Overview of PL/SQL Web Applications 17-1

Implementing PL/SQL Web Applications 17-2

PL/SQL Gateway 17-2

mod_plsql 17-2

Embedded PL/SQL Gateway 17-3

PL/SQL Web Toolkit 17-3

Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application 17-4

Using Embedded PL/SQL Gateway 17-5

How Embedded PL/SQL Gateway Processes Client Requests 17-5

Installing Embedded PL/SQL Gateway 17-7

Configuring Embedded PL/SQL Gateway 17-7

Configuring Embedded PL/SQL Gateway: Overview 17-7

Configuring User Authentication for Embedded PL/SQL Gateway 17-10

Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway 17-19

Securing Application Access with Embedded PL/SQL Gateway 17-20

Restrictions in Embedded PL/SQL Gateway 17-20

Using Embedded PL/SQL Gateway: Scenario 17-20

Generating HTML Output with PL/SQL 17-22

Passing Parameters to PL/SQL Web Applications 17-23

Passing List and Dropdown-List Parameters from an HTML Form 17-24

Passing Option and Check Box Parameters from an HTML Form 17-24

Passing Entry-Field Parameters from an HTML Form 17-25

Passing Hidden Parameters from an HTML Form 17-26

Uploading a File from an HTML Form 17-27

Submitting a Completed HTML Form 17-27

Handling Missing Input from an HTML Form 17-27

xiv

Maintaining State Information Between Web Pages 17-28

Performing Network Operations in PL/SQL Subprograms 17-28

Internet Protocol Version 6 (IPv6) Support 17-29

Sending E-Mail from PL/SQL 17-29

Getting a Host Name or Address from PL/SQL 17-30

Using TCP/IP Connections from PL/SQL 17-30

Retrieving HTTP URL Contents from PL/SQL 17-30

Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL 17-33

18

Using Continuous Query Notification (CQN)

About Object Change Notification (OCN) 18-2

About Query Result Change Notification (QRCN) 18-2

Guaranteed Mode 18-3

Best-Effort Mode 18-3

Example: Query Too Complex for QRCN in Guaranteed Mode 18-4

Example: Query Whose Simplified Version Invalidates Objects 18-4

Events that Generate Notifications 18-5

Committed DML Transactions 18-5

Committed DDL Statements 18-6

Deregistration 18-7

Global Events 18-7

Notification Contents 18-8

Good Candidates for CQN 18-8

Creating CQN Registrations 18-11

Using PL/SQL to Create CQN Registrations 18-11

PL/SQL CQN Registration Interface 18-12

CQN Registration Options 18-12

Notification Type Option 18-13

QRCN Mode (QRCN Notification Type Only) 18-13

ROWID Option 18-13

Operations Filter Option (OCN Notification Type Only) 18-14

Transaction Lag Option (OCN Notification Type Only) 18-15

Notification Grouping Options 18-15

Reliable Option 18-16

Purge-on-Notify and Timeout Options 18-17

Prerequisites for Creating CQN Registrations 18-17

Queries that Can Be Registered for Object Change Notification (OCN) 18-17

Queries that Can Be Registered for Query Result Change Notification (QRCN) 18-18

Queries that Can Be Registered for QRCN in Guaranteed Mode 18-18

Queries that Can Be Registered for QRCN Only in Best-Effort Mode 18-19

xv

Queries that Cannot Be Registered for QRCN in Either Mode 18-20

Using PL/SQL to Register Queries for CQN 18-21

Creating a PL/SQL Notification Handler 18-22

Creating a CQ_NOTIFICATION$_REG_INFO Object 18-22

Identifying Individual Queries in a Notification 18-26

Adding Queries to an Existing Registration 18-26

Best Practices for CQN Registrations 18-27

Troubleshooting CQN Registrations 18-27

Deleting Registrations 18-28

Configuring CQN: Scenario 18-28

Creating a PL/SQL Notification Handler 18-29

Registering the Queries 18-31

Using OCI to Create CQN Registrations 18-32

Using OCI for Query Result Set Notifications 18-33

Using OCI to Register a Continuous Query Notification 18-33

Using OCI Subscription Handle Attributes for Continuous Query Notification 18-35

OCI_ATTR_CQ_QUERYID Attribute 18-37

Using OCI Continuous Query Notification Descriptors 18-37

OCI_DTYPE_CHDES 18-37

Demonstrating Continuous Query Notification in an OCI Sample Program 18-39

Querying CQN Registrations 18-49

Interpreting Notifications 18-49

Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object 18-49

Interpreting a CQ_NOTIFICATION$_TABLE Object 18-50

Interpreting a CQ_NOTIFICATION$_QUERY Object 18-51

Interpreting a CQ_NOTIFICATION$_ROW Object 18-52

Part IV Advanced Topics for Application Developers

19

Using Oracle Flashback Technology

Overview of Oracle Flashback Technology 19-1

Application Development Features 19-2

Database Administration Features 19-4

Configuring Your Database for Oracle Flashback Technology 19-5

Configuring Your Database for Automatic Undo Management 19-5

Configuring Your Database for Oracle Flashback Transaction Query 19-6

Configuring Your Database for Flashback Transaction 19-6

Enabling Oracle Flashback Operations on Specific LOB Columns 19-7

Granting Necessary Privileges 19-7

Using Oracle Flashback Query (SELECT AS OF) 19-8

xvi

Example: Examining and Restoring Past Data 19-9

Guidelines for Oracle Flashback Query 19-9

Using Oracle Flashback Version Query 19-11

Using Oracle Flashback Transaction Query 19-13

Using Oracle Flashback Transaction Query with Oracle Flashback Version Query 19-14

Using DBMS_FLASHBACK Package 19-16

Using Flashback Transaction 19-17

Dependent Transactions 19-18

TRANSACTION_BACKOUT Parameters 19-18

TRANSACTION_BACKOUT Reports 19-19

*_FLASHBACK_TXN_STATE 19-19

*_FLASHBACK_TXN_REPORT 19-20

Using Flashback Data Archive 19-20

Creating a Flashback Data Archive 19-21

Altering a Flashback Data Archive 19-22

Dropping a Flashback Data Archive 19-24

Specifying the Default Flashback Data Archive 19-24

Enabling and Disabling Flashback Data Archive 19-24

DDL Statements on Tables Enabled for Flashback Data Archive 19-25

Viewing Flashback Data Archive Data 19-26

Flashback Data Archive Scenarios 19-27

Scenario: Using Flashback Data Archive to Enforce Digital Shredding 19-27

Scenario: Using Flashback Data Archive to Access Historical Data 19-27

Scenario: Using Flashback Data Archive to Generate Reports 19-28

Scenario: Using Flashback Data Archive for Auditing 19-28

Scenario: Using Flashback Data Archive to Recover Data 19-29

General Guidelines for Oracle Flashback Technology 19-29

Performance Guidelines for Oracle Flashback Technology 19-31

Multitenant Container Database Restrictions for Oracle Flashback Technology 19-32

20

Choosing a Programming Environment

Overview of Application Architecture 20-2

Client/Server Architecture 20-2

Server-Side Programming 20-2

Two-Tier and Three-Tier Architecture 20-3

Overview of the Program Interface 20-3

User Interface 20-4

Stateful and Stateless User Interfaces 20-4

Overview of PL/SQL 20-4

Overview of Oracle Database Java Support 20-5

xvii

Overview of Oracle JVM 20-5

Overview of Oracle JDBC 20-6

Oracle JDBC Drivers 20-7

Sample JDBC 2.0 Program 20-9

Sample Pre-2.0 JDBC Program 20-9

Overview of Oracle SQLJ 20-10

Benefits of SQLJ 20-11

Comparison of Oracle JDBC and Oracle SQLJ 20-11

Overview of Java Stored Subprograms 20-12

Overview of Oracle Database Web Services 20-13

Choosing PL/SQL or Java 20-14

Similarities of PL/SQL and Java 20-15

PL/SQL Advantages Over Java 20-15

Java Advantages Over PL/SQL 20-15

Overview of Precompilers 20-16

Overview of the Pro*C/C++ Precompiler 20-16

Overview of the Pro*COBOL Precompiler 20-18

Overview of OCI and OCCI 20-20

Advantages of OCI and OCCI 20-21

OCI and OCCI Functions 20-21

Procedural and Nonprocedural Elements of OCI and OCCI Applications 20-22

Building an OCI or OCCI Application 20-22

Comparison of Precompilers and OCI 20-23

Overview of Oracle Data Provider for .NET (ODP.NET) 20-24

Overview of OraOLEDB 20-25

21

Developing Applications with Multiple Programming Languages

Overview of Multilanguage Programs 21-1

What Is an External Procedure? 21-3

Overview of Call Specification for External Procedures 21-3

Loading External Procedures 21-4

Define the C Procedures 21-5

Set Up the Environment 21-6

Identify the DLL 21-8

Publish the External Procedures 21-10

Publishing External Procedures 21-10

AS LANGUAGE Clause for Java Class Methods 21-11

AS LANGUAGE Clause for External C Procedures 21-11

LIBRARY 21-11

NAME 21-11

xviii

LANGUAGE 21-12

CALLING STANDARD 21-12

WITH CONTEXT 21-12

PARAMETERS 21-12

AGENT IN 21-12

Publishing Java Class Methods 21-12

Publishing External C Procedures 21-13

Locations of Call Specifications 21-13

Example: Locating a Call Specification in a PL/SQL Package 21-14

Example: Locating a Call Specification in a PL/SQL Package Body 21-14

Example: Locating a Call Specification in an ADT Specification 21-15

Example: Locating a Call Specification in an ADT Body 21-15

Example: Java with AUTHID 21-15

Example: C with Optional AUTHID 21-16

Example: Mixing Call Specifications in a Package 21-16

Passing Parameters to External C Procedures with Call Specifications 21-17

Specifying Data Types 21-18

External Data Type Mappings 21-19

Passing Parameters BY VALUE or BY REFERENCE 21-22

Declaring Formal Parameters 21-22

Overriding Default Data Type Mapping 21-23

Specifying Properties 21-23

INDICATOR 21-25

LENGTH and MAXLEN 21-25

CHARSETID and CHARSETFORM 21-26

Repositioning Parameters 21-26

SELF 21-26

BY REFERENCE 21-29

WITH CONTEXT 21-29

Interlanguage Parameter Mode Mappings 21-30

Running External Procedures with CALL Statements 21-30

Preconditions for External Procedures 21-31

Privileges of External Procedures 21-31

Managing Permissions 21-31

Creating Synonyms for External Procedures 21-31

CALL Statement Syntax 21-32

Calling Java Class Methods 21-32

Calling External C Procedures 21-33

Handling Errors and Exceptions in Multilanguage Programs 21-33

Using Service Routines with External C Procedures 21-34

OCIExtProcAllocCallMemory 21-34

xix

OCIExtProcRaiseExcp 21-38

OCIExtProcRaiseExcpWithMsg 21-39

Doing Callbacks with External C Procedures 21-40

OCIExtProcGetEnv 21-40

Object Support for OCI Callbacks 21-42

Restrictions on Callbacks 21-42

Debugging External C Procedures 21-43

Example: Calling an External C Procedure 21-44

Global Variables in External C Procedures 21-44

Static Variables in External C Procedures 21-44

Restrictions on External C Procedures 21-45

22

Developing Applications with Oracle XA

X/Open Distributed Transaction Processing (DTP) 22-2

DTP Terminology 22-3

Required Public Information 22-5

Oracle XA Library Subprograms 22-6

Oracle XA Library Subprograms 22-6

Oracle XA Interface Extensions 22-7

Developing and Installing XA Applications 22-7

DBA or System Administrator Responsibilities 22-8

Application Developer Responsibilities 22-8

Defining the xa_open String 22-9

Syntax of the xa_open String 22-9

Required Fields for the xa_open String 22-10

Optional Fields for the xa_open String 22-11

Using Oracle XA with Precompilers 22-13

Using Precompilers with the Default Database 22-13

Using Precompilers with a Named Database 22-13

Using Oracle XA with OCI 22-14

Managing Transaction Control with Oracle XA 22-15

Examples of Precompiler Applications 22-16

Migrating Precompiler or OCI Applications to TPM Applications 22-16

Managing Oracle XA Library Thread Safety 22-17

Specifying Threading in the Open String 22-18

Restrictions on Threading in Oracle XA 22-18

Using the DBMS_XA Package 22-18

Troubleshooting XA Applications 22-21

Accessing Oracle XA Trace Files 22-21

xa_open String DbgFl 22-22

xx

Trace File Locations 22-22

Managing In-Doubt or Pending Oracle XA Transactions 22-23

Using SYS Account Tables to Monitor Oracle XA Transactions 22-23

Oracle XA Issues and Restrictions 22-24

Using Database Links in Oracle XA Applications 22-24

Managing Transaction Branches in Oracle XA Applications 22-24

Using Oracle XA with Oracle Real Application Clusters (Oracle RAC) 22-25

GLOBAL_TXN_PROCESSES Initialization Parameter 22-25

Managing Transaction Branches on Oracle RAC 22-26

Managing Instance Recovery in Oracle RAC with DTP Services (10.2) 22-27

Global Uniqueness of XIDs in Oracle RAC 22-28

Tight and Loose Coupling 22-29

SQL-Based Oracle XA Restrictions 22-29

Rollbacks and Commits 22-29

DDL Statements 22-29

Session State 22-30

EXEC SQL 22-30

Miscellaneous Restrictions 22-30

23

Developing Applications with the Publish-Subscribe Model

Introduction to the Publish-Subscribe Model 23-1

Publish-Subscribe Architecture 23-2

Database Events 23-2

Oracle Advanced Queuing 23-2

Client Notification 23-3

Publish-Subscribe Concepts 23-3

Examples of a Publish-Subscribe Mechanism 23-5

24

Using the Oracle ODBC Driver

About Oracle ODBC Driver 24-1

For All Users 24-2

Oracle ODBC Driver 24-2

What Is the Oracle ODBC Driver 24-3

New and Changed Features 24-5

Features Not Supported 24-9

Files Created by the Installation 24-10

Driver Conformance Levels 24-12

Known Limitations 24-12

Configuration Tasks 24-12

xxi

Configuring Oracle Net Services 24-12

Configuring the Data Source 24-13

Oracle ODBC Driver Configuration Dialog Box 24-14

Modifying the oraodbc.ini File 24-23

Reducing Lock Timeout 24-23

Connecting to a Data Source 24-23

Connecting to an Oracle Data Source 24-23

Troubleshooting 24-24

About Using the Oracle ODBC Driver for the First Time 24-24

Expired Password 24-24

For Advanced Users 24-24

Creating Oracle ODBC Driver TNS Service Names 24-25

SQL Statements 24-25

Data Types 24-25

Implementation of Data Types (Advanced) 24-26

Limitations on Data Types 24-26

Error Messages 24-27

For Programmers 24-28

Format of the Connection String 24-29

SQLDriverConnect Implementation 24-32

Reducing Lock Timeout in a Program 24-32

Linking with odbc32.lib (Windows) or libodbc.so (UNIX) 24-32

Information About rowids 24-32

Rowids in a WHERE Clause 24-33

Enabling Result Sets 24-33

Enabling EXEC Syntax 24-38

Enabling Event Notification for Connection Failures in an Oracle RAC
Environment 24-39

Using Implicit Results Feature Through ODBC 24-43

About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE Column Type in ODBC 24-44

About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus,
Oracle ODBC Driver, and Others) 24-47

Supported Functionality 24-50

API Conformance 24-50

Implementation of ODBC API Functions 24-50

Implementation of the ODBC SQL Syntax 24-51

Implementation of Data Types (Programming) 24-51

Unicode Support 24-51

Unicode Support Within the ODBC Environment 24-51

Unicode Support in ODBC API 24-52

Unicode Functions in the Driver Manager 24-52

xxii

SQLGetData Performance 24-53

Unicode Samples 24-53

Performance and Tuning 24-58

General ODBC Programming Tips 24-59

Data Source Configuration Options 24-59

DATE and TIMESTAMP Data Types 24-61

25

Using the Identity Code Package

Identity Concepts 25-1

What Is the Identity Code Package? 25-5

Using the Identity Code Package 25-6

Storing RFID Tags in Oracle Database Using MGD_ID ADT 25-7

Creating a Table with MGD_ID Column Type and Storing EPC Tag
Encodings in the Column 25-7

Constructing MGD_ID Objects to Represent RFID Tags 25-7

Inserting an MGD_ID Object into a Database Table 25-10

Querying MGD_ID Column Type 25-10

Building a Function-Based Index Using the Member Functions of the MGD_ID
Column Type 25-11

Using MGD_ID ADT Functions 25-11

Using the get_component Function with the MGD_ID Object 25-11

Parsing Tag Data from Standard Representations 25-12

Reconstructing Tag Representations from Fields 25-13

Translating Between Tag Representations 25-14

Defining a Category of Identity Codes and Adding Encoding Schemes to an
Existing Category 25-14

Creating a Category of Identity Codes 25-14

Adding Two Metadata Schemes to a Newly Created Category 25-15

Identity Code Package Types 25-19

DBMS_MGD_ID_UTL Package 25-19

Identity Code Metadata Tables and Views 25-20

Electronic Product Code (EPC) Concepts 25-23

RFID Technology and EPC v1.1 Coding Schemes 25-23

Product Code Concepts and Their Current Use 25-24

Electronic Product Code (EPC) 25-24

Global Trade Identification Number (GTIN) and Serializable Global Trade
Identification Number (SGTIN) 25-25

Serial Shipping Container Code (SSCC) 25-26

Global Location Number (GLN) and Serializable Global Location Number
(SGLN) 25-26

Global Returnable Asset Identifier (GRAI) 25-26

Global Individual Asset Identifier (GIAI) 25-26

xxiii

RFID EPC Network 25-26

Oracle Database Tag Data Translation Schema 25-26

26

Understanding Schema Object Dependency

Overview of Schema Object Dependency 26-1

Example: Displaying Dependent and Referenced Object Types 26-1

Example: Schema Object Change that Invalidates Some Dependents 26-3

Example: View That Depends on Multiple Objects 26-4

Querying Object Dependencies 26-4

Object Status 26-4

Invalidation of Dependent Objects 26-5

Session State and Referenced Packages 26-9

Security Authorization 26-9

Guidelines for Reducing Invalidation 26-9

Add Items to End of Package 26-9

Reference Each Table Through a View 26-10

Object Revalidation 26-10

Revalidation of Objects that Compiled with Errors 26-11

Revalidation of Unauthorized Objects 26-11

Revalidation of Invalid SQL Objects 26-11

Revalidation of Invalid PL/SQL Objects 26-11

Name Resolution in Schema Scope 26-11

Local Dependency Management 26-12

Remote Dependency Management 26-12

Dependencies Among Local and Remote Database Procedures 26-13

Dependencies Among Other Remote Objects 26-13

Dependencies of Applications 26-13

Remote Procedure Call (RPC) Dependency Management 26-14

Time-Stamp Dependency Mode 26-14

RPC-Signature Dependency Mode 26-15

Changing Names and Default Values of Parameters 26-17

Changing Specification of Parameter Mode IN 26-17

Changing Subprogram Body 26-17

Changing Data Type Classes of Parameters 26-18

Changing Package Types 26-19

Controlling Dependency Mode 26-20

Dependency Resolution 26-21

Suggestions for Managing Dependencies 26-21

Shared SQL Dependency Management 26-22

xxiv

27

Using Edition-Based Redefinition

Overview of Edition-Based Redefinition 27-1

Editions 27-2

Editioned and Noneditioned Objects 27-2

Name Resolution for Editioned and Noneditioned Objects 27-3

Noneditioned Objects That Can Depend on Editioned Objects 27-4

Editionable and Noneditionable Schema Object Types 27-6

Enabling Editions for a User 27-7

EDITIONABLE and NONEDITIONABLE Properties 27-10

Rules for Editioned Objects 27-11

Creating an Edition 27-12

Editioned Objects and Copy-on-Change 27-12

Example: Editioned Objects and Copy-on-Change 27-13

Example: Dropping an Editioned Object 27-14

Example: Creating an Object with the Name of a Dropped Inherited Object 27-16

Making an Edition Available to Some Users 27-17

Making an Edition Available to All Users 27-17

Current Edition and Session Edition 27-18

Your Initial Session Edition 27-18

Changing Your Session Edition 27-20

Displaying the Names of the Current and Session Editions 27-20

When the Current Edition Might Differ from the Session Edition 27-21

Retiring an Edition 27-22

Dropping an Edition 27-23

Editioning Views 27-25

Creating an Editioning View 27-26

Partition-Extended Editioning View Names 27-27

Changing the Writability of an Editioning View 27-27

Replacing an Editioning View 27-28

Dropped or Renamed Base Tables 27-28

Adding Indexes and Constraints to the Base Table 27-28

SQL Optimizer Index Hints 27-28

Crossedition Triggers 27-29

Forward Crossedition Triggers 27-29

Reverse Crossedition Triggers 27-29

Crossedition Trigger Interaction with Editions 27-30

Which Triggers Are Visible 27-30

What Kind of Triggers Can Fire 27-30

Firing Order 27-32

Crossedition Trigger Execution 27-33

xxv

Creating a Crossedition Trigger 27-34

Coding the Forward Crossedition Trigger Body 27-35

Transforming Data from Pre- to Post-Upgrade Representation 27-37

Preventing Lost Updates 27-39

Dropping the Crossedition Triggers 27-40

Displaying Information About EBR Features 27-40

Displaying Information About Editions 27-40

Displaying Information About Editioning Views 27-42

Displaying Information About Crossedition Triggers 27-42

Using EBR to Upgrade an Application 27-43

Preparing Your Application to Use Editioning Views 27-43

Procedure for EBR Using Only Editions 27-45

Procedure for EBR Using Editioning Views 27-47

Procedure for EBR Using Crossedition Triggers 27-48

Rolling Back the Application Upgrade 27-49

Reclaiming Space Occupied by Unused Table Columns 27-49

Example: Using EBR to Upgrade an Application 27-50

Existing Application 27-50

Preparing the Application to Use Editioning Views 27-52

Using EBR to Upgrade the Example Application 27-52

28

Using Transaction Guard

Problem That Transaction Guard Solves 28-2

Solution That Transaction Guard Provides 28-2

Transaction Guard Concepts and Scope 28-3

Logical Transaction Identifier (LTXID) 28-4

At-Most-Once Execution 28-4

Transaction Guard Coverage 28-5

Transaction Guard with XA Transactions 28-6

Transaction Guard Exclusions 28-6

Database Configuration for Transaction Guard 28-7

Configuration Checklist 28-7

Transaction History Table 28-8

Service Parameters 28-8

Example: Adding and Modifying a Service for a Server Pool 28-9

Example: Adding an Administrator-Managed Service 28-9

Example: Modifying a Service (PL/SQL) 28-10

Developing Applications That Use Transaction Guard 28-10

Typical Transaction Guard Usage 28-11

Details for Using the LTXID 28-11

xxvi

Transaction Guard and Transparent Application Failover 28-12

Using Transaction Guard with ODP.NET 28-13

Connection-Pool LTXID Usage 28-13

Improved Commit Outcome for XA One Phase Optimizations 28-14

Additional Requirements for Transaction Guard Development 28-14

Transaction Guard and Its Relationship to Application Continuity 28-15

Index

xxvii

List of Tables

3-1 Table Annotation Result Cache Modes 3-16

3-2 Effective Result Cache Table Mode 3-16

3-3 Client Configuration Parameters (Optional) 3-21

3-4 Setting Client Result Cache and Server Result Cache 3-24

3-5 Session Purity and Connection Class Defaults 3-33

8-1 COMMIT Statement Options 8-7

8-2 Examples of Concurrency Under Explicit Locking 8-21

8-3 Ways to Display Locking Information 8-29

8-4 ANSI/ISO SQL Isolation Levels and Possible Transaction Interactions 8-31

8-5 ANSI/ISO SQL Isolation Levels Provided by Oracle Database 8-31

8-6 Comparison of READ COMMITTED and SERIALIZABLE Transactions 8-37

8-7 Possible Transaction Outcomes 8-41

9-1 SQL Character Data Types 9-6

9-2 Range and Precision of Floating-Point Data Types 9-9

9-3 Binary Floating-Point Format Components 9-9

9-4 Summary of Binary Format Storage Parameters 9-10

9-5 Special Values for Native Floating-Point Formats 9-10

9-6 Values Resulting from Exceptions 9-13

9-7 SQL Datetime Data Types 9-14

9-8 SQL Conversion Functions for Datetime Data Types 9-19

9-9 Large Objects (LOBs) 9-21

9-10 Display Types of SQL Functions 9-28

9-11 SQL Data Type Families 9-29

10-1 Oracle SQL Pattern-Matching Condition and Functions 10-2

10-2 Oracle SQL Pattern-Matching Options for Condition and Functions 10-3

10-3 POSIX Operators in Oracle SQL Regular Expressions 10-6

10-4 POSIX Operators and Multilingual Operator Relationships 10-9

10-5 PERL-Influenced Operators in Oracle SQL Regular Expressions 10-10

10-6 Explanation of the Regular Expression Elements 10-11

10-7 Explanation of the Regular Expression Elements 10-13

14-1 Identifier Types that PL/Scope Collects 14-5

14-2 Usages that PL/Scope Reports 14-7

15-1 Raw Profiler Output File Indicators 15-6

15-2 Function Names of Operations that the PL/SQL Hierarchical Profiler Tracks 15-8

15-3 PL/SQL Hierarchical Profiler Database Tables 15-8

xxviii

15-4 DBMSHP_RUNS Table Columns 15-10

15-5 DBMSHP_FUNCTION_INFO Table Columns 15-11

15-6 DBMSHP_PARENT_CHILD_INFO Table Columns 15-12

16-1 DBMSPCC_RUNS Table Columns 16-3

16-2 DBMSPCC_UNITS Table Columns 16-3

16-3 DBMSPCC_BLOCKS Table Columns 16-3

17-1 Commonly Used Packages in the PL/SQL Web Toolkit 17-3

17-2 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes 17-8

17-3 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes 17-9

17-4 Authentication Possibilities for a DAD 17-13

18-1 Continuous Query Notification Registration Options 18-12

18-2 Attributes of CQ_NOTIFICATION$_REG_INFO 18-22

18-3 Quality-of-Service Flags 18-25

18-4 Attributes of CQ_NOTIFICATION$_DESCRIPTOR 18-50

18-5 Attributes of CQ_NOTIFICATION$_TABLE 18-51

18-6 Attributes of CQ_NOTIFICATION$_QUERY 18-51

18-7 Attributes of CQ_NOTIFICATION$_ROW 18-52

19-1 Oracle Flashback Version Query Row Data Pseudocolumns 19-11

19-2 Flashback TRANSACTION_BACKOUT Options 19-19

19-3 Static Data Dictionary Views for Flashback Data Archive Files 19-27

20-1 PL/SQL Packages and Their Java Equivalents 20-14

21-1 Parameter Data Type Mappings 21-18

21-2 External Data Type Mappings 21-19

21-3 Properties and Data Types 21-24

22-1 Required XA Features Published by Oracle Database 22-5

22-2 XA Library Subprograms 22-6

22-3 Oracle XA Interface Extensions 22-7

22-4 Required Fields of xa_open string 22-10

22-5 Optional Fields in the xa_open String 22-11

22-6 TX Interface Functions 22-15

22-7 TPM Replacement Statements 22-17

22-8 Sample Trace File Contents 22-22

22-9 Tightly and Loosely Coupled Transaction Branches 22-25

24-1 Files Installed by the Oracle ODBC Driver Kit 24-10

24-2 Oracle ODBC Driver and Oracle Database Limitations on Data Types 24-27

24-3 Error Message Values of Prefixes Returned by the Oracle ODBC Driver 24-28

xxix

24-4 Keywords that Can Be Included in the Connection String Argument of the

SQLDriverConnect Function Call 24-29

24-5 Keywords Required by the SQLDriverConnect Connection String 24-32

24-6 How Oracle ODBC Driver Implements Specific Functions 24-50

24-7 Supported SQL Data Types and the Equivalent ODBC SQL Data Type 24-52

25-1 General Structure of EPC Encodings 25-2

25-2 Identity Code Package ADTs 25-19

25-3 MGD_ID ADT Subprograms 25-19

25-4 DBMS_MGD_ID_UTL Package Utility Subprograms 25-20

25-5 Definition and Description of the MGD_ID_CATEGORY Metadata View 25-21

25-6 Definition and Description of the USER_MGD_ID_CATEGORY Metadata View 25-22

25-7 Definition and Description of the MGD_ID_SCHEME Metadata View 25-22

25-8 Definition and Description of the USER_MGD_ID_SCHEME Metadata View 25-22

26-1 Database Object Status 26-4

26-2 Operations that Cause Fine-Grained Invalidation 26-6

26-3 Data Type Classes 26-18

27-1 *_ Dictionary Views with Edition Information 27-41

27-2 *_ Dictionary Views with Editioning View Information 27-42

28-1 LTXID Condition or Situation, Application Actions, and Next LTXID to Use 28-12

28-2 Transaction Manager Conditions/ Situations and Actions 28-14

xxx

Preface

Oracle Database Development Guide explains topics of interest to experienced
developers of databases and database applications. Information in this guide applies
to features that work the same on all supported platforms, and does not include
system-specific information.

Preface Topics:

Audience
This guide is intended primarily for application developers who are either developing
applications or converting applications to run in the Oracle Database environment.
This guide might also help anyone interested in database or database application
development, such as systems analysts and project managers.

This guide assumes that you are familiar with the concepts and techniques in the "2
Day" guides relevant to your job, such as Oracle Database 2 Day Developer's Guide
and Oracle Database 2 Day DBA. To use this guide most effectively, you also need a
working knowledge of:

• Structured Query Language (SQL)

• Object-oriented programming

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these documents in the Oracle Database 12c Release 2
(12.2) documentation set:

• Oracle Database PL/SQL Language Reference

• Oracle Call Interface Programmer's Guide

xxxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Database Security Guide

• Pro*C/C++ Programmer's Guide

• Oracle Database SQL Language Reference

• Oracle Database Administrator's Guide

• Oracle Database Concepts

• Oracle Database Java Developer's Guide

• Oracle Database JDBC Developer's Guide

• Oracle XML Developer's Kit Programmer's Guide

• Oracle XML DB Developer's Guide

• Oracle Database Migration Guide

• Oracle Database Globalization Support Guide

• Oracle Database Sample Schemas

See Also:

• Oracle PL/SQL Programming by Steven Feuerstein, Bill Pribyl. Sixth
Edition. O'Reilly & Associates, 2014.

• Oracle PL/SQL Best Practices by Steven Feuerstein. Second Edition.
O'Reilly & Associates, 2007.

Conventions
This guide uses these text conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Also:

• *_view means all static data dictionary views whose names end with view. For
example, *_ERRORS means ALL_ERRORS, DBA_ERRORS, and USER_ERRORS. For more
information about any static data dictionary view, or about static dictionary views in
general, see Oracle Database Reference.

• Table names not qualified with schema names are in the sample schema HR. For
information about the sample schemas, see Oracle Database Sample Schemas.

Preface

xxxii

Changes in Oracle Database Release

The following are changes in Oracle Database Development Guide for Oracle
Database Release 19c:

New Features in Oracle Database 19c

There are no new features in this release for Oracle Database Development Guide

New Features in Oracle Database
There are no new features in this release for Oracle Database Development Guide.

Deprecated Features
This section lists the deprecated features that were part of Database Development
Guide.

Features Deprecated in Oracle Database 19c:

Oracle Fail Safe is deprecated. It can be desupported and unavailable in a future
release.

See Also:

Oracle Database Upgrade Guide for more information.

Desupported Features

Desupported Features in Oracle Database 19c

Oracle Multimedia has been desupported in its entirety. Oracle recommends that you
store multimedia content in SecureFiles LOBs and use third-party products.

See Also:

Oracle Database Upgrade Guide for more information.

xxxiii

Part I
Database Development Fundamentals

This part presents fundamental information for developers of Oracle Database and
database applications. The chapters in this part cover mainly high-level concepts, and
refer to other chapters and manuals for detailed feature explanations and
implementation specifics.

Related links:

• Oracle Database 2 Day Developer's Guide and Oracle Database 2 Day
DBA form more information on oracle Database concepts and
techniques.

• http://asktom.oracle.com for books and articles about Oracle
database concepts by Tom Kyte

Chapters:

• Design Basics

• Connection Strategies for Database Applications

• Performance and Scalability

• Designing Applications for Oracle Real-World Performance

• Security

• High Availability

• Advanced PL/SQL Features

http://asktom.oracle.com

1
Design Basics

This chapter explains several important design goals for database developers.

This chapter contains the following topics:

• Design for Performance

• Design for Scalability

• Design for Extensibility

• Design for Security

• Design for Availability

• Design for Portability

• Design for Diagnosability

• Design for Special Environments

• Features for Special Scenarios

See Also:

• Database Development Fundamentals for high-level database concepts

• Oracle Database 2 Day Developer's Guide and Oracle Database 2 Day
DBA form more information on oracle Database concepts and
techniques

Design for Performance
The key to database and application performance is design, not tuning. While tuning is
quite valuable, it cannot make up for poor design. Your design must start with an
efficient data model, well-defined performance goals and metrics, and a sensible
benchmarking strategy. Otherwise, you will encounter problems during
implementation, when no amount of tuning will produce the results that you could have
obtained with good design. You might have to redesign the system later, despite
having tuned the original poor design.

See Also:

• Performance and Scalability

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

1-1

Design for Scalability
Scalability is the ability of a system to perform well as its load increases. Load is a
combination of number of data volumes, number of users, and other relevant factors.
To design for scalability, you must use an effective benchmarking strategy, appropriate
application development techniques (such as bind variables), and appropriate Oracle
Database architectural features like shared server connections, clustering, partitioning,
and parallel operations.

See Also:

• Performance and Scalability

• Database 2 Day Developer's Guide

Design for Extensibility
Extensibility is the ease with which a database or database application
accommodates future growth. The more extensible the database or application, the
easier it is to add or change functionality with minimal impact on existing functionality.

Note:

Extensibility differs from forward compatibility, the ability of an application
to accept data from a future version of itself and use only the data that it was
designed to accept.

For example, suppose that an early version of an application processes only
text and a later version of the same application processes both text and
graphics. If the early version can accept both text and graphics, and ignore
the graphics and process the text, then it is forward-compatible. If the early
version can be upgraded to process both text and graphics, then it is
extensible. The easier it is to upgrade the application, the more extensible it
is.

To maximize extensibility, you must design it into your database and applications by
including mechanisms that allow enhancement without major changes to
infrastructure. Early versions of the database or application might not use these
mechanisms, and perhaps no version will ever use all of them, but they are essential
to easy maintenance and avoiding early obsolescence.

Topics:

• Data Cartridges

• External Procedures

• User-Defined Functions and Aggregate Functions

• Object-Relational Features

Chapter 1
Design for Scalability

1-2

Data Cartridges
Data cartridges extend the capabilities of the Oracle Database server by taking
advantage of Oracle Extensibility Architecture framework. This framework lets you
capture business logic and processes associated with specialized or domain-specific
data in user-defined data types. Data cartridges that provide new behavior without
using additional attributes can do so with packages rather than user-defined data
types. With either user-defined types or packages, you determine how the server
interprets, stores, retrieves, and indexes the application data. Data cartridges package
this functionality, creating software components that plug into a server and extend its
capabilities into a new domain, making the database itself extensible.

You can customize the indexing and query optimization mechanisms of an extensible
database management system and provide specialized services or more efficient
processing for user-defined business objects and rich types. When you register your
implementations with the server through extensibility interfaces, you direct the server
to implement your customized processing instructions instead of its own default
processes.

Related Topics

• Oracle Database Data Cartridge Developer's Guide

External Procedures
External procedures are highly extensible because you can enhance their functionality
without affecting their invokers. The reason is that the call specification of an external
procedure, which has all the information needed to invoke it, is separate from the body
of the procedure, which has the implementation details. If you change only the body,
and not the specification, then invokers are unaffected.

Related Topics

• Developing Applications with Multiple Programming Languages

User-Defined Functions and Aggregate Functions
User-defined PL/SQL functions that can appear in SQL statements or expressions can
extend the functionality of SQL.

User-defined aggregate functions are part of the Oracle Extensibility Architecture
framework.

See Also:

• Invoking Stored PL/SQL Functions from SQL Statements for information
about invoking user-defined PL/SQL functions in SQL statements and
expressions

• Oracle Database Data Cartridge Developer's Guide for information about
user-defined aggregate functions

Chapter 1
Design for Extensibility

1-3

Object-Relational Features
The object relational features of Oracle Database are the user-defined Abstract Data
Types (ADTs). ADTs are highly extensible because you can enhance their functionality
without affecting their invokers. The reason is that the call specification of an external
procedure, which has all the information needed to invoke it, is separate from the body
of the procedure, which has the implementation details. If you change only the body,
and not the specification, then invokers are unaffected.

See Also:

• Oracle Database PL/SQL Language Reference for information about the
CREATE TYPE statement

• Oracle Database PL/SQL Language Reference for information about the
CREATE TYPE BODY statement

• Oracle Database Object-Relational Developer's Guide for more
information about object relational features

Design for Security
Database security involves a wide range of potential activities, including:

• Designing and implementing security policies to protect the data of an
organization, users, and applications from accidental, inappropriate, or
unauthorized actions

• Creating and enforcing policies and practices of auditing and accountability for
inappropriate or unauthorized actions

• Creating, maintaining, and terminating user accounts, passwords, roles, and
privileges

• Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize
both efficiency and ease of use

See Also:

• Oracle Database Security Guide for more information about security.

• Security for information about considerations and techniques for
providing security.

Design for Availability
Availability is the degree to which an application, service, or function is accessible on
demand. A system designed for high availability provides uninterrupted computing

Chapter 1
Design for Security

1-4

services during essential time periods, during most hours of the day throughout the
year, with minimal downtime for operations such as upgrading the system's hardware
or software. The main characteristics of a highly available system are:

• Reliability

• Recoverability

• Timely error detection

• Continuous operation

See Also:

• High Availability for information about important considerations and
techniques for providing high availability.

Design for Portability
While PL/SQL is not designed for portability between Oracle Database and third-party
databases, it is highly portable across operating systems and languages. Most
programming languages can invoke PL/SQL, and PL/SQL is implemented consistently
on every platform that supports Oracle Database, including Macintosh, Linux, and
Windows. If you develop PL/SQL applications on one platform, you can be highly
confident that they will work consistently on all other platforms.

PL/SQL stored procedures provide some application portability across multiple
databases. Although using stored procedures written in the language of a given
vendor may seem to tie you to that vendor to some extent, stored procedures make
the application's visual component (user interface) and application logic portable. The
data logic is encoded optimally for the database on which the application runs.
Because the data logic is hidden in stored procedures, you can use the vendor's
extensions and features to optimize the data layer.

When developed and deployed on a database, the application can stay deployed on
that database forever. If the application is moved to another database, the visual
component and application logic can move independently of the data logic in the
stored procedures, which simplifies the move. (Reworking the application in
combination with the move complicates the move.)

See Also:

Oracle Database PL/SQL Language Reference for conceptual, usage, and
reference information about PL/SQL

Design for Diagnosability
Oracle Database includes a fault diagnosability infrastructure for preventing, detecting,
diagnosing, and resolving database problems. Problems include critical errors such as
code bugs, metadata corruption, and customer data corruption. The goals of the

Chapter 1
Design for Portability

1-5

diagnosability infrastructure are to detect problems proactively, limit damage and
interruptions after a problem is detected, reduce the time required to diagnose and
resolve problems, and simplify any possible interaction with Oracle Support.

Automatic Diagnostic Repository (ADR) is a file-based repository that stores database
diagnostic data such as trace files, the alert log, and Health Monitor reports. ADR is
located outside the database, which enables Oracle Database to access and manage
ADR when the physical database is unavailable.

See Also:

• Oracle Database Concepts for an overview of diagnostic files

• Oracle Database Administrator's Guide for detailed information about the
Oracle Database fault diagnosability infrastructure.

Design for Special Environments
This topic introduces designing for the following special database and application
environments:

• Data Warehousing

• Online Transaction Processing (OLTP)

Data Warehousing
A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived from
transaction data, but can include data from other sources. Data warehouses separate
analysis workload from transaction workload and enable an organization to
consolidate data from several sources. This strategy helps the organization maintain
historical records and analyze the data to better understand and improve its business.

In addition to a relational database, a data warehouse environment can include:

• An extraction, transportation, transformation, and loading (ETL) solution

• Statistical analysis

• Reporting

• Data mining capabilities

• Client analysis tools

• Applications that manage the process of gathering data; transforming it into useful,
actionable information; and delivering it to business users

Data warehousing systems typically:

• Use many indexes

• Use some (but not many) joins

• Use denormalized or partially denormalized schemas (such as a star schema) to
optimize query and analytical performance

Chapter 1
Design for Special Environments

1-6

• Use derived data and aggregates

• Have workloads designed to accommodate ad hoc queries and data analysis

Because you might not know the workload of your data warehouse in advance,
you must optimize the data warehouse to perform well for a wide variety of
possible query and analytical operations.

• Are updated regularly (nightly or weekly) by the ETL process, using bulk data
modification techniques

The end users of a data warehouse do not directly update the data warehouse
except when using analytical tools (such as data mining) to make predictions with
associated probabilities, assign customers to market segments, and develop
customer profiles.

See Also:

Oracle Database Data Warehousing Guide for information about data
warehousing, including a comparison with online transaction processing
(OLTP)

Online Transaction Processing (OLTP)
Online transaction processing (OLTP) systems are optimized for fast and reliable
transaction handling. Compared to data warehouse systems, most OLTP interactions
involve a relatively small number of rows, but a larger group of tables. In OLTP
systems, performance requirements require that historical data be frequently moved to
an archive.

OLTP systems typically:

• Use few indexes.

• Use many joins.

• Use fully normalized schemas to optimize update, insert, and delete performance,
and to guarantee data consistency.

• Rarely use derived data and aggregates.

• Have workloads consisting of predefined operations.

• Have users routinely issuing individual data modification statements to the
database, so that the OLTP database always reflects the current state of each
transaction.

See Also:

Oracle Database Concepts for more information including links to manuals
with detailed information

Chapter 1
Design for Special Environments

1-7

Features for Special Scenarios
This topic introduces Oracle Database features that are particularly useful in scenarios
that involve very large databases and the need for high performance.

Topics:

• SQL Analytic Functions

• Materialized Views

• Partitioning

• Temporal Validity Support

SQL Analytic Functions
A SQL analytic function computes an aggregate value based on a group of rows. A
SQL analytic function differs from an aggregate function in that it returns multiple rows
for each group. For each row, a window of rows is defined. The window determines
the range of rows used to perform the calculations for the current row. Window sizes
can be based on either a physical number of rows or a logical interval such as time.

SQL analytic functions bring to set-oriented SQL the ability to use array semantics on
result sets. They provide coding efficiency, because they enable concise,
straightforward coding of logic that is otherwise cumbersome or impossible. They also
provide processing efficiency, because they are integral to Oracle Database and use
internal optimizations.

A typical use of analytic functions is to retrieve the most current information in a table.
For example, a query of the following form returns information from the row with the
most recent update time for each customer with records in a table:

SELECT ... FROM my_table t1
 WHERE upd_time = (SELECT MAX(UPD _TIME)
 FROM my_table t2
 WHERE t2.cust_id = t1.cust_id);

The preceding query uses a correlated subquery to find the MAX(UPD _TIME) by cust
_id, record by record. Therefore, the correlated subquery could be evaluated once for
each row in the table. If the table has very few records, performance may be
adequate; if the table has tens of thousands of records, the cumulative cost of
repeatedly executing the correlated subquery is high.

The following query makes a single pass on the table and computes the maximum
UPD_TIME during that pass. Depending on various factors, such as table size and
number of rows returned, the following query may be much more efficient than the
preceding query:

SELECT ...
 FROM (SELECT t1.*,
 MAX(UPD_TIME) OVER (PARTITION BY cust _id) max_time
 FROM my_table t1
)
 WHERE upd_time = max_time;

The available analytic functions are:

Chapter 1
Features for Special Scenarios

1-8

AVG
CORR
COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST
FIRST_VALUE
LAG
LAST
LAST_VALUE
LEAD
LISTAGG
MAX
MIN
NTH_VALUE
NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions
ROW_NUMBER
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
VAR_POP
VAR_SAMP
VARIANCE

See Also:

• Oracle Database Concepts for an overview of SQL analytic functions

• Oracle Database SQL Language Reference for syntax and reference
information

• Oracle Database Data Warehousing Guide for an extensive discussion
of SQL for analysis and reporting

Materialized Views
Materialized views are query results that have been stored ("materialized") as
schema objects. Like tables and views, materialized views can appear in the FROM
clauses of queries.

Materialized views are used to summarize, compute, replicate, and distribute data.
They are useful for pre-answering general classes of questions—users can query the
materialized views instead of individually aggregating detail records. Some
environments where materialized views are useful are data warehousing, replication,
and mobile computing.

Chapter 1
Features for Special Scenarios

1-9

Materialized views require time to create and update, and disk space for storage, but
these costs are offset by dramatically faster queries. In these respects, materialized
views are like indexes, and they are called "the indexes of your data warehouse."
Unlike indexes, materialized views can be queried directly (with SELECT statements)
and sometimes updated with DML statements (depending on the type of update
needed).

A major benefit of creating and maintaining materialized views is the ability to take
advantage of query rewrite, which transforms a SQL statement expressed in terms of
tables or views into a statement accessing one or more materialized views that are
defined on the detail tables. The transformation is transparent to the end user or
application, requiring no intervention and no reference to the materialized view in the
SQL statement. Because query rewrite is transparent, materialized views can be
added or dropped like indexes without invalidating the SQL in the application code.

The following statement creates and populates a materialized aggregate view based
on three master tables in the SH sample schema:

CREATE MATERIALIZED VIEW sales_mv AS
 SELECT t.calendar_year, p.prod_id, SUM(s.amount_sold) AS sum_sales
 FROM times t, products p, sales s
 WHERE t.time_id = s.time_id
 AND p.prod_id = s.prod_id
 GROUP BY t.calendar_year, p.prod_id;

See Also:

• Oracle Database Concepts for an overview of materialized views

• Oracle Database Data Warehousing Guide to learn how to use
materialized views, including the use of query rewrite with materialized
views, in a data warehouse

• Partitioning for more information about how to partition materialized
views like tables.

Partitioning
Partitioning is the database ability to physically break a very large table, index, or
materialized view into smaller pieces that it can manage independently. Partitioning is
similar to parallel processing, which breaks a large process into smaller pieces that
can be processed independently.

Each partition is an independent object with its own name and, optionally, its own
storage characteristics. Partitioning is useful for many different types of database
applications, particularly those that manage large volumes of data. Benefits include
increased availability, easier administration of schema objects, reduced contention for
shared resources in OLTP systems, and enhanced query performance in data
warehouses.

To partition a table, specify the PARTITION BY clause in the CREATE TABLE statement.
SELECT and DML statements do not need special syntax to benefit from the
partitioning.

Chapter 1
Features for Special Scenarios

1-10

A common strategy is to partition records by date ranges. The following statement
creates four partitions, one for records from each of four years of sales data (2008
through 2011):

CREATE TABLE time_range_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
 (PARTITION SALES_2008 VALUES LESS THAN (TO_DATE('01-JAN-2009','DD-MON-YYYY')),
 PARTITION SALES_2009 VALUES LESS THAN (TO_DATE('01-JAN-2010','DD-MON-YYYY')),
 PARTITION SALES_2010 VALUES LESS THAN (TO_DATE('01-JAN-2011','DD-MON-YYYY')),
 PARTITION SALES_2011 VALUES LESS THAN (MAXVALUE)
);

See Also:

• Oracle Database Concepts for an overview of partitions

• Oracle Database VLDB and Partitioning Guide for detailed explanations
and usage information about partitioning with very large databases
(VLDB)

Temporal Validity Support
Temporal Validity Support lets you associate one or more valid time dimensions with
a table and have data be visible depending on its time-based validity, as determined
by the start and end dates or time stamps of the period for which a given record is
considered valid. Examples of time-based validity are the hire and termination dates of
an employee in a Human Resources application, the effective date of coverage for an
insurance policy, and the effective date of a change of address for a customer or
client.

Temporal Validity Support is typically used with Oracle Flashback Technology, for
queries that specify the valid time period in AS OF and VERSIONS BETWEEN clauses. You
can also use the DBMS_FLASHBACK_ARCHIVE.ENABLE_AT_VALID_TIME procedure to
specify an option for the visibility of table data: all table data (the default), data valid at
a specified time, or currently valid data within the valid time period at the session level.

Temporal Validity Support is useful in Information Lifecycle Management (ILM) and
any other application where it is important to know when certain data becomes valid
(from the application's perspective) and when it becomes invalid (if ever).

Chapter 1
Features for Special Scenarios

1-11

Note:

Creating and using a table with valid time support and changing data using
Temporal Validity Support assume that the user has privileges to create
tables and perform data manipulation language (DML) and (data definition
language) DDL operations on them.

Example 1-1 Creating and Using a Table with Valid Time Support

The following example creates a table with Temporal Validity Support, inserts rows,
and issues queries whose results depend on the valid start date and end date for
individual rows.

CREATE TABLE my_emp(
 empno NUMBER,
 last_name VARCHAR2(30),
 start_time TIMESTAMP,
 end_time TIMESTAMP,
PERIOD FOR user_valid_time (start_time, end_time));

INSERT INTO my_emp VALUES (100, 'Ames', '01-Jan-10', '30-Jun-11');
INSERT INTO my_emp VALUES (101, 'Burton', '01-Jan-11', '30-Jun-11');
INSERT INTO my_emp VALUES (102, 'Chen', '01-Jan-12', null);

-- Valid Time Queries --

-- AS OF PERIOD FOR queries:

-- Returns only Ames.
SELECT * from my_emp AS OF PERIOD FOR user_valid_time TO_TIMESTAMP('01-Jun-10');

-- Returns Ames and Burton, but not Chen.
SELECT * from my_emp AS OF PERIOD FOR user_valid_time TO_TIMESTAMP('01-Jun-11');

-- Returns no one.
SELECT * from my_emp AS OF PERIOD FOR user_valid_time TO_TIMESTAMP('01-Jul-11');

-- Returns only Chen.
SELECT * from my_emp AS OF PERIOD FOR user_valid_time TO_TIMESTAMP('01-Feb-12');

-- VERSIONS PERIOD FOR ... BETWEEN queries:

-- Returns only Ames.
SELECT * from my_emp VERSIONS PERIOD FOR user_valid_time BETWEEN
 TO_TIMESTAMP('01-Jun-10') AND TO_TIMESTAMP('02-Jun-10');

-- Returns Ames and Burton.
SELECT * from my_emp VERSIONS PERIOD FOR user_valid_time BETWEEN
 TO_TIMESTAMP('01-Jun-10') AND TO_TIMESTAMP('01-Mar-11');

-- Returns only Chen.
SELECT * from my_emp VERSIONS PERIOD FOR user_valid_time BETWEEN
 TO_TIMESTAMP('01-Nov-11') AND TO_TIMESTAMP('01-Mar-12');

-- Returns no one.
SELECT * from my_emp VERSIONS PERIOD FOR user_valid_time BETWEEN
 TO_TIMESTAMP('01-Jul-11') AND TO_TIMESTAMP('01-Sep-11');

Chapter 1
Features for Special Scenarios

1-12

To add Temporal Validity Support to an existing table without explicitly adding
columns, use the ALTER TABLE statement with the ADD PERIOD FOR clause. For example,
if the CREATE TABLE statement did not create the START_TIME and END_TIME columns,
you could use the following statement to create the same:

ALTER TABLE my_emp ADD PERIOD FOR user_valid_time;

The preceding statement adds two hidden columns to the table MY_EMP:
USER_VALID_TIME_START and USER_VALID_TIME_END. You can insert rows that specify
values for these columns, but the columns do not appear in the output of the SQL*Plus
DESCRIBE statement, and SELECT statements show the data in those columns only if
the SELECT list explicitly includes the column names.

Example 1-2 uses Temporal Validity Support for data change in the table created in
Example 1-1. In Example 1-2, the initial record for employee 103 has the last name
Davis. Later, the employee changes his or her last name to Smith. The END_TIME value
in the original row changes from NULL to the day before the change is to become valid.
A new row is inserted with the new last name, the appropriate START_TIME value, and
END_TIME set to NULL to indicate that it is valid until set otherwise.

Example 1-2 Data Change Using Temporal Validity Support

-- Add a record for Davis.
INSERT INTO my_emp VALUES (103, 'Davis', '01-Jan-12', null);

-- To change employee 103's last name to Smith,
-- first set an end date for the record with the old name.
UPDATE my_emp SET end_time = '01-Feb-12' WHERE empno = 103;

-- Then insert another record for employee 103, specifying the new last name,
-- the appropriate valid start date, and null for the valid end date.
-- After the INSERT statement, there are two records for #103 (Davis and Smith).
INSERT INTO my_emp VALUES (103, 'Smith', '02-Feb-12', null);

-- What's the valid information for employee 103 as of today?
SELECT * from my_emp AS OF PERIOD FOR user_valid_time SYSDATE WHERE empno = 103;

-- What was the valid information for employee 103 as of a specified date?

-- First, as of a date after the change to Smith.
SELECT * from my_emp AS OF PERIOD FOR user_valid_time TO_TIMESTAMP('01-Jul-12')
 WHERE empno = 103;

-- Next, as of a date before the change to Smith.
SELECT * from my_emp AS OF PERIOD FOR user_valid_time TO_TIMESTAMP('20-Jan-12')
 WHERE empno = 103;

Chapter 1
Features for Special Scenarios

1-13

Related Links:

• CREATE TABLE, ALTER TABLE , and SELECT

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database VLDB and Partitioning Guide

• Using Oracle Flashback Technology

• Multitenant Container Database Restrictions for Oracle Flashback
Technology

Chapter 1
Features for Special Scenarios

1-14

2
Connection Strategies for Database
Applications

A database connection is a physical communication pathway between a client
process and a database instance. A database session is a logical entity in the
database instance memory that represents the state of a current user login to a
database. A session lasts from the time the user is authenticated by the database until
the time the user disconnects or exits the database application. A single connection
can have 0, 1, or more sessions established on it.

Most OLTP performance problems that the Oracle Real-World Performance group
investigates relate to the application connection strategy. For this reason, designing a
sound connection strategy is crucial for application development, especially in
enterprise environments that must scale to meet increasing demand.

Topics:

• Design Guidelines for Connection Pools

• Design Guideline for Login Strategy

• Design Guideline for Preventing Programmatic Session Leaks

• Using Runtime Connection Load Balancing

Design Guidelines for Connection Pools
A connection pool is a cache of connections to an Oracle database that is usable by
an application.

At run time, the application requests a connection from the pool. If the pool contains a
connection that can satisfy the request, then it returns the connection to the
application. The application uses the connection to perform work on the database, and
then returns the connection to the pool. The released connection is then available for
the next connection request.

In a static connection pool, the pool contains a fixed number of connections and
cannot create more to meet demand. Thus, if the pool cannot find an idle connection
to satisfy a new application request, then the request is queued or an error is returned.
In a dynamic connection pool, however, the pool creates a new connection, and
then returns it to the application. In theory, dynamic connection pools enable the
number of connections in the pool to increase and decrease, thereby conserving
system resources that are otherwise lost on maintaining unnecessary connections.
However, in practice, a dynamic connection pool strategy allows for potential
connection storms and over-subscription problems.

Connection Storms
A connection storm is a race condition in which application servers initiate an
increasing number of connection requests, but the database server CPU is unable to

2-1

schedule them immediately, which causes the application servers to create more
connections.

During a connection storm, the number of database connections can soar from
hundreds to thousands in less than a minute.

Dynamic connection pools are particularly prone to connection storms. As the number
of connection requests increases, the database server becomes oversubscribed
relative to the number of CPU cores. At any given time, only one process can run on a
CPU core. Thus, if 32 cores exist on the server, then only 32 processes can be doing
work at one time. If the application server creates hundreds or thousands of
connections, then the CPU becomes busy trying to keep up with the number of
processes fighting for time on the system.

Inside the database, wait activity increases as the number of active sessions increase.
You can observe this activity by looking at the wait events in ASH and AWR reports.
Typical wait events include latches on enqueues, row cache objects, latch free, enq:
TX - index contention, and buffer busy waits. As the wait events increase, the
transaction throughput decreases because sessions are unable to perform work.
Because the server computer is oversubscribed, monitoring tool processes must fight
for time on the CPU. In the most extreme case, using the keyboard becomes
impossible, making debugging difficult.

Video:

RWP #13: Large Dynamic Connection Pools - Part 1

Guideline for Preventing Connection Storms: Use Static Pools
The Oracle Real-World Performance group recommends that you use static
connection pools rather than dynamic connection pools.

Over years of diagnosing connection storms, the Oracle Real-World Performance
group has discovered that dynamic connection pools often use too many processes for
the necessary workload. A prevalent myth is that a dynamic connection pool creates
connections as required and reduces them when they are not needed. In reality, when
the connection pool is exhausted, application servers enable the size of the pool of
database connections to increase rapidly. The number of sessions increases with little
load on the system, leading to a performance problem when all the sessions become
active.

Because dynamic connection pools can destabilize the system quickly, the Oracle
Real-World Performance group recommends that you use static rather than dynamic
connection pools.

Reducing the number of connections reduces the stress on the CPU, which leads to
faster response time and higher throughput. This result may seem paradoxical.
Performance improves for the following reasons:

• Fewer sessions means fewer contention-related wait events inside the database.
After reducing connections, the CPU that formerly consumed cycles on latches
and arbitrating contention can spend more time processing database transactions.

• As the number of connections decreases, connections can stay scheduled on the
CPU for longer. As a result, all memory pages associated with these processes

Chapter 2
Design Guidelines for Connection Pools

2-2

stay resident in the CPU cache. They become increasingly efficient at scheduling,
and stall less in memory

As a rule of thumb, the Oracle Real-World Performance group recommends a 90/10
ratio of %user to %system CPU utilization, and an average of no more than 10
processes per CPU core on the database server. The number of connections should
be based on the number of CPU cores and not the number of CPU core threads. For
example, suppose a server has 2 CPUs and each CPU has 18 cores. Each CPU core
has 2 threads. Based on the Oracle Real-Wold Performance group guidelines, the
application can have between 36 and 360 connections to the database instance.

Video:

RWP #14: Large Dynamic Connection Pools - Part 2

Design Guideline for Login Strategy
A problem facing all database developers is how and when the application logs in to
the database to initiate transactions.

In a suboptimal design, the database application performs the following steps for every
SQL request:

1. Log in to the database.

2. Issue a SQL request, such as an INSERT or UPDATE statement.

3. Log out of the database.

Applications that use a login/logout strategy may meet functional requirements. Also,
they may perform well when the number of transactions per second is low. However,
logging in and out of the database is an extremely resource-intensive operation. The
Oracle Real-World Performance group has found that applications that use such
algorithms do not scale well and can cause severe performance problems, especially
when used with dynamic connection pools. A login/logout strategy usually uses no
connection pool.

If an application uses a login/logout design, and if the DBAs and developers do not
realize the source of the problem, then the first symptoms may be low database
throughput and erratic, excessively high response times. A diagnostic investigation of
the database may show that relatively few sessions are active, while resource
contention is low.

The clue to the suboptimal performance is that the number of logins per second is
close to the number of transactions per second. When a login/loutout per transaction
stategy is used, the database instance and operating system perform a lot of work
behind the scenes to create the new process, database connection, and associated
memory area. Many of these steps are serialized, leading to low CPU utilization
combine with low transaction througput.

For the preceding reasons, the Oracle Real-World Performance group strongly
recommends against a login/logout design for any application that must scale to
support a high number of transactions.

Chapter 2
Design Guideline for Login Strategy

2-3

Video:

RWP #2 Bad Performance with Cursors and Logons

Design Guideline for Preventing Programmatic Session
Leaks

A session leak occurs when a program loses a connection, but its session remains
active in the database instance. A leaked session is programmatically lost to the
application.

An optimally designed application prevents session leaks. Typically, session leaks
occur because of exceptions caught by the application. If the application does not
handle the exception correctly, then it may terminate the connection without executing
a commit or rollback, thus leaking the session.

Session leaks can cause severe problems for database performance and data
integrity. Typically, the problems take the following forms:

• Drained connection pools

• Lock leaks

• Logical corruption

Drained Connection Pools
Design flaws can cause connection pools to drain.

For example, assume that an application design flaw causes it to leak sessions
consistently. Even if the leak rate is low, a dynamic connection pool leads to an ever-
increasing number of sessions become programmatically impossible to use.

The effect is to reduce the usable connection pool and prevent the remaining
connections from keeping up with the workload. The number of unusable sessions
climbs until there are no usable connections left in the pool.

Checking for Session Leaks
Session leaks occur due to issues in the application or application server and cannot
be fixed from the database alone. The issue needs to be addressed in the application
or application server. An easy way to check for session leaks is by modifying the
connection pool to use one connection to the database and test the application.
Testing with one connection makes it is easier to find the root cause of the problem in
the application.

Lock Leaks
A lock leak is typically a side-effect of a session leak.

Chapter 2
Design Guideline for Preventing Programmatic Session Leaks

2-4

For example, a leaked session that was in the middle of a batch update may hold TX
locks on multiple rows in a table. If a leaked session is holding a lock, then sessions
that want to acquire the lock form a queue behind the leaked session.

The program that is holding the lock is waiting for interaction from the client to release
that lock, but because the connection is lost programmatically, the message will not be
sent. Consequently, the database cannot commit or roll back any transaction active in
the session.

Logical Corruption
A leaked session can contain uncommitted changes to the database. For example, a
transaction is partway through its work when the database connection is unexpectedly
released.

This situation can lead to the following problems:

• The application reports an error to the UI. In this case, customers may complain
that they have lost work, for example, a business order or a flight schedule

• The UI receive a commit message even though no commit or rollback has
occurred. This is the worst case, because a subsequent transaction might commit
both its own work and the half of the transaction from the leaked session. In this
case, the database is logically corrupted.

Using Runtime Connection Load Balancing
Topics:

• About Runtime Connection Load Balancing

• Enabling and Disabling Runtime Connection Load Balancing

• Receiving Load Balancing Advisory FAN Events

About Runtime Connection Load Balancing
Oracle Real Application Clusters (Oracle RAC) is a database option in which a single
database is hosted by multiple instances on multiple nodes. The Oracle RAC shared
disk method of clustering databases increases scalability. The nodes can easily be
added or freed to meet current needs and improve availability, because if one node
fails, another can assume its workload. Oracle RAC adds high availability and failover
capacity to the database, because all instances have access to the whole database.

Work requests are balanced at both connect time (connect time load balancing,
provided by Oracle Net Services) and runtime (runtime connection load balancing).
For Oracle RAC environments, session pools use service metrics received from the
Oracle RAC load balancing advisory through Fast Application Notification (FAN)
events to balance application session requests. The work requests coming into the
session pool can be distributed across the instances of Oracle RAC offering a service,
using the current service performance.

Connect time load balancing occurs when an application creates a session. Pooled
sessions must be well distributed across Oracle RAC instances when the sessions are
created to ensure that sessions on each instance can execute work.

Chapter 2
Using Runtime Connection Load Balancing

2-5

Runtime connection load balancing occurs when an application selects a session from
an existing session pool (and thus is a very frequent activity). Runtime connection load
balancing routes work requests to sessions in a session pool that best serve the work.
For session pools that support services at only one instance, the first available session
in the pool is adequate. When the pool supports services that span multiple instances,
the work must be distributed across instances so that the instances that are providing
better service or have greater capacity get more work requests.

OCI, OCCI, JDBC, and ODP.NET client applications all support runtime connection
load balancing.

See Also:

• cdemosp.c in the directory demo

• Using Database Resident Connection Pool

• Oracle Call Interface Programmer's Guide

• Oracle C++ Call Interface Programmer's Guide

• Oracle Database JDBC Developer's Guide

• Oracle Universal Connection Pool for JDBC Java API Reference

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

Enabling and Disabling Runtime Connection Load Balancing
Enabling and disabling runtime connection load balancing on the client depends on the
client environment.

Topics:

• OCI

• OCCI

• JDBC

• ODP.NET

OCI
For an OCI client application, runtime connection load balancing is enabled by default
in an Oracle Database 11g Release 1 (11.1) or later client communicating with a
server of Oracle Database 10g Release 2 (10.2) or later when you perform the
following operations to ensure that your application receives service metrics based on
service time:

• Link the application with the threads library.

• Create the OCI environment in OCI_EVENTS and OCI_THREADED modes.

• Configure the load balancing advisory goal and the connection load balancing goal
for a service that is used by the session pool.

Chapter 2
Using Runtime Connection Load Balancing

2-6

To disable runtime connection load balancing for an OCI client, set the mode parameter
to OCI_SPC_NO_RLB when calling OCISessionPoolCreate().

FAN HA (FCF) for OCI requires AQ_HA_NOTIFICATIONS for the service to be TRUE.

See Also:

Oracle Call Interface Programmer's Guide for information about
OCISessionPoolCreate()

OCCI
For an OCCI client application, runtime connection load balancing is enabled by
default in an Oracle Database 11g Release 1 (11.1) or later client communicating with
a server of Oracle Database 10g Release 2 (10.2) or later when you perform the
following operations:

• Link the application with the threads library.

• Create the OCCI environment in EVENTS and THREADED_MUTEXED modes.

• Configure the load balancing advisory goal and the connection load balancing goal
for a service that is used by the session pool.

To disable runtime connection load balancing for an OCCI client, use the NO_RLB
option for the PoolType attribute of the StatelessConnectionPool Class.

FAN HA (FCF) for OCCI requires AQ_HA_NOTIFICATIONS for the service to be TRUE.

See Also:

Oracle C++ Call Interface Programmer's Guide for more information about
runtime load balancing using the OCCI interface

JDBC
In the JDBC environment, runtime connection load balancing is enabled by default in
an Oracle Database 11g Release 1 (11.1) or later client communicating with a server
of Oracle Database 10g Release 2 (10.2) or later when Fast Connection Failover
(FCF) is enabled.

In the JDBC environment, runtime connection load balancing relies on the Oracle
Notification Service (ONS) infrastructure, which uses the same out-of-band ONS event
mechanism used by FCF processing. No additional setup or configuration of ONS is
required to benefit from runtime connection load balancing.

To disable runtime connection load balancing in the JDBC environment, call
setFastConnectionFailoverEnabled() with a value of false.

Chapter 2
Using Runtime Connection Load Balancing

2-7

See Also:

Oracle Database JDBC Developer's Guide for more information about
runtime load balancing using the JDBC interface

ODP.NET
In an ODP.NET client application, runtime connection load balancing is disabled by
default. To enable runtime connection load balancing, include "Load Balancing=true"
in the connection string and make sure “Pooling=true” (default).

FAN HA (FCF) for ODP.NET requires AQ_HA_NOTIFICATIONS for the service to be TRUE.

See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows for
more information about runtime load balancing

Receiving Load Balancing Advisory FAN Events
Your application can receive load balancing advisory FAN events only if all of these
requirements are met:

• Oracle RAC environment with Oracle Clusterware is set up and enabled.

• The server is configured to issue event notifications.

• The application is linked with the threads library.

• The OCI environment is created in OCI_EVENTS and OCI_THREADED modes.

• The OCCI environment is created in THREADED_MUTEXED and EVENTS modes.

• You configured or modified the Oracle RAC environment using the DBMS_SERVICE
package.

You must modify the service to set up its goal and the connection load balancing
goal as follows:

EXEC DBMS_SERVICE.MODIFY_SERVICE("myService",
 DBMS_SERVICE.GOAL_SERVICE_TIME,
 clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

The constant GOAL_SERVICE_TIME specifies that Load Balancing Advisory is based
on elapsed time for work done in the service plus bandwidth available to the
service.

The constant CLB_GOAL_SHORT specifies that connection load balancing uses Load
Balancing Advisory, when Load Balancing Advisory is enabled.You can set the
connection balancing goal to CLB_GOAL_LONG. However, CLB_GOAL_LONG is typically
useful for closed workloads (that is, when the rate of completing work is equal to
the rate of starting new work).

Chapter 2
Using Runtime Connection Load Balancing

2-8

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for information about enabling OCI clients to receive FAN events

• Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_SERVICE

• Oracle Call Interface Programmer's Guide for information about
OCISessionPoolCreate()

• Oracle Database JDBC Developer's Guide for more information about
runtime load balancing using the JDBC interface

Chapter 2
Using Runtime Connection Load Balancing

2-9

3
Performance and Scalability

This chapter explains some techniques for designing performance and scalability into
the database and database applications.

Topics:

• Performance Strategies

• Tools for Performance

• Monitoring Database Performance

• Using Instrumentation

• Testing for Performance

• Using Bind Variables

• Using Client Result Cache

• Statement Caching

• OCI Client Statement Cache Auto-Tuning

• Client-Side Deployment Parameters

• Using Query Change Notification

• Using Database Resident Connection Pool

• Memoptimize Pool

• Oracle RAC Sharding

Performance Strategies
Topics:

• Designing Your Data Model to Perform Well

• Setting Performance Goals (Metrics)

• Benchmarking Your Application

Designing Your Data Model to Perform Well
This topic briefly describes the important concepts of data modeling. Entire books
about this subject are available; refer to them for details and further guidance.

Design your data model for optimal performance of the most important and frequent
queries, following this basic procedure:

1. Analyze the Data Requirements of the Application

2. Create the Database Design for the Application

3. Implement the Database Application

3-1

4. Maintain the Database and Database Application

Analyze the Data Requirements of the Application
Analyze the data requirements of your application by following this basic procedure:

1. Collect data.

Interview people to learn about the business, the nature of the application, who
uses information and how, and the expectations of end users. Collect business
documents—personnel forms, invoice forms, order forms, and so on—to learn how
the business uses information.

2. Analyze the collected data.

This bottom-up process includes normalization of the data, entity-relationship
modeling, and transaction analysis.

3. Do a functional analysis of the data.

The end result of this top-down process is a data flow diagram that identifies the
main process blocks and how data flows into and out of them over its life time.

Create the Database Design for the Application
To create the database design, you must first create the logical design, and then
translate this logical design into a physical design.

Topics:

• Create the Logical Design

• Create the Physical Design

See Also:

Oracle Database Performance Tuning Guide for more information about
designing and developing for performance

Create the Logical Design
The logical design is a graphical representation of the database. The logical design
models both relationships between database objects and transaction activity of the
application. Effective logical design considers the requirements of different users who
must own, access, and update data.

To model relationships between database objects:

1. Translate the data requirements into data items (columns).

2. Group related columns into tables.

3. Map relationships among columns and tables, determining primary and foreign key
attributes for each table.

4. Normalize the tables to minimize redundancy and dependency.

To model transaction activity:

Chapter 3
Performance Strategies

3-2

• Know the most common transactions and those that users consider most
important.

• Trace transaction paths through the logical model.

• Prototype transactions in SQL and develop a volume table that indicates the size
of your database.

• Determine which tables are accessed by which users in which sequences, which
transactions read data, and which transactions write data.

• Determine whether the application mostly reads data or mostly writes data.

Create the Physical Design
The physical design is the implementation of the logical design on the physical
database.

Because the logical design integrates the information about tables and columns, the
relationships between and among tables, and all known transaction activity, you know
how the database stores data in tables and creates other structures, such as indexes.

Using this knowledge, create scripts that use SQL data definition language (DDL) to
create the schema definition, define the database objects in their required sequence,
define the storage requirements to specification, and so on.

Implement the Database Application
Implement the database application by following this basic procedure:

1. Implement the application in a test environment.

In a test environment that is as similar as possible to the production environment,
run the scripts that implement the physical database design. Load the data into the
physical schema. Select the programming language in which to develop the
application, develop the user interface, create and test the transactions, and so on.

2. Ensure that the application runs to specification.

Ensure that all components are exercised, the application is fully operational, and
the database features that the application uses are optimally configured.

3. Run benchmark tests on the application.

Benchmark tests determine whether the application performs as expected under
various workloads (including peak activity) with simulated real-time operations,
such as adding data and users. Ensure that the application scales well.

If the application does not meet the benchmarks, tune your SQL statements to
perform optimally, first with no workload and then with increasing workloads.

4. Implement the application in the production environment.

Chapter 3
Performance Strategies

3-3

See Also:

• Oracle Database SQL Tuning Guide for more information about SQL
tuning

• Oracle Database 2 Day + Performance Tuning Guide for more
information about SQL tuning

• Oracle Database Performance Tuning Guide for more information about
workload testing, modeling, and implementation

• Tools for Performance for information about tools for testing performance

• Benchmarking Your Application for information about benchmarking your
application

• Oracle Database Performance Tuning Guide for more information about
deploying new applications

Maintain the Database and Database Application
Maintaining the database, the database application, and the operating system are on-
going tasks for the database administrator, the application developer, and the system
administrator, respectively. The resources that the business allocates to maintenance
depend on the importance of the database and the database application, its growth
potential, the need to accommodate more users, and so on.

If you are responsible for maintenance, you must periodically monitor the system,
schedule maintenance periods, and inform users of upcoming maintenance periods. If
maintenance periods require down time, schedule them for periods with little or no
database activity.

Application maintenance includes fixing bugs, applying patches, and releasing
upgrades. Test maintenance work in a test environment to catch and resolve any
before implemented it on production systems.

Setting Performance Goals (Metrics)
Start your application development project by setting performance goals (metrics),
including:

• Expected number of application users

• Expected number of transactions per second at peak load times

• Expected query response times at peak load times

• Expected number of records for each table per unit of time (such as one day, one
month, or one year)

Use these metrics to create benchmark tests.

Benchmarking Your Application
Benchmarks are tests that measure aspects of application performance. Benchmark
results either validate application design or raise issues that you can resolve before
putting the application into production.

Chapter 3
Performance Strategies

3-4

Usually, you first run benchmarks on an isolated single-user system to minimize
interference from other factors. Results from such benchmarks provide a performance
baseline for the application. For meaningful benchmark results, you must test the
application in the environment where you expect it to run.

You can create small benchmarks that measure performance of the most important
transactions, compare different solutions to performance problems, and help resolve
design issues that could affect performance.

You must develop much larger, more complex benchmarks to measure application
performance during peak user loads, peak transaction loads, or both. Such
benchmarks are especially important if you expect the user or transaction load to
increase over time. You must budget and plan for such benchmarks.

After the application is in production, run benchmarks regularly in the production
environment and store their results in a database table. After each benchmark run,
compare the previous and new records for transactions that cannot afford performance
degradation. Using this method, you isolate issues as they arise. If you wait until users
complain about performance, you might be unable to determine when the problem
started.

See Also:

Oracle Database Performance Tuning Guide for more information about
benchmarking applications

Tools for Performance
Several tools report runtime performance information about your application.

Topics:

• DBMS_APPLICATION_INFO Package

• SQL Trace Facility (SQL_TRACE)

• EXPLAIN PLAN Statement

See Also:

Oracle Database Testing Guide for more information about tools for tuning
the database

DBMS_APPLICATION_INFO Package
Use the DBMS_APPLICATION_INFO package with the SQL Trace facility and Oracle
Trace and to record the names of executing modules or transactions in the database.
System administrators and performance tuning specialists can use this recorded
information to track the performance of individual modules and for debugging. System
administrators can also use this information to track resource use by module.

Chapter 3
Tools for Performance

3-5

When you register the application with the database, its name and actions are
recorded in the views V$SESSION and V$SQLAREA.

The DBMS_APPLICATION_INFO package provides subprograms that set the following
columns in the V$SESSION view:

• MODULE (name of application or package)

• ACTION (name of transaction or packaged subprogram)

• CLIENT_INFO (additional information about the client application, such as initial
bind variable values for the current session)

The DBMS_APPLICATION_INFO package also provides subprograms that return
information from the preceding V$SESSION columns for the current session.

You can also use the DBMS_APPLICATION_INFO package to track the progress of
commands that take many seconds to display results (such as those that create
indexes or update many rows). The DBMS_APPLICATION_INFO package provides a
subprogram that stores information about the command in the V$SESSION_LONGOPS
view. The V$SESSION_LONGOPS view shows when the command started, how far it has
progressed, and its estimated time to completion.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_APPLICATION_INFO package

• SQL Trace Facility (SQL_TRACE) for more information about
DBMS_APPLICATION_INFO package with the SQL Trace facility

• Oracle Database Reference for information about the V$SESSION view

• Oracle Database Reference for information about the
V$SESSION_LONGOPS view

• Oracle Database Reference for information about the V$SQLAREA view

SQL Trace Facility (SQL_TRACE)
Use the SQL Trace facility, SQL_TRACE, to trace all SQL statements and PL/SQL blocks
that your application executes. By enabling the SQL Trace facility for a single
statement or module and then disabling it after the statement or module runs, you can
get trace information for only that statement or module.

For best results, use the SQL Trace facility with TKPROF and the EXPLAIN PLAN
statement. The SQL Trace facility provides performance information for individual SQL
statements. TKPROF formats the trace file contents in a readable file. The EXPLAIN PLAN
statement shows the execution plans chosen by the optimizer and the execution plan
for the specified SQL statement if it were executed in the current session.

Use the SQL Trace facility while designing your application, so that you know what you
want to trace and how the application performs before putting it into production. If you
wait until performance problems develop in the production environment, your
application structure might make using the SQL Trace facility almost impossible.

Chapter 3
Tools for Performance

3-6

See Also:

• EXPLAIN PLAN Statement

• Oracle Database SQL Tuning Guide for more information about
SQL_TRACE and TKPROF

EXPLAIN PLAN Statement
When you run a SQL statement, the optimizer generates several possible execution
plans, calculates the cost of each plan, and uses the plan with the lowest cost.

Plan cost is based on statistics such as the data distribution and storage
characteristics of the tables, indexes, and partitions that the SQL statement accesses.
The cost of access paths and join orders is based on estimated use of computer
resources such as I/O, CPU, and memory.

When you use the statement EXPLAIN PLAN FOR statement before running statement,
the EXPLAIN PLAN statement stores the execution plan for statement in a plan table. By
querying the plan table, you can examine the execution plan that the optimizer chose.

The plan table presents the execution plan as a row source tree, which shows the
steps that Oracle Database uses to execute the SQL statement. The row source tree
shows the order in which the statement references tables, the join method for tables
affected by join operations, and data operations such as filtering, sorting, and
aggregation. The plan table also contains optimization information, such as the cost
and cardinality of each operation, partitioning information (such as the set of accessed
partitions), and parallel execution information (such as the distribution method of join
inputs). This information provides valuable insight into how and why the optimizer
chose the execution plan.

If you have information about the data that the optimizer does not have, you can give
the optimizer a hint, which might change the execution plan. If tests show that the hint
improves performance, keep the hint in your code.

Note:

You must regularly test code that contains hints, because changing database
conditions and query performance enhancements in subsequent releases
can significantly impact how hints affect performance.

The EXPLAIN PLAN statement shows only how Oracle Database would run the SQL
statement when the statement was explained. If the execution environment or explain
plan environment changes, the optimizer might use a different execution plan.
Therefore, Oracle recommends using SQL plan management to build a SQL plan
baseline, which is a set of accepted execution plans for a SQL statement.

First, use the EXPLAIN PLAN statement to see the statement's execution plan. Second,
test the execution plan to verify that it is optimal, considering the statement's actual
resource consumption. Finally, if the plan is optimal, use SQL plan management.

Chapter 3
Tools for Performance

3-7

See Also:

• Oracle Database SQL Tuning Guide for more information about the
query optimizer

• Oracle Database SQL Tuning Guide for more information about query
execution plans

• Oracle Database SQL Tuning Guide for more information about
influencing the optimizer with hints

• Oracle Database SQL Tuning Guide for more information about SQL
plan management

Monitoring Database Performance
Oracle Database provides advisors and powerful tools to help you manage and tune
your database.

Topics:

• Automatic Database Diagnostic Monitor (ADDM)

• Monitoring Real-Time Database Performance

• Responding to Performance-Related Alerts

• SQL Advisors and Memory Advisors

Automatic Database Diagnostic Monitor (ADDM)
Automatic Database Diagnostic Monitor (ADDM) is an advisor that analyzes data
captured in Automatic Workload Repository (AWR). ADDM and AWR are part of the
Oracle Diagnostic Pack.

ADDM determines where database performance problems might exist and where they
do not exist, and recommends corrections for the former.

ADDM performs its analysis after each AWR snapshot and stores the results in the
database. By default, the AWR snapshot interval is 1 hour and the ADDM results
retention period is 8 days.

Oracle Enterprise Manager Cloud Control (Cloud Control) displays ADDM Findings on
the Database home page. This AWR snapshot data confirms ADDM results, but lacks
the analysis and recommendations that ADDM provides. (AWR snapshot data is
similar to Statspack data that database administrators used for performance analysis.)

See Also:

Oracle Database 2 Day + Performance Tuning Guide for more information
about configuring ADDM, reviewing ADDM analysis, interpreting ADDM
findings, implementing ADDM recommendations, and viewing snapshot
statistics using Enterprise Manager

Chapter 3
Monitoring Database Performance

3-8

Monitoring Real-Time Database Performance
Using Oracle Enterprise Manager Cloud Control (Cloud Control), you can monitor real-
time database performance from the Performance page. From the Performance page,
you can access pages that identify performance issues and resolve those issues
without waiting for the next ADDM analysis.

See Also:

Oracle Database 2 Day + Performance Tuning Guide for more information
about monitoring real-time database performance

Responding to Performance-Related Alerts
The Database home page in Oracle Enterprise Manager Cloud Control (Cloud Control)
displays performance-related alerts generated by the database. You can improve
database performance by resolving problems indicated by these alerts. Oracle
Database by default enables alerts for tablespace usage, snapshot too old, recovery
area low on free space, and resumable session suspended. You can view metrics and
thresholds, set metric thresholds, respond to alerts, clear alerts, and set up direct alert
email notification. Using this built-in alerts infrastructure allows you to be notified for
these special performance-related alerts.

See Also:

• Oracle Database Administrator's Guide for more information about using
alerts to help you monitor and tune the database and managing alerts

• Oracle Database 2 Day + Performance Tuning Guide for more
information about monitoring performance alerts

SQL Advisors and Memory Advisors
Oracle Database provides SQL advisors and memory advisors that you can use to
help improve database performance.

SQL advisors include SQL Tuning Advisor and SQL Access Advisor, which are part of
the Oracle Database Tuning Pack.

SQL Tuning Advisor accepts one or more SQL statements as input and returns
specific tuning recommendations. Each recommendation includes a rationale and
expected benefit. Recommendations are based on object statistics, new index
creation, SQL statement restructuring, and SQL profile creation.

SQL Access Advisor enables you to optimize data access paths of SQL queries by
recommending a set of materialized views and view logs, indexes, and partitions for a
given SQL workload.

Chapter 3
Monitoring Database Performance

3-9

Memory advisors include Memory Advisor, SGA Advisor, Shared Pool Advisor, Buffer
Cache Advisor, and PGA Advisor. Memory advisors provide graphical analyses of total
memory target settings, SGA and PGA target settings, and SGA component size
settings. Use these analyses to tune database performance and to plan for possible
situations.

See Also:

• Oracle Database 2 Day DBA for more information about using advisors
to optimize database performance, including a brief description of each
performance advisor

• Oracle Database 2 Day DBA for more information about optimizing
memory usage with the memory advisors

• Oracle Database 2 Day + Performance Tuning Guide for more
information about tools for tuning the database

• Oracle Database SQL Tuning Guide for more information about SQL
Tuning Advisor

• Oracle Database SQL Tuning Guide for more information about SQL
Access Advisor

Testing for Performance
When testing an application for performance, follow these guidelines:

• Use Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning Advisor for
design validation.

ADDM determines where database performance problems might exist and
recommends corrections. For example, if ADDM finds high-load SQL statements,
then you can use SQL Tuning Advisor to analyze those statements and provide
tuning recommendations.

• Test with realistic data volumes and distributions.

The test database must contain data representative of the production system.
Tables must be fully populated and represent the data volume and cardinality
between tables found in the production system. All production indexes must be
built and the schema statistics must be populated correctly.

• Test with the optimizer mode to be used in production.

Because Oracle Database research and development focuses on the query
optimizer, Oracle re commands using the query optimizer in both the test and
production environments.

• Test a single user performance first.

Start testing with a single user on an idle or lightly-used database. If a single user
cannot achieve acceptable performance under ideal conditions, then multiple
users cannot achieve acceptable performance under real conditions.

• Get an execution plan for each SQL statement.

Chapter 3
Testing for Performance

3-10

Verify that the optimizer uses optimal execution plans, and that you understand
the relative cost of each SQL statement in terms of CPU time and physical I/O.
Identify heavily used transactions that would benefit most from tuning.

• Test with multiple users.

This testing is difficult to perform accurately because user workload and profiles
might not be fully quantified. However, you must test DML transactions in a
multiuser environment to ensure that there are no locking conflicts or serialization
problems.

• Test with a hardware configuration as close as possible to the production system.

Testing on a realistic system is particularly important for network latencies, I/O
subsystem bandwidth, and processor type and speed. Testing on an unrealistic
system can fail to reveal potential performance problems.

• Measure steady state performance.

Each benchmark run must have a ramp-up phase, where users connect to the
database and start using the application. This phase lets frequently cached data
be initialized into the cache and lets single-execution operations (such as parsing)
be completed before reaching the steady state condition. Likewise, each
benchmark run must end with a ramp-down period, where resources are freed
from the system and users exit the application and disconnect from the database.

See Also:

• Oracle Database Performance Tuning Guide for more information about
performance tuning, workload testing, modeling, and implementation

• Automatic Database Diagnostic Monitor (ADDM)and SQL Advisors and
Memory Advisors for more information about ADDM and SQL Tuning
Advisor respectively

• Oracle Database 2 Day + Performance Tuning Guide for more
information about tuning SQL statements using the SQL Tuning Advisor

Using Client Result Cache
Topics:

• About Client Result Cache

• Benefits of Client Result Cache

• Guidelines for Using Client Result Cache

• Client Result Cache Consistency

• Deployment-Time Settings for Client Result Cache

• Client Result Cache Statistics

• Validation of Client Result Cache

• Client Result Cache and Server Result Cache

• Client Result Cache Demo Files

Chapter 3
Using Client Result Cache

3-11

• Client Result Cache Compatibility with Previous Releases

About Client Result Cache
Applications that use Oracle Database drivers and adapters built on OCI libraries—
including C, C++, Java (JDBC-OCI), PHP, Python, Ruby, and Perl—can use client
result cache to improve response times of repetitive queries.

Client result cache enables client-side caching of SQL query (SELECT statement) result
sets in client memory. Because retrieving results from a client process is faster than
calling the database and rerunning the query, frequently run queries perform
significantly faster when their results are cached. Client result cache also reduces the
server CPU time that would have been used to process the query, thereby improving
server scalability.

OCI statements from multiple sessions can match the same cached result set in the
OCI process memory if they have similar schemas, SQL text, bind values, and session
settings. If not, the query execution is directed to the server.

Client result cache is transparent to applications, and its cache of result set data is
kept consistent with session or database changes that affect its result set data.

Applications that use client result cache benefit from faster performance for queries
that have cache hits. These applications use the cached result sets on clients or
middle tiers.

Client result cache works with OCI features such as the OCI session pool, the OCI
connection pool, DRCP, and OCI transparent application failover (TAF).

When using client result cache, you must also enable OCI statement caching or cache
statements at the application level.

See Also:

• Oracle Call Interface Programmer's Guide for information about
statement caching

• Oracle Database JDBC Developer's Guide for information about JDBC
statement caching

• Oracle Call Interface Programmer's Guide

• Oracle C++ Call Interface Programmer's Guide

• Oracle Database JDBC Developer's Guide

• Oracle Database Performance Tuning Guide

• Oracle Database Concepts

• SQL hints and RESULT_CACHE for clauses of ALTER TABLE and CREATE
TABLE

• RESULT_CACHE_MODE

• CLIENT_RESULT_CACHE_STAT$ view

Chapter 3
Using Client Result Cache

3-12

Benefits of Client Result Cache
The benefits of client result cache are:

• Because client result cache is on the client, a cache hit causes fetch
(OCIStmtFetch2()) and execute (OCIStmtExecute()) calls to be processed locally,
eliminating a server round trip. Eliminating server round trips reduces the use of
server resources (such as server CPU and server I/O), significantly improving
performance.

• Client result cache is transparent and consistent.

• Client result cache is available to every process, so multiple client sessions can
simultaneously use matching cached result sets.

• Client result cache minimizes the need for each OCI application to have its own
custom result cache.

• Client result cache transparently manages:

– Concurrent access by multiple threads, multiple statements, and multiple
sessions

– Invalidation of cached result sets that might have been affected by database
changes

– Refreshing of cached result sets

– Cache memory management

• Client result cache is automatically available to applications and drivers that use
OCI libraries, including JDBC OCI, ODP.NET, OCCI, Pro*C/C++, Pro*COBOL,
and ODBC.

• Client result cache uses OCI client memory, which might be less expensive than
server memory.

• A local cache on the client has better locality of reference for queries executed by
that client.

See Also:

OCIStmtExecute() and OCIStmtFetch2() in Oracle Call Interface
Programmer's Guide

Guidelines for Using Client Result Cache
You can enable or disable client result cache at three levels, which are, in order of
descending precedence:

1. Query

For a specific query, you can enable or disable client result cache with a SQL hint.
To add or change a SQL hint, you must change the application.

2. Table

Chapter 3
Using Client Result Cache

3-13

For all queries on a specific table, you can enable or disable client result cache
with a table annotation, without changing the application.

3. Session

For all queries in your database session, you can enable or disable client result
cache with a session parameter, without changing the application.

Higher-level settings take precedence over lower-level ones.

Oracle recommends enabling client result cache only for queries on read-only and
seldom-updated tables (tables that are rarely updated). That is, enable client result
cache:

• At query level only for queries of read-only and seldom-read tables

• At table level only for read-only and seldom-read tables

• At session level only when running applications that query only read-only or
seldom-read tables

Enabling client result cache for queries that have large result sets or many sets of bind
values can use a large amount of client result cache memory. Each set of bind values
(for the same SQL text) creates a different cached result set.

When client result cache is enabled for a query, its result sets can be cached on the
client, server, or both. Client result cache can be enabled even if the server result
cache (which is enabled by default) is disabled.

For OCI, the first OCIStmtExecute() call of every OCI statement handle call always
goes to the server even if there might be a valid cached result set. An
OCIStmtExecute() call must be made for each statement handle to be able to match a
cached result set. Oracle recommends that applications either have their own
statement caching for OCI statement handles or use OCI statement caching so that
OCIStmtPrepare2() can return an OCI statement handle that has been executed once.
Multiple OCI statement handles, from the same or different sessions, can
simultaneously fetch data from the same cached result set.

For OCI, for a result set to be cached, the OCIStmtExecute() or OCIStmtFetch2() calls
that transparently create this cached result set must fetch rows until ORA-01403 (No
Data Found) is returned. Subsequent OCIStmtExecute() or OCIStmtFetch2() calls that
match a locally cached result set need not fetch to completion.

See Also:

• SQL Hints

• Table Annotation

• Session Parameter

• Result Cache Mode Use Cases

• OCIStmtExecute()

• OCIStmtPrepare2()

• OCIStmtFetch2()

Chapter 3
Using Client Result Cache

3-14

Topics:

• SQL Hints

• Table Annotation

• Session Parameter

• Effective Table Result Cache Mode

• Displaying Effective Table Result Cache Mode

• Result Cache Mode Use Cases

• Queries Never Result Cached in Client Result Cache

SQL Hints
The SQL hint RESULT_CACHE or NO_RESULT_CACHE applies to a single query, for which it
enables or disables client result cache. These hints take precedence over both table
annotations and the RESULT_CACHE_MODE server initialization parameter.

For OCI, the SQL hint /*+ result_cache */ or /*+ no_result_cache */ must be set
in SQL text passed to OCIStmtPrepare() and OCIStmtPrepare2() calls.

For JDBC OCI, the SQL hint /*+ result_cache */ or /*+ no_result_cache */ is
included in the query (SELECT statement) as part of the query string.

See Also:

• Oracle Database SQL Language Reference for general information
about SQL hints

• OCIStmtPrepare(), OCIStmtPrepare2() in Oracle Call Interface
Programmer's Guide

• Oracle Database JDBC Developer's Guide for information about SQL
hints in JDBC

Table Annotation
A table annotation enables or disables client result cache for all queries on a specific
table. A table annotation takes precedence over the RESULT_CACHE_MODE server
initialization parameter, but the SQL hints /*+ RESULT_CACHE */ and /*
+ NO_RESULT_CACHE */ take precedence over a table annotation.

You annotate a table with either the CREATE TABLE or ALTER TABLE statement, using the
RESULT_CACHE clause. To enable client result cache, specify RESULT_CACHE (MODE
FORCE); to disable it, use RESULT_CACHE (MODE DEFAULT).

Table 3-1 summarizes the table annotation result cache modes.

Chapter 3
Using Client Result Cache

3-15

Table 3-1 Table Annotation Result Cache Modes

Mode Description

DEFAULT The default value. Result caching is not determined at the table level. You can
use this value to clear any table annotations.

FORCE If all table names in the query have this setting, then the query result is always
considered for caching unless the NO_RESULT_CACHE hint is specified for the
query. If one or more tables named in the query are set to DEFAULT, then the
effective table annotation for that query is DEFAULT.

See Also:

• Oracle Database SQL Language Reference for more information about
RESULT_CACHE clause of ALTER TABLE and CREATE TABLE

• Oracle Database JDBC Developer's Guide for information about table
annotations in JDBC

Session Parameter
The session parameter RESULT_CACHE_MODE enables or disables client result cache for
all queries for your database session. RESULT_CACHE_MODE can be overruled for specific
tables by table annotations and for specific queries by SQL hints.

You can set RESULT_CACHE_MODE in either the server parameter file (init.ora) or the
ALTER SESSION or ALTER SYSTEM statement. To enable client result cache, set
RESULT_CACHE_MODE to FORCE; to disable it, set RESULT_CACHE_MODE to MANUAL.

See Also:

Oracle Database Reference for more information about RESULT_CACHE_MODE

Effective Table Result Cache Mode
The effective result cache mode for a table depends on both the table annotation
result cache mode and the RESULT_CACHE_MODE session parameter setting, as
Table 3-2 shows.

Table 3-2 Effective Result Cache Table Mode

Table Annotation Result Cache
Mode

RESULT_CACHE_MODE =
MANUAL

RESULT_CACHE_MODE =
FORCE

FORCE FORCE FORCE

DEFAULT MANUAL FORCE

Chapter 3
Using Client Result Cache

3-16

When the effective mode is FORCE, every query is considered for result caching unless
the query has the NO_RESULT_CACHE hint, but actual result caching depends on internal
restrictions for client and server caches, query potential for reuse, and space available
in the client result cache.

The effective table result cache mode FORCE is similar to the SQL hint RESULT_CACHE in
that both are only requests.

Displaying Effective Table Result Cache Mode
To display the result cache mode for one or more tables, see the RESULT_CACHE
column of a *_TABLES static data dictionary view. For example:

• This query displays the result cache mode for the table T:

SELECT result_cache FROM all_tables WHERE table_name = 'T'

• This query displays the result cache mode for all relational tables that you own:

SELECT table_name, result_cache FROM user_tables

If the result cache mode is DEFAULT, then the table is not annotated.

If the result cache mode is FORCE, then the table was annotated with the RESULT_CACHE
(MODE FORCE) clause of the CREATE TABLE or ALTER TABLE statement.

If the result cache mode is MANUAL, then the session parameter RESULT_CACHE_MODE
was set to MANUAL in either the server parameter file (init.ora) or an ALTER SESSION or
ALTER SYSTEM statement.

See Also:

Oracle Database Reference for more information about *_TABLES static data
dictionary views

Result Cache Mode Use Cases
The following examples show when SQL hints take precedence over table annotations
and the RESULT_CACHE_MODE session parameter.

• If the emp table is annotated with ALTER TABLE emp RESULT_CACHE (MODE FORCE) and
the session parameter has its default value, MANUAL, then queries on emp are
considered for result caching.

However, results of the query SELECT /*+ no_result_cache */ empno FROM emp
are not cached, because the SQL hint takes precedence over the table annotation
and session parameter.

• If the emp table is not annotated, or is annotated with ALTER TABLE emp
RESULT_CACHE (MODE DEFAULT), and the session parameter has its default value,
MANUAL, then queries on emp are not result cached.

However, results of the query SELECT /*+ result_cache */ * FROM emp are
considered for caching, because the SQL hint takes precedence over the table
annotation and session parameter.

Chapter 3
Using Client Result Cache

3-17

• If the session parameter RESULT_CACHE_MODE is set to FORCE, and no table
annotations or SQL hints override it, then all queries on all tables are considered
for query caching.

Queries Never Result Cached in Client Result Cache
Results of the following queries are never cached in client result cache (even if the
queries include the RESULT_CACHE hint):

• Queries that contain any of the following:

– Remote object

– Complex type in the select list

– PL/SQL function

• Snapshot-based queries

• Flashback queries

• Queries executed in serializable, read-only transactions

• Queries of tables on which virtual private database (VPD) policies are enabled

Such queries might be cached on the database if the server result cache feature is
enabled—for more information, see Oracle Database Concepts.

Client Result Cache Consistency
Client result cache transparently keeps its result sets consistent with any database or
session state changes that affect them.

When a transaction modifies the data or metadata of any database object used to
construct a cached result set, invalidation of that cached result set is sent to the client
on its next round trip to the server. If the application does no database calls for a
period of time, then the client result cache lag setting forces the next
OCIStmtExecute() call to make a database call to check for such invalidations.

Cached result sets relevant to database invalidations are immediately invalidated. Any
OCI statement handles that are fetching from cached result sets when their
invalidations are received can continue fetching from them, but no subsequent
OCIStmtExecute() calls can match them.

The next OCIStmtExecute() call by the process might cache the new result set if the
client result cash has space available. Client result cache periodically reclaims unused
memory.

If a session has a transaction open, OCI ensures that its queries that reference
database objects changed in this transaction go to the server instead of client result
cache.

This consistency mechanism ensures that client result cache is always close to
committed database changes. If the application has relatively frequent calls involving
database round trips due to queries that cannot be cached (DMLs, OCILob calls, and
so on), then these calls transparently keep client result cache consistent with database
changes.

Sometimes, when a table is modified, a trigger causes another table to be modified.
Client result cache is sensitive to such changes.

Chapter 3
Using Client Result Cache

3-18

When the session state is altered—for example, when NLS session parameters are
modified—query results can change. Client result cache is sensitive to such changes
and for subsequent query executions, returns the correct result set. However, client
result cache keeps the current cached result sets (and does not invalidate them) so
that other sessions in the process can match them. If other processes do not match
them, these result sets are "Ruled" after a while. Result sets that correspond to the
new session state are cached.

For an application, keeping track of database and session state changes that affect
query result sets can be cumbersome and error-prone, but client result cache
transparently keeps its result sets consistent with such changes.

Client result cache does not require thread support in the client.

See Also:

OCIStmtExecute() in Oracle Call Interface Programmer's Guide

Deployment-Time Settings for Client Result Cache
When you deploy your application, you can set the following for client result cache
(without changing the application):

• Server initialization parameters

• Client configuration parameters

• Table annotations

• RESULT_CACHE_MODE session parameter

See Also:

• Server Initialization Parameters

• Client Configuration Parameters

• Table Annotation

• Session Parameter

• Client-Side Deployment Parameters

Server Initialization Parameters
The server initialization parameters to set for client result cache when you deploy your
application are:

• COMPATIBLE

• CLIENT_RESULT_CACHE_SIZE

• CLIENT_RESULT_CACHE_LAG

Chapter 3
Using Client Result Cache

3-19

COMPATIBLE
Specifies the release with which Oracle Database must maintain compatibility. To
enable client result cache, COMPATIBLE must be at least 11.0.0.0. To enable client
result cache for views, COMPATIBLE must be at least 11.2.0.0.

CLIENT_RESULT_CACHE_SIZE
Specifies the maximum size of the client result set cache for each OCI client process.
The default value, 0, means that client result cache is disabled. To enable client result
cache, set CLIENT_RESULT_CACHE_SIZE to at least 32768 bytes (32 kilobytes (KB)).

If client result cache is enabled on the server by CLIENT_RESULT_CACHE_SIZE, then its
value can be overridden by the sqlnet.ora configuration parameter
OCI_RESULT_CACHE_MAX_SIZE. If client result cache is disabled on the server, then
OCI_RESULT_CACHE_MAX_SIZE is ignored and client result cache cannot be enabled on
the client.

Oracle recommends either enabling client result cache for all Oracle Real Application
Clusters (Oracle RAC) nodes or disabling client result cache for all Oracle RAC nodes.
Otherwise, within a client process, some sessions might have caching enabled and
other sessions might have caching disabled (thereby getting the latest results from the
server). This combination might present an inconsistent view of the database to the
application.

CLIENT_RESULT_CACHE_SIZE is a static parameter. Therefore, if you use an ALTER
SYSTEM statement to change the value of CLIENT_RESULT_CACHE_SIZE, you must
include the SCOPE = SPFILE clause and restart the database before the change will take
effect.

The maximum value for CLIENT_RESULT_CACHE_SIZE is the least of these values:

• Available client memory

• ((Possible number of result sets to be cached) * (average size of a row in a result
set) * (average number of rows in a result set))

• 2 gigabytes (GB)

If you specify a value greater than 2 GB, then the value is 2 GB.

Note:

Do not set the CLIENT_RESULT_CACHE_SIZE parameter during database
creation, because that can cause errors.

CLIENT_RESULT_CACHE_LAG
Specifies the maximum time in milliseconds that client result cache can lag behind
changes in the database that affect its result sets. The default is 3000 milliseconds.

CLIENT_RESULT_CACHE_LAG is a static parameter. Therefore, if you use an ALTER
SYSTEM statement to change the value of CLIENT_RESULT_CACHE_LAG, you must include
the SCOPE = SPFILE clause and restart the database before the change will take effect.

Chapter 3
Using Client Result Cache

3-20

Client Configuration Parameters
Client configuration parameters are optional, but if set, they override the equivalent
parameters in the server initialization file init.ora.

Client configuration parameters can be set in the oraaccess.xml file, the sqlnet.ora
file, or both. When equivalent parameters are set both files, the oraaccess.xml setting
takes precedence over the corresponding sqlnet.ora setting. When a parameter is
not set in oraaccess.xml, the process searches for its setting in sqlnet.ora.

When a client configuration parameter can be set in both oraaccess.xml and
sqlnet.ora, Oracle recommends setting the parameter in oraaccess.xml. However,
for a network configuration, sqlnet.ora is the primary file, because oraaccess.xml
does not support network level settings.

Table 3-3 describes the equivalent oraaccess.xml and sqlnet.ora client configuration
parameters.

Table 3-3 Client Configuration Parameters (Optional)

oraacess.xml
Parameter

sqlnet.ora Parameter Description

max_size OCI_RESULT_CACHE_MAX_SIZE Maximum size in bytes for the
client result cache for each
process.

Specifying a size less than 32768
in sqlnet.ora disables client
result cache for client processes
the read sqlnet.ora.

max_rset_size OCI_RESULT_CACHE_MAX_RSET_SIZE Maximum size of any result set in
bytes in the client result cache for
each process.

max_rset_rows OCI_RESULT_CACHE_MAX_RSET_ROWS Maximum size of any result set in
rows in the client result cache for
each process.

The result cache lag cannot be set on the client.

Related Topics

• Oracle Call Interface Programmer's Guide

Client Result Cache Statistics
On round trips to the server from the OCI client, OCI periodically sends client result
cache statistics to the server. These statistics, shown in the
CLIENT_RESULT_CACHE_STATS$ view, include number of result sets successfully
cached, number of cache hits, and number of cached result sets invalidated. The
number of cache misses for queries is at least equal to the number of Create Counts
in client result cache statistics. More precisely, the cache miss count equals the
number of server executions in server Automatic Workload Repository (AWR) reports.

Chapter 3
Using Client Result Cache

3-21

See Also:

• Oracle Database Reference for information about the
CLIENT_RESULT_CACHE_STAT$ view

• Oracle Database Performance Tuning Guide to find the client process
IDs and session IDs for the sessions doing client result caching

Validation of Client Result Cache
Some ways to validate client result cache are:

• Measure Execution Times

• Query V$MYSTAT

• Query V$SQLAREA

Measure Execution Times
First, measure the execution time of the queries without RESULT_CACHE hints. Then add
RESULT_CACHE hints to the queries and measure the execution time again. The
difference in execution times is your performance gain.

Query V$MYSTAT

Note:

To query the V$MYSTAT view, you must have the SELECT privilege on it.

1. Run this query 5 times:

SELECT count(*) FROM table_name

2. Query V$MYSTAT:

SELECT * FROM V$MYSTAT

3. Run this query 5 times:

SELECT /*+ result_cache */ count(*) FROM table_name

Because the query results are cached, this step requires fewer round trips
between client and server than step 1 did.

4. Query V$MYSTAT:

SELECT * FROM V$MYSTAT

Compare the values of the columns for this query to those for the query in step 2.

Instead of adding the hint to the query in step 3, you can add the table annotation
RESULT_CACHE (MODE FORCE) to table_name at step 3 and then run the query in step 1
a few times.

Chapter 3
Using Client Result Cache

3-22

Query V$SQLAREA

Note:

To query the V$SQLAREA view, you must have the SELECT privilege on it.

1. Run this query 5 times:

SELECT count(*) FROM table_name

2. Query V$SQLAREA:

SELECT executions, fetches, parse_calls FROM V$SQLAREA
 WHERE sql_text LIKE '% FROM table_name'

3. Run this query 5 times:

SELECT /*+ result_cache */ count(*) FROM table_name

4. Query V$SQLAREA:

SELECT executions, fetches, parse_calls FROM V$SQLAREA
 WHERE sql_text LIKE '% FROM table_name'

Compare the values of the columns executions, fetches, and parse_calls for
this query to those for the query in step 2. The difference in execution times is
your performance gain.

Instead of adding the hint to the query in step 3, you can add the table annotation
RESULT_CACHE (MODE FORCE) to table_name at step step 3 and then run the query in
step step 1 a few times.

Client Result Cache and Server Result Cache
Client result cache is different from server result cache. Client result cache caches
results of top-level SQL queries in OCI client memory, whereas server result cache
caches result sets and query fragments in server SGA memory.

You can enable client result cache independently of server result cache, though they
share the result cache SQL hints, table annotations, and session parameter
RESULT_CACHE_MODE. Table 3-4 shows the result cache association for result cache
parameters, the PL/SQL package DBMS_RESULT_CACHE, and result cache views.

See Also:

Oracle Database Concepts

Chapter 3
Using Client Result Cache

3-23

Table 3-4 Setting Client Result Cache and Server Result Cache

Parameters, PL/SQL Package, and Database Views Result Cache
Association

CLIENT_RESULT_CACHE_* parameters:

• CLIENT_RESULT_CACHE_SIZE
• CLIENT_RESULT_CACHE_LAG

client result cache

SQL hints:

• RESULT_CACHE
• NO_RESULT_CACHE

client result cache,
server result cache

sqlnet.ora OCI_RESULT_CACHE* parameters:

• OCI_RESULT_CACHE_MAX_SIZE
• OCI_RESULT_CACHE_MAX_RSET_SIZE
• OCI_RESULT_CACHE_MAX_RSET_ROWS

client result cache

CLIENT_RESULT_CACHE_STATS$ view client result cache

RESULT_CACHE_MODE parameter client result cache,
server result cache

All other RESULT_CACHE_* parameters (for example,
RESULT_CACHE_MAX_SIZE)

server result cache

DBMS_RESULT_CACHE package server result cache

V$RESULT_CACHE_* and GV$RESULT_CACHE_* views (for example,
V$RESULT_CACHE_STATISTICS and GV$RESULT_CACHE_MEMORY)

server result cache

CREATE TABLE annotation client result cache,
server result cache

ALTER TABLE annotation client result cache,
server result cache

Client Result Cache Demo Files
For OCI applications, demonstration files for client result cache are cdemoqc.sql,
cdemoqc.c, and cdemoqc2.c (in the demo directory for your operating system).

Client Result Cache Compatibility with Previous Releases
To use client result cache, applications must be relinked with Oracle Database 11g
Release 1 (11.1) or later client libraries and be connected to an Oracle Database 11g
Release 1 (11.1) or later database server. Client result cache is available to all OCI
applications, including JDBC Type II driver, OCCI, Pro*C/C++, and ODP.NET. OCI
drivers automatically pass the SQL hint RESULT_CACHE to OCIStmtPrepare() and
OCIStmtPrepare2() calls.

See Also:

OCIStmtPrepare(), OCIStmtPrepare2() in Oracle Call Interface
Programmer's Guide

Chapter 3
Using Client Result Cache

3-24

Statement Caching
Statement caching is a feature that establishes and manages a cache of statements
for each session. In the server, statement caching lets cursors be used without
reparsing the statement, eliminating repetitive statement parsing. You can use
statement caching with both connection pooling and session pooling, thereby
improving performance and scalability. You can also use statement caching without
session pooling in OCI and without connection pooling in OCCI, in the JDBC interface,
and in the ODP.NET interface. You can also use dynamic SQL statement caching in
Oracle precompiler applications that rely on dynamic SQL statements, such as
Pro*C/C++ and ProCOBOL.

In the JDBC interface, you can enable and disable implicit and explicit statement
caching independently of the other—you can use either, neither, or both. Implicit and
explicit statement caching share a single cache for each connection. You can also
disable implicit caching for a particular statement.

See Also:

• Oracle Call Interface Programmer's Guide for more information and
guidelines about using statement caching in OCI

• Oracle C++ Call Interface Programmer's Guide for more information
about statement caching in OCCI

• Oracle Database JDBC Developer's Guide for more information about
using statement caching

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows
for more information about using statement caching in ODP.NET
applications

• Oracle Database Programmer's Guide to the Oracle Precompilers,
Pro*C/C++ Programmer's Guide, and Pro*COBOL Programmer's Guide
for more information about using dynamic SQL statement caching in
precompiler applications that rely on dynamic SQL statements

OCI Client Statement Cache Auto-Tuning
OCI client statement cache auto-tuning optimizes OCI client session features of
middle-tier applications to improve performance without changing your OCI
application.

Without auto-tuning, the OCI client statement cache size setting can become
suboptimal—for example, when a changing workload causes a different working set of
SQL statements. If the size is too low, it causes excess network activity and more
parses at the server. If the size is too high, it causes excess memory use. It can be
difficult for the client application to keep the cache size optimal.

Auto-tuning solves this potential performance problem by automatically and
periodically reconfiguring the OCI statement cache size.

Chapter 3
Statement Caching

3-25

Auto-tuning is achieved by providing a deployment-time setting that provides an option
to reconfigure OCI statement caching. These settings are provided as connect-string-
based deployment settings in a client oraaccess.xml file that overrides programmatic
settings to the user configuration of OCI features.

Middle-tier application developers and database administrators (DBAs) can expect
reduced time and effort in diagnosing and fixing performance problems with each part
of their system using the auto-tuning OCI client statement caching parameter setting.

See Also:

• Oracle Call Interface Programmer's Guide

Client-Side Deployment Parameters
Beginning with Oracle Database 12c Release 1 (12.1.0.1), OCI deployment
parameters are available in a new configuration file (oraaccess.xml).

See Also:

Oracle Call Interface Programmer's Guide.

Using Query Change Notification
Continuous Query Notification (CQN) lets client applications register queries with the
database and receive notifications of DML or DDL changes on the objects (object
change notification (OCN)) or result set changes associated with the queries (query
result change notification (QRCN)). The database publishes notifications when the
DML or DDL transaction commits.

A CQN registration associates one or more queries with a notification type (OCN or
QRCN) and a notification handler. To create a CQN registration, you can use:

• PL/SQL interface

When you use the PL/SQL interface, the notification handler is a server-side
PL/SQL stored procedure. PL/SQL registration can be used by nonthreaded
languages and systems, such as PHP. For PHP, the PL/SQL listener invokes a
PHP callback when it receives the database notification.

• Oracle Call Interface (OCI)

When you use OCI, the notification handler is a client-side C callback procedure.

• Java Database Connectivity (JDBC) interface

When you use the JDBC interface, the JDBC driver creates a registration on the
server. The JDBC driver launches a new thread that listens for notifications from
the server (through a dedicated channel), converts them to Java events, and then
notifies all listeners registered with this registration.

Chapter 3
Client-Side Deployment Parameters

3-26

See Also:

• Using Continuous Query Notification (CQN) for a complete discussion of
the concepts of this feature and how to use the PL/SQL and OCI
interfaces to create CQN registrations

• Oracle Database JDBC Developer's Guide for information about using
JDBC for CQN registration on the server

Using Database Resident Connection Pool
Database Resident Connection Pool (DRCP) provides a connection pool in the
database server for typical web application usage scenarios where the application
acquires a database connection, works on the database for a relatively short time, and
then releases the connection.

Topics:

• About Database Resident Connection Pool

• Configuring DRCP

• Sharing Proxy Sessions

• Using JDBC with DRCP

• Using OCI Session Pool APIs with DRCP

• Session Purity and Connection Class

• Starting Database Resident Connection Pool

• Enabling DRCP

• Benefiting from the Scalability of DRCP in an OCI Application

• Benefiting from the Scalability of DRCP in a Java Application

• Best Practices for Using DRCP

• Compatibility and Migration

• DRCP Restrictions

• Using DRCP with Custom Pools

• Explicitly Marking Sessions Stateful or Stateless

• Using DRCP with Oracle Real Application Clusters

• Using DRCP with Pluggable Databases

• DRCP with Data Guard

About Database Resident Connection Pool
DRCP pools server processes, each of which is the equivalent of a dedicated server
process and database session combined; these are called pooled servers. Pooled
servers can be shared by multiple applications running on the same or several hosts.

Chapter 3
Using Database Resident Connection Pool

3-27

A connection broker process manages the pooled servers at the database instance
level.

DRCP is a configurable feature, chosen at application runtime. It allows concurrent
use of traditional and DRCP-based connection architectures.

DRCP is especially useful for architectures with multiprocess single-threaded
application servers (such as PHP and Apache) that cannot do middle-tier connection
pooling. DRCP is also very useful in large-scale web deployments where hundreds or
thousands of web servers or middle-tiers need database access and client-side pools
(even in multithreaded systems and languages such as Java). Using DRCP, the
database can scale to tens of thousands of simultaneous connections. If your
database web application must scale to large numbers of connections, DRCP is your
connection pooling solution.

DRCP complements middle-tier connection pools that share connections between
threads in a middle-tier process. DRCP also enables sharing of database connections
across middle-tier processes on the same middle-tier host, across multiple middle-tier
hosts, and across multiple middle-tiers (web servers, containers) that accommodate
applications written in different languages. This sharing significantly reduces the
database resources needed to support a large number of client connections, thereby
reducing the database tier memory footprint and increasing the scalability of both
middle and database tiers. Having a pool of readily available servers also reduces the
cost of creating and releasing client connections.

Clients get connections from the DRCP, which is connected to an Oracle Database
background process called the connection broker. The connection broker implements
the pool functionality and multiplexes pooled servers among persistent inbound
connections from the client.

When a client needs database access, the connection broker gets a server process
from the pool and gives it to the client. The client is then directly connected to the
server. After the server executes the client request, the server process returns to the
pool and the connection from the client is restored to the connection broker as a
persistent inbound connection from the client process. In DRCP, releasing resources
leaves the session intact, but no longer associated with a connection (server process).
Because this session stores its user global area (UGA) in the program global area
(PGA), not in the system global area (SGA), a client can reestablish a connection
transparently upon detecting activity.

DRCP is typically recommended for applications with a large number of connections.
Shared servers are recommended for applications with a medium number of
connections and dedicated sessions are recommended for applications with a small
number of connections. The threshold sizes depend on the amount of memory
available on the database host.

DRCP has these advantages:

• DRCP enables resource sharing among multiple client applications and middle-tier
application servers.

• DRCP improves scalability of databases and applications by reducing resource
usage on the database host.

Compared to client-side connection pooling and shared servers:

• DRCP provides a direct connection to the database server, furnished by client-side
connection pooling (like client-side connection pooling but unlike shared servers).

Chapter 3
Using Database Resident Connection Pool

3-28

• DRCP can pool database servers (like client-side connection pooling and shared
servers).

• DRCP can pool sessions (like client-side connection pooling but unlike shared
servers).

• DRCP can share connections across middle-tier boundaries (unlike client-side
connection pooling).

DRCP supports shared connections in both PDB and non-PDB environments.

DRCP offers a unique connection pooling solution that addresses scalability
requirements in environments requiring large numbers of connections with minimal
database resource usage.

See Also:

• Oracle Database Concepts for details about DRCP architecture

• Oracle Database Administrator’s Guide for more information about
switch service enhancements.

Configuring DRCP
DRCP is installed by default, but the DBA must start, and configure it using the
DBMS_CONNECTION_POOL package. Configuration options include minimum and
maximum number of pooled servers, number of connection brokers, maximum number
of connections that each connection broker can handle, and so on.

Starting with Oracle Database 12c Release 2 (12.2.0.1) , the new
MAX_TXN_THINK_TIME parameter specifies the maximum time of inactivity allowed
before termination for a client with an open transaction. This can be set to allow more
time than the client that does not have transactions (specified by the MAX_THINK_TIME
parameter value). This allows efficient pool reuse, while giving incomplete transactions
a longer time to conclude.

OCI session pool APIs have been extended to interoperate with DRCP.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details
about the DBMS_CONNECTION_POOL package

• Oracle Database Administrator's Guide for more information about
Configuring the Connection Pool for Database Resident Connection
Pooling

• Oracle Call Interface Programmer's Guide

• Oracle Database JDBC Developer's Guide

• Oracle Universal Connection Pool for JDBC Developer's Guide

Chapter 3
Using Database Resident Connection Pool

3-29

Sharing Proxy Sessions
Starting with Oracle Database 12c Release 2 (12.2.0.1), proxy sessions in DRCP are
shared among applications that are connected to the same schema.

Using JDBC with DRCP
Beginning with Oracle Database 12c Release 1 (12.1.0.1), Oracle JDBC drivers
support DRCP. The DRCP implementation creates a pool on the server side, which is
shared across multiple client pools. These client pools use Universal Connection Pool
for JDBC. Using Universal Connection Pool significantly lowers memory consumption
(because of the reduced number of server processes on the server) and increases the
scalability of the Database server.

To track check-in and checkout operations of server-side connections, Java
applications must use a client-side pool such as Universal Connection Pool for JDBC
or a third-party Java connection pool.

To enable DRCP on the client side, you must do the following:

• Pass a non-NULL, nonempty String value to the connection property
oracle.jdbc.DRCPConnectionClass.

• Pass (SERVER=POOLED) in the long connection string.

You can also specify (SERVER=POOLED) in the short URL form as follows:

jdbc:oracle:thin:@//<host>:<port>/<service_name>[:POOLED]

For example:

jdbc:oracle:thin:@//localhost:5221/orcl:POOLED

By setting the same DRCP Connection class name for all the pooled server processes
on the server using the connection property oracle.jdbc.DRCPConnectionClass, you
can share pooled server processes on the server across multiple connection pools.

In DRCP, you can also apply a tag to a given connection and easily retrieve that
tagged connection later.

See Also:

• Starting Database Resident Connection Pool

• Oracle Database JDBC Developer's Guide for more information about
APIs that are used to control custom connection pool implementations

• Oracle Database JDBC Developer's Guide for more information about
enabling DRCP on client side

Using OCI Session Pool APIs with DRCP
The OCI session pool APIs OCISessionPoolCreate(), OCISessionGet(), and
OCISessionRelease() interoperate with DRCP.

Chapter 3
Using Database Resident Connection Pool

3-30

An OCI application initializes the environment for the OCI session pool for DRCP by
invoking OCISessionPoolCreate(), which is described in Oracle Call Interface
Programmer's Guide.

To get a session from the OCI session pool for DRCP, an OCI application invokes
OCISessionGet(), specifying OCI_SESSGET_SPOOL for the mode parameter.

To release a session to the OCI session pool for DRCP, an OCI application invokes
OCISessionRelease().

To improve performance, the OCI session pool can transparently cache connections to
the connection broker. An OCI application can reuse the sessions within which the
application leaves sessions of a similar state either by invoking OCISessionGet() with
the authInfop parameter set to OCI_ATTR_CONNECTION_CLASS and specifying a
connection class name or by using the OCIAuthInfo handle before invoking
OCISessionGet().

DRCP also supports features offered by the traditional client-side OCI session pool,
such as tagging, statement caching, and TAF.

See Also:

• Oracle Call Interface Programmer's Guide for information about
OCISessionGet()

• Oracle Call Interface Programmer's Guide for more information about
OCISessionRelease()

• Session Purity and Connection Class for more information about
improving the performance of DRCP

Session Purity and Connection Class
In Oracle Database 11g Release 1 (11.1), OCI introduced two settings that can be
specified when obtaining a session using OCISessionGet(): session purity and
connection class.

Topics:

• Session Purity

• Connection Class

• Example: Setting the Connection Class as HRMS

• Example: Setting the Connection Class as RECMS

• Session Purity and Connection Class Defaults

Session Purity
Session purity specifies whether an OCI application can reuse a pooled session
(OCI_SESSGET_PURITY_SELF) or must use a new session (OCI_SESSGET_PURITY_NEW).

The application can set session purity either on the OCIAuthInfo handle before
invoking OCISessionGet() or in the mode parameter when invoking OCISessionGet().

Chapter 3
Using Database Resident Connection Pool

3-31

See Also:

• Example 3-1 for more information about how a connection pooling
application sets up a new session

Example 3-1 Setting Session Purity for New Session

/* OCIAttrSet method */
ub4 purity = OCI_ATTR_PURITY_NEW;
OCIAttrSet(authInfop, OCI_HTYPE_AUTHINFO, &purity, (ub4)sizeof(purity)
OCI_ATTR_PURITY, errhp);

/* OCISessionGet mode method */
OCISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
NULL, NULL, NULL, OCI_SESSGET_SPOOL);
/* poolName is the name returned by OCISessionPoolCreate() */

Note:

When reusing a pooled session, the NLS attributes of the server override
those of the client.

For example, if the client sets NLS_LANG to french_france.us7ascii and
then is assigned a German session from the pool, the client session
becomes German.

To avoid this problem, use connection classes to restrict sharing.

Connection Class
Connection class defines a logical name for the type of connection that an OCI
application needs. When a pooled session has a connection class, OCI ensures that
the session is not shared outside of that connection class.

For example, a connection class can prevent the following from sharing pooled
sessions:

• Different users

(A session first created for user HR is assigned only to subsequent requests by
user HR.)

• Different sessions of the same user

• Different applications being run by the same user

(Each application can have its own connection class.)

To set the connection class, you can use the OCI_ATTR_CONNECTION_CLASS attribute of
the OCIAuthInfo handle. A connection class name is a string of at most 1024 bytes,
and it cannot include an asterisk (*).

Chapter 3
Using Database Resident Connection Pool

3-32

Example: Setting the Connection Class as HRMS
You can use the OCISessionPoolCreate API to set a connection class as HRMS.

Example 3-2 specifies that an HRMS application needs sessions with the connection
class HRMS.

Example 3-2 Setting the Connection Class as HRMS

OCISessionPoolCreate (envhp, errhp, spoolhp, &poolName, &poolNameLen, "HRDB",
 strlen("HRDB"), 0, 10, 1, "HR", strlen("HR"), "HR", strlen("HR"),
 OCI_SPC_HOMOGENEOUS);

OCIAttrSet (authInfop, OCI_HTYPE_AUTHINFO, "HRMS", strlen ("HRMS"),
 OCI_ATTR_CONNECTION_CLASS, errhp);
OCISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
 NULL, NULL, NULL, OCI_SESSGET_SPOOL);

Example: Setting the Connection Class as RECMS
You can use the OCISessionPoolCreate API to create a connection class as RECMS.

Example 3-3 specifies that a recruitment application needs sessions with the
connection class RECMS.

Example 3-3 Setting the Connection Class as RECMS

OCISessionPoolCreate (envhp, errhp, spoolhp, &poolName, &poolNameLen, "HRDB",
 strlen("HRDB"), 0, 10, 1, "HR", strlen("HR"), "HR", strlen("HR"),
 OCI_SPC_HOMOGENEOUS);

OCIAttrSet (authInfop, OCI_HTYPE_AUTHINFO, "RECMS", strlen("RECMS"),
 OCI_ATTR_CONNECTION_CLASS, errhp);
OCISessionGet (envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
 NULL, NULL, NULL, OCI_SESSGET_SPOOL);

Session Purity and Connection Class Defaults
Table 3-5 shows the defaults for the attributes and settings of connections that an OCI
application gets from the OCI session pool (using OCISessionGet()) and from other
sources.

Table 3-5 Session Purity and Connection Class Defaults

Attribute or Setting Default Value for Connection From
OCI Session Pool

Default Value for Connection Not
From OCI Session Pool

OCI_ATTR_PURITY OCI_ATTR_PURITY_SELF OCI_ATTR_PURITY_NEW

OCI_ATTR_CONNECTION_CLASS OCI-generated globally unique name
for each client-side session pool, used
as the default connection class for all
connections in the OCI session pool

SHARED

Sessions shared by ... Threads that request sessions from the
OCI session pool

Connections to a particular database
that have the SHARED connection class

Chapter 3
Using Database Resident Connection Pool

3-33

Starting Database Resident Connection Pool
The DBA must log on as SYSDBA and start the default pool,
SYS_DEFAULT_CONNECTION_POOL, using DBMS_CONNECTION_POOL.START_POOL with the
default settings.

See Also:

• Oracle Database Administrator's Guide for detailed information about
configuring the pool

Enabling DRCP
To enable DRCP in an application, specify either :POOLED in the Easy Connect string
(as in Example 3-4) or (SERVER=POOLED) in the TNS connect string (as in
Example 3-5).

Example 3-4 Enabling DRCP With :POOLED in Easy Connect String

oraclehost.company.com:1521/books.company.com:POOLED

Example 3-5 Enabling DRCP With SERVER=POOLED in TNS Connect String

BOOKSDB = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oraclehost.company.com)
 (PORT=1521))(CONNECT_DATA = (SERVICE_NAME=books.company.com)(SERVER=POOLED)))

Benefiting from the Scalability of DRCP in an OCI Application
Consider the following OCI application scenarios and how they benefit from DRCP:

• An application neither uses the OCI session pool nor specifies a connection class
or purity setting (or specifies PURITY=NEW).

The application gets a new session from DRCP. When the application returns a
connection to the pool, the session is not shared with other instances of the same
application by default. Therefore, the pooled server remains assigned to the client
for the life of the client session. (SQL*Plus is an example of a client that does not
use the OCI session pool. SQL*Plus keeps connections even when they are idle.)

The application benefits from reusing an existing pooled server.

• An application invokes OCISessionGet() outside of the OCI session pool, or to
specify the connection class and PURITY=SELF.

The application can reuse both DRCP pooled servers and sessions. However,
after an OCISessionRelease() call, OCI terminates the connection to the
connection broker. On the next OCISessionGet() call, the application reconnects
to the broker, and then DRCP assigns a pooled server (and session) belonging to
the specified connection class. Reconnecting incurs the cost of connection
establishment and reauthentication.

The application achieves better sharing of DRCP resources (processes and
sessions) but does not benefit from caching connections to the connection broker.

Chapter 3
Using Database Resident Connection Pool

3-34

• An application uses OCI session pool APIs, specifies a connection class, and
specifies PURITY=SELF.

The application uses all DRCP functionality, reusing both the pooled server and
the associated session and benefiting from cached connections to the connection
broker. Cached connections do not incur the cost of reauthentication on the
OCISessionGet() call.

See Also:

OCISessionPoolCreate()

OCISessionGet()

OCISessionRelease(),

OCISessionPoolDestroy()

Benefiting from the Scalability of DRCP in a Java Application
A customer who uses Universal Connection Pool (UCP), or uses
ConnectionPoolDataSource as the connection factory, can upgrade to using DRCP by
changing only the configuration (not the code).

See Also:

• Benefiting from the Scalability of DRCP in an OCI Application for more
information about how Java applications benefit from DRCP as OCI
applications

Best Practices for Using DRCP
The steps for designing an application that can benefit from the full power of DRCP
are very similar to those for an application that uses the OCI session pool.

The only additional step is that for best performance, when deployed to run with
DRCP, the application must explicitly specify a connection class.

Multiple instances of the same application must specify the same connection class for
best performance and enhanced sharing of DRCP resources. Ensure that the different
instances of the application can share database sessions.

Example 3-6 shows a DRCP application.

See Also:

• Oracle Call Interface Programmer's Guide

Chapter 3
Using Database Resident Connection Pool

3-35

Example 3-6 DRCP Application

/* Assume that all necessary handles are allocated. */

/* This middle tier uses a single database user. Create a homogeneous
 client-side session pool */
OCISessionPoolCreate (envhp, errhp, spoolhp, &poolName, &poolNameLen, "BOOKSDB",
 strlen("BOOKSDB"), 0, 10, 1, "SCOTT", strlen("SCOTT"), "password",
 strlen("password"), OCI_SPC_HOMOGENEOUS);

while (1)
{
 /* Process a client request */
 WaitForClientRequest();
 /* Application function */

 /* Set the Connection Class on the OCIAuthInfo handle that is passed as
 argument to OCISessionGet*/

 OCIAttrSet (authInfop, OCI_HTYPE_AUTHINFO, "BOOKSTORE", strlen("BOOKSTORE"),
 OCI_ATTR_CONNECTION_CLASS, errhp);

 /* Purity need not be set, as default is OCI_ATTR_PURITY_SELF
 for OCISessionPool connections */

 /* You can get a SCOTT session released by Middle-tier 2 */
 OCISessionGet(envhp, errhp, &svchp, authInfop, poolName, poolNameLen, NULL, 0,
 NULL, NULL, NULL, OCI_SESSGET_SPOOL);

 /* Database calls using the svchp obtained above */
 OCIStmtExecute(...)

 /* This releases the pooled server on the database for reuse */
 OCISessionRelease (svchp, errhp, NULL, 0, OCI_DEFAULT);
}

/* Middle tier is done - exiting */
OCISessionPoolDestroy (spoolhp, errhp, OCI_DEFAULT);

Example 3-7 and Example 3-8 show connect strings that deploy code in 10 middle-tier
hosts that service the BOOKSTORE application from Example 3-6.

In Example 3-7, assume that the database is Oracle Database 12c (or earlier) in
dedicated server mode with DRCP not enabled and that the client has 12c libraries.
The application gets dedicated server connections from the database.

Example 3-7 Connect String for Deployment in Dedicated Server Mode Without
DRCP

BOOKSDB = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oraclehost.company.com)
 (PORT=1521))(CONNECT_DATA = (SERVICE_NAME=books.company.com)))

In Example 3-8, assume that DRCP is enabled on the Oracle Database 12c database.
All middle-tier processes can benefit from the pooling capability of DRCP. The
database resource requirement with DRCP is much less than it would be in dedicated
server mode.

Example 3-8 Connect String for Deployment With DRCP

BOOKSDB = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oraclehost.company.com)
 (PORT=1521))(CONNECT_DATA = (SERVICE_NAME=books.company.com)(SERVER=POOLED)))

Chapter 3
Using Database Resident Connection Pool

3-36

Compatibility and Migration
An OCI application linked with Oracle Database 12c client libraries works unaltered
with:

• An Oracle Database 12c database with DRCP disabled

• A database server from a release earlier than Oracle Database 12c

• An Oracle Database 12c database server with DRCP enabled, when deployed
with the DRCP connect string

Suitable clients benefit from enhanced scalability offered by DRCP if they are
appropriately modified to use the OCI session pool APIs with the connection class and
purity settings previously described.

See Also:

• Oracle Database JDBC Developer's Guide for more information about
Oracle JDBC drivers support for DRCP

DRCP Restrictions
The following cannot be performed with pooled servers:

• Shutting down the database

• Stopping DRCP

• Changing the password for the connected user

• Using shared database links to connect to a DRCP that is on a different instance

• Using Advanced Security Options (ASO) with TCPS

• Using Enterprise user security with DRCP

• Using migratable sessions on the server side, either directly (using the
OCI_MIGRATE option) or indirectly (invoking OCISessionPoolCreate())

• Using initial client roles

• Using application context attributes (such as OCI_ATTR_APPCTX_NAME and
OCI_ATTR_APPCTX_VALUE)

Sessions created before DDL statements run can be assigned to clients after DDL
statements run. Therefore, be careful when running DDL statements that affect
database users in the pool. For example, before dropping a user, ensure that there are
no sessions of that user in the pool and no connections to the broker that were
authenticated as that user.

If sessions with explicit roles enabled are released to the pool, they can later be
assigned to connections (of the same user) that need the default logon role. Therefore,
avoid releasing sessions with explicit roles; instead, terminate them.

Chapter 3
Using Database Resident Connection Pool

3-37

Note:

You can use Oracle Advanced Security features such as encryption and
strong authentication with DRCP.

Users can mix data encryption/data integrity combinations. However, users must
segregate each such combination by using connection classes. For example, if the
user application must specify AES256 as the encryption mechanism for one set of
connections and DES for another set of connections, then the application must specify
different connection classes for each set.

Using DRCP with Custom Pools
Oracle highly recommends using the OCI session pool, which is already integrated
with DRCP, FAN, and RLB. However, an application that does not use the OCI
session pool can still use DRCP if either of the following is true:

• The application was built using its own custom connection pool.

• The application uses no pool, but has periods when it does not use its session
(and could therefore release it to a pool) and does not depend on getting back the
same session

To use DRCP with such an application, the session must be stateful; that is, the
session must have the OCI_ATTR_SESSION_STATE attribute . When an application is
stateful and DRCP is enabled, OCI transparently assigns it an appropriate session
from the DRCP pool. If the application is stateless (has the OCI_SESSION_STATELESS
attribute) and DRCP is enabled, OCI transparently returns the session to the DRCP
pool.

Applications must identify session state as promptly as possible for efficient utilization
of underlying database resources.

Note:

An application that specifies the attribute OCI_ATTR_SESSION_STATE or
OCI_SESSION_STATELESS must also specify session purity and connection
class.

See Also:

• Session Purity and Connection Class for more information about
OCI_ATTR_SESSION_STATE and OCI_SESSION_STATELESS

• Explicitly Marking Sessions Stateful or Stateless for more information
about session states

• Oracle Call Interface Programmer's Guide for more information about
OCI_ATTR_SESSION_STATE attribute

Chapter 3
Using Database Resident Connection Pool

3-38

Explicitly Marking Sessions Stateful or Stateless
An application typically requires a specific database session for the duration of a unit
of work. For this duration, the session is stateful. After this duration, if the application
does not depend on retaining the specific session for subsequent units of work, then
the session is stateless.

When an application or caller detects a session's transition from stateful to stateless,
or the reverse, the application can explicitly inform OCI of the transition by using the
OCI_ATTR_SESSION_STATE or OCI_SESSION_STATELESS attribute. This information lets
OCI and Oracle Database transparently perform scalability optimizations, such as
reassigning the session that the application is not using to someone else and then
assigning the application a new session when necessary.

See Also:

Using DRCP with Custom Pools

Example 3-9 shows a code fragment that explicitly marks session states.

Example 3-9 Explicitly Marking Sessions Stateful or Stateless

wait_for_transaction_request();
do {

ub1 state;

/* mark database session as STATEFUL */
state = OCI_SESSION_STATEFUL;
checkerr(errhp, OCIAttrSet(usrhp, OCI_HTYPE_SESSION,
 &state, 0, OCI_ATTR_SESSION_STATE, errhp));
/* do database work consisting of one or more related calls to the
database */

...

/* done with database work, mark session as stateless */
state = OCI_SESSION_STATELESS;
checkerr(errhp, OCIAttrSet(usrhp, OCI_HTYPE_SESSION,
 &state, 0,OCI_ATTR_SESSION_STATE, errhp));

wait_for_transaction_request();

} while(not _done);

A session obtained from outside the OCI session pool is marked
OCI_SESSION_STATEFUL and remains OCI_SESSION_STATEFUL unless the application
explicitly marks it OCI_SESSION_STATELESS.

A session obtained from the OCI session pool is marked OCI_SESSION_STATEFUL by
default when the first call is initiated on that session. When the session is released to

Chapter 3
Using Database Resident Connection Pool

3-39

the pool, it is marked OCI_SESSION_STATELESS by default. Therefore, you need not
explicitly mark sessions as stateful or stateless when you use the OCI session pool.

See Also:

Oracle Call Interface Programmer's Guide for more information about
OCI_ATTR_SESSION_STATE

Using DRCP with Oracle Real Application Clusters
Oracle Real Application Clusters (Oracle RAC) is a database option in which a single
database is hosted by multiple instances on multiple nodes. When DRCP is configured
in a database in an Oracle RAC environment, the pool configuration is applied to each
database instance. Starting or stopping the pool on one instance starts or stops the
pool on all instances.

Using DRCP with Pluggable Databases
The DRCP in a multitenant container database (CDB) is configured and managed in
the root container. You can configure, start, and stop the pool when you are connected
to the root container. The pool maintains the pooled servers of different pluggable
databases to which the clients are connected using different service names.

DRCP with Data Guard
When operating DRCP in a Data Guard environment:

• On a physical standby database:

– You can start the pool only if the pool is running on the primary database.

– You can stop the pool only if the pool is stopped on the primary database.

– You cannot configure, restore to defaults, or alter pool parameters.

The preceding restrictions cease to apply to the physical standby database if it
becomes the primary database.

• On a logical standby database, all pool operations are allowed.

Memoptimize Pool
This pool optimizes the read operation for select statements

Memoptimize Rowstore performs high-performance reads for tables specified with
the MEMOPTIMIZE FOR READ clause.

Note:

Deferred inserts cannot be rolled back because they do not use standard
locking and redo mechanisms

Chapter 3
Memoptimize Pool

3-40

Related Topics

• Oracle Database Concepts

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database SQL Language Reference

• Oracle Database Reference

Oracle RAC Sharding
This section explains about Oracle RAC Sharding

Oracle RAC Sharding increases the performance and scalability of a Oracle RAC
database with minimal application changes. It affinitizes table partitions to Oracle RAC
instances, and routes the database requests, which specify a partitioning key to the
instance that logically holds the corresponding partition. This provides better cache
utilization and reduces block pings across instances. The partitioning key can be
added only to the most performance critical requests. Requests that do not specify the
key works transparently and can be routed to any instance. This feature can be
enabled by executing an ALTER SYSTEM command and without modifying the database
schema and SQL statements.

Note:

The partitioning key value must be provided when requesting a database
connection.

Related Topics

• Oracle Database Net Services Administrator's Guide

• Oracle Call Interface Programmer's Guide

• Oracle Universal Connection Pool Developer’s Guide

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Database Concepts

• Oracle Database Administrator’s Guide

Chapter 3
Oracle RAC Sharding

3-41

4
Designing Applications for Oracle Real-
World Performance

When you design applications for real world performance, you should consider how
code for bind variables, instrumentation, and set-based processing.

Topics:

• Using Bind Variables

• Using Instrumentation

• Using Set-Based Processing

Using Bind Variables
A bind variable placeholder in a SQL statement or PL/SQL block indicates where data
must be supplied at runtime.

Suppose that you want your application to insert data into the table created with this
statement:

CREATE TABLE test (x VARCHAR2(30), y VARCHAR2(30));

Because the data is not known until runtime, you must use dynamic SQL.

The following statement inserts a row into table test, concatenating string literals for
columns x and y:

INSERT INTO test (x,y) VALUES (''' || REPLACE (x, '''', '''''') || '''),
 ''' || REPLACE (y, '''', '''''') || ''');

The following statement inserts a row into table test using bind variables :x and :y for
columns x and y:

INSERT INTO test (x,y) VALUES (:x, :y);

The statement that uses bind variable placeholders is easier to code.

Now consider a dynamic bulk load operation that inserts 1,000 rows into table test
using each of the preceding methods.

The method that concatenates string literals uses 1,000 INSERT statements, each of
which must be hard-parsed, qualified, checked for security, optimized, and compiled.
Because each statement is hard-parsed, the number of latches greatly increases.
Latches are mutual-exclusion locking mechanisms—serialization devices, which inhibit
concurrency.

A method that uses bind variable placeholders uses only one INSERT statement. The
statement is soft-parsed, qualified, checked for security, optimized, compiled, and
cached in a shared pool. The compiled statement from the shared pool is used for
each of the 1000 inserts. This statement caching is a very important benefit of using
bind variables.

4-1

An application that uses bind variable placeholders is more scalable, supports more
users, requires fewer resources, and runs faster than an application that uses string
concatenation—and it is less vulnerable to SQL injection attacks. If a SQL statement
uses string concatenation, an end user can modify the statement and use the
application to do something harmful.

You can use bind variable placeholders for input variables in DELETE, INSERT, SELECT,
and UPDATE statements, and anywhere in a PL/SQL block that you can use an
expression or literal. In PL/SQL, you can also use bind variable placeholders for output
variables. Binding is used for both input and output variables in nonquery operations.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about using bind variables to protect your application from SQL injection

• Oracle Call Interface Programmer's Guide for more information about
using bind variable placeholders in OCI

Using Instrumentation
To use instrumentation means adding debug code throughout your application. When
enabled, this code generates trace files, which contain information that helps you
identify and locate problems. Trace files are especially helpful when debugging
multitier applications; they help you identify the problematic tier.

See Also:

SQL Trace Facility (SQL_TRACE) for more information

Using Set-Based Processing
A common task in database applications in a data warehouse environment is querying
or modifying a huge data set.

For example, an application might join data sets numbering in the tens of millions of
rows, filter on a set of criteria, perform aggregations, and then display the result to the
user. Alternatively, an application might filter out rows from one billion-row table based
on specified criteria, and then insert matching rows into another table.

The problem for application developers is how to achieve high performance when
processing these large data sets. Processing techniques fall into two categories:
iterative, and set-based. Over years of testing, the Oracle Real-World Performance
group has discovered that set-based processing techniques perform orders of
magnitude better for database applications that process large data sets.

Topics:

• Iterative Data Processing

Chapter 4
Using Instrumentation

4-2

• Using Set-Based Processing

Iterative Data Processing
Iterative data processing processes data row by row, using arrays, or using manual
parallelism.

Topics:

• About Iterative Data Processing

• Iterative Data Processing: Row-By-Row

• Iterative Data Processing: Arrays

• Iterative Data Processing: Manual Parallelism

About Iterative Data Processing
In this type of processing, applications use conditional logic to iterate through a set of
rows.

You can write iterative applications in PL/SQL, Java, or any other procedural or object-
oriented language. The technique is "iterative" because it breaks the row source into
subgroups containing one or more rows, and then processes each subgroup. A single
process can iterate through all subgroups, or multiple processes can iterate through
the subgroups in parallel.

Typically, although not necessarily, iterative processing uses a client/server model as
follows:

1. Transfer a group of rows from the database server to the client application.

2. Process the group within the client application.

3. Transfer the processed group back to the database server.

You can implement iterative algorithms using three main techniques: row-by-row
processing, array processing, and manual parallelism. Each technique obtains the
same result, but from a performance perspective, each has its benefits and
drawbacks.

Iterative Data Processing: Row-By-Row
Of the iterative techniques, row-by-row processing is the most common.

A single process loops through a data set and operates on a single row a time. In a
typical implementation, the application retrieves each row from the database,
processes it in the middle tier, and then sends the row back to the database, which
executes DML and commits.

Assume that your functional requirement is to query an external table named
ext_scan_events, and then insert its rows into a heap-organized staging table named
stage1_scan_events. The following PL/SQL block uses a row-by-row technique to
meet this requirement:

declare
 cursor c is select s.* from ext_scan_events s;
 r c%rowtype;
begin

Chapter 4
Using Set-Based Processing

4-3

 open c;
 loop
 fetch c into r;
 exit when c%notfound;
 insert into stage1_scan_events d values r;
 commit;
 end loop;
 close c;
end;

The row-by-row code uses a cursor loop to perform the following actions:

1. Fetch a single row from ext_scan_events to the application running in the client
host, or exit the program if no more rows exist.

2. Insert the row into stage1_scan_events.

3. Commit the preceding insert.

4. Return to Step 1.

The row-by-row technique has the following advantages:

• It performs well on small data sets. Assume that ext_scan_events contains 10,000
records. If the application processes each row in 1 millisecond, then the total
processing time is 10 seconds.

• The looping algorithm is familiar to all professional developers, easy to write
quickly, and easy to understand.

The row-by-row technique has the following disadvantages:

• Processing time can be unacceptably long for large data sets. If ext_scan_events
contains 1 billion rows, and if the application processes each row in an average of
1 miliseconds, then the total processing time is 12 days. Processing a trillion-row
table requires 32 years.

• The application executes serially, and thus cannot exploit the native parallel
processing features of Oracle Database running on modern hardware. For
example, the row-by-row technique cannot benefit from a multi-core computer,
Oracle RAC, or Oracle Exadata Machine. For example, if the database host
contains 16 CPUs and 32 cores, then 31 cores will be idle when the sole database
server process reads or write each row. If multiple instances exist in an Oracle
RAC deployment, then only one instance can process the data.

Iterative Data Processing: Arrays
Array processing is identical to row-by-row processing, except that it processes a
group of rows in each iteration rather than a single row.

Like the row-by-row technique, array processing is serial, which means that only one
database server process operates on a group of rows at one time. In a typical array
implementation, the application retrieves each group of rows from the database,
processes it in the middle tier, and then sends the group back to the database, which
performs DML for the group of rows, and then commits.

Assume that your functional requirement is the same as in the example in Iterative
Data Processing: Row-By-Row: query an external table named ext_scan_events, and
then insert its rows into a heap-organized staging table named stage1_scan_events.
The following PL/SQL block, which you execute in SQL*Plus on a separate host from
the database server, uses an array technique to meet this requirement:

Chapter 4
Using Set-Based Processing

4-4

declare
 cursor c is select s.* from ext_scan_events s;
 type t is table of c%rowtype index by binary_integer;
 a t;
 rows binary_integer := 0;
begin
 open c;
 loop
 fetch c bulk collect into a limit array_size;
 exit when a.count = 0;
 forall i in 1..a.count
 insert into stage1_scan_events d values a(i);
 commit;
 end loop;
 close c;
end;

The preceding code differs from the equivalent row-by-row code in using a BULK
COLLECT operator in the FETCH statement, which is limited by the array_size value of
type PLS_INTEGER. For example, if array_size is set to 100, then the application fetches
rows in groups of 100.

The cursor loop performs the following sequence of actions:

1. Fetch an array of rows from ext_scan_events to the application running in the
client host, or exit the program when the loop counter equals 0.

2. Loop through the array of rows, and insert each row into the stage1_scan_events
table.

3. Commit the preceding inserts.

4. Return to Step 1.

In PL/SQL, the array code differs from the row-by-row code in using a counter rather
than the cursor attribute c%notfound to test the exit condition. The reason is that if the
fetch collects the last group of rows in the table, then c%notfound forces the loop to
exit, which is undesired behavior. When using a counter, each fetch collects the
specified number of rows, and when the collection is empty, the program exits.

The array technique has the following advantages over the row-by-row technique:

• The array enables the application to process a group of rows at the same time,
which means that it reduces network round trips, COMMIT time, and the code path
in the client and server. When combined, these factors can potentially reduce the
total processing time by an order of magnitude

• The database is more efficient because the server process batches the inserts,
and commits after every group of inserts rather than after every insert. Reducing
the number of commits reduces the I/O load and lessens the probability of log
sync wait events.

The disadvantages of this technique are the same as for row-by-row processing.
Processing time can be unacceptable for large data sets. For a trillion-row table,
reducing processing time from 32 years to 3.2 years is still unacceptable. Also, the
application must run serially on a single CPU core, and thus cannot exploit the native
parallelism of Oracle Database.

Chapter 4
Using Set-Based Processing

4-5

See Also:

Iterative Data Processing: Row-By-Row

Iterative Data Processing: Manual Parallelism
Manual parallelism uses the same iterative algorithm as row-by-row and array
processing, but enables multiple server processes to work on the job concurrently.

In a typical implementation, the application scans the source data multiple times, and
then uses the ORA_HASH function to divide the data among the parallel insert
processes.

The ORA_HASH function computes a hash value for a given expression. The function
accepts three arguments:

• expr, which is typically a column name

• max_bucket, which specifies the number of hash buckets

• seed_value, which enables multiple results from the same data (the default is 0)

For example, the following statement divides the sales table into 10 buckets of rows,
numbered 0 to 9, and returns the rows from bucket 1:

SELECT * FROM sales WHERE ORA_HASH(cust_id, 9) = 1;

If an application uses ORA_HASH in this way, and if n hash buckets exists, then each
server process operates on 1/n of the data.

Assume the functional requirement is the same as in the row-by-row and array
examples: to read scan events from source tables, and then insert them into the
stage1_scan_events table. The primary differences are as follows:

• The scan events are stored in a mass of flat files. The ext_scan_events_dets
table describes these flat files. The ext_scan_events_dets.file_seq_nbr column
stores the numerical primary key, and the ext_file_name column stores the file
name.

• 32 server processes must run in parallel, with each server process querying a
different external table. The 32 external tables are named ext_scan_events_0
through ext_scan_events_31. However, each server process inserts into the same
stage1_scan_events table.

• You use PL/SQL to achieve the parallelism by executing 32 threads of the same
PL/SQL program, with each thread running simultaneously as a separate job
managed by Oracle Scheduler. A job is the combination of a schedule and a
program.

The following PL/SQL code, which you execute in SQL*Plus on a separate host from
the database server, uses manual parallellism:

declare
 sqlstmt varchar2(1024) := q'[
-- BEGIN embedded anonymous block
 cursor c is select s.* from ext_scan_events_${thr} s;
 type t is table of c%rowtype index by binary_integer;
 a t;

Chapter 4
Using Set-Based Processing

4-6

 rows binary_integer := 0;
begin
 for r in (select ext_file_name from ext_scan_events_dets where
ora_hash(file_seq_nbr,${thrs}) = ${thr})
 loop
 execute immediate
 'alter table ext_scan_events_${thr} location' || '(' || r.ext_file_name || ')';
 open c;
 loop
 fetch c bulk collect into a limit ${array_size};
 exit when a.count = 0;
 forall i in 1..a.count
 insert into stage1_scan_events d values a(i);
 commit;
-- demo instrumentation
 rows := rows + a.count; if rows > 1e3 then exit when not
sd_control.p_progress('loading','userdefined',rows); rows := 0; end if;
 end loop;
 close c;
 end loop;
end;
-- END embedded anonymous block
]';

begin
 sqlstmt := replace(sqlstmt, '${array_size}', to_char(array_size));
 sqlstmt := replace(sqlstmt, '${thr}', thr);
 sqlstmt := replace(sqlstmt, '${thrs}', thrs);
 execute immediate sqlstmt;
end;

This program has three iterative constructs, from outer to inner:

1. An outer FOR LOOP that retrieves names of flat files, and uses DDL to specify the
flat file name as the location of an external table

2. A middle LOOP statement that fetches groups of rows from a query of the external
table.

3. An innermost FORALL statement that iterates through each group and inserts the
rows

In this sample program, you set $thrs to 31 in every job, and set $thr to a different
value between 0 and 31 in every job. For example, job 1 might have $thr set to 0, job
2 might have $thr set to 1, and so on.

In the program executed by the first job, with $thr set to 0, the outer FOR LOOP iterates
through the results of the following query:

select ext_file_name
from ext_scan_events_dets
where ora_hash(file_seq_nbr,31) = 0

The ORA_HASH function divides the ext_scan_events_dets table into 32 evenly
distributed buckets, and then the SELECT statement retrieves the file names for bucket
0. For example, the query result set might contain the following file names:

/disk1/scan_ev_101
/disk2/scan_ev_003
/disk1/scan_ev_077
...
/disk4/scan_ev_314

Chapter 4
Using Set-Based Processing

4-7

The middle LOOP iterates through the list of file names. For example, the first file name
in the result set might be /disk1/scan_ev_101. For job 1 the external table is named
ext_scan_events_0, so the first iteration of the LOOP changes the location of this table
as follows:

alter table ext_scan_events_0 location(/disk1/scan_ev_101);

In the innermost FORALL statement, the BULK COLLECT operator retrieves rows from the
ext_scan_events_0 table into an array, inserts the rows into the stage1_scan_events
table, and then commits the bulk insert. When the program exits the FORALL statement,
the program proceeds to the next item in the loop, changes the file location of the
external table to /disk2/scan_ev_003, and then queries, inserts, and commits rows as
in the previous iteration. Job 1 continues processing in this way until all records
contained in the flat files corresponding to hash bucket 0 have been inserted in the
stage1_scan_events table.

While job 1 is executing, the other 31 Oracle Scheduler jobs execute in parallel. For
example, job 2 sets $thr to 1, which defines the cursor as a query of table
ext_scan_events_1, and so on through job 32, which sets $thr to 31 and defines the
cursor as a query of table ext_scan_events_31. In this way, each job simultaneously
reads a different subset of the scan event files, and inserts the records from its subset
into the same stage1_scan_events table.

The manual parallelism technique has the following advantages over the alternative
iterative techniques:

• It performs far better on large data sets because server processes are working in
parallel. For example, if 32 processes are dividing the work, and if the database
has sufficient CPU and memory resources and experiences no contention, then
the database might perform 32 insert jobs in the time that the array technique took
to perform a single job. The performance gain for a large data set is often an order
of magnitude greater than serial techniques.

• When the application uses ORA_HASH to distribute the workload, each thread of
execution can access the same amount of data. If each thread reads and writes
the same amount of data, then the parallel processes can finish at the same time,
which means that the database utilizes the hardware for as long as the application
takes to run.

The manual parallelism technique has the following disadvantages:

• The code is relatively lengthy, complicated, and difficult to understand. The
algorithm is complicated because the work of distributing the workload over many
threads falls to the developer rather than the database. Effectively, the application
runs serial algorithms in parallel rather than running a parallel algorithm.

• Typically, the startup costs of dividing the data have a fixed overhead. The
application must perform a certain amount of preparatory work before the
database can begin the main work, which is processing the rows in parallel. This
startup limitation does not apply to the competing techniques, which do not divide
the data.

• If multiple threads perform the same operations on a common set of database
objects, then lock and latch contention is possible. For example, if 32 different
server processes are attempting to update the same set of buffers, then buffer
busy waits are probable. Also, if multiple server processes are issuing COMMIT
statements at roughly the same time, then log file sync waits are probable.

Chapter 4
Using Set-Based Processing

4-8

• Parallel processing consumes significant CPU resources compared to the
competing iterative techniques. If the database host does not have sufficient cores
available to process the threads simultaneously, then performance suffers. For
example, if only 4 cores are available to 32 threads, then the probability of a
thread having CPU available at a given time is 1/8.

Set-Based Processing
Set-based processing is a SQL technique that processes a data set inside the
database.

In a set-based model, the SQL statement defines the result, and allows the database
to determine the most efficient way to obtain it. In contrast, iterative algorithms use
conditional logic to pull each row or group of rows from the database to the client
application, process the data on the client, and then send the data back to the
database. Set-based processing eliminates the network round-trip and database API
overhead because the data never leaves the database. It reduces the number of
COMMITs.

Assume the same functional requirement as in the previous examples. The following
SQL statements meet this requirement using a set-based algorithm:

alter session enable parallel dml;
insert /*+ APPEND */ into stage1_scan_events d
 select s.* from ext_scan_events s;
commit;

Because the INSERT statement contains a subquery of the ext_scan_events table, a
single SQL statement reads and writes all rows. Also, the application executes a single
COMMIT after the database has inserted all rows. In contrast, iterative applications
execute a COMMIT after the insert of each row or each group of rows.

The set-based technique has significant advantages over iterative techniques:

• As demonstrated in Oracle Real-World Performance demonstrations and classes,
the performance on large data sets is orders of magnitude faster. It is not unusual
for the run time of a program to drop from several hours to several seconds. The
improvement in performance for large data sets is so profound that iterative
techniques become extremely difficult to justify.

• A side-effect of the dramatic increase in processing speed is that DBAs can
eliminate long-running and error-prone batch jobs, and innovate business
processes in real time. For example, instead of running a 6-hour batch job every
night, a business can run a 12-seconds job as needed during the day.

• The length of the code is significantly shorter, a short as two or three lines of code,
because SQL defines the result and not the access method. This means that the
database, rather than the application, decides the best way to divide, retrieve, and
manipulate the rows.

• In contrast to manual parallelism, parallel DML is optimized for performance
because the database, rather than the application, manages the processes. Thus,
it is not necessary to divide the workload manually in the client application, and
hope that each process finishes at the same time.

• When joining data sets, the database automatically uses highly efficient hash joins
instead of relatively inefficient application-level loops.

Chapter 4
Using Set-Based Processing

4-9

• The APPEND hint forces a direct-path load, which means that the database creates
no redo and undo, thereby avoiding the waste of I/O and CPU. In typical ETL
workloads, the buffer cache poses a problem. Modifying data inside the buffer
cache, and then writing back the data and its associated undo and redo,
consumes significant resources. Because the buffer cache cannot manage blocks
fast enough, and because the CPU costs of manipulating blocks into the buffer
cache and back out again (usually one 8 K block at a time) are high, both the
database writer and server processes must work extremely hard to keep up with
the volume of buffers.

The disadvantages of set-based processing:

• The techniques are unfamiliar to many database developers, so they are more
difficult. The INSERT example is relatively simple. However, more complicated
algorithms required more complicated statements that may require multiple outer
joins. Developers who are not familiar with pipelining outer joins and using WITH
clauses and CASE statements may be daunted by the prospect of both writing and
understanding set-based code.

• Because a set-based model is completely different from an iterative model,
changing it requires completely rewriting the source code. In contrast, changing
row-by-row code to array-based code is relatively trivial.

Despite the disadvantages of set-based processing, the Oracle Real-World
Performance group believes that the enormous performance gains for large data sets
justify the effort.

Videos:

• RWP #7 Set-Based Processing

• RWP #8: Set-Based Parallel Processing

• RWP #9: Set-Based Processing--Data Deduplication

• RWP #10: Set-Based Processing--Data Transformations

• RWP #11: Set-Based Processing--Data Aggregation

Chapter 4
Using Set-Based Processing

4-10

5
Security

This chapter explains some fundamentals of designing security into the database and
database applications.

Topics:

• Enabling User Access with Grants_ Roles_ and Least Privilege

• Automating Database Logins

• Controlling User Access with Fine-Grained Access Control

• Using Invoker's and Definer's Rights for Procedures and Functions

• Managing External Procedures for Your Applications

• Auditing User Activity

Enabling User Access with Grants, Roles, and Least
Privilege

This topic explains how you can grant privileges and roles to users to restrict access to
data. It also explains the importance of the concept of least privilege, introduces
secure application roles as a way to automatically filter out users who attempt to log in
to your applications.

A user privilege is the right to perform an action, such as updating or deleting data.
You can grant users privileges to perform these actions. A role is named collection of
privileges that are grouped together, usually to enable users to perform a set of tasks
related to their jobs. For example, a role called clerk can enable clerks to do things
like create, update, and delete files. The clerk_mgr role can include the clerk role,
plus some additional privileges such as approving the clerks' expense reports or
managing their performance appraisals.

When you grant privileges to users, apply the principle of least privilege: Grant users
only the privileges that they need. If possible, do not directly grant the user a privilege.
Instead, create a role that defines the set of privileges the user needs and then grant
the user this role. For example, grant user fred the CREATE SESSION privilege so that
he can log in to a database session. But for the privileges that he needs for his job,
such as the UPDATE TABLE privilege, grant him a role that has those privileges.

You can design your applications to automatically grant a role to the user who is trying
to log in, provided the user meets criteria that you specify. To do so, you create a
secure application role, which is a role that is associated with a PL/SQL procedure
(or PL/SQL package that contains multiple procedures). The procedure validates the
user: if the user fails the validation, then the user cannot log in. If the user passes the
validation, then the procedure grants the user a role so that he or she can use the
application. The user has this role only while he or she is logged in to the application.
When the user logs out, the role is revoked.

5-1

See Also:

• Oracle Database Security Guide more information about privilege and
role authorization

• Oracle Database Security Guide more information about secure
application roles

Example 5-1 shows a secure application role procedure that allows the user to log in
during business hours (8 a.m. to 5 p.m.) from a specific set of work stations. If the user
passes these checks, then the user is granted the hr_admin role and then is able to
log in to the application.

Example 5-1 Secure Application Role Procedure to Restrict Access to
Business Hours

CREATE OR REPLACE PROCEDURE hr_admin_role_check
 AUTHID CURRENT_USER
 AS
 BEGIN
 IF (SYS_CONTEXT ('userenv','ip_address')
 BETWEEN '192.0.2.10' and '192.0.2.20'
 AND
 TO_CHAR (SYSDATE, 'HH24') BETWEEN 8 AND 17)
 THEN
 EXECUTE IMMEDIATE 'SET ROLE hr_admin';
 END IF;
 END;
/

Automating Database Logins
To automate database logins, you create a logon trigger to run a PL/SQL procedure
that can validate a user who is attempting to log in to an application. When the user
logs in, the trigger executes. Logon triggers can perform multiple actions, such as
generating an alert if the user fails the validation, displaying error messages, and so
on.

Example 5-2 shows a simple logon trigger that executes a PL/SQL procedure.

Example 5-2 Creating a Logon Trigger

CREATE OR REPLACE TRIGGER run_logon_trig AFTER LOGON ON DATABASE
 BEGIN
 sec_mgr.check_user_proc;
 END;

Chapter 5
Automating Database Logins

5-2

See Also:

• Oracle Database PL/SQL Language Reference for detailed information
about the CREATE TRIGGER statement

• Oracle Database Security Guide for information about how to create a
logon trigger that runs a database session application context package

Controlling User Access with Fine-Grained Access Control
There are several ways that you can control the level of access users have to data
from your applications.

• Oracle Virtual Private Database (VPD): VPD enables you to create policies that
can restrict database access at the row and column level. Essentially, VPD adds a
dynamic WHERE clause to a SQL statement that is issued against the table, view, or
synonym to which an VPD security policy was applied.

For example, suppose the user enters the SELECT * FROM OE.ORDERS statement. A
VPD policy can transform this statement to the following statement instead, so that
only the sales representative who owns the order can view this data:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = SYS_CONTEXT('USERENV','SESSION_USER');

• Oracle Data Redaction: Oracle Data Redaction masks data at run time, at the
moment the user attempts to access the data (that is, at query-execution time).
This solution works well in a dynamic production system in which data is
constantly changing. During the time that the data is being redacted, all data
processing is performed normally, and the back-end referential integrity
constraints are preserved. You typically redact sensitive data, such as credit card
or Social Security numbers.

You can mask the data in the following ways:

– Full redaction, in which the entire data is masked. For example, the
number 37828224 can be displayed as a zero.

– Partial redaction, in which only a portion of the data is redacted. With this
type, the number 37828224 can be displayed as *****224.

– Random redaction, in which the data is displayed as randomized data.
Here, the number 37828224 can appear as 93204857.

– Regular expressions, in which you redact data based on a search
pattern. You can use regular expressions in both full and partial redaction. For
example, you can redact the user name of email addresses, so that only the
domain shows: jsmith in the email address jsmith@example.com can be
replaced with [redacted] so that the email address appears as
[redacted]@example.com.

– No redaction, which enables you to test the internal operation of your
redaction policies, with no effect on the results of queries against tables
with policies defined on them. You can use this option to test the redaction
policy definitions before applying them to a production environment.

Chapter 5
Controlling User Access with Fine-Grained Access Control

5-3

• Oracle Label Security: Oracle Label Security secures your database tables at the
row level, and assigns these rows different levels of security based on the needs
of your site. Rows that contain highly sensitive data can be assigned a label
entitled HIGHLY SENSITIVE; rows that are less sensitive can be labeled as
SENSITIVE, and so on. Rows that all users can have access to can be labeled
PUBLIC. You can create as many labels as you need, to fit your site's security
requirements.

For example, when user fred, who is a low-level employee, logs in, he would see
only data that is available to all users, as defined by the PUBLIC label. Yet when his
director, hortensia, logs in, she can see all the sensitive data that has been
assigned the HIGHLY SENSITIVE label.

• Oracle Database Vault: Oracle Database Vault enables you to restrict
administrative access to your data. By default, administrators (such as user SYS
with the SYSDBA privilege) have access to all data in the database. Administrators
typically must perform tasks such performance tuning, backup and recovery, and
so on. However, they do not need access to your salary records. Database Vault
enables you to create policies that restrict the administrator's actions yet not
prevent him or her from performing normal administrative activities.

A typical Database Vault policy could, for example, prevent an administrator from
accessing and modifying the HR.EMPLOYEES table. You can create fine-tuned
policies that impose restrictions such as limiting the hours the administrator can
log in, which computers he can use, whether he can log in to the database using
dynamic tools, and so on. Furthermore, you can create policies that generate
alerts if the administrator tries to violate a policy.

See Also:

• Oracle Database Security Guide for more information about Oracle
Virtual Private Database

• Oracle Database Advanced Security Guide for more information about
Oracle Data Redaction

• Oracle Label Security Administrator’s Guide for more information about
Oracle Label Security

• Oracle Database Vault Administrator’s Guide for more information about
Oracle Database Vault

Using Invoker's and Definer's Rights for Procedures and
Functions

Topics:

• What Are Invoker's Rights and Definer's Rights?

• Protecting Users Who Run Invoker's Rights Procedures and Functions

• How Default Rights Are Handled for Java Stored Procedures

Chapter 5
Using Invoker's and Definer's Rights for Procedures and Functions

5-4

What Are Invoker's Rights and Definer's Rights?
When you create a procedure or function (that is, a program unit), you can design it so
that it runs with either the privileges of the owner (you) or the privileges of the person
who is invoking it. Definer's rights run the program unit using the owner's privileges
and invoker's rights run the program unit using the privileges of the person who runs it.
For example, suppose user harold creates a procedure that updates the table orders.
User harold then grants the EXECUTE privilege on this procedure to user hazel. If
harold had created the procedure with definer's rights, then the procedure would
expect the orders table to be in harold's schema. If he created it with invoker's rights,
then the procedure would look for the orders table in hazel's schema.

To designate a program unit as definer's rights or invokers rights, use the AUTHID
clause in the creation statement. If you omit the AUTHID clause, then the program unit
is created with definer's rights.

Example 5-3 shows how to use the AUTHID clause in a CREATE PROCEDURE statement to
specify definer's rights or invoker's rights.

