Oracle® Database
Database In-Memory Guide

19c
E96137-05
July 2020

ORACLE"

Oracle Database Database In-Memory Guide, 19¢

E96137-05

Copyright © 2016, 2020, Oracle and/or its affiliates.

Primary Author: Lance Ashdown

Contributing Authors: Maria Colgan, Vineet Marwah, Andy Rivenes, Randy Urbano

Contributors: Yasin Baskan, Nigel Bayliss, Eric Belden, Larry Carpenter, Shasank Chavan, William

Endress, Michael Gleeson, Allison Holloway, Katsumi Inoue, Jesse Kamp, Chinmayi Krishnappa, Vasudha
Krishnaswamy, Hariharan Lakshmanan, Sue Lee, Teck Hua Lee, Huagang Li, Yunrui Li, Yuehua Liu, Roger
Macnicol, Aurosish Mishra, Ajit Mylavarapu, Khoa Nguyen, Jay Patel, Kathy Rich, Beth Roeser, Rich Strohm,
Dina Thomas, Qiuhong Wang, Bob Zebian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xi
Documentation Accessibility Xi
Related Documents Xi
Conventions Xii
Changes in This Release for Oracle Database In-Memory Guide
Changes in Oracle Database Release 19c, Version 19.8 Xiii
Changes in Oracle Database Release 19c, Version 19.1 Xiv
Changes in Oracle Database Release 18c, Version 18.1 XV
Changes in Oracle Database 12c¢ Release 2 (12.2.0.1) XVi
Part | Oracle Database In-Memory Concepts
1 Introduction to Oracle Database In-Memory
1.1 Challenges for Analytic Applications 1-1
1.2 The Single-Format Approach 1-2
1.3 The Oracle Database In-Memory Solution 1-2
1.3.1 What Is Database In-Memory? 1-2
1.3.1.1 IM Column Store 1-3
1.3.1.2 Advanced Query Optimizations 1-4
1.3.1.3 High Availability Support 1-5
1.3.2 Improved Performance for Analytic Queries 1-5
1.3.2.1 Improved Performance for Data Scans 1-6
1.3.2.2 Improved Performance for Joins 1-7
1.3.2.3 Improved Performance for Aggregation 1-8
1.3.3 Improved Performance for Mixed Workloads 1-8
1.3.4 In-Memory Support for Exadata Flash Cache 1-9
1.3.5 High Availability Support 1-10
1.3.6 Ease of Adoption 1-10

ORACLE

1.4 Requirements for Database In-Memory 1-11
1.5 Principal Tasks for Database In-Memory 1-12
1.6 Tools for the IM Column Store 1-15
1.6.1 In-Memory Advisor 1-15
1.6.2 Cloud Control Pages for the IM Column Store 1-15
1.6.3 Oracle Compression Advisor 1-16
1.6.4 Oracle Data Pump and the IM Column Store 1-16
2 In-Memory Column Store Architecture

2.1 Dual-Format: Column and Row 2-1
2.1.1 Columnar Data in the In-Memory Area 2-1
2.1.1.1 Size of the In-Memory Area 2-2
2.1.1.2 Memory Pools in the In-Memory Area 2-3
2.1.2 Row Data in the Database Buffer Cache 2-5
2.2 In-Memory Storage Units 2-7
2.2.1 In-Memory Compression Units (IMCUSs) 2-8
2.2.1.1 IMCUs and Schema Objects 2-8
2.2.1.2 Column Compression Units (CUs) 2-14
2.2.1.3 In-Memory Storage Indexes 2-17
2.2.2 Snapshot Metadata Units (SMUs) 2-18
2.2.2.1 IMCUs and SMUs 2-19
2.2.2.2 Transaction Journal 2-19
2.2.3 In-Memory Expression Units (IMEUS) 2-20
2.3 Expression Statistics Store (ESS) 2-21
2.4 In-Memory Process Architecture 2-22
2.4.1 In-Memory Coordinator Process (IMCO) 2-22
2.4.2 Space Management Worker Processes (Wnnn) 2-23
2.4.3 In-Memory Dynamic Scans 2-23
2.4.3.1 Purpose of IM Dynamic Scans 2-24
2.4.3.2 How IM Dynamic Scans Work 2-24
2.4.3.3 Interface for IM Dynamic Scans 2-26
2.5 CPU Architecture: SIMD Vector Processing 2-28
2.5.1 SIMD and Oracle LOBs 2-29
2.5.2 SIMD and Oracle Numbers 2-30
2.5.3 SIMD and Exadata Smart Flash Cache 2-30

Part Il Configuring and Populating the IM Column Store
ORACLE Y

3 Enabling and Sizing the IM Column Store

3.1 Overview of Enabling the IM Column Store 3-1
3.2 Estimating the Required Size of the IM Column Store 3-1
3.3 Enabling the IM Column Store for a Database 3-3
3.4 Increasing the Size of the IM Column Store Dynamically 3-5
3.5 Disabling the IM Column Store 3-6

4 Enabling Objects for In-Memory Population

4.1 About Manually Enabling Objects for In-Memory Population 4-1
4.1.1 Purpose of Enabling Objects for In-Memory Population 4-1
4.1.2 How In-Memory Population Works 4-1

4.1.2.1 Prioritization of In-Memory Population 4-2
4.1.2.2 How Background Processes Populate IMCUs 4-5
4.1.3 Controls for In-Memory Objects 4-6
4.1.3.1 The INMEMORY Subclause 4-6
4.1.3.2 Priority Options for the Population of In-Memory Objects 4-10
4.1.3.3 IM Column Store Compression Methods 4-12
4.1.3.4 Oracle Compression Advisor 4-14

4.2 Enabling and Disabling Tables for the IM Column Store 4-14
4.2.1 Enabling New Tables for the In-Memory Column Store 4-14
4.2.2 Enabling and Disabling Existing Tables for the IM Column Store 4-15
4.2.3 Enabling and Disabling Tables for the IM Column Store: Examples 4-15

4.2.3.1 Creating an In-Memory Table: Example 4-15
4.2.3.2 Creating a Table with In-Memory Partitions: Example 4-16
4.2.3.3 Creating an In-Memory External Table: Example 4-16
4.2.3.4 Creating and Populating a Hybrid External Table: Example 4-18
4.2.3.5 Enabling an Existing Table for the IM Column Store: Example 4-21
4.2.3.6 Setting In-Memory Compression to FOR CAPACITY LOW:

Example 4-21
4.2.3.7 Setting In-Memory Priority to HIGH: Example 4-22
4.2.3.8 Changing the Compression and Priority Settings for an In-Memory