Example 5-3 Creating Program Units with Definer's Rights or Invoker's Rights

CREATE PROCEDURE my_def_proc AUTHID DEFINER -- Definer's rights procedure
 AS ...

CREATE PROCEDURE my_inv_proc AUTHID CURRENT_USER -- Invoker's rights procedure
 AS ...

See Also:

• Oracle Database PL/SQL Language Reference for details about definer's
rights and invoker's rights procedures and functions

• Oracle Database PL/SQL Language Reference for details about the
CREATE PROCEDURE statement

• Oracle Database PL/SQL Language Reference for details about the
CREATE FUNCTION statement

Protecting Users Who Run Invoker's Rights Procedures and Functions
An important consideration when you create an invoker's rights program unit is the
level of privilege that the invoking users have. Suppose user harold is a low-ranking
employee who has few privileges and hazel is an executive with many privileges.
When hazel runs harold's invoker's rights procedure, the procedure temporarily
inherits hazel's privileges (all of them). But because harold owns this procedure, he
can modify it without her knowing it to behave in ways that take advantage of hazel's
privileges, such as giving harold a raise. To help safeguard against this type of
scenario, after she has ensured that harold is trustworthy, user hazel can grant
harold permission so that his invoker's rights procedures and functions have access
to hazel's privileges when she runs them. To do so, she must grant him the INHERIT
PRIVILEGES privilege.

Chapter 5
Using Invoker's and Definer's Rights for Procedures and Functions

5-5

Example 5-4 shows how invoking user hazel can grant user harold the INHERIT
PRIVILEGES privilege.

Example 5-4 Granting a Program Unit Creating the INHERIT PRIVILEGES
Privilege

GRANT INHERIT PRIVILEGES ON hazel TO harold;

If harold proves untrustworthy, hazel can revoke the INHERIT PRIVILEGES privilege
from him.

Administrators such as user SYS and SYSTEM have the INHERIT ANY PRIVILEGES
privilege, which enable these users' invoker's rights procedures to have access to the
privileges of any invoking users. As with all ANY privileges, grant this privilege only to
trusted users.

See Also:

Oracle Database Security Guide for more information about managing
security for definer's rights and invoker's rights procedures and functions

How Default Rights Are Handled for Java Stored Procedures
By default, Java class schema objects run with the privileges of their invoker, not with
definer's rights. If you want your Java schema objects to run with definer's rights, then
when you load them by using the loadjava tool, specify the -definer option.

Example 5-5 shows how to use the -definer option in a loadjava command.

Example 5-5 Loading a Java Class with Definer's Rights

loadjava -u joe -resolve -schema TEST -definer ServerObjects.jar
Password: password

You can use the -definer option on individual classes. Be aware that different
definers may have different privileges. Apply the -definer option with care, so that
you can achieve the desired results. Doing so helps to ensure that your classes run
with no more than the privileges that they need.

See Also:

• Oracle Database Java Developer's Guide for detailed information about
the loadjava tool

• Oracle Database Java Developer's Guide for more information about
controlling the current user in Java applications

Managing External Procedures for Your Applications
For security reasons, Oracle external procedures run in a process that is physically
separate from Oracle Database. When you invoke an external procedure, Oracle

Chapter 5
Managing External Procedures for Your Applications

5-6

Database creates the extproc operating system process (or agent), by using the
operating system privileges of the user that started the listener for the database
instance.

You can configure the extproc agent to run as a designated operating system
credential. To use this functionality, you define a credential to be associated with the
extproc process, which then can authenticate impersonate (that is, run on behalf of
the supplied user credential) before loading a user-defined shared library and
executing a function. To configure the extproc user credential, you use the PL/SQL
package DBMS_CREDENTIAL and the PL/SQL statement CREATE LIBRARY.

See Also:

Oracle Database Security Guide for more information about securing
external procedures

Auditing User Activity
You can create audit policies to audit specific actions in the database. Oracle
Database then records these actions in an audit trail. The database mandatorily audits
some actions and writes these to the audit trail as well. The audit policies that you
create can be simple, such as auditing all actions by a specific user, or complex, such
as testing for specific conditions and sending email alerts if these conditions are
violated.

When you install an Oracle Database, you can choose how your database is audited.

• Unified auditing: In unified auditing, all audit trails are written to a single audit
trail, viewable by the V$UNIFIED_AUDIT_TRAIL and GV$UNIFIED_AUDIT_TRAIL
dynamic views. This audit trail encompasses not only Oracle Database-specific
actions, but also actions performed in Oracle Real Application Security, Oracle
Recovery Manager, Oracle Database Vault, and Oracle Label Security
environments. The audit records from these sources are presented in a consistent,
uniform format. You can create named audit policies and enable and disable them
as necessary. If you want to use unified auditing, then you must migrate your
databases to it.

• Mixture of unified auditing and pre-Release 12c auditing: For the most part,
this option enables you to use the pre-Release 12c auditing, in which audit records
are written to different locations using their own formats. However, Release 12c
functionality, such as using auditing in a multitenant environment, is available. This
type of auditing is the default for both new and upgraded databases.

In both cases, when you upgrade your databases to Oracle Database 12c Release 1
(12.1.0.1), the audit records from the previous release are preserved. If you decide to
migrate to use unified auditing fully, you can archive these earlier records and then
purge the audit trail. After you complete the migration, the new audit records are
written to the unified audit trail.

Chapter 5
Auditing User Activity

5-7

See Also:

• Oracle Database Security Guide for more information about creating and
managing unified auditing policies

• Oracle Database Security Guide to find a detailed comparison of unified
auditing and pre-Release 12c auditing

• Oracle Database Upgrade Guide for information about migrating to
unified auditing

Chapter 5
Auditing User Activity

5-8

6
High Availability

This chapter explains how to design high availability into the database and database
applications.

Topics:

• Transparent Application Failover (TAF)

• Oracle Connection Manager in Traffic Director Mode

• Fast Application Notification (FAN) and Fast Connection Failover (FCF)

• Application Continuity and Transaction Guard

• Service and Load Management for Database Clouds

Transparent Application Failover (TAF)
This section describes what Transparent Application Failover (TAF) is, how to
configure TAF, and using TAF callbacks to notify the application of events as they are
generated.

Topics:

• About Transparent Application Failover

• Configuring Transparent Application Failover

• Using Transparent Application Failover Callbacks

About Transparent Application Failover
Transparent Application Failover (TAF) is a client-side feature of OCI, OCCI, Java
Database Connectivity (JDBC) OCI driver, and ODP.NET designed to minimize
disruptions to end-user applications that occur when database connectivity fails
because of instance or network failure. TAF can be implemented on a variety of
system configurations including Oracle Real Application Clusters (Oracle RAC), Oracle
Data Guard physical standby databases, and on a single instance system after it
restarts (for example, when repairs are made).

TAF enables client applications to automatically (transparently) reconnect to a
preconfigured secondary instance, creating a fresh connection, but identical to the
connection that was established on the first original instance. That is, the connection
properties are the same as that of the earlier connection, regardless of how the
connection was lost. In this case, the active transactions roll back. Also, all statements
that an application attempts to use after a failure attempt also failover.

6-1

See Also:

• Oracle Call Interface Programmer's Guide for more information about
OCI TAF

• Oracle C++ Call Interface Programmer's Guide for more information
about OCCI TAF

• Oracle Database JDBC Developer's Guide for more information about
JDBC TAF

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows
for more information about ODP.NET TAF

• Oracle Database Net Services Reference for more information about
client-side configuration of TAF (Connect Data Section)

• Oracle Database PL/SQL Packages and Types Reference for more
information about the server-side configuration of TAF (DBMS_SERVICE)

Configuring Transparent Application Failover
TAF can be configured on both the client side and server side with the server side
taking precedence if both client and server sides are configured. On the client side,
you configure TAF by including the FAILOVER_MODE parameter in the CONNECT_DATA
portion of a connect descriptor. On the server side, you configure TAF by modifying
the target service with the DBMS_SERVICE.MODIFY_SERVICE packaged procedure.

See Also:

• About Transparent Application Failover for more information about
configuration

Using Transparent Application Failover Callbacks
TAF callbacks are callbacks that are registered in case of failover and called during
failover to notify the application of events as they are generated. They are called
several times while reestablishing the user's session.

As the application developer you may want to inform the user that failover is in
progress because there is a slight delay as failover proceeds. The first call to the
callback carries out that function. Also, when failover is successful and the connection
is reestablished, you may want to inform the user that failover has happened and then
you may want to replay ALTER SESSION commands because these commands are not
automatically replayed on the second instance. A subsequent call to the callback
performs that function. Also, if failover is unsuccessful, then you want to inform the
application that failover cannot occur. A third call to the callback performs this function
as well.

Using TAF callbacks makes possible:

Chapter 6
Transparent Application Failover (TAF)

6-2

• Notifying users of the status of failover throughout the failover process; when
failover is underway, when failover is successful, and when failover is
unsuccessful

• Replaying of ALTER SESSION commands when that is needed

• Reauthenticating a user handle besides the primary handle for each time a
session begins on the new connection. Because each user handle represents a
server-side session, the client may want to replay ALTER SESSION commands for
that session.

See Also:

Configuring Transparent Application Failover for specific callback registration
information for each interface

Oracle Connection Manager in Traffic Director Mode
This feature allows the Oracle database Connection Manager (CMAN) to be
configured in Traffic Director mode to serve clients connecting to different database
services, with HA and performance features configurable at the router level, benefiting
all the clients connecting..

Oracle Database 18.1 release onwards, Oracle Connection Manager in Traffic Director
mode furnishes support for:

• Transparent performance enhancements and connection multiplexing

– With multiple CMAN in Traffic Director mode instances, applications get
increased scalability through client-side connection-time load balancing or with
a load balancer (BIG-IP, NGINX, and others)

• Zero application downtime including: planned database maintenance or pluggable
database (PDB) relocation and unplanned database outages for read-mostly
workloads.

• High Availability of CMAN in Traffic Director mode to avoid a single point of
failure.

• Security and isolation: CMAN in Traffic Director mode furnishes:

– Database Proxy supporting transmission control protocol/transmission control
protocol secure (TCP/TCPS) and protocol conversion

– Firewall based on the IP address, service name, and secure socket layer/
transport layer security (SSL/TLS) wallets

– Tenant isolation in a multi-tenant environment

– Protection against denial-of-service and fuzzing attacks

– Secure tunneling of database traffic across Oracle Database on-premises and
Oracle Cloud

Related Topics

• Oracle Database Security Guide

• Oracle Database Net Services Administrator's Guide

Chapter 6
Oracle Connection Manager in Traffic Director Mode

6-3

• Oracle Database Net Services Administrator's Guide

• Oracle Database Net Services Administrator's Guide

Fast Application Notification (FAN) and Fast Connection
Failover (FCF)

This section describes what Fast Application Notification (FAN) and Fast Connection
Failover (FCF) are and how applications can respond to FAN events in a high
availability environment and use FCF to relocate connections after a failover.

Topics:

• About Fast Application Notification (FAN)

• About Receiving FAN Event Notifications

• About Fast Connection Failover (FCF)

About Fast Application Notification (FAN)
An important component of high availability is a notification mechanism called Fast
Application Notification (FAN). FAN notifies other processes about configuration and
service level information that includes service status changes, such as UP or DOWN
events. Applications can respond to FAN events and take immediate action. FAN UP
and DOWN events can apply to instances, services, and nodes.

FAN provides the ability to immediately terminate an active transaction when an
instance or server fails. FAN integrated Oracle clients receive the events and respond.
Applications can respond either by propagating the error to the user or by resubmitting
the transactions and masking the error from the application user. When a DOWN
event occurs, FAN integrated clients immediately clean up connections to the
terminated database. When an UP event occurs, the FAN integrated clients create
new connections to the new primary database instance.

Oracle has integrated FAN with many of the common Oracle client drivers. Therefore,
the easiest way to use FAN is to use one of the following integrated Oracle clients:

• OCI session pools

• Universal Connection Pool for Java

• Thin JDBC Driver (12.2 and later)

• ODP.NET managed and un-managed providers

• All WebLogic server data sources, and Oracle Tuxedo

The overall goal is to enable applications to consistently obtain connections to the
available primary database at anytime.

FAN events are published using Oracle Notification Service. The publication
mechanisms are automatically configured as part of an Oracle RAC installation. Here,
an Oracle RAC installation means any installation of Oracle Clusterware with Oracle
RAC, Oracle RAC One Node, Oracle Data Guard (fast-start-failover), or Oracle Data
Guard single instance with Oracle Clusterware). Beginning with Oracle Database 12c
Release 1 (12.1), ONS is the primary notification mechanism for a new client (Oracle
Database 12c Release 1 (12.1)) and a new server (Oracle Database 12c Release 1

Chapter 6
Fast Application Notification (FAN) and Fast Connection Failover (FCF)

6-4

(12.1)), while the AQ HA notification feature is deprecated and maintained only or
backward compatibility when there is an older OCI or ODP.NET unmanaged client
(pre-Oracle Database 12c Release 1 (12.1)) or old server (pre-Oracle Database 12c
Release 1 (12.1)).

When you use JDBC or Oracle Database 12 c Release 1 (12.1.0.1) OCI or ODP.NET
clients, the Oracle Notification Service is automatically configured using your TNS.
When you use OCI-based clients, set HA notifications (-notification = TRUE) for
your services and set EVENTS in oraccess.xml.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about FAN

• Oracle Database Administrator's Guide for information about enabling
FAN events in an Oracle Restart environment

• Oracle Call Interface Programmer's Guide for more information about
receiving runtime connection load balancing advisory FAN events to
balance application session requests in an Oracle RAC environment with
Oracle Clusterware set up and enabled

• Oracle C++ Call Interface Programmer's Guide for more information
about runtime load balancing of the stateless connection pool by use of
service metrics distributed by the Oracle RAC load-balancing advisory

• Oracle Database JDBC Developer's Guide for more information about
fast connection failover

About Receiving FAN Event Notifications

Starting from Oracle Database 12c Release 2 (12.2), the Oracle RAC FAN APIs
provide an alternative for taking advantage of the high-availability (HA) features of
Oracle Database, if you do not use Universal Connection Pool or Oracle WebLogic
Server with Active Grid Link (AGL). This feature depends on the Oracle Notification
System (ONS) message transport mechanism.

This feature requires configuring your system, servers, and clients to use ONS. For
using Oracle RAC Fast Application Notification, the simplefan.jar file must be
present in the CLASSPATH, and either the ons.jar file must be present in the CLASSPATH
or an Oracle Notification Services (ONS) client must be installed and running in the
client system.

See Also:

Oracle Database JDBC Developer’s Guide for more information about Oracle
RAC FAN APIs.

Chapter 6
Fast Application Notification (FAN) and Fast Connection Failover (FCF)

6-5

About Fast Connection Failover (FCF)
In a configuration with a standby database, after you have added Oracle Notification
Services (ONS) to your Oracle Restart configurations and enabled Oracle Advanced
Queuing (AQ) HA notifications for your services, you can enable clients for Fast
Connection Failover (FCF). The clients then receive FAN events and can relocate
connections to the current primary database after an Oracle Data Guard failover.
Beginning with Oracle Database 12c Release 1 (12.1), ONS is the primary notification
mechanism for a new client (Oracle Database 12c Release 1 (12.1)) and a new server
(Oracle Database 12c Release 1 (12.1)), while the AQ HA notification feature is
deprecated and maintained only for backward compatibility when there is an old client
(pre-Oracle Database 12c Release 1 (12.1)) or old server (pre-Oracle Database 12c
Release 1 (12.1)).

For databases with no standby database configured, you can still configure the client
FAN events. When there is an outage (planned or unplanned), you can configure the
client to retry the connection to the database. Because Oracle Restart restarts the
failed database, the client can reconnect when the database restarts.

You must enable FAN events to provide FAN integrated clients support for FCF in an
Oracle Data Guard or standalone environment with no standby database.

FCF offers a driver-independent way for your Java Database Connectivity (JDBC)
application to take advantage of the connection failover facilities offered by Oracle
Database. FCF is integrated with implicit connection cache and Oracle RAC to provide
high availability event notification.

OCI clients can enable FCF by registering to receive notifications about Oracle Restart
high availability FAN events and respond when events occur. This improves the
session failover response time in OCI and removes terminated connections from
connection and session pools. This feature works on OCI applications, including those
that use Transparent Application Failover (TAF), connection pools, or session pools.

See Also:

• Oracle C++ Call Interface Programmer's Guide for more information
about runtime load balancing of the stateless connection pool by use of
service metrics distributed by the Oracle RAC load-balancing advisory

• Oracle Database JDBC Developer's Guide for more information about
fast connection failover

• Oracle Universal Connection Pool for JDBC Java API Reference

• Oracle Database Administrator's Guide for information about enabling
FCF for JDBC clients

• Oracle Database Administrator's Guide for information about enabling
FCF for OCI clients

• Oracle Database Administrator's Guide for information about enabling
FCF for ODP.NET clients

Chapter 6
Fast Application Notification (FAN) and Fast Connection Failover (FCF)

6-6

Application Continuity and Transaction Guard
Application Continuity is a DBA feature for failover. Transaction Guard is a developer
feature for coding failover yourself.

In Oracle high availability framework, JDBC clients, OCI clients, and ODP.NET clients
support fast application notification (FAN) messages. FAN is designed to quickly notify
an application of outages at the node, database, instance, service, and public network
levels. After being notified of the failure, an application can reestablish the failed
connection on a surviving instance.

Application Continuity is transparent to the application. This functionality is provided by
the Oracle Database 12c and the Oracle drivers. It is enabled by setting attributes on
the database service.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about Application Continuity

• Using Transaction Guard for more information about Transaction Guard

• Oracle Call Interface Programmer's Guide for more information about
OCI, Transaction Guard, and Application Continuity

• Oracle Database JDBC Developer's Guide for more information about
JDBC, Transaction Guard, and Application Continuity

Overview of Application Continuity
Application Continuity masks planned or unplanned outages (that cause database
session unavailability) by attempting to rebuild the database session transactional and
non-transactional states, so the outage appears to the user as no more than a delayed
execution.

Application Continuity works with the Oracle Database 12c and later server to
determine if the database session can be replayed. When a recoverable error occurs
that makes the database session unavailable, an error message is sent back to the
application. A driver receives the FAN message (down or interrupt) and aborts the
dead session.

If the last submission has replay enabled, the 12c driver prepares to replay the
submission and replays the saved statements for the request. Application Continuity
prepares replay by using Transaction Guard to determine the outcome of the last
operation submitted by the session that received the error. If the submission
committed and completed, the new session returns this result to the application and
continues with the nontransactional state established if the
SESSION_STATE_CONSISTENCY mode is STATIC, or exits if the
SESSION_STATE_CONSISTENCY mode is DYNAMIC. DYNAMIC session state consistency is
appropriate for most applications.

If FAILOVER_RESTORE is LEVEL1 or a callback has been set, the client (JDBC replay
driver, ODP.NET or OCI) initializes the connection to restore initial nontransactional

Chapter 6
Application Continuity and Transaction Guard

6-7

session state (NTSS). When replaying, preserved mutable data are restored if
permission has been granted. Validation is performed at the server to ensure that the
client-visible results are identical to the original submission. When replay is complete,
the application proceeds with its application logic returning to runtime mode as if all
that occurred was a delay in execution similar to that which happens under load.

In some cases, replay cannot restore the data that the client potentially made
decisions upon. The replay then returns the original error to the application and
appears like a delayed error.

Application Continuity supports recovering any outage that is due to database
unavailability against a copy of a database with the same DBID (forward in time) or
within an Active Data Guard farm. This may be Oracle RAC One, Oracle Real
Application Clusters, within an Active Data Guard, Multitenant using PDB relocate with
a RAC or across RACs or across to Active Data Guard (ADG).

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about Application Continuity

Overview of Transaction Guard
Transaction Guard is a reliable protocol and interface that returns the commit outcome
of the current in-flight transaction when an error, or a time-out is returned to the client.
Applications can leverage the Transaction Guard interface to code graceful
recoverable error handling. Providing unambiguous message during an outage greatly
improves the user experience.

Transaction Guard introduces the concept of at-most-once transaction semantics, also
referred to as transaction idempotence. When an application opens a connection to
the database using this service, the logical transaction ID (LTXID) is generated at
authentication and stored in the session handle at the database and a copy at the
client driver. This is a globally unique ID that identifies the database transaction from
the application perspective. Applications use the Transaction Guard interface to obtain
a known commit outcome following a recoverable error.

When there is an outage, an application using Transaction Guard can retrieve the
LTXID from the previous failed session's handle and use it to determine the outcome
of the transaction that was active prior to the session failure. If the LTXID is
determined to be UNCOMMITTED, then the application can return the UNCOMMITTED
outcome to the user to decide what action to take, or optionally, the application can
replay an uncommitted transaction. If the LTXID is determined to be COMMITTED, then
the transaction is committed and the application can return this outcome to the end
user and might be able to take a new connection and continue. Transaction Guard
also reports whether the last user call not only COMMITTED, but also whether it
completed changing needed non-transactional states - see USER_CALL_COMPLETED.

Chapter 6
Application Continuity and Transaction Guard

6-8

See Also:

Using Transaction Guard

Service and Load Management for Database Clouds
Topics:

About Service and Load Management for Database Clouds

About Service and Load Management for Database Clouds
The database cloud is a self-contained system of databases integrated by the service
and load management framework that ensures high performance, availability and
optimal utilization of resources. This framework provides effective balancing of
processing workload across distributed databases that maintain multiple synchronized
replicas both locally and in geographically disparate regional data centers. Replicas
may be instances in an Oracle RAC environment, or single instances interconnected
using Oracle Data Guard, Oracle Golden Gate, or any combination that supports
replication technology. Thus, the service and load management framework provides
dynamic load balancing, failover, and centralized service management for these
replicated databases.

A global service is a database service provided by multiple databases synchronized
through some form of data replication that satisfies quality of service requirements for
the service. This allows a client request for a service to be forwarded to any database
that provides that service.

A database pool within a database cloud consists of all databases that provide the
same global service that belong to the same administrative domain. The database
cloud is partitioned into multiple database pools to simplify service management and to
provide higher levels of security by allowing each pool to be administered by a
different administrator.

A global service manager (GSM) is a software component that provides service-level
load balancing and centralized management of services within the database cloud.
Load balancing is done at connection and runtime. Other capabilities provided by GSM
include creation, configuration, starting, stopping, and relocation of services and
maintaining global service properties such as cardinality and region locality. A region is
a logical boundary known as a data center that contains database clients and servers
that are considered close enough to each other so as to reduce network latency to
levels required by applications accessing these data centers.

The GSM can run on a separate host, or can be colocated with a database instance.
Every region must have at least one GSM instance running. For high availability,
Oracle recommends that you deploy multiple GSM instances in a region. A GSM
instance belongs to only one particular region; however, it manages global services in
all database pools associated with this region.

From an application developer's perspective, a client program connects to a regional
global service manager (GSM) and requests a connection to a global service. The
client need not specify which database or instance it requires. GSM forwards the

Chapter 6
Service and Load Management for Database Clouds

6-9

client's request to the optimal instance within a database pool in the database cloud
that offers the service.

Beginning with Oracle Database 12c Release 1 (12.1.0.1), the DBA can configure
client-side connect strings for database services in a Global Data Services (GDS)
framework using an Oracle Net string.

Introduced in Oracle Database 12c Release 1 (12.1.0.1), the logical transaction ID
(LTXID) is initially generated at authentication and stored in the session handle and
used to identify a database transaction from the application perspective. The logical
transaction ID is globally unique and identifies the transaction within a highly available
(HA) infrastructure.

Using the HA Framework, a client application (JDBC, OCI, and ODP.NET) supports
fast application notification (FAN) messages. FAN is designed to quickly notify an
application of outages at the node, database, instance, service, and public network
levels. After being notified of the outage, an application can reestablish the failed
connection on a surviving instance.

Beginning with Oracle Database 12c Release 1 (12.1.0.1), the DBA can configure
server-side settings for the database services used by the applications to support
Application Continuity for Java and Transaction Guard.

See Also:

• Oracle Database Concepts for an overview of global service
management and description of the physical and logical components of
the service and load management framework

• Oracle Database Global Data Services Concepts and Administration
Guide for more information about global service management in a
database cloud

• Oracle Database Global Data Services Concepts and Administration
Guide for more information about configuring database clients for
connectivity to the Global Data Services (GDS) framework.

• Oracle Call Interface Programmer's Guide for more information about
OCI, Application Continuity, and Transaction Guard

• Oracle Database JDBC Developer's Guide for more information about
JDBC, Application Continuity, and Transaction Guard

Chapter 6
Service and Load Management for Database Clouds

6-10

7
Advanced PL/SQL Features

This chapter introduces the advanced PL/SQL features and refers to other chapters or
documents for more information.

Topics:

• PL/SQL Data Types

• Dynamic SQL

• PL/SQL Optimize Level

• Compiling PL/SQL Units for Native Execution

• Exception Handling

• Conditional Compilation

• Bulk Binding

See Also:

• PL/SQL for Application Developers

• Oracle Database PL/SQL Language Reference for a complete
description of PL/SQL

PL/SQL Data Types
The PL/SQL data types include the SQL data types, additional scalar data types, and
composite data types. You define the composite data types. You can also define
subtypes of the scalar data types.

See Also:

PL/SQL Data Types

Dynamic SQL
Dynamic SQL is a programming methodology for generating and running SQL
statements at runtime. It is useful when writing general-purpose and flexible programs
like dynamic query systems, when writing programs that must run database definition
language (DDL) statements, or when you do not know at compile time the full text of a
SQL statement or the number or data types of its input and output variables.

7-1

See Also:

PL/SQL Dynamic SQL

PL/SQL Optimize Level
The PL/SQL optimize level determines how much the PL/SQL optimizer can rearrange
code for better performance. This level is set with the compilation parameter
PLSQL_OPTIMIZE_LEVEL.

See Also:

• Oracle Database Reference

• PLSQL_OPTIMIZE_LEVEL Compilation Parameter

Compiling PL/SQL Units for Native Execution
You can usually speed up PL/SQL units by compiling them into native code
(processor-dependent system code), which is stored in the SYSTEM tablespace.

See Also:

Compiling PL/SQL Units for Native Execution for more information about
compiling PL/SQL units for native execution

Exception Handling
Exceptions (PL/SQL runtime errors) can arise from design faults, coding mistakes,
hardware failures, and many other sources. You cannot anticipate all possible
exceptions, but you can write exception handlers that let your program to continue to
operate in their presence.

See Also:

Oracle Database PL/SQL Language Reference

Conditional Compilation
Conditional compilation lets you customize the functionality of a PL/SQL application
without removing source text. For example, you can:

Chapter 7
PL/SQL Optimize Level

7-2

• Use new features with the latest database release and disable them when running
the application in an older database release.

• Activate debugging or tracing statements in the development environment and
hide them when running the application at a production site.

However:

• Oracle recommends against using conditional compilation to change the attribute
structure of a type, which can cause dependent objects to "go out of sync" or
dependent tables to become inaccessible.

To change the attribute structure of a type, Oracle recommends using the ALTER
TYPE statement, which propagates changes to dependent objects.

• Conditional compilation is subject to restrictions.

See Also:

Oracle Database PL/SQL Language Reference.

Oracle Database SQL Language Reference

Bulk Binding
Bulk binding minimizes the performance overhead of the communication between
PL/SQL and SQL, which can greatly improve performance.

See Also:

Overview of Bulk Binding.

Chapter 7
Bulk Binding

7-3

Part II
SQL for Application Developers

This part presents information that application developers need about Structured
Query Language (SQL), which is used to manage information in an Oracle Database.

Chapters:

• SQL Processing for Application Developers

• Using SQL Data Types in Database Applications

• Using Regular Expressions in Database Applications

• Using Indexes in Database Applications

• Maintaining Data Integrity in Database Applications

See Also:

Oracle Database SQL Language Reference for a complete description of
SQL

8
SQL Processing for Application Developers

This chapter explains what application developers must know about how Oracle
Database processes SQL statements.

Topics:

• Description of SQL Statement Processing

• Grouping Operations into Transactions

• Ensuring Repeatable Reads with Read-Only Transactions

• Locking Tables Explicitly

• Using Oracle Lock Management Services (User Locks)

• Using Serializable Transactions for Concurrency Control

• Nonblocking and Blocking DDL Statements

• Autonomous Transactions

• Resuming Execution After Storage Allocation Errors

See Also:

Oracle Database Concepts

Description of SQL Statement Processing
This topic explains what happens during each stage of processing the execution of a
SQL statement, using a data manipulation language (DML) statement as an example.

Assume that you are using a Pro*C program to increase the salary for all employees in
a department. The program has connected to Oracle Database and you are connected
to the HR schema, which owns the employees table. You can embed this SQL
statement in your program:

EXEC SQL UPDATE employees SET salary = 1.10 * salary
 WHERE department_id = :department_id;

The program provides a value for the bind variable placeholder :department_id,
which the SQL statement uses when it runs.

Topics:

• Stages of SQL Statement Processing

• Shared SQL Areas

8-1

Stages of SQL Statement Processing

Note:

DML statements use all stages. Transaction management, session
management, and system management SQL statements use only stage 2
and stage 8.

1. Open or create a cursor.

A program interface call opens or creates a cursor, in expectation of a SQL
statement. Most applications create the cursor implicitly (automatically).
Precompiler programs can create the cursor either implicitly or explicitly.

2. Parse the statement.

The user process passes the SQL statement to Oracle Database, which loads a
parsed representation of the statement into the shared SQL area. Oracle
Database can catch many errors during parsing.

Note:

For a data definition language (DDL) statement, parsing includes data
dictionary lookup and execution.

3. Determine if the statement is a query.

4. If the statement is a query, describe its results.

Note:

This stage is necessary only if the characteristics of the result are
unknown; for example, when a user enters the query interactively.

Oracle Database determines the characteristics (data types, lengths, and names)
of the result.

5. If the statement is a query, define its output.

You specify the location, size, and data type of variables defined to receive each
fetched value. These variables are called define variables. Oracle Database
performs data type conversion if necessary.

6. Bind any variables.

Oracle Database has determined the meaning of the SQL statement but does not
have enough information to run it. Oracle Database needs values for any bind
variable placeholders in the statement. In the example, Oracle Database needs a
value for :department_id. The process of obtaining these values is called binding
variables.

Chapter 8
Description of SQL Statement Processing

8-2

A program must specify the location (memory address) of the value. End users of
applications may be unaware that they are specifying values for bind variable
placeholders, because the Oracle Database utility can prompt them for the values.

Because the program specifies the location of the value (that is, binds by
reference), it need not rebind the variable before rerunning the statement, even if
the value changes. Each time Oracle Database runs the statement, it gets the
value of the variable from its address.

You must also specify a data type and length for each value (unless they are
implied or defaulted) if Oracle Database must perform data type conversion.

7. (Optional) Parallelize the statement.

Oracle Database can parallelize queries and some data definition language (DDL)
operations (for example, index creation, creating a table with a subquery, and
operations on partitions). Parallelization causes multiple server processes to
perform the work of the SQL statement so that it can complete faster.

8. Run the statement.

Oracle Database runs the statement. If the statement is a query or an INSERT
statement, the database locks no rows, because no data is changing. If the
statement is an UPDATE or DELETE statement, the database locks all rows that the
statement affects, until the next COMMIT, ROLLBACK, or SAVEPOINT for the
transaction, thereby ensuring data integrity.

For some statements, you can specify multiple executions to be performed. This is
called array processing. Given n number of executions, the bind and define
locations are assumed to be the beginning of an array of size n.

9. If the statement is a query, fetch its rows.

Oracle Database selects rows and, if the query has an ORDER BY clause, orders the
rows. Each successive fetch retrieves another row of the result set, until the last
row has been fetched.

10. Close the cursor.

Oracle Database closes the cursor.

Note:

To rerun a transaction management, session management, or system
management SQL statement, use another EXECUTE statement.

See Also:

• Oracle Database Concepts for information about parsing

• Shared SQL Areas

• Oracle Database Concepts for information about the DEFINE stage

• Oracle Call Interface Programmer's Guide

• Pro*C/C++ Programmer's Guide

Chapter 8
Description of SQL Statement Processing

8-3

Shared SQL Areas
Oracle Database automatically detects when applications send similar SQL
statements to the database. The SQL area used to process the first occurrence of the
statement is shared—that is, used for processing subsequent occurrences of that
same statement. Therefore, only one shared SQL area exists for a unique statement.
Because shared SQL areas are shared memory areas, any Oracle Database process
can use a shared SQL area. The sharing of SQL areas reduces memory use on the
database server, thereby increasing system throughput.

In determining whether statements are similar or identical, Oracle Database compares
both SQL statements issued directly by users and applications and recursive SQL
statements issued internally by DDL statements.

See Also:

• Oracle Database Concepts for more information about shared SQL
areas

• Oracle Database SQL Tuning Guide for more information about shared
SQL

Grouping Operations into Transactions
Topics:

• Deciding How to Group Operations in Transactions

• Improving Transaction Performance

• Managing Commit Redo Action

• Determining Transaction Outcome After a Recoverable Outage

See Also:

Oracle Database Concepts for basic information about transactions

Deciding How to Group Operations in Transactions
Typically, deciding how to group operations in transactions is the concern of
application developers who use programming interfaces to Oracle Database. When
deciding how to group transactions:

• Define transactions such that work is accomplished in logical units and data
remains consistent.

• Ensure that data in all referenced tables is in a consistent state before the
transaction begins and after it ends.

Chapter 8
Grouping Operations into Transactions

8-4

• Ensure that each transaction consists only of the SQL statements or PL/SQL
blocks that comprise one consistent change to the data.

For example, suppose that you write a web application that lets users transfer funds
between accounts. The transaction must include the debit to one account, executed by
one SQL statement, and the credit to another account, executed by another SQL
statement. Both statements must fail or succeed as a unit of work; one statement must
not be committed without the other. Do not include unrelated actions, such as a
deposit to one account, in the transaction.

Improving Transaction Performance
As an application developer, you must try to improve performance. Consider using
these performance enhancement techniques when designing and writing your
application:

• For each transaction:

1. If you can use a single SQL statement, then do so.

2. If you cannot use a single SQL statement but you can use PL/SQL, then use
as little PL/SQL as possible.

3. If you cannot use PL/SQL (because it cannot do what you must do; for
example, read a directory), then use Java.

4. If you cannot use Java (for example, if it is too slow) or you have existing third-
generation language (3GL) code, then use an external C subprogram.

• Establish standards for writing SQL statements so that you can take advantage of
shared SQL areas.

Oracle Database recognizes identical SQL statements and lets them share
memory areas, reducing memory usage on the database server and increasing
system throughput.

• Collect statistics that Oracle Database can use to implement a cost-based
approach to SQL statement optimization, and use additional hints to the optimizer
as needed.

To collect most statistics, use the DBMS_STATS package, which lets you collect
statistics in parallel, collect global statistics for partitioned objects, and tune your
statistics collection in other ways.

To collect statistics unrelated to the cost-based optimizer (such as information
about free list blocks), use the SQL statement ANALYZE.

• Before beginning a transaction, invoke DBMS_APPLICATION_INFO procedures to
record the name of the transaction in the database for later use when tracking its
performance with Oracle Trace and the SQL trace facility.

• Increase user productivity and query efficiency by including user-written PL/SQL
functions in SQL expressions. For details, see.

Chapter 8
Grouping Operations into Transactions

8-5

See Also:

• Oracle Database Concepts for more information about transaction
management

• PL/SQL for Application Developers

• Developing Applications with Multiple Programming Languages

• Oracle Database SQL Language Reference for more information about
hints and ANALYZE statement

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_STATS package and DBMS_APPLICATION_INFO
package

• Invoking Stored PL/SQL Functions from SQL Statements

Managing Commit Redo Action
When a transaction updates Oracle Database, it generates a corresponding redo
entry. Oracle Database buffers the redo entry to the redo log until the transaction
completes. When the transaction commits, the log writer process (LGWR) writes redo
records to disk for the buffered redo entries of all changes in the transaction. By
default, Oracle Database writes the redo entries to disk before the call returns to the
client. This action causes a latency in the commit, because the application must wait
for the redo entries to be persistent on disk.

Oracle Database lets you change the handling of commit redo to fit the needs of your
application. If your application requires very high transaction throughput and you are
willing to trade commit durability for lower commit latency, then you can change the
default COMMIT options so that the application need not wait for the database to write
data to the online redo logs.

Table 8-1 describes the COMMIT options.

Caution:

With the NOWAIT option, a failure that occurs after the commit message is
received, but before the redo log records are written, can falsely indicate to a
transaction that its changes are persistent.

Chapter 8
Grouping Operations into Transactions

8-6

Table 8-1 COMMIT Statement Options

Option Effect

WAIT
(default)

Ensures that the COMMIT statement returns only after the corresponding redo
information is persistent in the online redo log. When the client receives a
successful return from this COMMIT statement, the transaction has been
committed to durable media.

A failure that occurs after a successful write to the log might prevent the success
message from returning to the client, in which case the client cannot tell whether
the transaction committed.

NOWAIT
(alternative
to WAIT)

The COMMIT statement returns to the client regardless of whether the write to the
redo log has completed. This behavior can increase transaction throughput.

BATCH
(alternative
to
IMMEDIATE)

Buffers the redo information to the redo log with concurrently running
transactions. After collecting sufficient redo information, initiates a disk write to
the redo log. This behavior is called group commit, because it writes redo
information for multiple transactions to the log in a single I/O operation.

IMMEDIATE
(default)

LGWR writes the transaction redo information to the log. Because this operation
option forces a disk I/O, it can reduce transaction throughput.

To change the COMMIT options, use either the COMMIT statement or the appropriate
initialization parameter.

Note:

You cannot change the default IMMEDIATE and WAIT action for distributed
transactions.

If your application uses Oracle Call Interface (OCI), then you can modify redo action
by setting these flags in the OCITransCommit function in your application:

• OCI_TRANS_WRITEWAIT

• OCI_TRANS_WRITENOWAIT

• OCI_TRANS_WRITEBATCH

• OCI_TRANS_WRITEIMMED

Caution:

OCI_TRANS_WRITENOWAIT can cause silent transaction loss with shutdown
termination, startup force, and any instance or node failure. On an Oracle
RAC system, asynchronously committed changes might not be immediately
available to read on other instances.

Chapter 8
Grouping Operations into Transactions

8-7

The specification of the NOWAIT and BATCH options has a small window of vulnerability
in which Oracle Database can roll back a transaction that your application views as
committed. Your application must be able to tolerate these scenarios:

• The database host fails, which causes the database to lose redo entries that were
buffered but not yet written to the online redo logs.

• A file I/O problem prevents LGWR from writing buffered redo entries to disk. If the
redo logs are not multiplexed, then the commit is lost.

See Also:

• Oracle Call Interface Programmer's Guide for information about the
OCITransCommit function

• Oracle Database SQL Language Reference

• Oracle Database Reference for information about initialization
parameters

Determining Transaction Outcome After a Recoverable Outage
A recoverable outage is a system, hardware, communication, or storage failure that
breaks the connection between your application (the client) and Oracle Database (the
server). After an outage, your application receives a disconnection error message. The
transaction that was running when the connection broke is the in-flight transaction,
which may or may not have been committed or run to completion.

To recover from the outage, your application must determine the outcome of the in-
flight transaction—whether it was committed and whether it made its intended session
state changes. If the transaction was not committed, then the application can either
resubmit the transaction or return the uncommitted status to the end user. If the
transaction was committed, then the application can return the committed status,
rather than the disconnection error, to the end user. If the transaction was both
committed and completed, then the application may be able to continue by taking a
new session and re-establishing the session state.

The Oracle Database feature that provides your application with the outcome of the in-
flight transaction and can be used to ensure that it is not duplicated is Transaction
Guard, and its application program interface (API) is the PL/SQL procedure
DBMS_APP_CONT.GET_LTXID_OUTCOME.

Topics:

• Understanding Transaction Guard

• Understanding DBMS_APP_CONT.GET_LTXID_OUTCOME

• Using Transaction Guard

Understanding Transaction Guard
Transaction Guard is an Oracle Database tool that you can use to provide your
application with the outcome of the in-flight transaction after an outage. The
application can use Transaction Guard to provide the end user with a known outcome

Chapter 8
Grouping Operations into Transactions

8-8

after an outage—committed or not committed—and, optionally, to replay the
transaction if it did not commit and the states are correct.

Transaction Guard provides the transaction outcome through its API, the PL/SQL
procedure DBMS_APP_CONT.GET_LTXID_OUTCOME.

Transaction Guard relies on the logical transaction identifier (LTXID), a globally
unique identifier that identifies the last in-flight transaction on a session that failed. The
database records the LTXID when the transaction is committed, and returns a new
LTXID to the client with the commit message (for each client round trip). The client
driver always holds the LTXID that will be used at the next COMMIT.

Note:

• Use Transaction Guard only to find the outcome of a session that failed
due to a recoverable error, to replace the communication error with the
real outcome.

• Do not use Transaction Guard on your own session.

• Do not use Transaction Guard on a live session.

To stop a live session, use ALTER SYSTEM KILL SESSION IMMEDIATE at the
local or remote instance.

See Also:

Understanding DBMS_APP_CONT.GET_LTXID_OUTCOME

How Transaction Guard Uses the LTXID
Transaction Guard uses the LTXID as follows:

• While a transaction is running, both Oracle Database (the server) and your
application (the client) hold the LTXID to be used at the next COMMIT.

• When the transaction is committed, Oracle Database records the LTXID with the
transaction. If the LTXID has already been committed or has been blocked, then
the database raises error, preventing duplication of the transaction.

• The LTXID persists in Oracle Database for the time specified by the
RETENTION_TIMEOUT parameter. The default is 24 hours. To change this value:

– When running Real Application Clusters, use Server Control Utility (SRVCTL).

– When not using Real Application Clusters, use the DBMS_SERVICE package.

If the transaction is remote or distributed, then its LTXID persists in the local
database.

The LTXID is transferred to Data Guard and Active Data Guard in the standard
redo apply.

• After a recoverable error:

Chapter 8
Grouping Operations into Transactions

8-9

– If the transaction has not been committed, then Oracle Database blocks its
LTXID to ensure that an earlier in-flight transaction with the same LTXID
cannot be committed.

This behavior allows the application to return the uncommitted result to the
user, who can then decide what to do, and also allows the application to safely
replay the application if desirable.

– If the transaction has been committed, then the application can return this
result to the end user, and if the state is correct, the application may be able to
continue.

• If the transaction is rolled back, then Oracle Database reuses its LTXID.

See Also:

• Transaction Guard Coverage, for a list of the sources whose commits
Transaction Guard supports

• Transaction Guard Exclusions, for a list of the sources whose commits
Transaction Guard does not support

• Oracle Real Application Clusters Administration and Deployment Guide
for more information about SRVCTL

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_SERVICE package

Understanding DBMS_APP_CONT.GET_LTXID_OUTCOME
The PL/SQL procedure DBMS_APP_CONT.GET_LTXID_OUTCOME is the API of Transaction
Guard. After an outage, your application can reconnect to Oracle Database and then
invoke this procedure to determine the outcome of the in-flight transaction.

DBMS_APP_CONT.GET_LTXID_OUTCOME has these parameters:

Parameter Name Data
Type

Paramet
er Mode

Value

CLIENT_LTXID RAW IN LTXID of the in-flight transaction

COMMITTED BOOLEAN OUT TRUE if the in-flight transaction was committed,
FALSE otherwise

USER_CALL_COMPL
ETED

BOOLEAN OUT TRUE if the in-flight transaction completed, FALSE
otherwise

Topics:

• CLIENT_LTXID Parameter

• COMMITTED Parameter

• USER_CALL_COMPLETED Parameter

• Exceptions

Chapter 8
Grouping Operations into Transactions

8-10

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_APP_CONT.GET_LTXID_OUTCOME

CLIENT_LTXID Parameter
Before your application (the client) can invoke DBMS_APP_CONT.GET_LTXID_OUTCOME
with the LTXID of the in-flight transaction, it must get the last LTXID in use at the client
driver by using a client driver. The client driver holds the LTXID of the transaction next
to be committed. In this case, the LTXID is for the in-flight transaction at the time of the
outage. Use getLTXID for JDBC-Thin driver, LogicalTransactionId for ODP.NET,
and OCI_ATTR_GET with LTXID for OCI and OCCI.

The JDBC-Thin driver also provides a callback that is triggered each time the LTXID at
the client driver changes. The callback can be used to maintain the current LTXID to
be used. The callback is particularly useful for application servers and applications that
must block repeated executions.

Note:

Your application must get the LTXID immediately before passing it to
DBMS_APP_CONT.GET_LTXID_OUTCOME. Getting the LTXID in advance could
lead to passing an earlier LTXID to DBMS_APP_CONT.GET_LTXID_OUTCOME,
causing the request to be rejected.

See Also:

• Oracle Database JDBC Developer’s Guide

• Oracle Call Interface Programmer's Guide

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

COMMITTED Parameter
After DBMS_APP_CONT.GET_LTXID_OUTCOME returns control to your application, your
application can check the value of the actual parameter that corresponds to the formal
parameter COMMITTED to determine whether the in-flight transaction was committed.

If the value of the actual parameter is TRUE, then the transaction was committed.

If the value of the actual parameter is FALSE, then the transaction was not committed.
Therefore, it is safe for the application to return the code UNCOMMITTED to the end user
or use it to replay the transaction.

To ensure that an earlier session does not commit the transaction after the application
returns UNCOMMITTED, DBMS_APP_CONT.GET_LTXID_OUTCOME blocks the LTXID. Blocking

Chapter 8
Grouping Operations into Transactions

8-11

the LTXID allows the end user to make a decision based on the uncommitted status,
or the application to replay the transaction, and prevents duplicate transactions.

USER_CALL_COMPLETED Parameter
Some transactions return information upon completion. For example: A transaction
that uses commit on success (auto-commit) might returns the number of affected rows,
or for a SELECT statement, the rows themselves; a transaction that invokes a PL/SQL
subprogram that has OUT parameters returns the values of those parameters; and a
transaction that invokes a PL/SQL function returns the function value. Also, a
transaction that invokes a PL/SQL subprogram might execute a COMMIT statement and
then do more work.

If your application needs information that the in-flight transaction returns upon
completion, or session state changes that the transaction does after committing its
database changes, then your application must determine whether the in-flight
transaction completed, which it can do by checking the value of the actual parameter
that corresponds to the formal parameter USER_CALL_COMPLETED.

If the value of the actual parameter is TRUE, then the transaction completed, and your
application has the information and work that it must continue.

If the value of the actual parameter is FALSE, then the call from the client may not have
completed. Therefore, your application might not have the information and work that it
must continue.

Exceptions
If your application (the client) and Oracle Database (the server) are no longer
synchronized, then the DBMS_APP_CONT.GET_LTXID_OUTCOME procedure raises one of
these exceptions:

Exception Explanation

ORA-14950 -
SERVER_AHEAD

The server is ahead of the client; that is, the LTXID that your application
passed to DBMS_APP_CONT.GET_LTXID_OUTCOME identifies a transaction
that is older than the in-flight transaction.

Your application must get the LTXID immediately before passing it to
DBMS_APP_CONT.GET_LTXID_OUTCOME.

ORA-14951 -
CLIENT_AHEAD

The client is ahead of the server. Either the server was "flashed back" to
an earlier state, was recovered using media recovery, or is a standby
database that was opened earlier and has lost data.

ORA-14906 -
SAME_SESSION

Executing GET_LTXID_OUTCOME is not supported on the session that owns
the LTXID, because the execution would block further processing on that
session.

ORA-14909 -
COMMIT_BLOCKED

Your session has been blocked from committing by another user with the
same username using GET_LTXID_OUTCOME. GET_LTXID_OUTCOME
should be called only on dead sessions. Blocking a live session is better
achieved using ALTER SYSTEM KILL SESSION IMMEDIATE. For help,
contact your application administrator.

ORA-14952
GENERAL ERROR

DBMS_APP_CONT.GET_LTXID_OUTCOME cannot determine the outcome of
the in-flight transaction. An error occurred during transaction processing,
and the error stack shows the error detail.

Chapter 8
Grouping Operations into Transactions

8-12

See Also:

• Using Oracle Flashback Technology

• Oracle Data Guard Concepts and Administration for information about
media recovery and standby databases

Using Transaction Guard
After your application (the client) receives an error message, it must follow these steps
to use Transaction Guard:

1. Determine if the error is due to an outage (recoverable).

For instructions, see the documentation for your client driver—OCI_ATTRIBUTE for
OCI, OCCI, and ODP.NET; isRecoverable for JDBC.

2. If the error is recoverable, then use the API of the client driver to get the logical
transaction identifier (LTXID) of the in-flight transaction.

For instructions, see the documentation for your client driver.

3. Reconnect to the database.

The session that your application acquires can be either new or pooled.

4. Invoke DBMS_APP_CONT.GET_LTXID_OUTCOME with the LTXID from step 2.

5. Check the value of the actual parameter that corresponds to the formal parameter
COMMITTED.

If the value is TRUE, then tell the application that the in-flight transaction was
committed. The application can return this result to the user, or continue if the
state is correct.

If the value is FALSE, then the application can return UNCOMMITTED or a similar
message to the user so that the user can choose the next step. Optionally, the
application can replay the transaction for the user. For example:

a. If necessary, clean up state changes on the client side.

b. Resubmit the in-flight transaction.

If you do not resubmit the in-flight transaction, and the application needs neither
information that the in-flight transaction returns upon completion nor work that the
transaction does after committing its database changes, then continue. Otherwise,
check the value of the actual parameter that corresponds to the formal parameter
USER_CALL_COMPLETED.

If the value is TRUE, then continue.

If the value is FALSE, then tell the application user that the application cannot
continue.

Ensuring Repeatable Reads with Read-Only Transactions
By default, Oracle Database guarantees statement-level read consistency, but not
transaction-level read consistency. With statement-level read consistency, queries
in a statement produce consistent data for the duration of the statement, not reflecting

Chapter 8
Ensuring Repeatable Reads with Read-Only Transactions

8-13

changes by other statements. With transaction-level read consistency (repeatable
reads), queries in the transaction produce consistent data for the duration of the
transaction, not reflecting changes by other transactions.

To ensure transaction-level read consistency for a transaction that does not include
DML statements, specify that the transaction is read-only. The queries in a read-only
transaction see only changes committed before the transaction began, so query
results are consistent for the duration of the transaction.

A read-only transaction provides transaction-level read consistency without acquiring
additional data locks. Therefore, while the read-only transaction is querying data, other
transactions can query and update the same data.

A read-only transaction begins with this statement:

SET TRANSACTION READ ONLY [NAME string];

Only DDL statements can precede the SET TRANSACTION READ ONLY statement. After
the SET TRANSACTION READ ONLY statement successfully runs, the transaction can
include only SELECT (without FOR UPDATE), COMMIT, ROLLBACK, or non-DML statements
(such as SET ROLE, ALTER SYSTEM, and LOCK TABLE). A COMMIT, ROLLBACK, or DDL
statement ends the read-only transaction.

See Also:

Oracle Database SQL Language Reference for more information about the
SET TRANSACTION statement

Long-running queries sometimes fail because undo information required for consistent
read (CR) operations is no longer available. This situation occurs when active
transactions overwrite committed undo blocks.

Automatic undo management lets your database administrator (DBA) explicitly control
how long the database retains undo information, using the parameter UNDO_RETENTION.
For example, if UNDO_RETENTION is 30 minutes, then the database retains all committed
undo information for at least 30 minutes, ensuring that all queries running for 30
minutes or less do not encounter the OER error "snapshot too old."

See Also:

• Oracle Database Concepts for more information about read consistency

• Oracle Database Administrator's Guide for information about long-
running queries and resumable space allocation

Locking Tables Explicitly
Oracle Database has default locking mechanisms that ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override these
mechanisms by locking tables explicitly. Locking tables explicitly is useful in situations
such as these:

Chapter 8
Locking Tables Explicitly

8-14

• A transaction in your application needs exclusive access to a resource, so that the
transaction does not have to wait for other transactions to complete.

• Your application needs transaction-level read consistency (repeatable reads).

To override default locking at the transaction level, use any of these SQL statements:

• LOCK TABLE

• SELECT with the FOR UPDATE clause

• SET TRANSACTION with the READ ONLY or ISOLATION LEVEL SERIALIZABLE option

Locks acquired by these statements are released after the transaction is committed or
rolled back.

The initialization parameter DML_LOCKS determines the maximum number of DML
locks. Although its default value is usually enough, you might need to increase it if you
use explicit locks.

Note:

If you override the default locking of Oracle Database at any level, ensure
that data integrity is guaranteed, data concurrency is acceptable, and
deadlocks are either impossible or appropriately handled.

See Also:

• Oracle Database Concepts

• Ensuring Repeatable Reads with Read-Only Transactions

• Using Serializable Transactions for Concurrency Control

• Oracle Database SQL Language Reference

Topics:

• Privileges Required to Acquire Table Locks

• Choosing a Locking Strategy

• Letting Oracle Database Control Table Locking

• Explicitly Acquiring Row Locks

• Examples of Concurrency Under Explicit Locking

Privileges Required to Acquire Table Locks
No special privileges are required to acquire any type of table lock on a table in your
own schema. To acquire a table lock on a table in another schema, you must have
either the LOCK ANY TABLE system privilege or any object privilege (for example, SELECT
or UPDATE) for the table.

Chapter 8
Locking Tables Explicitly

8-15

Choosing a Locking Strategy
A transaction explicitly acquires the specified table locks when a LOCK TABLE statement
is executed. A LOCK TABLE statement explicitly overrides default locking. When a LOCK
TABLE statement is issued on a view, the underlying base tables are locked. This
statement acquires exclusive table locks for the employees and departments tables on
behalf of the containing transaction:

LOCK TABLE employees, departments IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified for each LOCK TABLE statement.

Note:

When a table is locked, all rows of the table are locked. No other user can
modify the table.

In the LOCK TABLE statement, you can also indicate how long you want to wait for the
table lock:

• If you do not want to wait, specify either NOWAIT or WAIT 0.

You acquire the table lock only if it is immediately available; otherwise, an error
notifies you that the lock is unavailable now.

• To wait up to n seconds to acquire the table lock, specify WAIT n, where n is
greater than 0 and less than or equal to 100000.

If the table lock is still unavailable after n seconds, an error notifies you that the
lock is unavailable now.

• To wait indefinitely to acquire the lock, specify neither NOWAIT nor WAIT.

The database waits indefinitely until the table is available, locks it, and returns
control to you. When the database is running DDL statements concurrently with
DML statements, a timeout or deadlock can sometimes result. The database
detects such timeouts and deadlocks and returns an error.

See Also:

• Explicitly Acquiring Row Locks

• Oracle Database SQL Language Reference

Topics:

• When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE

• When to Lock with SHARE MODE

• When to Lock with SHARE ROW EXCLUSIVE MODE

Chapter 8
Locking Tables Explicitly

8-16

• When to Lock with EXCLUSIVE MODE

When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
ROW SHARE MODE and ROW EXCLUSIVE MODE table locks offer the highest degree of
concurrency. You might use these locks if:

• Your transaction must prevent another transaction from acquiring an intervening
share, share row, or exclusive table lock for a table before your transaction can
update that table.

If another transaction acquires an intervening share, share row, or exclusive table
lock, no other transactions can update the table until the locking transaction
commits or rolls back.

• Your transaction must prevent a table from being altered or dropped before your
transaction can modify that table.

When to Lock with SHARE MODE
SHARE MODE table locks are rather restrictive data locks. You might use these locks if:

• Your transaction only queries the table, and requires a consistent set of the table
data for the duration of the transaction.

• You can hold up other transactions that try to update the locked table, until all
transactions that hold SHARE MODE locks on the table either commit or roll back.

• Other transactions might acquire concurrent SHARE MODE table locks on the same
table, also giving them the option of transaction-level read consistency.

Caution:

Your transaction might not update the table later in the same transaction.
However, if multiple transactions concurrently hold share table locks for
the same table, no transaction can update the table (even if row locks
are held as the result of a SELECT FOR UPDATE statement). Therefore, if
concurrent share table locks on the same table are common, updates
cannot proceed and deadlocks are common. In this case, use share row
exclusive or exclusive table locks instead.

Scenario: Tables employees and budget_tab require a consistent set of data in a third
table, departments. For a given department number, you want to update the
information in employees and budget_tab, and ensure that no members are added to
the department between these two transactions.

Solution: Lock the departments table in SHARE MODE, as shown in Example 8-1.
Because the departments table is rarely updated, locking it probably does not cause
many other transactions to wait long.

Example 8-1 LOCK TABLE with SHARE MODE

-- Create and populate table:

DROP TABLE budget_tab;
CREATE TABLE budget_tab (
 sal NUMBER(8,2),

Chapter 8
Locking Tables Explicitly

8-17

 deptno NUMBER(4)
);

INSERT INTO budget_tab (sal, deptno)
 SELECT salary, department_id
 FROM employees;

-- Lock departments and update employees and budget_tab:

LOCK TABLE departments IN SHARE MODE;

UPDATE employees
 SET salary = salary * 1.1
 WHERE department_id IN
 (SELECT department_id FROM departments WHERE location_id = 1700);

UPDATE budget_tab
SET sal = sal * 1.1
WHERE deptno IN
 (SELECT department_id FROM departments WHERE location_id = 1700);

COMMIT; -- COMMIT releases lock

When to Lock with SHARE ROW EXCLUSIVE MODE
You might use a SHARE ROW EXCLUSIVE MODE table lock if:

• Your transaction requires both transaction-level read consistency for the specified
table and the ability to update the locked table.

• You do not care if other transactions acquire explicit row locks (using SELECT FOR
UPDATE), which might make UPDATE and INSERT statements in the locking
transaction wait and might cause deadlocks.

• You want only a single transaction to have this action.

When to Lock with EXCLUSIVE MODE
You might use an EXCLUSIVE MODE table if:

• Your transaction requires immediate update access to the locked table. When your
transaction holds an exclusive table lock, other transactions cannot lock specific
rows in the locked table.

• Your transaction also ensures transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

• You are not concerned about low levels of data concurrency, making transactions
that request exclusive table locks wait in line to update the table sequentially.

Letting Oracle Database Control Table Locking
If you let Oracle Database control table locking, your application needs less
programming logic, but also has less control than if you manage the table locks
yourself.

Issuing the statement SET TRANSACTION ISOLATION LEVEL SERIALIZABLE or ALTER
SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI serializability without
changing the underlying locking protocol. This technique gives concurrent access to

Chapter 8
Locking Tables Explicitly

8-18

the table while providing ANSI serializability. Getting table locks greatly reduces
concurrency.

See Also:

• Oracle Database SQL Language Reference for information about the
SET TRANSACTION statement

• Oracle Database SQL Language Reference for information about the
ALTER SESSION statements

Change the settings for these parameters only when an instance is shut down. If
multiple instances are accessing a single database, then all instances must use the
same setting for these parameters.

Explicitly Acquiring Row Locks
You can override default locking with a SELECT statement that includes the FOR UPDATE
clause. This statement acquires exclusive row locks for selected rows (as an UPDATE
statement does), in anticipation of updating the selected rows in a subsequent
statement.

You can use a SELECT FOR UPDATE statement to lock a row without changing it. For
example, several triggers in Oracle Database PL/SQL Language Reference show how
to implement referential integrity. In the EMP_DEPT_CHECK trigger, the row that contains
the referenced parent key value is locked to guarantee that it remains for the duration
of the transaction; if the parent key is updated or deleted, referential integrity is
violated.

SELECT FOR UPDATE statements are often used by interactive programs that let a user
modify fields of one or more specific rows (which might take some time); row locks are
acquired so that only a single interactive program user is updating the rows at any
given time.

If a SELECT FOR UPDATE statement is used when defining a cursor, the rows in the return
set are locked when the cursor is opened (before the first fetch) rather than being
locked as they are fetched from the cursor. Locks are released only when the
transaction that opened the cursor is committed or rolled back, not when the cursor is
closed.

Each row in the return set of a SELECT FOR UPDATE statement is locked individually; the
SELECT FOR UPDATE statement waits until the other transaction releases the conflicting
row lock. If a SELECT FOR UPDATE statement locks many rows in a table, and if the table
experiences much update activity, it might be faster to acquire an EXCLUSIVE table lock
instead.

Chapter 8
Locking Tables Explicitly

8-19

Note:

The return set for a SELECT FOR UPDATE might change while the query is
running; for example, if columns selected by the query are updated or rows
are deleted after the query started. When this happens, SELECT FOR UPDATE
acquires locks on the rows that did not change, gets a read-consistent
snapshot of the table using these locks, and then restarts the query to
acquire the remaining locks.

If your application uses the SELECT FOR UPDATE statement and cannot
guarantee that a conflicting locking request will not result in user-caused
deadlocks—for example, through ensuring that concurrent DML statements
on a table never affect the return set of the query of a SELECT FOR UPDATE
statement—then code the application always to handle such a deadlock
(ORA-00060) in an appropriate manner.

By default, the SELECT FOR UPDATE statement waits until the requested row lock is
acquired. To change this behavior, use the NOWAIT, WAIT, or SKIP LOCKED clause of the
SELECT FOR UPDATE statement. For information about these clauses, see Oracle
Database SQL Language Reference.

See Also:

• Oracle Database PL/SQL Language Reference

• Oracle Database SQL Language Reference

Examples of Concurrency Under Explicit Locking
Table 8-2 shows how Oracle Database maintains data concurrency, integrity, and
consistency when the LOCK TABLE statement and the SELECT statement with the FOR
UPDATE clause are used. For brevity, the message text for ORA-00054 ("resource busy
and acquire with NOWAIT specified") is not included. User-entered text is bold.

Note:

In tables compressed with Hybrid Columnar Compression (HCC), DML
statements lock compression units rather than rows.

Chapter 8
Locking Tables Explicitly

8-20

Table 8-2 Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

1
LOCK TABLE hr.departments
IN ROW SHARE MODE;

Statement processed.

2
DROP TABLE hr.departments;

DROP TABLE hr.departments
*
ORA-00054

(Exclusive DDL lock not possible
because Transaction 1 has table
locked.)

3
LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

4
SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;

LOCATION_ID

DALLAS

1 row selected.

5
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 2
locked same rows.)

6
ROLLBACK;

(Releases row locks.)

7
1 row processed.

ROLLBACK;

8
LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE;

Statement processed.

Chapter 8
Locking Tables Explicitly

8-21

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

9
LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

10
LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

11
LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

12
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

1 row processed.

13
ROLLBACK;

14
SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;

LOCATION_ID

DALLAS

1 row selected.

15
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

1 row processed.

(Waits because Transaction 1
locked same rows.)

16
ROLLBACK;

Chapter 8
Locking Tables Explicitly

8-22

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

17
1 row processed.

(Conflicting locks were released.)

ROLLBACK;

18
LOCK TABLE hr.departments
IN ROW SHARE MODE

Statement processed.

19
LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

20
LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

21
LOCK TABLE hr.departments
IN SHARE MODE;

Statement processed.

22
SELECT location_id
FROM hr.departments
WHERE department_id = 20;

LOCATION_ID

DALLAS

1 row selected.

23
SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;

LOCATION_ID

DALLAS

1 row selected.

Chapter 8
Locking Tables Explicitly

8-23

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

24
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 1 has
conflicting table lock.)

25
ROLLBACK;

26
1 row processed.

(Conflicting table lock released.)

ROLLBACK;

27
LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE;

Statement processed.

28
LOCK TABLE hr.departments
IN EXCLUSIVE MODE
NOWAIT;

ORA-00054

29
LOCK TABLE hr.departments
IN SHARE ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

30
LOCK TABLE hr.departments
IN SHARE MODE
NOWAIT;

ORA-00054

31
LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

32
LOCK TABLE hr.departments
IN SHARE MODE
NOWAIT;

ORA-00054

Chapter 8
Locking Tables Explicitly

8-24

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

33
SELECT location_id
FROM hr.departments
WHERE department_id = 20;

LOCATION_ID

DALLAS

1 row selected.

34
SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;

LOCATION_ID

DALLAS

1 row selected.

35
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 1 has
conflicting table lock.)

36
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 20;

(Waits because Transaction 2
locked same rows.)

(Deadlock.)

37
Cancel operation.

ROLLBACK;

38
1 row processed.

39
LOCK TABLE hr.departments
IN EXCLUSIVE MODE;

40
LOCK TABLE hr.departments
IN EXCLUSIVE MODE;

ORA-00054

Chapter 8
Locking Tables Explicitly

8-25

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

41
LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

42
LOCK TABLE hr.departments
IN SHARE MODE;

ORA-00054

43
LOCK TABLE hr.departments
IN ROW EXCLUSIVE MODE
NOWAIT;

ORA-00054

44
LOCK TABLE hr.departments
IN ROW SHARE MODE
NOWAIT;

ORA-00054

45
SELECT location_id
FROM hr.departments
WHERE department_id = 20;

LOCATION_ID

DALLAS

1 row selected.

46
SELECT location_id
FROM hr.departments
WHERE department_id = 20
FOR UPDATE OF location_id;

(Waits because Transaction 1 has
conflicting table lock.)

47
UPDATE hr.departments
SET department_id = 30
WHERE department_id = 20;

1 row processed.

48
COMMIT;

Chapter 8
Locking Tables Explicitly

8-26

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

49
0 rows selected.

(Transaction 1 released conflicting
lock.)

50
SET TRANSACTION READ ONLY;

51
SELECT location_id
FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

BOSTON

52
UPDATE hr.departments
SET location_id = 'NEW YORK'
WHERE department_id = 10;

1 row processed.

53
SELECT location_id
FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

BOSTON

(Transaction 1 does not see
uncommitted data.)

54
COMMIT;

55
SELECT location_id
FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

BOSTON

(Same result even after
Transaction 2 commits.)

56
COMMIT;

Chapter 8
Locking Tables Explicitly

8-27

Table 8-2 (Cont.) Examples of Concurrency Under Explicit Locking

Time Point Transaction 1 Transaction 2

57
SELECT location_id
FROM hr.departments
WHERE department_id = 10;

LOCATION_ID

NEW YORK

(Sees committed data.)

See Also:

Oracle Database Concepts

Using Oracle Lock Management Services (User Locks)
Your applications can use Oracle Lock Management services (user locks) by invoking
subprograms the DBMS_LOCK package. An application can request a lock of a specific
mode, give it a unique name (recognizable in another subprogram in the same or
another instance), change the lock mode, and release it. Because a reserved user lock
is an Oracle Database lock, it has all the features of a database lock, such as
deadlock detection. Ensure that any user locks used in distributed transactions are
released upon COMMIT, otherwise an undetected deadlock can occur.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_LOCK package

Topics:

• When to Use User Locks

• Viewing and Monitoring Locks

When to Use User Locks
User locks can help:

• Provide exclusive access to a device, such as a terminal

• Provide application-level enforcement of read locks

• Detect when a lock is released and clean up after the application

• Synchronize applications and enforce sequential processing

Chapter 8
Using Oracle Lock Management Services (User Locks)

8-28

Example 8-2 shows how the Pro*COBOL precompiler uses locks to ensure that there
are no conflicts when multiple people must access a single device.

Example 8-2 How the Pro*COBOL Precompiler Uses Locks

**
* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, more than $50 by check. *
* This code prints the check. One printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check, meaning that lines of output from multiple *
* cashiers can become interleaved if you do not ensure exclusive *
* access to the printer. The DBMS_LOCK package is used to *
* ensure exclusive access. *
**
CHECK-PRINT
* Get the lock "handle" for the printer lock.
 MOVE "CHECKPRINT" TO LOCKNAME-ARR.
 MOVE 10 TO LOCKNAME-LEN.
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
 END; END-EXEC.
* Lock the printer in exclusive mode (default mode).
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);
 END; END-EXEC.
* You now have exclusive use of the printer, print the check.
 ...
* Unlock the printer so other people can use it
EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);
 END; END-EXEC.

Viewing and Monitoring Locks
Table 8-3 describes the Oracle Database facilities that display locking information for
ongoing transactions within an instance.

Table 8-3 Ways to Display Locking Information

Tool Description

Performance
Monitoring Data
Dictionary Views

See Oracle Database Administrator's Guide.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock wait-for
graph in tree structured fashion. Using any SQL tool (such as
SQL*Plus) to run the script, it prints the sessions in the system that
are waiting for locks and the corresponding blocking locks. The
location of this script file is operating system dependent. (You must
have run the CATBLOCK.SQL script before using UTLLOCKT.SQL.)

Using Serializable Transactions for Concurrency Control
By default, Oracle Database permits concurrently running transactions to modify, add,
or delete rows in the same table, and in the same data block. When transaction A

Chapter 8
Using Serializable Transactions for Concurrency Control

8-29

changes a table, the changes are invisible to concurrently running transactions until
transaction A commits them. If transaction A tries to update or delete a row that
transaction B has locked (by issuing a DML or SELECT FOR UPDATE statement), then the
DML statement that A issued waits until B either commits or rolls back the transaction.
This concurrency model, which provides higher concurrency and thus better
performance, is appropriate for most applications.

However, some rare applications require serializable transactions. Serializable
transactions run concurrently in serialized mode. In serialized mode, concurrent
transactions can make only the database changes that they could make if they were
running serially (that is, one at a time). If a serialized transaction tries to change data
that another transaction changed after the serialized transaction began, then error
ORA-08177 occurs.

When a serializable transaction fails with ORA-08177, the application can take any of
these actions:

• Commit the work executed to that point.

• Run additional, different, statements, perhaps after rolling back to a prior savepoint
in the transaction.

• Roll back the transaction and then rerun it.

The transaction gets a transaction snapshot and the operation is likely to succeed.

Tip:

To minimize the performance overhead of rolling back and re running
transactions, put DML statements that might conflict with concurrent
transactions near the beginning of the transaction.

Note:

Serializable transactions do not work with deferred segment creation or
interval partitioning. Trying to insert data into an empty table with no segment
created, or into a partition of an interval partitioned table that does not yet
have a segment, causes an error.

Topics:

• Transaction Interaction and Isolation Level

• Setting Isolation Levels

• Serializable Transactions and Referential Integrity

• READ COMMITTED and SERIALIZABLE Isolation Levels

Transaction Interaction and Isolation Level
The ANSI/ISO SQL standard defines three kinds of transaction interaction:

Chapter 8
Using Serializable Transactions for Concurrency Control

8-30

Transaction Interaction Definition

Dirty read Transaction A reads uncommitted changes made by transaction
B.

Unrepeatable read Transaction A reads data, transaction B changes the data and
commits the changes, and transaction A rereads the data and
sees the changes.

Phantom read Transaction A runs a query, transaction B inserts new rows and
commits the change, and transaction A repeats the query and
sees the new rows.

The kinds of interactions that a transaction can have is determined by its isolation
level. The ANSI/ISO SQL standard defines four transaction isolation levels. Table 8-4
shows what kind of interactions are possible at each isolation level.

Table 8-4 ANSI/ISO SQL Isolation Levels and Possible Transaction
Interactions

Isolation Level Dirty Read Unrepeatable Read Phantom Read

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible

REPEATABLE READ Not possible Not possible Possible

SERIALIZABLE Not possible Not possible Not possible

Table 8-5 shows which ANSI/ISO SQL transaction isolation levels Oracle Database
provides.

Table 8-5 ANSI/ISO SQL Isolation Levels Provided by Oracle Database

Isolation Level Provided by Oracle Database

READ UNCOMMITTED No. Oracle Database never permits "dirty reads." Some other database
products use this undesirable technique to improve throughput, but it is
not required for high throughput with Oracle Database.

READ COMMITTED Yes, by default. In fact, because an Oracle Database query sees only
data that was committed at the beginning of the query (the snapshot
time), Oracle Database offers more consistency than the ANSI/ISO
SQL standard for READ COMMITTED isolation requires.

REPEATABLE READ Yes, if you set the transaction isolation level to SERIALIZABLE.

SERIALIZABLE Yes, if you set the transaction isolation level to SERIALIZABLE.

Figure 8-1 shows how an arbitrary transaction (that is, one that is either SERIALIZABLE
or READ COMMITTED) interacts with a serializable transaction.

Chapter 8
Using Serializable Transactions for Concurrency Control

8-31

Figure 8-1 Interaction Between Serializable Transaction and Another
Transaction

TRANSACTION A
(arbitrary)

begin work
update row 2
in block 1

Issue update "too recent" �
for B to see

TIME

TRANSACTION B
(serializable)

SET TRANSACTION
ISOLATION LEVEL
SERIALIZABLE
read row 1 in block 1

Change other row in
same block, see own
changes

update row 1 in block 1
read updated row 1 in
block 1

insert row 4
Create possible
"phantom" row

Uncommitted changes
invisible

read old row 2 in block 1
search for row 4
(notfound)

commit
Make changes visible
to transactions that
begin later

Make changes
after A commits update row 3 in block 1

B can see its own changes �
but not the committed �
changes of transaction A.

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

Failure on attempt to update �
row updated and committed �
since transaction B began

update row 2 in block 1
FAILS; rollback and retry

Setting Isolation Levels
To set the transaction isolation level for every transaction in your session, use the
ALTER SESSION statement.

To set the transaction isolation level for a specific transaction, use the ISOLATION
LEVEL clause of the SET TRANSACTION statement. The SET TRANSACTION statement,
must be the first statement in the transaction.

Chapter 8
Using Serializable Transactions for Concurrency Control

8-32

Note:

If you set the transaction isolation level to SERIALIZABLE, then you must use
the ALTER TABLE statement to set the INITRANS parameter to at least 3. Use
higher values for tables for which many transactions update the same blocks.
For more information about INITRANS.

See Also:

Oracle Database SQL Language Reference

Serializable Transactions and Referential Integrity
Because Oracle Database does not use read locks, even in SERIALIZABLE
transactions, data read by one transaction can be overwritten by another. Therefore,
transactions that perform database consistency checks at the application level must
not assume that the data they read does not change during the transaction (even
though such changes are invisible to the transaction). Code your application-level
consistency checks carefully, even when using SERIALIZABLE transactions.

In Figure 8-2, transactions A and B (which are either READ COMMITTED or SERIALIZABLE)
perform application-level checks to maintain the referential integrity of the parent/child
relationship between two tables. Transaction A queries the parent table to check that it
has a row with a specific primary key value before inserting corresponding child rows
into the child table. Transaction B queries the child table to check that no child rows
exist for a specific primary key value before deleting the corresponding parent row
from the parent table. Both transactions assume (but do not ensure) that the data they
read does not change before the transaction completes.

Chapter 8
Using Serializable Transactions for Concurrency Control

8-33

Figure 8-2 Referential Integrity Check

TRANSACTION A TRANSACTION B

read parent (it exists) read child rows (not found)

insert child row(s) delete parent

commit work commit work

A's query does
not prevent this
delete

B's query does
not prevent this
insert

The query by transaction A does not prevent transaction B from deleting the parent
row, and the query by transaction B does not prevent transaction A from inserting child
rows. Therefore, this can happen:

1. Transaction A queries the parent table and finds the specified parent row.

2. Transaction B queries the child table and finds no child rows for the specified
parent row.

3. Having found the specified parent row, transaction A inserts the corresponding
child rows into the child table.

4. Having found no child rows for the specified parent row, transaction B deletes the
specified parent row from the parent table.

Now the child rows that transaction A inserted in step 3 have no parent row.

The preceding result can occur even if both A and B are SERIALIZABLE transactions,
because neither transaction prevents the other from changing the data that it reads to
check consistency.

Ensuring that data queried by one transaction is not concurrently changed or deleted
by another requires more transaction isolation than the ANSI/ISO SQL standard
SERIALIZABLE isolation level provides. However, in Oracle Database:

• Transaction A can use a SELECT FOR UPDATE statement to query and lock the
parent row, thereby preventing transaction B from deleting it.

• Transaction B can prevent transaction A from finding the parent row (thereby
preventing A from inserting the child rows) by reversing the order of its processing
steps. That is, transaction B can:

1. Delete the parent row.

2. Query the child table.

Chapter 8
Using Serializable Transactions for Concurrency Control

8-34

3. If the deleted parent row has child rows in the child table, then roll back the
deletion of the parent row.

Alternatively, you can enforce referential integrity with a trigger. Instead of having
transaction A query the parent table, define on the child table a row-level BEFORE
INSERT trigger that does this:

• Queries the parent table with a SELECT FOR UPDATE statement, thereby ensuring
that if the parent row exists, then it remains in the database for the duration of the
transaction that inserts the child rows.

• Rejects the insertion of the child rows if the parent row does not exist.

A trigger runs SQL statements in the context of the triggering statement (that is, the
triggering and triggered statements see the database in the same state). Therefore, if
a READ COMMITTED transaction runs the triggering statement, then the triggered
statements see the database as it was when the triggering statement began to
execute. If a SERIALIZABLE transaction runs the triggering statement, then the
triggered statements see the database as it was at the beginning of the transaction. In
either case, using SELECT FOR UPDATE in the trigger correctly enforces referential
integrity.

See Also:

• Oracle Database SQL Language Reference for information about the
FOR UPDATE clause of the SELECT statement

• Oracle Database PL/SQL Language Reference for more information
about using triggers to maintain referential integrity between parent and
child tables

READ COMMITTED and SERIALIZABLE Isolation Levels
Oracle Database provides two transaction isolation levels, READ COMMITTED and
SERIALIZABLE. Both levels provide a high degree of consistency and concurrency,
reduce contention, and are designed for real-world applications. This topic compares
them and explains how to choose between them.

Topics:

• Transaction Set Consistency Differences

• Choosing Transaction Isolation Levels

Transaction Set Consistency Differences
An operation (query or transaction) is transaction set consistent if all of its read
operations return data written by the same set of committed transactions. When an
operation is not transaction set consistent, some of its read operations reflect the
changes of one set of transactions and others reflect the changes of other sets of
transactions; that is, the operation sees the database in a state that reflects no single
set of committed transactions.

Chapter 8
Using Serializable Transactions for Concurrency Control

8-35

Topics:

• Oracle Database

• Other Database Systems

Oracle Database
Oracle Database transactions with READ COMMITTED isolation level are transaction set
consistent on an individual-statement basis, because all rows that a query reads must
be committed before the query begins.

Oracle Database transactions with SERIALIZABLE isolation level are transaction set
consistent on an individual-transaction basis, because all statements in a
SERIALIZABLE transaction run on an image of the database as it was at the beginning
of the transaction.

Other Database Systems
In other database systems, a single query with READ UNCOMMITTED isolation level is not
transaction set consistent, because it might see only a subset of the changes made by
another transaction. For example, a join of a master table with a detail table can see a
master record inserted by another transaction, but not the corresponding details
inserted by that transaction (or the reverse). READ COMMITTED isolation level avoids this
problem, providing more consistency than read-locking systems do.

In read-locking systems, at the cost of preventing concurrent updates, the REPEATABLE
READ isolation level provides transaction set consistency at the statement level, but not
at the transaction level. Due to the absence of phantom read protection, two queries in
the same transaction can see data committed by different sets of transactions. In
these systems, only the throughput-limiting and deadlock-susceptible SERIALIZABLE
isolation level provides transaction set consistency at the transaction level.

Choosing Transaction Isolation Levels
The choice of transaction isolation level depends on performance and consistency
needs and application coding requirements. There is a trade-off between concurrency
(transaction throughput) and consistency. Consider the application and workload when
choosing isolation levels for its transactions. Different transactions can have different
isolation levels.

For environments with many concurrent users rapidly submitting transactions, consider
expected transaction arrival rate, response time demands, and required degree of
consistency.

READ COMMITTED isolation can provide considerably more concurrency with a somewhat
increased risk of inconsistent results (from unrepeatable and phantom reads) for some
transactions.

SERIALIZABLE isolation provides somewhat more consistency (by protecting against
phantoms and unrepeatable reads), which might be important where a read/write
transaction runs a query more than once. However, SERIALIZABLE isolation requires
applications to check for the "cannot serialize access" error, and this checking can
significantly reduce throughput in an environment with many concurrent transactions
accessing the same data for update.

Chapter 8
Using Serializable Transactions for Concurrency Control

8-36

As explained in Serializable Transactions and Referential Integrity reads do not block
writes in either READ COMMITTED or SERIALIZABLE transactions.

Table 8-6 summarizes the similarities and differences between READ COMMITTED and
SERIALIZABLE transactions.

Table 8-6 Comparison of READ COMMITTED and SERIALIZABLE Transactions

Operation READ
COMMITTED

SERIALIZABLE

Dirty write Not Possible Not Possible

Dirty read Not Possible Not Possible

Unrepeatable read Possible Not Possible

Phantom read Possible Not Possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "cannot serialize access" error No Yes

Error after blocking transaction terminates No No

Error after blocking transaction commits No Yes

See Also:

Serializable Transactions and Referential Integrity

Nonblocking and Blocking DDL Statements
The distinction between nonblocking and blocking DDL statements matters only for
DDL statements that change either tables or indexes (which depend on tables).

When a session issues a DDL statement that affects object X, the session waits until
every concurrent DML statement that references X is either committed or rolled back.

While the session waits, concurrent sessions might issue new DML statements. If the
DDL statement is nonblocking, then the new DML statements execute immediately. If
the DDL statement is blocking, then the new DML statements execute after the DDL
statement completes, either successfully or with an error.

The DDL_LOCK_TIMEOUT parameter affects blocking DDL statements (but not
nonblocking DDL statements). Therefore, a blocking DDL statement can complete with
error ORA-00054 (resource busy and acquire with NOWAIT specified or timeout expired).

Chapter 8
Nonblocking and Blocking DDL Statements

8-37

A DDL statement that applies to a partition of a table is blocking for that partition but
nonblocking for other partitions of the same table.

Note:

If supplemental logging is enabled at database level (for a multitenant
container database or pluggable database), then the database treats
nonblocking DDL statements like blocking DDL statements.

Caution:

Do not issue a nonblocking DDL statement in an autonomous transaction.
See Autonomous Transactions for information about autonomous
transactions

See Also:

• Oracle Database Reference for information about the DDL_LOCK_TIMEOUT
parameter

• B Automatic and Manual Locking Mechanisms During SQL Operations
for a list of nonblocking DDL statements

• ALTER DATABASE for information about enabling and disabling
supplemental logging

Autonomous Transactions

Caution:

Do not issue a nonblocking DDL statement in an autonomous transaction.

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). An autonomous transaction lets you suspend
the main transaction, do SQL operations, commit or roll back those operations, and
then resume the main transaction.

For example, in a stock purchase transaction, you might want to commit customer
information regardless of whether the purchase succeeds. Or, you might want to log
error messages to a debug table even if the transaction rolls back. Autonomous
transactions let you do such tasks.

An autonomous transaction runs within an autonomous scope; that is, within the
scope of an autonomous routine—a routine that you mark with the
AUTONOMOUS_TRANSACTION pragma. In this context, a routine is one of these:

Chapter 8
Autonomous Transactions

8-38

• Schema-level (not nested) anonymous PL/SQL block

• Standalone, package, or nested subprogram

• Method of an ADT

• Noncompound trigger

An autonomous routine can commit multiple autonomous transactions.

Figure 8-3 shows how control flows from the main transaction (proc1) to an
autonomous routine (proc2) and back again. The autonomous routine commits two
transactions (AT1 and AT2) before control returns to the main transaction.

Figure 8-3 Transaction Control Flow

PROCEDURE proc1 IS

 emp_id NUMBER;

BEGIN

 emp_id := 7788;

 INSERT ...

SELECT ...

 proc2;

 DELETE ...

 COMMIT;

END;

PROCEDURE proc2 IS

 PRAGMA AUTON...

 dept_id NUMBER;

BEGIN

 dept_id := 20;

 UPDATE ...

 INSERT ...

 UPDATE ...

 COMMIT;

 INSERT ...

 INSERT ...

 COMMIT;

END;

Main Transaction Autonomous Transaction

MT ends

MT begins

MT suspends

AT1 begins

AT1 ends

AT2 begins

AT2 ends

MT resumes

When you enter the executable section of an autonomous transaction, the main
transaction suspends. When you exit the transaction, the main transaction resumes.
COMMIT and ROLLBACK end the active autonomous transaction but do not exit the
autonomous transaction. As Figure 8-3 shows, when one transaction ends, the next
SQL statement begins another transaction.

More characteristics of autonomous transactions:

• The changes an autonomous transaction effects do not depend on the state or the
eventual disposition of the main transaction. For example:

– An autonomous transaction does not see changes made by the main
transaction.

– When an autonomous transaction commits or rolls back, it does not affect the
outcome of the main transaction.

• The changes an autonomous transaction effects are visible to other transactions
as soon as that autonomous transaction commits. Therefore, users can access the
updated information without having to wait for the main transaction to commit.

• Autonomous transactions can start other autonomous transactions.

Figure 8-4 shows some possible sequences that autonomous transactions can follow.

Chapter 8
Autonomous Transactions

8-39

Figure 8-4 Possible Sequences of Autonomous Transactions

AT Scope 1 AT Scope 2 AT Scope 3 AT Scope 4MT Scope

A main transaction scope
(MT Scope) begins the main
transaction, MTx. MTx
invokes the first autonomous
transaction scope (AT
Scope1). MTx suspends. AT
Scope 1 begins the
transaction Tx1.1.

At Scope 1 commits or rolls
back Tx1.1, than ends. MTx
resumes.

MTx invokes AT Scope 2. MT
suspends, passing control to
AT Scope 2 which, initially, is
performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Later, AT Scope 2 begins a
second transaction, Tx2.2,
then commits or rolls it back.

AT Scope 2 performs a few
queries, then ends, passing
control back to MTx.

MTx invokes AT Scope 3.
MTx suspends, AT Scope 3
begins.

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls
back Tx3.1, then ends. MTx
resumes.

Finally, MT Scope commits or
rolls back MTx, then ends.

MTx

Tx1.1

MTx

Tx2.1

Tx2.2

MTx

Tx3.1

Tx4.1

Tx3.1

MTx

Topics:

• Examples of Autonomous Transactions

• Declaring Autonomous Routines

See Also:

• Oracle Database PL/SQL Language Reference for detailed information
about autonomous transactions

• Nonblocking and Blocking DDL Statements for information about
nonblocking DDL statements

Chapter 8
Autonomous Transactions

8-40

Examples of Autonomous Transactions
This section shows examples of autonomous transactions.

Topics:

• Ordering a Product

• Withdrawing Money from a Bank Account

As these examples show, there are four possible outcomes when you use
autonomous and main transactions (see Table 8-7). There is no dependency between
the outcome of an autonomous transaction and that of a main transaction.

Table 8-7 Possible Transaction Outcomes

Autonomous
Transaction

Main Transaction

Commits Commits

Commits Rolls back

Rolls back Commits

Rolls back Rolls back

Ordering a Product
Figure 8-5 shows an example of a customer ordering a product. The customer
information (such as name, address, phone) is committed to a customer information
table—even though the sale does not go through.

Figure 8-5 Example: A Buy Order

AT Scope MT Scope

MT Scope begins the main
transaction, MTx inserts the
buy order into a table.

MTx invokes the autonomous
transaction scope (AT
Scope). When AT Scope
begins, MT Scope suspends.

ATx, updates the audit table
with customer information.

MTx seeks to validate the
order, finds that the selected
item is unavailable, and
therefore rolls back the main
transaction.

ATx

MTx

Withdrawing Money from a Bank Account
In this example, a customer tries to withdraw money from a bank account. In the
process, a main transaction invokes one of two autonomous transaction scopes (AT
Scope 1 or AT Scope 2).

Chapter 8
Autonomous Transactions

8-41

The possible scenarios for this transaction are:

• Scenario 1: Sufficient Funds

• Scenario 2: Insufficient Funds with Overdraft Protection

• Scenario 3: Insufficient Funds Without Overdraft Protection

Scenario 1: Sufficient Funds
There are sufficient funds to cover the withdrawal, so the bank releases the funds (see
Figure 8-6).

Figure 8-6 Bank Withdrawal—Sufficient Funds

AT Scope 1 AT Scope 2MT Scope

MTx generates a
transaction ID.

Tx1.1 inserts the transaction
ID into the audit table and
commits.

MTx validates the balance on
the account.

Tx2.1, updates the audit table
using the transaction ID
generated above, then
commits.

MTx releases the funds. MT
Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx

Scenario 2: Insufficient Funds with Overdraft Protection
There are insufficient funds to cover the withdrawal, but the customer has overdraft
protection, so the bank releases the funds (see Figure 8-7).

Chapter 8
Autonomous Transactions

8-42

Figure 8-7 Bank Withdrawal—Insufficient Funds with Overdraft Protection

AT Scope 1 AT Scope 2MT Scope

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer has overdraft
protection and sets a flag to
the appropriate value.

Tx2.1, updates the
audit table.

MTx, releases the funds. MT
Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx

Scenario 3: Insufficient Funds Without Overdraft Protection
There are insufficient funds to cover the withdrawal and the customer does not have
overdraft protection, so the bank withholds the requested funds (see Figure 8-8).

Chapter 8
Autonomous Transactions

8-43

Figure 8-8 Bank Withdrawal—Insufficient Funds Without Overdraft Protection

AT Scope 1 AT Scope 2MT Scope

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MTx

Tx1.1

MTx

Tx2.1

MTx

Declaring Autonomous Routines
To declare an autonomous routine, use PRAGMA AUTONOMOUS_TRANSACTION, which
instructs the PL/SQL compiler to mark the routine as autonomous.

See Also:

Oracle Database PL/SQL Language Reference for more information about
PRAGMA AUTONOMOUS_TRANSACTION

In Example 8-3, the function balance is autonomous.

Example 8-3 Marking a Package Subprogram as Autonomous

-- Create table for package to use:

DROP TABLE accounts;
CREATE TABLE accounts (account INTEGER, balance REAL);

-- Create package:

CREATE OR REPLACE PACKAGE banking AS
 FUNCTION balance (acct_id INTEGER) RETURN REAL;
 -- Additional functions and packages
END banking;

Chapter 8
Autonomous Transactions

8-44

/
CREATE OR REPLACE PACKAGE BODY banking AS
 FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
 BEGIN
 SELECT balance INTO my_bal FROM accounts WHERE account=acct_id;
 RETURN my_bal;
 END;
 -- Additional functions and packages
END banking;
/

Resuming Execution After Storage Allocation Errors
When a long-running transaction is interrupted by a storage allocation error, the
application can suspend the statement that encountered the problem, correct the
problem, and then resume executing the statement. This capability, called resumable
storage allocation, avoids time-consuming rollbacks. It also makes it unnecessary to
split the operation into smaller pieces and write code to track its progress.

See Also:

Oracle Database Administrator's Guide for more information about
resumable storage allocation

Topics:

• What Operations Have Resumable Storage Allocation?

• Handling Suspended Storage Allocation

What Operations Have Resumable Storage Allocation?
Queries, DML statements, and some DDL statements have resumable storage
allocation after these kinds of errors:

• Out-of-space errors, such as ORA-01653.

• Space-limit errors, such as ORA-01628.

• Space-quota errors, such as ORA-01536.

Resumable storage allocation is possible whether the operation is performed directly
by a SQL statement or within SQL*Loader, a stored subprogram, an anonymous
PL/SQL block, or an OCI call such as OCIStmtExecute.

In dictionary-managed tablespaces, you cannot resume an index- or table-creating
operation that encounters the limit for rollback segments or the maximum number of
extents. You must use locally managed tablespaces and automatic undo management
in combination with resumable storage allocation.

Chapter 8
Resuming Execution After Storage Allocation Errors

8-45

Handling Suspended Storage Allocation
When a statement in an application is suspended because of a storage allocation
error, the application does not receive an error code. Therefore, either the application
must use an AFTER SUSPEND trigger or the DBA must periodically check for suspended
statements.

After the problem is corrected (usually by the DBA), the suspended statement
automatically resumes execution. If the timeout period expires before the problem is
corrected, then the statement raises a SERVERERROR exception.

Topics:

• Using an AFTER SUSPEND Trigger in the Application

• Checking for Suspended Statements

Using an AFTER SUSPEND Trigger in the Application
In the application, an AFTER SUSPEND trigger can get information about the problem by
invoking subprograms in the DBMS_RESUMABLE package. Then the trigger can send the
information to an operator, using email (for example).

To reduce the chance of out-of-space errors within the trigger itself, declare the trigger
as an autonomous transaction. As an autonomous transaction, the trigger uses a
rollback segment in the SYSTEM tablespace. If the trigger encounters a deadlock
condition because of locks held by the suspended statement, then the trigger
terminates and the application receives the original error code, as if the statement
were never suspended. If the trigger encounters an out-of-space condition, then both
the trigger and the suspended statement are rolled back. To prevent rollback, use an
exception handler in the trigger to wait for the statement to resume.

The trigger in Example 8-4 handles storage errors within the database. For some kinds
of errors, the trigger terminates the statement and alerts the DBA, using e‐mail. For
other errors, which might be temporary, the trigger specifies that the statement waits
for eight hours before resuming, expecting the storage problem to be fixed by then. To
run this example, you must connect to the database as SYSDBA.

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database PL/SQL Language Reference

Example 8-4 AFTER SUSPEND Trigger Handles Suspended Storage Allocation

-- Create table used by trigger body

DROP TABLE rbs_error;
CREATE TABLE rbs_error (
 SQL_TEXT VARCHAR2(64),
 ERROR_MSG VARCHAR2(64),
 SUSPEND_TIME VARCHAR2(64)
);

Chapter 8
Resuming Execution After Storage Allocation Errors

8-46

-- Resumable Storage Allocation

CREATE OR REPLACE TRIGGER suspend_example
 AFTER SUSPEND
 ON DATABASE
DECLARE
 cur_sid NUMBER;
 cur_inst NUMBER;
 err_type VARCHAR2(64);
 object_owner VARCHAR2(64);
 object_type VARCHAR2(64);
 table_space_name VARCHAR2(64);
 object_name VARCHAR2(64);
 sub_object_name VARCHAR2(64);
 msg_body VARCHAR2(64);
 ret_value BOOLEAN;
 error_txt VARCHAR2(64);
 mail_conn UTL_SMTP.CONNECTION;
BEGIN
 SELECT DISTINCT(SID) INTO cur_sid FROM V$MYSTAT;
 cur_inst := USERENV('instance');
 ret_value := DBMS_RESUMABLE.SPACE_ERROR_INFO
 (err_type,
 object_owner,
 object_type,
 table_space_name,
 object_name,
 sub_object_name);
 IF object_type = 'ROLLBACK SEGMENT' THEN
 INSERT INTO rbs_error
 (SELECT SQL_TEXT, ERROR_MSG, SUSPEND_TIME
 FROM DBA_RESUMABLE
 WHERE SESSION_ID = cur_sid
 AND INSTANCE_ID = cur_inst);

 SELECT ERROR_MSG INTO error_txt
 FROM DBA_RESUMABLE
 WHERE SESSION_ID = cur_sid
 AND INSTANCE_ID = cur_inst;

 msg_body :=
 'Space error occurred: Space limit reached for rollback segment '
 || object_name || ' on ' || to_char(SYSDATE, 'Month dd, YYYY, HH:MIam')
 || '. Error message was: ' || error_txt;

 mail_conn := UTL_SMTP.OPEN_CONNECTION('localhost', 25);
 UTL_SMTP.HELO(mail_conn, 'localhost');
 UTL_SMTP.MAIL(mail_conn, 'sender@localhost');
 UTL_SMTP.RCPT(mail_conn, 'recipient@localhost');
 UTL_SMTP.DATA(mail_conn, msg_body);
 UTL_SMTP.QUIT(mail_conn);
 DBMS_RESUMABLE.ABORT(cur_sid);
 ELSE
 DBMS_RESUMABLE.SET_TIMEOUT(3600*8);
 END IF;
 COMMIT;
END;
/

Chapter 8
Resuming Execution After Storage Allocation Errors

8-47

Checking for Suspended Statements
If the application does not use an AFTER SUSPEND trigger, then the DBA must
periodically check for suspended statements, using the static data dictionary view
DBA_RESUMABLE .

The DBA can get additional information from the dynamic performance view
V$_SESSION_WAIT.

See Also:

• DBA_RESUMABLE

• V$_SESSION_WAIT

Chapter 8
Resuming Execution After Storage Allocation Errors

8-48

9
Using SQL Data Types in Database
Applications

This chapter explains how to choose the correct SQL data types for database columns
that you create for your database applications.

Topics:

• Using the Correct and Most Specific Data Type

• Representing Character Data

• Representing Numeric Data

• Representing Date and Time Data

• Representing Specialized Data

• Identifying Rows by Address

• Displaying Metadata for SQL Operators and Functions

Note:

Oracle precompilers recognize, in embedded SQL programs, data types
other than SQL and PL/SQL data types. These external data types are
associated with host variables.

See Also:

• Oracle Database SQL Language Reference for information about data
type conversion

• PL/SQL Data Types

• Data Types

• Overview of Precompilers

Using the Correct and Most Specific Data Type
Using the correct and most specific data type for each database column that you
create for your database application increases data integrity, decreases storage
requirements, and improves performance.

9-1

Topics:

• How the Correct Data Type Increases Data Integrity

• How the Most Specific Data Type Decreases Storage Requirements

• How the Correct Data Type Improves Performance

How the Correct Data Type Increases Data Integrity
The correct data type increases data integrity by acting as a constraint. For example, if
you use a datetime data type for a column of dates, then only dates can be stored in
that column. However, if you use a character or numeric data type for the column, then
eventually someone will store a character or numeric value that does not represent a
date. You could write code to prevent this problem, but it is more efficient to use the
correct data type. Therefore, store characters in character data types, numbers in
numeric data types, and dates and times in datetime data types.

See Also:

Maintaining Data Integrity in Database Applications, for information about
data integrity and constraints

How the Most Specific Data Type Decreases Storage Requirements
In addition to using the correct data type, use the most specific length or precision; for
example:

• When creating a VARCHAR2 column intended for strings of at most n characters,
specify VARCHAR2(n).

• When creating a column intended for integers, use the data type NUMBER(38)
rather than NUMBER.

Besides acting as constraints and thereby increasing data integrity, length and
precision affect storage requirements.

If you give every column the maximum length or precision for its data type, then your
application needlessly allocates many megabytes of RAM. For example, suppose that
a query selects 10 VARCHAR2(4000) columns and a bulk fetch operation returns 100
rows. The RAM that your application must allocate is 10 x 4,000 x 100—almost 4 MB.
In contrast, if the column length is 80, the RAM that your application must allocate is
10 x 80 x 100—about 78 KB. This difference is significant for a single query, and your
application will process many queries concurrently. Therefore, your application must
allocate the 4 MB or 78 KB of RAM for each connection.

Therefore, do not give a column the maximum length or precision for its data type only
because you might need to increase that property later. If you must change a column
after creating it, then use the ALTER TABLE statement. For example, to increase the
length of a column, use:

ALTER TABLE table_name MODIFY column_name VARCHAR2(larger_number)

Chapter 9
Using the Correct and Most Specific Data Type

9-2

Note:

The maximum length of the VARCHAR2, NVARCHAR2, and RAW data types is
32,767 bytes if the MAX_STRING_SIZE initialization parameter is EXTENDED.

See Also:

• Oracle Database SQL Language Reference for more information about
ALTERTABLE

• Oracle Database SQL Language Reference for more information about
extended data types

How the Correct Data Type Improves Performance
The correct data type improves performance because the incorrect data type can
result in the incorrect execution plan.

Example 9-1 performs the same conceptual operation—selecting rows whose dates
are between December 31, 2000 and January 1, 2001—for three columns with
different data types and shows the execution plan for each query. In the three
execution plans, compare Rows (cardinality), Cost, and Operation.

Example 9-1 Performance Comparison of Three Data Types

Create a table that stores the same dates in three columns: str_date, with data type
VARCHAR2; date_date, with data type DATE, and number_date, with data type NUMBER:

CREATE TABLE t (str_date, date_date, number_date, data)
AS
SELECT TO_CHAR(dt+rownum,'yyyymmdd') str_date, -- VARCHAR2
 dt+rownum date_date, -- DATE
 TO_NUMBER(TO_CHAR(dt+rownum,'yyyymmdd')) number_date, -- NUMBER
 RPAD('*',45,'*') data
FROM (SELECT TO_DATE('01-jan-1995', 'dd-mm-yyyy') dt
 FROM all_objects)
ORDER BY DBMS_RANDOM.VALUE
/

Create an index on each column:

CREATE INDEX t_str_date_idx ON t(str_date);
CREATE INDEX t_date_date_idx ON t(date_date);
CREATE INDEX t_number_date_idx ON t(number_date);

Gather statistics for the table:

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS (
 'HR',
 'T',
 method_opt => 'for all indexed columns size 254',
 cascade => TRUE
);

Chapter 9
Using the Correct and Most Specific Data Type

9-3

END;
/

Show the execution plans of subsequent SQL statements (SQL*Plus command):

SET AUTOTRACE ON EXPLAIN

Select the rows for which the dates in str_date are between December 31, 2000 and
January 1, 2001:

SELECT * FROM t WHERE str_date BETWEEN '20001231' AND '20010101'
ORDER BY str_date;

Result and execution plan:

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ---
20001231 31-DEC-00 20001231 ***
20010101 01-JAN-01 20010101 ***

2 rows selected.

Execution Plan
--
Plan hash value: 948745535

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		236	11092	216 (8)	00:00:01
1	SORT ORDER BY		236	11092	216 (8)	00:00:01
* 2	TABLE ACCESS FULL	T	236	11092	215 (8)	00:00:01

Predicate Information (identified by operation id):

 2 - filter("STR_DATE"<='20010101' AND "STR_DATE">='20001231')

Select the rows for which the dates in number_date are between December 31, 2000
and January 1, 2001:

SELECT * FROM t WHERE number_date BETWEEN 20001231 AND 20010101;
ORDER BY str_date;

Result and execution plan:

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ---
20001231 31-DEC-00 20001231 ***
20010101 01-JAN-01 20010101 ***

2 rows selected.

Execution Plan
--
Plan hash value: 948745535

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

Chapter 9
Using the Correct and Most Specific Data Type

9-4

0	SELECT STATEMENT		234	10998	219 (10)	00:00:01
1	SORT ORDER BY		234	10998	219 (10)	00:00:01
* 2	TABLE ACCESS FULL	T	234	10998	218 (9)	00:00:01

Predicate Information (identified by operation id):

 2 - filter("NUMBER_DATE"<=20010101 AND "NUMBER_DATE">=20001231)

Select the rows for which the dates in date_date are between December 31, 2000 and
January 1, 2001:

SELECT * FROM t WHERE date_date
 BETWEEN TO_DATE('20001231','yyyymmdd')
 AND TO_DATE('20010101','yyyymmdd');
 ORDER BY str_date;

Result and execution plan (reformatted to fit the page):

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ---
20001231 31-DEC-00 20001231 ***
20010101 01-JAN-01 20010101 ***

2 rows selected.

Execution Plan
--
Plan hash value: 2411593187

--

Id	Operation	Name	Rows	Bytes
1	SORT ORDER BY		1	47
2	TABLE ACCESS BY INDEX ROWID BATCHED	T	1	47
* 3	INDEX RANGE SCAN	T_DATE_DATE_IDX	1	
0	SELECT STATEMENT		1	47

 Cost (%CPU)| Time |

 4 (25)| 00:00:01 |
 4 (25)| 00:00:01 |
 3 (0)| 00:00:01 |
 2 (0)| 00:00:01 |

Predicate Information (identified by operation id):

 3 - access("DATE_DATE">=TO_DATE(' 2000-12-31 00:00:00',
 'syyyy-mm-dd hh24:mi:ss') AND

 "DATE_DATE"<=TO_DATE(' 2001-01-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Performance improved for the final query because, for the DATE data type, the
optimizer could determine that there was only one day between December 31, 2000
and January 1, 2001. Therefore, it performed an index range scan, which is faster than
a full table scan.

Chapter 9
Using the Correct and Most Specific Data Type

9-5

See Also:

• EXPLAIN PLAN Statement

• Oracle Database SQL Tuning Guide for more information about Full
Table Scans

• Oracle Database SQL Tuning Guide for more information about Index
Range Scans

Representing Character Data
Table 9-1 summarizes the SQL data types that store character data.

Table 9-1 SQL Character Data Types

Data Types Values Stored

CHAR Fixed-length character literals

VARCHAR2 Variable-length character literals

NCHAR Fixed-length Unicode character literals

NVARCHAR2 Variable-length Unicode character literals

CLOB Single-byte and multibyte character strings of up to (4 gigabytes - 1) * (the
value obtained from DBMS_LOB.GETCHUNKSIZE)

NCLOB Single-byte and multibyte Unicode character strings of up to (4 gigabytes -
 1) * (the value obtained from DBMS_LOB.GETCHUNKSIZE)

LONG Variable-length character data of up to 2 gigabytes - 1. Provided only for
backward compatibility.

Note:

Do not use the VARCHAR data type. Use the VARCHAR2 data type instead.
Although the VARCHAR data type is currently synonymous with VARCHAR2, the
VARCHAR data type is scheduled to be redefined as a separate data type used
for variable-length character strings compared with different comparison
semantics.

When choosing between CHAR and VARCHAR2, consider:

• Space usage

Oracle Database blank-pads values stored in CHAR columns but not values stored
in VARCHAR2 columns. Therefore, VARCHAR2 columns use space more efficiently
than CHAR columns.

• Performance

Because of the blank-padding difference, a full table scan on a large table
containing VARCHAR2 columns might read fewer data blocks than a full table scan

Chapter 9
Representing Character Data

9-6

on a table containing the same data stored in CHAR columns. If your application
often performs full table scans on large tables containing character data, then you
might be able to improve performance by storing data in VARCHAR2 columns rather
than in CHAR columns.

• Comparison semantics

When you need ANSI compatibility in comparison semantics, use the CHAR data
type. When trailing blanks are important in string comparisons, use the VARCHAR2
data type.

For a client/server application, if the character set on the client side differs from the
character set on the server side, then Oracle Database converts CHAR, VARCHAR2, and
LONG data from the database character set (determined by the NLS_LANGUAGE
parameter) to the character set defined for the user session.

See Also:

• Oracle Database SQL Language Reference for more information about
comparison semantics for these data types

• Large Objects (LOBs) for more information about CLOB and NCLOB data
types

• LONG and LONG RAW Data Types for more information about LONG
data type

Representing Numeric Data
The SQL data types that store numeric data are NUMBER, BINARY_FLOAT, and
BINARY_DOUBLE.

The NUMBER data type stores real numbers in either a fixed-point or floating-point
format. NUMBER offers up to 38 decimal digits of precision. In a NUMBER column, you can
store positive and negative numbers of magnitude 1 x 10-130 through 9.99 x10125, and
0. All Oracle Database platforms support NUMBER values.

The BINARY_FLOAT and BINARY_DOUBLE data types store floating-point numbers in the
single-precision (32-bit) IEEE 754 format and the double-precision (64-bit) IEEE 754
format, respectively. High-precision values use less space when stored as
BINARY_FLOAT and BINARY_DOUBLE than when stored as NUMBER. Arithmetic operations
on floating-point numbers are usually faster for BINARY_FLOAT and BINARY_DOUBLE
values than for NUMBER values.

In client interfaces that Oracle Database supports, arithmetic operations on
BINARY_FLOAT and BINARY_DOUBLE values are performed by the native instruction set
that the hardware vendor supplies. The term native floating-point data type includes
BINARY_FLOAT and BINARY_DOUBLE data types and all implementations of these types in
supported client interfaces.

Native floating-point data types conform substantially with the Institute of Electrical and
Electronics Engineers (IEEE) Standard for Binary Floating-Point Arithmetic, IEEE
Standard 754-1985 (IEEE754).

Chapter 9
Representing Numeric Data

9-7

Note:

Oracle recommends using BINARY_FLOAT and BINARY_DOUBLE instead of
FLOAT, a subtype of NUMBER .

Topics:

• Floating-Point Number Components

• Floating-Point Number Formats

• Representing Special Values with Native Floating-Point Data Types

• Comparing Native Floating-Point Values

• Arithmetic Operations with Native Floating-Point Data Types

• Conversion Functions for Native Floating-Point Data Types

• Client Interfaces for Native Floating-Point Data Types

See Also:

Oracle Database SQL Language Reference for more information about data
types

Floating-Point Number Components
The formula for a floating-point value is:

(-1)sign.significand.baseexponent

For example, the floating-point value 4.31 is represented:

(-1)0.431.10-2

The components of the preceding representation are:

Component Name Component Value

Sign 0

Significand 431

Base 10

Exponent -2

Floating-Point Number Formats
A floating-point number format specifies how the components of a floating-point
number are represented, thereby determining the range and precision of the values
that the format can represent. The range is the interval bounded by the smallest and
largest values and the precision is the number of significant digits. Both range and

Chapter 9
Representing Numeric Data

9-8

precision are finite. If a floating-point number is too precise for a given format, then the
number is rounded.

How the number is rounded depends on the base of its format, which can be either
decimal or binary. A number stored in decimal format is rounded to the nearest
decimal place (for example, 1000, 10, or 0.01). A number stored in binary format is
rounded to the nearest binary place (for example, 1024, 512, or 1/64).

NUMBER values are stored in decimal format. For calculations that need decimal
rounding, use the NUMBER data type.

Native floating-point values are stored in binary format.

Table 9-2 shows the range and precision of the IEEE 754 single- and double-precision
formats and Oracle Database NUMBER. Range limits are expressed as positive
numbers, but they also apply to absolute values of negative numbers. (The notation
"number e exponent" means number * 10exponent.)

Table 9-2 Range and Precision of Floating-Point Data Types

Range and
Precision

Single-precision 32-
bit1

Double-precision 64-bit1 Oracle Database
NUMBER Data
Type

Maximum positive
normal number

3.40282347e+38 1.7976931348623157e
+308

< 1.0e126

Minimum positive
normal number

1.17549435e-38 2.2250738585072014e-30
8

1.0e-130

Maximum positive
subnormal number

1.17549421e-38 2.2250738585072009e-30
8

not applicable

Minimum positive
subnormal number

1.40129846e-45 4.9406564584124654e-32
4

not applicable

Precision (decimal
digits)

6 - 9 15 - 17 38 - 40

1 These numbers are from the IEEE Numerical Computation Guide.

Binary Floating-Point Formats
This formula determines the value of a floating-point number that uses a binary format:

(-1)sign 2E (bit0 bit1 bit2 ... bitp-1)

Table 9-3 describes the components of the preceding formula.

Table 9-3 Binary Floating-Point Format Components

Component Component Value

sign 0 or 1

E (exponent) For single-precision (32-bit) data type, an integer from -126 through 127.

For double-precision (64-bit) data type, an integer from -1022 through 1023.

biti 0 or 1. (The bit sequence represents a number in base 2.)

Chapter 9
Representing Numeric Data

9-9

Table 9-3 (Cont.) Binary Floating-Point Format Components

Component Component Value

p (precision) For single-precision data type, 24.

For double-precision data type, 53.

The leading bit of the significand, b0, must be set (1), except for subnormal numbers
(explained later). Therefore, the leading bit is not stored, and a binary format provides
n bits of precision while storing only n-1 bits. The IEEE 754 standard defines the in-
memory formats for single-precision and double-precision data types, as Table 9-4
shows.

Table 9-4 Summary of Binary Format Storage Parameters

Data Type Sign Bit Exponent Bits Significand Bits Total Bits

Single-precision 1 8 24 (23 stored) 32

Double-precision 1 11 53 (52 stored) 64

Note:

Oracle Database does not support the extended single- and double-precision
formats that the IEEE 754 standard defines.

A significand whose leading bit is set is called normalized. The IEEE 754 standard
defines subnormal numbers (also called denormal numbers) that are too small to
represent with normalized significands. If the significand of a subnormal number were
normalized, then its exponent would be too large. Subnormal numbers preserve this
property: If x-y==0.0 (using floating-point subtraction), then x==y.

Representing Special Values with Native Floating-Point Data Types
The IEEE 754 standard supports the special values shown in Table 9-5.

Table 9-5 Special Values for Native Floating-Point Formats

Value Meaning

+INF Positive infinity

-INF Negative infinity

+0 Positive zero

-0 Negative zero

NaN Not a number

Each value in Table 9-5 is represented by a specific bit pattern, except NaN. NaN, the
result of any undefined operation, is represented by many bit patterns. Some of these
bits patterns have the sign bit set and some do not, but the sign bit has no meaning.

Chapter 9
Representing Numeric Data

9-10

The IEEE 754 standard distinguishes between quiet NaNs (which do not raise
additional exceptions as they propagate through most operations) and signaling NaNs
(which do). The IEEE 754 standard specifies action for when exceptions are enabled
and action for when they are disabled.

In Oracle Database, exceptions cannot be enabled. Oracle Database acts as the IEEE
754 standard specifies for when exceptions are disabled. In particular, Oracle
Database does not distinguish between quiet and signaling NaNs. You can use Oracle
Call Interface (OCI) to retrieve NaN values from Oracle Database, but whether a
retrieved NaN value is signaling or quiet depends on the client platform and is beyond
the control of Oracle Database.

The IEEE 754 standard defines these classes of special values:

• Zero

• Subnormal

• Normal

• Infinity

• NaN

The values in each class in the preceding list are larger than the values in the classes
that precede it in the list (ignoring signs), except NaN. NaN is unordered with other
classes of special values and with itself.

In Oracle Database:

• All NaNs are quiet.

• Any non-NaN value < NaN

• Any NaN == any other NaN

• All NaNs are converted to the same bit pattern.

• -0 is converted to +0.

• IEEE 754 exceptions are not raised.

See Also:

Oracle Database SQL Language Reference for information about floating-
point conditions, which let you determine whether an expression is infinite or
is the undefined result of an operation (is not a number or NaN).

Comparing Native Floating-Point Values
When comparing numeric expressions, Oracle Database uses numeric precedence to
determine whether the condition compares NUMBER, BINARY_FLOAT, or BINARY_DOUBLE
values.

Comparisons ignore the sign of zero (-0 equals +0).

Chapter 9
Representing Numeric Data

9-11

See Also:

• Oracle Database SQL Language Reference for more information about
Numeric Precedence

• Oracle Database SQL Language Reference for more information about
Comparison Conditions

Arithmetic Operations with Native Floating-Point Data Types
IEEE 754 does not require floating-point arithmetic to be exactly reproducible.
Therefore, results of operations can be delivered to a destination that uses a range
greater than the range that the operands of the operation use.

You can compute the result of a double-precision multiplication at an extended double-
precision destination, but the result must be rounded as if the destination were single-
precision or double-precision. The range of the result (that is, the number of bits used
for the exponent) can use the range supported by the wider (extended double-
precision) destination; however, this might cause a double-rounding error in which the
least significant bit of the result is incorrect.

This situation can occur only for double-precision multiplication and division on
hardware that implements the IA-32 and IA-64 instruction set architecture. Therefore,
except for this case, arithmetic for these data types is reproducible across platforms.
When the result of a computation is NaN, all platforms produce a value for which
IS NAN is true. However, all platforms do not have to use the same bit pattern.

See Also:

Oracle Database SQL Language Reference for general information about
arithmetic operations

Conversion Functions for Native Floating-Point Data Types
Oracle Database defines functions that convert between floating-point and other data
types, including string formats that use decimal precision (but precision might be lost
during the conversion). For example:

• TO_BINARY_DOUBLE, described in Oracle Database SQL Language Reference

• TO_BINARY_FLOAT, described in Oracle Database SQL Language Reference

• TO_CHAR, described in Oracle Database SQL Language Reference

• TO_NUMBER, described in Oracle Database SQL Language Reference

Oracle Database can raise exceptions during conversion. The IEEE 754 standard
defines these exceptions:

• Invalid

• Inexact

Chapter 9
Representing Numeric Data

9-12

• Divide by zero

• Underflow

• Overflow

However, Oracle Database does not raise these exceptions for native floating-point
data types. Generally, operations that raise exceptions produce the values described
in Table 9-6.

Table 9-6 Values Resulting from Exceptions

Exception Value

Underflow 0

Overflow -INF, +INF

Invalid Operation NaN

Divide by Zero -INF, +INF, NaN

Inexact Any value – rounding was performed

Client Interfaces for Native Floating-Point Data Types
Oracle Database supports native floating-point data types in these client interfaces:

• SQL and PL/SQL

Support for BINARY_FLOAT and BINARY_DOUBLE includes their use as attributes of
Abstract Data Types (ADTs), which you create with the SQL statement CREATE
TYPE (fully described in Oracle Database PL/SQL Language Reference).

• Oracle Call Interface (OCI)

For information about using BINARY_FLOAT and BINARY_DOUBLE with OCI, see
Oracle Call Interface Programmer's Guide.

• Oracle C++ Call Interface (OCCI)

For information about using BINARY_FLOAT with OCCI, see Oracle C++ Call
Interface Programmer's Guide.

For information about using BINARY_DOUBLE with OCCI, see Oracle C++ Call
Interface Programmer's Guide.

• Pro*C/C++ precompiler

To use BINARY_FLOAT and BINARY_DOUBLE, set the Pro*C/C++ precompiler
command line option NATIVE_TYPES to YES when you compile your application. For
information about the NATIVE_TYPES option, see Pro*C/C++ Programmer's Guide.

• Oracle JDBC

For information about using BINARY_FLOAT and BINARY_DOUBLE with Oracle JDBC,
see Oracle Database JDBC Developer's Guide.

Chapter 9
Representing Numeric Data

9-13

Representing Date and Time Data
Oracle Database stores DATE and TIMESTAMP (datetime) data in a binary format that
represents the century, year, month, day, hour, minute, second, and optionally,
fractional seconds and timezones.

Table 9-7 summarizes the SQL datetime data types.

Table 9-7 SQL Datetime Data Types

Date Type Usage

DATE For storing datetime values in a table—for example, dates of
jobs.

TIMESTAMP For storing datetime values that are precise to fractional
seconds—for example, times of events that must be
compared to determine the order in which they occurred.

TIMESTAMP WITH TIME ZONE For storing datetime values that must be gathered or
coordinated across geographic regions.

TIMESTAMP WITH LOCAL TIME
ZONE

For storing datetime values when the time zone is
insignificant—for example, in an application that schedules
teleconferences, where participants see the start and end
times for their own time zone.

Appropriate for two-tier applications in which you want to
display dates and times that use the time zone of the client
system. Usually inappropriate for three-tier applications,
because data displayed in a web browser is formatted
according to the time zone of the web server, not the time
zone of the browser. The web server is the database client,
so its local time is used.

INTERVAL YEAR TO MONTH For storing the difference between two datetime values,
where only the year and month are significant—for example,
to set a reminder for a date 18 months in the future, or
check whether 6 months have elapsed since a particular
date.

INTERVAL DAY TO SECOND For storing the precise difference between two datetime
values—for example, to set a reminder for a time 36 hours
in the future or to record the time between the start and end
of a race. To represent long spans of time with high
precision, use a large number of days.

See Also:

• Oracle Call Interface Programmer's Guide for more information about
Oracle Database internal date types

• Oracle Database SQL Language Reference for more information about
date and time data types

Chapter 9
Representing Date and Time Data

9-14

Topics:

• Displaying Current Date and Time

• Inserting and Displaying Dates

• Inserting and Displaying Times

• Arithmetic Operations with Datetime Data Types

• Conversion Functions for Datetime Data Types

• Importing_ Exporting_ and Comparing Datetime Types

Displaying Current Date and Time
The simplest way to display the current date and time is:

SELECT TO_CHAR(SYSDATE, format_model) FROM DUAL

The default format model depends on the initialization parameter NLS_DATE_FORMAT.

The standard Oracle Database default date format is DD-MON-RR. The RR datetime
format element lets you store 20th century dates in the 21st century by specifying only
the last two digits of the year. For example, in the datetime format DD-MON-YY, 13-
NOV-54 refers to the year 1954 in a query issued between 1950 and 2049, but to the
year 2054 in a query issued between 2050 and 2149.

Note:

For program correctness and to avoid problems with SQL injection and
dynamic SQL, Oracle recommends specifying a format model for every
datetime value.

The simplest way to display the current date and time using a format model is:

SELECT TO_CHAR(SYSDATE, format_model) FROM DUAL

Example 9-2 uses TO_CHAR with a format model to display SYSDATE in a format with the
qualifier BC or AD. (By default, SYSDATE is displayed without this qualifier.)

Example 9-2 Displaying Current Date and Time

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY BC') NOW FROM DUAL;

Result:

NOW

18-MAR-2009 AD

1 row selected.

Chapter 9
Representing Date and Time Data

9-15

Tip:

When testing code that uses SYSDATE, it can be helpful to set SYSDATE to a
constant. Do this with the initialization parameter FIXED_DATE.

See Also:

• Oracle Database SQL Language Reference for more information about
SYSDATE

• Oracle Database Globalization Support Guide for information about
NLS_DATE_FORMAT

• Oracle Database SQL Language Reference for more information about
TO_CHAR

• Oracle Database SQL Language Reference for information about
datetime format models

• Oracle Database SQL Language Reference for more information about
the RR datetime format element

• Oracle Database Referencefor more information about FIXED_DATE

Inserting and Displaying Dates
When you display and insert dates, Oracle recommends using the TO_CHAR and
TO_DATE functions, respectively, with datetime format models.

Example 9-3 creates a table with a DATE column and inserts a date into it, specifying a
format model. Then the example displays the date with and without specifying a format
model.

Example 9-3 Inserting and Displaying Dates

Create table:

DROP TABLE dates;
CREATE TABLE dates (d DATE);

Insert date specified into table, specifying a format model:

INSERT INTO dates VALUES (TO_DATE('OCT 27, 1998', 'MON DD, YYYY'));

Display date without specifying a format model:

SELECT d FROM dates;

Result:

D

Chapter 9
Representing Date and Time Data

9-16

27-OCT-98

1 row selected.

Display date, specifying a format model:

SELECT TO_CHAR(d, 'YYYY-MON-DD') D FROM dates;

Result:

D

1998-OCT-27

1 row selected.

Caution:

Be careful when using the YY datetime format element, which indicates the
year in the current century. For example, in the 21st century, the format DD-
MON-YY, 31-DEC-92 is December 31, 2092 (not December 31, 1992, as you
might expect). To store 20th century dates in the 21st century by specifying
only the last two digits of the year, use the RR datetime format element (the
default).

See Also:

• Oracle Database Globalization Support Guide for information about
NLS_DATE_FORMAT

• Oracle Database SQL Language Reference for more information about
TO_CHAR

• Oracle Database SQL Language Reference for more information about
TO_DATE

• Oracle Database SQL Language Reference for information about
datetime format models

• Oracle Database SQL Language Reference for more information about
the RR datetime format element

Inserting and Displaying Times
When you display and insert times, Oracle recommends using the TO_CHAR and
TO_DATE functions, respectively, with datetime format models.

In a DATE column:

• The default time is 12:00:00 A.M. (midnight).

The default time applies to any value in the column that has no time portion, either
because none was specified or because the value was truncated.

Chapter 9
Representing Date and Time Data

9-17

• The default day is the first day of the current month.

The default date applies to any value in the column that has no date portion,
because none was specified.

Example 9-4 creates a table with a DATE column and inserts three dates into it,
specifying a different format model for each date. The first format model has both date
and time portions, the second has no time portion, and the third has no date portion.
Then the example displays the three dates, specifying a format model that includes
both date and time portions.

Example 9-4 Inserting and Displaying Dates and Times

Create table:

DROP TABLE birthdays;
CREATE TABLE birthdays (name VARCHAR2(20), day DATE);

Insert three dates, specifying a different format model for each date:

INSERT INTO birthdays (name, day)
VALUES ('Annie',
 TO_DATE('13-NOV-92 10:56 A.M.','DD-MON-RR HH:MI A.M.')
);

INSERT INTO birthdays (name, day)
VALUES ('Bobby',
 TO_DATE('5-APR-02','DD-MON-RR')
);

INSERT INTO birthdays (name, day)
VALUES ('Cindy',
 TO_DATE('8:25 P.M.','HH:MI A.M.')
);

Display both date and time portions of stored datetime values:

SELECT name,
 TO_CHAR(day, 'Mon DD, RRRR') DAY,
 TO_CHAR(day, 'HH:MI A.M.') TIME
FROM birthdays;

Result:

NAME DAY TIME
-------------------- --------------------- ----------
Annie Nov 13, 1992 10:56 A.M.
Bobby Apr 05, 2002 12:00 A.M.
Cindy Nov 01, 2010 08:25 P.M.

3 rows selected.

Arithmetic Operations with Datetime Data Types
The results of arithmetic operations on datetime values are determined by the rules in
Oracle Database SQL Language Reference.

Chapter 9
Representing Date and Time Data

9-18

SQL has many datetime functions that you can use in datetime expressions. For
example, the function ADD_MONTHS returns the date that is a specified number of
months from a specified date. .

See Also:

• Oracle Database SQL Language Reference for the complete list of
datetime functions

• Oracle Database SQL Language Reference

Conversion Functions for Datetime Data Types
Table 9-8 summarizes the SQL functions that convert to or from datetime data types.
For more information about these functions, see Oracle Database SQL Language
Reference.

Table 9-8 SQL Conversion Functions for Datetime Data Types

Function Converts ... To ...

NUMTODSINTERVAL NUMBER INTERVAL DAY TO SECOND

NUMTOYMINTERVAL NUMBER INTERVAL DAY TO MONTH

TO_CHAR DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH LOCAL TIME
ZONE

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

VARCHAR2

TO_DATE CHAR

VARCHAR2

NCHAR

NVARCHAR2

DATE

TO_DSINTERVAL CHAR

VARCHAR2

NCHAR

NVARCHAR2

INTERVAL DAY TO SECOND

TO_TIMESTAMP CHAR

VARCHAR2

NCHAR

NVARCHAR2

TIMESTAMP

Chapter 9
Representing Date and Time Data

9-19

Table 9-8 (Cont.) SQL Conversion Functions for Datetime Data Types

Function Converts ... To ...

TO_TIMESTAMP_TZ CHAR

VARCHAR2

NCHAR

NVARCHAR2

TIMESTAMP WITH TIME ZONE

TO_YMINTERVAL CHAR

VARCHAR2

NCHAR

NVARCHAR2

INTERVAL DAY TO MONTH

Importing, Exporting, and Comparing Datetime Types
You can import, export, and compare TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE values without worrying about time zone offsets, because the
database stores these values in normalized format.

When importing, exporting, and comparing DATE and TIMESTAMP values, you must
adjust them to account for any time zone differences between source and target
databases, because the database does not store their time zones.

Representing Specialized Data
Topics:

• Representing Spatial Data

• Representing Large Amounts of Data

• Representing Searchable Text

• Representing XML Data

• Representing Dynamically Typed Data

• Representing ANSI_ DB2_ and SQL/DS Data

Representing Spatial Data
Spatial data is used by location-enabled applications, geographic information system
(GIS) applications, and geoimaging applications.

See Also:

Oracle Database SQL Language Reference for information about
representing spatial data in Oracle Database

Chapter 9
Representing Specialized Data

9-20

Representing Large Amounts of Data
For representing large amounts of data, Oracle Database provides:

• Large Objects (LOBs)

• LONG and LONG RAW Data Types (for backward compatibility)

Large Objects (LOBs)
Large Objects (LOBs) are data types that are designed to store large amounts of
data in a way that lets your application access and manipulate it efficiently.

Table 9-9 summarizes the LOBs.

Table 9-9 Large Objects (LOBs)

Data
Type

Description

BLOB Binary large object
Stores any kind of data in binary format.

Typically used for multimedia data such as images, audio, and video.

CLOB Character large object
Stores string data in the database character set format.

Used for large strings or documents that use the database character set
exclusively.

NCLOB National character large object
Stores string data in National Character Set format.

Used for large strings or documents in the National Character Set.

BFILE External large object
Stores a binary file outside the database in the host operating system file system.
Applications have read-only access to BFILEs.

Used for static data that applications do not manipulate, such as image data.

Any kind of data (that is, any operating system file) can be stored in a BFILE. For
example, you can store character data in a BFILE and then load the BFILE data
into a CLOB, specifying the character set when loading.

An instance of type BLOB, CLOB, or NCLOB can be either temporary (declared in the
scope of your application) or persistent (created and stored in the database).

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information about using LOBs in application development

• Oracle Database SQL Language Reference for more information about
LOB functions

Chapter 9
Representing Specialized Data

9-21

LONG and LONG RAW Data Types

Note:

Oracle supports the LONG and LONG RAW data types for backward compatibility,
but strongly recommends that you convert LONG columns to LOB columns
and LONG RAW columns to BLOB columns.

LONG columns store variable-length character strings containing up to 2 gigabytes - 1
bytes. .

The LONG RAW (and RAW) data types store data that is not to be explicitly converted by
Oracle Database when moving data between different systems. These data types are
intended for binary data or byte strings.

See Also:

Oracle Database SQL Language Reference for more information about data
types

Representing Searchable Text
Rather than writing low-level code to do full-text searches, you can use Oracle Text.
Oracle Text provides indexing, word and theme searching, and viewing capabilities for
text in query applications and document classification applications. You can also use
Oracle Text to search XML data.

See Also:

Oracle Text Application Developer's Guide for more information about Oracle
Text

Representing XML Data
If you have information stored as files in XML format, or want to store an ADT in XML
format, then you can use the Oracle-supplied type XMLType.

With XMLType values, you can use:

• XMLType member functions (see Oracle XML DB Developer's Guide).

• SQL XML functions (see Oracle Database SQL Language Reference)

• PL/SQL DBMS_XML packages (see Oracle Database PL/SQL Packages and Types
Reference)

Chapter 9
Representing Specialized Data

9-22

See Also:

• Oracle XML DB Developer’s Guide for information about Oracle XML DB
and how you can use it to store, generate, manipulate, manage, and
query XML data in the database

• Oracle XML Developer's Kit Programmer's Guide

• Oracle Database SQL Language Reference for more information about
XMLType

Representing Dynamically Typed Data
Some languages allow data types to change at runtime, and some let a program check
the type of a variable. For example, C has the union keyword and the void * pointer,
and Java has the typeof operator and wrapper types such as Number.

In Oracle Database, you can create variables and columns that can hold data of any
type and test their values to determine their underlying representation. For example, a
single table column can have a numeric value in one row, a string value in another
row, and an object in another row.

You can use the Oracle-supplied ADT SYS.ANYDATA to represent values of any scalar
type or ADT. SYS.ANYDATA has methods that accept scalar values of any type, and turn
them back into scalars or objects. Similarly, you can use the Oracle-supplied ADT
SYS.ANYDATASET to represent values of any collection type.

To check and manipulate type information, use the DBMS_TYPES package, as in
Example 9-5.

With OCI, use the OCIAnyData and OCIAnyDataSet interfaces.

Example 9-5 Accessing Information in a SYS.ANYDATA Column

CREATE OR REPLACE TYPE employee_type AS
 OBJECT (empno NUMBER, ename VARCHAR2(10));
/

DROP TABLE mytab;
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);

INSERT INTO mytab (id, data)
VALUES (1, SYS.ANYDATA.ConvertNumber(5));

INSERT INTO mytab (id, data)
VALUES (2, SYS.ANYDATA.ConvertObject(Employee_type(5555, 'john')));

CREATE OR REPLACE PROCEDURE p IS
 CURSOR cur IS SELECT id, data FROM mytab;
 v_id mytab.id%TYPE;
 v_data mytab.data%TYPE;
 v_type SYS.ANYTYPE;
 v_typecode PLS_INTEGER;
 v_typename VARCHAR2(60);
 v_dummy PLS_INTEGER;
 v_n NUMBER;
 v_employee employee_type;

Chapter 9
Representing Specialized Data

9-23

 non_null_anytype_for_NUMBER exception;
 unknown_typename exception;
BEGIN
 FOR x IN cur LOOP
 FETCH cur INTO v_id, v_data;
 EXIT WHEN cur%NOTFOUND;

 /* typecode signifies type represented by v_data.
 GetType also produces a value of type SYS.ANYTYPE with methods you
 can call to find precision and scale of a number, length of a
 string, and so on. */

 v_typecode := v_data.GetType (v_type /* OUT */);

 /* Compare typecode to DBMS_TYPES constants to determine type of data
 and decide how to display it. */

 CASE v_typecode
 WHEN DBMS_TYPES.TYPECODE_NUMBER THEN
 IF v_type IS NOT NULL THEN -- This condition should never happen.
 RAISE non_null_anytype_for_NUMBER;
 END IF;

 -- For each type, there is a Get method.
 v_dummy := v_data.GetNUMBER (v_n /* OUT */);
 DBMS_OUTPUT.PUT_LINE
 (TO_CHAR(v_id) || ': NUMBER = ' || TO_CHAR(v_n));

 WHEN DBMS_TYPES.TYPECODE_OBJECT THEN
 v_typename := v_data.GetTypeName();
 IF v_typename NOT IN ('HR.EMPLOYEE_TYPE') THEN
 RAISE unknown_typename;
 END IF;
 v_dummy := v_data.GetObject (v_employee /* OUT */);
 DBMS_OUTPUT.PUT_LINE
 (TO_CHAR(v_id) || ': user-defined type = ' || v_typename ||
 ' (' || v_employee.empno || ', ' || v_employee.ename || ')');
 END CASE;
 END LOOP;
EXCEPTION
 WHEN non_null_anytype_for_NUMBER THEN
 RAISE_Application_Error (-20000,
 'Paradox: the return AnyType instance FROM GetType ' ||
 'should be NULL for all but user-defined types');
 WHEN unknown_typename THEN
 RAISE_Application_Error(-20000, 'Unknown user-defined type ' ||
 v_typename || ' - program written to handle only HR.EMPLOYEE_TYPE');
END;
/

SELECT t.data.gettypename() AS "Type Name" FROM mytab t;

Result:

Type Name
--
SYS.NUMBER
HR.EMPLOYEE_TYPE

2 rows selected.

Chapter 9
Representing Specialized Data

9-24

See Also:

• Oracle Database Object-Relational Developer's Guide for more
information about these ADTs

• Oracle Call Interface Programmer's Guide for more information about
OCIAnyData and OCIAnyDataSet interfaces

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_TYPES package

Representing ANSI, DB2, and SQL/DS Data
SQL statements that create tables and clusters can use ANSI data types and data
types from the IBM products SQL/DS and DB2 (except those noted after this
paragraph). Oracle Database converts the ANSI or IBM data type to the equivalent
Oracle data type, records the Oracle data type as the name of the column data type,
and stores the column data in the Oracle data type.

Note:

SQL statements cannot use the SQL/DS and DB2 data types TIME, GRAPHIC,
VARGRAPHIC, and LONG VARGRAPHIC, because they have no equivalent Oracle
data types.

See Also:

Oracle Database SQL Language Reference for conversion details

Identifying Rows by Address
The fastest way to access the row of a database table is by its address, or rowid,
which uniquely identifies it. Different rows in the same data block can have the same
rowid only if they are in different clustered tables. If a row is larger than one data block,
then its rowid identifies its initial row piece.

To see rowids, query the ROWID pseudocolumn. Each value in the ROWID
pseudocolumn is a string that represents the address of a row. The data type of the
string is either ROWID or UROWID.

Chapter 9
Identifying Rows by Address

9-25

Note:

When you update a row in a table compressed with Hybrid Columnar
Compression (HCC), the ROWID of the row changes. HCC, a feature of
certain Oracle storage systems.

Example 9-6 creates a table with a column of the data type ROWID, populates it with
rowids by querying the ROWID pseudocolumn inside an INSERT statement, and then
displays it. The rowids of the table rows show how they are stored.

Note:

Merely creating a column of the type ROWID (like col1 in Example 9-6) does
not guarantee that its values will be valid rowids.

See Also:

• Oracle Database Concepts for an overview of the ROWID pseudocolumn

• Oracle Database Concepts for an overview of rowid data types

• Oracle Database SQL Language Reference for more information about
the ROWID pseudocolumn

• Oracle Database SQL Language Reference for more information about
the ROWID data type

• Oracle Database SQL Language Reference for more information about
the UROWID data type

• Oracle Call Interface Programmer's Guide for information about using
the ROWID data type in C

• Pro*C/C++ Programmer's Guide for information about using the ROWID
data type with the Pro*C/C++ precompiler

• Oracle Database JDBC Developer's Guide for information about using
the ROWID data type in Java

• Oracle Database Concepts for more information about HCC

Example 9-6 Querying the ROWID Pseudocolumn

DROP TABLE t_tab; -- in case it exists
CREATE TABLE t_tab (col1 ROWID);

INSERT INTO t_tab (col1)
SELECT ROWID
FROM employees
WHERE employee_id > 199;

Chapter 9
Identifying Rows by Address

9-26

Query:

SELECT employee_id, rowid
FROM employees
WHERE employee_id > 199;

ROWID varies, but result is similar to:

EMPLOYEE_ID ROWID
----------- ------------------
 200 AAAPeSAAFAAAABTAAC
 201 AAAPeSAAFAAAABTAAD
 202 AAAPeSAAFAAAABTAAE
 203 AAAPeSAAFAAAABTAAF
 204 AAAPeSAAFAAAABTAAG
 205 AAAPeSAAFAAAABTAAH
 206 AAAPeSAAFAAAABTAAI

7 rows selected.

Query:

SELECT * FROM t_tab;

COL1 varies, but result is similar to:

COL1

AAAPeSAAFAAAABTAAC
AAAPeSAAFAAAABTAAD
AAAPeSAAFAAAABTAAE
AAAPeSAAFAAAABTAAF
AAAPeSAAFAAAABTAAG
AAAPeSAAFAAAABTAAH
AAAPeSAAFAAAABTAAI

7 rows selected.

Displaying Metadata for SQL Operators and Functions
The dynamic performance view V$SQLFN_METADATA displays metadata about SQL
operators and functions. For every function that V$SQLFN_METADATA displays, the
dynamic performance view V$SQLFN_ARG_METADATA has one row of metadata about
each function argument. If a function argument can be repeated (as in the functions
LEAST and GREATEST), then V$SQLFN_ARG_METADATA has only one row for each
repeating argument. You can join the views V$SQLFN_METADATA and
V$SQLFN_ARG_METADATA on the column FUNC_ID.

These views let third-party tools leverage SQL functions without maintaining their
metadata in the application layer.

Topics:

• ARGn Data Type

• DISP_TYPE Data Type

Chapter 9
Displaying Metadata for SQL Operators and Functions

9-27

• SQL Data Type Families

See Also:

• Oracle Database Reference for more information about
V$SQLFN_METADATA

• Oracle Database Reference for more information about
V$SQLFN_ARG_METADATA

ARGn Data Type
In the view V$SQLFN_METADATA, the column DATATYPE is the data type of the function
(that is, the data type that the function returns). This data type can be an Oracle data
type, data type family, or ARGn. ARGn is the data type of the nth argument of the
function. For example:

• The MAX function returns a value that has the data type of its first argument, so the
MAX function has return data type ARG1.

• The DECODE function returns a value that has the data type of its third argument, so
the DECODE function has data type ARG3.

See Also:

• SQL Data Type Families

• Oracle Database SQL Language Reference for more information about
MAX function

• Oracle Database SQL Language Reference for more information about
DECODE function

DISP_TYPE Data Type
In the view V$SQLFN_METADATA, the column DISP_TYPE is the data type of an argument
that can be any expression. An expression is either a single value or a combination of
values and SQL functions that has a single value.

Table 9-10 Display Types of SQL Functions

Display Type Description Example

NORMAL FUNC(A,B,...) LEAST(A,B,C)

ARITHMETIC A FUNC B) A+B

PARENTHESIS FUNC() SYS_GUID()

RELOP A FUNC B A IN B

CASE_LIKE CASE statement or DECODE decode

Chapter 9
Displaying Metadata for SQL Operators and Functions

9-28

Table 9-10 (Cont.) Display Types of SQL Functions

Display Type Description Example

NOPAREN FUNC SYSDATE

SQL Data Type Families
Often, a SQL function argument can have any data type in a data type family.
Table 9-11 shows the SQL data type families and their member data types.

Table 9-11 SQL Data Type Families

Family Data Types

STRING • CHARACTER
• VARCHAR2
• CLOB
• NCHAR
• NVARCHAR2
• NCLOB
• LONG

NUMERIC • NUMBER
• BINARY_FLOAT
• BINARY_DOUBLE

DATETYPE • DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND

BINARY • BLOB
• RAW
• LONG RAW

Chapter 9
Displaying Metadata for SQL Operators and Functions

9-29

10
Using Regular Expressions in Database
Applications

This chapter describes regular expressions and explains how to use them in database
applications.

Topics:

• Overview of Regular Expressions

• Oracle SQL Support for Regular Expressions

• Oracle SQL and POSIX Regular Expression Standard

• Operators in Oracle SQL Regular Expressions

• Using Regular Expressions in SQL Statements: Scenarios

See Also:

• Oracle Database Globalization Support Guide for information about
using SQL regular expression functions in a multilingual environment

• Oracle Regular Expressions Pocket Reference by Jonathan Gennick,
O'Reilly & Associates

• Mastering Regular Expressions by Jeffrey E. F. Friedl, O'Reilly &
Associates

Overview of Regular Expressions
A regular expression specifies a search pattern, using metacharacters (which are, or
belong to, operators) and character literals (described in Oracle Database SQL
Language Reference).

The search pattern can be complex. For example, this regular expression matches any
string that begins with either f or ht, followed by tp, optionally followed by s, followed
by the colon (:):

(f|ht)tps?:

The metacharacters (which are also operators) in the preceding example are the
parentheses, the pipe symbol (|), and the question mark (?). The character literals are
f, ht, tp, s, and the colon (:).

Parentheses group multiple pattern elements into a single element. The pipe symbol
(|) indicates a choice between the elements on either side of it, f and ht. The question
mark (?) indicates that the preceding element, s, is optional. Thus, the preceding
regular expression matches these strings:

10-1

• http:

• https:

• ftp:

• ftps:

Regular expressions are a powerful text-processing component of the programming
languages Java and PERL. For example, a PERL script can read the contents of each
HTML file in a directory into a single string variable and then use a regular expression
to search that string for URLs. This robust pattern-matching functionality is one reason
that many application developers use PERL.

Oracle SQL Support for Regular Expressions
Oracle SQL support for regular expressions lets application developers implement
complex pattern-matching logic in the database, which is useful for these reasons:

• By centralizing pattern-matching logic in the database, you avoid intensive string
processing of SQL results sets by middle-tier applications.

For example, life science customers often rely on PERL to do pattern analysis on
bioinformatics data stored in huge databases of DNA and proteins. Previously,
finding a match for a protein sequence such as [AG].{4}GK[ST] was handled in
the middle tier. The SQL regular expression functions move the processing logic
closer to the data, thereby providing a more efficient solution.

• By using server-side regular expressions to enforce constraints, you avoid
duplicating validation logic on multiple clients.

Oracle SQL supports regular expressions with the pattern-matching condition and
functions summarized in Table 10-1. Each pattern matcher searches a given string for
a given pattern (described with a regular expression), and each has the pattern-
matching options described in Table 10-2. The functions have additional options (for
example, the character position at which to start searching the string for the pattern).

Table 10-1 Oracle SQL Pattern-Matching Condition and Functions

Name Description

REGEXP_LIKE Condition that can appear in the WHERE clause of a query, causing
the query to return rows that match the given pattern.

Example: This WHERE clause identifies employees with the first name
of Steven or Stephen:

WHERE REGEXP_LIKE((hr.employees.first_name, '^Ste(v|ph)en$')

REGEXP_COUNT Function that returns the number of times the given pattern appears
in the given string.

Example: This function invocation returns the number of times that e
(but not E) appears in the string 'Albert Einstein', starting at
character position 7:

REGEXP_COUNT('Albert Einstein', 'e', 7, 'c')

(The returned value is 1, because the c option specifies case-
sensitive matching.)

Chapter 10
Oracle SQL Support for Regular Expressions

10-2

Table 10-1 (Cont.) Oracle SQL Pattern-Matching Condition and Functions

Name Description

REGEXP_INSTR Function that returns an integer that indicates the starting position of
the given pattern in the given string. Alternatively, the integer can
indicate the position immediately following the end of the pattern.

Example: This function invocation returns the starting position of the
first valid email address in the column hr.employees.email:

REGEXP_INSTR(hr.employees.email, '\w+@\w+(\.\w+)+')

If the returned value is greater than zero, then the column contains a
valid email address.

REGEXP_REPLACE Function that returns the string that results from replacing
occurrences of the given pattern in the given string with a replacement
string.

Example: This function invocation puts a space after each character
in the column hr.countries.country_name:

REGEXP_REPLACE(hr.countries.country_name, '(.)', '\1 ')

REGEXP_SUBSTR Function that is like REGEXP_INSTR except that instead of returning
the starting position of the given pattern in the given string, it returns
the matching substring itself.

Example: This function invocation returns 'Oracle' because the x
option ignores the spaces in the pattern:

REGEXP_SUBSTR('Oracle 2010', 'O r a c l e', 1, 1, 'x')

Table 10-2 describes the pattern-matching options that are available to each pattern
matcher in Table 10-1.

Table 10-2 Oracle SQL Pattern-Matching Options for Condition and Functions

Pattern-
Matching
Option

Description Example

i Specifies case-insensitive matching. This function invocation returns 3:

REGEXP_COUNT('Albert Einstein', 'e', 'i')

c Specifies case-sensitive matching. This function invocation returns 2:

REGEXP_COUNT('Albert Einstein', 'e', 'c')

n Allows the Dot operator (.) to match
the newline character, which is not
the default (see Table 10-3).

In this function invocation, the string and search pattern
match only because the n option is specified:

REGEXP_SUBSTR('a'||CHR(10)||'d', 'a.d', 1, 1,
'n')

Chapter 10
Oracle SQL Support for Regular Expressions

10-3

Table 10-2 (Cont.) Oracle SQL Pattern-Matching Options for Condition and Functions

Pattern-
Matching
Option

Description Example

m Specifies multiline mode, where a
newline character inside a string
terminates a line. The string can
contain multiple lines.

Multiline mode affects POSIX
operators Beginning-of-Line Anchor
(^) and End-of-Line Anchor ($)
(described in Table 10-3) but not
PERL-influenced operators \A, \Z,
and \z (described in Table 10-5).

This function invocation returns ac:

REGEXP_SUBSTR('ab'||CHR(10)||'ac', '^a.', 1, 2,
'm')

x Ignores whitespace characters in the
search pattern. By default,
whitespace characters match
themselves.

This function invocation returns abcd:

REGEXP_SUBSTR('abcd', 'a b c d', 1, 1, 'x')

See Also:

Oracle Database SQL Language Reference fore more information about
single row functions

Oracle SQL and POSIX Regular Expression Standard
Oracle SQL implementation of regular expressions conforms to these standards:

• IEEE Portable Operating System Interface (POSIX) standard draft 1003.2/D11.2

Oracle SQL follows exactly the syntax and matching semantics for regular
expression operators as defined in the POSIX standard for matching ASCII
(English language) data.

• Unicode Regular Expression Guidelines of the Unicode Consortium

Oracle SQL extends regular expression support beyond the POSIX standard in these
ways:

• Extends the matching capabilities for multilingual data

• Supports some commonly used PERL regular expression operators that are not
included in the POSIX standard but do not conflict with it (for example, character
class shortcuts and the nongreedy modifier (?))

Chapter 10
Oracle SQL and POSIX Regular Expression Standard

10-4

See Also:

• POSIX Operators in Oracle SQL Regular Expressions

• POSIX Regular Expressions Specification

• Oracle SQL Multilingual Extensions to POSIX Standard

• Oracle SQL PERL-Influenced Extensions to POSIX Standard

Operators in Oracle SQL Regular Expressions
Oracle SQL supports a set of common operators (composed of metacharacters) used
in regular expressions.

Caution:

The interpretation of metacharacters differs between tools that support
regular expressions. If you are porting regular expressions from another
environment to Oracle Database, ensure that Oracle SQL supports their
syntax and interprets them as you expect.

Topics:

• POSIX Operators in Oracle SQL Regular Expressions

• Oracle SQL Multilingual Extensions to POSIX Standard

• Oracle SQL PERL-Influenced Extensions to POSIX Standard

POSIX Operators in Oracle SQL Regular Expressions
Table 10-3 summarizes the POSIX operators defined in the POSIX standard Extended
Regular Expression (ERE) syntax. Oracle SQL follows the exact syntax and matching
semantics for these operators as defined in the POSIX standard for matching ASCII
(English language) data. Any differences in action between Oracle SQL and the
POSIX standard are noted in the Description column.

Chapter 10
Operators in Oracle SQL Regular Expressions

10-5

Table 10-3 POSIX Operators in Oracle SQL Regular Expressions

Operator
Syntax

Names Description Examples

. Any Character

Dot

Matches any character in the database
character set, including the newline character
if you specify matching option n (see
Table 10-2).

The Linux, UNIX, and Windows platforms
recognize the newline character as the
linefeed character (\x0a).

The Macintosh platforms recognize the
newline character as the carriage return
character (\x0d).

Note: In the POSIX standard, this operator
matches any English character except NULL
and the newline character.

The expression a.b matches
the strings abb, acb, and adb,
but does not match acc.

+ One or More

Plus Quantifier

Matches one or more occurrences of the
preceding subexpression (greedy1).

The expression a+ matches the
strings a, aa, and aaa, but
does not match ba or ab.

* Zero or More

Star Quantifier

Matches zero or more occurrences of the
preceding subexpression (greedy1).

The expression ab*c matches
the strings ac, abc, and abbc,
but does not match abb or bbc.

? Zero or One

Question Mark
Quantifier

Matches zero or one occurrences of the
preceding subexpression (greedy1).

The expression ab?c matches
the strings abc and ac, but
does not match abbc or adc.

{m} Interval

Exact Count
Matches exactly m occurrences of the
preceding subexpression.

The expression a{3} matches
the string aaa, but does not
match aa.

{m,} Interval

At-Least Count
Matches at least m occurrences of the
preceding subexpression (greedy1).

The expression a{3,} matches
the strings aaa and aaaa, but
does not match aa.

{m,n} Interval

Between Count
Matches at least m but not more than n
occurrences of the preceding subexpression
(greedy1).

The expression a{3,5}
matches the strings aaa, aaaa,
and aaaaa, but does not match
aa or aaaaaa.

Chapter 10
Operators in Oracle SQL Regular Expressions

10-6

Table 10-3 (Cont.) POSIX Operators in Oracle SQL Regular Expressions

Operator
Syntax

Names Description Examples

[char...] Matching
Character List

Matches any single character in the list within
the brackets. In the list, all operators except
these are treated as literals:

• Range operator: -
• POSIX character class: [: :]
• POSIX collation element: [. .]
• POSIX character equivalence class: [=

=]

A dash (-) is a literal when it occurs first or
last in the list, or as an ending range point in
a range expression, as in [#--]. A right
bracket (]) is treated as a literal if it occurs
first in the list.

Note: In the POSIX standard, a range
includes all collation elements between the
start and end of the range in the linguistic
definition of the current locale. Thus, ranges
are linguistic rather than byte value ranges;
the semantics of the range expression are
independent of the character set. In Oracle
Database, the linguistic range is determined
by the NLS_SORT initialization parameter.

The expression [abc] matches
the first character in the strings
all, bill, and cold, but does
not match any characters in
doll.

[^char...] Nonmatching
Character List

Matches any single character not in the list
within the brackets.

For information about operators and ranges in
the character list, see the description of the
Matching Character List operator.

The expression [^abc]def
matches the string xdef, but
not adef, bdef, or cdef.

The expression [^a-i]x
matches the string jx, but does
not match ax, fx, or ix.

[alt1 |alt2] Or Matches either alternative. The expression a|b matches
the character a or b.

(expr) Subexpression

Grouping

Treats the expression within the parentheses
as a unit. The expression can be a string or a
complex expression containing operators.

You can refer to a subexpression in a back
reference.

The expression (abc)?def
matches the strings abcdef
and def, but does not match
abcdefg or xdef.

\n Back Reference Matches the nth preceding subexpression,
where n is an integer from 1 through 9. A
back reference counts subexpressions from
left to right, starting with the opening
parenthesis of each preceding
subexpression. The expression is invalid if
fewer than n subexpressions precede \n.

A back reference lets you search for a
repeated string without knowing what it is.

For the REGEXP_REPLACE function, Oracle
SQL supports back references in both the
regular expression pattern and the
replacement string.

The expression (abc|def)xy
\1 matches the strings
abcxyabc and defxydef, but
does not match abcxydef or
abcxy.

The expression ^(.*)\1$
matches a line consisting of
two adjacent instances of the
same string.

Chapter 10
Operators in Oracle SQL Regular Expressions

10-7

Table 10-3 (Cont.) POSIX Operators in Oracle SQL Regular Expressions

Operator
Syntax

Names Description Examples

\ Escape
Character

Treats the subsequent character as a literal.

A backslash (\) lets you search for a character
that would otherwise be treated as a
metacharacter. Use consecutive backslashes
(\\) to match the backslash literal itself.

The expression abc\+def
matches the string abc+def,
but does not match abcdef or
abccdef.

^ Beginning-of-
Line Anchor

Default mode: Matches the beginning of a
string.

Multiline mode:2 Matches the beginning of
any line the source string.

The expression ^def matches
the substring def in the string
defghi but not in the string
abcdef.

$ End-of-Line
Anchor

Default mode: Matches the end of a string.

Multiline mode:2 Matches the end of any line
the source string.

The expression def$ matches
the substring def in the string
abcdef but not in the string
defghi.

[:class:] POSIX
Character Class

Matches any character in the specified
POSIX character class (such as uppercase
characters, digits, or punctuation characters).

Note: In English regular expressions, range
expressions often indicate a character class.
For example, [a-z] indicates any lowercase
character. This convention is not useful in
multilingual environments, where the first and
last character of a given character class might
not be the same in all languages.

The expression [:upper:]+,
which specifies one or more
consecutive uppercase
characters, matches the
substring DEF in the string
abcDEFghi, but does not
match any substring in
abcdefghi.

[.element.] POSIX Collating
Element
Operator

Specifies a collating element defined in the
current locale. The NLS_SORT initialization
parameter determines the supported collation
elements.

This syntax lets you use a multicharacter
collating element where otherwise only
single-character collating elements are
allowed. For example, you can ensure that
the collating element ch, when defined in a
locale such as Traditional Spanish, is treated
as one character in operations that depend
on the ordering of characters.

The expression [.ch.], which
specifies the collating element
ch, matches ch in the string
chabc, but does not match any
substring in cdefg.

The expression [a-[.ch.]]
specifies the range from a
through ch.

[=char=] POSIX
Character
Equivalence
Class

Matches all characters that belong to the
same POSIX character equivalence class as
the specified character, in the current locale.

This syntax must appear within a character
list; that is, it must be nested within the
brackets for a character list.

Character equivalents depend on how
canonical rules are defined for your database
locale. For details, see Oracle Database
Globalization Support Guide.

The expression [[=n=]],
which specifies characters
equivalent to n in a Spanish
locale, matches both N and ñ in
the string El Niño.

1 A greedy operator matches as many occurrences as possible while allowing the rest of the match to succeed. To make the
operator nongreedy, follow it with the nongreedy modifier (?) (see Table 10-5).

2 Specify multiline mode with the pattern-matching option m, described in Table 10-2.

Chapter 10
Operators in Oracle SQL Regular Expressions

10-8

Oracle SQL Multilingual Extensions to POSIX Standard
When applied to multilingual data, Oracle SQL POSIX operators extend beyond the
matching capabilities specified in the POSIX standard.

Table 10-4 shows, for each POSIX operator, which POSIX standards define its syntax
and whether Oracle SQL extends its semantics for handling multilingual data. The
POSIX standards are Basic Regular Expression (BRE) and Extended Regular
Expression (ERE).

Table 10-4 POSIX Operators and Multilingual Operator Relationships

Operator POSIX BRE Syntax POSIX ERE Syntax Multilingual Enhancement

\ Yes Yes --

* Yes Yes --

+ -- Yes --

? -- Yes --

| -- Yes --

^ Yes Yes Yes

$ Yes Yes Yes

. Yes Yes Yes

[] Yes Yes Yes

() Yes Yes --

{m} Yes Yes --

{m,} Yes Yes --

{m,n} Yes Yes --

\n Yes Yes Yes

[..] Yes Yes Yes

[::] Yes Yes Yes

[==] Yes Yes Yes

Multilingual data might have multibyte characters. Oracle Database lets you enter
multibyte characters directly (if you have a direct input method) or use functions to
compose them. You cannot use the Unicode hexadecimal encoding value of the form
\xxxx. Oracle Database evaluates the characters based on the byte values used to
encode the character, not the graphical representation of the character.

Oracle SQL PERL-Influenced Extensions to POSIX Standard
Oracle SQL supports some commonly used PERL regular expression operators that
are not included in the POSIX standard but do not conflict with it.

Table 10-5 summarizes the PERL-influenced operators that Oracle SQL supports.

Chapter 10
Operators in Oracle SQL Regular Expressions

10-9

Caution:

PERL character class matching is based on the locale model of the operating
system, whereas Oracle SQL regular expressions are based on the
language-specific data of the database. In general, you cannot expect a
regular expression involving locale data to produce the same results in PERL
and Oracle SQL.

Table 10-5 PERL-Influenced Operators in Oracle SQL Regular Expressions

Operator
Syntax

Description Examples

\d Matches a digit character.

Equivalent to POSIX expression
[[:digit:]].

The expression ^\(\d{3}\) \d{3}-\d{4}$ matches
(650) 555-0100 but does not match 650-555-0100.

\D Matches a nondigit character.

Equivalent to POSIX expression
[^[:digit:]].

The expression \w\d\D matches b2b and b2_ but
does not match b22.

\w Matches a word character (that is, an
alphanumeric or underscore (_) character).

Equivalent to POSIX expression
[[:alnum:]_].

The expression \w+@\w+(\.\w+)+ matches the string
jdoe@company.co.uk but does not match
jdoe@company.

\W Matches a nonword character.

Equivalent to POSIX expression
[^[:alnum:]_].

The expression \w+\W\s\w+ matches the string to:
bill but does not match to bill.

\s Matches a whitespace character.

Equivalent to POSIX expression
[[:space:]].

The expression \(\w\s\w\s\) matches the string (a
b) but does not match (ab) or (a,b.).

\S Matches a nonwhitespace character.

Equivalent to POSIX expression
[^[:space:]].

The expression \(\w\S\w\S\) matches the strings
(abde) and (a,b.) but does not match (a b d e).

\A Matches the beginning of a string, in either
single-line or multiline mode.

Not equivalent to POSIX operator ^.

The expression \AL matches only the first L in the
string Line1\nLine2\n (where \n is the newline
character), in either single-line or multiline mode.

\Z Matches the end of a string, in either single-
line or multiline mode.

Not equivalent to POSIX operator $.

The expression \s\Z matches the last space in the
string L i n e \n (where \n is the newline
character), in either single-line or multiline mode.

\z Matches the end of a string, in either single-
line or multiline mode.

Not equivalent to POSIX operator $.

The expression \s\z matches the newline character
(\n) in the string L i n e \n, in either single-line or
multiline mode.

+? Matches one or more occurrences of the
preceding subexpression (nongreedy1).

The expression \w+?x\w matches abxc in the string
abxcxd (and the greedy expression \w+x\w matches
abxcxd).

*? Matches zero or more occurrences of the
preceding subexpression (nongreedy1).
Matches the empty string whenever possible.

The expression \w*?x\w matches xa in the string
xaxbxc (and the greedy expression \w*x\w matches
xaxbxc.

Chapter 10
Operators in Oracle SQL Regular Expressions

10-10

Table 10-5 (Cont.) PERL-Influenced Operators in Oracle SQL Regular Expressions

Operator
Syntax

Description Examples

?? Matches zero or one occurrences of the
preceding subexpression (nongreedy1).
Matches the empty string whenever possible.

The expression a??aa matches aa in the string aaaa
(and the greedy expression a?aa matches aaa).

{m}? Matches exactly m occurrences of the
preceding subexpression (nongreedy1).

The expression (a|aa){2}? matches aa in the string
aaaa (and the greedy expression (a|aa){2} matches
aaaa.

Both the expression b{2}? and the greedy expression
b{2} match bb in the string bbbb.

{m,}? Matches at least m occurrences of the
preceding subexpression (nongreedy1).

The expression a{2,}? matches aa in the string
aaaaa (and the greedy expression a{2,} matches
aaaaa.

{m,n}? Matches at least m but not more than n
occurrences of the preceding subexpression
(nongreedy1). {0,n}? matches the empty
string whenever possible.

The expression a{2,4}? matches aa in the string
aaaaa (and the greedy expression a{2,4} matches
aaaa.

1 A nongreedy operator matches as few occurrences as possible while allowing the rest of the match to succeed. To make the
operator greedy, omit the nongreedy modifier (?).

Using Regular Expressions in SQL Statements: Scenarios
Scenarios:

• Using a Constraint to Enforce a Phone Number Format

• Example: Enforcing a Phone Number Format with Regular Expressions

• Example: Inserting Phone Numbers in Correct and Incorrect Formats

• Using Back References to Reposition Characters

Using a Constraint to Enforce a Phone Number Format
Regular expressions are useful for enforcing constraints—for example, to ensure that
phone numbers are entered into the database in a standard format.

Table 10-6 explains the elements of the regular expression in Example: Enforcing a
Phone Number Format with Regular Expressions.

Table 10-6 Explanation of the Regular Expression Elements

Regular Expression
Element

Matches . . .

^ The beginning of the string.

\(A left parenthesis. The backslash (\) is an escape character that
indicates that the left parenthesis after it is a literal rather than a
subexpression delimiter.

Chapter 10
Using Regular Expressions in SQL Statements: Scenarios

10-11

Table 10-6 (Cont.) Explanation of the Regular Expression Elements

Regular Expression
Element

Matches . . .

\d{3} Exactly three digits.

\) A right parenthesis. The backslash (\) is an escape character that
indicates that the right parenthesis after it is a literal rather than a
subexpression delimiter.

space character A space character.

\d{3} Exactly three digits.

- A hyphen.

\d{4} Exactly four digits.

$ The end of the string.

Example: Enforcing a Phone Number Format with Regular
Expressions

When you create a table, you can enforce formats with regular expressions.

Example 10-1 creates a contacts table and adds a CHECK constraint to the p_number
column to enforce this format model:

(XXX) XXX-XXXX

Example 10-1 Enforcing a Phone Number Format with Regular Expressions

DROP TABLE contacts;
CREATE TABLE contacts (
 l_name VARCHAR2(30),
 p_number VARCHAR2(30)
 CONSTRAINT c_contacts_pnf
 CHECK (REGEXP_LIKE (p_number, '^\(\d{3}\) \d{3}-\d{4}$'))
);

Example: Inserting Phone Numbers in Correct and Incorrect Formats
The INSERT INTO SQL statement can be used to test how correct and incorrect
formats work.

Example 10-2 shows some statements that correctly and incorrectly insert phone
numbers into the contacts table.

Example 10-2 Inserting Phone Numbers in Correct and Incorrect Formats

These are correct:

INSERT INTO contacts (p_number) VALUES('(650) 555-0100');
INSERT INTO contacts (p_number) VALUES('(215) 555-0100');

These generate CHECK constraint errors:

Chapter 10
Using Regular Expressions in SQL Statements: Scenarios

10-12

INSERT INTO contacts (p_number) VALUES('650 555-0100');
INSERT INTO contacts (p_number) VALUES('650 555 0100');
INSERT INTO contacts (p_number) VALUES('650-555-0100');
INSERT INTO contacts (p_number) VALUES('(650)555-0100');
INSERT INTO contacts (p_number) VALUES(' (650) 555-0100');

Using Back References to Reposition Characters
A back reference (described in Table 10-3) stores the referenced subexpression in a
temporary buffer. Therefore, you can use back references to reposition characters, as
in Example 10-3. For an explanation of the elements of the regular expression in
Example 10-3, see Table 10-7.

Table 10-7 explains the elements of the regular expression in Example 10-3.

Table 10-7 Explanation of the Regular Expression Elements

Regular Expression
Element

Description

^ Matches the beginning of the string.

$ Matches the end of the string.

(\S+) Matches one or more nonspace characters. The parentheses are not
escaped so they function as a grouping expression.

\s Matches a whitespace character.

\1 Substitutes the first subexpression, that is, the first group of
parentheses in the matching pattern.

\2 Substitutes the second subexpression, that is, the second group of
parentheses in the matching pattern.

\3 Substitutes the third subexpression, that is, the third group of
parentheses in the matching pattern.

, Inserts a comma character.

Example 10-3 Using Back References to Reposition Characters

Create table and populate it with names in different formats:

DROP TABLE famous_people;
CREATE TABLE famous_people (names VARCHAR2(20));
INSERT INTO famous_people (names) VALUES ('John Quincy Adams');
INSERT INTO famous_people (names) VALUES ('Harry S. Truman');
INSERT INTO famous_people (names) VALUES ('John Adams');
INSERT INTO famous_people (names) VALUES (' John Quincy Adams');
INSERT INTO famous_people (names) VALUES ('John_Quincy_Adams');

SQL*Plus formatting command:

COLUMN "names after regexp" FORMAT A20

For each name in the table whose format is "first middle last", use back references to
reposition characters so that the format becomes "last, first middle":

SELECT names "names",
 REGEXP_REPLACE(names, '^(\S+)\s(\S+)\s(\S+)$', '\3, \1 \2')
 AS "names after regexp"

Chapter 10
Using Regular Expressions in SQL Statements: Scenarios

10-13

FROM famous_people
ORDER BY "names";

Result:

names names after regexp
-------------------- --------------------
 John Quincy Adams John Quincy Adams
Harry S. Truman Truman, Harry S.
John Adams John Adams
John Quincy Adams Adams, John Quincy
John_Quincy_Adams John_Quincy_Adams

5 rows selected.

Chapter 10
Using Regular Expressions in SQL Statements: Scenarios

10-14

11
Using Indexes in Database Applications

Indexes are optional structures, associated with tables and clusters, which allow SQL
queries to execute more quickly. Just as the index in this guide helps you locate
information faster than if there were no index, an Oracle Database index provides a
faster access path to table data. You can use indexes without rewriting any queries.
Your results are the same, but you see them more quickly.

See Also:

• Oracle Database Concepts for more information about indexes and
index-organized tables

• Oracle Database Administrator's Guide for more information about
managing indexes

• Oracle Database SQL Tuning Guide for more information about how
indexes and clusters can enhance or degrade performance

Topics:

• Guidelines for Managing Indexes

• Managing Indexes

• When to Use Domain Indexes

• When to Use Function-Based Indexes

Guidelines for Managing Indexes
The summary of guidelines for managing the indexes are as follows:

• Create indexes after inserting table data

• Index the correct tables and columns

• Order index columns for performance

• Limit the number of indexes for each table

• Drop indexes that are no longer needed

• Understand deferred segment creation

• Estimate index size and set storage parameters

• Specify the tablespace for each index

• Consider parallelizing index creation

• Consider creating indexes with NOLOGGING

• Understand when to use unusable or invisible indexes

11-1

• Consider costs and benefits of coalescing or rebuilding indexes

• Consider cost before disabling or dropping constraints

See Also:

Oracle Database Administrator's Guide

Managing Indexes
Oracle Database Administrator's Guide has this information about managing indexes:

• Creating indexes

• Altering indexes

• Monitoring space use of indexes

• Dropping indexes

• Data dictionary views that display information about indexes

See Also:

Creating Indexes for Use with Constraints

When to Use Domain Indexes
A domain index (also called an application domain index) is a customized index
specific to an application that was implemented using a data cartridge (for example, a
search engine or geographic information system).

See Also:

• Oracle Database Data Cartridge Developer's Guide for conceptual
background to help you decide when to build domain indexes

• Oracle Database Concepts for information about domain indexes

When to Use Function-Based Indexes
A function-based index computes the value of an expression that involves one or
more columns and stores it in the index. The index expression can be an arithmetic
expression or an expression that contains a SQL function, PL/SQL function, package
function, or C callout. Function-based indexes also support linguistic sorts based on
collation keys, efficient linguistic collation of SQL statements, and case-insensitive
sorts.

Chapter 11
Managing Indexes

11-2

A function-based index improves the performance of queries that use the index
expression (especially if the expression computation is intensive). However:

• The database must also evaluate the index expression to process statements that
do not use it.

• Function-based indexes on columns that are frequently modified are expensive for
the database to maintain.

The optimizer can use function-based indexes only for cost-based optimization, while it
can use indexes on columns for both cost-based and rule-based optimization.

Note:

• A function-based index cannot contain the value NULL. Therefore, either
ensure that no column involved in the index expression can contain NULL
or use the NVL function in the index expression to substitute another
value for NULL.

• Oracle Database treats descending indexes as if they were function-
based indexes.

Topics:

• Advantages of Function-Based Indexes

• Disadvantages of Function-Based Indexes

• Example: Function-Based Index for Precomputing Arithmetic Expression

• Example: Function-Based Indexes on Object Column

• Example: Function-Based Index for Faster Case-Insensitive Searches

• Example: Function-Based Index for Language-Dependent Sorting

See Also:

• Oracle Database Concepts for additional conceptual information about
function-based indexes

• Oracle Database Administrator's Guide for information about creating
function-based indexes

• Oracle Database Globalization Support Guide for information about
function-based linguistic indexes

• Oracle Database Concepts for more information about how the optimizer
uses function-based indexes

• Oracle Database SQL Tuning Guide for information about using function-
based indexes for performance

• Oracle Database SQL Language Reference for information about NVL

• Oracle Database SQL Language Reference for more information about
creating index

Chapter 11
When to Use Function-Based Indexes

11-3

Advantages of Function-Based Indexes
A function-based index has these advantages:

• A function-based index increases the number of situations where the database
can perform an index range scan instead of a full index scan.

An index range scan typically has a fast response time when the WHERE clause
selects fewer than 15% of the rows of a large table. The optimizer can more
accurately estimate how many rows an expression selects if the expression is
materialized in a function-based index.

Oracle Database represents the index expression as a virtual column, on which
the ANALYZE statement can build a histogram.

• A function-based index precomputes and stores the value of an expression.

Queries can get the value of the expression from the index instead of computing it.
The more queries that need the value and the more intensive computation the
index expression gets, the index improves application performance.

• You can create a function-based index on an object column or REF column.

The index expression can be the invocation of a method that returns an object
type.

• A function-based index lets you perform more powerful sorts.

The index expression can invoke the SQL functions UPPER and LOWER for case-
insensitive sorts (as in Example 11-3) and the SQL function NLSSORT for linguistic-
based sorts.

See Also:

• Oracle Database Concepts for more information about index-range scan
and index scan

• Oracle Database SQL Language Reference for more information about
ANALYZE statement

• Oracle Database Object-Relational Developer's Guide for more
information about function-based index

• Example: Function-Based Indexes on Object Column and Oracle
Database SQL Language Reference for examples related to function-
based indexes

• Example: Function-Based Index for Precomputing Arithmetic Expression

• Example: Function-Based Index for Language-Dependent Sorting for
example related to NLSSORT SQL function

Disadvantages of Function-Based Indexes
A function-based index has these disadvantages:

Chapter 11
When to Use Function-Based Indexes

11-4

• The optimizer can use a function-based index only for cost-based optimization, not
for rule-based optimization.

The cost-based optimizer uses statistics stored in the dictionary. To gather
statistics for a function-based index, invoke either
DBMS_STATS.GATHER_TABLE_STATS or DBMS_STATS.GATHER_SCHEMA_STATS .

• The database does not use a function-based index until you analyze the index
itself and the table on which it is defined.

To analyze the index and the table on which the index is defined, invoke either
DBMS_STATS.GATHER_TABLE_STATS or DBMS_STATS.GATHER_SCHEMA_STATS.

• The database does not use function-based indexes when doing OR expansion.

• You must ensure that any schema-level or package-level PL/SQL function that the
index expression invokes is deterministic (that is, that the function always return
the same result for the same input).

You must declare the function as DETERMINISTIC, but because Oracle Database
does not check this assertion, you must ensure that the function really is
deterministic.

If you change the semantics of a DETERMINISTIC function and recompile it, then
you must manually rebuild any dependent function-based indexes and
materialized views. Otherwise, they report results for the prior version of the
function.

• If the index expression is a function invocation, then the function return type
cannot be constrained.

Because you cannot constrain the function return type with NOT NULL, you must
ensure that the query that uses the index cannot fetch NULL values. Otherwise, the
database performs a full table scan.

• The index expression cannot invoke an aggregate function.

• A bitmapped function-based index cannot be a descending index.

• The data type of the index expression cannot be VARCHAR2, RAW, LONGRAW, or a
PL/SQL data type of unknown length.

That is, you cannot index an expression of unknown length. However, you can
index a known-length substring of that expression. For example:

CREATE OR REPLACE FUNCTION initials (
 name IN VARCHAR2
) RETURN VARCHAR2
 DETERMINISTIC
IS
BEGIN
 RETURN('A. J.');
END;
/

/* Invoke SUBSTR both when creating index and when referencing
 function in queries. */

CREATE INDEX func_substr_index ON
EMPLOYEES(SUBSTR(initials(FIRST_NAME),1,10));

SELECT SUBSTR(initials(FIRST_NAME),1,10) FROM EMPLOYEES;

Chapter 11
When to Use Function-Based Indexes

11-5

See Also:

• Oracle Database SQL Language Reference for notes on function-based
indexes

• Oracle Database SQL Language Reference for restrictions on function-
based indexes

• Oracle Database PL/SQL Language Reference for information about the
CREATE FUNCTION statement, including restrictions

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_STATS, GATHER_TABLE_STATS, DBMS_STATS, and
GATHER_SCHEMA_STATS

• Oracle Database SQL Language Reference for more information about
aggregate functions

• Oracle Database SQL Language Reference for more information about
function-based index

Example: Function-Based Index for Precomputing Arithmetic
Expression

You can create composite indexes to computer arithmetic expressions.

Example 11-1 creates a table with columns a, b, and c; creates an index on the table,
and then queries the table. The index is a composite index on three columns: a virtual
column that represents the expression a+b*(c-1), column a, and column b. The query
uses the indexed expression in its WHERE clause; therefore, it can use an index range
scan instead of a full index scan.

Example 11-1 Function-Based Index for Precomputing Arithmetic Expression

Create table on which to create index:

DROP TABLE Fbi_tab;
CREATE TABLE Fbi_tab (
 a INTEGER,
 b INTEGER,
 c INTEGER
);

Create index:

CREATE INDEX Idx ON Fbi_tab (a+b*(c-1), a, b);

This query can use an index range scan instead of a full index scan:

SELECT a FROM Fbi_tab WHERE a+b*(c-1) < 100;

Note:

This example uses composite indexes (indexes on multiple table columns).

Chapter 11
When to Use Function-Based Indexes

11-6

See Also:

• Oracle Database Concepts for information about fast full index scans

• Oracle Database Concepts for more information about composite
indexes

Example: Function-Based Indexes on Object Column

In Example 11-2, assume that the object type Reg_obj has been defined, and that it
stores information about a city. The example creates a table whose first column has
type Reg_obj, a deterministic function with a parameter of type Reg_obj, and two
function-based indexes that invoke the function. The first query uses the first index to
quickly find cities further than 1000 miles from the equator. The second query uses the
second index (which is composite) to quickly find cities where the temperature delta is
less than 20 and the maximum temperature is greater than 75. (The table is not
populated for the example, so the queries return no rows.)

Example 11-2 Function-Based Indexes on Object Column

Create table with object column:

DROP TABLE Weatherdata_tab;
CREATE TABLE Weatherdata_tab (
 Reg_obj INTEGER,
 Maxtemp INTEGER,
 Mintemp INTEGER
);

Create deterministic function with parameter of type Reg_obj:

CREATE OR REPLACE FUNCTION Distance_from_equator (
 Reg_obj IN INTEGER
) RETURN INTEGER
 DETERMINISTIC
IS
BEGIN
 RETURN(3000);
END;
/

Create first function-based index:

CREATE INDEX Distance_index
ON Weatherdata_tab (Distance_from_equator (Reg_obj));

Use index expression in query:

SELECT * FROM Weatherdata_tab
WHERE (Distance_from_equator (Reg_Obj)) > '1000';

Result:

Chapter 11
When to Use Function-Based Indexes

11-7

no rows selected

Create second function-based (and composite) index:

CREATE INDEX Compare_index
ON Weatherdata_tab ((Maxtemp - Mintemp) DESC, Maxtemp);

Use index expression and indexed column in query:

SELECT * FROM Weatherdata_tab
WHERE ((Maxtemp - Mintemp) < '20' AND Maxtemp > '75');

Result:

no rows selected

Example: Function-Based Index for Faster Case-Insensitive Searches
Example 11-3 creates an index that allows faster case-insensitive searches in the
EMPLOYEES table and then uses the index expression in a query.

Example 11-3 Function-Based Index for Faster Case-Insensitive Searches

Create index:

CREATE INDEX emp_lastname ON EMPLOYEES (UPPER(LAST_NAME));

Use index expression in query:

SELECT first_name, last_name
FROM EMPLOYEES
WHERE UPPER(LAST_NAME) LIKE 'J%S_N';

Result:

FIRST_NAME LAST_NAME
-------------------- -------------------------
Charles Johnson

1 row selected.

Example: Function-Based Index for Language-Dependent Sorting
You can use the NLSSORT API for language-dependent sorting.

Example 11-4 creates a table with one column, NAME, and a function-based index to
sort that column using the collation sequence GERMAN, and then selects all columns of
the table, ordering them by NAME. Because the query can use the index, the query is
faster. (Assume that the query is run in a German session, where NLS_SORT is GERMAN
and NLS_COMP is ANSI. Otherwise, the query would have to specify the values of these
Globalization Support parameters.)

Example 11-4 Function-Based Index for Language-Dependent Sorting

Create table on which to create index:

Chapter 11
When to Use Function-Based Indexes

11-8

DROP TABLE nls_tab;
CREATE TABLE nls_tab (NAME VARCHAR2(80));

Create index:

CREATE INDEX nls_index
 ON nls_tab (NLSSORT(NAME, 'NLS_SORT = GERMAN'));

Select all table columns, ordered by NAME:

SELECT * FROM nls_tab
WHERE NAME IS NOT NULL
ORDER BY NAME;

Chapter 11
When to Use Function-Based Indexes

11-9

12
Maintaining Data Integrity in Database
Applications

In a database application, maintaining data integrity means ensuring that the data in
the tables that the application manipulates conform to the appropriate business rules.
A business rule specifies a condition or relationship that must always be true or must
always be false. For example, a business rule might be that no employee can have a
salary over $100,000 or that every employee in the EMPLOYEES table must belong to a
department in the DEPARTMENTS table. Business rules vary from company to company,
because each company defines its own policies about salaries, employee numbers,
inventory tracking, and so on.

There are several ways to ensure data integrity, and the one to use whenever possible
is the integrity constraint (or constraint).

This chapter supplements this information:

Note:

This chapter applies to only to constraints on tables. Constraints on views do
not help maintain data integrity or have associated indexes. Instead, they
enable query rewrites on queries involving views, thereby improving
performance when using materialized views and other data warehousing
features.

See Also:

• Oracle Database Concepts for information about data integrity and
constraints

• Oracle Database Administrator's Guide for more information about
managing constraints

• Oracle Database SQL Language Reference for the syntactic and
semantic information about constraints

• Oracle Database SQL Language Reference for more information about
constraints on views

• Oracle Database Data Warehousing Guide for information about using
constraints in data warehouses

• How the Correct Data Type Increases Data Integrity for more information
about the role that data type plays in data integrity

12-1

Topics:

• Enforcing Business Rules with Constraints

• Enforcing Business Rules with Both Constraints and Application Code

• Creating Indexes for Use with Constraints

• When to Use NOT NULL Constraints

• When to Use Default Column Values

• Choosing a Primary Key for a Table (PRIMARY KEY Constraint)

• When to Use UNIQUE Constraints

• Enforcing Referential Integrity with FOREIGN KEY Constraints

• Minimizing Space and Time Overhead for Indexes Associated with Constraints

• Guidelines for Indexing Foreign Keys

• Referential Integrity in a Distributed Database

• When to Use CHECK Constraints

• Examples of Defining Constraints

• Enabling and Disabling Constraints

• Modifying Constraints

• Renaming Constraints

• Dropping Constraints

• Managing FOREIGN KEY Constraints

• Viewing Information About Constraints

Enforcing Business Rules with Constraints
Whenever possible, enforce business rules with constraints. Constraints have the
advantage of speed: Oracle Database can check that all the data in a table obeys a
constraint faster than application code can do the equivalent checking.

Example 12-1 creates a table of departments, a table of employees, a constraint to
enforce the rule that all values in the department table are unique, and a constraint to
enforce the rule that every employee must work for a valid department.

Example 12-1 Enforcing Business Rules with Constraints

Create table of departments:

DROP TABLE dept_tab;
CREATE TABLE dept_tab (
 deptname VARCHAR2(20),
 deptno INTEGER
);

Create table of employees:

DROP TABLE emp_tab;
CREATE TABLE emp_tab (

Chapter 12
Enforcing Business Rules with Constraints

12-2

 empname VARCHAR2(80),
 empno INTEGER,
 deptno INTEGER
);

Create constraint to enforce rule that all values in department table are unique:

ALTER TABLE dept_tab ADD PRIMARY KEY (deptno);

Create constraint to enforce rule that every employee must work for a valid
department:

ALTER TABLE emp_tab ADD FOREIGN KEY (deptno) REFERENCES dept_tab(deptno);

Now, whenever you insert an employee record into emp_tab, Oracle Database checks
that its deptno value appears in dept_tab.

Suppose that instead of using a constraint to enforce the rule that every employee
must work for a valid department, you use a trigger that queries dept_tab to check that
it contains the deptno value of the employee record to be inserted into emp_tab.
Because the query uses consistent read (CR), it might miss uncommitted changes
from other transactions.

See Also:

• Oracle Database SQL Language Reference for syntactic and semantic
information about constraints

• Oracle Database Concepts for the complete list of advantages of
integrity constraints

• Oracle Database Concepts for more information about using triggers to
enforce business rules

Enforcing Business Rules with Both Constraints and
Application Code

Enforcing business rules with both constraints and application code is recommended
when application code can determine that data values are invalid without querying
tables. The application code can provide immediate feedback to the user and reduce
the load on the database by preventing attempts to insert invalid data into tables.

For Example 12-2, assume that Example 12-1 was run and then this column was
added to the table emp_tab:

empgender VARCHAR2(1)

The only valid values for empgender are 'M' and 'F'. When someone tries to insert a
row into emp_tab or update the value of emp_tab.empgender, application code can
determine whether the new value for emp_tab.empgender is valid without querying a
table. If the value is invalid, the application code can notify the user instead of trying to
insert the invalid value, as in Example 12-2.

Chapter 12
Enforcing Business Rules with Both Constraints and Application Code

12-3

Example 12-2 Enforcing Business Rules with Both Constraints and Application
Code

CREATE OR REPLACE PROCEDURE add_employee (
 e_name emp_tab.empname%TYPE,
 e_gender emp_tab.empgender%TYPE,
 e_number emp_tab.empno%TYPE,
 e_dept emp_tab.deptno%TYPE
) AUTHID DEFINER IS
BEGIN
 IF UPPER(e_gender) IN ('M','F') THEN
 INSERT INTO emp_tab VALUES (e_name, e_gender, e_number, e_dept);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Gender must be M or F.');
 END IF;
END;
/

BEGIN
 add_employee ('Smith', 'H', 356, 20);
END;
/

Result:

Gender must be M or F.

Creating Indexes for Use with Constraints
When a unique or primary key constraint is enabled, Oracle Database creates an
index automatically, but Oracle recommends that you create these indexes explicitly. If
you want to use an index with a foreign key constraint, then you must create the index
explicitly.

When a constraint can use an existing index, Oracle Database does not create an
index for that constraint. Note that:

• A unique or primary key constraint can use either a unique index, an entire
nonunique index, or the first few columns of a nonunique index.

• If a unique or primary key constraint uses a nonunique index, then no other unique
or primary key constraint can use that nonunique index.

• The column order in the constraint and index need not match.

• The object number of the index used by a unique or primary key constraint is
stored in CDEF$.ENABLED for that constraint. No static data dictionary view or
dynamic performance view shows this information.

If an enabled unique or primary key constraint is using an index, you cannot drop
only the index. To drop the index, you must either drop the constraint itself or
disable the constraint and then drop the index.

Chapter 12
Creating Indexes for Use with Constraints

12-4

See Also:

• Oracle Database Administrator's Guide for more information about
indexes associated with constraints

• Oracle Database Administrator's Guide for information about disabling
and dropping constraints

• Oracle Database Administrator's Guide for information about creating
indexes explicitly

• Using Indexes in Database Applications

• Oracle Database SQL Language Reference for information about
creating indexes explicitly

When to Use NOT NULL Constraints
By default, a column can contain a NULL value. To ensure that the column never
contains a NULL value, use the NOT NULL constraint.

Use a NOT NULL constraint in both of these situations:

• A column must contain a non-NULL value.

For example, in the table HR.EMPLOYEES, each employee must have an employee
ID. Therefore, the column HR.EMPLOYEES.EMPLOYEE_ID has a NOT NULL constraint,
and nobody can insert a new employee record into HR.EMPLOYEES without
specifying a non-NULL value for EMPLOYEE_ID. You can insert a new employee
record into HR.EMPLOYEES without specifying a salary; therefore, the column
HR.EMPLOYEES.SALARY does not have a NOT NULL constraint.

• You want to allow index scans of the table, or allow an operation that requires
indexing all rows.

Oracle Database indexes do not store keys whose values are all NULL. Therefore,
for the preceding kinds of operations, at least one indexed column must have a
NOT NULL constraint.

Example 12-3 uses the SQL*Plus command DESCRIBE to show which columns of the
DEPARTMENTS table have NOT NULL constraints, and then shows what happens if you try
to insert NULL values in columns that have NOT NULL constraints.

Example 12-3 Inserting NULL Values into Columns with NOT NULL Constraints

DESCRIBE DEPARTMENTS;

Result:

 Name Null? Type
 --- -------- ------------

 DEPARTMENT_ID NOT NULL NUMBER(4)
 DEPARTMENT_NAME NOT NULL VARCHAR2(30)
 MANAGER_ID NUMBER(6)
 LOCATION_ID NUMBER(4)

Try to insert NULL into DEPARTMENT_ID column:

Chapter 12
When to Use NOT NULL Constraints

12-5

INSERT INTO DEPARTMENTS (
 DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
)
VALUES (NULL, 'Sales', 200, 1700);

Result:

VALUES (NULL, 'Sales', 200, 1700)
 *
ERROR at line 4:
ORA-01400: cannot insert NULL into ("HR"."DEPARTMENTS"."DEPARTMENT_ID")

Omitting a value for a column that cannot be NULL is the same as assigning it the value
NULL:

INSERT INTO DEPARTMENTS (
 DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID
)
VALUES ('Sales', 200, 1700);

Result:

INSERT INTO DEPARTMENTS (
*
ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."DEPARTMENTS"."DEPARTMENT_ID")

You can prevent the preceding error by giving DEPARTMENT_ID a non-NULL default
value.

You can combine NOT NULL constraints with other constraints to further restrict the
values allowed in specific columns. For example, the combination of NOT NULL and
UNIQUE constraints forces the input of values in the UNIQUE key, eliminating the
possibility that data in a new conflicts with data in an existing row.

See Also:

• Oracle Database SQL Language Reference for more information about
NOT NULL constraint

• When to Use Default Column Values for more information about the
usage of default column values

• UNIQUE and NOT NULL Constraints on the Foreign Key

When to Use Default Column Values
When an INSERT statement does not specify a value for a specific column, that column
receives its default value. By default, that default value is NULL. You can change the
default value when you define the column while creating the table or when you alter
the column using the ALTER TABLE statement.

Chapter 12
When to Use Default Column Values

12-6

Note:

Giving a column a non-NULL default value does not ensure that the value of
the column will never have the value NULL, as the NOT NULL constraint does.

Use a default column value in these situations:

• The column has a NOT NULL constraint.

Giving the column a non-NULL default value prevents the error that would occur if
someone inserted a row without specifying a value for the column.

• There is a most common value for the column.

For example, if most departments in the company are in New York, then set the
default value of the column DEPARTMENTS.LOCATION to 'NEW YORK'.

• There is a non-NULL value that signifies no entry.

For example, if the value zero in the column EMPLOYEES.SALARY means that the
salary has not yet been determined, then set the default value of that column to
zero.

A default column value that signifies no entry can simplify testing. For example, it
lets you change this test:

IF (employees.salary IS NOT NULL) AND (employees.salary < 50000)

To this test:

IF employees.salary < 50000

• You want to automatically record the names of users who modify a table.

For example, suppose that you allow users to insert rows into a table through a
view. You give the base table a column named inserter (which need not be
included in the definition of the view), to store the name of the user who inserted
the row. To record the user name automatically, define a default value that invokes
the USER function. For example:

CREATE TABLE audit_trail (
 value1 NUMBER,
 value2 VARCHAR2(32),
 inserter VARCHAR2(30) DEFAULT USER);

Chapter 12
When to Use Default Column Values

12-7

See Also:

• Oracle Database SQL Language Reference for more information about
the INSERT statement

• Oracle Database SQL Language Reference for more information about
the CREATE TABLE statement

• Oracle Database SQL Language Reference for more information about
the ALTER TABLE statement

• When to Use NOT NULL Constraints for information about the NOT NULL
constraint

Choosing a Primary Key for a Table (PRIMARY KEY
Constraint)

The primary key of a table uniquely identifies each row and ensures that no duplicate
rows exist (and typically, this is its only purpose). Therefore, a primary key value
cannot be NULL.

A table can have at most one primary key, but that key can have multiple columns
(that is, it can be a composite key). To designate a primary key, use the PRIMARY KEY
constraint.

Whenever practical, choose as the primary key a single column whose values are
generated by a sequence.

The second-best choice for a primary key is a single column whose values are all of
the following:

• Unique

• Never changed

• Never NULL

• Short and numeric (and therefore easy to type)

Minimize your use of composite primary keys, whose values are long and cannot be
generated by a sequence.

See Also:

• Oracle Database Concepts for general information about primary key
constraints

• Oracle Database SQL Language Reference for complete information
about primary key constraints, including restrictions

• Oracle Database SQL Language Reference for information about
sequences

Chapter 12
Choosing a Primary Key for a Table (PRIMARY KEY Constraint)

12-8

When to Use UNIQUE Constraints
Use a UNIQUE constraint (which designates a unique key) on any column or
combination of columns (except the primary key) where duplicate non-NULL values are
not allowed. For example:

Unique Key Primary Key

Employee Social Security Number Employee number

Truck license plate number Truck number

Customer phone number (country code column, area code column,
and local phone number column)

Customer number

Department name column and location column Department number

Figure 12-1 shows a table with a UNIQUE constraint, a row that violates the constraint,
and a row that satisfies it.

Figure 12-1 Rows That Violate and Satisfy a UNIQUE Constraint

INSERT
INTO

Table DEPARTMENTS

DEPID DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a
value in the constraint's �
column)

This row violates the UNIQUE key constraint,
because "MARKETING" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
 entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

10
20
30
40

Administration
Marketing
Purchasing
Human Resources

1700
1800
1700
2400

50

60

MARKETING 1700

2400

See Also:

• Oracle Database Concepts for general information about UNIQUE
constraints

• Oracle Database SQL Language Reference for complete information
about UNIQUE constraints, including restrictions

Chapter 12
When to Use UNIQUE Constraints

12-9

Enforcing Referential Integrity with FOREIGN KEY
Constraints

When two tables share one or more columns, you use can use a FOREIGN KEY
constraint to enforce referential integrity—that is, to ensure that the shared columns
always have the same values in both tables.

Note:

A FOREIGN KEY constraint is also called a referential integrity constraint,
and its CONSTRAINT_TYPE is R in the static data dictionary views
*_CONSTRAINTS.

Designate one table as the referenced or parent table and the other as the
dependent or child table. In the parent table, define either a PRIMARY KEY or UNIQUE
constraint on the shared columns. In the child table, define a FOREIGN KEY constraint
on the shared columns. The shared columns now comprise a foreign key. Defining
additional constraints on the foreign key affects the parent-child relationship.

Figure 12-2 shows a foreign key defined on the department number. It guarantees that
every value in this column must match a value in the primary key of the department
table. This constraint prevents erroneous department numbers from getting into the
employee table.

Figure 12-2 shows parent and child tables that share one column, a row that violates
the FOREIGN KEY constraint, and a row that satisfies it.

Chapter 12
Enforcing Referential Integrity with FOREIGN KEY Constraints

12-10

Figure 12-2 Rows That Violate and Satisfy a FOREIGN KEY Constraint

Table DEPARTMENTS

DEPID DNAME LOC

10
20
30
40

Administration
Marketing
Purchasing
Human Resources

1700
1800
1700
2400

INSERT
INTO

Parent Key
Primary key of
referenced table

Referenced or

Dependent or Child Table

Parent Table

This row violates
the referential
constraint
because "25"
is not present
in the referenced
table's primary
key; therefore,
the row is not
allowed in
the table.

This row is
allowed in the
table because a
null value is
entered in the
DEPTNO column;
however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

556

556

CRICKET

CRICKET

PU_CLERK

PU_CLERK

31–OCT–96

31–OCT–96

5000

5000

25

Foreign Key
(values in dependent
table must match a value
in unique key or primary
key of referenced table)

ID JOB MGR HIREDATE SAL COMM DEPTNO

Table EMPLOYEES

100
101
102
103

AD_PRES
AD_VP
AD_VP
IT_PROG

LNAME

King
Kochhar
De Hann
Hunold

100
100
102

17–JUN–87
21–SEP–89
13–JAN–93
03–JAN–90

24000
17000
17000
9000

90
90
90
60

Topics:

• FOREIGN KEY Constraints and NULL Values

• Defining Relationships Between Parent and Child Tables

• Rules for Multiple FOREIGN KEY Constraints

• Deferring Constraint Checks

Chapter 12
Enforcing Referential Integrity with FOREIGN KEY Constraints

12-11

See Also:

• Oracle Database Concepts for general information about foreign key
constraints

• Oracle Database SQL Language Reference for complete information
about foreign key constraints, including restrictions

• Defining Relationships Between Parent and Child Tables

FOREIGN KEY Constraints and NULL Values
Foreign keys allow key values that are all NULL, even if there are no matching PRIMARY
or UNIQUE keys.

• By default (without any NOT NULL or CHECK clauses), the FOREIGN KEY constraint
enforces the match none rule for composite foreign keys in the ANSI/ISO
standard.

• To enforce the match full rule for NULL values in composite foreign keys, which
requires that all components of the key be NULL or all be non-NULL, define a CHECK
constraint that allows only all NULL or all non-NULL values in the composite foreign
key. For example, with a composite key comprised of columns A, B, and C:

CHECK ((A IS NULL AND B IS NULL AND C IS NULL) OR
 (A IS NOT NULL AND B IS NOT NULL AND C IS NOT NULL))

• In general, it is not possible to use declarative referential integrity to enforce the
match partial rule for NULL values in composite foreign keys, which requires the
non-NULL portions of the key to appear in the corresponding portions in the primary
or unique key of a single row in the referenced table. You can often use triggers to
handle this case.

See Also:

Oracle Database PL/SQL Language Reference for more information
about triggers

Defining Relationships Between Parent and Child Tables
Several relationships between parent and child tables can be determined by the other
types of constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key

When no other constraints are defined on the foreign key, any number of rows in the
child table can reference the same parent key value. This model allows nulls in the
foreign key.

This model establishes a one-to-many relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. An example of such a
relationship is shown in Figure 12-2 between the employee and department tables.

Chapter 12
Enforcing Referential Integrity with FOREIGN KEY Constraints

12-12

Each department (parent key) has many employees (foreign key), and some
employees might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key

When nulls are not allowed in a foreign key, each row in the child table must explicitly
reference a value in the parent key because nulls are not allowed in the foreign key.

Any number of rows in the child table can reference the same parent key value, so this
model establishes a one-to-many relationship between the parent and foreign keys.
However, each row in the child table must have a reference to a parent key value; the
absence of a value (a null) in the foreign key is not allowed. The same example in the
previous section illustrates such a relationship. However, in this case, employees must
have a reference to a specific department.

UNIQUE Constraint on the Foreign Key

When a UNIQUE constraint is defined on the foreign key, only one row in the child table
can reference a given parent key value. This model allows nulls in the foreign key.

This model establishes a one-to-one relationship between the parent and foreign keys
that allows undetermined values (nulls) in the foreign key. For example, assume that
the employee table had a column named MEMBERNO, referring to an employee
membership number in the company insurance plan. Also, a table named INSURANCE
has a primary key named MEMBERNO, and other columns of the table keep respective
information relating to an employee insurance policy. The MEMBERNO in the employee
table must be both a foreign key and a unique key:

• To enforce referential integrity rules between the EMP_TAB and INSURANCE tables
(the FOREIGN KEY constraint)

• To guarantee that each employee has a unique membership number (the UNIQUE
key constraint)

UNIQUE and NOT NULL Constraints on the Foreign Key

When both UNIQUE and NOT NULL constraints are defined on the foreign key, only one
row in the child table can reference a given parent key value, and because NULL
values are not allowed in the foreign key, each row in the child table must explicitly
reference a value in the parent key.

This model establishes a one-to-one relationship between the parent and foreign keys
that does not allow undetermined values (nulls) in the foreign key. If you expand the
previous example by adding a NOT NULL constraint on the MEMBERNO column of the
employee table, in addition to guaranteeing that each employee has a unique
membership number, you also ensure that no undetermined values (nulls) are allowed
in the MEMBERNO column of the employee table.

Rules for Multiple FOREIGN KEY Constraints
Oracle Database allows a column to be referenced by multiple FOREIGN KEY
constraints; there is no limit on the number of dependent keys. This situation might be
present if a single column is part of two different composite foreign keys.

Chapter 12
Enforcing Referential Integrity with FOREIGN KEY Constraints

12-13

Deferring Constraint Checks
When Oracle Database checks a constraint, it signals an error if the constraint is not
satisfied. To defer checking constraints until the end of the current transaction, use the
SET CONSTRAINTS statement.

Note:

You cannot use the SET CONSTRAINTS statement inside a trigger.

When deferring constraint checks:

• Select appropriate data.

You might want to defer constraint checks on UNIQUE and FOREIGN keys if the data
you are working with has any of these characteristics:

– Tables are snapshots.

– Some tables contain a large amount of data being manipulated by another
application, which might not return the data in the same order.

• Update cascade operations on foreign keys.

• Ensure that constraints are deferrable.

After identifying the appropriate tables, ensure that their FOREIGN, UNIQUE and
PRIMARY key constraints are created DEFERRABLE.

• Within the application that manipulates the data, set all constraints deferred before
you begin processing any data, as follows:

SET CONSTRAINTS ALL DEFERRED;

• (Optional) Check for constraint violations immediately before committing the
transaction.

Immediately before the COMMIT statement, run the SET CONSTRAINTS ALL IMMEDIATE
statement. If there are any problems with a constraint, this statement fails, and
identifies the constraint that caused the error. If you commit while constraints are
violated, the transaction rolls back and you get an error message.

In Example 12-4, the PRIMARY and FOREIGN keys of the table emp are created
DEFERRABLE and then deferred.

Example 12-4 Deferring Constraint Checks

DROP TABLE dept;
CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 dname VARCHAR2 (30)
);

DROP TABLE emp;
CREATE TABLE emp (
 empno NUMBER,
 ename VARCHAR2(30),
 deptno NUMBER,
 CONSTRAINT pk_emp_empno PRIMARY KEY (empno) DEFERRABLE,
 CONSTRAINT fk_emp_deptno FOREIGN KEY (deptno)

Chapter 12
Enforcing Referential Integrity with FOREIGN KEY Constraints

12-14

 REFERENCES dept(deptno) DEFERRABLE);

INSERT INTO dept (deptno, dname) VALUES (10, 'Accounting');
INSERT INTO dept (deptno, dname) VALUES (20, 'SALES');

INSERT INTO emp (empno, ename, deptno) VALUES (1, 'Corleone', 10);
INSERT INTO emp (empno, ename, deptno) VALUES (2, 'Costanza', 20);
COMMIT;

SET CONSTRAINTS ALL DEFERRED;

UPDATE dept
SET deptno = deptno + 10
WHERE deptno = 20;

Query:

SELECT * from dept
ORDER BY deptno;

Result:

 DEPTNO DNAME
---------- ------------------------------
 10 Accounting
 30 SALES

2 rows selected.

Update:

UPDATE emp
SET deptno = deptno + 10
WHERE deptno = 20;

Result:

1 row updated.

Query:

SELECT * from emp
ORDER BY deptno;

Result:

 EMPNO ENAME DEPTNO
---------- ------------------------------ ----------
 1 Corleone 10
 2 Costanza 30

2 rows selected.

The SET CONSTRAINTS applies only to the current transaction, and its setting lasts for
the duration of the transaction, or until another SET CONSTRAINTS statement resets the
mode. The ALTER SESSION SET CONSTRAINTS statement applies only for the current
session. The defaults specified when you create a constraint remain while the
constraint exists.

Chapter 12
Enforcing Referential Integrity with FOREIGN KEY Constraints

12-15

See Also:

Oracle Database SQL Language Reference for more information about the
SET CONSTRAINTS statement

Minimizing Space and Time Overhead for Indexes
Associated with Constraints

When you create a UNIQUE or PRIMARY key, Oracle Database checks to see if an
existing index enforces uniqueness for the constraint. If there is no such index, the
database creates one.

When Oracle Database uses a unique index to enforce a constraint, and constraints
associated with the unique index are dropped or disabled, the index is dropped. To
preserve the statistics associated with the index (which would take a long time to re-
create), specify the KEEP INDEX clause on the DROP CONSTRAINT statement.

While enabled foreign keys reference a PRIMARY or UNIQUE key, you cannot disable or
drop the PRIMARY or UNIQUE key constraint or the index.

Note:

UNIQUE and PRIMARY keys with deferrable constraints must all use nonunique
indexes.

To use existing indexes when creating unique and primary key constraints, include
USING INDEX in the CONSTRAINT clause.

See Also:

Oracle Database SQL Language Reference for more details and examples
of integrity constraints

Guidelines for Indexing Foreign Keys
Index foreign keys unless the matching unique or primary key is never updated or
deleted.

See Also:

Oracle Database Concepts for more information about indexing foreign keys

Chapter 12
Minimizing Space and Time Overhead for Indexes Associated with Constraints

12-16

Referential Integrity in a Distributed Database
The declaration of a referential constraint cannot specify a foreign key that references
a primary or unique key of a remote table.

However, you can maintain parent/child table relationships across nodes using
triggers.

See Also:

Oracle Database PL/SQL Language Reference for more information about
triggers that enforce referential integrity

Note:

If you decide to define referential integrity across the nodes of a distributed
database using triggers, be aware that network failures can make both the
parent table and the child table inaccessible.

For example, assume that the child table is in the SALES database, and the
parent table is in the HQ database.

If the network connection between the two databases fails, then some data
manipulation language (DML) statements against the child table (those that
insert rows or update a foreign key value) cannot proceed, because the
referential integrity triggers must have access to the parent table in the HQ
database.

When to Use CHECK Constraints
Use CHECK constraints when you must enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECK constraints when any of the other
types of constraints can provide the necessary checking.

See Also:

Choosing Between CHECK and NOT NULL Constraints

Examples of CHECK constraints include:

• A CHECK constraint on employee salaries so that no salary value is greater than
10000.

• A CHECK constraint on department locations so that only the locations "BOSTON",
"NEW YORK", and "DALLAS" are allowed.

Chapter 12
Referential Integrity in a Distributed Database

12-17

• A CHECK constraint on the salary and commissions columns to prevent the
commission from being larger than the salary.

Restrictions on CHECK Constraints
A CHECK constraint requires that a condition be true or unknown for every row of the
table. If a statement causes the condition to evaluate to false, then the statement is
rolled back. The condition of a CHECK constraint has these limitations:

• The condition must be a Boolean expression that can be evaluated using the
values in the row being inserted or updated.

• The condition cannot contain subqueries or sequences.

• The condition cannot include the SYSDATE, UID, USER, or USERENV SQL functions.

• The condition cannot contain the pseudocolumns LEVEL or ROWNUM.

• The condition cannot contain the PRIOR operator.

• The condition cannot contain a user-defined function.

See Also:

• Oracle Database SQL Language Reference for information about the
LEVEL pseudocolumn

• Oracle Database SQL Language Reference for information about the
ROWNUM pseudocolumn

• Oracle Database SQL Language Reference for information about the
PRIOR operator (used in hierarchical queries)

Designing CHECK Constraints
When using CHECK constraints, remember that a CHECK constraint is violated only if the
condition evaluates to false; true and unknown values (such as comparisons with
nulls) do not violate a check condition. Ensure that any CHECK constraint that you
define is specific enough to enforce the rule.

For example, consider this CHECK constraint:

CHECK (Sal > 0 OR Comm >= 0)

At first glance, this rule may be interpreted as "do not allow a row in the employee
table unless the employee salary is greater than zero or the employee commission is
greater than or equal to zero." But if a row is inserted with a null salary, that row does
not violate the CHECK constraint, regardless of whether the commission value is valid,
because the entire check condition is evaluated as unknown. In this case, you can
prevent such violations by placing NOT NULL constraints on both the SAL and COMM
columns.

Chapter 12
When to Use CHECK Constraints

12-18

Note:

If you are not sure when unknown values result in NULL conditions, review
the truth tables for the logical conditions in Oracle Database SQL Language
Reference

Rules for Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in its
definition. There is no limit to the number of CHECK constraints that can be defined that
reference a column.

The order in which the constraints are evaluated is not defined, so be careful not to
rely on the order or to define multiple constraints that conflict with each other.

Choosing Between CHECK and NOT NULL Constraints
According to the ANSI/ISO standard, a NOT NULL constraint is an example of a CHECK
constraint, where the condition is:

CHECK (column_name IS NOT NULL)

Therefore, you can write NOT NULL constraints for a single column using either a NOT
NULL constraint or a CHECK constraint. The NOT NULL constraint is easier to use than the
CHECK constraint.

In the case where a composite key can allow only all NULL or all non-NULL values, you
must use a CHECK constraint. For example, this CHECK constraint allows a key value in
the composite key made up of columns C1 and C2 to contain either all nulls or all
values:

CHECK ((C1 IS NULL AND C2 IS NULL) OR (C1 IS NOT NULL AND C2 IS NOT NULL))

Examples of Defining Constraints
Example 12-5 and Example 12-6 show how to create simple constraints during the
prototype phase of your database design. In these examples, each constraint is given
a name. Naming the constraints prevents the database from creating multiple copies
of the same constraint, with different system-generated names, if the data definition
language (DDL) statement runs multiple times.

Example 12-5 creates tables and their constraints at the same time, using the CREATE
TABLE statement.

Example 12-5 Defining Constraints with the CREATE TABLE Statement

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
 Deptno NUMBER(3) CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT u_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')));

Chapter 12
Examples of Defining Constraints

12-19

DROP TABLE EmpTab;
CREATE TABLE EmpTab (
 Empno NUMBER(5) CONSTRAINT pk_EmpTab_Empno PRIMARY KEY,
 Ename VARCHAR2(15) NOT NULL,
 Job VARCHAR2(10),
 Mgr NUMBER(5) CONSTRAINT r_EmpTab_Mgr REFERENCES EmpTab,
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(5,2),
 Deptno NUMBER(3) NOT NULL
 CONSTRAINT r_EmpTab_DeptTab REFERENCES DeptTab ON DELETE CASCADE);

Example 12-6 creates constraints for existing tables, using the ALTER TABLE statement.

You cannot create a validated constraint on a table if the table contains rows that
violate the constraint.

Example 12-6 Defining Constraints with the ALTER TABLE Statement

-- Create tables without constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
 Deptno NUMBER(3),
 Dname VARCHAR2(15),
 Loc VARCHAR2(15)
);

DROP TABLE EmpTab;
CREATE TABLE EmpTab (
 Empno NUMBER(5),
 Ename VARCHAR2(15),
 Job VARCHAR2(10),
 Mgr NUMBER(5),
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(5,2),
 Deptno NUMBER(3)
);

--Define constraints with the ALTER TABLE statement:

ALTER TABLE DeptTab
ADD CONSTRAINT pk_DeptTab_Deptno PRIMARY KEY (Deptno);

ALTER TABLE EmpTab
ADD CONSTRAINT fk_DeptTab_Deptno
FOREIGN KEY (Deptno) REFERENCES DeptTab;

ALTER TABLE EmpTab MODIFY (Ename VARCHAR2(15) NOT NULL);

See Also:

Oracle Database Administrator's Guide for information about creating and
maintaining constraints for a large production database

Chapter 12
Examples of Defining Constraints

12-20

Privileges Needed to Define Constraints
If you have the CREATE TABLE or CREATE ANY TABLE system privilege, then you can
define constraints on the tables that you create.

If you have the ALTER ANY TABLE system privilege, then you can define constraints on
any existing table.

If you have the ALTER object privilege for a specific table, then you can define
constraints on that table.

UNIQUE and PRIMARY KEY constraints require that the table owner has either the
UNLIMITED TABLESPACE system privilege or a quota for the tablespace that contains the
associated index.

You can define FOREIGN KEY constraints if the parent table or view is in your schema or
you have the REFERENCES privilege on the columns of the referenced key in the parent
table or view.

See Also:

Privileges Required to Create FOREIGN KEY Constraints

Naming Constraints
Assign names to constraints NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY, and CHECK
using the CONSTRAINT option of the constraint clause. This name must be unique
among the constraints that you own. If you do not specify a constraint name, one is
assigned automatically by Oracle Database.

Choosing your own name makes error messages for constraint violations more
understandable, and prevents the creation of duplicate constraints with different
names if the SQL statements are run more than once.

See the previous examples of the CREATE TABLE and ALTER TABLE statements for
examples of the CONSTRAINT option of the constraint clause. The name of each
constraint is included with other information about the constraint in the data dictionary.

See Also:

"Viewing Information About Constraints" for examples of static data
dictionary views

Enabling and Disabling Constraints
This section explains the mechanisms and procedures for manually enabling and
disabling constraints.

Chapter 12
Enabling and Disabling Constraints

12-21

enabled constraint. When a constraint is enabled, the corresponding rule is enforced
on the data values in the associated columns. The definition of the constraint is stored
in the data dictionary.

disabled constraint. When a constraint is disabled, the corresponding rule is not
enforced. The definition of the constraint is still stored in the data dictionary.

An integrity constraint represents an assertion about the data in a database. This
assertion is always true when the constraint is enabled. The assertion might not be
true when the constraint is disabled, because data that violates the integrity constraint
can be in the database.

Topics:

• Why Disable Constraints?

• Creating Enabled Constraints (Default)

• Creating Disabled Constraints

• Enabling Existing Constraints

• Disabling Existing Constraints

• Guidelines for Enabling and Disabling Key Constraints

• Fixing Constraint Exceptions

Why Disable Constraints?
During day-to-day operations, keep constraints enabled. In certain situations,
temporarily disabling the constraints of a table makes sense for performance reasons.
For example:

• When loading large amounts of data into a table using SQL*Loader

• When performing batch operations that make massive changes to a table (such as
changing each employee number by adding 1000 to the existing number)

• When importing or exporting one table at a time

Temporarily turning off constraints can speed up these operations.

Creating Enabled Constraints (Default)
When you define an integrity constraint (using either CREATE TABLE or ALTER TABLE),
Oracle Database enables the constraint by default. For code clarity, you can explicitly
enable the constraint by including the ENABLE clause in its definition, as in
Example 12-7.

Example 12-7 Creating Enabled Constraints

/* Use CREATE TABLE statement to create enabled constraint
 (ENABLE keyword is optional): */

DROP TABLE t1;
CREATE TABLE t1 (Empno NUMBER(5) PRIMARY KEY ENABLE);

/* Create table without constraint
 and then use ALTER TABLE statement to add enabled constraint
 (ENABLE keyword is optional): */

Chapter 12
Enabling and Disabling Constraints

12-22

DROP TABLE t2;
CREATE TABLE t2 (Empno NUMBER(5));

ALTER TABLE t2 ADD PRIMARY KEY (Empno) ENABLE;

Include the ENABLE clause when defining a constraint for a table to be populated a row
at a time by individual transactions. This ensures that data is always consistent, and
reduces the performance overhead of each DML statement.

An ALTER TABLE statement that tries to enable an integrity constraint fails if an existing
row of the table violates the integrity constraint. The statement rolls back and the
constraint definition is neither stored nor enabled.

See Also:

Fixing Constraint Exceptions, for more information about rows that violate
constraints

Creating Disabled Constraints
You define and disable an integrity constraint (using either CREATE TABLE or ALTER
TABLE), by including the DISABLE clause in its definition, as in Example 12-8.

Example 12-8 Creating Disabled Constraints

/* Use CREATE TABLE statement to create disabled constraint */

DROP TABLE t1;
CREATE TABLE t1 (Empno NUMBER(5) PRIMARY KEY DISABLE);

/* Create table without constraint
 and then use ALTER TABLE statement to add disabled constraint */

DROP TABLE t2;
CREATE TABLE t2 (Empno NUMBER(5));

ALTER TABLE t2 ADD PRIMARY KEY (Empno) DISABLE;

Include the DISABLE clause when defining a constraint for a table to have large
amounts of data inserted before anybody else accesses it, particularly if you must
cleanse data after inserting it, or must fill empty columns with sequence numbers or
parent/child relationships.

An ALTER TABLE statement that defines and disables a constraint never fails, because
its rule is not enforced.

Enabling Existing Constraints
After you have cleansed the data and filled the empty columns, you can enable
constraints that were disabled during data insertion.

To enable an existing constraint, use the ALTER TABLE statement with the ENABLE
clause, as in Example 12-9.

Chapter 12
Enabling and Disabling Constraints

12-23

Example 12-9 Enabling Existing Constraints

-- Create table with disabled constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
 Deptno NUMBER(3) PRIMARY KEY DISABLE,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc) DISABLE,
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')) DISABLE
);

-- Enable constraints:

 ALTER TABLE DeptTab
ENABLE PRIMARY KEY
ENABLE CONSTRAINT uk_DeptTab_Dname_Loc
ENABLE CONSTRAINT c_DeptTab_Loc;

An ALTER TABLE statement that attempts to enable an integrity constraint fails if any of
the table rows violate the integrity constraint. The statement is rolled back and the
constraint is not enabled.

See Also:

Fixing Constraint Exceptions, for more information about rows that violate
constraints

Disabling Existing Constraints
If you must perform a large insert or update when a table contains data, you can
temporarily disable constraints to improve performance of the bulk operation.

To disable an existing constraint, use the ALTER TABLE statement with the DISABLE
clause, as in Example 12-10.

Example 12-10 Disabling Existing Constraints

-- Create table with enabled constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
 Deptno NUMBER(3) PRIMARY KEY ENABLE,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc) ENABLE,
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')) ENABLE
);

-- Disable constraints:

ALTER TABLE DeptTab
DISABLE PRIMARY KEY

Chapter 12
Enabling and Disabling Constraints

12-24

DISABLE CONSTRAINT uk_DeptTab_Dname_Loc
DISABLE CONSTRAINT c_DeptTab_Loc;

Guidelines for Enabling and Disabling Key Constraints
When enabling or disabling UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be
aware of several important issues and prerequisites. UNIQUE key and PRIMARY KEY
constraints are usually managed by the database administrator.

See Also:

Oracle Database Administrator's Guide and Managing FOREIGN KEY
Constraints

Fixing Constraint Exceptions
If a row of a table disobeys an integrity constraint, then this row is in violation of the
constraint and is called an exception to the constraint. If any exceptions exist, then
the constraint cannot be enabled. The rows that violate the constraint must be updated
or deleted before the constraint can be enabled.

You can identify exceptions for a specific integrity constraint as you try to enable the
constraint.

See Also:

Fixing Constraint Exceptions, for more information about this procedure

When you try to create or enable a constraint, and the statement fails because
integrity constraint exceptions exist, the statement is rolled back. You cannot enable
the constraint until all exceptions are either updated or deleted. To determine which
rows violate the integrity constraint, include the EXCEPTIONS option in the ENABLE
clause of a CREATE TABLE or ALTER TABLE statement.

See Also:

Oracle Database Administrator's Guide for more information about
responding to constraint exceptions

Modifying Constraints
Starting with Oracle8i, you can modify an existing constraint with the MODIFY
CONSTRAINT clause, as in Example 12-11.

Chapter 12
Modifying Constraints

12-25

See Also:

Oracle Database SQL Language Reference for information about the
parameters you can modify

Example 12-11 Modifying Constraints

/* Create & then modify a CHECK constraint: */

DROP TABLE X1Tab;
CREATE TABLE X1Tab (
 a1 NUMBER
 CONSTRAINT c_X1Tab_a1 CHECK (a1>3)
 DEFERRABLE DISABLE
);

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_a1 ENABLE;

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_a1 RELY;

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_a1 INITIALLY DEFERRED;

ALTER TABLE X1Tab
MODIFY CONSTRAINT c_X1Tab_a1 ENABLE NOVALIDATE;

/* Create & then modify a PRIMARY KEY constraint: */

DROP TABLE t1;
CREATE TABLE t1 (a1 INT, b1 INT);

ALTER TABLE t1
ADD CONSTRAINT pk_t1_a1 PRIMARY KEY(a1) DISABLE;

ALTER TABLE t1
MODIFY PRIMARY KEY INITIALLY IMMEDIATE
USING INDEX PCTFREE = 30 ENABLE NOVALIDATE;

ALTER TABLE t1
MODIFY PRIMARY KEY ENABLE NOVALIDATE;

Renaming Constraints
One property of a constraint that you can modify is its name. Situations in which you
would rename a constraint include:

• You want to clone a table and its constraints.

Constraint names must be unique, even across multiple schemas. Therefore, the
constraints in the original table cannot have the same names as those in the
cloned table.

• You created a constraint with a default system-generated name, and now you
want to give it a name that is easy to remember, so that you can easily enable and
disable it.

Chapter 12
Renaming Constraints

12-26

Example 12-12 shows how to find the system-generated name of a constraint and
change it.

Example 12-12 Renaming a Constraint

DROP TABLE T;
CREATE TABLE T (
 C1 NUMBER PRIMARY KEY,
 C2 NUMBER
);

Query:

SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS
WHERE TABLE_NAME = 'T'
AND CONSTRAINT_TYPE = 'P';

Result (system-generated name of constraint name varies):

CONSTRAINT_NAME

SYS_C0013059

1 row selected.

Rename constraint from name reported in preceding query to T_C1_PK:

ALTER TABLE T
RENAME CONSTRAINT SYS_C0013059
TO T_C1_PK;

Query:

SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS
WHERE TABLE_NAME = 'T'
AND CONSTRAINT_TYPE = 'P';

Result:

CONSTRAINT_NAME

T_C1_PK

1 row selected.

Dropping Constraints
You can drop a constraint using the DROP clause of the ALTER TABLE statement.
Situations in which you would drop a constraint include:

• The constraint enforces a rule that is no longer true.

• The constraint is no longer needed.

To drop a constraint and all other integrity constraints that depend on it, specify
CASCADE.

Chapter 12
Dropping Constraints

12-27

Example 12-13 Dropping Constraints

-- Create table with constraints:

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
 Deptno NUMBER(3) PRIMARY KEY,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'))
);

-- Drop constraints:

ALTER TABLE DeptTab
DROP PRIMARY KEY
DROP CONSTRAINT uk_DeptTab_Dname_Loc
DROP CONSTRAINT c_DeptTab_Loc;

When dropping UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints, be aware of
several important issues and prerequisites. UNIQUE and PRIMARY KEY constraints are
usually managed by the database administrator.

See Also:

• Oracle Database SQL Language Reference for more information about
the DROP clause of the ALTER TABLE statement.

• Oracle Database Administrator's Guide for more information about
dropping constraints.

• Oracle Database SQL Language Reference for information about the
CASCADE CONSTRAINTS clause of the DROP TABLE statement, which drops
all referential integrity constraints that refer to primary and unique keys in
the dropped table

Managing FOREIGN KEY Constraints
FOREIGN KEY constraints enforce relationships between columns in different tables.
Therefore, they cannot be enabled if the constraint of the referenced primary or unique
key is not present or not enabled.

Data Types and Names for Foreign Key Columns
You must use the same data type for corresponding columns in the dependent and
referenced tables. The column names need not match.

Chapter 12
Managing FOREIGN KEY Constraints

12-28

Limit on Columns in Composite Foreign Keys
Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEY and UNIQUE key constraints are enforced using indexes, composite
foreign keys are limited to 32 columns.

Foreign Key References Primary Key by Default
If the column list is not included in the REFERENCES option when defining a FOREIGN KEY
constraint (single column or composite), then Oracle Database assumes that you
intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle Database automatically checks to verify that this column list references a
primary or unique key of the parent table. If it does not, then an informative error is
returned.

Privileges Required to Create FOREIGN KEY Constraints
To create a FOREIGN KEY constraint, the creator of the constraint must have privileged
access to the parent and child tables.

• Parent Table The creator of the referential integrity constraint must own the
parent table or have REFERENCES object privileges on the columns that constitute
the parent key of the parent table.

• Child Table The creator of the referential integrity constraint must have the ability
to create tables (that is, the CREATE TABLE or CREATE ANY TABLE system privilege) or
the ability to alter the child table (that is, the ALTER object privilege for the child
table or the ALTER ANY TABLE system privilege).

In both cases, necessary privileges cannot be obtained through a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow:

• The owner of the child table to explicitly decide which constraints are enforced and
which other users can create constraints

• The owner of the parent table to explicitly decide if foreign keys can depend on the
primary and unique keys in her tables

Choosing How Foreign Keys Enforce Referential Integrity
Oracle Database allows different types of referential integrity actions to be enforced,
as specified with the definition of a FOREIGN KEY constraint:

• Prevent Delete or Update of Parent Key The default setting prevents the
deletion or update of a parent key if there is a row in the child table that references
the key. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab);

• Delete Child Rows When Parent Key Deleted The ON DELETE CASCADE action
allows parent key data that is referenced from the child table to be deleted, but not

Chapter 12
Managing FOREIGN KEY Constraints

12-29

updated. When data in the parent key is deleted, all rows in the child table that
depend on the deleted parent key values are also deleted. To specify this
referential action, include the ON DELETE CASCADE option in the definition of the
FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE CASCADE);

• Set Foreign Keys to Null When Parent Key Deleted The ON DELETE SET NULL
action allows data that references the parent key to be deleted, but not updated.
When referenced data in the parent key is deleted, all rows in the child table that
depend on those parent key values have their foreign keys set to NULL. To specify
this referential action, include the ON DELETE SET NULL option in the definition of the
FOREIGN KEY constraint. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE SET NULL);

Viewing Information About Constraints
To find the names of constraints, what columns they affect, and other information to
help you manage them, query the static data dictionary views *_CONSTRAINTS and
*_CONS_COLUMNS, as in Example 12-14.

See Also:

Oracle Database Reference for information about *_CONSTRAINTS and
*_CONS_COLUMNS

Example 12-14 Viewing Information About Constraints

DROP TABLE DeptTab;
CREATE TABLE DeptTab (
 Deptno NUMBER(3) PRIMARY KEY,
 Dname VARCHAR2(15),
 Loc VARCHAR2(15),
 CONSTRAINT uk_DeptTab_Dname_Loc UNIQUE (Dname, Loc),
 CONSTRAINT c_DeptTab_Loc
 CHECK (Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO'))
);

DROP TABLE EmpTab;
CREATE TABLE EmpTab (
 Empno NUMBER(5) PRIMARY KEY,
 Ename VARCHAR2(15) NOT NULL,
 Job VARCHAR2(10),
 Mgr NUMBER(5) CONSTRAINT r_EmpTab_Mgr
 REFERENCES EmpTab ON DELETE CASCADE,
 Hiredate DATE,
 Sal NUMBER(7,2),
 Comm NUMBER(5,2),
 Deptno NUMBER(3) NOT NULL
 CONSTRAINT r_EmpTab_Deptno REFERENCES DeptTab
);

Chapter 12
Viewing Information About Constraints

12-30

-- Format columns (optional):

COLUMN CONSTRAINT_NAME FORMAT A20;
COLUMN CONSTRAINT_TYPE FORMAT A4 HEADING 'TYPE';
COLUMN TABLE_NAME FORMAT A10;
COLUMN R_CONSTRAINT_NAME FORMAT A17;
COLUMN SEARCH_CONDITION FORMAT A40;
COLUMN COLUMN_NAME FORMAT A12;

List accessible constraints in DeptTab and EmpTab:

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME, R_CONSTRAINT_NAME
FROM USER_CONSTRAINTS
WHERE (TABLE_NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB')
ORDER BY CONSTRAINT_NAME;

Result:

CONSTRAINT_NAME TYPE TABLE_NAME R_CONSTRAINT_NAME
-------------------- ---- ---------- -----------------
C_DEPTTAB_LOC C DEPTTAB
R_EMPTAB_DEPTNO R EMPTAB SYS_C006286
R_EMPTAB_MGR R EMPTAB SYS_C006290
SYS_C006286 P DEPTTAB
SYS_C006288 C EMPTAB
SYS_C006289 C EMPTAB
SYS_C006290 P EMPTAB
UK_DEPTTAB_DNAME_LOC U DEPTTAB

8 rows selected.

Distinguish between NOT NULL and CHECK constraints in DeptTab and EmpTab:

SELECT CONSTRAINT_NAME, SEARCH_CONDITION
FROM USER_CONSTRAINTS
WHERE (TABLE_NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB')
AND CONSTRAINT_TYPE = 'C'
ORDER BY CONSTRAINT_NAME;

Result:

CONSTRAINT_NAME SEARCH_CONDITION
-------------------- --
C_DEPTTAB_LOC Loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')
SYS_C006288 "ENAME" IS NOT NULL
SYS_C006289 "DEPTNO" IS NOT NULL

3 rows selected.

For DeptTab and EmpTab, list columns that constitute constraints:

SELECT CONSTRAINT_NAME, TABLE_NAME, COLUMN_NAME
FROM USER_CONS_COLUMNS
WHERE (TABLE_NAME = 'DEPTTAB' OR TABLE_NAME = 'EMPTAB')
ORDER BY CONSTRAINT_NAME;

Chapter 12
Viewing Information About Constraints

12-31

Result:

CONSTRAINT_NAME TABLE_NAME COLUMN_NAME
-------------------- ---------- ------------
C_DEPTTAB_LOC DEPTTAB LOC
R_EMPTAB_DEPTNO EMPTAB DEPTNO
R_EMPTAB_MGR EMPTAB MGR
SYS_C006286 DEPTTAB DEPTNO
SYS_C006288 EMPTAB ENAME
SYS_C006289 EMPTAB DEPTNO
SYS_C006290 EMPTAB EMPNO
UK_DEPTTAB_DNAME_LOC DEPTTAB LOC
UK_DEPTTAB_DNAME_LOC DEPTTAB DNAME

9 rows selected.

Note that:

• Some constraint names are user specified (such as UK_DEPTTAB_DNAME_LOC), while
others are system specified (such as SYS_C006290).

• Each constraint type is denoted with a different character in the CONSTRAINT_TYPE
column. This table summarizes the characters used for each constraint type:

Constraint Type Character

PRIMARY KEY P

UNIQUE KEY U

FOREIGN KEY R

CHECK, NOT NULL C

Note:

An additional constraint type is indicated by the character "V" in the
CONSTRAINT_TYPE column. This constraint type corresponds to
constraints created using the WITH CHECK OPTION for views.

These constraints are explicitly listed in the SEARCH_CONDITION column:

• NOT NULL constraints

• The conditions for user-defined CHECK constraints

Chapter 12
Viewing Information About Constraints

12-32

Part III
PL/SQL for Application Developers

This part presents information that application developers need about PL/SQL, the
Oracle procedural extension of SQL.

Chapters:

• Coding PL/SQL Subprograms and Packages

• Using PL/Scope

• Using the PL/SQL Hierarchical Profiler

• Developing PL/SQL Web Applications

• Using Continuous Query Notification (CQN)

See Also:

Oracle Database PL/SQL Language Reference for a complete description of
PL/SQL

13
Coding PL/SQL Subprograms and
Packages

PL/SQL subprograms and packages are the building blocks of Oracle Database
applications. Oracle recommends that you implement your application as a package,
for the reasons given in Oracle Database PL/SQL Language Reference.

Topics:

• Overview of PL/SQL Subprograms

• Overview of PL/SQL Packages

• Overview of PL/SQL Units

• Creating PL/SQL Subprograms and Packages

• Altering PL/SQL Subprograms and Packages

• Deprecating Packages, Subprograms, and Types

• Dropping PL/SQL Subprograms and Packages

• Compiling PL/SQL Units for Native Execution

• Invoking Stored PL/SQL Subprograms

• Invoking Stored PL/SQL Functions from SQL Statements

• Debugging Stored Subprograms

• Package Invalidations and Session State

See Also:

• Oracle Database PL/SQL Language Reference for information about
handling errors in PL/SQL subprograms and packages

• Oracle Database Data Cartridge Developer's Guide for information about
creating aggregate functions for complex data types such as multimedia
data stored using object types, opaque types, and LOBs

• Oracle Database SQL Tuning Guide for information about application
tracing tools, which can help you find problems in PL/SQL code

Overview of PL/SQL Subprograms
The basic unit of a PL/SQL source program is the block, which groups related
declarations and statements. A block has an optional declarative part, a required
executable part, and an optional exception-handling part. A block can be either
anonymous or named.

13-1

A PL/SQL subprogram is a named block that can be invoked repeatedly. If the
subprogram has parameters, then their values can differ for each invocation.

A subprogram is either a procedure or a function. Typically, you use a procedure to
perform an action and a function to compute and return a value.

A subprogram is also either a nested subprogram (created inside a PL/SQL block,
which can be another subprogram), a package subprogram (declared in a package
specification and defined in the package body), or a standalone subprogram
(created at schema level). Package subprograms and standalone programs are
stored subprograms. A stored subprogram is compiled and stored in the database,
where many applications can invoke it.

Stored subprograms are affected by the AUTHID and ACCESSIBLE BY clauses. The
AUTHID clause affects the name resolution and privilege checking of SQL statements
that the subprogram issues at runtime. The ACCESSIBLE BY clause specifies a white list
of PL/SQL units that can access the subprogram.

A PL/SQL subprogram running on an Oracle Database instance can invoke an
external subprogram written in a third-generation language (3GL). The 3GL
subprogram runs in a separate address space from that of the database.

PL/SQL lets you overload nested subprograms, package subprograms, and type
methods. Overloaded subprograms have the same name but their formal
parameters differ in either name, number, order, or data type family.

Like a stored procedure, a trigger is a named PL/SQL unit that is stored in the
database and can be invoked repeatedly. Unlike a stored procedure, you can enable
and disable a trigger, but you cannot explicitly invoke it. While a trigger is enabled, the
database automatically invokes it—that is, the trigger fires—whenever its triggering
event occurs. While a trigger is disabled, it does not fire.

See Also:

• Oracle Database PL/SQL Language Reference for complete information
about PL/SQL subprograms

• Oracle Database PL/SQL Language Reference for more information
about PL/SQL blocks

• Oracle Database PL/SQL Language Reference for more information
about subprograms

• Overview of PL/SQL Units for information about PL/SQL units

• Developing Applications with Multiple Programming Languages for
information about external subprograms

• Oracle Database PL/SQL Language Reference for more information
about overloaded subprograms

• Oracle Database PL/SQL Language Reference for more information
about triggers

Chapter 13
Overview of PL/SQL Subprograms

13-2

Overview of PL/SQL Packages
A PL/SQL package is a schema object that groups logically related PL/SQL types,
variables, constants, subprograms, cursors, and exceptions. A package is compiled
and stored in the database, where many applications can share its contents..

A package always has a specification, which declares the public items that can be
referenced from outside the package. Public items can be used or invoked by external
users who have the EXECUTE privilege for the package or the EXECUTE ANY PROCEDURE
privilege.

If the public items include cursors or subprograms, then the package must also have a
body. The body must define queries for public cursors and code for public
subprograms. The body can also declare and define private items that cannot be
referenced from outside the package, but are necessary for the internal workings of
the package. Finally, the body can have an initialization part, whose statements
initialize variables and do other one-time setup steps, and an exception-handling part.
You can change the body without changing the specification or the references to the
public items; therefore, you can think of the package body as a black box.

In either the package specification or package body, you can map a package
subprogram to an external Java or C subprogram by using a call specification, which
maps the external subprogram name, parameter types, and return type to their SQL
counterparts.

The AUTHID clause of the package specification determines whether the subprograms
and cursors in the package run with the privileges of their definer (the default) or
invoker, and whether their unqualified references to schema objects are resolved in
the schema of the definer or invoker.

The ACCESSIBLE BY clause of the package specification lets you specify a white list" of
PL/SQL units that can access the package. You use this clause in situations like
these:

• You implement a PL/SQL application as several packages—one package that
provides the application programming interface (API) and helper packages to do
the work. You want clients to have access to the API, but not to the helper
packages. Therefore, you omit the ACCESSIBLE BY clause from the API package
specification and include it in each helper package specification, where you
specify that only the API package can access the helper package.

• You create a utility package to provide services to some, but not all, PL/SQL units
in the same schema. To restrict use of the package to the intended units, you list
them in the ACCESSIBLE BY clause in the package specification.

Note:

Before you create your own package, check Oracle Database PL/SQL
Packages and Types Reference to see if Oracle supplies a package with the
functionality that you need.

Chapter 13
Overview of PL/SQL Packages

13-3

See Also:

• Overview of PL/SQL Units for information about PL/SQL units

• Oracle Database PL/SQL Language Reference for complete information
about PL/SQL packages

• Oracle Database PL/SQL Language Reference for the reasons to use
packages

Overview of PL/SQL Units
A PL/SQL unit is one of these:

• PL/SQL anonymous block

• FUNCTION

• LIBRARY

• PACKAGE

• PACKAGE BODY

• PROCEDURE

• TRIGGER

• TYPE

• TYPE BODY

PL/SQL units are affected by PL/SQL compilation parameters (a category of database
initialization parameters). Different PL/SQL units—for example, a package
specification and its body—can have different compilation parameter settings.

The AUTHID property of a PL/SQL unit affects the name resolution and privilege
checking of SQL statements that the unit issues at runtime.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about PL/SQL units and compilation parameters

• Oracle Database PL/SQL Language Reference for more information
about AUTHID property

PLSQL_OPTIMIZE_LEVEL Compilation Parameter
The PL/SQL optimize level determines how much the PL/SQL optimizer can rearrange
code for better performance. This level is set with the compilation parameter
PLSQL_OPTIMIZE_LEVEL (whose default value is 2).

To change the PL/SQL optimize level for your session, use the SQL command ALTER
SESSION. Changing the level for your session affects only subsequently created

Chapter 13
Overview of PL/SQL Units

13-4

PL/SQL units. To change the level for an existing PL/SQL unit, use an ALTER
command with the COMPILE clause.

To display the current value of PLSQL_OPTIMIZE_LEVEL for one or more PL/SQL units,
use the static data dictionary view ALL_PLSQL_OBJECT_SETTINGS.

Example 13-1 creates two procedures, displays their optimize levels, changes the
optimize level for the session, creates a third procedure, and displays the optimize
levels of all three procedures. Only the third procedure has the new optimize level.
Then the example changes the optimize level for only one procedure and displays the
optimize levels of all three procedures again.

See Also:

• Oracle Database PL/SQL Language Reference for information about the
PL/SQL optimizer

• Oracle Database Reference for more information about
PLSQL_OPTIMIZE_LEVEL

• Oracle Database SQL Language Reference for more information about
ALTER SESSION

• Oracle Database PL/SQL Language Reference for information about the
ALTER commands for PL/SQL units

• Oracle Database Reference for more information about
ALL_PLSQL_OBJECT_SETTINGS

Example 13-1 Changing PLSQL_OPTIMIZE_LEVEL

Create two procedures:

CREATE OR REPLACE PROCEDURE p1 AUTHID DEFINER AS
BEGIN
 NULL;
END;
/
CREATE OR REPLACE PROCEDURE p2 AUTHID DEFINER AS
BEGIN
 NULL;
END;
/

Display the optimization levels of the two procedures:

SELECT NAME, PLSQL_OPTIMIZE_LEVEL
FROM USER_PLSQL_OBJECT_SETTINGS
WHERE NAME LIKE 'P%' AND TYPE='PROCEDURE'
ORDER BY NAME;

Result:

NAME PLSQL_OPTIMIZE_LEVEL
------------------------------ --------------------
P1 2
P2 2

Chapter 13
Overview of PL/SQL Units

13-5

2 rows selected.

Change the optimization level for the session and create a third procedure:

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL=1;

CREATE OR REPLACE PROCEDURE p3 AUTHID DEFINER AS
BEGIN
 NULL;
END;
/

Display the optimization levels of the three procedures:

SELECT NAME, PLSQL_OPTIMIZE_LEVEL
FROM USER_PLSQL_OBJECT_SETTINGS
WHERE NAME LIKE 'P%' AND TYPE='PROCEDURE'
ORDER BY NAME;

Result:

NAME PLSQL_OPTIMIZE_LEVEL
------------------------------ --------------------
P1 2
P2 2
P3 1

3 rows selected.

Change the optimization level of procedure p1 to 3:

ALTER PROCEDURE p1 COMPILE PLSQL_OPTIMIZE_LEVEL=3;

Display the optimization levels of the three procedures:

SELECT NAME, PLSQL_OPTIMIZE_LEVEL
FROM USER_PLSQL_OBJECT_SETTINGS
WHERE NAME LIKE 'P%' AND TYPE='PROCEDURE'
ORDER BY NAME;

Result:

NAME PLSQL_OPTIMIZE_LEVEL
------------------------------ --------------------
P1 3
P2 2
P3 1

3 rows selected.

Creating PL/SQL Subprograms and Packages
Topics:

• Privileges Needed to Create Subprograms and Packages

• Creating Subprograms and Packages

Chapter 13
Creating PL/SQL Subprograms and Packages

13-6

• PL/SQL Object Size Limits

• PL/SQL Data Types

• Returning Result Sets to Clients

• Returning Large Amounts of Data from a Function

• PL/SQL Function Result Cache

• Overview of Bulk Binding

• PL/SQL Dynamic SQL

Privileges Needed to Create Subprograms and Packages
To create a standalone subprogram or package in your own schema, you must have
the CREATE PROCEDURE system privilege. To create a standalone subprogram or
package in another schema, you must have the CREATE ANY PROCEDURE system
privilege.

If the subprogram or package that you create references schema objects, then you
must have the necessary object privileges for those objects. These privileges must be
granted to you explicitly, not through roles.

If the privileges of the owner of a subprogram or package change, then the
subprogram or package must be reauthenticated before it is run. If a necessary object
privilege for a referenced object is revoked from the owner of the subprogram or
package, then the subprogram cannot run.

Granting the EXECUTE privilege on a subprogram lets users run that subprogram under
the security domain of the subprogram owner, so that the user need not be granted
privileges to the objects that the subprogram references. The EXECUTE privilege allows
more disciplined and efficient security strategies for database applications and their
users. Furthermore, it allows subprograms and packages to be stored in the data
dictionary (in the SYSTEM tablespace), where no quota controls the amount of space
available to a user who creates subprograms and packages.

See Also:

• Oracle Database SQL Language Reference for information about system
and object privileges

• Invoking Stored PL/SQL Subprograms

Creating Subprograms and Packages
This topic explains how to create standalone subprograms and packages, using SQL
Data Definition Language (DDL) statements.

The DDL statements for creating standalone subprograms and packages are:

• CREATE FUNCTION

• CREATE PROCEDURE

• CREATE PACKAGE

Chapter 13
Creating PL/SQL Subprograms and Packages

13-7

• CREATE PACKAGE BODY

The name of a package and the names of its public objects must be unique within
the package schema. The package specification and body must have the same
name. Package constructs must have unique names within the scope of the
package, except for overloaded subprograms.

Each of the preceding CREATE statements has an optional OR REPLACE clause. Specify
OR REPLACE to re-create an existing PL/SQL unit—that is, to change its declaration or
definition without dropping it, re-creating it, and regranting object privileges previously
granted on it. If you redefine a PL/SQL unit, the database recompiles it.

Caution:

A CREATE OR REPLACE statement does not issue a warning before replacing
the existing PL/SQL unit.

Using any text editor, create a text file that contains DDL statements for creating any
number of subprograms and packages.

To run the DDL statements, use an interactive tool such as SQL*Plus. The SQL*Plus
command START or @ runs a script. For example, this SQL*Plus command runs the
script my_app.sql:

@my_app

Alternatively, you can create and run the DDL statements using SQL Developer.

See Also:

• SQL*Plus User's Guide and Reference for information about runnings
scripts in SQL*Plus

• Oracle SQL Developer User's Guide for information about SQL
Developer

• Oracle Database PL/SQL Language Reference for more information
about the following functions

– CREATE FUNCTION

– CREATE PROCEDURE

– CREATE PACKAGE

– CREATE PACKAGE BODY

PL/SQL Object Size Limits
The size limit for PL/SQL stored database objects such as subprograms, triggers, and
packages is the size of the Descriptive Intermediate Attributed Notation for Ada
(DIANA) code in the shared pool in bytes. The Linux and UNIX limit on the size of the
flattened DIANA/code size is 64K but the limit might be 32K on desktop platforms.

Chapter 13
Creating PL/SQL Subprograms and Packages

13-8

The most closely related number that a user can access is PARSED_SIZE, a column in
the static data dictionary view *_OBJECT_SIZE. The column PARSED_SIZE gives the size
of the DIANA in bytes as stored in the SYS.IDL_xxx$ tables. This is not the size in the
shared pool. The size of the DIANA part of PL/SQL code (used during compilation) is
significantly larger in the shared pool than it is in the system table.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about PL/SQL program limits and PARSED_SIZE

• Oracle Database Reference for information about *_OBJECT_SIZE

PL/SQL Data Types
This topic introduces the PL/SQL data types and refers to other chapters or
documents for more information.

Use the correct and most specific PL/SQL data type for each PL/SQL variable in your
database application.

See Also:

Using the Correct and Most Specific Data Type

Topics:

• PL/SQL Scalar Data Types

• PL/SQL Composite Data Types

• Abstract Data Types

PL/SQL Scalar Data Types
Scalar data types store values that have no internal components.

A scalar data type can have subtypes. A subtype is a data type that is a subset of
another data type, which is its base type. A subtype has the same valid operations as
its base type. A data type and its subtypes comprise a data type family.

PL/SQL predefines many types and subtypes in the package STANDARD and lets you
define your own subtypes.

Topics:

• SQL Data Types

• BOOLEAN Data Type

• PLS_INTEGER and BINARY_INTEGER Data Types

• REF CURSOR Data Type

Chapter 13
Creating PL/SQL Subprograms and Packages

13-9

• User-Defined PL/SQL Subtypes

See Also:

• Oracle Database PL/SQL Language Reference for a complete
description of scalar PL/SQL data types

• Oracle Database PL/SQL Language Reference for the predefined
PL/SQL data types and subtypes, grouped by data type family

SQL Data Types
The PL/SQL data types include the SQL data types.

See Also:

• Using SQL Data Types in Database Applications for information about
how to use the SQL data types in database applications

• Oracle Database PL/SQL Language Reference for more information
about SQL data types

BOOLEAN Data Type
The BOOLEAN data type stores logical values, which are the Boolean values TRUE and
FALSE and the value NULL. NULL represents an unknown value.

See Also:

Oracle Database PL/SQL Language Reference for more information about
the BOOLEAN data type

PLS_INTEGER and BINARY_INTEGER Data Types
The PL/SQL data types PLS_INTEGER and BINARY_INTEGER are identical. For simplicity,
this guide uses PLS_INTEGER to mean both PLS_INTEGER and BINARY_INTEGER.

The PLS_INTEGER data type stores signed integers in the range -2,147,483,648 through
2,147,483,647, represented in 32 bits.

The PLS_INTEGER data type has these advantages over the NUMBER data type and
NUMBER subtypes:

• PLS_INTEGER values require less storage.

• PLS_INTEGER operations use hardware arithmetic, so they are faster than NUMBER
operations, which use library arithmetic.

For efficiency, use PLS_INTEGER values for all calculations in its range.

Chapter 13
Creating PL/SQL Subprograms and Packages

13-10

See Also:

Oracle Database PL/SQL Language Reference for more information about
the PLS_INTEGER data type

REF CURSOR Data Type
REF CURSOR is the data type of a cursor variable.

A cursor variable is like an explicit cursor, except that:

• It is not limited to one query.

You can open a cursor variable for a query, process the result set, and then use
the cursor variable for another query.

• You can assign a value to it.

• You can use it in an expression.

• It can be a subprogram parameter.

You can use cursor variables to pass query result sets between subprograms.

• It can be a host variable.

You can use cursor variables to pass query result sets between PL/SQL stored
subprograms and their clients.

• It cannot accept parameters.

You cannot pass parameters to a cursor variable, but you can pass whole queries
to it.

A cursor variable has this flexibility because it is a pointer; that is, its value is the
address of an item, not the item itself.

See Also:

Oracle Database PL/SQL Language Reference for more information about
the REF CURSOR data type and cursor variables

User-Defined PL/SQL Subtypes
PL/SQL lets you define your own subtypes. The base type can be any scalar PL/SQL
type, including a previously defined user-defined subtype.

Subtypes can:

• Provide compatibility with ANSI/ISO data types

• Show the intended use of data items of that type

• Detect out-of-range values

Chapter 13
Creating PL/SQL Subprograms and Packages

13-11

See Also:

Oracle Database PL/SQL Language Reference for more information about
user-defined PL/SQL subtypes

PL/SQL Composite Data Types
Composite data types have internal components. The PL/SQL composite data types
are collections and records.

In a collection, the internal components always have the same data type, and are
called elements. You can access each element of a collection variable by its unique
index. PL/SQL has three collection types—associative array, VARRAY (variable-size
array), and nested table.

In a record, the internal components can have different data types, and are called
fields. You can access each field of a record variable by its name.

You can create a collection of records, and a record that contains collections.

See Also:

Oracle Database PL/SQL Language Reference for more information about
PL/SQL composite data types

Abstract Data Types
An Abstract Data Type (ADT) consists of a data structure and subprograms that
manipulate the data. In the static data dictionary view *_OBJECTS, the OBJECT_TYPE of
an ADT is TYPE. In the static data dictionary view *_TYPES, the TYPECODE of an ADT is
OBJECT.

See Also:

Oracle Database PL/SQL Language Reference for more information about
ADTs

Returning Result Sets to Clients
In PL/SQL, as in traditional database programming, you use cursors to process query
result sets. A cursor is a pointer to a private SQL area that stores information about
processing a specific SELECT or DML statement.

Chapter 13
Creating PL/SQL Subprograms and Packages

13-12

Note:

The cursors that this section discusses are session cursors. A session
cursor lives in session memory until the session ends, when it ceases to
exist. Session cursors are different from the cursors in the private SQL area
of the program global area (PGA).

A cursor that is constructed and managed by PL/SQL is an implicit cursor. A cursor
that you construct and manage is an explicit cursor. The only advantage of an
explicit cursor over an implicit cursor is that with an explicit cursor, you can limit the
number of fetched rows.

A cursor variable is a pointer to a cursor. That is, its value is the address of a cursor,
not the cursor itself. Therefore, a cursor variable has more flexibility than an explicit
cursor. However, a cursor variable also has costs that an explicit cursor does not.

Topics:

• Advantages of Cursor Variables

• Disadvantages of Cursor Variables

• Returning Query Results Implicitly

See Also:

• Oracle Database PL/SQL Language Reference for general information
about cursor variables, and query set result processing with implicit and
explicit cursors

• Oracle Database PL/SQL Language Reference for more information
about how to limit the number of rows and the collection size in bulk
collect statements

• Oracle Call Interface Programmer's Guide for information about using
cursor variables in OCI

• Pro*C/C++ Programmer's Guide for information about using cursor
variables in Pro*C/C++

• Pro*COBOL Programmer's Guide for information about using cursor
variables in Pro*COBOL

• Oracle Database JDBC Developer's Guide for information about using
cursor variables in JDBC

• Returning Large Amounts of Data from a Function

• Oracle Database Concepts for more information about PGA

Advantages of Cursor Variables
A cursor variable is like an explicit cursor except that:

• It is not limited to one query.

Chapter 13
Creating PL/SQL Subprograms and Packages

13-13

You can open a cursor variable for a query, process the result set, and then use
the cursor variable for another query.

• You can assign a value to it.

• You can use it in an expression.

• It can be a subprogram parameter.

You can use cursor variables to pass query result sets between subprograms.

• It can be a host variable.

You can use cursor variables to pass query result sets between PL/SQL stored
subprograms and their clients.

• It cannot accept parameters.

You cannot pass parameters to a cursor variable, but you can pass whole queries
to it. The queries can include variables.

The preceding characteristics give cursor variables these advantages:

• Encapsulation

Queries are centralized in the stored subprogram that opens the cursor variable.

• Easy maintenance

If you must change the cursor, then you must change only the stored subprogram,
not every application that invokes the stored subprogram.

• Convenient security

The application connects to the server with the user name of the application user.
The application user must have EXECUTE permission on the stored subprogram that
opens the cursor, but need not have READ permission on the queried tables.

Disadvantages of Cursor Variables
If you need not use a cursor variable, then use an implicit or explicit cursor, for both
better performance and ease of programming.

Topics:

• Parsing Penalty for Cursor Variable

• Multiple-Row-Fetching Penalty for Cursor Variable

Note:

The examples in these topics include TKPROF reports.

See Also:

Oracle Database SQL Tuning Guide for instructions for producing TKPROF
reports

Chapter 13
Creating PL/SQL Subprograms and Packages

13-14

Parsing Penalty for Cursor Variable
When you close an explicit cursor, the cursor closes from your perspective—that is,
you cannot use it where an open cursor is required—but PL/SQL caches the explicit
cursor in an open state. If you reexecute the statement associated with the cursor,
then PL/SQL uses the cached cursor, thereby avoiding a parse.

Avoiding a parse can significantly reduce CPU use, and the caching of explicit cursors
is transparent to you; it does not affect your programming. PL/SQL does not reduce
your supply of available open cursors. If your program must open another cursor but
doing so would exceed the init.ora setting of OPEN_CURSORS, then PL/SQL closes
cached cursors.

PL/SQL cannot cache a cursor variable in an open state. Therefore, a cursor variable
has a parsing penalty.

In Example 13-2, the procedure opens, fetches from, and closes an explicit cursor and
then does the same with a cursor variable. The anonymous block calls the procedure
10 times. The TKPROF report shows that both queries were run 10 times, but the query
associated with the explicit cursor was parsed only once, while the query associated
with the cursor variable was parsed 10 times.

Example 13-2 Parsing Penalty for Cursor Variable

CREATE OR REPLACE PROCEDURE p AUTHID DEFINER IS
 CURSOR e_c IS SELECT * FROM DUAL d1; -- explicit cursor
 c_v SYS_REFCURSOR; -- cursor variable
 rec DUAL%ROWTYPE;
BEGIN
 OPEN e_c; -- explicit cursor
 FETCH e_c INTO rec;
 CLOSE e_c;

 OPEN c_v FOR SELECT * FROM DUAL d2; -- cursor variable
 FETCH c_v INTO rec;
 CLOSE c_v;
END;
/
BEGIN
 FOR i IN 1..10 LOOP -- execute p 10 times
 p;
 END LOOP;

TKPROF report is similar to:

SELECT * FROM DUAL D1;

call count
------- ------
Parse 1
Execute 10
Fetch 10
------- ------
total 21

SELECT * FROM DUAL D2;

call count

Chapter 13
Creating PL/SQL Subprograms and Packages

13-15

------- ------
Parse 10
Execute 10
Fetch 10
------- ------
total 30

Multiple-Row-Fetching Penalty for Cursor Variable
Example 13-3 creates a table that has more than 7,000 rows and fetches all of those
rows twice, first with an implicit cursor (fetching arrays) and then with a cursor variable
(fetching individual rows). The code for the implicit cursor is simpler than the code for
the cursor variable, and the TKPROF report shows that it also performs better.

Although you could use the cursor variable to fetch arrays, you would need much more
code. Specifically, you would need code to do the following:

• Define the types of the collections into which you will fetch the arrays

• Explicitly bulk collect into the collections

• Loop through the collections to process the fetched data

• Close the explicitly opened cursor variable

Example 13-3 Array Fetching Penalty for Cursor Variable

Create table to query and display its number of rows:

CREATE TABLE t AS
 SELECT * FROM ALL_OBJECTS;

SELECT COUNT(*) FROM t;

Result is similar to:

 COUNT(*)

 70788

Perform equivalent operations with an implicit cursor and a cursor variable:

DECLARE
 c_v SYS_REFCURSOR;
 rec t%ROWTYPE;
BEGIN
 FOR x IN (SELECT * FROM t exp_cur) LOOP -- implicit cursor
 NULL;
 END LOOP;

 OPEN c_v FOR SELECT * FROM t cur_var; -- cursor variable

 LOOP
 FETCH c_v INTO rec;
 EXIT WHEN c_v%NOTFOUND;
 END LOOP;

 CLOSE c_v;
END;
/

Chapter 13
Creating PL/SQL Subprograms and Packages

13-16

TKPROF report is similar to:

SELECT * FROM T EXP_CUR

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 722 0.23 0.23 0 1748 0 72198
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 724 0.23 0.23 0 1748 0 72198
**
SELECT * FROM T CUR_VAR

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 72199 0.40 0.42 0 72203 0 72198
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 72201 0.40 0.42 0 72203 0 72198

Returning Query Results Implicitly
A stored subprogram can return a query result implicitly to either the client program or
the subprogram's immediate caller by invoking the DBMS_SQL.RETURN_RESULT
procedure. After DBMS_SQL.RETURN_RESULT returns the result, only the recipient can
access it.

Note:

To return implicitly the result of a query executed with dynamic SQL, the
subprogram must execute the query with DBMS_SQL procedures, not the
EXECUTE IMMEDIATE statement. The reason is that the cursors that the
EXECUTE IMMEDIATE statement returns to the subprogram are closed when
the EXECUTE IMMEDIATE statement completes.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about DBMS_SQL.RETURN_RESULT procedure

• Oracle Database PL/SQL Language Reference for information about
using DBMS_SQL procedures for dynamic SQL

Returning Large Amounts of Data from a Function
In a data warehousing environment, you might use PL/SQL functions to transform
large amounts of data. You might pass the data through a series of transformations,
each performed by a different function. PL/SQL table functions let you perform such
transformations without significant memory overhead or the need to store the data in

Chapter 13
Creating PL/SQL Subprograms and Packages

13-17

tables between each transformation stage. These functions can accept and return
multiple rows, can return rows as they are ready rather than all at once, and can be
parallelized.

See Also:

Oracle Database PL/SQL Language Reference for more information about
performing multiple transformations with pipelined table functions

PL/SQL Function Result Cache
Using the PL/SQL function result cache can save significant space and time. Each
time a result-cached PL/SQL function is invoked with different parameter values, those
parameters and their result are stored in the cache. Subsequently, when the same
function is invoked with the same parameter values, the result is retrieved from the
cache, instead of being recomputed. Because the cache is stored in a shared global
area (SGA), it is available to any session that runs your application.

If a database object that was used to compute a cached result is updated, the cached
result becomes invalid and must be recomputed.

The best candidates for result-caching are functions that are invoked frequently but
depend on information that changes infrequently or never.

See Also:

Oracle Database PL/SQL Language Reference for more information about
the PL/SQL function result cache

Overview of Bulk Binding
Oracle Database uses two engines to run PL/SQL units. The PL/SQL engine runs the
procedural statements and the SQL engine runs the SQL statements. Every SQL
statement causes a context switch between the two engines. You can greatly improve
the performance of your database application by minimizing the number of context
switches for each PL/SQL unit.

When a SQL statement runs inside a loop that uses collection elements as bind
variables, the large number of context switches required can cause poor performance.
Collections include:

• Associative arrays

• Variable-size arrays

• Nested tables

• Host arrays

Binding is the assignment of values to PL/SQL variables in SQL statements. Bulk
binding is binding an entire collection at once. Bulk binds pass the entire collection
between the two engines in a single operation.

Chapter 13
Creating PL/SQL Subprograms and Packages

13-18

Typically, bulk binding improves performance for SQL statements that affect four or
more database rows. The more rows affected by a SQL statement, the greater the
performance gain from bulk binding. Consider using bulk binding to improve the
performance of DML and SELECT INTO statements that reference collections and FOR
loops that reference collections and return DML.

Note:

Parallel DML statements are disabled with bulk binding.

Topics:

• DML Statements that Reference Collections

• SELECT Statements that Reference Collections

• FOR Loops that Reference Collections and Return DML

See Also:

• Oracle Database PL/SQL Language Reference for more information
about bulk binding, including how to handle exceptions that occur during
bulk binding operations

• Oracle Database PL/SQL Language Reference for more information
about parallel DML statements

DML Statements that Reference Collections
A bulk bind, which uses the FORALL keyword, can improve the performance of INSERT,
UPDATE, or DELETE statements that reference collection elements.

The PL/SQL block in Example 13-4 increases the salary for employees whose
manager's ID number is 7902, 7698, or 7839, with and without bulk binds. Without bulk
bind, PL/SQL sends a SQL statement to the SQL engine for each updated employee,
leading to context switches that slow performance.

See Also:

Oracle Database PL/SQL Language Reference for more information about
the FORALL statement

Example 13-4 DML Statements that Reference Collections

DECLARE
 TYPE numlist IS VARRAY (100) OF NUMBER;
 id NUMLIST := NUMLIST(7902, 7698, 7839);
BEGIN
 -- Efficient method, using bulk bind:

Chapter 13
Creating PL/SQL Subprograms and Packages

13-19

 FORALL i IN id.FIRST..id.LAST
 UPDATE EMPLOYEES
 SET SALARY = 1.1 * SALARY
 WHERE MANAGER_ID = id(i);

 -- Slower method:

 FOR i IN id.FIRST..id.LAST LOOP
 UPDATE EMPLOYEES
 SET SALARY = 1.1 * SALARY
 WHERE MANAGER_ID = id(i);
 END LOOP;
END;
/

SELECT Statements that Reference Collections
The BULK COLLECT clause can improve the performance of queries that reference
collections. You can use BULK COLLECT with tables of scalar values, or tables of %TYPE
values.

See Also:

Oracle Database PL/SQL Language Reference for more information about
the BULK COLLECT clause

The PL/SQL block in Example 13-5 queries multiple values into PL/SQL tables, with
and without bulk binds. Without bulk bind, PL/SQL sends a SQL statement to the SQL
engine for each selected employee, leading to context switches that slow
performance.

Example 13-5 SELECT Statements that Reference Collections

DECLARE
 TYPE var_tab IS TABLE OF VARCHAR2(20)
 INDEX BY PLS_INTEGER;

 empno VAR_TAB;
 ename VAR_TAB;
 counter NUMBER;

 CURSOR c IS
 SELECT EMPLOYEE_ID, LAST_NAME
 FROM EMPLOYEES
 WHERE MANAGER_ID = 7698;
BEGIN
 -- Efficient method, using bulk bind:

 SELECT EMPLOYEE_ID, LAST_NAME BULK COLLECT
 INTO empno, ename
 FROM EMPLOYEES
 WHERE MANAGER_ID = 7698;

 -- Slower method:

Chapter 13
Creating PL/SQL Subprograms and Packages

13-20

 counter := 1;

 FOR rec IN c LOOP
 empno(counter) := rec.EMPLOYEE_ID;
 ename(counter) := rec.LAST_NAME;
 counter := counter + 1;
 END LOOP;
END;
/

FOR Loops that Reference Collections and Return DML
You can use the FORALL keyword with the BULK COLLECT keywords to improve the
performance of FOR loops that reference collections and return DML.

See Also:

Oracle Database PL/SQL Language Reference for more information about
use the BULK COLLECT clause with the RETURNING INTO clause

The PL/SQL block in Example 13-6 updates the EMPLOYEES table by computing
bonuses for a collection of employees. Then it returns the bonuses in a column called
bonus_list_inst. The actions are performed with and without bulk binds. Without bulk
bind, PL/SQL sends a SQL statement to the SQL engine for each updated employee,
leading to context switches that slow performance.

Example 13-6 FOR Loops that Reference Collections and Return DML

DECLARE
 TYPE emp_list IS VARRAY(100) OF EMPLOYEES.EMPLOYEE_ID%TYPE;
 empids emp_list := emp_list(182, 187, 193, 200, 204, 206);

 TYPE bonus_list IS TABLE OF EMPLOYEES.SALARY%TYPE;
 bonus_list_inst bonus_list;

BEGIN
 -- Efficient method, using bulk bind:

 FORALL i IN empids.FIRST..empids.LAST
 UPDATE EMPLOYEES
 SET SALARY = 0.1 * SALARY
 WHERE EMPLOYEE_ID = empids(i)
 RETURNING SALARY BULK COLLECT INTO bonus_list_inst;

 -- Slower method:

 FOR i IN empids.FIRST..empids.LAST LOOP
 UPDATE EMPLOYEES
 SET SALARY = 0.1 * SALARY
 WHERE EMPLOYEE_ID = empids(i)
 RETURNING SALARY INTO bonus_list_inst(i);
 END LOOP;
END;
/

Chapter 13
Creating PL/SQL Subprograms and Packages

13-21

PL/SQL Dynamic SQL
Dynamic SQL is a programming methodology for generating and running SQL
statements at runtime. It is useful when writing general-purpose and flexible programs
like dynamic query systems, when writing programs that must run database definition
language (DDL) statements, or when you do not know at compile time the full text of a
SQL statement or the number or data types of its input and output variables.

If you do not need dynamic SQL, then use static SQL, which has these advantages:

• Successful compilation verifies that static SQL statements reference valid
database objects and that the necessary privileges are in place to access those
objects.

• Successful compilation creates schema object dependencies.

See Also:

• Understanding Schema Object Dependency for information about
schema object dependency

• Oracle Database PL/SQL Language Reference for more information
about dynamic SQL

• Oracle Database PL/SQL Language Reference for more information
about static SQL

Altering PL/SQL Subprograms and Packages
To alter the name of a stored standalone subprogram or package, you must drop it
and then create it with the new name. For example:

CREATE PROCEDURE p IS BEGIN NULL; END;
/
DROP PROCEDURE p
/
CREATE PROCEDURE p1 IS BEGIN NULL; END;
/

To alter a stored standalone subprogram or package without changing its name, you
can replace it with a new version with the same name by including OR REPLACE in the
CREATE statement. For example:

CREATE OR REPLACE PROCEDURE p1 IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello, world!');
END;
/

Chapter 13
Altering PL/SQL Subprograms and Packages

13-22

Note:

ALTER statements (such as ALTER FUNCTION, ALTER PROCEDURE, and ALTER
PACKAGE) do not alter the declarations or definitions of existing PL/SQL units,
they recompile only the units.

See Also:

• Dropping PL/SQL Subprograms and Packages

• Oracle Database PL/SQL Language Reference for information about
ALTER statements

Deprecating Packages, Subprograms, and Types
As of Oracle Database 12c Release 2 (12.2), you can use the DEPRECATE pragma to
communicate that a package, subprogram, or type has been deprecated or
superseded by a new interface. When a unit is compiled that makes a reference to a
deprecated element, a compilation warning is issued. To mark a PL/SQL unit as
deprecated, use the DEPRECATE pragma.

See Also:

Oracle Database PL/SQL Language Reference for more information about
DEPRECATE pragma

Dropping PL/SQL Subprograms and Packages
To drop stored standalone subprograms, use these statements:

• DROP FUNCTION

• DROP PROCEDURE

To drop a package (specification and body) or only its body, use the DROP PACKAGE
statement.

Chapter 13
Deprecating Packages, Subprograms, and Types

13-23

See Also:

• Oracle Database PL/SQL Language Reference for more information
about DROP FUNCTION

• Oracle Database PL/SQL Language Reference for more information
about DROP PROCEDURE

• Oracle Database PL/SQL Language Reference DROP PACKAGE

Compiling PL/SQL Units for Native Execution
You can usually speed up PL/SQL units—your own and those that Oracle supplies—
by compiling them into native code (processor-dependent system code), which is
stored in the SYSTEM tablespace.

PL/SQL units compiled into native code run in all server environments, including the
shared server configuration (formerly called "multithreaded server") and Oracle Real
Application Clusters (Oracle RAC).

Whether to compile a PL/SQL unit into native code depends on where you are in the
development cycle and what the PL/SQL unit does.

Note:

To compile Java packages and classes for native execution, use the ncomp
tool.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about compiling PL/SQL units for native execution

• Oracle Database Java Developer's Guide

Invoking Stored PL/SQL Subprograms
Stored PL/SQL subprograms can be invoked from many different environments. For
example:

• Interactively, using an Oracle Database tool

• From the body of another subprogram

• From the body of a trigger

• From within an application (such as a SQL*Forms or a precompiler)

Stored PL/SQL functions (but not procedures) can also be invoked from within SQL
statements.

Chapter 13
Compiling PL/SQL Units for Native Execution

13-24

When you invoke a subprogram owned by another user:

• You must include the name of the owner in the invocation. For example:

EXECUTE jdoe.Fire_emp (1043);
EXECUTE jdoe.Hire_fire.Fire_emp (1043);

• The AUTHID property of the subprogram affects the name resolution and privilege
checking of SQL statements that the subprogram issues at runtime.

Topics:

• Privileges Required to Invoke a Stored Subprogram

• Invoking a Subprogram Interactively from Oracle Tools

• Invoking a Subprogram from Another Subprogram

• Invoking a Remote Subprogram

See Also:

• Oracle Database PL/SQL Language Reference for information about
AUTHID property, subprogram invocation, parameters, and definer's and
invoker's rights

• Oracle Database PL/SQL Language Reference for information about
coding the body of a trigger

• Invoking Stored PL/SQL Functions from SQL Statements

• Oracle Call Interface Programmer's Guide for information about invoking
PL/SQL subprograms from OCI applications

• Pro*C/C++ Programmer's Guide for information about invoking PL/SQL
subprograms from Pro*C/C++

• Pro*COBOL Programmer's Guide for information about invoking PL/SQL
subprograms from Pro*COBOL

• Oracle Database JDBC Developer's Guide for information about invoking
PL/SQL subprograms from JDBC applications

Privileges Required to Invoke a Stored Subprogram
You do not need privileges to invoke:

• Standalone subprograms that you own

• Subprograms in packages that you own

• Public standalone subprograms

• Subprograms in public packages

To invoke a stored subprogram owned by another user, you must have the EXECUTE
privilege for the standalone subprogram or for the package containing the package
subprogram, or you must have the EXECUTE ANY PROCEDURE system privilege. If the
subprogram is remote, then you must be granted the EXECUTE privilege or EXECUTE ANY
PROCEDURE system privilege directly, not through a role.

Chapter 13
Invoking Stored PL/SQL Subprograms

13-25

See Also:

Oracle Database SQL Language Reference for information about system
and object privileges

Invoking a Subprogram Interactively from Oracle Tools
You can invoke a subprogram interactively from an Oracle Database tool, such as
SQL*Plus.

See Also:

• SQL*Plus User's Guide and Reference for information about the EXECUTE
command

• Your tools documentation for information about performing similar
operations using your development tool

Example 13-7 uses SQL*Plus to create a procedure and then invokes it in two different
ways.

Some interactive tools allow you to create session variables, which you can use for the
duration of the session. Using SQL*Plus, Example 13-8 creates, uses, and prints a
session variable.

Example 13-7 Invoking a Subprogram Interactively with SQL*Plus

CREATE OR REPLACE PROCEDURE salary_raise (
 employee EMPLOYEES.EMPLOYEE_ID%TYPE,
 increase EMPLOYEES.SALARY%TYPE
)
IS
BEGIN
 UPDATE EMPLOYEES
 SET SALARY = SALARY + increase
 WHERE EMPLOYEE_ID = employee;
END;
/

Invoke procedure from within anonymous block:

BEGIN
 salary_raise(205, 200);
END;
/

Result:

PL/SQL procedure successfully completed.

Chapter 13
Invoking Stored PL/SQL Subprograms

13-26

Invoke procedure with EXECUTE statement:

EXECUTE salary_raise(205, 200);

Result:

PL/SQL procedure successfully completed.

Example 13-8 Creating and Using a Session Variable with SQL*Plus

-- Create function for later use:

CREATE OR REPLACE FUNCTION get_job_id (
 emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
) RETURN EMPLOYEES.JOB_ID%TYPE
IS
 job_id EMPLOYEES.JOB_ID%TYPE;
BEGIN
 SELECT JOB_ID INTO job_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 RETURN job_id;
END;
/
-- Create session variable:

VARIABLE job VARCHAR2(10);

-- Run function and store returned value in session variable:

EXECUTE :job := get_job_id(204);

PL/SQL procedure successfully completed.

SQL*Plus command:

PRINT job;

Result:

JOB

PR_REP

Invoking a Subprogram from Another Subprogram
A subprogram or a trigger can invoke another stored subprogram. In Example 13-9,
the procedure print_mgr_name invokes the procedure print_emp_name.

Recursive subprogram invocations are allowed (that is, a subprogram can invoke
itself).

Example 13-9 Invoking a Subprogram from Within Another Subprogram

-- Create procedure that takes employee's ID and prints employee's name:

CREATE OR REPLACE PROCEDURE print_emp_name (

Chapter 13
Invoking Stored PL/SQL Subprograms

13-27

 emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
)
IS
 fname EMPLOYEES.FIRST_NAME%TYPE;
 lname EMPLOYEES.LAST_NAME%TYPE;
BEGIN
 SELECT FIRST_NAME, LAST_NAME
 INTO fname, lname
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 DBMS_OUTPUT.PUT_LINE (
 'Employee #' || emp_id || ': ' || fname || ' ' || lname
);
END;
/

-- Create procedure that takes employee's ID and prints manager's name:

CREATE OR REPLACE PROCEDURE print_mgr_name (
 emp_id EMPLOYEES.EMPLOYEE_ID%TYPE
)
IS
 mgr_id EMPLOYEES.MANAGER_ID%TYPE;
BEGIN
 SELECT MANAGER_ID
 INTO mgr_id
 FROM EMPLOYEES
 WHERE EMPLOYEE_ID = emp_id;

 DBMS_OUTPUT.PUT_LINE (
 'Manager of employee #' || emp_id || ' is: '
);

 print_emp_name(mgr_id);
END;
/

Invoke procedures:

BEGIN
 print_emp_name(200);
 print_mgr_name(200);
END;
/

Result:

Employee #200: Jennifer Whalen
Manager of employee #200 is:
Employee #101: Neena Kochhar

Invoking a Remote Subprogram
A remote subprogram is stored on a different database from its invoker. A remote
subprogram invocation must include the subprogram name, a database link to the
database on which the subprogram is stored, and an actual parameter for every formal
parameter (even if the formal parameter has a default value).

Chapter 13
Invoking Stored PL/SQL Subprograms

13-28

For example, this SQL*Plus statement invokes the stored standalone procedure
fire_emp1, which is referenced by the local database link named boston_server:

EXECUTE fire_emp1@boston_server(1043);

Note:

Although you can invoke remote package subprograms, you cannot directly
access remote package variables and constants.

Caution:

• Remote subprogram invocations use runtime binding. The user account
to which you connect depends on the database link. (Stored
subprograms use compile-time binding.)

• If a local subprogram invokes a remote subprogram, and a time-stamp
mismatch is found during execution of the local subprogram, then the
remote subprogram is not run, and the local subprogram is invalidated.
For more information, see Dependencies Among Local and Remote
Database Procedures.

Topics:

• Synonyms for Remote Subprograms

• Transactions That Invoke Remote Subprograms

See Also:

• Dependencies Among Local and Remote Database Procedures

• Oracle Database PL/SQL Language Reference for information about
handling errors in subprograms

Synonyms for Remote Subprograms
A synonym is an alias for a schema object. You can create a synonym for a remote
subprogram name and database link, and then use the synonym to invoke the
subprogram. For example:

CREATE SYNONYM synonym1 for fire_emp1@boston_server;
EXECUTE synonym1(1043);

Chapter 13
Invoking Stored PL/SQL Subprograms

13-29

Note:

You cannot create a synonym for a package subprogram, because it is not a
schema object (its package is a schema object).

Synonyms provide both data independence and location transparency. Using the
synonym, a user can invoke the subprogram without knowing who owns it or where it
is. However, a synonym is not a substitute for privileges—to use the synonym to
invoke the subprogram, the user still needs the necessary privileges for the
subprogram.

Granting a privilege on a synonym is equivalent to granting the privilege on the base
object. Similarly, granting a privilege on a base object is equivalent to granting the
privilege on all synonyms for the object.

You can create both private and public synonyms. A private synonym is in your
schema and you control its availability to others. A public synonym belongs to the user
group PUBLIC and is available to every database user.

Use public synonyms sparingly because they make database consolidation more
difficult.

If you do not want to use a synonym, you can create a local subprogram to invoke the
remote subprogram. For example:

CREATE OR REPLACE PROCEDURE local_procedure
 (arg IN NUMBER)
AS
BEGIN
 fire_emp1@boston_server(arg);
END;
/
DECLARE
 arg NUMBER;
BEGIN
 local_procedure(arg);
END;
/

See Also:

• Oracle Database Concepts for general information about synonyms

• Oracle Database Concepts for examples of public synonym

• Oracle Database SQL Language Reference for information about the
CREATE SYNONYM statement

• Oracle Database SQL Language Reference for information about the
GRANT statement

Chapter 13
Invoking Stored PL/SQL Subprograms

13-30

Transactions That Invoke Remote Subprograms
A remote subprogram invocation is assumed to update a database. Therefore, a
transaction that invokes a remote subprogram requires a two-phase commit (even if
the remote subprogram does not update a database). If the transaction is rolled back,
then the work done by the remote subprogram is also rolled back.

With respect to the statements COMMIT, ROLLBACK, and SAVEPOINT, a remote
subprogram differs from a local subprogram in these ways:

• If the transaction starts on a database that is not an Oracle database, then the
remote subprogram cannot run these statements.

This situation can occur in Oracle XA applications, which are not recommended.
For details, see Developing Applications with Oracle XA.

• After running one of these statements, the remote subprogram cannot start its own
distributed transactions.

A distributed transaction updates two or more databases. Statements in the
transaction are sent to the different databases, and the transaction succeeds or
fails as a unit. If the transaction fails on any database, then it must be rolled back
(either to a savepoint or completely) on all databases. Consider this when creating
subprograms that perform distributed updates.

• If the remote subprogram does not commit or roll back its work, then the work is
implicitly committed when the database link is closed. Until then, the remote
subprogram is considered to be performing a transaction. Therefore, further
invocations to the remote subprogram are not allowed.

Invoking Stored PL/SQL Functions from SQL Statements

Caution:

Because SQL is a declarative language, rather than an imperative (or
procedural) one, you cannot know how many times a function invoked by a
SQL statement will run—even if the function is written in PL/SQL, an
imperative language.

If your application requires that a function be executed a certain number of
times, do not invoke that function from a SQL statement. Use a cursor
instead.

For example, if your application requires that a function be called for each
selected row, then open a cursor, select rows from the cursor, and call the
function for each row. This technique guarantees that the number of calls to
the function is the number of rows fetched from the cursor.

For general information about cursors, see Oracle Database PL/SQL
Language Reference.

These SQL statements can invoke PL/SQL stored functions:

• INSERT

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-31

• UPDATE

• DELETE

• SELECT

(SELECT can also invoke a PL/SQL function declared and defined in its WITH
clause.

• CALL

(CALL can also invoke a PL/SQL stored procedure.)

To invoke a PL/SQL function from a SQL statement, you must either own or have the
EXECUTE privilege on the function. To select from a view defined with a PL/SQL
function, you must have READ or SELECT privilege on the view. No separate EXECUTE
privileges are needed to select from the view.

Note:

The AUTHID property of the PL/SQL function can also affect the privileges
that you need to invoke the function from a SQL statement, because AUTHID
affects the name resolution and privilege checking of SQL statements that
the unit issues at runtime. For details, see Oracle Database PL/SQL
Language Reference.

Topics:

• Why Invoke PL/SQL Functions from SQL Statements?

• Where PL/SQL Functions Can Appear in SQL Statements

• When PL/SQL Functions Can Appear in SQL Expressions

• Controlling Side Effects of PL/SQL Functions Invoked from SQL Statements

See Also:

• Oracle Database SQL Language Reference for more information about
SELECT statement

• Oracle Database PL/SQL Language Reference for general information
about invoking subprograms, including passing parameters

Why Invoke PL/SQL Functions from SQL Statements?
Invoking PL/SQL functions in SQL statements can:

• Increase user productivity by extending SQL

Expressiveness of the SQL statement increases where activities are too complex,
too awkward, or unavailable with SQL.

• Increase query efficiency

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-32

Functions in the WHERE clause of a query can filter data using criteria that must
otherwise be evaluated by the application.

• Manipulate character strings to represent special data types (for example, latitude,
longitude, or temperature)

• Provide parallel query execution

If the query is parallelized, then SQL statements in your PL/SQL subprogram
might also run in parallel (using the parallel query option).

Where PL/SQL Functions Can Appear in SQL Statements
A PL/SQL function can appear in a SQL statement wherever a SQL function or an
expression can appear in a SQL statement. For example:

• Select list of the SELECT statement

• Condition of the WHERE or HAVING clause

• CONNECT BY, START WITH, ORDER BY, or GROUP BY clause

• VALUES clause of the INSERT statement

• SET clause of the UPDATE statement

A PL/SQL table function (which returns a collection of rows) can appear in a SELECT
statement instead of:

• Column name in the SELECT list

• Table name in the FROM clause

A PL/SQL function cannot appear in these contexts, which require unchanging
definitions:

• CHECK constraint clause of a CREATE or ALTER TABLE statement

• Default value specification for a column

When PL/SQL Functions Can Appear in SQL Expressions
To be invoked from a SQL expression, a PL/SQL function must satisfy these
requirements:

• It must be either a user-defined aggregate function or a row function.

• Its formal parameters must be IN parameters, not OUT or IN OUT parameters.

The function in Example 13-10 satisfies the preceding requirements.

Example 13-10 PL/SQL Function in SQL Expression (Follows Rules)

DROP TABLE payroll; -- in case it exists
CREATE TABLE payroll (
 srate NUMBER,
 orate NUMBER,
 acctno NUMBER
);

CREATE OR REPLACE FUNCTION gross_pay (
 emp_id IN NUMBER,
 st_hrs IN NUMBER := 40,

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-33

 ot_hrs IN NUMBER := 0
) RETURN NUMBER
IS
 st_rate NUMBER;
 ot_rate NUMBER;
BEGIN
 SELECT srate, orate
 INTO st_rate, ot_rate
 FROM payroll
 WHERE acctno = emp_id;

 RETURN st_hrs * st_rate + ot_hrs * ot_rate;
END gross_pay;
/

Controlling Side Effects of PL/SQL Functions Invoked from SQL
Statements

A subprogram has side effects if it changes anything except the values of its own
local variables. For example, a subprogram that changes any of the following has side
effects:

• Its own OUT or IN OUT parameter

• A global variable

• A public variable in a package

• A database table

• The database

• The external state (by invoking DBMS_OUTPUT or sending e‐mail, for example)

Side effects can prevent the parallelization of a query, yield order-dependent (and
therefore, indeterminate) results, or require that package state be maintained across
user sessions.

Some side effects are not allowed in a function invoked from a SQL query or DML
statement.

Before Oracle Database 8g Release 1 (8.1), application developers used PRAGMA
RESTRICT_REFERENCES to assert the purity (freedom from side effects) of a function.
This pragma remains available for backward compatibility, but do not use it in new
applications. Instead, specify the optimizer hints DETERMINISTIC and PARALLEL_ENABLE
when you create the function.

Topics:

• Restrictions on Functions Invoked from SQL Statements

• PL/SQL Functions Invoked from Parallelized SQL Statements

• PRAGMA RESTRICT_REFERENCES (deprecated)

See Also:

Oracle Database PL/SQL Language Reference for information about
DETERMINISTIC and PARALLEL_ENABLE optimizer hints

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-34

Restrictions on Functions Invoked from SQL Statements

Note:

The restrictions on functions invoked from SQL statements also apply to
triggers fired by SQL statements.

If a SQL statement invokes a function, and the function runs a new SQL statement,
then the execution of the new statement is logically embedded in the context of the
statement that invoked the function. To ensure that the new statement is safe in this
context, Oracle Database enforces these restrictions on the function:

• If the SQL statement that invokes the function is a query or DML statement, then
the function cannot end the current transaction, create or rollback to a savepoint,
or ALTER the system or session.

• If the SQL statement that invokes the function is a query or parallelized DML
statement, then the function cannot run a DML statement or otherwise modify the
database.

• If the SQL statement that invokes the function is a DML statement, then the
function can neither read nor modify the table being modified by the SQL
statement that invoked the function.

The restrictions apply regardless of how the function runs the new SQL statement. For
example, they apply to new SQL statements that the function:

• Invokes from PL/SQL, whether embedded directly in the function body, run using
the EXECUTE IMMEDIATE statement, or run using the DBMS_SQL package

• Runs using JDBC

• Runs with OCI using the callback context from within an external C function

To avoid these restrictions, ensure that the execution of the new SQL statement is not
logically embedded in the context of the SQL statement that invokes the function. For
example, put the new SQL statement in an autonomous transaction or, in OCI, create
a new connection for the external C function rather than using the handle provided by
the OCIExtProcContext argument.

See Also:

Autonomous Transactions

PL/SQL Functions Invoked from Parallelized SQL Statements
When Oracle Database runs a parallelized SQL statement, multiple processes work
simultaneously to run the single SQL statement. When a parallelized SQL statement
invokes a function, each process might invoke its own copy of the function, for only the
subset of rows that the process handles.

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-35

Each process has its own copy of package variables. When parallel execution begins,
the package variables are initialized for each process as if a user were logging into the
system; the package variable values are not copied from the original login session.
Changes that one process makes to package variables do not automatically propagate
to the other processes or to the original login session. Java STATIC class attributes are
similarly initialized and modified independently in each process. A function can use
package and Java STATIC variables to accumulate a value across the various rows
that it encounters. Therefore, Oracle Database does not parallelize the execution of
user-defined functions by default.

Before Oracle Database 8g Release 1 (8.1):

• If a parallelized query invoked a user-defined function, then the execution of the
function could be parallelized if PRAGMA RESTRICT_REFERENCES asserted both RNPS
and WNPS for the function—that is, that the function neither referenced package
variables nor changed their values.

Without this assertion, the execution of a standalone PL/SQL function (but not a C
or Java function) could be parallelized if Oracle Database determined that the
function neither referenced package variables nor changed their values.

• If a parallelized DML statement invoked a user-defined function, then the
execution of the function could be parallelized if PRAGMA RESTRICT_REFERENCES
asserted RNDS, WNDS, RNPS and WNPS for the function—that is, that the function
neither referenced nor changed the values of either package variables or database
tables.

Without this assertion, the execution of a standalone PL/SQL function (but not a C
or Java function) could be parallelized if Oracle Database determined that the
function neither referenced nor changed the values of either package variables or
database tables.

As of Oracle Database 8g Release 1 (8.1), if a parallelized SQL statement invokes a
user-defined function, then the execution of a function can be parallelized in these
situations:

• The function was created with PARALLEL_ENABLE.

• Before Oracle Database 8g Release 1 (8.1), the database recognized the function
as parallelizable.

PRAGMA RESTRICT_REFERENCES

Note:

PRAGMA RESTRICT_REFERENCES is deprecated. In new applications, Oracle
recommends using DETERMINISTIC and PARALLEL_ENABLE (explained in
Oracle Database SQL Language Reference) instead of
RESTRICT_REFERENCES.

In existing PL/SQL applications, you can either remove PRAGMA RESTRICT_REFERENCES
or continue to use it, even with new functionality, to ease integration with the existing
code. For example:

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-36

• When it is impossible or impractical to completely remove PRAGMA
RESTRICT_REFERENCES from existing code.

For example, if subprogram S1 depends on subprogram S2, and you do not
remove the pragma from S1, then you might need the pragma in S2 to compile S1.

• When replacing PRAGMA RESTRICT_REFERENCES with PARALLEL_ENABLE and
DETERMINISTIC in existing code would negatively affect the action of new,
dependent code.

To used PRAGMA RESTRICT_REFERENCES to assert the purity of a function: In the
package specification (not the package body), anywhere after the function declaration,
use this syntax:

PRAGMA RESTRICT_REFERENCES (function_name, assertion [, assertion]...);

Where assertion is one of the following:

Assertion Meaning

RNPS The function reads no package state (does not reference the values of package
variables)

WNPS The function writes no package state (does not change the values of package
variables).

RNDS The function reads no database state (does not query database tables).

WNDS The function writes no database state (does not modify database tables).

TRUST Trust that no SQL statement in the function body violates any assertion made for
the function. For more information, see Specifying the Assertion TRUST.

If you do not specify TRUST, and a SQL statement in the function body violates an
assertion that you do specify, then the PL/SQL compiler issues an error message
when it parses a violating statement.

Assert the highest purity level (the most assertions) that the function allows, so that the
PL/SQL compiler never rejects the function unnecessarily.

Note:

If the function invokes subprograms, then either specify PRAGMA
RESTRICT_REFERENCES for those subprograms also or specify TRUST in either
the invoking function or the invoked subprograms.

See Also:

Oracle Database PL/SQL Language Reference for more information about
PRAGMA RESTRICT_REFERENCES

Topics:

• Specifying the Assertion TRUST

• Differences between Static and Dynamic SQL Statements

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-37

Example: PRAGMA RESTRICT_REFERENCES
You can use the PRAGMA RESTRICT_REFERENCES clause when you create a PL/SQL
package.

Example 13-11 creates a function that neither reads nor writes database or package
state, and asserts that is has the maximum purity level.

Example 13-11 PRAGMA RESTRICT_REFERENCES

DROP TABLE accounts; -- in case it exists
CREATE TABLE accounts (
 acctno INTEGER,
 balance NUMBER
);

INSERT INTO accounts (acctno, balance)
VALUES (12345, 1000.00);

CREATE OR REPLACE PACKAGE finance AS
 FUNCTION compound_ (
 years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER
) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (compound_, WNDS, WNPS, RNDS, RNPS);
END finance;
/
CREATE PACKAGE BODY finance AS
 FUNCTION compound_ (
 years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER
) RETURN NUMBER
 IS
 BEGIN
 RETURN amount * POWER((rate / 100) + 1, years);
 END compound_;
 -- No pragma in package body
END finance;
/
DECLARE
 interest NUMBER;
BEGIN
 SELECT finance.compound_(5, 1000, 6)
 INTO interest
 FROM accounts
 WHERE acctno = 12345;
END;
/

Specifying the Assertion TRUST
When PRAGMA RESTRICT REFERENCES specifies TRUST, the PL/SQL compiler does not
check the subprogram body for violations.

TRUST makes it easier for a subprogram that uses PRAGMA RESTRICT REFERENCES to
invoke subprograms that do not use it.

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-38

If your PL/SQL subprogram invokes a C or Java subprogram, then you must specify
TRUST for either the PL/SQL subprogram (as in Example 13-12) or the C or Java
subprogram (as in Example 13-13), because the PL/SQL compiler cannot check a C
or Java subprogram for violations at runtime.

Example 13-12 PRAGMA RESTRICT REFERENCES with TRUST on Invoker

CREATE OR REPLACE PACKAGE p IS
 PROCEDURE java_sleep (milli_seconds IN NUMBER)
 AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';

 FUNCTION f (n NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES(f,WNDS,TRUST);
END p;
/
CREATE OR REPLACE PACKAGE BODY p IS
 FUNCTION f (
 n NUMBER
) RETURN NUMBER
 IS
 BEGIN
 java_sleep(n);
 RETURN n;
 END f;
END p;
/

Example 13-13 PRAGMA RESTRICT REFERENCES with TRUST on Invokee

CREATE OR REPLACE PACKAGE p IS
 PROCEDURE java_sleep (milli_seconds IN NUMBER)
 AS LANGUAGE JAVA NAME 'java.lang.Thread.sleep(long)';
 PRAGMA RESTRICT_REFERENCES(java_sleep,WNDS,TRUST);

 FUNCTION f (n NUMBER) RETURN NUMBER;
END p;
/
CREATE OR REPLACE PACKAGE BODY p IS
 FUNCTION f (
 n NUMBER
) RETURN NUMBER
 IS
 BEGIN
 java_sleep(n);
 RETURN n;
 END f;
END p;
/

Differences Between Static and Dynamic SQL Statements
A static INSERT, UPDATE, or DELETE statement does not violate RNDS if it does not
explicitly read a database state (such as a table column). A dynamic INSERT, UPDATE,
or DELETE statement always violate RNDS, regardless of whether it explicitly reads a
database state.

The following INSERT statement violates RNDS if it is executed dynamically, but not if it
is executed statically:

INSERT INTO my_table values(3, 'BOB');

Chapter 13
Invoking Stored PL/SQL Functions from SQL Statements

13-39

The following UPDATE statement always violates RNDS, whether it is executed statically
or dynamically, because it explicitly reads the column name of my_table:

UPDATE my_table SET id=777 WHERE name='BOB';

Analyzing and Debugging Stored Subprograms
To compile a stored subprogram, you must fix any syntax errors in the code. To
ensure that the subprogram works correctly, performs well, and recovers from errors,
you might need to do additional debugging. Such debugging might involve:

• Adding extra output statements to verify execution progress and check data values
at certain points within the subprogram.

To output the value of variables and expressions, use the PUT and PUT_LINE
subprograms in the Oracle package DBMS_OUTPUT.

• Analyzing the program and its execution in greater detail by running PL/Scope, the
PL/SQL hierarchical profiler, or a debugger

Topics:

• PL/Scope

• PL/SQL Hierarchical Profiler

• Debugging PL/SQL and Java

See Also:

• Oracle Database PL/SQL Language Reference for information about
handling errors in PL/SQL subprograms and packages

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_OUTPUT package

PL/Scope
PL/Scope lets you develop powerful and effective PL/Scope source code tools that
increase PL/SQL developer productivity by minimizing time spent browsing and
understanding source code.

For more information about PL/Scope, see Using PL/Scope.

PL/SQL Hierarchical Profiler
The PL/SQL hierarchical profiler reports the dynamic execution profile of your PL/SQL
program, organized by subprogram calls. It accounts for SQL and PL/SQL execution
times separately. Each subprogram-level summary in the dynamic execution profile
includes information such as number of calls to the subprogram, time spent in the
subprogram itself, time spent in the subprogram subtree (that is, in its descendent
subprograms), and detailed parent-children information.

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to

Chapter 13
Analyzing and Debugging Stored Subprograms

13-40

analyze performance of large applications, improve application performance, and
lower development costs.

See Also:

Using the PL/SQL Hierarchical Profiler for more information about PL/SQL
hierarchical profiler

Debugging PL/SQL and Java
PL/SQL and Java code in the database can be debugged using Oracle SQL
Developer, Oracle JDeveloper, and various third-party tools. The
DBMS_DEBUG_JDWP package is used to establish connections between a database
session and these debugger programs.

It is possible to investigate a problem occurring in a long running test, or in a
production environment by connecting to the session to debug from another session.
While debugging a session, it is possible to inspect the state of in-scope variables and
to examine the database state as the session being debugged sees it during an
uncommitted transaction. When stopped at a breakpoint, it is possible for the
debugging user to issue SQL commands, and run PL/SQL code invoking stored
PL/SQL subprograms in an anonymous block if necessary.

See Also:

• Oracle SQL Developer User’s Guide for more information about running
and debugging functions and procedures

• Oracle Database Java Developer's Guide for information about using the
Java Debug Wire Protocol (JDWP) PL/SQL Debugger

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_DEBUG_JDWP package

• Oracle Database Reference for information about the
V$PLSQL_DEBUGGABLE_SESSIONS view

Compiling Code for Debugging
A debugger can stop on individual code lines and access variables only in code
compiled with debug information generated.

To compile a PL/SQL unit with debug information generated, set the compilation
parameter PLSQL_OPTIMIZE_LEVEL to 1 (the default value is 2).

Chapter 13
Analyzing and Debugging Stored Subprograms

13-41

Note:

The PL/SQL compiler never generates debug information for code hidden
with the PL/SQL wrap utility.

See Also:

• Oracle Database PL/SQL Language Reference for information about the
wrap utility

• Overview of PL/SQL Units for information about PL/SQL units

• Oracle Database Reference for more information about
PLSQL_OPTIMIZE_LEVEL

Privileges for Debugging PL/SQL and Java Stored Subprograms
For a session to connect to a debugger, the effective user at the time of the connect
operation must have the DEBUG CONNECT SESSION , DEBUG CONNECT ANY, or appropriate
DEBUG CONNECT ON USER privilege. The effective user might be the owner of a DR
subprogram involved in making the connect call.

When a session connects to a debugger, the session login user and the enabled
session-level roles are fixed as the privilege environment for that debugging
connection. The privileges needed for debugging must be granted to that combination
of user and roles on the relevant code. The privileges are:

• To display and change variables declared in a PL/SQL package specification or
Java public variables: either EXECUTE or DEBUG.

• To display and change private variables, or to breakpoint and run code lines step
by step: DEBUG

Caution:

The DEBUG privilege allows a debugging session to do anything that the
subprogram being debugged could have done if that action had been
included in its code.

Granting the DEBUG ANY PROCEDURE system privilege is equivalent to granting the DEBUG
privilege on all objects in the database. Objects owned by SYS are included if the value
of the O7_DICTIONARY_ACCESSIBILITY parameter is TRUE.

Chapter 13
Analyzing and Debugging Stored Subprograms

13-42

Caution:

Granting the DEBUG ANY PROCEDURE privilege, or granting the DEBUG privilege
on any object owned by SYS, grants complete rights to the database.

See Also:

• Oracle Database SQL Language Reference for information about system
and object privileges

• Oracle Database Java Developer's Guide for information about privileges
for debugging Java subprograms

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_DEBUG_JDWP package security model

Package Invalidations and Session State
Each session that references a package object has its own instance of the
corresponding package, including persistent state for any public and private variables,
cursors, and constants. If any of the session's instantiated packages (specification or
body) are invalidated, then all package instances in the session are invalidated and
recompiled. Therefore, the session state is lost for all package instances in the
session.

When a package in a given session is invalidated, the session receives ORA-04068
the first time it tries to use any object of the invalid package instance. The second time
a session makes such a package call, the package is reinstantiated for the session
without error. However, if you handle this error in your application, be aware of the
following:

• For optimal performance, Oracle Database returns this error message only when
the package state is discarded. When a subprogram in one package invokes a
subprogram in another package, the session state is lost for both packages.

• If a server session traps ORA-04068, then ORA-04068 is not raised for the client
session. Therefore, when the client session tries to use an object in the package,
the package is not reinstantiated. To reinstantiate the package, the client session
must either reconnect to the database or recompile the package.

In most production environments, DDL operations that can cause invalidations are
usually performed during inactive working hours; therefore, this situation might not be
a problem for end-user applications. However, if package invalidations are common in
your system during working hours, then you might want to code your applications to
handle this error when package calls are made.

Example: Raising an ORA-04068 Error
You can use the RAISE clause to raise exceptions.

Chapter 13
Package Invalidations and Session State

13-43

In Example 13-14, the RAISE statement raises the current exception, ORA-04068,
which is the cause of the exception being handled, ORA-06508. ORA-04068 is not
trapped.

Example 13-14 Raising ORA-04068

PROCEDURE p IS
 package_exception EXCEPTION;
 PRAGMA EXCEPTION_INIT (package_exception, -6508);
BEGIN
 ...
EXCEPTION
 WHEN package_exception THEN
 RAISE;
END;
/

Example: Trapping ORA-04068
You can use the RAISE statement in a package definition to trap errors.

In Example 13-15, the RAISE statement raises the exception ORA-20001 in response
to ORA-06508, instead of the current exception, ORA-04068. ORA-04068 is trapped.
When this happens, the ORA-04068 error is masked, which stops the package from
being reinstantiated.

Example 13-15 Trapping ORA-04068

PROCEDURE p IS
 package_exception EXCEPTION;
 other_exception EXCEPTION;
 PRAGMA EXCEPTION_INIT (package_exception, -6508);
 PRAGMA EXCEPTION_INIT (other_exception, -20001);
BEGIN
 ...
EXCEPTION
 WHEN package_exception THEN
 ...
 RAISE other_exception;
END;
/

Chapter 13
Example: Trapping ORA-04068

13-44

14
Using PL/Scope

PL/Scope lets you develop powerful and effective PL/Scope source code tools that
increase PL/SQL developer productivity by minimizing time spent browsing and
understanding source code.

PL/Scope is intended for application developers, and is typically used in a
development database environment.

Note:

PL/Scope cannot collect data for a PL/SQL unit whose source code is
wrapped. For information about wrapping PL/SQL source code, see Oracle
Database PL/SQL Language Reference.

Topics:

• Overview of PL/Scope

• Privileges Required for Using PL/Scope

• Specifying Identifier and Statement Collection

• How Much Space is PL/Scope Data Using?

• Viewing PL/Scope Data

• Overview of Data Dictionary Views Useful to Manage PL/SQL Code

• Sample PL/Scope Session

Overview of PL/Scope
PL/Scope is a compiler-driven tool that collects PL/SQL and SQL identifiers as well as
SQL statements usage in PL/SQL source code.

PL/Scope collects PL/SQL identifiers, SQL identifiers, and SQL statements metadata
at program-unit compilation time and makes it available in static data dictionary views.
The collected data includes information about identifier types, usages
(DECLARATION, DEFINITION, REFERENCE, CALL, ASSIGNMENT) and the location
of each usage in the source code.

Starting with Oracle Database 12c Release 2 (12.2), PL/Scope has been enhanced to
report on the occurrences of static SQL, and dynamic SQL call sites in PL/SQL units.
The call site of the native dynamic SQL (EXECUTE IMMEDIATE, OPEN CURSOR
FOR) and DBMS_SQL calls are collected. Dynamic SQL statements are generated at
execution time, so only the call sites can be collected at compilation time. The
collected data in the new DBA_STATEMENTS view can be queried along with the
other data dictionary views to help answer questions about the scope of changes
required for programming projects, and performing code analysis. It is also useful to

14-1

identify the source of SQL statement not performing well. PL/Scope provides insight
into dependencies between tables, views and the PL/SQL units. This level of details
can be used as a migration assessment tool to determine the extent of changes
required.

PL/Scope can help you answer questions such as :

• Where and how a column x in table y is used in the PL/SQL code?

• Is the SQL in my application PL/SQL code compatible with TimesTen?

• What are the constants, variables and exceptions in my application that are
declared but never used?

• Is my code at risk for SQL injection?

• What are the SQL statements with an optimizer hint coded in the application?

• Which SQL has a BULK COLLECT clause ? Where is the SQL called from ?

Privileges Required for Using PL/Scope
By default, PUBLIC has SELECT privileges on various system tables and views, and
EXECUTE privileges on various PL/SQL objects.

The PL/Scope data is available in the DBA_IDENTIFIERS and DBA_STATEMENTS
data dictionary views. The user must have the privileges to query data in these views.

The following privileges have been granted on these relevant views.

View Name Privilege Granted to Role

USER_IDENTIFIERS READ to PUBLIC

ALL_IDENTIFIERS READ to PUBLIC

DBA_IDENTIFIERS SELECT to SELECT_CATALOG_ROLE

USER_STATEMENTS READ to PUBLIC

ALL_STATEMENTS READ to PUBLIC

DBA_STATEMENTS SELECT to SELECT_CATALOG_ROLE

A database administrator can verify the list of privileges on these views by using a
query similar to the following:

SELECT *
FROM SYS.DBA_TAB_PRIVS
WHERE GRANTEE = 'PUBLIC'
AND TABLE_NAME IN
('ALL_IDENTIFIERS','USER_IDENTIFIERS','ALL_STATEMENTS','USER_STATEMENTS');

Specifying Identifier and Statement Collection
By default, PL/Scope does not collect data for identifiers and statements in the
PL/SQL source program. To enable and control what is collected, set the PL/SQL
compilation parameter PLSCOPE_SETTINGS.

Starting with Oracle Database 12c Release 2 (12.2), the PLSCOPE_SETTINGS has a new
syntax that offers more controls and options to collect identifiers and SQL statements

Chapter 14
Privileges Required for Using PL/Scope

14-2

metadata. The metadata is collected in the static data dictionary views
DBA_IDENTIFIERS and DBA_STATEMENTS.

To collect PL/Scope data for all identifiers in the PL/SQL source program, including
identifiers in package bodies, set the PL/SQL compilation parameter
PLSCOPE_SETTINGS to 'IDENTIFIERS:ALL'. The possible values for the IDENTIFIERS
clause are : ALL, NONE (default), PUBLIC, SQL, and PLSQL. New SQL identifiers are
introduced for : ALIAS, COLUMN, MATERIALIZED VIEW, OPERATOR, TABLE, and VIEW.
The enhanced metadata collection enables the generation of reports useful for
understanding the applications. PL/Scope can now be used as a tool to estimate the
complexity of PL/SQL applications coding projects with a finer granularity than
previously possible.

To collect PL/Scope data for all SQL statements used in PL/SQL source program, set
the PL/SQL compilation parameter PLSCOPE_SETTINGS to 'STATEMENTS:ALL'. The
default value is NONE.

Note:

Collecting all identifiers and statements might generate large amounts of
data and slow compile time.

PL/Scope stores the data that it collects in the SYSAUX tablespace. If the PL/Scope
collection is enabled and SYSAUX tablespace is unavailable during compilation of a
program unit, PL/Scope does not collect data for the compiled object. The compiler
does not issue a warning, but it saves a warning in USER_ERRORS.

See Also:

• Oracle Database Reference for information about PLSCOPE_SETTINGS

• Oracle Database PL/SQL Language Reference for information about
PL/SQL compilation parameters

How Much Space is PL/Scope Data Using?
PL/Scope stores its data in the SYSAUX tablespace. If you are logged on as SYSDBA, you
can use the query in Example 14-1 to display the amount of space that PL/Scope data
is using.

Example 14-1 How Much Space is PL/Scope Data Using?

Query:

SELECT SPACE_USAGE_KBYTES
FROM V$SYSAUX_OCCUPANTS
WHERE OCCUPANT_NAME='PL/SCOPE';

Result:

Chapter 14
How Much Space is PL/Scope Data Using?

14-3

SPACE_USAGE_KBYTES

 1920

1 row selected.

See Also:

Oracle Database Administrator's Guide for information about managing the
SYSAUX tablespace

Viewing PL/Scope Data
To view the data that PL/Scope has collected, you can use either:

• Static Data Dictionary Views for PL/SQL and SQL Identifiers

• Static Data Dictionary Views for SQL Statements

• SQL Developer

Static Data Dictionary Views for PL/SQL and SQL Identifiers
The DBA_IDENTIFIERS static data dictionary view family display information about PL/
Scope identifiers, including their types and usages.

Topics:

• PL/SQL and SQL Identifier Types that PL/Scope Collects

• About Identifiers Usages

• Identifiers Usage Unique Keys

• About Identifiers Usage Context

• About Identifiers Signature

See Also:

Oracle Database Reference for more information about the dictionary view
DBA_IDENTIFIERS view

PL/SQL and SQL Identifier Types that PL/Scope Collects
Table 14-1 shows the identifier types that PL/Scope collects, in alphabetical order. The
identifier types in Table 14-1 appear in the TYPE column of the DBA_IDENTIFIERS static
data dictionary views family.

Chapter 14
Viewing PL/Scope Data

14-4

Note:

Identifiers declared in compilation units that were not compiled with
PLSCOPE_SETTINGS='IDENTIFIERS:ALL' do not appear in DBA_IDENTIFIERS
static data dictionary views family.

Pseudocolumns, such as ROWNUM, are not supported since they are not
user defined identifiers.

PL/Scope ignores column names that are literal strings.

Table 14-1 Identifier Types that PL/Scope Collects

TYPE Column Value Comment

ALIAS New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

ASSOCIATIVE ARRAY

COLUMN New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

CONSTANT

CURSOR

BFILE DATATYPE

BLOB DATATYPE

BOOLEAN DATATYPE

CHARACTER DATATYPE

CLOB DATATYPE

DATE DATATYPE

INTERVAL DATATYPE

NUMBER DATATYPE

TIME DATATYPE

TIMESTAMP DATATYPE

Each DATATYPE is a base type declared in package
STANDARD.

EXCEPTION

FORMAL IN

FORMAL IN OUT

FORMAL OUT

FUNCTION

INDEX TABLE

ITERATOR An iterator is the index of a FOR loop.

LABEL A label declaration also acts as a context.

LIBRARY

MATERIALIZED VIEW New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

NESTED TABLE

Chapter 14
Viewing PL/Scope Data

14-5

Table 14-1 (Cont.) Identifier Types that PL/Scope Collects

TYPE Column Value Comment

OBJECT

OPAQUE Examples of internal opaque types are ANYDATA and
XMLType.

OPERATOR New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

PACKAGE

PROCEDURE

RECORD

REFCURSOR

SEQUENCE New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

SUBTYPE

SYNONYM PL/Scope does not resolve the base object name of a
synonym. To find the base object name of a synonym,
query *_SYNONYMS.

TABLE New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

TRIGGER

UROWID

VARIABLE Can be object attribute, local variable, package
variable, or record field.

VARRAY

VIEW This type is used for editioning views.

New SQL identifier introduced in Oracle Database 12c
Release 2 (12.2).

See Also:

Oracle Database Reference for more information about identifiers in the
stored objects

About Identifiers Usages
PL/Scope usages are the verbs that describe actions performed on behalf of the
identifier.

Table 14-2 shows the usages that PL/Scope reports, in alphabetical order. The
identifier actions in Table 14-2 appear in the USAGE column of the DBA_IDENTIFIERS
static data dictionary views family, which is described in Oracle Database Reference.

Chapter 14
Viewing PL/Scope Data

14-6

Table 14-2 Usages that PL/Scope Reports

USAGE Column
Value

Description

ASSIGNMENT An assignment can be made only to an identifier that can have a value,
such as a VARIABLE.

Examples of assignments are:

• Using an identifier to the left of an assignment operator
• Using an identifier in the INTO clause of a FETCH statement
• Passing an identifier to a subprogram by reference (OUT mode)
• Using an identifier as the bind variable in the USING clause of an

EXECUTE IMMEDIATE statement in either OUT or IN OUT mode
An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

Expressions and nested subqueries are not supported as assignment
sources.

CALL In the context of PL/Scope, a CALL is an operation that pushes a call onto
the call stack; that is:

• A call to a FUNCTION or PROCEDURE
• Running or fetching a cursor identifier (a logical call to SQL)
A GOTO statement, or a raise of an exception, is not a CALL, because
neither pushes a call onto the call stack.

DECLARATION A DECLARATION tells the compiler that an identifier exists, and each
identifier has exactly one DECLARATION. Each DECLARATION can have an
associated data type.

For a loop index declaration, LINE and COL (in *_IDENTIFIERS views) are
the line and column of the FOR clause that implicitly declares the loop index.

For a label declaration, LINE and COL are the line and column on which the
label appears (and is implicitly declared) within the delimiters << and >>.

DEFINITION A DEFINITION tells the compiler how to implement or use a previously
declared identifier.

Each of these types of identifiers has a DEFINITION:

• EXCEPTION (can have multiple definitions)
• FUNCTION
• OBJECT
• PACKAGE
• PROCEDURE
• TRIGGER

For a top-level identifier only, the DEFINITION and DECLARATION are in the
same place.

Chapter 14
Viewing PL/Scope Data

14-7

Table 14-2 (Cont.) Usages that PL/Scope Reports

USAGE Column
Value

Description

REFERENCE A REFERENCE uses an identifier without changing its value.

Examples of references are:

• Raising an exception identifier
• Using a type identifier in the declaration of a variable or formal

parameter
• Using a variable identifier whose type contains fields to access a field.

For example, in myrecordvar.myfield := 1, a reference is made to
myrecordvar, and an assignment is made to myfield.

• Using a cursor for any purpose except FETCH
• Passing an identifier to a subprogram by value (IN mode)
• Using an identifier as the bind variable in the USING clause of an

EXECUTE IMMEDIATE statement in either IN or IN OUT mode
An identifier that is passed to a subprogram in IN OUT mode has both a
REFERENCE usage (corresponding to IN) and an ASSIGNMENT usage
(corresponding to OUT).

Identifiers Usage Unique Keys
Every identifier usage is given a numeric ID that is unique within the code unit. This is
the USAGE_ID of the identifier.

Each row of a *_IDENTIFIERS view represents a unique usage of an identifier in the
PL/SQL unit. In each of these views, these are equivalent unique keys within a
compilation unit:

• LINE, COL, and USAGE

• USAGE_ID

Note:

An identifier that is passed to a subprogram in IN OUT mode has two rows in
*_IDENTIFIERS: a REFERENCE usage (corresponding to IN) and an
ASSIGNMENT usage (corresponding to OUT).

This example shows the USAGE_ID generated for PROCEDURE p1.

CREATE OR REPLACE PROCEDURE p1 (a OUT VARCHAR2)
IS
 b VARCHAR2(100) := 'hello FROM p1';
BEGIN
 a := b;
END;
/

Chapter 14
Viewing PL/Scope Data

14-8

SELECT USAGE_ID, USAGE, NAME
FROM ALL_IDENTIFIERS
WHERE OBJECT_NAME = 'P1'
ORDER BY USAGE_ID;

 1 DECLARATION P1
 2 DEFINITION P1
 3 DECLARATION A
 4 REFERENCE VARCHAR2
 5 DECLARATION B
 6 REFERENCE VARCHAR2
 7 ASSIGNMENT B
 8 ASSIGNMENT A
 9 REFERENCE B

See Also:

About Identifiers Usages for the usages in the *_IDENTIFIERS views

About Identifiers Usage Context
Identifier usages can be contexts for other identifier usages. This creates a one to
many parent-child relationship among the usages. The USAGE_ID of the parent context
usage is the USAGE_CONTEXT_ID for the child usages.

Context is useful for discovering relationships between usages. Except for top-level
schema object declarations and definitions, every usage of an identifier happens within
the context of another usage.

The default top-level context, which contains all top level objects, is identified by a
USAGE_CONTEXT_ID of 0.

For example:

• A local variable declaration happens within the context of a top-level procedure
declaration.

• If an identifier is declared as a variable, such as x VARCHAR2(10), the
USAGE_CONTEXT_ID of the VARCHAR2 type reference contains the USAGE_ID of the x
declaration, allowing you to associate the variable declaration with its type.

In other words, USAGE_CONTEXT_ID is a reflexive foreign key to USAGE_ID, as
Example 14-2 shows.

Example 14-2 USAGE_CONTEXT_ID and USAGE_ID

ALTER SESSION SET PLSCOPE_SETTINGS = 'IDENTIFIERS:ALL';

CREATE OR REPLACE PROCEDURE a (p1 IN BOOLEAN) AUTHID DEFINER IS
 v PLS_INTEGER;
BEGIN
 v := 42;
 DBMS_OUTPUT.PUT_LINE(v);
 RAISE_APPLICATION_ERROR (-20000, 'Bad');
EXCEPTION

Chapter 14
Viewing PL/Scope Data

14-9

 WHEN Program_Error THEN NULL;
END a;
/
CREATE or REPLACE PROCEDURE b (
 p2 OUT PLS_INTEGER,
 p3 IN OUT VARCHAR2
) AUTHID DEFINER
IS
 n NUMBER;
 q BOOLEAN := TRUE;
BEGIN
 FOR j IN 1..5 LOOP
 a(q); a(TRUE); a(TRUE);
 IF j > 2 THEN
 GOTO z;
 END IF;
 END LOOP;
<<z>> DECLARE
 d CONSTANT CHAR(1) := 'X';
 BEGIN
 SELECT COUNT(*) INTO n FROM Dual WHERE Dummy = d;
 END z;
END b;
/
WITH v AS (
 SELECT Line,
 Col,
 INITCAP(NAME) Name,
 LOWER(TYPE) Type,
 LOWER(USAGE) Usage,
 USAGE_ID,
 USAGE_CONTEXT_ID
 FROM USER_IDENTIFIERS
 WHERE Object_Name = 'B'
 AND Object_Type = 'PROCEDURE'
)
SELECT RPAD(LPAD(' ', 2*(Level-1)) ||
 Name, 20, '.')||' '||
 RPAD(Type, 20)||
 RPAD(Usage, 20)
 IDENTIFIER_USAGE_CONTEXTS
 FROM v
 START WITH USAGE_CONTEXT_ID = 0
 CONNECT BY PRIOR USAGE_ID = USAGE_CONTEXT_ID
 ORDER SIBLINGS BY Line, Col
/

Result:

IDENTIFIER_USAGE_CONTEXTS

B................... procedure declaration
 B................. procedure definition
 P2.............. formal out declaration
 Pls_Integer... subtype reference
 P3.............. formal in out declaration

Chapter 14
Viewing PL/Scope Data

14-10

 Varchar2...... character datatype reference
 N............... variable declaration
 Number........ number datatype reference
 Q............... variable declaration
 Q............. variable assignment
 Boolean....... boolean datatype reference
 J............... iterator declaration
 A............. procedure call
 Q........... variable reference
 A............. procedure call
 A............. procedure call
 J............. iterator reference
 Z............. label reference
 Z............... label declaration
 D............. constant declaration
 D........... constant assignment
 Char........ subtype reference

About Identifiers Signature
The signature of an identifier is unique within and across program units. That is, the
signature distinguishes the identifier from other identifiers with the same name,
whether they are defined in the same program unit or different program units.

For the program unit in Example 14-3, which has two identifiers named p5, the static
data dictionary view USER_IDENTIFIERS has several rows in which NAME is p5, but in
these rows, SIGNATURE varies. The rows associated with the outer procedure p5 have
one signature, and the rows associated with the inner procedure p5 have another
signature. If program unit q calls procedure p5, the USER_IDENTIFIERS view for q has a
row in which NAME is p5 and SIGNATURE is the signature of the outer procedure p5.

Example 14-3 Program Unit with Two Identifiers Named p5

This example shows a program unit with two identifiers named p5 to demonstrate the
uniqueness of the signature.

CREATE OR REPLACE PROCEDURE p5 AUTHID DEFINER IS
 PROCEDURE p5 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Inner p5');
 END p5;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Outer p5');
 p5();
END p5;
/

SELECT LINE || ' > ' || TEXT
FROM ALL_SOURCE
WHERE NAME = 'P5'
 AND TYPE = 'PROCEDURE'
ORDER BY LINE;

1 > PROCEDURE p5 AUTHID DEFINER IS
2 > PROCEDURE p5 IS
3 > BEGIN
4 > DBMS_OUTPUT.PUT_LINE('Inner p5');

Chapter 14
Viewing PL/Scope Data

14-11

5 > END p5;
6 > BEGIN
7 > DBMS_OUTPUT.PUT_LINE('Outer p5');
8 > p5();
9 > END p5;

The following query shows the SIGNATURE for the PL/SQL unit is the same for its
DECLARATION and DEFINITION of the inner and outer p5.

SELECT SIGNATURE, USAGE, LINE, COL, USAGE_ID, USAGE_CONTEXT_ID
FROM ALL_IDENTIFIERS
WHERE OBJECT_NAME = 'P5'
ORDER BY LINE, COL, USAGE_ID;

75CD5986BA2EE5C61ACEED8C7162528F DECLARATION 1 11 1 0
75CD5986BA2EE5C61ACEED8C7162528F DEFINITION 1 11 2 1
33FB9F948F526C4B0634C0F35DFA91F6 DECLARATION 2 13 3 2
33FB9F948F526C4B0634C0F35DFA91F6 DEFINITION 2 13 4 3
33FB9F948F526C4B0634C0F35DFA91F6 CALL 8 3 7 2

CREATE OR REPLACE PROCEDURE q AUTHID DEFINER IS
BEGIN
 p5();
END q;
/

EXEC q;
Outer p5
Inner p5

SELECT SIGNATURE, USAGE, LINE, COL, USAGE_ID, USAGE_CONTEXT_ID
FROM ALL_IDENTIFIERS
WHERE OBJECT_NAME = 'Q'
AND NAME = 'P5'
ORDER BY LINE, COL, USAGE_ID;

75CD5986BA2EE5C61ACEED8C7162528F CALL 3 3 3 2

Example 14-4 Find All Usages of VARCHAR2

Identifier signatures are globally unique. This is useful to find all usages of an identifier
in all units in the database. This example shows a query to find all usages of
VARCHAR2.

SELECT UNIQUE OBJECT_NAME uses_varchar2
FROM ALL_IDENTIFIERS
WHERE SIGNATURE = (SELECT SIGNATURE
 FROM ALL_IDENTIFIERS
 WHERE OBJECT_NAME = 'STANDARD'
 AND OWNER = 'SYS'
 AND USAGE = 'DECLARATION'
 AND NAME = 'VARCHAR2')
ORDER BY OBJECT_NAME;

Chapter 14
Viewing PL/Scope Data

14-12

Static Data Dictionary Views for SQL Statements
The DBA_STATEMENTS static dictionary views family describes the SQL statements
collected by PL/Scope.

Starting with Oracle Database 12c Release 2 (12.2.0.1), a new view,
DBA_STATEMENTS, reports on the occurrences of static SQL in PL/SQL units. It
provides information about the SQL_ID, the canonical statement text, the statement
type, useful statement usage attributes, its signature, and location in the PL/SQL code.
Each row represents a SQL statement instance in the PL/SQL code.

Topics:

• SQL Statement Types that PL/Scope Collects

• Statements Location Unique Keys

• About SQL Statement Usage Context

• About SQL Statements Signature

See Also:

Oracle Database Reference for more information about the
DBA_STATEMENTS view

SQL Statement Types that PL/Scope Collects
PL/Scope statement types represent the SQL statements used in PL/SQL.

SQL Statement types correspond to statements that can be used in PL/SQL to
execute or otherwise interact with SQL. The statement type appear in the TYPE
column of the DBA_STATEMENTS static data dictionary views family.

You must compile the PL/SQL units with the
PLSCOPE_SETTINGS=’STATEMENTS:ALL’ to collect this metadata.

SQL statement types that PL/Scope collects:

• SELECT

• UPDATE

• INSERT

• DELETE

• MERGE

• EXECUTE IMMEDIATE

• SET TRANSACTION

• LOCK TABLE

• COMMIT

• SAVEPOINT

• ROLLBACK

Chapter 14
Viewing PL/Scope Data

14-13

• OPEN

• CLOSE

• FETCH

Statements Location Unique Keys
Each row in the DBA_STATEMENTS view represents a unique location of a SQL
statement in the PL/SQL unit. This is equivalent to unique keys within a compilation
unit.

These following columns are used to determine the location of a statement in the
PL/SQL code:

• OWNER, OBJECT_NAME, OBJECT_TYPE, LINE, COL

• USAGE_ID

The USAGE_ID is uniquely defined within a PL/SQL unit. Unlike identifiers, SQL
statements do not have different usages, such as DECLARATION, ASSIGNMENT, or
REFERENCE. All statements are considered an implicit CALL to the sql engine, therefore,
the DBA_STATEMENTS view does not have the USAGE column, but it does use the
USAGE_ID.

Example 14-5 Using the USAGE_ID Column to Query SQL Identifiers and
Statements

PROCEDURE p1 (p_cust_id NUMBER,
 p_cust_name OUT VARCHAR2)
IS
BEGIN
 SELECT (SELECT CUST_FIRST_NAME
 FROM CUSTOMERS)
 INTO p_cust_name
 FROM CUSTOMERS
 WHERE CUSTOMER_ID = p_cust_id;
END;

SELECT USAGE_ID, TYPE, NAME, USAGE, LINE, COL
FROM (SELECT USAGE_ID, TYPE, NAME, USAGE, LINE, COL
 FROM ALL_IDENTIFIERS
 WHERE OBJECT_NAME = 'P1'
 UNION
 SELECT USAGE_ID, TYPE, 'SQL STATEMENT', " ", LINE, COL
 FROM ALL_STATEMENTS
 WHERE OBJECT_NAME = 'P1')
ORDER BY USAGE_ID;

USAGE_ID TYPE NAME USAGE LINE COL
---------- ------------------ --------------- ----------- ----- -----
 1 PROCEDURE P1 DECLARATION 1 11
 2 PROCEDURE P1 DEFINITION 1 11
 3 FORMAL IN P_CUST_ID DECLARATION 1 15
 4 NUMBER DATATYPE NUMBER REFERENCE 1 25
 5 FORMAL OUT P_CUST_NAME DECLARATION 1 33
 6 CHARACTER DATATYPE VARCHAR2 REFERENCE 1 49
 7 SQL STATEMENT SELECT 3 3

Chapter 14
Viewing PL/Scope Data

14-14

 8 TABLE CUSTOMERS REFERENCE 4 10
 9 FORMAL IN P_CUST_ID REFERENCE 4 38
 10 COLUMN CUSTOMER_ID REFERENCE 4 26
 11 FORMAL OUT P_CUST_NAME ASSIGNMENT 3 31
 12 COLUMN CUST_FIRST_NAME REFERENCE 3 10

About SQL Statement Usage Context
Statements can act as a context for other statements or identifiers. Statements can
also be in the context of other statements or identifiers.

The USAGE_CONTEXT_ID column is used to determine the context of the statement. All
identifiers appearing within a statement will be in the context of that statement.

Expressions and nested subqueries are not supported as assignment sources.

Example 14-6 Using DBA_STATEMENTS USAGE_CONTEXT_ID to Query
Identifiers

This example shows how to retrieve the identifiers in the context of the SELECT
statement using the USAGE_CONTEXT_ID column.

PROCEDURE p1 (p_cust_id NUMBER,
 p_cust_name OUT VARCHAR2)
IS
BEGIN
 SELECT (SELECT CUST_FIRST_NAME
 FROM CUSTOMERS)
 INTO p_cust_name
 FROM CUSTOMERS
 WHERE CUSTOMER_ID = p_cust_id;
END;

SELECT USAGE_ID, LPAD(' ', 2*(level-1)) || TO_CHAR(USAGE) || ' ' || NAME
usages, LINE, COL
FROM (SELECT OBJECT_NAME, USAGE, USAGE_ID, USAGE_CONTEXT_ID, NAME, LINE,
COL
 FROM ALL_IDENTIFIERS
 WHERE OBJECT_NAME = 'P1'
 UNION
 SELECT OBJECT_NAME, TYPE usage, USAGE_ID, USAGE_CONTEXT_ID,
'Statement' name, LINE, COL
 FROM ALL_STATEMENTS
 WHERE OBJECT_NAME = 'P1'
)
 START WITH USAGE_CONTEXT_ID = 0 AND OBJECT_NAME = 'P1'
 CONNECT BY PRIOR USAGE_ID = USAGE_CONTEXT_ID AND OBJECT_NAME = 'P1';

 USAGE_ID USAGES LINE COL
---------- ----------------------------------- ---------- ----------
 1 DECLARATION P1 1 11
 2 DEFINITION P1 1 11
 3 DECLARATION P_CUST_ID 1 15
 4 REFERENCE NUMBER 1 27
 5 DECLARATION P_CUST_NAME 2 33
 6 REFERENCE VARCHAR2 2 49
 7 SELECT STATEMENT 5 5

Chapter 14
Viewing PL/Scope Data

14-15

 8 REFERENCE CUSTOMERS 8 12
 9 REFERENCE P_CUST_ID 9 26
 10 REFERENCE CUSTOMER_ID 9 12
 11 REFERENCE CUSTOMERS 6 20
 12 REFERENCE CUST_FIRST_NAME 5 20
 13 ASSIGNMENT P_CUST_NAME 7 12

About SQL Statements Signature
Every SQL statement has a unique PL/Scope signature that identifies that instance of
the statement in all the PL/SQL units.

The SQL statement signature distinguishes the call from a PL/SQL unit for the SQL
with the same SQL_ID from another call from a different PL/SQL unit.

Nested subqueries are not individual SQL statements in ALL_STATEMENTS.

Example 14-7 Distinct SQL Signatures for the Same SQL Statement when
Called from Different PL/SQL Units

This example shows two distinct signatures for the same SQL statement when it is
called from PROCEDURE p1 and p2. You can observe the nested subquery is not
assigned a distinct SQL_ID, therefore is not an individual SQL statements in
ALL_STATEMENTS.

CREATE OR REPLACE PROCEDURE p1 (p_cust_id NUMBER,
 p_cust_name OUT VARCHAR2)
IS
BEGIN
 SELECT (SELECT CUST_FIRST_NAME
 FROM CUSTOMERS)
 INTO p_cust_name
 FROM CUSTOMERS
 WHERE CUSTOMER_ID = p_cust_id;
END;
/
CREATE OR REPLACE PROCEDURE P2 (p_cust_id NUMBER,
 p_cust_name OUT VARCHAR2)
IS
BEGIN
 SELECT (SELECT CUST_FIRST_NAME
 FROM CUSTOMERS)
 INTO p_cust_name
 FROM CUSTOMERS
 WHERE CUSTOMER_ID = p_cust_id;
END;
/

ACCEPT nam CHAR PROMPT "Enter OBJECT_NAME : "

SELECT *
FROM ALL_STATEMENTS
WHERE OBJECT_NAME = '&&nam'
ORDER BY LINE, COL;

Chapter 14
Viewing PL/Scope Data

14-16

Select ALL_STATEMENTS for P1 and P2 to observe the different SQL signatures for the
same SQL_ID.

new 3: WHERE OBJECT_NAME = 'P1'
OE
138835D3A2EBBA76A7A064E4DC14B466 SELECT
P1
PROCEDURE 7 5 5 2 c02b6yppqb46p NO NO
NO NO NO NO
YES SELECT (SELECT CUST_FIRST_NAME FROM CUSTOMERS) FROM CUSTOMERS WHERE
CUSTOMER_ID = :B1
SELECT (SELECT CUST_FIRST_NAME FROM CUSTOMERS) FROM CUSTOMERS WHERE CUSTOMER_ID
0

new 3: WHERE OBJECT_NAME = 'P2'
OE
E6A5E27E5E90997A169C5C25393FAB35 SELECT
P2
PROCEDURE 7 5 5 2 c02b6yppqb46p NO NO
NO NO NO NO
YES SELECT (SELECT CUST_FIRST_NAME FROM CUSTOMERS) FROM CUSTOMERS WHERE
CUSTOMER_ID = :B1
SELECT (SELECT CUST_FIRST_NAME FROM CUSTOMERS) FROM CUSTOMERS WHERE CUSTOMER_ID
0

SQL Developer
PL/Scope is a feature of SQL Developer. For information about using PL/Scope from
SQL Developer, see SQL Developer online help

See Also:

Oracle SQL Developer User’s Guide

Overview of Data Dictionary Views Useful to Manage
PL/SQL Code

In addition to the PL/Scope data dictionary views, the following static dictionary views
are most useful for PL/SQL programmers and are most often referenced in queries
related to PL/SQL code management reports. This is not an exhaustive list of all static
data dictionary views.

Summary of the Data Dictionary Views Useful to Manage PL/SQL Code

View Name Description

ALL_ARGUMENTS Lists the arguments of the functions and procedures that are
accessible to the current user

ALL_DEPENDENCIES Describes dependencies between procedures, packages,
functions, package bodies, and triggers accessible to the current
user

Chapter 14
Overview of Data Dictionary Views Useful to Manage PL/SQL Code

14-17

View Name Description

ALL_ERRORS Describes the current errors on the stored objects accessible to
the current user

ALL_IDENTIFIERS Displays information about the identifiers in the stored objects
accessible to the current user

USER_OBJECT_SIZE Describes the size, in bytes, of PL/SQL objects owned by the
current user. Although this information is meant to be used by the
compiler and runtime engine, you can use it to identify the large
programs in your environment.

ALL_OBJECTS Describes all objects accessible to the current user

ALL_PLSQL_OBJECT_SE
TTINGS

Displays information about the compiler settings for the stored
objects accessible to the current user

ALL_PROCEDURES Describes all PL/SQL functions and procedures, along with
associated properties, that are accessible to the current user

ALL_SEQUENCES Describes the sequences accessible to the current user

ALL_SOURCE Describes the text source of the stored objects accessible to the
current user

ALL_STATEMENTS Describes all SQL statements in stored PL/SQL objects
accessible to the user

ALL_STORED_SETTINGS Describes the persistent parameter settings for stored PL/SQL
units for which the current user has execute privileges

ALL_SYNONYMS Describes the synonyms accessible to the current user

ALL_TAB_COLUMNS Describes the columns of the tables, views, and clusters
accessible to the current user

ALL_TABLES Describes the relational tables accessible to the current user

ALL_TRIGGERS Describes the triggers on tables accessible to the current user

ALL_VIEWS Describes the views accessible to the current user

Sample PL/Scope Session
In this sample session, assume that you are logged in as HR.

1. Set the session parameter:

ALTER SESSION SET PLSCOPE_SETTINGS='IDENTIFIERS:ALL';

2. Create this package:

CREATE OR REPLACE PACKAGE pack1 AUTHID DEFINER IS
 TYPE r1 is RECORD (rf1 VARCHAR2(10));
 FUNCTION f1(fp1 NUMBER) RETURN NUMBER;
 PROCEDURE p1(pp1 VARCHAR2);
END PACK1;
/
CREATE OR REPLACE PACKAGE BODY pack1 IS
 FUNCTION f1(fp1 NUMBER) RETURN NUMBER IS
 a NUMBER := 10;
 BEGIN
 RETURN a;
 END f1;
 PROCEDURE p1(pp1 VARCHAR2) IS
 pr1 r1;
 BEGIN
 pr1.rf1 := pp1;
 END;

Chapter 14
Sample PL/Scope Session

14-18

END pack1;
/

3. Verify that PL/Scope collected all identifiers for the package body:

SELECT PLSCOPE_SETTINGS
FROM USER_PLSQL_OBJECT_SETTINGS
WHERE NAME='PACK1' AND TYPE='PACKAGE BODY'

Result:

PLSCOPE_SETTINGS
--
IDENTIFIERS:ALL

4. Display unique identifiers in HR by querying for all DECLARATION usages. For
example, to see all unique identifiers with name like %1, use these SQL*Plus
formatting commands and this query:

COLUMN NAME FORMAT A6
COLUMN SIGNATURE FORMAT A32
COLUMN TYPE FORMAT A9

SELECT NAME, SIGNATURE, TYPE
FROM USER_IDENTIFIERS
WHERE NAME LIKE '%1' AND USAGE='DECLARATION'
ORDER BY OBJECT_TYPE, USAGE_ID;

Result is similar to:

NAME SIGNATURE TYPE
------ -------------------------------- ---------
PACK1 41820FA4D5EF6BE707895178D0C5C4EF PACKAGE
R1 EEBB6849DEE31BC77BF186EBAE5D4E2D RECORD
RF1 41D70040337349634A7F547BC83517C7 VARIABLE
F1 D51E825FF334817C977174423E3D0765 FUNCTION
FP1 CAC3474C112DBEC67AB926978D9A16C1 FORMAL IN
P1 B7C0576BA4D00C33A65CC0C64CADAB89 PROCEDURE
PP1 6B74CF95A5B7377A735925DFAA280266 FORMAL IN
FP1 98EB63B8A4AFEB5EF94D50A20165D6CC FORMAL IN
PP1 62D8463A314BE1F996794723402278CF FORMAL IN
PR1 BDB1CB26C97562CCC20CD1F32D341D7C VARIABLE

10 rows selected.

The *_IDENTIFIERS static data dictionary views display only basic type names; for
example, the TYPE of a local variable or record field is VARIABLE. To determine the
exact type of a VARIABLE, you must use its USAGE_CONTEXT_ID.

5. Find all local variables:

COLUMN VARIABLE_NAME FORMAT A13
COLUMN CONTEXT_NAME FORMAT A12

SELECT a.NAME variable_name,
 b.NAME context_name,
 a.SIGNATURE
FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
WHERE a.USAGE_CONTEXT_ID = b.USAGE_ID
AND a.TYPE = 'VARIABLE'
AND a.USAGE = 'DECLARATION'
AND a.OBJECT_NAME = 'PACK1'
AND a.OBJECT_NAME = b.OBJECT_NAME

Chapter 14
Sample PL/Scope Session

14-19

AND a.OBJECT_TYPE = b.OBJECT_TYPE
AND (b.TYPE = 'FUNCTION' or b.TYPE = 'PROCEDURE')
ORDER BY a.OBJECT_TYPE, a.USAGE_ID;

Result is similar to:

VARIABLE_NAME CONTEXT_NAME SIGNATURE
------------- ------------ --------------------------------
A F1 1691C6B3C951FCAA2CBEEB47F85CF128
PR1 P1 BDB1CB26C97562CCC20CD1F32D341D7C

2 rows selected.

6. Find all usages performed on the local variable A:

COLUMN USAGE FORMAT A11
COLUMN USAGE_ID FORMAT 999
COLUMN OBJECT_NAME FORMAT A11
COLUMN OBJECT_TYPE FORMAT A12

SELECT USAGE, USAGE_ID, OBJECT_NAME, OBJECT_TYPE
FROM USER_IDENTIFIERS
WHERE SIGNATURE='1691C6B3C951FCAA2CBEEB47F85CF128' -- signature of A
ORDER BY OBJECT_TYPE, USAGE_ID;

Result:

USAGE USAGE_ID OBJECT_NAME OBJECT_TYPE
----------- -------- ----------- ------------
DECLARATION 6 PACK1 PACKAGE BODY
ASSIGNMENT 8 PACK1 PACKAGE BODY
REFERENCE 9 PACK1 PACKAGE BODY

3 rows selected.