Table: Example 4-22
4.2.3.9 Disabling a Table for the IM Column Store: Example 4-23
4.2.3.10 Disabling Columnar Format on Exadata Smart Flash Cache:

Example 4-23

4.3 Enabling and Disabling Columns for In-Memory Tables 4-23
4.3.1 About Enabling INMEMORY Columns 4-23
4.3.2 Enabling IM Virtual Columns 4-25
4.3.3 Enabling a Subset of Columns for the IM Column Store: Example 4-27
4.3.4 Specifying INMEMORY Column Attributes on a NO INMEMORY Table:

Example 4-28

ORACLE Y

4.4 Enabling and Disabling Tablespaces for the IM Column Store 4-31
4.5 Enabling and Disabling Materialized Views for the IM Column Store 4-32
5 Populating the IM Column Store Manually
5.1 About Manual Population of In-Memory Objects 5-1
5.1.1 Population Using SELECT 5-1
5.1.2 Population Using DBMS_INMEMORY.POPULATE 5-1
5.1.3 Population Using DBMS_INMEMORY_ADMIN.POPULATE_WAIT 5-2
5.1.4 Population Using DBMS_INMEMORY.REPOPULATE 5-3
5.2 Forcing Initial Population of an In-Memory Object 5-4
5.3 Populating In-Memory Tables Manually: Examples 5-6
5.3.1 Populating an In-Memory Table Using a Full Table Scan: Example 5-6
5.3.2 Populating a Table Using the POPULATE Procedure: Example 5-8
5.3.3 Setting a Timeout Using the POPULATE_WAIT Function: Example 5-9
5.3.4 Populating an In-Memory External Table Using

DBMS_INMEMORY.POPULATE: Example 5-10

5.3.5 Refreshing an In-Memory External Table Using the REPOPULATE
Procedure: Example 5-11

6 Automating Management of In-Memory Objects

6.1 Enabling ADO for the IM Column Store 6-1
6.1.1 About ADO Policies and the IM Column Store 6-1
6.1.2 Purpose of ADO and the IM Column Store 6-2
6.1.3 How ADO Works with Columnar Data 6-3
6.1.3.1 How Heat Map Works 6-4
6.1.3.2 How Policy Evaluation Works 6-4
6.1.4 Controls for ADO and the IM Column Store 6-5
6.1.5 Creating an ADO Policy for the IM Column Store 6-7
6.2 Configuring Automatic In-Memory 6-9
6.2.1 Purpose of Automatic In-Memory 6-9
6.2.2 How Automatic In-Memory Works 6-10
6.2.3 User Interface for Automatic In-Memory 6-10
6.2.4 Controlling Automatic In-Memory 6-12
6.2.5 Setting the Time Interval for Automatic In-Memory 6-12

Part Ill Optimizing In-Memory Queries

ORACLE

Vi

7 Optimizing Queries with In-Memory Expressions

7.1 About IM Expressions 7-1
7.1.1 Purpose of IM Expressions 7-2
7.1.2 How IM Expressions Work 7-3

7.1.2.1 IM Expressions Infrastructure 7-3
7.1.2.2 Capture of IM Expressions 7-4
7.1.2.3 How the ESS Works 7-6
7.1.2.4 How the Database Populates IM Expressions 7-8
7.1.25 How IMEUs Relate to IMCUs 7-8
7.1.3 User Interfaces for IM Expressions 7-9
7.1.3.1 INMEMORY_EXPRESSIONS_USAGE 7-9
7.1.3.2 DBMS_INMEMORY_ADMIN and DBMS_INMEMORY 7-10
7.1.4 Basic Tasks for IM Expressions 7-11

7.2 Configuring IM Expression Usage 7-11

7.3 Capturing and Populating IM Expressions 7-12

7.4 Dropping IM Expressions 7-17

8 Optimizing Joins with Join Groups

8.1 About In-Memory Joins 8-1
8.2 About Join Groups 8-1
8.3 Purpose of Join Groups 8-2
8.4 How Join Groups Work 8-4
8.4.1 How a Join Group Uses a Common Dictionary 8-4
8.4.2 How a Join Group Optimizes Scans 8-5
8.5 When a Hash Join Uses Common Dictionary Encodings 8-7
8.6 Creating Join Groups 8-9
8.7 Monitoring Join Group Usage 8-12
8.7.1 Monitoring Join Groups Using a SQL Monitor Report: Example 8-13
8.7.2 Monitoring Join Groups from the Command Line: Example 8-16

O Optimizing Aggregation

9.1 Optimizing In-Memory Aggregation with VECTOR GROUP BY 9-1
9.1.1 About IM Aggregation 9-1
9.1.2 Purpose of IM Aggregation 9-1

9.1.2.1 When IM Aggregation Is Useful 9-2
9.1.2.2 When IM Aggregation Is Not Beneficial 9-3
9.1.3 How IM Aggregation Works 9-4
9.1.3.1 When the Optimizer Chooses IM Aggregation 9-4
9.1.3.2 Key Vector 9-5

ORACLE vii

9.1.3.3 Two Phases of IM Aggregation 9-6
9.1.3.4 IM Aggregation: Scenario 9-7
9.1.4 Controls for IM Aggregation 9-13
9.1.5 In-Memory Aggregation: Example 9-14
9.2 Optimizing In-Memory Arithmetic 9-15
9.2.1 About In-Memory Optimized Arithmetic 9-15
9.2.2 Enabling and Disabling In-Memory Optimized Arithmetic 9-16
10 Optimizing Repopulation of the IM Column Store
10.1 About Repopulation of the IM Column Store 10-1
10.1.1 Row Modifications and the Transaction Journal 10-1
10.1.2 Automatic Repopulation 10-1
10.1.3 Manual Repopulation of External Tables 10-2
10.2 How Data Loading Works with the IM Column Store 10-2
10.2.1 How Conventional DML Works with the IM Column Store 10-2
10.2.1.1 Staleness Threshold 10-3
10.2.1.2 Double Buffering 10-3
10.2.2 How Direct Path Loads Work with the IM Column Store 10-4
10.2.3 How a Partition Exchange Load Works with the IM Column Store 10-5
10.3 When the Database Repopulates the IM Column Store 10-7
10.3.1 Threshold-Based and Trickle Repopulation 10-7
10.3.2 Factors Affecting Repopulation 10-9
10.4 Controls for Repopulation of the IM Column Store 10-10
10.5 Optimizing Trickle Repopulation: Tutorial 10-11
Part I\ High Availability and the IM Column Store
11 Managing IM FastStart for the IM Column Store
11.1 About IM FastStart 11-1
11.1.1 Purpose of IM FastStart 11-1
11.1.2 How IM FastStart Works 11-1
11.1.2.1 How the Database Manages the FastStart Area 11-2
11.1.2.2 How the Database Reads from the FastStart Area 11-5
11.2 Enabling IM FastStart for the IM Column Store 11-6
11.3 Retrieving the Name of the Current IM FastStart Tablespace 11-8
11.4 Migrating the FastStart Area to a Different Tablespace 11-8
11.5 Disabling IM FastStart for the IM Column Store 11-10
ORACLE viii