The usages performed on the local identifier A are the identifier declaration
(USAGE_ID 6), an assignment (USAGE_ID 8), and a reference (USAGE_ID 9).

7. From the declaration of the local identifier A, find its type:

COLUMN NAME FORMAT A6
COLUMN TYPE FORMAT A15

SELECT a.NAME, a.TYPE
FROM USER_IDENTIFIERS a, USER_IDENTIFIERS b
WHERE a.USAGE = 'REFERENCE'
AND a.USAGE_CONTEXT_ID = b.USAGE_ID
AND b.USAGE = 'DECLARATION'
AND b.SIGNATURE = 'D51E825FF334817C977174423E3D0765' -- signature of F1
AND a.OBJECT_TYPE = b.OBJECT_TYPE
AND a.OBJECT_NAME = b.OBJECT_NAME;

Result:

NAME TYPE
------ ---------------
NUMBER NUMBER DATATYPE

1 row selected.

8. Find out where the assignment to local identifier A occurred:

Chapter 14
Sample PL/Scope Session

14-20

SELECT LINE, COL, OBJECT_NAME, OBJECT_TYPE
FROM USER_IDENTIFIERS
WHERE SIGNATURE='1691C6B3C951FCAA2CBEEB47F85CF128' -- signature of A
AND USAGE='ASSIGNMENT';

Result:

 LINE COL OBJECT_NAME OBJECT_TYPE
---------- ---------- ----------- ------------
 3 5 PACK1 PACKAGE BODY

1 row selected.

Chapter 14
Sample PL/Scope Session

14-21

15
Using the PL/SQL Hierarchical Profiler

You can use the PL/SQL hierarchical profiler to identify bottlenecks and performance-
tuning opportunities in PL/SQL applications.

The profiler reports the dynamic execution profile of a PL/SQL program organized by
function calls, and accounts for SQL and PL/SQL execution times separately. No
special source or compile-time preparation is required; any PL/SQL program can be
profiled.

This chapter describes the PL/SQL hierarchical profiler and explains how to use it to
collect and analyze profile data for a PL/SQL program.

Topics:

• Overview of PL/SQL Hierarchical Profiler

• Collecting Profile Data

• Understanding Raw Profiler Output

• Analyzing Profile Data

• plshprof Utility

Overview of PL/SQL Hierarchical Profiler
Nonhierarchical (flat) profilers record the time that a program spends within each
subprogram—the function time or self time of each subprogram. Function time is
helpful, but often inadequate. For example, it is helpful to know that a program spends
40% of its time in the subprogram INSERT_ORDER, but it is more helpful to know which
subprograms call INSERT_ORDER often and the total time the program spends under
INSERT_ORDER (including its descendant subprograms). Hierarchical profilers provide
such information.

The PL/SQL hierarchical profiler:

• Reports the dynamic execution profile of your PL/SQL program, organized by
subprogram calls

• Accounts for SQL and PL/SQL execution times separately

• Requires no special source or compile-time preparation

• Stores results in database tables (hierarchical profiler tables) for custom report
generation by integrated development environment (IDE) tools (such as SQL
Developer and third-party tools)

• Provides subprogram-level execution summary information, such as:

– Number of calls to the subprogram

– Time spent in the subprogram itself (function time or self time)

– Time spent in the subprogram itself and in its descendent subprograms
(subtree time)

15-1

– Detailed parent-children information, for example:

* All callers of a given subprogram (parents)

* All subprograms that a given subprogram called (children)

* How much time was spent in subprogram x when called from y

* How many calls to subprogram x were from y

The PL/SQL hierarchical profiler is implemented by the DBMS_HPROF package and has
two components:

• Data collection

The data collection component is an intrinsic part of the PL/SQL Virtual Machine.
The DBMS_HPROF package provides APIs to turn hierarchical profiling on and off
and write the raw profiler output to a file or raw profiler data table.

• Analyzer

The analyzer component processes the raw profiler output and produce analyzed
results. The analyzer component analyzes:

– Raw profiler data located in the raw profiler data file and raw profiler data table
into HTML CLOB report, analyzed report file, and hierarchical profiler analysis
tables.

Note:

To generate simple HTML reports directly from raw profiler output,
without using the Analyzer, you can use the plshprof command-line
utility.

Collecting Profile Data
To collect profile data from your PL/SQL program for the PL/SQL hierarchical profiler,
follow these steps:

1. Ensure that you have these privileges:

• EXECUTE privilege on the DBMS_HPROF package

• WRITE privilege on the directory that you specify when you call
DBMS_HPROF.START_PROFILING

2. Use the DBMS_HPROF.START_PROFILING PL/SQL API to start hierarchical profiler
data collection in a session.

3. Run your PL/SQL program long enough to get adequate code coverage.

To get the most accurate measurements of elapsed time, avoid unrelated activity
on the system on which your PL/SQL program is running.

4. Use the DBMS_HPROF.STOP_PROFILING PL/SQL API to stop hierarchical profiler data
collection.

Example 15-1 Profiling a PL/SQL Procedure

BEGIN
 /* Start profiling.

Chapter 15
Collecting Profile Data

15-2

 Write raw profiler output to file test.trc in a directory
 that is mapped to directory object PLSHPROF_DIR
 (see note after example). */

 DBMS_HPROF.START_PROFILING('PLSHPROF_DIR', 'test.trc');
END;
/
-- Run procedure to be profiled
BEGIN
 test;
END;
/
BEGIN
 -- Stop profiling
 DBMS_HPROF.STOP_PROFILING;
END;
/

Example 15-2 Profiling with Raw Profiler Data Table

DECLARE
analyze_runid number;
trace_id number;
BEGIN
-- create raw profiler data and analysis tables
-- call create_tables with force_it =>FALSE (default) when
-- raw profiler data and analysis tables do not exist already
DBMS_HPROF . CREATE_TABLES ;
-- Start profiling .
-- Write raw profiler data in raw profiler data table
trace_id := DBMS_HPROF . START_PROFILING ;
-- Run procedure to be profiled
test ;
-- Stop profiling
DBMS_HPROF . STOP_PROFILING ;
-- analyzes trace_id entry in raw profiler data table and writes
-- hierarchical profiler information in hprof ’s analysis tables.
analyze_runid := DBMS_HPROF . ANALYZE(trace_id);
END;
/

Consider this PL/SQL procedure, test:

CREATE OR REPLACE PROCEDURE test AUTHID DEFINER IS
 n NUMBER;

 PROCEDURE foo IS
 BEGIN
 SELECT COUNT(*) INTO n FROM EMPLOYEES;
 END foo;

BEGIN -- test
 FOR i IN 1..3 LOOP
 foo;
 END LOOP;
END test;
/

Consider the PL/SQL procedure that analyzes and generates HTML CLOB report from
raw profiler data table

Chapter 15
Collecting Profile Data

15-3

declare
reportclob clob ;
trace_id number;
begin
-- create raw profiler data and analysis tables
-- force_it =>TRUE will dropped the tables if table existed
DBMS_HPROF . CREATE_TABLES (force_it =>TRUE);
-- Start profiling .
-- Write raw profiler data in raw profiler data table
trace_id := DBMS_HPROF . START_PROFILING ;
-- Run procedure to be profiled
test ;
-- Stop profiling
DBMS_HPROF . STOP_PROFILING ;
-- analyzes trace_id entry in raw profiler data table and produce
-- analyzed HTML report in reportclob .
DBMS_HPROF .ANALYZE (trace_id , reportclob);
end;
/

The SQL script in Example 15-1 profiles the execution of the PL/SQL procedure test.

Note:

A directory object is an alias for a file system path name. For example, if you
are connected to the database AS SYSDBA, this CREATE DIRECTORY statement
creates the directory object PLSHPROF_DIR and maps it to the file system
directory /private/plshprof/results:

CREATE DIRECTORY PLSHPROF_DIR as '/private/plshprof/results';

To run the SQL script in Example 15-1, you must have READ and WRITE
privileges on both PLSHPROF_DIR and the directory to which it is mapped. if
you are connected to the database AS SYSDBA, this GRANT statement grants
READ and WRITE privileges on PLSHPROF_DIR to HR:

GRANT READ, WRITE ON DIRECTORY PLSHPROF_DIR TO HR;

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
more information about using directory objects

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_HPROF.START_PROFILING and
DBMS_HPROF.STOP_PROFILING

Understanding Raw Profiler Output
Raw profiler output is intended to be processed by the analyzer component of the
PL/SQL hierarchical profiler. However, even without such processing, it provides a

Chapter 15
Understanding Raw Profiler Output

15-4

simple function-level trace of the program. This topic explains how to understand raw
profiler output.

Note:

The raw profiler format shown in this chapter is intended only to illustrate
conceptual features of raw profiler output. Format specifics are subject to
change at each Oracle Database release.

The SQL script in Example 15-1 wrote this raw profiler output to the file test.trc:

P#V PLSHPROF Internal Version 1.0
P#! PL/SQL Timer Started
P#C PLSQL."".""."__plsql_vm"
P#X 4
P#C PLSQL."".""."__anonymous_block"
P#X 77
P#C PLSQL."HR"."TEST"::7."TEST"#980980e97e42f8ec #1
P#X 4
P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4
P#X 47
P#C SQL."HR"."TEST"::7."__static_sql_exec_line6" #6."3r6qf2qhr3cm1"
P#! SELECT COUNT(*) FROM EMPLOYEES
P#X 279
P#R
P#X 58
P#R
P#X 3
P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4
P#X 4
P#C SQL."HR"."TEST"::7."__static_sql_exec_line6" #6."3r6qf2qhr3cm1"
P#! SELECT COUNT(*) FROM EMPLOYEES
P#X 121
P#R
P#X 5
P#R
P#X 2
P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4
P#X 3
P#C SQL."HR"."TEST"::7."__static_sql_exec_line6" #6."3r6qf2qhr3cm1"
P#! SELECT COUNT(*) FROM EMPLOYEES
P#X 117
P#R
P#X 4
P#R
P#X 2
P#R
P#X 2
P#R
P#X 3
P#R
P#C PLSQL."".""."__plsql_vm"
P#X 3
P#C PLSQL."".""."__anonymous_block"
P#X 86
P#C PLSQL."SYS"."DBMS_HPROF"::11."STOP_PROFILING"#980980e97e42f8ec #453

Chapter 15
Understanding Raw Profiler Output

15-5

P#R
P#R
P#R
P#! PL/SQL Timer Stopped

Table 15-1 Raw Profiler Output File Indicators

Indicator Meaning

P#V PLSHPROF banner with version number

P#C Call to a subprogram (call event)

P#R Return from a subprogram (return event)

P#X Elapsed time between preceding and following events

P#! Comment

Call events (P#C) and return events (P#R) are properly nested (like matched
parentheses). If an unhandled exception causes a called subprogram to exit, the
profiler still reports a matching return event.

Each call event (P#C) entry in the raw profiler output includes this information:

• Namespace to which the called subprogram belongs

• Name of the PL/SQL module in which the called subprogram is defined

• Type of the PL/SQL module in which the called subprogram is defined

• Name of the called subprogram

This name might be one of the special function names in Special Function Names.

• Hexadecimal value that represents an MD5 hash of the signature of the called
subprogram

The DBMS_HPROF.analyze PL/SQL API stores the hash value in a hierarchical
profiler table, which allows both you and DBMS_HPROF.analyze to distinguish
between overloaded subprograms (subprograms with the same name).

• Line number at which the called subprogram is defined in the PL/SQL module

PL/SQL hierarchical profiler does not measure time spent at individual lines within
modules, but you can use line numbers to identify the source locations of
subprograms in the module (as IDE/Tools do) and to distinguish between
overloaded subprograms.

For example, consider this entry in the preceding example of raw profiler output:

P#C PLSQL."HR"."TEST"::7."TEST.FOO"#980980e97e42f8ec #4

The components of the preceding entry have these meanings:

Component Meaning

PLSQL PLSQL is the namespace to which the called subprogram belongs.

"HR"."TEST" HR.TEST is the name of the PL/SQL module in which the called
subprogram is defined.

Chapter 15
Understanding Raw Profiler Output

15-6

Component Meaning

7 7 is the internal enumerator for the module type of HR.TEST.
Examples of module types are procedure, package, and package
body.

"TEST.FOO" TEST.FOO is the name of the called subprogram.

#980980e97e42f8ec #980980e97e42f8ec is a hexadecimal value that represents an
MD5 hash of the signature of TEST.FOO.

#4 4 is the line number in the PL/SQL module HR.TEST at which
TEST.FOO is defined.

Note:

When a subprogram is inlined, it is not reported in the profiler output.

When a call to a DETERMINISTIC function is "optimized away," it is not
reported in the profiler output.

See Also:

• Namespaces of Tracked Subprograms

• Analyzing Profile Data for more information about analyze PL/SQL API

• Oracle Database PL/SQL Language Reference for information about
subprogram inlining

• Oracle Database PL/SQL Language Reference for information about
DETERMINISTIC functions

Namespaces of Tracked Subprograms
The subprograms that the PL/SQL hierarchical profiler tracks are classified into the
namespaces PLSQL and SQL, as follows:

• Namespace PLSQL includes:

– PL/SQL subprogram calls

– PL/SQL triggers

– PL/SQL anonymous blocks

– Remote subprogram calls

– Package initialization blocks

• Namespace SQL includes SQL statements executed from PL/SQL, such as
queries, data manipulation language (DML) statements, data definition language
(DDL) statements, and native dynamic SQL statements

Chapter 15
Understanding Raw Profiler Output

15-7

Special Function Names
PL/SQL hierarchical profiler tracks certain operations as if they were functions with the
names and namespaces shown in Table 15-2.

Table 15-2 Function Names of Operations that the PL/SQL Hierarchical Profiler
Tracks

Tracked Operation Function Name Namespace

Call to PL/SQL Virtual Machine __plsql_vm PL/SQL

PL/SQL anonymous block __anonymous_block PL/SQL

Package initialization block __pkg_init PL/SQL

Static SQL statement at line line# __static_sql_exec_lineline# SQL

Dynamic SQL statement at line line# __dyn_sql_exec_lineline# SQL

SQL FETCH statement at line line# __sql_fetch_lineline# SQL

Analyzing Profile Data
The analyzer component of the PL/SQL hierarchical profiler, DBMS_HPROF.analyze,
processes the raw profiler output and stores the results in the hierarchical database
tables described in Table 15-3.

Table 15-3 PL/SQL Hierarchical Profiler Database Tables

Table Description

DBMSHP_RUNS Top-level information for this run of
DBMS_HPROF.analyze. For column descriptions, see
Table 15-4.

DBMSHP_FUNCTION_INFO Information for each subprogram profiled in this run of
DBMS_HPROF.analyze. For column descriptions, see
Table 15-5.

DBMSHP_PARENT_CHILD_INFO Parent-child information for each subprogram profiled in
this run of DBMS_HPROF.analyze. For column
descriptions, see Table 15-6.

Topics:

• Creating Hierarchical Profiler Tables

• Understanding Hierarchical Profiler Tables

Note:

To generate simple HTML reports directly from raw profiler output, without
using the Analyzer, you can use the plshprof command-line utility. For
details, see plshprof Utility.

Chapter 15
Analyzing Profile Data

15-8

Creating Hierarchical Profiler Tables

The following steps explain how to create hierarchical profiler tables in Table 15-3 and
the other data structures required for persistently storing profile data, privileges
required to run the DBMS_HPROF package, and generate custom reports:

1. Hierarchical profiler tables in Table 15-3 and other data structures required for
persistently storing profile data can be created in the following ways.

a. Call the DBMS_HPROF.CREATE_TABLES procedure.

b. Run the script dbmshptab.sql (located in the directory rdbms/admin).

Note:

Running the script dbmshptab.sql drops any previously created
hierarchical profiler tables.

Note:

The dbmshptab.sql (located in the directory rdbms/admin) has been
deprecated. This script contains the statements to drop the tables
and sequences along with the deprecation notes.

2. Ensure that you have these privileges:

• EXECUTE privilege on the DBMS_HPROF package

• READ privilege on the directory that DBMS_HPROF.analyze specifies

3. Use the PL/SQL API DBMS_HPROF.analyze to analyze a single raw profiler output
file and store the results in hierarchical profiler tables.

(For an example of a raw profiler output file, see test.trc in Understanding Raw
Profiler Output.)

For more information about DBMS_HPROF.analyze, see Oracle Database PL/SQL
Packages and Types Reference.

4. Use the hierarchical profiler tables to generate custom reports.

Example 15-3 Invoking DBMS_HPROF.analyze

DECLARE
 runid NUMBER;
BEGIN
 runid := DBMS_HPROF.analyze(LOCATION=>'PLSHPROF_DIR',
 FILENAME=>'test.trc');
 DBMS_OUTPUT.PUT_LINE('runid = ' || runid);
END;
/

The anonymous block in Example 15-3:

Chapter 15
Analyzing Profile Data

15-9

• Invokes the function DBMS_HPROF.analyze function, which:

– Analyzes the profile data in the raw profiler output file test.trc (from
Understanding Raw Profiler Output), which is in the directory that is mapped to
the directory object PLSHPROF_DIR, and stores the data in the hierarchical
profiler tables in Table 15-3.

– Returns a unique identifier that you can use to query the hierarchical profiler
tables in Table 15-3. (By querying these hierarchical profiler tables, you can
produce customized reports.)

• Stores the unique identifier in the variable runid, which it prints.

Understanding Hierarchical Profiler Tables
These topics explain how to use the hierarchical profiler tables in Table 15-3:

• Hierarchical Profiler Database Table Columns

• Distinguishing Between Overloaded Subprograms

• Hierarchical Profiler Tables for Sample PL/SQL Procedure

• Examples of Calls to DBMS_HPROF.analyze with Options

Hierarchical Profiler Database Table Columns
Table 15-4 describes the columns of the hierarchical profiler table DBMSHP_RUNS, which
contains one row of top-level information for each run of DBMS_HPROF.analyze.

The primary key for the hierarchical profiler table DBMSHP_RUNS is RUNID.

Table 15-4 DBMSHP_RUNS Table Columns

Column Name Column Data Type Column Contents

RUNID NUMBER Unique identifier for this run of
DBMS_HPROF.analyze, generated from
DBMSHP_RUNNUMBER sequence.

RUN_TIMESTAMP TIMESTAMP(6) Time stamp for this run of
DBMS_HPROF.analyze.

RUN_COMMENT VARCHAR2(2047) Comment that you provided for this run of
DBMS_HPROF.analyze.

TOTAL_ELAPSED_TIME NUMBER(38) Total elapsed time for this run of
DBMS_HPROF.analyze.

Table 15-5 describes the columns of the hierarchical profiler table
DBMSHP_FUNCTION_INFO, which contains one row of information for each subprogram
profiled in this run of DBMS_HPROF.analyze. If a subprogram is overloaded, Table 15-5
has a row for each variation of that subprogram. Each variation has its own LINE# and
HASH (see Distinguishing Between Overloaded Subprograms.)

The primary key for the hierarchical profiler table DBMSHP_FUNCTION_INFO is
RUNID, SYMBOLID.

Chapter 15
Analyzing Profile Data

15-10

Table 15-5 DBMSHP_FUNCTION_INFO Table Columns

Column Name Column Data Type Column Contents

RUNID NUMBER References RUNID column of
DBMSHP_RUNS table. For a description of
that column, see Table 15-4.

SYMBOLID NUMBER Symbol identifier for subprogram
(unique for this run of
DBMS_HPROF.analyze).

OWNER VARCHAR2(128) Owner of module in which each
subprogram is defined (for example,
SYS or HR).

MODULE VARCHAR2(128) Module in which subprogram is defined
(for example, DBMS_LOB, UTL_HTTP, or
MY_PACKAGE).

TYPE VARCHAR2(32) Type of module in which subprogram is
defined (for example, PACKAGE,
PACKAGE_BODY, or PROCEDURE).

FUNCTION VARCHAR2(4000) Name of subprogram (not necessarily a
function) (for example, INSERT_ORDER,
PROCESS_ITEMS, or TEST).

This name might be one of the special
function names in Special Function
Names.

For subprogram B defined within
subprogram A, this name is A.B.

A recursive call to function X is denoted
X@n, where n is the recursion depth. For
example, X@1 is the first recursive call to
X.

LINE# NUMBER Line number in OWNER.MODULE at which
FUNCTION is defined.

HASH RAW(32) Hash code for signature of subprogram
(unique for this run of
DBMS_HPROF.analyze).

NAMESPACE VARCHAR2(32) Namespace of subprogram. For details,
see Namespaces of Tracked
Subprograms.

SUBTREE_ELAPSED_TIME NUMBER(38) Elapsed time, in microseconds, for
subprogram, including time spent in
descendant subprograms.

FUNCTION_ELAPSED_TIME NUMBER(38) Elapsed time, in microseconds, for
subprogram, excluding time spent in
descendant subprograms.

CALLS NUMBER(38) Number of calls to subprogram.

SQL_ID VARCHAR2(13) SQL Identifier of the SQL statement.

SQL_TEXT VARCHAR2(4000) First 50 characters of the SQL
statement.

Chapter 15
Analyzing Profile Data

15-11

Table 15-6 describes the columns of the hierarchical profiler table
DBMSHP_PARENT_CHILD_INFO, which contains one row of parent-child information for
each unique parent-child subprogram combination profiled in this run of
DBMS_HPROF.analyze.

Table 15-6 DBMSHP_PARENT_CHILD_INFO Table Columns

Column Name Column Data Type Column Contents

RUNID NUMBER References RUNID column of
DBMSHP_FUNCTION_INFO table. For a
description of that column, see
Table 15-5.

PARENTSYMID NUMBER Parent symbol ID.

RUNID, PARENTSYMID references
DBMSHP_FUNCTION_INFO(RUNID,
SYMBOLID).

CHILDSYMID NUMBER Child symbol ID.

RUNID, CHILDSYMID references
DBMSHP_FUNCTION_INFO(RUNID,
SYMBOLID).

SUBTREE_ELAPSED_TIME NUMBER(38) Elapsed time, in microseconds, for
RUNID, CHILDSYMID when called from
RUNID, PARENTSYMID, including time
spent in descendant subprograms.

FUNCTION_ELAPSED_TIME NUMBER(38) Elapsed time, in microseconds, for
RUNID, CHILDSYMID when called from
RUNID, PARENTSYMID, excluding time
spent in descendant subprograms.

CALLS NUMBER(38) Number of calls to RUNID,
CHILDSYMID from RUNID,
PARENTSYMID.

Distinguishing Between Overloaded Subprograms
Overloaded subprograms are different subprograms with the same name.

Suppose that a program declares three subprograms named compute—the first at line
50, the second at line 76, and the third at line 100. In the DBMSHP_FUNCTION_INFO table,
each of these subprograms has compute in the FUNCTION column. To distinguish
between the three subprograms, use either the LINE# column (which has 50 for the
first subprogram, 76 for the second, and 100 for the third) or the HASH column (which
has a unique value for each subprogram).

In the profile data for two different runs, the LINE# and HASH values for a function might
differ. The LINE# value of a function changes if you insert or delete lines before the
function definition. The HASH value changes only if the signature of the function
changes; for example, if you change the parameter list.

Chapter 15
Analyzing Profile Data

15-12

See Also:

Oracle Database PL/SQL Language Reference for more information about
overloaded subprograms

Hierarchical Profiler Tables for Sample PL/SQL Procedure
The hierarchical profiler tables for the PL/SQL procedure test in Collecting Profile
Data are shown in Example 15-4 through Example 15-6.

Consider the third row of the table DBMSHP_PARENT_CHILD_INFO (Example 15-6). The
RUNID column shows that this row corresponds to the third run. The columns
PARENTSYMID and CHILDSYMID show that the symbol IDs of the parent (caller) and child
(called subprogram) are 2 and 1, respectively. The table DBMSHP_FUNCTION_INFO
(Example 15-5) shows that for the third run, the symbol IDs 2 and 1 correspond to
procedures __plsql_vm and __anonymous_block, respectively. Therefore, the
information in this row is about calls from the procedure __plsql_vm to the
__anonymous_block (defined within __plsql_vm) in the module HR.TEST. This row
shows that, when called from the procedure __plsql_vm, the function time for the
procedure __anonymous_block is 44 microseconds, and the time spent in the
__anonymous_block subtree (including descendants) is 121 microseconds.

Example 15-4 DBMSHP_RUNS Table for Sample PL/SQL Procedure

 RUNID RUN_TIMESTAMP TOTAL_ELAPSED_TIME RUN_COMMENT
---------- ------------------------------ ------------------ -----------
 1 20-DEC-12 11.37.26.688381 AM 7
 2 20-DEC-12 11.37.26.700523 AM 9
 3 20-DEC-12 11.37.26.706824 AM 123

Example 15-5 DBMSHP_FUNCTION_INFO Table for Sample PL/SQL Procedure

 RUNID SYMBOLID OWNER MODULE TYPE FUNCTION
---------- ----------- ------- ------------ --------------- -------------------------
 1 1 HR PKG PACKAGE BODY MYPROC
 2 1 HR PKG PACKAGE BODY MYFUNC
 2 2 HR PKG PACKAGE BODY MYPROC
 3 1 __anonymous_block
 3 2 __plsql_vm
 3 3 HR PKG PACKAGE BODY MYFUNC
 3 4 HR PKG PACKAGE BODY MYPROC
 3 5 HR TEST2 PROCEDURE TEST2

LINE# CALLS HASH NAMESPACE
----- ------ -- -----------
 2 1 9689BA467A19CD19 PLSQL
 7 1 28DC3402BAEB2B0D PLSQL
 2 1 9689BA467A19CD19 PLSQL
 0 1 PLSQL
 0 1 PLSQL
 7 1 28DC3402BAEB2B0D PLSQL
 2 2 9689BA467A19CD19 PLSQL
 1 1 980980E97E42F8EC PLSQL

NAMESPACE SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED_TIME
----------- ----------------------- ------------------------

Chapter 15
Analyzing Profile Data

15-13

PLSQL 7 7
PLSQL 9 8
PLSQL 1 1
PLSQL 121 44
PLSQL 123 2
PLSQL 9 8
PLSQL 8 8
PLSQL 77 61

Example 15-6 DBMSHP_PARENT_CHILD_INFO Table for Sample PL/SQL Procedure

 RUNID PARENTSYMID CHILDSYMID SUBTREE_ELAPSED_TIME FUNCTION_ELAPSED_TIME CALLS
---------- ----------- ---------- ----------------------- ------------------------ ------
 2 1 2 1 1 1
 3 1 5 77 61 1
 3 2 1 121 44 1
 3 3 4 1 1 1
 3 5 3 9 8 1
 3 5 4 7 7 1

Examples of Calls to DBMS_HPROF.analyze with Options
For an example of a call to DBMS_HPROF.analyze without options, see Example 15-3.

Example 15-7 creates a package, creates a procedure that invokes subprograms in
the package, profiles the procedure, and uses DBMS_HRPROF.analyze to analyze the
raw profiler output file. The raw profiler output file is in the directory corresponding to
the PLSHPROF_DIR directory object.

Example 15-7 Invoking DBMS_HPROF.analyze with Options

-- Create package

CREATE OR REPLACE PACKAGE pkg AUTHID DEFINER IS
 PROCEDURE myproc (n IN out NUMBER);
 FUNCTION myfunc (v VARCHAR2) RETURN VARCHAR2;
 FUNCTION myfunc (n PLS_INTEGER) RETURN PLS_INTEGER;
END pkg;
/
CREATE OR REPLACE PACKAGE BODY pkg IS
 PROCEDURE myproc (n IN OUT NUMBER) IS
 BEGIN
 n := n + 5;
 END;

 FUNCTION myfunc (v VARCHAR2) RETURN VARCHAR2 IS
 n NUMBER;
 BEGIN
 n := LENGTH(v);
 myproc(n);
 IF n > 20 THEN
 RETURN SUBSTR(v, 1, 20);
 ELSE
 RETURN v || '...';
 END IF;
 END;

 FUNCTION myfunc (n PLS_INTEGER) RETURN PLS_INTEGER IS
 i PLS_INTEGER;
 PROCEDURE myproc (n IN out PLS_INTEGER) IS
 BEGIN

Chapter 15
Analyzing Profile Data

15-14

 n := n + 1;
 END;
 BEGIN
 i := n;
 myproc(i);
 RETURN i;
 END;
END pkg;
/

-- Create procedure that invokes package subprograms

CREATE OR REPLACE PROCEDURE test2 AUTHID DEFINER IS
 x NUMBER := 5;
 y VARCHAR2(32767);
BEGIN
 pkg.myproc(x);
 y := pkg.myfunc('hello');
END;

-- Profile test2

BEGIN
 DBMS_HPROF.START_PROFILING('PLSHPROF_DIR', 'test2.trc');
END;
/
BEGIN
 test2;
END;
/
BEGIN
 DBMS_HPROF.STOP_PROFILING;
END;
/
-- If not done, create hierarchical profiler tables (see Creating Hierarchical Profiler
Tables).

-- Call DBMS_HPROF.analyze with options

DECLARE
 runid NUMBER;
BEGIN
 -- Analyze only subtrees rooted at trace entry "HR"."PKG"."MYPROC"

 runid := DBMS_HPROF.analyze('PLSHPROF_DIR', 'test2.trc',
 trace => '"HR"."PKG"."MYPROC"');

 -- Analyze up to 20 calls to subtrees rooted at trace entry
 -- "HR"."PKG"."MYFUNC". Because "HR"."PKG"."MYFUNC" is overloaded,
 -- both overloads are considered for analysis.

 runid := DBMS_HPROF.analyze('PLSHPROF_DIR', 'test2.trc',
 collect => 20,
 trace => '"HR"."PKG"."MYFUNC"');

 -- Analyze second call to PL/SQL virtual machine

 runid := DBMS_HPROF.analyze('PLSHPROF_DIR', 'test2.trc',
 skip => 1, collect => 1,
 trace => '""."".""__plsql_vm"');

Chapter 15
Analyzing Profile Data

15-15

END;
/

plshprof Utility
The plshprof command-line utility (located in the directory $ORACLE_HOME/bin/)
generates simple HTML reports from either one or two raw profiler output files. (For an
example of a raw profiler output file, see test.trc in Collecting Profile Data.)

You can browse the generated HTML reports in any browser. The browser's
navigational capabilities, combined with well chosen links, provide a powerful way to
analyze performance of large applications, improve application performance, and
lower development costs.

Topics:

• plshprof Options

• HTML Report from a Single Raw Profiler Output File

• HTML Difference Report from Two Raw Profiler Output Files

plshprof Options
The command to run the plshprof utility is:

plshprof [option...] profiler_output_filename_1 profiler_output_filename_2

Each option is one of these:

Option Description Default

-skip count Skips first count calls. Use only with -
trace symbol.

0

-collect count Collects information for count calls. Use only
with -trace symbol.

1

-output filename Specifies name of output file symbol.html or
tracefile1.html

-summary Prints only elapsed time None

-trace symbol Specifies function name of tree root Not applicable

Suppose that your raw profiler output file, test.trc, is in the current directory. You
want to analyze and generate HTML reports, and you want the root file of the HTML
report to be named report.html. Use this command (% is the prompt):

% plshprof -output report test.trc

HTML Report from a Single Raw Profiler Output File
To generate a PL/SQL hierarchical profiler HTML report from a single raw profiler
output file, use these commands:

% cd target_directory
% plshprof -output html_root_filename profiler_output_filename

Chapter 15
plshprof Utility

15-16

target_directory is the directory in which you want the HTML files to be created.

html_root_filename is the name of the root HTML file to be created.

profiler_output_filename is the name of a raw profiler output file.

The preceding plshprof command generates a set of HTML files. Start browsing them
from html_root_filename.html.

Topics:

• First Page of Report

• Function-Level Reports

• Understanding PL/SQL Hierarchical Profiler SQL-Level Reports

• Module-Level Reports

• Namespace-Level Reports

• Parents and Children Report for a Function

First Page of Report
The first page of an HTML report from a single raw profiler output file includes
summary information and hyperlinks to other pages of the report.

Sample First Page

PL/SQL Elapsed Time (microsecs) Analysis

824 microsecs (elapsed time) & 12 function calls

The PL/SQL Hierarchical Profiler produces a collection of reports that present
information derived from the profiler output log in a variety of formats. These reports
have been found to be the most generally useful as starting points for browsing:

• Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs)

• Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

• SQL ID Elapsed Time (microsecs) Data sorted by SQL ID

In addition, the following reports are also available:

• Function Elapsed Time (microsecs) Data sorted by Function Name

• Function Elapsed Time (microsecs) Data sorted by Total Descendants Elapsed
Time (microsecs)

• Function Elapsed Time (microsecs) Data sorted by Total Function Call Count

• Function Elapsed Time (microsecs) Data sorted by Mean Subtree Elapsed Time
(microsecs)

• Function Elapsed Time (microsecs) Data sorted by Mean Function Elapsed Time
(microsecs)

• Function Elapsed Time (microsecs) Data sorted by Mean Descendants Elapsed
Time (microsecs)

Chapter 15
plshprof Utility

15-17

• Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

• Module Elapsed Time (microsecs) Data sorted by Module Name

• Module Elapsed Time (microsecs) Data sorted by Total Function Call Count

• Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed
Time (microsecs)

• Namespace Elapsed Time (microsecs) Data sorted by Namespace

• Namespace Elapsed Time (microsecs) Data sorted by Total Function Call Count

• Parents and Children Elapsed Time (microsecs) Data

Function-Level Reports
The function-level reports provide a flat view of the profile information. Each function-
level report includes this information for each function:

• Function time (time spent in the function itself, also called "self time")

• Descendants time (time spent in the descendants of the function)

• Subtree time (time spent in the subtree of the function—function time plus
descendants time)

• Number of calls to the function

• Function name

The function name is hyperlinked to the Parents and Children Report for the
function.

• SQL ID

• SQL Text (First 50 characters of the SQL text).

Each function-level report is sorted on a particular attribute; for example, function time
or subtree time.

This sample report is sorted in descending order of the total subtree elapsed time for
the function, which is why information in the Subtree and Ind% columns is in bold
type:

Sample Report

Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs)

824 microsecs (elapsed time) & 12 function calls

Subtr
ee

Ind
%

Funct
ion

Descen
dant

Ind
%

Ca
lls

Ind
%

Function Name SQL ID SQL TEXT

824 100
%

10 814 98.
8%

2 16.
7%

__plsq_vm

814 98.
8%

165 649 78.
8%

2 16.
7%

__anonymous_block

649 78.
8%

11 638 77.
4%

1 8.3
%

HR.TEST.TEST
(Line 1)

Chapter 15
plshprof Utility

15-18

Subtr
ee

Ind
%

Funct
ion

Descen
dant

Ind
%

Ca
lls

Ind
%

Function Name SQL ID SQL TEXT

638 77.
4%

121 517 62.
7%

3 25.
0%

HR.TEST.TEST.FO
O (Line 4)

517 62.
7%

517 0 0.0
%

3 25.
0%

HR.TEST.__static_s
ql_exec_line5 (Line
6)

3r6qf2qhr3
cm1

SELECT
COUNT(*)
FROM
EMPLOYE
ES

0 0.0
%

0 0 0.0
%

1 8.3
%

SYS.DBMS_HPROF
.STOP_PROFILING
(Line 453)

Module-Level Reports
Each module-level report includes this information for each module (for example,
package or type):

• Module time (time spent in the module—sum of the function times of all functions
in the module)

• Number of calls to functions in the module

Each module-level report is sorted on a particular attribute; for example, module time
or module name.

This sample report is sorted by module time, which is why information in the Module,
Ind%, and Cum% columns is in bold type:

Sample Report

Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs)

166878 microsecs (elapsed time) & 1099 function calls

Module Ind% Cum% Calls Ind% Module Name

84932 50.9% 50.9% 6 0.5% HR.P

67749 40.6% 91.5% 216 19.7% SYS.DBMS_LOB

13340 8.0% 99.5% 660 60.1% SYS.UTL_FILE

839 0.5% 100% 214 19.5% SYS.UTL_RAW

18 0.0% 100% 2 0.2% HR.UTILS

0 0.0% 100% 1 0.1% SYS.DBMS_HPROF

Namespace-Level Reports
Each namespace-level report includes this information for each namespace:

• Namespace time (time spent in the namespace—sum of the function times of all
functions in the namespace)

• Number of calls to functions in the namespace

Chapter 15
plshprof Utility

15-19

Each namespace-level report is sorted on a particular attribute; for example,
namespace time or number of calls to functions in the namespace.

This sample report is sorted by function time, which is why information in the Function,
Ind%, and Cum% columns is in bold type:

Sample Report

Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed
Time (microsecs)

166878 microsecs (elapsed time) & 1099 function calls

Function Ind% Cum% Calls Ind% Namespace

93659 56.1% 56.1% 1095 99.6% PLSQL

73219 43.9% 100% 4 0.4% SQL

Parents and Children Report for a Function
For each function tracked by the profiler, the Parents and Children Report provides
information about parents (functions that call it) and children (functions that it calls).
For each parent, the report gives the function's execution profile (subtree time, function
time, descendants time, and number of calls). For each child, the report gives the
execution profile for the child when called from this function (but not when called from
other functions).

The execution profile for a function includes the same information for that function as a
function-level report includes for each function.

This Sample Report is a fragment of a Parents and Children Report that corresponds
to a function named HR.P.UPLOAD. The first row has this summary information:

• There are two calls to the function HR.P.UPLOAD.

• The total subtree time for the function is 166,860 microseconds—11,713
microseconds (7.0%) in the function itself and 155,147 microseconds (93.0%) in
its descendants.

After the row "Parents" are the execution profile rows for the two parents of
HR.P.UPLOAD, which are HR.UTILS.COPY_IMAGE and HR.UTILS.COPY_FILE.

The first parent execution profile row, for HR.UTILS.COPY_IMAGE, shows:

• HR.UTILS.COPY_IMAGE calls HR.P.UPLOAD once, which is 50% of the number of calls
to HR.P.UPLOAD.

• The subtree time for HR.P.UPLOAD when called from HR.UTILS.COPY_IMAGE is
106,325 microseconds, which is 63.7% of the total subtree time for HR.P.UPLOAD.

• The function time for HR.P.UPLOAD when called from HR.UTILS.COPY_IMAGE is 6,434
microseconds, which is 54.9% of the total function time for HR.P.UPLOAD.

After the row "Children" are the execution profile rows for the children of HR.P.UPLOAD
when called from HR.P.UPLOAD.

The third child execution profile row, for SYS.UTL_FILE.GET_RAW, shows:

• HR.P.UPLOAD calls SYS.UTL_FILE.GET_RAW 216 times.

Chapter 15
plshprof Utility

15-20

• The subtree time, function time and descendants time for SYS.UTL_FILE.GET_RAW
when called from HR.P.UPLOAD are 12,487 microseconds, 3,969 microseconds, and
8,518 microseconds, respectively.

• Of the total descendants time for HR.P.UPLOAD (155,147 microseconds), the child
SYS.UTL_FILE.GET_RAW is responsible for 12,487 microsecs (8.0%).

Sample Report

HR.P.UPLOAD (Line 3)

Subtree Ind% Function Ind% Descendant Ind% Calls Ind% Function Name

166860 100% 11713 7.0% 155147 93.0
%

2 0.2% HR.P.UPLOAD
(Line 3)

Parents:

106325 63.7
%

6434 54.9
%

99891 64.4
%

1 50.0
%

HR.UTILS.COPY_IM
AGE (Line 3)

60535 36.3
%

5279 45.1
%

55256 35.6
%

1 50.0
%

HR.UTILS.COPY_FIL
E (Line 8))

Children:

71818 46.3
%

71818 100% 0 N/A 2 100% HR.P.__static_sql_ex
ec_line38 (Line 38)

67649 43.6
%

67649 100% 0 N/A 214 100% SYS.DBMS_LOB.WR
ITEAPPEND (Line
926)

12487 8.0% 3969 100% 8518 100% 216 100% SYS.UTL_FILE.GET
_RAW (Line 1089)

1401 0.9% 1401 100% 0 N/A 2 100% HR.P.__static_sql_ex
ec_line39 (Line 39)

839 0.5% 839 100% 0 N/A 214 100% SYS.UTL_FILE.GET
_RAW (Line 246)

740 0.5% 73 100% 667 100% 2 100% SYS.UTL_FILE.FOP
EN (Line 422)

113 0.1% 11 100% 102 100% 2 100% SYS.UTL_FILE.FCL
OSE (Line 585)

100 0.1% 100 100% 0 N/A 2 100% SYS.DBMS_LOB.CR
EATETEMPORARY
(Line 536)

See Also:

Function-Level Reports

Understanding PL/SQL Hierarchical Profiler SQL-Level Reports
Understanding DBMS_HPROF.ANALYZE SQL-level reports.

The PL/SQL Hierarchical Profiler SQL-level report provides the list of all the SQLs
collected during profiling. along with the abbreviated SQL text, and the elapsed time

Chapter 15
plshprof Utility

15-21

(microsecs) sorted by SQL ID. The SQL ID is useful if other SQL statistics must be
retrieved in other tables, for example, for SQL tuning purpose. The first 50 characters
of the SQL text is included in the report. You can use the Function-Level reports to get
the details surrounding where the SQL is called, and its location in the source code if
needed.

Sample Report

SQL ID Elapsed Time (microsecs) Data sorted by SQL ID

824 microsecs (elapsed time) & 12 function calls

SQL ID SQL TEXT Function Ind% Calls Ind%

3r6qf2qhr3cm
1

SELECT
COUNT(*)
FROM
EMPLOYEES

679 82.4% 3 25.0%

HTML Difference Report from Two Raw Profiler Output Files
To generate a PL/SQL hierarchical profiler HTML difference report from two raw
profiler output files, use these commands:

% cd target_directory
% plshprof -output html_root_filename profiler_output_filename_1 profiler_output_filename_2

target_directory is the directory in which you want the HTML files to be created.

html_root_filename is the name of the root HTML file to be created.

profiler_output_filename_1 and profiler_output_filename_2 are the names of
raw profiler output files.

The preceding plshprof command generates a set of HTML files. Start browsing them
from html_root_filename.html.

Topics:

• Difference Report Conventions

• First Page of Difference Report

• Function-Level Difference Reports

• Module-Level Difference Reports

• Namespace-Level Difference Reports

• Parents and Children Difference Report for a Function

Difference Report Conventions
Difference reports use these conventions:

• In a report title, Delta means difference, or change.

• A positive value indicates that the number increased (regressed) from the first
run to the second run.

Chapter 15
plshprof Utility

15-22

• A negative value for a difference indicates that the number decreased
(improved) from the first run to the second run.

• The symbol # after a function name means that the function was called in only one
run.

First Page of Difference Report
The first page of an HTML difference report from two raw profiler output files includes
summary information and hyperlinks to other pages of the report.

Sample First Page

PL/SQL Elapsed Time (microsecs) Analysis – Summary Page

This analysis finds a net regression of 2709589 microsecs (elapsed time) or 80%
(3393719 versus 6103308). Here is a summary of the 7 most important individual
function regressions and improvements:

Regressions: 3399382 microsecs (elapsed time)

Function Rel% Ind% Calls Rel% Function Name

2075627 +941% 61.1% 0 HR.P.G (Line 35)

1101384 +54.6% 32.4% 5 +55.6% HR.P.H (Line 18)

222371 6.5% 1 HR.P.J (Line 10)

Improvements: 689793 microsecs (elapsed time)

Function Rel% Ind% Calls Rel% Function Name

-467051 -50.0% 67.7% -2 -50.0% HR.P.F (Line 25)

-222737 32.3% -1 HR.P.I (Line 2)#

-5 -21.7% 0.0% 0 HR.P.TEST (Line 46)

The PL/SQL Timing Analyzer produces a collection of reports that present
information derived from the profiler's output logs in a variety of formats. The
following reports have been found to be the most generally useful as starting
points for browsing:

• Function Elapsed Time (microsecs) Data for Performance Regressions

• Function Elapsed Time (microsecs) Data for Performance Improvements

Also, the following reports are also available:

• Function Elapsed Time (microsecs) Data sorted by Function Name

• Function Elapsed Time (microsecs) Data sorted by Total Subtree Elapsed Time
(microsecs) Delta

• Function Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

• Function Elapsed Time (microsecs) Data sorted by Total Descendants Elapsed
Time (microsecs) Delta

• Function Elapsed Time (microsecs) Data sorted by Total Function Call Count
Delta

Chapter 15
plshprof Utility

15-23

• Module Elapsed Time (microsecs) Data sorted by Module Name

• Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

• Module Elapsed Time (microsecs) Data sorted by Total Function Call Count Delta

• Namespace Elapsed Time (microsecs) Data sorted by Namespace

• Namespace Elapsed Time (microsecs) Data sorted by Total Function Elapsed
Time (microsecs)

• Namespace Elapsed Time (microsecs) Data sorted by Total Function Call Count

• File Elapsed Time (microsecs) Data Comparison with Parents and Children

Function-Level Difference Reports
Each function-level difference report includes, for each function, the change in these
values from the first run to the second run:

• Function time (time spent in the function itself, also called "self time")

• Descendants time (time spent in the descendants of the function)

• Subtree time (time spent in the subtree of the function—function time plus
descendants time)

• Number of calls to the function

• Mean function time

The mean function time is the function time divided by number of calls to the
function.

• Function name

The function name is hyperlinked to the Parents and Children Difference Report
for the function.

The report in Sample Report 1 shows the difference information for all functions that
performed better in the first run than they did in the second run. Note that:

• For HR.P.G, the function time increased by 2,075,627 microseconds (941%), which
accounts for 61.1% of all regressions.

• For HR.P.H, the function time and number of calls increased by 1,101,384
microseconds (54.6%) and 5 (55.6%), respectively, but the mean function time
improved by 1,346 microseconds (-0.6%).

• HR.P.J was called in only one run.

Sample Report 1

Function Elapsed Time (microsecs) Data for Performance Regressions

Subtre
e

Functio
n

Rel% Ind
%

Cum
%

Descenda
nt

Call
s

Rel% Mean
Function

Rel% Function Name

407578
7

2075627 +941
%

61.1
%

61.1% 2000160 0 2075627 +941
%

HR.P.G (Line 35)

110138
4

1101384 +54.6
%

32.4
%

93.5% 0 5 +55.6
%

-1346 -0.6% HR.P.H (Line 18)

Chapter 15
plshprof Utility

15-24

Subtre
e

Functio
n

Rel% Ind
%

Cum
%

Descenda
nt

Call
s

Rel% Mean
Function

Rel% Function Name

222371 222371 6.5% 100% 0 1 HR.P.J (Line 10)#

The report in Sample Report 2 shows the difference information for all functions that
performed better in the second run than they did in the first run.

Sample Report 2

Function Elapsed Time (microsecs) Data for Performance Improvements

Subtre
e

Functio
n

Rel% Ind
%

Cum
%

Descenda
nt

Call
s

Rel% Mean
Function

Rel% Function Name

-136582
7

-467051 -50.0
%

67.7
%

67.7% -898776 -2 -50.0
%

-32 0.0% HR.P.F (Line 25)

-222737 -222737 32.3
%

100% 0 -1 HR.P.I (Line 2)

270958
9

-5 -21.7
%

0.0% 100% 2709594 0 -5 -20.8 HR.P.TEST (Line
46)#

The report in Sample Report 3 summarizes the difference information for all functions.

Sample Report 3

Function Elapsed Time (microsecs) Data sorted by Total Function Call Count
Delta

Subtre
e

Functio
n

Rel% Ind
%

Descenda
nt

Call
s

Rel% Mean
Function

Rel% Function Name

110138
4

1101384 +54.6
%

32.4
%

0 5 +55.6
%

-1346 -0.6% HR.P.H (Line 18)

-136582
7

-467051 +50.0
%

67.7
%

-898776 -2 -50.0
%

-32 -0.0% HR.P.F (Line 25)

-222377 -222377 32.3
%

0 -1 HR.P.I (Line 2)#

222371 222371 6.5% 0 1 HR.P.J(Line 10)#

407578
7

2075627 +941
%

61.1
%

2000160 0 2075627 +941
%

HR.P.G (Line 35)

270958
9

-5 -21.7
%

0.0% 2709594 0 -5 -20.8
%

HR.P.TEST (Line 46)

0 0 0 0 SYS.DBMS_HPROF.STOP
_PROFILING (Line 53)

Module-Level Difference Reports
Each module-level report includes, for each module, the change in these values from
the first run to the second run:

• Module time (time spent in the module—sum of the function times of all functions
in the module)

Chapter 15
plshprof Utility

15-25

• Number of calls to functions in the module

Sample Report

Module Elapsed Time (microsecs) Data sorted by Total Function Elapsed Time
(microsecs) Delta

Module Calls Module Name

2709589 3 HR.P

0 0 SYS.DBMS_HPROF

Namespace-Level Difference Reports
Each namespace-level report includes, for each namespace, the change in these
values from the first run to the second run:

• Namespace time (time spent in the namespace—sum of the function times of all
functions in the namespace)

• Number of calls to functions in the namespace

Sample Report

Namespace Elapsed Time (microsecs) Data sorted by Namespace

Function Call
s

Namespace

2709589 3 PLSQL

Parents and Children Difference Report for a Function
The Parents and Children Difference Report for a function shows changes in the
execution profiles of these from the first run to the second run:

• Parents (functions that call the function)

• Children (functions that the function calls)

Execution profiles for children include only information from when this function
calls them, not for when other functions call them.

The execution profile for a function includes this information:

• Function time (time spent in the function itself, also called "self time")

• Descendants time (time spent in the descendants of the function)

• Subtree time (time spent in the subtree of the function—function time plus
descendants time)

• Number of calls to the function

• Function name

The sample report is a fragment of a Parents and Children Difference Report that
corresponds to a function named HR.P.X.

Chapter 15
plshprof Utility

15-26

The first row, a summary of the difference between the first and second runs, shows
regression: function time increased by 1,094,099 microseconds (probably because the
function was called five more times).

The "Parents" rows show that HR.P.G called HR.P.X nine more times in the second run
than it did in the first run, while HR.P.F called it four fewer times.

The "Children" rows show that HR.P.X called each child five more times in the second
run than it did in the first run.

Sample Report

HR.P.X (Line 11)

Subtree Function Descendant Calls Function Name

3322196 1094099 2228097 5 HR.P.X (Line 11)

Parents:

6037490 1993169 4044321 9 HR.P.G (Line 38)

-2715294 -899070 -1816224 -4 HR.P.F (Line 28)

Children:

1125489 1125489 0 5 HR.P.J (Line 10)

1102608 1102608 0 5 HR.P.I (Line 2)

The Parents and Children Difference Report for a function is accompanied by a
Function Comparison Report, which shows the execution profile of the function for the
first and second runs and the difference between them. This example is the Function
Comparison Report for the function HR.P.X:

Sample Report

Elapsed Time (microsecs) for HR.P.X (Line 11) (20.1% of total regression)

HR.P.X (Line 11) First
Trace

Ind% Second
Trace

Ind% Diff Diff%

Function Elapsed Time
(microsecs)

1999509 26.9% 3093608 24.9
%

109409
9

+54.7%

Descendants Elapsed Time
(microsecs)

4095943 55.1% 6324040 50.9
%

222809
7

+54.4%

Subtree Elapsed Time (microsecs) 6095452 81.9% 9417648 75.7
%

332219
6

+54.5%

Function Calls 9 25.0% 14 28.6
%

5 +55.6%

Mean Function Elapsed Time
(microsecs)

222167.
7

220972.0 -1195.7 -0.5%

Mean Descendants Elapsed Time
(microsecs)

455104.
8

451717.1 -3387.6 -0.7%

Mean Subtree Elapsed Time
(microsecs)

677272.
4

672689.1 -4583.3 -0.7%

Chapter 15
plshprof Utility

15-27

16
Using PL/SQL Basic Block Coverage to
Maintain Quality

The PL/SQL basic block coverage interface helps you ensure some quality,
predictability and consistency, by assessing how well your tests exercise your code.

The code coverage measurement tests are typically executed on a test environment,
not on a production database. The goal is to maintain or improve the regression tests
suite quality over the lifecycle of multiple PL/SQL code releases. PL/SQL code
coverage can help you answer questions such as:

• Is your testing suites development keeping up with the development of your new
code?

• Do you need more tests?

The PL/SQL basic block coverage interface collects coverage data for PL/SQL units
exercised in a test run.

Topics:

• Overview of PL/SQL Basic Block Coverage

• Collecting PL/SQL Code Coverage Data

• PL/SQL Code Coverage Tables Description

See Also:

• Oracle Database PL/SQL Language Reference for the COVERAGE PRAGMA
syntax and semantics

• Oracle Database PL/SQL Packages and Types Reference for more
information about using the DBMS_PLSQL_CODE_COVERAGE package

• Oracle Database PL/SQL Language Reference for more information
about the PLSQL_OPTIMIZE_LEVEL compilation parameter

Overview of PL/SQL Basic Block Coverage
The DBMS_PLSQL_CODE_COVERAGE package enables you to collect data at the basic
block level. PL/SQL developers and testing engineers use code coverage testing
results as part of their standard quality assurance metric.

Code coverage is a measure of the percentage of code which is covered by
automated tests. A program with high code coverage has less chance of containing
bugs than a program with low code coverage. The most important is the percent of
basic blocks executed by a test suite. A basic block is a linear segment of code with no
branches. A basic block has a single entry point (no code within a basic block is the

16-1

destination of a jump instruction) and a single exit point (only the last instruction, or an
exception, can move the point of execution to a different basic block). Basic block
boundaries cannot be predicted by visual inspection of the code. The compiler
generates the blocks that are executed at runtime.

Coverage information at the unit level can be derived accurately by collecting
coverage at the basic block level. Utilities can be produced to report and visualize the
test coverage results and help identify code that is covered, partially covered, or not
covered by tests.

It is not always feasible to write test cases to exercise some basic blocks. It is possible
to exclude these blocks from the coverage calculation by marking them using the
COVERAGE pragma. The source code can be marked as not feasible for coverage either
a single basic block, or a range of basic blocks.

Collecting PL/SQL Code Coverage Data
This example shows you the basic steps to collect and analyze PL/SQL basic block
code coverage data using the DBMS_PLSQL_CODE_COVERAGE package.

By default, coverage data for all units except wrapped units is collected.

Follow these steps to collect and analyze PL/SQL basic block code coverage data
using the DBMS_PLSQL_CODE_COVERAGE package.

1. Run the procedure CREATE_COVERAGE_TABLES to create the tables required by
the package to store the coverage data. You only need to run this step once as
part of setup.

EXECUTE DBMS_PLSQL_CODE_COVERAGE.CREATE_COVERAGE_TABLES;

2. Start the coverage run.

DECLARE testsuite_run NUMBER;
BEGIN
 testsuite_run := DBMS_PLSQL_CODE_COVERAGE.START_COVERAGE(RUN_COMMENT
=> ’Test Suite ABC’);
END;
/

3. Run the tests.

4. Stop the coverage collection and write the data to the collection tables.

EXECUTE DBMS_PLSQL_CODE_COVERAGE.STOP_COVERAGE;

5. Query the coverage tables to inspect results.

PL/SQL Code Coverage Tables Description
The following tables are created by the
PLSQL_CODE_COVERAGE.CREATE_COVERAGE_TABLES procedure to collect code coverage
data.

The DBMSPCC_RUNS table contains one row for each execution of the
DBMS_PLSQL_CODE_COVERAGE.START_COVERAGE function. The primary key is the RUN_ID.

Chapter 16
Collecting PL/SQL Code Coverage Data

16-2

Table 16-1 DBMSPCC_RUNS Table Columns

Column Name Column Data Type Description

RUN_ID NUMBER(38) Unique identifier automatically
generated for this run of
DBMS_PLSQL_CODE_COVERAG
E.START_COVERAGE

RUN_COMMENT VARCHAR2(4000) User comment to identify the
run

RUN_OWNER VARCHAR2(128) User who started the run

RUN_TIMESTAMP DATE Date timestamp when the run
started

The DBMSPCC_UNITS table contains the PL/SQL units information exercised in a run.
The primary key is RUN_ID, and OBJECT_ID. The OBJECT_ID and LAST_DDL_TIME allows
you to determine if a unit has been modified since the run started by comparing to the
object LAST_DDL_TIME in the static data dictionary view ALL_OBJECTS.

Table 16-2 DBMSPCC_UNITS Table Columns

Column Name Column Data Type Description

RUN_ID NUMBER References the RUN_ID
column in the DBMSPCC_RUNS
table

OBJECT_ID NUMBER Unique identifier for the unit

OWNER VARCHAR2(128) Owner of the unit

NAME VARCHAR2(128) Unit name

TYPE VARCHAR2(12) Unit type

LAST_DDL_TIME DATE Date timestamp for the last
modification of the unit
resulting from a DDL
statement captured at run time

The DBMSPCC_BLOCKS table identifies all the blocks in a unit. The block location is
indicated by its starting position in the source code (LINE, COL). The primary key is
RUN_ID, OBJECT_ID and BLOCK. It is implicit that one block ends at the character
position immediately before that of the start of the next. More than one block can start
at the same location. If a unit has not been modified since the run started, the source
code lines can be extracted from the static data dictionary view ALL_SOURCE.

Table 16-3 DBMSPCC_BLOCKS Table Columns

Column Name Column Data Type Description

RUN_ID NUMBER(38) References the RUN_ID
column in the
DBMSPCC_UNITS table

Chapter 16
PL/SQL Code Coverage Tables Description

16-3

Table 16-3 (Cont.) DBMSPCC_BLOCKS Table Columns

Column Name Column Data Type Description

OBJECT_ID NUMBER(38) References the OBJECT_ID in
the DBMSPCC_UNITS table

BLOCK NUMBER(38) Basic block number

LINE NUMBER(38) Starting line number of the
basic block

COL NUMBER(38) Starting column number of
basic block

COVERED NUMBER(1) Set to 1 if a basic block is
covered, or to 0 otherwise

NOT_FEASIBLE NUMBER(1) Set to 1 if a basic block is
marked as NOT_FEASIBLE,
or to 0 otherwise

Chapter 16
PL/SQL Code Coverage Tables Description

16-4

17
Developing PL/SQL Web Applications

Note:

The use of the technologies described in this chapter is suitable for
applications that require tight control of the HTTP communication and HTML
generation. For others applications, you are encouraged to use Oracle
Application Express, which provides more features and a convenient
graphical interface to ease application development.

This chapter explains how to develop PL/SQL web applications, which let you make
your database available on the intranet.

Topics:

• Overview of PL/SQL Web Applications

• Implementing PL/SQL Web Applications

• Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

• Using Embedded PL/SQL Gateway

• Generating HTML Output with PL/SQL

• Passing Parameters to PL/SQL Web Applications

• Performing Network Operations in PL/SQL Subprograms

See Also:

Oracle Application Express App Builder User's Guide for information about
using Oracle Application Express

Overview of PL/SQL Web Applications
Typically, a web application written in PL/SQL is a set of stored subprograms that
interact with web browsers through HTTP. A set of interlinked, dynamically generated
HTML pages forms the user interface of a web application.

The program flow of a PL/SQL web application is similar to that in a CGI PERL script.
Developers often use CGI scripts to produce web pages dynamically, but such scripts
are often not optimal for accessing the database. Delivering web content with PL/SQL
stored subprograms provides the power and flexibility of database processing. For
example, you can use data manipulation language (DML) statements, dynamic SQL
statements, and cursors. You also eliminate the process overhead of forking a new
CGI process to handle each HTTP request.

17-1

Figure 17-1 illustrates the generic process for a PL/SQL web application.

Figure 17-1 PL/SQL Web Application

Web

Server

Stored�
Procedure

Web

Browser

PL/SQL�

Web
Toolkit

324

5

1

Implementing PL/SQL Web Applications
You can implement a web browser-based application entirely in PL/SQL with PL/SQL
Gateway or with PL/SQL Web Toolkit.

Topics:

• PL/SQL Gateway

• PL/SQL Web Toolkit

PL/SQL Gateway
The PL/SQL gateway enables a web browser to invoke a PL/SQL stored subprogram
through an HTTP listener. The gateway is a platform on which PL/SQL users develop
and deploy PL/SQL web applications.

mod_plsql
mod_plsql is one implementation of the PL/SQL gateway. The module is a plug-in of
Oracle HTTP Server and enables web browsers to invoke PL/SQL stored
subprograms. Oracle HTTP Server is a component of both Oracle Application Server
and the database.

The mod_plsql plug-in enables you to use PL/SQL stored subprograms to process
HTTP requests and generate responses. In this context, an HTTP request is a URL
that includes parameter values to be passed to a stored subprogram. PL/SQL gateway
translates the URL, invokes the stored subprogram with the parameters, and returns
output (typically HTML) to the client.

Some advantages of using mod_plsql over the embedded form of the PL/SQL
gateway are:

Chapter 17
Implementing PL/SQL Web Applications

17-2

• You can run it in a firewall environment in which the Oracle HTTP Server runs on a
firewall-facing host while the database is hosted behind a firewall. You cannot use
this configuration with the embedded gateway.

• The embedded gateway does not support mod_plsql features such as dynamic
HTML caching, system monitoring, and logging in the Common Log Format.

Embedded PL/SQL Gateway
You can use an embedded version of the PL/SQL gateway that runs in the XML DB
HTTP Listener in the database. It provides the core features of mod_plsql in the
database but does not require the Oracle HTTP Server. You configure the embedded
PL/SQL gateway with the DBMS_EPG package in the PL/SQL Web Toolkit.

Some advantages of using the embedded gateway instead of mod_plsql are:

• You can invoke PL/SQL web applications like Application Express without
installing Oracle HTTP Server, thereby simplifying installation, configuration, and
administration of PL/SQL based web applications.

• You use the same configuration approach that is used to deliver content from
Oracle XML DB in response to FTP and HTTP requests.

PL/SQL Web Toolkit
This set of PL/SQL packages is a generic interface that enables you to use stored
subprograms invoked by mod_plsql at run time.

In response to a browser request, a PL/SQL subprogram updates or retrieves data
from Oracle Database according to the user input. It then generates an HTTP
response to the browser, typically in the form of a file download or HTML to be
displayed. The PL/SQL Web Toolkit API enables stored subprograms to perform
actions such as:

• Obtain information about an HTTP request

• Generate HTTP headers such as content-type and mime-type

• Set browser cookies

• Generate HTML pages

Table 17-1 describes commonly used PL/SQL Web Toolkit packages.

Table 17-1 Commonly Used Packages in the PL/SQL Web Toolkit

Package Description of Contents

HTF Function versions of the subprograms in the htp package. The function
versions do not directly generate output in a web page. Instead, they pass
their output as return values to the statements that invoke them. Use these
functions when you must nest function calls.

HTP Subprograms that generate HTML tags. For example, the procedure
htp.anchor generates the HTML anchor tag, <A>.

OWA_CACHE Subprograms that enable the PL/SQL gateway cache feature to improve
performance of your PL/SQL web application.

You can use this package to enable expires-based and validation-based
caching with the PL/SQL gateway file system.

Chapter 17
Implementing PL/SQL Web Applications

17-3

Table 17-1 (Cont.) Commonly Used Packages in the PL/SQL Web Toolkit

Package Description of Contents

OWA_COOKIE Subprograms that send and retrieve HTTP cookies to and from a client web
browser. Cookies are strings a browser uses to maintain state between
HTTP calls. State can be maintained throughout a client session or longer if
a cookie expiration date is included.

OWA_CUSTOM The authorize function used by cookies.

OWA_IMAGE Subprograms that obtain the coordinates where a user clicked an image. Use
this package when you have an image map whose destination links invoke a
PL/SQL gateway.

OWA_OPT_LOCK Subprograms that impose database optimistic locking strategies to prevent
lost updates. Lost updates can otherwise occur if a user selects, and then
attempts to update, a row whose values were changed in the meantime by
another user.

OWA_PATTERN Subprograms that perform string matching and string manipulation with
regular expressions.

OWA_SEC Subprograms used by the PL/SQL gateway for authenticating requests.

OWA_TEXT Subprograms used by package OWA_PATTERN for manipulating strings. You
can also use them directly.

OWA_UTIL These types of utility subprograms:

• Dynamic SQL utilities to produce pages with dynamically generated SQL
code.

• HTML utilities to retrieve the values of CGI environment variables and
perform URL redirects.

• Date utilities for correct date-handling. Date values are simple strings in
HTML, but must be properly treated as an Oracle Database data type.

WPG_DOCLOAD Subprograms that download documents from a document repository that you
define using the DAD configuration.

See Also:

Oracle Database PL/SQL Packages and Types Reference for syntax,
descriptions, and examples for the PL/SQL Web Toolkit packages

Using mod_plsql Gateway to Map Client Requests to a
PL/SQL Web Application

As explained in detail in the Oracle HTTP Server mod_plsql User's Guide, mod_plsql
maps web client requests to PL/SQL stored subprograms over HTTP. See this
documentation for instructions.

Chapter 17
Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application

17-4

See Also:

• Oracle HTTP Server mod_plsql User's Guide to learn how to configure
and use mod_plsql

• Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server
for information about the mod_plsql module

Using Embedded PL/SQL Gateway
The embedded gateway functions very similar to the mod_plsql gateway.

Topics:

• How Embedded PL/SQL Gateway Processes Client Requests

• Installing Embedded PL/SQL Gateway

• Configuring Embedded PL/SQL Gateway

• Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway

• Securing Application Access with Embedded PL/SQL Gateway

• Restrictions in Embedded PL/SQL Gateway

• Using Embedded PL/SQL Gateway: Scenario

See Also:

Oracle HTTP Server mod_plsql User's Guide

How Embedded PL/SQL Gateway Processes Client Requests
Figure 17-2 illustrates the process by which the embedded gateway handles client
HTTP requests.

Chapter 17
Using Embedded PL/SQL Gateway

17-5

Figure 17-2 Processing Client Requests with Embedded PL/SQL Gateway

Web
Server

Embedded�
PL/SQL�
Gateway

Authentication

Web
Browser

Web
Browser

Web
Browser

4

PL/SQL�
Web

Toolkit

5

327

8

1

Oracle�
XDB�
HTTP�
Listener

User-level�
caching in �
browser

PL/SQL�
Application

6

The explanation of the steps in Figure 17-2 is as follows:

1. The Oracle XML DB HTTP Listener receives a request from a client browser to
request to invoke a PL/SQL subprogram. The subprogram can either be written
directly in PL/SQL or indirectly generated when a PL/SQL Server Page is
uploaded to the database and compiled.

2. The XML DB HTTP Listener routes the request to the embedded PL/SQL gateway
as specified in its virtual-path mapping configuration.

3. The embedded gateway uses the HTTP request information and the gateway
configuration to determine which database account to use for authentication.

4. The embedded gateway prepares the call parameters and invokes the PL/SQL
subprogram in the application.

5. The PL/SQL subprogram generates an HTML page out of relational data and the
PL/SQL Web Toolkit accessed from the database.

6. The application sends the page to the embedded gateway.

7. The embedded gateway sends the page to the XML DB HTTP Listener.

8. The XML DB HTTP Listener sends the page to the client browser.

Unlike mod_plsql, the embedded gateway processes HTTP requests with the Oracle
XML DB Listener. This listener is the same server-side process as the Oracle Net
Listener and supports Oracle Net Services, HTTP, and FTP.

Chapter 17
Using Embedded PL/SQL Gateway

17-6

Configure general HTTP listener settings through the XML DB interface (for
instructions, see Oracle XML DB Developer's Guide). Configure the HTTP listener
either by using Oracle Enterprise Manager Cloud Control (Cloud Control) or by editing
the xdbconfig.xml file. Use the DBMS_EPG package for all embedded PL/SQL gateway
configuration, for example, creating or setting attributes for a DAD.

Installing Embedded PL/SQL Gateway
The embedded gateway requires these components:

• XML DB HTTP Listener

• PL/SQL Web Toolkit

The embedded PL/SQL gateway is installed as part of Oracle XML DB. If you are
using a preconfigured database created during an installation or by the Database
Configuration Assistant (DBCA), then Oracle XML DB is installed and configured.

The PL/SQL Web Toolkit is part of the standard installation of the database, so no
supplementary installation is necessary.

See Also:

Oracle XML DB Developer's Guide for information about manually adding
Oracle XML DB to an existing database

Configuring Embedded PL/SQL Gateway
You configure mod_plsql by editing the Oracle HTTP Server configuration files.
Because the embedded gateway is installed as part of the Oracle XML DB HTTP
Listener, you manage the embedded gateway as a servlet through the Oracle XML DB
servlet management interface.

The configuration interface to the embedded gateway is the PL/SQL package
DBMS_EPG. This package modifies the underlying xdbconfig.xml configuration file that
XML DB uses. The default values of the embedded gateway configuration parameters
are sufficient for most users.

Topics:

• Configuring Embedded PL/SQL Gateway: Overview

• Configuring User Authentication for Embedded PL/SQL Gateway

Configuring Embedded PL/SQL Gateway: Overview
As in mod_plsql, each request for a PL/SQL stored subprogram is associated with a
Database Access Descriptor (DAD). A DAD is a set of configuration values used for
database access. A DAD specifies information such as:

• The database account to use for authentication

• The subprogram to use for uploading and downloading documents

Chapter 17
Using Embedded PL/SQL Gateway

17-7

In the embedded PL/SQL gateway, a DAD is represented as a servlet in the XML DB
HTTP Listener configuration. Each DAD attribute maps to an XML element in the
configuration file xdbconfig.xml. The value of the DAD attribute corresponds to the
element content. For example, the database-username DAD attribute corresponds to
the <database-username> XML element; if the value of the DAD attribute is HR it
corresponds to <database-username>HR<database-username>. DAD attribute names
are case-sensitive.

Use the DBMS_EPG package to perform these embedded PL/SQL gateway
configurations:

1. Create a DAD with the DBMS_EPG.CREATE_DAD procedure.

2. Set DAD attributes with the DBMS_EPG.SET_DAD_ATTRIBUTE procedure.

All DAD attributes are optional. If you do not specify an attribute, it has its initial
value.

Table 17-2 lists the embedded PL/SQL gateway attributes and the corresponding
mod_plsql DAD parameters. Enumeration values in the "Legal Values" column are
case-sensitive.

Table 17-2 Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD Attributes

mod_plsql DAD Attribute Embedded PL/SQL
Gateway DAD Attribute

Multiple
Occurrence
s

Legal Values

PlsqlAfterProcedure after-procedure No String

PlsqlAlwaysDescribeProcedu
re

always-describe-
procedure

No Enumeration of On, Off

PlsqlAuthenticationMode authentication-mode No Enumeration of Basic,
SingleSignOn, GlobalOwa,
CustomOwa, PerPackageOwa

PlsqlBeforeProcedure before-procedure No String

PlsqlBindBucketLengths bind-bucket-lengths Yes Unsigned integer

PlsqlBindBucketWidths bind-bucket-widths Yes Unsigned integer

PlsqlCGIEnvironmentList cgi-environment-list Yes String

PlsqlCompatibilityMode compatibility-mode No Unsigned integer

PlsqlDatabaseUsername database-username No String

PlsqlDefaultPage default-page No String

PlsqlDocumentPath document-path No String

PlsqlDocumentProcedure document-procedure No String

PlsqlDocumentTablename document-table-name No String

PlsqlErrorStyle error-style No Enumeration of ApacheStyle,
ModplsqlStyle, DebugStyle

PlsqlExclusionList exclusion-list Yes String

PlsqlFetchBufferSize fetch-buffer-size No Unsigned integer

PlsqlInfoLogging info-logging No Enumeration of InfoDebug

PlsqlInputFilterEnable input-filter-enable No String

Chapter 17
Using Embedded PL/SQL Gateway

17-8

Table 17-2 (Cont.) Mapping Between mod_plsql and Embedded PL/SQL Gateway DAD
Attributes

mod_plsql DAD Attribute Embedded PL/SQL
Gateway DAD Attribute

Multiple
Occurrence
s

Legal Values

PlsqlMaxRequestsPerSession max-requests-per-
session

No Unsigned integer

PlsqlNLSLanguage nls-language No String

PlsqlOWADebugEnable owa-debug-enable No Enumeration of On, Off

PlsqlPathAlias path-alias No String

PlsqlPathAliasProcedure path-alias-procedure No String

PlsqlRequestValidationFunc
tion

request-validation-
function

No String

PlsqlSessionCookieName session-cookie-name No String

PlsqlSessionStateManagemen
t

session-state-
management

No Enumeration of
StatelessWithResetPackageStat
e,
StatelessWithFastRestPackageS
tate,
StatelessWithPreservePackageS
tate

PlsqlTransferMode transfer-mode No Enumeration of Char, Raw

PlsqlUploadAsLongRaw upload-as-long-raw No String

The default values of the DAD attributes are sufficient for most users of the embedded
gateway. mod_plsql users do not need these attributes:

• PlsqlDatabasePassword

• PlsqlDatabaseConnectString (because the embedded gateway does not support
logon to external databases)

Like the DAD attributes, the global configuration parameters are optional. Table 17-3
describes the DBMS_EPG global attributes and the corresponding mod_plsql global
parameters.

Table 17-3 Mapping Between mod_plsql and Embedded PL/SQL Gateway Global Attributes

mod_plsql DAD Attribute Embedded PL/SQL
Gateway DAD Attribute

Multiple
Occurrence
s

Legal Values

PlsqlLogLevel log-level No Unsigned integer

PlsqlMaxParameters max-parameters No Unsigned integer

Chapter 17
Using Embedded PL/SQL Gateway

17-9

See Also:

• Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server
for detailed descriptions of the mod_plsql DAD attributes. See this
documentation for default values and usage notes.

• Oracle Database PL/SQL Packages and Types Reference to learn about
the DBMS_EPG package

• Oracle XML DB Developer's Guide for an account of the xdbconfig.xml
file

Configuring User Authentication for Embedded PL/SQL Gateway
Because it uses the XML DB authentication schemes, the embedded gateway handles
database authentication differently from mod_plsql. In particular, it does not store
database passwords in a DAD.

Note:

To serve a PL/SQL web application on the Internet but maintain the
database behind a firewall, do not use the embedded PL/SQL gateway to run
the application; use mod_plsql.

Use the DBMS_EPG package to configure database authentication.

Topics:

• Configuring Static Authentication with DBMS_EPG

• Configuring Dynamic Authentication with DBMS_EPG

• Configuring Anonymous Authentication with DBMS_EPG

• Determining the Authentication Mode of a DAD

• Examples: Creating and Configuring DADs

• Example: Determining the Authentication Mode for a DAD

• Example: Determining the Authentication Mode for All DADs

• Example: Showing DAD Authorizations that Are Not in Effect

• Examining Embedded PL/SQL Gateway Configuration

Configuring Static Authentication with DBMS_EPG
Static authentication is for the mod_plsql user who stores database user names and
passwords in the DAD so that the browser user is not required to enter database
authentication information.

To configure static authentication, follow these steps:

Chapter 17
Using Embedded PL/SQL Gateway

17-10

1. Log on to the database as an XML DB administrator (that is, a user with the
XDBADMIN role assigned).

2. Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and
maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

3. For this step, you need the ALTER ANY USER system privilege. Set the DAD attribute
database-username to the database account whose privileges must be used by
the DAD. For example, this procedure specifies that the DAD named HR_DAD has
the privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

The DAD attribute database-username is case-sensitive.

4. Assign the DAD the privileges of the database user specified in the previous step.
This authorization enables end users to invoke procedures and access document
tables through the embedded PL/SQL gateway with the privileges of the
authorized account. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD', 'HR');

Alternatively, you can log off as the user with XDBADMIN privileges, log on as the
database user whose privileges must be used by the DAD, and then use this
command to assign these privileges to the DAD:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

Note:

Multiple users can authorize the same DAD. The database-username
attribute setting of the DAD determines which user's privileges to use.

Unlike mod_plsql, the embedded gateway connects to the database as the special
user ANONYMOUS, but accesses database objects with the user privileges assigned to
the DAD. The database rejects access if the browser user attempts to connect
explicitly with the HTTP Authorization header.

Note:

The account ANONYMOUS is locked after XML DB installation. To use static
authentication with the embedded PL/SQL gateway, first unlock this account.

Configuring Dynamic Authentication with DBMS_EPG
Dynamic authentication is for the mod_plsql user who does not store database user
names and passwords in the DAD.

In dynamic authentication, a database user does not have to authorize the embedded
gateway to use its privileges to access database objects. Instead, browser users must
supply the database authentication information through the HTTP Basic Authentication
scheme.

Chapter 17
Using Embedded PL/SQL Gateway

17-11

The action of the embedded gateway depends on whether the database-username
attribute is set for the DAD. If the attribute is not set, then the embedded gateway
connects to the database as the user supplied by the browser client. If the attribute is
set, then the database restricts access to the user specified in the database-username
attribute.

To set up dynamic authentication, follow these steps:

1. Log on to the database as a an XML DB administrator (that is, a user with the
XDBADMIN role).

2. Create the DAD. For example, this procedure creates a DAD invoked DYNAMIC_DAD
and maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('DYNAMIC_DAD', '/hrweb/*');

3. Optionally, set the DAD attribute database-username to the database account
whose privileges must be used by the DAD. The browser prompts the user to
enter the username and password for this account when accessing the DAD. For
example, this procedure specifies that the DAD named DYNAMIC_DAD has the
privileges of the HR account:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('DYNAMIC_DAD', 'database-username', 'HR');

The attribute database-username is case-sensitive.

WARNING:

Passwords sent through the HTTP Basic Authentication scheme are not
encrypted. Configure the embedded gateway to use the HTTPS protocol to
protect the passwords sent by the browser clients.

Configuring Anonymous Authentication with DBMS_EPG
Anonymous authentication is for the mod_plsql user who creates a special DAD
database user for database logon, but stores the application procedures and
document tables in a different schema and grants access to the procedures and
document tables to PUBLIC.

To set up anonymous authentication, follow these steps:

1. Log on to the database as an XML DB administrator, that is, a user with the
XDBADMIN role assigned.

2. Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and
maps the virtual path to /hrweb/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/hrweb/*');

3. Set the DAD attribute database-username to ANONYMOUS. For example:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'ANONYMOUS');

Both database-username and ANONYMOUS are case-sensitive.

You need not authorize the embedded gateway to use ANONYMOUS privileges to
access database objects, because ANONYMOUS has no system privileges and owns
no database objects.

Chapter 17
Using Embedded PL/SQL Gateway

17-12

Determining the Authentication Mode of a DAD
If you know the name of a DAD, then the authentication mode for this DAD depends
on these factors:

• Does the DAD exist?

• Is the database-username attribute for the DAD set?

• Is the DAD authorized to use the privilege of the database-username user?

• Is the database-username attribute the one that the user authorized to use the
DAD?

Table 17-4 shows how the answers to the preceding questions determine the
authentication mode.

Table 17-4 Authentication Possibilities for a DAD

DAD Exists? database-username set? User authorized? Mode

Yes Yes Yes Static

Yes Yes No Dynamic restricted

Yes No Does not matter Dynamic

Yes Yes (to ANONYMOUS) Does not matter Anonymous

No N/A

For example, assume that you create a DAD named MY_DAD. If the database-username
attribute for MY_DAD is set to HR, but the HR user does not authorize MY_DAD, then the
authentication mode for MY_DAD is dynamic and restricted. A browser user who
attempts to run a PL/SQL subprogram through MY_DAD is prompted to enter the HR
database username and password.

The DBA_EPG_DAD_AUTHORIZATION view shows which users have authorized use of a
DAD. The DAD_NAME column displays the name of the DAD; the USERNAME column
displays the user whose privileges are assigned to the DAD. The DAD authorized
might not exist.

See Also:

Oracle Database Reference for more information about the
DBA_EPG_DAD_AUTHORIZATION view

Examples: Creating and Configuring DADs
Example 17-1 does this:

• Creates a DAD with static authentication for database user HR and assigns it the
privileges of the HR account, which then authorizes it.

• Creates a DAD with dynamic authentication that is not restricted to any user.

• Creates a DAD with dynamic authentication that is restricted to the HR account.

Chapter 17
Using Embedded PL/SQL Gateway

17-13

The creation and authorization of a DAD are independent; therefore you can:

• Authorize a DAD that does not exist (it can be created later)

• Authorize a DAD for which you are not the user (however, the authorization does
not take effect until the DAD database-user attribute is changed to your
username)

Example 17-2 creates a DAD with static authentication for database user HR and
assigns it the privileges of the HR account. Then:

• Instead of authorizing that DAD, the database user HR authorizes a nonexistent
DAD.

Although the user might have done this by mistake, no error occurs, because the
nonexistent DAD might be created later.

• The database user OE authorizes the DAD (whose database-user attribute is set
to HR.

No error occurs, but the authorization does not take effect until the DAD
database-user attribute is changed to OE.

Example 17-1 Creating and Configuring DADs

--
--- DAD with static authentication
--

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*');
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR');
GRANT EXECUTE ON DBMS_EPG TO HR;

-- Authorization
CONNECT HR
PASSWORD: password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD');

--
-- DAD with dynamic authentication
--

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD', '/dynamic/*');

-- DAD with dynamic authentication restricted

EXEC DBMS_EPG.CREATE_DAD('Dynamic_Auth_DAD_Restricted', '/dynamic/*');
EXEC DBMS_EPG.SET_DAD_ATTRIBUTE
 ('Dynamic_Auth_DAD_Restricted', 'database-username', 'HR');

Example 17-2 Authorizing DADs to be Created or Changed Later

REM Create DAD with static authentication for database user HR

CONNECT SYSTEM AS SYSDBA
PASSWORD: password
EXEC DBMS_EPG.CREATE_DAD('Static_Auth_DAD', '/static/*');

Chapter 17
Using Embedded PL/SQL Gateway

17-14

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('Static_Auth_DAD', 'database-username', 'HR');
GRANT EXECUTE ON DBMS_EPG TO HR;

REM Database user HR authorizes DAD that does not exist

CONNECT HR
PASSWORD: password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD_Typo');

REM Database user OE authorizes DAD with database-username 'HR'

CONNECT OE
PASSWORD: password
EXEC DBMS_EPG.AUTHORIZE_DAD('Static_Auth_DAD');

Example: Determining the Authentication Mode for a DAD
Example 17-3 creates a PL/SQL procedure, show_dad_auth_status, which accepts
the name of a DAD and reports its authentication mode. If the specified DAD does not
exist, the procedure exits with an error.

Assume that you have run the script in Example 17-1 to create and configure various
DADs. The output is:

SET SERVEROUTPUT ON;
BEGIN
 show_dad_auth_status('Static_Auth_DAD');
END;
/
'Static_Auth_DAD' is set up for static authentication for user 'HR'.

Example 17-3 Determining the Authentication Mode for a DAD

CREATE OR REPLACE PROCEDURE show_dad_auth_status (p_dadname VARCHAR2) IS
 v_daduser VARCHAR2(128);
 v_cnt PLS_INTEGER;
BEGIN
 -- Determine DAD user
 v_daduser := DBMS_EPG.GET_DAD_ATTRIBUTE(p_dadname, 'database-username');

 -- Determine whether DAD authorization exists for DAD user
 SELECT COUNT(*)
 INTO v_cnt
 FROM DBA_EPG_DAD_AUTHORIZATION da
 WHERE da.DAD_NAME = p_dadname
 AND da.USERNAME = v_daduser;

 -- If DAD authorization exists for DAD user, authentication mode is static
 IF (v_cnt > 0) THEN
 DBMS_OUTPUT.PUT_LINE (
 '''' || p_dadname ||
 ''' is set up for static authentication for user ''' ||
 v_daduser || '''.');
 RETURN;
 END IF;

 -- If no DAD authorization exists for DAD user, authentication mode is dynamic

 -- Determine whether dynamic authentication is restricted to particular user
 IF (v_daduser IS NOT NULL) THEN
 DBMS_OUTPUT.PUT_LINE (

Chapter 17
Using Embedded PL/SQL Gateway

17-15

 '''' || p_dadname ||
 ''' is set up for dynamic authentication for user ''' ||
 v_daduser || ''' only.');
 ELSE
 DBMS_OUTPUT.PUT_LINE (
 '''' || p_dadname ||
 ''' is set up for dynamic authentication for any user.');
 END IF;
END;
/

Example: Determining the Authentication Mode for All DADs
The anonymous block in Example 17-4 reports the authentication modes of all
registered DADs. It invokes the show_dad_auth_status procedure from Example 17-3.

If you have run the script in Example 17-1 to create and configure various DADs, the
output of Example 17-4 is:

---------- Authorization Status for All DADs ----------
'Static_Auth_DAD' is set up for static auth for user 'HR'.
'Dynamic_Auth_DAD' is set up for dynamic auth for any user.
'Dynamic_Auth_DAD_Restricted' is set up for dynamic auth for user 'HR' only.

Example 17-4 Showing the Authentication Mode for All DADs

DECLARE
 v_dad_names DBMS_EPG.VARCHAR2_TABLE;
BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('---------- Authorization Status for All DADs ----------');
 DBMS_EPG.GET_DAD_LIST(v_dad_names);

 FOR i IN 1..v_dad_names.count LOOP
 show_dad_auth_status(v_dad_names(i));
 END LOOP;
END;
/

Example: Showing DAD Authorizations that Are Not in Effect
The anonymous block in Example 17-5 reports DAD authorizations that are not in
effect. A DAD authorization is not in effect in either of these situations:

• The user who authorizes the DAD is not the user specified by the database-
username attribute of the DAD

• The user authorizes a DAD that does not exist

If you have run the script in Example 17-2 to create and configure various DADs, the
output of Example 17-5 (reformatted to fit on the page) is:

---------- DAD Authorizations Not in Effect ----------
DAD authorization of 'Static_Auth_DAD' by user 'OE' is not in effect
 because DAD user is 'HR'.
DAD authorization of 'Static_Auth_DAD_Typo' by user 'HR' is not in effect
 because DAD does not exist.

Chapter 17
Using Embedded PL/SQL Gateway

17-16

Example 17-5 Showing DAD Authorizations that Are Not in Effect

DECLARE
 v_dad_names DBMS_EPG.VARCHAR2_TABLE;
 v_dad_user VARCHAR2(128);
 v_dad_found BOOLEAN;
BEGIN
 DBMS_OUTPUT.PUT_LINE
 ('---------- DAD Authorizations Not in Effect ----------');
 DBMS_EPG.GET_DAD_LIST(v_dad_names);

 FOR r IN (SELECT * FROM DBA_EPG_DAD_AUTHORIZATION) LOOP -- Outer loop
 v_dad_found := FALSE;
 FOR i IN 1..v_dad_names.count LOOP -- Inner loop
 IF (r.DAD_NAME = v_dad_names(i)) THEN
 v_dad_user :=
 DBMS_EPG.GET_DAD_ATTRIBUTE(r.DAD_NAME, 'database-username');

 -- Is database-username the user for whom DAD is authorized?
 IF (r.USERNAME <> v_dad_user) THEN
 DBMS_OUTPUT.PUT_LINE (
 'DAD authorization of ''' || r.dad_name ||
 ''' by user ''' || r.username || '''' ||
 ' is not in effect because DAD user is ' ||
 '''' || v_dad_user || '''.');
 END IF;
 v_dad_found := TRUE;
 EXIT; -- Inner loop
 END IF;
 END LOOP; -- Inner loop

 -- Does DAD exist?
 IF (NOT v_dad_found) THEN
 DBMS_OUTPUT.PUT_LINE (
 'DAD authorization of ''' || r.dad_name ||
 ''' by user ''' || r.username ||
 ''' is not in effect because the DAD does not exist.');
 END IF;
 END LOOP; -- Outer loop
END;
/

Examining Embedded PL/SQL Gateway Configuration
When you are connected to the database as a user with system privileges, this script
helps you examine the configuration of the embedded PL/SQL gateway:

$ORACLE_HOME/rdbms/admin/epgstat.sql

Example 17-6 shows the output of the epgstat.sql script for Example 17-1 when the
ANONYMOUS account is locked.

Example 17-6 epgstat.sql Script Output for Example 17-1

Command to run script:

@$ORACLE_HOME/rdbms/admin/epgstat.sql

Result:

Chapter 17
Using Embedded PL/SQL Gateway

17-17

+--------------------------------------+
| XDB protocol ports: |
| XDB is listening for the protocol |
| when the protocol port is nonzero. |
+--------------------------------------+

HTTP Port FTP Port
--------- --------
 0 0

1 row selected.

+---------------------------+
| DAD virtual-path mappings |
+---------------------------+

Virtual Path DAD Name
-------------------------------- --------------------------------
/dynamic/* Dynamic_Auth_DAD_Restricted
/static/* Static_Auth_DAD

2 rows selected.

+----------------+
| DAD attributes |
+----------------+

DAD Name DAD Param DAD Value
------------ --------------------- --
Dynamic_Auth database-username HR
_DAD_Restric
ted

Static_Auth_ database-username HR
DAD

2 rows selected.

+---+
| DAD authorization: |
| To use static authentication of a user in a DAD, |
| the DAD must be authorized for the user. |
+---+

DAD Name User Name
-------------------------------- --------------------------------
Static_Auth_DAD HR
 OE
Static_Auth_DAD_Typo HR

3 rows selected.

+----------------------------+
| DAD authentication schemes |
+----------------------------+

DAD Name User Name Auth Scheme
-------------------- -------------------------------- ------------------
Dynamic_Auth_DAD Dynamic
Dynamic_Auth_DAD_Res HR Dynamic Restricted

Chapter 17
Using Embedded PL/SQL Gateway

17-18

tricted

Static_Auth_DAD HR Static

3 rows selected.

+--+
| ANONYMOUS user status: |
| To use static or anonymous authentication in any DAD, |
| the ANONYMOUS account must be unlocked. |
+--+

Database User Status
--------------- --------------------
ANONYMOUS EXPIRED & LOCKED

1 row selected.

+---+
| ANONYMOUS access to XDB repository: |
| To allow public access to XDB repository without authentication, |
| ANONYMOUS access to the repository must be allowed. |
+---+

Allow repository anonymous access?

false

1 row selected.

Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL
Gateway

The basic steps for invoking PL/SQL subprograms through the embedded PL/SQL
gateway are the same as for the mod_plsql gateway. See Oracle HTTP Server
mod_plsql User's Guide for instructions. You must adapt the mod_plsql instructions
slightly for use with the embedded gateway. For example, invoke the embedded
gateway in a browser by entering the URL in this format:

protocol://hostname[:port]/virt-path/[[!][schema.][package.]proc_name[?query_str]]

The placeholder virt-path stands for the virtual path that you configured in
DBMS_EPG.CREATE_DAD. The mod_plsql documentation uses DAD_location instead of
virt-path.

Chapter 17
Using Embedded PL/SQL Gateway

17-19

See Also:

• Oracle HTTP Server mod_plsql User's Guide for the following topics:

– Transaction mode

– Supported data types

– Parameter-passing scheme

– File upload and download support

– Path-aliasing

– Common Gateway Interface (CGI) environment variables

Securing Application Access with Embedded PL/SQL Gateway
The embedded gateway shares the same protection mechanism with mod_plsql.

See Also:

Oracle HTTP Server mod_plsql User's Guide

Restrictions in Embedded PL/SQL Gateway
The mod_plsql restrictions apply equally to the embedded gateway. Also, the
embedded version of the gateway does not support these features:

• Dynamic HTML caching

• System monitoring

• Authentication modes other than Basic

See Also:

• Oracle HTTP Server mod_plsql User's Guide for more information about
restrictions

• Oracle HTTP Server mod_plsql User's Guide for information about
authentication modes

Using Embedded PL/SQL Gateway: Scenario
This section illustrates how to write a simple application that queries the hr.employees
table and delivers HTML output to a web browser through the PL/SQL gateway. It
assumes that you have both XML DB and the sample schemas installed.

To write and run the program follow these steps:

Chapter 17
Using Embedded PL/SQL Gateway

17-20

1. Log on to the database as a user with ALTER USER privileges and ensure that the
database account ANONYMOUS is unlocked. The ANONYMOUS account, which is locked
by default, is required for static authentication. If the account is locked, then use
this SQL statement to unlock it:

ALTER USER anonymous ACCOUNT UNLOCK;

2. Log on to the database as an XML DB administrator, that is, a user with the
XDBADMIN role.

To determine which users and roles were granted the XDADMIN role, query the data
dictionary:

SELECT *
FROM DBA_ROLE_PRIVS
WHERE GRANTED_ROLE = 'XDBADMIN';

3. Create the DAD. For example, this procedure creates a DAD invoked HR_DAD and
maps the virtual path to /plsql/:

EXEC DBMS_EPG.CREATE_DAD('HR_DAD', '/plsql/*');

4. Set the DAD attribute database-username to the database user whose privileges
must be used by the DAD. For example, this procedure specifies that the DAD
HR_DAD accesses database objects with the privileges of user HR:

EXEC DBMS_EPG.SET_DAD_ATTRIBUTE('HR_DAD', 'database-username', 'HR');

The attribute database-username is case-sensitive.

5. Grant EXECUTE privilege to the database user whose privileges must be used by
the DAD (so that he or she can authorize the DAD). For example:

GRANT EXECUTE ON DBMS_EPG TO HR;

6. Log off as the XML DB administrator and log on to the database as the database
user whose privileges must be used by the DAD (for example, HR).

7. Authorize the embedded PL/SQL gateway to invoke procedures and access
document tables through the DAD. For example:

EXEC DBMS_EPG.AUTHORIZE_DAD('HR_DAD');

8. Create a sample PL/SQL stored procedure invoked print_employees. This
program creates an HTML page that includes the result set of a query of
hr.employees:

CREATE OR REPLACE PROCEDURE print_employees IS
 CURSOR emp_cursor IS
 SELECT last_name, first_name
 FROM hr.employees
 ORDER BY last_name;
BEGIN
 HTP.PRINT('<html>');
 HTP.PRINT('<head>');
 HTP.PRINT('<meta http-equiv="Content-Type" content="text/html">');
 HTP.PRINT('<title>List of Employees</title>');
 HTP.PRINT('</head>');
 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">');
 HTP.PRINT('<h1>List of Employees</h1>');
 HTP.PRINT('<table width="40%" border="1">');
 HTP.PRINT('<tr>');
 HTP.PRINT('<th align="left">Last Name</th>');
 HTP.PRINT('<th align="left">First Name</th>');

Chapter 17
Using Embedded PL/SQL Gateway

17-21

 HTP.PRINT('</tr>');
 FOR emp_record IN emp_cursor LOOP
 HTP.PRINT('<tr>');
 HTP.PRINT('<td>' || emp_record.last_name || '</td>');
 HTP.PRINT('<td>' || emp_record.first_name || '</td>');
 END LOOP;
 HTP.PRINT('</table>');
 HTP.PRINT('</body>');
 HTP.PRINT('</html>');
END;
/

9. Ensure that the Oracle Net listener can accept HTTP requests. You can determine
the status of the listener on Linux and UNIX by running this command at the
system prompt:

lsnrctl status | grep HTTP

Output (reformatted from a single line to multiple lines from page size constraints):

(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=example.com)(PORT=8080))
 (Presentation=HTTP)
 (Session=RAW)
)

If you do not see the HTTP service started, then you can add these lines to your
initialization parameter file (replacing listener_name with the name of your Oracle
Net local listener), then restart the database and the listener:

dispatchers="(PROTOCOL=TCP)"
local_listener=listener_name

10. Run the print_employees program from your web browser. For example, you can
use this URL, replacing host with the name of your host computer and port with
the value of the PORT parameter in the previous step:

http://host:port/plsql/print_employees

For example, if your host is test.com and your HTTP port is 8080, then enter:

http://example.com:8080/plsql/print_employees

The web browser returns an HTML page with a table that includes the first and last
name of every employee in the hr.employees table.

Generating HTML Output with PL/SQL
Traditionally, PL/SQL web applications use function calls to generate each HTML tag
for output. These functions are part of the PL/SQL Web Toolkit packages that come
with Oracle Database. Example 17-7 shows how to generate a simple HTML page by
calling the HTP functions that correspond to each HTML tag.

An alternative to making function calls that correspond to each tag is to use the
HTP.PRINT function to print both text and tags. Example 17-8 illustrates this technique.

Example 17-7 Using HTP Functions to Generate HTML Tags

CREATE OR REPLACE PROCEDURE html_page IS
BEGIN
 HTP.HTMLOPEN; -- generates <HTML>

Chapter 17
Generating HTML Output with PL/SQL

17-22

 HTP.HEADOPEN; -- generates <HEAD>
 HTP.TITLE('Title'); -- generates <TITLE>Hello</TITLE>
 HTP.HEADCLOSE; -- generates </HTML>

 -- generates <BODY TEXT="#000000" BGCOLOR="#FFFFFF">
 HTP.BODYOPEN(cattributes => 'TEXT="#000000" BGCOLOR="#FFFFFF"');

 -- generates <H1>Heading in the HTML File</H1>
 HTP.HEADER(1, 'Heading in the HTML File');

 HTP.PARA; -- generates <P>
 HTP.PRINT('Some text in the HTML file.');
 HTP.BODYCLOSE; -- generates </BODY>
 HTP.HTMLCLOSE; -- generates </HTML>
END;
/

Example 17-8 Using HTP.PRINT to Generate HTML Tags

CREATE OR REPLACE PROCEDURE html_page2 IS
BEGIN
 HTP.PRINT('<html>');
 HTP.PRINT('<head>');
 HTP.PRINT('<meta http-equiv="Content-Type" content="text/html">');
 HTP.PRINT('<title>Title of the HTML File</title>');
 HTP.PRINT('</head>');
 HTP.PRINT('<body TEXT="#000000" BGCOLOR="#FFFFFF">');
 HTP.PRINT('<h1>Heading in the HTML File</h1>');
 HTP.PRINT('<p>Some text in the HTML file.');
 HTP.PRINT('</body>');
 HTP.PRINT('</html>');
END;
/

Passing Parameters to PL/SQL Web Applications
To be useful in a wide variety of situations, a web application must be interactive
enough to allow user choices. To keep the attention of impatient web surfers,
streamline the interaction so that users can specify these choices very simply, without
excessive decision-making or data entry.

The main methods of passing parameters to PL/SQL web applications are:

• Using HTML form tags. The user fills in a form on one web page, and all the data
and choices are transmitted to a stored subprogram when the user clicks the
Submit button on the page.

• Hard-coded in the URL. The user clicks on a link, and a set of predefined
parameters are transmitted to a stored subprogram. Typically, you include
separate links on your web page for all the choices that the user might want.

Topics:

• Passing List and Dropdown-List Parameters from an HTML Form

• Passing Option and Check Box Parameters from an HTML Form

• Passing Entry-Field Parameters from an HTML Form

• Passing Hidden Parameters from an HTML Form

Chapter 17
Passing Parameters to PL/SQL Web Applications

17-23

• Uploading a File from an HTML Form

• Submitting a Completed HTML Form

• Handling Missing Input from an HTML Form

• Maintaining State Information Between Web Pages

Passing List and Dropdown-List Parameters from an HTML Form
List boxes and drop-down lists are implemented with the HTML tag <SELECT>.

Use a list box for a large number of choices or to allow multiple selections. List boxes
are good for showing items in alphabetical order so that users can find an item quickly
without reading all the choices.

Use a drop-down list in these situations:

• There are a small number of choices

• Screen space is limited.

• Choices are in an unusual order.

The drop-down captures the attention of first-time users and makes them read the
items. If you keep the choices and order consistent, then users can memorize the
motion of selecting an item from the drop-down list, allowing them to make selections
quickly as they gain experience.

Example 17-9 shows a simple drop-down list.

Example 17-9 HTML Drop-Down List

<form>
<select name="seasons">
<option value="winter">Winter
<option value="spring">Spring
<option value="summer">Summer
<option value="fall">Fall
</select>

Passing Option and Check Box Parameters from an HTML Form
Options pass either a null value (if none of the options in a group is checked), or the
value specified on the option that is checked.

To specify a default value for a set of options, you can include the CHECKED attribute in
anINPUT tag, or include a DEFAULT clause on the parameter within the stored
subprogram. When setting up a group of options, be sure to include a choice that
indicates "no preference", because after selecting a option, the user can select a
different one, but cannot clear the selection completely. For example, include a "Don't
Care" or "Don't Know" selection along with "Yes" and "No" choices, in case someone
makes a selection and then realizes it was wrong.

Check boxes need special handling, because your stored subprogram might receive a
null value, a single value, or multiple values:

All the check boxes with the same NAME attribute comprise a check box group. If none
of the check boxes in a group is checked, the stored subprogram receives a null value
for the corresponding parameter.

Chapter 17
Passing Parameters to PL/SQL Web Applications

17-24

If one check box in a group is checked, the stored subprogram receives a single
VARCHAR2 parameter.

If multiple check boxes in a group are checked, the stored subprogram receives a
parameter with the PL/SQL type TABLE OF VARCHAR2. You must declare a type like
TABLE OF VARCHAR2, or use a predefined one like OWA_UTIL.IDENT_ARR. To retrieve the
values, use a loop:

CREATE OR REPLACE PROCEDURE handle_checkboxes (
 checkboxes owa_util.ident_arr
) AS
BEGIN
 FOR i IN 1..checkboxes.count
 LOOP
 htp.print('<p>Check Box value: ' || checkboxes(i));
 END LOOP;
END;
/

Passing Entry-Field Parameters from an HTML Form
Entry fields require the most validation, because a user might enter data in the wrong
format, out of range, and so on. If possible, validate the data on the client side using a
client-side JavaScript function, and format it correctly for the user or prompt them to
enter it again.

For example:

• You might prevent the user from entering alphabetic characters in a numeric entry
field, or from entering characters after reaching a length limit.

• You might silently remove spaces and dashes from a credit card number if the
stored subprogram expects the value in that format.

• You might inform the user immediately when they type a number that is too large,
so that they can retype it.

Because you cannot rely on such validation to succeed, code the stored subprograms
to deal with these cases anyway. Rather than forcing the user to use the Back button
when they enter wrong data, display a single page with an error message and the
original form with all the other values filled in.

For sensitive information such as passwords, a special form of the entry field, <INPUT
TYPE=PASSWORD>, hides the text as it is typed in.

The procedure in Example 17-10 accepts two strings as input. The first time the
procedure is invoked, the user sees a simple form prompting for the input values.
When the user submits the information, the same procedure is invoked again to check
if the input is correct. If the input is OK, the procedure processes it. If not, the
procedure prompts for input, filling in the original values for the user.

Example 17-10 Passing Entry-Field Parameters from an HTML Form

DROP TABLE name_zip_table;
CREATE TABLE name_zip_table (
 name VARCHAR2(100),
 zipcode NUMBER
);

-- Store a name and associated zip code in the database.

Chapter 17
Passing Parameters to PL/SQL Web Applications

17-25

CREATE OR REPLACE PROCEDURE associate_name_with_zipcode
 (name VARCHAR2 := NULL,
 zip VARCHAR2 := NULL)
AS
BEGIN
 -- Each entry field must contain a value. Zip code must be 6 characters.
 -- (In a real program you perform more extensive checking.)

 IF name IS NOT NULL AND zip IS NOT NULL AND length(zip) = 6 THEN
 INSERT INTO name_zip_table (name, zipcode) VALUES (name, zip);

 HTP.PRINT('<p>The person ' || HTP.ESCAPE_SC(name) ||
 ' has the zip code ' || HTP.ESCAPE_SC(zip) || '.');

 -- If input was OK, stop here. User does not see form again.
 RETURN;
 END IF;

 -- If user entered incomplete or incorrect data, show error message.

 IF (name IS NULL AND zip IS NOT NULL)
 OR (name IS NOT NULL AND zip IS NULL)
 OR (zip IS NOT NULL AND length(zip) != 6)
 THEN
 HTP.PRINT('<p>Please reenter data. Fill all fields,
 and use 6-digit zip code.');
 END IF;

 -- If user entered no data or incorrect data, show error message
 -- & make form invoke same procedure to check input values.

 HTP.FORMOPEN('HR.associate_name_with_zipcode', 'GET');
 HTP.PRINT('<p>Enter your name:</td>');

 HTP.PRINT('<td valign=center><input type=text name=name value="' ||
 HTP.ESCAPE_SC(name) || '">');

 HTP.PRINT('<p>Enter your zip code:</td>');

 HTP.PRINT('<td valign=center><input type=text name=zip value="' ||
 HTP.ESCAPE_SC(zip) || '">');

 HTP.FORMSUBMIT(NULL, 'Submit');
 HTP.FORMCLOSE;
END;
/

Passing Hidden Parameters from an HTML Form
One technique for passing information through a sequence of stored subprograms,
without requiring the user to specify the same choices each time, is to include hidden
parameters in the form that invokes a stored subprogram. The first stored subprogram
places information, such as a user name, into the HTML form that it generates. The
value of the hidden parameter is passed to the next stored subprogram, as if the user
had entered it through a option or entry field.

Other techniques for passing information from one stored subprogram to another
include:

Chapter 17
Passing Parameters to PL/SQL Web Applications

17-26

• Sending a "cookie" containing the persistent information to the browser. The
browser then sends this same information back to the server when accessing
other web pages from the same site. Cookies are set and retrieved through the
HTTP headers that are transferred between the browser and the web server
before the HTML text of each web page.

• Storing the information in the database itself, where later stored subprograms can
retrieve it. This technique involves some extra overhead on the database server,
and you must still find a way to keep track of each user as multiple users access
the server at the same time.

Uploading a File from an HTML Form
You can use an HTML form to choose a file on a client system, and transfer it to the
server. A stored subprogram can insert the file into the database as a CLOB, BLOB, or
other type that can hold large amounts of data.

The PL/SQL Web Toolkit and the PL/SQL gateway have the notion of a "document
table" that holds uploaded files.

See Also:

mod_plsql User's Guide

Submitting a Completed HTML Form
By default, an HTML form must have a Submit button, which transmits the data from
the form to a stored subprogram or CGI program. You can label this button with text of
your choice, such as "Search", "Register", and so on.

You can have multiple forms on the same page, each with its own form elements and
Submit button. You can even have forms consisting entirely of hidden parameters,
where the user makes no choice other than clicking the button.

Using JavaScript or other scripting languages, you can eliminate the Submit button
and have the form submitted in response to some other action, such as selecting from
a drop-down list. This technique is best when the user makes a single selection, and
the confirmation step of the Submit button is not essential.

Handling Missing Input from an HTML Form
When an HTML form is submitted, your stored subprogram receives null parameters
for any form elements that are not filled in. For example, null parameters can result
from an empty entry field, a set of check boxes, options, or list items with none
checked, or a VALUE parameter of "" (empty quotation marks).

Regardless of any validation you do on the client side, use code stored subprograms
to handle the possibility that some parameters are null:

• Specify an initial value in all parameter declarations, to prevent an exception when
the stored subprogram is invoked with a missing form parameter. You can set the
initial value to zero for numeric values (when that makes sense), and to NULL when
you want to check whether the user specifies a value.

Chapter 17
Passing Parameters to PL/SQL Web Applications

17-27

• Before using an input parameter value that has the initial value NULL, check if it is
null.

• Make the subprogram generate sensible results even when not all input
parameters are specified. You might leave some sections out of a report, or
display a text string or image in a report to indicate where parameters were not
specified.

• Provide a way to fill in the missing values and run the stored subprogram again,
directly from the results page. For example, include a link that invokes the same
stored subprogram with an additional parameter, or display the original form with
its values filled in as part of the output.

Maintaining State Information Between Web Pages
Web applications are particularly concerned with the idea of state, the set of data that
is current at a particular moment in time. It is easy to lose state information when
switching from one web page to another, which might result in asking the user to make
the same choices repeatedly.

You can pass state information between dynamic web pages using HTML forms. The
information is passed as a set of name-value pairs, which are turned into stored
subprogram parameters for you.

If the user has to make multiple selections, or one selection from many choices, or it is
important to avoid an accidental selection, use an HTML form. After the user makes
and reviews all the choices, they confirm the choices with the Submit button.
Subsequent pages can use forms with hidden parameters (<INPUT TYPE=HIDDEN>
tags) to pass these choices from one page to the next.

If the user is considering one or two choices, or the decision points are scattered
throughout the web page, you can save the user from hunting around for the Submit
button by representing actions as hyperlinks and including any necessary name-value
pairs in the query string (the part after the ? within a URL).

An alternative way to main state information is to use Oracle Application Server and its
mod_ose module. This approach lets you store state information in package variables
that remain available as a user moves around a website.

See Also:

The Oracle Application Server documentation set at:

http://www.oracle.com/technetwork/indexes/documentation/index.html

Performing Network Operations in PL/SQL Subprograms
Oracle provides packages that allow PL/SQL subprograms to perform a set of network
operations using PL/SQL: sending email, getting a host name or address, using
TCP/IP connections, retrieving HTTP URL contents, and using table, image maps,
cookies, and CGI variables.

Topics:

Chapter 17
Performing Network Operations in PL/SQL Subprograms

17-28

http://www.oracle.com/technetwork/indexes/documentation/index.html

• Internet Protocol Version 6 (IPv6) Support

• Sending E-Mail from PL/SQL

• Getting a Host Name or Address from PL/SQL

• Using TCP/IP Connections from PL/SQL

• Retrieving HTTP URL Contents from PL/SQL

• Using Tables_ Image Maps_ Cookies_ and CGI Variables from PL/SQL

Internet Protocol Version 6 (IPv6) Support
As of Oracle Database 11g Release 2 (11.2.0.1), PL/SQL network utility packages
support IPv6 addresses.

The package interfaces have not changed: Any interface parameter that expects a
network host accepts an IPv6 address in string form, and any interface that returns an
IP address can return an IPv6 address.

However, applications that use network addresses might need small changes, and
recompilation, to accommodate IPv6 addresses. An IPv6 address has 128 bits, while
an IPv4 address has 32 bits. In a URL, an IPv6 address must be enclosed in brackets.
For example:

http://[2001:0db8:85a3:08d3:1319:8a2e:0370:7344]/

See Also:

• Oracle Database Net Services Administrator's Guide for detailed
information about IPv6 support in Oracle Database

• Oracle Database PL/SQL Packages and Types Reference for
information about IPv6 support in specific PL/SQL network utility
packages

Sending E-Mail from PL/SQL
Using the UTL_SMTP package, a PL/SQL subprogram can send e-mail, as in
Example 17-11.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_SMTP package

Example 17-11 Sending E-Mail from PL/SQL

CREATE OR REPLACE PROCEDURE send_test_message
IS
 mailhost VARCHAR2(64) := 'mailhost.example.com';
 sender VARCHAR2(64) := 'me@example.com';

Chapter 17
Performing Network Operations in PL/SQL Subprograms

17-29

 recipient VARCHAR2(64) := 'you@example.com';
 mail_conn UTL_SMTP.CONNECTION;
BEGIN
 mail_conn := UTL_SMTP.OPEN_CONNECTION(mailhost, 25); -- 25 is the port
 UTL_SMTP.HELO(mail_conn, mailhost);
 UTL_SMTP.MAIL(mail_conn, sender);
 UTL_SMTP.RCPT(mail_conn, recipient);

 UTL_SMTP.OPEN_DATA(mail_conn);
 UTL_SMTP.WRITE_DATA(mail_conn, 'This is a test message.' || chr(13));
 UTL_SMTP.WRITE_DATA(mail_conn, 'This is line 2.' || chr(13));
 UTL_SMTP.CLOSE_DATA(mail_conn);

 /* If message were in single string, open_data(), write_data(),
 and close_data() could be in a single call to data(). */

 UTL_SMTP.QUIT(mail_conn);
EXCEPTION
 WHEN OTHERS THEN
 -- Insert error-handling code here
 RAISE;
END;
/

Getting a Host Name or Address from PL/SQL
Using the UTL_INADDR package, a PL/SQL subprogram can determine the host name
of the local system or the IP address of a given host name.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_INADDR package

Using TCP/IP Connections from PL/SQL
Using the UTL_TCP package, a PL/SQL subprogram can open TCP/IP connections to
systems on the network, and read or write to the corresponding sockets.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_TCP package

Retrieving HTTP URL Contents from PL/SQL
Using the UTL_HTTP package, a PL/SQL subprogram can:

• Retrieve the contents of an HTTP URL

Chapter 17
Performing Network Operations in PL/SQL Subprograms

17-30

The contents are usually in the form of HTML-tagged text, but might be any kind of
file that can be downloaded from a web server (for example, plain text or a JPEG
image).

• Control HTTP session details (such as headers, cookies, redirects, proxy servers,
IDs and passwords for protected sites, and CGI parameters)

• Speed up multiple accesses to the same website, using HTTP 1.1 persistent
connections

A PL/SQL subprogram can construct and interpret URLs for use with the UTL_HTTP
package by using the functions UTL_URL.ESCAPE and UTL_URL.UNESCAPE.

The PL/SQL procedure in Example 17-12 uses the UTL_HTTP package to retrieve the
contents of an HTTP URL.

This block shows examples of calls to the procedure in Example 17-12, but the URLs
are for nonexistent pages. Substitute URLs from your own web server.

BEGIN
 show_url('http://www.oracle.com/no-such-page.html');
 show_url('http://www.oracle.com/protected-page.html');
 show_url
 ('http://www.oracle.com/protected-page.html','username','password');
END;
/

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_HTTP package

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about UTL_URL.ESCAPE and UTL_URL.UNESCAPE

Example 17-12 Retrieving HTTP URL Contents from PL/SQL

CREATE OR REPLACE PROCEDURE show_url
 (url IN VARCHAR2,
 username IN VARCHAR2 := NULL,
 password IN VARCHAR2 := NULL)
AS
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 name_ VARCHAR2(256);
 value_ VARCHAR2(1024);
 data_ VARCHAR2(255);
 my_scheme VARCHAR2(256);
 my_realm VARCHAR2(256);
 my_proxy BOOLEAN;
BEGIN
 -- When going through a firewall, pass requests through this host.
 -- Specify sites inside the firewall that do not need the proxy host.

 UTL_HTTP.SET_PROXY('proxy.example.com', 'corp.example.com');

 -- Ask UTL_HTTP not to raise an exception for 4xx and 5xx status codes,
 -- rather than just returning the text of the error page.

Chapter 17
Performing Network Operations in PL/SQL Subprograms

17-31

 UTL_HTTP.SET_RESPONSE_ERROR_CHECK(FALSE);

 -- Begin retrieving this web page.
 req := UTL_HTTP.BEGIN_REQUEST(url);

 -- Identify yourself.
 -- Some sites serve special pages for particular browsers.
 UTL_HTTP.SET_HEADER(req, 'User-Agent', 'Mozilla/4.0');

 -- Specify user ID and password for pages that require them.
 IF (username IS NOT NULL) THEN
 UTL_HTTP.SET_AUTHENTICATION(req, username, password);
 END IF;

 -- Start receiving the HTML text.
 resp := UTL_HTTP.GET_RESPONSE(req);

 -- Show status codes and reason phrase of response.
 DBMS_OUTPUT.PUT_LINE('HTTP response status code: ' || resp.status_code);
 DBMS_OUTPUT.PUT_LINE
 ('HTTP response reason phrase: ' || resp.reason_phrase);

 -- Look for client-side error and report it.
 IF (resp.status_code >= 400) AND (resp.status_code <= 499) THEN

 -- Detect whether page is password protected
 -- and you didn't supply the right authorization.

 IF (resp.status_code = UTL_HTTP.HTTP_UNAUTHORIZED) THEN
 UTL_HTTP.GET_AUTHENTICATION(resp, my_scheme, my_realm, my_proxy);
 IF (my_proxy) THEN
 DBMS_OUTPUT.PUT_LINE('Web proxy server is protected.');
 DBMS_OUTPUT.PUT('Please supply the required ' || my_scheme ||
 ' authentication username for realm ' || my_realm ||
 ' for the proxy server.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Web page ' || url || ' is protected.');
 DBMS_OUTPUT.PUT('Please supplied the required ' || my_scheme ||
 ' authentication username for realm ' || my_realm ||
 ' for the web page.');
 END IF;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Check the URL.');
 END IF;

 UTL_HTTP.END_RESPONSE(resp);
 RETURN;

 -- Look for server-side error and report it.
 ELSIF (resp.status_code >= 500) AND (resp.status_code <= 599) THEN
 DBMS_OUTPUT.PUT_LINE('Check if the website is up.');
 UTL_HTTP.END_RESPONSE(resp);
 RETURN;
 END IF;

 -- HTTP header lines contain information about cookies, character sets,
 -- and other data that client and server can use to customize each
 -- session.

 FOR i IN 1..UTL_HTTP.GET_HEADER_COUNT(resp) LOOP

Chapter 17
Performing Network Operations in PL/SQL Subprograms

17-32

 UTL_HTTP.GET_HEADER(resp, i, name_, value_);
 DBMS_OUTPUT.PUT_LINE(name_ || ': ' || value_);
 END LOOP;

 -- Read lines until none are left and an exception is raised.
 LOOP
 UTL_HTTP.READ_LINE(resp, value_);
 DBMS_OUTPUT.PUT_LINE(value_);
 END LOOP;
EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 UTL_HTTP.END_RESPONSE(resp);
END;
/

Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL
Using packages supplied by Oracle, and the mod_plsql plug-in of Oracle HTTP Server
(OHS), a PL/SQL subprogram can format the results of a query in an HTML table,
produce an image map, set and get HTTP cookies, check the values of CGI variables,
and perform other typical web operations.

Documentation for these packages is not part of the database documentation library.
The location of the documentation depends on your application server. To get started
with these packages, look at their subprogram names and parameters using the
SQL*Plus DESCRIBE statement:

DESCRIBE HTP;
DESCRIBE HTF;
DESCRIBE OWA_UTIL;

Chapter 17
Performing Network Operations in PL/SQL Subprograms

17-33

18
Using Continuous Query Notification
(CQN)

Continuous Query Notification (CQN) lets an application register queries with the
database for either object change notification (the default) or query result change
notification. An object referenced by a registered query is a registered object.

If a query is registered for object change notification (OCN), the database notifies
the application whenever a transaction changes an object that the query references
and commits, regardless of whether the query result changed.

If a query is registered for query result change notification (QRCN), the database
notifies the application whenever a transaction changes the result of the query and
commits.

A CQN registration associates a list of one or more queries with a notification type
(OCN or QRCN) and a notification handler. To create a CQN registration, you can use
either the PL/SQL interface or Oracle Call Interface (OCI). If you use the PL/SQL
interface, the notification handler is a server-side PL/SQL stored procedure; if you use
OCI, the notification handler is a client-side C callback procedure.

This chapter explains general CQN concepts and explains how to use the PL/SQL
CQN interface.

Topics:

• About Object Change Notification (OCN)

• About Query Result Change Notification (QRCN)

• Events that Generate Notifications

• Notification Contents

• Good Candidates for CQN

• Creating CQN Registrations

• Using PL/SQL to Create CQN Registrations

• Using OCI to Create CQN Registrations

• Querying CQN Registrations

• Interpreting Notifications

Note:

The terms OCN and QRCN refer to both the notification type and the
notification itself: An application registers a query for OCN, and the database
sends the application an OCN; an application registers a query for QRCN,
and the database sends the application a QRCN.

18-1

See Also:

Oracle Call Interface Programmer's Guide for information about using OCI
for CQN

About Object Change Notification (OCN)
If an application registers a query for object change notification (OCN), the database
sends the application an OCN whenever a transaction changes an object associated
with the query and commits, regardless of whether the result of the query changed.

For example, if an application registers the query in Example 18-1 for OCN, and a user
commits a transaction that changes the EMPLOYEES table, the database sends the
application an OCN, even if the changed row or rows did not satisfy the query
predicate (for example, if DEPARTMENT_ID = 5).

Example 18-1 Query to be Registered for Change Notification

SELECT EMPLOYEE_ID, SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 10;

About Query Result Change Notification (QRCN)

Note:

For QRCN support, the COMPATIBLE initialization parameter of the database
must be at least 11.0.0, and Automatic Undo Management (AUM) must be
enabled (as it is by default).

If an application registers a query for query result change notification (QRCN), the
database sends the application a QRCN whenever a transaction changes the result of
the query and commits.

For example, if an application registers the query in Example 18-1 for QRCN, the
database sends the application a QRCN only if the query result set changes; that is, if
one of these data manipulation language (DML) statements commits:

• An INSERT or DELETE of a row that satisfies the query predicate (DEPARTMENT_ID =
10).

• An UPDATE to the EMPLOYEE_ID or SALARY column of a row that satisfied the query
predicate (DEPARTMENT_ID = 10).

• An UPDATE to the DEPARTMENT_ID column of a row that changed its value from 10 to
a value other than 10, causing the row to be deleted from the result set.

• An UPDATE to the DEPARTMENT_ID column of a row that changed its value to 10 from
a value other than 10, causing the row to be added to the result set.

The default notification type is OCN. For QRCN, specify QOS_QUERY in the QOSFLAGS
attribute of the CQ_NOTIFICATION$_REG_INFO object.

Chapter 18
About Object Change Notification (OCN)

18-2

With QRCN, you have a choice of guaranteed mode (the default) or best-effort mode.

Topics:

• Guaranteed Mode

• Best-Effort Mode

See Also:

• Oracle Database Administrator's Guide for information about the
COMPATIBLE initialization parameter

• Oracle Database Administrator's Guide for information about AUM

Guaranteed Mode
In guaranteed mode, there are no false positives: the database sends the application a
QRCN only when the query result set is guaranteed to have changed.

For example, suppose that an application registered the query in Example 18-1 for
QRCN, that employee 201 is in department 10, and that these statements are
executed:

UPDATE EMPLOYEES
SET SALARY = SALARY + 10
WHERE EMPLOYEE_ID = 201;

UPDATE EMPLOYEES
SET SALARY = SALARY - 10
WHERE EMPLOYEE_ID = 201;

COMMIT;

Each UPDATE statement in the preceding transaction changes the query result set, but
together they have no effect on the query result set; therefore, the database does not
send the application a QRCN for the transaction.

For guaranteed mode, specify QOS_QUERY, but not QOS_BEST_EFFORT, in the QOSFLAGS
attribute of the CQ_NOTIFICATION$_REG_INFO object.

Some queries are too complex for QRCN in guaranteed mode.

See Also:

Queries that Can Be Registered for QRCN in Guaranteed Mode for the
characteristics of queries that can be registered in guaranteed mode

Best-Effort Mode
Some queries that are too complex for guaranteed mode can be registered for QRCN
in best-effort mode, in which CQN creates and registers simpler versions of them.

Chapter 18
About Query Result Change Notification (QRCN)

18-3

The following two examples demonstrate how this works:

• Example: Query Too Complex for QRCN in Guaranteed Mode

• Example: Query Whose Simplified Version Invalidates Objects

Example: Query Too Complex for QRCN in Guaranteed Mode
The query in Example 18-2 is too complex for QRCN in guaranteed mode because it
contains the aggregate function SUM.

Example 18-2 Query Too Complex for QRCN in Guaranteed Mode

SELECT SUM(SALARY)
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 20;

In best-effort mode, CQN registers this simpler version of the query in this example:

SELECT SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 20;

Whenever the result of the original query changes, the result of its simpler version also
changes; therefore, no notifications are lost from the simplification. However, the
simplification might cause false positives, because the result of the simpler version can
change when the result of the original query does not.

In best-effort mode, the database:

• Minimizes the OLTP response overhead that is from notification-related
processing, as follows:

– For a single-table query, the database determines whether the query result
has changed by which columns changed and which predicates the changed
rows satisfied.

– For a multiple-table query (a join), the database uses the primary-key/foreign-
key constraint relationships between the tables to determine whether the
query result has changed.

• Sends the application a QRCN whenever a DML statement changes the query
result set, even if a subsequent DML statement nullifies the change made by the
first DML statement.

The overhead minimization of best-effort mode infrequently causes false positives,
even for queries that CQN does not simplify. For example, consider the query in this
example and the transaction in Guaranteed Mode. In best-effort mode, CQN does not
simplify the query, but the transaction generates a false positive.

Example: Query Whose Simplified Version Invalidates Objects
Some types of queries are so simplified that invalidations are generated at object level;
that is, whenever any object referenced in those queries changes. Examples of such
queries are those that use unsupported column types or include subqueries. The
solution to this problem is to rewrite the original queries.

For example, the query in Example 18-3 is too complex for QRCN in guaranteed mode
because it includes a subquery.

Chapter 18
About Query Result Change Notification (QRCN)

18-4

Example 18-3 Query Whose Simplified Version Invalidates Objects

SELECT SALARY
FROM EMPLOYEES
WHERE DEPARTMENT_ID IN (
 SELECT DEPARTMENT_ID
 FROM DEPARTMENTS
 WHERE LOCATION_ID = 1700
);

In best-effort mode, CQN simplifies the query in this example to this:

SELECT * FROM EMPLOYEES, DEPARTMENTS;

The simplified query can cause objects to be invalidated. However, if you rewrite the
original query as follows, you can register it in either guaranteed mode or best-effort
mode:

SELECT SALARY
FROM EMPLOYEES, DEPARTMENTS
WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
 AND DEPARTMENTS.LOCATION_ID = 1700;

Queries that can be registered only in best-effort mode are described in Queries that
Can Be Registered for QRCN Only in Best-Effort Mode.

The default for QRCN mode is guaranteed mode. For best-effort mode, specify
QOS_BEST_EFFORT in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

Events that Generate Notifications
These events generate notifications:

• Committed DML Transactions

• Committed DDL Statements

• Deregistration

• Global Events

Committed DML Transactions
When the notification type is OCN, any DML transaction that changes one or more
registered objects generates one notification for each object when it commits.

When the notification type is QRCN, any DML transaction that changes the result of
one or more registered queries generates a notification when it commits. The
notification includes the query IDs of the queries whose results changed.

For either notification type, the notification includes:

• Name of each changed table

• Operation type (INSERT, UPDATE, or DELETE)

• ROWID of each changed row, if the registration was created with the ROWID option
and the number of modified rows was not too large.

Chapter 18
Events that Generate Notifications

18-5

See Also:

ROWID Option

Committed DDL Statements
For both OCN and QRCN, these data definition language (DDL) statements, when
committed, generate notifications:

• ALTER TABLE

• TRUNCATE TABLE

• FLASHBACK TABLE

• DROP TABLE

Note:

When the notification type is OCN, a committed DROP TABLE statement
generates a DROP NOTIFICATION.

Any OCN registrations of queries on the dropped table become
disassociated from that table (which no longer exists), but the registrations
themselves continue to exist. If any of these registrations are associated with
objects other than the dropped table, committed changes to those other
objects continue to generate notifications. Registrations associated only with
the dropped table also continue to exist, and their creator can add queries
(and their referenced objects) to them.

An OCN registration is based on the version and definition of an object at the
time the query was registered. If an object is dropped, registrations on that
object are disassociated from it forever. If an object is created with the same
name, and in the same schema, as the dropped object, the created object is
not associated with OCN registrations that were associated with the dropped
object.

When the notification type is QRCN:

• The notification includes:

– Query IDs of the queries whose results have changed

– Name of the modified table

– Type of DDL operation

• Some DDL operations that invalidate registered queries can cause those queries
to be deregistered.

For example, suppose that this query is registered for QRCN:

SELECT COL1 FROM TEST_TABLE
 WHERE COL2 = 1;

Chapter 18
Events that Generate Notifications

18-6

Suppose that TEST_TABLE has this schema:

(COL1 NUMBER, COL2 NUMBER, COL3 NUMBER)

This DDL statement, when committed, invalidates the query and causes it to be
removed from the registration:

ALTER TABLE DROP COLUMN COL2;

Deregistration
For both OCN and QRCN, deregistration—removal of a registration from the database
—generates a notification. The reasons that the database removes a registration are:

• Timeout

If TIMEOUT is specified with a nonzero value when the queries are registered, the
database purges the registration after the specified time interval.

If QOS_DEREG_NFY is specified when the queries are registered, the database
purges the registration after it generates its first notification.

• Loss of privileges

If privileges are lost on an object associated with a registered query, and the
notification type is OCN, the database purges the registration. (When the
notification type is QRCN, the database removes that query from the registration,
but does not purge the registration.)

A notification is not generated when a client application performs an explicit
deregistration.

See Also:

Prerequisites for Creating CQN Registrations for privileges required to
register queries

Global Events
The global events EVENT_STARTUP and EVENT_SHUTDOWN generate notifications.

In an Oracle RAC environment, these events generate notifications:

• EVENT_STARTUP when the first instance of the database starts

• EVENT_SHUTDOWN when the last instance of the database shuts down

• EVENT_SHUTDOWN_ANY when any instance of the database shuts down

The preceding global events are constants defined in the DBMS_CQ_NOTIFICATION
package.

Chapter 18
Events that Generate Notifications

18-7

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_CQ_NOTIFICATION package

Notification Contents
A notification contains some or all of this information:

• Type of event, which is one of:

– Startup

– Object change

– Query result change

– Deregistration

– Shutdown

• Registration ID of affected registration

• Names of changed objects

• If ROWID option was specified, ROWIDs of changed rows

• If the notification type is QRCN: Query IDs of queries whose results changed

• If notification resulted from a DML or DDL statement:

– Array of names of modified tables

– Operation type (for example, INSERT or UPDATE)

A notification does not contain the changed data itself. For example, the notification
does not say that a monthly salary increased from 5000 to 6000. To obtain more
recent values for the changed objects or rows or query results, the application must
query the database.

Good Candidates for CQN
Good candidates for CQN are applications that cache the result sets of queries on
infrequently changed objects in the middle tier, to avoid network round trips to the
database. These applications can use CQN to register the queries to be cached.
When such an application receives a notification, it can refresh its cache by rerunning
the registered queries.

An example of such an application is a web forum. Because its users need not view
content as soon as it is inserted into the database, this application can cache
information in the middle tier and have CQN tell it when it when to refresh the cache.

Figure 18-1 illustrates a typical scenario in which the database serves data that is
cached in the middle tier and then accessed over the Internet.

Chapter 18
Notification Contents

18-8

Figure 18-1 Middle-Tier Caching

Oracle
Database

Application
Web Servers

OracleAS
Web

Cache

HTTP�

and�

HTTPs

HTTP

and

HTTPS

Internet

Oracle

Net

OracleAS

Internet

Applications in the middle tier require rapid access to cached copies of database
objects while keeping the cache as current as possible in relation to the database.
Cached data becomes obsolete when a transaction modifies the data and commits,
thereby putting the application at risk of accessing incorrect results. If the application
uses CQN, the database can publish a notification when a change occurs to registered
objects with details on what changed. In response to the notification, the application
can refresh cached data by fetching it from the back-end database.

Figure 18-2 illustrates the process by which middle-tier web clients receive and
process notifications.

Chapter 18
Good Candidates for CQN

18-9

Figure 18-2 Basic Process of Continuous Query Notification (CQN)

Client�
Application

User�
Objects

Data�
Dictionary

3

1

2

Invalidation

Queue

Oracle�

Database

user

user

DML

Web
Cache

Middle Tier

Client notification

Registration
through OCI
or PL/SQL

5

4

6

9

JOBQ
Process

7 PL/SQL�

8

Explanation of steps in Figure 18-2 (if registrations are created using PL/SQL and that
the application has cached the result set of a query on HR.EMPLOYEES):

1. The developer uses PL/SQL to create a CQN registration for the query, which
consists of creating a stored PL/SQL procedure to process notifications and then
using the PL/SQL CQN interface to create a registration for the query, specifying
the PL/SQL procedure as the notification handler.

2. The database populates the registration information in the data dictionary.

3. A user updates a row in the HR.EMPLOYEES table in the back-end database and
commits the update, causing the query result to change. The data for
HR.EMPLOYEES cached in the middle tier is now outdated.

4. The database adds a message that describes the change to an internal queue.

5. The database notifies a JOBQ background process of a notification message.

6. The JOBQ process runs the stored procedure specified by the client application. In
this example, JOBQ passes the data to a server-side PL/SQL procedure. The
implementation of the PL/SQL notification handler determines how the notification
is handled.

7. Inside the server-side PL/SQL procedure, the developer can implement logic to
notify the middle-tier client application of the changes to the registered objects. For
example, it notifies the application of the ROWID of the changed row in
HR.EMPLOYEES.

8. The client application in the middle tier queries the back-end database to retrieve
the data in the changed row.

9. The client application updates the cache with the data.

Chapter 18
Good Candidates for CQN

18-10

Creating CQN Registrations
A CQN registration associates a list of one or more queries with a notification type
and a notification handler.

The notification type is either OCN or QRCN.

To create a CQN registration, you can use one of two interfaces:

• PL/SQL interface

If you use the PL/SQL interface, the notification handler is a server-side PL/SQL
stored procedure.

• Oracle Call Interface (OCI)

If you use OCI, the notification handler is a client-side C callback procedure.

After being created, a registration is stored in the database. In an Oracle RAC
environment, it is visible to all database instances. Transactions that change the query
results in any database instance generate notifications.

By default, a registration survives until the application that created it explicitly
deregisters it or until the database implicitly purges it (from loss of privileges, for
example).

See Also:

• About Object Change Notification (OCN)

• About Query Result Change Notification (QRCN)

• Using PL/SQL to Create CQN Registrations

• Using OCI to Create CQN Registrations

Using PL/SQL to Create CQN Registrations
This section describes using PL/SQL to create CQN registrations. When you use the
PL/SQL interface, the notification handler is a server-side PL/SQL stored procedure.

Topics:

• PL/SQL CQN Registration Interface

• CQN Registration Options

• Prerequisites for Creating CQN Registrations

• Queries that Can Be Registered for Object Change Notification (OCN)

• Queries that Can Be Registered for Query Result Change Notification (QRCN)

• Using PL/SQL to Register Queries for CQN

• Best Practices for CQN Registrations

• Troubleshooting CQN Registrations

Chapter 18
Creating CQN Registrations

18-11

• Deleting Registrations

• Configuring CQN: Scenario

PL/SQL CQN Registration Interface
The PL/SQL CQN registration interface is implemented with the
DBMS_CQ_NOTIFICATION package. You use the DBMS_CQ_NOTIFICATION.NEW_REG_START
function to open a registration block. You specify the registration details, including the
notification type and notification handler, as part of the CQ_NOTIFICATION$_REG_INFO
object, which is passed as an argument to the NEW_REG_START procedure. Every query
that you run while the registration block is open is registered with CQN. If you specified
notification type QRCN, the database assigns a query ID to each query. You can
retrieve these query IDs with the DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID
function. To close the registration block, you use the DBMS_CQ_NOTIFICATION.REG_END
function.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_CQ_NOTIFICATION package

• Using PL/SQL to Register Queries for CQN

CQN Registration Options
You can change the CQN registration defaults with the options summarized in
Table 18-1.

Table 18-1 Continuous Query Notification Registration Options

Option Description

Notification Type Specifies QRCN (the default is OCN).

QRCN Mode1 Specifies best-effort mode (the default is guaranteed mode).

ROWID Includes the value of the ROWID pseudocolumn for each changed
row in the notification.

Operations Filter2 Publishes the notification only if the operation type matches the
specified filter condition.

Transaction Lag2 Deprecated. Use Notification Grouping instead.

Notification Grouping Specifies how notifications are grouped.

Reliable Stores notifications in a persistent database queue (instead of in
shared memory, the default).

Purge on Notify Purges the registration after the first notification.

Timeout Purges the registration after a specified time interval.

1 Applies only when notification type is QRCN.
2 Applies only when notification type is OCN.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-12

Topics:

• Notification Type Option

• QRCN Mode (QRCN Notification Type Only)

• ROWID Option

• Operations Filter Option (OCN Notification Type Only)

• Transaction Lag Option (OCN Notification Type Only)

• Notification Grouping Options

• Reliable Option

• Purge-on-Notify and Timeout Options

Notification Type Option
The notification types are OCN and QRCN .

See Also:

• About Object Change Notification (OCN)

• About Query Result Change Notification (QRCN)

QRCN Mode (QRCN Notification Type Only)
The QRCN mode option applies only when the notification type is QRCN. Instructions
for setting the notification type to QRCN are in Notification Type Option.

QRCN modes are:

• guaranteed

• best-effort

The default is guaranteed mode. For best-effort mode, specify QOS_BEST_EFFORT in the
QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

See Also:

• Guaranteed Mode

• Best-Effort Mode

ROWID Option
The ROWID option includes the value of the ROWID pseudocolumn (the rowid of the row)
for each changed row in the notification. To include the ROWID option of each changed
row in the notification, specify QOS_ROWIDS in the QOSFLAGS attribute of the
CQ_NOTIFICATION$_REG_INFO object.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-13

Note:

When you update a row in a table compressed with Hybrid Columnar
Compression (HCC), the ROWID of the row changes. HCC, a feature of
certain Oracle storage systems, is described in Oracle Database Concepts.

From the ROWID information in the notification, the application can retrieve the contents
of the changed rows by performing queries of this form:

SELECT * FROM table_name_from_notification
WHERE ROWID = rowid_from_notification;

ROWIDs are published in the external string format. For a regular heap table, the length
of a ROWID is 18 character bytes. For an Index Organized Table (IOT), the length of the
ROWID depends on the size of the primary key, and might exceed 18 bytes.

If the server does not have enough memory for the ROWIDs, the notification might be
"rolled up" into a FULL-TABLE-NOTIFICATION, indicated by a special flag in the
notification descriptor. Possible reasons for a FULL-TABLE-NOTIFICATION are:

• Total shared memory consumption from ROWIDs exceeds 1% of the dynamic
shared pool size.

• Too many rows were changed in a single registered object within a transaction
(the upper limit is approximately 80).

• Total length of the logical ROWIDs of modified rows for an IOT is too large (the
upper limit is approximately 1800 bytes).

• You specified the Notification Grouping option NTFN_GROUPING_TYPE with the value
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY, described in Notification
Grouping Options.

Because a FULL-TABLE-NOTIFICATION does not include ROWIDs, the application that
receives it must assume that the entire table (that is, all rows) might have changed.

Operations Filter Option (OCN Notification Type Only)
The Operations Filter option applies only when the notification type is OCN.

The Operations Filter option enables you to specify the types of operations that
generate notifications.

The default is all operations. To specify that only some operations generate
notifications, use the OPERATIONS_FILTER attribute of the CQ_NOTIFICATION$_REG_INFO
object. With the OPERATIONS_FILTER attribute, specify the type of operation with the
constant that represents it, which is defined in the DBMS_CQ_NOTIFICATION package, as
follows:

Operation Constant

INSERT DBMS_CQ_NOTIFICATION.INSERTOP

UPDATE DBMS_CQ_NOTIFICATION.UPDATEOP

DELETE DBMS_CQ_NOTIFICATION.DELETEOP

Chapter 18
Using PL/SQL to Create CQN Registrations

18-14

Operation Constant

ALTEROP DBMS_CQ_NOTIFICATION.ALTEROP

DROPOP DBMS_CQ_NOTIFICATION.DROPOP

UNKNOWNOP DBMS_CQ_NOTIFICATION.UNKNOWNOP

All (default) DBMS_CQ_NOTIFICATION.ALL_OPERATIONS

To specify multiple operations, use bitwise OR. For example:

DBMS_CQ_NOTIFICATION.INSERTOP + DBMS_CQ_NOTIFICATION.DELETEOP

OPERATIONS_FILTER has no effect if you also specify QOS_QUERY in the QOSFLAGS
attribute, because QOS_QUERY specifies notification type QRCN.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_CQ_NOTIFICATION package

Transaction Lag Option (OCN Notification Type Only)
The Transaction Lag option applies only when the notification type is OCN.

Note:

This option is deprecated. To implement flow-of-control notifications, use
Notification Grouping Options.

The Transaction Lag option specifies the number of transactions by which the client
application can lag behind the database. If the number is 0, every transaction that
changes a registered object results in a notification. If the number is 5, every fifth
transaction that changes a registered object results in a notification. The database
tracks intervening changes at object granularity and includes them in the notification,
so that the client does not lose them.

A transaction lag greater than 0 is useful only if an application implements flow-of-
control notifications. Ensure that the application generates notifications frequently
enough to satisfy the lag, so that they are not deferred indefinitely.

If you specify TRANSACTION_LAG, then notifications do not include ROWIDs, even if you
also specified QOS_ROWIDS.

Notification Grouping Options
By default, notifications are generated immediately after the event that causes them.

Notification Grouping options, which are attributes of the CQ_NOTIFICATION$_REG_INFO
object, are:

Chapter 18
Using PL/SQL to Create CQN Registrations

18-15

Attribute Description

NTFN_GROUPING_CLASS Specifies the class by which to group notifications. The
only allowed values are
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_CLASS_TIM
E, which groups notifications by time, and zero, which is
the default (notifications are generated immediately after
the event that causes them).

NTFN_GROUPING_VALUE Specifies the time interval that defines the group, in
seconds. For example, if this value is 900, notifications
generated in the same 15-minute interval are grouped.

NTFN_GROUPING_TYPE Specifies the type of grouping, which is either of:

• DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_
SUMMARY: All notifications in the group are
summarized into a single notification.

Note: The single notification does not include
ROWIDs, even if you specified the ROWID option.

• DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_
LAST: Only the last notification in the group is
published and the earlier ones discarded.

NTFN_GROUPING_START_TIME Specifies when to start generating notifications. If
specified as NULL, it defaults to the current system-
generated time.

NTFN_GROUPING_REPEAT_COUNT Specifies how many times to repeat the notification. Set
to DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER
to receive notifications for the life of the registration. To
receive at most n notifications during the life of the
registration, set to n.

Note:

Notifications generated by timeouts, loss of privileges, and global events
might be published before the specified grouping interval expires. If they are,
any pending grouped notifications are also published before the interval
expires.

Reliable Option
By default, a CQN registration is stored in shared memory. To store it in a persistent
database queue instead—that is, to generate reliable notifications—specify
QOS_RELIABLE in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

The advantage of reliable notifications is that if the database fails after generating
them, it can still deliver them after it restarts. In an Oracle RAC environment, a
surviving database instance can deliver them.

The disadvantage of reliable notifications is that they have higher CPU and I/O costs
than default notifications do.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-16

Purge-on-Notify and Timeout Options
By default, a CQN registration survives until the application that created it explicitly
deregisters it or until the database implicitly purges it (from loss of privileges, for
example).

To purge the registration after it generates its first notification, specify QOS_DEREG_NFY
in the QOSFLAGS attribute of the CQ_NOTIFICATION$_REG_INFO object.

To purge the registration after n seconds, specify n in the TIMEOUT attribute of the
CQ_NOTIFICATION$_REG_INFO object.

You can use the Purge-on-Notify and Timeout options together.

Prerequisites for Creating CQN Registrations
These are prerequisites for creating CQN registrations:

• You must have these privileges:

– EXECUTE privilege on the DBMS_CQ_NOTIFICATION package, whose
subprograms you use to create a registration

– CHANGE NOTIFICATION system privilege

– READ or SELECT privilege on each object to be registered

Loss of privileges on an object associated with a registered query generates a
notification.

• You must be connected as a non-SYS user.

• You must not be in the middle of an uncommitted transaction.

• The dml_locks init.ora parameter must have a nonzero value (as its default
value does).

(This is also a prerequisite for receiving notifications.)

Note:

For QRCN support, the COMPATIBLE setting of the database must be at least
11.0.0.

See Also:

Deregistration

Queries that Can Be Registered for Object Change Notification (OCN)
Most queries can be registered for OCN, including those executed as part of stored
procedures and REF cursors.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-17

Queries that cannot be registered for OCN are:

• Queries on fixed tables or fixed views

• Queries on user views

• Queries that contain database links (dblinks)

• Queries over materialized views

Note:

You can use synonyms in OCN registrations, but not in QRCN registrations.

Queries that Can Be Registered for Query Result Change Notification
(QRCN)

Some queries can be registered for QRCN in guaranteed mode, some can be
registered for QRCN only in best-effort mode, and some cannot be registered for
QRCN in either mode.

Topics:

• Queries that Can Be Registered for QRCN in Guaranteed Mode

• Queries that Can Be Registered for QRCN Only in Best-Effort Mode

• Queries that Cannot Be Registered for QRCN in Either Mode

See Also:

• Guaranteed Mode and

• Best-Effort Mode

Queries that Can Be Registered for QRCN in Guaranteed Mode
To be registered for QRCN in guaranteed mode, a query must conform to these rules:

• Every column that it references is either a NUMBER data type or a VARCHAR2 data
type.

• Arithmetic operators in column expressions are limited to these binary operators,
and their operands are columns with numeric data types:

– + (addition)

– - (subtraction, not unary minus)

– * (multiplication)

– / (division)

• Comparison operators in the predicate are limited to:

Chapter 18
Using PL/SQL to Create CQN Registrations

18-18

– < (less than)

– <= (less than or equal to)

– = (equal to)

– >= (greater than or equal to)

– > (greater than)

– <> or != (not equal to)

– IS NULL

– IS NOT NULL

• Boolean operators in the predicate are limited to AND, OR, and NOT.

• The query contains no aggregate functions (such as SUM, COUNT, AVERAGE, MIN, and
MAX).

Guaranteed mode supports most queries on single tables and some inner equijoins,
such as:

SELECT SALARY FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID
 AND DEPARTMENTS.LOCATION_ID = 1700;

Note:

• Sometimes the query optimizer uses an execution plan that makes a
query incompatible for guaranteed mode (for example, OR-expansion).

• Queries that can be registered in guaranteed mode can also be
registered in best-effort mode, but results might differ, because best-
effort mode can cause false positives even for queries that CQN does
not simplify.

See Also:

• Oracle Database SQL Language Reference for a list of SQL aggregate
functions

• Oracle Database SQL Tuning Guide for information about the query
optimizer

• Best-Effort Mode

Queries that Can Be Registered for QRCN Only in Best-Effort Mode
A query that does any of the following can be registered for QRCN only in best-effort
mode, and its simplified version generates notifications at object granularity:

• Refers to columns that have encryption enabled

• Has more than 10 items of the same type in the SELECT list

Chapter 18
Using PL/SQL to Create CQN Registrations

18-19

• Has expressions that include any of these:

– String functions (such as SUBSTR, LTRIM, and RTRIM)

– Arithmetic functions (such as TRUNC, ABS, and SQRT)

– Pattern-matching conditions LIKE and REGEXP_LIKE

– EXISTS or NOT EXISTS condition

• Has disjunctions involving predicates defined on columns from different tables. For
example:

SELECT EMPLOYEE_ID, DEPARTMENT_ID
 FROM EMPLOYEES, DEPARTMENTS
 WHERE EMPLOYEES.EMPLOYEE_ID = 10
 OR DEPARTMENTS.DEPARTMENT_ID = 'IT';

• Has user rowid access. For example:

SELECT DEPARTMENT_ID
 FROM DEPARTMENTS
 WHERE ROWID = 'AAANkdAABAAALinAAF';

• Has any join other than an inner join

• Has an execution plan that involves any of these:

– Bitmap join, domain, or function-based indexes

– UNION ALL or CONCATENATION

(Either in the query itself, or as the result of an OR-expansion execution plan
chosen by the query optimizer.)

– ORDER BY or GROUP BY

(Either in the query itself, or as the result of a SORT operation with an ORDER BY
option in the execution plan chosen by the query optimizer.)

– Partitioned index-organized table (IOT) with overflow segment

– Clustered objects

– Parallel execution

See Also:

Oracle Database SQL Language Reference for a list of SQL functions

Queries that Cannot Be Registered for QRCN in Either Mode
A query that refers to any of the following cannot be registered for QRCN in either
guaranteed or best-effort mode:

• Views

• Tables that are fixed, remote, or have Virtual Private Database (VPD) policies
enabled

• DUAL (in the SELECT list)

Chapter 18
Using PL/SQL to Create CQN Registrations

18-20

• Synonyms

• Calls to user-defined PL/SQL subprograms

• Operators not listed in Queries that Can Be Registered for QRCN in Guaranteed
Mode

• The aggregate function COUNT

(Other aggregate functions are allowed in best-effort mode, but not in guaranteed
mode.)

• Application contexts; for example:

SELECT SALARY FROM EMPLOYEES
WHERE USER = SYS_CONTEXT('USERENV', 'SESSION_USER');

• SYSDATE, SYSTIMESTAMP, or CURRENT TIMESTAMP

Also, a query that the query optimizer has rewritten using a materialized view cannot
be registered for QRCN.

See Also:

Oracle Database SQL Tuning Guide for information about the query
optimizer

Using PL/SQL to Register Queries for CQN
To use PL/SQL to create a CQN registration, follow these steps:

1. Create a stored PL/SQL procedure to serve as the notification handler.

See Creating a PL/SQL Notification Handler.

2. Create a CQ_NOTIFICATION$_REG_INFO object that specifies the name of the
notification handler, the notification type, and other attributes of the registration.

See Creating a CQ_NOTIFICATION$_REG_INFO Object.

3. In your client application, use the DBMS_CQ_NOTIFICATION.NEW_REG_START function
to open a registration block.

See Oracle Database PL/SQL Packages and Types Reference for more
information about the CQ_NOTIFICATION$_REG_INFO object and the functions
NEW_REG_START and REG_END, all of which are defined in the
DBMS_CQ_NOTIFICATION package.

4. Run the queries to register. (Do not run DML or DDL operations.)

See the following topics for more information:

• Identifying Individual Queries in a Notification

• Adding Queries to an Existing Registration

5. Close the registration block, using the DBMS_CQ_NOTIFICATION.REG_END function.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-21

Creating a PL/SQL Notification Handler
The PL/SQL stored procedure that you create to serve as the notification handler must
have this signature:

PROCEDURE schema_name.proc_name(ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)

In the preceding signature, schema_name is the name of the database schema,
proc_name is the name of the stored procedure, and ntfnds is the notification
descriptor.

The notification descriptor is a CQ_NOTIFICATION$_DESCRIPTOR object, whose attributes
describe the details of the change (transaction ID, type of change, queries affected,
tables modified, and so on).

The JOBQ process passes the notification descriptor, ntfnds, to the notification handler,
proc_name, which handles the notification according to its application requirements.
(This is step 6 in Figure 18-2.)

Note:

The notification handler runs inside a job queue process.
TheJOB_QUEUE_PROCESSES initialization parameter specifies the maximum
number of processes that can be created for the execution of jobs. You must
setJOB_QUEUE_PROCESSES to a nonzero value to receive PL/SQL notifications.

See Also:

JOB_QUEUE_PROCESSES

Creating a CQ_NOTIFICATION$_REG_INFO Object
An object of type CQ_NOTIFICATION$_REG_INFO specifies the notification handler that
the database runs when a registered objects changes. In SQL*Plus, you can view its
type attributes by running this statement:

DESC CQ_NOTIFICATION$_REG_INFO

Table 18-2 describes the attributes of SYS.CQ_NOTIFICATION$_REG_INFO.

Table 18-2 Attributes of CQ_NOTIFICATION$_REG_INFO

Attribute Description

CALLBACK Specifies the name of the PL/SQL procedure to be
executed when a notification is generated (a notification
handler). You must specify the name in the form
schema_name.procedure_name, for example,
hr.dcn_callback.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-22

Table 18-2 (Cont.) Attributes of CQ_NOTIFICATION$_REG_INFO

Attribute Description

QOSFLAGS Specifies one or more quality-of-service flags, which are
constants in the DBMS_CQ_NOTIFICATION package. For
their names and descriptions, see Table 18-3.

To specify multiple quality-of-service flags, use bitwise OR.
For example: DBMS_CQ_NOTIFICATION.QOS_RELIABLE
+ DBMS_CQ_NOTIFICATION.QOS_ROWIDS

TIMEOUT Specifies the timeout period for registrations. If set to a
nonzero value, it specifies the time in seconds after which
the database purges the registration. If 0 or NULL, then
the registration persists until the client explicitly
deregisters it.

Can be combined with the QOSFLAGS attribute with its
QOS_DEREG_NFY flag.

OPERATIONS_FILTER Applies only to OCN (described in About Object Change
Notification (OCN)). Has no effect if you specify the
QOS_FLAGS attribute with its QOS_QUERY flag.

Filters messages based on types of SQL statement. You
can specify these constants in the
DBMS_CQ_NOTIFICATION package:

• ALL_OPERATIONS notifies on all changes
• INSERTOP notifies on inserts
• UPDATEOP notifies on updates
• DELETEOP notifies on deletes
• ALTEROP notifies on ALTER TABLE operations
• DROPOP notifies on DROP TABLE operations
• UNKNOWNOP notifies on unknown operations
You can specify a combination of operations with a
bitwise OR. For example:
DBMS_CQ_NOTIFICATION.INSERTOP +
DBMS_CQ_NOTIFICATION.DELETEOP.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-23

Table 18-2 (Cont.) Attributes of CQ_NOTIFICATION$_REG_INFO

Attribute Description

TRANSACTION_LAG Deprecated. To implement flow-of-control notifications,
use the NTFN_GROUPING_* attributes.

Applies only to OCN (described in About Object Change
Notification (OCN)). Has no effect if you specify the
QOS_FLAGS attribute with its QOS_QUERY flag.

Specifies the number of transactions or database changes
by which the client can lag behind the database. If 0, then
the client receives an invalidation message as soon as it
is generated. If 5, then every fifth transaction that changes
a registered object results in a notification. The database
tracks intervening changes at an object granularity and
bundles the changes along with the notification. Thus, the
client does not lose intervening changes.

Most applications that must be notified of changes to an
object on transaction commit without further deferral are
expected to chose 0 transaction lag. A nonzero
transaction lag is useful only if an application implements
flow control on notifications. When using nonzero
transaction lag, Oracle recommends that the application
workload has the property that notifications are generated
at a reasonable frequency. Otherwise, notifications might
be deferred indefinitely till the lag is satisfied.

If you specify TRANSACTION_LAG, then the ROWID level
granularity is unavailable in the notification messages
even if you specified QOS_ROWIDS during registration.

NTFN_GROUPING_CLASS Specifies the class by which to group notifications. The
only allowed value is
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_CLASS_TIME,
which groups notifications by time.

NTFN_GROUPING_VALUE Specifies the time interval that defines the group, in
seconds. For example, if this value is 900, notifications
generated in the same 15-minute interval are grouped.

NTFN_GROUPING_TYPE Specifies either of these types of grouping:

• DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SU
MMARY: All notifications in the group are summarized
into a single notification.

• DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_LA
ST: Only the last notification in the group is published
and the earlier ones discarded.

NTFN_GROUPING_START_TIME Specifies when to start generating notifications. If
specified as NULL, it defaults to the current system-
generated time.

NTFN_GROUPING_REPEAT_COUNT Specifies how many times to repeat the notification. Set to
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER to
receive notifications for the life of the registration. To
receive at most n notifications during the life of the
registration, set to n.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-24

The quality-of-service flags in Table 18-3 are constants in the DBMS_CQ_NOTIFICATION
package. You can specify them with the QOS_FLAGS attribute of
CQ_NOTIFICATION$_REG_INFO (see Table 18-2).

Table 18-3 Quality-of-Service Flags

Flag Description

QOS_DEREG_NFY Purges the registration after the first notification.

QOS_RELIABLE Stores notifications in a persistent database queue.

In an Oracle RAC environment, if a database instance fails, surviving
database instances can deliver any queued notification messages.

Default: Notifications are stored in shared memory, which performs
more efficiently.

QOS_ROWIDS Includes the ROWID of each changed row in the notification.

QOS_QUERY Registers queries for QRCN, described in About Query Result Change
Notification (QRCN).

If a query cannot be registered for QRCN, an error is generated at
registration time, unless you also specify QOS_BEST_EFFORT.

Default: Queries are registered for OCN, described in About Object
Change Notification (OCN)

QOS_BEST_EFFORT Used with QOS_QUERY. Registers simplified versions of queries that are
too complex for query result change evaluation; in other words, registers
queries for QRCN in best-effort mode, described in Best-Effort Mode.

To see which queries were simplified, query the static data dictionary
view DBA_CQ_NOTIFICATION_QUERIES or
USER_CQ_NOTIFICATION_QUERIES. These views give the QUERYID
and the text of each registered query.

Default: Queries are registered for QRCN in guaranteed mode,
described in Guaranteed Mode

Suppose that you must invoke the procedure HR.dcn_callback whenever a registered
object changes. In Example 18-4, you create a CQ_NOTIFICATION$_REG_INFO object
that specifies that HR.dcn_callback receives notifications. To create the object you
must have EXECUTE privileges on the DBMS_CQ_NOTIFICATION package.

Example 18-4 Creating a CQ_NOTIFICATION$_REG_INFO Object

DECLARE
 v_cn_addr CQ_NOTIFICATION$_REG_INFO;

BEGIN
 -- Create object:

 v_cn_addr := CQ_NOTIFICATION$_REG_INFO (
 'HR.dcn_callback', -- PL/SQL notification handler
 DBMS_CQ_NOTIFICATION.QOS_QUERY -- notification type QRCN
 + DBMS_CQ_NOTIFICATION.QOS_ROWIDS, -- include rowids of changed objects
 0, -- registration persists until unregistered
 0, -- notify on all operations
 0 -- notify immediately
);

 -- Register queries: ...

Chapter 18
Using PL/SQL to Create CQN Registrations

18-25

END;
/

Identifying Individual Queries in a Notification
Any query in a registered list of queries can cause a continuous query notification. To
know when a certain query causes a notification, use the
DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID function in the SELECT list of that
query. For example:

SELECT EMPLOYEE_ID, SALARY, DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = 10;

Result:

EMPLOYEE_ID SALARY CQ_NOTIFICATION_QUERYID
----------- ---------- -----------------------
 200 2800 0

1 row selected.

When that query causes a notification, the notification includes the query ID.

Adding Queries to an Existing Registration
To add queries to an existing registration, follow these steps:

1. Retrieve the registration ID of the existing registration.

You can retrieve it from either saved output or a query of
*_CHANGE_NOTIFICATION_REGS.

2. Open the existing registration by calling the procedure
DBMS_CQ_NOTIFICATION.ENABLE_REG with the registration ID as the parameter.

3. Run the queries to register. (Do not run DML or DDL operations.)

4. Close the registration, using the DBMS_CQ_NOTIFICATION.REG_END function.

Example 18-5 adds a query to an existing registration whose registration ID is 21.

Example 18-5 Adding a Query to an Existing Registration

DECLARE
 v_cursor SYS_REFCURSOR;

BEGIN
 -- Open existing registration
 DBMS_CQ_NOTIFICATION.ENABLE_REG(21);
 OPEN v_cursor FOR
 -- Run query to be registered
 SELECT DEPARTMENT_ID
 FROM HR.DEPARTMENTS; -- register this query
 CLOSE v_cursor;
 -- Close registration
 DBMS_CQ_NOTIFICATION.REG_END;
END;
/

Chapter 18
Using PL/SQL to Create CQN Registrations

18-26

Best Practices for CQN Registrations
For best CQN performance, follow these registration guidelines:

• Register few queries—preferably those that reference objects that rarely change.

Extremely volatile registered objects cause numerous notifications, whose
overhead slows OLTP throughput.

• Minimize the number of duplicate registrations of any given object, to avoid
replicating a notification message for multiple recipients.

Troubleshooting CQN Registrations
If you are unable to create a registration, or if you have created a registration but are
not receiving the notifications that you expected, the problem might be one of these:

• The JOB_QUEUE_PROCESSES parameter is not set to a nonzero value.

This prevents you from receiving PL/SQL notifications through the notification
handler.

• You were connected as a SYS user when you created the registrations.

You must be connected as a non-SYS user to create CQN registrations.

• You changed a registered object, but did not commit the transaction.

Notifications are generated only when the transaction commits.

• The registrations were not successfully created in the database.

To check, query the static data dictionary view *_CHANGE_NOTIFICATION_REGS. For
example, this statement displays all registrations and registered objects for the
current user:

SELECT REGID, TABLE_NAME FROM USER_CHANGE_NOTIFICATION_REGS;

• Runtime errors occurred during the execution of the notification handler.

If so, they were logged to the trace file of the JOBQ process that tried to run the
procedure. The name of the trace file usually has this form:

ORACLE_SID_jnumber_PID.trc

For example, if the ORACLE_SID is dbs1 and the process ID (PID) of the JOBQ
process is 12483, the name of the trace file is usually dbs1_j000_12483.trc.

Suppose that a registration is created with 'chnf_callback' as the notification
handler and registration ID 100. Suppose that 'chnf_callback' was not defined in
the database. Then the JOBQ trace file might contain a message of the form:

**
 Runtime error during execution of PL/SQL cbk chnf_callback for reg CHNF100.
 Error in PLSQL notification of msgid:
 Queue :
 Consumer Name :
 PLSQL function :chnf_callback
 Exception Occured, Error msg:
 ORA-00604: error occurred at recursive SQL level 2
 ORA-06550: line 1, column 7:
 PLS-00201: identifier 'CHNF_CALLBACK' must be declared

Chapter 18
Using PL/SQL to Create CQN Registrations

18-27

 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored
**

If runtime errors occurred during the execution of the notification handler, create a
very simple version of the notification handler to verify that you are receiving
notifications, and then gradually add application logic.

An example of a very simple notification handler is:

REM Create table in HR schema to hold count of notifications received.
CREATE TABLE nfcount(cnt NUMBER);
INSERT INTO nfcount (cnt) VALUES(0);
COMMIT;
CREATE OR REPLACE PROCEDURE chnf_callback
 (ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)
IS
BEGIN
 UPDATE nfcount SET cnt = cnt+1;
 COMMIT;
END;
/

• There is a time lag between the commit of a transaction and the notification
received by the end user.

Deleting Registrations
To delete a registration, call the procedure DBMS_CQ_NOTIFICATION.DEREGISTER with
the registration ID as the parameter. For example, this statement deregisters the
registration whose registration ID is 21:

DBMS_CQ_NOTIFICATION.DEREGISTER(21);

Only the user who created the registration or the SYS user can deregister it.

Configuring CQN: Scenario
In this scenario, you are a developer who manages a web application that provides
employee data: name, location, phone number, and so on. The application, which runs
on Oracle Application Server, is heavily used and processes frequent queries of the
HR.EMPLOYEES and HR.DEPARTMENTS tables in the back-end database. Because these
tables change relatively infrequently, the application can improve performance by
caching the query results. Caching avoids a round trip to the back-end database and
server-side execution latency.

You can use the DBMS_CQ_NOTIFICATION package to register queries based on
HR.EMPLOYEES and HR.DEPARTMENTS tables. To configure CQN, you follow these steps:

1. Create a server-side PL/SQL stored procedure to process the notifications, as
instructed in Creating a PL/SQL Notification Handler.

2. Register the queries on the HR.EMPLOYEES and HR.DEPARTMENTS tables for QRCN,
as instructed in Registering the Queries.

After you complete these steps, any committed change to the result of a query
registered in step 2 causes the notification handler created in step 1 to notify the web
application of the change, whereupon the web application refreshes the cache by
querying the back-end database.

Chapter 18
Using PL/SQL to Create CQN Registrations

18-28

Creating a PL/SQL Notification Handler
Create a server-side stored PL/SQL procedure to process notifications as follows:

1. Connect to the database AS SYSDBA.

2. Grant the required privileges to HR:

GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO HR;
GRANT CHANGE NOTIFICATION TO HR;

3. Enable the JOB_QUEUE_PROCESSES parameter to receive notifications:

ALTER SYSTEM SET "JOB_QUEUE_PROCESSES"=4;

4. Connect to the database as a non-SYS user (such as HR).

5. Create database tables to hold records of notification events received:

-- Create table to record notification events.
DROP TABLE nfevents;
CREATE TABLE nfevents (
 regid NUMBER,
 event_type NUMBER
);

-- Create table to record notification queries:
DROP TABLE nfqueries;
CREATE TABLE nfqueries (
 qid NUMBER,
 qop NUMBER
);

-- Create table to record changes to registered tables:
DROP TABLE nftablechanges;
CREATE TABLE nftablechanges (
 qid NUMBER,
 table_name VARCHAR2(100),
 table_operation NUMBER
);

-- Create table to record ROWIDs of changed rows:
DROP TABLE nfrowchanges;
CREATE TABLE nfrowchanges (
 qid NUMBER,
 table_name VARCHAR2(100),
 row_id VARCHAR2(2000)
);

6. Create the procedure HR.chnf_callback, as shown in Example 18-6.

Example 18-6 Creating Server-Side PL/SQL Notification Handler

CREATE OR REPLACE PROCEDURE chnf_callback (
 ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR
)
IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;

Chapter 18
Using PL/SQL to Create CQN Registrations

18-29

 row_id VARCHAR2(2000);
 numqueries NUMBER;
 qid NUMBER;
 qop NUMBER;

BEGIN
 regid := ntfnds.registration_id;
 event_type := ntfnds.event_type;

 INSERT INTO nfevents (regid, event_type)
 VALUES (chnf_callback.regid, chnf_callback.event_type);

 numqueries :=0;

 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_QUERYCHANGE) THEN
 numqueries := ntfnds.query_desc_array.count;

 FOR i IN 1..numqueries LOOP -- loop over queries
 qid := ntfnds.query_desc_array(i).queryid;
 qop := ntfnds.query_desc_array(i).queryop;

 INSERT INTO nfqueries (qid, qop)
 VALUES(chnf_callback.qid, chnf_callback.qop);

 numtables := 0;
 numtables := ntfnds.query_desc_array(i).table_desc_array.count;

 FOR j IN 1..numtables LOOP -- loop over tables
 tbname :=
 ntfnds.query_desc_array(i).table_desc_array(j).table_name;
 operation_type :=
 ntfnds.query_desc_array(i).table_desc_array(j).Opflags;

 INSERT INTO nftablechanges (qid, table_name, table_operation)
 VALUES (
 chnf_callback.qid,
 tbname,
 operation_type
);

 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0) THEN
 numrows := ntfnds.query_desc_array(i).table_desc_array(j).numrows;
 ELSE
 numrows :=0; -- ROWID info not available
 END IF;

 -- Body of loop does not run when numrows is zero.
 FOR k IN 1..numrows LOOP -- loop over rows
 Row_id :=
 ntfnds.query_desc_array(i).table_desc_array(j).row_desc_array(k).row_id;

 INSERT INTO nfrowchanges (qid, table_name, row_id)
 VALUES (chnf_callback.qid, tbname, chnf_callback.Row_id);

 END LOOP; -- loop over rows
 END LOOP; -- loop over tables
 END LOOP; -- loop over queries
 END IF;
 COMMIT;
END;
/

Chapter 18
Using PL/SQL to Create CQN Registrations

18-30

Registering the Queries
After creating the notification handler, you register the queries for which you want to
receive notifications, specifying HR.chnf_callback as the notification handler, as in
Example 18-7.