12 Deploying IM Column Stores in Oracle RAC

12.1 Overview of Database In-Memory and Oracle RAC 12-1
12.1.1 Multiple IM Column Stores 12-1
12.1.2 Distribution and Duplication of Columnar Data in Oracle RAC 12-4
12.1.2.1 Distribution of Columnar Data in Oracle RAC 12-4
12.1.2.2 Duplication of Columnar Data in Oracle RAC 12-8
12.1.3 Parallelism in Oracle RAC 12-11
12.1.3.1 Serial and Parallel Queries in Oracle RAC 12-11
12.1.3.2 Auto DOP in Oracle RAC 12-12
12.1.4 FastStart Area in Oracle RAC 12-13
12.2 Configuring In-Memory Services in Oracle RAC 12-14
12.2.1 Instance-Level Service Controls 12-14
12.2.2 Object-Level Service Controls 12-15
12.2.3 Benefits of Services for Database In-Memory in Oracle RAC 12-17
12.2.4 Configuring an In-Memory Service for a Subset of Nodes: Example 12-17
13 Deploying an IM Column Store with Oracle Active Data Guard
13.1 About Database In-Memory and Active Data Guard 13-1
13.1.1 Purpose of IM Column Stores in Oracle Active Data Guard 13-1
13.1.1.1 Identical IM Column Stores in Primary and Standby Databases 13-1
13.1.1.2 IM Column Store in Standby Database Only 13-2
13.1.1.3 Different Objects in the Primary and Standby IM Column Stores 13-2
13.1.2 How IM Column Stores Work in Oracle Active Data Guard 13-4
13.1.3 In-Memory Restrictions in Active Data Guard 13-5
13.2 Configuring IM Column Stores in an Oracle Active Data Guard Environment 13-5
Part V. Database In-Memory Reference
14 In-Memory Initialization Parameters
15 In-Memory Views
A Using IM Column Store in Cloud Control
A.1 Meeting Prerequisites for Using IM Column Store in Cloud Control A-1

ORACLE

A.2 Using the In-Memory Column Store Central Home Page to Monitor In-
Memory Support for Database Objects A-2

A.3 Specifying In-Memory Details When Creating a Table or Partition A-3
A.4 Viewing or Editing IM Column Store Details of a Table A-3
A.5 Viewing or Editing IM Column Store Details of a Partition A-3
A.6 Specifying IM Column Store Details During Tablespace Creation A-4
A.7 Viewing and Editing IM Column Store Details of a Tablespace A-4
A.8 Specifying IM Column Store Details During Materialized View Creation A-4
A.9 Viewing or Editing IM Column Store Details of a Materialized View A-5
Glossary
Index

ORACLE X

Preface

Audience

This manual explains the architecture and tasks associated with the Oracle Database
In-Memory feature set.

This preface contains the following topics:

This document is intended for database administrators who manage an In-Memory
Column Store (IM column store), and developers who optimize analytic queries that
use Oracle Database In-Memory features.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

This manual assumes that you are familiar with Oracle Database Concepts. The
following books are frequently referenced:

* Oracle Database Data Warehousing Guide

e Oracle Database VLDB and Partitioning Guide
e Oracle Database SQL Tuning Guide

* Oracle Database SQL Language Reference

* Oracle Database Reference

Many examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database. See Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them.

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xii

Changes in This Release for Oracle
Database In-Memory Guide

This preface summarizes the In-Memory features for Oracle Database 19c, Oracle
Database 18c, and Oracle Database 12c.

This section contains the following topics:

Changes in Oracle Database Release 19c, Version 19.8

Oracle Database In-Memory Guide for Oracle Database 19c, version 19.8 has the
following changes.

New Features

The following major features are new in this release.

* Database In-Memory Base Level

Starting with Oracle Database release 19c, version 19.8, you can enable the
Database In-Memory Base Level by setting the | NVEMORY_FORCE initialization
parameter to BASE_LEVEL. The Base Level enables you to experiment with In-
Memory features without purchasing the Oracle Database In-Memory option.

When the Base Level is enabled, the IM column store size is limited to 16

GB for a CDB or non-CDB and for every database instance in an Oracle RAC
database. Also, the compression level for all objects and columns is set to QUERY
LOWautomatically and transparently, and Automatic In-Memory is disabled. The
CELLMEMORY feature is disabled for Oracle Exadata.

e Starting with Oracle Database release 19c, version 19.8, you can use
the CellMemory feature without enabling the IM column store by setting
| NMVEMORY_FORCE=CELLMEMORY_LEVEL and | NVEMORY_SI ZE=0. With these settings,
the IM column store is not enabled and queries can use CellMemory to scan
objects.

In previous releases of Oracle Database, in order to use the CellMemory feature,
you were required to enable the IM column store, even if you had no intention of
using it. This incurred the overhead of enabling the IM column store without any

benefit.

Note:

This option is valid only for on-premises Oracle Exadata systems.

ORACLE Xiii

Changes in This Release for Oracle Database In-Memory Guide

¢ See Also:

e See "Enabling the IM Column Store for a Database."

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Changes in Oracle Database Release 19c, Version 19.1

Oracle Database In-Memory Guide for Oracle Database release 19c, version 19.1 has
the following changes.

New Features

ORACLE

The following major features are new in this release.

Database In-Memory Base Level

Enable the Database In-Memory Base Level by setting the | NVEMORY_FORCE
initialization parameter to BASE_LEVEL. The Base Level enables you to experiment
with In-Memory features without purchasing the Oracle Database In-Memory
option.

When the Base Level is enabled, the IM column store size is limited to 16

GB for a CDB or non-CDB and for every database instance in an Oracle RAC
database. Also, the compression level for all objects and columns is set to QUERY
LOVautomatically and transparently, and Automatic In-Memory is disabled. The
CELLMEMORY feature is disabled for Oracle Exadata.