Example 18-7 Registering a Query

DECLARE
 reginfo CQ_NOTIFICATION$_REG_INFO;
 mgr_id NUMBER;
 dept_id NUMBER;
 v_cursor SYS_REFCURSOR;
 regid NUMBER;

BEGIN
 /* Register two queries for QRNC: */
 /* 1. Construct registration information.
 chnf_callback is name of notification handler.
 QOS_QUERY specifies result-set-change notifications. */

 reginfo := cq_notification$_reg_info (
 'chnf_callback',
 DBMS_CQ_NOTIFICATION.QOS_QUERY,
 0, 0, 0
);

 /* 2. Create registration. */

 regid := DBMS_CQ_NOTIFICATION.new_reg_start(reginfo);

 OPEN v_cursor FOR
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, manager_id
 FROM HR.EMPLOYEES
 WHERE employee_id = 7902;
 CLOSE v_cursor;

 OPEN v_cursor FOR
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, department_id
 FROM HR.departments
 WHERE department_name = 'IT';
 CLOSE v_cursor;

 DBMS_CQ_NOTIFICATION.reg_end;
END;
/

View the newly created registration:

SELECT queryid, regid, TO_CHAR(querytext)
FROM user_cq_notification_queries;

Result is similar to:

QUERYID REGID TO_CHAR(QUERYTEXT)
------- ----- --
 22 41 SELECT HR.DEPARTMENTS.DEPARTMENT_ID
 FROM HR.DEPARTMENTS
 WHERE HR.DEPARTMENTS.DEPARTMENT_NAME = 'IT'

Chapter 18
Using PL/SQL to Create CQN Registrations

18-31

 21 41 SELECT HR.EMPLOYEES.MANAGER_ID
 FROM HR.EMPLOYEES
 WHERE HR.EMPLOYEES.EMPLOYEE_ID = 7902

Run this transaction, which changes the result of the query with QUERYID 22:

UPDATE DEPARTMENTS
SET DEPARTMENT_NAME = 'FINANCE'
WHERE department_name = 'IT';

The notification procedure chnf_callback (which you created in Example 18-6) runs.

Query the table in which notification events are recorded:

SELECT * FROM nfevents;

Result is similar to:

REGID EVENT_TYPE
----- ----------
 61 7

EVENT_TYPE 7 corresponds to EVENT_QUERYCHANGE (query result change).

Query the table in which changes to registered tables are recorded:

SELECT * FROM nftablechanges;

Result is similar to:

REGID TABLE_NAME TABLE_OPERATION
----- -------------- ---------------
 42 HR.DEPARTMENTS 4

TABLE_OPERATION 4 corresponds to UPDATEOP (update operation).

Query the table in which ROWIDs of changed rows are recorded:

SELECT * FROM nfrowchanges;

Result is similar to:

REGID TABLE_NAME ROWID
----- -------------- ------------------
 61 HR.DEPARTMENTS AAANkdAABAAALinAAF

Using OCI to Create CQN Registrations
This section describes using OCI to create CQN registrations. When you use OCI, the
notification handler is a client-side C callback procedure.

Topics

• Using OCI for Query Result Set Notifications

• Using OCI to Register a Continuous Query Notification

• Using OCI Subscription Handle Attributes for Continuous Query Notification

• OCI_ATTR_CQ_QUERYID Attribute

• Using OCI Continuous Query Notification Descriptors

Chapter 18
Using OCI to Create CQN Registrations

18-32

• Demonstrating Continuous Query Notification in an OCI Sample Program

See Also:

Oracle Call Interface Programmer's Guide for more information about
publish-subscribe notification in OCI

Using OCI for Query Result Set Notifications
To record QOS (quality of service flags) specific to continuous query (CQ)
notifications, set the attribute OCI_ATTR_SUBSCR_CQ_QOSFLAGS on the subscription
handle OCI_HTYPE_SUBSCR. To request that the registration is at query granularity, as
opposed to object granularity, set the OCI_SUBSCR_CQ_QOS_QUERY flag bit on the
attribute OCI_ATTR_SUBSCR_CQ_QOSFLAGS.

The pseudocolumn CQ_NOTIFICATION_QUERY_ID can be optionally specified to retrieve
the query ID of a registered query. This does not automatically convert the granularity
to query level. The value of the pseudocolumn on return is set to the unique query ID
assigned to the query. The query ID pseudocolumn can be omitted for OCI-based
registrations, in which case the query ID is returned as a READ attribute of the
statement handle. (This attribute is called OCI_ATTR_CQ_QUERYID).

During notifications, the client-specified callback is invoked and the top-level
notification descriptor is passed as an argument.

Information about the query IDs of the changed queries is conveyed through a special
descriptor type called OCI_DTYPE_CQDES. A collection (OCIColl) of query descriptors is
embedded inside the top-level notification descriptor. Each descriptor is of type
OCI_DTYPE_CQDES. The query descriptor has the following attributes:

• OCI_ATTR_CQDES_OPERATION - can be one of OCI_EVENT_QUERYCHANGE or
OCI_EVENT_DEREG.

• OCI_ATTR_CQDES_QUERYID - query ID of the changed query.

• OCI_ATTR_CQDES_TABLE_CHANGES - array of table descriptors describing DML
operations on tables that led to the query result set change. Each table descriptor
is of the type OCI_DTYPE_TABLE_CHDES.

See Also:

OCI_DTYPE_CHDES

Using OCI to Register a Continuous Query Notification
The calling session must have the CHANGE NOTIFICATION system privilege and SELECT
privileges on all objects that it attempts to register. A registration is a persistent entity
that is recorded in the database, and is visible to all instances of Oracle RAC. If the
registration was at query granularity, transactions that cause the query result set to
change and commit in any instance of Oracle RAC generate notification.If the

Chapter 18
Using OCI to Create CQN Registrations

18-33

registration was at object granularity, transactions that modify registered objects in any
instance of Oracle RAC generate notification.

Queries involving materialized views or nonmaterialized views are not supported.

The registration interface employs a callback to respond to changes in underlying
objects of a query and uses a namespace extension (DBCHANGE) to AQ.

The steps in writing the registration are:

1. Create the environment in OCI_EVENTS and OCI_OBJECT mode.

2. Set the subscription handle attribute OCI_ATTR_SUBSCR_NAMESPACE to namespace
OCI_SUBSCR_NAMESPACE_DBCHANGE.

3. Set the subscription handle attribute OCI_ATTR_SUBSCR_CALLBACK to store the OCI
callback associated with the query handle. The callback has the following
prototype:

void notification_callback (void *ctx, OCISubscription *subscrhp,
 void *payload, ub4 paylen, void *desc, ub4 mode);

The parameters are described in "Notification Callback in OCI" in Oracle Call
Interface Programmer's Guide.

4. Optionally associate a client-specific context using OCI_ATTR_SUBSCR_CTX attribute.

5. Set the OCI_ATTR_SUBSCR_TIMEOUT attribute to specify a ub4 timeout interval in
seconds. If it is not set, there is no timeout.

6. Set the OCI_ATTR_SUBSCR_QOSFLAGS attribute, the QOS (quality of service) levels,
with the following values:

• The OCI_SUBSCR_QOS_PURGE_ON_NTFN flag allows the registration to be purged
on the first notification.

• The OCI_SUBSCR_QOS_RELIABLE flag allows notifications to be persistent. You
can use surviving instances of Oracle RAC to send and retrieve continuous
query notification messages, even after a node failure, because invalidations
associated with this registration are queued persistently into the database. If
FALSE, then invalidations are enqueued into a fast in-memory queue. This
option describes the persistence of notifications and not the persistence of
registrations. Registrations are automatically persistent by default.

7. Call OCISubscriptionRegister() to create a new registration in the DBCHANGE
namespace.

8. Associate multiple query statements with the subscription handle by setting the
attribute OCI_ATTR_CHNF_REGHANDLE of the statement handle, OCI_HTYPE_STMT. The
registration is completed when the query is executed.

See Also:

Oracle Call Interface Programmer's Guide for more information about
OCI_ATTR_CHNF_REGHANDLE

9. Optionally unregister a subscription. The client can call the
OCISubscriptionRegister() function with the subscription handle as a parameter.

Chapter 18
Using OCI to Create CQN Registrations

18-34

A binding of a statement handle to a subscription handle is valid only for only the first
execution of a query. If the application must use the same OCI statement handle for
subsequent executions, it must repopulate the registration handle attribute of the
statement handle. A binding of a subscription handle to a statement handle is
permitted only when the statement is a query (determined at execute time). If a DML
statement is executed as part of the execution, then an exception is issued.

Using OCI Subscription Handle Attributes for Continuous Query
Notification

The subscription handle attributes for continuous query notification can be divided into
generic attributes (common to all subscriptions) and namespace-specific attributes
(particular to continuous query notification).

The WRITE attributes on the statement handle can be modified only before the
registration is created.

Generic Attributes - Common to All Subscriptions

OCI_ATTR_SUBSCR_NAMESPACE (WRITE) - Set this attribute to
OCI_SUBSCR_NAMESPACE_DBCHANGE for subscription handles.

OCI_ATTR_SUBSCR_CALLBACK (WRITE) - Use this attribute to store the callback
associated with the subscription handle. The callback is executed when a notification
is received.

When a new continuous query notification message becomes available, the callback is
invoked in the listener thread with desc pointing to a descriptor of type
OCI_DTYPE_CHDES that contains detailed information about the invalidation.

OCI_ATTR_SUBSCR_QOSFLAGS - This attribute is a generic flag with the following values:

#define OCI_SUBSCR_QOS_RELIABLE 0x01 /* reliable */
#define OCI_SUBSCR_QOS_PURGE_ON_NTFN 0x10 /* purge on first ntfn */

• OCI_SUBSCR_QOS_RELIABLE - Set this bit to allow notifications to be persistent.
Therefore, you can use surviving instances of an Oracle RAC cluster to send and
retrieve invalidation messages, even after a node failure, because invalidations
associated with this registration ID are queued persistently into the database. If
this bit is FALSE, then invalidations are enqueued in to a fast in-memory queue.
This option describes the persistence of notifications and not the persistence of
registrations. Registrations are automatically persistent by default.

• OCI_SUBSCR_QOS_PURGE_ON_NTFN - Set this bit to allow the registration to be purged
on the first notification.

A parallel example is presented in Oracle Call Interface Programmer's Guide in
publish-subscribe registration functions in OCI.

OCI_ATTR_SUBSCR_CQ_QOSFLAGS - This attribute describes the continuous query
notification-specific QOS flags (mode is WRITE, data type is ub4), which are:

• 0x1 OCI_SUBSCR_CQ_QOS_QUERY - Set this flag to indicate that query-level
granularity is required. Generate notification only if the query result set changes.
By default, this level of QOS has no false positives.

Chapter 18
Using OCI to Create CQN Registrations

18-35

• 0x2 OCI_SUBSCR_CQ_QOS_BEST_EFFORT - Set this flag to indicate that best effort
filtering is acceptable. It can be used by caching applications. The database can
use heuristics based on cost of evaluation and avoid full pruning in some cases.

OCI_ATTR_SUBSCR_TIMEOUT - Use this attribute to specify a ub4 timeout value defined in
seconds. If the timeout value is 0 or not specified, then the registration is active until
explicitly unregistered.

Namespace- Specific or Feature-Specific Attributes

The following attributes are namespace-specific or feature-specific to the continuous
query notification feature.

OCI_ATTR_CHNF_TABLENAMES (data type is (OCIColl *)) - These attributes are provided
to retrieve the list of table names that were registered. These attributes are available
from the subscription handle, after the query is executed.

OCI_ATTR_CHNF_ROWIDS - A Boolean attribute (default FALSE). If TRUE, then the
continuous query notification message includes row-level details such as operation
type and ROWID.

OCI_ATTR_CHNF_OPERATIONS - Use this ub4 flag to selectively filter notifications based
on operation type. This option is ignored if the registration is of query-level granularity.
Flags stored are:

• OCI_OPCODE_ALL - All operations

• OCI_OPCODE_INSERT - Insert operations on the table

• OCI_OPCODE_UPDATE - Update operations on the table

• OCI_OPCODE_DELETE - Delete operations on the table

OCI_ATTR_CHNF_CHANGELAG - The client can use this ub4 value to specify the number of
transactions by which the client is willing to lag behind. The client can also use this
option as a throttling mechanism for continuous query notification messages. When
you choose this option, ROWID-level granularity of information is unavailable in the
notifications, even if OCI_ATTR_CHNF_ROWIDS was TRUE. This option is ignored if the
registration is of query-level granularity.

After the OCISubscriptionRegister() call is invoked, none of the preceding attributes
(generic, name-specific, or feature-specific) can be modified on the registration already
created. Any attempt to modify those attributes is not reflected on the registration
already created, but it does take effect on newly created registrations that use the
same registration handle.

See Also:

Oracle Call Interface Programmer's Guide for more information about
continuous query notification descriptor attributes

Notifications can be spaced out by using the grouping NTFN option. The relevant
generic notification attributes are:

OCI_ATTR_SUBSCR_NTFN_GROUPING_VALUE
OCI_ATTR_SUBSCR_NTFN_GROUPING_TYPE

Chapter 18
Using OCI to Create CQN Registrations

18-36

OCI_ATTR_SUBSCR_NTFN_GROUPING_START_TIME
OCI_ATTR_SUBSCR_NTFN_GROUPING_REPEAT_COUNT

See Also:

Oracle Call Interface Programmer's Guide for more details about these
attributes in publish-subscribe register directly to the database

OCI_ATTR_CQ_QUERYID Attribute
The attribute OCI_ATTR_CQ_QUERYID on the statement handle, OCI_HTYPE_STMT, obtains
the query ID of a registered query after registration is made by the call to
OCIStmtExecute().

See Also:

Oracle Call Interface Programmer's Guide for more information about
OCI_ATTR_CQ_QUERYID

Using OCI Continuous Query Notification Descriptors
The continuous query notification descriptor is passed into the desc parameter of the
notification callback specified by the application. The following attributes are specific to
continuous query notification. The OCI type constant of the continuous query
notification descriptor is OCI_DTYPE_CHDES.

The notification callback receives the top-level notification descriptor,
OCI_DTYPE_CHDES, as an argument. This descriptor in turn includes either a collection
of OCI_DTYPE_CQDES or OCI_DTYPE_TABLE_CHDES descriptors based on whether the
event type was OCI_EVENT_QUERYCHANGE or OCI_EVENT_OBJCHANGE. An array of table
continuous query descriptors is embedded inside the continuous query descriptor for
notifications of type OCI_EVENT_QUERYCHANGE. If ROWID level granularity of information
was requested, each OCI_DTYPE_TABLE_CHDES contains an array of row-level
continuous query descriptors (OCI_DTYPE_ROW_CHDES) corresponding to each modified
ROWID.

OCI_DTYPE_CHDES
This is the top-level continuous query notification descriptor type.

OCI_ATTR_CHDES_DBNAME (oratext *) - Name of the database (source of the
continuous query notification)

OCI_ATTR_CHDES_XID (RAW(8)) - Message ID of the message

OCI_ATTR_CHDES_NFYTYPE - Flags describing the notification type:

• 0x0 OCI_EVENT_NONE - No further information about the continuous query
notification

Chapter 18
Using OCI to Create CQN Registrations

18-37

• 0x1 OCI_EVENT_STARTUP - Instance startup

• 0x2 OCI_EVENT_SHUTDOWN - Instance shutdown

• 0x3 OCI_EVENT_SHUTDOWN_ANY - Any instance shutdown - Oracle Real Application
Clusters (Oracle RAC)

• 0x5 OCI_EVENT_DEREG - Unregistered or timed out

• 0x6 OCI_EVENT_OBJCHANGE - Object change notification

• 0x7 OCI_EVENT_QUERYCHANGE - Query change notification

OCI_ATTR_CHDES_TABLE_CHANGES - A collection type describing operations on tables of
data type (OCIColl *). This attribute is present only if the OCI_ATTR_CHDES_NFTYPE
attribute was of type OCI_EVENT_OBJCHANGE; otherwise, it is NULL. Each element of the
collection is a table of continuous query descriptors of type OCI_DTYPE_TABLE_CHDES.

OCI_ATTR_CHDES_QUERIES - A collection type describing the queries that were
invalidated. Each member of the collection is of type OCI_DTYPE_CQDES. This attribute
is present only if the attribute OCI_ATTR_CHDES_NFTYPE was of type
OCI_EVENT_QUERYCHANGE; otherwise, it is NULL.

OCI_DTYPE_CQDES
This notification descriptor describes a query that was invalidated, usually in response
to the commit of a DML or a DDL transaction. It has the following attributes:

• OCI_ATTR_CQDES_OPERATION (ub4, READ) - Operation that occurred on the query. It
can be one of these values:

– OCI_EVENT_QUERYCHANGE - Query result set change

– OCI_EVENT_DEREG - Query unregistered

• OCI_ATTR_CQDES_TABLE_CHANGES (OCIColl *, READ) - A collection of table
continuous query descriptors describing DML or DDL operations on tables that
caused the query result set change. Each element of the collection is of type
OCI_DTYPE_TABLE_CHDES.

• OCI_ATTR_CQDES_QUERYID (ub8, READ) - Query ID of the query that was invalidated.

OCI_DTYPE_TABLE_CHDES
This notification descriptor conveys information about changes to a table involved in a
registered query. It has the following attributes:

• OCI_ATTR_CHDES_TABLE_NAME (oratext *) - Schema annotated table name.

• OCI_ATTR_CHDES_TABLE_OPFLAGS (ub4) - Flag field describing the operations on the
table. Each of the following flag fields is in a separate bit position in the attribute:

– 0x1 OCI_OPCODE_ALLROWS - The table is completely invalidated.

– 0x2 OCI_OPCODE_INSERT - Insert operations on the table.

– 0x4 OCI_OPCODE_UPDATE - Update operations on the table.

– 0x8 OCI_OPCODE_DELETE - Delete operations on the table.

– 0x10 OCI_OPCODE_ALTER - Table altered (schema change). This includes DDL
statements and internal operations that cause row migration.

– 0x20 OCI_OPCODE_DROP - Table dropped.

Chapter 18
Using OCI to Create CQN Registrations

18-38

• OCI_ATTR_CHDES_TABLE_ROW_CHANGES - This is an embedded collection describing
the changes to the rows within the table. Each element of the collection is a row
continuous query descriptor of type OCI_DTYPE_ROW_CHDES that has the following
attributes:

– OCI_ATTR_CHDES_ROW_ROWID (OraText *) - String representation of a ROWID.

– OCI_ATTR_CHDES_ROW_OPFLAGS - Reflects the operation type: INSERT, UPDATE,
DELETE, or OTHER.

See Also:

Oracle Call Interface Programmer's Guide for more information about
continuous query notification descriptor attributes

Demonstrating Continuous Query Notification in an OCI Sample
Program

Example 18-8 is a simple OCI program, demoquery.c. See the comments in the listing.
The calling session must have the CHANGE NOTIFICATION system privilege and SELECT
privileges on all objects that it attempts to register.

Example 18-8 Program Listing That Demonstrates Continuous Query
Notification

/* Copyright (c) 2010, Oracle. All rights reserved. */

#ifndef S_ORACLE
include <oratypes.h>
#endif

/**
 *This is a DEMO program. To test, compile the file to generate the executable
 *demoquery. Then demoquery can be invoked from a command prompt.
 *It will have the following output:

Initializing OCI Process
Registering query : select last_name, employees.department_id, department_name
 from employees, departments
 where employee_id = 200
 and employees.department_id = departments.department_id
Query Id 23
Waiting for Notifications

*Then from another session, log in as HR/<password> and perform the following
* DML transactions. It will cause two notifications to be generated.

update departments set department_name ='Global Admin' where department_id=10;
commit;
update departments set department_name ='Administration' where department_id=10;
commit;

*The demoquery program will now show the following output corresponding
*to the notifications received.

Chapter 18
Using OCI to Create CQN Registrations

18-39

Query 23 is changed
Table changed is HR.DEPARTMENTS table_op 4
Row changed is AAAMBoAABAAAKX2AAA row_op 4
Query 23 is changed
Table changed is HR.DEPARTMENTS table_op 4
Row changed is AAAMBoAABAAAKX2AAA row_op 4

*The demo program waits for exactly 10 notifications to be received before
*logging off and unregistering the subscription.

***/

/*---
 PRIVATE TYPES AND CONSTANTS
 ---*/

/*---
 STATIC FUNCTION DECLARATIONS
 ---*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

#define MAXSTRLENGTH 1024
#define bit(a,b) ((a)&(b))

static int notifications_processed = 0;
static OCISubscription *subhandle1 = (OCISubscription *)0;
static OCISubscription *subhandle2 = (OCISubscription *)0;
static void checker(/*_ OCIError *errhp, sword status _*/);
static void registerQuery(/*_ OCISvcCtx *svchp, OCIError *errhp, OCIStmt *stmthp,
 OCIEnv *envhp _*/);
static void myCallback (/*_ dvoid *ctx, OCISubscription *subscrhp,
 dvoid *payload, ub4 *payl, dvoid *descriptor,
 ub4 mode _*/);
static int NotificationDriver(/*_ int argc, char *argv[] _*/);
static sword status;
static boolean logged_on = FALSE;
static void processRowChanges(OCIEnv *envhp, OCIError *errhp, OCIStmt *stmthp,
 OCIColl *row_changes);
static void processTableChanges(OCIEnv *envhp, OCIError *errhp,
 OCIStmt *stmthp, OCIColl *table_changes);
static void processQueryChanges(OCIEnv *envhp, OCIError *errhp, OCIStmt *stmthp,
 OCIColl *query_changes);
static int nonractests2(/*_ int argc, char *argv[] _*/);

int main(int argc, char **argv)
{

 NotificationDriver(argc, argv);
 return 0;
}

int NotificationDriver(argc, argv)
int argc;
char *argv[];

Chapter 18
Using OCI to Create CQN Registrations

18-40

{
 OCIEnv *envhp;
 OCISvcCtx *svchp, *svchp2;
 OCIError *errhp, *errhp2;
 OCISession *authp, *authp2;
 OCIStmt *stmthp, *stmthp2;
 OCIDuration dur, dur2;
 int i;
 dvoid *tmp;
 OCISession *usrhp;
 OCIServer *srvhp;

 printf("Initializing OCI Process\n");
/* Initialize the environment. The environment must be initialized
 with OCI_EVENTS and OCI_OBJECT to create a continuous query notification
 registration and receive notifications.
 */
 OCIEnvCreate((OCIEnv **) &envhp, OCI_EVENTS|OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0,
 (size_t) 0, (dvoid **) 0);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);
 /* server contexts */
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);
 checker(errhp,OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0,
 (ub4) OCI_DEFAULT));
 /* set attribute server context in the service context */
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
 (ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)((text *)"HR"), (ub4)strlen((char *)"HR"),
 OCI_ATTR_USERNAME, errhp);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)((text *)"HR"), (ub4)strlen((char *)"HR"),
 OCI_ATTR_PASSWORD, errhp);
 checker(errhp,OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_DEFAULT));
 /* Allocate a statement handle */
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 (ub4) OCI_HTYPE_STMT, 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (dvoid *)usrhp, (ub4)0,
 OCI_ATTR_SESSION, errhp);

 registerQuery(svchp, errhp, stmthp, envhp);
 printf("Waiting for Notifications\n");
 while (notifications_processed !=10)
 {
 sleep(1);

Chapter 18
Using OCI to Create CQN Registrations

18-41

 }
 printf ("Going to unregister HR\n");
 fflush(stdout);
 /* Unregister HR */
 checker(errhp,
 OCISubscriptionUnRegister(svchp, subhandle1, errhp, OCI_DEFAULT));
 checker(errhp, OCISessionEnd(svchp, errhp, usrhp, (ub4) 0));
 printf("HR Logged off.\n");

 if (subhandle1)
 OCIHandleFree((dvoid *)subhandle1, OCI_HTYPE_SUBSCRIPTION);
 if (stmthp)
 OCIHandleFree((dvoid *)stmthp, OCI_HTYPE_STMT);
 if (srvhp)
 OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER);
 if (svchp)
 OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX);
 if (authp)
 OCIHandleFree((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION);
 if (errhp)
 OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR);
 if (envhp)
 OCIHandleFree((dvoid *) envhp, (ub4) OCI_HTYPE_ENV);

 return 0;

}

void checker(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;
 int retval = 1;

 switch (status)
 {
 case OCI_SUCCESS:
 retval = 0;
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");

Chapter 18
Using OCI to Create CQN Registrations

18-42

 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
 if (retval)
 {
 exit(1);
 }
}

void processRowChanges(OCIEnv *envhp, OCIError *errhp, OCIStmt *stmthp,
 OCIColl *row_changes)
{
 dvoid **row_descp;
 dvoid *row_desc;
 boolean exist;
 ub2 i, j;
 dvoid *elemind = (dvoid *)0;
 oratext *row_id;
 ub4 row_op;

 sb4 num_rows;
 if (!row_changes) return;
 checker(errhp, OCICollSize(envhp, errhp,
 (CONST OCIColl *) row_changes, &num_rows));
 for (i=0; i<num_rows; i++)
 {
 checker(errhp, OCICollGetElem(envhp,
 errhp, (OCIColl *) row_changes,
 i, &exist, &row_descp, &elemind));

 row_desc = *row_descp;
 checker(errhp, OCIAttrGet (row_desc,
 OCI_DTYPE_ROW_CHDES, (dvoid *)&row_id,
 NULL, OCI_ATTR_CHDES_ROW_ROWID, errhp));
 checker(errhp, OCIAttrGet (row_desc,
 OCI_DTYPE_ROW_CHDES, (dvoid *)&row_op,
 NULL, OCI_ATTR_CHDES_ROW_OPFLAGS, errhp));

 printf ("Row changed is %s row_op %d\n", row_id, row_op);
 fflush(stdout);
 }
}

void processTableChanges(OCIEnv *envhp, OCIError *errhp, OCIStmt *stmthp,
 OCIColl *table_changes)
{
 dvoid **table_descp;
 dvoid *table_desc;
 dvoid **row_descp;
 dvoid *row_desc;
 OCIColl *row_changes = (OCIColl *)0;
 boolean exist;
 ub2 i, j;
 dvoid *elemind = (dvoid *)0;
 oratext *table_name;

Chapter 18
Using OCI to Create CQN Registrations

18-43

 ub4 table_op;

 sb4 num_tables;
 if (!table_changes) return;
 checker(errhp, OCICollSize(envhp, errhp,
 (CONST OCIColl *) table_changes, &num_tables));
 for (i=0; i<num_tables; i++)
 {
 checker(errhp, OCICollGetElem(envhp,
 errhp, (OCIColl *) table_changes,
 i, &exist, &table_descp, &elemind));

 table_desc = *table_descp;
 checker(errhp, OCIAttrGet (table_desc,
 OCI_DTYPE_TABLE_CHDES, (dvoid *)&table_name,
 NULL, OCI_ATTR_CHDES_TABLE_NAME, errhp));
 checker(errhp, OCIAttrGet (table_desc,
 OCI_DTYPE_TABLE_CHDES, (dvoid *)&table_op,
 NULL, OCI_ATTR_CHDES_TABLE_OPFLAGS, errhp));
 checker(errhp, OCIAttrGet (table_desc,
 OCI_DTYPE_TABLE_CHDES, (dvoid *)&row_changes,
 NULL, OCI_ATTR_CHDES_TABLE_ROW_CHANGES, errhp));

 printf ("Table changed is %s table_op %d\n", table_name,table_op);
 fflush(stdout);
 if (!bit(table_op, OCI_OPCODE_ALLROWS))
 processRowChanges(envhp, errhp, stmthp, row_changes);
 }
}

void processQueryChanges(OCIEnv *envhp, OCIError *errhp, OCIStmt *stmthp,
 OCIColl *query_changes)
{
 sb4 num_queries;
 ub8 queryid;
 OCINumber qidnum;
 ub4 queryop;
 dvoid *elemind = (dvoid *)0;
 dvoid *query_desc;
 dvoid **query_descp;
 ub2 i;
 boolean exist;
 OCIColl *table_changes = (OCIColl *)0;

 if (!query_changes) return;
 checker(errhp, OCICollSize(envhp, errhp,
 (CONST OCIColl *) query_changes, &num_queries));
 for (i=0; i < num_queries; i++)
 {
 checker(errhp, OCICollGetElem(envhp,
 errhp, (OCIColl *) query_changes,
 i, &exist, &query_descp, &elemind));

 query_desc = *query_descp;
 checker(errhp, OCIAttrGet (query_desc,
 OCI_DTYPE_CQDES, (dvoid *)&queryid,
 NULL, OCI_ATTR_CQDES_QUERYID, errhp));
 checker(errhp, OCIAttrGet (query_desc,
 OCI_DTYPE_CQDES, (dvoid *)&queryop,
 NULL, OCI_ATTR_CQDES_OPERATION, errhp));

Chapter 18
Using OCI to Create CQN Registrations

18-44

 printf(" Query %d is changed\n", queryid);
 if (queryop == OCI_EVENT_DEREG)
 printf("Query Deregistered\n");
 checker(errhp, OCIAttrGet (query_desc,
 OCI_DTYPE_CQDES, (dvoid *)&table_changes,
 NULL, OCI_ATTR_CQDES_TABLE_CHANGES, errhp));
 processTableChanges(envhp, errhp, stmthp, table_changes);

 }
}

void myCallback (ctx, subscrhp, payload, payl, descriptor, mode)
dvoid *ctx;
OCISubscription *subscrhp;
dvoid *payload;
ub4 *payl;
dvoid *descriptor;
ub4 mode;
{
 OCIColl *table_changes = (OCIColl *)0;
 OCIColl *row_changes = (OCIColl *)0;
 dvoid *change_descriptor = descriptor;
 ub4 notify_type;
 ub2 i, j;
 OCIEnv *envhp;
 OCIError *errhp;
 OCIColl *query_changes = (OCIColl *)0;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 dvoid *tmp;
 OCIStmt *stmthp;

 (void)OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t)0, (dvoid **)0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);
 /* server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 OCIAttrGet (change_descriptor, OCI_DTYPE_CHDES, (dvoid *) ¬ify_type,
 NULL, OCI_ATTR_CHDES_NFYTYPE, errhp);
 fflush(stdout);
 if (notify_type == OCI_EVENT_SHUTDOWN ||
 notify_type == OCI_EVENT_SHUTDOWN_ANY)
 {
 printf("SHUTDOWN NOTIFICATION RECEIVED\n");
 fflush(stdout);
 notifications_processed++;
 return;
 }
 if (notify_type == OCI_EVENT_STARTUP)
 {
 printf("STARTUP NOTIFICATION RECEIVED\n");
 fflush(stdout);

Chapter 18
Using OCI to Create CQN Registrations

18-45

 notifications_processed++;
 return;
 }

 notifications_processed++;
 checker(errhp, OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0,
 (ub4) OCI_DEFAULT));

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 /* set attribute server context in the service context */
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
 (ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)"HR", (ub4)strlen("HR"), OCI_ATTR_USERNAME, errhp);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)"HR", (ub4)strlen("HR"),
 OCI_ATTR_PASSWORD, errhp);

 checker(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_DEFAULT));

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* Allocate a statement handle */
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 (ub4) OCI_HTYPE_STMT, 52, (dvoid **) &tmp);

 if (notify_type == OCI_EVENT_OBJCHANGE)
 {
 checker(errhp, OCIAttrGet (change_descriptor,
 OCI_DTYPE_CHDES, &table_changes, NULL,
 OCI_ATTR_CHDES_TABLE_CHANGES, errhp));
 processTableChanges(envhp, errhp, stmthp, table_changes);
 }
 else if (notify_type == OCI_EVENT_QUERYCHANGE)
 {
 checker(errhp, OCIAttrGet (change_descriptor,
 OCI_DTYPE_CHDES, &query_changes, NULL,
 OCI_ATTR_CHDES_QUERIES, errhp));
 processQueryChanges(envhp, errhp, stmthp, query_changes);
 }
 checker(errhp, OCISessionEnd(svchp, errhp, usrhp, OCI_DEFAULT));
 checker(errhp, OCIServerDetach(srvhp, errhp, OCI_DEFAULT));
 if (stmthp)
 OCIHandleFree((dvoid *)stmthp, OCI_HTYPE_STMT);
 if (errhp)
 OCIHandleFree((dvoid *)errhp, OCI_HTYPE_ERROR);
 if (srvhp)
 OCIHandleFree((dvoid *)srvhp, OCI_HTYPE_SERVER);
 if (svchp)
 OCIHandleFree((dvoid *)svchp, OCI_HTYPE_SVCCTX);
 if (usrhp)
 OCIHandleFree((dvoid *)usrhp, OCI_HTYPE_SESSION);

Chapter 18
Using OCI to Create CQN Registrations

18-46

 if (envhp)
 OCIHandleFree((dvoid *)envhp, OCI_HTYPE_ENV);

}

void registerQuery(svchp, errhp, stmthp, envhp)
OCISvcCtx *svchp;
OCIError *errhp;
OCIStmt *stmthp;
OCIEnv *envhp;
{
 OCISubscription *subscrhp;
 ub4 namespace = OCI_SUBSCR_NAMESPACE_DBCHANGE;
 ub4 timeout = 60;
 OCIDefine *defnp1 = (OCIDefine *)0;
 OCIDefine *defnp2 = (OCIDefine *)0;
 OCIDefine *defnp3 = (OCIDefine *)0;
 OCIDefine *defnp4 = (OCIDefine *)0;
 OCIDefine *defnp5 = (OCIDefine *)0;
 int mgr_id =0;
text query_text1[] = "select last_name, employees.department_id, department_name \
 from employees,departments where employee_id = 200 and employees.department_id =\
 departments.department_id";

 ub4 num_prefetch_rows = 0;
 ub4 num_reg_tables;
 OCIColl *table_names;
 ub2 i;
 boolean rowids = TRUE;
 ub4 qosflags = OCI_SUBSCR_CQ_QOS_QUERY ;
 int empno=0;
 OCINumber qidnum;
 ub8 qid;
 char outstr[MAXSTRLENGTH], dname[MAXSTRLENGTH];
 int q3out;

 fflush(stdout);
 /* allocate subscription handle */
 OCIHandleAlloc ((dvoid *) envhp, (dvoid **) &subscrhp,
 OCI_HTYPE_SUBSCRIPTION, (size_t) 0, (dvoid **) 0);

 /* set the namespace to DBCHANGE */
 checker(errhp, OCIAttrSet (subscrhp, OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, sizeof(ub4),
 OCI_ATTR_SUBSCR_NAMESPACE, errhp));

 /* Associate a notification callback with the subscription */
 checker(errhp, OCIAttrSet (subscrhp, OCI_HTYPE_SUBSCRIPTION,
 (void *)myCallback, 0, OCI_ATTR_SUBSCR_CALLBACK, errhp));
 /* Allow extraction of rowid information */
 checker(errhp, OCIAttrSet (subscrhp, OCI_HTYPE_SUBSCRIPTION,
 (dvoid *)&rowids, sizeof(ub4),
 OCI_ATTR_CHNF_ROWIDS, errhp));

 checker(errhp, OCIAttrSet (subscrhp, OCI_HTYPE_SUBSCRIPTION,
 (dvoid *)&qosflags, sizeof(ub4),
 OCI_ATTR_SUBSCR_CQ_QOSFLAGS, errhp));

 /* Create a new registration in the DBCHANGE namespace */
 checker(errhp,
 OCISubscriptionRegister(svchp, &subscrhp, 1, errhp, OCI_DEFAULT));

Chapter 18
Using OCI to Create CQN Registrations

18-47

 /* Multiple queries can now be associated with the subscription */

 subhandle1 = subscrhp;

 printf("Registering query : %s\n", (const signed char *)query_text1);
 /* Prepare the statement */
 checker(errhp, OCIStmtPrepare (stmthp, errhp, query_text1,
 (ub4)strlen((const signed char *)query_text1), OCI_V7_SYNTAX,
 OCI_DEFAULT));

 checker(errhp,
 OCIDefineByPos(stmthp, &defnp1,
 errhp, 1, (dvoid *)outstr, MAXSTRLENGTH * sizeof(char),
 SQLT_STR, (dvoid *)0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT));
 checker(errhp,
 OCIDefineByPos(stmthp, &defnp2,
 errhp, 2, (dvoid *)&empno, sizeof(empno),
 SQLT_INT, (dvoid *)0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT));
 checker(errhp,
 OCIDefineByPos(stmthp, &defnp3,
 errhp, 3, (dvoid *)&dname, sizeof(dname),
 SQLT_STR, (dvoid *)0, (ub2 *)0, (ub2 *)0, OCI_DEFAULT));

 /* Associate the statement with the subscription handle */
 OCIAttrSet (stmthp, OCI_HTYPE_STMT, subscrhp, 0,
 OCI_ATTR_CHNF_REGHANDLE, errhp);

 /* Execute the statement, the execution performs object registration */
 checker(errhp, OCIStmtExecute (svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL ,
 OCI_DEFAULT));
 fflush(stdout);

 OCIAttrGet(stmthp, OCI_HTYPE_STMT, &qid, (ub4 *)0,
 OCI_ATTR_CQ_QUERYID, errhp);
 printf("Query Id %d\n", qid);

 /* commit */
 checker(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

}

static void cleanup(envhp, svchp, srvhp, errhp, usrhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIServer *srvhp;
OCIError *errhp;
OCISession *usrhp;
{
 /* detach from the server */
 checker(errhp, OCISessionEnd(svchp, errhp, usrhp, OCI_DEFAULT));
 checker(errhp, OCIServerDetach(srvhp, errhp, (ub4)OCI_DEFAULT));

 if (usrhp)
 (void) OCIHandleFree((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION);
 if (svchp)
 (void) OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX);
 if (srvhp)
 (void) OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER);

Chapter 18
Using OCI to Create CQN Registrations

18-48

 if (errhp)
 (void) OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR);
 if (envhp)
 (void) OCIHandleFree((dvoid *) envhp, (ub4) OCI_HTYPE_ENV);

}

Querying CQN Registrations
To see top-level information about all registrations, including their QOS options, query
the static data dictionary view *_CHANGE_NOTIFICATION_REGS.

For example, you can obtain the registration ID for a client and the list of objects for
which it receives notifications. To view registration IDs and table names for HR, use this
query:

SELECT regid, table_name FROM USER_CHANGE_NOTIFICATION_REGS;

To see which queries are registered for QRCN, query the static data dictionary view
USER_CQ_NOTIFICATION_QUERIES or DBA_CQ_NOTIFICATION_QUERIES. These views
include information about any bind values that the queries use. In these views, bind
values in the original query are included in the query text as constants. The query text
is equivalent, but maybe not identical, to the original query that was registered.

See Also:

Oracle Database Reference for more information about the static data
dictionary views USER_CHANGE_NOTIFICATION_REGS and
DBA_CQ_NOTIFICATION_QUERIES

Interpreting Notifications
When a transaction commits, the database determines whether registered objects
were modified in the transaction. If so, it runs the notification handler specified in the
registration.

Topics:

• Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object

• Interpreting a CQ_NOTIFICATION$_TABLE Object

• Interpreting a CQ_NOTIFICATION$_QUERY Object

• Interpreting a CQ_NOTIFICATION$_ROW Object

Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object
When a CQN registration generates a notification, the database passes a
CQ_NOTIFICATION$_DESCRIPTOR object to the notification handler. The notification
handler can find the details of the database change in the attributes of the
CQ_NOTIFICATION$_DESCRIPTOR object.

Chapter 18
Querying CQN Registrations

18-49

In SQL*Plus, you can list these attributes by connecting as SYS and running this
statement:

DESC CQ_NOTIFICATION$_DESCRIPTOR

Table 18-4 summarizes the attributes of CQ_NOTIFICATION$_DESCRIPTOR.

Table 18-4 Attributes of CQ_NOTIFICATION$_DESCRIPTOR

Attribute Description

REGISTRATION_ID The registration ID that was returned during registration.

TRANSACTION_ID The ID for the transaction that made the change.

DBNAME The name of the database in which the notification was generated.

EVENT_TYPE The database event that triggers a notification. For example, the
attribute can contain these constants, which correspond to different
database events:

• EVENT_NONE
• EVENT_STARTUP (Instance startup)
• EVENT_SHUTDOWN (Instance shutdown - last instance shutdown for

Oracle RAC)
• EVENT_SHUTDOWN_ANY (Any instance shutdown for Oracle RAC)
• EVENT_DEREG (Registration was removed)
• EVENT_OBJCHANGE (Change to a registered table)
• EVENT_QUERYCHANGE (Change to a registered result set)

NUMTABLES The number of tables that were modified.

TABLE_DESC_ARRAY This field is present only for OCN registrations. For QRCN registrations,
it is NULL.

If EVENT_TYPE is EVENT_OBJCHANGE]: a VARRAY of table change
descriptors of type CQ_NOTIFICATION$_TABLE, each of which
corresponds to a changed table. For attributes of
CQ_NOTIFICATION$_TABLE, see Table 18-5.

Otherwise: NULL.

QUERY_DESC_ARRAY This field is present only for QRCN registrations. For OCN registrations,
it is NULL.

If EVENT_TYPE is EVENT_QUERYCHANGE]: a VARRAY of result set change
descriptors of type CQ_NOTIFICATION$_QUERY, each of which
corresponds to a changed result set. For attributes of
CQ_NOTIFICATION$_QUERY, see Table 18-6.

Otherwise: NULL.

Interpreting a CQ_NOTIFICATION$_TABLE Object
The CQ_NOTIFICATION$_DESCRIPTOR type contains an attribute called
TABLE_DESC_ARRAY, which holds a VARRAY of table descriptors of type
CQ_NOTIFICATION$_TABLE.

In SQL*Plus, you can list these attributes by connecting as SYS and running this
statement:

DESC CQ_NOTIFICATION$_TABLE

Chapter 18
Interpreting Notifications

18-50

Table 18-5 summarizes the attributes of CQ_NOTIFICATION$_TABLE.

Table 18-5 Attributes of CQ_NOTIFICATION$_TABLE

Attribute Specifies . . .

OPFLAGS The type of operation performed on the modified table. For example, the
attribute can contain these constants, which correspond to different
database operations:

• ALL_ROWS signifies that either the entire table is modified, as in a
DELETE *, or row-level granularity of information is not requested or
unavailable in the notification, and the recipient must assume that the
entire table has changed

• UPDATEOP signifies an update
• DELETEOP signifies a deletion
• ALTEROP signifies an ALTER TABLE
• DROPOP signifies a DROP TABLE
• UNKNOWNOP signifies an unknown operation

TABLE_NAME The name of the modified table.

NUMROWS The number of modified rows.

ROW_DESC_ARRAY A VARRAY of row descriptors of type CQ_NOTIFICATION$_ROW, which
Table 18-7 describes. If ALL_ROWS was set in the opflags, then the
ROW_DESC_ARRAY member is NULL.

Interpreting a CQ_NOTIFICATION$_QUERY Object
The CQ_NOTIFICATION$_DESCRIPTOR type contains an attribute called
QUERY_DESC_ARRAY, which holds a VARRAY of result set change descriptors of type
CQ_NOTIFICATION$_QUERY.

In SQL*Plus, you can list these attributes by connecting as SYS and running this
statement:

DESC CQ_NOTIFICATION$_QUERY

Table 18-6 summarizes the attributes of CQ_NOTIFICATION$_QUERY.

Table 18-6 Attributes of CQ_NOTIFICATION$_QUERY

Attribute Specifies . . .

QUERYID Query ID of the changed query.

QUERYOP Operation that changed the query (either EVENT_QUERYCHANGE or
EVENT_DEREG).

TABLE_DESC_ARRAY A VARRAY of table change descriptors of type
CQ_NOTIFICATION$_TABLE, each of which corresponds to a
changed table that caused a change in the result set. For attributes
of CQ_NOTIFICATION$_TABLE, see Table 18-5.

Chapter 18
Interpreting Notifications

18-51

Interpreting a CQ_NOTIFICATION$_ROW Object
If the ROWID option was specified during registration, the CQ_NOTIFICATION$_TABLE type
has a ROW_DESC_ARRAY attribute, a VARRAY of type CQ_NOTIFICATION$_ROW that contains
the ROWIDs for the changed rows. If ALL_ROWS was set in the OPFLAGS field of the
CQ_NOTIFICATION$_TABLE object, then ROWID information is unavailable.

Table 18-7 summarizes the attributes of CQ_NOTIFICATION$_ROW.

Table 18-7 Attributes of CQ_NOTIFICATION$_ROW

Attribute Specifies . . .

OPFLAGS The type of operation performed on the modified table. See the
description of OPFLAGS in Table 18-5.

ROW_ID The ROWID of the changed row.

Chapter 18
Interpreting Notifications

18-52

Part IV
Advanced Topics for Application
Developers

This part presents application development information that either involves
sophisticated technology or is used by a small minority of developers.

Chapters:

• Using Oracle Flashback Technology

• Choosing a Programming Environment

• Developing Applications with Multiple Programming Languages

• Developing Applications with Oracle XA

• Developing Applications with the Publish-Subscribe Model

• Using the Oracle ODBC Driver

• Using the Identity Code Package

• Understanding Schema Object Dependency

• Using Edition-Based Redefinition

• Using Transaction Guard

See Also:

Oracle Database Performance Tuning Guide and Oracle Database SQL
Tuning Guide for performance issues to consider when developing
applications

19
Using Oracle Flashback Technology

This chapter explains how to use Oracle Flashback Technology in database
applications.

Topics:

• Overview of Oracle Flashback Technology

• Configuring Your Database for Oracle Flashback Technology

• Using Oracle Flashback Query (SELECT AS OF)

• Using Oracle Flashback Version Query

• Using Oracle Flashback Transaction Query

• Using Oracle Flashback Transaction Query with Oracle Flashback Version Query

• Using DBMS_FLASHBACK Package

• Using Flashback Transaction

• Using Flashback Data Archive

• General Guidelines for Oracle Flashback Technology

• Performance Guidelines for Oracle Flashback Technology

• Multitenant Container Database Restrictions for Oracle Flashback Technology

Overview of Oracle Flashback Technology
Oracle Flashback Technology is a group of Oracle Database features that let you view
past states of database objects or to return database objects to a previous state
without using point-in-time media recovery.

With flashback features, you can:

• Perform queries that return past data

• Perform queries that return metadata that shows a detailed history of changes to
the database

• Recover tables or rows to a previous point in time

• Automatically track and archive transactional data changes

• Roll back a transaction and its dependent transactions while the database remains
online

Oracle Flashback features use the Automatic Undo Management (AUM) system to
obtain metadata and historical data for transactions. They rely on undo data, which
are records of the effects of individual transactions. For example, if a user runs an
UPDATE statement to change a salary from 1000 to 1100, then Oracle Database stores
the value 1000 in the undo data.

19-1

Undo data is persistent and survives a database shutdown. It is retained for the time
specified by undo_retention, or up to the tuned undo retention in the presence of
Automatic Undo Management (AUM). By using flashback features, you can use undo
data to query past data or recover from logical damage. Besides using it in flashback
features, Oracle Database uses undo data to perform these actions:

• Roll back active transactions

• Recover terminated transactions by using database or process recovery

• Provide read consistency for SQL queries

Note:

After executing a CREATE TABLE statement, wait at least 15 seconds to
commit any transactions, to ensure that Oracle Flashback features
(especially Oracle Flashback Version Query) reflect those transactions.

Note:

Oracle Database recommends to avoid the usage of versions_starttime,
versions_endtime or scn_to_timestamp columns in

VERSIONS queries (including CTAS queries) to improve the performance.

Topics:

• Application Development Features

• Database Administration Features

See Also:

Oracle Database Concepts for more information about flashback features

Application Development Features
In application development, you can use these flashback features to report historical
data or undo erroneous changes. (You can also use these features interactively as a
database user or administrator.)

Oracle Flashback Query

Use this feature to retrieve data for an earlier time that you specify with the AS OF
clause of the SELECT statement.

Chapter 19
Overview of Oracle Flashback Technology

19-2

See Also:

Using Oracle Flashback Query (SELECT AS OF)

Oracle Flashback Version Query

Use this feature to retrieve metadata and historical data for a specific time interval (for
example, to view all the rows of a table that ever existed during a given time interval).
Metadata for each row version includes start and end time, type of change operation,
and identity of the transaction that created the row version. To create an Oracle
Flashback Version Query, use the VERSIONS BETWEEN clause of the SELECT statement.

See Also:

Using Oracle Flashback Version Query

Oracle Flashback Transaction Query

Use this feature to retrieve metadata and historical data for a given transaction or for
all transactions in a given time interval. To perform an Oracle Flashback Transaction
Query, select from the static data dictionary view FLASHBACK_TRANSACTION_QUERY.

See Also:

Using Oracle Flashback Transaction Query.

Typically, you use Oracle Flashback Transaction Query with an Oracle Flashback
Version Query that provides the transaction IDs for the rows of interest.

See Also:

Using Oracle Flashback Transaction Query with Oracle Flashback Version
Query

DBMS_FLASHBACK Package

Use this feature to set the internal Oracle Database clock to an earlier time so that you
can examine data that was current at that time, or to roll back a transaction and its
dependent transactions while the database remains online.

Chapter 19
Overview of Oracle Flashback Technology

19-3

See Also:

• Flashback Transaction

• Using DBMS_FLASHBACK Package

Flashback Transaction

Use Flashback Transaction to roll back a transaction and its dependent transactions
while the database remains online. This recovery operation uses undo data to create
and run the corresponding compensating transactions that return the affected data to
its original state. (Flashback Transaction is part of DBMS_FLASHBACK package).

See Also:

Using DBMS_FLASHBACK Package.

Flashback Data Archive

Use Flashback Data Archive to automatically track and archive historical versions of
changes to tables enabled for flashback archive, ensuring SQL-level access to the
versions of database objects without getting a snapshot-too-old error.

See Also:

Using Flashback Data Archive.

Database Administration Features
These flashback features are primarily for data recovery. Typically, you use these
features only as a database administrator.

This chapter focuses on the Application Development Features.

See Also:

• Oracle Database Administrator's Guide

• Oracle Database Backup and Recovery User's Guide

Oracle Flashback Table

Use this feature to restore a table to its state at a previous point in time. You can
restore a table while the database is on line, undoing changes to only the specified
table.

Chapter 19
Overview of Oracle Flashback Technology

19-4

Oracle Flashback Drop

Use this feature to recover a dropped table. This feature reverses the effects of a DROP
TABLE statement.

Oracle Flashback Database

Use this feature to quickly return the database to an earlier point in time, by using the
recovery area. This is fast, because you do not have to restore database backups.

Configuring Your Database for Oracle Flashback
Technology

Before you can use flashback features in your application, you or your database
administrator must perform the configuration tasks described in these topics:

Topics:

• Configuring Your Database for Automatic Undo Management

• Configuring Your Database for Oracle Flashback Transaction Query

• Configuring Your Database for Flashback Transaction

• Enabling Oracle Flashback Operations on Specific LOB Columns

• Granting Necessary Privileges

Configuring Your Database for Automatic Undo Management
To configure your database for Automatic Undo Management (AUM), you or your
database administrator must:

• Create an undo tablespace with enough space to keep the required data for
flashback operations.

The more often users update the data, the more space is required. The database
administrator usually calculates the space requirement.

• Enable AUM, as explained in Oracle Database Administrator's Guide. Set these
database initialization parameters:

– UNDO_MANAGEMENT

– UNDO_TABLESPACE

– UNDO_RETENTION

For a fixed-size undo tablespace, Oracle Database automatically tunes the system
to give the undo tablespace the best possible undo retention.

For an automatically extensible undo tablespace, Oracle Database retains undo
data longer than the longest query duration and the low threshold of undo
retention specified by the UNDO_RETENTION parameter.

Chapter 19
Configuring Your Database for Oracle Flashback Technology

19-5

Note:

You can query V$UNDOSTAT.TUNED_UNDORETENTION to determine the
amount of time for which undo is retained for the current undo
tablespace.

Setting UNDO_RETENTION does not guarantee that unexpired undo data is not
discarded. If the system needs more space, Oracle Database can overwrite
unexpired undo with more recently generated undo data.

• Specify the RETENTION GUARANTEE clause for the undo tablespace to ensure that
unexpired undo data is not discarded.

See Also:

• Oracle Database Administrator's Guide for more information about
creating an undo tablespace and enabling AUM

• Oracle Database Reference for more information about V$UNDOSTAT

Configuring Your Database for Oracle Flashback Transaction Query
To configure your database for the Oracle Flashback Transaction Query feature, you
or your database administrator must:

• Ensure that Oracle Database is running with version 10.0 compatibility.

• Enable supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

Configuring Your Database for Flashback Transaction
To configure your database for the Flashback Transaction feature, you or your
database administrator must:

• With the database mounted but not open, enable ARCHIVELOG:

ALTER DATABASE ARCHIVELOG;

• Open at least one archive log:

ALTER SYSTEM ARCHIVE LOG CURRENT;

• If not done, enable minimal and primary key supplemental logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY) COLUMNS;

• If you want to track foreign key dependencies, enable foreign key supplemental
logging:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (FOREIGN KEY) COLUMNS;

Chapter 19
Configuring Your Database for Oracle Flashback Technology

19-6

Note:

If you have very many foreign key constraints, enabling foreign key
supplemental logging might not be worth the performance penalty.

Enabling Oracle Flashback Operations on Specific LOB Columns
To enable flashback operations on specific LOB columns of a table, use the ALTER
TABLE statement with the RETENTION option.

Because undo data for LOB columns can be voluminous, you must define which LOB
columns to use with flashback operations.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide to learn
about LOB storage and the RETENTION parameter

Granting Necessary Privileges
You or your database administrator must grant privileges to users, roles, or
applications that must use these flashback features.

See Also:

Oracle Database SQL Language Reference for information about the GRANT
statement

For Oracle Flashback Query and Oracle Flashback Version Query

To allow access to specific objects during queries, grant FLASHBACK and either READ or
SELECT privileges on those objects.

To allow queries on all tables, grant the FLASHBACK ANY TABLE privilege.

For Oracle Flashback Transaction Query

Grant the SELECT ANY TRANSACTION privilege.

To allow execution of undo SQL code retrieved by an Oracle Flashback Transaction
Query, grant SELECT, UPDATE, DELETE, and INSERT privileges for specific tables.

For DBMS_FLASHBACK Package

To allow access to the features in the DBMS_FLASHBACK package, grant the EXECUTE
privilege on DBMS_FLASHBACK.

Chapter 19
Configuring Your Database for Oracle Flashback Technology

19-7

For Flashback Data Archive

To allow a specific user to enable Flashback Data Archive on tables, using a specific
Flashback Data Archive, grant the FLASHBACK ARCHIVE object privilege on that
Flashback Data Archive to that user. To grant the FLASHBACK ARCHIVE object privilege,
you must either be logged on as SYSDBA or have FLASHBACK ARCHIVE ADMINISTER
system privilege.

To allow execution of these statements, grant the FLASHBACK ARCHIVE ADMINISTER
system privilege:

• CREATE FLASHBACK ARCHIVE

• ALTER FLASHBACK ARCHIVE

• DROP FLASHBACK ARCHIVE

To grant the FLASHBACK ARCHIVE ADMINISTER system privilege, you must be logged on
as SYSDBA.

To create a default Flashback Data Archive, using either the CREATE FLASHBACK
ARCHIVE or ALTER FLASHBACK ARCHIVE statement, you must be logged on as SYSDBA.

To disable Flashback Data Archive for a table that has been enabled for Flashback
Data Archive, you must either be logged on as SYSDBA or have the FLASHBACK ARCHIVE
ADMINISTER system privilege.

Using Oracle Flashback Query (SELECT AS OF)
To use Oracle Flashback Query, use a SELECT statement with an AS OF clause. Oracle
Flashback Query retrieves data as it existed at an earlier time. The query explicitly
references a past time through a time stamp or System Change Number (SCN). It
returns committed data that was current at that point in time.

Uses of Oracle Flashback Query include:

• Recovering lost data or undoing incorrect, committed changes.

For example, if you mistakenly delete or update rows, and then commit them, you
can immediately undo the mistake.

• Comparing current data with the corresponding data at an earlier time.

For example, you can run a daily report that shows the change in data from
yesterday. You can compare individual rows of table data or find intersections or
unions of sets of rows.

• Checking the state of transactional data at a particular time.

For example, you can verify the account balance of a certain day.

• Selecting data that was valid at a particular time or at any time within a user-
defined valid time period.

For example, you can find employees with valid employee information as of a
particular timestamp or between a specified start and end time in the specified
valid time period. (For more information, see Temporal Validity Support.)

• Simplifying application design by removing the need to store some kinds of
temporal data.

Chapter 19
Using Oracle Flashback Query (SELECT AS OF)

19-8

Oracle Flashback Query lets you retrieve past data directly from the database.

• Applying packaged applications, such as report generation tools, to past data.

• Providing self-service error correction for an application, thereby enabling users to
undo and correct their errors.

Topics:

• Example: Examining and Restoring Past Data

• Guidelines for Oracle Flashback Query

See Also:

Oracle Database SQL Language Reference for more information about the
SELECT AS OF statement

Example: Examining and Restoring Past Data
Suppose that you discover at 12:30 PM that the row for employee Chung was deleted
from the employees table, and you know that at 9:30AM the data for Chung was
correctly stored in the database. You can use Oracle Flashback Query to examine the
contents of the table at 9:30 AM to find out what data was lost. If appropriate, you can
restore the lost data.

Example 19-1 retrieves the state of the record for Chung at 9:30AM, April 4, 2004:

Example 19-1 Retrieving a Lost Row with Oracle Flashback Query

SELECT * FROM employees
AS OF TIMESTAMP
TO_TIMESTAMP('2004-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
WHERE last_name = 'Chung';

Example 19-2 restores Chung's information to the employees table:

Example 19-2 Restoring a Lost Row After Oracle Flashback Query

INSERT INTO employees (
 SELECT * FROM employees
 AS OF TIMESTAMP
 TO_TIMESTAMP('2004-04-04 09:30:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE last_name = 'Chung'
);

Guidelines for Oracle Flashback Query
• You can specify or omit the AS OF clause for each table and specify different times

for different tables.

Chapter 19
Using Oracle Flashback Query (SELECT AS OF)

19-9

Note:

If a table is a Flashback Data Archive and you specify a time for it that is
earlier than its creation time, the query returns zero rows for that table,
rather than causing an error.

• You can use the AS OF clause in queries to perform data definition language (DDL)
operations (such as creating and truncating tables) or data manipulation language
(DML) statements (such as INSERT and DELETE) in the same session as Oracle
Flashback Query.

• To use the result of Oracle Flashback Query in a DDL or DML statement that
affects the current state of the database, use an AS OF clause inside an INSERT or
CREATE TABLE AS SELECT statement.

• If a possible 3-second error (maximum) is important to Oracle Flashback Query in
your application, use an SCN instead of a time stamp. See General Guidelines for
Oracle Flashback Technology.

• You can create a view that refers to past data by using the AS OF clause in the
SELECT statement that defines the view.

If you specify a relative time by subtracting from the current time on the database
host, the past time is recalculated for each query. For example:

CREATE VIEW hour_ago AS
 SELECT * FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE);

SYSTIMESTAMP refers to the time zone of the database host environment.

• You can use the AS OF clause in self-joins, or in set operations such as INTERSECT
and MINUS, to extract or compare data from two different times.

You can store the results by preceding Oracle Flashback Query with a CREATE
TABLE AS SELECT or INSERT INTO TABLE SELECT statement. For example, this query
reinserts into table employees the rows that existed an hour ago:

INSERT INTO employees
 (SELECT * FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE)
 MINUS SELECT * FROM employees;

SYSTIMESTAMP refers to the time zone of the database host environment.

• You can use the AS OF clause in queries to check for data that was valid at a
particular time.

See Also:

• Temporal Validity Support

• Using Flashback Data Archive for information about Flashback Data
Archives

Chapter 19
Using Oracle Flashback Query (SELECT AS OF)

19-10

Using Oracle Flashback Version Query
Use Oracle Flashback Version Query to retrieve the different versions of specific rows
that existed during a given time interval. A row version is created whenever a COMMIT
statement is executed.

Note:

After executing a CREATE TABLE statement, wait at least 15 seconds to
commit any transactions, to ensure that Oracle Flashback Version Query
reflects those transactions.

Specify Oracle Flashback Version Query using the VERSIONS BETWEEN clause of the
SELECT statement. The syntax is either:

VERSIONS BETWEEN { SCN | TIMESTAMP } start AND end

where start and end are expressions representing the start and end, respectively, of
the time interval to be queried. The time interval includes (start and end).

or:

VERSIONS PERIOD FOR user_valid_time [BETWEEN TIMESTAMP start AND end]

where user_valid_time refers to the user-specified valid time period, as explained in
Temporal Validity Support.

Oracle Flashback Version Query returns a table with a row for each version of the row
that existed at any time during the specified time interval. Each row in the table
includes pseudocolumns of metadata about the row version, which can reveal when
and how a particular change (perhaps erroneous) occurred to your database.

Table 19-1 describes the pseudocolumns of metadata about the row version. The
VERSIONS_* pseudocolumns have values only for transaction-time Flashback Version
Queries (that is, queries with the clause BETWEEN TIMESTAMP start AND end).

Table 19-1 Oracle Flashback Version Query Row Data Pseudocolumns

Pseudocolumn
Name

Description

VERSIONS_STARTS
CN

VERSIONS_STARTT
IME

Starting System Change Number (SCN) or TIMESTAMP when the row
version was created. This pseudocolumn identifies the time when the data
first had the values reflected in the row version. Use this pseudocolumn to
identify the past target time for Oracle Flashback Table or Oracle
Flashback Query.

If this pseudocolumn is NULL, then the row version was created before
start.

VERSIONS_ENDSCN

VERSIONS_ENDTIM
E

SCN or TIMESTAMP when the row version expired.

If this pseudocolumn is NULL, then either the row version was current at
the time of the query or the row corresponds to a DELETE operation.

Chapter 19
Using Oracle Flashback Version Query

19-11

Table 19-1 (Cont.) Oracle Flashback Version Query Row Data Pseudocolumns

Pseudocolumn
Name

Description

VERSIONS_XID Identifier of the transaction that created the row version.

VERSIONS_OPERAT
ION

Operation performed by the transaction: I for insertion, D for deletion, or U
for update. The version is that of the row that was inserted, deleted, or
updated; that is, the row after an INSERT operation, the row before a
DELETE operation, or the row affected by an UPDATE operation.

For user updates of an index key, Oracle Flashback Version Query might
treat an UPDATE operation as two operations, DELETE plus INSERT,
represented as two version rows with a D followed by an I
VERSIONS_OPERATION.

A given row version is valid starting at its time VERSIONS_START* up to, but not
including, its time VERSIONS_END*. That is, it is valid for any time t such that
VERSIONS_START* <= t < VERSIONS_END*. For example, this output indicates that the
salary was 10243 from September 9, 2002, included, to November 25, 2003,
excluded.

VERSIONS_START_TIME VERSIONS_END_TIME SALARY
------------------- ----------------- ------
09-SEP-2003 25-NOV-2003 10243

Here is a typical use of Oracle Flashback Version Query:

SELECT versions_startscn, versions_starttime,
 versions_endscn, versions_endtime,
 versions_xid, versions_operation,
 last_name, salary
 FROM employees
 VERSIONS BETWEEN TIMESTAMP
 TO_TIMESTAMP('2008-12-18 14:00:00', 'YYYY-MM-DD HH24:MI:SS')
 AND TO_TIMESTAMP('2008-12-18 17:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE first_name = 'John';

You can use VERSIONS_XID with Oracle Flashback Transaction Query to locate this
transaction's metadata, including the SQL required to undo the row change and the
user responsible for the change.

Flashback Version Query allows index-only access only with IOTs (index-organized
tables), but index fast full scan is not allowed.

See Also:

• Oracle Database SQL Language Reference for information about Oracle
Flashback Version Query pseudocolumns and the syntax of the
VERSIONS clause

• Using Oracle Flashback Transaction Query

Chapter 19
Using Oracle Flashback Version Query

19-12

Using Oracle Flashback Transaction Query
Use Oracle Flashback Transaction Query to retrieve metadata and historical data for a
given transaction or for all transactions in a given time interval. Oracle Flashback
Transaction Query queries the static data dictionary view
FLASHBACK_TRANSACTION_QUERY, whose columns are described in Oracle Database
Reference.

The column UNDO_SQL shows the SQL code that is the logical opposite of the DML
operation performed by the transaction. You can usually use this code to reverse the
logical steps taken during the transaction. However, there are cases where the
UNDO_SQL code is not the exact opposite of the original transaction. For example, a
UNDO_SQL INSERT operation might not insert a row back in a table at the same ROWID
from which it was deleted.

This statement queries the FLASHBACK_TRANSACTION_QUERY view for transaction
information, including the transaction ID, the operation, the operation start and end
SCNs, the user responsible for the operation, and the SQL code that shows the logical
opposite of the operation:

SELECT xid, operation, start_scn, commit_scn, logon_user, undo_sql
FROM flashback_transaction_query
WHERE xid = HEXTORAW('000200030000002D');

This statement uses Oracle Flashback Version Query as a subquery to associate each
row version with the LOGON_USER responsible for the row data change:

SELECT xid, logon_user
FROM flashback_transaction_query
WHERE xid IN (
 SELECT versions_xid FROM employees VERSIONS BETWEEN TIMESTAMP
 TO_TIMESTAMP('2003-07-18 14:00:00', 'YYYY-MM-DD HH24:MI:SS') AND
 TO_TIMESTAMP('2003-07-18 17:00:00', 'YYYY-MM-DD HH24:MI:SS')
);

Note:

If you query FLASHBACK_TRANSACTION_QUERY without specifying XID in the
WHERE clause, the query scans many unrelated rows, degrading performance.

See Also:

• Oracle Database Backup and Recovery User's Guide. for information
about how a database administrator can use Flashback Table to restore
an entire table, rather than individual rows

• Oracle Database Administrator's Guide for information about how a
database administrator can use Flashback Table to restore an entire
table, rather than individual rows

Chapter 19
Using Oracle Flashback Transaction Query

19-13

Using Oracle Flashback Transaction Query with Oracle
Flashback Version Query

In this example, a database administrator does this:

DROP TABLE emp;
CREATE TABLE emp (
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(16),
 salary NUMBER
);
INSERT INTO emp (empno, empname, salary) VALUES (111, 'Mike', 555);
COMMIT;

DROP TABLE dept;
CREATE TABLE dept (
 deptno NUMBER,
 deptname VARCHAR2(32)
);
INSERT INTO dept (deptno, deptname) VALUES (10, 'Accounting');
COMMIT;

Now emp and dept have one row each. In terms of row versions, each table has one
version of one row. Suppose that an erroneous transaction deletes empno 111 from
table emp:

UPDATE emp SET salary = salary + 100 WHERE empno = 111;
INSERT INTO dept (deptno, deptname) VALUES (20, 'Finance');
DELETE FROM emp WHERE empno = 111;
COMMIT;

Next, a transaction reinserts empno 111 into the emp table with a new employee name:

INSERT INTO emp (empno, empname, salary) VALUES (111, 'Tom', 777);
UPDATE emp SET salary = salary + 100 WHERE empno = 111;
UPDATE emp SET salary = salary + 50 WHERE empno = 111;
COMMIT;

The database administrator detects the application error and must diagnose the
problem. The database administrator issues this query to retrieve versions of the rows
in the emp table that correspond to empno 111. The query uses Oracle Flashback
Version Query pseudocolumns:

SELECT versions_xid XID, versions_startscn START_SCN,
 versions_endscn END_SCN, versions_operation OPERATION,
 empname, salary
FROM emp
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
WHERE empno = 111;

Results are similar to:

XID START_SCN END_SCN O EMPNAME SALARY
---------------- ---------- ---------- - ---------------- ----------
09001100B2200000 10093466 I Tom 927
030002002B210000 10093459 D Mike 555
0800120096200000 10093375 10093459 I Mike 555

Chapter 19
Using Oracle Flashback Transaction Query with Oracle Flashback Version Query

19-14

3 rows selected.

The results table rows are in descending chronological order. The third row
corresponds to the version of the row in the table emp that was inserted in the table
when the table was created. The second row corresponds to the row in emp that the
erroneous transaction deleted. The first row corresponds to the version of the row in
emp that was reinserted with a new employee name.

The database administrator identifies transaction 030002002B210000 as the erroneous
transaction and uses Oracle Flashback Transaction Query to audit all changes made
by this transaction:

SELECT xid, start_scn, commit_scn, operation, logon_user, undo_sql
FROM flashback_transaction_query
WHERE xid = HEXTORAW('000200030000002D');

Results are similar to:

XID START_SCN COMMIT_SCN OPERATION LOGON_USER
---------------- ---------- ---------- --------- ------------------------------
UNDO_SQL
--

030002002B210000 10093452 10093459 DELETE HR
insert into "HR"."EMP"("EMPNO","EMPNAME","SALARY") values ('111','Mike','655');

030002002B210000 10093452 10093459 INSERT HR
delete from "HR"."DEPT" where ROWID = 'AAATjuAAEAAAAJrAAB';

030002002B210000 10093452 10093459 UPDATE HR
update "HR"."EMP" set "SALARY" = '555' where ROWID = 'AAATjsAAEAAAAJ7AAA';

030002002B210000 10093452 10093459 BEGIN HR

4 rows selected.

To make the result of the next query easier to read, the database administrator uses
these SQL*Plus commands:

COLUMN operation FORMAT A9
COLUMN table_name FORMAT A10
COLUMN table_owner FORMAT A11

To see the details of the erroneous transaction and all subsequent transactions, the
database administrator performs this query:

SELECT xid, start_scn, commit_scn, operation, table_name, table_owner
FROM flashback_transaction_query
WHERE table_owner = 'HR'
AND start_timestamp >=
 TO_TIMESTAMP ('2002-04-16 11:00:00','YYYY-MM-DD HH:MI:SS');

Results are similar to:

XID START_SCN COMMIT_SCN OPERATION TABLE_NAME TABLE_OWNER
---------------- ---------- ---------- --------- ---------- -----------
02000E0074200000 10093435 10093446 INSERT DEPT HR
030002002B210000 10093452 10093459 DELETE EMP HR
030002002B210000 10093452 10093459 INSERT DEPT HR

Chapter 19
Using Oracle Flashback Transaction Query with Oracle Flashback Version Query

19-15

030002002B210000 10093452 10093459 UPDATE EMP HR
0800120096200000 10093374 10093375 INSERT EMP HR
09001100B2200000 10093462 10093466 UPDATE EMP HR
09001100B2200000 10093462 10093466 UPDATE EMP HR
09001100B2200000 10093462 10093466 INSERT EMP HR

8 rows selected.

Note:

Because the preceding query does not specify the XID in the WHERE clause, it
scans many unrelated rows, degrading performance.

Using DBMS_FLASHBACK Package
The DBMS_FLASHBACK package provides the same functionality as Oracle Flashback
Query, but Oracle Flashback Query is sometimes more convenient.

The DBMS_FLASHBACK package acts as a time machine: you can turn back the clock,
perform normal queries as if you were at that earlier time, and then return to the
present. Because you can use the DBMS_FLASHBACK package to perform queries on
past data without special clauses such as AS OF or VERSIONS BETWEEN, you can reuse
existing PL/SQL code to query the database at earlier times.

You must have the EXECUTE privilege on the DBMS_FLASHBACK package.

To use the DBMS_FLASHBACK package in your PL/SQL code:

1. Specify a past time by invoking either DBMS_FLASHBACK.ENABLE_AT_TIME or
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER.

2. Perform regular queries (that is, queries without special flashback-feature syntax
such as AS OF). Do not perform DDL or DML operations.

The database is queried at the specified past time.

3. Return to the present by invoking DBMS_FLASHBACK.DISABLE.

You must invoke DBMS_FLASHBACK.DISABLE before invoking
DBMS_FLASHBACK.ENABLE_AT_TIME or
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER again. You cannot nest
enable/disable pairs.

To use a cursor to store the results of queries, open the cursor before invoking
DBMS_FLASHBACK.DISABLE. After storing the results and invoking
DBMS_FLASHBACK.DISABLE, you can:

• Perform INSERT or UPDATE operations to modify the current database state by
using the stored results from the past.

• Compare current data with the past data. After invoking DBMS_FLASHBACK.DISABLE,
open a second cursor. Fetch from the first cursor to retrieve past data; fetch from
the second cursor to retrieve current data. You can store the past data in a
temporary table and then use set operators such as MINUS or UNION to contrast or
combine the past and current data.

Chapter 19
Using DBMS_FLASHBACK Package

19-16

You can invoke DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER at any time to get the
current System Change Number (SCN). DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER
returns the current SCN regardless of previous invocations of DBMS_FLASHBACK.ENABLE.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_FLASHBACK package

Using Flashback Transaction
The DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure rolls back a transaction and its
dependent transactions while the database remains online. This recovery operation
uses undo data to create and run the compensating transactions that return the
affected data to its original state.

The transactions being rolled back are subject to these restrictions:

• They cannot have performed DDL operations that changed the logical structure of
database tables.

• They cannot use Large Object (LOB) Data Types:

– BFILE

– BLOB

– CLOB

– NCLOB

• They cannot use features that LogMiner does not support.

The features that LogMiner supports depends on the value of the COMPATIBLE
initialization parameter for the database that is rolling back the transaction. The
default value is the release number of the most recent major release.

Flashback Transaction inherits SQL data type support from LogMiner. Therefore, if
LogMiner fails due to an unsupported SQL data type in a the transaction,
Flashback Transaction fails too.

Some data types, though supported by LogMiner, do not generate undo
information as part of operations that modify columns of such types. Therefore,
Flashback Transaction does not support tables containing these data types. These
include tables with BLOB, CLOB and XML type.

Chapter 19
Using Flashback Transaction

19-17

See Also:

• Oracle Data Guard Concepts and Administration for information about
data type and DDL support on a logical standby database

• Oracle Database SQL Language Reference for information about LOB
data types

• Oracle Database Utilities for information about LogMiner

• Oracle Database Administrator's Guide for information about the
COMPATIBLE initialization parameter

Topics:

• Dependent Transactions

• TRANSACTION_BACKOUT Parameters

• TRANSACTION_BACKOUT Reports

Dependent Transactions
In the context of Flashback Transaction, transaction 2 can depend on transaction 1 in
any of these ways:

• Write-after-write dependency

Transaction 1 changes a row of a table, and later transaction 2 changes the same
row.

• Primary key dependency

A table has a primary key constraint on column c. In a row of the table, column c
has the value v. Transaction 1 deletes that row, and later transaction 2 inserts a
row into the same table, assigning the value v to column c.

• Foreign key dependency

In table b, column b1 has a foreign key constraint on column a1 of table a.
Transaction 1 changes a value in a1, and later transaction 2 changes a value in
b1.

TRANSACTION_BACKOUT Parameters
The parameters of the TRANSACTION_BACKOUT procedure are:

• Number of transactions to be backed out

• List of transactions to be backed out, identified either by name or by XID

• Time hint, if you identify transactions by name

Specify a time that is earlier than any transaction started.

• Backout option from Table 19-2

Chapter 19
Using Flashback Transaction

19-18

Table 19-2 Flashback TRANSACTION_BACKOUT Options

Option Description

CASCADE Backs out specified transactions and all dependent transactions in a
post-order fashion (that is, children are backed out before parents are
backed out).

Without CASCADE, if any dependent transaction is not specified, an
error occurs.

NOCASCADE Default. Backs out specified transactions, which are expected to have
no dependent transactions. First dependent transactions causes an
error and appears in *_FLASHBACK_TXN_REPORT.

NOCASCADE_FORCE Backs out specified transactions, ignoring dependent transactions.
Server runs undo SQL statements for specified transactions in
reverse order of commit times.

If no constraints break and you are satisfied with the result, you can
commit the changes; otherwise, you can roll them back.

NONCONFLICT_ONLY Backs out changes to nonconflicting rows of the specified
transactions. Database remains consistent, but transaction atomicity
is lost.

TRANSACTION_BACKOUT analyzes the transactional dependencies, performs DML
operations, and generates reports. TRANSACTION_BACKOUT does not commit the DML
operations that it performs as part of transaction backout, but it holds all the required
locks on rows and tables in the right form, preventing other dependencies from
entering the system. To make the transaction backout permanent, you must explicitly
commit the transaction.

See Also:

Oracle Database PL/SQL Packages and Types Reference for syntax of the
TRANSACTION_BACKOUT procedure and detailed parameter descriptions

TRANSACTION_BACKOUT Reports
To see the reports that TRANSACTION_BACKOUT generates, query the static data
dictionary views *_FLASHBACK_TXN_STATE and *_FLASHBACK_TXN_REPORT.

*_FLASHBACK_TXN_STATE
The static data dictionary view *_FLASHBACK_TXN_STATE shows whether a transaction
is active or backed out. If a transaction appears in this view, it is backed out.

*_FLASHBACK_TXN_STATE is maintained atomically for compensating transactions. If a
compensating transaction is backed out, all changes that it made are also backed out,
and *_FLASHBACK_TXN_STATE reflects this. For example, if compensating transaction ct
backs out transactions t1 and t2, then t1 and t2 appear in *_FLASHBACK_TXN_STATE. If
ct itself is later backed out, the effects of t1 and t2 are reinstated, and t1 and t2
disappear from *_FLASHBACK_TXN_STATE.

Chapter 19
Using Flashback Transaction

19-19

See Also:

Oracle Database Reference for more information about
*_FLASHBACK_TXN_STATE

*_FLASHBACK_TXN_REPORT
The static data dictionary view *_FLASHBACK_TXN_REPORT provides a detailed report for
each backed-out transaction.

See Also:

Oracle Database Reference for more information about
*_FLASHBACK_TXN_REPORT

Using Flashback Data Archive
A Flashback Data Archive provides the ability to track and store transactional changes
to a table over its lifetime. A Flashback Data Archive is useful for compliance with
record stage policies and audit reports.

A Flashback Data Archive consists of one or more tablespaces or parts thereof. You
can have multiple Flashback Data Archives. If you are logged on as SYSDBA, you can
specify a default Flashback Data Archive for the system. A Flashback Data Archive is
configured with retention time. Data archived in the Flashback Data Archive is retained
for the retention time specified when the Flashback Data Archive was created.

By default, Flashback Data Archive is not enabled for any tables. You can enable
Flashback Data Archive for a table if all of these conditions are true:

• You have the FLASHBACK ARCHIVE object privilege on the Flashback Data Archive
to use for that table.

• The table is not nested, temporary, remote, or external.

• The table contains neither LONG nor nested columns.

• The table does not use any of these Flashback Data Archive reserved words as
column names:

– STARTSCN

– ENDSCN

– RID

– XID

– OP

– OPERATION

You cannot enable Flashback Data Archive on a nested table, temporary table,
external table, materialized view, Advanced Query (AQ) table, or non-table object.

Chapter 19
Using Flashback Data Archive

19-20

After Flashback Data Archive is enabled for a table, you can disable it only if you either
have the FLASHBACK ARCHIVE ADMINISTER system privilege or you are logged on as
SYSDBA.

When choosing a Flashback Data Archive for a specific table, consider the data
retention requirements for the table and the retention times of the Flashback Data
Archives on which you have the FLASHBACK ARCHIVE object privilege.

Effective with Oracle Database 12c Release 1 (12.1.0.1), Flashback Data Archive is
enhanced to include the following:

• User context tracking. The metadata information for tracking transactions can
include (if the feature is enabled) the user context, which makes it easier to
determine which user made which changes to a table.

To set the user context level (determining how much user context is to be saved),
use the DBMS_FLASHBACK_ARCHIVE.SET_CONTEXT_LEVEL procedure. To access the
context information, use the DBMS_FLASHBACK_ARCHIVE.GET_SYS_CONTEXT function.

• Database hardening. This feature enables you to associate a set of tables
together in an "application", and then enable Flashback Data Archive on all those
tables with a single command. Also, database hardening enables you to lock all
the tables with a single command, preventing any DML on those tables until they
are subsequently unlocked. Database hardening is designed to make it easier to
use Flashback Data Archive to track and protect the security-sensitive tables for
an application.

To register an application for database hardening, use the
DBMS_FLASHBACK_ARCHIVE.REGISTER_APPLICATION procedure, which is described
in Oracle Database PL/SQL Packages and Types Reference.

Topics:

• Creating a Flashback Data Archive

• Altering a Flashback Data Archive

• Dropping a Flashback Data Archive

• Specifying the Default Flashback Data Archive

• Enabling and Disabling Flashback Data Archive

• DDL Statements on Tables Enabled for Flashback Data Archive

• Viewing Flashback Data Archive Data

• Flashback Data Archive Scenarios

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_FLASHBACK_ARCHIVE package

Creating a Flashback Data Archive
Create a Flashback Data Archive with the CREATE FLASHBACK ARCHIVE statement,
specifying:

Chapter 19
Using Flashback Data Archive

19-21

• Name of the Flashback Data Archive

• Name of the first tablespace of the Flashback Data Archive

• (Optional) Maximum amount of space that the Flashback Data Archive can use in
the first tablespace

The default is unlimited. Unless your space quota on the first tablespace is also
unlimited, you must specify this value; otherwise, error ORA-55621 occurs.

• Retention time (number of days that Flashback Data Archive data for the table is
guaranteed to be stored)

• (Optional) Whether to optimize the storage of data in the history tables maintained
in the Flashback Data Archive, using [NO] OPTIMIZE DATA.

The default is NO OPTIMIZE DATA.

If you are logged on as SYSDBA, you can also specify that this is the default Flashback
Data Archive for the system. If you omit this option, you can still make this Flashback
Data Archive as default at a later stage.

Oracle recommends that all users who must use Flashback Data Archive have
unlimited quota on the Flashback Data Archive tablespace; however, if this is not the
case, you must grant sufficient quota on that tablespace to those users.

Examples

• Create a default Flashback Data Archive named fla1 that uses up to 10 G of
tablespace tbs1, whose data are retained for one year:

CREATE FLASHBACK ARCHIVE DEFAULT fla1 TABLESPACE tbs1
 QUOTA 10G RETENTION 1 YEAR;

• Create a Flashback Data Archive named fla2 that uses tablespace tbs2, whose
data are retained for two years:

CREATE FLASHBACK ARCHIVE fla2 TABLESPACE tbs2 RETENTION 2 YEAR;

See Also:

• Oracle Database SQL Language Reference for more information about
the CREATE FLASHBACK ARCHIVE statement

• Specifying the Default Flashback Data Archive

Altering a Flashback Data Archive
With the ALTER FLASHBACK ARCHIVE statement, you can:

• Change the retention time of a Flashback Data Archive

• Purge some or all of its data

• Add, modify, and remove tablespaces

Chapter 19
Using Flashback Data Archive

19-22

Note:

Removing all tablespaces of a Flashback Data Archive causes an error.

If you are logged on as SYSDBA, you can also use the ALTER FLASHBACK ARCHIVE
statement to make a specific file the default Flashback Data Archive for the system.

Examples

• Make Flashback Data Archive fla1 the default Flashback Data Archive:

ALTER FLASHBACK ARCHIVE fla1 SET DEFAULT;

• To Flashback Data Archive fla1, add up to 5 G of tablespace tbs3:

ALTER FLASHBACK ARCHIVE fla1 ADD TABLESPACE tbs3 QUOTA 5G;

• To Flashback Data Archive fla1, add as much of tablespace tbs4 as needed:

ALTER FLASHBACK ARCHIVE fla1 ADD TABLESPACE tbs4;

• Change the maximum space that Flashback Data Archive fla1 can use in
tablespace tbs3 to 20 G:

ALTER FLASHBACK ARCHIVE fla1 MODIFY TABLESPACE tbs3 QUOTA 20G;

• Allow Flashback Data Archive fla1 to use as much of tablespace tbs1 as needed:

ALTER FLASHBACK ARCHIVE fla1 MODIFY TABLESPACE tbs1;

• Change the retention time for Flashback Data Archive fla1 to two years:

ALTER FLASHBACK ARCHIVE fla1 MODIFY RETENTION 2 YEAR;

• Remove tablespace tbs2 from Flashback Data Archive fla1:

ALTER FLASHBACK ARCHIVE fla1 REMOVE TABLESPACE tbs2;

(Tablespace tbs2 is not dropped.)

• Purge all historical data from Flashback Data Archive fla1:

ALTER FLASHBACK ARCHIVE fla1 PURGE ALL;

• Purge all historical data older than one day from Flashback Data Archive fla1:

ALTER FLASHBACK ARCHIVE fla1
 PURGE BEFORE TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

• Purge all historical data older than SCN 728969 from Flashback Data Archive
fla1:

ALTER FLASHBACK ARCHIVE fla1 PURGE BEFORE SCN 728969;

See Also:

Oracle Database SQL Language Reference for more information about the
ALTER FLASHBACK ARCHIVE statement

Chapter 19
Using Flashback Data Archive

19-23

Dropping a Flashback Data Archive
Drop a Flashback Data Archive with the DROP FLASHBACK ARCHIVE statement. Dropping
a Flashback Data Archive deletes its historical data, but does not drop its tablespaces.

Example

Remove Flashback Data Archive fla1 and all its historical data, but not its
tablespaces:

DROP FLASHBACK ARCHIVE fla1;

Oracle Database SQL Language Reference for more information about the DROP
FLASHBACK ARCHIVE statement

Specifying the Default Flashback Data Archive
By default, the system has no default Flashback Data Archive. If you are logged on as
SYSDBA, you can specify default Flashback Data Archive in either of these ways:

• Specify the name of an existing Flashback Data Archive in the SET DEFAULT clause
of the ALTER FLASHBACK ARCHIVE statement. For example:

ALTER FLASHBACK ARCHIVE fla1 SET DEFAULT;

If fla1 does not exist, an error occurs.

• Include DEFAULT in the CREATE FLASHBACK ARCHIVE statement when you create a
Flashback Data Archive. For example:

CREATE FLASHBACK ARCHIVE DEFAULT fla2 TABLESPACE tbs1
 QUOTA 10G RETENTION 1 YEAR;

The default Flashback Data Archive for the system is the default Flashback Data
Archive for every user who does not have his or her own default Flashback Data
Archive.

See Also:

• Oracle Database SQL Language Reference for more information about
the CREATE FLASHBACK ARCHIVE statement

• Oracle Database SQL Language Reference for more information about
the ALTER DATABASE statement

Enabling and Disabling Flashback Data Archive
By default, Flashback Data Archive is disabled for any table. You can enable
Flashback Data Archive for a table if you have the FLASHBACK ARCHIVE object privilege
on the Flashback Data Archive to use for that table.

To enable Flashback Data Archive for a table, include the FLASHBACK ARCHIVE clause
in either the CREATE TABLE or ALTER TABLE statement. In the FLASHBACK ARCHIVE clause,

Chapter 19
Using Flashback Data Archive

19-24

you can specify the Flashback Data Archive where the historical data for the table are
stored. The default is the default Flashback Data Archive for the system. If you specify
a nonexistent Flashback Data Archive, an error occurs.

If you enable Flashback Data Archive for a table, but AUM is disabled, error
ORA-55614 occurs when you try to modify the table.

If a table has Flashback Data Archive enabled, and you try to enable it again with a
different Flashback Data Archive, an error occurs.

After Flashback Data Archive is enabled for a table, you can disable it only if you either
have the FLASHBACK ARCHIVE ADMINISTER system privilege or you are logged on as
SYSDBA. To disable Flashback Data Archive for a table, specify NO FLASHBACK ARCHIVE
in the ALTER TABLE statement. (It is unnecessary to specify NO FLASHBACK ARCHIVE in
the CREATE TABLE statement, because that is the default.)

After enabling Flashback Data Archive on a table, Oracle recommends waiting at least
20 seconds before inserting data into the table, and waiting up to 5 minutes before
using Flashback Query on the table.

See Also:

Oracle Database SQL Language Reference for more information about the
FLASHBACK ARCHIVE clause of the CREATE TABLE statement, including
restrictions on its use

Examples

• Create table employee and store the historical data in the default Flashback Data
Archive:

CREATE TABLE employee (EMPNO NUMBER(4) NOT NULL, ENAME VARCHAR2(10),
 JOB VARCHAR2(9), MGR NUMBER(4)) FLASHBACK ARCHIVE;

• Create table employee and store the historical data in the Flashback Data Archive
fla1:

CREATE TABLE employee (EMPNO NUMBER(4) NOT NULL, ENAME VARCHAR2(10),
 JOB VARCHAR2(9), MGR NUMBER(4)) FLASHBACK ARCHIVE fla1;

• Enable Flashback Data Archive for the table employee and store the historical data
in the default Flashback Data Archive:

ALTER TABLE employee FLASHBACK ARCHIVE;

• Enable Flashback Data Archive for the table employee and store the historical data
in the Flashback Data Archive fla1:

ALTER TABLE employee FLASHBACK ARCHIVE fla1;

• Disable Flashback Data Archive for the table employee:

ALTER TABLE employee NO FLASHBACK ARCHIVE;

DDL Statements on Tables Enabled for Flashback Data Archive
Flashback Data Archive supports only these DDL statements:

Chapter 19
Using Flashback Data Archive

19-25

• ALTER TABLE statement that does any of the following:

– Adds, drops, renames, or modifies a column

– Adds, drops, or renames a constraint

– Drops or truncates a partition or subpartition operation

• TRUNCATE TABLE statement

• RENAME statement that renames a table

Flashback Data Archive does not support DDL statements that move, split, merge, or
coalesce partitions or subpartitions, move tables, or convert LONG columns to LOB
columns.

For example, the following DDL statements cause error ORA-55610 when used on a
table enabled for Flashback Data Archive:

• ALTER TABLE statement that includes an UPGRADE TABLE clause, with or without an
INCLUDING DATA clause

• ALTER TABLE statement that moves or exchanges a partition or subpartition
operation

• DROP TABLE statement

If you must use unsupported DDL statements on a table enabled for Flashback Data
Archive, use the DBMS_FLASHBACK_ARCHIVE.DISASSOCIATE_FBA procedure to
disassociate the base table from its Flashback Data Archive. To reassociate the
Flashback Data Archive with the base table afterward, use the
DBMS_FLASHBACK_ARCHIVE.REASSOCIATE_FBA procedure. Also, to drop a table enabled
for Flashback Data Archive, you must first disable Flashback Data Archive on the table
by using the ALTER TABLE ... NO FLASHBACK ARCHIVE clause.

See Also:

• Oracle Database SQL Language Reference for information about the
ALTER TABLE statement

• Oracle Database SQL Language Reference for information about the
TRUNCATE TABLE statement

• Oracle Database SQL Language Reference for information about the
RENAME statement

• Oracle Database SQL Language Reference for information about the
DROP TABLE statement

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_FLASHBACK_ARCHIVE package

Viewing Flashback Data Archive Data
Table 19-3 lists and briefly describes the static data dictionary views that you can
query for information about Flashback Data Archive files.

Chapter 19
Using Flashback Data Archive

19-26

Table 19-3 Static Data Dictionary Views for Flashback Data Archive Files

View Description

*_FLASHBACK_ARCHIVE Displays information about Flashback Data Archive files.

*_FLASHBACK_ARCHIVE_TS Displays tablespaces of Flashback Data Archive files.

*_FLASHBACK_ARCHIVE_TABLES Displays information about tables that are enabled for
Data Flashback Archive files.

See Also:

• Oracle Database Reference for detailed information about
*_FLASHBACK_ARCHIVE

• Oracle Database Reference for detailed information about
*_FLASHBACK_ARCHIVE_TS

• Oracle Database Reference for detailed information about
*_FLASHBACK_ARCHIVE_TABLES

Flashback Data Archive Scenarios
• Scenario: Using Flashback Data Archive to Enforce Digital Shredding

• Scenario: Using Flashback Data Archive to Access Historical Data

• Scenario: Using Flashback Data Archive to Generate Reports

• Scenario: Using Flashback Data Archive for Auditing

• Scenario: Using Flashback Data Archive to Recover Data

Scenario: Using Flashback Data Archive to Enforce Digital Shredding
Your company wants to "shred" (delete) historical data changes to the Taxes table
after ten years. When you create the Flashback Data Archive for Taxes, you specify a
retention time of ten years:

CREATE FLASHBACK ARCHIVE taxes_archive TABLESPACE tbs1 RETENTION 10 YEAR;

When history data from transactions on Taxes exceeds the age of ten years, it is
purged. (The Taxes table itself, and history data from transactions less than ten years
old, are not purged.)

Scenario: Using Flashback Data Archive to Access Historical Data
You want to be able to retrieve the inventory of all items at the beginning of the year
from the table inventory, and to be able to retrieve the stock price for each symbol in
your portfolio at the close of business on any specified day of the year from the table
stock_data.

Chapter 19
Using Flashback Data Archive

19-27

Create a default Flashback Data Archive named fla1 that uses up to 10 G of
tablespace tbs1, whose data are retained for five years (you must be logged on as
SYSDBA):

CREATE FLASHBACK ARCHIVE DEFAULT fla1 TABLESPACE tbs1
 QUOTA 10G RETENTION 5 YEAR;

Enable Flashback Data Archive for the tables inventory and stock_data, and store
the historical data in the default Flashback Data Archive:

ALTER TABLE inventory FLASHBACK ARCHIVE;
ALTER TABLE stock_data FLASHBACK ARCHIVE;

To retrieve the inventory of all items at the beginning of the year 2007, use this query:

SELECT product_number, product_name, count FROM inventory AS OF
 TIMESTAMP TO_TIMESTAMP ('2007-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

To retrieve the stock price for each symbol in your portfolio at the close of business on
July 23, 2007, use this query:

SELECT symbol, stock_price FROM stock_data AS OF
 TIMESTAMP TO_TIMESTAMP ('2007-07-23 16:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE symbol IN my_portfolio;

Scenario: Using Flashback Data Archive to Generate Reports
You want users to be able to generate reports from the table investments, for data
stored in the past five years.

Create a default Flashback Data Archive named fla2 that uses up to 20 G of
tablespace tbs1, whose data are retained for five years (you must be logged on as
SYSDBA):

CREATE FLASHBACK ARCHIVE DEFAULT fla2 TABLESPACE tbs1
 QUOTA 20G RETENTION 5 YEAR;

Enable Flashback Data Archive for the table investments, and store the historical data
in the default Flashback Data Archive:

ALTER TABLE investments FLASHBACK ARCHIVE;

Lisa wants a report on the performance of her investments at the close of business on
December 31, 2006. She uses this query:

SELECT * FROM investments AS OF
 TIMESTAMP TO_TIMESTAMP ('2006-12-31 16:00:00', 'YYYY-MM-DD HH24:MI:SS')
 WHERE name = 'LISA';

Scenario: Using Flashback Data Archive for Auditing
A medical insurance company must audit a medical clinic. The medical insurance
company has its claims in the table Billings, and creates a default Flashback Data
Archive named fla4 that uses up to 100 G of tablespace tbs1, whose data are
retained for 10 years:

CREATE FLASHBACK ARCHIVE DEFAULT fla4 TABLESPACE tbs1
 QUOTA 100G RETENTION 10 YEAR;

Chapter 19
Using Flashback Data Archive

19-28

The company enables Flashback Data Archive for the table Billings, and stores the
historical data in the default Flashback Data Archive:

ALTER TABLE Billings FLASHBACK ARCHIVE;

On May 1, 2007, clients were charged the wrong amounts for some diagnoses and
tests. To see the records as of May 1, 2007, the company uses this query:

SELECT date_billed, amount_billed, patient_name, claim_Id,
 test_costs, diagnosis FROM Billings AS OF TIMESTAMP
 TO_TIMESTAMP('2007-05-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

Scenario: Using Flashback Data Archive to Recover Data
An end user recovers from erroneous transactions that were previously committed in
the database. The undo data for the erroneous transactions is no longer available, but
because the required historical information is available in the Flashback Data Archive,
Flashback Query works seamlessly.

Lisa manages a software development group whose product sales are doing well. On
November 3, 2007, she decides to give all her level-three employees who have more
than two years of experience a salary increase of 10% and a promotion to level four.
Lisa asks her HR representative, Bob, to make the changes.

Using the HR web application, Bob updates the employee table to give Lisa's level-
three employees a 10% raise and a promotion to level four. Then Bob finishes his
work for the day and leaves for home, unaware that he omitted the requirement of two
years of experience in his transaction. A few days later, Lisa checks to see if Bob has
done the updates and finds that everyone in the group was given a raise! She calls
Bob immediately and asks him to correct the error.

At first, Bob thinks he cannot return the employee table to its prior state without going
to the backups. Then he remembers that the employee table has Flashback Data
Archive enabled.

First, he verifies that no other transaction modified the employee table after his: The
commit time stamp from the transaction query corresponds to Bob's transaction, two
days ago.

Next, Bob uses these statements to return the employee table to the way it was before
his erroneous change:

DELETE EMPLOYEE WHERE MANAGER = 'LISA JOHNSON';
INSERT INTO EMPLOYEE
 SELECT * FROM EMPLOYEE
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '2' DAY)
 WHERE MANAGER = 'LISA JOHNSON';

Bob then reexecutes the update that Lisa had requested.

General Guidelines for Oracle Flashback Technology
• Use the DBMS_FLASHBACK.ENABLE and DBMS_FLASHBACK.DISABLE procedures around

SQL code that you do not control, or when you want to use the same past time for
several consecutive queries.

• Use Oracle Flashback Query, Oracle Flashback Version Query, or Oracle
Flashback Transaction Query for SQL code that you write, for convenience. An

Chapter 19
General Guidelines for Oracle Flashback Technology

19-29

Oracle Flashback Query, for example, is flexible enough to do comparisons and
store results in a single query.

• To obtain an SCN to use later with a flashback feature, use
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER.

• To compute or retrieve a past time to use in a query, use a function return value as
a time stamp or SCN argument. For example, add or subtract an INTERVAL value
to the value of the SYSTIMESTAMP function.

• Use Oracle Flashback Query, Oracle Flashback Version Query, and Oracle
Flashback Transaction Query locally or remotely. An example of a remote Oracle
Flashback Query is:

SELECT * FROM employees@some_remote_host AS OF
 TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE);

• To ensure database consistency, perform a COMMIT or ROLLBACK operation before
querying past data.

• Remember that all flashback processing uses the current session settings, such
as national language and character set, not the settings that were in effect at the
time being queried.

• Remember that DDLs that alter the structure of a table (such as drop/modify
column, move table, drop partition, truncate table/partition, and add constraint)
invalidate any existing undo data for the table. If you try to retrieve data from a
time before such a DDL executed, error ORA-01466 occurs. DDL operations that
alter the storage attributes of a table (such as PCTFREE, INITRANS, and MAXTRANS)
do not invalidate undo data.

• To query past data at a precise time, use an SCN. If you use a time stamp, the
actual time queried might be up to 3 seconds earlier than the time you specify.
Oracle Database uses SCNs internally and maps them to time stamps at a
granularity of 3 seconds.

For example, suppose that the SCN values 1000 and 1005 are mapped to the time
stamps 8:41 AM and 8:46 AM, respectively. A query for a time between 8:41:00
and 8:45:59 AM is mapped to SCN 1000; an Oracle Flashback Query for 8:46 AM
is mapped to SCN 1005. Therefore, if you specify a time that is slightly after a DDL
operation (such as a table creation) Oracle Database might use an SCN that is
immediately before the DDL operation, causing error ORA-01466.

• You cannot retrieve past data from a dynamic performance (V$) view. A query on
such a view returns current data.

• You can perform queries on past data in static data dictionary views, such as
*_TABLES.

• You can enable optimization of data storage for history tables maintained by
Flashback Data Archive by specifying OPTIMIZE DATA when creating or altering a
Flashback Data Archive.

OPTIMIZE DATA optimizes the storage of data in history tables by using any of these
features:

– Advanced Row Compression

– Advanced LOB Compression

– Advanced LOB Deduplication

– Segment-level compression tiering

Chapter 19
General Guidelines for Oracle Flashback Technology

19-30

– Row-level compression tiering

The default is not to optimize the storage of data in history tables.

Caution:

Importing user-generated history can lead to inaccurate, or unreliable results.
This procedure should only be used after consulting with Oracle Support.

Performance Guidelines for Oracle Flashback Technology
• Use the DBMS_STATS package to generate statistics for all tables involved in an

Oracle Flashback Query. Keep the statistics current. Oracle Flashback Query uses
the cost-based optimizer, which relies on these statistics.

• Minimize the amount of undo data that must be accessed. Use queries to select
small sets of past data using indexes, not to scan entire tables. If you must scan a
full table, add a parallel hint to the query.

The performance cost in I/O is the cost of paging in data and undo blocks that are
not in the buffer cache. The performance cost in CPU use is the cost of applying
undo information to affected data blocks. When operating on changes in the recent
past, flashback operations are CPU-bound.

Oracle recommends that you have enough buffer cache, so that the versions
query for the archiver finds the undo data in the buffer cache. Buffer cache access
is significantly faster than disk access.

• If very large transactions (such as affecting more than 1 million rows) are
performed on tracked tables, set the large pool size high enough (at least 1 GB)
for Parallel Query not to have to allocate new chunks out of the SGA.

• For Oracle Flashback Version Query, use index structures. Oracle Database
keeps undo data for index changes and data changes. Performance of index
lookup-based Oracle Flashback Version Query is an order of magnitude faster
than the full table scans that are otherwise needed.

• In an Oracle Flashback Transaction Query, the xid column is of the type RAW(8).
To take advantage of the index built on the xid column, use the HEXTORAW
conversion function: HEXTORAW(xid).

• An Oracle Flashback Query against a materialized view does not take advantage
of query rewrite optimization.

See Also:

Oracle Database Performance Tuning Guide for information about setting the
large pool size

Chapter 19
Performance Guidelines for Oracle Flashback Technology

19-31

Multitenant Container Database Restrictions for Oracle
Flashback Technology

These Oracle Flashback Technology features are unavailable for a multitenant
container database (CDB):

• For Oracle Database 12c Release 1 (12.1.0.1), Flashback Data Archive (FDA) is
not supported in a CDB.

For Oracle Database 12c Release 1 (12.1.0.2), this restriction is removed.

• Flashback Transaction Query is not supported in a CDB.

• Flashback Transaction Backout is not supported in a CDB.

Chapter 19
Multitenant Container Database Restrictions for Oracle Flashback Technology

19-32

20
Choosing a Programming Environment

To choose a programming environment for a development project, read:

• The topics in this chapter and the documents to which they refer.

• The platform-specific documents that explain which compilers and development
tools your platforms support.

Sometimes the choice of programming environment is obvious, for example:

• Pro*COBOL does not support ADTs or collection types, while Pro*C/C++ does.

If no programming language provides all the features you need, you can use multiple
programming languages, because:

• Every programming language in this chapter can invoke PL/SQL and Java stored
subprograms. (Stored subprograms include triggers and ADT methods.)

• PL/SQL, Java, SQL, and Oracle Call Interface (OCI) can invoke external C
subprograms.

• External C subprograms can access Oracle Database using SQL, OCI, or Pro*C
(but not C++).

Topics:

• Overview of Application Architecture

• Overview of the Program Interface

• Overview of PL/SQL

• Overview of Oracle Database Java Support

• Choosing PL/SQL or Java

• Overview of Precompilers

• Overview of OCI and OCCI

• Comparison of Precompilers and OCI

• Overview of Oracle Data Provider for .NET (ODP.NET)

• Overview of OraOLEDB

See Also:

Developing Applications with Multiple Programming Languages for more
information about multilanguage programming

20-1

Overview of Application Architecture
In this topic, application architecture refers to the computing environment in which a
database application connects to an Oracle Database.

Topics:

• Client/Server Architecture

• Server-Side Programming

• Two-Tier and Three-Tier Architecture

See Also:

Oracle Database Concepts for more information about application
architecture

Client/Server Architecture
In a traditional client/server program, your application code runs on a client system;
that is, a system other than the database server. Database calls are transmitted from
the client system to the database server. Data is transmitted from the client to the
server for insert and update operations and returned from the server to the client for
query operations. The data is processed on the client system. Client/server programs
are typically written by using precompilers, whereas SQL statements are embedded
within the code of another language such as C, C++, or COBOL.

See Also:

Oracle Database Concepts for more information about client/server
architecture

Server-Side Programming
You can develop application logic that resides entirely inside the database by using
triggers that are executed automatically when changes occur in the database or stored
subprograms that are invoked explicitly. Off-loading the work from your application lets
you reuse code that performs verification and cleanup and control database operations
from a variety of clients. For example, by making stored subprograms invocable
through a web server, you can construct a web-based user interface that performs the
same functions as a client/server application.

Chapter 20
Overview of Application Architecture

20-2

See Also:

Oracle Database Concepts for more information about server-side
programming

Two-Tier and Three-Tier Architecture
Client/server computing is often referred to as a two-tier model: your application
communicates directly with the database server. In the three-tier model, a separate
application server processes the requests. The application server might be a basic
web server, or might perform advanced functions like caching and load-balancing.
Increasing the processing power of this middle tier lets you lessen the resources
needed by client systems, resulting in a thin client configuration in which the client
system might need only a web browser or other means of sending requests over the
TCP/IP or HTTP protocols.

See Also:

Oracle Database Concepts for more information about multitier architecture

Overview of the Program Interface
The program interface is the software layer between a database application and
Oracle Database. The program interface:

• Provides a security barrier, preventing destructive access to the SGA by client
user processes

• Acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

• Converts and translates data, particularly between different types of computers or
to external user program data types

The Oracle code acts as a server, performing database tasks on behalf of an
application (a client), such as fetching rows from data blocks. The program interface
consists of several parts, provided by both Oracle Database software and operating
system-specific software.

See Also:

Oracle Database Concepts for more information about the program interface

Topics:

• User Interface

• Stateful and Stateless User Interfaces

Chapter 20
Overview of the Program Interface

20-3

User Interface
The user interface is what your application displays to end users. It depends on the
technology behind the application and the needs of the users themselves.
Experienced users can enter SQL statements that are passed on to the database.
Novice users can be shown a graphical user interface that uses the graphics libraries
of the client system (such as Windows or X-Windows). Any traditional user interface
can also be provided in a web browser through HTML and Java.

Stateful and Stateless User Interfaces
In traditional client/server applications, the application can keep a record of user
actions and use this information over the course of one or more sessions. For
example, past choices can be presented in a menu so that they not be entered again.
When the application can save information in this way, the application is considered
stateful.

Web or thin-client applications that are stateless are easier to develop. Stateless
applications gather all the required information, process it using the database, and
then start over with the next user. This is a popular way to process single-screen
requests such as customer registration.

There are many ways to add stateful action to web applications that are stateless by
default. For example, an entry form on one web page can pass information to
subsequent web pages, enabling you to construct a wizard-like interface that
remembers user choices through several different steps. You can use cookies to store
small items of information about the client system, and retrieve them when the user
returns to a website. You can use servlets to keep a database session open and store
variables between requests from the same client.

Overview of PL/SQL
PL/SQL, the Oracle procedural extension of SQL, is a completely portable, high-
performance transaction-processing language. PL/SQL lets you manipulate data with
SQL statements; control program flow with conditional selection and loops; declare
constants and variables; define subprograms; define types, subtypes, and ADTs and
declare variables of those types; and trap runtime errors.

Applications written in any Oracle Database programmatic interface can invoke
PL/SQL stored subprograms and send blocks of PL/SQL code to Oracle Database for
execution. Third-generation language (3GL) applications can access PL/SQL scalar
and composite data types through host variables and implicit data type conversion. A
3GL language is easier than assembler language for a human to understand and
includes features such as named variables. Unlike a fourth-generation language
(4GL), it is not specific to an application domain.

You can use PL/SQL to develop stored procedures that can be invoked by a web
client.

Chapter 20
Overview of PL/SQL

20-4

See Also:

• Oracle Database PL/SQL Language Reference for information about the
advantages, main features, and architecture of PL/SQL

Overview of Oracle Database Java Support
This section provides an overview of Oracle Database features that support Java
applications. The database includes the core JDK libraries such as java.lang, java.io,
and so on. The database supports client-side Java standards such as JDBC and
SQLJ, and provides server-side JDBC driver that enables data-intensive Java code to
run within the database.

Topics:

• Overview of Oracle JVM

• Overview of Oracle JDBC

• Overview of Oracle SQLJ

• Comparison of Oracle JDBC and Oracle SQLJ

• Overview of Java Stored Subprograms

• Overview of Oracle Database Web Services

See Also:

• Oracle Database Java Developer’s Guide

• Oracle Database JDBC Developer’s Guide

Overview of Oracle JVM
Oracle JVM, the Java Virtual Machine provided with the Oracle Database, is compliant
with the J2SE version 1.5.x specification and supports the database session
architecture.

Any database session can activate a dedicated JVM. All sessions share the same
JVM code and statics; however, private states for any given session are held, and
subsequently garbage collected, in an individual session space.

This design provides these benefits:

• Java applications have the same session isolation and data integrity as SQL
operations.

• You need not run Java in a separate process for data integrity.

• Oracle JVM is a robust JVM with a small memory footprint.

• The JVM has the same linear Symmetric Multiprocessing (SMP) scalability as the
database and can support thousands of concurrent Java sessions.

Chapter 20
Overview of Oracle Database Java Support

20-5

Oracle JVM works consistently with every platform supported by Oracle Database.
Java applications that you develop with Oracle JVM can easily be ported to any
supported platform.

Oracle JVM includes a deployment-time native compiler that enables Java code to be
compiled once, stored in executable form, shared among users, and invoked more
quickly and efficiently.

Security features of the database are also available with Oracle JVM. Java classes
must be loaded in a database schema (by using Oracle JDeveloper, a third-party IDE,
SQL*Plus, or the loadjava utility) before they can be called. Java class calls are
secured and controlled through database authentication and authorization, Java 2
security, and invoker's rights (IR) or definer's rights (DR).

Effective with Oracle Database 12c Release 1 (12.1.0.1), Oracle JVM provides
complete support for the latest Java Standard Edition. Compatibility with latest Java
standards increases application portability and enables direct execution of client-side
Java classes in the database.

See Also:

• Oracle Database Concepts for additional general information about
Oracle JVM

• Oracle Database Java Developer's Guide for information about support
for the latest Java Standard Edition

Overview of Oracle JDBC
Java Database Connectivity (JDBC) is an Applications Programming Interface (API)
that enables Java to send SQL statements to an object-relational database such as
Oracle Database.

Oracle Database includes these extensions to the JDBC 1.22 standard:

• Support for Oracle data types

• Performance enhancement by row prefetching

• Performance enhancement by execution batching

• Specification of query column types to save round trips

• Control of DatabaseMetaData calls

Oracle Database supports all APIs from the JDBC 2.0 standard, including the core
APIs, optional packages, and numerous extensions. Some highlights include
datasources, JTA, and distributed transactions.

Oracle Database supports these features from the JDBC 3.0 standard:

• Support for JDK 1.5.

• Toggling between local and global transactions.

• Transaction savepoints.

• Reuse of prepared statements by connection pools.

Chapter 20
Overview of Oracle Database Java Support

20-6

Note:

JDBC code and SQLJ code interoperate.

Topics:

• Oracle JDBC Drivers

• Sample JDBC 2.0 Program

• Sample Pre-2.0 JDBC Program

See Also:

• Oracle Database Concepts for additional general information about Java
support in Oracle Database

• Comparison of Oracle JDBC and Oracle SQLJ

Oracle JDBC Drivers
The JDBC standard defines four types of JDBC drivers:

Type Description

1 A JDBC-ODBC bridge. Software must be installed on client systems.

2 Native methods (calls C or C++) and Java methods. Software must be installed on
the client.

3 Pure Java. The client uses sockets to call middleware on the server.

4 The most pure Java solution. Talks directly to the database by using Java sockets.

JDBC is based on Part 3 of the SQL standard, "Call-Level Interface."

You can use JDBC to do dynamic SQL. In dynamic SQL, the embedded SQL
statement to be executed is not known before the application is run and requires input
to build the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in the
JDBC standard that was defined by Sun Microsystems.

Topics:

• JDBC Thin Driver

• JDBC OCI Driver

• JDBC Server-Side Internal Driver

Chapter 20
Overview of Oracle Database Java Support

20-7

See Also:

• Oracle Database Concepts for additional general information about
JDBC drivers

• Oracle Database JDBC Developer's Guide for more information about
JDBC

JDBC Thin Driver
The JDBC Thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a Two-Task
Common (TTC), a lightweight implementation of TCP/IP from Oracle Net. It is written
entirely in Java and is therefore platform-independent.

The thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are downloaded
into a web browser or in applications for which you do not want to install Oracle client
software. The thin driver is self-contained, but it opens a Java socket, and thus can run
only in a browser that supports sockets.

JDBC OCI Driver
The JDBC OCI driver is a Type 2 JDBC driver. It makes calls to OCI written in C to
interact with Oracle Database, thus using native and Java methods.

The OCI driver provides access to more features than the thin driver, such as
Transparent Application Fail-Over, advanced security, and advanced LOB
manipulation.

The OCI driver provides the highest compatibility between different Oracle Database
versions. It also supports all installed Oracle Net adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client installation of version Oracle8i or later including
Oracle Net, OCI libraries, CORE libraries, and all other dependent files. The OCI driver
usually runs faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a web browser. It is usable in J2EE
components running in middle-tier application servers, such as Oracle Application
Server. Oracle Application Server provides middleware services and tools that support
access between applications and browsers.

JDBC Server-Side Internal Driver
The JDBC server-side internal driver is a Type 2 driver that runs inside the database
server, reducing the number of round trips needed to access large amounts of data.
The driver, the Java server VM, the database, the Java native compiler (which speeds
execution by as much as 10 times), and the SQL engine all run within the same
address space.

This driver provides server-side support for any Java program used in the database.
You can also call PL/SQL stored subprograms and triggers.

Chapter 20
Overview of Oracle Database Java Support

20-8

The server driver fully supports the same features and extensions as the client-side
drivers.

Sample JDBC 2.0 Program
This example shows the recommended technique for looking up a data source using
JNDI in JDBC 2.0:

// import the JDBC packages
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.pool.*;
...
 InitialContext ictx = new InitialContext();
 DataSource ds = (DataSource)ictx.lookup("jdbc/OracleDS");
 Connection conn = ds.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT last_name FROM employees");
 while (rs.next()) {
 out.println(rs.getString("ename") + "
");
 }
conn.close();

Sample Pre-2.0 JDBC Program
This source code registers an Oracle JDBC thin driver, connects to the database,
creates a Statement object, runs a query, and processes the result set.

The SELECT statement retrieves and lists the contents of the last_name column of the
hr.employees table.

import java.sql.*
import java.math.*
import java.io.*
import java.awt.*

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.OracleDriver());

 // Connect to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:orcl",
 "hr", "password");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT last_name FROM employees");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 // Close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();
 }
}

Chapter 20
Overview of Oracle Database Java Support

20-9

One Oracle Database extension to the JDBC drivers is a form of the getConnection()
method that uses a Properties object. The Properties object lets you specify user,
password, database information, row prefetching, and execution batching.

To use the OCI driver in this code, replace the Connection statement with this code,
where MyHostString is an entry in the tnsnames.ora file:

Connection conn = DriverManager.getConnection ("jdbc:oracle:oci8:@MyHostString",
 "hr", "password");

If you are creating an applet, then the getConnection() and registerDriver() strings
are different.

Overview of Oracle SQLJ

Note:

In this guide, SQLJ refers to Oracle SQLJ and its extensions.

SQLJ is an ANSI SQL-1999 standard for embedding SQL statements in Java source
code. SQLJ provides a simpler alternative to JDBC for client-side SQL data access
from Java.

A SQLJ source file contains Java source with embedded SQL statements. Oracle
SQLJ supports dynamic and static SQL. Support for dynamic SQL is an Oracle
extension to the SQLJ standard.

The Oracle SQLJ translator performs these tasks:

• Translates SQLJ source to Java code with calls to the SQLJ runtime driver. The
SQLJ translator converts the source code to pure Java source code and can
check the syntax and semantics of static SQL statements against a database
schema and verify the type compatibility of host variables with SQL types.

• Compiles the generated Java code with the Java compiler.

• (Optional) Creates profiles for the target database. SQLJ generates "profile" files
with customization specific to Oracle Database.

SQLJ is integrated with JDeveloper. Source-level debugging support for SQLJ is
available in JDeveloper.

This is an example of a simple SQLJ executable statement, which returns one value
because employee_id is unique in the employee table:

String name;
#sql { SELECT first_name INTO :name FROM employees WHERE employee_id=112 };
System.out.println("Name is " + name + ", employee number = " + employee_id);

Each host variable (or qualified name or complex Java host expression) included in a
SQL expression is preceded by a colon (:). Other SQLJ statements declare Java
types. For example, you can declare an iterator (a construct related to a database
cursor) for queries that retrieve many values, as follows:

#sql iterator EmpIter (String EmpNam, int EmpNumb);

Chapter 20
Overview of Oracle Database Java Support

20-10

See Also:

Oracle Database SQLJ Developer's Guide for more examples and details
about Oracle SQLJ syntax

Topics:

• Benefits of SQLJ

See Also:

Oracle Database Concepts for additional general information about SQLJ

Benefits of SQLJ
Oracle SQLJ extensions to Java enable rapid development and easy maintenance of
applications that perform database operations through embedded SQL.

In particular, Oracle SQLJ does this:

• Provides a concise, legible mechanism for database access from static SQL. Most
SQL in applications is static. SQLJ provides more concise and less error-prone
static SQL constructs than JDBC does.

• Provides an SQL Checker module for verification of syntax and semantics at
translate time.

• Provides flexible deployment configurations, which makes it possible to implement
SQLJ on the client, or middle tier.

• Supports a software standard. SQLJ is an effort of a group of vendors and is
supported by all of them. Applications can access multiple database vendors.

• Provides source code portability. Executables can be used with all of the vendor
DBMSs if the code does not rely on vendor-specific features.

• Enforces a uniform programming style for the clients and the servers.

• Integrates the SQLJ translator with Oracle JDeveloper, a graphical IDE that
provides SQLJ translation, Java compilation, profile customizing, and debugging at
the source code level, all in one step.

• Includes Oracle Database type extensions.

Comparison of Oracle JDBC and Oracle SQLJ
JDBC code and SQLJ code interoperate, enabling dynamic SQL statements in JDBC
to be used with both static and dynamic SQL statements in SQLJ. A SQLJ iterator
class corresponds to the JDBC result set.

Some differences between JDBC and SQLJ are:

Chapter 20
Overview of Oracle Database Java Support

20-11

• JDBC provides a complete dynamic SQL interface from Java to databases. It
gives developers full control over database operations. SQLJ simplifies Java
database programming to improve development productivity.

• JDBC provides fine-grained control of the execution of dynamic SQL from Java,
whereas SQLJ provides a higher-level binding to SQL operations in a specific
database schema.

• SQLJ source code is more concise than equivalent JDBC source code.

• SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

• SQLJ provides strong typing of query outputs and return parameters and provides
type-checking on calls. JDBC passes values to and from SQL without compile-
time type checking.

• SQLJ programs enable direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get or set statement for each bind variable
and specifies the binding by position number.

• SQLJ provides simplified rules for calling SQL stored subprograms.

For example, the following four examples show, on successive lines, how to call a
stored procedure or a stored function using either JDBC escape syntax or Oracle
JDBC syntax:

prepStmt.prepareCall("{call fun(?,?)}"); //stored proc. JDBC esc.
prepStmt.prepareCall("{? = call fun(?,?)}"); //stored func. JDBC esc.
prepStmt.prepareCall("begin fun(:1,:2);end;"); //stored proc. Oracle
prepStmt.prepareCall("begin :1 := fun(:2,:3);end;"); //stored func. Oracle

The SQLJ equivalent is:

#sql {call fun(param_list) }; //Stored procedure
// Declare x
...
#sql x = {VALUES(fun(param_list)) }; // Stored function
// where VALUES is the SQL construct

These benefits are common to SQLJ and JDBC:

• SQLJ source files can contain JDBC calls. SQLJ and JDBC are interoperable.

• PL/SQL and Java stored subprograms can be used interchangeably.

Overview of Java Stored Subprograms
Java stored subprograms enable you to implement programs that run in the database
server and are independent of programs that run in the middle tier. Structuring
applications in this way reduces complexity and increases reuse, security,
performance, and scalability.

For example, you can create a Java stored subprogram that performs operations that
require data persistence and a separate program to perform presentation or business
logic operations.

Java stored subprograms interface with SQL using an execution model similar to that
of PL/SQL.

Chapter 20
Overview of Oracle Database Java Support

20-12

See Also:

• Oracle Database Concepts for additional general information about Java
stored subprograms

• Oracle Database Java Developer's Guide for complete information about
Java stored subprograms

Overview of Oracle Database Web Services
Web services represent a distributed computing paradigm for Java application
development that is an alternative to earlier Java protocols such as JDBC, and which
enable applications to interact through the XML and web protocols. For example, an
electronics parts vendor can provide a web-based programmatic interface to its
suppliers for inventory management. The vendor can invoke a web service as part of a
program and automatically order stock based on the data returned.

The key technologies used in web services are:

• Web Services Description Language (WSDL), which is a standard format for
creating an XML document. WSDL describes what a web service can do, where it
resides, and how to invoke it. Specifically, it describes the operations and
parameters, including parameter types, provided by a web service. Also, a WSDL
document describes the location, the transport protocol, and the invocation style
for the web service.

• Simple Object Access Protocol (SOAP) messaging, which is an XML-based
message protocol used by web services. SOAP does not prescribe a specific
transport mechanism such as HTTP, FTP, SMTP, or JMS; however, most web
services accept messages that use HTTP or HTTPS.

• Universal Description, Discovery, and Integration (UDDI) business registry, which
is a directory that lists web services on the internet. The UDDI registry is often
compared to a telephone directory, listing unique identifiers (white pages),
business categories (yellow pages), and instructions for binding to a service
protocol (green pages).

Web services can use a variety of techniques and protocols. For example:

• Dispatching can occur in a synchronous (typical) or asynchronous manner.

• You can invoke a web service in an RPC-style operation in which arguments are
sent and a response returned, or in a message style such as a one-way SOAP
document exchange.

• You can use different encoding rules: literal or encoded.

You can invoke a web service statically, when you might know everything about it
beforehand, or dynamically, in which case you can discover its operations and
transport endpoints while using it.

Oracle Database can function as either a web service provider or as a web service
consumer. When used as a provider, the database enables sharing and disconnected
access to stored subprograms, data, metadata, and other database resources such as
the queuing and messaging systems.

Chapter 20
Overview of Oracle Database Java Support

20-13

As a web service provider, Oracle Database provides a disconnected and
heterogeneous environment that:

• Exposes stored subprograms independently of the language in which the
subprograms are written

• Exposes SQL Queries and XQuery

See Also:

Oracle Database Concepts for additional general information about Oracle
Database as a web service provider

Choosing PL/SQL or Java
PL/SQL and Java interoperate in the server. You can run a PL/SQL package from
Java or PL/SQL can be invoked from Java, so that either one can be invoked from
distributed CORBA and Enterprise Java Beans clients.

Table 20-1 shows PL/SQL packages and their Java equivalents.

Table 20-1 PL/SQL Packages and Their Java Equivalents

PL/SQL Package Java Equivalent

DBMS_ALERT Call package with JDBC.

DBMS_DDL JDBC has this functionality.

DBMS_JOB Schedule a job that has a Java stored subprogram.

DBMS_LOCK Call with JDBC.

DBMS_MAIL Use JavaMail.

DBMS_OUTPUT Use subclass
oracle.aurora.rdbms.OracleDBMSOutputStream or Java
stored subprogram DBMS_JAVA.SET_STREAMS.

DBMS_PIPE Call with JDBC.

DBMS_SESSION Use JDBC to run an ALTER SESSION statement.

DBMS_SNAPSHOT Call with JDBC.

DBMS_SQL Use JDBC.

DBMS_TRANSACTION Use JDBC to run an ALTER SESSION statement.

DBMS_UTILITY Call with JDBC.

UTL_FILE Grant the JAVAUSERPRIV privilege and then use Java I/O entry
points.

Topics:

• Similarities of PL/SQL and Java

• PL/SQL Advantages Over Java

• Java Advantages Over PL/SQL

Chapter 20
Choosing PL/SQL or Java

20-14

Similarities of PL/SQL and Java
Both PL/SQL and Java provide packages and libraries.

Both PL/SQL and Java have object-oriented features:

• Both have inheritance.

• PL/SQL has type evolution, the ability to change methods and attributes of a type
while preserving subtypes and table data that use the type.

• Java has polymorphism and component models for developing distributed
systems.

PL/SQL Advantages Over Java
As an extension of SQL, PL/SQL supports all SQL data types, data encapsulation,
information hiding, overloading, and exception-handling. Therefore:

• SQL data types are easier to use in PL/SQL than in Java.

• SQL operations are faster with PL/SQL than with Java, especially when a large
amount of data is involved, when mostly database access is done, or when bulk
operations are used.

Some advanced PL/SQL capabilities are unavailable for Java in Oracle9i (for
example, autonomous transactions and the dblink facility for remote databases).

Code development is usually faster in PL/SQL than in Java; however, this really
depends upon the development tool or development environment you are using.

PL/SQL is preferred when your data logic is SQL intensive. That is, the data
processing or data validation requirements of your application are high.

Also, there is a large user base with Oracle-supplied packages and third party libraries
that can draw upon for development.

Java Advantages Over PL/SQL
Java is used for open distributed applications, and many Java-based development
tools are available throughout the industry. Java has native mechanisms that are
unavailable in PL/SQL. For example, Java has built-in security mechanisms, an
automatic Garbage Collector, type safety mechanisms, byte-code verifier, and Java 2
security. Also, Java provides built-in rapid development features, such as, built-in
automatic bounds checking on arrays, built-in network access classes, and APIs that
contain many useful and ready-to-use classes. Java has a vast set of class libraries,
tools, and third-party class libraries that can be reused in the database. Java has a
richer type system than PL/SQL. Java can use CORBA (which can have many
different computer languages in its clients) and Enterprise Java Beans. PL/SQL
packages can be invoked from CORBA or Enterprise Java Beans clients. You can run
XML tools, the Internet File System, or JavaMail from Java.

If you application must interact with ERP systems, RMI servers, Java/J2EE, and web
services, Java is preferred because none of these things can be accomplished with
PL/SQL. Java is also preferred if you must develop part of your application in the
middle-tier because your business logic is complex or compute intensive with little to
moderate direct SQL access, you are implementing a middle-tier-driven presentation

Chapter 20
Choosing PL/SQL or Java

20-15

logic, your application requires transparent Java persistence, or your application
requires container-managed infrastructure services. Thus, when needing to partition
your application between the database tier and middle tier, migrate that part of your
application as needed to the middle tier and use Java/J2EE.

Overview of Precompilers
Client/server programs are typically written using precompilers, which are
programming tools that let you embed SQL statements in high-level programs written
in languages such as C, C++, or COBOL. Because the client application hosts the
SQL statements, it is called a host program, and the language in which it is written is
called the host language.

A precompiler accepts the host program as input, translates the embedded SQL
statements into standard database runtime library calls, and generates a source
program that you can compile, link, and run in the usual way.

Topics:

• Overview of the Pro*C/C++ Precompiler

• Overview of the Pro*COBOL Precompiler

See Also:

Oracle Database Concepts for additional general information about Oracle
precompilers

Overview of the Pro*C/C++ Precompiler
For the Pro*C/C++ precompiler, the host language is either C or C++. Some features
of the Pro*C/C++ precompiler are:

• You can write multithreaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multithreaded applications.

• You can improve performance by embedding PL/SQL blocks. These blocks can
invoke subprograms in Java or PL/SQL that are written by you or provided in
Oracle Database packages.

• Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, and at runtime.

• You can invoke stored PL/SQL and Java subprograms. Modules written in COBOL
or in C can be invoked from Pro*C/C++. External C subprograms in shared
libraries can be invoked by your program.

• You can conditionally precompile sections of your code so that they can run in
different environments.

• You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

• You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

Chapter 20
Overview of Precompilers

20-16

• Your program can convert between internal data types and C language data types.

• The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI), lower-level
C and C++ interfaces, are available for use in your precompiler source.

• Pro*C/C++ supports dynamic SQL, a technique that enables users to input
variable values and statement syntax.

• Pro*C/C++ can use special SQL statements to manipulate tables containing user-
defined object types. An Object Type Translator (OTT) maps the ADTs and named
collection types in your database to structures and headers that you include in
your source.

• Three kinds of collection types: associative arrays, nested tables and VARRAY, are
supported with a set of SQL statements that give you a high degree of control over
data.

• Large Objects are accessed by another set of SQL statements.

• A new ANSI SQL standard for dynamic SQL is supported for new applications, so
that you can run SQL statements with a varying number of host variables. An older
technique for dynamic SQL is still usable by pre-existing applications.

• Globalization support lets you use multibyte characters and UCS2 Unicode data.

• Using scrollable cursors, you can move backward and forward through a result
set. For example, you can fetch the last row of the result set, or jump forward or
backward to an absolute or relative position within the result set.

• A connection pool is a group of physical connections to a database that can be
shared by several named connections. Enabling the connection pool option can
help optimize the performance of Pro*C/C++ application. The connection pool
option is not enabled by default.

See Also:

Pro*C/C++ Programmer's Guide for complete information about the Pro*C/C
++ precompiler

Example 20-1 is a code fragment from a C source program that queries the table
employees in the schema hr.

Example 20-1 Pro*C/C++ Application

...
#define UNAME_LEN 10
...
int emp_number;
/* Define a host structure for the output values of a SELECT statement. */
/* No declare section needed if precompiler option MODE=ORACLE */
struct {
 VARCHAR last_name[UNAME_LEN];
 float salary;
 float commission_pct;
} emprec;
/* Define an indicator structure to correspond to the host output structure. */
struct {
 short emp_name_ind;
 short sal_ind;

Chapter 20
Overview of Precompilers

20-17

 short comm_ind;
} emprec_ind;
...
/* Select columns last_name, salary, and commission_pct given the user's input
/* for employee_id. */
 EXEC SQL SELECT last_name, salary, commission_pct
 INTO :emprec INDICATOR :emprec_ind
 FROM employees
 WHERE employee_id = :emp_number;
...

The embedded SELECT statement differs slightly from the interactive (SQL*Plus)
SELECT statement. Every embedded SQL statement begins with EXEC SQL. The colon
(:) precedes every host (C) variable. The returned values of data and indicators (set
when the data value is NULL or character columns were truncated) can be stored in
structs (such as in the preceding code fragment), in arrays, or in arrays of structs.
Multiple result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, because of the unique employee number. Use
the actual names of columns and tables in embedded SQL.

Either use the default precompiler option values or enter values that give you control
over the use of resources, how errors are reported, the formatting of output, and how
cursors (which correspond to a particular connection or SQL statement) are managed.
Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or inline inside
your source code with a special statement that begins with EXEC ORACLE. If there are no
errors found, you can compile, link, and run the output source file, like any other C
program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*C/C++ gives you the freedom to design your own user
interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Overview of the Pro*COBOL Precompiler
For the Pro*COBOL precompiler, the host language is COBOL. Some features of the
Pro*COBOL precompiler are:

• You can invoke stored PL/SQL or Java subprograms. You can improve
performance by embedding PL/SQL blocks. These blocks can invoke PL/SQL
subprograms written by you or provided in Oracle Database packages.

• Precompiler options enable you to define how cursors, errors, syntax-checking, file
formats, and so on, are handled.

• Using precompiler options, you can check the syntax and semantics of your SQL
or PL/SQL statements during precompilation, and at runtime.

• You can conditionally precompile sections of your code so that they can run in
different environments.

• Use tables, or group items, or tables of group items as host and indicator variables
in your code to improve performance.

Chapter 20
Overview of Precompilers

20-18

• You can program how errors and warnings are handled, so that data integrity is
guaranteed.

• Pro*COBOL supports dynamic SQL, a technique that enables users to input
variable values and statement syntax.

See Also:

Pro*COBOL Programmer's Guide for complete information about the
Pro*COBOL precompiler

Example 20-2 is a code fragment from a COBOL source program that queries the
table employees in the schema hr.

Example 20-2 Pro*COBOL Application

...
 WORKING-STORAGE SECTION.
*
* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
* NO DECLARE SECTION NEEDED IF MODE=ORACLE.
*
 01 EMP-REC-VARS.
 05 EMP-NAME PIC X(10) VARYING.
 05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.
 05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
 05 COMM-IND PIC S9(4) COMP VALUE ZERO.
...
 PROCEDURE DIVISION.
...
 EXEC SQL
 SELECT last_name, salary, commission_pct
 INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
 FROM employees
 WHERE employee_id = :EMP-NUMBER
 END-EXEC.
...

The embedded SELECT statement is only slightly different from an interactive
(SQL*Plus) SELECT statement. Every embedded SQL statement begins with EXEC
SQL. The colon (:) precedes every host (COBOL) variable. The SQL statement is
terminated by END-EXEC. The returned values of data and indicators (set when the data
value is NULL or character columns were truncated) can be stored in group items (such
as in the preceding code fragment), in tables, or in tables of group items. Multiple
result set values are handled very simply in a manner that resembles the case shown,
where there is only one result, given the unique employee number. Use the actual
names of columns and tables in embedded SQL.

Use the default precompiler option values, or enter values that give you control over
the use of resources, how errors are reported, the formatting of output, and how
cursors are managed (cursors correspond to a particular connection or SQL
statement).

Enter the options in a configuration file, on the command line, or inline inside your
source code with a special statement that begins with EXEC ORACLE. If there are no

Chapter 20
Overview of Precompilers

20-19

errors found, you can compile, link, and run the output source file, like any other
COBOL program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*COBOL gives you the freedom to design your own user
interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers
networked through Oracle Net.

Before writing your embedded SQL statements, you can test interactive versions of the
SQL in SQL*Plus and then make minor changes to start testing your embedded SQL
application.

Overview of OCI and OCCI
The Oracle Call Interface (OCI) and Oracle C++ Call Interface (OCCI) are application
programming interfaces (APIs) that enable you to create applications that use native
subprogram invocations of a third-generation language to access Oracle Database
and control all phases of SQL statement execution. These APIs provide:

• Improved performance and scalability through the efficient use of system memory
and network connectivity

• Consistent interfaces for dynamic session and transaction management in a two-
tier client/server or multitier environment

• N-tiered authentication

• Comprehensive support for application development using Oracle Database
objects

• Access to external databases

• Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OCI lets you manipulate data and schemas in a database using a host programming
language, such as C. OCCI is an object-oriented interface suitable for use with C++.
These APIs provide a library of standard database access and retrieval functions in
the form of a dynamic runtime library that can be linked in an application at runtime.
You need not embed SQL or PL/SQL within 3GL programs.

See Also:

For more information about OCI and OCCI calls:

• Oracle Call Interface Programmer's Guide

• Oracle C++ Call Interface Programmer's Guide

• Oracle Database Advanced Queuing User's Guide

• Oracle Database Globalization Support Guide

• Oracle Database Data Cartridge Developer's Guide

Chapter 20
Overview of OCI and OCCI

20-20

Topics:

• Advantages of OCI and OCCI

• OCI and OCCI Functions

• Procedural and Nonprocedural Elements of OCI and OCCI Applications

• Building an OCI or OCCI Application

Advantages of OCI and OCCI
OCI and OCCI provide significant advantages over other methods of accessing Oracle
Database:

• More fine-grained control over all aspects of the application design.

• High degree of control over program execution.

• Use of familiar 3GL programming techniques and application development tools
such as browsers and debuggers.

• Support of dynamic SQL, method 4.

• Availability on the broadest range of platforms of all the Oracle Database
programmatic interfaces.

• Dynamic bind and define using callbacks.

• Describe functionality to expose layers of server metadata.

• Asynchronous event notification for registered client applications.

• Enhanced array data manipulation language (DML) capability for arrays.

• Ability to associate a commit request with a statement execution to reduce round
trips.

• Optimization for queries using transparent prefetch buffers to reduce round trips.

• Thread safety, so you do not have to implement mutual exclusion (mutex) locks on
OCI and OCCI handles.

• The server connection in nonblocking mode means that control returns to the OCI
code when a call is still running or cannot complete.

OCI and OCCI Functions
Both OCI and OCCI have four kinds of functions:

Kind of Function Purpose

Relational To manage database access and process SQL statements

Navigational To manipulate objects retrieved from the database

Database mapping and
manipulation

To manipulate data attributes of Oracle Database types

External subprogram To write C callbacks from PL/SQL (OCI only)

Chapter 20
Overview of OCI and OCCI

20-21

Procedural and Nonprocedural Elements of OCI and OCCI
Applications

OCI and OCCI enable you to develop applications that combine the nonprocedural
data access power of SQL with the procedural capabilities of most programming
languages, including C and C++. Procedural and nonprocedural languages have these
characteristics:

• In a nonprocedural language program, the set of data to be operated on is
specified, but what operations are performed and how the operations are to be
carried out is not specified. The nonprocedural nature of SQL makes it an easy
language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

• In a procedural language program, the execution of most statements depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, which are unavailable in SQL. The procedural nature of
these languages makes them more complex than SQL, but it also makes them
very flexible and powerful.

The combination of both nonprocedural and procedural language elements in an OCI
or OCCI program provides easy access to Oracle Database in a structured
programming environment.

OCI and OCCI support all SQL data definition, data manipulation, query, and
transaction control facilities that are available through Oracle Database. For example,
an OCI or OCCI program can run a query against Oracle Database. The queries can
require the program to supply data to the database using input (bind) variables, as
follows:

SELECT name FROM employees WHERE empno = :empnumber

In the preceding SQL statement, :empnumber is a placeholder for a value to be supplied
by the application.

Alternatively, you can use PL/SQL, Oracle's procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications written in
SQL alone. OCI and OCCI also provide facilities for accessing and manipulating
objects in Oracle Database.

Building an OCI or OCCI Application
As Figure 20-1 shows, you compile and link an OCI or OCCI program in the same way
that you compile and link a nondatabase application. There is no need for a separate
preprocessing or precompilation step.

Chapter 20
Overview of OCI and OCCI

20-22

Figure 20-1 The OCI or OCCI Development Process

Host Language Compiler

Source Files

Host Linker

Application

Object Files OCI/OCCI
Library

OCI/OCCI
Headers

Object
Server

Note:

To properly link your OCI and OCCI programs, it might be necessary on
some platforms to include other libraries, in addition to the OCI and OCCI
libraries. Check your Oracle platform-specific documentation for further
information about extra libraries that might be required.

Comparison of Precompilers and OCI
Precompiler applications typically contain less code than equivalent OCI applications,
which can help productivity.

Some situations require detailed control of the database and are suited for OCI
applications (either pure OCI or a precompiler application with embedded OCI calls):

• OCI provides more detailed control over multiplexing and migrating sessions.

• OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

• OCI has many calls to handle metadata.

• OCI enables asynchronous event notifications to be received by a client
application. It provides a means for clients to generate notifications for propagation
to other clients.

• OCI enables DML statements to use arrays to complete as many iterations as
possible before returning any error messages.

Chapter 20
Comparison of Precompilers and OCI

20-23

• OCI calls for special purposes include Advanced Queuing, globalization support,
Data Cartridges, and support of the date and time data types.

• OCI calls can be embedded in a Pro*C/C++ application.

Overview of Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
Oracle Database.

ODP.NET uses APIs native to Oracle Database to offer fast and reliable access from
any .NET application to database features and data. It also uses and inherits classes
and interfaces available in the Microsoft .NET Framework Class Library.

For programmers using Oracle Provider for OLE DB, ADO (ActiveX Data Objects)
provides an automation layer that exposes an easy programming model. ADO.NET
provides a similar programming model, but without the automation layer, for better
performance. More importantly, the ADO.NET model enables native providers such as
ODP.NET to expose specific features and data types specific to Oracle Database.

See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

This is a simple C# application that connects to Oracle Database and displays its
version number before disconnecting:

using System;
using Oracle.DataAccess.Client;

class Example
{
 OracleConnection con;

 void Connect()
 {
 con = new OracleConnection();
 con.ConnectionString = "User Id=hr;Password=password;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);
 }

 void Close()
 {
 con.Close();
 con.Dispose();
 }

 static void Main()
 {
 Example example = new Example();
 example.Connect();
 example.Close();
 }
}

Chapter 20
Overview of Oracle Data Provider for .NET (ODP.NET)

20-24

Note:

Additional samples are provided in directory ORACLE_BASE\ORACLE_HOME
\ODP.NET\Samples.

Overview of OraOLEDB
Oracle Provider for OLE DB (OraOLEDB) is an OLE DB data provider that offers high
performance and efficient access to Oracle data by OLE DB consumers. In general,
this developer's guide assumes that you are using OraOLEDB through OLE DB or
ADO.

See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows

Chapter 20
Overview of OraOLEDB

20-25

21
Developing Applications with Multiple
Programming Languages

This chapter explains how you can develop database applications that call external
procedures written in other programming languages.

Topics:

• Overview of Multilanguage Programs

• What Is an External Procedure?

• Overview of Call Specification for External Procedures

• Loading External Procedures

• Publishing External Procedures

• Publishing Java Class Methods

• Publishing External C Procedures

• Locations of Call Specifications

• Passing Parameters to External C Procedures with Call Specifications

• Running External Procedures with CALL Statements

• Handling Errors and Exceptions in Multilanguage Programs

• Using Service Routines with External C Procedures

• Doing Callbacks with External C Procedures

Overview of Multilanguage Programs
Oracle Database lets you work in different languages:

• PL/SQL, as described in the Oracle Database PL/SQL Language Reference

• C, through the Oracle Call Interface (OCI), as described in the Oracle Call
Interface Programmer's Guide

• C++, through the Oracle C++ Call Interface (OCCI), as described in the Oracle C+
+ Call Interface Programmer's Guide

• C or C++, through the Pro*C/C++ precompiler, as described in thePro*C/C++
Programmer's Guide

• COBOL, through the Pro*COBOL precompiler, as described in thePro*COBOL
Programmer's Guide

• Visual Basic, through Oracle Provider for OLE DB, as described in Oracle Provider
for OLE DB Developer's Guide for Microsoft Windows.

• .NET , through Oracle Data Provider for .NET, as described in Oracle Data
Provider for .NET Developer's Guide for Microsoft Windows

21-1

• Java, through the JDBC and SQLJ client-side application programming interfaces
(APIs). See Oracle Database JDBC Developer’s Guide and Oracle Database
SQLJ Developer’s Guide.

• Java in the database, as described in Oracle Database Java Developer’s Guide.
This includes the use of Java stored procedures (Java methods published to SQL
and stored in the database), as described in a chapter in Oracle Database Java
Developer’s Guide.

The Oracle JVM Web Call-Out utility is also available for generating Java classes
to represent database entities, such as SQL objects and PL/SQL packages, in a
Java client program; publishing from SQL, PL/SQL, and server-side Java to web
services; and enabling the invocation of external web services from inside the
database. See Oracle Database Java Developer’s Guide.

How can you choose between these different implementation possibilities? Each of
these languages offers different advantages: ease of use, the availability of
programmers with specific expertise, the need for portability, and the existence of
legacy code are powerful determinants.

The choice might narrow depending on how your application must work with Oracle
Database:

• PL/SQL is a powerful development tool, specialized for SQL transaction
processing.

• Some computation-intensive tasks are executed most efficiently in a lower level
language, such as C.

• For both portability and security, you might select Java.

• For familiarity with Microsoft programming languages, you might select .NET.

Most significantly for performance, only PL/SQL and Java methods run within the
address space of the server. C/C++ and .NET methods are dispatched as external
procedures, and run on the server system but outside the address space of the
database server. Pro*COBOL and Pro*C/C++ are precompilers, and Visual Basic
accesses Oracle Database through Oracle Provider for OLE DB and subsequently
OCI, which is implemented in C.

Taking all these factors into account suggests that there might be situations in which
you might need to implement your application in multiple languages. For example,
because Java runs within the address space of the server, you might want to import
existing Java applications into the database, and then leverage this technology by
calling Java functions from PL/SQL and SQL.

PL/SQL external procedures enable you to write C procedure calls as PL/SQL bodies.
These C procedures are callable directly from PL/SQL, and from SQL through PL/SQL
procedure calls. The database provides a special-purpose interface, the call
specification, that lets you call external procedures from other languages. While this
service is designed for intercommunication between SQL, PL/SQL, C, and Java, it is
accessible from any base language that can call these languages. For example, your
procedure can be written in a language other than Java or C, and if C can call your
procedure, then SQL or PL/SQL can use it. Therefore, if you have a candidate C++
procedure, use a C++ extern "C" statement in that procedure to make it callable by C.

Therefore, the strengths and capabilities of different languages are available to you,
regardless of your programmatic environment. You are not restricted to one language
with its inherent limitations. External procedures promote reusability and modularity
because you can deploy specific languages for specific purposes.

Chapter 21
Overview of Multilanguage Programs

21-2

What Is an External Procedure?
An external procedure is a procedure stored in a dynamic link library (DLL). You
register the procedure with the base language, and then call it to perform special-
purpose processing.

For example, when you work in PL/SQL, the language loads the library dynamically at
runtime, and then calls the procedure as if it were a PL/SQL procedure. These
procedures participate fully in the current transaction and can call back to the
database to perform SQL operations.

The procedures are loaded only when necessary, so memory is conserved. The
decoupling of the call specification from its implementation body means that the
procedures can be enhanced without affecting the calling programs.

External procedures let you:

• Isolate execution of client applications and processes from the database instance
to ensure that problems on the client side do not adversely affect the database

• Move computation-bound programs from client to server where they run faster
(because they avoid the round trips of network communication)

• Interface the database server with external systems and data sources

• Extend the functionality of the database server itself

Note:

The external library (DLL file) must be statically linked. In other words, it must
not reference external symbols from other external libraries (DLL files).
Oracle Database does not resolve such symbols, so they can cause your
external procedure to fail.

See Also:

Oracle Database Security Guide for information about securing external
procedures

Overview of Call Specification for External Procedures
You publish external procedures through call specifications, which provide a
superset of the AS EXTERNAL function through the AS LANGUAGE clause. AS LANGUAGE call
specifications allow the publishing of external C procedures. (Java class methods are
not external procedures, but they still use call specifications.)

Chapter 21
What Is an External Procedure?

21-3

Note:

To support legacy applications, call specifications also enable you to publish
with the AS EXTERNAL clause. For application development, however, using
the AS LANGUAGE clause is recommended.

In general, call specifications enable:

• Dispatching the appropriate C or Java target procedure

• Data type conversions

• Parameter mode mappings

• Automatic memory allocation and cleanup

• Purity constraints to be specified, where necessary, for package functions called
from SQL.

• Calling Java methods or C procedures from database triggers

• Location flexibility: you can put AS LANGUAGE call specifications in package or type
specifications, or package (or type) bodies to optimize performance and hide
implementation details

To use an existing program as an external procedure, load, publish, and then call it.

Loading External Procedures
To make your external C procedures or Java methods available to PL/SQL, you must
first load them.

Note:

You can load external C procedures only on platforms that support either
DLLs or dynamically loadable shared libraries (such as Solaris .so libraries).

When an application calls an external C procedure, Oracle Database or Oracle
Listener starts the external procedure agent, extproc. Using the network connection
established by Oracle Database or Oracle Listener, the application passes this
information to extproc:

• Name of DLL or shared library

• Name of external procedure

• Any parameters for the external procedure

Then extproc loads the DLL or the shared library, runs the external procedure, and
passes any values that the external procedure returns back to the application. The
application and extproc must reside on the same computer.

extproc can call procedures in any library that complies with the calling standard
used.

Chapter 21
Loading External Procedures

21-4

Note:

The default configuration for external procedures no longer requires a
network listener to work with Oracle Database and extproc. Oracle
Database now spawns extproc directly, eliminating the risk that Oracle
Listener might spawn extproc unexpectedly. This default configuration is
recommended for maximum security.

You must change this default configuration, so that Oracle Listener spawns
extproc, if you use any of these:

• A multithreaded extproc agent

• Oracle Database in shared mode on Windows

• An AGENT clause in the LIBRARY specification or an AGENT IN clause in the
PROCEDURE specification that redirects external procedures to a different
extproc agent

See Also:

CALLING STANDARD for more information about the calling standard

Changing the default configuration requires additional network configuration
steps.

To configure your database to use external procedures that are written in C, or that
can be called from C applications, you or your database administrator must follow
these steps:

1. Define the C Procedures

2. Set Up the Environment

3. Identify the DLL

4. Publish the External Procedures

Define the C Procedures
Define the C procedures using one of these prototypes:

• Kernighan & Ritchie style prototypes; for example:

void C_findRoot(x)
 float x;
...

• ISO/ANSI prototypes other than numeric data types that are less than full width
(such as float, short, char); for example:

void C_findRoot(double x)
...

• Other data types that do not change size under default argument promotions.

Chapter 21
Loading External Procedures

21-5

This example changes size under default argument promotions:

void C_findRoot(float x)
...

Set Up the Environment
When you use the default configuration for external procedures, Oracle Database
spawns extproc directly. You need not make configuration changes for listener.ora
and tnsnames.ora. Define the environment variables to be used by external
procedures in the file extproc.ora (located at $ORACLE_HOME/hs/admin on UNIX
operating systems and at ORACLE_HOME\hs\admin on Windows), using this syntax:

SET name=value (environment_variable_name value)

Set the EXTPROC_DLLS environment variable, which restricts the DLLs that extproc can
load, to one of these values:

• NULL; for example:

SET EXTPROC_DLLS=

This setting, the default, allows extproc to load only the DLLs that are in
directory $ORACLE_HOME/bin or $ORACLE_HOME/lib.

• ONLY: followed by a colon-separated (semicolon-separated on Windows systems)
list of DLLs; for example:

SET EXTPROC_DLLS=ONLY:DLL1:DLL2

This setting allows extproc to load only the DLLs named DLL1 and DLL2. This
setting provides maximum security.

• A colon-separated (semicolon-separated on Windows systems) list of DLLs; for
example:

SET EXTPROC_DLLS=DLL1:DLL2

This setting allows extproc to load the DLLs named DLL1 and DLL2 and the DLLs
that are in directory $ORACLE_HOME/bin or $ORACLE_HOME/lib.

• ANY; for example:

SET EXTPROC_DLLS=ANY

This setting allows extproc to load any DLL.

Set the ENFORCE_CREDENTIAL environment variable, which enforces the usage of
credentials when spawning an extproc process. The ENFORCE_CREDENTIAL value can
be TRUE or FALSE (the default). For a discussion of ENFORCE_CREDENTIAL and the
expected behaviors of an extproc process based on possible authentication and
impersonation scenarios, see the information about securing external procedures in
Oracle Database Security Guide.

To change the default configuration for external procedures and have your extproc
agent spawned by Oracle Listener, configure your database to use external
procedures that are written in C, or can be called from C applications, as follows.

Chapter 21
Loading External Procedures

21-6

Note:

To use credentials for extproc, you cannot use Oracle Listener to spawn the
extproc agent.

1. Set configuration parameters for the agent, named extproc by default, in the
configuration files tnsnames.ora and listener.ora. This establishes the
connection for the external procedure agent, extproc, when the database is
started.

2. Start a listener process exclusively for external procedures.

The Listener sets a few required environment variables (such as ORACLE_HOME,
ORACLE_SID, and LD_LIBRARY_PATH) for extproc. It can also define specific
environment variables in the ENVS section of its listener.ora entry, and these
variables are passed to the agent process. Otherwise, it provides the agent with a
"clean" environment. The environment variables set for the agent are independent
of those set for the client and server. Therefore, external procedures, which run in
the agent process, cannot read environment variables set for the client or server
processes.

Note:

It is possible for you to set and read environment variables themselves
by using the standard C procedures setenv and getenv, respectively.
Environment variables, set this way, are specific to the agent process,
which means that they can be read by all functions executed in that
process, but not by any other process running on the same host.

3. Determine whether the agent for your external procedure is to run in dedicated
mode (the default) or multithreaded mode.

In dedicated mode, one "dedicated" agent is launched for each session. In
multithreaded mode, a single multithreaded extproc agent is launched. The
multithreaded extproc agent handles calls using different threads for different
users. In a configuration where many users can call the external procedures, using
a multithreaded extproc agent is recommended to conserve system resources.

If the agent is to run in dedicated mode, additional configuration of the agent
process is not necessary.

If the agent is to run in multithreaded mode, your database administrator must
configure the database system to start the agent in multithreaded mode (as a
multithreaded extproc agent). To do this configuration, use the agent control
utility, agtctl. For example, start extproc using this command:

agtctl startup extproc agent_sid

where agent_sid is the system identifier that this extproc agent services. An entry
for this system identifier is typically added as an entry in the file tnsnames.ora.

Chapter 21
Loading External Procedures

21-7

Note:

• If you use a multithreaded extproc agent, the library you call must be
thread-safe—to avoid errors such as a damaged call stack.

• The database server, the agent process, and the listener process that
spawns the agent process must all reside on the same host.

• By default, the agent process runs on the same database instance as
your main application. In situations where reliability is critical, you might
want to run the agent process for the external procedure on a separate
database instance (still on the same host), so that any problems in the
agent do not affect the primary database server. To do so, specify the
separate database instance using a database link.

Figure F-1 in Oracle Call Interface Programmer's Guide illustrates the architecture of
the multithreaded extproc agent.

See Also:

Oracle Call Interface Programmer's Guide for more information about using
agtctl for extproc administration

Identify the DLL
In this context, a DLL is any dynamically loadable operating-system file that stores
external procedures.

For security reasons, your DBA controls access to the DLL. Using the CREATE LIBRARY
statement, the DBA creates a schema object called an alias library, which represents
the DLL. Then, if you are an authorized user, the DBA grants you EXECUTE privileges
on the alias library. Alternatively, the DBA might grant you CREATE ANY LIBRARY
privileges, in which case you can create your own alias libraries using this syntax:

CREATE LIBRARY [schema_name.]library_name
 {IS | AS} 'file_path'
 [AGENT 'agent_link'];

Note:

The ANY privileges are very powerful and must not be granted lightly. For
more information, see:

• Oracle Database Security Guide for information about managing system
privileges, including ANY

• Oracle Database Security Guide for guidelines for securing user
accounts and privileges

Chapter 21
Loading External Procedures

21-8

Oracle recommends that you specify the path to the DLL using a directory object,
rather than only the DLL name. In this example, you create alias library c_utils, which
represents DLL utils.so:

CREATE LIBRARY C_utils AS 'utils.so' IN DLL_DIRECTORY;

where DLL_DIRECTORY is a directory object that refers to '/DLLs'.

As an alternative, you can specify the full path to the DLL, as in this example:

CREATE LIBRARY C_utils AS '/DLLs/utils.so';

To allow flexibility in specifying the DLLs, you can specify the root part of the path as
an environment variable using the notation ${VAR_NAME}, and set up that variable in
the ENVS section of the listener.ora entry.

In this example, the agent specified by the name agent_link is used to run any
external procedure in the library C_Utils:

create database link agent_link using 'agent_tns_alias';
create or replace library C_utils is
 '${EP_LIB_HOME}/utils.so' agent 'agent_link';

The environment variable EP_LIB_HOME is expanded by the agent to the appropriate
path for that instance, such as /usr/bin/dll. Variable EP_LIB_HOME must be set in the
file listener.ora, for the agent to be able to access it.

For security reasons, extproc, by default, loads only DLLs that are in
directory $ORACLE_HOME/bin or $ORACLE_HOME/lib. Also, only local sessions—that is,
Oracle Database client processes that run on the same system—are allowed to
connect to extproc.

To load DLLs from other directories, set the environment variable EXTPROC_DLLS. The
value for this environment variable is a colon-separated (semicolon-separated on
Windows systems) list of DLL names qualified with the complete path. For example:

EXTPROC_DLLS=/private1/home/johndoe/dll/myDll.so:/private1/home/johndoe/dll/newDll.so

While you can set up environment variables for extproc through the ENVS parameter in
the file listener.ora, you can also set up environment variables in the extproc
initialization file extproc.ora in directory $ORACLE_HOME/hs/admin. When both
extproc.ora and ENVS parameter in listener.ora are used, the environment variables
defined in extproc.ora take precedence. See the Oracle Net manual for more
information about the EXTPROC feature.

Note:

In extproc.ora on a Windows system, specify the path using a drive letter
and using a double backslash (\\) for each backslash in the path. (The first
backslash in each double backslash serves as an escape character.)

Chapter 21
Loading External Procedures

21-9

Publish the External Procedures
You find or write an external C procedure, and add it to the DLL. When the procedure
is in the DLL, you publish it using the call specification mechanism described in
Publishing External Procedures.

Publishing External Procedures
Oracle Database can use only external procedures that are published through a call
specification, which maps names, parameter types, and return types for your Java
class method or C external procedure to their SQL counterparts. It is written like any
other PL/SQL stored procedure except that, in its body, instead of declarations and a
BEGIN END block, you code the AS LANGUAGE clause.

The AS LANGUAGE clause specifies:

• Which language the procedure is written in

• For a Java method:

– The signature of the Java method

• For a C procedure:

– The alias library corresponding to the DLL for a C procedure

– The name of the C procedure in a DLL

– Various options for specifying how parameters are passed

– Which parameter (if any) holds the name of the external procedure agent,
extproc, for running the procedure on a different system

You begin the declaration using the normal CREATE OR REPLACE syntax for a procedure,
function, package specification, package body, type specification, or type body.

The call specification follows the name and parameter declarations. Its syntax is:

{IS | AS} LANGUAGE {C | JAVA}

This is then followed by either:

NAME java_string_literal_name

Where java_string_literal_name is the signature of your Java method

Or by:

{ LIBRARY library_name [NAME c_string_literal_name] |
 [NAME c_string_literal_name] LIBRARY library_name }
[AGENT IN (argument [, argument]...)]
[WITH CONTEXT]
[PARAMETERS (external_parameter[, external_parameter]...)];

Where library_name is the name of your alias library, c_string_literal_name is the
name of your external C procedure, and external_parameter stands for:

{ CONTEXT
 | SELF [{TDO | property}]
 | {parameter_name | RETURN} [property] [BY REFERENCE] [external_datatype]}

Chapter 21
Publishing External Procedures

21-10

property stands for:

{INDICATOR [{STRUCT | TDO}] | LENGTH | DURATION | MAXLEN | CHARSETID | CHARSETFORM}

Note:

Unlike Java, C does not understand SQL types; therefore, the syntax is more
intricate

Topics:

• AS LANGUAGE Clause for Java Class Methods

• AS LANGUAGE Clause for External C Procedures

AS LANGUAGE Clause for Java Class Methods
The AS LANGUAGE clause is the interface between PL/SQL and a Java class method.

AS LANGUAGE Clause for External C Procedures
These subclauses tell PL/SQL where to locate the external C procedure, how to call it,
and what to pass to it:

• LIBRARY

• NAME

• LANGUAGE

• CALLING STANDARD

• WITH CONTEXT

• PARAMETERS

• "AGENT IN"

Of the preceding subclauses, only LIBRARY is required.

LIBRARY
Specifies a local alias library. (You cannot use a database link to specify a remote
library.) The library name is a PL/SQL identifier. Therefore, if you enclose the name in
double quotation marks, then it becomes case-sensitive. (By default, the name is
stored in upper case.) You must have EXECUTE privileges on the alias library.

NAME
Specifies the external C procedure to be called. If you enclose the procedure name in
double quotation marks, then it becomes case-sensitive. (By default, the name is
stored in upper case.) If you omit this subclause, then the procedure name defaults to
the upper-case name of the PL/SQL procedure.

Chapter 21
Publishing External Procedures

21-11

Note:

The terms LANGUAGE and CALLING STANDARD apply only to the superseded AS
EXTERNAL clause.

LANGUAGE
Specifies the third-generation language in which the external procedure was written. If
you omit this subclause, then the language name defaults to C.

CALLING STANDARD
Specifies the calling standard under which the external procedure was compiled. The
supported calling standard is C. If you omit this subclause, then the calling standard
defaults to C.

WITH CONTEXT
Specifies that a context pointer is passed to the external procedure. The context data
structure is opaque to the external procedure but is available to service procedures
called by the external procedure.

PARAMETERS
Specifies the positions and data types of parameters passed to the external
procedure. It can also specify parameter properties, such as current length and
maximum length, and the preferred parameter passing method (by value or by
reference).

AGENT IN
Specifies which parameter holds the name of the agent process that runs this
procedure. This is intended for situations where the external procedure agent,
extproc, runs using multiple agent processes, to ensure robustness if the agent
process of one external procedure fails. You can pass the name of the agent process
(corresponding to the name of a database link), and if tnsnames.ora and listener.ora
are set up properly across both instances, the external procedure is called on the other
instance. Both instances must be on the same host.

This is similar to the AGENT clause of the CREATE LIBRARY statement; specifying the
value at runtime through AGENT IN allows greater flexibility.

When the agent name is specified this way, it overrides any agent name declared in
the alias library. If no agent name is specified, the default is the extproc agent on the
same instance as the calling program.

Publishing Java Class Methods
Java classes and their methods are stored in RDBMS libunits in which you can load
Java sources, binaries and resources using the LOADJAVA utility or the CREATEJAVA
SQL statements. Libunits can be considered analogous to DLLs written, for example,

Chapter 21
Publishing Java Class Methods

21-12

in C—although they map one-to-one with Java classes, whereas DLLs can contain
multiple procedures.

The NAME-clause string uniquely identifies the Java method. The PL/SQL function or
procedure and Java must have corresponding parameters. If the Java method takes
no parameters, then you must code an empty parameter list for it.

When you load Java classes into the RDBMS, they are not published to SQL
automatically. This is because only selected public static methods can be explicitly
published to SQL. However, all methods can be invoked from other Java classes
residing in the database, provided they have proper authorization.

Suppose you want to publish this Java method named J_calcFactorial, which
returns the factorial of its argument:

package myRoutines.math;
public class Factorial {
 public static int J_calcFactorial (int n) {
 if (n == 1) return 1;
 else return n * J_calcFactorial(n - 1);
 }
}

This call specification publishes Java method J_calcFactorial as PL/SQL stored
function plsToJavaFac_func, using SQL*Plus:

CREATE OR REPLACE FUNCTION Plstojavafac_func (N NUMBER) RETURN NUMBER AS
 LANGUAGE JAVA
 NAME 'myRoutines.math.Factorial.J_calcFactorial(int) return int';

Publishing External C Procedures
In this example, you write a PL/SQL standalone function named
plsCallsCdivisor_func that publishes C function Cdivisor_func as an external
function:

CREATE OR REPLACE FUNCTION Plscallscdivisor_func (
/* Find greatest common divisor of x and y: */
 x PLS_INTEGER,
 y PLS_INTEGER)
RETURN PLS_INTEGER
AS LANGUAGE C
 LIBRARY C_utils
 NAME "Cdivisor_func"; /* Quotation marks preserve case. */

Locations of Call Specifications
For both Java class methods and external C procedures, call specifications can be
specified in any of these locations:

• Standalone PL/SQL procedures

• PL/SQL Package Specifications

• PL/SQL Package Bodies

• ADT Specifications

• ADT Bodies

Chapter 21
Publishing External C Procedures

21-13

Topics:

• Example: Locating a Call Specification in a PL/SQL Package

• Example: Locating a Call Specification in a PL/SQL Package Body

• Example: Locating a Call Specification in an ADT Specification

• Example: Locating a Call Specification in an ADT Body

• Example: Java with AUTHID

• Example: C with Optional AUTHID

• Example: Mixing Call Specifications in a Package

Note:

In these examples, the AUTHID and SQL_NAME_RESOLVE clauses might be
required to fully stipulate a call specification.

See Also:

• Oracle Database PL/SQL Language Reference for more information
about calling external procedures from PL/SQL

• Oracle Database SQL Language Reference for more information about
the SQL CALL statement

Example: Locating a Call Specification in a PL/SQL Package
CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
 PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
END;

Example: Locating a Call Specification in a PL/SQL Package Body
CREATE OR REPLACE PACKAGE Demo_pack
 AUTHID CURRENT_USER
AS
 PROCEDURE plsToC_demoExternal_proc(x PLS_INTEGER, y VARCHAR2, z DATE);
END;

CREATE OR REPLACE PACKAGE BODY Demo_pack
 SQL_NAME_RESOLVE CURRENT_USER
AS

Chapter 21
Locations of Call Specifications

21-14

 PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE JAVA
 NAME 'pkg1.class4.methodProc1(int,java.lang.String,java.sql.Date)';
END;

Example: Locating a Call Specification in an ADT Specification

Note:

For examples in this topic to work, you must set up this data structure (which
requires that you have the privilege CREATE ANY LIBRARY):

CREATE OR REPLACE LIBRARY SOMELIB AS '/tmp/lib.so';

CREATE OR REPLACE TYPE Demo_typ
AUTHID DEFINER
AS OBJECT
 (Attribute1 VARCHAR2(2000), SomeLib varchar2(20),
 MEMBER PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 -- PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE)
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE, SELF)
);

Example: Locating a Call Specification in an ADT Body
CREATE OR REPLACE TYPE Demo_typ
AUTHID CURRENT_USER
AS OBJECT
 (attribute1 NUMBER,
 MEMBER PROCEDURE plsToJ_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
);

CREATE OR REPLACE TYPE BODY Demo_typ
AS
 MEMBER PROCEDURE plsToJ_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE JAVA
 NAME 'pkg1.class4.J_demoExternal(int,java.lang.String,java.sql.Date)';
END;

Example: Java with AUTHID
Here is an example of a publishing a Java class method in a standalone PL/SQL
procedure.

CREATE OR REPLACE PROCEDURE plsToJ_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z
DATE)
 AUTHID CURRENT_USER
AS LANGUAGE JAVA
 NAME 'pkg1.class4.methodProc1(int,java.lang.String,java.sql.Date)';

Chapter 21
Locations of Call Specifications

21-15

Example: C with Optional AUTHID
Here is an example of AS EXTERNAL publishing a C procedure in a standalone PL/SQL
program, in which the AUTHID clause is optional. This maintains compatibility with the
external procedures of Oracle Database version 8.0.

CREATE OR REPLACE PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z
DATE)
AS
 EXTERNAL
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

Example: Mixing Call Specifications in a Package
CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
 PROCEDURE plsToC_InBodyOld_proc (x PLS_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToC_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE);
 PROCEDURE plsToJ_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE);

 PROCEDURE plsToJ_InSpec_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 IS LANGUAGE JAVA
 NAME 'pkg1.class4.J_InSpec_meth(int,java.lang.String,java.sql.Date)';

PROCEDURE C_InSpec_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
END;

CREATE OR REPLACE PACKAGE BODY Demo_pack
AS
PROCEDURE plsToC_InBodyOld_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS EXTERNAL
 NAME "C_InBodyOld"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);
PROCEDURE plsToC_demoExternal_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_demoExternal"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

PROCEDURE plsToC_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 AS LANGUAGE C
 NAME "C_InBody"
 LIBRARY SomeLib
 WITH CONTEXT
 PARAMETERS(CONTEXT, x INT, y STRING, z OCIDATE);

Chapter 21
Locations of Call Specifications

21-16

PROCEDURE plsToJ_InBody_proc (x PLS_INTEGER, y VARCHAR2, z DATE)
 IS LANGUAGE JAVA
 NAME 'pkg1.class4.J_InBody_meth(int,java.lang.String,java.sql.Date)';
END;

Passing Parameters to External C Procedures with Call
Specifications

Call specifications allow a mapping between PL/SQL and C data types.

Passing parameters to an external C procedure is complicated by several
circumstances:

• The available set of PL/SQL data types does not correspond one-to-one with the
set of C data types.

• Unlike C, PL/SQL includes the RDBMS concept of nullity. Therefore, PL/SQL
parameters can be NULL, whereas C parameters cannot.

• The external procedure might need the current length or maximum length of CHAR,
LONG RAW, RAW, and VARCHAR2 parameters.

• The external procedure might need character set information about CHAR,
VARCHAR2, and CLOB parameters.

• PL/SQL might need the current length, maximum length, or null status of values
returned by the external procedure.

Note:

The maximum number of parameters that you can pass to a C external
procedure is 128. However, if you pass float or double parameters by value,
then the maximum is less than 128. How much less depends on the number
of such parameters and your operating system. To get a rough estimate,
count each float or double passed by value as two parameters.

Topics:

• Specifying Data Types

• External Data Type Mappings

• Passing Parameters BY VALUE or BY REFERENCE

• Declaring Formal Parameters

• Overriding Default Data Type Mapping

• Specifying Properties

See Also:

Specifying Data Types for more information about data type mappings.

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-17

Specifying Data Types
Do not pass parameters to an external procedure directly. Instead, pass them to the
PL/SQL procedure that published the external procedure, specifying PL/SQL data
types for the parameters. PL/SQL data types map to default external data types, as
shown in Table 21-1.

Note:

The PL/SQL data types BINARY_INTEGER and PLS_INTEGER are identical. For
simplicity, this guide uses "PLS_INTEGER" to mean both BINARY_INTEGER and
PLS_INTEGER.

Table 21-1 Parameter Data Type Mappings

PL/SQL Data Type Supported External Types Default External Type

BINARY_INTEGER
BOOLEAN
PLS_INTEGER

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

INT

NATURAL1

NATURALN1

POSITIVE1

POSITIVEN1

SIGNTYPE1

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE_T

UNSIGNED INT

FLOAT
REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

CHAR
CHARACTER
LONG
NCHAR
NVARCHAR2
ROWID
VARCHAR
VARCHAR2

STRING
OCISTRING

STRING

LONG RAW
RAW

RAW
OCIRAW

RAW

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-18

Table 21-1 (Cont.) Parameter Data Type Mappings

PL/SQL Data Type Supported External Types Default External Type

BFILE
BLOB
CLOB
NCLOB

OCILOBLOCATOR OCILOBLOCATOR

NUMBER
DEC1

DECIMAL1

INT1

INTEGER1

NUMERIC1

SMALLINT1

OCINUMBER OCINUMBER

DATE OCIDATE OCIDATE

TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE

OCIDateTime OCIDateTime

INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH

OCIInterval OCIInterval

composite object types: ADTs dvoid dvoid

composite object types:
collections (associative arrays,
varrays, nested tables)

OCICOLL OCICOLL

1 This PL/SQL type compiles only if you use AS EXTERNAL in your call spec.

External Data Type Mappings
Each external data type maps to a C data type, and the data type conversions are
performed implicitly. To avoid errors when declaring C prototype parameters, see
Table 21-2, which shows the C data type to specify for a given external data type and
PL/SQL parameter mode. For example, if the external data type of an OUT parameter is
STRING, then specify the data type char * in your C prototype.

Table 21-2 External Data Type Mappings

External Data
Type
Corresponding to
PL/SL Type

If Mode is IN or
RETURN, Specify in
C Prototype...

If Mode is IN by Reference
or RETURN by Reference,
Specify in C Prototype...

If Mode is IN OUT
or OUT, Specify
in C Prototype...

CHAR char char * char *

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-19

Table 21-2 (Cont.) External Data Type Mappings

External Data
Type
Corresponding to
PL/SL Type

If Mode is IN or
RETURN, Specify in
C Prototype...

If Mode is IN by Reference
or RETURN by Reference,
Specify in C Prototype...

If Mode is IN OUT
or OUT, Specify
in C Prototype...

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

CHAR char char * char *

UNSIGNED CHAR unsigned char unsigned char * unsigned char *

SHORT short short * short *

UNSIGNED SHORT unsigned short unsigned short * unsigned short *

INT int int * int *

UNSIGNED INT unsigned int unsigned int * unsigned int *

LONG long long * long *

UNSIGNED LONG unsigned long unsigned long * unsigned long *

SIZE_T size_t size_t * size_t *

SB1 sb1 sb1 * sb1 *

UB1 ub1 ub1 * ub1 *

SB2 sb2 sb2 * sb2 *

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-20

Table 21-2 (Cont.) External Data Type Mappings

External Data
Type
Corresponding to
PL/SL Type

If Mode is IN or
RETURN, Specify in
C Prototype...

If Mode is IN by Reference
or RETURN by Reference,
Specify in C Prototype...

If Mode is IN OUT
or OUT, Specify
in C Prototype...

UB2 ub2 ub2 * ub2 *

SB4 sb4 sb4 * sb4 *

UB4 ub4 ub4 * ub4 *

FLOAT float float * float *

DOUBLE double double * double *

STRING char * char * char *

RAW unsigned char * unsigned char * unsigned char *

OCILOBLOCATOR OCILobLocator * OCILobLocator ** OCILobLocator **

OCINUMBER OCINumber * OCINumber * OCINumber *

OCISTRING OCIString * OCIString * OCIString *

OCIRAW OCIRaw * OCIRaw * OCIRaw *

OCIDATE OCIDate * OCIDate * OCIDate *

OCICOLL OCIColl * or
OCIArray * or
OCITable *

OCIColl **
or OCIArray **
or OCITable **

OCIColl ** or
OCIArray ** or
OCITable **

OCITYPE OCIType * OCIType * OCIType *

TDO OCIType * OCIType * OCIType *

ADT
(final types)

dvoid* dvoid* dvoid*

ADT (nonfinal
types)

dvoid* dvoid* dvoid**

Composite data types are not self describing. Their description is stored in a Type
Descriptor Object (TDO). Objects and indicator structs for objects have no predefined

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-21

OCI data type, but must use the data types generated by Oracle Database's Object
Type Translator (OTT). The optional TDO argument for INDICATOR, and for composite
objects, in general, has the C data type, OCIType *.

OCICOLL for REF and collection arguments is optional and exists only for completeness.
You cannot map a REF or collection type onto any other data type, or any other data
type onto a REF or collection type.

Passing Parameters BY VALUE or BY REFERENCE
If you specify BY VALUE, then scalar IN and RETURN arguments are passed by value
(which is also the default). Alternatively, you might have them passed by reference by
specifying BY REFERENCE.

By default, or if you specify BY REFERENCE, then scalar IN OUT, and OUT arguments are
passed by reference. Specifying BY VALUE for IN OUT, and OUT arguments is not
supported for C. The usefulness of the BY REFERENCE/VALUE clause is restricted to
external data types that are, by default, passed by value. This is true for IN, and
RETURN arguments of these external types:

[UNSIGNED] CHAR
[UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG
SIZE_T
SB1
SB2
SB4
UB1
UB2
UB4
FLOAT
DOUBLE

All IN and RETURN arguments of external types not on this list, all IN OUT arguments,
and all OUT arguments are passed by reference.

Declaring Formal Parameters
Generally, the PL/SQL procedure that publishes an external procedure declares a list
of formal parameters, as this example shows:

Note:

You might need to set up this data structure for examples in this topic to
work:

CREATE LIBRARY MathLib AS '/tmp/math.so';

CREATE OR REPLACE FUNCTION Interp_func (
/* Find the value of y at x degrees using Lagrange interpolation: */
 x IN FLOAT,
 y IN FLOAT)
RETURN FLOAT AS

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-22

 LANGUAGE C
 NAME "Interp_func"
 LIBRARY MathLib;

Each formal parameter declaration specifies a name, parameter mode, and PL/SQL
data type (which maps to the default external data type). That might be all the
information the external procedure needs. If not, then you can provide more
information using the PARAMETERS clause, which lets you specify:

• Nondefault external data types

• The current or maximum length of a parameter

• NULL/NOT NULL indicators for parameters

• Character set IDs and forms

• The position of parameters in the list

• How IN parameters are passed (by value or by reference)

If you decide to use the PARAMETERS clause, keep in mind:

• For every formal parameter, there must be a corresponding parameter in the
PARAMETERS clause.

• If you include the WITH CONTEXT clause, then you must specify the parameter
CONTEXT, which shows the position of the context pointer in the parameter list.

• If the external procedure is a function, then you might specify the RETURN
parameter, but it must be in the last position. If RETURN is not specified, the default
external type is used.

Overriding Default Data Type Mapping
In some cases, you can use the PARAMETERS clause to override the default data type
mappings. For example, you can remap the PL/SQL data type BOOLEAN from external
data type INT to external data type CHAR.

Specifying Properties
You can also use the PARAMETERS clause to pass more information about PL/SQL
formal parameters and function results to an external procedure. Do this by specifying
one or more of these properties:

INDICATOR [{STRUCT | TDO}]
LENGTH
DURATION
MAXLEN
CHARSETID
CHARSETFORM
SELF

Table 21-3 shows the allowed and the default external data types, PL/SQL data types,
and PL/SQL parameter modes allowed for a given property. MAXLEN (used to specify
data returned from C back to PL/SQL) cannot be applied to an IN parameter.

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-23

Table 21-3 Properties and Data Types

Property Allowed External
Types (C)

Default External
Type (C)

Allowed
PL/SQL Types

Allowed
PL/SQL Modes

Default PL/SQL
Passing Method

INDICATOR SHORT SHORT all scalars IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

LENGTH [UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

INT CHAR
LONG RAW
RAW
VARCHAR2

IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

MAXLEN [UNSIGNED] SHORT
[UNSIGNED] INT
[UNSIGNED] LONG

INT CHAR
LONG RAW
RAW
VARCHAR2

IN OUT
OUT
RETURN

BY REFERENCE
BY REFERENCE
BY REFERENCE

CHARSETID
CHARSETFORM

UNSIGNED SHORT
UNSIGNED INT
UNSIGNED LONG

UNSIGNED INT CHAR
CLOB
VARCHAR2

IN
IN OUT
OUT
RETURN

BY VALUE
BY REFERENCE
BY REFERENCE
BY REFERENCE

In this example, the PARAMETERS clause specifies properties for the PL/SQL formal
parameters and function result:

CREATE OR REPLACE FUNCTION plsToCparse_func (
 x IN PLS_INTEGER,
 Y IN OUT CHAR)
RETURN CHAR AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_parse"
 PARAMETERS (
 x, -- stores value of x
 x INDICATOR, -- stores null status of x
 y, -- stores value of y
 y LENGTH, -- stores current length of y
 y MAXLEN, -- stores maximum length of y
 RETURN INDICATOR,
 RETURN);

With this PARAMETERS clause, the C prototype becomes:

char *C_parse(int x, short x_ind, char *y, int *y_len, int *y_maxlen,
 short *retind);

The additional parameters in the C prototype correspond to the INDICATOR (for x),
LENGTH (of y), and MAXLEN (of y), and the INDICATOR for the function result in the
PARAMETERS clause. The parameter RETURN corresponds to the C function identifier,
which stores the result value.

Topics:

• INDICATOR

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-24

• LENGTH and MAXLEN

• CHARSETID and CHARSETFORM

• Repositioning Parameters

• SELF

• BY REFERENCE

• WITH CONTEXT

• Interlanguage Parameter Mode Mappings

INDICATOR
An INDICATOR is a parameter whose value indicates whether another parameter is
NULL. PL/SQL does not need indicators, because the RDBMS concept of nullity is built
into the language. However, an external procedure might need to determine if a
parameter or function result is NULL. Also, an external procedure might need to signal
the server that a returned value is NULL, and must be treated accordingly.

In such cases, you can use the property INDICATOR to associate an indicator with a
formal parameter. If the PL/SQL procedure is a function, then you can also associate
an indicator with the function result, as shown in Specifying Properties.

To check the value of an indicator, you can use the constants OCI_IND_NULL and
OCI_IND_NOTNULL. If the indicator equals OCI_IND_NULL, then the associated parameter
or function result is NULL. If the indicator equals OCI_IND_NOTNULL, then the parameter
or function result is not NULL.

For IN parameters, which are inherently read-only, INDICATOR is passed by value
(unless you specify BY REFERENCE) and is read-only (even if you specify BY REFERENCE).
For OUT, IN OUT, and RETURN parameters, INDICATOR is passed by reference by default.

The INDICATOR can also have a STRUCT or TDO option. Because specifying INDICATOR
as a property of an object is not supported, and because arguments of objects have
complete indicator structs instead of INDICATOR scalars, you must specify this by using
the STRUCT option. You must use the type descriptor object (TDO) option for composite
objects and collections,

LENGTH and MAXLEN
In PL/SQL, there is no standard way to indicate the length of a RAW or string parameter.
However, you might want to pass the length of such a parameter to and from an
external procedure. Using the properties LENGTH and MAXLEN, you can specify
parameters that store the current length and maximum length of a formal parameter.

Note:

With a parameter of type RAW or LONG RAW, you must use the property LENGTH.
Also, if that parameter is IN OUT and NULL or OUT and NULL, then you must set
the length of the corresponding C parameter to zero.

For IN parameters, LENGTH is passed by value (unless you specify BY REFERENCE) and
is read-only. For OUT, IN OUT, and RETURN parameters, LENGTH is passed by reference.

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-25

MAXLEN does not apply to IN parameters. For OUT, IN OUT, and RETURN parameters,
MAXLEN is passed by reference and is read-only.

CHARSETID and CHARSETFORM
Oracle Database provides globalization support, which lets you process single‐byte
and multibyte character data and convert between character sets. It also lets your
applications run in different language environments.

By default, if the server and agent use the exact same $ORACLE_HOME value, the agent
uses the same globalization support settings as the server (including any settings that
were specified with ALTER SESSION statements).

If the agent is running in a separate $ORACLE_HOME (even if the same location is
specified by two different aliases or symbolic links), the agent uses the same
globalization support settings as the server except for the character set; the default
character set for the agent is defined by the NLS_LANG and NLS_NCHAR environment
settings for the agent.

The properties CHARSETID and CHARSETFORM identify the nondefault character set from
which the character data being passed was formed. With CHAR, CLOB, and VARCHAR2
parameters, you can use CHARSETID and CHARSETFORM to pass the character set ID and
form to the external procedure.

For IN parameters, CHARSETID and CHARSETFORM are passed by value (unless you
specify BY REFERENCE) and are read-only (even if you specify BY REFERENCE). For OUT,
IN OUT, and RETURN parameters, CHARSETID and CHARSETFORM are passed by reference
and are read-only.

The OCI attribute names for these properties are OCI_ATTR_CHARSET_ID and
OCI_ATTR_CHARSET_FORM.

See Also:

• Oracle Call Interface Programmer's Guide for more information about
OCI_ATTR_CHARSET_ID and OCI_ATTR_CHARSET_FORM

• Oracle Database Globalization Support Guide for more information about
using national language data with the OCI

Repositioning Parameters
Remember, each formal parameter of the external procedure must have a
corresponding parameter in the PARAMETERS clause. Their positions can differ, because
PL/SQL associates them by name, not by position. However, the PARAMETERS clause
and the C prototype for the external procedure must have the same number of
parameters, and they must be in the same order.

SELF
SELF is the always-present argument of an object type's member procedure, namely
the object instance itself. In most cases, this argument is implicit and is not listed in the

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-26

argument list of the PL/SQL procedure. However, SELF must be explicitly specified as
an argument of the PARAMETERS clause.

For example, assume that you want to create a Person object, consisting of a person's
name and date of birth, and then create a table of this object type. You eventually want
to determine the age of each Person object in this table.

1. In SQL*Plus, the Person object type can be created by:

CREATE OR REPLACE TYPE Person1_typ AS OBJECT (
 Name_ VARCHAR2(30),
 B_date DATE,
 MEMBER FUNCTION calcAge_func RETURN NUMBER
);
/

2. Declare the body of the member function as follows:

CREATE OR REPLACE TYPE BODY Person1_typ AS
 MEMBER FUNCTION calcAge_func RETURN NUMBER
 AS LANGUAGE C
 NAME "age"
 LIBRARY agelib
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 SELF,
 SELF INDICATOR STRUCT,
 SELF TDO,
 RETURN INDICATOR
);
END;
/

(Typically, the member function is implemented in PL/SQL, but in this example it is
an external procedure.)

The calcAge_func member function takes no arguments and returns a number. A
member function is always called on an instance of the associated object type.
The object instance itself always is an implicit argument of the member function.
To refer to the implicit argument, the SELF keyword is used. This is incorporated
into the external procedure syntax by supporting references to SELF in the
parameters clause.

3. Create and populate the matching table.

CREATE TABLE Person_tab OF Person1_typ;

INSERT INTO Person_tab
VALUES ('BOB', TO_DATE('14-MAY-85'));

INSERT INTO Person_tab
VALUES ('JOHN', TO_DATE('22-DEC-71'));

4. Retrieve the information of interest from the table.

SELECT p.name, p.b_date, p.calcAge_func() FROM Person_tab p;

NAME B_DATE P.CALCAGE_
------------------------------ --------- ----------
BOB 14-MAY-85 0
JOHN 22-DEC-71 0

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-27

This is sample C code that implements the external member function and the Object-
Type-Translator (OTT)-generated struct definitions:

#include <oci.h>

struct PERSON
{
 OCIString *NAME;
 OCIDate B_DATE;
};
typedef struct PERSON PERSON;

struct PERSON_ind
{
 OCIInd _atomic;
 OCIInd NAME;
 OCIInd B_DATE;
};
typedef struct PERSON_ind PERSON_ind;

OCINumber *age (ctx, person_obj, person_obj_ind, tdo, ret_ind)
OCIExtProcContext *ctx;
PERSON *person_obj;
PERSON_ind *person_obj_ind;
OCIType *tdo;
OCIInd *ret_ind;
{
 sword err;
 text errbuf[512];
 OCIEnv *envh;
 OCISvcCtx *svch;
 OCIError *errh;
 OCINumber *age;
 int inum = 0;
 sword status;

 /* get OCI Environment */
 err = OCIExtProcGetEnv(ctx, &envh, &svch, &errh);

 /* initialize return age to 0 */
 age = (OCINumber *)OCIExtProcAllocCallMemory(ctx, sizeof(OCINumber));
 status = OCINumberFromInt(errh, &inum, sizeof(inum), OCI_NUMBER_SIGNED,
 age);
 if (status != OCI_SUCCESS)
 {
 OCIExtProcRaiseExcp(ctx, (int)1476);
 return (age);
 }

 /* return NULL if the person object is null or the birthdate is null */
 if (person_obj_ind->_atomic == OCI_IND_NULL ||
 person_obj_ind->B_DATE == OCI_IND_NULL)
 {
 *ret_ind = OCI_IND_NULL;
 return (age);
 }

 /* The actual implementation to calculate the age is left to the reader,
 but an easy way of doing this is a callback of the form:
 select trunc(months_between(sysdate, person_obj->b_date) / 12)
 from DUAL;

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-28

 */
 *ret_ind = OCI_IND_NOTNULL;
 return (age);
}

BY REFERENCE
In C, you can pass IN scalar parameters by value (the value of the parameter is
passed) or by reference (a pointer to the value is passed). When an external
procedure expects a pointer to a scalar, specify BY REFERENCE phrase to pass the
parameter by reference:

CREATE OR REPLACE PROCEDURE findRoot_proc (
 x IN DOUBLE PRECISION)
AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_findRoot"
 PARAMETERS (
 x BY REFERENCE);

In this case, the C prototype is:

void C_findRoot(double *x);

The default (used when there is no PARAMETERS clause) is:

void C_findRoot(double x);

WITH CONTEXT
By including the WITH CONTEXT clause, you can give an external procedure access to
information about parameters, exceptions, memory allocation, and the user
environment. The WITH CONTEXT clause specifies that a context pointer is passed to the
external procedure. For example, if you write this PL/SQL function:

CREATE OR REPLACE FUNCTION getNum_func (
 x IN REAL)
RETURN PLS_INTEGER AS LANGUAGE C
 LIBRARY c_utils
 NAME "C_getNum"
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 x BY REFERENCE,
 RETURN INDICATOR);

The C prototype is:

int C_getNum(
 OCIExtProcContext *with_context,
 float *x,
 short *retind);

The context data structure is opaque to the external procedure; but, is available to
service procedures called by the external procedure.

If you also include the PARAMETERS clause, then you must specify the parameter
CONTEXT, which shows the position of the context pointer in the parameter list. If you

Chapter 21
Passing Parameters to External C Procedures with Call Specifications

21-29

omit the PARAMETERS clause, then the context pointer is the first parameter passed to
the external procedure.

Interlanguage Parameter Mode Mappings
PL/SQL supports the IN, IN OUT, and OUT parameter modes, and the RETURN clause for
procedures returning values.

Running External Procedures with CALL Statements
Now that you have published your Java class method or external C procedure, you are
ready to call it.

Do not call an external procedure directly. Instead, use the CALL statement to call the
PL/SQL procedure that published the external procedure.

Such calls, which you code in the same manner as a call to a regular PL/SQL
procedure, can appear in:

• Anonymous blocks

• Standalone and package procedures

• Methods of an object type

• Database triggers

• SQL statements (calls to package functions only).

Any PL/SQL block or procedure running on the server side, or on the client side, (for
example, in a tool such as Oracle Forms) can call an external procedure. On the
server side, the external procedure runs in a separate process address space, which
safeguards your database. Figure 21-1 shows how Oracle Database and external
procedures interact.

Figure 21-1 Oracle Database and External Procedures

Oracle Server
Process Execution

External Process
Execution

PL/SQL
Interpreter

Java Virtual
Machine

SQL
Engine

DLL

External C
Process

Oracle Database
Disk Storage

PL/SQL Subprogram

Java Method

Topics:

• Preconditions for External Procedures

• CALL Statement Syntax

• Calling Java Class Methods

Chapter 21
Running External Procedures with CALL Statements

21-30

• Calling External C Procedures

See Also:

CALL Statement Syntax

Preconditions for External Procedures
Before calling external procedures, consider the privileges, permissions, and
synonyms that exist in the execution environment.

Topics:

• Privileges of External Procedures

• Managing Permissions

• Creating Synonyms for External Procedures

Privileges of External Procedures
When external procedures are called through CALL specifications, they run with
definer's privileges, rather than invoker privileges.

A program running with invoker privileges is not bound to a particular schema. It runs
at the calling site and accesses database items (such as tables and views) with the
caller's visibility and permissions. However, a program running with definer's privileges
is bound to the schema in which it is defined. It runs at the defining site, in the definer's
schema, and accesses database items with the definer's visibility and permissions.

Managing Permissions
To call an external procedure, a user must have the EXECUTE privilege on its call
specification. To grant this privilege, use the GRANT statement. For example, this
statement allows the user johndoe to call the external procedure whose call
specification is plsToJ_demoExternal_proc:

GRANT EXECUTE ON plsToJ_demoExternal_proc TO johndoe;

Grant the EXECUTE privilege on a call specification only to users who must call the
procedure.

See Also:

Oracle Database SQL Language Reference for more information about
GRANT statement

Creating Synonyms for External Procedures
For convenience, you or your DBA can create synonyms for external procedures using
the CREATE PUBLIC SYNONYM statement. In this example, your DBA creates a public

Chapter 21
Running External Procedures with CALL Statements

21-31

synonym, which is accessible to all users. If PUBLIC is not specified, then the synonym
is private and accessible only within its schema.

CREATE PUBLIC SYNONYM Rfac FOR johndoe.RecursiveFactorial;

CALL Statement Syntax
Call the external procedure through the SQL CALL statement. You can run the CALL
statement interactively from SQL*Plus. The syntax is:

CALL [schema.][{object_type_name | package_name}]procedure_name[@dblink_name]
 [(parameter_list)] [INTO :host_variable][INDICATOR][:indicator_variable];

This is equivalent to running a procedure myproc using a SQL statement of the form
"SELECT myproc(...) FROM DUAL," except that the overhead associated with performing
the SELECT is not incurred.

For example, here is an anonymous PL/SQL block that uses dynamic SQL to call
plsToC_demoExternal_proc, which you published. PL/SQL passes three parameters
to the external C procedure C_demoExternal_proc.

DECLARE
 xx NUMBER(4);
 yy VARCHAR2(10);
 zz DATE;
 BEGIN
 EXECUTE IMMEDIATE
 'CALL plsToC_demoExternal_proc(:xxx, :yyy, :zzz)' USING xx,yy,zz;
 END;

The semantics of the CALL statement are identical to the that of an equivalent BEGIN
END block.

Note:

CALL is the only SQL statement that cannot be put, by itself, in a PL/SQL
BEGIN END block. It can be part of an EXECUTE IMMEDIATE statement within a
BEGIN END block.

Calling Java Class Methods
To call the J_calcFactorial class method published in Publishing Java Class
Methods:

1. Declare and initialize two SQL*Plus host variables:

VARIABLE x NUMBER
VARIABLE y NUMBER
EXECUTE :x := 5;

2. Call J_calcFactorial:

CALL J_calcFactorial(:x) INTO :y;
PRINT y

Result:

Chapter 21
Running External Procedures with CALL Statements

21-32

Y

 120

Calling External C Procedures
To call an external C procedure, PL/SQL must find the path of the appropriate DLL.
The PL/SQL engine retrieves the path from the data dictionary, based on the library
alias from the AS LANGUAGE clause of the procedure declaration.

Next, PL/SQL alerts a Listener process which, in turn, spawns a session-specific
agent. By default, this agent is named extproc, although you can specify other names
in the listener.ora file. The Listener hands over the connection to the agent, and
PL/SQL passes to the agent the name of the DLL, the name of the external procedure,
and any parameters.

Then, the agent loads the DLL and runs the external procedure. Also, the agent
handles service calls (such as raising an exception) and callbacks to Oracle Database.
Finally, the agent passes to PL/SQL any values returned by the external procedure.

Note:

Although some DLL caching takes place, your DLL might not remain in the
cache; therefore, do not store global variables in your DLL.

After the external procedure completes, the agent remains active throughout your
Oracle Database session; when you log off, the agent is stopped. Consequently, you
incur the cost of launching the agent only once, no matter how many calls you make.
Still, call an external procedure only when the computational benefits outweigh the
cost.

Here, you call PL/SQL function plsCallsCdivisor_func, which you published in
Publishing External C Procedures, from an anonymous block. PL/SQL passes the two
integer parameters to external function Cdivisor_func, which returns their greatest
common divisor.

DECLARE
 g PLS_INTEGER;
 a PLS_INTEGER;
 b PLS_INTEGER;
CALL plsCallsCdivisor_func(a, b);
IF g IN (2,4,8) THEN ...

Handling Errors and Exceptions in Multilanguage Programs
The PL/SQL compiler raises compile-time exceptions if an AS EXTERNAL call
specification is found in a TYPE or PACKAGE specification.

C programs can raise exceptions through the OCIExtproc functions.

Chapter 21
Handling Errors and Exceptions in Multilanguage Programs

21-33

Using Service Routines with External C Procedures
When called from an external procedure, a service routine can raise exceptions,
allocate memory, and call OCI handles for callbacks to the server. To use a service
routine, you must specify the WITH CONTEXT clause, which lets you pass a context
structure to the external procedure. The context structure is declared in header file
ociextp.h as follows:

typedef struct OCIExtProcContext OCIExtProcContext;

Note:

ociextp.h is located in $ORACLE_HOME/plsql/public on Linux and UNIX.

Service procedures:

• OCIExtProcAllocCallMemory

• OCIExtProcRaiseExcp

• OCIExtProcRaiseExcpWithMsg

OCIExtProcAllocCallMemory
The OCIExtProcAllocCallMemory service routine allocates n bytes of memory for the
duration of the external procedure call. Any memory allocated by the function is freed
automatically as soon as control returns to PL/SQL.

Note:

Do not have the external procedure call the C function free to free memory
allocated by this service routine, as this is handled automatically.

The C prototype for this function is as follows:

dvoid *OCIExtProcAllocCallMemory(
 OCIExtProcContext *with_context,
 size_t amount);

The parameters with_context and amount are the context pointer and number of
bytes to allocate, respectively. The function returns an untyped pointer to the allocated
memory. A return value of zero indicates failure.

In SQL*Plus, suppose you publish external function plsToC_concat_func, as follows:

CREATE OR REPLACE FUNCTION plsToC_concat_func (
 str1 IN VARCHAR2,
 str2 IN VARCHAR2)
RETURN VARCHAR2 AS LANGUAGE C
NAME "concat"
LIBRARY stringlib

Chapter 21
Using Service Routines with External C Procedures

21-34

WITH CONTEXT
PARAMETERS (
CONTEXT,
str1 STRING,
str1 INDICATOR short,
str2 STRING,
str2 INDICATOR short,
RETURN INDICATOR short,
RETURN LENGTH short,
RETURN STRING);

When called, C_concat concatenates two strings, then returns the result:

select plsToC_concat_func('hello ', 'world') from DUAL;
PLSTOC_CONCAT_FUNC('HELLO','WORLD')

hello world

If either string is NULL, the result is also NULL. As this example shows, C_concat uses
OCIExtProcAllocCallMemory to allocate memory for the result string:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>
#include <ociextp.h>

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)
OCIExtProcContext *ctx;
char *str1;
short str1_i;
char *str2;
short str2_i;
short *ret_i;
short *ret_l;
{
 char *tmp;
 short len;
 /* Check for null inputs. */
 if ((str1_i == OCI_IND_NULL) || (str2_i == OCI_IND_NULL))
 {
 *ret_i = (short)OCI_IND_NULL;
 /* PL/SQL has no notion of a NULL ptr, so return a zero-byte string. */
 tmp = OCIExtProcAllocCallMemory(ctx, 1);
 tmp[0] = '\0';
 return(tmp);
 }
 /* Allocate memory for result string, including NULL terminator. */
 len = strlen(str1) + strlen(str2);
 tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

 strcpy(tmp, str1);
 strcat(tmp, str2);

 /* Set NULL indicator and length. */
 *ret_i = (short)OCI_IND_NOTNULL;
 *ret_l = len;
 /* Return pointer, which PL/SQL frees later. */
 return(tmp);
}

Chapter 21
Using Service Routines with External C Procedures

21-35

#ifdef LATER
static void checkerr (/*_ OCIError *errhp, sword status _*/);

void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

char *concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l)
OCIExtProcContext *ctx;
char *str1;
short str1_i;
char *str2;
short str2_i;
short *ret_i;
short *ret_l;
{
 char *tmp;
 short len;
 /* Check for null inputs. */
 if ((str1_i == OCI_IND_NULL) || (str2_i == OCI_IND_NULL))
 {
 *ret_i = (short)OCI_IND_NULL;
 /* PL/SQL has no notion of a NULL ptr, so return a zero-byte string. */
 tmp = OCIExtProcAllocCallMemory(ctx, 1);
 tmp[0] = '\0';
 return(tmp);

Chapter 21
Using Service Routines with External C Procedures

21-36

 }
 /* Allocate memory for result string, including NULL terminator. */
 len = strlen(str1) + strlen(str2);
 tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

 strcpy(tmp, str1);
 strcat(tmp, str2);

 /* Set NULL indicator and length. */
 *ret_i = (short)OCI_IND_NOTNULL;
 *ret_l = len;
 /* Return pointer, which PL/SQL frees later. */
 return(tmp);
}

/*==*/
int main(char *argv, int argc)
{
 OCIExtProcContext *ctx;
 char *str1;
 short str1_i;
 char *str2;
 short str2_i;
 short *ret_i;
 short *ret_l;
 /* OCI Handles */
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCILobLocator *clob, *blob;
 OCILobLocator *Lob_loc;

 /* Initialize and Logon */
 (void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);

 (void) OCIEnvInit((OCIEnv **) &envhp,
 OCI_DEFAULT, (size_t) 0,
 (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* Server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 /* Service context */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 /* Attach to Oracle Database */
 (void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);

 /* Set attribute server context in the service context */
 (void) OCIAttrSet ((dvoid *) svchp, OCI_HTYPE_SVCCTX,

Chapter 21
Using Service Routines with External C Procedures

21-37

 (dvoid *)srvhp, (ub4) 0,
 OCI_ATTR_SERVER, (OCIError *) errhp);

 (void) OCIHandleAlloc((dvoid *) envhp,
 (dvoid **)&authp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "samp", (ub4)4,
 (ub4) OCI_ATTR_USERNAME, errhp);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) "password", (ub4) 4,
 (ub4) OCI_ATTR_PASSWORD, errhp);

 /* Begin a User Session */
 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));

 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);

 /* -----------------------User Logged In------------------------------*/
 printf ("user logged in \n");

 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 checkerr(errhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &Lob_loc,
 (ub4) OCI_DTYPE_LOB,
 (size_t) 0, (dvoid **) 0));

 /* ------- subprogram called here-----------------------*/
 printf ("calling concat...\n");
 concat(ctx, str1, str1_i, str2, str2_i, ret_i, ret_l);

 return 0;
}

#endif

OCIExtProcRaiseExcp
The OCIExtProcRaiseExcp service routine raises a predefined exception, which must
have a valid Oracle Database error number in the range 1..32,767. After doing any
necessary cleanup, your external procedure must return immediately. (No values are
assigned to OUT or IN OUT parameters.) The C prototype for this function follows:

int OCIExtProcRaiseExcp(
 OCIExtProcContext *with_context,
 size_t errnum);

The parameters with_context and error_number are the context pointer and Oracle
Database error number. The return values OCIEXTPROC_SUCCESS and
OCIEXTPROC_ERROR indicate success or failure.

In SQL*Plus, suppose you publish external procedure plsTo_divide_proc, as follows:

Chapter 21
Using Service Routines with External C Procedures

21-38

CREATE OR REPLACE PROCEDURE plsTo_divide_proc (
 dividend IN PLS_INTEGER,
 divisor IN PLS_INTEGER,
 result OUT FLOAT)
AS LANGUAGE C
 NAME "C_divide"
 LIBRARY MathLib
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 dividend INT,
 divisor INT,
 result FLOAT);

When called, C_divide finds the quotient of two numbers. As this example shows, if
the divisor is zero, C_divide uses OCIExtProcRaiseExcp to raise the predefined
exception ZERO_DIVIDE:

void C_divide (ctx, dividend, divisor, result)
OCIExtProcContext *ctx;
int dividend;
int divisor;
float *result;
{
 /* Check for zero divisor. */
 if (divisor == (int)0)
 {
 /* Raise exception ZERO_DIVIDE, which is Oracle Database error 1476. */
 if (OCIExtProcRaiseExcp(ctx, (int)1476) == OCIEXTPROC_SUCCESS)
 {
 return;
 }
 else
 {
 /* Incorrect parameters were passed. */
 assert(0);
 }
 }
 *result = (float)dividend / (float)divisor;
}

OCIExtProcRaiseExcpWithMsg
The OCIExtProcRaiseExcpWithMsg service routine raises a user-defined exception and
returns a user-defined error message. The C prototype for this function follows:

int OCIExtProcRaiseExcpWithMsg(
 OCIExtProcContext *with_context,
 size_t error_number,
 text *error_message,
 size_t len);

The parameters with_context, error_number, and error_message are the context
pointer, Oracle Database error number, and error message text. The parameter len
stores the length of the error message. If the message is a null-terminated string, then
len is zero. The return values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR indicate
success or failure.

Chapter 21
Using Service Routines with External C Procedures

21-39

In the previous example, you published external procedure plsTo_divide_proc. In this
example, you use a different implementation. With this version, if the divisor is zero,
then C_divide uses OCIExtProcRaiseExcpWithMsg to raise a user-defined exception:

void C_divide (ctx, dividend, divisor, result)
OCIExtProcContext *ctx;
int dividend;
int divisor;
float *result;
 /* Check for zero divisor. */
 if (divisor == (int)0)
 {
 /* Raise a user-defined exception, which is Oracle Database error 20100,
 and return a null-terminated error message. */
 if (OCIExtProcRaiseExcpWithMsg(ctx, (int)20100,
 "divisor is zero", 0) == OCIEXTPROC_SUCCESS)
 {
 return;
 }
 else
 {
 /* Incorrect parameters were passed. */
 assert(0);
 }
 }
 *result = dividend / divisor;

}

Doing Callbacks with External C Procedures
To enable callbacks, use the function OCIExtProcGetEnv.

Topics:

• OCIExtProcGetEnv

• Object Support for OCI Callbacks

• Restrictions on Callbacks

• Debugging External C Procedures

• Example: Calling an External C Procedure

• Global Variables in External C Procedures

• Static Variables in External C Procedures

• Restrictions on External C Procedures

OCIExtProcGetEnv
The OCIExtProcGetEnv service routine enables OCI callbacks to the database during
an external procedure call. The environment handles obtained by using this function
reuse the existing connection to go back to the database. If you must establish a new
connection to the database, you cannot use these handles; instead, you must create
your own.

The C prototype for this function follows:

Chapter 21
Doing Callbacks with External C Procedures

21-40

sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh)

The parameter with_context is the context pointer, and the parameters envh, svch,
and errh are the OCI environment, service, and error handles, respectively. The return
values OCIEXTPROC_SUCCESS and OCIEXTPROC_ERROR indicate success or failure.

Both external C procedures and Java class methods can call-back to the database to
do SQL operations. For a working example, see Example: Calling an External C
Procedure.

Note:

Callbacks are not necessarily a same-session phenomenon; you might run
an SQL statement in a different session through OCIlogon.

An external C procedure running on Oracle Database can call a service routine to
obtain OCI environment and service handles. With the OCI, you can use callbacks to
run SQL statements and PL/SQL subprograms, fetch data, and manipulate LOBs.
Callbacks and external procedures operate in the same user session and transaction
context, and so have the same user privileges.

In SQL*Plus, suppose you run this script:

CREATE TABLE Emp_tab (empno NUMBER(10))

CREATE PROCEDURE plsToC_insertIntoEmpTab_proc (
 empno PLS_INTEGER)
AS LANGUAGE C
 NAME "C_insertEmpTab"
 LIBRARY insert_lib
 WITH CONTEXT
 PARAMETERS (
 CONTEXT,
 empno LONG);

Later, you might call service routine OCIExtProcGetEnv from external procedure
plsToC_insertIntoEmpTab_proc, as follows:

#include <stdio.h>
#include <stdlib.h>
#include <oratypes.h>
#include <oci.h> /* includes ociextp.h */
...
void C_insertIntoEmpTab (ctx, empno)
OCIExtProcContext *ctx;
long empno;
{
 OCIEnv *envhp;
 OCISvcCtx *svchp;
 OCIError *errhp;
 int err;
 ...
 err = OCIExtProcGetEnv(ctx, &envhp, &svchp, &errhp);

Chapter 21
Doing Callbacks with External C Procedures

21-41

 ...
}

If you do not use callbacks, you need not include oci.h; instead, include ociextp.h.

Object Support for OCI Callbacks
To run object-related callbacks from your external procedures, the OCI environment in
the extproc agent is fully initialized in object mode. You retrieve handles to this
environment with the OCIExtProcGetEnv procedure.

The object runtime environment lets you use static and dynamic object support
provided by OCI. To use static support, use the OTT to generate C structs for the
appropriate object types, and then use conventional C code to access the object
attributes.

For those objects whose types are unknown at external procedure creation time, an
alternative, dynamic, way of accessing objects is first to call OCIDescribeAny to obtain
attribute and method information about the type. Then, OCIObjectGetAttr and
OCIObjectSetAttr can be called to retrieve and set attribute values.

Because the current external procedure model is stateless, OCIExtProcGetEnv must
be called in every external procedure that wants to run callbacks, or call OCIExtProc.
service routines. After every external procedure call, the callback mechanism is
cleaned up and all OCI handles are freed.

Restrictions on Callbacks
With callbacks, this SQL statements and OCI subprograms are not supported:

• Transaction control statements such as COMMIT

• Data definition statements such as CREATE

• These object-oriented OCI subprograms:

OCIObjectNew
OCIObjectPin
OCIObjectUnpin
OCIObjectPinCountReset
OCIObjectLock
OCIObjectMarkUpdate
OCIObjectUnmark
OCIObjectUnmarkByRef
OCIObjectAlwaysLatest
OCIObjectNotAlwaysLatest
OCIObjectMarkDeleteByRef
OCIObjectMarkDelete
OCIObjectFlush
OCIObjectFlushRefresh
OCIObjectGetTypeRef
OCIObjectGetObjectRef
OCIObjectExists
OCIObjectIsLocked
OCIObjectIsDirtied
OCIObjectIsLoaded
OCIObjectRefresh
OCIObjectPinTable
OCIObjectArrayPin

Chapter 21
Doing Callbacks with External C Procedures

21-42

OCICacheFlush,
OCICacheFlushRefresh,
OCICacheRefresh
OCICacheUnpin
OCICacheFree
OCICacheUnmark
OCICacheGetObjects
OCICacheRegister

• Polling-mode OCI subprograms such as OCIGetPieceInfo

• These OCI subprograms:

OCIEnvInit
OCIInitialize
OCIPasswordChange
OCIServerAttach
OCIServerDetach
OCISessionBegin
OCISessionEnd
OCISvcCtxToLda
OCITransCommit
OCITransDetach
OCITransRollback
OCITransStart

Also, with OCI subprogram OCIHandleAlloc, these handle types are not supported:

OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_SVCCTX
OCI_HTYPE_TRANS

Debugging External C Procedures
Usually, when an external procedure fails, its prototype is faulty. In other words, the
prototype does not match the one generated internally by PL/SQL. This can happen if
you specify an incompatible C data type. For example, to pass an OUT parameter of
type REAL, you must specify float *. Specifying float, double *, or any other C data
type results in a mismatch.

In such cases, you might get:

lost RPC connection to external routine agent

This error, which means that extproc terminated abnormally because the external
procedure caused a core dump. To avoid errors when declaring C prototype
parameters, see the preceding tables.

To help you debug external procedures, PL/SQL provides the utility package
DEBUG_EXTPROC. To install the package, run the script dbgextp.sql, which you can find
in the PL/SQL demo directory. (For the location of the directory, see your Oracle
Database Installation or User's Guide.)

To use the package, follow the instructions in dbgextp.sql. Your Oracle Database
account must have EXECUTE privileges on the package and CREATE LIBRARY privileges.

Chapter 21
Doing Callbacks with External C Procedures

21-43

Note:

DEBUG_EXTPROC works only on platforms with debuggers that can attach to a
running process.

Example: Calling an External C Procedure
Also in the PL/SQL demo directory is the script extproc.sql, which demonstrates the
calling of an external procedure. The companion file extproc.c contains the C source
code for the external procedure.

To run the demo, follow the instructions in extproc.sql. You must use the SCOTT
account, which must have CREATE LIBRARY privileges.

Global Variables in External C Procedures
A global variable is declared outside of a function, and its value is shared by all
functions of a program. Therefore, in external procedures, all functions in a DLL share
the value of the global variable. Global variables are also used to store data that is
intended to persist beyond the lifetime of a function. However, Oracle discourages the
use of global variables for two reasons:

• Threading

In the nonthreaded configuration of the agent process, one function is active at a
time. For the multithreaded extproc agent, multiple functions can be active at the
same time, and they might try to access the global variable concurrently, with
unsuccessful results.

• DLL caching

Suppose that function func1 tries to pass data to function func2 by storing the
data in a global variable. After func1 completes, the DLL cache might be
unloaded, causing all global variables to lose their values. Then, when func2 runs,
the DLL is reloaded, and all global variables are initialized to 0.

Static Variables in External C Procedures
There are two types of static variables: external and internal. An external static
variable is a special case of a global variable, so its usage is discouraged. Internal
static variables are local to a particular function, but remain in existence rather than
coming and going each time the function is activated. Therefore, they provide private,
permanent storage within a single function. These variables are used to pass on data
to subsequent calls to the same function. But, because of the DLL caching feature
mentioned in Global Variables in External C Procedures, the DLL might be unloaded
and reloaded between calls, which means that the internal static variable loses its
value.

Chapter 21
Doing Callbacks with External C Procedures

21-44

:

Template makefile in the RDBMS subdirectory /public for help creating a
dynamic link library

When calling external procedures:

• Never write to IN parameters or overflow the capacity of OUT parameters. (PL/SQL
does no runtime checks for these error conditions.)

• Never read an OUT parameter or a function result.

• Always assign a value to IN OUT and OUT parameters and to function results.
Otherwise, your external procedure will not return successfully.

• If you include the WITH CONTEXT and PARAMETERS clauses, then you must specify
the parameter CONTEXT, which shows the position of the context pointer in the
parameter list.

• If you include the PARAMETERS clause, and if the external procedure is a function,
then you must specify the parameter RETURN in the last position.

• For every formal parameter, there must be a corresponding parameter in the
PARAMETERS clause. Also, ensure that the data types of parameters in the
PARAMETERS clause are compatible with those in the C prototype, because no
implicit conversions are done.

• With a parameter of type RAW or LONG RAW, you must use the property LENGTH. Also,
if that parameter is IN OUT or OUT and null, then you must set the length of the
corresponding C parameter to zero.

Restrictions on External C Procedures
These restrictions apply to external procedures:

• This feature is available only on platforms that support DLLs.

• Only C procedures and procedures callable from C code are supported.

• External procedure callouts combined with distributed transactions is not
supported.

• You cannot pass PL/SQL cursor variables or records to an external procedure. For
records, use instances of object types instead.

• In the LIBRARY subclause, you cannot use a database link to specify a remote
library.

• The maximum number of parameters that you can pass to a external procedure is
128. However, if you pass float or double parameters by value, then the maximum
is less than 128. How much less depends on the number of such parameters and
your operating system. To get a rough estimate, count each float or double passed
by value as two parameters.

Chapter 21
Doing Callbacks with External C Procedures

21-45

22
Developing Applications with Oracle XA

Note:

Avoid using XA if possible, for these reasons:

• XA can degrade performance.

• XA can cause in-doubt transactions.

• XA might be unable to take advantage of Oracle Database 12c Release
1 (12.1.0.1) features that enhance the ability of applications to continue
after recoverable outages.

It might be possible to avoid using XA even when that seems avoidable (for
example, if Oracle and non-Oracle resources must be used in the same
transaction).

This chapter explains how to use the Oracle XA library. Typically, you use this library
in applications that work with transaction monitors. The XA features are most useful in
applications in which transactions interact with multiple databases.

Topics:

• X/Open Distributed Transaction Processing (DTP)

• Oracle XA Library Subprograms

• Developing and Installing XA Applications

• Troubleshooting XA Applications

• Oracle XA Issues and Restrictions

See Also:

• Distributed TP: The XA Specification, for an overview of XA, including
basic architecture. Access at https://www2.opengroup.org/ogsys/jsp/
publications/PublicationDetails.jsp?publicationid=11144.

• Oracle Call Interface Programmer's Guide for background and reference
information about the Oracle XA library

• The Oracle Database platform-specific documentation for information
about library linking filenames

• README for changes, bugs, and restrictions in the Oracle XA library for
your platform

22-1

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=11144
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=11144

X/Open Distributed Transaction Processing (DTP)
The X/Open Distributed Transaction Processing (DTP) architecture defines a standard
architecture or interface that enables multiple application programs (APs) to share
resources provided by multiple, and possibly different, resource managers (RMs). It
coordinates the work between APs and RMs into global transactions.

The Oracle XA library conforms to the X/Open software architecture's XA interface
specification. The Oracle XA library is an external interface that enables a client-side
transaction manager (TM) that is not an Oracle client-side TM to coordinate global
transactions, thereby allowing inclusion of database RMs that are not Oracle Database
RMs in distributed transactions. For example, a client application can manage an
Oracle Database transaction and a transaction in an NTFS file system as a single,
global transaction.

Figure 22-1 illustrates a possible X/Open DTP model.

Figure 22-1 Possible DTP Model

Transaction
Manager (TM)

Application Program (AP)

XA Interface

TX Interface

XA Interface

Native

Interface

Manager

Resources

Resource
Manager (RM)

Other�
Resources

Resource
Manager (RM)

Oracle�
Database

Topics:

• DTP Terminology

• Required Public Information

Chapter 22
X/Open Distributed Transaction Processing (DTP)

22-2

DTP Terminology
• Resource Manager (RM)

• Distributed Transaction

• Branch

• Transaction Manager (TM)

• Transaction Processing Monitor (TPM)

• Two-Phase Commit Protocol

• Application Program (AP)

• TX Interface

• Tight and Loose Coupling

• Dynamic and Static Registration

Resource Manager (RM)

A resource manager controls a shared, recoverable resource that can be returned to a
consistent state after a failure. Examples are relational databases, transactional
queues, and transactional file systems. Oracle Database is an RM and uses its online
redo log and undo segments to return to a consistent state after a failure.

Distributed Transaction

A distributed transaction, also called a global transaction, is a client transaction that
involves updates to multiple distributed resources and requires "all-or-none" semantics
across distributed RMs.

Branch

A branch is a unit of work contained within one RM. Multiple branches comprise a
global transaction. For Oracle Database, each branch maps to a local transaction
inside the database server.

Transaction Manager (TM)

A transaction manager provides an API for specifying the boundaries of the
transaction and manages commit and recovery. The TM implements a two-phase
commit engine to provide "all-or-none" semantics across distributed RMs.

An external TM is a middle-tier component that resides outside Oracle Database.
Normally, the database is its own internal TM. Using a standards-based TM enables
Oracle Database to cooperate with other heterogeneous RMs in a single transaction.

Transaction Processing Monitor (TPM)

A TM is usually provided by a transaction processing monitor (TPM), such as:

• Oracle Tuxedo

• IBM Transarc Encina

• IBM CICS

Chapter 22
X/Open Distributed Transaction Processing (DTP)

22-3

A TPM coordinates the flow of transaction requests between the client processes that
issue requests and the back-end servers that process them. Basically, a TPM
coordinates transactions that require the services of several different types of back-
end processes, such as application servers and RMs distributed over a network.

The TPM synchronizes any commits or rollbacks required to complete a distributed
transaction. The TM portion of the TPM is responsible for controlling when distributed
commits and rollbacks take place. Thus, if a distributed application program takes
advantage of a TPM, then the TM portion of the TPM is responsible for controlling the
two-phase commit protocol. The RMs enable the TMs to perform this task.

Because the TM controls distributed commits or rollbacks, it must communicate
directly with Oracle Database (or any other RM) through the XA interface. It uses
Oracle XA library subprograms, which are described in "Oracle XA Library
Subprograms", to tell Oracle Database how to process the transaction, based on its
knowledge of all RMs in the transaction.

Two-Phase Commit Protocol

The Oracle XA library interface follows the two-phase commit protocol. The sequence
of events is as follows:

1. In the prepare phase, the TM asks each RM to guarantee that it can commit any
part of the transaction. If this is possible, then the RM records its prepared state
and replies affirmatively to the TM. If it is not possible, then the RM might roll back
any work, reply negatively to the TM, and forget about the transaction. The
protocol allows the application, or any RM, to roll back the transaction unilaterally
until the prepare phase completes.

2. In phase two, the TM records the commit decision and issues a commit or rollback
to all RMs participating in the transaction. TM can issue a commit for an RM only if
all RMs have replied affirmatively to phase one.

Application Program (AP)

An application program defines transaction boundaries and specifies actions that
constitute a transaction. For example, an AP can be a precompiler or Oracle Call
Interface (OCI) program. The AP operates on the RM resource through its native
interface, for example, SQL.

TX Interface

An application program starts and completes all transaction control operations through
the TM through an interface called TX. The AP does not directly use the XA interface.
APs are not aware of branches that fork in the middle-tier: application threads do not
explicitly join, leave, suspend, and resume branch work, instead the TM portion of the
transaction processing monitor manages the branches of a global transaction for APs.
Ultimately, APs call the TM to commit all-or-none.

Chapter 22
X/Open Distributed Transaction Processing (DTP)

22-4

Note:

The naming conventions for the TX interface and associated subprograms
are vendor-specific. For example, the tx_open call might be referred to as
tp_open on your system. In some cases, the calls might be implicit, for
example, at the entry to a transactional RPC. See the documentation
supplied with the transaction processing monitor for details.

Tight and Loose Coupling

Application threads are tightly coupled if the RM considers them as a single entity for
all isolation semantic purposes. Tightly coupled branches must see changes in each
other. Furthermore, an external client must either see all changes of a tightly coupled
set or none of the changes. If application threads are not tightly coupled, then they are
loosely coupled.

Dynamic and Static Registration

Oracle Database supports both dynamic and static registration. In dynamic
registration, the RM runs an application callback before starting any work. In static
registration, you must call xa_start for each RM before starting any work, even if
some RMs are not involved.

Required Public Information
As a resource manager, Oracle Database must publish the information described in
Table 22-1.

Table 22-1 Required XA Features Published by Oracle Database

XA Feature Oracle Database Details

xa_switch_t structures The Oracle Database xa_switch_t structure name is xaosw for
static registration and xaoswd for dynamic registration. These
structures contain entry points and other information for the
resource manager.

xa_switch_t resource
manager

The Oracle Database resource manager name within the
xa_switch_t structure is Oracle_XA.

Close string The close string used by xa_close is ignored and can be null.

Open string For the description of the format of the open string that xa_open
uses, see Defining the xa_open String.

Libraries Libraries needed to link applications using Oracle XA have platform-
specific names. The procedure is similar to linking an ordinary
precompiler or OCI program except that you might have to link any
TPM-specific libraries.

If you are not using Precompilers (such as Pro*C/C++, Pro*COBOL,
and others), then link with $ORACLE_HOME/rdbms/lib/xaonsl.o
or $ORACLE_HOME/rdbms/lib32/xaonsl.o (for 32 bit application
on 64 bit platforms).

Requirements None. The functionality to support XA is part of both Standard
Edition and Enterprise Edition.

Chapter 22
X/Open Distributed Transaction Processing (DTP)

22-5

Oracle XA Library Subprograms
The Oracle XA library subprograms enable a TM to tell Oracle Database how to
process transactions. Generally, the TM must open the resource by using xa_open.
Typically, the opening of the resource results from the AP call to tx_open. Some TMs
might call xa_open implicitly when the application begins.

Similarly, there is a close (using xa_close) that occurs when the application is finished
with the resource. The close might occur when the AP calls tx_close or when the
application terminates.

The TM instructs the RMs to perform several other tasks, which include:

• Starting a transaction and associating it with an ID

• Rolling back a transaction

• Preparing and committing a transaction

Topics:

• Oracle XA Library Subprograms

• Oracle XA Interface Extensions

Oracle XA Library Subprograms
XA Library subprograms are described in Table 22-2.

Table 22-2 XA Library Subprograms

XA Subprogram Description

xa_open Connects to the RM.

xa_close Disconnects from the RM.

xa_start Starts a transaction and associates it with the given transaction ID (XID), or
associates the process with an existing transaction.

xa_end Disassociates the process from the given XID.

xa_rollback Rolls back the transaction associated with the given XID.

xa_prepare Prepares the transaction associated with the given XID. This is the first
phase of the two-phase commit protocol.

xa_commit Commits the transaction associated with the given XID. This is the second
phase of the two-phase commit protocol.

xa_recover Retrieves a list of prepared, heuristically committed, or heuristically rolled
back transactions.

xa_forget Forgets the heuristically completed transaction associated with the given
XID.

In general, the AP need not worry about the subprograms in Table 22-2 except to
understand the role played by the xa_open string.

Chapter 22
Oracle XA Library Subprograms

22-6

Oracle XA Interface Extensions
Oracle Database's XA interface includes some additional functions, which are
described in Table 22-3.

Table 22-3 Oracle XA Interface Extensions

Function Description

OCISvcCtx *xaoSvcCtx(text *dbname) Returns the OCI service handle for a given XA
connection. The dbname parameter must be the same as
the DB parameter passed in the xa_open string. OCI
applications can use this routing instead of the sqlld2
calls to obtain the connection handle. Hence, OCI
applications need not link with the sqllib library. The
service handle can be converted to the Version 7 OCI
logon data area (LDA) by using OCISvcCtxToLda
[Version 8 OCI]. Client applications must remember to
convert the Version 7 LDA to a service handle by using
OCILdaToSvcCtx after completing the OCI calls.

OCIEnv *xaoEnv(text *dbname) Returns the OCI environment handle for a given XA
connection. The dbname parameter must be the same as
the DB parameter passed in the xa_open string.

int xaosterr(OCISvcCtx *SvcCtx,sb4 error) Converts an Oracle Database error code to an XA error
code (applicable only to dynamic registration). The first
parameter is the service handle used to run the work in
the database. The second parameter is the error code
that was returned from Oracle Database. Use this
function to determine if the error returned from an OCI
statement was caused because the xa_start failed.
The function returns XA_OK if the error was not
generated by the XA module or a valid XA error if the
error was generated by the XA module.

Developing and Installing XA Applications
This section explains how to develop and install Oracle XA applications:

• DBA or System Administrator Responsibilities

• Application Developer Responsibilities

• Defining the xa_open String

• Developing and Installing XA Applications

• Managing Transaction Control with Oracle XA

• Migrating Precompiler or OCI Applications to TPM Applications

• Managing Oracle XA Library Thread Safety

• Using the DBMS_XA Package

Chapter 22
Developing and Installing XA Applications

22-7

DBA or System Administrator Responsibilities
The responsibilities of the DBA or system administrator are:

1. Define the open string, with help from the application developer.

2. Ensure that the static data dictionary view DBA_PENDING_TRANSACTIONS exists and
grant the READ or SELECT privilege to the view for all Oracle users specified in the
xa_open string.

Grant FORCE TRANSACTION privilege to the Oracle user who might commit or roll
back pending (in-doubt) transactions that he or she created, using the command
COMMIT FORCE local_tran_id or ROLLBACK FORCE local_tran_id.

Grant FORCE ANY TRANSACTION privilege to the Oracle user who might commit or roll
back XA transactions created by other users. For example, if user A might commit
or roll back a transaction that was created by user B, user A must have FORCE ANY
TRANSACTION privilege.

In Oracle Database version 7 client applications, all Oracle Database accounts
used by Oracle XA library must have the SELECT privilege on the dynamic
performance view V$XATRANS$. This view must have been created during the XA
library installation. If necessary, you can manually create the view by running the
SQL script xaview.sql as Oracle Database user SYS.

3. Using the open string information, install the RM into the TPM configuration.
Follow the TPM vendor instructions.

The DBA or system administrator must be aware that a TPM system starts the
process that connects to Oracle Database. See your TPM documentation to
determine what environment exists for the process and what user ID it must have.
Ensure that correct values are set for $ORACLE_HOME and $ORACLE_SID in this
environment.

4. Grant the user ID write permission to the directory in which the system is to write
the XA trace file.

5. Start the relevant database instances to bring Oracle XA applications on-line.
Perform this task before starting any TPM servers.

See Also:

• Defining the xa_open String for information about how to define open
string, and specify an Oracle System Identifier (SID) or a trace directory
that is different from the defaults

• Your Oracle Database platform-specific documentation for the location of
the catxpend.sql script

Application Developer Responsibilities
The responsibilities of the application developer are:

Chapter 22
Developing and Installing XA Applications

22-8

1. Define the open string with help from the DBA or system administrator, as
explained in Defining the xa_open String..

2. Develop the applications.

Observe special restrictions on transaction-oriented SQL statements for
precompilers.

See Also:

Developing and Installing XA Applications

3. Link the application according to TPM vendor instructions.

Defining the xa_open String
The open string is used by the transaction monitor to open the database. The
maximum number of characters in an open string is 256.

Topics:

• Syntax of the xa_open String

• Required Fields for the xa_open String

• Optional Fields for the xa_open String

Syntax of the xa_open String
You can define an open string with the syntax shown in Example 22-1.

These strings shows sample parameter settings:

ORACLE_XA+DB=MANAGERS+SqlNet=SID1+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=SID3+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog

These topics describe valid parameters for the required_fields and
optional_fields placeholders:

• Required Fields for the xa_open String

• Optional Fields for the xa_open String

Chapter 22
Developing and Installing XA Applications

22-9

Note:

• You can enter the required fields and optional fields in any order when
constructing the open string.

• All field names are case insensitive. Whether their values are case-
sensitive depends on the platform.

• There is no way to use the plus character (+) as part of the actual
information string.

Example 22-1 xa_open String

ORACLE_XA{+required_fields...} [+optional_fields...]

Required Fields for the xa_open String
The required_fields placeholder in Example 22-1 refers to any of the name-value
pairs described in Table 22-4.

Table 22-4 Required Fields of xa_open string

Syntax Element Description

Acc=P// Specifies that no explicit user or password information is
provided and that the operating system authentication form
is used.

Acc=P/user/password Specifies the user name and password for a valid Oracle
Database account. As described in DBA or System
Administrator Responsibilities, ensure that HR has the READ
or SELECT privilege on the DBA_PENDING_TRANSACTIONS
table.

SesTm=session_time_limit Specifies the maximum number of seconds allowed in a
transaction between one service and the next, or between a
service and the commit or rollback of the transaction, before
the system terminates the transaction. For example,
SesTM=15 indicates that the session idle time limit is 15
seconds.

For example, if the TPM uses remote subprogram calls
between the client and the servers, then SesTM applies to
the time between the completion of one RPC and the
initiation of the next RPC, or the tx_commit, or the
tx_rollback.

The value of 0 indicates no limit. Entering a value of 0 is
strongly discouraged. It might tie up resources for a long
time if something goes wrong. Also, if a child process has
SesTM=0, then the SesTM setting is not effective after the
parent process is terminated.

Chapter 22
Developing and Installing XA Applications

22-10

See Also:

Oracle Database Administrator's Guide for more information about
administrator authentication

Optional Fields for the xa_open String
The optional_fields placeholder in Example 22-1 refers to any of the name-value
pairs described in Table 22-5.

Table 22-5 Optional Fields in the xa_open String

Syntax Element Description

NoLocal= true | false Specifies whether local transactions are allowed. The default
value is false. If the application must disallow local
transactions, then set the value to true.

DB=db_name Specifies the name used by Oracle Database precompilers to
identify the database. For example, DB=payroll specifies that
the database name is payroll and that the application server
program uses that name in AT clauses.

Application programs that use only the default database for the
Oracle Database precompiler (that is, they do not use the AT
clause in their SQL statements) must omit the DB=db_name
clause in the open string. Applications that use explicitly named
databases must indicate that database name in their
DB=db_name field. Oracle Database Version 7 OCI programs
must call the sqlld2 function to obtain the correct context for
logon data area (Lda_Def), which is the equivalent of an OCI
service context. Version 8 and higher OCI programs must call
the xaoSvcCtx function to get the OCISvcCtx service context.

The db_name is not the SID and is not used to locate the
database to be opened. Rather, it correlates the database
opened by this open string with the name used in the application
program to run SQL statements. The SID is set from either the
environment variable ORACLE_SID of the TPM application server
or the SID given in the Oracle Net clause in the open string. The
Oracle Net clause is described later in this section.Some TPM
vendors provide a way to name a group of servers that use the
same open string. You might find it convenient to choose the
same name both for that purpose and for db_name.

LogDir=log_dir Specifies the path name on the local system where the Oracle
XA library error and tracing information is to be logged. The
default is $ORACLE_HOME/rdbms/log if ORACLE_HOME is set;
otherwise, it specifies the current directory. For example,
LogDir=/xa_trace indicates that the logging information is
located under the /xa_trace directory. Ensure that the directory
exists and the application server can write to it.

Objects= true | false Specifies whether the application is initialized in object mode.
The default value is false. If the application must use certain API
calls that require object mode, such as OCIRawAssignBytes,
then set the value to true.

Chapter 22
Developing and Installing XA Applications

22-11

Table 22-5 (Cont.) Optional Fields in the xa_open String

Syntax Element Description

MaxCur=maximum_#_of_op
en_cursors

Specifies the number of cursors to be allocated when the
database is opened. It serves the same purpose as the
precompiler option maxopencursors. For example, MaxCur=5
indicates that the precompiler tries to keep five open cursors
cached. This parameter overrides the precompiler option
maxopencursors that you might have specified in your source
code or at compile time.

SqlNet=db_link Specifies the Oracle Net database link to use to log on to the
system. This string must be an entry in tnsnames.ora. For
example, the string SqlNet=inst1_disp might connect to a
shared server at instance 1 if so defined in tnsnames.ora.

You can use the SqlNet parameter to specify the ORACLE_SID
in cases where you cannot control the server environment
variable. You must also use it when the server must access
multiple Oracle Database instances. To use the Oracle Net
string without actually accessing a remote database, use the
Pipe driver. For example, specify SqlNet=localsid1, where
localsid1 is an alias defined in the tnsnames.ora file.

Loose_Coupling=true |
false

Specifies whether locks are shared. Oracle Database transaction
branches within the same global transaction can be coupled
tightly or loosely. If branches are loosely coupled, then they do
not share locks. Set the value to true for loosely coupled
branches. If branches are tightly coupled, then they share locks.
Set the value to false for tightly coupled branches. The default
value is false.

Note: When running Oracle RAC, if transaction branches land
on different Oracle RAC instances, then they are loosely coupled
even if Loose_Coupling=false.

SesWt=session_wait_lim
it

Specifies the number of seconds Oracle Database waits for a
transaction branch that is being used by another session before
XA_RETRY is returned. The default value is 60 seconds.

Threads=true | false Specifies whether the application is multithreaded. The default
value is false. If the application is multithreaded, then the
setting is true.

FAN=true | false Specifies whether the application will use Fast Application
Notification (FAN). The default value is false. If the application
will use FAN, then the setting is true.

See Also:

Oracle Database Administrator's Guide for information about FAN

Chapter 22
Developing and Installing XA Applications

22-12

Using Oracle XA with Precompilers
When used in an Oracle XA application, cursors are valid only for the duration of the
transaction. Explicit cursors must be opened after the transaction begins, and closed
before the commit or rollback.

You have these options when interfacing with precompilers:

• Using Precompilers with the Default Database

• Using Precompilers with a Named Database

The examples in this topic use the precompiler Pro*C/C++.

Using Precompilers with the Default Database
To interface to a precompiler with the default database, ensure that the DB=db_name
field used in the open string is not present. The absence of this field indicates the
default connection. Only one default connection is allowed for each process.

This is an example of an open string identifying a default Pro*C/C++ connection:

ORACLE_XA+SqlNet=maildb+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/logs

The DB=db_name is absent, indicating an empty database ID string.

The syntax of a SQL statement is:

EXEC SQL UPDATE Emp_tab SET Sal = Sal*1.5;

Using Precompilers with a Named Database
To interface to a precompiler with a named database, include the DB=db_name field in
the open string. Any database you refer to must reference the same db_name you
specified in the corresponding open string.

An application might include the default database and one or more named databases.
For example, suppose you want to update an employee's salary in one database, his
department number (DEPTNO) in another, and his manager in a third database.
Configure the open strings in the transaction manager as shown in Example 22-2.

Example 22-2 Sample Open String Configuration

ORACLE_XA+DB=MANAGERS+SqlNet=SID1+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=SID3+ACC=P/username/password
 +SesTM=10+LogDir=/usr/local/xalog

There is no DB=db_name field in the last open string in Example 22-2.

In the application server program, enter declarations such as:

EXEC SQL DECLARE PAYROLL DATABASE;
EXEC SQL DECLARE MANAGERS DATABASE;

Chapter 22
Developing and Installing XA Applications

22-13

Again, the default connection (corresponding to the third open string that does not
contain the DB field) needs no declaration.

When doing the update, enter statements similar to these:

EXEC SQL AT PAYROLL UPDATE Emp_Tab SET Sal=4500 WHERE Empno=7788;
EXEC SQL AT MANAGERS UPDATE Emp_Tab SET Mgr=7566 WHERE Empno=7788;
EXEC SQL UPDATE Emp_Tab SET Deptno=30 WHERE Empno=7788;

There is no AT clause in the last statement because it is referring to the default
database.

In Oracle Database precompilers release 1.5.3 or later, you can use a character host
variable in the AT clause, as this example shows:

EXEC SQL BEGIN DECLARE SECTION;
 DB_NAME1 CHARACTER(10);
 DB_NAME2 CHARACTER(10);
EXEC SQL END DECLARE SECTION;
 ...
SET DB_NAME1 = 'PAYROLL'
SET DB_NAME2 = 'MANAGERS'
 ...
EXEC SQL AT :DB_NAME1 UPDATE...
EXEC SQL AT :DB_NAME2 UPDATE...

Caution:

Do not have XA applications create connections other than those created
through xa_open. Work performed on non-XA connections is outside the
global transaction and must be committed separately.

Using Oracle XA with OCI
Oracle Call Interface applications that use the Oracle XA library must not call
OCISessionBegin to log on to the resource manager. Rather, the logon must be done
through the TPM. The applications can run the function xaoSvcCtx to obtain the
service context structure when they must access the resource manager.

In applications that must pass the environment handle to OCI functions, you can also
call xaoEnv to find that handle.

Because an application server can have multiple concurrent open Oracle Database
resource managers, it must call the function xaoSvcCtx with the correct arguments to
obtain the correct service context.

See Also:

Oracle Call Interface Programmer's Guide

Chapter 22
Developing and Installing XA Applications

22-14

Managing Transaction Control with Oracle XA
When you use the XA library, transactions are not controlled by the SQL statements
that commit or roll back transactions. Rather, they are controlled by an API accepted
by the TM that starts and stops transactions. You call the API that is provided by the
transaction manager, including the TX interface listed in Table 22-6, but not the XA
Library Subprograms listed in Table 22-2.

The TMs typically control the transactions through the XA interface. This interface
includes the functions described in Table 22-2.

Table 22-6 TX Interface Functions

TX Function Description

tx_open Logs into the resource manager(s)

tx_close Logs out of the resource manager(s)

tx_begin Starts a transaction

tx_commit Commits a transaction

tx_rollback Rolls back the transaction

Most TPM applications use a client/server architecture in which an application client
requests services and an application server provides them. The examples shown in
"Examples of Precompiler Applications" use such a client/server model. A service is a
logical unit of work that, for Oracle Database as the resource manager, comprises a
set of SQL statements that perform a related unit of work.

For example, when a service named "credit" receives an account number and the
amount to be credited, it runs SQL statements to update information in certain tables
in the database. Also, a service might request other services. For example, a "transfer
fund" service might request services from a "credit" and "debit" service.

Typically, application clients request services from the application servers to perform
tasks within a transaction. For some TPM systems, however, the application client
itself can offer its own local services. As shown in "Examples of Precompiler
Applications", you can encode transaction control statements within either the client or
the server.

To have multiple processes participating in the same transaction, the TPM provides a
communication API that enables transaction information to flow between the
participating processes. Examples of communications APIs include RPC, pseudo-RPC
functions, and send/receive functions.

Because the leading vendors support different communication functions, these
examples use the communication pseudo-function tpm_service to generalize the
communications API.

X/Open includes several alternative methods for providing communication functions in
their preliminary specification. At least one of these alternatives is supported by each
of the leading TPM vendors.

Chapter 22
Developing and Installing XA Applications

22-15

Examples of Precompiler Applications
These examples illustrate precompiler applications. Assume that the application server
has logged onto the RMs system, in a TPM-specific manner. Example 22-3 shows a
transaction started by an application server.

Example 22-3 Transaction Started by an Application Server

/***** Client: *****/
tpm_service("ServiceName"); /*Request Service*/

/***** Server: *****/
ServiceName()
{
 <get service specific data>
 tx_begin(); /* Begin transaction boundary */
 EXEC SQL UPDATE ...;

 /* This application server temporarily becomes */
 /* a client and requests another service. */

 tpm_service("AnotherService");
 tx_commit(); /* Commit the transaction */
 <return service status back to the client>
}

Example 22-4 shows a transaction started by an application client.

Example 22-4 Transaction Started by an Application Client

/***** Client: *****/
tx_begin(); /* Begin transaction boundary */
tpm_service("Service1");
tpm_service("Service2");
tx_commit(); /* Commit the transaction */

/***** Server: *****/
Service1()
{
 <get service specific data>
 EXEC SQL UPDATE ...;
 <return service status back to the client>
}
Service2()
{
 <get service specific data>
 EXEC SQL UPDATE ...;
 ...
 <return service status back to client>
}

Migrating Precompiler or OCI Applications to TPM Applications
To migrate existing precompiler or OCI applications to a TPM application that uses the
Oracle XA library, you must:

1. Reorganize the application into a framework of "services" so that application
clients request services from application servers. Some TPMs require the

Chapter 22
Developing and Installing XA Applications

22-16

application to use the tx_open and tx_close functions, whereas other TPMs do
the logon and logoff implicitly.

If you do not specify the SqlNet parameter in your open string, then the application
uses the default Oracle Net driver. Thus, ensure that the application server is
brought up with the ORACLE_HOME and ORACLE_SID environment variables properly
defined. This is accomplished in a TPM-specific fashion. See your TPM vendor
documentation for instructions on how to accomplish this.

2. Ensure that the application replaces the regular connect and disconnect
statements. For example, replace the connect statements EXEC SQL CONNECT (for
precompilers) or OCISessionBegin, OCIServerAttach, and OCIEnvCreate (for OCI)
with tx_open. Replace the disconnect statements EXEC SQL COMMIT/ROLLBACK WORK
RELEASE (for precompilers) or OCISessionEnd/OCIServerDetach (for OCI) with
tx_close.

3. Ensure that the application replaces the regular commit or rollback statements for
any global transactions and begins the transaction explicitly.

For example, replace the COMMIT/ROLLBACK statements EXEC SQL COMMIT/ROLLBACK
WORK (for precompilers), or OCITransCommit/OCITransRollback (for OCI) with
tx_commit/tx_rollback and start the transaction by calling tx_begin.

Note:

The preceding is true only for global rather than local transactions.
Commit or roll back local transactions with the Oracle API.

4. Ensure that the application resets the fetch state before ending a transaction. In
general, use release_cursor=no. Use release_cursor=yes only when you are
certain that a statement will run only once.

Table 22-7 lists the TPM functions that replace regular Oracle Database statements
when migrating precompiler or OCI applications to TPM applications.

Table 22-7 TPM Replacement Statements

Regular Oracle Database Statements TPM Functions

CONNECTuser/password tx_open (possibly implicit)

implicit start of transaction tx_begin

SQL Service that runs the SQL

COMMIT tx_commit

ROLLBACK tx_rollback

disconnect tx_close (possibly implicit)

Managing Oracle XA Library Thread Safety
If you use a transaction monitor that supports threads, then the Oracle XA library
enables you to write applications that are thread-safe. Nevertheless, keep certain
issues in mind.

Chapter 22
Developing and Installing XA Applications

22-17

A thread of control (or thread) refers to the set of connections to resource managers.
In an nonthreaded system, each process is considered a thread of control because
each process has its own set of connections to RMs and maintains its own
independent resource manager table. In a threaded system, each thread has an
autonomous set of connections to RMs and each thread maintains a private RM table.
This private table must be allocated for each thread and deallocated when the thread
terminates, even if the termination is abnormal.

Note:

In Oracle Database, each thread that accesses the database must have its
own connection.

Topics:

• Specifying Threading in the Open String

• Restrictions on Threading in Oracle XA

Specifying Threading in the Open String
The xa_open string provides the clause Threads=. You must specify this clause as
true to enable the use of threads by the TM. The default is false. In most cases, the
TM creates the threads; the application does not know when a thread is created.
Therefore, it is advisable to allocate a service context on the stack within each service
that is written for a TM application. Before doing any Oracle Database-related calls in
that service, you must call the xaoSvcCtx function to retrieve the initialized OCI service
context. You can then use this context for OCI calls within the service.

Restrictions on Threading in Oracle XA
These restrictions apply when using threads:

• Any Pro* or OCI code that runs as part of the application server process on the
transaction monitor cannot be threaded unless the transaction monitor is explicitly
told when each application thread is started. This is typically accomplished by
using a special C compiler provided by the TM vendor.

• The Pro* statements EXEC SQL ALLOCATE and EXEC SQL USE are not supported.
Therefore, when threading is enabled, you cannot use embedded SQL statements
across non-XA connections.

• If one thread in a process connects to Oracle Database through XA, then all other
threads in the process that connect to Oracle Database must also connect through
XA. You cannot connect through EXEC SQL CONNECT in one thread and through
xa_open in another thread.

Using the DBMS_XA Package
PL/SQL applications can use the Oracle XA library with the DBMS_XA package.

In Example 22-5, one PL/SQL session starts a transaction but does not commit it, a
second session resumes the transaction, and a third session commits the transaction.
All three sessions are connected to the HR schema.

Chapter 22
Developing and Installing XA Applications

22-18

Example 22-5 Using the DBMS_XA Package

REM Session 1 starts a transaction and does some work.
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_START(DBMS_XA_XID(123), DBMS_XA.TMNOFLAGS);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_START failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_START(new xid=123) OK');
 END IF;

 UPDATE employees SET salary=salary*1.1 WHERE employee_id = 100;
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUSPEND);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_END failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_END(suspend xid=123) OK');
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT

REM Session 2 resumes the transaction and does some work.
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 s NUMBER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_START(DBMS_XA_XID(123), DBMS_XA.TMRESUME);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, xa_start failed');

Chapter 22
Developing and Installing XA Applications

22-19

 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_START(resume xid=123) OK');
 END IF;

 SELECT salary INTO s FROM employees WHERE employee_id = 100;
 DBMS_OUTPUT.PUT_LINE('employee_id = 100, salary = ' || s);
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_END failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_END(detach xid=123) OK');
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_END(DBMS_XA_XID(123), DBMS_XA.TMSUCCESS);
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||
 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT

REM Session 3 commits the transaction.
DECLARE
 rc PLS_INTEGER;
 oer PLS_INTEGER;
 xae EXCEPTION;
BEGIN
 rc := DBMS_XA.XA_COMMIT(DBMS_XA_XID(123), TRUE);

 IF rc!=DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('ORA-' || oer || ' occurred, XA_COMMIT failed');
 RAISE xae;
 ELSE DBMS_OUTPUT.PUT_LINE('XA_COMMIT(commit xid=123) OK');
 END IF;

 EXCEPTION
 WHEN xae THEN
 DBMS_OUTPUT.PUT_LINE
 ('XA error('||rc||') occurred, rolling back the transaction ...');
 rc := DBMS_XA.XA_ROLLBACK(DBMS_XA_XID(123));

 IF rc != DBMS_XA.XA_OK THEN
 oer := DBMS_XA.XA_GETLASTOER();
 DBMS_OUTPUT.PUT_LINE('XA-'||rc||', ORA-' || oer ||

Chapter 22
Developing and Installing XA Applications

22-20

 ' XA_ROLLBACK does not return XA_OK');
 raise_application_error(-20001, 'ORA-'||oer||
 ' error in rolling back a failed transaction');
 END IF;

 raise_application_error(-20002, 'ORA-'||oer||
 ' error in transaction processing, transaction rolled back');
END;
/
SHOW ERRORS
DISCONNECT
QUIT

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_XA package

Troubleshooting XA Applications
Topics:

• Accessing Oracle XA Trace Files

• Managing In-Doubt or Pending Oracle XA Transactions

• Using SYS Account Tables to Monitor Oracle XA Transactions

Accessing Oracle XA Trace Files
The Oracle XA library logs any error and tracing information to its trace file. This
information is useful in supplementing the XA error codes. For example, it can indicate
whether an xa_open failure is caused by an incorrect open string, failure to find the
Oracle Database instance, or a logon authorization failure.

The name of the trace file is xa_db_namedate.trc, where db_name is the database
name specified in the open string field DB=db_name, and date is the date when the
information is logged to the trace file. If you do not specify DB=db_name in the open
string, then it automatically defaults to NULL.

For example, xa_NULL06022005.trc indicates a trace file that was created on June 2,
2005. Its DB field was not specified in the open string when the resource manager was
opened. The filename xa_Finance12152004.trc indicates a trace file was created on
December 15, 2004. Its DB field was specified as "Finance" in the open string when the
resource manager was opened.

Note:

Multiple Oracle XA library resource managers with the same DB field and
LogDir field in their open strings log all trace information that occurs on the
same day to the same trace file.

Chapter 22
Troubleshooting XA Applications

22-21

Suppose that a trace file contains these contents:

1032.12345.2: ORA-01017: invalid username/password; logon denied
1032.12345.2: xaolgn: XAER_INVAL; logon denied

Table 22-8 explains the meaning of each element.

Table 22-8 Sample Trace File Contents

String Description

1032 The time when the information is logged.

12345 The process ID (PID).

2 Resource manager ID

xaolgn Name of module

XAER_INVAL Error returned as specified in the XA standard

ORA-01017 Oracle Database information that was returned

Topics:

• xa_open String DbgFl

• Trace File Locations

xa_open String DbgFl
Normally, the XA trace file is opened only if an error is detected. The xa_open string
DbgFl provides a tracing facility to record additional detail about the XA library. By
default, its value is zero. You can set it to any combination of these values:

• 0x1, which enables you to trace the entry and exit to each subprogram in the XA
interface. This value can be useful in seeing exactly which XA calls the TP Monitor
is making and which transaction identifier it is generating.

• 0x2, which enables you to trace the entry to and exit from other nonpublic XA
library programs. This is generally useful only to Oracle Database developers.

• 0x4, which enables you to trace various other "interesting" calls made by the XA
library, such as specific calls to the OCI. This is generally useful only to Oracle
Database developers.

Note:

The flags are independent bits of an ub4, so to obtain printout from two or
more flags, you must set a combined value of the flags.

Trace File Locations
The XA application determines a location for the trace file according to this algorithm:

1. The LogDir directory specified in the open string.

Chapter 22
Troubleshooting XA Applications

22-22

2. If you do not specify LogDir in the open string, then the Oracle XA application
attempts to create the trace file in this directory (if the Oracle home is accessible):

• %ORACLE_HOME%\rdbms\trace on Windows

• $ORACLE_HOME/rdbms/log on Linux and UNIX

3. If the Oracle XA application cannot determine where the Oracle home is located,
then the application creates the trace file in the current working directory.

Managing In-Doubt or Pending Oracle XA Transactions
In-doubt or pending transactions are transactions that were prepared but not
committed to the database. In general, the TM provided by the TPM system resolves
any failure and recovery of in-doubt or pending transactions. The DBA might have to
override an in-doubt transaction if these situations occur:

• It is locking data that is required by other transactions.

• It is not resolved in a reasonable amount of time.

See the TPM documentation for more information about overriding in-doubt
transactions in such circumstances and about how to decide whether to commit or roll
back the in-doubt transaction.

Using SYS Account Tables to Monitor Oracle XA Transactions
These views under the Oracle Database SYS account contain transactions generated
by regular Oracle Database applications and Oracle XA applications:

• DBA_PENDING_TRANSACTIONS

• V$GLOBAL_TRANSACTION

• DBA_2PC_PENDING

• DBA_2PC_NEIGHBORS

For transactions generated by Oracle XA applications, this column information applies
specifically to the DBA_2PC_NEIGHBORS table:

• The DBID column is always xa_orcl

• The DBUSER_OWNER column is always db_namexa.oracle.com

Remember that the db_name is always specified as DB=db_name in the open string. If
you do not specify this field in the open string, then the value of this column is
NULLxa.oracle.com for transactions generated by Oracle XA applications.

For example, this SQL statement provide more information about in-doubt transactions
generated by Oracle XA applications:

SELECT *
FROM DBA_2PC_PENDING p, DBA_2PC_NEIGHBORS n
WHERE p.LOCAL_TRAN_ID = n.LOCAL_TRAN_ID
AND n.DBID = 'xa_orcl';

Alternatively, if you know the format ID used by the transaction processing monitor,
then you can use DBA_PENDING_TRANSACTIONS or V$GLOBAL_TRANSACTION. Whereas
DBA_PENDING_TRANSACTIONS gives a list of prepared transactions,
V$GLOBAL_TRANSACTION provides a list of all active global transactions.

Chapter 22
Troubleshooting XA Applications

22-23

Oracle XA Issues and Restrictions
Topics:

• Using Database Links in Oracle XA Applications

• Managing Transaction Branches in Oracle XA Applications

• Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)

• SQL-Based Oracle XA Restrictions

• Miscellaneous Restrictions

Using Database Links in Oracle XA Applications
Oracle XA applications can access other Oracle Database instances through database
links with these restrictions:

• They must use the shared server configuration.

The transaction processing monitors (TPMs) use shared servers to open the
connection to an Oracle Database A. Then the operating system network
connection required for the database link is opened by the dispatcher instead of a
dedicated server process. This allows different services or threads to operate on
the transaction.

If this restriction is not satisfied, then when you use database links within an XA
transaction, it creates an operating system network connection between the
dedicated server process and the other Oracle Database B. Because this network
connection cannot be moved from one dedicated server process to another, you
cannot detach from this dedicated server process of database A. Then when you
access the database B through a database link, you receive an ORA-24777 error.

• The other database being accessed must be another Oracle Database.

If these restrictions are satisfied, Oracle Database allows such links and propagates
the transaction protocol (prepare, rollback, and commit) to the other Oracle Database
instances.

If using the shared server configuration is not possible, then access the remote
database through the Pro*C/C++ application by using EXEC SQL AT syntax.

The init.ora parameter OPEN_LINKS_PER_INSTANCE specifies the number of open
database link connections that can be migrated. These dblink connections are used
by XA transactions so that the connections are cached after a transaction is
committed. Another transaction can use the database link connection if the user who
created the connection also created the transaction. This parameter is different from
the init.ora parameter OPEN_LINKS, which specifies the maximum number of
concurrent open connections (including database links) to remote databases in one
session. The OPEN_LINKS parameter does not apply to XA applications.

Managing Transaction Branches in Oracle XA Applications
Oracle Database transaction branches within the same global transaction can be
coupled tightly or loosely. If the transaction branches are tightly coupled, then they
share locks. Consequently, pre-COMMIT updates in one transaction branch are visible in

Chapter 22
Oracle XA Issues and Restrictions

22-24

other branches that belong to the same global transaction. In loosely coupled
transaction branches, the branches do not share locks and do not see updates in other
branches.

In a tightly coupled branch, Oracle Database obtains the DX lock before running any
statement. Because the system does not obtain a lock before running the statement,
loosely coupled transaction branches result in greater concurrency. The disadvantage
is that all transaction branches must go through the two phases of commit, that is, the
system cannot use XA one-phase optimization.

Table 22-9 summarizes the trade-offs between tightly coupled branches and loosely
coupled branches.

Table 22-9 Tightly and Loosely Coupled Transaction Branches

Attribute Tightly Coupled Branches Loosely Coupled Branches

Two Phase Commit Read-only optimization

[prepare for all branches, commit for
last branch]

Two phases

[prepare and commit for all
branches]

Serialization Database call None

Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)
As of Oracle Database 11g Release 1 (11.1), an XA transaction can span Oracle RAC
instances, allowing any application that uses XA to take full advantage of the Oracle
RAC environment, enhancing the availability and scalability of the application.

Note:

External procedure callouts combined with distributed transactions is not
supported.

Topics:

• GLOBAL_TXN_PROCESSES Initialization Parameter

• Managing Transaction Branches on Oracle RAC

• Managing Instance Recovery in Oracle RAC with DTP Services (10.2)

• Global Uniqueness of XIDs in Oracle RAC

• Tight and Loose Coupling

GLOBAL_TXN_PROCESSES Initialization Parameter
The initialization parameter GLOBAL_TXN_PROCESSES specifies the initial number of
GTXn background processes for each Oracle RAC instance. Its default value is 1.

Leave this parameter at its default value clusterwide if distributed transactions might
span multiple Oracle RAC instances. This allows the units of work performed across
these Oracle RAC instances to share resources and act as a single transaction (that

Chapter 22
Oracle XA Issues and Restrictions

22-25

is, the units of work are tightly coupled). It also allows 2PC requests to be sent to any
node in the cluster.

See Also:

Oracle Database Reference for more information about
GLOBAL_TXN_PROCESSES

Managing Transaction Branches on Oracle RAC

Note:

This topic applies if either of the following is true:

• The initialization parameter GLOBAL_TXN_PROCESSES is not at its default
value in the initialization file of every Oracle RAC instance.

• The Oracle XA application resumes or joins previously detached
branches of a transaction.

Oracle Database permits different instances to operate on different transaction
branches in Oracle RAC. For example, Node 1 can operate on branch A while Node 2
operates on branch B. Before Oracle Database 11g Release 1 (11.1), if transaction
branches were on different instances, then they were loosely coupled and did not
share locks. In this case, Oracle Database treated different units of work in different
application threads as separate entities that did not share resources.

A different case is when multiple instances operate on a single transaction branch. For
example, assume that a single transaction lands on Node 1 and Node 2 as follows:

Node 1

1. xa_start

2. SQL operations

3. xa_end (SUSPEND)

Node 2

1. xa_start (RESUME)

2. xa_prepare

3. xa_commit

4. xa_end

In the immediately preceding sequence, Oracle Database returns an error because
Node 2 must not resume a branch that is physically located on a different node (Node
1).

Before Oracle Database 11g Release 1 (11.1), the way to achieve tight coupling in
Oracle RAC was to use Distributed Transaction Processing (DTP) services, that is,

Chapter 22
Oracle XA Issues and Restrictions

22-26

services whose cardinality (one) ensured that all tightly-coupled branches landed on
the same instance—regardless of whether load balancing was enabled. Middle-tier
components addressed Oracle Database through a common logical database service
name that mapped to a single Oracle RAC instance at any point in time. An
intermediate name resolver for the database service hid the physical characteristics of
the database instance. DTP services enabled all participants of a tightly-coupled
global transaction to create branches on one instance.

As of Oracle Database 11g Release 1 (11.1), the DTP service is no longer required to
support XA transactions with tightly coupled branches. By default, tightly coupled
branches that land on different Oracle RAC instances remain tightly coupled; that is,
they share locks and resources across Oracle RAC instances.

For example, when you use a DTP service, this sequence of actions occurs on the
same instance:

1. xa_start

2. SQL operations

3. xa_end (SUSPEND)

4. xa_start (RESUME)

5. SQL operations

6. xa_prepare

7. xa_commit or xa_rollback

Moreover, multiple tightly-coupled branches land on the same instance if each
addresses the Oracle RM with the same DTP service.

To leverage all instances in the cluster, create multiple DTP services, with one or more
on each node that hosts distributed transactions. All branches of a global distributed
transaction exist on the same instance. Thus, you can leverage all instances and
nodes of an Oracle RAC cluster to balance the load of many distributed XA
transactions, thereby maximizing application throughput.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide to
learn how to manage distributed transactions in a Real Application Clusters
configuration

Managing Instance Recovery in Oracle RAC with DTP Services (10.2)
Before Oracle Database 10g Release 2 (10.2), TM was responsible for detecting
failure and triggering failover and failback in Oracle RAC. To ensure that information
about in-doubt transactions was propagated to DBA_2PC_PENDING, TM had to call
xa_recover before resolving the in-doubt transactions. If an instance failed, then the
XA client library could not fail over to another instance until it had run
theSYS.DBMS_XA.DIST_TXN_SYNC procedure to ensure that the undo segments of the
failed instance were recovered. As of Oracle Database 10g Release 2 (10.2), there is
no such requirement to call xa_recover in cases where the TM has enough
information about in-flight transactions.

Chapter 22
Oracle XA Issues and Restrictions

22-27

Note:

As of Oracle Database 9g Release 2 (9.2), xa_recover is required to wait for
distributed data manipulation language (DML) statements to complete on
remote sites.

Using DTP services in Oracle RAC has these benefits:

• Automates instance failure detection.

• Automates instance failover and failback. When an instance fails, the DTP service
hosted on this instance fails over to another instance. The failover forces clients to
reconnect; nevertheless, the logical names for the service remain the same.
Failover is automatic and does not require an administrator intervention. The
administrator can induce failback by a service relocate statement, but all failback-
related recovery is automatically handled within the database server.

• Enables Oracle Database rather than the client to drive instance recovery. The
database does not require middle-tier TM involvement to determine the state of
transactions prepared by other instances.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
to learn how to manage instance recovery

• Oracle Real Application Clusters Administration and Deployment Guide
for information about services and distributed transaction processing in
Oracle RAC

Global Uniqueness of XIDs in Oracle RAC
Before Oracle Database 11g Release 1 (11.1), Oracle RAC database cannot
determine whether a given XID is unique for XA transactions throughout the cluster.

For example, suppose that there is an XID Fmt(x).Tx(1).Br(1) on Oracle RAC
instance 1 and another XID Fmt(x).Tx(1).Br(1) on Oracle RAC instance 2. Each of
these can start a branch and run SQL even though the XID is not unique across
Oracle RAC instances.

As of Oracle Database 11g Release 1 (11.1), Oracle RAC database detects the
duplicate XIDs across Oracle RAC instances and prevents a branch with a duplicate
XID from starting.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
information about services and distributed transaction processing in Oracle
RAC

Chapter 22
Oracle XA Issues and Restrictions

22-28

Tight and Loose Coupling
Oracle Database transaction branches within the same global transaction can be
coupled either tightly or loosely. Ordinarily, coupling type is determined by the value of
the Loose_Coupling field of the xa_open string (see Table 22-5). However, if
transaction branches land on different Oracle RAC instances when running Oracle
RAC, they are loosely coupled even if Loose_Coupling=false.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for information about services and distributed transaction processing in
Oracle RAC

• Managing Transaction Branches in Oracle XA Applications

SQL-Based Oracle XA Restrictions
This section describes restrictions concerning these SQL operations:

• Rollbacks and Commits

• DDL Statements

• Session State

• EXEC SQL

Rollbacks and Commits
Because the transaction manager is responsible for coordinating and monitoring the
progress of the global transaction, the application must not contain any Oracle
Database-specific statement that independently rolls back or commits a global
transaction. However, you can use rollbacks and commits in a local transaction.

Do not use EXEC SQL ROLLBACK WORK for precompiler applications when you are in the
middle of a global transaction. Similarly, an OCI application must not run
OCITransRollback, or the Version 7 equivalent orol. You can roll back a global
transaction by calling tx_rollback.

Similarly, a precompiler application must not have the EXEC SQL COMMIT WORK statement
in the middle of a global transaction. An OCI application must not run OCITransCommit
or the Version 7 equivalent ocom. For example, use tx_commit or tx_rollback to end
a global transaction.

DDL Statements
Because a data definition language (DDL) statement, such as CREATE TABLE, implies
an implicit commit, the Oracle XA application cannot run any DDL statements.

Chapter 22
Oracle XA Issues and Restrictions

22-29

Session State
Oracle Database does not guarantee that session state is valid between TPM
services. For example, if a TPM service updates a session variable (such as a global
package variable), then another TPM service that runs as part of the same global
transaction might not see the change. Use savepoints only within a TPM service. The
application must not refer to a savepoint that was created in another TPM service.
Similarly, an application must not attempt to fetch from a cursor that was executed in
another TPM service.

EXEC SQL
Do not use the EXEC SQL statement to connect or disconnect. That is, do not use EXEC
SQL CONNECT, EXEC SQL COMMIT WORK RELEASE or EXEC SQL ROLLBACK WORK RELEASE.

Miscellaneous Restrictions
• You cannot use both Oracle XA and a gateway in the same session.

• Oracle Database does not support association migration (a means whereby a
transaction manager might resume a suspended branch association in another
branch).

• The optional XA feature asynchronous XA calls is not supported.

• Set the TRANSACTIONS initialization parameter to the expected number of
concurrent global transactions. The initialization parameter
OPEN_LINKS_PER_INSTANCE specifies the number of open database link
connections that can be migrated. These database link connections are used by
XA transactions so that the connections are cached after a transaction is
committed.

See Also:

Using Database Links in Oracle XA Applications

• The maximum number of xa_open calls for each thread is 32.

• When building an XA application based on TP-monitor, ensure that the TP-
monitors libraries (that define the symbols ax_reg and ax_unreg) are placed in the
link line before Oracle Database's client shared library. If your platform does not
support shared libraries or if your linker is not sensitive to ordering of libraries in
the link line, use Oracle Database's nonshared client library. These link restrictions
are applicable only when using XA's dynamic registration (Oracle XA switch
xaoswd).

Chapter 22
Oracle XA Issues and Restrictions

22-30

23
Developing Applications with the Publish-
Subscribe Model

This chapter explains how to develop applications on the publish-subscribe model.

Topics:

• Introduction to the Publish-Subscribe Model

• Publish-Subscribe Architecture

• Publish-Subscribe Concepts

• Examples of a Publish-Subscribe Mechanism

Introduction to the Publish-Subscribe Model
Because the database is the most significant resource of information within the
enterprise, Oracle created a publish-subscribe solution for enterprise information
delivery and messaging to complement this role.

Networking technologies and products enable a high degree of connectivity across a
large number of computers, applications, and users. In these environments, it is
important to provide asynchronous communications for the class of distributed
systems that operate in a loosely-coupled and autonomous fashion, and which require
operational immunity from network failures. This requirement is filled by various
middleware products that are characterized as messaging, message-oriented
middleware (MOM), message queuing, or publish-subscribe.

Applications that communicate through a publish and subscribe paradigm require the
sending applications (publishers) to publish messages without explicitly specifying
recipients or having knowledge of intended recipients. Similarly, receiving applications
(subscribers) must receive only those messages that the subscriber has registered an
interest in.

This decoupling between senders and recipients is usually accomplished by an
intervening entity between the publisher and the subscriber, which serves as a level of
indirection. This intervening entity is a queue that represents a subject or channel.
Figure 23-1 illustrates publish and subscribe functionality.

23-1

Figure 23-1 Oracle Publish-Subscribe Functionality

Subject, Channel Agent

Subscriber

Publisher

Agent

Subscriptions

Rules

Topic subscribe

register

receive notification/
message

A subscriber subscribes to a queue by expressing interest in messages enqueued to
that queue and by using a subject- or content-based rule as a filter. This results in a
set of rule-based subscriptions associated with a given queue.

At runtime, publishers post messages to various queues. The queue (in other words,
the delivery mechanisms of the underlying infrastructure) then delivers messages that
match the various subscriptions to the appropriate subscribers.

Publish-Subscribe Architecture
Oracle Database includes these features to support database-enabled publish-
subscribe messaging:

• Database Events

• Oracle Advanced Queuing

• Client Notification

Database Events
Database events support declarative definitions for publishing database events,
detection, and runtime publication of such events. This feature enables active
publication of information to end-users in an event-driven manner, to complement the
traditional pull-oriented approaches to accessing information.

See Also:

Oracle Database PL/SQL Language Reference

Oracle Advanced Queuing
Oracle Advanced Queuing (AQ) supports a queue-based publish-subscribe paradigm.
Database queues serve as a durable store for messages, along with capabilities to
allow publish and subscribe based on queues. A rules-engine and subscription service
dynamically route messages to recipients based on expressed interest. This allows

Chapter 23
Publish-Subscribe Architecture

23-2

decoupling of addressing between senders and receivers to complement the existing
explicit sender-receiver message addressing.

See Also:

Oracle Database Advanced Queuing User's Guide

Client Notification
Client notifications support asynchronous delivery of messages to interested
subscribers, enabling database clients to register interest in certain queues, and it
enables these clients to receive notifications when publications on such queues occur.
Asynchronous delivery of messages to database clients is in contrast to the traditional
polling techniques used to retrieve information.

See Also:

Oracle Call Interface Programmer's Guide

Publish-Subscribe Concepts
queue

A queue is an entity that supports the notion of named subjects of interest. Queues
can be characterized as persistent or nonpersistent (lightweight).

A persistent queue serves as a durable container for messages. Messages are
delivered in a deferred and reliable mode.

The underlying infrastructure of a nonpersistent, or lightweight, queue pushes the
messages published to connected clients in a lightweight, at-best-once, manner.

agent

Publishers and subscribers are internally represented as agents.

An agent is a persistent logical subscribing entity that expresses interest in a queue
through a subscription. An agent has properties, such as an associated subscription,
an address, and a delivery mode for messages. In this context, an agent is an
electronic proxy for a publisher or subscriber.

client

A client is a transient physical entity. The attributes of a client include the physical
process where the client programs run, the node name, and the client application
logic. Several clients can act on behalf of a single agent. The same client, if
authorized, can act on behalf of multiple agents.

Chapter 23
Publish-Subscribe Concepts

23-3

rule on a queue

A rule on a queue is specified as a conditional expression using a predefined set of
operators on the message format attributes or on the message header attributes. Each
queue has an associated message content format that describes the structure of the
messages represented by that queue. The message format might be unstructured
(RAW) or it might have a well-defined structure (ADT). This allows both subject- or
content-based subscriptions.

subscriber

Subscribers (agents) can specify subscriptions on a queue using a rule. Subscribers
are durable and are stored in a catalog.

database event publication framework

The database represents a significant source for publishing information. An event
framework is proposed to allow declarative definition of database event publication. As
these predefined events occur, the framework detects and publishes such events. This
allows active delivery of information to end-users in an event-driven manner as part of
the publish-subscribe capability.

registration

Registration is the process of associated delivery information by a given client, acting
on behalf of an agent. There is an important distinction between the subscription and
registration related to the agent/client separation.

Subscription indicates an interest in a particular queue by an agent. It does not specify
where and how delivery must occur. Delivery information is a physical property that is
associated with a client, and it is a transient manifestation of the logical agent (the
subscriber). A specific client process acting on behalf of an agent registers delivery
information by associating a host and port, indicating where the delivery is to be done,
and a callback, indicating how there delivery is to be done.

publishing a message

Publishers publish messages to queues by using the appropriate queuing interfaces.
The interfaces might depend on which model the queue is implemented on. For
example, an enqueue call represents the publishing of a message.

rules engine

When a message is posted or published to a given queue, a rules engine extracts the
set of candidate rules from all rules defined on that queue that match the published
message.

subscription services

Corresponding to the list of candidate rules on a given queue, the set of subscribers
that match the candidate rules can be evaluated. In turn, the set of agents
corresponding to this subscription list can be determined and notified.

Chapter 23
Publish-Subscribe Concepts

23-4

posting

The queue notifies all registered clients of the appropriate published messages. This
concept is called posting. When the queue must notify all interested clients, it posts
the message to all registered clients.

receiving a message

A subscriber can receive messages through any of these mechanisms:

• A client process acting on behalf of the subscriber specifies a callback using the
registration mechanism. The posting mechanism then asynchronously invokes the
callback when a message matches the subscriber's subscription. The message
content can be passed to the callback function (nonpersistent queues only).

• A client process acting on behalf of the subscriber specifies a callback using the
registration mechanism. The posting mechanism then asynchronously invokes the
callback function, but without the full message content. This serves as a
notification to the client, which subsequently retrieves the message content in a
pull fashion (persistent queues only).

• A client process acting on behalf of the subscriber simply retrieves messages from
the queue in a periodic or other appropriate manner. While the messages are
deferred, there is no asynchronous delivery to the end-client.

Examples of a Publish-Subscribe Mechanism
This example shows how database events, client notification, and AQ work to
implement publish-subscribe.

• Create under the user schema, pubsub, with all objects necessary to support a
publish-subscribe mechanism. In this particular code, the Agent snoop subscribe to
messages that are published at logon events. To use AQ functionality, user
pubsub needs AQ_ADMINISTRATOR_ROLE privileges and EXECUTE privilege on
DBMS_AQ and DBMS_AQADM.

Rem --
REM create queue table for persistent multiple consumers:
Rem --

Rem Create or replace a queue table
BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'Pubsub.Raw_msg_table',
 Multiple_consumers => TRUE,
 Queue_payload_type => 'RAW',
 Compatible => '8.1');
END;
/
Rem --
Rem Create a persistent queue for publishing messages:
Rem --

Rem Create a queue for logon events
BEGIN
 DBMS_AQADM.CREATE_QUEUE(
 Queue_name => 'Pubsub.Logon',
 Queue_table => 'Pubsub.Raw_msg_table',

Chapter 23
Examples of a Publish-Subscribe Mechanism

23-5

 Comment => 'Q for error triggers');
END;
/

Rem --
Rem Start the queue:
Rem --

BEGIN
 DBMS_AQADM.START_QUEUE('pubsub.logon');
END;
/

Rem --
Rem define new_enqueue for convenience:
Rem --

CREATE OR REPLACE PROCEDURE New_enqueue(
 Queue_name IN VARCHAR2,
 Payload IN RAW ,
 Correlation IN VARCHAR2 := NULL,
 Exception_queue IN VARCHAR2 := NULL)
AS

Enq_ct DBMS_AQ.Enqueue_options_t;
Msg_prop DBMS_AQ.Message_properties_t;
Enq_msgid RAW(16);
Userdata RAW(1000);

BEGIN
 Msg_prop.Exception_queue := Exception_queue;
 Msg_prop.Correlation := Correlation;
 Userdata := Payload;

DBMS_AQ.ENQUEUE(Queue_name, Enq_ct, Msg_prop, Userdata, Enq_msgid);
END;
/

Rem --
Rem add subscriber with rule based on current user name,
Rem using correlation_id
Rem --

DECLARE
Subscriber Sys.Aq$_agent;
BEGIN
 Subscriber := sys.aq$_agent('SNOOP', NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(
 Queue_name => 'Pubsub.logon',
 Subscriber => subscriber,
 Rule => 'CORRID = ''HR'' ');
END;
/

Rem --
Rem create a trigger on logon on database:
Rem --

Rem create trigger on after logon:

Chapter 23
Examples of a Publish-Subscribe Mechanism

23-6

CREATE OR REPLACE TRIGGER pubsub.Systrig2
 AFTER LOGON
 ON DATABASE
 BEGIN
 New_enqueue('Pubsub.Logon', HEXTORAW('9999'), Dbms_standard.login_user);
 END;
/

• After subscriptions are created, the next step is for the client to register for
notification using callback functions. This is done using the Oracle Call Interface
(OCI). This code performs necessary steps for registration. The initial steps of
allocating and initializing session handles are omitted here for sake of clarity:

ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

/* callback function for notification of logon of user 'HR' on database: */

ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
OCISubscription *subscrhp;
dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{
 printf("Notification : User HR Logged on\n");
}

int main()
{
 OCISession *authp = (OCISession *) 0;
 OCISubscription *subscrhpSnoop = (OCISubscription *)0;

 /***
 Initialize OCI Process/Environment
 Initialize Server Contexts
 Connect to Server
 Set Service Context
 **/

 /* Registration Code Begins */

 /* Each call to initSubscriptionHn allocates
 and Initialises a Registration Handle */

 initSubscriptionHn(&subscrhpSnoop, /* subscription handle */
 "ADMIN:PUBSUB.SNOOP", /* subscription name */
 /* <agent_name>:<queue_name> */
 (dvoid*)notifySnoop); /* callback function */

 /***
 The Client Process does not need a live Session for Callbacks
 End Session and Detach from Server
 **/

 OCISessionEnd (svchp, errhp, authp, (ub4) OCI_DEFAULT);

 /* detach from server */
 OCIServerDetach(srvhp, errhp, OCI_DEFAULT);

Chapter 23
Examples of a Publish-Subscribe Mechanism

23-7

 while (1) /* wait for callback */
 sleep(1);

}

void initSubscriptionHn (subscrhp,
subscriptionName,
func)

OCISubscription **subscrhp;
char* subscriptionName;
dvoid * func;
{

 /* allocate subscription handle: */

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)subscrhp,
 (ub4) OCI_HTYPE_SUBSCRIPTION,
 (size_t) 0, (dvoid **) 0);

 /* set subscription name in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) subscriptionName,
 (ub4) strlen((char *)subscriptionName),
 (ub4) OCI_ATTR_SUBSCR_NAME, errhp);

 /* set callback function in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) func, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) 0, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_CTX, errhp);

 /* set namespace in handle: */

 (void) OCIAttrSet((dvoid *) *subscrhp, (ub4) OCI_HTYPE_SUBSCRIPTION,
 (dvoid *) &namespace, (ub4) 0,
 (ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

 checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,

 OCI_DEFAULT));
}

If user HR logs on to the database, the client is notified, and the call back function
notifySnoop is invoked.

Chapter 23
Examples of a Publish-Subscribe Mechanism

23-8

24
Using the Oracle ODBC Driver

This chapter contains the following sections:

Topics:

• About Oracle ODBC Driver

• For All Users

• For Advanced Users

• For Programmers

About Oracle ODBC Driver
What is ODBC?

Open Database Connectivity (ODBC) provides a standard interface that allows one
application to access many different data sources. The application's source code does
not have to be recompiled for each data source. A database driver links the application
to a specific data source. A database driver is a dynamic-link library that an application
can invoke on demand to gain access to a particular data source. Therefore, the
application can access any data source for which a database driver exists.

The ODBC interface defines the following:

• A library of ODBC function calls that allows an application to connect to a data
source, execute structured query language (SQL) statements, and retrieve results.

• SQL syntax based on the SQL-99 specification.

• A standard set of error codes.

• A standard way to connect to and log in to a data source.

• A standard representation for data types.

The following figure shows the components of the ODBC model. The model begins
with an ODBC application making a call to the Driver Manager through the ODBC
application program interface (API). The Driver Manager can be either the Microsoft
Driver Manager or the unixODBC Driver Manager. Still using the ODBC API, the Driver
Manager makes a call to the ODBC Driver. The ODBC Driver accesses the database
over a network communications link using the database API. This figure shows an
ODBC application accessing three separate databases.

24-1

Figure 24-1 Components of the ODBC Model

Related Topic

What is the Oracle ODBC Driver

For All Users
Topics:

• Oracle ODBC Driver

• Configuration Tasks

• Modifying the oraodbc.ini File

• Connecting to a Data Source

• Troubleshooting

Oracle ODBC Driver
Topics:

• What is the Oracle ODBC Driver

• New and Changed Features

• Features Not Supported

Chapter 24
For All Users

24-2

• Files Created by the Installation

• Driver Conformance Levels

• Known Limitations

What Is the Oracle ODBC Driver
The Oracle ODBC Driver enables ODBC applications on Microsoft Windows, as well
as UNIX platforms like Linux, Solaris, and IBM Advanced Interactive eXecutive (AIX)
read and write access to Oracle® databases through the ODBC interface using Oracle
Net Services software.

The Oracle ODBC Driver uses the Oracle Call Interface (OCI) client and server
software to submit requests to and receive responses from the data source. Oracle
Net Services communications protocol is used for communications between the OCI
client and the Oracle server.

The Oracle ODBC Driver translates ODBC SQL syntax into syntax that can be used to
access the data source. When the results are returned from the data source, the
Oracle ODBC Driver translates them back to ODBC SQL syntax.

The following figure shows the Oracle ODBC Driver architecture as described in the
preceding paragraphs.

Chapter 24
For All Users

24-3

Figure 24-2 Oracle ODBC Driver Architecture

* The Oracle ODBC Resource data definition language (DLL) file (sqresxx.dll),
where xx represents the language abbreviation, contains all pertinent language
information; the default resource file used is sqresus.dll.

For more information about the OCI client and server software, refer to the OCI
documentation.

Related Topics

Configuring the Data Source

Connecting to a Data Source

Driver Conformance Levels

Chapter 24
For All Users

24-4

New and Changed Features

Files Created by the Installation

New and Changed Features

Topics:

• New Features for Oracle ODBC Driver Release 19c, Version 19.1.0.0.0

• New Features for Oracle ODBC Driver Release 18c, Version 18.1.0.0.0

• New Features for Oracle ODBC Driver Release 12.2.0.1.0

• New Features for Oracle ODBC Driver Release 12.1.0.2.0

• New Features for Oracle ODBC Driver Release 12.1.0.1.0

• New Features for Oracle ODBC Driver Release 11.2.0.1.0

• New Features for Oracle ODBC Driver Release 11.1.0.1.0

• New Features for Oracle ODBC Driver Release 10.1.0.2.0

• Changes for Oracle ODBC Driver Release 10.1.0.2.0

New Features for Oracle ODBC Driver Release 19c, Version 19.1.0.0.0

There are no new features for Oracle ODBC Driver release 19c, version 19.1.0.0.0
software for the Microsoft Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, Windows 7, Windows 8, Windows 8.1,
Windows 10, Linux X86-64 (32-bit, 64-bit), Sun Solaris SPARC64 (32-bit, 64-bit), IBM
AIX 5L (32-bit, 64-bit), Sun Solaris X64 (32-bit, 64-bit), HPUX IA64 (32-bit, 64-bit),
ZLinux (32-bit, 64-bit) operating systems.

New Features for Oracle ODBC Driver Release 18c, Version 18.1.0.0.0

Features of the Oracle ODBC Driver Release 18.1.0.0.0 software for the Microsoft
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux X86-64
(32/64 bit), Sun Solaris SPARC64 (32,64 bit), IBM AIX 5L (32,64 bit), Sun Solaris X64
(32,64 bit), HPUX IA64 (32,64 bit), ZLinux (32,64 bit) operating systems are described
as follows:

• unixODBC ODBC Driver Manager is upgraded from unixODBC–2.3.2 to
unixODBC–2.3.4.

New Features for Oracle ODBC Driver Release 12.2.0.1.0

Features of the Oracle ODBC Driver Release 12.2.0.1.0 software for the Microsoft
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, Windows 7, Windows 8, Windows 8.1, Windows 10, Linux X86-64
(32/64 bit), Sun Solaris SPARC64 (32,64 bit), IBM AIX 5L (32,64 bit), Sun Solaris X64
(32,64 bit), HPUX IA64 (32,64 bit), ZLinux (32,64 bit) operating systems are described
as follows:

• Support is added for long identifiers.

Oracle ODBC Driver now supports object lengths of 128 bytes. In previous
releases, the object length limit was 30 bytes.

Chapter 24
For All Users

24-5

• Support is added for time stamp with time zone and time stamp with local time
zone.

This features does not require changes to the existing ODBC application where
ODBC TIMESTAMP data type is used. If an existing application uses ODBC
TIMESTAMP data type and the database column is TIMESTAMP, the current behavior
is preserved.

For database column TIMESTAMP WITH TIMEZONE or TIMESTAMP WITH LOCAL
TIMEZONE, the time component in the ODBC TIMESTAMP_STRUCT is in the user’s
session time zone. This behavior is transparent to the user’s application, requiring
no change to the ODBC application.

New Features for Oracle ODBC Driver Release 12.1.0.2.0

Features of the Oracle ODBC Driver Release 12.1.0.2.0 software for the Microsoft
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows 7,
Windows 8, Windows 10, Linux X86-64 (32/64 bit), Sun Solaris SPARC64 (32,64 bit),
IBM AIX 5L (32,64 bit), Sun Solaris X64 (32,64 bit), HPUX IA64 (32,64 bit), ZLinux
(32,64 bit) operating systems are described as follows:

Microsoft Windows 10 platform is added.

New Features for Oracle ODBC Driver Release 12.1.0.1.0

Features of the Oracle ODBC Driver Release 12.1.0.1.0 software for the Microsoft
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows 7,
Windows 8, Linux X86-64 (32/64 bit), Sun Solaris SPARC64 (32,64 bit), IBM AIX 5L
(32,64 bit), Sun Solaris X64 (32,64 bit), HPUX IA64 (32,64 bit), ZLinux (32,64 bit)
operating systems are described as follows:

• Oracle ODBC Driver now supports 32 KB data columns with VARCHAR2, NVARCHAR2
and RAW data.

• New parameters in the odbc.ini file or connection level attributes:

– SQL_TRANSLATE_ERRORS = {T|F} [Default is F (false)]

Any migrated third party ODBC application, which is using the SQL Translation
Framework feature, expects that errors returned by the server to be in their
native database format, then users can register their translation of errors with
the SQL Translation Profile in Oracle Database running in SQL Translation
Framework mode. After error translation is registered, then ODBC application
users can enable this option, SQLTranslateErrors = T, to receive native
errors according to their registration.

See Table 24-4 for more information.

• Oracle ODBC driver now supports executing a stored procedure, which can return
implicit results without using RefCursor. This support eases any third party ODBC
application, which migrated to Oracle and wants to use this same functionality that
was provided by their previous vendors.

• Extended support of SQLColAttribute() field identifiers to support Oracle
Database auto increment feature. You can use this feature by including Oracle
ODBC driver specific header file sqora.h in the application:

– SQL_COLUMN_AUTO_INCREMENT

Starting from Oracle Database 12c Release 1 (12.1.0.1), Oracle supports auto
increment columns so the Oracle ODBC Driver has extended the same

Chapter 24
For All Users

24-6

support through the existing SQLColAttribute() identifier
SQL_COLUMN_AUTO_INCREMENT. This property is read-only and returns SQL_TRUE
if the column is auto increment; otherwise, it returns SQL_FALSE.

– SQL_ORCLATTR_COLUMN_PROP

Starting from Oracle Database 12c Release 1 (12.1.0.1), Oracle ODBC Driver
supports a new driver specific field identifier SQL_ORCLATTR_COLUMN_PROP,
which returns the attributes of the column. This identifier returns SQLULEN
value, which has all the column properties, shown as follows:

+---+
| 32 |...| 10 | 9 | 8 |......| 3 | 2 | 1 |
+---+
 | | |
 | | |-> Column is auto-increment?
 | |-> Auto value is always generated?
 |-> If generated by default when null?

• ODBC APIs supported in Oracle Database 12c Release 1 (12.1.0.1)

– SQLMoreResults()

Implements ODBC support for implicit results.

New Features for Oracle ODBC Driver Release 11.2.0.1.0

Features of the Oracle ODBC Driver Release 11.2.0.1.0 software for the Microsoft
Windows XP, Microsoft Windows 2003 Server, Microsoft Windows Vista, Linux X86-32
(RHEL AS 4,5), Linux X86-64 (RHEL AS 4,5) (32/64 bit), Sun Solaris SPARC64 (9,10)
(32,64 bit), IBM AIX 5L 5.2 (32,64 bit), Linux IA64 (64 bit), Linux on Power (32,64 bit),
Sun Solaris X64 (64 bit), Hewlett Packard Itanium (32,64 bit) operating systems are
described as follows:

• Prefetching of LONG and LONG RAW data

Oracle ODBC driver is enhanced to prefetch LONG or LONG RAW data to improve
performance of ODBC applications. To do this, the maximum size of LONG data
(MaxLargeData) must be set in the registry on Windows (you also must add the
registry key MaxLargeData in the data source name (DSN)), and set this manually
in the odbc.ini file on UNIX platforms. This enhancement improves the
performance of Oracle ODBC driver up to 10 times, depending on the
MaxLargeData size set by the user. The default value of MaxLargeData is 0. The
maximum value for MaxLargeData that you can set is 64 KB (65536 bytes).

If the value of MaxLargeData is greater than 65536, the data fetched is only 65536
bytes. If your database has LONG or LONG RAW data that is greater that 65536 bytes,
then set MaxLargeData to 0 (the default value), which causes single-row fetch and
fetches complete LONG data. If you pass a buffer size less than the MaxLargeData
size in nonpolling mode, a data truncation error occurs if the LONG data size in the
database is greater than the buffer size.

• Option for using OCIDescribeAny() for fetching metadata

When an application makes heavy calls to small packaged procedures that return
REF CURSORS, a performance improvement can be made by forcing the driver to
use OCIDescribeAny(). To enable this option, set the value of UseOCIDescribeAny
in odbc.ini to T (True), default value is F (False), on UNIX platforms, and through
the registry on Windows.

Chapter 24
For All Users

24-7

New Features for Oracle ODBC Driver Release 11.1.0.1.0

Features of the Oracle ODBC Driver Release 11.1.0.1.0 software for the Windows XP,
Linux, Solaris, and IBM AIX operating systems are described as follows:

• Disable Rule Hint (DRH Connect String)

Added the new connection option, Disable RULE Hint that allows user to specify
the option to select whether to use RULE Hint in catalog APIs. The change has
been done to increase the performance of ODBC driver for catalog APIs. The
default value for the option is TRUE, which means that RULE Hint is not used in
catalog APIs by default.

• Bind Number As Float (BNF Connect String)

Added the new connection option, Bind Number As Float. By introducing Column
Binding for NUMBER Column as FLOAT when column contains float data speeds up
the query execution that uses bind variables as FLOAT.

• Statement Caching

Added support for OCI statement caching feature that provides and manages a
cache of statements for each session. By implementing the support for OCI
Statement Caching option, Oracle ODBC Driver performance improves when
users parse the same statement multiple times in the same connection. The
default value for the statement cache flag is FALSE.

New Features for Oracle ODBC Driver Release 10.1.0.2.0

Features of the Oracle ODBC Driver Release 10.1.0.2.0 software for the Windows 98,
Windows 2000, Windows XP, and Windows NT X86 operating systems are described
as follows:

• Bind TIMESTAMP as DATE (BTD Connect String)

Added the new connection option, Bind TIMESTAMP as DATE, that allows you to bind
the ODBC driver SQL_TIMESTAMP data type to the Oracle DATE data type instead of
to the Oracle TIMESTAMP data type (which is the default).

• MONTHNAME (exp) Function

Added support for the MONTHNAME (exp) function which returns the name of the
month represented by the date expression. For example, 'April'.

• DAYNAME (exp) Function

Added support for the DAYNAME (exp) function which returns the name of the day
represented by the date expression. For example, 'Tuesday'.

• Instant Client Configuration

Added support for the Instant Client mode configuration.

Changes for Oracle ODBC Driver Release 10.1.0.2.0

Changed or deprecated features of the Oracle ODBC Driver Release 10.1.0.2.0
include:

• Disable Microsoft Transaction Server

Changed the default setting for the Disable Microsoft Transaction Server (MTS)
from FALSE to TRUE. By default, MTS support is disabled.

Chapter 24
For All Users

24-8

• Floating Point Data Types

Changed the mapping of the Oracle data types, BINARY_FLOAT and
BINARY_DOUBLE, to map to the ODBC data types, SQL_REAL and SQL_DOUBLE,
respectively.

• SQLGetData Extensions (GDE Connect String)

Deprecated the SQLGetData Extensions connection in this release. The
functionality of this feature is always enabled.

• Force Retrieval of Longs (FRL Connect String)

Deprecated the Force Retrieval of Longs connection option in this release. The
functionality of this feature is always enabled.

• Translation Options Configuration Tab

Deprecated the Translation Options tab previously found on the Oracle ODBC
Driver Configuration dialog box in this release.

• Release Notes

Renamed the Release Notes file from ODBCRelnotes.wri to ODBCRelnotesUS.htm.

See Also:

• About Supporting Oracle TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC for
Timestamp examples

• Oracle Database PL/SQL Language Reference and Oracle Database
SQL Language Reference for information about creating 32 KB columns.

• SQL Translation Framework Architecture and Overview, Translation
Framework installation and configuration, and migration examples for
more information on SQL Translation Framework

• Oracle Database Migration Guide for more information about implicit
results support by Oracle Database

• Oracle Call Interface Programmer's Guide for more information about
auto increment

• Table 24-6 and SQLMoreResults Function for more information about
SQLMoreResults() function

Features Not Supported
Features Not Supported by the Oracle ODBC 3.0 Driver.

The Oracle ODBC Driver does not support the following ODBC 3.0 features:

• Interval data types

• SQL_C_UBIGINT and SQL_C_SBIGINT C data type identifiers

• Shared connections

• Shared environments

Chapter 24
For All Users

24-9

• The SQL_LOGIN_TIMEOUT attribute of SQLSetConnectAttr

The Oracle ODBC Driver does not support the following SQL string functions:

• BIT_LENGTH

• CHAR_LENGTH

• CHARACTER_LENGTH

• DIFFERENCE

• OCTET_LENGTH

• POSITION

The Oracle ODBC Driver does not support the following SQL numeric functions

• ACOS

• ASIN

• ATAN

• ATAN2

• COT

• DEGREES

• RADIANS

• RAND

• ROUND

The Oracle ODBC Driver does not support the following SQL time, date, and interval
functions:

• CURRENT_DATE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• EXTRACT

• TIMESTAMPDIFF

Files Created by the Installation
The following table describes the files that are installed by the Oracle ODBC Driver kit.

Table 24-1 Files Installed by the Oracle ODBC Driver Kit

Description File Name for Windows Installation File Name for UNIX Installation

Oracle ODBC
Database
Access DLL

sqora32.dll libsqora.so.12.1

Oracle ODBC
Driver Setup
DLL

sqoras32.dll None

Oracle ODBC
Resource DLL

sqresus.dll None

Chapter 24
For All Users

24-10

Table 24-1 (Cont.) Files Installed by the Oracle ODBC Driver Kit

Description File Name for Windows Installation File Name for UNIX Installation

Oracle ODBC
Resource DLL
for Japanese

sqresja.dll None

Oracle ODBC
Driver
message file

oraodbcus.msb oraodbcus.msb

Oracle ODBC
Driver
message file
for Japanese

oraodbcja.msb oraodbcja.msb

Oracle ODBC
Driver release
notes

Oracle Database ODBC Driver
Release Notes

Oracle Database ODBC Driver
Release Notes

Oracle ODBC
Driver Instant
Client Release
Notes

ODBC_IC_Readme_Win.html ODBC_IC_Readme_Unix.html

Oracle ODBC
Driver help file

sqora.htm sqora.htm

Oracle ODBC
Driver help file
for Japanese

sqora.htm sqora.htm

Oracle ODBC
Driver Instant
Client install
script

odbc_install.exe odbc_update_ini.sh

Oracle ODBC
Driver Instant
Client uninstall
script

odbc_uninstall.exe None

Microsoft Driver Manager and Administrator Files

See the Microsoft ODBC 3.52 Software Development Kit and Programmer's Reference
for the list of files that are installed with Microsoft's ODBC 3.52 Components.

The Microsoft ODBC components are packages in the Microsoft Data Access
Component (MDAC) kit. Oracle ODBC driver on Windows has been tested using
MDAC version 2.8.

unixODBC Driver Manager and Administrator Files

See the unixODBC readme and INSTALL files for the list of files that are installed with
unixODBC Driver Manager.

Chapter 24
For All Users

24-11

See Also:

• MDAC Kit to download MDAC kit

• Unix ODBC Driver Manager to download unixODBC Driver

Driver Conformance Levels
ODBC defines Conformance Levels for drivers in two areas:

• ODBC application programming interface (API)

• ODBC SQL-99 syntax

The Oracle ODBC Driver supports all core API functionality and a limited set of Level 1
and Level 2 functionality.

The Oracle ODBC Driver is broadly compatible with the SQL-99 Core specification
which is a superset of the SQL-92 Entry Level specification. Applications must call
SQLGetInfo with the appropriate information type to retrieve a list of SQL-99 supported
features.

See Also:

API Conformance for more information about core API functionality support

Known Limitations
The following are not supported by Oracle ODBC driver:

• ODBC ASYNC interface

• Control-C to cancel execution in an application

Configuration Tasks
Topics:

• Configuring Oracle Net Services

• Configuring the Data Source

• Oracle ODBC Driver Configuration Dialog Box

Configuring Oracle Net Services
Before Configuring the Data Source, you must configure network database services so
there is an entry for each Transparent Network Substrate (TNS) Service Name. To do
this, use Oracle Net Configuration Assistant (NETCA).

Using NETCA, you can create an entry in the tnsnames.ora file for each TNS Service
Name. NETCA is installed when you install Oracle Net Services.

Chapter 24
For All Users

24-12

Configuring the Data Source

Note:

The following configuration steps are for Windows users. Unix users must
use the odbc_update_ini.sh file to create a DSN.

After installing the Oracle ODBC Driver and Configuring Oracle Net Services, and
before using the Oracle ODBC Driver, you must configure the data source.

Before an application can communicate with the data source, you must provide
configuration information. The configuration information informs the Oracle ODBC
Driver as to which information you want to access.

The data source consists of the data that you want to access, its associated operating
system, database management system, and network platform used to access the
database management system. The data source for requests submitted by the Oracle
ODBC Driver is an Oracle database and supports transports available under Oracle
Net Services.

To configure or add an Oracle data source:

After you have installed the Oracle ODBC Driver, use the ODBC Data Source
Administrator to configure or add an Oracle data source for each of your Oracle
databases. The Oracle ODBC Driver uses the information you enter when you add the
data source to access the data. Follow these steps:

1. From the start menu, select Programs, Administrative Tools, Data Sources
(ODBC). A list of installed drivers is displayed.

2. Click Add in the Create New Data Source window and then select the Oracle
ODBC Driver in the list of installed drivers.

3. Click Finish. The Oracle ODBC Driver Configuration Dialog Box is displayed. You
must enter the DSN and TNS Service Name. You can provide the other
information requested in the dialog box, or you can leave the fields blank and
provide the information when you run the application.

4. After you have entered the data, click OK or click Return.

You can change or delete a data source at any time. The following subtopics explain
how to add, change, or delete a data source.

To modify an Oracle data source:

1. From the start menu, select Programs, Administrative Tools, Data
Sources(ODBC).

2. In the ODBC Data Source Administrator dialog box, select the data source from
the Data Sources list and click Configure. The Oracle ODBC Driver Configuration
dialog box is displayed.

3. In the Oracle ODBC Driver Configuration Dialog Box, modify the option values as
necessary and click OK.

Chapter 24
For All Users

24-13

To delete an Oracle data source:

1. From the start menu, select Programs, Administrative Tools, Data
Sources(ODBC).

2. In the ODBC Data Source Administrator dialog box, select the data source you
want to delete from the Data Sources list.

3. Click Remove, and then click Yes to confirm the deletion.

Oracle ODBC Driver Configuration Dialog Box

Note:

The Oracle ODBC Driver Configuration dialog box is available only for
Microsoft Windows users.

The following screenshot shows an example of the Oracle ODBC Driver Configuration
dialog box.

Figure 24-3 Oracle ODBC Driver Configuration Dialog Box

Chapter 24
For All Users

24-14

The following list is an explanation of the main setup options and fields found on the
Oracle ODBC Driver Configuration dialog box shown in the preceding graphic. The
tabs found on the lower half of this dialog box are described in subsequent topics.

• Data Source Name (DSN) - The name used to identify the data source to ODBC.
For example, "odbc-pc". You must enter a DSN.

• Description - A description or comment about the data in the data source. For
example, "Hire date, salary history, and current review of all employees." The
Description field is optional.

• TNS Service Name - The location of the Oracle database from which the ODBC
driver will retrieve data. This is the same name entered in Configuring Oracle Net
Services using the Oracle Net Configuration Assistant (NETCA). For more
information, see the NETCA documentation and About Using the Oracle ODBC
Driver for the First Time. The TNS Service Name can be selected from a pull-down
list of available TNS names. For example, "ODBC-PC". You must enter a TNS
Service Name.

• User ID - The user name of the account on the server used to access the data.
For example, "scott". The User ID field is optional.

You must enter the DSN and the TNS Service Name. You can provide the other
information requested in the dialog box or you can leave the fields blank and provide
the information when you run the application.

In addition to the main setup options previously described, there is a Test Connection
button available. The Test Connection button verifies whether the ODBC environment
is configured properly by connecting to the database specified by the DSN definition.
When you press the Test Connection button, you are prompted for the username and
password.

For an explanation of the Options tabs found on the lower half of the Oracle ODBC
Driver Configuration dialog box, click any of these links:

Application Options

Oracle Options

Workarounds Options

SQL Server Migration Options

Application Options

The following screenshot shows an example of the Application Options tab found on
the Oracle ODBC Driver Configuration dialog box.

Chapter 24
For All Users

24-15

Figure 24-4 The Application Options Tab of the Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the fields found on the Application Options tab
shown in the preceding graphic:

• Enable Result Sets - Enables the processing of Oracle Result Sets. If Result Sets
are not required for your application, Result Set support can be disabled. There is
a small performance penalty for procedures called from packages not containing
Result Sets. Result Sets are enabled by default.

• Enable Query Timeout - Enables query timeout for SQL queries. By default, the
Oracle ODBC Driver supports the SQL_ATTR_QUERY_TIMEOUT attribute for the
SQLSetStmtAttr function. If this box is not checked, the Oracle ODBC Driver
responds with a "not capable" message. Query Timeout is enabled by default.

• Read-Only Connection - Check this box to force read-only access. The default is
write access.

• Enable Closing Cursors - Enables closing cursors. By default, closing cursors is
disabled (the field is empty), meaning a call to close a cursor does not force the
closing of OCI cursors when this behavior is not desired because it can cause an
unnecessary performance hit. Enable closing cursors when you want to force the
closing of OCI cursors upon a call to close a cursor.

Chapter 24
For All Users

24-16

Note:

There is an impact on performance each time a cursor is closed.

• Enable Thread Safety - Thread safety can be disabled for a data source. If thread
safety is not required, disabling this option eliminates the overhead of using thread
safety. By default, thread safety is enabled.

• Batch Autocommit Mode - By default, commit is executed only if all statements
succeed.

• Numeric Settings - Allows you to choose the numeric settings that determine the
decimal and group separator characters when receiving and returning numeric
data that is bound as strings. This option allows you to choose Oracle NLS
settings (the default setting), Microsoft default regional settings (to provide a way
to mirror the Oracle OLE DB driver's behavior for greater interoperability), or US
numeric settings (which are necessary when using MS Access or DAO (Database
Access Objects) in non-US environments).

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration
setup options

Oracle Options

The following screenshot shows an example of the Oracle Options tab found on the
Oracle ODBC Driver Configuration dialog box.

Chapter 24
For All Users

24-17

Figure 24-5 The Oracle Options Tab of the Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the fields found on the Oracle Options tab shown
in the preceding graphic:

• Fetch Buffer Size - The amount of memory used to determine how many rows of
data the ODBC Driver prefetches at a time from an Oracle database regardless of
the number of rows the application program requests in a single query. However,
the number of prefetched rows depends on the width and number of columns
specified in a single query. Applications that typically fetch fewer than 20 rows of
data at a time improve their response time, particularly over slow network
connections or to heavily loaded servers. Setting Fetch Buffer Size too high can
make response time worse or consume large amounts of memory.

Note:

When LONG and LOB data types are present, the number of rows prefetched
by the ODBC Driver is not determined by the Fetch Buffer Size. The
inclusion of the LONG and LOB data types minimizes the performance
improvement and could result in excessive memory use. The ODBC Driver
disregards Fetch Buffer Size and prefetches a set number of rows only in the
presence of the LONG and LOB data types.

Chapter 24
For All Users

24-18

• Enable LOBs - Enables the writing of Oracle LOBs. If writing Oracle LOBs is not
required for your application, LOB support can be disabled. There is a small
performance penalty for insert and update statements when LOBs are enabled.
LOB writing is enabled by default but disabled for Oracle databases that do not
support the LOB data type.

• Enable Statement Caching - Enables statement caching feature, which increases
the performance of parsing the query, in case the user has to parse the same text
of query and related parameters multiple times. The default is disabled.

• Cache Buffer Size - The statement cache has a maximum size (number of
statements) that can be modified by an attribute on the service context,
OCI_ATTR_STMTCACHESIZE. The default cache buffer size is 20 that are used only if
statement caching option is enabled. Setting cache buffer size to 0 disables
statement caching feature.

• Max Token Size - Sets the token size to the nearest multiple of 1 KB (1024 bytes)
beginning at 4 KB (4096 bytes). The default size is 8 KB (8192 bytes). The
maximum value that can be set is 128 KB (131068 bytes).

• Translate ORA errors - Any migrated third party ODBC application, which is
using the SQL Translation Framework feature, expects that errors returned by the
server to be in their native database format, then users can enable this option to
receive native errors based on the error translation registered with SQL
Translation Profile.

• Convert Empty String - Any third party ODBC application that is migrated to
Oracle Database requires handling empty string data (Oracle Database does not
handle empty string data in table columns), then they can enable this option so
that the application can insert empty string data or retrieve empty string data.

Note:

This feature is not implemented for Oracle Database 12c Release 1
(12.1.0.1).

The Failover area of the Oracle Options tab contains the following fields:

• Enable Failover - Enables Oracle Fail Safe and Oracle Parallel Server failover
retry. This option in an enhancement to the failover capabilities of Oracle Fail Safe
and Oracle Parallel Server. Enable this option to configure additional failover
retries. The default is enabled.

• Retry - The number of times the connection failover is attempted. The default is 10
attempts.

• Delay - The number of seconds to delay between failover attempts. The default is
10 seconds.

Note:

Oracle Fail Safe is deprecated and it can be desupported and unavailable in
a future release. Oracle recommends that you evaluate other single-node
failover options, such as Oracle RAC One Node

Chapter 24
For All Users

24-19

Note:

See the Oracle Fail Safe and Oracle Parallel Server documentation on how
to set up and use both of these products.

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration
setup options

Workarounds Options

The following screenshot shows an example of the Workarounds Options tab found on
the Oracle ODBC Driver Configuration dialog box.

Figure 24-6 The Workarounds Options Tab of the Oracle ODBC Driver Configuration Dialog Box

The following list is an explanation of the fields found on the Workarounds Options tab
shown in the preceding graphic:

Chapter 24
For All Users

24-20

• Bind TIMESTAMP as DATE - Check this box to force the Oracle ODBC Driver to
bind SQL_TIMESTAMP parameters as the Oracle DATE type instead of as the Oracle
TIMESTAMP type (the default).

• Force SQL_WCHAR Support - Check this box to enable SQLDescribeCol,
SQLColumns, and SQLProcedureColumns to unconditionally return the data type
of SQL_WCHAR for SQL_CHAR columns; SQL_WVARCHAR for SQL_VARCHAR columns; and
SQL_WLONGVARCHAR for SQL_LONGVARCHAR columns. This feature enables Unicode
support in applications that rely on the results of these ODBC calls (for example,
ADO). This support is disabled by default.

• Disable Microsoft Transaction Server - Clear the check in this box to enable
Microsoft Transaction Server (MTS) support. By default, MTS support is disabled.

• Set Metadata Id Default to SQL_TRUE - Check this box to change the default
value of the SQL_ATTR_METADATA_ID connection and statement attribute at
connection time to SQL_TRUE. Under normal circumstances,
SQL_ATTR_METADATA_ID would default to SQL_FALSE. ODBC calls made by the
application to specifically change the value of the attribute after connection time
are unaffected by this option and complete their functions as expected. By default,
this option is off.

• Prefetch size for LONG column data - Set this value to prefetch LONG or LONG
RAW data to improve performance of ODBC applications. This enhancement
improves the performance of Oracle ODBC driver up to 10 times, depending on
the prefetch size set by the user. The default value is 0. The maximum value that
you can set is 64 KB (65536 bytes).

If the value of prefetch size is greater than 65536, the data fetched is only 65536
bytes. If you have LONG or LONG RAW data in the database that is greater that
65536 bytes, then set the prefetch size to 0 (the default value), which causes
single-row fetch and fetches complete LONG data. If you pass a buffer size less
than the prefetch size in nonpolling mode, a data truncation error occurs if the
LONG data size in the database is greater than the buffer size.

• Disable SQLDescribeParam - If the SQLDescribeParam function is enabled, the
SQL_VARCHAR data type is returned for all parameters. If the Force SQL_WCHAR
Support function is also enabled, the SQL_WVARCHAR data type is returned for all
parameters. By default, this function is enabled.

• Bind NUMBER as FLOAT - Check this box to force the Oracle ODBC Driver to
bind NUMBER column containing FLOAT data as Float instead of as the Binary Float
(the default).

• Disable RULE Hint - Clear the check in this box to enable RULE Hint specified
with catalogue queries. By default, RULE Hint option is disabled.

• Use OCIDescribeAny - Check this box to gain a performance improvement by
forcing the driver to use OCIDescribeAny()when an application makes heavy calls
to small packaged procedures that return REF CURSORS.

Chapter 24
For All Users

24-21

See Also:

• Implementation of Data Types (Advanced) for more information about
DATE and TIMESTAMP

• Implementation of ODBC API Functions for more information about the
SQL_ATTR_METADATA_ID attribute

• Oracle ODBC Driver Configuration Dialog Box for the main configuration
setup options

SQL Server Migration Options

The following screenshot shows an example of the SQL Server Migration Options tab
found on the Oracle ODBC Driver Configuration dialog box.

Figure 24-7 The SQL Server Migration Options Tab of the Oracle ODBC Driver Configuration
Dialog Box

The fields of the SQL Server Migration Options tab in the preceding graphic are:

• EXEC Syntax Enabled, which enables support for SQL Server EXEC syntax. A
subprogram call specified in an EXEC statement is translated to its equivalent
Oracle subprogram call before being processed by an Oracle database server. By
default this option is disabled.

Chapter 24
For All Users

24-22

• Schema, which is the translated Oracle subprogram assumed to be defined in the
user's default schema. However, if all subprograms from the same SQL Server
database are migrated to the same Oracle schema with their database name as
the schema name, then set this field to database. If all subprograms owned by the
same SQL Server user are defined in the same Oracle schema, then set this field
to owner. This field is empty by default.

See Also:

Oracle ODBC Driver Configuration Dialog Box for the main configuration
setup options

Modifying the oraodbc.ini File
Topics:

• Reducing Lock Timeout

Reducing Lock Timeout
An Oracle server waits indefinitely for lock conflicts between transactions to be
resolved. You can limit the amount of time that an Oracle server waits for locks to be
resolved by setting the Oracle ODBC Driver's LockTimeOut entry in the oraodbc.ini
file. The value you enter for the LockTimeOut parameter is the number of seconds after
which an Oracle server times out if it cannot obtain the requested locks. In the
following example, the Oracle server times out after 60 seconds:

[Oracle ODBC Driver Common]
LockTimeOut=60

Connecting to a Data Source
Topics:

Connecting to an Oracle Data Source

Connecting to an Oracle Data Source
To connect to a Data Source, the Oracle ODBC Driver requires that the OCI client
software be installed on your computer and the corresponding listener be running on
the Oracle server. Oracle Net Services for Windows is a Dynamic Linked Library (DLL)
based application. For more information about Oracle Net Services, see the Oracle
Net Services documentation.

As part of the connection process, an application can prompt you for information. If an
application prompts you for information about an Oracle data source, do the following:

1. In the TNS Service Name box, enter the name of the TNS service.

2. In the User Name box, enter the name you use to access an Oracle Database.

3. In the Password box, enter the password you use to access an Oracle Database.

4. Click OK.

Chapter 24
For All Users

24-23

An application must connect to a data source to access the data in it. Different
applications connect to data sources at different times. For example, an application
might connect to a data source only at your request, or it might connect automatically
when it starts. For information about when an application connects to a data source,
see the documentation for that application.

For additional information, click any of these links:

• For all users:

– Configuring the Data Source

• For programmers:

– SQLDriverConnect Implementation

– Data Source Configuration Options

Troubleshooting
Topics:

• About Using the Oracle ODBC Driver for the First Time

• Expired Password

About Using the Oracle ODBC Driver for the First Time
Describes useful information about using the Oracle ODBC Driver for the first time.

See the Oracle ODBC Driver developer home ODBC Developer Center where you can
find additional information about Oracle ODBC Driver features, resources, such as the
Oracle Instant Client ODBC Installation Guide, the Oracle Instant Client ODBC
download site, the Oracle ODBC discussion forum, the Oracle ODBC Driver
Development Guide and information about some related technologies.

Expired Password
This section contains information about expired passwords.

Expired Password Behavior

If you try to connect to the database and your password has expired, you are
prompted to change your password. Upon making a successful password change, you
are connected to the database. However, if you try to connect to the database with a
SQLDriverConnect call with a SQL_DRIVER_NOPROMPT parameter value, the Oracle
ODBC Driver does not prompt you for the password change. Instead, an error
condition results, producing an error message and number that indicates that the
password has expired.

For Advanced Users
Topics:

• Creating Oracle ODBC Driver TNS Service Names

• SQL Statements

Chapter 24
For Advanced Users

24-24

• Data Types

• Implementation of Data Types (Advanced)

• Limitations on Data Types

• Error Messages

Creating Oracle ODBC Driver TNS Service Names
To create Oracle ODBC Driver TNS Service Names with Oracle Net Services, use the
Oracle Net Configuration Assistant (NETCA), which is installed when you install Oracle
Net Services. NETCA creates Oracle ODBC Driver TNS Service Name entries in the
tnsnames.ora file.

SQL Statements
The Oracle ODBC Driver is broadly compatible with the SQL-99 Core specification
which is a superset of the SQL-92 Entry Level specification. In addition to Oracle's
grammar, the vendor-specific escape sequences outlined in Appendix C of the ODBC
specifications are also supported. In accordance with the design of ODBC, the Oracle
ODBC Driver passes native SQL syntax to the Oracle database.

See Also:

• Data Types for advanced users

• Implementation of the ODBC SQL Syntax

for programmers

Data Types
The Oracle ODBC Driver maps Oracle database data types to ODBC SQL data types.

Note:

All conversions in Appendix D of the Microsoft ODBC 3.52 Software
Development Kit and Programmer's Reference are supported for the ODBC
SQL data types listed from a call to SQLGetInfo with the appropriate
information type.

Chapter 24
For Advanced Users

24-25

See Also:

• For advanced users:

– Implementation of Data Types (Advanced)

– Limitations on Data Types

– SQL Statements

• For programmers:

– Implementation of Data Types (Programming)

Implementation of Data Types (Advanced)
Topics:

• DATE and TIMESTAMP

• Floating Point Data Types

DATE and TIMESTAMP

The semantics of Oracle DATE and TIMESTAMP data types do not correspond exactly
with the ODBC data types with the same names. The Oracle DATE data type contains
both date and time information while the SQL_DATE data type contains only date
information. The Oracle TIMESTAMP data type also contains date and time information,
but it has greater precision in fractional seconds. The ODBC Driver reports the data
types of both Oracle DATE and TIMESTAMP columns as SQL_TIMESTAMP to prevent
information loss. Similarly the ODBC Driver binds SQL_TIMESTAMP parameters as
Oracle TIMESTAMP values.

Floating Point Data Types

When connected to a 10.1 or later Oracle server, the ODBC Driver maps the Oracle
floating point data types BINARY_FLOAT and BINARY_DOUBLE to the ODBC data types
SQL_REAL and SQL_DOUBLE, respectively. In previous releases, SQL_REAL and
SQL_DOUBLE mapped to the generic Oracle numeric data type.

See Also:

DATE and TIMESTAMP Data Types

Limitations on Data Types
The Oracle ODBC Driver and the Oracle database impose limitations on data types.
The following table describes these limitations.

Chapter 24
For Advanced Users

24-26

Table 24-2 Oracle ODBC Driver and Oracle Database Limitations on Data
Types

Limited Data Type Description

Literals Oracle database limits literals in SQL statements to 4,000 bytes.

SQL_LONGVARCHAR and
SQL_WLONGVARCHAR

Oracle's limit for SQL_LONGVARCHAR data where the column type
is LONG is 2,147,483,647 bytes. Oracle's limit for the
SQL_LONGVARCHAR data where the column type is CLOB is 4
gigabytes. The limiting factor is the client workstation memory.

SQL_LONGVARCHAR and
SQL_LONGVARBINARY

Oracle database allows only a single long data column per table.
The long data types are SQL_LONGVARCHAR (LONG) and
SQL_LONGVARBINARY (LONG RAW). Oracle recommends you use
CLOB and BLOB columns instead. There is no restriction on the
number of CLOB and BLOB columns in a table.

Error Messages
When an error occurs, the Oracle ODBC Driver returns the native error number, the
SQLSTATE (an ODBC error code), and an error message. The driver derives this
information both from errors detected by the driver and errors returned by the Oracle
server.

Native Error

For errors that occur in the data source, the Oracle ODBC Driver returns the native
error returned to it by the Oracle server. When the Oracle ODBC Driver or the Driver
Manager detects an error, the Oracle ODBC Driver returns a native error of zero.

SQLSTATE

For errors that occur in the data source, the Oracle ODBC Driver maps the returned
native error to the appropriate SQLSTATE. When the Oracle ODBC Driver detects an
error, it generates the appropriate SQLSTATE. When the Driver Manager detects an
error, it generates the appropriate SQLSTATE.

Error Message

For errors that occur in the data source, the Oracle ODBC Driver returns an error
message based on the message returned by the Oracle server. For errors that occur
in the Oracle ODBC Driver or the Driver Manager, the Oracle ODBC Driver returns an
error message based on the text associated with the SQLSTATE.

Error messages have the following format:

[vendor] [ODBC-component] [data-source] error-message

The prefixes in brackets ([]) identify the source of the error. The following table
shows the values of these prefixes returned by the Oracle ODBC Driver. When the
error occurs in the data source, the [vendor] and [ODBC-component] prefixes identify
the vendor and name of the ODBC component that received the error from the data
source.

Chapter 24
For Advanced Users

24-27

Table 24-3 Error Message Values of Prefixes Returned by the Oracle ODBC
Driver

Error Source Prefix Value

Driver Manager [vendor][ODBC-
component][data-
source]

[Microsoft/unixODBC][ODBC Driver
Manager]N/A

Oracle ODBC Driver [vendor][ODBC-
component][data-
source]

[ORACLE][ODBC Driver]N/A

Oracle server [vendor][ODBC-
component][data-
source]

[ORACLE][ODBC Driver]N/A

For example, if the error message does not contain the [Ora] prefix shown in the
following format, the error is an Oracle ODBC Driver error and should be self-
explanatory.

[Oracle][ODBC]Error message text here

If the error message contains the [Ora] prefix shown in the following format, it is not an
Oracle ODBC Driver error.

Note:

Although the error message contains the [Ora] prefix, the actual error may be
coming from one of several sources.

[Oracle][ODBC][Ora]Error message text here

If the error message text starts with the following prefix, you can obtain more
information about the error in the Oracle server documentation.

ORA-

Oracle Net Services errors and Trace logging are located under the ORACLE_HOME
\NETWORK directory on Windows systems or the ORACLE_HOME/NETWORK directory on
UNIX systems where the OCI software is installed and specifically in the log and trace
directories respectively. Database logging is located under the ORACLE_HOME\RDBMS
directory on Windows systems or the ORACLE_HOME/rdbms directory on UNIX systems
where the Oracle server software is installed.

See the Oracle server documentation for more information about server error
messages.

For Programmers
Topics:

• Format of the Connection String

Chapter 24
For Programmers

24-28

• SQLDriverConnect Implementation

• Reducing Lock Timeout in a Program

• Linking with odbc32.lib (Windows) or libodbc.so (UNIX)

• Information About rowids

• Rowids in a WHERE Clause

• Enabling Result Sets

• Enabling EXEC Syntax

• Enabling Event Notification for Connection Failures in an Oracle RAC Environment

• Using Implicit Results Feature Through ODBC

• About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH
LOCAL TIME ZONE Column Type in ODBC

• About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle
ODBC Driver, and Others)

• Supported Functionality

• Unicode Support

• Performance and Tuning

Format of the Connection String
The following table describes keywords that can be included in the connection string
argument of the SQLDriverConnect function call. Missing keywords are read from the
Administrator entry for the data source. Values specified in the connection string
override those contained in the Administrator entry. See the Microsoft ODBC 3.52
Software Development Kit and Programmer's Reference for more information about
the SQLDriverConnect function.

Table 24-4 Keywords that Can Be Included in the Connection String Argument
of the SQLDriverConnect Function Call

Keyword Meaning Comments

DSN ODBC Data Source Name User-supplied name.

DBQ TNS Service Name User-supplied name.

UID User ID or User Name User-supplied name.

PWD Password User-supplied password. Specify PWD=; for
an empty password.

DBA Database Attribute W=write access.

R=read-only access.

APA Applications Attributes T=Thread Safety Enabled.

F=Thread Safety Disabled.

RST Result Sets T=Result Sets Enabled.

F=Result Sets Disabled.

QTO Query Timeout Option T=Query Timeout Enabled.

F=Query Timeout Disabled.

Chapter 24
For Programmers

24-29

Table 24-4 (Cont.) Keywords that Can Be Included in the Connection String
Argument of the SQLDriverConnect Function Call

Keyword Meaning Comments

CSR Close Cursor T=Close Cursor Enabled.

F=Close Cursor Disabled.

BNF Bind NUMBER as FLOAT T=Bind NUMBER as FLOAT.

F=Bind NUMBER as NUMBER.

DRH Disable Rule Hint T=Disable Rule Hint.

F=Enable Rule Hint.

BAM Batch Autocommit Mode IfAllSuccessful=Commit only if all
statements are successful (old behavior).

UpToFirstFailure=Commit up to first failing
statement (V7 ODBC behavior).

AllSuccessful=Commit all successful
statements (only when connected to an
Oracle database; against other databases,
same behavior as V7).

FBS Fetch Buffer Size User-supplied numeric value (specify a
value in bytes of 0 or greater).

The default is 60,000 bytes.

FEN Failover T=Failover Enabled.

F=Failover Disabled.

FRC Failover Retry Count User-supplied numeric value.

The default is 10.

FDL Failover Delay User-supplied numeric value.

The default is 10.

LOB LOB Writes T=LOBs Enabled.

F=LOBs Disabled.

MTS Microsoft Transaction Server
Support

T=Disabled.

F=Enabled.

FWC Force SQL_WCHAR Support T=Force SQL_WCHAR Enabled.

F=Force SQL_WCHAR Disabled.

EXC EXEC Syntax T=EXEC Syntax Enabled.

F=EXEC Syntax Disabled.

XSM Schema Field Default=Default.

Database=Database Name.

Owner=Owner Name.

MDI Set Metadata ID Default T=SQL_ATTR_METADATA_ID defaults to
SQL_TRUE.

F=SQL_ATTR_METADATA_ID defaults to
SQL_FALSE.

DPM Disable SQLDescribeParam T=SQLDescribeParam Disabled.

F=SQLDescribeParam Enabled.

Chapter 24
For Programmers

24-30

Table 24-4 (Cont.) Keywords that Can Be Included in the Connection String
Argument of the SQLDriverConnect Function Call

Keyword Meaning Comments

BTD Bind TIMESTAMP as DATE T=Bind SQL_TIMESTAMP as Oracle DATE

F=Bind SQL_TIMESTAMP as Oracle
TIMESTAMP

NUM Numeric Settings NLS=Use Oracle NLS numeric settings (to
determine the decimal and group
separator).

MS=Use Microsoft regional settings.

US=Use US settings.

ODA Use OCIDescribeAny() T= Use OCIDescribeAny() call to gain
performance improvement when application
makes heavy calls to small packaged
procedures that return REF CURSORS.

F= Do not use OCIDescribeAny(). By
default, use OCIDescribeAny() value is
FALSE.

STE SQL Translate ORA Errors

Specifies whether the Oracle
ODBC Driver is to translate the
Oracle error codes

T=Translate ORA errors.

F=Do not translate any ORA error. By
default, SQLTranslateErrors is FALSE.

TSZ Token Size User-supplied numeric value.

Sets the token size to the nearest multiple
of 1 KB (1024 bytes) beginning at 4 KB
(4096 bytes). The default size is 8 KB (8192
bytes). The maximum value that can be set
is 128 KB (131068 bytes).

If the following keyword is specified in the connection string, the Oracle ODBC Driver
does not read values defined from the Administrator:

DRIVER={Oracle ODBC Driver}

Examples of valid connection strings are:

1) DSN=Personnel;UID=Kotzwinkle;PWD=;2) DRIVER={Oracle ODBC
Driver};UID=Kotzwinkle;PWD=whatever;DBQ=instl_alias;DBA=W;

See Also:

• Connecting to an Oracle Data Source for all users

• SQLDriverConnect Implementation for programmers

Chapter 24
For Programmers

24-31

SQLDriverConnect Implementation
The following table describes the keywords required by the SQLDriverConnect
connection string.

Table 24-5 Keywords Required by the SQLDriverConnect Connection String

Keyword Description

DSN The name of the data source.

DBQ The TNS Service Name. See Creating Oracle ODBC Driver TNS
Service Names. For more information, see the Oracle Net
Services documentation.

UID The user login ID or user name.

PWD The user-specified password.

Reducing Lock Timeout in a Program
The Oracle server waits indefinitely for lock conflicts between transactions to be
resolved. You can limit the amount of time that the Oracle server waits for locks to be
resolved by calling the ODBC SQLSetConnectAttr function before connecting to the
data source. Specify a nonzero value for the SQL_ATTR_QUERY_TIMEOUT attribute in the
ODBC SQLSetStmtAttr function.

If you specify a lock timeout value using the ODBC SQLSetConnectAttr function, it
overrides any value specified in the oraodbc.ini file.

See Also:

Reducing Lock Timeout for more information on specifying a value in the
oraodbc.ini file

Linking with odbc32.lib (Windows) or libodbc.so (UNIX)
For Windows platforms, when you link your program, you must link it with the import
library odbc32.lib.

For UNIX platforms, an ODBC application must be linked to libodbc.so.

Information About rowids
The ODBC SQLSpecialColumns function returns information about the columns in a
table. When used with the Oracle ODBC Driver, it returns information about the Oracle
rowids associated with an Oracle table.

Chapter 24
For Programmers

24-32

Rowids in a WHERE Clause
Rowids can be used in the WHERE clause of an SQL statement. However, the rowid
value must be presented in a parameter marker.

Enabling Result Sets
Oracle reference cursors (Result Sets) allow an application to retrieve data using
stored procedures and stored functions. The following information identifies how to use
reference cursors to enable Result Sets through ODBC.

• The ODBC syntax for calling stored procedures must be used. Native PL/SQL is
not supported through ODBC. The following identifies how to call the procedure or
function without a package and within a package. The package name in this case
is RSET.

Procedure call:
{CALL Example1(?)}
{CALL RSET.Example1(?)}
Function Call:
{? = CALL Example1(?)}
{? = CALL RSET.Example1(?)}

• The PL/SQL reference cursor parameters are omitted when calling the procedure.
For example, assume procedure Example2 is defined to have four parameters.
Parameters 1 and 3 are reference cursor parameters and parameters 2 and 4 are
character strings. The call is specified as:

{CALL RSET.Example2("Literal 1", "Literal 2")}

The following example application shows how to return a Result Set using the Oracle
ODBC Driver:

/*
 * Sample Application using Oracle reference cursors via ODBC
 *
 * Assumptions:
 *
 * 1) Oracle Sample database is present with data loaded for the EMP table.
 * 2) Two fields are referenced from the EMP table ename and mgr.
 * 3) A data source has been setup to access the sample database.
 *
 * Program Description:
 *
 * Abstract:
 *
 * This program demonstrates how to return result sets using
 * Oracle stored procedures
 *
 * Details:
 *
 * This program:
 * Creates an ODBC connection to the database.
 * Creates a Packaged Procedure containing two result sets.
 * Executes the procedure and retrieves the data from both result sets.
 * Displays the data to the user.
 * Deletes the package then logs the user out of the database.
 *
 *

Chapter 24
For Programmers

24-33

 * The following is the actual PL/SQL this code generates to
 * create the stored procedures.
 *
 * DROP PACKAGE ODBCRefCur;
 *
 * CREATE PACKAGE ODBCRefCur AS
 * TYPE ename_cur IS REF CURSOR;
 * TYPE mgr_cur IS REF CURSOR;
 * PROCEDURE EmpCurs(Ename IN OUT ename_cur, Mgr IN OUT mgr_cur, pjob IN VARCHAR2);
 * END;
 *
 * CREATE or REPLACE PACKAGE BODY ODBCRefCur AS
 * PROCEDURE EmpCurs(Ename IN OUT ename_cur, Mgr IN OUT mgr_cur, pjob IN VARCHAR2)
 * AS
 * BEGIN
 * IF NOT Ename%ISOPEN
 * THEN
 * OPEN Ename for SELECT ename from emp;
 * END IF;
 * IF NOT Mgr%ISOPEN
 * THEN
 * OPEN Mgr for SELECT mgr from emp where job = pjob;
 * END IF;
 * END;
 * END;
 *
 */

/* Include Files */
#ifdef WIN32
 #include <windows.h>
#endif
#include <stdio.h>
#include <sql.h>
#include <sqlext.h>

/* Defines */
#define JOB_LEN 9
#define DATA_LEN 100
#define SQL_STMT_LEN 500

/* Procedures */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module);

/* Main Program */
int main()
{
 SQLHENV hEnv;
 SQLHDBC hDbc;
 SQLHSTMT hStmt;
 SQLRETURN rc;
 char *DefUserName ="scott";
 char *DefPassWord ="tiger";
 SQLCHAR ServerName[DATA_LEN];
 SQLCHAR *pServerName=ServerName;
 SQLCHAR UserName[DATA_LEN];
 SQLCHAR *pUserName=UserName;
 SQLCHAR PassWord[DATA_LEN];
 SQLCHAR *pPassWord=PassWord;
 char Data[DATA_LEN];
 SQLINTEGER DataLen;

Chapter 24
For Programmers

24-34

 char error[DATA_LEN];
 char *charptr;
 SQLCHAR SqlStmt[SQL_STMT_LEN];
 SQLCHAR *pSqlStmt=SqlStmt;
 char *pSalesMan = "SALESMAN";
 SQLINTEGER sqlnts=SQL_NTS;

 /* Allocate the Environment Handle */
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hEnv);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Allocate Environment Handle/n");
 printf("/nHit Return to Exit/n");
 charptr = gets ((char *)error);
 exit(1);
 }

 /* Set the ODBC Version */
 rc = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, (void *)SQL_OV_ODBC3, 0);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Set ODBC Version/n");
 printf("/nHit Return to Exit/n");
 charptr = gets((char *)error);
 exit(1);
 }

 /* Allocate the Connection handle */
 rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, &hDbc);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Allocate Connection Handle/n");
 printf("/nHit Return to Exit/n");
 charptr = gets((char*) error);
 exit(1);
 }

 /* Get User Information */
 lstrcpy((char*) pUserName, DefUserName);
 lstrcpy((char*) pPassWord, DefPassWord);

 /* Data Source name */
 printf("/nEnter the ODBC Data Source Name/n");
 charptr = gets((char*) ServerName);

 /* User Name */
 printf("/nEnter User Name Default [%s]/n", pUserName);
 charptr = gets((char*) UserName);
 if (*charptr == '/0')
 {
 lstrcpy((char*) pUserName, (char*) DefUserName);
 }

 /* Password */
 printf ("/nEnter Password Default [%s]/n", pPassWord);
 charptr = gets((char*) PassWord);
 if (*charptr == '/0')
 {
 lstrcpy((char*) pPassWord, (char*) DefPassWord);
 }

Chapter 24
For Programmers

24-35

 /* Connection to the database */
 rc = SQLConnect(hDbc, pServerName, (SQLSMALLINT) lstrlen((char *)pServerName),
pUserName,
 (SQLSMALLINT) lstrlen((char*)pUserName), pPassWord,
 (SQLSMALLINT) lstrlen((char *)pPassWord));
 if (rc != SQL_SUCCESS)
 {
 DisplayError(SQL_HANDLE_DBC, hDbc, "SQLConnect");
 }

 /* Allocate a Statement */
 rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, &hStmt);
 if (rc != SQL_SUCCESS)
 {
 printf("Cannot Allocate Statement Handle/n");
 printf("/nHit Return to Exit/n");
 charptr = gets((char *)error);
 exit(1);
 }

 /* Drop the Package */
 lstrcpy((char *) pSqlStmt, "DROP PACKAGE ODBCRefCur");
 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));

 /* Create the Package Header */
 lstrcpy((char *) pSqlStmt, "CREATE PACKAGE ODBCRefCur AS/n");
 lstrcat((char *) pSqlStmt, " TYPE ename_cur IS REF CURSOR;/n");
 lstrcat((char *) pSqlStmt, " TYPE mgr_cur IS REF CURSOR;/n");
 lstrcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename_cur,");
 lstrcat((char *) pSqlStmt, " Mgr IN OUT mgr_cur,pjob IN VARCHAR2);/n/n");
 lstrcat((char *) pSqlStmt, "END;/n");

 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));
 if (rc != SQL_SUCCESS)
 {
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");
 }

 /* Create the Package Body */
 lstrcpy((char *) pSqlStmt, "CREATE PACKAGE BODY ODBCRefCur AS/n");
 lstrcat((char *) pSqlStmt, " PROCEDURE EmpCurs (Ename IN OUT ename_cur,");
 lstrcat((char *) pSqlStmt, " Mgr IN OUT mgr_cur, pjob IN VARCHAR2)/n");
 lstrcat((char *) pSqlStmt, " AS/n");
 lstrcat((char *) pSqlStmt, " BEGIN/n");
 lstrcat((char *) pSqlStmt, " IF NOT Ename%ISOPEN/n");
 lstrcat((char *) pSqlStmt, " THEN/n");
 lstrcat((char *) pSqlStmt, " OPEN Ename for SELECT ename from emp;/n");
 lstrcat((char *) pSqlStmt, " END IF;/n/n");
 lstrcat((char *) pSqlStmt, " IF NOT Mgr%ISOPEN/n THEN/n");
 lstrcat((char *) pSqlStmt, " OPEN Mgr for SELECT mgr from emp where job = pjob;/
n");
 lstrcat((char *) pSqlStmt, " END IF;/n");
 lstrcat((char *) pSqlStmt, " END;/n");

 lstrcat((char *) pSqlStmt, "END;/n");

 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");

Chapter 24
For Programmers

24-36

 /* Bind the Parameter */
 rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, JOB_LEN, 0,
pSalesMan, 0, &sqlnts);

 /* Call the Store Procedure which executes the Result Sets */
 lstrcpy((char *) pSqlStmt, "{CALL ODBCRefCur.EmpCurs(?)}");

 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLExecDirect");

 /* Bind the Data */
 rc = SQLBindCol(hStmt, 1, SQL_C_CHAR, Data, sizeof(Data), &DataLen);
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLBindCol");

 /* Get the data for Result Set 1 */
 printf("/nEmployee Names/n/n");

 while(rc == SQL_SUCCESS)
 {
 rc = SQLFetch(hStmt);
 if(rc == SQL_SUCCESS)
 printf("%s/n", Data);
 else
 if(rc != SQL_NO_DATA)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");
 }

 printf("/nFirst Result Set - Hit Return to Continue/n");
 charptr = gets ((char *)error);

 /* Get the Next Result Set */
 rc = SQLMoreResults(hStmt);
 if(rc != SQL_SUCCESS)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");

 /* Get the data for Result Set 2 */
 printf("/nManagers/n/n");
 while (rc == SQL_SUCCESS)
 {
 rc = SQLFetch(hStmt);
 if(rc == SQL_SUCCESS)
 printf("%s/n", Data);
 else
 if (rc != SQL_NO_DATA)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLFetch");
 }

 printf("/nSecond Result Set - Hit Return to Continue/n");
 charptr = gets((char *)error);

 /* Should Be No More Results Sets */
 rc = SQLMoreResults(hStmt);
 if (rc != SQL_NO_DATA)
 DisplayError(SQL_HANDLE_STMT, hStmt, "SQLMoreResults");

 /* Drop the Package */
 lstrcpy((char *)pSqlStmt, "DROP PACKAGE ODBCRefCur");
 rc = SQLExecDirect(hStmt, pSqlStmt, lstrlen((char *)pSqlStmt));

Chapter 24
For Programmers

24-37

 /* Free handles close connections to the database */
 SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
 SQLDisconnect(hDbc);
 SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
 SQLFreeHandle(SQL_HANDLE_ENV, hEnv);

 printf("/nAll Done - Hit Return to Exit/n");
 charptr = gets ((char *)error);
 return(0);
}

/* Display Error Messages */
void DisplayError(SWORD HandleType, SQLHANDLE hHandle, char *Module)
{
 SQLCHAR MessageText[255];
 SQLCHAR SQLState[80];
 SQLRETURN rc=SQL_SUCCESS;
 LONG NativeError;
 SWORD RetLen;
 SQLCHAR error[25];
 char *charptr;

 rc = SQLGetDiagRec(HandleType, hHandle, 1, SQLState, &NativeError, MessageText,
255, &RetLen);
 printf("Failure Calling %s/n", Module);
 if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
 {
 printf("/t/t/t State: %s/n", SQLState);
 printf("/t/t/t Native Error: %d/n", NativeError);
 printf("/t/t/t Error Message: %s/n", MessageText);
 }

 printf("/nHit Return to Exit/n");
 charptr = gets ((char *)error);
 exit(1);
}

Enabling EXEC Syntax
If the syntax of your SQL Server EXEC statement can be readily translated to an
equivalent Oracle procedure call without change, the Oracle ODBC Driver can
translate it if you enable this option.