See "Enabling the IM Column Store for a Database" and Oracle Database
Licensing Information User Manual.

Database In-Memory wait on populate

The DBM5_| NVEMORY_ADM N. POPULATE WAI T function initiates population of all

I NVEMORY objects that have a priority greater than or equal to the specified priority,
and returns a status value for the population. A user-specified interval specifies the
maximum time that the function waits before returning the value to the caller.

See "Forcing Initial Population of an In-Memory Object".
Big Data and performance enhancements for In-Memory external tables

This release introduces several manageability and performance improvements to
the In-Memory external tables feature:

— The ORACLE_HI VE and ORACLE_BI GDATA drivers are supported.
— Parallel query is supported.

— Afull table scan populates an In-Memory external table. In previous
releases, population required using the POPULATE or REPOPULATE procedure
of DBVS_| NMVEMORY.

— The In-Memory background processes, rather than a foreground process, now
drop IM segments.

See "In-Memory External Tables".

XV

Changes in This Release for Oracle Database In-Memory Guide

Hybrid partitioned tables

Partitions can reside in both Oracle Database segments and in external files
and sources. This feature significantly enhances partitioning for Big Data SQL,
where large portions of a table can reside in external partitions. Only the internal
partitions of a hybrid partitioned table inherit the | NVEMORY attribute.

See "In-Memory Tables".

Oracle Database Resource Manager automatically enabled for Database In-
Memory

When | NVEMORY_SI ZE is greater than 0, the Resource Manager is automatically
enabled.

See "Interface for IM Dynamic Scans".
Oracle Data Guard Multi-Instance Redo Apply supports the IM column store

Setting the initialization parameter ENABLE | MC_W TH_M RA to TRUE enables the IM
column store and Data Guard Multi-Instance Redo Apply at the same time on an
Active Data Guard standby database. By default, ENABLE | MC W TH M RA is FALSE.

See Oracle Database Reference to learn more about ENABLE | MC_W TH_M RA.

" See Also:

Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

Changes in Oracle Database Release 18c, Version 18.1

Oracle Database In-Memory Guide for Oracle Database release 18c, version 18.1 has
the following changes.

New Features

ORACLE

The following major features are new in this release.

Automatic In-Memory

This feature uses segment and column usage statistics to manage the contents of
the IM column store automatically. If a populate job fails because the IM column
store is full, then Automatic In-Memory evicts inactive segments to make room for
active segments.

See "Configuring Automatic In-Memory".
In-Memory Dynamic Scans

IM dynamic scans automatically and transparently parallelize table scans by using
lightweight process threads. Oracle Resource Manager allocates these threads
when it perceives that CPU resources are idle and can be leveraged to speed up
the query.

See "In-Memory Dynamic Scans".

IM expressions window capture

XV

Changes in This Release for Oracle Database In-Memory Guide

You can define an expression capture window of an arbitrary length, which
ensures that only the expressions occurring within this window are considered

for In-Memory materialization. This mechanism is especially useful when you know
of a small interval that is representative of the entire workload. For example,

during the trading window, a brokerage firm can gather the set of expressions, and
materialize them in the IM column store to speed-up future query processing for
the entire workload.

See "Expression Capture Interval.
* In-Memory support for external tables

You can populate external tables into the IM column store. This feature is useful
for analytical queries that combine internal and external data.

See "In-Memory External Tables" and "Populating an In-Memory External Table
Using DBMS_INMEMORY.POPULATE: Example".

* In-Memory Optimized Arithmetic

For tables compressed with QUERY LON NUMBER columns are encoded using
an optimized format that enables native calculations in hardware. SIMD vector
processing of aggregations and arithmetic operations that use this format

can achieve significant performance gains. The feature is enabled when

| NMEMORY_OPTI M ZED_ARI THVETI Ciis set to ENABLE.

See "Optimizing In-Memory Arithmetic".
» Enhanced performance for Large Objects (LOBS)

In previous releases, although LOBs and LOB pointers were populated in the IM
column store, the database satisfied queries by using the buffer cache. In this
release, In-Memory queries that apply range predicates to scalar columns or SQL
operators to LOB columns benefit from SIMD vector processing.

The IM column store provides contiguous storage for inline LOBs, which are LOBs
less than 4 KB, within the IMCUSs. For out-of-line LOBs, the IM column store only
stores the LOB locator, which is 40 byes. There is one exception to the preceding
rule. An IMEU can allocate up to 32 KB of contiguous storage for JSON columns
defined as a LOB data type. The IMEU stores these columns in the OSON (binary
JSON) format.

See "CPU Architecture: SIMD Vector Processing".
* In-Memory join group on one column

You can use the following syntax to create a join group for a self-join on a single
column: CREATE | NVEMORY JO N GROUP j g_nane(tabl e_nane(col unm_nane)).

See "Optimizing Joins with Join Groups".

Changes in Oracle Database 12c Release 2 (12.2.0.1)

Oracle Database In-Memory Guide for Oracle Database 12c Release 2 (12.2.0.1) has
the following changes.

New Features

The following major features are new in this release:

* In-Memory Column Store (IM column store) dynamic resizing

ORACLE XVi

ORACLE

Changes in This Release for Oracle Database In-Memory Guide

You can now dynamically increase the size of the In-Memory Area without
reopening the database.

See "Increasing the Size of the IM Column Store Dynamically".
In-Memory Expressions (IM expressions)

Oracle Database automatically identifies frequently used (“hot”) expressions that
are candidates for population in the IM column store. A candidate expression
might be (mont hl y_sal es*12)/52. IM expressions can greatly improve the
performance of analytic queries that use computationally intensive expressions
and access large data sets.

See "Optimizing Queries with In-Memory Expressions".
In-Memory virtual columns (IM virtual columns)

IM virtual columns enable the IM column store to materialize some or all virtual
columns in a table.

See "Enabling and Disabling Columns for In-Memory Tables".
IM FastStart

IM FastStart optimizes the population of database objects in the IM column store
by storing IMCUs directly on disk.

See "Managing IM FastStart for the IM Column Store".
Object-level support for services

For an individual object, the | NVEMORY ... DI STRI BUTE clause has a FOR SERVI CE
subclause that limits population to the database instance where this service can
run. For example, you can configure an | NVEMORY object to be populated in the IM
column store on instance 1 only, or on instance 2 only, or in both instances.

See "Object-Level Service Controls".
IM column store on a standby database

You can enable an IM column store in an Oracle Active Data Guard standby
database. You can populate a completely different set of data in the in-memory
column store on the primary and standby databases, effectively doubling the size
of the in-memory column store that is available to the application.