The complete name of a SQL Server procedure consists of up to four identifiers:

• server name

• database name

• owner name

• procedure name

The format for the name is:

[[[server.][database].][owner_name].]procedure_name

During the migration of the SQL Server database to Oracle, the definition of each SQL
Server procedure (or function) is converted to its equivalent Oracle syntax and is

Chapter 24
For Programmers

24-38

defined in a schema in Oracle. Migrated procedures are often reorganized (and
created in schemas) in one of these ways:

• All procedures are migrated to one schema (the default option).

• All procedures defined in one SQL Server database are migrated to the schema
named with that database name.

• All procedures owned by one user are migrated to the schema named with that
user's name.

To support these three ways of organizing migrated procedures, you can specify one
of these schema name options for translating procedure names. Object names in the
translated Oracle procedure call are not case-sensitive.

Enabling Event Notification for Connection Failures in an Oracle RAC
Environment

If the SQL_ORCLATTR_FAILOVER_CALLBACK and SQL_ORCLATTR_FAILOVER_HANDLE
attributes of the SQLSetConnectAttr function are set when a connection failure occurs
in an Oracle Real Application Clusters (Oracle RAC) Database environment, event
notification is enabled. Both attributes are set using the SQLSetConnectAttr function.
The symbols for the new attributes are defined in the file sqora.h.

The SQL_ORCLATTR_FAILOVER_CALLBACK attribute specifies the address of a routine to
call when a failure event takes place.

The SQL_ORCLATTR_FAILOVER_HANDLE attribute specifies a context handle that is
passed as a parameter in the callback routine. This attribute is necessary for the
ODBC application to determine which connection the failure event is taking place on.

The function prototype for the callback routine is:

void failover_callback(void *handle, SQLINTEGER fo_code)

The 'handle' parameter is the value that was set by the
SQL_ORCLATTR_FAILOVER_HANDLE attribute. Null is returned if the attribute has not been
set.

The fo_code parameter identifies the failure event which is taking place. The failure
events map directly to the events defined in the OCI programming interface. The list of
possible events is:

• ODBC_FO_BEGIN

• ODBC_FO_ERROR

• ODBC_FO_ABORT

• ODBC_FO_REAUTH

• ODBC_FO_END

The following is a sample program which demonstrates using this feature:

/*
 NAME
 ODBCCallbackTest

 DESCRIPTION
 Simple program to demonstrate the connection failover callback feature.

Chapter 24
For Programmers

24-39

 PUBLIC FUNCTION(S)
 main

 PRIVATE FUNCTION(S)

 NOTES

 Command Line: ODBCCallbackTest filename [odbc-driver]

*/

#include <windows.h>
#include <tchar.h>
#include <malloc.h>
#include <stdio.h>
#include <string.h>
#include <sql.h>
#include <sqlext.h>
#include "sqora.h"

/*
** Function Prototypes
*/
void display_errors(SQLSMALLINT HandleType, SQLHANDLE Handle);
void failover_callback(void *Handle, SQLINTEGER fo_code);

/*
** Macros
*/
#define ODBC_STS_CHECK(sts) \
 if (sts != SQL_SUCCESS) \
{ \
 display_errors(SQL_HANDLE_ENV, hEnv); \
 display_errors(SQL_HANDLE_DBC, hDbc); \
 display_errors(SQL_HANDLE_STMT, hStmt); \
 return FALSE; \
}

/*
** ODBC Handles
*/
SQLHENV *hEnv = NULL; // ODBC Environment Handle
SQLHANDLE *hDbc = NULL; // ODBC Connection Handle
SQLHANDLE *hStmt = NULL; // ODBC Statement Handle

/*
** Connection Information
*/
TCHAR *dsn = _T("odbctest");
TCHAR *uid = _T("scott");
TCHAR *pwd = _T("tiger");
TCHAR *szSelect = _T("select * from emp");

/*
** MAIN Routine
*/
main(int argc, char **argv)
{
 SQLRETURN rc;

Chapter 24
For Programmers

24-40

 /*
 ** Allocate handles
 */
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, (SQLHANDLE *)&hEnv);
 ODBC_STS_CHECK(rc)

 rc = SQLSetEnvAttr(hEnv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_ODBC3, 0);
 ODBC_STS_CHECK(rc);

 rc = SQLAllocHandle(SQL_HANDLE_DBC, hEnv, (SQLHANDLE *)&hDbc);
 ODBC_STS_CHECK(rc);

 /*
 ** Connect to the database
 */
 rc = SQLConnect(hDbc, dsn, (SQLSMALLINT)_tcslen(dsn),
 uid, (SQLSMALLINT)_tcslen(uid),
 pwd, (SQLSMALLINT)_tcslen(pwd));
 ODBC_STS_CHECK(rc);

 /*
 ** Set the connection failover attributes
 */
 rc = SQLSetConnectAttr(hDbc, SQL_ORCLATTR_FAILOVER_CALLBACK, &failover_callback,
0);
 ODBC_STS_CHECK(rc);

 rc = SQLSetConnectAttr(hDbc, SQL_ORCLATTR_FAILOVER_HANDLE, hDbc, 0);
 ODBC_STS_CHECK(rc);

 /*
 ** Allocate the statement handle
 */
 rc = SQLAllocHandle(SQL_HANDLE_STMT, hDbc, (SQLHANDLE *)&hStmt);
 ODBC_STS_CHECK(rc);

 /*
 ** Wait for connection failovers
 */
 while (TRUE)
 {
 Sleep(5000);
 rc = SQLExecDirect(hStmt,szSelect, _tcslen(szSelect));
 ODBC_STS_CHECK(rc);

 rc = SQLFreeStmt(hStmt, SQL_CLOSE);
 ODBC_STS_CHECK(rc);
 }

 /*
 ** Free up the handles and close the connection
 */
 rc = SQLFreeHandle(SQL_HANDLE_STMT, hStmt);
 ODBC_STS_CHECK(rc);

 rc = SQLDisconnect(hDbc);
 ODBC_STS_CHECK(rc);

 rc = SQLFreeHandle(SQL_HANDLE_DBC, hDbc);
 ODBC_STS_CHECK(rc);

Chapter 24
For Programmers

24-41

 rc = SQLFreeHandle(SQL_HANDLE_ENV, hEnv);
 ODBC_STS_CHECK(rc);

 return TRUE;
}

/*
** Failover Callback Routine
*/
void failover_callback(void *Handle, SQLINTEGER fo_code)
{
 switch(fo_code)
 {
 case ODBC_FO_BEGIN:
 printf("ODBC_FO_BEGIN recevied\n");
 break;

 case ODBC_FO_ERROR:
 printf("ODBC_FO_ERROR recevied\n");
 break;

 case ODBC_FO_ABORT:
 printf("ODBC_FO_ABORT recevied\n");
 break;

 case ODBC_FO_REAUTH:
 printf("ODBC_FO_REAUTH recevied\n");
 break;

 case ODBC_FO_END:
 printf("ODBC_FO_END recevied\n");
 break;

 default:
 printf("Invalid or unknown ODBC failover code recevied\n");
 break;
 }
 return;

}

/*
** Retrieve the errors associated with the handle passed
** and display them.
*/
void display_errors(SQLSMALLINT HandleType, SQLHANDLE Handle)
{
 SQLTCHAR MessageText[256];
 SQLTCHAR SqlState[5+1];
 SQLSMALLINT i=1;
 SQLINTEGER NativeError;
 SQLSMALLINT TextLength;
 SQLRETURN sts = SQL_SUCCESS;

 if (Handle == NULL) return;

 /* Make sure all SQLState text is null terminated */
 SqlState[5] = '\0';

 /*
 ** Fetch and display all diagnostic records that exist for this handle

Chapter 24
For Programmers

24-42

 */
 while (sts == SQL_SUCCESS)
 {
 NativeError = 0;
 TextLength = 0;

 sts = SQLGetDiagRec(HandleType, Handle, i, SqlState, &NativeError, (SQLTCHAR
*)&MessageText, sizeof(MessageText), &TextLength);
 if (sts == SQL_SUCCESS)
 {
 printf("[%s]%s\n", SqlState, MessageText);
 if (NativeError != 0)
 printf("Native Error Code: %d\n", NativeError);
 i++;
 }
 }
 return;
}

Using Implicit Results Feature Through ODBC
Use this option when you migrate any third party ODBC application to Oracle
Database and you want to use implicit results functionality as supported by the
previous vendor. Oracle ODBC driver supports implicit results with stored procedures
or an anonymous PL/SQL block. For the current release, implicit results are returned
only for SELECT statements.

The following code example shows an example ODBC test case using an anonymous
SQL script for implicit results.

const char *query1="declare \
 c1 sys_refcursor; \
 c2 sys_refcursor; \
 begin \
 open c1 for select empno,ename from emp where rownum<=3; \
 dbms_sql.return_result(c1); \
 open c2 for select empno,ename from emp where rownum<=3; \
 dbms_sql.return_result(c2); end; ";

int main()
{
 ...
 ...
 //Allocate all required handles and establish a connection to the database.

 //Prepare and execute the above anonymous PL/SQL block
 SQLPrepare (hstmt, (SQLCHAR *) query1, SQL_NTS);
 SQLExecute(hstmt);

 //Bind the columns for the results from the first SELECT statement in an anonymous
block.
 SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);
 SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),&enind);

 //Fetch implicit results through the SQLFetch() call.
 while((retCode = SQLFetch(hstmt)) != SQL_NO_DATA)
 {
 //Do whatever you want to do with the data.
 }

Chapter 24
For Programmers

24-43

 retCode = SQLMoreResults(hstmt);

 if(retCode == SQL_SUCCESS)
 {
 printf("SQLMoreResults returned with SQL_SUCCESS\n");

 //Bind the columns for the results from the second SELECT statement in an anonymous
block.
 SQLBindCol (hstmt, 1, SQL_C_ULONG, &eno, 0, &jind);
 SQLBindCol (hstmt, 2, SQL_C_CHAR, empname, sizeof (empname),&enind);

 //Fetch implicit results through the SQLFetch() call.
 while((retCode = SQLFetch(hstmt)) != SQL_NO_DATA)
 {
 //Do whatever you want to do with data.
 }
 }
}

About Supporting Oracle TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC

The time zone is dictated by the system variable ORA_SDTZ. The system variable can
be set to 'OS_TZ', 'DB_TZ', or a valid time zone value.. When ORA_SDTZ is set to
'OS_TZ', the operating system time zone is used. If it is set to 'DB_TZ', the default
time zone set in the database is used.

By default when ORA_SDTZ is not set, the operating system time zone is used.

Note:

When setting the ORA_SDTZ variable in a Microsoft Windows environment -- in
the Registry, among system environment variables, or in a command prompt
window -- do not enclose the time zone value in quotes.

See Also:

Oracle Database Globalization Support Guide for information about Datetime
data types and time zone support

Fetching Data from These Time Zone Columns Using the Variable of ODBC Data
Type TIMESTAMP_STRUCT

The following example demonstrates how to fetch data from TIMESTAMP WITH TIME
ZONE and TIMESTAMP WITH LOCAL TIME ZONE column using the variable of ODBC
datatype TIMESTAMP_STRUCT.

Chapter 24
For Programmers

24-44

Example 24-1 How to Fetch Data from TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE Columns Using the Variable of ODBC
Data Type TIMESTAMP_STRUCT

int main()
{
...
...
 /* TSTAB table's DDL statement:
 * ---------------------------
 * CREATE TABLE TSTAB (COL_TSTZ TIMESTAMP WITH TIME ZONE,
 * COL_TSLTZ TIMESTAMP WITH LOCAL TIME ZONE);
 *
 * Insert statement:
 * ----------------
 * Sample #1:
 * ---------
 * INSERT INTO TSTAB VALUES (TIMESTAMP '2010-03-13 03:47:30.123456
America/Los_Angeles'
 * TIMESTAMP '2010-04-14 04:47:30.123456
America/Los_Angeles');
 *
 * Sample #2:
 * ---------
 * INSERT INTO TSTAB VALUES ('22-NOV-1963 12:30:00.000000 PM',
 * '24-NOV-1974 02:30:00.000000 PM');
 *
 * Refer Oracle Database documentations to know more details about
TIMESTAMP
 * WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE columns.
 */
 SQLCHAR sqlSelQuery[] = "SELECT COL_TSTZ, COL_TSLTZ FROM TSTAB";
 TIMESTAMP_STRUCT timestampcol1;
 TIMESTAMP_STRUCT timestampcol2;
...
...
 /* Allocate the ODBC statement handle. */
 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 /* Execute the statement sqlSelQuery. */
 SQLExecDirect(hstmt, sqlSelQuery, SQL_NTS);

 /* Bind the variable to read the value from the TIMESTAMP WITH TIME ZONE
column. */
 SQLBindCol(hstmt, 1, SQL_C_TIMESTAMP, ×tampcol1,
sizeof(timestampcol1), NULL);

 /* Bind the variable to read the value from the TIMESTAMP WITH LOCAL
TIME ZONE column. */
 SQLBindCol(hstmt, 2, SQL_C_TIMESTAMP, ×tampcol2,
sizeof(timestampcol2), NULL);
...
...
 /* Fetch data from the TSTAB table. */
 retcode = SQLFetch(hstmt);

Chapter 24
For Programmers

24-45

 /* Values of column COL_TSTZ and COL_TSLTZ are available in variables
 * timestampcol1 and timestampcol2 respectively. Refer to Microsoft ODBC
 * documentation for more information about data type TIMESTAMP_STRUCT.
*/

...

...
 /* Close the statement. */
 SQLFreeStmt(hstmt, SQL_CLOSE);
 /* Free the statement handle. */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt); }

Example 24-2 How to Insert Data into TIMESTAMP WITH TIME ZONE and
TIMESTAMP WITH LOCAL TIME ZONE Columns

int main()
{
...
...
 SQLCHAR sqlInsQuery[] = "INSERT INTO TSTAB VALUES (?, ?)";
 TIMESTAMP_STRUCT timestampcol1;
 TIMESTAMP_STRUCT timestampcol2;
...
...
 /* Input the value for column COL_TSTZ in table TSTAB. */
 timestampcol1.year = 2000;
 timestampcol1.month = 1;
 timestampcol1.day = 1;
 timestampcol1.hour = 0;
 timestampcol1.minute = 0;
 timestampcol1.second = 1;
 timestampcol1.fraction = 1000;

 /* Input the value for column COL_TSLTZ in table TSTAB. */
 timestampcol1.year = 2012;
 timestampcol1.month = 2;
 timestampcol1.day = 5;
 timestampcol1.hour = 10;
 timestampcol1.minute = 30;
 timestampcol1.second = 10;
 timestampcol1.fraction = 1000;
...
...
 /* Allocate the ODBC statement handle. */
 SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
...
...
 /* Bind the input value for column COL_TSTZ. */
 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_TIMESTAMP,
SQL_TIMESTAMP,
 0, 0, ×tampcol1, sizeof(timestampcol1), NULL);

 /* Bind the input value for column COL_TSLTZ. */
 SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_TIMESTAMP,

Chapter 24
For Programmers

24-46

SQL_TIMESTAMP,
 0, 0, ×tampcol2, sizeof(timestampcol2), NULL);
...
...
 /* Execute the statement sqlInsQuery. */
 SQLExecDirect(hstmt, sqlInsQuery, SQL_NTS);

 /* Close the statement. */
 SQLFreeStmt(hstmt, SQL_CLOSE);
 /* Free the statement handle. */
 SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
...
...
}

About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI,
SQL*Plus, Oracle ODBC Driver, and Others)

Describes the effect of setting the system variable ORA_SDTZ in Oracle Clients.

The time zone is dictated by the system variable ORA_SDTZ.

The following sections describe the effects of not setting and setting the system
variable ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle ODBC Driver, and others).
The examples in these sections are run in India (GMT+5:30) time zone.

See Also:

Oracle Database Globalization Support Guide for more information about
setting the session time zone

Environment Setup

To set up the environment, create the following table with TSLTZ (TIMESTAMP WITH
LOCAL TIME ZONE) column and insert the value of 01/01/2016 00:00 GMT into the
TSLTZ column as follows:

Example 24-3 How to Set Up the Environment

The following example sets up the environment for the example sections that follow.

SQL> create table timezone_demo(col1 TIMESTAMP WITH LOCAL TIME ZONE);

Table created.

SQL> INSERT INTO TIMEZONE_DEMO VALUES(TIMESTAMP '2016-01-01
00:00:00.000000 ETC/GREENWICH');

1 row created.

Chapter 24
For Programmers

24-47

When ORA_SDTZ Is Not Set in the Environment

When ORA_SDTZ is not set in the environment, then the operating system (OS) time
zone setting is taken as the default time zone for Oracle Clients. For example:

Example 24-4 What Happens When ORA_SDTZ Is Not Set

C:\Users\example.ORADEV>set ORA_SDTZ=

C:\Users\example.ORADEV>sqlplus scott/password@//host01.example.com:1521/
ORCL12C1

SQL*Plus: Release 12.1.0.2.0 Production on Fri Apr 22 12:03:52 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Last Successful login time: Fri Apr 22 2016 11:47:12 +05:30

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit
Production
With the Partitioning, OLAP, Advanced Analytics and Real Application
Testing options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

+05:30

SQL> select * from timezone_demo;

COL1

01-JAN-16 05.30.00.000000 AM

Setting ORA_SDTZ to the Operating System (OS) Timezone in the Environment

When ORA_SDTZ is set to the operating system (OS) Time zone, the Oracle Client’s
user session is set to the OS time zone setting. You can either unset it in the
environment or set ORA_SDTZ to OS_TZ. For example:

Example 24-5 What Happens When ORA_SDTZ Is Set to the Operating System
(OS) Timezone

C:\Users\example.ORADEV>set ORA_SDTZ=OS_TZ

C:\Users\example.ORADEV>sqlplus scott/password@//host01.example.com:1521/
ORCL12C1

SQL*Plus: Release 12.1.0.2.0 Production on Fri Apr 22 11:42:36 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Chapter 24
For Programmers

24-48

Last Successful login time: Fri Apr 22 2016 11:42:09 +05:30

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit
Production
With the Partitioning, OLAP, Advanced Analytics and Real Application
Testing options

SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

+05:30

SQL> select * from timezone_demo;

COL1

01-JAN-16 05.30.00.000000 AM

Setting ORA_SDTZ to a Specific Time Zone in the Environment

The Oracle Client can be set to retrieve the time stamp value adjusted to a specific
time zone (for example, Helsinki Time Zone). To do this, you can set

ORA_SDTZ

to the Oracle Time Zone region name for the corresponding time zone (Oracle Time
Zone Region Name for Helsinki Time Zone is Europe/Helsinki). For example:

Example 24-6 What Happens When ORA_SDTZ Is Set to a Specific Time Zone

C:\Users\example.ORADEV>set ORA_SDTZ=Europe/Helsinki

C:\Users\example.ORADEV>sqlplus scott/password@//host01.example.com:1521/
ORCL12C1

SQL*Plus: Release 12.1.0.2.0 Production on Fri Apr 22 11:47:10 2016

Copyright (c) 1982, 2014, Oracle. All rights reserved.

Last Successful login time: Fri Apr 22 2016 09:16:18 EUROPE/HELSINKI EEST

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit
Production
With the Partitioning, OLAP, Advanced Analytics and Real Application
Testing options
SQL> select sessiontimezone from dual;

SESSIONTIMEZONE

Europe/Helsinki

Chapter 24
For Programmers

24-49

SQL> select * from timezone_demo;

COL1

01-JAN-16 02.00.00.000000 AM

Supported Functionality
Topics:

• API Conformance

• Implementation of ODBC API Functions

• Implementation of the ODBC SQL Syntax

• Implementation of Data Types (Programming)

API Conformance
Oracle ODBC Driver release 9.2.0.0.0 and higher supports all Core, Level 2, and Level
1 functions.

Also, Oracle ODBC Driver release 9.2.0.0.0 and higher supports translation DLLs.

The following topics describe the ODBC API functions implemented by the Oracle
ODBC Driver.

See Also:

• Error Messages for advanced users

• Implementation of ODBC API Functions for programmers

Implementation of ODBC API Functions
The following table describes how the Oracle ODBC Driver implements specific
functions:

Table 24-6 How Oracle ODBC Driver Implements Specific Functions

Function Description

SQLConnect SQLConnect requires only a DBQ, user ID, and password.

SQLDriverConnect SQLDriverConnect uses the DSN, DBQ, UID, and PWD
keywords.

SQLMoreResults Implements ODBC support for implicit results. This is a new API
implemented for Oracle Database 12c Release 1 (12.1.0.1). See
SQLMoreResults Function for more information.

SQLSpecialColumns If SQLSpecialColumns is called with the SQL_BEST_ROWID
attribute, it returns the rowid column.

Chapter 24
For Programmers

24-50

Table 24-6 (Cont.) How Oracle ODBC Driver Implements Specific Functions

Function Description

SQLProcedures
andSQLProcedureColumns

See the information that follows.

All catalog functions If the SQL_ATTR_METADATA_ID statement attribute is SQL_TRUE,
a string argument is treated as an identifier argument, and its
case is not significant. In this case, the underscore ("_") and the
percent sign ("%") are treated as the actual character, not as a
search pattern character. On the other hand, if this attribute is
SQL_FALSE, it is either an ordinary argument or a pattern value
argument and is treated literally, and its case is significant.

Implementation of the ODBC SQL Syntax
If a comparison predicate has a parameter marker as the second expression in the
comparison and the value of that parameter is SQL_NULL_DATA with SQLBindParameter,
the comparison fails. This is consistent with the null predicate syntax in ODBC SQL.

Implementation of Data Types (Programming)
For programmers, the noteworthy part of the implementation of the data types
concerns the CHAR, VARCHAR, and VARCHAR2 data types.

For an fSqlType value of SQL_VARCHAR, SQLGetTypeInfo returns the Oracle database
data type VARCHAR2. For an fSqlType value of SQL_CHAR, SQLGetTypeInfo returns the
Oracle database data type CHAR.

Unicode Support
Topics:

• Unicode Support Within the ODBC Environment

• Unicode Support in ODBC API

• Unicode Functions in the Driver Manager

• SQLGetData Performance

• Unicode Samples

Unicode Support Within the ODBC Environment
The Microsoft or unixODBC ODBC Driver Manager (Driver Manager) makes all ODBC
drivers, regardless if they support Unicode, appear as if they are Unicode compliant.
This allows ODBC applications to be written independent of the Unicode capabilities of
underlying ODBC drivers.

The extent to which the Driver Manager can emulate Unicode support for ANSI ODBC
drivers is limited by the conversions possible between the Unicode data and the local
code page. Data loss is possible when the Driver Manager is converting from Unicode
to the local code page. Full Unicode support is not possible unless the underlying

Chapter 24
For Programmers

24-51

ODBC driver supports Unicode. The Oracle ODBC Driver provides full Unicode
support.

Unicode Support in ODBC API
The ODBC API supports both Unicode and ANSI entry points using the "W" and "A"
suffix convention. An ODBC application developer need not explicitly call entry points
with the suffix. An ODBC application that is compiled with the UNICODE and
_UNICODE preprocessor definitions generates the appropriate calls. For example, a
call to SQLPrepare is compiled as SQLPrepareW.

The C data type, SQL_C_WCHAR, was added to the ODBC interface to allow applications
to specify that an input parameter is encoded as Unicode or to request column data
returned as Unicode. The macro SQL_C_TCHAR is useful for applications that must be
built as both Unicode and ANSI. The SQL_C_TCHAR macro compiles as SQL_C_WCHAR for
Unicode applications and as SQL_C_CHAR for ANSI applications.

The SQL data types, SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR, have been
added to the ODBC interface to represent columns defined in a table as Unicode.
Potentially, these values are returned from calls to SQLDescribeCol, SQLColAttribute,
SQLColumns, and SQLProcedureColumns.

Unicode encoding is supported for SQL column types NCHAR, NVARCHAR2, and NCLOB.
Also, Unicode encoding is also supported for SQL column types CHAR and VARCHAR2 if
the character semantics are specified in the column definition.

The ODBC Driver supports these SQL column types and maps them to ODBC SQL
data types.

The following table lists the supported SQL data types and the equivalent ODBC SQL
data type.

Table 24-7 Supported SQL Data Types and the Equivalent ODBC SQL Data
Type

SQL Data Types ODBC SQL Data Types

CHAR SQL_CHAR or SQL_WCHAR 1

VARCHAR2 SQL_VARCHAR or SQL_WVARCHAR 2

NCHAR SQL_WCHAR

NVARCHAR2 SQL_WVARCHAR

NCLOB SQL_WLONGVARCHAR

1 CHAR maps to SQL_WCHAR if the character semantics were specified in the column definition and if the
character set for the database is Unicode.

2 VARCHAR2 maps to SQL_WVARCHAR if the character semantics were specified in the column definition
and if the character set for the database is Unicode.

Unicode Functions in the Driver Manager
The Driver Manager performs the following functions when it detects that the
underlying ODBC driver does not support Unicode:

• Convert Unicode function calls to ANSI function calls before calling the ANSI
ODBC driver. String arguments are converted from Unicode to the local code

Chapter 24
For Programmers

24-52

page. For example, a call to SQLPrepareW is converted to call SQLPrepare. The text
of the SQL statement parameter is converted from Unicode to the local code page.

• Convert return parameters that are character data from the local code page to
Unicode. For example, returning the column name through SQLColAttribute.

• Convert data from the local code page to Unicode for columns bound as
SQL_C_WCHAR.

• Convert data from Unicode to the local code page for input parameters bound as
SQL_C_WCHAR.

SQLGetData Performance
The SQLGetData function allows an ODBC application to specify the data type to
receive a column as after the data has been fetched. OCI requires the Oracle ODBC
Driver to specify the data type before it is fetched. In this case, the Oracle ODBC
Driver uses the knowledge it has about the data type of the column as defined in the
database to determine how to best default to fetching the column through OCI.

If a column that contains character data is not bound by SQLBindCol, the Oracle ODBC
Driver must determine if it must fetch the column as Unicode or as the local code
page. The driver could default to receiving the column as Unicode, however, this may
result in as many as two unnecessary conversions. For example, if the data were
encoded in the database as ANSI, there would be an ANSI to Unicode conversion to
fetch the data into the Oracle ODBC Driver. If the ODBC application then requested
the data as SQL_C_CHAR, there would be an additional conversion to revert the data
back to its original encoding.

The default encoding of the Oracle client is used when fetching data. However, an
ODBC application can overwrite this default and fetch the data as Unicode by binding
the column or the parameter as the WCHAR data type.

Unicode Samples
As the Oracle ODBC Driver itself was implemented using TCHAR macros, Oracle
recommends that ODBC application programs use TCHAR to take advantage of the
driver.

The following links are program examples showing how to use TCHAR, which
becomes the WCHAR data type in case you compile with UNICODE and _UNICODE.

• Example 1: Connection to Database

• Example 2: Simple Retrieval

• Example 3: Retrieval Using SQLGetData (Binding After Fetch)

• Example 4: Simple Update

• Example 5: Update and Retrieval for Long Data (CLOB)

Example 1: Connection to Database

No difference other than specifying Unicode literals for SQLConnect.

SQLHENV envHnd;
SQLHDBC conHnd;
SQLHSTMT stmtHnd;
RETCODE rc;

Chapter 24
For Programmers

24-53

rc = SQL_SUCCESS;

// ENV is allocated
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &envHnd);
// Connection Handle is allocated
rc = SQLAllocHandle(SQL_HANDLE_DBC, envHnd, &conHnd);
rc = SQLConnect(conHnd, _T("stpc19"), SQL_NTS, _T("scott"), SQL_NTS, _T("tiger"),
 SQL_NTS);
.
.
.
if (conHnd)
{
 SQLDisconnect(conHnd);
 SQLFreeHandle(SQL_HANDLE_DBC, conHnd);
}
if (envHnd)
 SQLFreeHandle(SQL_HANDLE_ENV, envHnd);

Example 2: Simple Retrieval

The following example retrieves the employee names and the job titles from the EMP
table. With the exception that you must specify TCHAR compliant data to every ODBC
function, there is no difference to the ANSI case. If the case is a Unicode application,
you have to specify the length of the buffer to the BYTE length when you call
SQLBindCol (for example, sizeof(ename)).

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLExecDirect
** SQLBindCol
** SQLFetch
**
 */
static SQLTCHAR *sqlStmt = _T("SELECT ename, job FROM emp");
SQLTCHAR ename[50];
SQLTCHAR job[50];
SQLINTEGER enamelen, joblen;

_tprintf(_T("Retrieve ENAME and JOB using SQLBindCol 1.../n[%s]/n"), sqlStmt);

/* Step 1: Prepare and Execute */
rc = SQLExecDirect(stmtHnd, sqlStmt, SQL_NTS); /* select */
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Columns */
rc = SQLBindCol(stmtHnd, 1, SQL_C_TCHAR, ename, sizeof(ename), &enamelen);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindCol(stmtHnd, 2, SQL_C_TCHAR, job, sizeof(job), &joblen);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

do
{
 /* Step 3: Fetch Data */
 rc = SQLFetch(stmtHnd);
 if (rc == SQL_NO_DATA)
 break;

Chapter 24
For Programmers

24-54

 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
 _tprintf(_T("ENAME = %s, JOB = %s/n"), ename, job);
} while (1);
_tprintf(_T("Finished Retrieval/n/n"));

Example 3: Retrieval Using SQLGetData (Binding After Fetch)

This example shows how to use SQLGetData. For those who are not familiar with
ODBC programming, the fetch is allowed before binding the data using SQLGetData,
unlike in an OCI program. There is no difference to the ANSI application in terms of
Unicode-specific issues.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLExecDirect
** SQLFetch
** SQLGetData
 */
static SQLTCHAR *sqlStmt = _T("SELECT ename,job FROM emp"); // same as Case 1.
SQLTCHAR ename[50];
SQLTCHAR job[50];

_tprintf(_T("Retrieve ENAME and JOB using SQLGetData.../n[%s]/n"), sqlStmt);
if (rc != SQL_SUCCESS)
{
 _tprintf(_T("Failed to allocate STMT/n"));
 goto exit2;
}

/* Step 1: Prepare and Execute */
rc = SQLExecDirect(stmtHnd, sqlStmt, SQL_NTS); // select
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

do
{
 /* Step 2: Fetch */
 rc = SQLFetch(stmtHnd);
 if (rc == SQL_NO_DATA)
 break;

 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 /* Step 3: GetData */
 rc = SQLGetData(stmtHnd, 1, SQL_C_TCHAR, (SQLPOINTER)ename, sizeof(ename), NULL);
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 rc = SQLGetData(stmtHnd, 2, SQL_C_TCHAR, (SQLPOINTER)job, sizeof(job), NULL);
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);

 _tprintf(_T("ENAME = %s, JOB = %s/n"), ename, job);

} while (1);

_tprintf(_T("Finished Retrieval/n/n"));

Chapter 24
For Programmers

24-55

Example 4: Simple Update

This example shows how to update data. Likewise, the length of data for
SQLBindParameter has to be specified with the BYTE length, even in the case of a
Unicode application.

/
*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLPrepare
** SQLBindParameter
** SQLExecute
*/

static SQLTCHAR *sqlStmt = _T("INSERT INTO emp(empno,ename,job) VALUES(?,?,?)");
static SQLTCHAR *empno = _T("9876"); // Emp No
static SQLTCHAR *ename = _T("ORACLE"); // Name
static SQLTCHAR *job = _T("PRESIDENT"); // Job

_tprintf(_T("Insert User ORACLE using SQLBindParameter.../n[%s]/n"), sqlStmt);

/* Step 1: Prepare */

rc = SQLPrepare(stmtHnd, sqlStmt, SQL_NTS);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Parameter */

rc = SQLBindParameter(stmtHnd, 1, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_DECIMAL,4, 0,
(SQLPOINTER)empno, 0, NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter(stmtHnd, 2, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_CHAR,
lstrlen(ename)*sizeof(TCHAR), 0, (SQLPOINTER)ename, lstrlen(ename)*sizeof(TCHAR),
NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLBindParameter(stmtHnd, 3, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_CHAR,
lstrlen(job)*sizeof(TCHAR), 0, (SQLPOINTER)job, lstrlen(job)*sizeof(TCHAR), NULL);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 3: Execute */

rc = SQLExecute(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

Example 5: Update and Retrieval for Long Data (CLOB)

This example may be the most complicated case to update and retrieve data for long
data, like CLOB, in Oracle. Because the length of data must be the BYTE length,
lstrlen(TCHAR data)*sizeof(TCHAR) is needed to derive the BYTE length.

/*
** Execute SQL, bind columns, and Fetch.
** Procedure:
**
** SQLPrepare
** SQLBindParameter

Chapter 24
For Programmers

24-56

** SQLExecute
** SQLParamData
** SQLPutData
**
** SQLExecDirect
** SQLFetch
** SQLGetData
 */

static SQLTCHAR *sqlStmt1 = _T("INSERT INTO clobtbl(clob1) VALUES(?)");
static SQLTCHAR *sqlStmt2 = _T("SELECT clob1 FROM clobtbl");
SQLTCHAR clobdata[1001];
SQLTCHAR resultdata[1001];
SQLINTEGER ind = SQL_DATA_AT_EXEC;
SQLTCHAR *bufp;
SQLTCHAR ch;
int clobdatalen, chunksize, dtsize, retchklen, i, len;

_tprintf(_T("Insert CLOB1 using SQLPutData.../n[%s]/n"), sqlStmt1);

/* Set CLOB Data *

for (i=0, ch=_T('A'); i< sizeof(clobdata)/sizeof(SQLTCHAR); ++i, ++ch)
{
 if (ch > _T('Z'))
 ch = _T('A');
 clobdata[i] = ch;
}

clobdata[sizeof(clobdata)/sizeof(SQLTCHAR)-1] = _T('/0');
clobdatalen = lstrlen(clobdata);
chunksize = clobdatalen / 7;

/* Step 1: Prepare */
rc = SQLPrepare(stmtHnd, sqlStmt1, SQL_NTS);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Bind Parameter with SQL_DATA_AT_EXEC */
rc = SQLBindParameter(stmtHnd, 1, SQL_PARAM_INPUT, SQL_C_TCHAR, SQL_LONGVARCHAR,
clobdatalen*sizeof(TCHAR), 0, (SQLPOINTER)clobdata, clobdatalen*sizeof(TCHAR), &ind);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 3: Execute */
rc = SQLExecute(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);
sdhamoth: Continuation:

/* Step 4: ParamData (initiation) */
rc = SQLParamData(stmtHnd, (SQLPOINTER*)&bufp);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

for (dtsize=0, bufp = clobdata; dtsize < clobdatalen; dtsize += chunksize, bufp +=
chunksize)
{
 if (dtsize+chunksize<clobdatalen)
 len = chunksize;
 else
 len = clobdatalen-dtsize;

 /* Step 5: PutData */

Chapter 24
For Programmers

24-57

 rc = SQLPutData(stmtHnd, (SQLPOINTER)bufp, len*sizeof(TCHAR));
 checkSQLErr(envHnd, conHnd, stmtHnd, rc);
}

/* Step 6: ParamData (termination) */
rc = SQLParamData(stmtHnd, (SQLPOINTER*)&bufp);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

rc = SQLFreeStmt(stmtHnd, SQL_CLOSE);
_tprintf(_T("Finished Update/n/n"));

rc = SQLAllocStmt(conHnd, &stmtHnd);
if (rc != SQL_SUCCESS)
{
 _tprintf(_T("Failed to allocate STMT/n"));
 goto exit2;
}

/* Clear Result Data */
memset(resultdata, 0, sizeof(resultdata));
chunksize = clobdatalen / 15; /* 15 times to put */

/* Step 1: Prepare */
rc = SQLExecDirect(stmtHnd, sqlStmt2, SQL_NTS); /* select */
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

/* Step 2: Fetch */
rc = SQLFetch(stmtHnd);
checkSQLErr(envHnd, conHnd, stmtHnd, rc);

for(dtsize=0, bufp = resultdata; dtsize < sizeof(resultdata)/sizeof(TCHAR) && rc !=
SQL_NO_DATA; dtsize += chunksize-1, bufp += chunksize-1)
{
 if (dtsize+chunksize<sizeof(resultdata)/sizeof(TCHAR))
 len = chunksize;
 else
 len = sizeof(resultdata)/sizeof(TCHAR)-dtsize;

 /* Step 3: GetData */
 rc = SQLGetData(stmtHnd, 1, SQL_C_TCHAR, (SQLPOINTER)bufp, len*sizeof(TCHAR),
&retchklen);
}

if (!_tcscmp(resultdata, clobdata))
{
 _tprintf(_T("Succeeded!!/n/n"));
}
else
{
 _tprintf(_T("Failed!!/n/n"));
}

Performance and Tuning
Topics:

• General ODBC Programming Tips

• Data Source Configuration Options

• DATE and TIMESTAMP Data Types

Chapter 24
For Programmers

24-58

General ODBC Programming Tips
This section describes some general programming tips to improve the performance of
an ODBC application.

• Enable connection pooling if the application will frequently connect and disconnect
from a data source. Reusing pooled connections is extremely efficient compared
to reestablishing a connection.

• Minimize the number of times a statement must be prepared. Where possible, use
bind parameters to make a statement reusable for different parameter values.
Preparing a statement once and executing it several times is much more efficient
than preparing the statement for every SQLExecute.

• Do not include columns in a SELECT statement if you know the application will not
retrieve them; especially LONG columns. Due to the nature of the database server
protocols, the ODBC Driver must fetch the entire contents of a LONG column if it is
included in the SELECT statement, regardless if the application binds the column or
does a SQLGetData.

• If you are performing transactions that do not update the data source, set the
SQL_ATTR_ACCESS_MODE attribute of the ODBC SQLSetConnectAttr function to
SQL_MODE_READ_ONLY.

• If you are not using ODBC escape clauses, set the SQL_ATTR_NOSCAN attribute of
the ODBC SQLSetConnectAttr function or the ODBC SQLSetStmtAttr function to
true.

• Use the ODBC SQLFetchScroll function instead of the ODBC SQLFetch function
for retrieving data from tables that have a large number of rows.

• Enable OCI statement caching when the same SQL statements are used multiple
times (StatementCache=T).

• Binding NUMBER columns as FLOAT speeds up query execution (BindAsFLOAT=T).

• While fetching LONG or LONG RAW set MaxLargeData=<value> for optimum
performance.

• Setting UseOCIDescribeAny=T for applications making heavy calls to small
packaged procedures that return Ref Cursor improves performance.

Data Source Configuration Options
This topic discusses performance implications of the following ODBC data source
configuration options:

Topics:

• Enable Result Sets

• Enable LOBs

• Bind TIMESTAMP as DATE

• Enable Closing Cursors

• Enable Thread Safety

• Fetch Buffer Size

Chapter 24
For Programmers

24-59

Enable Result Sets

This option enables the support of returning result sets (for example, RefCursor) from
procedure calls. The default is enabling the returning of result sets.

The ODBC Driver must query the database server to determine the set of parameters
for a procedure and their data types to determine if there are any RefCursor
parameters. This query incurs an additional network round trip the first time any
procedure is prepared and executed.

Enable LOBs

This option enables the support of inserting and updating LOBs. The default is
enabled.

The ODBC Driver must query the database server to determine the data types of each
parameter in an INSERT or UPDATE statement to determine if there are any LOB
parameters. This query incurs an additional network round trip the first time any
INSERT or UPDATE is prepared and executed.

Bind TIMESTAMP as DATE

Binds SQL_TIMESTAMP parameters as the appropriate Oracle data type. If this option is
TRUE, SQL_TIMESTAMP binds as the Oracle DATE data type. If this option is FALSE,
SQL_TIMESTAMP binds as the Oracle TIMESTAMP data type (which is the default).

Enable Closing Cursors

The SQL_CLOSE option of the ODBC function, SQLFreeStmt, is supposed to close
associated cursors with a statement and discard all pending results. The application
can reopen the cursor by executing the statement again without doing a SQLPrepare
again. A typical scenario for this is an application that is idle for a while but reuses the
same SQL statement. While the application is idle, it might free up associated server
resources.

The Oracle Call Interface (OCI), on which the Oracle ODBC Driver is layered, does not
support the functionality of closing cursors. So, by default, the SQL_CLOSE option has
no effect in the Oracle ODBC Driver. The cursor and associated resources remain
open on the database server.

Enabling this option causes the associated cursor to be closed on the database
server. However, this results in the parse context of the SQL statement being lost. The
ODBC application can execute the statement again without calling SQLPrepare.
However, internally the ODBC Driver must prepare and execute the statement all over.
Enabling this option severely impacts performance of applications that prepare a
statement once and execute it repeatedly.

Enable this option only if freeing the resources on the server is absolutely necessary.

Enable Thread Safety

If an application is single-threaded, this option can be disabled. By default, the ODBC
Driver ensures that access to all internal structures (environment, connection,
statement) are thread-safe. Single-threaded applications can eliminate some of the
thread safety overhead by disabling this option. Disabling this option typically shows a
minor performance improvement.

Chapter 24
For Programmers

24-60

Fetch Buffer Size

Set the Fetch Buffer Size in the Oracle Options tab of the Oracle ODBC Driver
Configuration Dialog Box to a value specified in bytes. This value determines how
many rows of data at a time the ODBC Driver prefetches from an Oracle database to
the client's cache, regardless of the number of rows the application program requests
in a single query, thus improving performance.

Applications that typically fetch fewer than 20 rows of data at a time improve their
response time, particularly over slow network connections or to heavily loaded servers.
Setting this too high can worsen response time or consume large amounts of memory.
The default is 64,000 bytes. Choose a value that works best for your application.

Note:

When LONG and LOB data types are present, the number of rows prefetched
by the ODBC Driver is not determined by the Fetch Buffer Size. The
inclusion of the LONG and LOB data types minimizes the performance
improvement and could result in excessive memory use. The ODBC Driver
disregards the Fetch Buffer Size and prefetch a set number of rows in the
presence of the LONG and LOB data types.

DATE and TIMESTAMP Data Types
If a DATE column in the database is used in a WHERE clause and the column has an
index, there can be an impact on performance. For example:

SELECT * FROM EMP WHERE HIREDATE = ?

In this example, an index on the HIREDATE column could be used to make the query
execute quickly. But, because HIREDATE is actually a DATE value and the ODBC Driver
is supplying the parameter value as TIMESTAMP, the Oracle server's query optimizer
must apply a conversion function. To prevent incorrect results (as might happen if the
parameter value had nonzero fractional seconds), the optimizer applies the conversion
to the HIREDATE column resulting in the following statement:

SELECT * FROM EMP WHERE TO_TIMESTAMP(HIREDATE) = ?

Unfortunately, this has the effect of disabling the use of the index on the HIREDATE
column and instead the server performs a sequential scan of the table. If the table has
many rows, this can take a long time. As a workaround for this situation, the ODBC
Driver has the connection option to Bind TIMESTAMP as DATE. When this option is
enabled, the ODBC Driver binds SQL_TIMESTAMP parameters as the Oracle DATE data
type instead of the Oracle TIMESTAMP data type. This allows the query optimizer to use
any index on the DATE columns.

Chapter 24
For Programmers

24-61

Note:

This option is intended for use only with Microsoft Access or other similar
programs that bind DATE columns as TIMESTAMP columns. Do not use this
option when there are actual TIMESTAMP columns present or when data loss
may occur. Microsoft Access executes such queries using whatever columns
are selected as the primary key.

See Also:

Implementation of Data Types (Advanced)

Chapter 24
For Programmers

24-62

25
Using the Identity Code Package

The Identity Code Package is a feature in the Oracle Database that offers tools and
techniques to store, retrieve, encode, decode, and translate between various product
or identity codes, including Electronic Product Code (EPC), in an Oracle Database.
The Identity Code Package provides data types, metadata tables and views, and
PL/SQL packages for storing EPC standard RFID tags or new types of RFID tags in a
user table.

The Identity Code Package empowers Oracle Database with the knowledge to
recognize EPC coding schemes, support efficient storage and component level
retrieval of EPC data, and comply with the EPCglobal Tag Data Translation 1.0 (TDT)
standard that defines how to decode, encode, and translate between various EPC
RFID tag representations.

The Identity Code Package also provides an extensible framework that allows
developers to use pre-existing coding schemes with their applications that are not
included in the EPC standard and make the Oracle Database adaptable to these older
systems and to any evolving identity codes that may some day be part of a future EPC
standard.

The Identity Code Package also lets developers create their own identity codes by first
registering the encoding category, registering the encoding type, and then registering
the components associated with each encoding type.

Topics:

• Identity Concepts

• What is the Identity Code Package?

• Using the Identity Code Package

• Identity Code Package Types

• DBMS_MGD_ID_UTL Package

• Identity Code Metadata Tables and Views

• Electronic Product Code (EPC) Concepts

• Oracle Database Tag Data Translation Schema

Identity Concepts
A database object MGD_ID is defined that lets users use EPC standard identity codes
and use their own existing identity codes. The MGD_ID object serves as the base code
object to which belong certain categories, or types of the RFID tag, such as the EPC
category, NASA category, and many other categories. Each category has a set of tag
schemes or documents that define tag representation structures and their
components. For the EPC category, the metadata needed to define encoding schemes
(SGTIN-64, SGTIN-96, GID-96, and so on) representing different encoding types
(defined in the EPC standard v1.1) is loaded by default into the database. Users can

25-1

define encoding their own categories and schemes as shown in Figure 25-1 and load
these into the database as well.

Figure 25-1 RFID Code Categories and Their Schemes

SGTIN-64�
<xml>

...
</xml>

SGTIN-96�
<xml>

...
</xml>

GID-96�
<xml>

...
</xml>

EPC

NASA-T1�
<xml>

...
</xml>

NASA-T2
<xml>

...
</xml>

NASA others

MGD_ID

The Code's�
Category

Base Code�
Object

The Code's�
Scheme

An MGD_ID object contains two attributes, a category_id and a list of components
consisting of name-value pairs. When MGD_ID objects are stored, the tag
representation must be parsed into these component name-value pairs upon object
creation.

EPC standard version 1.1 defines one General Identifier type (GID) that is
independent of any known, existing code schemes, five Domain Identifier types that
are based on EAN.UCC specifications, and the identity type United States Department
of Defense (USDOD). The five EAN.UCC based identity types are the serialized global
trade identification number (SGTIN), the serial shipping container code (SSCC), the
serialized global location number (SGLN), the global returnable asset identifier (GRAI)
and the global individual asset identifier (GIAI).

Except GID, which has one bit-level encoding, all the other identity types each have
two encodings depending on their length: 64-bit and 96-bit. So in total there are
thirteen different standard encodings for EPC tags. Also, tags can be encoded in
representations other than binary, such as the tag URI and pure identity
representations.

Each EPC encoding has its own structure and organization, see Table 25-1. The EPC
encoding structure field names relate to the names in the parameter_list parameter
name-value pairs in the Identity Code Package API. For example, for SGTIN-64, the
structure field names are Filter Value, Company Prefix Index, Item Reference, and
Serial Number.

Table 25-1 General Structure of EPC Encodings

Encoding
Name

Header
Length in
bits

Field Names (parameter_list name-value pairs) and (length in
bits)

GID-96 8 General Manager Number (8), Object Class (24), Serial Number (36)

Chapter 25
Identity Concepts

25-2

Table 25-1 (Cont.) General Structure of EPC Encodings

Encoding
Name

Header
Length in
bits

Field Names (parameter_list name-value pairs) and (length in
bits)

SGTIN-64 2 Filter Value (3), Company Prefix Index (14), Item Reference 20),
Serial Number (25)

SGTIN-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Item Reference
(24-4), Serial Number (38)

SSCC-64 8 Filter Value (3), Company Prefix Index (14), Serial Reference (39)

SSCC-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Serial
Reference (38-18), Unallocated (24)

SGLN-64 8 Filter Value (3), Company Prefix Index (14), Location Reference (20),
Serial Number (19)

SGLN-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Location
Reference (21-1), Serial Number (41)

GRAI-64 8 Filter Value (3), Company Prefix Index (14), Asset Type (20), Serial
Number (19)

GRAI-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Asset Type
(24-4), Serial Number (38)

GIAI-64 8 Filter Value (3), Company Prefix Index (14), Individual Asset
Reference (39)

GIAI-96 8 Filter Value (3), Partition (3), Company Prefix (20-40), Individual Asset
Reference (62-42)

USDOD-6
4

8 Filter Value (2), Government Managed Identifier (30), Serial Number
(24)

USDOD-9
6

8 Filter Value (4), Government Managed Identifier (48), Serial Number
(36)

EPCglobal defines eleven tag schemes (GID-96, SGTIN-64, SGTIN-96, and so on).
Each of these schemes has various representations; today, the most often used are
BINARY, TAG_URI, and PURE_IDENTITY. For example, information in an SGTIN-64
can be represented in these ways:

BINARY: 1001100000000000001000001110110001000010000011111110011000110010
PURE_IDENTITY: urn:epc:id:sgtin:0037000.030241.1041970
TAG_URI: urn:epc:tag:sgtin-64:3.0037000.030241.1041970
LEGACY: gtin=00037000302414;serial=1041970
ONS_HOSTNAME: 030241.0037000.sgtin.id.example.com

Some representations contain all information about the tag (BINARY and TAG_URI),
while other representations contain partial information (PURE_IDENTITY). It is therefore
possible to translate a tag from its TAG_URI to its PURE_IDENTITY representation, but it
is not possible to translate in the other direction without more information being
provided, namely the filter value must be supplied.

EPCglobal released a Tag Data Translation 1.0 (TDT) standard that defines how to
decode, encode, and translate between various EPC RFID tag representations.
Decoding refers to parsing a given representation into field/value pairs, and encoding
refers to reconstructing representations from these fields. Translating refers to
decoding one representation and instantly encoding it into another.TDT defines this
information using a set of XML files, each referred to as a scheme. For example, the

Chapter 25
Identity Concepts

25-3

SGTIN-64 scheme defines how to decode, encode, and translate between various
SGTIN-64 representations, such as binary and pure identity. For details about the
EPCglobal TDT schema, see the EPCglobal Tag Data Translation specification.

A key feature of the TDT specification is its ability to define any EPC scheme using the
same XML schema. This approach creates a standard way of defining EPC metadata
that RFID applications can then use to write their parsers, encoders, and translators.
When the application is written according to the TDT specification, it must be able to
update its set of EPC tag schemes and modify its action according to the metadata.

The Oracle Database metadata structure is similar, but not identical to the TDT
standard. To fit the EPCglobal TDT specification, the Oracle RFID package must be
able to ingest any TDT compatible scheme and seamlessly translate it into the generic
Oracle Database defined metadata. See the EPC_TO_ORACLE Function in Table 25-4 for
more information.

Reconstructing tag representation from fields, or in other words, encoding tag data into
predefined representations is easily accomplished using the MGD_ID.format function.
Likewise, the decoding of tag representations into MGD_ID objects and then encoding
these objects into tag representations is also easily accomplished using the
MGDID.translate function. See the FORMAT Member Function and the TRANSLATE Static
Function in Table 25-3 for more information.

Because the EPCglobal TDT standard is powerful and highly extensible, the Oracle
RFID standard metadata is a close relative of the TDT specification. Developers can
refer to this Oracle Database TDT XML schema to define their own tag structures.

Figure 25-2 shows the Oracle Database Tag Data Translation Markup Language
Schema diagram.

Figure 25-2 Oracle Database Tag Data Translation Markup Language Schema

Level

Scheme

Option Rule

Field

1

1 1

1

*

* *

*

The top level element in a tag data translation xml is 'scheme'. Each scheme defines
various tag encoding representations, or levels. SGTIN-64 and GID-96 are examples
of tag encoding schemes, and BINARY or PURE_IDENTITY are examples of levels within
these schemes. Each level has a set of options that define how to parse various
representations into fields, and rules that define how to derive values for fields that
require additional work, such as an external table lookup or the concatenation of other
parsed fields. See the EPCGlobal Tag Translator Specification for more information.

Chapter 25
Identity Concepts

25-4

See Also:

• See Electronic Product Code (EPC) Concepts for a brief description of
EPC concepts

• See Oracle Database Tag Data Translation Schema for the actual
Oracle Database TDT XML schema

What Is the Identity Code Package?
The Identity Code Package provides an extensible framework that supports the current
RFID tags with the standard family of EPC bit encodings for the supported encoding
types and new and evolving tag encodings that are not included in the current EPC
standard.

The Identity Code Package defines these ADTs:

• MGD_ID -- defines these (see MGD_ID ADT in Table 25-2 for more information):

– Two attributes, category_id and components.

– Four MGD_ID constructor functions for constructing identity code type objects to
represent RFID tags.

– A set of member subprograms for operating on these ADTs.

Using the Identity Code Package describes how to use these ADTs and member
functions.

Identity Code Package Types and DBMS_MGD_ID_UTL Package briefly describe
the reference information for these ADTs along with a set of utility subprograms.

• MGD_ID_COMPONENT — defines two attributes, comp_name, which identifies the name
of the component and comp_value, which identifies the components value.

• MGD_ID_COMPONENT_VARRAY — defines an array type that can store up to 128
elements of MGD_IDCOMPONENT type, which is used in two constructor functions for
creating an identity code type object with a list of components.

The Identity Code Package supports EPC spec v1.1 by supplying the predefined
EPC_ENCODING_CATEGORY encoding_category attribute definition with its bit-encoding
structures for the supported encoding types. This information is stored as meta
information in the supplied encoding metadata views, MGD_USR_ID_CATEGORY,
MGD_USR_ID_SCHEME, the read-only views MGD_ID_CATEGORY, MGD_ID_SCHEME, and their
underlying tables: MGD_ID_CATEGORY_TAB, MGD_ID_SCHEME_TAB,
MGD_ID_XML_VALIDATOR. See these topics and files for more information:

• Electronic Product Code (EPC) Concepts describes the EPC spec v1.1 product
code and its family of coding schemes.

• Identity Code Metadata Tables and Views describes the structure of the identity
code meta tables and views and how metadata are used by the Identity Code
Package to interpret the various RFID tags.

• The mgdmeta.sql file describes the meta table data for the
EPC_ENCODING_CATEGORY categories and each of its specific encoding schemes.

Chapter 25
What Is the Identity Code Package?

25-5

After storing many thousands of RFID tags into the column of MGD_ID column type of
your user table, you can improve query performance by creating an index on this
column. See these topics for more information:

• Building a Function-Based Index Using the Member Functions of the MGD_ID
Column Type describes how to create a function based index or bitmap function
based index using the member functions of the MGD_ID ADT.

The Identity Code Package provides a utility package that consists of various utility
subprograms. See this topic for more information:

• Identity Code Package Types and DBMS_MGD_ID_UTL Package describes each
of the member subprograms. A proxy utility sets and removes proxy information. A
metadata utility gets a category ID, refreshes a tag scheme for a category,
removes a tag scheme for a category, and validates a tag scheme. A conversion
utility translates standard EPCglobal Tag Data Translation (TDT) files into Oracle
Database TDT files.

The Identity Code Package is extensible and lets you create your own identity code
types for your new or evolving RFID tags. You can define your identity code types,
catagory_id attribute values, and components structures for your own encoding
types. See these topics for more information:

• Creating a Category of Identity Codes describes how to create your own identity
codes by first registering the encoding category, and then registering the schemes
associated to the encoding category.

• Identity Code Metadata Tables and Views describes the structure of the identity
code meta tables and views and how to register meta information by storing it in
the supplied metadata tables and views.

See Also:

See Oracle Database PL/SQL Packages and Types Reference for detailed
reference information.

Using the Identity Code Package
Topics:

• Storing RFID Tags in Oracle Database Using MGD_ID ADT

• Building a Function-Based Index Using the Member Functions of the MGD_ID
Column Type

• Using MGD_ID ADT Functions

• Defining a Category of Identity Codes and Adding Encoding Schemes to an
Existing Category

Chapter 25
Using the Identity Code Package

25-6

Storing RFID Tags in Oracle Database Using MGD_ID ADT
Topics:

• Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in
the Column

• Constructing MGD_ID Objects to Represent RFID Tags

• Inserting an MGD_ID Object into a Database Table

• Querying MGD_ID Column Type

Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings
in the Column

You can create tables using MGD_ID as the column type to represent RFID tags, for
example:

Example 1. Using the MGD_ID column type:

CREATE TABLE Warehouse_info (
 Code MGD_ID,
 Arrival_time TIMESTAMP,
 Location VARCHAR2(256);
 ...);

SQL*Plus command:

describe warehouse_info;

Result:

Name Null? Type
--- -------- ----------------------------
CODE NOT NULL MGDSYS.MGD_ID
ARRIVAL_TIME TIMESTAMP(6)
LOCATION VARCHAR2(256)

Constructing MGD_ID Objects to Represent RFID Tags
There are several ways to construct MGD_ID objects:

• Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List
of Components

• Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID_ the
Tag Identifier_ and the List of Additional Required Parameters

• Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name_
Category Version (if null_ then the latest version is used)_ and a List of
Components

• Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name
and Category Version_ the Tag Identifier_ and the List of Additional Required
Parameters

Chapter 25
Using the Identity Code Package

25-7

Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List of
Components

If a RFID tag complies to the EPC standard, an MGD_ID object can be created using its
category ID and a list of components. For example:

call DBMS_MGD_ID_UTL.set_proxy('example.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor11.sql
.
.
.
MGD_ID ('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')))
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the Tag
Identifier, and the List of Additional Required Parameters

Use this constructor when there is a list of additional parameters required to create the
MGD_ID object. For example:

call DBMS_MGD_ID_UTL.set_proxy('example.com', '80');
call DBMS_MGD_ID_UTL.refresh_category('1');
select MGD_ID('1',
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor22.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')))
.

Chapter 25
Using the Identity Code Package

25-8

.

.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name, Category
Version (if null, then the latest version is used), and a List of Components

Use this constructor when a category version must be specified along with a category
ID and a list of components. For example:

call DBMS_MGD_ID_UTL.set_proxy('example.com', '80');
call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 MGD_ID_COMPONENT_VARRAY(
 MGD_ID_COMPONENT('companyprefix','0037000'),
 MGD_ID_COMPONENT('itemref','030241'),
 MGD_ID_COMPONENT('serial','1041970'),
 MGD_ID_COMPONENT('schemes','SGTIN-64')
)
) from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor33.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('itemref', '030241'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64')
)
)
.
.
.

Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name and
Category Version, the Tag Identifier, and the List of Additional Required Parameters

Use this constructor when the category version and an additional list of parameters is
required.

call DBMS_MGD_ID_UTL.set_proxy('example.com', '80');
call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));
select MGD_ID('EPC', NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64') from DUAL;
call DBMS_MGD_ID_UTL.remove_proxy();

@constructor44.sql
.
.
.
MGD_ID('1', MGD_ID_COMPONENT_VARRAY
 (MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),

Chapter 25
Using the Identity Code Package

25-9

 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('scheme', 'SGTIN-64'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)
.
.
.

Inserting an MGD_ID Object into a Database Table
This example shows how to populate the WAREHOUSE_INFO table by inserting each
MGD_ID object into the table along with the additional column values:

call DBMS_MGD_ID_UTL.set_proxy('example.com', '80');

call DBMS_MGD_ID_UTL.refresh_category
 (DBMS_MGD_ID_UTL.get_category_id('EPC', NULL));

INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 null
),
 SYSDATE,
 'SHELF_123');

INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.053021.1012353',
 null
),
 SYSDATE,
 'SHELF_456');
INSERT INTO WAREHOUSE_INFO (code, arrival_time, location)
 values (MGDSYS.MGD_ID ('EPC',
 NULL,
 'urn:epc:id:sgtin:0037000.020140.10174832',
 null
),
 SYSDATE,
 'SHELF_1034');

COMMITT;
call DBMS_MGD_ID_UTL.remove_proxy();

Querying MGD_ID Column Type
There are three ways to query on MGD_ID column type.

• Query the MGD_ID column type. Find all items with item reference 030241.

SELECT location, wi.code.get_component('itemref') as itemref,
 wi.code.get_component('serial') as serial
FROM warehouse_info wi WHERE wi.code.get_component('itemref') = '030241';

LOCATION |ITEMREF |SERIAL

Chapter 25
Using the Identity Code Package

25-10

---------------|----------|----------
SHELF_123 |030241 |1041970

• Query using the member functions of the MGD_ID ADT. Select the pure identity
representations of all RFID tags in the table.

SELECT wi.code.format(null,'PURE_IDENTITY')
 as PURE_IDENTITY FROM warehouse_info wi;

PURE_IDENTITY

urn:epc:id:sgtin:0037000.030241.1041970
urn:epc:id:gid:0037000.053021.1012353
urn:epc:id:sgtin:0037000.020140.10174832

See Using the get_component Function with the MGD_ID Object for more
information and see Table 25-3 for a list of member functions.

Building a Function-Based Index Using the Member Functions of the
MGD_ID Column Type

You can improve the performance of queries based on a certain component of the
RFID tags by creating a function-based index that uses the get_component member
function or its variation convenience functions. For example:

CREATE INDEX warehouseinfo_idx2
 on warehouse_info(code.get_component('itemref'));

You can also improve the performance of queries based on a certain component of the
RFID tags by creating a bitmap function based index that uses the get_component
member function or its variation convenience functions. For example:

CREATE BITMAP INDEX warehouseinfo_idx3
 on warehouse_info(code.get_component('serial'));

Using MGD_ID ADT Functions
The MGD_ID ADT contains member subprograms that operate on these ADTs. See
Table 25-2 for MGD_ID_COMPONENT, MGD_ID_COMPONENT_VARRAY, MGD_ID ADT reference
information. See the mgdtyp.sql file for the MGD_ID ADT definition and its member
subprograms.

Topics:

• Using the get_component Function with the MGD_ID Object

• Parsing Tag Data from Standard Representations

• Reconstructing Tag Representations from Fields

• Translating Between Tag Representations

Using the get_component Function with the MGD_ID Object
The get_component function is defined as follows:

MEMBER FUNCTION get_component(component_name IN VARCHAR2)
 RETURN VARCHAR2 DETERMINISTIC,

Chapter 25
Using the Identity Code Package

25-11

Each component in a identity code has a name. It is defined when the code type is
registered.

The get_component function takes the name of the component, component_name as a
parameter, uses the metadata registered in the metadata table to analyze the identity
code, and returns the component with the name component_name.

The get_component function can be used in a SQL query. For example, find the
current location of the coded item for the component named itemref; or, in other
words find all items with the item reference of 03024. Because the code tag has
encoded itemref as a component, you can use this SQL query:

SELECT location,
 w.code.get_component('itemref') as itemref,
 w.code.get_component('serial') as serial
FROM warehouse_info w
 WHERE w.code.get_component('itemref') = '030241';

LOCATION	ITEMREF	SERIAL
SHELF_123 |030241 |1041970

See Table 25-3 for a list of other member functions.

See Also:

Defining a Category of Identity Codes and Adding Encoding Schemes to an
Existing Category for more information about how to create a identity code
type

Parsing Tag Data from Standard Representations
RFID readers read the bit strings stored in the tags. The tag data and other
information, such as the reader ID and the time stamp, first go through an edge server
to be processed, normalized, and preliminarily filtered. Then, in many application
scenarios, the information must be persistently stored and later on be retrieved. The
Oracle Database understands the code structures representations of various EPC tags
as described in Table 25-1 because these code representation schemes defined in the
EPC Standard are preregistered. This gives the Oracle Database the ability to
understand all the EPC code schemes and parse various tag representations into
fields. Users can also register their own coding structures for the identity codes that
use other encoding technologies. In this way the system is extensible.

As mentioned in Identity Concepts, each of the EPCGlobal tag schemes (GID-96,
SGTIN-64, SGTIN-96, and so on) has various representations with the most often
used being BINARY, TAG_URI, and PURE_IDENTITY.

Some representations contain all the information about the tag (BINARY and TAG_URI),
while representations contain partial information (PURE_IDENTITY). It is therefore
possible to translate a tag from it's TAG_URI to it's PURE_IDENTITY representation, but it
is not possible to translate in the other direction (PURE_IDENTITY to TAG_URI) without
supplying more information, namely the filter value.

One MGD_ID constructor takes in four fields, the category name (such as EPC), the
category version, the tag identifier (for EPC, the identifier must be in a representation

Chapter 25
Using the Identity Code Package

25-12

previously described), and a parameter list for any additional parameters required to
parse the tag representation. For example, this code creates an MGD_ID object from
its BINARY representation.

SELECT MGD_ID
 ('EPC',
 null,
 '1001100000000000001000001110110001000010000011111110011000110010',
 null
)
 AS NEW_RFID_CODE FROM DUAL;

NEW_RFID_CODE(CATEGORY_ID, COMPONENTS(NAME, VALUE))
--
MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY(MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('companyprefixindex', '1'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)

For example, an identical object can be created if the call is done with the TAG_URI
representation of the tag as follows with the addition of the value of the filter value:

SELECT MGD_ID ('EPC',
 null,
 'urn:epc:tag:sgtin-64:3.0037000.030241.1041970',
 null
)
 as NEW_RFID_CODE FROM DUAL;

NEW_RFID_CODE(CATEGORY_ID, COMPONENTS(NAME, VALUE))
--
MGD_ID ('1',
 MGD_ID_COMPONENT_VARRAY (
 (MGD_ID_COMPONENT('filter', '3'),
 MGD_ID_COMPONENT('schemes', 'SGTIN-64'),
 MGD_ID_COMPONENT('companyprefixlength', '7'),
 MGD_ID_COMPONENT('companyprefix', '0037000'),
 MGD_ID_COMPONENT('serial', '1041970'),
 MGD_ID_COMPONENT('itemref', '030241')
)
)

Reconstructing Tag Representations from Fields
Another useful feature of the Identity Code package is the ability to encode tag data
into predefined representations. For example, a warehouse wants to send certain
inventory to a retailer, but first it wants to send an invoice that tells the retailer what
inventory to expect. The invoice can be a list of pure identity URIs that the warehouse
intends to send. If all the inventory in the WAREHOUSE_INFO table is to be sent, this
example constructs the desired URIs:

SELECT wi.code.format (null,'PURE_IDENTITY')
 as PURE_IDENTITY FROM warehouse_info wi;

Chapter 25
Using the Identity Code Package

25-13

PURE_IDENTITY
--
urn:epc:id:sgtin:0037000.030241.1041970
urn:epc:id:gid:0037000.053021.1012353
urn:epc:id:sgtin:0037000.020140.10174832

Translating Between Tag Representations
The Identity Code package can decode tag representations into MGD_ID objects and
encode these objects into tag representations. These two steps can be combined into
one step using the MGD_ID.translate function. Static translation allows for the
conversion of an RFID tag from one representation to another. For example:

SELECT MGD_ID.translate ('EPC',
 null,
 'urn:epc:id:sgtin:0037000.030241.1041970',
 'filter=3;scheme=SGTIN-64',
 'BINARY'
)
 as BINARY FROM DUAL;

BINARY
--
1001100000000000001000001110110001000010000011111110011000110010

In this example, the binary representation contains more information than the pure
identity representation. Specifically, it also contains the filter value and in this case the
scheme value must also be specified to distinguish SGTIN-64 from SGTIN-96. Thus,
the function call must provide the missing filter parameter information and specify the
scheme name in order for translation call to succeed.

Defining a Category of Identity Codes and Adding Encoding Schemes
to an Existing Category

Topics:

• Creating a Category of Identity Codes

• Adding Two Metadata Schemes to a Newly Created Category

Creating a Category of Identity Codes
Because the EPCglobal TDT standard is powerful and highly extensible, the Oracle
Database RFID standard metadata is a close relative of the TDT specification. Thus,
the Identity Code package is extensible: You can create your own categories and tag
structures using generic metadata. To create a category of identity codes, use the
DBMS_MGD_ID_UTIL.create_category function.

For example, suppose you want to create a category called MGD_SAMPLE_CATEGORY,
which has two types of tags, a CONTRACTOR_TAG and an EMPLOYEE_TAG. This category
and its two metadata schemes might be used within a company that must grant
different access privileges to people who are full time employees from those who are
contractors, and thus require that their security software be able to identify quickly
between the two badge types at an RFID reader. This script creates a category named
MGD_SAMPLE_CATEGORY, with a 1.0 category version, having an agency name as Oracle,

Chapter 25
Using the Identity Code Package

25-14

with a URI as http://www.oracle.com/mgd/sample. See Adding Two Metadata
Schemes to a Newly Created Category for an example.

Adding Two Metadata Schemes to a Newly Created Category
Next, create an CONTRACTOR_TAG metadata scheme such as:

<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.contractor.">
 <option optionKey="1" pattern="mycompany.contractor.([0-9]*).([0-9]*)"
 grammar="''mycompany.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>

The CONTRACTOR_TAG scheme contains two encoding levels, or ways in which the tag
can be represented. The first level is URI and the second level is BINARY. The URI
representation starts with the prefix "mycompany.contractor." and is then followed by
two numeric fields separated by a period. The names of the two fields are
contractorID and divisionID. The pattern field in the option tag defines the parsing
structure of the tag URI representation, and the grammar field defines how to
reconstruct the URI representation. The BINARY representation can be understood in a
similar fashion. This representation starts with the prefix "01" and is then followed by
the same two fields, contractorID and divisionID, this time, in their respective binary
formats. Given this XML metadata structure, contractor tags can now be decoded from
their URI and BINARY representations and the resulting fields can be re-encoded into
one of these representations.

The EMPLOYEE_TAG scheme is defined in a similar fashion and is shown as follows.

<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.employee.">
 <option optionKey="1" pattern="mycompany.employee.([0-9]*).([0-9]*)"
 grammar="''mycompany.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">

Chapter 25
Using the Identity Code Package

25-15

 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>;

To add these schemes to the category ID previously created, use the
DBMS_MGD_ID_UTIL.add_scheme function.

This script creates the MGD_SAMPLE_CATEGORY category, adds a contractor scheme and
an employee scheme to the MGD_SAMPLE_CATEGORY category, validates the
MGD_SAMPLE_CATEGORY scheme, tests the tag translation of the contractor scheme and
the employee scheme, then removes the contractor scheme, tests the tag translation
of the contractor scheme and this returns the expected exception for the removed
contractor scheme, tests the tag translation of the employee scheme and this returns
the expected values, then removes the MGD_SAMPLE_CATEGORY category:

--contents of add_scheme2.sql
SET LINESIZE 160
CALL DBMS_MGD_ID_UTL.set_proxy('example.com', '80');

---CREATE CATEGORY, ADD_SCHEME, REMOVE_SCHEME, REMOVE_CATEGORY-------

DECLARE
 amt NUMBER;
 buf VARCHAR2(32767);
 pos NUMBER;
 tdt_xml CLOB;
 validate_tdtxml VARCHAR2(1042);
 category_id VARCHAR2(256);
BEGIN
 -- remove the testing category if it exists
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
 -- create the testing category 'MGD_SAMPLE_CATEGORY', version 1.0
 category_id := DBMS_MGD_ID_UTL.CREATE_CATEGORY('MGD_SAMPLE_CATEGORY', '1.0', 'Oracle',
'http://www.oracle.com/mgd/sample');
 -- add contractor scheme to the category
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="CONTRACTOR_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.contractor.">
 <option optionKey="1" pattern="mycompany.contractor.([0-9]*).([0-9]*)"
 grammar="''mycompany.contractor.'' contractorID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="contractorID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="11">
 <option optionKey="1" pattern="11([01]{7})([01]{6})"
 grammar="''11'' contractorID divisionID ">
 <field seq="1" characterSet="[01]*" name="contractorID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>

Chapter 25
Using the Identity Code Package

25-16

</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);

 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- add employee scheme to the category
 DBMS_LOB.CREATETEMPORARY(tdt_xml, true);
 DBMS_LOB.OPEN(tdt_xml, DBMS_LOB.LOB_READWRITE);

 buf := '<?xml version="1.0" encoding="UTF-8"?>
<TagDataTranslation version="0.04" date="2005-04-18T16:05:00Z"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xmlns="oracle.mgd.idcode">
 <scheme name="EMPLOYEE_TAG" optionKey="1" xmlns="">
 <level type="URI" prefixMatch="mycompany.employee.">
 <option optionKey="1" pattern="mycompany.employee.([0-9]*).([0-9]*)"
 grammar="''mycompany.employee.'' employeeID ''.'' divisionID">
 <field seq="1" characterSet="[0-9]*" name="employeeID"/>
 <field seq="2" characterSet="[0-9]*" name="divisionID"/>
 </option>
 </level>
 <level type="BINARY" prefixMatch="01">
 <option optionKey="1" pattern="01([01]{7})([01]{6})"
 grammar="''01'' employeeID divisionID ">
 <field seq="1" characterSet="[01]*" name="employeeID"/>
 <field seq="2" characterSet="[01]*" name="divisionID"/>
 </option>
 </level>
 </scheme>
</TagDataTranslation>';

 amt := length(buf);
 pos := 1;
 DBMS_LOB.WRITE(tdt_xml, amt, pos, buf);
 DBMS_LOB.CLOSE(tdt_xml);
 DBMS_MGD_ID_UTL.ADD_SCHEME(category_id, tdt_xml);

 -- validate the scheme
 dbms_output.put_line('Validate the MGD_SAMPLE_CATEGORY Scheme');
 validate_tdtxml := DBMS_MGD_ID_UTL.validate_scheme(tdt_xml);
 dbms_output.put_line(validate_tdtxml);
 dbms_output.put_line('Length of scheme xml is: '||DBMS_LOB.GETLENGTH(tdt_xml));

 -- test tag translation of contractor scheme
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));

 -- test tag translation of employee scheme
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,

Chapter 25
Using the Identity Code Package

25-17

 'mycompany.employee.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));

 DBMS_MGD_ID_UTL.REMOVE_SCHEME(category_id, 'CONTRACTOR_TAG');

 -- Test tag translation of contractor scheme. Doesn't work any more.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.contractor.123.45',
 NULL, 'BINARY'));

 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '111111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Contractor tag translation failed: '||SQLERRM);
 END;

 -- Test tag translation of employee scheme. Still works.
 BEGIN
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 'mycompany.employee.123.45',
 NULL, 'BINARY'));
 dbms_output.put_line(
 mgd_id.translate('MGD_SAMPLE_CATEGORY', NULL,
 '011111011101101',
 NULL, 'URI'));
 EXCEPTION
 WHEN others THEN
 dbms_output.put_line('Employee tag translation failed: '||SQLERRM);
 END;

 -- remove the testing category, which also removes all the associated schemes
 DBMS_MGD_ID_UTL.remove_category('MGD_SAMPLE_CATEGORY', '1.0');
END;
/
SHOW ERRORS;
call DBMS_MGD_ID_UTL.remove_proxy();

@add_scheme3.sql
.
.
.
Validate the MGD_SAMPLE_CATEGORY Scheme
EMPLOYEE_TAG;URI,BINARY;divisionID,employeeID
Length of scheme xml is: 933
111111011101101
mycompany.contractor.123.45
011111011101101
mycompany.employee.123.45
Contractor tag translation failed: ORA-55203: Tag data translation level not found
ORA-06512: at "MGDSYS.DBMS_MGD_ID_UTL", line 54

Chapter 25
Using the Identity Code Package

25-18

ORA-06512: at "MGDSYS.MGD_ID", line 242
ORA-29532: Java call terminated by uncaught Java
exception: oracle.mgd.idcode.exceptions.TDTLevelNotFound: Matching level not
found for any configured scheme
011111011101101
mycompany.employee.123.45
.
.
.

Identity Code Package Types
Table 25-2 describes the Identity Code Package ADTs.

Table 25-2 Identity Code Package ADTs

ADT Name Description

MGD_ID_COMPONENT ADT A data type that specifies the name and value pair attributes
that define a component.

MGD_ID_COMPONENT_VARRAY
ADT

A data type that specifies a list of up to 128 components as
name-value attribute pairs used in two constructor functions
for creating an identity code type object.

MGD_ID ADT Represents an identity code type that specifies the category
identifier for the code category for this identity code and its
list of components.

Table 25-3 describes the subprograms in the MGD_ID ADT.

All the values and names passed to the subprograms defined in the MGD_ID ADT are
case-insensitive unless otherwise noted. To preserve case, enclose values in double
quotation marks.

Table 25-3 MGD_ID ADT Subprograms

Subprogram Description

MGD_ID Constructor Function Creates an identity code type object, MGD_ID, and
returns self.

FORMAT Member Function Returns a representation of an identity code given
an MGD_ID component.

GET_COMPONENT Member Function Returns the value of an MGD_ID component.

TO_STRING Member Function Concatenates the category_id parameter value
with the components name-value attribute pair.

TRANSLATE Static Function Translates one MGD_ID representation of an identity
code into a different MGD_ID representation.

DBMS_MGD_ID_UTL Package
Table 25-4 describes the Utility subprograms in the DBMS_MGD_ID_UTL package.

Chapter 25
Identity Code Package Types

25-19

All the values and names passed to the subprograms defined in the MGD_ID ADT are
case-insensitive unless otherwise noted. To preserve case, enclose values in double
quotation marks.

Table 25-4 DBMS_MGD_ID_UTL Package Utility Subprograms

Subprogram Description

ADD_SCHEME Procedure Adds a tag data translation scheme to an existing category.

CREATE_CATEGORY Function Creates a category or a version of a category.

EPC_TO_ORACLE Function Converts the EPCglobal tag data translation (TDT) XML to
Oracle Database tag data translation XML.

GET_CATEGORY_ID Function Returns the category ID given the category name and the
category version.

GET_COMPONENTS Function Returns all relevant separated component names separated by
semicolon (';') for the specified scheme.

GET_ENCODINGS Function Returns a list of semicolon (';') separated encodings (formats)
for the specified scheme.

GET_JAVA_LOGGING_LEVEL
Function

Returns an integer representing the current Java trace logging
level.

GET_PLSQL_LOGGING_LEVEL
Function

Returns an integer representing the current PL/SQL trace
logging level.

GET_SCHEME_NAMES Function Returns a list of semicolon (';') separated scheme names for
the specified category.

GET_TDT_XML Function Returns the Oracle Database tag data translation XML for the
specified scheme.

GET_VALIDATOR Function Returns the Oracle Database tag data translation schema.

REFRESH_CATEGORY Function Refreshes the metadata information about the Java stack for
the specified category.

REMOVE_CATEORY Function Removes a category including all the related TDT XML.

REMOVE_PROXY Procedure Unsets the host and port of the proxy server.

REMOVE_SCHEME Procedure Removes the tag scheme for a category.

SET_JAVA_LOGGING_LEVEL
Procedure

Sets the Java logging level.

SET_PLSQL_LOGGING_LEVEL
Procedure

Sets the PL/SQL tracing logging level.

SET_PROXY Procedure Sets the host and port of the proxy server for Internet access.

VALIDATE_SCHEME Function Validates the input tag data translation XML against the Oracle
Database tag data translation schema.

Identity Code Metadata Tables and Views
This topic describes the structure of identity code metadata tables and views and
explains how the metadata are used by the Identity Code Package to interpret the
various RFID tags. The creation of these meta tables, views, and triggers is done
automatically during the Identity Code Package installation.

Encoding metadata views are used to store encoding categories and schemes.
Application developers can insert the meta information of their own identity codes into

Chapter 25
Identity Code Metadata Tables and Views

25-20

these views. The MGD_ID ADT is designed to understand the encodings if the metadata
for the encodings are stored in the meta tables. If an application developer uses only
the encodings defined in the EPC specification v1.1, the developer does not have to
worry about the meta tables because product codes specified in EPC spec v1.1 are
predefined.

There are two encoding metadata views:

• user_mgd_id_category stores the encoding category information defined by the
session user.

• user_mgd_id_scheme stores the encoding type information defined by the session
user.

You can query the following read-only views to see the system's predefined encoding
metadata and the metadata defined by the user:

• mgd_id_category lets you query the encoding category information defined by the
system or the session user

• mgd_id_scheme lets you query the encoding type information defined by the
system or the session user.

The underlying metadata tables for the preceding views are:

• mgd_id_xml_validator

• mgd_id_category_tab

• mgd_id_scheme_tab

Users other than the Identity Code Package system users cannot operate on these
tables. Users must not use the metadata tables directly. They must use the read-only
views and the metadata functions described in the DBMS_MGD_ID_UTL package.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_MGD_ID_UTL package

Metadata View Definitions

Table 25-5, Table 25-6, Table 25-7, and Table 25-8 describe the metadata view
definitions for the MGD_ID_CATEGORY, USER_ID_CATEGORY, MGD_ID_SCHME, and
USER_MGD_ID_SCHME respectively as defined in the mgdview.sql file.

Table 25-5 Definition and Description of the MGD_ID_CATEGORY Metadata
View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

CATEGORY_NAME VARCHAR2(256) Category name

AGENCY VARCHAR2(256) Organization that defined the category

VERSION VARCHAR2(256) Category version

Chapter 25
Identity Code Metadata Tables and Views

25-21

Table 25-5 (Cont.) Definition and Description of the MGD_ID_CATEGORY
Metadata View

Column Name Data Type Description

URI VARCHAR2(256) URI that describes the category

Table 25-6 Definition and Description of the USER_MGD_ID_CATEGORY
Metadata View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

CATEGORY_NAME VARCHAR2(256) Category name

AGENCY VARCHAR2(256) Organization that defined the category

VERSION VARCHAR2(256) Category version

URI VARCHAR2(256) URI that describes the category

Table 25-7 Definition and Description of the MGD_ID_SCHEME Metadata View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

TYPE_NAME VARCHAR2(256) Encoding scheme name, for example,
SGTIN-96, GID-96, and so on

TDT_XML CLOB Tag data translation XML for this encoding
scheme

ENCODINGS VARCHAR2(256) Encodings separated by a comma (,), for
example, LEGACY, TAG_ENCODING,
PURE_IDENTITY, BINARY (for SGTIN-96)

COMPONENTS VARCHAR2(1024) Relevant component names, extracted from
each level and then combined. Each is
separated by a comma (,). For example,
objectclass, generalmanager, serial (for
GID-96)

Table 25-8 Definition and Description of the USER_MGD_ID_SCHEME Metadata
View

Column Name Data Type Description

CATEGORY_ID NUMBER(4) Category identifier

TYPE_NAME VARCHAR2(256) Encoding scheme name, for example,
SGTIN-96, GID-96, and so on

TDT_XML CLOB Tag data translation XML for this encoding
scheme

ENCODINGS VARCHAR2(256) Encodings separated by a comma (,), for
example, LEGACY, TAG_ENCODING,
PURE_IDENTITY, BINARY (for SGTIN-96)

Chapter 25
Identity Code Metadata Tables and Views

25-22

Table 25-8 (Cont.) Definition and Description of the USER_MGD_ID_SCHEME
Metadata View

Column Name Data Type Description

COMPONENTS VARCHAR2(1024) Relevant component names, extracted from
each level and then combined. Each is
separated by a comma (,). For example,
objectclass, generalmanager, serial (for
GID-96)

Electronic Product Code (EPC) Concepts
Topics:

• RFID Technology and EPC v1.1 Coding Schemes

• Product Code Concepts and Their Current Use

RFID Technology and EPC v1.1 Coding Schemes
Radio Frequency Identification (RFID) technology continues to gain momentum with
suppliers, distributors, manufacturers, and retailers for its ability to eliminate line-of-site
processes and automate critical supply chain transactions. Electronic Product Code
(EPC), an identification scheme for universally identifying objects using RFID tags and
other means, is gaining widespread acceptance as an emerging standard. Its
capabilities enable companies to reduce warehouse and distribution costs through
improved inventory control and extended supply chain visibility.

The standardized EPC Identifier is a metacoding scheme designed to support the
needs of various industries. Therefore, the EPC represents a family of coding
schemes and a means to make them unique across all possible EPC-compliant tags.
EPC Version 1.1 includes these specific coding schemes:

• General Identifier (GID)

• Serialized version of the EAN.UCC Global Trade Item Number (GTIN)

• EAN.UCC Serial Shipping Container Code (SSCC)

• EAN.UCC Global Location Number (GLN)

• EAN.UCC Global Returnable Asset Identifier (GRAI)

• EAN.UCC Global Individual Asset Identifier (GIAI)

RFID applications require the storage of a large volume of EPC data into a database.
The efficient use of EPC data also requires that the database recognizes the different
coding schemes of EPC data.

EPC is an emerging standard. It does not cover all the numbering schemes used in
the various industries and is itself still evolving (the changes from EPC version 1.0 to
EPC version 1.1 are significant).

Identity Code Package empowers the Oracle Database with the knowledge to
recognize EPC coding schemes. It makes the Oracle Database a database system
that not only provides efficient storage and component level retrieval for EPC data, but

Chapter 25
Electronic Product Code (EPC) Concepts

25-23

also has features to support EPC data encoding and decoding, and conversion
between bit encoding and URI encoding.

Identity Code Package provides an extensible framework that allows developers to
define their own coding schemes that are not included in the EPC standard. This
extensibility feature also makes the Oracle Database adaptable to the evolving future
EPC standard.

This chapter describes the requirement of storing, retrieving, encoding and decoding
various product codes, including EPC, in an Oracle Database and shows how the
Identity Code Package solution meets all these requirements by providing data types,
metadata tables, and PL/SQL packages for these purposes.

Product Code Concepts and Their Current Use
This topic describes these product codes:

• Electronic Product Code (EPC)

• Global Trade Identification Number (GTIN) and Serializable Global Trade
Identification Number (SGTIN)

• Serial Shipping Container Code (SSCC)

• Global Location Number (GLN) and Serializable Global Location Number (SGLN)

• Global Returnable Asset Identifier (GRAI)

• Global Individual Asset Identifier (GIAI)

• RFID EPC Network

Electronic Product Code (EPC)
The Electronic Product Code™ (EPC™) is an identification scheme for universally
identifying physical objects using Radio Frequency Identification (RFID) tags and other
means. The standardized EPC data consists of an EPC (or EPC Identifier) that
uniquely identifies an individual object, and an optional Filter Value when judged to be
necessary to enable effective and efficient reading of the EPC tags. In addition to this
standardized data, certain classes of EPC tags allow user-defined data.

The EPC Identifier is a meta-coding scheme designed to support the needs of various
industries by accommodating both existing coding schemes where possible and
defining schemes where necessary. The various coding schemes are referred to as
Domain Identifiers, to indicate that they provide object identification within certain
domains such as a particular industry or group of industries. As such, EPC represents
a family of coding schemes (or "namespaces") and a means to make them unique
across all possible EPC-compliant tags.

The EPCGlobal EPC Data Standards Version 1.1 defines the abstract content of the
Electronic Product Code, and its concrete realization in the form of RFID tags, Internet
URIs, and other representations. In EPC Version 1.1, the specific coding schemes
include a General Identifier (GID), a serialized version of the EAN.UCC Global Trade
Item Number (GTIN®), the EAN.UCC Serial Shipping Container Code (SSCC®), the
EAN.UCC Global Location Number (GLN®), the EAN.UCC Global Returnable Asset
Identifier (GRAI®), and the EAN.UCC Global Individual Asset Identifier (GIAI®).

Chapter 25
Electronic Product Code (EPC) Concepts

25-24

EPC Pure Identity
The EPC pure identity is the identity associated with a specific physical or logical
entity, independent of any particular encoding vehicle such as an RF tag, bar code or
database field. As such, a pure identity is an abstract name or number used to identify
an entity. A pure identity consists of the information required to uniquely identify a
specific entity, and no more.

EPC Encoding
EPC encoding is a pure identity with more information, such as filter value, rendered
into a specific syntax (typically consisting of value fields of specific sizes). A given pure
identity might have several possible encodings, such as a Barcode Encoding, various
Tag Encodings, and various URI Encodings. Encodings can also incorporate
additional data besides the identity (such as the Filter Value used in some encodings),
in which case the encoding scheme specifies what additional data it can hold.

For example, the Serial Shipping Container Code (SSCC) format as defined by the
EAN.UCC System is an example of a pure identity. An SSCC encoded into the EPC-
SSCC 96-bit format is an example of an encoding.

EPC Tag Bit-Level Encoding
EPC encoding on a tag is a string of bits, consisting of a tiered, variable length header
followed by a series of numeric fields whose overall length, structure, and function are
completely determined by the header value.

EPC Identity URI
The EPC identity URI is a representation of a pure identity as a Uniform Resource
Identifier (URI).

EPC Tag URI Encoding
The EPC tag URI encoding represents a specific EPC tag bit-level encoding, for
example, urn:epc:tag:sgtin-64:3.0652642.800031.400.

EPC Encoding Procedure
The EPC encoding procedure generates an EPC tag bit-level encoding using various
information.

EPC Decoding Procedure
The EPC decoding procedure converts an EPC tag bit-level encoding to an EAN.UCC
code.

Global Trade Identification Number (GTIN) and Serializable Global Trade
Identification Number (SGTIN)

A Global Trade Identification Number (GTIN) is used for the unique identification of
trade items worldwide within the EAN.UCC system. The Serialized Global Trade
Identification Number (SGTIN) is an identity type in EPC standard version1.1. It is

Chapter 25
Electronic Product Code (EPC) Concepts

25-25

based on the EAN.UCC GTIN code defined in the General EAN.UCC Specifications
[GenSpec5.0]. A GTIN identifies a particular class of object, such as a particular kind
of product or SKU. The combination of GTIN and a unique serial number is called a
Serialized GTIN (SGTIN).

Serial Shipping Container Code (SSCC)
The Serial Shipping Container Code (SSCC) is defined by the General EAN.UCC
Specifications [GenSpec5.0]. The unique identification of logistics units is achieved in
the EAN.UCC system by the use of the SSCC. The SSCC is intended for assignment
to individual objects.

Global Location Number (GLN) and Serializable Global Location Number
(SGLN)

The Global Location Number (GLN) is defined by the General EAN.UCC
Specifications [GenSpec5.0]. A GLN can represent either a discrete, unique physical
location such as a dock door or a warehouse slot, or an aggregate physical location
such as an entire warehouse. Also, a GLN can represent a logical entity such as an
organization that performs a business function (for example, placing an order). The
combination of GLN and a unique serial number is called a Serialized GLN (SGLN).
However, until the EAN.UCC community determines the appropriate way to extend
GLN, the serial number field is reserved and must not be used.

Global Returnable Asset Identifier (GRAI)
A returnable asset is a reusable package or transport equipment of a certain value.
Global Returnable Asset Identifier is (GRAI) is defined by the General EAN.UCC
Specifications [GenSpec5.0] for the unique identification of a returnable asset.

Global Individual Asset Identifier (GIAI)
The Global Individual Asset Identifier (GIAI) is defined by the General EAN.UCC
Specifications [GenSpec5.0]. Unlike the GTIN, the GIAI is intended for assignment to
individual objects. Global Individual Asset Identifier (GIAI) uniquely identifies an entity
that is part of the fixed inventory of a company. The GIAI identifies any fixed asset of
an organization.

RFID EPC Network
The RFID EPC network identifies, tracks, and locates assets. Physical objects are
identified by a unique RFID enabled EPC.

Oracle Database Tag Data Translation Schema
The Oracle Database Tag Data Translation Schema is closely related to the
EPCglobal TDT schema, however it is not exact. The Oracle Database TDT is shown
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="oracle.mgd.idcode"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tdt="oracle.mgd.idcode" elementFormDefault="qualified"

Chapter 25
Oracle Database Tag Data Translation Schema

25-26

 attributeFormDefault="unqualified" version="1.0">

 <xsd:simpleType name="InputFormatList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BINARY"/>
 <xsd:enumeration value="STRING"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="LevelTypeList">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="SchemeNameList">
 <xsd:restriction base="xsd:string">
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="ModeList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EXTRACT"/>
 <xsd:enumeration value="FORMAT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="CompactionMethodList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="32-bit"/>
 <xsd:enumeration value="16-bit"/>
 <xsd:enumeration value="8-bit"/>
 <xsd:enumeration value="7-bit"/>
 <xsd:enumeration value="6-bit"/>
 <xsd:enumeration value="5-bit"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="PadDirectionList">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="LEFT"/>
 <xsd:enumeration value="RIGHT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="Field">
 <xsd:attribute name="seq" type="xsd:integer" use="required"/>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="bitLength" type="xsd:integer"/>
 <xsd:attribute name="characterSet" type="xsd:string" use="required"/>
 <xsd:attribute name="compaction" type="tdt:CompactionMethodList"/>
 <xsd:attribute name="compression" type="xsd:string"/>
 <xsd:attribute name="padChar" type="xsd:string"/>
 <xsd:attribute name="padDir" type="tdt:PadDirectionList"/>
 <xsd:attribute name="decimalMinimum" type="xsd:long"/>
 <xsd:attribute name="decimalMaximum" type="xsd:long"/>
 <xsd:attribute name="length" type="xsd:integer"/>
 </xsd:complexType>

 <xsd:complexType name="Option">
 <xsd:sequence>
 <xsd:element name="field" type="tdt:Field" maxOccurs="unbounded"/>
 </xsd:sequence>

Chapter 25
Oracle Database Tag Data Translation Schema

25-27

 <xsd:attribute name="optionKey" type="xsd:string" use="required"/>
 <xsd:attribute name="pattern" type="xsd:string"/>
 <xsd:attribute name="grammar" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="Rule">
 <xsd:attribute name="type" type="tdt:ModeList" use="required"/>
 <xsd:attribute name="inputFormat" type="tdt:InputFormatList" use="required"/>
 <xsd:attribute name="seq" type="xsd:integer" use="required"/>
 <xsd:attribute name="newFieldName" type="xsd:string" use="required"/>
 <xsd:attribute name="characterSet" type="xsd:string" use="required"/>
 <xsd:attribute name="padChar" type="xsd:string"/>
 <xsd:attribute name="padDir" type="tdt:PadDirectionList"/>
 <xsd:attribute name="decimalMinimum" type="xsd:long"/>
 <xsd:attribute name="decimalMaximum" type="xsd:long"/>
 <xsd:attribute name="length" type="xsd:string"/>
 <xsd:attribute name="function" type="xsd:string" use="required"/>
 <xsd:attribute name="tableURI" type="xsd:string"/>
 <xsd:attribute name="tableParams" type="xsd:string"/>
 <xsd:attribute name="tableXPath" type="xsd:string"/>
 <xsd:attribute name="tableSQL" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="Level">
 <xsd:sequence>
 <xsd:element name="option" type="tdt:Option" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="rule" type="tdt:Rule" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="tdt:LevelTypeList" use="required"/>
 <xsd:attribute name="prefixMatch" type="xsd:string"/>
 <xsd:attribute name="requiredParsingParameters" type="xsd:string"/>
 <xsd:attribute name="requiredFormattingParameters" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="Scheme">
 <xsd:sequence>
 <xsd:element name="level" type="tdt:Level" minOccurs="4" maxOccurs="5"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="tdt:SchemeNameList" use="required"/>
 <xsd:attribute name="optionKey" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="TagDataTranslation">
 <xsd:sequence>
 <xsd:element name="scheme" type="tdt:Scheme" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 <xsd:attribute name="date" type="xsd:dateTime" use="required"/>
 </xsd:complexType>
 <xsd:element name="TagDataTranslation" type="tdt:TagDataTranslation"/>
</xsd:schema>

Chapter 25
Oracle Database Tag Data Translation Schema

25-28

26
Understanding Schema Object
Dependency

If the definition of object A references object B, then A depends on B. This chapter
explains dependencies among schema objects, and how Oracle Database
automatically tracks and manages these dependencies. Because of this automatic
dependency management, A never uses an obsolete version of B, and you almost
never have to explicitly recompile A after you change B.

Topics:

• Overview of Schema Object Dependency

• Querying Object Dependencies

• Object Status

• Invalidation of Dependent Objects

• Guidelines for Reducing Invalidation

• Object Revalidation

• Name Resolution in Schema Scope

• Local Dependency Management

• Remote Dependency Management

• Remote Procedure Call (RPC) Dependency Management

• Shared SQL Dependency Management

Overview of Schema Object Dependency
Some types of schema objects can reference other objects in their definitions. For
example, a view is defined by a query that references tables or other views, and the
body of a subprogram can include SQL statements that reference other objects. If the
definition of object A references object B, then A is a dependent object (of B) and B is
a referenced object (of A).

Example: Displaying Dependent and Referenced Object Types
Example 26-1 shows how to display the dependent and referenced object types in
your database (if you are logged in as DBA).

Example 26-1 Displaying Dependent and Referenced Object Types

Display dependent object types:

SELECT DISTINCT TYPE
FROM DBA_DEPENDENCIES
ORDER BY TYPE;

26-1

Result:

TYPE

DIMENSION
EVALUATION CONTXT
FUNCTION
INDEX
INDEXTYPE
JAVA CLASS
JAVA DATA
MATERIALIZED VIEW
OPERATOR
PACKAGE
PACKAGE BODY
PROCEDURE
RULE
RULE SET
SYNONYM
TABLE
TRIGGER
TYPE
TYPE BODY
UNDEFINED
VIEW
XML SCHEMA

22 rows selected.

Display referenced object types:

SELECT DISTINCT REFERENCED_TYPE
FROM DBA_DEPENDENCIES
ORDER BY REFERENCED_TYPE;

Result:

REFERENCED_TYPE

EVALUATION CONTXT
FUNCTION
INDEX
INDEXTYPE
JAVA CLASS
LIBRARY
OPERATOR
PACKAGE
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TYPE
VIEW
XML SCHEMA

14 rows selected.

If you alter the definition of a referenced object, dependent objects might not continue
to function without error, depending on the type of alteration. For example, if you drop
a table, no view based on the dropped table is usable.

Chapter 26
Overview of Schema Object Dependency

26-2

Example: Schema Object Change that Invalidates Some Dependents
As an example of a schema object change that invalidates some dependents but not
others, consider the two views in the following example, which are based on the
HR.EMPLOYEES table.

Example 26-2 creates two views from the EMPLOYEES table: SIXFIGURES, which selects
all columns in the table, and COMMISSIONED, which does not include the EMAIL column.
As the example shows, changing the EMAIL column invalidates SIXFIGURES, but not
COMMISSIONED.

Example 26-2 Schema Object Change That Invalidates Some Dependents

CREATE OR REPLACE VIEW sixfigures AS
SELECT * FROM employees
WHERE salary >= 100000;

CREATE OR REPLACE VIEW commissioned AS
SELECT first_name, last_name, commission_pct
FROM employees
WHERE commission_pct > 0.00;

SQL*Plus formatting command:

COLUMN object_name FORMAT A16

Query:

SELECT object_name, status
FROM user_objects
WHERE object_type = 'VIEW'
ORDER BY object_name;

Result:

OBJECT_NAME STATUS
---------------- -------
COMMISSIONED VALID
EMP_DETAILS_VIEW VALID
SIXFIGURES INVALID

3 rows selected.

Lengthen EMAIL column of EMPLOYEES table:

ALTER TABLE employees MODIFY email VARCHAR2(100);

Query:

SELECT object_name, status
FROM user_objects
WHERE object_type = 'VIEW'
ORDER BY object_name;

Result:

OBJECT_NAME STATUS
---------------- -------
COMMISSIONED VALID

Chapter 26
Overview of Schema Object Dependency

26-3

EMP_DETAILS_VIEW INVALID
SIXFIGURES VALID

Example: View That Depends on Multiple Objects
A view depends on every object referenced in its query. The view in Example 26-3
depends on the tables employees and departments.

Example 26-3 View that Depends on Multiple Objects

CREATE OR REPLACE VIEW v AS
 SELECT last_name, first_name, department_name
 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 ORDER BY last_name;

Note the following:

• CREATE statements automatically update all dependencies.

• Dynamic SQL statements do not create dependencies. For example, this
statement does not create a dependency on tab1:

EXECUTE IMMEDIATE 'SELECT * FROM tab1'

Querying Object Dependencies
The static data dictionary views USER_DEPENDENCIES, ALL_DEPENDENCIES, and
DBA_DEPENDENCIES describe dependencies between database objects.

The utldtree.sql SQL script creates the view DEPTREE, which contains information on
the object dependency tree, and the view IDEPTREE, a presorted, pretty-print version of
DEPTREE.

See Also:

Oracle Database Reference for more information about the DEPTREE,
IDEPTREE, and utldtree.sql script

Object Status
Every database object has a status value described in Table 26-1.

Table 26-1 Database Object Status

Status Meaning

Valid The object was successfully compiled, using the current definition in
the data dictionary.

Compiled with errors The most recent attempt to compile the object produced errors.

Invalid The object is marked invalid because an object that it references has
changed. (Only a dependent object can be invalid.)

Chapter 26
Querying Object Dependencies

26-4

Table 26-1 (Cont.) Database Object Status

Status Meaning

Unauthorized An access privilege on a referenced object was revoked. (Only a
dependent object can be unauthorized.)

Note:

The static data dictionary views USER_OBJECTS, ALL_OBJECTS, and
DBA_OBJECTS do not distinguish between "Compiled with errors," "Invalid,"
and "Unauthorized"—they describe all of these as INVALID.

Invalidation of Dependent Objects
If object A depends on object B, which depends on object C, then A is a direct
dependent of B, B is a direct dependent of C, and A is an indirect dependent of C.

Direct dependents are invalidated only by changes to the referenced object that affect
them (changes to the signature of the referenced object).

Indirect dependents can be invalidated by changes to the reference object that do not
affect them. If a change to C invalidates B, it invalidates A (and all other direct and
indirect dependents of B). This is called cascading invalidation.

With coarse-grained invalidation, a data definition language (DDL) statement that
changes a referenced object invalidates all of its dependents.

With fine-grained invalidation, a DDL statement that changes a referenced object
invalidates only dependents for which either of these statements is true:

• The dependent relies on the attribute of the referenced object that the DDL
statement changed.

• The compiled metadata of the dependent is no longer correct for the changed
referenced object.

For example, if view v selects columns c1 and c2 from table t, a DDL statement that
changes only column c3 of t does not invalidate v.

The DDL statement CREATE OR REPLACE object has no effect under these conditions:

• object is a PL/SQL object, the new PL/SQL source text is identical to the existing
PL/SQL source text, and the PL/SQL compilation parameter settings stored with
object are identical to those in the session environment.

• object is a synonym and the statement does not change the target object.

The operations in the left column of Table 26-2 cause fine-grained invalidation, except
in the cases in the right column. The cases in the right column, and all operations not
listed in Table 26-2, cause coarse-grained invalidation.

Chapter 26
Invalidation of Dependent Objects

26-5

Table 26-2 Operations that Cause Fine-Grained Invalidation

Operation Exceptions

ALTER TABLE table ADD column • Dependent object (except a view) uses
SELECT * on table.

• Dependent object uses table
%rowtype.

• Dependent object performs INSERT on
table without specifying column list.

• Dependent object references table in
query that contains a join.

• Dependent object references table in
query that references a PL/SQL
variable.

ALTER TABLE table {MODIFY|RENAME|DROP|SET
UNUSED} column

ALTER TABLE table DROP CONSTRAINT
not_null_constraint

• Dependent object directly references
column.

• Dependent object uses SELECT * on
table.

• Dependent object uses table
%ROWTYPE.

• Dependent object performs INSERT on
table without specifying column list.

• Dependent object is a trigger that
depends on an entire row (that is, it
does not specify a column in its
definition).

• Dependent object is a trigger that
depends on a column to the right of the
dropped column.

CREATE OR REPLACE VIEW view

Online Table Redefinition
(DBMS_REDEFINITION)

Column lists of new and old definitions
differ, and at least one of these is true:

• Dependent object references column
that is modified or dropped in new view
or table definition.

• Dependent object uses view%rowtype
or table%rowtype.

• Dependent object performs INSERT on
view or table without specifying column
list.

• New view definition introduces new
columns, and dependent object
references view or table in query that
contains a join.

• New view definition introduces new
columns, and dependent object
references view or table in query that
references a PL/SQL variable.

• Dependent object references view or
table in RELIES ON clause.

Chapter 26
Invalidation of Dependent Objects

26-6

Table 26-2 (Cont.) Operations that Cause Fine-Grained Invalidation

Operation Exceptions

CREATE OR REPLACE SYNONYM synonym • New and old synonym targets differ,
and one is not a table.

• Both old and new synonym targets are
tables, and the tables have different
column lists or different privilege grants.

• Both old and new synonym targets are
tables, and dependent object is a view
that references a column that
participates in a unique index on the old
target but not in a unique index on the
new target.

DROP INDEX • The index is a function-based index and
the dependent object is a trigger that
depends either on an entire row or on a
column that was added to table after a
function-based index was created.

• The index is a unique index, the
dependent object is a view, and the
view references a column participating
in the unique index.

CREATE OR REPLACE {PROCEDURE|FUNCTION} Call signature changes. Call signature is the
parameter list (order, names, and types of
parameters), return type, ACCESSIBLE BY
clause ("white list"), purity1, determinism,
parallelism, pipelining, and (if the procedure
or function is implemented in C or Java)
implementation properties.

Chapter 26
Invalidation of Dependent Objects

26-7

Table 26-2 (Cont.) Operations that Cause Fine-Grained Invalidation

Operation Exceptions

CREATE OR REPLACE PACKAGE • ACCESSIBLE BY clause ("white list")
changes.

• Dependent object references a dropped
or renamed package item.

• Dependent object references a
package procedure or function whose
call signature or entry-point number2,
changed.

If referenced procedure or function has
multiple overload candidates,
dependent object is invalidated if any
overload candidate's call signature or
entry point number changed, or if a
candidate was added or dropped.

• Dependent object references a
package cursor whose call signature,
rowtype, or entry point number
changed.

• Dependent object references a
package type or subtype whose
definition changed.

• Dependent object references a
package variable or constant whose
name, data type, initial value, or offset
number changed.

• Package purity1 changed.

1 Purity refers to a set of rules for preventing side effects (such as unexpected data changes) when
invoking PL/SQL functions within SQL queries. Package purity refers to the purity of the code in the
package initialization block.

2 The entry-point number of a procedure or function is determined by its location in the PL/SQL package
code. A procedure or function added to the end of a PL/SQL package is given a new entry-point number.

Note:

A dependent object that is invalidated by an operation in Table 26-2 appears
in the static data dictionary views *_OBJECTS and *_OBJECTS_AE only after an
attempt to reference it (either during compilation or execution) or after
invoking one of these subprograms:

• DBMS_UTILITY.COMPILE_SCHEMA

• Any UTL_RECOMP subprogram

Topics:

• Session State and Referenced Packages

• Security Authorization

Chapter 26
Invalidation of Dependent Objects

26-8

See Also:

• Oracle Database PL/SQL Language Reference for information about
PL/SQL compilation parameter settings

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_UTILITY.COMPILE_SCHEMA

• Oracle Database PL/SQL Packages and Types Reference for more
information about UTL_RECOMP subprogram

Session State and Referenced Packages
Each session that references a package construct has its own instantiation of that
package, including a persistent state of any public and private variables, cursors, and
constants. All of a session's package instantiations, including state, can be lost if any
of the session's instantiated packages are subsequently invalidated and revalidated.

See Also:

• Oracle Database PL/SQL Language Reference for information about
package instantiation

• Oracle Database PL/SQL Language Reference for information about
package state

Security Authorization
When a data manipulation language (DML) object or system privilege is granted to, or
revoked from, a user or PUBLIC, Oracle Database invalidates all the owner's
dependent objects, to verify that an owner of a dependent object continues to have the
necessary privileges for all referenced objects.

Guidelines for Reducing Invalidation
To reduce invalidation of dependent objects, follow these guidelines:

• Add Items to End of Package

• Reference Each Table Through a View

Add Items to End of Package
When adding items to a package, add them to the end of the package. This preserves
the entry point numbers of existing top-level package items, preventing their
invalidation.

For example, consider this package:

Chapter 26
Guidelines for Reducing Invalidation

26-9

CREATE OR REPLACE PACKAGE pkg1 AUTHID DEFINER IS
 FUNCTION get_var RETURN VARCHAR2;
END;
/

Adding an item to the end of pkg1, as follows, does not invalidate dependents that
reference the get_var function:

CREATE OR REPLACE PACKAGE pkg1 AUTHID DEFINER IS
 FUNCTION get_var RETURN VARCHAR2;
 PROCEDURE set_var (v VARCHAR2);
END;
/

Inserting an item between the get_var function and the set_var procedure, as follows,
invalidates dependents that reference the set_var function:

CREATE OR REPLACE PACKAGE pkg1 AUTHID DEFINER IS
 FUNCTION get_var RETURN VARCHAR2;
 PROCEDURE assert_var (v VARCHAR2);
 PROCEDURE set_var (v VARCHAR2);
END;
/

Reference Each Table Through a View
Reference tables indirectly, using views, enabling you to:

• Add columns to the table without invalidating dependent views or dependent
PL/SQL objects

• Modify or delete columns not referenced by the view without invalidating
dependent objects

The statement CREATE OR REPLACE VIEW does not invalidate an existing view or its
dependents if the new ROWTYPE matches the old ROWTYPE.

Object Revalidation
An object that is not valid when it is referenced must be validated before it can be
used. Validation occurs automatically when an object is referenced; it does not require
explicit user action.

If an object is not valid, its status is either compiled with errors, unauthorized, or
invalid. For definitions of these terms, see Table 26-1.

Topics:

• Revalidation of Objects that Compiled with Errors

• Revalidation of Unauthorized Objects

• Revalidation of Invalid SQL Objects

• Revalidation of Invalid PL/SQL Objects

Chapter 26
Object Revalidation

26-10

Revalidation of Objects that Compiled with Errors
The compiler cannot automatically revalidate an object that compiled with errors. The
compiler recompiles the object, and if it recompiles without errors, it is revalidated;
otherwise, it remains invalid.

Revalidation of Unauthorized Objects
The compiler checks whether the unauthorized object has access privileges to all of its
referenced objects. If so, the compiler revalidates the unauthorized object without
recompiling it. If not, the compiler issues appropriate error messages.

Revalidation of Invalid SQL Objects
The SQL compiler recompiles the invalid object. If the object recompiles without errors,
it is revalidated; otherwise, it remains invalid.

Revalidation of Invalid PL/SQL Objects
For an invalid PL/SQL program unit (procedure, function, or package), the PL/SQL
compiler checks whether any referenced object changed in a way that affects the
invalid object. If so, the compiler recompiles the invalid object. If the object recompiles
without errors, it is revalidated; otherwise, it remains invalid. If not, the compiler
revalidates the invalid object without recompiling it.

Name Resolution in Schema Scope
Object names referenced in SQL statements have one or more pieces. Pieces are
separated by periods—for example, hr.employees.department_id has three pieces.

Oracle Database uses the following procedure to try to resolve an object name.

Note:

For the procedure to succeed, all pieces of the object name must be visible
in the current edition.

1. Try to qualify the first piece of the object name.

If the object name has only one piece, then that piece is the first piece. Otherwise,
the first piece is the piece to the left of the leftmost period; for example, in
hr.employees.department_id, the first piece is hr.

The procedure for trying to qualify the first piece is:

a. If the object name is a table name that appears in the FROM clause of a SELECT
statement, and the object name has multiple pieces, go to step d. Otherwise,
go to step b.

Search the current schema for an object whose name matches the first piece.

If found, go to step 2. Otherwise, go to step c.

Chapter 26
Name Resolution in Schema Scope

26-11

b. Search for a public synonym that matches the first piece.

If found, go to step 2. Otherwise, go to step d.

c. Search for a schema whose name matches the first piece.

If found, and if the object name has a second piece, go to step e. Otherwise,
return an error—the object name cannot be qualified.

d. Search the schema found at step d for a table or SQL function whose name
matches the second piece of the object name.

If found, go to step 2. Otherwise, return an error—the object name cannot be
qualified.

Note:

A SQL function found at this step has been redefined by the schema
found at step d.

2. A schema object has been qualified. Any remaining pieces of the object name
must match a valid part of this schema object.

For example, if the object name is hr.employees.department_id, hr is qualified as
a schema. If employees is qualified as a table, department_id must correspond to
a column of that table. If employees is qualified as a package, department_id must
correspond to a public constant, variable, procedure, or function of that package.

Because of how Oracle Database resolves references, an object can depend on the
nonexistence of other objects. This situation occurs when the dependent object uses a
reference that would be interpreted differently if another object were present.

See Also:

• Oracle Database PL/SQL Language Reference for information about
how name resolution differs in SQL and PL/SQL

• Oracle Database Administrator's Guide for information about name
resolution in a distributed database system

• Name Resolution for Editioned and Noneditioned Objects

Local Dependency Management
Local dependency management occurs when Oracle Database manages
dependencies among the objects in a single database. For example, a statement in a
procedure can reference a table in the same database.

Remote Dependency Management
Remote dependency management occurs when Oracle Database manages
dependencies in distributed environments across a network. For example, an Oracle

Chapter 26
Local Dependency Management

26-12

Forms trigger can depend on a schema object in the database. In a distributed
database, a local view can reference a remote table.

Oracle Database also manages distributed database dependencies. For example, an
Oracle Forms application might contain a trigger that references a table. The database
system must account for dependencies among such objects. Oracle Database uses
different mechanisms to manage remote dependencies, depending on the objects
involved.

Topics:

• Dependencies Among Local and Remote Database Procedures

• Dependencies Among Other Remote Objects

• Dependencies of Applications

Dependencies Among Local and Remote Database Procedures
Dependencies among stored procedures (including functions, packages, and triggers)
in a distributed database system are managed using either time-stamp checking or
signature checking.

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE determines whether
time stamps or signatures govern remote dependencies.

See Also:

• Oracle Database PL/SQL Language Reference

• Time-Stamp Dependency Mode

• RPC-Signature Dependency Mode

Dependencies Among Other Remote Objects
Oracle Database does not manage dependencies among remote schema objects
other than local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that
references a remote table. Also assume that a local procedure includes a SQL
statement that references the same remote table. Later, the definition of the table is
altered.

Therefore, the local view and procedure are never invalidated, even if the view or
procedure is used after the table is altered, and even if the view or procedure now
returns errors when used. In this case, the view or procedure must be altered manually
so that errors are not returned. In such cases, lack of dependency management is
preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications
Code in database applications can reference objects in the connected database. For
example, Oracle Call Interface (OCI) and precompiler applications can submit

Chapter 26
Remote Dependency Management

26-13

anonymous PL/SQL blocks. Triggers in Oracle Forms applications can reference a
schema object.

Such applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment. Oracle
Database does not automatically track application dependencies.

See Also:

Manuals for your application development tools and your operating system
for more information about managing the remote dependencies within
database applications

Remote Procedure Call (RPC) Dependency Management
Remote procedure call (RPC) dependency management occurs when a local
stored procedure calls a remote procedure in a distributed database system. The
dynamic initialization parameter REMOTE_DEPENDENCIES_MODE controls the dependency
mode. The choice is either time-stamp dependency mode or RPC-signature
dependency mode.

Topics:

• Time-Stamp Dependency Mode

• RPC-Signature Dependency Mode

• Controlling Dependency Mode

Time-Stamp Dependency Mode
Whenever a procedure is compiled, its time stamp is recorded in the data dictionary.
The time stamp shows when the procedure was created, altered, or replaced.

A compiled procedure contains information about each remote procedure that it calls,
including the schema, package name, procedure name, and time stamp of the remote
procedure.

In time-stamp dependency mode, when a local stored procedure calls a remote
procedure, Oracle Database compares the time stamp that the local procedure has for
the remote procedure to the current time stamp of the remote procedure. If the two
time stamps match, both the local and remote procedures run. Neither is recompiled.

If the two time stamps do not match, the local procedure is invalidated and an error is
returned to the calling environment. All other local procedures that depend on the
remote procedure with the new time stamp are also invalidated.

Time stamp comparison occurs when a statement in the body of the local procedure
calls the remote procedure. Therefore, statements in the local procedure that precede
the invalid call might run successfully. Statements after the invalid call do not run. The
local procedure must be recompiled.

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-14

If DML statements precede the invalid call, they roll back only if they and the invalid
call are in the same PL/SQL block. For example, the UPDATE statement rolls back in
this code:

BEGIN

 UPDATE table SET ...
 invalid_proc;
 COMMIT;

END;

But the UPDATE statement does not roll back in this code:

UPDATE table SET ...
EXECUTE invalid_proc;
COMMIT;

The disadvantages of time-stamp dependency mode are:

• Dependent objects across the network are often recompiled unnecessarily,
degrading performance.

• If the client-side application uses PL/SQL, this mode can cause situations that
prevent the application from running on the client side.

An example of such an application is Oracle Forms. During installation, you must
recompile the client-side PL/SQL procedures that Oracle Forms uses at the client
site. Also, if a client-side procedure depends on a server procedure, and if the
server procedure changes or is automatically recompiled, you must recompile the
client-side PL/SQL procedure. However, no PL/SQL compiler is available on the
client. Therefore, the developer of the client application must distribute new
versions of the application to all customers.

RPC-Signature Dependency Mode
Oracle Database provides RPC signatures to handle remote dependencies. RPC
signatures do not affect local dependencies, because recompilation is always possible
in the local environment.

An RPC signature is associated with each compiled stored program unit. It identifies
the unit by these characteristics:

• Name

• Number of parameters

• Data type class of each parameter

• Mode of each parameter

• Data type class of return value (for a function)

An RPC signature changes only when at least one of the preceding characteristics
changes.

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-15

Note:

An RPC signature does not include DETERMINISTIC, PARALLEL_ENABLE, or
purity information. If these settings change for a function on remote system,
optimizations based on them are not automatically reconsidered. Therefore,
calling the remote function in a SQL statement or using it in a function-based
index might cause incorrect query results.

A compiled program unit contains the RPC signature of each remote procedure that it
calls (and the schema, package name, procedure name, and time stamp of the remote
procedure).

In RPC-signature dependency mode, when a local program unit calls a subprogram in
a remote program unit, the database ignores time-stamp mismatches and compares
the RPC signature that the local unit has for the remote subprogram to the current
RPC signature of the remote subprogram. If the RPC signatures match, the call
succeeds; otherwise, the database returns an error to the local unit, and the local unit
is invalidated.

For example, suppose that this procedure, get_emp_name, is stored on a server in
Boston (BOSTON_SERVER):

CREATE OR REPLACE PROCEDURE get_emp_name (
 emp_number IN NUMBER,
 hiredate OUT VARCHAR2,
 emp_name OUT VARCHAR2) AUTHID DEFINER AS
BEGIN
 SELECT last_name, TO_CHAR(hire_date, 'DD-MON-YY')
 INTO emp_name, hiredate
 FROM employees
 WHERE employee_id = emp_number;
END;
/

When get_emp_name is compiled on BOSTON_SERVER, Oracle Database records both its
RPC signature and its time stamp.

Suppose that this PL/SQL procedure, print_name, which calls get_emp_name, is on a
server in California:

CREATE OR REPLACE PROCEDURE print_ename (emp_number IN NUMBER) AUTHID DEFINER AS
 hiredate VARCHAR2(12);
 ename VARCHAR2(10);
BEGIN
 get_emp_name@BOSTON_SERVER(emp_number, hiredate, ename);
 dbms_output.put_line(ename);
 dbms_output.put_line(hiredate);
END;
/

When print_name is compiled on the California server, the database connects to the
Boston server, sends the RPC signature of get_emp_name to the California server, and
records the RPC signature of get_emp_name in the compiled state of print_ename.

At runtime, when print_name calls get_emp_name, the database sends the RPC
signature of get_emp_name that was recorded in the compiled state of print_ename to

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-16

the Boston server. If the recorded RPC signature matches the current RPC signature
of get_emp_name on the Boston server, the call succeeds; otherwise, the database
returns an error to print_name, which is invalidated.

Topics:

• Changing Names and Default Values of Parameters

• Changing Specification of Parameter Mode IN

• Changing Subprogram Body

• Changing Data Type Classes of Parameters

• Changing Package Types

Changing Names and Default Values of Parameters
Changing the name or default value of a subprogram parameter does not change the
RPC signature of the subprogram. For example, procedure P1 has the same RPC
signature in these two examples:

PROCEDURE P1 (Param1 IN NUMBER := 100);
PROCEDURE P1 (Param2 IN NUMBER := 200);

However, if your application requires that callers get the new default value, you must
recompile the called procedure.

Changing Specification of Parameter Mode IN
Because the subprogram parameter mode IN is the default, you can specify it either
implicitly or explicitly. Changing its specification from implicit to explicit, or the reverse,
does not change the RPC signature of the subprogram. For example, procedure P1
has the same RPC signature in these two examples:

PROCEDURE P1 (Param1 NUMBER); -- implicit specification
PROCEDURE P1 (Param1 IN NUMBER); -- explicit specification

Changing Subprogram Body
Changing the body of a subprogram does not change the RPC signature of the
subprogram.

Example 26-4 changes only the body of the procedure get_hire_date; therefore, it
does not change the RPC signature of get_hire_date.

Example 26-4 Changing Body of Procedure get_hire_date

CREATE OR REPLACE PROCEDURE get_hire_date (
 emp_number IN NUMBER,
 hiredate OUT VARCHAR2,
 emp_name OUT VARCHAR2) AUTHID DEFINER AS
BEGIN
 SELECT last_name, TO_CHAR(hire_date, 'DD-MON-YY')
 INTO emp_name, hiredate
 FROM employees
 WHERE employee_id = emp_number;
END;
/

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-17

CREATE OR REPLACE PROCEDURE get_hire_date (
 emp_number IN NUMBER,
 hiredate OUT VARCHAR2,
 emp_name OUT VARCHAR2) AUTHID DEFINER AS
BEGIN
 -- Change date format model
 SELECT last_name, TO_CHAR(hire_date, 'DD/MON/YYYY')
 INTO emp_name, hiredate
 FROM employees
 WHERE employee_id = emp_number;
END;
/

Changing Data Type Classes of Parameters
Changing the data type of a parameter to another data type in the same class does
not change the RPC signature, but changing the data type to a data type in another
class does.

Table 26-3 lists the data type classes and the data types that comprise them. Data
types not listed in Table 26-3, such as NCHAR, do not belong to a data type class.
Changing their type always changes the RPC signature.

Table 26-3 Data Type Classes

Data Type Class Data Types in Class

Character
CHAR
CHARACTER

VARCHAR VARCHAR
VARCHAR2
STRING
LONG
ROWID

Raw
RAW
LONG RAW

Integer
BINARY_INTEGER
PLS_INTEGER
SIMPLE_INTEGER
BOOLEAN
NATURAL
NATURALN
POSITIVE
POSITIVEN

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-18

Table 26-3 (Cont.) Data Type Classes

Data Type Class Data Types in Class

Number
NUMBER
INT
INTEGER
SMALLINT
DEC
DECIMAL
REAL
FLOAT
NUMERIC
DOUBLE PRECISION

Datetime
DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Example 26-5 changes the data type of the parameter hiredate from VARCHAR2 to
DATE. VARCHAR2 and DATE are not in the same data type class, so the RPC signature of
the procedure get_hire_date changes.

Example 26-5 Changing Data Type Class of get_hire_date Parameter

CREATE OR REPLACE PROCEDURE get_hire_date (
 emp_number IN NUMBER,
 hiredate OUT DATE,
 emp_name OUT VARCHAR2) AS
BEGIN
 SELECT last_name, TO_CHAR(hire_date, 'DD/MON/YYYY')
 INTO emp_name, hiredate
 FROM employees
 WHERE employee_id = emp_number;
END;
/

Changing Package Types
Changing the name of a package type, or the names of its internal components, does
not change the RPC signature of the package.

Example 26-6 defines a record type, emp_data_type, inside the package emp_package.
Next, it changes the names of the record fields, but not their types. Finally, it changes
the name of the type, but not its characteristics. The RPC signature of the package
does not change.

Example 26-6 Changing Names of Fields in Package Record Type

CREATE OR REPLACE PACKAGE emp_package AUTHID DEFINER AS
 TYPE emp_data_type IS RECORD (
 emp_number NUMBER,
 hiredate VARCHAR2(12),
 emp_name VARCHAR2(10)

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-19

);
 PROCEDURE get_emp_data (
 emp_data IN OUT emp_data_type
);
END;
/

CREATE OR REPLACE PACKAGE emp_package AUTHID DEFINER AS
 TYPE emp_data_type IS RECORD (
 emp_num NUMBER,
 hire_dat VARCHAR2(12),
 empname VARCHAR2(10)
);
 PROCEDURE get_emp_data (
 emp_data IN OUT emp_data_type
);
END;
/

CREATE OR REPLACE PACKAGE emp_package AUTHID DEFINER AS
 TYPE emp_data_record_type IS RECORD (
 emp_num NUMBER,
 hire_dat VARCHAR2(12),
 empname VARCHAR2(10)
);
 PROCEDURE get_emp_data (
 emp_data IN OUT emp_data_record_type
);
END;
/

Controlling Dependency Mode
The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE controls the
dependency mode. If the initialization parameter file contains this specification, then
only time stamps are used to resolve dependencies (if this is not explicitly overridden
dynamically):

REMOTE_DEPENDENCIES_MODE = TIMESTAMP

If the initialization parameter file contains this parameter specification, then RPC
signatures are used to resolve dependencies (if this not explicitly overridden
dynamically):

REMOTE_DEPENDENCIES_MODE = SIGNATURE

You can alter the mode dynamically by using the DDL statements. For example, this
example alters the dependency mode for the current session:

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE = {SIGNATURE | TIMESTAMP}

This example alters the dependency mode systemwide after startup:

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE = {SIGNATURE | TIMESTAMP}

If the REMOTE_DEPENDENCIES_MODE parameter is not specified, either in the init.ora
parameter file or using the ALTER SESSION or ALTER SYSTEM statements, TIMESTAMP is
the default value. Therefore, unless you explicitly use the REMOTE_DEPENDENCIES_MODE
parameter, or the appropriate DDL statement, your server is operating using the time-
stamp dependency mode.

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-20

When you use REMOTE_DEPENDENCIES_MODE=SIGNATURE:

• If you change the initial value of a parameter of a remote procedure, then the local
procedure calling the remote procedure is not invalidated. If the call to the remote
procedure does not supply the parameter, then the initial value is used. In this
case, because invalidation and recompilation does not automatically occur, the old
initial value is used. To see the new initial values, recompile the calling procedure
manually.

• If you add an overloaded procedure in a package (a procedure with the same
name as an existing one), then local procedures that call the remote procedure are
not invalidated. If it turns out that this overloading results in a rebinding of existing
calls from the local procedure under the time-stamp mode, then this rebinding
does not happen under the RPC signature mode, because the local procedure
does not get invalidated. You must recompile the local procedure manually to
achieve the rebinding.

• If the types of parameters of an existing package procedure are changed so that
the new types have the same shape as the old ones, then the local calling
procedure is not invalidated or recompiled automatically. You must recompile the
calling procedure manually to get the semantics of the new type.

Topics:

• Dependency Resolution

• Suggestions for Managing Dependencies

Dependency Resolution
When REMOTE_DEPENDENCIES_MODE = TIMESTAMP (the default value), dependencies
among program units are handled by comparing time stamps at runtime. If the time
stamp of a called remote procedure does not match the time stamp of the called
procedure, then the calling (dependent) unit is invalidated and must be recompiled. In
this case, if there is no local PL/SQL compiler, then the calling application cannot
proceed.

In the time-stamp dependency mode, RPC signatures are not compared. If there is a
local PL/SQL compiler, then recompilation happens automatically when the calling
procedure is run.

When REMOTE_DEPENDENCIES_MODE = SIGNATURE, the recorded time stamp in the
calling unit is first compared to the current time stamp in the called remote unit. If they
match, then the call proceeds. If the time stamps do not match, then the RPC
signature of the called remote subprogram, as recorded in the calling subprogram, is
compared with the current RPC signature of the called subprogram. If they do not
match (using the criteria described in Changing Data Type Classes of Parameters),
then an error is returned to the calling session.

Suggestions for Managing Dependencies
Follow these guidelines for setting the REMOTE_DEPENDENCIES_MODE parameter:

• Server-side PL/SQL users can set the parameter to TIMESTAMP (or let it default to
that) to get the time-stamp dependency mode.

• Server-side PL/SQL users can use RPC-signature dependency mode if they have
a distributed system and they want to avoid possible unnecessary recompilations.

Chapter 26
Remote Procedure Call (RPC) Dependency Management

26-21

• Client-side PL/SQL users must set the parameter to SIGNATURE. This allows:

– Installation of applications at client sites without recompiling procedures.

– Ability to upgrade the server, without encountering time stamp mismatches.

• When using RPC signature mode on the server side, add procedures to the end of
the procedure (or function) declarations in a package specification. Adding a
procedure in the middle of the list of declarations can cause unnecessary
invalidation and recompilation of dependent procedures.

Shared SQL Dependency Management
In addition to managing dependencies among schema objects, Oracle Database also
manages dependencies of each shared SQL area in the shared pool. If a table, view,
synonym, or sequence is created, altered, or dropped, or a procedure or package
specification is recompiled, all dependent shared SQL areas are invalidated. At a
subsequent execution of the cursor that corresponds to an invalidated shared SQL
area, Oracle Database reparses the SQL statement to regenerate the shared SQL
area.

Chapter 26
Shared SQL Dependency Management

26-22

27
Using Edition-Based Redefinition

Edition-based redefinition (EBR) lets you upgrade the database component of an
application while it is in use, thereby minimizing or eliminating downtime.

Topics:

• Overview of Edition-Based Redefinition

• Editions

• Editioning Views

• Crossedition Triggers

• Displaying Information About EBR Features

• Using EBR to Upgrade an Application

Overview of Edition-Based Redefinition
To upgrade an application while it is in use, you must copy the database objects that
comprise the database component of the application and redefine the copied objects
in isolation. Your changes do not affect users of the application—they can continue to
run the unchanged application. When you are sure that your changes are correct, you
make the upgraded application available to all users.

Using EBR means using one or more of its component features. The features you use,
and the downtime, depend on these factors:

• What kind of database objects you redefine

• How available the database objects must be to users while you are redefining
them

• Whether you make the upgraded application available to some users while others
continue to use the older version of the application

You always use the edition feature to copy the database objects and redefine the
copied objects in isolation; that is why the procedure that this chapter describes for
upgrading applications online is called edition-based redefinition (EBR).

If every object that you will redefine is editioned (defined in Editioned and
Noneditioned Objects), then the edition is the only feature you use.

Tables are not editioned objects. If you change the structure of one or more tables,
then you also use the editioning view feature.

If other users must be able to change data in the tables while you are changing their
structure, then you also use forward crossedition triggers. If the pre- and post-
upgrade applications will be in ordinary use at the same time (hot rollover), then you
also use reverse crossedition triggers. Crossedition triggers are not a permanent
part of the application—you drop them when all users are using the post-upgrade
application.

27-1

An EBR operation that you can perform on an application in one edition while the
application runs in other editions is a live operation.

Editions
Editions are nonschema objects; as such, they do not have owners. Editions are
created in a single namespace, and multiple editions can coexist in the database.

The database must have at least one edition. Every newly created or upgraded Oracle
Database starts with one edition named ora$base.

Note:

In a multitenant container database (CDB), the scope of an edition, editioning
view, or crossedition trigger is the pluggable database (PDB) in which the
feature was created. In a non-CDB, the scope of each of these features is
the entire database.

Topics:

• Editioned and Noneditioned Objects

• Creating an Edition

• Editioned Objects and Copy-on-Change

• Making an Edition Available to Some Users

• Making an Edition Available to All Users

• Current Edition and Session Edition

• Retiring an Edition

• Dropping an Edition

See Also:

Oracle Database Administrator's Guide for information about CDBs and
PDBs

Editioned and Noneditioned Objects

Note:

The terms user and schema are synonymous. The owner of a schema
object is the user/schema that owns it.

Chapter 27
Editions

27-2

An editioned object has both a schema object type that is editionable in its owner and
the EDITIONABLE property. An edition has its own copy of an editioned object, and only
that copy is visible to the edition.

A noneditioned object has either a schema object type that is noneditionable in its
owner or the NONEDITIONABLE property. An edition cannot have its own copy of a
noneditioned object. A noneditioned object is visible to all editions.

An object is potentially editioned if enabling editions for its type in its owner would
make it an editioned object.

An editioned object belongs to both a schema and an edition, and is uniquely identified
by its OBJECT_NAME, OWNER, and EDITION_NAME. A noneditioned object belongs only to a
schema, and is uniquely identified by its OBJECT_NAME and OWNER—its EDITION_NAME is
NULL. (Strictly speaking, the NAMESPACE of an object is also required to uniquely identify
the object, but you can ignore this fact, because any statement that references the
object implicitly or explicitly specifies its NAMESPACE.)

You can display the OBJECT_NAME, OWNER, and EDITION_NAME of an object with the static
data dictionary views *_OBJECTS and *_OBJECTS_AE.

You need not know the EDITION_NAME of an object to refer to that object (and if you do
know it, you cannot specify it). The context of the reference implicitly specifies the
edition. If the context is a data definition language (DDL) statement, then the edition is
the current edition of the session that issued the command. If the context is source
code, then the edition is the one in which the object is actual.

Topics:

• Name Resolution for Editioned and Noneditioned Objects

• Noneditioned Objects That Can Depend on Editioned Objects

• Editionable and Noneditionable Schema Object Types

• Enabling Editions for a User

• EDITIONABLE and NONEDITIONABLE Properties

• Rules for Editioned Objects

See Also:

• Enabling Editions for a User

• Current Edition and Session Edition

• Editioned Objects and Copy-on-Change

Name Resolution for Editioned and Noneditioned Objects
To try to resolve an object name, Oracle Database uses the procedure described in
Name Resolution in Schema Scope. For the procedure to succeed, all pieces of the
object name must be visible in the current edition.

During name resolution for an editioned object, both editioned objects in the current
edition and noneditioned objects are visible.

Chapter 27
Editions

27-3

During name resolution for a noneditioned object, only noneditioned objects are
visible. Therefore, if you try to create a noneditioned object that references an
editioned object (except in the cases described in Noneditioned Objects That Can
Depend on Editioned Objects), the creation fails with an error.

When you change a referenced editioned object, all of its dependents (direct and
indirect) become invalid. When an invalid object is referenced, the database tries to
validate that object.

See Also:

• Current Edition and Session Edition

• Understanding Schema Object Dependency, for general information
about dependencies among schema objects, including invalidation,
revalidation, and name resolution

Noneditioned Objects That Can Depend on Editioned Objects
Ordinarily, a noneditioned object cannot depend on an editioned object, because the
editioned object is invisible during name resolution. However, if a noneditioned object
specifies an edition to search for editioned objects during name resolution—an
evaluation edition—then it can depend on editioned objects. To specify an evaluation
edition, a noneditioned object must be one of the following:

• Materialized view

• Virtual column

Topics:

• Materialized Views

• Virtual Columns

Materialized Views
A materialized view is a noneditioned object that can specify an evaluation edition,
thereby enabling it to depend on editioned objects. A materialized view that depends
on editioned objects may be eligible for query rewrite only in a specific range of
editions, which you specify in the query_rewrite_clause.

The simplified syntax for creating a materialized view is:

CREATE MATERIALIZED VIEW [schema.] materialized_view other_clauses
[evaluation_edition_clause] [query_rewrite_clause] AS subquery

Where evaluation_edition_clause is:

EVALUATE USING { CURRENT EDITION | EDITION edition | NULL EDITION }

And query_rewrite_clause is:

{ DISABLE | ENABLE } QUERY REWRITE
[unusable_before_clause] [unusable_beginning_clause]

Chapter 27
Editions

27-4

Where unusable_before_clause is:

UNUSABLE BEFORE { CURRENT EDITION | EDITION edition }

And unusable_beginning_clause is:

UNUSABLE BEGINNING WITH { CURRENT EDITION | EDITION edition | NULL EDITION }

CURRENT EDITION is the edition in which the DDL statement runs. Specifying NULL
EDITION is equivalent to omitting the clause that includes it. If you omit
evaluation_edition_clause, then editioned objects are invisible during name
resolution.

To disable, enable, or change the evaluation edition or unusable editions, use the
ALTER MATERIALIZED VIEW statement.

To display the evaluation editions and unusable editions of materialized views, use the
static data dictionary views *_MVIEWS .

Dropping the evaluation edition invalidates the materialized view. Dropping an edition
where the materialized view is usable does not invalidate the materialized view.

See Also:

Oracle Database SQL Language Reference for more information about
CREATE MATERIALIZED VIEW statement

Oracle Database SQL Language Reference

Oracle Database Reference

Virtual Columns
A virtual column (also called a "generated column") does not consume disk space. The
database generates the values in a virtual column on demand by evaluating an
expression. The expression can invoke PL/SQL functions (which can be editioned
objects). A virtual column can specify an evaluation edition, thereby enabling it to
depend on an expression that invokes editioned PL/SQL functions.

The syntax for creating a virtual column is:

column [datatype] [GENERATED ALWAYS] AS (column_expression)
[VIRTUAL] [evaluation_edition_clause]
[unusable_before_clause] [unusable_beginning_clause]
[inline_constraint]...

Where evaluation_edition_clause is as described in Materialized Views.

The database does not maintain dependencies on the functions that a virtual column
invokes. Therefore, if you drop the evaluation edition, or if a virtual column depends on
a noneditioned function and the function becomes editioned, then any of the following
can raise an exception:

• Trying to query the virtual column

• Trying to update a row that includes the virtual column

• A trigger that tries to access the virtual column

Chapter 27
Editions

27-5

To display the evaluation editions of virtual columns, use the static data dictionary
views *_TAB_COLS .

See Also:

• Oracle Database SQL Language Reference for the complete syntax and
semantics of the virtual column definition

• Oracle Database Reference for more information about ALL_TAB_COLS

Editionable and Noneditionable Schema Object Types
Before a schema object type can be editionable in a schema, it must be editionable in
the database. The schema object types that are editionable in the database are
determined by the value of the COMPATIBLE initialization parameter and are shown by
the dynamic performance view V$EDITIONABLE_TYPES .

If the value of COMPATIBLE is 12 or greater, then these schema object types are
editionable in the database:

• SYNONYM

• VIEW

• SQL translation profile

• All PL/SQL object types:

– FUNCTION

– LIBRARY

– PACKAGE and PACKAGE BODY

– PROCEDURE

– TRIGGER

– TYPE and TYPE BODY

All other schema object types are noneditionable in the database and in every
schema, and objects of that type are always noneditioned. TABLE is an example of a
noneditionable schema object type. Tables are always noneditioned objects.

If a schema object type is editionable in the database, then it can be editionable in
schemas.

See Also:

• Oracle Database Administrator's Guide for more information about
COMPATIBLE initialization parameter

• Oracle Database Reference for more information about
V$EDITIONABLE_TYPES

• Enabling Editions for a User

Chapter 27
Editions

27-6

Enabling Editions for a User

Note:

• Enabling editions is not a live operation.

• When a database is upgraded from Release 11.2 to Release 12.1, users
who were enabled for editions in the pre-upgrade database are enabled
for editions in the post-upgrade database and the default schema object
types are editionable in their schemas. The default schema object types
are displayed by the static data dictionary view DBA_EDITIONED_TYPES .
Users who were not enabled for editions in the pre-upgrade database
are not enabled for editions in the post-upgrade database and no
schema object types are editionable in their schemas.

• To see which users already have editions enabled, see the
EDITIONS_ENABLED column of the static data dictionary view DBA_USERS or
USER_USERS .

To enable editions for a user, use the ENABLE EDITIONS clause of either the CREATE
USER or ALTER USER statement.

With the ALTER USER statement, you can specify the schema object types that become
editionable in the schema:

ALTER USER user ENABLE EDITIONS [FOR type [, type]...]

Any type that you omit from the FOR list is noneditionable in the schema, despite being
editionable in the database. (If a type is noneditionable in the database, then it is
always noneditionable in every schema.)

If you omit the FOR list from the ALTER USER statement, or use the CREATE USER
statement to enable editions for a user, then the types that become editionable in the
schema are those shown for that schema by the static data dictionary view
DBA_EDITIONED_TYPES (described in Oracle Database Reference).

Enabling editions is retroactive and irreversible. When you enable editions for a user,
that user is editions-enabled forever. When you enable editions for a schema object
type in a schema, that type is editions-enabled forever in that schema. Every object
that an editions-enabled user owns or will own becomes an editioned object if its type
is editionable in the schema and it has the EDITIONABLE property. For information
about the EDITIONABLE property, see EDITIONABLE and NONEDITIONABLE
Properties.

Topics:

• Potentially Editioned Objects with Noneditioned Dependents

• Users Who Cannot Have Editions Enabled

Chapter 27
Editions

27-7

See Also:

Oracle Database SQL Language Reference for the complete syntax and
semantics of the CREATE USERand ALTER USER statements

Oracle Database Reference for more information about
DBA_EDITIONED_TYPES

Oracle Database Reference for more information about DBA_USERS

Oracle Database Reference for more information about USER_USERS

Potentially Editioned Objects with Noneditioned Dependents
If a potentially editioned object has a noneditioned dependent, then you can enable
editions for the owner of the potentially editioned object only if one of the following is
true:

• Enabling editions for the owner of the potentially editioned object would cause the
noneditioned dependent to become editioned.

• You specify FORCE:

ALTER USER user ENABLE EDITIONS [FOR type [, type]...] FORCE;

The preceding statement enables editions for the specified user and invalidates
noneditioned dependents of editioned objects.

Note:

If the preceding statement invalidates a noneditioned dependent object that
contains an Abstract Data Type (ADT), and you drop the edition that contains
the editioned object on which the invalidated object depends, then you
cannot recompile the invalidated object. Therefore, the object remains
invalid.

FORCE is useful in the following situation: You must editions-enable users A and B. User
A owns potentially editioned objects a1 and a2. User B owns potentially editioned
objects b1 and b2. Object a1 depends on object b1. Object b2 depends on object a2.
Editions-enable users A and B like this:

1. Using FORCE, enable editions for user A:

ALTER USER A ENABLE EDITIONS FORCE;

Now a1 and a2 are editioned objects, and noneditioned object b2 (which depends
on a2) is invalid.

2. Enable editions for user B:

ALTER USER B ENABLE EDITIONS;

Now b1 and b2 are editioned objects; however, b2 is still invalid.

Chapter 27
Editions

27-8

3. Recompile b2, using the appropriate ALTER statement with COMPILE. For a PL/SQL
object, also specify REUSE SETTINGS.

For example, if b2 is a procedure, use this statement:

ALTER PROCEDURE b2 COMPILE REUSE SETTINGS

FORCE is unnecessary in the following situation: You must editions-enable user C, who
owns potentially editioned object c1. Object c1 has dependent d1, a potentially
editioned object owned by user D. User D owns no potentially editioned objects that
have dependents owned by C. If you editions-enable D first, making d1 an editioned
object, then you can editions-enable C without violating the rule that a noneditioned
object cannot depend on an editioned object.

See Also:

• Oracle Database PL/SQL Language Reference for information about the
ALTER statements for PL/SQL objects

• Oracle Database SQL Language Reference for information about the
ALTER statements for SQL objects

• Invalidation of Dependent Objects for information about invalidation of
dependent objects

Users Who Cannot Have Editions Enabled
You cannot enable editions for these users:

• Oracle-maintained users

For an Oracle-maintained user, the value of the column ORACLE_MAINTAINED is
Y in the *_USERS views.

• Common users in a CDB

• A user who owns one or more evolved ADTs.

Trying to do so causes error ORA-38820. If an ADT has no table dependents, you
can use the ALTER TYPE RESET statement to reset its version to 1, so that it is no
longer considered to be evolved. (Resetting the version of an ADT to 1 invalidates
its dependents.)

See Also:

• Oracle Database Administrator's Guide for information about common
users in a CDB

• Oracle Database PL/SQL Language Reference for the syntax of the
ALTER TYPE RESET statement

Chapter 27
Editions

27-9

EDITIONABLE and NONEDITIONABLE Properties

Note:

When a database is upgraded from Release 11.2 to Release 12.1, objects in
user-created schemas get the EDITIONABLE property and public synonyms
get the NONEDITIONABLE property.

The CREATE and ALTER statements for the schema object types that are editionable in
the database let you specify that the object you are creating or altering is EDITIONABLE
or NONEDITIONABLE.

The DBMS_SQL_TRANSLATOR.CREATE_PROFILE procedure lets you specify that the SQL
translation profile that you are creating is EDITIONABLE or NONEDITIONABLE.

To see which objects are EDITIONABLE, see the EDITIONABLE column of the static data
dictionary view *_OBJECTS or *_OBJECTS_AE .

Topics:

• Creating New EDITIONABLE and NONEDITIONABLE Objects

• Replacing or Altering EDITIONABLE and NONEDITIONABLE Objects

See Also:

• Oracle Database PL/SQL Language Reference for the syntax and
semantics of the CREATE and ALTER statements for PL/SQL schema
objects

• Oracle Database SQL Language Reference for the syntax and
semantics of the CREATE and ALTER statements for SQL schema objects

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQL_TRANSLATOR.CREATE_PROFILE procedure

• Oracle Database Reference for more information about *_OBJECTS

• Oracle Database Reference for more information about *_OBJECTS_AE

Creating New EDITIONABLE and NONEDITIONABLE Objects
When you create a new schema object whose type is editionable in the database, you
can specify the property EDITIONABLE or NONEDITIONABLE. If you omit the property,
then the object is EDITIONABLE by default unless it is one of the following:

• PUBLIC SYNONYM, which is NONEDITIONABLE by default

• PACKAGE BODY, which inherits the property of the package specification

• TYPE BODY, which inherits the property of the type specification

Chapter 27
Editions

27-10

For PACKAGE BODY or TYPE BODY, if you specify a property, then it must match the
property of the corresponding package or type specification.

When you create an EDITIONABLE object of a type that is editionable in its schema, the
new object is an editioned object that is visible only in the edition that is current when
the object is created. Creating an editioned object is a live operation with respect to
the editions in which the new object is invisible.

When you create either an object with the NONEDITIONABLE property or an object
whose type is noneditionable in its schema, the new object is a noneditioned object,
which is visible to all editions.

Suppose that in the current edition, your schema has no schema object named obj,
but in another edition, your schema has an editioned object named obj. You can
create an object named obj in your schema in the current edition, but it must be an
editioned object (that is, uniquely identified by its OBJECT_NAME, OWNER, and
EDITION_NAME). The type of the new object (which can be different from the type of the
existing editioned object with the same name) must be editionable in your schema and
the new object must have the EDITIONABLE property.

See Also:

• Current Edition and Session Edition for information about the current
edition

• Example: Dropping an Editioned Object

• Example: Creating an Object with the Name of a Dropped Inherited
Object

Replacing or Altering EDITIONABLE and NONEDITIONABLE Objects
When you replace or alter an existing object (with the CREATE OR REPLACE or ALTER
statement):

• If the schema is not enabled for editions, then you can change the property of the
object from EDITIONABLE to NONEDITIONABLE, or the reverse.

• If the schema is enabled for editions for the type of the object being replaced or
altered, then you cannot change the property of the object from EDITIONABLE to
NONEDITIONABLE, or the reverse.

Altering an editioned object is a live operation with respect to the editions in which the
altered object is invisible.

Rules for Editioned Objects
• A noneditioned object usually cannot depend on an editioned object .

• An Abstract Data Type (ADT) cannot be both editioned and evolved.

• An editioned object cannot be the starting or ending point of a FOREIGN KEY
constraint.

This rule affects only editioned views. An editioned view can be either an ordinary
view or an editioning view.

Chapter 27
Editions

27-11

See Also:

• Name Resolution for Editioned and Noneditioned Objects

• Oracle Database Object-Relational Developer's Guide for information
about type evolution

Creating an Edition

Note:

Oracle recommends against creating editions in the Root of a CDB.

To create an edition, use the SQL statement CREATE EDITION.

You must create the edition as the child of an existing edition. The parent of the first
edition created with a CREATE EDITION statement is ora$base. This statement creates
the edition e2 as the child of ora$base:

CREATE EDITION e2

(Example: Editioned Objects and Copy-on-Change and others use the preceding
statement.)

An edition can have at most one child.

The descendents of an edition are its child, its child's child, and so on. The ancestors
of an edition are its parent, its parent's parent, and so on. The root edition has no
parent, and a leaf edition has no child.

See Also:

• Oracle Database SQL Language Reference for information about the
CREATE EDITION statement, including the privileges required to use it

• Oracle Database Administrator's Guide for information about CDBs

Editioned Objects and Copy-on-Change
When you create an edition, all editioned objects in its parent edition are copied to it.
Changes to an editioned object in one edition do not affect copies of that editioned
object in other editions.

The preceding paragraph describes what happens conceptually. In practice, to
optimize performance, Oracle Database copies an editioned object from an ancestor
edition to a descendent edition only when the descendent edition changes the object.
This strategy is called copy-on-change.

Chapter 27
Editions

27-12

An editioned object that was conceptually (but not actually) copied to a descendent
edition is called an inherited object. When a user of the descendent edition
references an inherited object in a DDL statement, Oracle Database actually copies
the object to the descendent edition. This copying operation is called actualization,
and it creates an actual object in the descendent edition.

Note:

There is one exception to the actualization rule in the preceding paragraph:
When a CREATE OR REPLACE object statement replaces an inherited object
with an identical object (that is, an object with the same source code and
settings), Oracle Database does not create an actual object in the
descendent edition.

Example: Editioned Objects and Copy-on-Change
Example 27-1 creates a procedure named hello in the edition ora$base, and then
creates the edition e2 as a child of ora$base. When e2 invokes hello, it invokes the
inherited procedure in ora$base. Then e2 changes hello, actualizing it. Now when e2
invokes hello, it invokes its own actual procedure. The procedure hello in the edition
ora$base remains unchanged.

Example 27-1 Editioned Objects and Copy-on-Change

1. Assume that this procedure is an editioned object in ora$base:

CREATE OR REPLACE PROCEDURE hello IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello, edition 1.');
 END hello;
/

2. In ora$base, invoke the procedure:

BEGIN hello(); END;
/

Result:

Hello, edition 1.

PL/SQL procedure successfully completed.

3. Create a child edition:

CREATE EDITION e2;

Conceptually, the procedure is copied to the child edition, and only the copy is
visible in the child edition. The copy is an inherited object, not an actual object.

4. Use the child edition:

ALTER SESSION SET EDITION = e2;

5. Invoke the procedure:

BEGIN hello(); END;
/

Chapter 27
Editions

27-13

Conceptually, the child edition invokes its own copy of the procedure (which is
identical to the procedure in the parent edition, ora$base). However, the child
edition actually invokes the procedure in the parent edition. Result:

Hello, edition 1.

PL/SQL procedure successfully completed.

6. Change the procedure:

CREATE OR REPLACE PROCEDURE hello IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello, edition 2.');
 END hello;
/

Oracle Database actualizes the procedure in the child edition, and the change
affects only the actual object in the child edition, not the procedure in the parent
edition.

7. Invoke the procedure:

BEGIN hello(); END;
/

The child edition invokes its own actual procedure:

Hello, edition 2.

PL/SQL procedure successfully completed.

8. Return to the parent edition:

ALTER SESSION SET EDITION = ora$base;

9. Invoke the procedure and see that it has not changed:

BEGIN hello(); END;
/

Result:

Hello, edition 1.

PL/SQL procedure successfully completed.

See Also:

Changing Your Session Edition for information about ALTER SESSION SET
EDITION

Example: Dropping an Editioned Object
Example 27-2 creates a procedure named goodbye in the edition ora$base, and then
creates edition e2 as a child of ora$base. After e2 drops goodbye, it can no longer
invoke it, but ora$base can still invoke it.

Because e2 dropped the procedure goodbye:

• Its descendents do not inherit the procedure goodbye.

Chapter 27
Editions

27-14

• No object named goodbye is visible in e2, so e2 can create an object named
goodbye, but it must be an editioned object. If e2 creates a new editioned object
named goodbye, then the descendents of e2 inherit that object.

Example 27-2 Dropping an Editioned Object

1. Assume that this procedure is an editioned object in ora$base:

CREATE OR REPLACE PROCEDURE goodbye IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Good-bye!');
 END goodbye;
/

2. Invoke the procedure:

BEGIN goodbye; END;
/

Result:

Good-bye!

PL/SQL procedure successfully completed.

3. Create edition e2 as a child of ora$base:

CREATE EDITION e2;

In e2, the procedure is an inherited object.

4. Use edition e2:

ALTER SESSION SET EDITION = e2;

ALTER SESSION SET EDITION must be a top-level SQL statement.

5. In e2, invoke the procedure:

BEGIN goodbye; END;
/

e2 invokes the procedure in ora$base:

Good-bye!

PL/SQL procedure successfully completed.

6. In e2, drop the procedure:

DROP PROCEDURE goodbye;

7. In e2, try to invoke the dropped procedure:

BEGIN goodbye; END;
/

Result:

BEGIN goodbye; END;
 *
ERROR at line 1:
ORA-06550: line 1, column 7:
PLS-00201: identifier 'GOODBYE' must be declared
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored

Chapter 27
Editions

27-15

8. Return to ora$base:

ALTER SESSION SET EDITION = ora$base;

9. In ora$base, invoke the procedure:

BEGIN goodbye; END;
/

Result:

Good-bye!

PL/SQL procedure successfully completed.

See Also:

• Oracle Database PL/SQL Language Reference, for more information
about the DROP PROCEDURE statement, including the privileges required to
use it

• Creating New EDITIONABLE and NONEDITIONABLE Objects

• Changing Your Session Edition for more information about ALTER
SESSION SET EDITION

Example: Creating an Object with the Name of a Dropped Inherited Object
In Example 27-3, e2 creates a function named goodbye and then an edition named e3
as a child of e2. When e3 tries to invoke the procedure goodbye (which e2 dropped), an
error occurs, but e3 successfully invokes the function goodbye (which e2 created).

Example 27-3 Creating an Object with the Name of a Dropped Inherited Object

1. Return to e2:

ALTER SESSION SET EDITION = e2;

2. In e2, create a function named goodbye:

CREATE OR REPLACE FUNCTION goodbye
 RETURN BOOLEAN
IS
BEGIN
 RETURN(TRUE);
END goodbye;
/

This function must be an editioned object. It has the EDITIONABLE property by
default. If the type FUNCTION is not editionable in the schema, then you must use
the ALTER USER statement to make it editioned.

3. Create edition e3:

CREATE EDITION e3 AS CHILD OF e2;

Edition e3 inherits the function goodbye.

4. Use edition e3:

Chapter 27
Editions

27-16

ALTER SESSION SET EDITION = e3;

5. In e3, try to invoke the procedure goodbye:

BEGIN
 goodbye;
END;
/

Result:

ERROR at line 2:
ORA-06550: line 2, column 3:
PLS-00306: wrong number or types of arguments in call to 'GOODBYE'
ORA-06550: line 2, column 3:
PL/SQL: Statement ignored

6. In e3, invoke function goodbye:

BEGIN
 IF goodbye THEN
 DBMS_OUTPUT.PUT_LINE('Good-bye!');
 END IF;
END;
/

Result:

Good-bye!

PL/SQL procedure successfully completed.

See Also:

• Changing Your Session Edition for information about ALTER SESSION SET
EDITION

• Enabling Editions for a User for instructions to enable editions for a user

Making an Edition Available to Some Users
As the creator of the edition, you automatically have the USE privilege WITH GRANT
OPTION on it. To grant the USE privilege on the edition to other users, use the SQL
statement GRANT USE ON EDITION.

See Also:

Oracle Database SQL Language Reference for information about the GRANT
statement

Making an Edition Available to All Users
To make an edition available to all users, either:

Chapter 27
Editions

27-17

• Grant the USE privilege on the edition to PUBLIC:

GRANT USE ON EDITION edition_name TO PUBLIC

• Make the edition the database default edition:

ALTER DATABASE DEFAULT EDITION = edition_name

This has the side effect of allowing all users to use the edition, because it
effectively grants the USE privilege on edition_name to PUBLIC.

See Also:

• Oracle Database SQL Language Reference for information about the
ALTER DATABASE statement

• Oracle Database SQL Language Reference for information about the
GRANT statement

Current Edition and Session Edition
Each database session uses exactly one edition at a time. The edition that a database
session is using at any one time is called its current edition. When a database
session begins, its current edition is its session edition, which is the edition in which it
begins. If you change the session edition, the current edition changes to the same
thing. However, there are situations in which the current edition and session edition
differ.

Topics:

• Your Initial Session Edition

• Changing Your Session Edition

• Displaying the Names of the Current and Session Editions

• When the Current Edition Might Differ from the Session Edition

Your Initial Session Edition
When you connect to the database, you can specify your initial session edition. Your
initial session edition can be the database default edition or any edition on which you
have the USE privilege. To see the names of the editions that are available to you, use
this query:

SELECT EDITION_NAME FROM ALL_EDITIONS;

How you specify your initial session edition at connection time depends on how you
connect to the database—see the documentation for your interface.

Chapter 27
Editions

27-18

See Also:

• Oracle Database Administrator's Guide for information about setting the
database default edition

• SQL*Plus User's Guide and Reference for information about connecting
to the database with SQL*Plus

• Oracle Call Interface Programmer's Guide for information about
connecting to the database with Oracle Call Interface (OCI)

• Oracle Database JDBC Developer's Guide for information about
connecting to the database with JDBC

As of Oracle Database 11g Release 2 (11.2.0.2), if you do not specify your session
edition at connection time, then:

• If you use a database service to connect to the database, and an initial session
edition was specified for that service, then the initial session edition for the service
is your initial session edition.

• Otherwise, your initial session edition is the database default edition.

As of Release 11.2.0.2, when you create or modify a database service, you can
specify its initial session edition.

To create or modify a database service, Oracle recommends using the srvctl add
service or srvctl modify service command. To specify the default initial session
edition of the service, use the -edition option.

Alternatively, you can create or modify a database service with the
DBMS_SERVICE.CREATE_SERVICE or DBMS_SERVICE.MODIFY_SERVICE procedure, and
specify the default initial session edition of the service with the EDITION attribute.

Note:

As of Oracle Database 11g Release 2 (11.2.0.1), the
DBMS_SERVICE.CREATE_SERVICE and DBMS_SERVICE.MODIFY_SERVICE
procedures are deprecated in databases managed by Oracle Clusterware
and Oracle Restart.

Chapter 27
Editions

27-19

See Also:

• Oracle Database Administrator's Guide for information about the -
edition option of the srvctl add service command

• Oracle Database Administrator's Guide for information about the -
edition option of the srvctl modify service command

• Oracle Database PL/SQL Packages and Types Reference for
information about the EDITION attribute of the
DBMS_SERVICE.CREATE_SERVICE procedure

• Oracle Database PL/SQL Packages and Types Reference for
information about the EDITION attribute of the
DBMS_SERVICE.MODIFY_SERVICE procedure

Changing Your Session Edition
After connecting to the database, you can change your session edition with the SQL
statement ALTER SESSION SET EDITION. You can change your session edition to the
database default edition or any edition on which you have the USE privilege. When you
change your session edition, your current edition changes to that same edition.

These statements from Example: Editioned Objects and Copy-on-Change and
Example: Dropping an Editioned Object change the session edition (and current
edition) first to e2 and later to ora$base:

ALTER SESSION SET EDITION = e2
...
ALTER SESSION SET EDITION = ora$base

Note:

ALTER SESSION SET EDITION must be a top-level SQL statement. To defer an
edition change (in a logon trigger, for example), use the
DBMS_SESSION.SET_EDITION_DEFERRED procedure.

See Also:

• Oracle Database SQL Language Reference for more information about
the ALTER SESSION SET EDITION statement

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SESSION.SET_EDITION_DEFERRED procedure

Displaying the Names of the Current and Session Editions
This statement returns the name of the current edition:

Chapter 27
Editions

27-20

SELECT SYS_CONTEXT('USERENV', 'CURRENT_EDITION_NAME') FROM DUAL;

This statement returns the name of the session edition:

SELECT SYS_CONTEXT('USERENV', 'SESSION_EDITION_NAME') FROM DUAL;

See Also:

Oracle Database SQL Language Reference for more information about the
SYS_CONTEXT function

When the Current Edition Might Differ from the Session Edition
The current edition might differ from the session edition in these situations:

• A crossedition trigger fires.

• You run a statement by calling the DBMS_SQL.PARSE procedure, specifying the
edition in which the statement is to run, as in Example 27-4.

While the statement is running, the current edition is the specified edition, but the
session edition does not change.

Example 27-4 creates a function that returns the names of the session edition and
current edition. Then it creates a child edition, which invokes the function twice. The
first time, the session edition and current edition are the same. The second time, they
are not, because a different edition is passed as a parameter to the DBMS_SQL.PARSE
procedure.

Example 27-4 Current Edition Differs from Session Edition

1. Create function that returns the names of the session edition and current edition:

CREATE OR REPLACE FUNCTION session_and_current_editions
 RETURN VARCHAR2
IS
BEGIN
 RETURN
 'Session: '|| SYS_CONTEXT('USERENV', 'SESSION_EDITION_NAME') ||
 ' / ' ||
 'Current: '|| SYS_CONTEXT('USERENV', 'CURRENT_EDITION_NAME');
END session_and_current_editions;
/

2. Create child edition:

CREATE EDITION e2 AS CHILD OF ora$base;

3. Use child edition:

ALTER SESSION SET EDITION = e2;

4. Invoke function:

BEGIN
 DBMS_OUTPUT.PUT_LINE (session_and_current_editions());
END;
/

Result:

Chapter 27
Editions

27-21

Session: E2 / Current: E2

PL/SQL procedure successfully completed.

5. Invoke function again:

DECLARE
 c NUMBER := DBMS_SQL.OPEN_CURSOR();
 v VARCHAR2(200);
 dummy NUMBER;
 stmt CONSTANT VARCHAR2(32767)
 := 'SELECT session_and_current_editions() FROM DUAL';
BEGIN
 DBMS_SQL.PARSE (c => c,
 statement => stmt,
 language_flag => DBMS_SQL.NATIVE,
 edition => 'ora$base');

 DBMS_SQL.DEFINE_COLUMN (c, 1, v, 200);
 dummy := DBMS_SQL.EXECUTE_AND_FETCH (c, true);
 DBMS_SQL.COLUMN_VALUE (c, 1, v);
 DBMS_SQL.CLOSE_CURSOR(c);
 DBMS_OUTPUT.PUT_LINE (v);
END;
/

Result:

Session: E2 / Current: ORA$BASE

PL/SQL procedure successfully completed.

See Also:

• Crossedition Trigger Interaction with Editions

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SQL.PARSE procedure

Retiring an Edition
After making a new edition (an upgraded application) available to all users, retire the
old edition (the original application), so that no user except SYS can use the old edition.

Note:

If the old edition is the database default edition, make another edition the
database default edition before you retire the old edition:

ALTER DATABASE DEFAULT EDITION = edition_name

Chapter 27
Editions

27-22

To retire an edition, you must revoke the USE privilege on the edition from every
grantee. To list the grantees, use this query, where :e is a placeholder for the name of
the edition to be dropped:

SELECT GRANTEE, PRIVILEGE
FROM DBA_TAB_PRIVS
WHERE TABLE_NAME = :e AND TYPE = 'EDITION'
/

When you retire an edition, update the evaluation editions and unusable editions of
noneditioned objects accordingly.

See Also:

• Noneditioned Objects That Can Depend on Editioned Objects for
information about changing evaluation editions and unused editions

• Oracle Database SQL Language Reference for information about the
REVOKE statement

• Oracle Database SQL Language Reference for information about the
ALTER DATABASE statement

Dropping an Edition

Note:

If the edition includes crossedition triggers, see Dropping the Crossedition
Triggers, before you drop the edition.

To drop an edition, use the DROP EDITION statement. If the edition has actual objects,
you must specify the CASCADE clause, which drops the actual objects.

If a DROP EDITION edition CASCADE statement is interrupted before finishing normally
(from a power failure, for example), the static data dictionary view *_EDITIONS shows
that the value of USABLE for edition is NO. The only operation that you can perform on
such an unusable edition is DROP EDITION CASCADE.

You drop an edition in these situations:

• You want to roll back the application upgrade.

• (Optional) You have retired the edition.

You can drop an edition only if all of these statements are true:

• The edition is either the root edition or a leaf edition.

• The edition is not in use. (That is, it is not the current edition or session edition of a
session.)

• The edition is not the database default edition.

Chapter 27
Editions

27-23

If the edition is the root, and the COMPATIBLE parameter is set to 12.2.0 or higher, the
edition is marked as unusable. A covered object is an editioned object that is no longer
inherited in any usable descendent edition. Each covered object in any unusable
edition is dropped by an automated scheduled maintenance process. After there is no
object left in the root unusable edition, the edition itself is dropped automatically. This
cleanup process is repeated for each unusable root edition found. A user can run this
process on demand by manually executing the
DBMS_EDITIONS_UTILITIES.CLEAN_UNUSABLE_EDITIONS procedure (see Oracle
Database PL/SQL Packages and Types Reference).

If the COMPATIBLE is set to 12.1.0 or lower, the root edition must have no objects that its
descendents inherit. Each object inherited from the root edition must either be
actualized or dropped explicitly before the edition can be dropped.

If the edition is the leaf, every editioned object in the leaf is dropped, followed by the
edition itself before the statement finishes execution.

Note:

After you have dropped an edition, you cannot recompile a noneditioned
object that depends on an editioned object if both of the following are true:

• The noneditioned object contains an ADT.

• The noneditioned object was invalidated when the owner of the editioned
object on which it depends was enabled for editions using FORCE.