See "Deploying an IM Column Store with Oracle Active Data Guard".
ADO support for the IM column store

You can use Automatic Data Optimization (ADO) policies to evict objects such

as tables, partitions, or subpartitions from the IM column store based on Heat
Map statistics. Successful policy completion results in setting NO | NVEMORY for the
specified object.

See "Enabling ADO for the IM Column Store".
Join groups

A join group is a user-created object that lists two columns that can be
meaningfully joined. In certain queries, join groups enable the database to
eliminate the performance overhead of decompressing and hashing column
values. Join groups require an IM column store.

See "Optimizing Joins with Join Groups".

XVii

Oracle Database In-Memory Concepts

This part introduces the Oracle Database In-Memory (Database In-Memory) feature
set, and explains the basic architecture of the In-Memory Column Store (IM column
store).

ORACLE

Introduction to Oracle Database In-Memory

Oracle Database In-Memory (Database In-Memory) is a suite of features that greatly
improves performance for real-time analytics and mixed workloads. The In-Memory
Column Store (IM column store) is the key feature of Database In-Memory.

" Note:

Database In-Memory features require the Oracle Database In-Memory
option. For the Database In-Memory Base Level, the IM column store size
is limited to 16 GB at the CDB level. See Oracle Database Licensing
Information User Manual for details on which features are supported for
different editions and services.

1.1 Challenges for Analytic Applications

Traditionally, obtaining good performance for analytic queries meant satisfying several
requirements.

In a typical data warehouse or mixed-use database, requirements include the
following:

° You must understand user access patterns.

* You must provide good performance, which typically requires creating indexes,
materialized views, and OLAP cubes.

For example, if you create 1 to 3 indexes for a table (1 primary key and 2 foreign key
indexes) to provide good performance for an OLTP application, then you may need to
create additional indexes to provide good performance for analytic queries.

Figure 1-1 Multiple Indexes

OLTP Analytic
Table Indexes . Indexes
—— —— —— ——
— . e T e Ko
.
— ! e e e S B
.
.
—— ' —— —— ——
P ! . e e e e

Meeting the preceding requirements creates manageability and performance
problems. Additional access structures cause performance overhead because you

ORACLE 1-1

Chapter 1
The Single-Format Approach

must create, manage, and tune them. For example, inserting a single row into a table
requires an update to all indexes on this table, which increases response time.

The demand for real-time analytics means that more analytic queries are being
executed in a mixed-workload database. The traditional approach is not sustainable.

1.2 The Single-Format Approach

Traditionally, relational databases store data in either row or columnar formats.
Memory and disk store data in the same format.

An Oracle database stores rows contiguously in data blocks. For example, in a table
with three rows, an Oracle data block stores the first row, and then the second row,
and then the third row. Each row contains all column values for the row. Data stored in
row format is optimized for transaction processing. For example, updating all columns
in a small number of rows may modify only a small number of blocks.

To address the problems relating to analytic queries, some database vendors have
introduced a columnar format. A columnar database stores selected columns—not
rows—contiguously. For example, in a large sales table, the sales IDs reside in one
column, and sales regions reside in a different column.

Analytical workloads access few columns while scanning, but scan the entire data

set. For this reason, the columnar format is the most efficient for analytics. Because
columns are stored separately, an analytical query can access only required columns,
and avoid reading inessential data. For example, a report on sales totals by region can
rapidly process many rows while accessing only a few columns.

Database vendors typically force customers to choose between a columnar and row-
based format. For example, if the data format is columnar, then the database stores
data in columnar format both in memory and on disk. Gaining the advantages of

one format means losing the advantages of the alternate format. Applications either
achieve rapid analytics or rapid transactions, but not both. The performance problems
for mixed-use databases are not solved by storing data in a single format.

1.3 The Oracle Database In-Memory Solution

The Oracle Database In-Memory (Database In-Memory) feature set includes the
In-Memory Column Store (IM column store), advanced query optimizations, and
availability solutions.

The Database In-Memory optimizations enable analytic queries to run orders of
magnitude faster on data warehouses and mixed-use databases.

1.3.1 What Is Database In-Memory?

The Database In-Memory feature set includes the IM column store, advanced query
optimizations, and availability solutions.

Database In-Memory features combine to accelerate analytic queries by orders of
magnitude without sacrificing OLTP performance or availability.

ORACLE 1-2

Chapter 1
The Oracle Database In-Memory Solution

¢ See Also:

Oracle Database Licensing Information User Manual to learn about the
Database In-Memory option

1.3.1.1 IM Column Store

The IM column store maintains copies of tables, partitions, and individual columns in
a compressed columnar format that is optimized for rapid scans.

¢ Video:

@ Video

The IM column store resides in the In-Memory Area, which is an optional portion of the
system global area (SGA). The IM column store does not replace row-based storage
or the database buffer cache, but supplements it. The database enables data to be in
memory in both a row-based and columnar format, providing the best of both worlds.
The IM column store provides an additional transaction-consistent copy of table data
that is independent of the disk format.

Figure 1-2 Dual-Format Database

Normal Buffer New In-Memory
Cache Format
D
Transactions
Reports
Sales Sales
Row Columnar
Format Format
Server
|
Sales
Table
Database

ORACLE 1-3

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9370

Chapter 1
The Oracle Database In-Memory Solution

< Note:

Objects populated in the IM column store do not also need to be loaded into
the buffer cache.

Use the | NVEMORY clause in DDL statements to enable the IM column store at any of
the following levels:

e Column (nonvirtual or virtual)

e Table (internal or external), materialized view, or partition

Note:

If you apply the | NVEMORY attribute to a hybrid partitioned table, then the
attribute applies only to the internal partitions.

e Tablespace

If the | NVEMORY attribute is specified at the tablespace level, then all new tables and
materialized views in the tablespace are enabled for the IM column store by default.
In the context of Database In-Memory, population is the automatic transformation of
row-based data on disk into columnar data in the IM column store. You can configure
all or a subset of a database object's columns for population in the IM column store.
Similarly, for a partitioned table or materialized view, you can configure all or a subset
of the partitions for population.

For example, you might configure three tables from the sh schema for population into
the IM column store: cust oner s, product s, and sal es. The IM column store stores
the data for each table by column rather than by row, and divides each column into
separate row subsets. A special container called an In-Memory Compression Unit
(IMCU) stores all columns for a subset of rows in a table segment.

¢ See Also:

* "In-Memory Column Store Architecture”
e "Enabling the IM Column Store for a Database"

e Oracle Database SQL Language Reference for more information about
the | NVEMORY clause

1.3.1.2 Advanced Query Optimizations

ORACLE

Database In-Memory includes several performance optimizations for analytic queries.
Optimizations include:

* An expression is a combination of one or more values, operators,
and SQL functions (DETERM NI STI C only) that resolve to a value. By
default, the In-Memory Expression (IM expression) optimization enables

1-4

Chapter 1
The Oracle Database In-Memory Solution

the DBMS_| NMEMORY_ADM N. | ME_CAPTURE_EXPRESSI ONS procedure to identify and
populate “hot” expressions in the IM column store. An IM expression is
materialized as a hidden virtual column, but is accessed in the same way as a
non-virtual column.

e Ajoin group is a user-defined object that specifies a set of columns frequently
used to join a set of tables. In certain queries, join groups enable the database
to eliminate the performance overhead of decompressing and hashing column
values.

e For aggregation queries that join small dimension tables to a large fact table,
In-Memory Aggregation (IM aggregation) uses the VECTOR GROUP BY operation to
enhance performance. This optimization aggregates data during the scan of the
fact table rather than afterward.

* Inthe IM column store, repopulation is the automatic update of IMCUs after the
data within them has been significantly modified. If an IMCU has stale entries but
does not meet the staleness threshold, then background processes may instigate
trickle repopulation, which is the gradual repopulation of the IM column store.

Related Topics

* Optimizing In-Memory Queries
This Part explains how to optimize queries using In-Memory Expressions, join
groups, and In-Memory aggregation. It also explains how the IM column store
repopulates modified data.

1.3.1.3 High Availability Support

Availability is the degree to which an application, service, or function is accessible on
demand.

Database In-Memory supports the following availability features:

* In-Memory FastStart (IM FastStart) reduces the time to populate data into the IM
column store when a database instance restarts. IM FastStart achieves this by
periodically saving a copy of the data currently populated in the IM column store
on the disk in its compressed columnar format.

* Each node in an Oracle Real Application Clusters (Oracle RAC) environment
has its own IM column store. It is possible to have completely different objects
populated on every node, or to have larger objects distributed across all IM column
stores in the cluster. In Engineered Systems, it is also possible to have the same
objects appear in the IM column store on every node.

e Starting in Oracle Database 12c Release 2 (12.2), an IM column store is
supported on a standby database in an Active Data Guard environment.

Related Topics

* High Availability and the IM Column Store
This part explains how to use the IM column store with high availability features
such as In-Memory FastStart (IM FastStart), Oracle Data Guard, and Oracle Real
Application Clusters (Oracle RAC).

1.3.2 Improved Performance for Analytic Queries

The compressed columnar format enables faster scans, queries, joins, and
aggregates.

ORACLE 1-5

Chapter 1
The Oracle Database In-Memory Solution

1.3.2.1 Improved Performance for Data Scans

ORACLE

The columnar format provides fast throughput for scanning large amounts of data.

The IM column store enables you to analyze data in real time, enabling you to explore
different possibilities and perform iterations. Specifically, the IM column store can
drastically improve performance for queries that do the following:

e Scan many rows and applies filters that use operators such as <, >, =, and IN

* Select few columns from a table or a materialized view that has many columns,
such as a query that accesses 5 out of 100 columns

* Select LOB columns using SQL operators

¢ Video:

() Video

Columnar format uses fixed-width columns for most numeric and short string data
types. This optimization enables rapid vector processing, which enables the database
to answer queries faster.

Scans of the IM column store are faster than scans of row-based data for the following
reasons:

« Elimination of buffer cache overhead

The IM column store stores data in a pure, in-memory columnar format. The data
does not persist in the data files (or generate redo), so the database avoids the
overhead of reading data from disk into the buffer cache.

e Data pruning

The database scans only the columns necessary for the query rather than entire
rows of data. Furthermore, the database uses storage indexes and an internal
dictionary to read only the necessary IMCUs for a specific query. For example, if a
guery requests all sales for a store with a store ID less than 8, then the database
can use IMCU pruning to eliminate IMCUs that do not contain this value.

e Compression

Traditionally, the goal of compression is to save space. In the IM column store,
the goal of compression is to accelerate scans. The database automatically
compresses columnar data using algorithms that allow WHERE clause predicates
to be applied against the compressed formats. Depending on the type of
compression applied, Oracle Database can scan data in its compressed format
without decompressing it first. Therefore, the volume of data that the database
must scan in the IM column store is less than the corresponding volume in the
database buffer cache.

« Vector processing

Each CPU core scans local in-memory columns. To process data as an array (set),
the scans use SIMD vector instructions. For example, a query can read a set of
values in a single CPU instruction rather than read the values one by one. Vector
scans by a CPU core are orders of magnitude faster than row scans.

1-6

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9371

Chapter 1
The Oracle Database In-Memory Solution

For example, suppose a user executes the following ad hoc query:

SELECT cust _id, time_id, channel id
FROM sales
WHERE prod_i d BETVWEEN 14 and 29

When using the buffer cache, the database would typically scan an index to find the
product IDs, use the rowids to fetch the rows from disk into the buffer cache, and then
discard the unwanted column values. Scanning data in row format in the buffer cache
requires many CPU instructions, and can result in suboptimal CPU efficiency.

When using the IM column store, the database can scan only the requested sal es
columns, avoiding disk altogether. Scanning data in columnar format pipelines only
necessary columns to the CPU, increasing efficiency. Each CPU core scans local
in-memory columns using SIMD vector instructions.

Related Topics

* CPU Architecture: SIMD Vector Processing
For data that is populated in the IM column store, the database uses SIMD (single
instruction, multiple data) processing.

e Dual-Format: Column and Row
When you enable an IM column store, the SGA manages data in separate
locations: the In-Memory Area and the database buffer cache.

e Configuring and Populating the IM Column Store
You can enable and size the In-Memory Column Store (IM column store). You can
also configure In-Memory settings for objects, and populate these objects in the IM
column store.

1.3.2.2 Improved Performance for Joins

ORACLE

A Bloom filter is a low-memory data structure that tests membership in a set. The IM
column store takes advantage of Bloom filters to improve the performance of joins.

Bloom filters speed up joins by converting predicates on small dimension tables to
filters on large fact tables. This optimization is useful when performing a join of multiple
dimensions with one large fact table. The dimension keys on fact tables have many
repeat values. The scan performance and repeat value optimization speeds up joins
by orders of magnitude.