To explicitly actualize an inherited object in the child edition:

1. Make the child edition your session edition.

For instructions, see Changing Your Session Edition.

2. Recompile the object, using the appropriate ALTER statement with COMPILE. For a
PL/SQL object, also specify REUSE SETTINGS.

For example, this statement actualizes the procedure p1:

ALTER PROCEDURE p1 COMPILE REUSE SETTINGS

When you drop an edition, update the evaluation editions and unusable editions of
noneditioned objects accordingly.

Chapter 27
Editions

27-24

See Also:

• Oracle Database SQL Language Reference for information about the
ALTER LIBRARY statement

• Oracle Database SQL Language Reference for information about the
ALTER VIEW statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER FUNCTION statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER PACKAGE statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER PROCEDURE statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER TRIGGER statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER TYPE statement

• Oracle Database SQL Language Reference for more information about
the DROP EDITION statement

• Oracle Database PL/SQL Language Reference for information about the
ALTER statements for PL/SQL objects

• Oracle Database SQL Language Reference for information about the
ALTER statements for SQL objects.

• Noneditioned Objects That Can Depend on Editioned Objects for
information about changing evaluation editions and unused editions

Editioning Views
On a noneditioning view, the only type of trigger that you can define is an INSTEAD OF
trigger. On an editioning view, you can define every type of trigger that you can define
on a table (except crossedition triggers, which are temporary, and INSTEAD OF
triggers). Therefore, and because they can be editioned, editioning views let you treat
their base tables as if the base tables were editioned. However, you cannot add
indexes or constraints to an editioning view; if your upgraded application requires new
indexes or constraints, you must add them to the base table.

Note:

If you will change a base table or an index on a base table, then see
"Nonblocking and Blocking DDL Statements."

An editioning view selects a subset of the columns from a single base table and,
optionally, provides aliases for them. In providing aliases, the editioning view maps

Chapter 27
Editioning Views

27-25

physical column names (used by the base table) to logical column names (used by the
application). An editioning view is like an API for a table.

There is no performance penalty for accessing a table through an editioning view,
rather than directly. That is, if a SQL SELECT, INSERT, UPDATE, DELETE, or MERGE
statement uses one or more editioning views, one or more times, and you replace
each editioning view name with the name of its base table and adjust the column
names if necessary, performance does not change.

The static data dictionary view *_EDITIONING_VIEWS describes every editioning view in
the database that is visible in the session edition. *_EDITIONING_VIEWS_AE describes
every actual object in every editioning view in the database, in every edition.

Topics:

• Creating an Editioning View

• Partition-Extended Editioning View Names

• Changing the Writability of an Editioning View

• Replacing an Editioning View

• Dropped or Renamed Base Tables

• Adding Indexes and Constraints to the Base Table

• SQL Optimizer Index Hints

See Also:

Oracle Database Reference for more information about the static data
dictionary views *_EDITIONING_VIEWS and *_EDITIONING_VIEWS_AE.

Creating an Editioning View
Before an editioning view is created, its owner must be editions-enabled and the
schema object type VIEW must be editionable in its owner.

To create an editioning view, use the SQL statement CREATE VIEW with the keyword
EDITIONING. To make the editioning view read-only, specify WITH READ ONLY; to make it
read-write, omit WITH READ ONLY. Do not specify NONEDITIONABLE, or an error occurs.

If an editioning view is read-only, users of the unchanged application can see the data
in the base table, but cannot change it. The base table has semi-availability. Semi-
availability is acceptable for applications such as online dictionaries, which users read
but do not change. Make the editioning view read-only if you do not define crossedition
triggers on the base table.

If an editioning view is read-write, users of the unchanged application can both see
and change the data in the base table. The base table has maximum availability.
Maximum availability is required for applications such as online stores, where users
submit purchase orders. If you define crossedition triggers on the base table, make the
editioning view read-write.

Because an editioning view must do no more than select a subset of the columns from
the base table and provide aliases for them, the CREATE VIEW statement that creates an

Chapter 27
Editioning Views

27-26

editioning view has restrictions. Violating the restrictions causes the creation of the
view to fail, even if you specify FORCE.

See Also:

• Oracle Database SQL Language Reference for more information about
using the CREATE VIEW statement to create editioning views, including the
restrictions

• Enabling Editions for a User

Partition-Extended Editioning View Names
An editioning view defined on a partitioned table can have a partition-extended name,
with partition and subpartition names that refer to the partitions and subpartitions of the
base table.

The data manipulation language (DML) statements that support partition-extended
table names also support partition-extended editioning view names. These statements
are:

• DELETE

• INSERT

• SELECT

• UPDATE

See Also:

Oracle Database SQL Language Reference for information about referring to
partitioned tables

Changing the Writability of an Editioning View
To change an existing editioning view from read-only to read-write, use the SQL
statement ALTER VIEW READ WRITE. To change an existing editioning view from read-
write to read-only, use the SQL statement ALTER VIEW READ ONLY.

See Also:

Oracle Database SQL Language Reference for more information about the
ALTER VIEW statement

Chapter 27
Editioning Views

27-27

Replacing an Editioning View
To replace an editioning view, use the SQL statement CREATE VIEW with the OR REPLACE
clause and the keyword EDITIONING.

You can replace an editioning view only with another editioning view. Any triggers
defined on the replaced editioning view are retained.

Dropped or Renamed Base Tables
If you drop or rename the base table on which an editioning view is defined, the
editioning view is not dropped, but the editioning view and its dependents become
invalid. However, any triggers defined on the editioning view remain.

Adding Indexes and Constraints to the Base Table
If your upgraded application requires new indexes or constraints, you must add them
to the base table. You cannot add them to the editioning view.

If the new indexes might negatively impact the old edition (the original application),
make them invisible. In the crossedition triggers that must use the new indexes,
specify them in INDEX hints.

When all users are using only the upgraded application:

• If the new indexes were used only by the crossedition triggers, drop them.

• If the new indexes are helpful in the upgraded application, make them visible.

See Also:

• Guidelines for Managing Indexes

• Oracle Database SQL Language Reference for information about INDEX
hints

• SQL Optimizer Index Hints

SQL Optimizer Index Hints
SQL optimizer index hints are specified in terms of the logical names of the columns
participating in the index. Any SQL optimizer index hints specified on an editioning
view using logical column names must be mapped to an index on the corresponding
physical column in the base table.

See Also:

Oracle Database SQL Language Reference for information about using hints

Chapter 27
Editioning Views

27-28

Crossedition Triggers
The most important difference between crossedition triggers and noncrossedition
triggers is how they interact with editions. A crossedition trigger is visible only in the
edition in which it is actual, never in a descendent edition. Forward crossedition
triggers move data from columns used by the old edition to columns used by the new
edition; reverse crossedition triggers do the reverse.

Other important differences are:

• Crossedition triggers can be ordered with triggers defined on other tables, while
noncrossedition triggers can be ordered only with other triggers defined on the
same table.

• Crossedition triggers are temporary—you drop them after you have made the
restructured tables available to all users.

Topics:

• Forward Crossedition Triggers

• Reverse Crossedition Triggers

• Crossedition Trigger Interaction with Editions

• Creating a Crossedition Trigger

• Transforming Data from Pre- to Post-Upgrade Representation

• Dropping the Crossedition Triggers

See Also:

Oracle Database PL/SQL Language Reference for general information about
triggers

Forward Crossedition Triggers
The DML changes that you make to the table in the post-upgrade edition are written
only to new columns or new tables, never to columns that users of pre-upgrade
(ancestor) editions might be reading or writing. However, if the user of an ancestor
edition changes the table data, the editioning view that you see must accurately reflect
these changes. This is accomplished with forward crossedition triggers.

A forward crossedition trigger defines a transform, which is a rule for transforming an
old row to one or more new rows. An old row is a row of data in the pre-upgrade
representation. A new row is a row of data in the post-upgrade representation. The
name of the trigger refers to the trigger itself and to the transform that the trigger
defines.

Reverse Crossedition Triggers
If the pre- and post-upgrade editions will be in ordinary use at the same time (hot
rollover), use reverse crossedition triggers to ensure that when users of the post-

Chapter 27
Crossedition Triggers

27-29

upgrade edition make changes to the table data, the changes are accurately reflected
in the pre-upgrade editions.

Crossedition Trigger Interaction with Editions
The most important difference between crossedition triggers and noncrossedition
triggers is how they interact with editions.

In this topic, the current edition is the edition in which the triggering DML statement
runs. The current edition might differ from the session edition.

Topics:

• Which Triggers Are Visible

• What Kind of Triggers Can Fire

• Firing Order

• Crossedition Trigger Execution

See Also:

When the Current Edition Might Differ from the Session Edition

Which Triggers Are Visible
Editions inherit noncrossedition triggers in the same way that they inherit other
editioned objects (see Editioned Objects and Copy-on-Change).

Editions do not inherit crossedition triggers. A crossedition trigger might fire in
response to a DML statement that another edition runs, but its name is visible only in
the edition in which it was created. Therefore, an edition can reuse the name of a
crossedition trigger created in an ancestor edition. Reusing the name of a crossedition
trigger does not change the conditions under which the older trigger fires.

Crossedition triggers that appear in static data dictionary views are actual objects in
the current edition.

What Kind of Triggers Can Fire
What kind of triggers can fire depends on the category of the triggering DML
statement.

Categories:

• Forward Crossedition Trigger SQL

• Reverse Crossedition Trigger SQL

• Application SQL

Chapter 27
Crossedition Triggers

27-30

Note:

The APPEND hint on a SQL INSERT statement does not prevent crossedition
triggers from firing.

See Also:

Oracle Database SQL Language Reference for information about the
APPEND hint

Forward Crossedition Trigger SQL
Forward crossedition trigger SQL is SQL that is executed in either of these ways:

• Directly from the body of a forward crossedition trigger

This category includes SQL in an invoked subprogram only if the subprogram is
local to the forward crossedition trigger.

• By invoking the DBMS_SQL.PARSE procedure with a non-NULL value for the
apply_crossedition_trigger parameter

The only valid non-NULL value for the apply_crossedition_trigger parameter is
the unqualified name of a forward crossedition trigger.

If a forward crossedition trigger invokes a subprogram in another compilation unit, the
SQL in the subprogram is forward crossedition trigger SQL only if it is invoked by the
DBMS_SQL.PARSE procedure with a non-NULL value for the
apply_crossedition_trigger parameter.

Forward crossedition trigger SQL can fire only triggers that satisfy all of these
conditions:

• They are forward crossedition triggers.

• They were created either in the current edition or in a descendent of the current
edition.

• They explicitly follow the running forward crossedition trigger.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SQL.PARSE procedure

Reverse Crossedition Trigger SQL
Reverse crossedition trigger SQL is SQL that is executed directly from the body of a
reverse crossedition trigger. This category includes SQL in an invoked subprogram
only if the subprogram is local to the reverse crossedition trigger.

Chapter 27
Crossedition Triggers

27-31

Reverse crossedition trigger SQL can fire only triggers that satisfy all of these
conditions:

• They are reverse crossedition triggers.

• They were created either in the current edition or in an ancestor of the current
edition.

• They explicitly precede the running reverse crossedition trigger.

Application SQL
Application SQL is all SQL except crossedition trigger SQL, including these DML
statements:

• Dynamic SQL DML statements coded with the DBMS_SQL package.

• DML statements executed by Java stored procedures and external procedures
(even when these procedures are invoked by CALL triggers)

Application SQL fires both noncrossedition and crossedition triggers, according to
these rules:

Kind of Trigger Conditions Under Which Trigger Can Fire

Noncrossedition Trigger is both visible and enabled in the current edition.

Forward crossedition Trigger was created in a descendent of the current edition.

Reverse crossedition Trigger was created either in the current edition or in an ancestor of
the current edition.

See Also:

Oracle Database PL/SQL Language Reference for information about
DBMS_SQL package

Firing Order
For a trigger to fire in response to a specific DML statement, the trigger must:

• Be the right kind

• Satisfy the selection criteria (for example, the type of DML statement and the WHEN
clause)

• Be enabled

For the triggers that meet these requirements, firing order depends on the FOLLOWS
and PRECEDES clauses, the trigger type, and the edition.

Topics:

• FOLLOWS and PRECEDES Clauses

• Trigger Type and Edition

Chapter 27
Crossedition Triggers

27-32

See Also:

• Oracle Database PL/SQL Language Reference for general information
about trigger firing order

• What Kind of Triggers Can Fire

FOLLOWS and PRECEDES Clauses
When triggers A and B are to be fired at the same timing point, A fires before B fires if
either of these is true:

• A explicitly precedes B.

• B explicitly follows A.

This rule is independent of conditions such as:

• Whether the triggers are enabled or disabled

• Whether the columns specified in the UPDATE OF clause are modified

• Whether the WHEN clauses are satisfied

• Whether the triggers are associated with the same kinds of DML statements
(INSERT, UPDATE, or DELETE)

• Whether the triggers have overlapping timing points

The firing order of triggers that do not explicitly follow or precede each other is
unpredictable.

Trigger Type and Edition
For each timing point associated with a triggering DML statement, eligible triggers fire
in this order. In categories 1 through 3, FOLLOWS relationships apply; in categories 4
and 5, PRECEDES relationships apply.

1. Noncrossedition triggers

2. Forward crossedition triggers created in the current edition

3. Forward crossedition triggers created in descendents of the current edition, in the
order that the descendents were created (child, grandchild, and so on)

4. Reverse crossedition triggers created in the current edition

5. Reverse crossedition triggers created in the ancestors of the current edition, in the
reverse order that the ancestors were created (parent, grandparent, and so on)

Crossedition Trigger Execution
A crossedition trigger runs using the edition in which it was created. Any code that the
crossedition trigger calls (including package references, PL/SQL subprogram calls,
and SQL statements) also runs in the edition in which the crossedition trigger was
created.

If a PL/SQL package is actual in multiple editions, then the package variables and
other state are private in each edition, even within a single session. Because each

Chapter 27
Crossedition Triggers

27-33

crossedition trigger and the code that it calls run using the edition in which the
crossedition trigger was created, the same session can instantiate two or more
versions of the package, with the same name.

Creating a Crossedition Trigger
Before a crossedition trigger is created, its owner must be editions-enabled and the
schema object type TRIGGER must be editionable in its owner. (For instructions, see
Enabling Editions for a User.)

Create a crossedition trigger with the SQL statement CREATE TRIGGER, observing these
rules:

• A crossedition trigger must be defined on a table, not a view.

• A crossedition trigger must have the EDITIONABLE property.

• A crossedition trigger must be a DML trigger (simple or compound).

The DML statement in a crossedition trigger body can be either a static SQL
statement or a native dynamic SQL statement .

• A crossedition trigger is forward unless you specify REVERSE. (Specifying FORWARD
is optional.)

• The FOLLOWS clause is allowed only when creating a forward crossedition trigger or
a noncrossedition trigger. (The FOLLOWS clause indicates that the trigger being
created is to fire after the specified triggers fire.)

• The PRECEDES clause is allowed only when creating a reverse crossedition trigger.
(The PRECEDES clause indicates that the trigger being created is to fire before the
specified triggers fire.)

• The triggers specified in the FOLLOWS or PRECEDES clause must exist, but need not
be enabled or successfully compiled.

• Like a noncrossedition trigger, a crossedition trigger is created in the enabled state
unless you specify DISABLE. (Specifying ENABLE is optional.)

Tip:

Create crossedition triggers in the disabled state, and enable them after
you are sure that they compile successfully. If you create them in the
enabled state, and they fail to compile, the failure affects users of the
existing application.

• The operation in a crossedition trigger body must be idempotent (that is,
performing the operation multiple times is redundant; it does not change the
result).

Chapter 27
Crossedition Triggers

27-34

See Also:

• Oracle Database PL/SQL Language Reference for more information
about using the CREATE TRIGGER statement to create crossedition triggers

• Oracle Database PL/SQL Language Reference for more information
about Static SQL

• Oracle Database PL/SQL Language Reference for more information
about native dynamic SQL

Coding the Forward Crossedition Trigger Body
The operation in the body of a forward crossedition trigger must be idempotent,
because it is impossible to predict:

• The context in which the body will first run for an old row.

The possibilities are:

– When a user of an ancestor edition runs a DML statement that fires the trigger
(a serendipitous change)

– When you apply the transform that the trigger defines (do a bulk upgrade of
rows from old format to new format)

• How many times the body will run for each old row.

Topics:

• Handling Data Transformation Collisions

• Handling Changes to Other Tables

See Also:

Transforming Data from Pre- to Post-Upgrade Representation for information
about applying transforms

Handling Data Transformation Collisions
If a forward crossedition trigger populates a new table (rather than new columns of a
table), its body must handle data transformation collisions.

For example, suppose that a column of the new table has a UNIQUE constraint. A
serendipitous change fires the forward crossedition trigger, which inserts a row in the
new table. Later, another serendipitous change fires the forward crossedition trigger,
or you apply the transform defined by the trigger. The trigger tries to insert a row in the
new table, violating the UNIQUE constraint.

If your collision-handling strategy depends on why the trigger is running, you can
determine the reason with the function APPLYING_CROSSEDITION_TRIGGER. When called
directly from a trigger body, this function returns the BOOLEAN value TRUE if the trigger is
running because of a serendipitous change and FALSE if the trigger is running because

Chapter 27
Crossedition Triggers

27-35

you are applying the transform in bulk. (APPLYING_CROSSEDITION_TRIGGER is defined in
the package DBMS_STANDARD. It has no parameters.)

To ignore collisions and insert the rows that do not collide with existing rows, put the
IGNORE_ROW_ON_DUPKEY_INDEX hint in the INSERT statement.

If you do not want to ignore such collisions, but want to know where they occur so that
you can handle them, put the CHANGE_DUPKEY_ERROR_INDEX hint in the INSERT or
UPDATE statement, specifying either an index or set of columns. Then, when a unique
key violation occurs for that index or set of columns, ORA-38911 is reported instead of
ORA-00001. You can write an exception handler for ORA-38911.

Note:

Although they have the syntax of hints, IGNORE_ROW_ON_DUPKEY_INDEX and
CHANGE_DUPKEY_ERROR_INDEX are mandates. The optimizer always uses
them.

Example 27-5 creates a crossedition trigger that uses the
APPLYING_CROSSEDITION_TRIGGER function and the IGNORE_ROW_ON_DUPKEY_INDEX and
CHANGE_DUPKEY_ERROR_INDEX hints to handle data transformation collisions. The trigger
transforms old rows in table1 to new rows in table2. The tables were created as
follows:

CREATE TABLE table1 (key NUMBER, value VARCHAR2(20));

CREATE TABLE table2 (key NUMBER, value VARCHAR2(20), last_updated TIMESTAMP);
CREATE UNIQUE INDEX i2 on table2(key);

See Also:

• Oracle Database SQL Language Reference for more information about
IGNORE_ROW_ON_DUPKEY_INDEX

• Oracle Database SQL Language Reference for more information about
CHANGE_DUPKEY_ERROR_INDEX

• Oracle Database SQL Language Reference for general information
about hints

Example 27-5 Crossedition Trigger that Handles Data Transformation
Collisions

CREATE OR REPLACE TRIGGER trigger1
 BEFORE INSERT OR UPDATE ON table1
 FOR EACH ROW
 CROSSEDITION
DECLARE
 row_already_present EXCEPTION;
 PRAGMA EXCEPTION_INIT(row_already_present, -38911);
BEGIN
 IF APPLYING_CROSSEDITION_TRIGGER THEN
 /* The trigger is running because of applying the transform.

Chapter 27
Crossedition Triggers

27-36

 If the old edition of the app has already caused this trigger
 to insert a row, we do not modify the row as part of applying
 the transform. Therefore, insert the new row into table2 only if
 it is not already there. */
 INSERT /*+ IGNORE_ROW_ON_DUPKEY_INDEX(table2(key)) */
 INTO table2
 VALUES(:new.key, :new.value, to_date('1900-01-01', 'YYYY-MM-DD'));
 ELSE
 /* The trigger is running because of a serendipitous change.
 If no previous run of the trigger has already inserted
 the corresponding row into table2, insert the new row;
 otherwise, update the previously inserted row. */
 BEGIN
 INSERT /*+ CHANGE_DUPKEY_ERROR_INDEX(table2(key)) */
 INTO table2
 VALUES(:new.key, :new.value, SYSTIMESTAMP);
 EXCEPTION WHEN row_already_present THEN
 UPDATE table2
 SET value = :new.value, last_updated = SYSTIMESTAMP
 WHERE key = :new.key;
 END;
 END IF;
END;
/

Handling Changes to Other Tables
If the body of a forward crossedition trigger includes explicit SQL statements that
change tables other than the one on which the trigger is defined, and if the rows of
those tables do not have a one-to-one correspondence with the rows of the table on
which the trigger is defined, then the body code must implement a locking mechanism
that correctly handles these situations:

• Two or more users of ancestor editions simultaneously issue DML statements for
the table on which the trigger is defined.

• At least one user of an ancestor edition issues a DML statement for the table on
which the trigger is defined.

Transforming Data from Pre- to Post-Upgrade Representation
After redefining the database objects that comprise the application that you are
upgrading (in the new edition), you must transform the application data from its pre-
upgrade representation (in the old edition) to its post-upgrade representation (in the
new edition). The rules for this transformation are called transforms, and they are
defined by forward crossedition triggers.

Some old rows might have been transformed to new rows by serendipitous changes;
that is, by changes that users of the pre-upgrade application made, which fired forward
crossedition triggers. However, any rows that were not transformed by serendipitous
changes are still in their pre-upgrade representation. To ensure that all old rows are
transformed to new rows, you must apply the transforms that you defined on the
tables that store the application data.

There are three ways to apply a transform:

• Fire the trigger that defines the transform on every row of the table, one row at a
time.

Chapter 27
Crossedition Triggers

27-37

• Instead of firing the trigger, run a SQL statement that does what the trigger would
do, but faster, and then fire any triggers that follow that trigger.

This second way is recommended over the first way if you have replaced an entire
table or created a new table.

• Invoke the procedure
DBMS_EDITIONS_UTILITIES.SET_NULL_COLUMN_VALUES_TO_EXPR to use a metadata
operation to apply the transform to the new column.

This third way has the fastest installation time, but there are restrictions on the
expression that represents the transform, and queries of the new column are
slower until the metadata is replaced by actual data.

Metadata is replaced by actual data:

– In an individual column element that is updated.

– In every element of a column whose table is "compacted" using online table
redefinition.

.

For the first two ways of applying the transform, invoke either the DBMS_SQL.PARSE
procedure or the subprograms in the DBMS_PARALLEL_EXECUTE package. The latter is
recommended if you have a lot of data. The subprograms enable you to incrementally
update the data in a large table in parallel, in two high-level steps:

1. Group sets of rows in the table into smaller chunks.

2. Apply the desired UPDATE statement to the chunks in parallel, committing each time
you have finished processing a chunk.

The advantages are:

• You lock only one set of rows at a time, for a relatively short time, instead of
locking the entire table.

• You do not lose work that has been done if something fails before the entire
operation finishes.

For both the DBMS_SQL.PARSE procedure and the DBMS_PARALLEL_EXECUTE
subprograms, the actual parameter values for apply_crossedition_trigger,
fire_apply_trigger, and sql_stmt are the same:

• For apply_crossedition_trigger, specify the name of the forward crossedition
trigger that defines the transform to be applied.

• To fire the trigger on every row of the table, one row at a time:

– For the value of fire_apply_trigger, specify TRUE.

– For sql_stmt, supply a SQL statement whose only significant effect is to
select the forward crossedition trigger to be fired; for example, an UPDATE
statement that sets some column to its own existing value in each row.

• To run a SQL statement that does what the trigger would do, and then fire any
triggers that follow that trigger:

– For the value of fire_apply_trigger, specify FALSE.

– For sql_stmt, supply a SQL statement that does what the forward
crossedition trigger would do, but faster—for example, a PL/SQL anonymous
block that calls one or more PL/SQL subprograms.

Chapter 27
Crossedition Triggers

27-38

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SQL.PARSE procedure

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_PARALLEL_EXECUTE package

• Forward Crossedition Triggers for information about forward crossedition
triggers

• Oracle Database PL/SQL Packages and Types Reference for more
information about
DBMS_EDITIONS_UTILITIES.SET_NULL_COLUMN_VALUES_TO_EXPR
procedure

Preventing Lost Updates
To prevent lost updates when applying a transform, use this procedure:

1. Enable crossedition triggers.

2. Wait until pending changes to the affected tables are either committed or rolled
back.

Use the DBMS_UTILITY.WAIT_ON_PENDING_DML procedure.

3. Apply the transform.

Note:

This scenario, where the forward crossedition trigger changes only the table
on which it is defined, is sufficient to illustrate the risk. Suppose that Session
One issues an UPDATE statement against the table when the crossedition
trigger is not yet enabled; and that Session Two then enables the
crossedition trigger and immediately applies the transformation.

A race condition can now occur when both Session One and Session Two
will change the same row (row n). Chance determines which session
reaches row n first. Both updates succeed, even if the session that reaches
row n second must wait until the session that reached it first commits its
change and releases its lock.

The problem occurs when Session Two wins the race. Because its SQL
statement was compiled after the trigger was enabled, the program that
implements the statement also implements the trigger action; therefore, the
intended post-upgrade column values are set for row n. Now Session One
reaches row n, and because its SQL statement was compiled before the
trigger was enabled, the program that implements the statement does not
implement the trigger action. Therefore, the values that Session Two set in
the post-upgrade columns do not change—they reflect the values that the
source columns had before Session One updated row n. That is, the
intended side-effect of Session One's update is lost.

Chapter 27
Crossedition Triggers

27-39

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_UTILITY.WAIT_ON_PENDING_DML procedure

Dropping the Crossedition Triggers
To drop a crossedition trigger, use the DROP TRIGGER statement. Alternatively, you can
drop crossedition triggers by dropping the edition in which they are actual, by using the
DROP EDITION statement with the CASCADE clause.

You drop crossedition triggers in these situations:

• You are rolling back the application upgrade (dropping the post-upgrade edition).

Before dropping the post-upgrade edition, you must disable or drop any
constraints on the new columns.

• You have finished the application upgrade and made the post-upgrade edition
available to all users.

When all sessions are using the post-upgrade edition, you can drop the forward
crossedition triggers. However, before dropping the reverse crossedition triggers,
you must disable or drop any constraints on the old columns.

To disable or drop constraints, use the ALTER TABLE statement with the DISABLE
CONSTRAINT or DROP CONSTRAINT clause. .

See Also:

• Oracle Database PL/SQL Language Reference for more information
about DROP TRIGGER statement

• Dropping an Edition for more information about dropping editions

• Oracle Database SQL Language Reference for more information about
ALTER TABLE statement

Displaying Information About EBR Features
Topics:

• Displaying Information About Editions

• Displaying Information About Editioning Views

• Displaying Information About Crossedition Triggers

Displaying Information About Editions
Table 27-1 briefly describes the static data dictionary views that display information
about editions.

Chapter 27
Displaying Information About EBR Features

27-40

Table 27-1 *_ Dictionary Views with Edition Information

View Description

*_EDITIONS Describes every edition in the database.

*_EDITION_COMMENTS Shows the comments associated with every edition in the
database.

*_EDITIONED_TYPES Lists the schema object types that are editioned by default in each
schema.

*_OBJECTS Describes every object in the database that is visible in the current
edition. For each object, this view shows whether it is editionable.

*_OBJECTS_AE Describes every object in the database, in every edition. For each
object, this view shows whether it is editionable.

*_ERRORS Describes every error in the database in the current edition.

*_ERRORS_AE Describes every error in the database, in every edition.

*_USERS Describes every user in the database. Useful for showing which
users have editions enabled.

*_SERVICES Describes every service in the database. The EDITIONS column
shows the default initial current edition.

*_MVIEWS Describes every materialized view. If the materialized view refers to
editioned objects, then this view shows the evaluation edition and
the range of editions where the materialized view is eligible for
query rewrite.

*_TAB_COLS Describes every column of every table, view, and cluster. For each
virtual column, this view shows the evaluation edition and the
usable range.

Note:

*_OBJECTS and *_OBJECTS_AE include dependent objects that are invalidated
by operations in Table 26-2 only after one of the following:

• A reference to the object (either during compilation or execution)

• An invocation of DBMS_UTILITY.COMPILE_SCHEMA

• An invocation of any UTL_RECOMP subprogram

See Also:

• Oracle Database Reference for more information about a specific view

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_UTILITY.COMPILE_SCHEMA procedure

• Oracle Database PL/SQL Packages and Types Reference for more
information about UTL_RECOMP subprogram

Chapter 27
Displaying Information About EBR Features

27-41

Displaying Information About Editioning Views
Table 27-2 briefly describes the static data dictionary views that display information
about editioning views.

Table 27-2 *_ Dictionary Views with Editioning View Information

View Description

*_VIEWS Describes every view in the database that is visible in the current
edition, including editioning views.

*_EDITIONING_VIEWS Describes every editioning view in the database that is visible in
the current edition. Useful for showing relationships between
editioning views and their base tables. Join with *_OBJECTS_AE
for additional information.

*_EDITIONING_VIEWS_AE Describes every actual object in every editioning view in the
database, in every edition.

*_EDITIONING_VIEW_COL
S

Describes the columns of every editioning view in the database
that is visible in the current edition. Useful for showing
relationships between the columns of editioning views and the
table columns to which they map. Join with *_OBJECTS_AE,
*_TAB_COL, or both, for additional information.

*_EDITIONING_VIEW_COL
S_AE

Describes the columns of every editioning view in the database, in
every edition.

Each row of *_EDITIONING_VIEWS matches exactly one row of *_VIEWS, and each row
of *_VIEWS that has EDITIONING_VIEW = 'Y' matches exactly one row of
*_EDITIONING_VIEWS. Therefore, in this example, the WHERE clause is redundant:

SELECT ...
 FROM DBA_EDITIONING_VIEWS INNER JOIN DBA_VIEWS
 USING (OWNER, VIEW_NAME)
 WHERE EDITIONING_VIEW = 'Y'
 AND ...

The row of *_VIEWS that matches a row of *_EDITIONING_VIEWS has EDITIONING_VIEW
= 'Y' by definition. Conversely, no row of *_VIEWS that has EDITIONING_VIEW = 'N' has
a counterpart in *_ EDITIONING_VIEWS.

See Also:

Oracle Database Reference for more information about a specific view

Displaying Information About Crossedition Triggers
The static data dictionary views that display information about triggers are described in
Oracle Database Reference. Crossedition triggers that appear in static data dictionary
views are actual objects in the current edition.

Chapter 27
Displaying Information About EBR Features

27-42

Child cursors cannot be shared if the set of crossedition triggers that might run differs.
The dynamic performance views V$SQL_SHARED_CURSOR and GV$SQL_SHARED_CURSOR
have a CROSSEDITION_TRIGGER_MISMATCH column that tells whether this is true.

See Also:

Oracle Database Reference for information about V$SQL_SHARED_CURSOR

Using EBR to Upgrade an Application
To use EBR to upgrade your application online, you must first ready your application:

1. Editions-enable the appropriate users and the appropriate schema object types in
their schemas.

In schemas where you will create editioning views (in the next step), the type VIEW
must be editionable.

For instructions, see Enabling Editions for a User.

2. Prepare your application to use editioning views.

For instructions, see Preparing Your Application to Use Editioning Views.

With the editioning views in place, you can use EBR to upgrade your application online
as often as necessary. For each upgrade:

• If the type of every object that you will redefine is editionable (tables are not
editionable), then use the procedure in Procedure for EBR Using Only Editions.

• If you will change the structure of one or more tables, and while you are doing so,
other users need not be able to change data in those tables, then use the
procedure in Procedure for EBR Using Editioning Views.

• If you will change the structure of one or more tables, and while you are doing so,
other users must be able to change data in those tables, then use the procedure in
Procedure for EBR Using Crossedition Triggers.

Topics:

• Preparing Your Application to Use Editioning Views

• Procedure for EBR Using Only Editions

• Procedure for EBR Using Editioning Views

• Procedure for EBR Using Crossedition Triggers

• Rolling Back the Application Upgrade

• Reclaiming Space Occupied by Unused Table Columns

• Example: Using EBR to Upgrade an Application

Preparing Your Application to Use Editioning Views
An application that uses one or more tables must cover each table with an editioning
view. An editioning view covers a table when all of these statements are true:

Chapter 27
Using EBR to Upgrade an Application

27-43

• Every ordinary object in the application references the table only through the
editioning view. (An ordinary object is any object except an editioning view or
crossedition trigger. Editioning views and crossedition triggers must reference
tables.)

• Application users are granted object privileges only on the editioning view, not on
the table.

• Oracle Virtual Private Database (VPD) policies are attached only to the editioning
view, not to the table. (Regular auditing and fine-grained auditing (FGA) policies
are attached only to the table.)

When the editioning view is actualized, a copy of the VPD policy is attached to the
actualized editioning view. (A policy is uniquely identified by its name and the object to
which it is attached.) If the policy function is also actualized, the copy of the policy
uses the actualized policy function; otherwise, it uses the original policy function.

The static data dictionary views *_POLICIES, which describe the VPD policies, can
have different results in different editions.

See Also:

• Oracle Database Security Guide for information about VPD, including
that static data dictionary views that show information about VPD
policies

• Oracle Database Reference for information about *_POLICIES

If an existing application does not use editioning views, prepare it to use them by
following this procedure for each table that it uses:

1. Give the table a new name (so that you can give its current name to its editioning
view).

Oracle recommends choosing a new name that is related to the original name and
reflects the change history. For example, if the original table name is Data, the
new table name might be Data_1.

2. (Optional) Give each column of the table a new name.

Again, Oracle recommends choosing new names that are related to the original
names and reflect the change history. For example, Name and Number might be
changed to Name_1 and Number_1.

Any triggers that depend on renamed columns are now invalid. For details, see the
entry for ALTER TABLE table RENAME column in Table 26-2.

3. Create the editioning view, giving it the original name of the table.

For instructions, see Creating an Editioning View.

Because the editioning view has the name that the table had, objects that
reference that name now reference the editioning view.

4. If triggers are defined on the table, drop them, and rerun the code that created
them.

Now the triggers that were defined on the table are defined on the editioning view.

Chapter 27
Using EBR to Upgrade an Application

27-44

5. If VPD policies are attached to the table, drop the policies and policy functions and
rerun the code that created them.

Now the VPD policies that were attached to the table are attached to the editioning
view.

6. Revoke all object privileges on the table from all application users.

To see which application users have which object privileges on the table, use this
query:

SELECT GRANTEE, PRIVILEGE
FROM DBA_TAB_PRIVS
WHERE TABLE_NAME='table_name';

7. For every privilege revoked in step 6, grant the same privilege on the editioning
view.

8. For each user who owns a private synonym that refers to the table, enable
editions, specifying that the type SYNONYM is editionable in the schema (for
instructions, see Enabling Editions for a User).

9. Notify the owners of private synonyms that refer to the table that they must re-
create those synonyms.

Procedure for EBR Using Only Editions
Use this procedure only if every object that you will redefine is editioned (as defined in
Editioned and Noneditioned Objects). Tables are never editioned objects.

1. Create a new edition.

For instructions, see Creating an Edition.

2. Make the new edition your session edition.

For instructions, see Changing Your Session Edition.

3. Make the necessary changes to the editioned objects of the application.

4. Ensure that all objects are valid.

Query the static data dictionary *_OBJECTS_AE, which describes every actual object
in the database, in every edition. If invalid objects remain, recompile them, using
any UTL_RECOMP subprogram (described in Oracle Database PL/SQL Packages
and Types Reference).

5. Check that the changes work as intended.

If so, go to step 6.

If not, either make further changes (return to step3) or roll back the application
upgrade (for instructions, see Rolling Back the Application Upgrade).

6. Make the new edition (the upgraded application) available to all users.

For instructions, see Making an Edition Available to All Users.

7. Retire the old edition (the original application), so that all users except SYS use
only the upgraded application.

For instructions, see Retiring an Edition.

Example 27-6 shows how to use the preceding procedure to change a very simple
PL/SQL procedure.

Chapter 27
Using EBR to Upgrade an Application

27-45

Example 27-6 EBR of Very Simple Procedure

1. Create PL/SQL procedure for this example:

CREATE OR REPLACE PROCEDURE hello IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello, edition 1.');
END hello;
/

2. Invoke PL/SQL procedure:

BEGIN hello(); END;
/

Result:

Hello, edition 1.

PL/SQL procedure successfully completed.

3. Do EBR of procedure:

a. Create new edition:

CREATE EDITION e2 AS CHILD OF ora$base;

Result:

Edition created.

b. Make new edition your session edition:

ALTER SESSION SET EDITION = e2;

Result:

Session altered.

c. Change procedure:

CREATE OR REPLACE PROCEDURE hello IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello, edition 2.');
END hello;
/

Result:

Procedure created.

d. Check that change works as intended:

BEGIN hello(); END;
/

Result:

Hello, edition 2.
PL/SQL procedure successfully completed.

e. Make new edition available to all users (requires system privileges):

ALTER DATABASE DEFAULT EDITION = e2;

f. Retire old edition (requires system privileges):

List grantees:

Chapter 27
Using EBR to Upgrade an Application

27-46

SELECT GRANTEE, PRIVILEGE
FROM DBA_TAB_PRIVS
WHERE TABLE_NAME = UPPER('ora$base')
/

Result:

GRANTEE PRIVILEGE
------------------------------ ---------
PUBLIC USE

1 row selected.

Revoke use on old edition from all grantees:

REVOKE USE ON EDITION ora$base FROM PUBLIC;

Procedure for EBR Using Editioning Views
Use this procedure only if you will change the structure of one or more tables, and
while you are doing so, other users need not be able to change data in those tables.

1. Create a new edition.

For instructions, see Creating an Edition.

2. Make the new edition your session edition.

For instructions, see Changing Your Session Edition.

3. In the new edition, if the editioning views are read-only, make them read-write.

For instructions, see Changing the Writability of an Editioning View.

4. In every edition except the new edition, make the editioning views read-only.

5. Make the necessary changes to the objects of the application.

6. Ensure that all objects are valid.

Query the static data dictionary *_OBJECTS_AE, which describes every actual object
in the database, in every edition. If invalid objects remain, recompile them, using
any UTL_RECOMP subprogram (described in Oracle Database PL/SQL Packages
and Types Reference).

7. Check that the changes work as intended.

If so, go to step 8.

If not, either make further changes (return to step 5) or roll back the application
upgrade (for instructions, see Rolling Back the Application Upgrade).

8. Make the upgraded application available to all users.

For instructions, see Making an Edition Available to All Users.

9. Retire the old edition (the original application), so that all users except SYS use
only the upgraded application.

For instructions, see Retiring an Edition.

Chapter 27
Using EBR to Upgrade an Application

27-47

Procedure for EBR Using Crossedition Triggers
Use this procedure only if you will change the structure of one or more tables, and
while you are doing so, other users must be able to change data in those tables.

1. Create a new edition.

For instructions, see Creating an Edition.

2. Make the new edition your session edition.

For instructions, see Changing Your Session Edition.

3. Make the permanent changes to the objects of the application.

For example, add new columns to the tables and create any new permanent
subprograms.

Objects that depend on objects that you changed might now be invalid. For more
information, see Table 26-2.

4. Ensure that all objects are valid.

Query the static data dictionary *_OBJECTS_AE, which describes every actual object
in the database, in every edition. If invalid objects remain, recompile them, using
any UTL_RECOMP subprogram (described in Oracle Database PL/SQL Packages
and Types Reference).

5. Create the temporary objects—the crossedition triggers (in the disabled state) and
any subprograms that they need.

For instructions, see Creating a Crossedition Trigger.

You need reverse crossedition triggers only if you do step 10, which is optional.

6. When the crossedition triggers compile successfully, enable them.

Use the ALTER TRIGGER statement with the ENABLE option. For information about
this statement, see Oracle Database PL/SQL Language Reference.

7. Wait until pending changes are either committed or rolled back.

Use the procedure DBMS_UTILITY.WAIT_ON_PENDING_DML, described in Oracle
Database PL/SQL Packages and Types Reference.

8. Apply the transforms.

For instructions, see Transforming Data from Pre- to Post-Upgrade
Representation.

Note:

It is impossible to predict whether this step visits an existing row before a
user of an ancestor edition updates, inserts, or deletes data from that
row.

9. Check that the changes work as intended.

If so, go to step 10.

Chapter 27
Using EBR to Upgrade an Application

27-48

If not, either make further changes (return to step 3) or roll back the application
upgrade (for instructions, see Rolling Back the Application Upgrade).

10. (Optional) Grant the USE privilege on your session edition to the early users of the
upgraded application.

For instructions, see Making an Edition Available to Some Users.

11. Make the upgraded application available to all users.

For instructions, see Making an Edition Available to All Users.

12. Disable or drop the constraints and then drop the crossedition triggers.

For instructions, see Dropping the Crossedition Triggers.

13. Retire the old edition (the original application), so that all users except SYS use
only the upgraded application.

For instructions, see Retiring an Edition.

Rolling Back the Application Upgrade
To roll back the application upgrade:

1. Change your session edition to something other than the new edition that you
created for the upgrade.

For instructions, see Changing Your Session Edition.

2. Drop the new edition that you created for the upgrade.

For instructions, see Dropping an Edition.

3. If you created new table columns during the upgrade, reclaim the space that they
occupy (for instructions, see Reclaiming Space Occupied by Unused Table
Columns).

Reclaiming Space Occupied by Unused Table Columns
If you roll back an upgrade for which you created new table columns,

To reclaim the space that unused columns occupy:

1. Set the values of the unused columns to NULL.

To avoid locking out other users while doing this operation, use the
DBMS_PARALLEL_EXECUTE procedure (described in Oracle Database PL/SQL
Packages and Types Reference).

2. Set the unused columns to UNUSED.

Use the ALTER TABLE statement (described in Oracle Database SQL Language
Reference) with the SET UNUSED clause (described in Oracle Database SQL
Language Reference).

3. Shrink the table.

Use the ALTER TABLE statement (described in Oracle Database SQL Language
Reference) with the SHRINK SPACE clause (described in Oracle Database SQL
Language Reference).

Chapter 27
Using EBR to Upgrade an Application

27-49

Example: Using EBR to Upgrade an Application
This example uses an edition, an editioning view, a forward crossedition trigger, and a
reverse crossedition trigger.

Topics:

• Existing Application

• Preparing the Application to Use Editioning Views

• Using EBR to Upgrade the Application

Note:

Before you can use EBR to upgrade an application, you must enable editions
for every schema that the application uses. For instructions, see Enabling
Editions for a User.

Existing Application
The existing application—the application to be upgraded—consists of a single table on
which a trigger is defined.

The existing application has a trigger, which you can check. The following examples
show the existing application:

• Example: Creating the Existing Application

• Example: Viewing Data in Existing Table

Example: How the Existing Application Was Created

The application was created as in Example 27-7.

Example 27-7 Creating the Existing Application

1. Create table:

CREATE TABLE Contacts(
 ID NUMBER(6,0) CONSTRAINT Contacts_PK PRIMARY KEY,
 Name VARCHAR2(47),
 Phone_Number VARCHAR2(20)
);

2. Populate table (not shown).

3. Prepare to create trigger on table:

ALTER TABLE Contacts ENABLE VALIDATE CONSTRAINT Contacts_PK;

DECLARE Max_ID INTEGER;
BEGIN
 SELECT MAX(ID) INTO Max_ID FROM Contacts;
 EXECUTE IMMEDIATE '
 CREATE SEQUENCE Contacts_Seq

Chapter 27
Using EBR to Upgrade an Application

27-50

 START WITH '||To_Char(Max_ID + 1);
END;
/

4. Create trigger:

CREATE TRIGGER Contacts_BI
 BEFORE INSERT ON Contacts FOR EACH ROW
BEGIN
 :NEW.ID := Contacts_Seq.NEXTVAL;
END;
/

Example: Viewing Data in the Existing Table
Example 27-8 shows how the table Contacts looks after being populated with data.

Example 27-8 Viewing Data in the Existing Table

Query:

SELECT * FROM Contacts
ORDER BY Name;

Result:

 ID NAME PHONE_NUMBER
---------- --- --------------------
 174 Abel, Ellen 011.44.1644.429267
 166 Ande, Sundar 011.44.1346.629268
 130 Atkinson, Mozhe 650.124.6234
 105 Austin, David 590.423.4569
 204 Baer, Hermann 515.123.8888
 116 Baida, Shelli 515.127.4563
 167 Banda, Amit 011.44.1346.729268
 172 Bates, Elizabeth 011.44.1343.529268
 192 Bell, Sarah 650.501.1876
 151 Bernstein, David 011.44.1344.345268
 129 Bissot, Laura 650.124.5234
 169 Bloom, Harrison 011.44.1343.829268
 185 Bull, Alexis 650.509.2876
 187 Cabrio, Anthony 650.509.4876
 148 Cambrault, Gerald 011.44.1344.619268
 154 Cambrault, Nanette 011.44.1344.987668
 110 Chen, John 515.124.4269
 ...
 120 Weiss, Matthew 650.123.1234
 200 Whalen, Jennifer 515.123.4444
 149 Zlotkey, Eleni 011.44.1344.429018

107 rows selected.

Suppose that you must redefine Contacts, replacing the Name column with the columns
First_Name and Last_Name, and adding the column Country_Code. Also suppose that
while you are making this structural change, other users must be able to change the
data in Contacts.

You need all features of EBR: the edition, which is always needed; the editioning view,
because you are redefining a table; and crossedition triggers, because other users
must be able to change data in the table while you are redefining it.

Chapter 27
Using EBR to Upgrade an Application

27-51

Preparing the Application to Use Editioning Views
Example 27-9 shows how to create the editioning view from which other users will
access the table Contacts while you are redefining it in the new edition.

Example 27-9 Creating an Editioning View for the Existing Table

1. Give table a new name (so that you can give its current name to editioning view):

ALTER TABLE Contacts RENAME TO Contacts_Table;

2. (Optional) Give columns of table new names:

ALTER TABLE Contacts_Table
 RENAME COLUMN Name TO Name_1;

ALTER TABLE Contacts_Table
 RENAME COLUMN Phone_Number TO Phone_Number_1;

3. Create editioning view:

CREATE OR REPLACE EDITIONING VIEW Contacts AS
 SELECT
 ID ID,
 Name_1 Name,
 Phone_Number_1 Phone_Number
 FROM Contacts_Table;

4. Move trigger Contacts_BI from table to editioning view:

DROP TRIGGER Contacts_BI;

CREATE TRIGGER Contacts_BI
 BEFORE INSERT ON Contacts FOR EACH ROW
BEGIN
 :NEW.ID := Contacts_Seq.NEXTVAL;
END;
/

Using EBR to Upgrade the Example Application
You can use triggers to upgrade an existing application.

The following examples show how to use triggers to updated the example application:

• Example: Creating Edition in Which to Upgrade the Example Application

• Example: Changing the Table and Replacing the Editioning View

• Example: Creating and Enabling the Crossedition Triggers

• Example: Applying the Transforms

• Example: Viewing Data in the Changed Table

Example: Creating an Edition in Which to Upgrade the Example Application
Example 27-10 shows how to create an edition in which to upgrade the existing
application (in Existing Application), make the new edition the session edition, and
check that the new edition really is the session edition.

Chapter 27
Using EBR to Upgrade an Application

27-52

Example 27-10 Creating an Edition in Which to Upgrade the Example
Application

1. Create the new edition:

CREATE EDITION Post_Upgrade AS CHILD OF Ora$Base;

2. Make new edition your session edition:

ALTER SESSION SET EDITION = Post_Upgrade;

3. Check session edition:

SELECT
SYS_CONTEXT('Userenv', 'Current_Edition_Name') "Current_Edition"
FROM DUAL;

Result:

Current_Edition

POST_UPGRADE

1 row selected.

In the Post_Upgrade edition, Example: Creating an Edition in Which to Upgrade the
Example Application shows how to add the new columns to the physical table and
recompile the trigger that was invalidated by adding the columns. Then, it shows how
to replace the editioning view Contacts so that it selects the columns of the table by
their desired logical names.

Note:

Because you will change the base table, see "Nonblocking and Blocking
DDL Statements."

Example: Changing the Table and Replacing the Editioning View
In the Post_Upgrade edition, Example 27-11 shows how to create two procedures for
the forward crossedition trigger to use, create both the forward and reverse
crossedition triggers in the disabled state, and enable them.

Example 27-11 Changing the Table and Replacing the Editioning View

1. Add new columns to physical table:

ALTER TABLE Contacts_Table ADD (
 First_Name_2 varchar2(20),
 Last_Name_2 varchar2(25),
 Country_Code_2 varchar2(20),
 Phone_Number_2 varchar2(20)
);

(This is nonblocking DDL.)

2. Recompile invalidated trigger:

ALTER TRIGGER Contacts_BI COMPILE REUSE SETTINGS;

Chapter 27
Using EBR to Upgrade an Application

27-53

3. Replace editioning view so that it selects replacement columns with their desired
logical names:

CREATE OR REPLACE EDITIONING VIEW Contacts AS
 SELECT
 ID ID,
 First_Name_2 First_Name,
 Last_Name_2 Last_Name,
 Country_Code_2 Country_Code,
 Phone_Number_2 Phone_Number
 FROM Contacts_Table;

Example: Creating and Enabling the Crossedition Triggers
In the Post_Upgrade edition, Example 27-12 shows how to apply the transforms.

Example 27-12 Creating and Enabling the Crossedition Triggers

1. Create first procedure that forward crossedition trigger uses:

CREATE OR REPLACE PROCEDURE Set_First_And_Last_Name (
 Name IN VARCHAR2,
 First_Name OUT VARCHAR2,
 Last_Name OUT VARCHAR2)
IS
 Comma_Pos NUMBER := INSTR(Name, ',');
BEGIN
 IF Comma_Pos IS NULL OR Comma_Pos < 2 THEN
 RAISE Program_Error;
 END IF;

 Last_Name := SUBSTR(Name, 1, Comma_Pos-1);
 Last_Name := RTRIM(Ltrim(Last_Name));

 First_Name := SUBSTR(Name, Comma_Pos+1);
 First_Name := RTRIM(LTRIM(First_Name));
END Set_First_And_Last_Name;
/

2. Create second procedure that forward crossedition trigger uses:

CREATE OR REPLACE PROCEDURE Set_Country_Code_And_Phone_No (
 Phone_Number IN VARCHAR2,
 Country_Code OUT VARCHAR2,
 Phone_Number_V2 OUT VARCHAR2)
IS
 Char_To_Number_Error EXCEPTION;
 PRAGMA EXCEPTION_INIT(Char_To_Number_Error, -06502);
 Bad_Phone_Number EXCEPTION;
 Nmbr VARCHAR2(30) := REPLACE(Phone_Number, '.', '-');

 FUNCTION Is_US_Number(Nmbr IN VARCHAR2)
 RETURN BOOLEAN
 IS
 Len NUMBER := LENGTH(Nmbr);
 Dash_Pos NUMBER := INSTR(Nmbr, '-');
 n PLS_INTEGER;
 BEGIN
 IF Len IS NULL OR Len <> 12 THEN
 RETURN FALSE;
 END IF;
 IF Dash_Pos IS NULL OR Dash_Pos <> 4 THEN

Chapter 27
Using EBR to Upgrade an Application

27-54

 RETURN FALSE;
 END IF;
 BEGIN
 n := TO_NUMBER(SUBSTR(Nmbr, 1, 3));
 EXCEPTION WHEN Char_To_Number_Error THEN
 RETURN FALSE;
 END;

 Dash_Pos := INSTR(Nmbr, '-', 5);

 IF Dash_Pos IS NULL OR Dash_Pos <> 8 THEN
 RETURN FALSE;
 END IF;

 BEGIN
 n := TO_NUMBER(SUBSTR(Nmbr, 5, 3));
 EXCEPTION WHEN Char_To_Number_Error THEN
 RETURN FALSE;
 END;

 BEGIN
 n := TO_NUMBER(SUBSTR(Nmbr, 9));
 EXCEPTION WHEN Char_To_Number_Error THEN
 RETURN FALSE;
 END;

 RETURN TRUE;
 END Is_US_Number;

BEGIN
 IF Nmbr LIKE '011-%' THEN
 DECLARE
 Dash_Pos NUMBER := INSTR(Nmbr, '-', 5);
 BEGIN
 Country_Code := '+'|| TO_NUMBER(SUBSTR(Nmbr, 5, Dash_Pos-5));
 Phone_Number_V2 := SUBSTR(Nmbr, Dash_Pos+1);
 EXCEPTION WHEN Char_To_Number_Error THEN
 raise Bad_Phone_Number;
 END;
 ELSIF Is_US_Number(Nmbr) THEN
 Country_Code := '+1';
 Phone_Number_V2 := Nmbr;
 ELSE
 RAISE Bad_Phone_Number;
 END IF;
EXCEPTION WHEN Bad_Phone_Number THEN
 Country_Code := '+0';
 Phone_Number_V2 := '000-000-0000';
END Set_Country_Code_And_Phone_No;
/

3. Create forward crossedition trigger in disabled state:

CREATE OR REPLACE TRIGGER Contacts_Fwd_Xed
 BEFORE INSERT OR UPDATE ON Contacts_Table
 FOR EACH ROW
 FORWARD CROSSEDITION
 DISABLE
BEGIN
 Set_First_And_Last_Name(
 :NEW.Name_1,
 :NEW.First_Name_2,

Chapter 27
Using EBR to Upgrade an Application

27-55

 :NEW.Last_Name_2
);
 Set_Country_Code_And_Phone_No(
 :NEW.Phone_Number_1,
 :NEW.Country_Code_2,
 :NEW.Phone_Number_2
);
END Contacts_Fwd_Xed;
/

4. Enable forward crossedition trigger:

ALTER TRIGGER Contacts_Fwd_Xed ENABLE;

5. Create reverse crossedition trigger in disabled state:

CREATE OR REPLACE TRIGGER Contacts_Rvrs_Xed
 BEFORE INSERT OR UPDATE ON Contacts_Table
 FOR EACH ROW
 REVERSE CROSSEDITION
 DISABLE
BEGIN
 :NEW.Name_1 := :NEW.Last_Name_2||', '||:NEW.First_Name_2;
 :NEW.Phone_Number_1 :=
 CASE :New.Country_Code_2
 WHEN '+1' THEN
 REPLACE(:NEW.Phone_Number_2, '-', '.')
 ELSE
 '011.'||LTRIM(:NEW.Country_Code_2, '+')||'.'||
 REPLACE(:NEW.Phone_Number_2, '-', '.')
 END;
END Contacts_Rvrs_Xed;
/

6. Enable reverse crossedition trigger:

ALTER TRIGGER Contacts_Rvrs_Xed ENABLE;

7. Wait until pending changes are either committed or rolled back:

DECLARE
 scn NUMBER := NULL;
 timeout CONSTANT INTEGER := NULL;
BEGIN
 IF NOT DBMS_UTILITY.WAIT_ON_PENDING_DML(Tables => 'Contacts_Table',
 timeout => timeout,
 scn => scn)
 THEN
 RAISE_APPLICATION_ERROR(-20000,
 'Wait_On_Pending_DML() timed out. CETs were enabled before SCN: '||SCN);
 END IF;
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_UTILITY.WAIT_ON_PENDING_DML procedure

Chapter 27
Using EBR to Upgrade an Application

27-56

Example: Applying the Transforms
In the Post_Upgrade edition, Example 27-13 example shows how to apply the
transforms.

Example 27-13 Applying the Transforms

DECLARE
 c NUMBER := DBMS_SQL.OPEN_CURSOR();
 x NUMBER;
BEGIN
 DBMS_SQL.PARSE(
 c => c,
 Language_Flag => DBMS_SQL.NATIVE,
 Statement => 'UPDATE Contacts_Table SET ID = ID',
 Apply_Crossedition_Trigger => 'Contacts_Fwd_Xed'
);
 x := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);
 COMMIT;
END;
/

Example: Viewing Data in the Changed Table
In the Post_Upgrade edition, Example 27-14 shows how to check that the change
worked as intended. Compare Example: Viewing Data in the Changed Tableto
Example: Viewing Data in the Existing Table.

Example 27-14 Viewing Data in the Changed Table

1. Format columns for readability:

COLUMN ID FORMAT 999
COLUMN Last_Name FORMAT A15
COLUMN First_Name FORMAT A15
COLUMN Country_Code FORMAT A12
COLUMN Phone_Number FORMAT A12

2. Query:

SELECT * FROM Contacts
ORDER BY Last_Name;

Result:

 ID FIRST_NAME LAST_NAME COUNTRY_CODE PHONE_NUMBER
---- --------------- --------------- ------------ ------------
 174 Ellen Abel +44 1644-429267
 166 Sundar Ande +44 1346-629268
 130 Mozhe Atkinson +1 650-124-6234
 105 David Austin +1 590-423-4569
 204 Hermann Baer +1 515-123-8888
 116 Shelli Baida +1 515-127-4563
 167 Amit Banda +44 1346-729268
 172 Elizabeth Bates +44 1343-529268
 192 Sarah Bell +1 650-501-1876
 151 David Bernstein +44 1344-345268
 129 Laura Bissot +1 650-124-5234
 169 Harrison Bloom +44 1343-829268

Chapter 27
Using EBR to Upgrade an Application

27-57

 185 Alexis Bull +1 650-509-2876
 187 Anthony Cabrio +1 650-509-4876
 154 Nanette Cambrault +44 1344-987668
 148 Gerald Cambrault +44 1344-619268
 110 John Chen +1 515-124-4269
 ...
 120 Matthew Weiss +1 650-123-1234
 200 Jennifer Whalen +1 515-123-4444
 149 Eleni Zlotkey +44 1344-429018

107 rows selected.

If the change worked as intended, you can now follow steps 10 through 13 of the
procedure in Procedure for EBR Using Crossedition Triggers.

Chapter 27
Using EBR to Upgrade an Application

27-58

28
Using Transaction Guard

Transaction Guard provides a generic tool for applications to use for at-most-once
execution in case of planned and unplanned outages. Applications use the logical
transaction ID to determine the commit outcome of the last transaction open in a
database session following an outage. Without Transaction Guard, applications that
attempt to replay operations following outages can cause logical corruption by
committing duplicate transactions. Transaction Guard is used by Application Continuity
for automatic and transparent transaction replay.

Transaction Guard provides these benefits:

• Preserves the returned outcome - committed or uncommitted so that it can be
relied on

• Ensures a known commit outcome for every transaction

• Can be used to provide at-most-once transaction execution for applications that
wish to resubmit themselves

• Is used by Application Continuity for automatic and transparent transaction replay

This chapter assumes that you are familiar with the major relevant concepts and
techniques of the technology or product environment in which you are using
Transaction Guard.

Topics:

• Problem that Transaction Guard Solves

• Solution that Transaction Guard Provides

• Transaction Guard Concepts and Scope

• Database Configuration for Transaction Guard

• Developing Applications that Use Transaction Guard

• Transaction Guard and Its Relationship to Application Continuity

See Also:

• Oracle Database JDBC Developer's Guide for more information about
using Transaction Guard with Oracle Java Database Connectivity
(JDBC)

• Oracle Call Interface Programmer's Guide for more information about
using Transaction Guard with OCI

28-1

Problem That Transaction Guard Solves
In applications without Transaction Guard, a fundamental problem for recovering
applications after an outage is that the commit message that is sent back to the client
is not durable. If there is a break between the client and the server, the client sees an
error message indicating that the communication failed. This error does not inform the
application if the submission executed any commit operations, if a procedural call
completed and executed all expected commits and session state changes, or if a call
failed part way through or, yet worse, is still running disconnected from the client.

Without Transaction Guard, it is impossible or extremely difficult to determine the
outcome of the last commit operation, in a guaranteed and scalable manner, after a
communication failure to the server. If an application must determine whether the
submission to the database was committed, the application must add custom
exception code to query the outcome for every possible commit point in the
application. Given that a system can fail anywhere, this is almost impractical because
the query must be specific to each submission. After an application is built and is in
production, this is completely impractical. Moreover, a query cannot give the correct
answer because the transaction could commit immediately after that query executed.
Indeed, after a communication failure the server may still be running the submission
not yet aware that the client has disconnected. For PL/SQL or Java in the database,
for a procedural submission, there is also no record as to whether that submission ran
to completion or was aborted part way through. While such a procedure may have
committed, subsequent work may not have been done for the procedure.

Failing to recognize that the last submission has committed, or will commit sometime
soon or has not run to completion, can lead applications that attempt to replay, thus
causing duplicate transaction submissions and other forms of "logical corruption"
because the software might try to reissue already persisted changes.

Without Transaction Guard, if a transaction has been started and commit has been
issued, the commit message that is sent back to the client is not durable. The client is
left not knowing whether the transaction committed. The transaction cannot be validly
resubmitted if the nontransactional state is incorrect or if it already committed. In the
absence of guaranteed commit and completion information, resubmission can lead to
transactions applied more than once and in a session with the incorrect state.

Solution That Transaction Guard Provides
Effective with Oracle Database 12c Release 1 (12.1.0.1), Transaction Guard provides
new, integrated tools for applications to use to achieve idempotence automatically and
transparently, and in a manner that scales. Its key features are the following:

• Durability of COMMIT outcome by saving a logical transaction identifier (LTXID) at
commit for all supported transaction types against the database (Oracle Database
12c Release 1 (12.1.0.1) or later). This includes idempotence for transactions
executed using autocommit, from inside PL/SQL, from remote transactions, One-
Phase XA transactions, and from callouts that cannot otherwise be identified using
generic means.

• Use of the LTXID to support at-most-once execution semantics, such that
database transactions protected by logical transaction identifiers cannot be
duplicated when there are multiple copies of that transaction in flight identified by
the LTXID.

Chapter 28
Problem That Transaction Guard Solves

28-2

• Blocking of a commit of in-flight work to ensure that regardless of the outage
situation, another submission of the same transaction protected by that LTXID
cannot commit.

• Identification of whether work committed at an LTXID was committed as part of a
top-level call (client to server), or was embedded in a procedure (such as PL/SQL)
at the server. An embedded commit state indicates that while a commit completed,
the entire procedure in which the commit executed has not yet run to completion.
Any work beyond the commit cannot be guaranteed to have completed until that
procedure itself returns to the database engine.

• Identification of whether the database to which the commit resolution is directed is
ahead of, in sync with, or behind the original submission, and rejection when there
are gaps in the submission sequence of transactions from a client. It is considered
an error to attempt to obtain an outcome if the server or client are not in sync on
an LTXID sequence.

• A callback on the JDBC Thin client driver that fires when the LTXID changes. This
can be used by higher layer applications such as WebLogic Server and third
parties to maintain the current LTXID ready to use if needed.

• Namespace uniqueness across globally disparate databases and across
databases that are consolidated into a Multitenant infrastructure. This includes
Oracle Real Application Clusters (Oracle RAC) and RAC One, Data Guard, and
Multitenant databases.

• Service name uniqueness across global databases and across databases that are
consolidated into a Multitenant infrastructure. This ensures that connections are
properly directed to the transaction information.

Transaction Guard Concepts and Scope
This section explains some key concepts for Transaction Guard, and what Transaction
Guard covers and does not cover.

Topics:

• Logical Transaction Identifier (LTXID)

• At-Most-Once Execution

• Transaction Guard Coverage

• Transaction Guard Exclusions

See Also:

• Oracle Database Concepts for more information about how Transaction
Guard works

• Oracle Database JDBC Developer's Guide for more information about
using Transaction Guard with Oracle Java Database Connectivity
(JDBC)

Chapter 28
Transaction Guard Concepts and Scope

28-3

Logical Transaction Identifier (LTXID)
Applications use a concept called the logical transaction identifier (LTXID) to
determine the outcome of the last transaction open in a database session following an
outage. The logical transaction ID is stored in the OCI session handle and in a
connection object for the JDBC Thin and ODP.NET drivers. The logical transaction ID
is the foundation of the at-most-once semantics.

The Transaction Guard protocol ensures that:

• Execution of each logical transaction is unique.

• Duplication is detected at supported commit time to ensure that for all commit
points, the protocol must not be circumvented.

• When the transaction is committed, the logical transaction ID is persisted for the
duration of the retention period for retries (default = 24 hours, maximum = 30
days).

• When obtaining the outcome, an LTXID is blocked to ensure that an earlier in-flight
version of that LTXID cannot commit, by enforcing the uncommitted status. If the
earlier version with the same LTXID was already committed or forced, then
blocking the LTXID returns the same result.

The logical session number is automatically assigned at session establishment. It is an
opaque structure that cannot be read by an application. For scalability, each LTXID
carries a running number called the commit number, which is increased when a
database transaction is committed for each round trip to the database. This running
commit number is zero-based.

At-Most-Once Execution
Transaction Guard uses the logical transaction identifier (LTXID) to avoid duplicate
transactions. This ability to ensure at most one execution of a transaction is referred to
as transaction idempotence. The LTXID is persisted on commit and is reused following
a rollback. During normal runtime, an LTXID is automatically held in the session at
both the client and server for each database transaction. At commit, the LTXID is
persisted as part of committing the transaction.

The at-most-once protocol requires that the database maintain the LTXID for the
retention period agreed for replay. The default retention period is 24 hours, although
you might need a shorter or longer period, conceivably even a week or longer. The
longer the retention period, the longer the at-most-once check blocks an old
transaction using an old LTXID from replay. The setting is available on each service.
When multiple databases are involved, as is the case when using Data Guard and
Active Data Guard, the LTXID is replicated to each database involved through the use
of redo.

The getLTXID API, provided for Oracle JDBC Thin (with similar APIs for OCI, OCCI,
and ODP.NET clients), lets an application retrieve the logical transaction identifier that
was in use on the dead session. This is needed to determine the status of this last
transaction.

The DBMS_APP_CONT.GET_LTXID_OUTCOME PL/SQL subprogram lets an application find
the outcome of an action for a specified logical transaction identifier. Calling
DBMS_APP_CONT.GET_LTXID_OUTCOME may involve the server blocking the LTXID from
committing so that the outcome is known. This is a requirement if a transaction using

Chapter 28
Transaction Guard Concepts and Scope

28-4

that LTXID is in flight or is about to commit. An application using Transaction Guard
obtains the LTXID following a recoverable error, and then calls
DBMS_APP_CONT.GET_LTXID_OUTCOME before attempting a replay.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_APP_CONT.GET_LTXID_OUTCOME PL/SQL subprogram

Transaction Guard Coverage
You may use Transaction Guard on each database in your system, including restarting
on and failing over between single instance database, Real Application Clusters, Data
Guard and Active Data Guard.

Transaction Guard is supported with the following Oracle Database 12c configurations:

• Single Instance Oracle RDBMS

• Real Application Clusters

• Data Guard

• Active Data Guard

• Multitenant including unplug/plug and for 12.2 relocates across the PDB/CDB, but
excludes "with clone" option

• Global Data Services for the above database configurations

Transaction Guard supports the following transaction types against Oracle Database
12c:

• Local transactions

• Data definition language (DDL) transactions

• Data control language (DCL) transactions

• Distributed transactions

• Remote transactions

• Parallel transactions

• Commit on success (auto-commit)

• PL/SQL with embedded commit-supported client drivers

• Starting with Oracle Database 12c Release 2 (12.2.0.1), XA transactions using
One Phase Optimizations including XA commit flag TMONEPHASE and read
optimizations

• ALTER SESSION SET Container with Service clause, where the service uses
Transaction Guard

Transaction Guard supports the following client drivers :

• 12c JDBC type 4 driver

• 12c OCI and OCCI client drivers

Chapter 28
Transaction Guard Concepts and Scope

28-5

• 12c Oracle Data Provider for .NET (ODP.NET), Unmanaged Driver

• 12c ODP.NET, Managed Driver in ODAC 12c Release 4 or higher

Transaction Guard with XA Transactions

Starting with Oracle Database 12.2 Release, Transaction Guard supports XA
transactions to determine the outcome of one phase transactions. Transaction Guard
supports local transactions and XA transactions that use TMONEPHASE during the
commit operation. When the application issues an XA transaction that uses
TMTWOPHASE, the Transaction Guard disables itself for that transaction and
automatically re-enables to prepare itself for the next transaction. This allows
Transaction Guard to support the following XA transactions:

1. Local transactions that use autocommit

2. Local transactions that use an explicit commit

3. XA transactions that commit with TMONEPHASE flag

TP Monitors and Applications can use Transaction Guard to obtain the outcome of
commit operation for these transaction types. Transaction Guard disables itself for
externally-managed TMTWOPHASE commit operations and automatically re-enables for
the next transaction. If the Transaction Guard APIs are used with a TMTWOPHASE
transaction, a warning message is returned as Transaction Guard is disabled. The TP
monitors own the commit outcome for TMTWOPHASE transactions. This functionality
allows TP monitors to return an unambiguous outcome for TMONEPHASE operations.

Transaction Guard Exclusions
Transaction Guard intentionally excludes recursive transactions and autonomous
transactions so that they can be re-executed.

As of Oracle Database 12c Release 2, Transaction Guard also excludes:

• Two Phase XA transactions are managed externally. When using XA transactions,
Transaction Guard maintains the commit outcome for one-phase XA transactions,
and silently disables itself for externally-managed two-phase transactions because
this outcome is owned by the TP monitor.

• Active Data Guard with read/write database links for forwarding transactions

• Golden Gate and Logical Standby for determining the outcome when failing across
logical databases. Golden Gate and Logical Standby endpoints can use
Transaction Guard

• Full database import cannot be executed with Transaction Guard enabled. Use an
admin service without Transaction Guard for full database imports. User and
object imports are not excluded.

• TAF and Application Continuity handle Transaction Guard internally. Do not code
Transaction Guard in your application in the following places:

– A failed return from TAF

– TAF Callback for TAF or for Application Continuity for OCI and ODP.NET

– JDBC initialization callback for Application Continuity for Java

Chapter 28
Transaction Guard Concepts and Scope

28-6

Transaction Guard excludes failover across databases maintained by replication
technology:

• Replication to Golden Gate

• Replication to Logical Standby

• PDB clones clause (excluding PDB online relocation 12c Release 2 and later)

• All third party replication solutions

If you are using a database replica using any replication technology such as Golden
Gate, or Logical Standby, or 3rd party replication, you may not use Transaction Guard
between the primary and the secondary databases in this configuration.

You may use Transaction Guard on each database that participates in the replication.
In this case, each database must use a different database unique identifier. Use
V$DATABASE to obtain the DBID for each database.

Database Configuration for Transaction Guard
This section contains information relevant to configuring the database for using
Transaction Guard.

Topics:

• Configuration Checklist

• Transaction History Table

• Service Parameters

Configuration Checklist
To use Transaction Guard with an application, you must do the following:

• Use Oracle Database 12c Release 1 (12.1.0.1) or later.

• Use an application service for all database work. Create the service using the
srvctl command if you are using Oracle RAC, or using the
DBMS_SERVICE.CREATE_SERVICE PL/SQL subprogram if you are not using Oracle
RAC.

Do not use the default database services, because these services are for
administration purposes and cannot be manipulated. That is, do not use a service
name that is set to db_name or db_unique_name.

• Grant permission on the DBMS_APP_CONT package to the database users who will
call GET_LTXID_OUTCOME:

GRANT EXECUTE ON DBMS_APP_CONT TO <user-name>;

• Increase DDL_LOCK_TIMEOUT if using Transaction Guard with DDL statements..

To use Transaction Guard with an application, Oracle recommends that you do the
following:

• Locate and define the transaction history table for optimal performance.

• If you are using Oracle RAC or Oracle Data Guard, ensure that FAN is configured
to communicate to interrupt clients fast on error.

Chapter 28
Database Configuration for Transaction Guard

28-7

• Set the following parameter: AQ_HA_NOTIFICATIONS = TRUE (if using OCI FAN).

See Also:

• Oracle Database Reference for more information about
DDL_LOCK_TIMEOUT

• Transaction History Table

Transaction History Table
The transaction history table maintains the mapping of logical transaction identifiers
(LTXIDs) to database transaction. This table can be accessed only by databases
users with DBA privileges. It is maintained automatically by Oracle Database, and
users must not issue DDL or DML statements directly against the transaction history
table.

The transaction history table (LTXID_TRANS) is created by default in the SYSAUX
tablespace at database creation and upgrade. New partitions are added when
instances are added, using the storage of the last partition. However, if the location of
this tablespace is not optimal for performance, the DBA can move partitions to another
tablespace. For example, the following statement alters the transaction history table to
move it to a tablespace named FastPace:

ALTER TABLE LTXID_TRANS move partition LTXID_TRANS_4
 tablespace FastPace
 storage (initial 10G next 10G
 minextents 1 maxextents 121);

See Also:

• Oracle Database SQL Language Reference for information about the
ALTER TABLE statement

Service Parameters
Configure the services for commit outcome and retention.

For example:

COMMIT_OUTCOME = TRUE
RETENTION_TIMEOUT = <retention-value>

COMMIT_OUTCOME determines whether transaction commit outcome is accessible after
the commit has executed. This feature makes the outcome of the commit durable, and
it is used by applications to enforce the status of the last transaction executed before
an outage. The feature is used internally by the Oracle replay driver and by WebLogic
Server, and it is available for use by other applications to determine an outcome. The
COMMIT_OUTCOME possible values are FALSE (the default) and TRUE, and the value must
be TRUE for Transaction Guard to be in effect.

Chapter 28
Database Configuration for Transaction Guard

28-8

The following considerations apply to COMMIT_OUTCOME:

• Using the DBMS_APP_CONT.GET_LTXID_OUTCOME procedure requires that
COMMIT_OUTCOME be TRUE.

• COMMIT_OUTCOME has no effect on Active Data Guard and read-only databases.
Using Transaction Guard with read/write Active Data Guard combined with
database links that forward DMLs is not supported.

• COMMIT_OUTCOME is allowed on user-defined database services. Use on the
database service is excluded because this service does not switch across Data
Guard and cannot be started, stopped, or disabled for planned outages at the
primary database.

RETENTION_TIMEOUT is used in conjunction with COMMIT_OUTCOME to set the amount of
time that the commit outcome is retained. The retention timeout value is specified in
seconds; the default is 86400 (24 hours), and the maximum is 2592000 (30 days). You
can use the srvctl command or the DBMS_SERVICE PL/SQL package to specify the
retention timeout value.

See Also:

• Oracle Database Administrator's Guide for information about the srvctl
add service and srvctl modify service commands

• Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVICE package.

• Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_APP_CONT.GET_LTXID_OUTCOME procedure

Example: Adding and Modifying a Service for a Server Pool
If you are using Oracle RAC or Oracle RAC One, then use the srvctl command to
create and modify services.

Example 28-1 shows the use of srvctl. You can also use Global Data Services
(GDSCTL).

Example 28-1 Adding and Modifying a Service for a Server Pool

srvctl add service -database orcl -service GOLD -poolname ora.Srvpool -
commit_outcome TRUE -retention 604800
srvctl modify service -database orcl -service GOLD -commit_outcome TRUE -retention
604800

Example: Adding an Administrator-Managed Service
If you are using Oracle RAC or Oracle RAC One, then use the srvctl command to
create and modify services.

Example 28-2 shows the use of srvctl. You can also use Global Data Services
(GDSCTL)

Chapter 28
Database Configuration for Transaction Guard

28-9

Example 28-2 Adding an Administrator-Managed Service

srvctl add service -database codedb -service GOLD -preferred serv1 -available serv2 -
commit_outcome TRUE -retention 604800

Example: Modifying a Service (PL/SQL)
If you are using a single-instance database, use the DBMS_SERVICE.MODIFY_SERVICE
PL/SQL procedure to modify services and use FAN.

Example 28-3 modifies a service (but substitute the actual service name for <service-
name>).

Example 28-3 Modifying a Service (PL/SQL)

DECLARE
 params dbms_service.svc_parameter_array;
BEGIN
 params('COMMIT_OUTCOME'):='true';
 params('RETENTION_TIMEOUT'):=604800;
 params('aq_ha_notifications'):='true';
 dbms_service.modify_service('<service-name>',params);
END;
/

Developing Applications That Use Transaction Guard
To use Transaction Guard, review the requirements and recommendations in
Configuration Checklist, and follow these steps in the error handling when a
recoverable error occurs:

Note:

If you are using TAF, skip to Transaction Guard and Transparent Application
Failover.

1. Check that the error is a recoverable error that has made the database session
unavailable.

2. Acquire the LTXID from the previous failed session using the client driver provided
APIs (getLTXID for JDBC, OCI_ATTR_GET with LTXID for OCI, and
LogicalTransactionId for ODP.NET).

3. Acquire a new session with that sessions' own LTXID.

4. Invoke the DBMS_APP_CONT.GET_LTXID_OUTCOME PL/SQL procedure with the LTXID
obtained from the API. The return state tells the driver if the last transaction was
COMMITTED (TRUE/FALSE) and USER_CALL_COMPLETED (TRUE/FALSE). This PL/SQL
function returns an error if the client and database are out of sync (for example,
not the same database or restored database).

Chapter 28
Developing Applications That Use Transaction Guard

28-10

5. The application can return the result to the user to decide. An application can
replay itself. If the replay itself incurs an outage, then the LTXID for the replaying
session is used for the DBMS_APP_CONT.GET_LTXID_OUTCOME procedure.

Typical Transaction Guard Usage
The following pseudocode shows a typical usage of Transaction Guard:

Receive a FAN down event (or recoverable error)

FAN aborts the dead session

If recoverable error (new OCI_ATTRIBUTE for OCI, isRecoverable for JDBC)
 Get last LTXID from dead session using getLTXID or from your callback
 Obtain a new session
 Call GET_LTXID_OUTCOME with last LTXID to obtain COMMITTED and
USER_CALL_COMPLETED status

If COMMITTED and USER_CALL_COMPLETED
 Then return result

ELSEIF COMMITTED and NOT USER_CALL_COMPLETED
 Then return result with a warning (that details such as out binds or row count
were not returned)

ELSEIF NOT COMMITTED
 Cleanup and resubmit request, or return uncommitted result to the client

Details for Using the LTXID
For replay and returning results, the application or third party container needs access
to the next LTXID to be committed at the server for each session. The LTXID can be
obtained using APIs (getLTXID for JDBC and OCI_ATTR_GET with LTXID for OCI) from
a failed session after a recoverable outage.

The JDBC Thin driver also provides a callback that executes on each commit number
change received from the database. A third party container can use this callback to
save the current LTXID in preparation to use if failover is needed. Within each session,
the current LTXID is in use, so the callback can override earlier ones.

If failovers cascade without completing (that is, if during recovery from one failure,
another failure occurs), the application must obtain and then pass the LTXID in effect
on the current session into GET_LTXID_OUTCOME.

Table 28-1 shows several conditions or situations that require some LTXID-related
action, and for each the application action and next LTXID to use.

Chapter 28
Developing Applications That Use Transaction Guard

28-11

Table 28-1 LTXID Condition or Situation, Application Actions, and Next LTXID
to Use

Condition or
Situation

Application Action Next LTXID to Use (Callback on
LTXID Change for Containers -
JDBC Thin Only)

Application receives a
recoverable error and
calls
GET_LTXID_OUTCOME
to determine the
transaction status.

Application takes a new
connection (with its own
LTXID-B 0) and calls
GET_LTXID_OUTCOME with the
LTXID of the last failed
session (LTXID-A).

New LTXID-B 0

Also set using the JDBC callback when
registered

Application finds that
the last session
transaction status is
COMMITTED and
USER_CALL_COMPLET
ED.

Returns committed status to
client; the application may be
able to continue.

(Not applicable)

Application finds that
the last session
transaction status is
COMMITTED and NOT
USER_CALL_COMPLET
ED.

Returns committed status to
client and exits - some
applications cannot progress
as the work in the call is not
complete. (for example, an out
bind or row count was not
returned). Whether the
application can continue is
application dependent.

(Not applicable)

Application finds that
the last session
transaction status is
NOT COMMITTED.

Application returns the result
to the user, or cleans up if
needed, and resubmits with
the LTXID on the new session
in effect, LTXID-B 0.

If the new request executes
any commits, server returns
commit messages with LTXID-
B 2 and increasing.

New LTXID-B 2 .. N

Also set using the JDBC callback when
registered

Application receives a
recoverable error if it
has decided to replay.

Application takes a new
connection (with LTXID-C 0)
and calls
GET_LTXID_OUTCOME with the
LTXID of LAST session
(LTXID-B N).

LTXID-C 0 on the new session.

Also set using the JDBC callback when
registered

Application receives
another recoverable
error if it has decided
to replay.

Application takes a new
connection (with LTXID-D 0)
and calls
GET_LTXID_OUTCOME again
with the LTXID of LAST
session (LTXID-C N).

LTXID-D 0 on the new session.

Also set using the JDBC callback when
registered

Transaction Guard and Transparent Application Failover

When Transparent Application Failover (TAF) is enabled with Transaction Guard, TAF
handles the errors for developers. Do not code Transaction Guard when you are using

Chapter 28
Developing Applications That Use Transaction Guard

28-12

TAF because it has embedded the Transaction Guard code starting with Oracle
Database 12c Release 1 (12.1.0.1). When both TAF and Transaction Guard are used,
developers can use the following TAF errors to rollback and safely resubmit, or return
uncommitted.

• ORA-25402

• ORA-25408

• ORA-25405

Developers must not use GET_LTXID_OUTCOME procedure directly when TAF is enabled
because TAF is already processing Transaction Guard.

Note:

TAF is not invoked on session failure (this includes “kill -9” at operating
system level, or ALTER SYSTEM KILL session). TAF is invoked on the
following conditions:

• INSTANCE failure

• FAN NODE DOWN event

• SHUTDOWN transactional

• Disconnect POST_TRANSACTION

Using Transaction Guard with ODP.NET
The following rules apply to using Transaction Guard with ODP.NET:

• The LTXID is not available after promoting to XA in both the ODP.NET providers.

• Starting with Oracle Database 12c Release 2 (12.2.0.1), ODP.NET handles
Transaction Guard for application based on its availability and handling abilities.
When using ODP.NET, the LTXID is exposed to the application only when
ODP.NET is unable to obtain the commit outcome on behalf of the application. For
example, during an extended failover to Data Guard.

• Developers must not code Transaction Guard in the TAF callback or JDBC
initialization callback. Transaction Guard is handled for you.

Connection-Pool LTXID Usage
Connection pools create a different use case for managing LTXIDs because
connections and sessions are preestablished and shared. In the simplest model for
connection pools and middle tiers, an LTXID exists on each session handle (client-side
session). It is associated with an application request at check-out from the connection
pool, and is disassociated from the application request at check-in back to the pool.
Between check-out and check-in, the LTXID on the session is exclusively held by that
application request. After check-in, the LTXID belongs to an idle, pooled session. It is
associated with the next application request that checks-out that connection.

Using Transaction Guard in this way:

• Can support duplicate detection and failover for the present HTTP request

Chapter 28
Developing Applications That Use Transaction Guard

28-13

• Allows to cancel (real Cancel operation and not Ctrl-C) timed out requests, and
optional re-submission by the application

Improved Commit Outcome for XA One Phase Optimizations

Starting with Oracle Database 12c Release 2 (12.2.0.1), Transaction Guard is used
with Transaction Processing Monitors (TPM) to determine the outcome of a commit
operation when using one-phase optimizations (TMONEPLHASE flag). The
Transaction Guard uses the GET_LTXID_OUTCOME package to help the TPM to
determine if the connection to the resource manager is lost or if an ambiguous error is
returned.

Table 28-2 Transaction Manager Conditions/ Situations and Actions

Condition or Situation Transaction Manager Action

Commit has not been issued, and if the
transaction has rolled back.

Transaction Manager returns a rollback.

Commit has been issued and if an ambiguous
result is returned.

Transaction Manager can use Transaction
Guard (XA) to determine the outcome when
the error is recoverable.

If the transaction is COMMITTED. Transaction Manager returns COMMITTED.

If the transaction is UNCOMMITTED. The Transaction Manager borrows a new
connection and reissues the COMMIT. The
original LTXID is blocked by calling
GET_LTXID_OUTCOME.

Additional Requirements for Transaction Guard Development
Transaction Guard is a tool for developers to use after recoverable errors to provide a
known outcome. It must be used when an error is returned indicating that the last
session is dead.

The Transaction Guard APIs must not be used in the following cases:

• Do not use GET_LTXID_OUTCOME on the current session. It will return an error.

• Do not use GET_LTXID_OUTCOME against a session that did not receive a
recoverable error—that is, a live session. It will block that session from committing.

• Do not use GET_LTXID_OUTCOME from a different user or to a different database. It
will return an error.

• Do not obtain the LTXID and save it for use later, as opposed to using it
immediately. The result of GET_LTXID_OUTCOME is valid only for the last open or
completed transaction. If it is used with an earlier transaction on the same session,
it will return an error.

• Do not code Transaction Guard if the application is using TAF. Use the new TAF
error codes to return the results instead.

Chapter 28
Developing Applications That Use Transaction Guard

28-14

Note:

This rule does not apply to Application Continuity.

See Also:

Transaction Guard and Transparent Application Failover for more information
about TAF

Transaction Guard and Its Relationship to Application
Continuity

Transaction Guard provides a unique identifier (LTXID) for each database transaction.
This identifier can be used to query the commit outcome of the transaction, and can
also be used to ensure that the transaction is applied only once. Transaction Guard is
used by Application Continuity and automatically enabled by it, but it can also be
enabled independently. Transaction Guard prevents the transaction being replayed by
Application Continuity from being applied more than once. If the application has
implemented an application-level replay, then it requires the application to be
integrated with transaction guard to provide idempotence.

For a solution that does not require coding, configure your application to use
Application Continuity. For developing your own replay, the application developer
codes using Transaction Guard. You can have an application coded for both
Transaction Guard and Application Continuity. The Application Continuity takes effect
first and the custom Transaction Guard code takes effect only when the Application
Continuity is unable to replay. It is not required to use both, but, they are compatible if
an application uses both Transaction Guard and Application Continuity. If an
application wishes to add Transaction Guard API's in addition to Application
Continuity, Transaction Guard can return the commit outcome when replay is disabled
or unsuccessful.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for information about Transaction Guard and Application Continuity with
Oracle RAC

• Oracle Database JDBC Developer's Guide for information about
connecting to the database with JDBC

• Oracle Call Interface Programmer's Guide for information about
connecting to the database with Oracle Call Interface (OCI)

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows
for more information about ODP.Net Driver

Chapter 28
Transaction Guard and Its Relationship to Application Continuity

28-15

Index

Numerics
32-bit IEEE 754 format, 9-8
64-bit IEEE 754 format, 9-8

A
Abstract Data Type (ADT), 13-12, 27-9

native floating-point data types in, 9-13
resetting evolved, 27-9

ACCESSIBLE BY clause, 13-3
in package specification, 13-3
stored subprogram and, 13-1

actual object, 27-12
actualization, 27-12
ADDM (Automatic Database Diagnostic Monitor),

3-8
address of row (rowid), 9-25
administrators, restricting with Oracle Database

Vault, 5-3
ADT

See Abstract Data Type (ADT)
AFTER SUSPEND trigger, 8-46
agent, 23-3
aggregate function, 13-1
ALL_ARGUMENTS, 14-17
ALL_DEPENDENCIES, 14-17
ALL_ERRORS, 14-17
ALL_IDENTIFIERS, 14-17
ALL_STATEMENTS, 14-17
altering application online

See edition-based redefinition (EBR)
analytic function, 1-8
ancestor edition, 27-12
ANSI data type, 9-25
ANYDATA data type, 9-23
ANYDATASET data type, 9-23
AP (application program), 22-3
application architecture, 20-2
application domain index, 11-2
application program (AP), 22-3
application SQL, 27-32
APPLYING_CROSSEDITION_TRIGGER

function, 27-35
AQ (Oracle Advanced Queuing), 23-2

archive
See Flashback Data Archive, 19-20

ARGn data type, 9-28
arithmetic operation

with datetime data type, 9-18
with native floating-point data type, 9-12

assignment, reported by PL/Scope, 14-6
auditing

available options, 5-7
unified auditing, 5-7

auditing policy, editioning view and, 27-43
AUTHID clause

in package specification, 13-3
stored subprogram and, 13-1

AUTHID property
of invoked subprogram, 13-24
of PL/SQL unit, 13-4, 13-31

auto-tuning OCI client statement cache, 3-25
Automatic Database Diagnostic Monitor (ADDM),

3-8
Automatic Undo Management system, 19-1
Automatic Workload Repository (AWR), 3-21
autonomous transaction, 8-38

nonblocking DDL statement in, 8-38
trigger as, 8-46

B
backward compatibility

LONG and LONG RAW data types for, 9-22
RESTRICT_REFERENCES pragma for,

13-36
BATCH commit redo option, 8-6
benchmark, 3-4
binary floating-point number, 9-8
binary format, 9-9
binary large object (BLOB) data type, 9-21
BINARY_DOUBLE data type, 9-7
BINARY_FLOAT data type, 9-7
BINARY_INTEGER data type

See PLS_INTEGER data type
bind variables, 4-1
block, PL/SQL, 13-1
blocking DDL statement, 8-37
BOOLEAN data type, 13-10

Index-1

branch, 22-3
built-in data type

See SQL data type
built-in function

See SQL function
bulk binding, 13-18
business rule, 12-1

C
C external subprogram, 21-40

callback with, 21-40
global variable in, 21-44
interface between PL/SQL and, 21-11
invoking, 21-33
loading, 21-4
passing parameter to, 21-17
publishing, 21-13
running, 21-30
service routine and, 21-34

See also external subprogram
call specification

for external subprogram, 21-3
in package, 13-3
location of, 21-13

CALL statement, 21-30
calling subprogram

See invoking subprogram
cascading invalidation, 26-5
CHANGE_DUPKEY_ERROR_INDEX hint, 27-35
CHAR data type, 9-6
character data type class, 26-18
character data types, 9-6
character large object (CLOB) data type, 9-21
CHECK constraint

compared to NOT NULL constraint, 12-19
designing, 12-18
multiple, 12-19
naming, 12-21
restrictions on, 12-18
when to use, 12-17

client configuration parameter, 3-21
client notification, 23-3
client result cache, 3-11
client statement cache auto-tuning (OCI client

session feature), 3-25
CLIENT_RESULT_CACHE_LAG server

initialization parameter, 3-20
CLIENT_RESULT_CACHE_SIZE server

initialization parameter, 3-20
client/server architecture, 20-2
CLOB data type, 9-6
coarse-grained invalidation, 26-5
collection, 13-12

referenced by DML statement, 13-19

collection (continued)
referenced by FOR loop, 13-21
referenced by SELECT statement, 13-20

column
generated, 27-5
multiple foreign key constraints on, 12-13
virtual, 27-5
when to use default value for, 12-6

commit redo management, 8-6
COMPATIBLE server initialization parameter,

3-20
compilation parameter, 13-4
composite PL/SQL data type, 13-12
concurrency

serializable transaction for, 8-29
under explicit locking, 8-20

conditional compilation, 7-2
connection class, 3-32
connection pool, 20-16
connection pools

connection storms, 2-1
design guidelines for logins, 2-3
design guildelines, 2-1
drained, 2-4
guideline for preventing connection storms,

2-2
guidelines for preventing programmatic

session leaks, 2-4
lock leaks, 2-4
logical corruption, 2-5

constraint, 12-1, 12-5
altering, 12-25
CHECK

See CHECK constraint, 12-17
compared to trigger, 12-2
crossedition trigger and

collisions, 27-35
dropping, 27-40

deferring checking of, 12-14
disabling

effect of, 12-21
existing, 12-24
new, 12-23
reasons for, 12-22

dropping, 12-27
editioning view and, 27-28
enabling

effect of, 12-21
existing, 12-23
new, 12-22

exception to, 12-25
FOREIGN KEY

See FOREIGN KEY constraint, 12-10
minimizing overhead of, 12-16
naming, 12-21

Index

Index-2

constraint (continued)
on view, 12-1
PRIMARY KEY

See PRIMARY KEY constraint, 12-8
privileges needed for defining, 12-21
referential integrity

See FOREIGN KEY constraint, 12-10
renaming, 12-26
UNIQUE

See UNIQUE constraint, 12-9
viewing definition of, 12-30
violation of, 12-25

Continuous Query Notification (CQN), 3-26, 18-1
example, 18-39

converting data types
See data type conversion

copy-on-change strategy, 27-12
coupling, 22-3
CQ_NOTIFICATION$_DESCRIPTOR object,

18-49
CQ_NOTIFICATION$_QUERY object, 18-51
CQ_NOTIFICATION$_REG_INFO object, 18-22
CQ_NOTIFICATION$_ROW object, 18-52
CQ_NOTIFICATION$_TABLE object, 18-50
CQN (Continuous Query Notification), 18-1
CREATE OR REPLACE optimization, 26-5

actualization and, 27-12
CREATE_COVERAGE_TABLES procedure,

16-2
cross-session PL/SQL function result cache,

13-18
crossedition trigger, 27-29

creating, 27-34
displaying information about, 27-42
dropping, 27-40
execution of, 27-33
forward, 27-29
interaction with editions, 27-30
read-only editioning view and, 27-26
read-write editioning view and, 27-26
reverse, 27-29
scope of, 27-2
sharing child cursor and, 27-42

crossedition trigger SQL
forward, 27-31
reverse, 27-31

current date and time, displaying, 9-15
current edition, 27-18
cursor, 13-12

crossedition trigger and, 27-42
explicit, 13-12
implicit, 13-12
Oracle XA application and, 22-13
schema object dependency and, 26-22
session, 13-12

cursor variable, 13-11
advantages of, 13-13
disadvantages of, 13-14

D
data cartridge, 1-3
data definition language statement

See DDL statement
data integrity, 12-1

data type and, 9-2
See also constraint

data modeling, 3-1
data type

ANSI, 9-25
BOOLEAN, 13-10
DB2, 9-25
dynamic, 9-23
external, 9-1
for character data, 9-6
for datetime data, 9-14
for geographic data, 9-20
for large amount of data, 9-21
for numeric data, 9-7
for spatial data, 9-20
for XML data, 9-22
importance of correct, 9-1
PL/SQL, 13-9
PLS_INTEGER, 13-10
REF CURSOR, 13-11
SQL, 9-1
SQL/DS, 9-25

data type class, 26-18
data type conversion, 9-12

of ANSI and IBM data types, 9-25
of datetime data types, 9-19
of native floating-point data types, 9-12

data type family
PL/SQL, 13-9
SQL, 9-29

database hardening, 19-20
database logins, automated, 5-2
Database Resident Connection Pool (DRCP),

3-27
date, 9-14

default format for, 9-15
displaying, 9-16

current, 9-15
inserting, 9-16

See also datetime data types
datetime data type class, 26-18
datetime data types, 9-14

arithmetic operations with, 9-18
conversion functions for, 9-19
importing, exporting, and comparing, 9-20

Index

3

day, default value for, 9-17
DB2 data type, 9-25
DBA_STATEMENTS, 14-13
DBA_STATEMENTS.SIGNATURE, 14-16
DBA_STATEMENTS.TYPE Column, 14-13
DBA_STATEMENTS.USAGE_CONTEXT_ID,

14-15
DBA_STATEMENTS.USAGE_ID, 14-14
DBMS_APPLICATION_INFO package, 3-5
DBMS_DEBUG_JDWP, 13-41
DBMS_DEBUG_JDWP package, 13-40
DBMS_FLASHBACK package, 19-16
DBMS_FLASHBACK_ARCHIVE procedures,

19-20
DBMS_FLASHBACK.TRANSACTION_BACKOU

T procedure, 19-17
DBMS_HPROF package, 15-2
DBMS_HPROF.ANALYZE, 15-21
DBMS_LOCK package, 8-28
DBMS_OUTPUT package, 13-40
DBMS_PARALLEL_EXECUTE package, 27-37
DBMS_PLSQL_CODE_COVERAGE, 16-1, 16-2
DBMS_SQL.RETURN_RESULT procedure,

13-17
DBMS_STATS package, 19-31
DBMS_TYPES package, 9-23
DBMS_XA package, 22-18
DDL statement, 8-2

blocking, 8-37
Flashback Data Archive and, 19-25
for creating package, 13-7
for creating subprogram, 13-7
ineffective, 26-5
nonblocking, 8-37

in autonomous transaction, 8-38
Oracle XA and, 22-29
processing, 8-2
that generates notification, 18-6

DDL_LOCK_TIMEOUTparameter, 8-37
deadlock, undetected, 8-28
debugging

compiling PL/SQL unit for, 13-41
external subprogram, 21-43
subprogram, 13-40
wrap utility and, 13-41

decimal floating-point number, 9-8
default column value, 12-6
deferring constraint checks, 12-14
definer’s rights, 5-5
denormal floating-point number, 9-9
dependency mode, 26-14
dependent object

See schema object dependency
dependent transaction, 19-18
DEPRECATE PRAGMA, 13-23

descendent edition, 27-12
design

physical, 3-2, 3-3
DETERMINISTIC function

function-based index and, 11-4
RPC signature and, 26-15

dirty read, 8-30
disabling constraint

effect of, 12-21
existing, 12-24
new, 12-23
reasons for, 12-22

distributed database
FOREIGN KEY constraint and, 12-17
remote dependency management and, 26-12

distributed transaction, 22-3
remote subprogram and, 13-31

DLL (dynamic link library), 21-3
DML statement

bulk binding for, 13-19
that references collection, 13-19

DML_LOCKS initialization parameter, 8-14
domain index, 11-2
double-precision IEEE 754 format, 9-8
drivers, Oracle JDBC, 20-7
DTP (X/Open Distributed Transaction

architecture), 22-2
dynamic link library (DLL), 21-3
dynamic registration, 22-3
dynamic SQL, 7-1, 13-22

implicit query results and, 13-17
RESTRICT_REFERENCES pragma and,

13-39
dynamically typed data, 9-23

E
EBR (edition-based redefinition), 27-1
edition, 27-2

ancestor, 27-12
creating, 27-12
crossedition triggers and, 27-30
current, 27-18
descendent, 27-12
displaying information about, 27-40
dropping, 27-23
enabling for user and types, 27-7
evaluation

See evaluation edition, 27-4
leaf, 27-12
making available

to all users, 27-17
to some users, 27-17

ora$base, 27-2, 27-12
retiring, 27-22

Index

Index-4

edition (continued)
root, 27-12
scope of, 27-2
session, 27-18
unusable

See unusable edition, 27-4
visibility of trigger in, 27-30

edition-based redefinition (EBR), 27-1
EDITIONABLE property, 27-10
editionable schema object type, 27-6
editioned object, 27-2

creating or replacing, 27-10
name resolution and, 27-3

editioning view, 27-25
auditing policy and, 27-43
changing base table of, 27-28
changing writability of, 27-27
covering table with, 27-43
creating, 27-26
displaying information about, 27-42
partition-extended name for, 27-27
preparing application for, 27-43
read-only, 27-26
read-write, 27-26
replacing, 27-28
scope of, 27-2
SQL optimizer hint and, 27-28

Electronic Product Code (EPC), 25-24
embedded PL/SQL gateway, 17-3

how to use, 17-5
enabling constraint

effect of, 12-21
existing, 12-23
new, 12-22

enabling editions, 27-7
encoding scheme, adding, 25-14
environment, programming, 20-1
EPC (Electronic Product Code), 25-24
evaluation edition, 27-4

dropping edition and, 27-24
for materialized view, 27-4
for virtual column, 27-5
retiring edition and, 27-22

exception, 7-2
IEEE 754 standard

not raised, 9-10
raised during conversion, 9-12

in multilanguage program, 21-33
to constraint, 12-25

exception handling, 7-2
for storage allocation error, 8-45

EXCLUSIVE MODE option of LOCK TABLE
statement, 8-18

EXECUTE privilege, 13-7

execution plan, 3-7
data type and, 9-3

EXPLAIN PLAN statement, 3-7
explicit cursor, 13-12
EXPR data type, 9-28
expression

index built on
See function-based index, 11-2

regular
See regular expression, 10-1

extensibility, 1-2
external data type, 9-1
external large object (BFILE) data type, 9-21
external subprogram, 21-3, 21-12, 21-40

call specification for, 21-3
debugging, 21-43
loading, 21-4
managing for applications, 5-6
publishing, 21-10

external transaction manager, 22-3

F
family of data types

PL/SQL, 13-9
SQL, 9-29

FAN event, load balancing advisory, 2-8
Fast Application Notification (FAN), 2-5
fine-grained access control, 5-3
fine-grained auditing (FGA) policy, editioning

view and, 27-43
fine-grained invalidation, 26-5
firing order of triggers, 27-32
FIXED_DATE initialization parameter, 9-15
fixed-point data type, 9-7
Flashback Data Archive, 19-20
Flashback Transaction, 19-17
FLOAT data type, 9-7
floating-point data type, 9-7

range and precision of, 9-8
See also native floating-point data type

floating-point number
binary, 9-8
components of, 9-8
decimal, 9-8
denormal, 9-9
format of, 9-8
rounding, 9-8
subnormal, 9-9

FOR loop
bulk binding for, 13-21
that references collection, 13-21

FORCE option of ALTER USER statement, 27-8
FOREIGN KEY constraint, 12-10

distributed databases and, 12-17

Index

5

FOREIGN KEY constraint (continued)
dropping, 12-27
editioned view and, 27-11
enabling, 12-28
Flashback Transaction and, 19-18
indexing, 12-16
multiple, 12-13
naming, 12-21
NOT NULL constraint on, 12-12
NULL value and, 12-12
privileges needed to create, 12-29
referential integrity enforced by, 12-29
UNIQUE constraint on, 12-12
without other constraints, 12-12

foreign key dependency, 19-18
forward compatibility, 1-2
forward crossedition trigger, 27-29
forward crossedition trigger SQL, 27-31
function, 13-1

aggregate, 13-1
analytic, 1-8
built-in

See SQL function, 9-27
DETERMINISTIC

function-based index and, 11-4
RPC signature and, 26-15

invoking from SQL statement, 13-31
MGD_ID ADT, 25-11
OCI or OCCI, 20-21
PARALLEL_ENABLE, RPC signature and,

26-15
PL/SQL, invoked by SQL statement, 13-31
purity of, 13-34

RPC signature and, 26-15
result-cached, 13-18
returning large amount of data from, 13-17
SQL

See SQL function, 9-19
SQL analytic, 1-8

See also subprogram
function result cache, 13-18
function-based index, 11-2

example for faster case-insensitive searches,
11-8

example for object columns, 11-7
example for precomputing arithmetic

expressions, 11-6
optimizer and, 11-2, 11-4

G
generated column, 27-5
Geographic Information System (GIS) data, 9-20
GET_LTXID_OUTCOME procedure, 8-10
global transaction, 22-3

global variable, in C external subprogram, 21-44
greedy operator in regular expression, 10-5
group commit, 8-6

H
hierarchical profiler, 15-1
historical data, importing and exporting, 19-20
host language, 20-16
host program, 20-16
hot rollover, 27-1

I
IA-32 and IA-64 instruction set architecture, 9-12
IBM CICS, 22-3
IBM Transarc Encina, 22-3
Identity Code Package, 25-1
IEEE 754 standard, 9-7

exception
not raised, 9-10
raised during conversion, 9-12

special values supported by, 9-10
See also native floating-point data type

IGNORE_ROW_ON_DUPKEY_INDEX hint,
27-35

IMMEDIATE commit redo option, 8-6
implementing database application, 3-3
implicit cursor, 13-12
in-flight transaction, 8-8
independent transaction

See autonomous transaction
index, 11-1

domain, 11-2
edition-based redefinition and, 27-28
function-based

See function-based index, 11-2
on MGD_ID column, 25-11

infinity, 9-10
INHERIT ANY PRIVILEGES system privilege,

5-5
INHERIT PRIVILEGES privilege, 5-5
inherited object, 27-12
initialization parameter, 13-4

DML_LOCKS, 8-14
FIXED_DATE, 9-15
NLS_DATE_FORMAT, 9-15

instrumentation, 4-2
integer data type class, 26-18
integrity constraint

See constraint
integrity of data

See data integrity
interface, 20-20

between PL/SQL and C, 21-11

Index

Index-6

interface (continued)
between PL/SQL and Java, 21-11
program, 20-3
TX, 22-3
user, 20-4

stateful or stateless, 20-4
See also Oracle C++ Call Interface

invalidation
cascading, 26-5
coarse-grained, 26-5
fine-grained, 26-5
of dependent object, 26-5
of package, 13-43

invoker’s rights, 5-5
affect on invoker’s privileges, 5-5
Java stored procedures, 5-6

invoking subprogram, 13-24
from subprogram, 13-27
from trigger, 13-27
interactively from Oracle Database tools,

13-26
through embedded PL/SQL gateway, 17-19

isolation level
See transaction isolation level

iterative data processing
about, 4-3
arrays, 4-4
manual parallelism, 4-6
row by row, 4-3

J
Java class method, 21-12

calling, 21-32
interface between PL/SQL and, 21-11
publishing, 21-12

See also external subprogram
Java Database Connectivity

See Oracle JDBC
Java language

compared to PL/SQL, 20-14
Oracle Database support for, 20-5

Java stored procedures, 5-6
Java Virtual Machine

See Oracle JVM
JDBC

See Oracle JDBC
JVM

See Oracle JVM

K
key

foreign
See FOREIGN KEY constraint, 12-10

key (continued)
primary

See PRIMARY KEY constraint, 12-8
unique

See UNIQUE constraint, 12-9

L
Large Object (LOB), 9-21
leaf edition, 27-12
LGWR (log writer process), 8-6
lightweight queue, 23-3
live operation, 27-1
load balancing advisory FAN event, 2-8
LOB

See Large Object (LOB)
LOCK TABLE statement, 8-16

SELECT FOR UPDATE statement with, 8-20
locking row explicitly, 8-19
locking table

explicitly, 8-14
implicitly, 8-18

log writer process (LGWR), 8-6
logical design, 3-2
logical transaction identifier (LTXID), 8-8
logical value, 13-10
LONG and LONG RAW data types, 9-22
LONG data type, 9-6
loose coupling, 22-3
LTXID (logical transaction identifier), 8-8

M
main transaction, 8-38
maintaining database and application, 3-4
managing default rights, 5-6
materialized view, 1-9

that depends on editioned object, 27-4
maximum availability of table, 27-26
memory advisor, 3-9
metacharacter in regular expression, 10-1
metadata for SQL operator or function, 9-27
metrics, 3-4
MGD_ID ADT, 25-1
MGD_ID database ADT function, 25-11
mod_plsql module, 17-2
mode

dependency, 26-14
lock, 8-16
serialized

See serializable transaction, 8-29
MODIFY CONSTRAINT clause of ALTER TABLE

statement, 12-25
modifying

See altering

Index

7

monitoring database performance, 3-8
multilanguage program, 21-1

error or exception in, 21-33
multiline mode, 10-2
multilingual data, 10-9

N
name resolution, 26-11

editions and, 27-3
NaN (not a number), 9-10
national character large object (NCLOB) data

type, 9-21
native execution, 13-24
native floating-point data type, 9-7

arithmetic operation with, 9-12
binary format for, 9-9
conversion functions for, 9-12
in client interfaces, 9-13
special values for, 9-10

NCHAR data type, 9-6
NCLOB data type, 9-6
negative infinity, 9-10
negative zero, 9-10
nested subprogram, 13-1
NLS_DATE_FORMAT initialization parameter,

9-15
NO_RESULT_CACHE hint, 3-15
nonblocking DDL statement, 8-37

in autonomous transaction, 8-38
NONEDITIONABLE property, 27-10
noneditionable schema object type, 27-6
noneditioned object, 27-2

creating or replacing, 27-10
name resolution and, 27-3
that can depend on editioned object, 27-4

dropping edition and, 27-24
FORCE and, 27-8

nongreedy operator in regular expression, 10-9
nonpersistent queue, 23-3
normalized significand, 9-9
NOT NULL

See NOT NULL constraint, 12-5
NOT NULL constraint

compared to CHECK constraint, 12-19
naming, 12-21
on FOREIGN KEY constraint, 12-12
when to use, 12-5

NOWAIT commit redo option, 8-6
NOWAIT option of LOCK TABLE statement, 8-16
NULL value

FOREIGN KEY constraint and, 12-12
function-based index and, 11-2
indexing and, 12-5

NUMBER data type, 9-7

number data type class, 26-18
numeric data types, 9-7
NVARCHAR2 data type, 9-6

O
object

actual, 27-12
dependent

See schema object dependency, 26-1
editioned

See editioned object, 27-2
inherited, 27-12
large

See Large Object (LOB), 9-21
noneditioned

See noneditioned object, 27-2
potentially editioned, 27-2

with noneditioned dependents, 27-8
referenced

See schema object dependency, 26-1
size limit for PL/SQL stored, 13-8

object change notification, 18-2
OCCI

See Oracle C++ Call Interface
OCI

See Oracle Call Interface
OCI_ATTR_CHDES_DBNAME, 18-37
OCI_ATTR_CHDES_NFTYPE, 18-37
OCI_ATTR_CHDES_TABLE_CHANGES, 18-37
OCI_ATTR_CHDES_TABLE_NAME, 18-38
OCI_ATTR_CHDES_TABLE_OPFLAGS, 18-38
OCI_ATTR_CHDES_TABLE_ROW_CHANGES,

18-38
OCI_ATTR_CHDES_XID, 18-37
OCI_ATTR_CHNF_CHANGELAG, 18-35
OCI_ATTR_CHNF_ROWIDS, 18-35
OCI_ATTR_CQ_QUERYID, 18-37
OCI_ATTR_CQDES_OPERATION, 18-38
OCI_ATTR_CQDES_QUERYID, 18-38
OCI_ATTR_CQDES_TABLE_CHANGES, 18-38
OCI_ATTR_SESSION_STATE attribute, 3-38
OCI_ATTR_SUBSCR_CALLBACK, 18-35
OCI_ATTR_SUBSCR_CQ_CHNF_QOSFLAGS,

18-35
OCI_ATTR_SUBSCR_TIMEOUT, 18-35
OCI_DTYPE_CQDES, 18-38
OCI_SESSGET_PURITY_NEW attribute, 3-31
OCI_SESSGET_PURITY_SELF attribute, 3-31
OCI_SESSION_STATELESS attribute, 3-38
OCI_SUBSCR_QOS_PURGE_ON_NTFN, 18-35
OCIAnyData and OCIAnyDataSet interfaces,

9-23
ODP.NET, 20-24
online application upgrade

Index

Index-8

See edition-based redefinition (EBR)
operator

in regular expression, 10-5
greedy, 10-5
nongreedy, 10-9

metadata for, 9-27
optimizer

editioning view and, 27-28
function-based index and, 11-2, 11-4
RPC signature and, 26-15

ORA_SDTZ system variable
effect of setting, 24-47

ora$base edition, 27-2, 27-12
Oracle Advanced Queuing (AQ), 23-2
Oracle C++ Call Interface, 20-20

building application with, 20-22
kinds of functions in, 20-21
native floating-point data types in, 9-13
procedural and nonprocedural elements of,

20-22
Oracle Call Interface, 20-20

building application with, 20-22
commit redo action in, 8-6
compared to precompiler, 20-23
kinds of functions in, 20-21
native floating-point data types in, 9-13
procedural and nonprocedural elements of,

20-22
with Oracle XA, 22-14

Oracle Data Provider for .NET, 20-24
Oracle Data Redaction, 5-3
Oracle data type

See SQL data type
Oracle Database Tuning Pack, 3-9
Oracle Database Vault, 5-3
Oracle Extensibility Architecture framework, user-

defined aggregate functions and, 1-3
Oracle Extensibility Architecture, data cartridges

and, 1-3
Oracle Flashback Query, 19-8
Oracle Flashback Technology, 19-1

application development features, 19-2
configuring database for, 19-5
database administration features, 19-4
performance guidelines for, 19-31

Oracle Flashback Transaction Query, 19-13
Oracle Flashback Version Query, 19-11
Oracle JDBC, 20-6

compared to Oracle SQLJ, 20-11
native floating-point data types in, 9-13
sample program

2.0, 20-9
pre-2.0, 20-9

Oracle JDeveloper, Oracle SQLJ and, 20-11
Oracle JVM, 20-5

Oracle Label Security, 5-3
Oracle Lock Management services, 8-28
Oracle Real Application Clusters (Oracle RAC)

client result cache and, 3-20
DRCP and, 3-40
load balancing advisory FAN events and, 2-8
Oracle XA and, 22-25
runtime connection load balancing and, 2-5

Oracle SQLJ, 20-10
compared to Oracle JDBC, 20-11
Oracle JDeveloper and, 20-11

Oracle Text, 9-22
Oracle Total Recall, 19-20
Oracle Tuxedo, 22-3
Oracle Virtual Private Database (VPD), 5-3

editioning view and, 27-43
Oracle XA

Oracle RAC and, 22-25
subprograms, 22-6
when to use, 22-1

out-of-space error, 8-45
overloaded subprogram, 13-1

P
package

creating, 13-7
dropping, 13-23
invalidation of, 13-43
session state and, 26-9
size limit for, 13-8
synonym for, 13-29

package body, 13-3
package invalidation and, 13-43
package specification, 13-3
package subprogram, 13-1
PARALLEL_ENABLE function

RPC signature and, 26-15
parallelized SQL statement, 13-35
parameter

compilation
See compilation parameter, 13-4

initialization, 13-4
partition-extended editioning view name, 27-27
partitioning, 1-10
performance, 3-1
performance goals, 3-4
performance testing, 3-10
performance, data type and, 9-3
persistent LOB instance, 9-21
persistent queue, 23-3
phantom read, 8-30
physical design, 3-3
PL/Scope, 13-40, 14-1
PL/Scope security model, 14-2

Index

9

PL/Scope tool, 14-1
PL/SQL block, 13-1
PL/SQL data type, 13-9
PL/SQL function result cache, 13-18
PL/SQL gateway, 17-2
PL/SQL hierarchical profiler, 15-1
PL/SQL Hierarchical Profiler, 13-40
PL/SQL language, 20-4

compared to Java, 20-14
PL/SQL object

See PL/SQL unit
PL/SQL optimize level, 13-4
PL/SQL optimizer level, 7-2
PL/SQL unit, 13-4, 26-5

compiling for debugging, 13-41
CREATE OR REPLACE and, 26-5

PL/SQL Web Toolkit, 17-3
PLS_INTEGER data type, 13-10
plshprof utility, 15-16
PLSQL_CODE_COVERAGE package, 16-2
pool, connection, 20-16
positive infinity, 9-10
positive zero, 9-10
POSIX standard for regular expressions

operators defined in, 10-5
Oracle SQL and, 10-4
Oracle SQL multilingual extensions to, 10-9
Oracle SQL PERL-influenced extensions to,

10-9
potentially editioned object, 27-2

with noneditioned dependents, 27-8
precompiler, 20-16

compared to Oracle Call Interface, 20-23
Oracle XA and, 22-13

PRIMARY KEY constraint, 12-8
dropping, 12-27
Flashback Transaction and, 19-18
naming, 12-21

primary key dependency, 19-18
privileges, 5-1

for debugging subprogram, 13-42
for defining constraint, 12-21
for Oracle Flashback Technology, 19-7
for running subprogram, 13-25
granting secure application roles, 5-1
grouped into roles, 5-1
INHERIT ANY PRIVILEGES system

privilege, 5-5
INHERIT PRIVILEGES privilege, 5-5
revoked, object dependency and, 26-9

Pro*C/C++ precompiler, 20-16
native floating-point data types in, 9-13

Pro*COBOL precompiler, 20-18
procedure, 13-1

See also subprogram

product code, 25-24
profiler, 15-1
program interface, 20-3
programming environment, 20-1
public information, required, 22-5
publish-subscribe model, 23-1
purity of function, 13-34

RPC signature and, 26-15

Q
quality-of-service flag, 18-22
query

registering for Continuous Query Notification,
18-11

returning results to client, 13-12
implicitly, 13-17

Query Result Change Notification (QRCN), 18-2
query rewrite, 1-9
queue, 23-3

R
Radio Frequency Identification (RFID)

technology, 25-23
RAW data type, 9-22
raw data type class, 26-18
READ COMMITTED transaction isolation level

compared to SERIALIZABLE, 8-36
in Oracle Database, 8-30
transaction interactions with, 8-30

read consistency, 8-14
statement-level, 8-13
transaction-level, 8-13

locking tables explicitly for, 8-14
read-only transaction for, 8-13

read lock, 8-33
READ UNCOMMITTED transaction isolation

level
in Oracle Database, 8-30
transaction interactions with, 8-30

read-only editioning view, 27-26
read-only transaction, 8-13
read-write editioning view, 27-26
record, 13-12
redefinition, edition-based (EBR), 27-1
redo information for transaction, 8-6
redo management, 8-6
REF CURSOR data type, 13-11
referenced object

See schema object dependency
referential integrity

serializable transactions and, 8-33
trigger for enforcing, 8-33

referential integrity constraint

Index

Index-10

See FOREIGN KEY constraint
REGEXP_COUNT function, 10-2
REGEXP_INSTR function, 10-2
REGEXP_LIKE condition, 10-2
REGEXP_REPLACE function, 10-2

back reference operator in, 10-5
REGEXP_SUBSTR function, 10-2
registration

dynamic, 22-3
for Continuous Query Notification, 18-11
in publish-subscribe model, 23-3
static, 22-3

regular expression, 10-1
in Oracle SQL, 10-2
in SQL statement, 10-11
metacharacter in, 10-1
POSIX standard and

See POSIX standard for regular
expressions, 10-4

Unicode and, 10-4
remote dependency management, 26-12
remote procedure call dependency management,

26-14
remote subprogram, 13-28
repeatable read, 8-13

locking tables explicitly for, 8-14
read-only transaction for, 8-13

REPEATABLE READ transaction isolation level
in Oracle Database, 8-30
transaction interactions with, 8-30

required public information, 22-5
resource manager (RM), 22-3
RESTRICT_REFERENCES pragma

for backward compatibility, 13-36
static and dynamic SQL and, 13-39

result cache, 13-18
RESULT_CACHE hint, 3-15
RESULT_CACHE_MODE session parameter,

3-16
resumable storage allocation, 8-45
RETENTION GUARANTEE clause for undo

tablespace, 19-5
RETENTION option of ALTER TABLE statement,

19-7
RETURN_RESULT procedure, 13-17
reverse crossedition trigger, 27-29
reverse crossedition trigger SQL, 27-31
RFID (Radio Frequency Identification)

technology, 25-23
RM (resource manager), 22-3
roles, 5-1
root edition, 27-12
rounding floating-point numbers, 9-8
row

address of (rowid), 9-25

row (continued)
locking explicitly, 8-19

ROW EXCLUSIVE MODE option of LOCK
TABLE statement, 8-17

ROW SHARE MODE option of LOCK TABLE
statement, 8-17

rowid, 9-25
ROWID data type

ROWID pseudocolumn and, 9-25
ROWID pseudocolumn, 9-25

CQN and, 18-13
See also rowid

RPC dependency management, 26-14
RPC signature and, 26-15

RR datetime format element, 9-15
rule on queue, 23-3
rules engine, 23-3
runtime connection load balancing, 2-5
runtime error

See exception

S
scalability, 3-1
scalar PL/SQL data type, 13-9
schema object dependency, 26-1

in distributed database, 26-12
invalidation and, 26-5
on nonexistence of other objects, 26-11
revoked privileges and, 26-9
shared pool and, 26-22

schema object type
editionable, 27-6
enabling for editions, 27-7
noneditionable, 27-6

searchable text, 9-22
secure application roles, 5-1
security, 5-1

auditing, 5-7
external procedures for applications, 5-6
invoker’s rights and definer’s rights, 5-5
Java stored procedures default rights, 5-6
logon triggers and, 5-2
Oracle Data Redaction, 5-3
Oracle Database Vault, 5-3
Oracle Label Security, 5-3
Oracle Virtual Private Database, 5-3
privilege use, 5-1
privileges of invoking user, 5-5
role use, 5-1
secure application roles, 5-1

SELECT FOR UPDATE statement, 8-19
LOCK TABLE statement with, 8-20
referential integrity and

inside trigger, 8-33

Index

11

SELECT FOR UPDATE statement (continued)
referential integrity and (continued)
outside trigger, 8-33

SELECT statement
bulk binding for, 13-20
referencing collection with, 13-20
with AS OF clause, 19-8
with FOR UPDATE clause

See SELECT FOR UPDATE statement,
8-19

with VERSIONS BETWEEN clause, 19-11
semi-available table, 27-26
serendipitous change, 27-37

data transformation collisions and, 27-35
identifying, 27-35

serializable transaction, 8-30
for concurrency control, 8-29
interaction with, 8-30
referential integrity and, 8-33

SERIALIZABLE transaction isolation level, 8-30
compared to READ COMMITTED, 8-36
in Oracle Database, 8-30
transaction interactions with, 8-30

See also serializable transaction
server-side programming, 20-2
service routine, C external subprogram and,

21-34
session cursor, 13-12
session edition, 27-18
session purity, 3-31
session state, 26-9
session variable, 13-26
set based processing, 4-9
SET CONSTRAINTS statement, 12-14
SET TRANSACTION statement with READ

ONLY option, 8-13
Setting ORA_SDTZ system variable

effect of, 24-47
SHARE MODE option of LOCK TABLE

statement, 8-17
SHARE ROW EXCLUSIVE MODE option of

LOCK TABLE statement, 8-18
shared SQL area, 8-4
side effects of subprogram, 13-34
signature checking, 26-13
single-precision IEEE 754 format, 9-8
spatial data, 9-20
specification, package

See package specification
SQL Access Advisor, 3-9
SQL advisor, 3-9
SQL analytic function, 1-8
SQL area, shared, 8-4
SQL data type, 9-1

SQL function, 9-27
analytic, 1-8
display type of, 9-28
for data type conversion, 9-19
metadata for, 9-27

SQL optimizer hint and editioning view, 27-28
SQL statement, 13-31

application, 27-32
crossedition trigger

forward, 27-31
reverse, 27-31

invoking PL/SQL function from, 13-31
parallelized, 13-35
processing

DDL statement, 8-2
stages of, 8-1
system management statement, 8-2

SQL Trace facility (SQL_TRACE), 3-6
SQL Tuning Advisor, 3-9
SQL, dynamic

See dynamic SQL
SQL/DS data type, 9-25
SQLJ

See Oracle SQLJ
standalone subprogram, 13-1
state

session, 26-9
user interface and, 20-4
web application and, 17-28

stateful session, 3-39
stateless session, 3-39
statement

See SQL statement
statement caching, 3-25
statement-level read consistency, 8-13, 8-14
static pools

used to prevent connection storms, 2-2
static registration, 22-3
static SQL, RESTRICT_REFERENCES pragma

and, 13-39
static variable, in C external subprogram, 21-44
statistics

for application, 15-1
for identifier, 14-1

storage allocation error, 8-45
storage requirements, decreasing, 9-2
stored standalone subprogram, dropping, 13-23
stored subprogram, 13-1
subnormal floating-point number, 9-9
subprogram, 13-1

creating, 13-7
external

See external subprogram, 21-1
invoking

See invoking subprogram, 13-24

Index

Index-12

subprogram (continued)
Oracle XA, 22-6
overloaded, 13-1
privileges needed to debug, 13-42
privileges needed to run, 13-25
remote, 13-28
size limit for, 13-8
synonym for, 13-29

subscriber, 23-3
subscription services, 23-3
subtype, 13-9

user-defined, 13-11
synonym

CREATE OR REPLACE and, 26-5
for package, 13-29
for subprogram, 13-29

SYSDATE function, 9-15
system management statement, 8-2

T
table

controlling user access to, 5-3
locking

choosing strategy for, 8-16
explicitly, 8-14
implicitly, 8-18

with maximum availability, 27-26
with semi-availability, 27-26

table annotation, 3-15
table result cache mode

annotation, 3-15
effective

determining, 3-16
displaying, 3-17

Tag Data Translation Markup Language Schema,
25-1

Temporal Validity Support, 1-11
temporary LOB instance, 9-21
thin client configuration, 20-3
thread-safe application, 22-17
three-tier architecture, 20-3
tight coupling, 22-3
time, 9-14

default value for, 9-17
displaying, 9-17

current, 9-15
inserting, 9-17

See also datetime data types
time-stamp checking, 26-13
time-stamp dependency mode, 26-14
TIMESTAMP WITH LOCAL TIME ZONE

examples, 24-44
TIMESTAMP WITH TIME ZONE

examples, 24-44

TM (transaction manager), 22-3
TPM (transaction processing monitor), 22-3
tracing tools, 13-1
transaction

autonomous, 8-38
trigger as, 8-46

choosing isolation level for, 8-36
dependent, 19-18
determining outcome after outage, 8-8
distributed, 22-3

remote subprogram and, 13-31
ensuring idempotence of, 8-8
global, 22-3
grouping operations into, 8-4
improving performance of, 8-5
in-flight, 8-8
main, 8-38
read-only, 8-13
redo entry for, 8-6
serializable

See serializable transaction, 8-29
that invokes remote subprogram, 13-31

Transaction Guard, 8-8, 28-1
transaction history table, 28-8
transaction interaction

kinds of, 8-30
serializable transaction and, 8-30
transaction isolation level and, 8-30

transaction isolation level, 8-30
choosing, 8-36
setting, 8-32
transaction interaction and, 8-30

transaction manager (TM), 22-3
transaction processing monitor (TPM), 22-3
transaction set consistency, 8-35
transaction-level read consistency, 8-13

locking tables explicitly for, 8-14
read-only transaction for, 8-13

transform, 27-29
applying, 27-37

trigger, 13-1
AFTER SUSPEND, 8-46
as autonomous transaction, 8-46
automating database login with, 5-2
compared to constraint, 12-2
crossedition

See crossedition trigger, 27-29
enforcing referential integrity with, 8-33
in edition

firing order of, 27-32
visibility of, 27-30
what kind can fire, 27-30

invoking subprogram from, 13-27
size limit for, 13-8

TRUST assertion (deprecated), 13-38

Index

13

TRUST keyword in RESTRICT_REFERENCES
pragma, 13-38

two-phase commit protocol, 22-3
two-tier architecture, 20-3
TX interface, 22-3

U
undetected deadlock, 8-28
undo data, 19-1
UNDO_RETENTION parameter, 8-13
Unicode

data types for, 9-6
regular expressions and, 10-4

unified auditing, 5-7
UNIQUE constraint

crossedition trigger and, 27-35
dropping, 12-27
naming, 12-21
on FOREIGN KEY constraint, 12-12
when to use, 12-9

unrepeatable read, 8-30
unusable edition

dropping edition and, 27-24
for materialized view, 27-4
retiring edition and, 27-22

upgrading applications online
See edition-based redefinition (EBR)

UROWID data type, 9-25
user access

See security
user interface, 20-4

stateful and stateless, 20-4
user lock, 8-28
user-defined subtype, 13-11
UTLLOCKT.SQL script, 8-29

V
VARCHAR data type, 9-6
VARCHAR data type class, 26-18
VARCHAR2 data type, 9-6
variable

cursor
See cursor variable, 13-11, 13-12

in C external subprogram
global, 21-44
static, 21-44

view
constraint on, 12-1
editioned, FOREIGN KEY constraint and,

27-11
editioning

See editioning view, 27-25
materialized, 1-9

that depends on editioned object, 27-4
virtual column, 27-5
VPD policy, editioning view and, 27-43

W
WAIT commit redo option, 8-6
WAIT option of LOCK TABLE statement, 8-16
web application, 17-1

implementing, 17-2
state and, 17-28

web services, 20-13
web toolkit

See PL/SQL Web Toolkit
white list

See ACCESSIBLE BY clause
wrap utility, debugging and, 13-41
writability of editioning view, 27-27
write-after-write dependency, 19-18

X
X/Open Distributed Transaction Processing

(DTP) architecture, 22-2
xa_open string, 22-9
XMLType data type, 9-22

Y
YY datetime format element, 9-16

Index

Index-14

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in Oracle Database Release
	New Features in Oracle Database
	Deprecated Features
	Desupported Features

	Part I Database Development Fundamentals
	1 Design Basics
	Design for Performance
	Design for Scalability
	Design for Extensibility
	Data Cartridges
	External Procedures
	User-Defined Functions and Aggregate Functions
	Object-Relational Features

	Design for Security
	Design for Availability
	Design for Portability
	Design for Diagnosability
	Design for Special Environments
	Data Warehousing
	Online Transaction Processing (OLTP)

	Features for Special Scenarios
	SQL Analytic Functions
	Materialized Views
	Partitioning
	Temporal Validity Support

	2 Connection Strategies for Database Applications
	Design Guidelines for Connection Pools
	Connection Storms
	Guideline for Preventing Connection Storms: Use Static Pools

	Design Guideline for Login Strategy
	Design Guideline for Preventing Programmatic Session Leaks
	Drained Connection Pools
	Checking for Session Leaks
	Lock Leaks
	Logical Corruption

	Using Runtime Connection Load Balancing
	About Runtime Connection Load Balancing
	Enabling and Disabling Runtime Connection Load Balancing
	OCI
	OCCI
	JDBC
	ODP.NET

	Receiving Load Balancing Advisory FAN Events

	3 Performance and Scalability
	Performance Strategies
	Designing Your Data Model to Perform Well
	Analyze the Data Requirements of the Application
	Create the Database Design for the Application
	Create the Logical Design
	Create the Physical Design

	Implement the Database Application
	Maintain the Database and Database Application

	Setting Performance Goals (Metrics)
	Benchmarking Your Application

	Tools for Performance
	DBMS_APPLICATION_INFO Package
	SQL Trace Facility (SQL_TRACE)
	EXPLAIN PLAN Statement

	Monitoring Database Performance
	Automatic Database Diagnostic Monitor (ADDM)
	Monitoring Real-Time Database Performance
	Responding to Performance-Related Alerts
	SQL Advisors and Memory Advisors

	Testing for Performance
	Using Client Result Cache
	About Client Result Cache
	Benefits of Client Result Cache
	Guidelines for Using Client Result Cache
	SQL Hints
	Table Annotation
	Session Parameter
	Effective Table Result Cache Mode
	Displaying Effective Table Result Cache Mode
	Result Cache Mode Use Cases
	Queries Never Result Cached in Client Result Cache

	Client Result Cache Consistency
	Deployment-Time Settings for Client Result Cache
	Server Initialization Parameters
	COMPATIBLE
	CLIENT_RESULT_CACHE_SIZE
	CLIENT_RESULT_CACHE_LAG

	Client Configuration Parameters

	Client Result Cache Statistics
	Validation of Client Result Cache
	Measure Execution Times
	Query V$MYSTAT
	Query V$SQLAREA

	Client Result Cache and Server Result Cache
	Client Result Cache Demo Files
	Client Result Cache Compatibility with Previous Releases

	Statement Caching
	OCI Client Statement Cache Auto-Tuning
	Client-Side Deployment Parameters
	Using Query Change Notification
	Using Database Resident Connection Pool
	About Database Resident Connection Pool
	Configuring DRCP
	Sharing Proxy Sessions
	Using JDBC with DRCP
	Using OCI Session Pool APIs with DRCP
	Session Purity and Connection Class
	Session Purity
	Connection Class
	Example: Setting the Connection Class as HRMS
	Example: Setting the Connection Class as RECMS
	Session Purity and Connection Class Defaults

	Starting Database Resident Connection Pool
	Enabling DRCP
	Benefiting from the Scalability of DRCP in an OCI Application
	Benefiting from the Scalability of DRCP in a Java Application
	Best Practices for Using DRCP
	Compatibility and Migration
	DRCP Restrictions
	Using DRCP with Custom Pools
	Explicitly Marking Sessions Stateful or Stateless
	Using DRCP with Oracle Real Application Clusters
	Using DRCP with Pluggable Databases
	DRCP with Data Guard

	Memoptimize Pool
	Oracle RAC Sharding

	4 Designing Applications for Oracle Real-World Performance
	Using Bind Variables
	Using Instrumentation
	Using Set-Based Processing
	Iterative Data Processing
	About Iterative Data Processing
	Iterative Data Processing: Row-By-Row
	Iterative Data Processing: Arrays
	Iterative Data Processing: Manual Parallelism

	Set-Based Processing

	5 Security
	Enabling User Access with Grants, Roles, and Least Privilege
	Automating Database Logins
	Controlling User Access with Fine-Grained Access Control
	Using Invoker's and Definer's Rights for Procedures and Functions
	What Are Invoker's Rights and Definer's Rights?
	Protecting Users Who Run Invoker's Rights Procedures and Functions
	How Default Rights Are Handled for Java Stored Procedures

	Managing External Procedures for Your Applications
	Auditing User Activity

	6 High Availability
	Transparent Application Failover (TAF)
	About Transparent Application Failover
	Configuring Transparent Application Failover
	Using Transparent Application Failover Callbacks

	Oracle Connection Manager in Traffic Director Mode
	Fast Application Notification (FAN) and Fast Connection Failover (FCF)
	About Fast Application Notification (FAN)
	About Receiving FAN Event Notifications
	About Fast Connection Failover (FCF)

	Application Continuity and Transaction Guard
	Overview of Application Continuity
	Overview of Transaction Guard

	Service and Load Management for Database Clouds
	About Service and Load Management for Database Clouds

	7 Advanced PL/SQL Features
	PL/SQL Data Types
	Dynamic SQL
	PL/SQL Optimize Level
	Compiling PL/SQL Units for Native Execution
	Exception Handling
	Conditional Compilation
	Bulk Binding

	Part II SQL for Application Developers
	8 SQL Processing for Application Developers
	Description of SQL Statement Processing
	Stages of SQL Statement Processing
	Shared SQL Areas

	Grouping Operations into Transactions
	Deciding How to Group Operations in Transactions
	Improving Transaction Performance
	Managing Commit Redo Action
	Determining Transaction Outcome After a Recoverable Outage
	Understanding Transaction Guard
	How Transaction Guard Uses the LTXID

	Understanding DBMS_APP_CONT.GET_LTXID_OUTCOME
	CLIENT_LTXID Parameter
	COMMITTED Parameter
	USER_CALL_COMPLETED Parameter
	Exceptions

	Using Transaction Guard

	Ensuring Repeatable Reads with Read-Only Transactions
	Locking Tables Explicitly
	Privileges Required to Acquire Table Locks
	Choosing a Locking Strategy
	When to Lock with ROW SHARE MODE and ROW EXCLUSIVE MODE
	When to Lock with SHARE MODE
	When to Lock with SHARE ROW EXCLUSIVE MODE
	When to Lock with EXCLUSIVE MODE

	Letting Oracle Database Control Table Locking
	Explicitly Acquiring Row Locks
	Examples of Concurrency Under Explicit Locking

	Using Oracle Lock Management Services (User Locks)
	When to Use User Locks
	Viewing and Monitoring Locks

	Using Serializable Transactions for Concurrency Control
	Transaction Interaction and Isolation Level
	Setting Isolation Levels
	Serializable Transactions and Referential Integrity
	READ COMMITTED and SERIALIZABLE Isolation Levels
	Transaction Set Consistency Differences
	Oracle Database
	Other Database Systems

	Choosing Transaction Isolation Levels

	Nonblocking and Blocking DDL Statements
	Autonomous Transactions
	Examples of Autonomous Transactions
	Ordering a Product
	Withdrawing Money from a Bank Account
	Scenario 1: Sufficient Funds
	Scenario 2: Insufficient Funds with Overdraft Protection
	Scenario 3: Insufficient Funds Without Overdraft Protection

	Declaring Autonomous Routines

	Resuming Execution After Storage Allocation Errors
	What Operations Have Resumable Storage Allocation?
	Handling Suspended Storage Allocation
	Using an AFTER SUSPEND Trigger in the Application
	Checking for Suspended Statements

	9 Using SQL Data Types in Database Applications
	Using the Correct and Most Specific Data Type
	How the Correct Data Type Increases Data Integrity
	How the Most Specific Data Type Decreases Storage Requirements
	How the Correct Data Type Improves Performance

	Representing Character Data
	Representing Numeric Data
	Floating-Point Number Components
	Floating-Point Number Formats
	Binary Floating-Point Formats

	Representing Special Values with Native Floating-Point Data Types
	Comparing Native Floating-Point Values
	Arithmetic Operations with Native Floating-Point Data Types
	Conversion Functions for Native Floating-Point Data Types
	Client Interfaces for Native Floating-Point Data Types

	Representing Date and Time Data
	Displaying Current Date and Time
	Inserting and Displaying Dates
	Inserting and Displaying Times
	Arithmetic Operations with Datetime Data Types
	Conversion Functions for Datetime Data Types
	Importing, Exporting, and Comparing Datetime Types

	Representing Specialized Data
	Representing Spatial Data
	Representing Large Amounts of Data
	Large Objects (LOBs)
	LONG and LONG RAW Data Types

	Representing Searchable Text
	Representing XML Data
	Representing Dynamically Typed Data
	Representing ANSI, DB2, and SQL/DS Data

	Identifying Rows by Address
	Displaying Metadata for SQL Operators and Functions
	ARGn Data Type
	DISP_TYPE Data Type
	SQL Data Type Families

	10 Using Regular Expressions in Database Applications
	Overview of Regular Expressions
	Oracle SQL Support for Regular Expressions
	Oracle SQL and POSIX Regular Expression Standard
	Operators in Oracle SQL Regular Expressions
	POSIX Operators in Oracle SQL Regular Expressions
	Oracle SQL Multilingual Extensions to POSIX Standard
	Oracle SQL PERL-Influenced Extensions to POSIX Standard

	Using Regular Expressions in SQL Statements: Scenarios
	Using a Constraint to Enforce a Phone Number Format
	Example: Enforcing a Phone Number Format with Regular Expressions
	Example: Inserting Phone Numbers in Correct and Incorrect Formats
	Using Back References to Reposition Characters

	11 Using Indexes in Database Applications
	Guidelines for Managing Indexes
	Managing Indexes
	When to Use Domain Indexes
	When to Use Function-Based Indexes
	Advantages of Function-Based Indexes
	Disadvantages of Function-Based Indexes
	Example: Function-Based Index for Precomputing Arithmetic Expression
	Example: Function-Based Indexes on Object Column
	Example: Function-Based Index for Faster Case-Insensitive Searches
	Example: Function-Based Index for Language-Dependent Sorting

	12 Maintaining Data Integrity in Database Applications
	Enforcing Business Rules with Constraints
	Enforcing Business Rules with Both Constraints and Application Code
	Creating Indexes for Use with Constraints
	When to Use NOT NULL Constraints
	When to Use Default Column Values
	Choosing a Primary Key for a Table (PRIMARY KEY Constraint)
	When to Use UNIQUE Constraints
	Enforcing Referential Integrity with FOREIGN KEY Constraints
	FOREIGN KEY Constraints and NULL Values
	Defining Relationships Between Parent and Child Tables
	Rules for Multiple FOREIGN KEY Constraints
	Deferring Constraint Checks

	Minimizing Space and Time Overhead for Indexes Associated with Constraints
	Guidelines for Indexing Foreign Keys
	Referential Integrity in a Distributed Database
	When to Use CHECK Constraints
	Restrictions on CHECK Constraints
	Designing CHECK Constraints
	Rules for Multiple CHECK Constraints
	Choosing Between CHECK and NOT NULL Constraints

	Examples of Defining Constraints
	Privileges Needed to Define Constraints
	Naming Constraints

	Enabling and Disabling Constraints
	Why Disable Constraints?
	Creating Enabled Constraints (Default)
	Creating Disabled Constraints
	Enabling Existing Constraints
	Disabling Existing Constraints
	Guidelines for Enabling and Disabling Key Constraints
	Fixing Constraint Exceptions

	Modifying Constraints
	Renaming Constraints
	Dropping Constraints
	Managing FOREIGN KEY Constraints
	Data Types and Names for Foreign Key Columns
	Limit on Columns in Composite Foreign Keys
	Foreign Key References Primary Key by Default
	Privileges Required to Create FOREIGN KEY Constraints
	Choosing How Foreign Keys Enforce Referential Integrity

	Viewing Information About Constraints

	Part III PL/SQL for Application Developers
	13 Coding PL/SQL Subprograms and Packages
	Overview of PL/SQL Subprograms
	Overview of PL/SQL Packages
	Overview of PL/SQL Units
	PLSQL_OPTIMIZE_LEVEL Compilation Parameter

	Creating PL/SQL Subprograms and Packages
	Privileges Needed to Create Subprograms and Packages
	Creating Subprograms and Packages
	PL/SQL Object Size Limits
	PL/SQL Data Types
	PL/SQL Scalar Data Types
	SQL Data Types
	BOOLEAN Data Type
	PLS_INTEGER and BINARY_INTEGER Data Types
	REF CURSOR Data Type
	User-Defined PL/SQL Subtypes

	PL/SQL Composite Data Types
	Abstract Data Types

	Returning Result Sets to Clients
	Advantages of Cursor Variables
	Disadvantages of Cursor Variables
	Parsing Penalty for Cursor Variable
	Multiple-Row-Fetching Penalty for Cursor Variable

	Returning Query Results Implicitly

	Returning Large Amounts of Data from a Function
	PL/SQL Function Result Cache
	Overview of Bulk Binding
	DML Statements that Reference Collections
	SELECT Statements that Reference Collections
	FOR Loops that Reference Collections and Return DML

	PL/SQL Dynamic SQL

	Altering PL/SQL Subprograms and Packages
	Deprecating Packages, Subprograms, and Types
	Dropping PL/SQL Subprograms and Packages
	Compiling PL/SQL Units for Native Execution
	Invoking Stored PL/SQL Subprograms
	Privileges Required to Invoke a Stored Subprogram
	Invoking a Subprogram Interactively from Oracle Tools
	Invoking a Subprogram from Another Subprogram
	Invoking a Remote Subprogram
	Synonyms for Remote Subprograms
	Transactions That Invoke Remote Subprograms

	Invoking Stored PL/SQL Functions from SQL Statements
	Why Invoke PL/SQL Functions from SQL Statements?
	Where PL/SQL Functions Can Appear in SQL Statements
	When PL/SQL Functions Can Appear in SQL Expressions
	Controlling Side Effects of PL/SQL Functions Invoked from SQL Statements
	Restrictions on Functions Invoked from SQL Statements
	PL/SQL Functions Invoked from Parallelized SQL Statements
	PRAGMA RESTRICT_REFERENCES
	Example: PRAGMA RESTRICT_REFERENCES
	Specifying the Assertion TRUST
	Differences Between Static and Dynamic SQL Statements

	Analyzing and Debugging Stored Subprograms
	PL/Scope
	PL/SQL Hierarchical Profiler
	Debugging PL/SQL and Java
	Compiling Code for Debugging
	Privileges for Debugging PL/SQL and Java Stored Subprograms

	Package Invalidations and Session State
	Example: Raising an ORA-04068 Error
	Example: Trapping ORA-04068

	14 Using PL/Scope
	Overview of PL/Scope
	Privileges Required for Using PL/Scope
	Specifying Identifier and Statement Collection
	How Much Space is PL/Scope Data Using?
	Viewing PL/Scope Data
	Static Data Dictionary Views for PL/SQL and SQL Identifiers
	PL/SQL and SQL Identifier Types that PL/Scope Collects
	About Identifiers Usages
	Identifiers Usage Unique Keys
	About Identifiers Usage Context
	About Identifiers Signature

	Static Data Dictionary Views for SQL Statements
	SQL Statement Types that PL/Scope Collects
	Statements Location Unique Keys
	About SQL Statement Usage Context
	About SQL Statements Signature

	SQL Developer

	Overview of Data Dictionary Views Useful to Manage PL/SQL Code
	Sample PL/Scope Session

	15 Using the PL/SQL Hierarchical Profiler
	Overview of PL/SQL Hierarchical Profiler
	Collecting Profile Data
	Understanding Raw Profiler Output
	Namespaces of Tracked Subprograms
	Special Function Names

	Analyzing Profile Data
	Creating Hierarchical Profiler Tables
	Understanding Hierarchical Profiler Tables
	Hierarchical Profiler Database Table Columns
	Distinguishing Between Overloaded Subprograms
	Hierarchical Profiler Tables for Sample PL/SQL Procedure
	Examples of Calls to DBMS_HPROF.analyze with Options

	plshprof Utility
	plshprof Options
	HTML Report from a Single Raw Profiler Output File
	First Page of Report
	Function-Level Reports
	Module-Level Reports
	Namespace-Level Reports
	Parents and Children Report for a Function
	Understanding PL/SQL Hierarchical Profiler SQL-Level Reports

	HTML Difference Report from Two Raw Profiler Output Files
	Difference Report Conventions
	First Page of Difference Report
	Function-Level Difference Reports
	Module-Level Difference Reports
	Namespace-Level Difference Reports
	Parents and Children Difference Report for a Function

	16 Using PL/SQL Basic Block Coverage to Maintain Quality
	Overview of PL/SQL Basic Block Coverage
	Collecting PL/SQL Code Coverage Data
	PL/SQL Code Coverage Tables Description

	17 Developing PL/SQL Web Applications
	Overview of PL/SQL Web Applications
	Implementing PL/SQL Web Applications
	PL/SQL Gateway
	mod_plsql
	Embedded PL/SQL Gateway

	PL/SQL Web Toolkit

	Using mod_plsql Gateway to Map Client Requests to a PL/SQL Web Application
	Using Embedded PL/SQL Gateway
	How Embedded PL/SQL Gateway Processes Client Requests
	Installing Embedded PL/SQL Gateway
	Configuring Embedded PL/SQL Gateway
	Configuring Embedded PL/SQL Gateway: Overview
	Configuring User Authentication for Embedded PL/SQL Gateway
	Configuring Static Authentication with DBMS_EPG
	Configuring Dynamic Authentication with DBMS_EPG
	Configuring Anonymous Authentication with DBMS_EPG
	Determining the Authentication Mode of a DAD
	Examples: Creating and Configuring DADs
	Example: Determining the Authentication Mode for a DAD
	Example: Determining the Authentication Mode for All DADs
	Example: Showing DAD Authorizations that Are Not in Effect
	Examining Embedded PL/SQL Gateway Configuration

	Invoking PL/SQL Stored Subprograms Through Embedded PL/SQL Gateway
	Securing Application Access with Embedded PL/SQL Gateway
	Restrictions in Embedded PL/SQL Gateway
	Using Embedded PL/SQL Gateway: Scenario

	Generating HTML Output with PL/SQL
	Passing Parameters to PL/SQL Web Applications
	Passing List and Dropdown-List Parameters from an HTML Form
	Passing Option and Check Box Parameters from an HTML Form
	Passing Entry-Field Parameters from an HTML Form
	Passing Hidden Parameters from an HTML Form
	Uploading a File from an HTML Form
	Submitting a Completed HTML Form
	Handling Missing Input from an HTML Form
	Maintaining State Information Between Web Pages

	Performing Network Operations in PL/SQL Subprograms
	Internet Protocol Version 6 (IPv6) Support
	Sending E-Mail from PL/SQL
	Getting a Host Name or Address from PL/SQL
	Using TCP/IP Connections from PL/SQL
	Retrieving HTTP URL Contents from PL/SQL
	Using Tables, Image Maps, Cookies, and CGI Variables from PL/SQL

	18 Using Continuous Query Notification (CQN)
	About Object Change Notification (OCN)
	About Query Result Change Notification (QRCN)
	Guaranteed Mode
	Best-Effort Mode
	Example: Query Too Complex for QRCN in Guaranteed Mode
	Example: Query Whose Simplified Version Invalidates Objects

	Events that Generate Notifications
	Committed DML Transactions
	Committed DDL Statements
	Deregistration
	Global Events

	Notification Contents
	Good Candidates for CQN
	Creating CQN Registrations
	Using PL/SQL to Create CQN Registrations
	PL/SQL CQN Registration Interface
	CQN Registration Options
	Notification Type Option
	QRCN Mode (QRCN Notification Type Only)
	ROWID Option
	Operations Filter Option (OCN Notification Type Only)
	Transaction Lag Option (OCN Notification Type Only)
	Notification Grouping Options
	Reliable Option
	Purge-on-Notify and Timeout Options

	Prerequisites for Creating CQN Registrations
	Queries that Can Be Registered for Object Change Notification (OCN)
	Queries that Can Be Registered for Query Result Change Notification (QRCN)
	Queries that Can Be Registered for QRCN in Guaranteed Mode
	Queries that Can Be Registered for QRCN Only in Best-Effort Mode
	Queries that Cannot Be Registered for QRCN in Either Mode

	Using PL/SQL to Register Queries for CQN
	Creating a PL/SQL Notification Handler
	Creating a CQ_NOTIFICATION$_REG_INFO Object
	Identifying Individual Queries in a Notification
	Adding Queries to an Existing Registration

	Best Practices for CQN Registrations
	Troubleshooting CQN Registrations
	Deleting Registrations
	Configuring CQN: Scenario
	Creating a PL/SQL Notification Handler
	Registering the Queries

	Using OCI to Create CQN Registrations
	Using OCI for Query Result Set Notifications
	Using OCI to Register a Continuous Query Notification
	Using OCI Subscription Handle Attributes for Continuous Query Notification
	OCI_ATTR_CQ_QUERYID Attribute
	Using OCI Continuous Query Notification Descriptors
	OCI_DTYPE_CHDES
	OCI_DTYPE_CQDES
	OCI_DTYPE_TABLE_CHDES

	Demonstrating Continuous Query Notification in an OCI Sample Program

	Querying CQN Registrations
	Interpreting Notifications
	Interpreting a CQ_NOTIFICATION$_DESCRIPTOR Object
	Interpreting a CQ_NOTIFICATION$_TABLE Object
	Interpreting a CQ_NOTIFICATION$_QUERY Object
	Interpreting a CQ_NOTIFICATION$_ROW Object

	Part IV Advanced Topics for Application Developers
	19 Using Oracle Flashback Technology
	Overview of Oracle Flashback Technology
	Application Development Features
	Database Administration Features

	Configuring Your Database for Oracle Flashback Technology
	Configuring Your Database for Automatic Undo Management
	Configuring Your Database for Oracle Flashback Transaction Query
	Configuring Your Database for Flashback Transaction
	Enabling Oracle Flashback Operations on Specific LOB Columns
	Granting Necessary Privileges

	Using Oracle Flashback Query (SELECT AS OF)
	Example: Examining and Restoring Past Data
	Guidelines for Oracle Flashback Query

	Using Oracle Flashback Version Query
	Using Oracle Flashback Transaction Query
	Using Oracle Flashback Transaction Query with Oracle Flashback Version Query
	Using DBMS_FLASHBACK Package
	Using Flashback Transaction
	Dependent Transactions
	TRANSACTION_BACKOUT Parameters
	TRANSACTION_BACKOUT Reports
	*_FLASHBACK_TXN_STATE
	*_FLASHBACK_TXN_REPORT

	Using Flashback Data Archive
	Creating a Flashback Data Archive
	Altering a Flashback Data Archive
	Dropping a Flashback Data Archive
	Specifying the Default Flashback Data Archive
	Enabling and Disabling Flashback Data Archive
	DDL Statements on Tables Enabled for Flashback Data Archive
	Viewing Flashback Data Archive Data
	Flashback Data Archive Scenarios
	Scenario: Using Flashback Data Archive to Enforce Digital Shredding
	Scenario: Using Flashback Data Archive to Access Historical Data
	Scenario: Using Flashback Data Archive to Generate Reports
	Scenario: Using Flashback Data Archive for Auditing
	Scenario: Using Flashback Data Archive to Recover Data

	General Guidelines for Oracle Flashback Technology
	Performance Guidelines for Oracle Flashback Technology
	Multitenant Container Database Restrictions for Oracle Flashback Technology

	20 Choosing a Programming Environment
	Overview of Application Architecture
	Client/Server Architecture
	Server-Side Programming
	Two-Tier and Three-Tier Architecture

	Overview of the Program Interface
	User Interface
	Stateful and Stateless User Interfaces

	Overview of PL/SQL
	Overview of Oracle Database Java Support
	Overview of Oracle JVM
	Overview of Oracle JDBC
	Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Driver
	JDBC Server-Side Internal Driver

	Sample JDBC 2.0 Program
	Sample Pre-2.0 JDBC Program

	Overview of Oracle SQLJ
	Benefits of SQLJ

	Comparison of Oracle JDBC and Oracle SQLJ
	Overview of Java Stored Subprograms
	Overview of Oracle Database Web Services

	Choosing PL/SQL or Java
	Similarities of PL/SQL and Java
	PL/SQL Advantages Over Java
	Java Advantages Over PL/SQL

	Overview of Precompilers
	Overview of the Pro*C/C++ Precompiler
	Overview of the Pro*COBOL Precompiler

	Overview of OCI and OCCI
	Advantages of OCI and OCCI
	OCI and OCCI Functions
	Procedural and Nonprocedural Elements of OCI and OCCI Applications
	Building an OCI or OCCI Application

	Comparison of Precompilers and OCI
	Overview of Oracle Data Provider for .NET (ODP.NET)
	Overview of OraOLEDB

	21 Developing Applications with Multiple Programming Languages
	Overview of Multilanguage Programs
	What Is an External Procedure?
	Overview of Call Specification for External Procedures
	Loading External Procedures
	Define the C Procedures
	Set Up the Environment
	Identify the DLL
	Publish the External Procedures

	Publishing External Procedures
	AS LANGUAGE Clause for Java Class Methods
	AS LANGUAGE Clause for External C Procedures
	LIBRARY
	NAME
	LANGUAGE
	CALLING STANDARD
	WITH CONTEXT
	PARAMETERS
	AGENT IN

	Publishing Java Class Methods
	Publishing External C Procedures
	Locations of Call Specifications
	Example: Locating a Call Specification in a PL/SQL Package
	Example: Locating a Call Specification in a PL/SQL Package Body
	Example: Locating a Call Specification in an ADT Specification
	Example: Locating a Call Specification in an ADT Body
	Example: Java with AUTHID
	Example: C with Optional AUTHID
	Example: Mixing Call Specifications in a Package

	Passing Parameters to External C Procedures with Call Specifications
	Specifying Data Types
	External Data Type Mappings
	Passing Parameters BY VALUE or BY REFERENCE
	Declaring Formal Parameters
	Overriding Default Data Type Mapping
	Specifying Properties
	INDICATOR
	LENGTH and MAXLEN
	CHARSETID and CHARSETFORM
	Repositioning Parameters
	SELF
	BY REFERENCE
	WITH CONTEXT
	Interlanguage Parameter Mode Mappings

	Running External Procedures with CALL Statements
	Preconditions for External Procedures
	Privileges of External Procedures
	Managing Permissions
	Creating Synonyms for External Procedures

	CALL Statement Syntax
	Calling Java Class Methods
	Calling External C Procedures

	Handling Errors and Exceptions in Multilanguage Programs
	Using Service Routines with External C Procedures
	OCIExtProcAllocCallMemory
	OCIExtProcRaiseExcp
	OCIExtProcRaiseExcpWithMsg

	Doing Callbacks with External C Procedures
	OCIExtProcGetEnv
	Object Support for OCI Callbacks
	Restrictions on Callbacks
	Debugging External C Procedures
	Example: Calling an External C Procedure
	Global Variables in External C Procedures
	Static Variables in External C Procedures
	Restrictions on External C Procedures

	22 Developing Applications with Oracle XA
	X/Open Distributed Transaction Processing (DTP)
	DTP Terminology
	Required Public Information

	Oracle XA Library Subprograms
	Oracle XA Library Subprograms
	Oracle XA Interface Extensions

	Developing and Installing XA Applications
	DBA or System Administrator Responsibilities
	Application Developer Responsibilities
	Defining the xa_open String
	Syntax of the xa_open String
	Required Fields for the xa_open String
	Optional Fields for the xa_open String

	Using Oracle XA with Precompilers
	Using Precompilers with the Default Database
	Using Precompilers with a Named Database

	Using Oracle XA with OCI
	Managing Transaction Control with Oracle XA
	Examples of Precompiler Applications
	Migrating Precompiler or OCI Applications to TPM Applications
	Managing Oracle XA Library Thread Safety
	Specifying Threading in the Open String
	Restrictions on Threading in Oracle XA

	Using the DBMS_XA Package

	Troubleshooting XA Applications
	Accessing Oracle XA Trace Files
	xa_open String DbgFl
	Trace File Locations

	Managing In-Doubt or Pending Oracle XA Transactions
	Using SYS Account Tables to Monitor Oracle XA Transactions

	Oracle XA Issues and Restrictions
	Using Database Links in Oracle XA Applications
	Managing Transaction Branches in Oracle XA Applications
	Using Oracle XA with Oracle Real Application Clusters (Oracle RAC)
	GLOBAL_TXN_PROCESSES Initialization Parameter
	Managing Transaction Branches on Oracle RAC
	Managing Instance Recovery in Oracle RAC with DTP Services (10.2)
	Global Uniqueness of XIDs in Oracle RAC
	Tight and Loose Coupling

	SQL-Based Oracle XA Restrictions
	Rollbacks and Commits
	DDL Statements
	Session State
	EXEC SQL

	Miscellaneous Restrictions

	23 Developing Applications with the Publish-Subscribe Model
	Introduction to the Publish-Subscribe Model
	Publish-Subscribe Architecture
	Database Events
	Oracle Advanced Queuing
	Client Notification

	Publish-Subscribe Concepts
	Examples of a Publish-Subscribe Mechanism

	24 Using the Oracle ODBC Driver
	About Oracle ODBC Driver
	For All Users
	Oracle ODBC Driver
	What Is the Oracle ODBC Driver
	New and Changed Features
	Features Not Supported
	Files Created by the Installation
	Driver Conformance Levels
	Known Limitations

	Configuration Tasks
	Configuring Oracle Net Services
	Configuring the Data Source
	Oracle ODBC Driver Configuration Dialog Box

	Modifying the oraodbc.ini File
	Reducing Lock Timeout

	Connecting to a Data Source
	Connecting to an Oracle Data Source

	Troubleshooting
	About Using the Oracle ODBC Driver for the First Time
	Expired Password

	For Advanced Users
	Creating Oracle ODBC Driver TNS Service Names
	SQL Statements
	Data Types
	Implementation of Data Types (Advanced)
	Limitations on Data Types
	Error Messages

	For Programmers
	Format of the Connection String
	SQLDriverConnect Implementation
	Reducing Lock Timeout in a Program
	Linking with odbc32.lib (Windows) or libodbc.so (UNIX)
	Information About rowids
	Rowids in a WHERE Clause
	Enabling Result Sets
	Enabling EXEC Syntax
	Enabling Event Notification for Connection Failures in an Oracle RAC Environment
	Using Implicit Results Feature Through ODBC
	About Supporting Oracle TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE Column Type in ODBC
	About the Effect of Setting ORA_SDTZ in Oracle Clients (OCI, SQL*Plus, Oracle ODBC Driver, and Others)
	Supported Functionality
	API Conformance
	Implementation of ODBC API Functions
	Implementation of the ODBC SQL Syntax
	Implementation of Data Types (Programming)

	Unicode Support
	Unicode Support Within the ODBC Environment
	Unicode Support in ODBC API
	Unicode Functions in the Driver Manager
	SQLGetData Performance
	Unicode Samples

	Performance and Tuning
	General ODBC Programming Tips
	Data Source Configuration Options
	DATE and TIMESTAMP Data Types

	25 Using the Identity Code Package
	Identity Concepts
	What Is the Identity Code Package?
	Using the Identity Code Package
	Storing RFID Tags in Oracle Database Using MGD_ID ADT
	Creating a Table with MGD_ID Column Type and Storing EPC Tag Encodings in the Column
	Constructing MGD_ID Objects to Represent RFID Tags
	Constructing an MGD_ID Object (SGTIN-64) Passing in the Category ID and a List of Components
	Constructing an MGD_ID object (SGTIN-64) and Passing in the Category ID, the Tag Identifier, and the List of Additional Required Parameters
	Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name, Category Version (if null, then the latest version is used), and a List of Components
	Constructing an MGD_ID object (SGTIN-64) and Passing in the Category Name and Category Version, the Tag Identifier, and the List of Additional Required Parameters

	Inserting an MGD_ID Object into a Database Table
	Querying MGD_ID Column Type

	Building a Function-Based Index Using the Member Functions of the MGD_ID Column Type
	Using MGD_ID ADT Functions
	Using the get_component Function with the MGD_ID Object
	Parsing Tag Data from Standard Representations
	Reconstructing Tag Representations from Fields
	Translating Between Tag Representations

	Defining a Category of Identity Codes and Adding Encoding Schemes to an Existing Category
	Creating a Category of Identity Codes
	Adding Two Metadata Schemes to a Newly Created Category

	Identity Code Package Types
	DBMS_MGD_ID_UTL Package
	Identity Code Metadata Tables and Views
	Electronic Product Code (EPC) Concepts
	RFID Technology and EPC v1.1 Coding Schemes
	Product Code Concepts and Their Current Use
	Electronic Product Code (EPC)
	EPC Pure Identity
	EPC Encoding
	EPC Tag Bit-Level Encoding
	EPC Identity URI
	EPC Tag URI Encoding
	EPC Encoding Procedure
	EPC Decoding Procedure

	Global Trade Identification Number (GTIN) and Serializable Global Trade Identification Number (SGTIN)
	Serial Shipping Container Code (SSCC)
	Global Location Number (GLN) and Serializable Global Location Number (SGLN)
	Global Returnable Asset Identifier (GRAI)
	Global Individual Asset Identifier (GIAI)
	RFID EPC Network

	Oracle Database Tag Data Translation Schema

	26 Understanding Schema Object Dependency
	Overview of Schema Object Dependency
	Example: Displaying Dependent and Referenced Object Types
	Example: Schema Object Change that Invalidates Some Dependents
	Example: View That Depends on Multiple Objects

	Querying Object Dependencies
	Object Status
	Invalidation of Dependent Objects
	Session State and Referenced Packages
	Security Authorization

	Guidelines for Reducing Invalidation
	Add Items to End of Package
	Reference Each Table Through a View

	Object Revalidation
	Revalidation of Objects that Compiled with Errors
	Revalidation of Unauthorized Objects
	Revalidation of Invalid SQL Objects
	Revalidation of Invalid PL/SQL Objects

	Name Resolution in Schema Scope
	Local Dependency Management
	Remote Dependency Management
	Dependencies Among Local and Remote Database Procedures
	Dependencies Among Other Remote Objects
	Dependencies of Applications

	Remote Procedure Call (RPC) Dependency Management
	Time-Stamp Dependency Mode
	RPC-Signature Dependency Mode
	Changing Names and Default Values of Parameters
	Changing Specification of Parameter Mode IN
	Changing Subprogram Body
	Changing Data Type Classes of Parameters
	Changing Package Types

	Controlling Dependency Mode
	Dependency Resolution
	Suggestions for Managing Dependencies

	Shared SQL Dependency Management

	27 Using Edition-Based Redefinition
	Overview of Edition-Based Redefinition
	Editions
	Editioned and Noneditioned Objects
	Name Resolution for Editioned and Noneditioned Objects
	Noneditioned Objects That Can Depend on Editioned Objects
	Materialized Views
	Virtual Columns

	Editionable and Noneditionable Schema Object Types
	Enabling Editions for a User
	Potentially Editioned Objects with Noneditioned Dependents
	Users Who Cannot Have Editions Enabled

	EDITIONABLE and NONEDITIONABLE Properties
	Creating New EDITIONABLE and NONEDITIONABLE Objects
	Replacing or Altering EDITIONABLE and NONEDITIONABLE Objects

	Rules for Editioned Objects

	Creating an Edition
	Editioned Objects and Copy-on-Change
	Example: Editioned Objects and Copy-on-Change
	Example: Dropping an Editioned Object
	Example: Creating an Object with the Name of a Dropped Inherited Object

	Making an Edition Available to Some Users
	Making an Edition Available to All Users
	Current Edition and Session Edition
	Your Initial Session Edition
	Changing Your Session Edition
	Displaying the Names of the Current and Session Editions
	When the Current Edition Might Differ from the Session Edition

	Retiring an Edition
	Dropping an Edition

	Editioning Views
	Creating an Editioning View
	Partition-Extended Editioning View Names
	Changing the Writability of an Editioning View
	Replacing an Editioning View
	Dropped or Renamed Base Tables
	Adding Indexes and Constraints to the Base Table
	SQL Optimizer Index Hints

	Crossedition Triggers
	Forward Crossedition Triggers
	Reverse Crossedition Triggers
	Crossedition Trigger Interaction with Editions
	Which Triggers Are Visible
	What Kind of Triggers Can Fire
	Forward Crossedition Trigger SQL
	Reverse Crossedition Trigger SQL
	Application SQL

	Firing Order
	FOLLOWS and PRECEDES Clauses
	Trigger Type and Edition

	Crossedition Trigger Execution

	Creating a Crossedition Trigger
	Coding the Forward Crossedition Trigger Body
	Handling Data Transformation Collisions
	Handling Changes to Other Tables

	Transforming Data from Pre- to Post-Upgrade Representation
	Preventing Lost Updates

	Dropping the Crossedition Triggers

	Displaying Information About EBR Features
	Displaying Information About Editions
	Displaying Information About Editioning Views
	Displaying Information About Crossedition Triggers

	Using EBR to Upgrade an Application
	Preparing Your Application to Use Editioning Views
	Procedure for EBR Using Only Editions
	Procedure for EBR Using Editioning Views
	Procedure for EBR Using Crossedition Triggers
	Rolling Back the Application Upgrade
	Reclaiming Space Occupied by Unused Table Columns
	Example: Using EBR to Upgrade an Application
	Existing Application
	Example: How the Existing Application Was Created
	Example: Viewing Data in the Existing Table

	Preparing the Application to Use Editioning Views
	Using EBR to Upgrade the Example Application
	Example: Creating an Edition in Which to Upgrade the Example Application
	Example: Changing the Table and Replacing the Editioning View
	Example: Creating and Enabling the Crossedition Triggers
	Example: Applying the Transforms
	Example: Viewing Data in the Changed Table

	28 Using Transaction Guard
	Problem That Transaction Guard Solves
	Solution That Transaction Guard Provides
	Transaction Guard Concepts and Scope
	Logical Transaction Identifier (LTXID)
	At-Most-Once Execution
	Transaction Guard Coverage
	Transaction Guard with XA Transactions
	Transaction Guard Exclusions

	Database Configuration for Transaction Guard
	Configuration Checklist
	Transaction History Table
	Service Parameters
	Example: Adding and Modifying a Service for a Server Pool
	Example: Adding an Administrator-Managed Service
	Example: Modifying a Service (PL/SQL)

	Developing Applications That Use Transaction Guard
	Typical Transaction Guard Usage
	Details for Using the LTXID
	Transaction Guard and Transparent Application Failover
	Using Transaction Guard with ODP.NET
	Connection-Pool LTXID Usage
	Improved Commit Outcome for XA One Phase Optimizations
	Additional Requirements for Transaction Guard Development

	Transaction Guard and Its Relationship to Application Continuity

	Index