Related Topics

e About In-Memory Joins
Joins are an integral part of data warehousing workloads. The IM column store
enhances the performance of joins when the tables being joined are stored in
memory.

¢ See Also:

"About In-Memory Joins"

1-7

Chapter 1
The Oracle Database In-Memory Solution

1.3.2.3 Improved Performance for Aggregation

An important aspect of analytics is to determine patterns and trends by aggregating
data. Aggregations and complex SQL queries run faster when data is stored in the IM
column store.

In Oracle Database, aggregation typically involves a GROUP BY clause. Traditionally,
the database used SORT and HASH operators. Starting in Oracle Database 12c Release
1 (12.1), the database offered VECTOR GROUP BY transformations to enable efficient
in-memory, array-based aggregation.

During a fact table scan, the database accumulates aggregate values into in-memory
arrays, and uses efficient algorithms to perform aggregation. Joins based on the
primary key and foreign key relationships are optimized for both star schemas and
showflake schemas.

¢ See Also:

e "Optimizing In-Memory Aggregation with VECTOR GROUP BY"

e Oracle Database Data Warehousing Guide to learn more about SQL
aggregation

1.3.3 Improved Performance for Mixed Workloads

ORACLE

Although OLTP applications do not benefit from accessing data in the IM column store,
the dual-memory format can indirectly improve OLTP performance.

When all data is stored in rows, improving analytic query performance requires
creating access structures. The standard approach is to create analytic indexes,
materialized views, and OLAP cubes. For example, a table might require 3 indexes

to improve the performance of the OLTP application (1 primary key and 2 foreign

key indexes) and 10-20 additional indexes to improve the performance of the analytic
gueries. While this technique can improve analytic query performance, it slows down
OLTP performance. Inserting a row into the table requires modifying all indexes on the
table. As the number of indexes increases, insertion speed decreases.

When you populate data into the IM column store, you can drop analytic access
structures. This technique reduces storage space and processing overhead because
fewer indexes, materialized views, and OLAP cubes are required. For example, an
insert results in modifying 1-3 indexes instead of 11-23 indexes.

While the IM column store can drastically improve performance for analytic queries in
business applications, ad hoc analytic queries, and data warehouse workloads, pure
OLTP databases that perform short transactions using index lookups benefit less. The
IM column store does not improve performance for the following types of queries:

e A query with complex predicates
e A query that selects many columns

« A query that returns many rows

1-8

Chapter 1
The Oracle Database In-Memory Solution

¢ See Also:

Oracle Database Data Warehousing Guide to learn more about physical data
warehouse design

1.3.4 In-Memory Support for Exadata Flash Cache

Not all objects marked | NVEMORY may fit in DRAM memory at the same time. If you use
Oracle Exadata Storage Server Software, then Exadata Smart Flash Cache can serve
as supplemental memory.

When the IM column store is enabled, Exadata Smart Flash Cache reformats data
automatically into In-Memory columnar format. In previous Exadata releases, only
Hybrid Column Compressed data was eligible for flash storage in IM columnar format.
The reformatting occurs for both compressed (including OLTP compression) and
uncompressed tables.

¢ Note:

If Database In-Memory Base Level is enabled, then Exadata scans and
population for CELLMEMORY tables are disabled.

With this format, most Database In-Memory performance enhancements are
supported in Smart Scan, including joins and aggregation. Also, reformatting
uncompressed and OLTP-compressed data blocks into IM columnar format can
significantly reduce the amount of flash memory required.

Exadata Smart Flash Cache transforms the data in the following stages:

1. Oracle Exadata caches data from eligible scans in a legacy columnar format so
that the data is available immediately. This format is columnar, but it is not the
same format used by the IM column store.

2. In the background, Oracle Exadata reformats data into the pure IM column store
format at a lower priority. The background writes prevent interference with the
main workload.

If the database is not running an OLTP workload, then a data warehousing workload
can consume 100% of the flash cache. However, an OLTP workload limits the data
warehouse workload to no more than 50% of the flash cache. This optimization
ensures that OLTP workload performance is not sacrificed for analytic scans.

By default, Exadata Smart Flash Cache compresses data using the level MEMCOVPRESS
FOR CAPACI TY LOW To change the compression level or disable the columnar format
altogether, use the ALTER TABLE ... NO CELLMEMORY statement.

ORACLE 1-9

Chapter 1
The Oracle Database In-Memory Solution

¢ See Also:

* "Enabling the IM Column Store for a Database"
e "CPU Architecture: SIMD Vector Processing"

e Oracle Exadata Database Machine System Overview to learn more
about the CELLMEMORY attribute

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

1.3.5 High Availability Support

The IM column store is fully integrated into Oracle Database. All High Availability
features are supported.

The columnar format does not change the Oracle database on-disk storage format.
Thus, buffer cache modifications and redo logging function in the same way. Features
such as RMAN, Oracle Data Guard, and Oracle ASM are fully supported.

In an Oracle Real Application Clusters (Oracle RAC) environment, each node has its
own IM column store by default. Depending on your requirements, you can populate
objects in different ways:

- Different tables are populated on every node. For example, the sal es fact table is
on one node, whereas the product s dimension table is on a different node.

» Asingle table is distributed among different nodes. For example, different
partitions of the same hash-partitioned table are on different nodes, or different
rowid ranges of a single nonpartitioned table are on different nodes.

e Some objects appear in the IM column store on every node. For example,
you might populate the product s dimension table in every node, but distribute
partitions of the sal es fact table across different nodes.

¢ See Also:
"High Availability and the IM Column Store"

1.3.6 Ease of Adoption

ORACLE

Database In-Memory is simple to implement, and requires no application changes.
Key aspects of Database In-Memory adoption include:

e Ease of deployment

No user-managed data migration is required. The database stores data in row
format on disk and automatically converts row data into columnar format when
populating the IM column store.

e Compatibility with existing applications

1-10

Chapter 1
Requirements for Database In-Memory

No application changes are required. The optimizer automatically takes advantage
of the columnar format. If your application connects to the database and issues
SQL, then it can benefit from Database In-Memory features.

Full SQL compatibility

Database In-Memory places no restrictions on SQL. Analytic queries can benefit
whether they use Oracle analytic functions or customized PL/SQL code.

Ease of use

No complex setup is required. The | NVEMORY_SI ZE initialization parameter
specifies the amount of memory reserved for use by the IM column store. The

I NVEMORY clause in DDL statements specifies the objects or columns to be
populated into the IM column store. By configuring the IM column store, you can
immediately improve the performance of existing analytic workloads and ad hoc
queries.

¢ See Also:

e "Enabling and Sizing the IM Column Store" to learn how to enable the IM
column store

e Oracle Database Reference to learn about the | NVEMORY_S| ZE and
| NMEMORY_FORCE initialization parameters

1.4 Requirements for Database In-Memory

The Oracle Database In-Memory option is required for all Database In-Memory
features. The Database In-Memory Base Level is available for an IM column store
that is 16 GB or less.

ORACLE

Requirements include:

To use the Database In-Memory Base Level, the | NVEMORY_FORCE initialization
parameter must be set to BASE_LEVEL in the initialization parameter file at the CDB
level. You cannot set this parameter dynamically, or set it at the PDB level. The
BASE_LEVEL setting has the following consequences:

— All I NVEMORY objects and columns automatically and transparently use the
compression level of QUERY LOW

— Automatic In-Memory is disabled.
For the Base Level, the IM column store size must not exceed 16 GB.

The IM column store requires a minimum of 100 MB of memory. The store size is
included in MEMORY_TARCET.

For Oracle RAC databases, the following additional requirements apply:

— The DUPLI CATE and DUPLI CATE ALL options require Oracle Engineered
Systems.

— If the | NMEMORY_FORCE initialization parameter is set to BASE_LEVEL, then the
size of each database instance is limited to 16 GB.

No special hardware is required for an IM column store.

1-11

¢ See Also:

Chapter 1
Principal Tasks for Database In-Memory

e "Estimating the Required Size of the IM Column Store"
* "Deploying IM Column Stores in Oracle RAC"

e Oracle Database Licensing Information User Manual for all licensing-
related information for Database In-Memory

1.5 Principal Tasks for Database In-Memory

For queries to benefit from the IM column store, the only required tasks are sizing
the IM column store, and specifying objects for population. Query optimization and
availability features require additional configuration.

ORACLE

Principal Tasks for Configuring the IM Column Store

The following table lists the principal configuration tasks.

Table 1-1 Configuration Tasks

Task

Notes To Learn More

Enable the IM column store
by specifying its size.

For the Database In-
Memory Base Level, perform
additional configuration.

For the In-Memory Free
Tier only, perform additional
configuration.

Specify tables (internal or
external), columns (nonvirtual
or virtual), tablespaces,

or materialized views for
population into the IM column
store.

Set | NVEMORY_SI ZE to a
minimum of 100 MB. For the
In-Memory Free Tier only, the
size must be less than or
equal to 16 GB for the non-
CDB or CDB. In an Oracle
RAC database, the size of
each instance must be less
than or equal to 16 GB.

The COVPATI BLE initialization
parameter must be set to
12. 1. 0 or higher.

For the Database In-

Memory Base Level

only, the | NMEMORY_FORCE
initialization parameter must
be set to BASE_LEVEL

at the CDB level, and

| NVEMORY_SI ZE must be less
than or equal to 16 GB.

The | NVEMORY_FORCE
initialization parameter must
be set to FREE.

The | NMEMORY clause
enables an object for the IM
column store, but does not
immediately populate it.

"Enabling the IM Column Store
for a Database"

"Enabling the IM Column Store
for a Database"

"Enabling Objects for In-Memory
Population”

1-12

ORACLE

Chapter 1
Principal Tasks for Database In-Memory

Table 1-1 (Cont.) Configuration Tasks

Task

Notes

To Learn More

Optionally, create Automatic

For example, a policy can
evict the sal es table from

"Enabling ADO for the IM
Column Store"

Data Optimization (ADO)
policies to set | NVEMORY
attributes on objects in the IM
column store.

the IM column store after 10
days of no access. In-Memory
ADO features require that
HEAT _MAP=ON s set to ON
and | NVEMORY_SI ZE is set to
a nonzero value.

Optionally, configure
Automatic In-Memory to evict
cold segments to ensure

that the working data set is
always populated

For example, a populate job
only loads half a table
partition because the IM
column store is almost at
maximum capacity, which
triggers Automatic In-Memory
to evict a cold segment. The
next populate job for the new
partition completely populates
it. In-Memory ADO features
require that

AUTOVATI C_| NVEMORY _LEVE
L is set to LONor MEDI UMand
I NMEMORY_SI ZE is set to a
nonzero value.

"Configuring Automatic In-
Memory"

Principal Tasks for Optimizing In-Memory Queries

In-Memory query optimizations are not required for the IM column store to function.
The following optimization tasks are optional.

Table 1-2 Query Optimization Tasks

|
Task Notes To Learn More

"INMEMORY_EXPRESSI
ONS_USAGE"

Manage automatic detection
of IM expressions in the

IM column store by using
the DBVS_| NVEMORY_ADM N
package.

For example, invoke the

| ME_CAPTURE_EXPRESSI ONS
procedure to define the period in
which the database can identify
“hot” expressions, and then
gradually populate them. The

I NVEMORY_EXPRESSI ONS_USAG
E initialization parameter controls
the type of IM expression that the
database can populate: static,
dynamic, or both.

Candidates are columns that
are frequently paired in a join
predicate, for example, a column
joining a fact and dimension
table.

Define join groups using the
CREATE | NVEMORY JO N
CGROUP statement.

"Creating Join Groups"

1-13

ORACLE

Chapter 1

Principal Tasks for Database In-Memory

Table 1-2 (Cont.) Query Optimization Tasks

Task Notes To Learn More
If necessary for a In-memory aggregation is an "Controls for IM
query block, specify the automatically enabled feature Aggregation”

VECTOR_TRANSFORMhint to that cannot be controlled with

enable in-memory aggregation, initialization parameters or DDL.

or NO_VECTOR_TRANSFORMto

disable it.

Limit the number of IMCUs You can disable trickle
updated through trickle repopulation by setting this
repopulation within a two initialization parameter to 0.

minute interval by setting the
initialization parameter

I NMEMORY_TRI CKLE_REPOPUL
ATE_SERVERS PERCENT.

"Threshold-Based and
Trickle Repopulation”

Principal Tasks for Managing Availability

The principal tasks are shown in the following table.

Table 1-3 Availability Tasks

Task Notes To Learn More

Specify an In-Memory IM FastStart optimizes the "Enabling IM FastStart for
FastStart (IM FastStart) population of database objects the IM Column Store"
tablespace using the in the IM column store when

DBMS_| NMEMORY_ADM N. ENA the database is restarted. IM

BLE FASTSTART procedure. FastStart stores information on
disk for faster population of the

IM column store.

For an object or tablespace, By default, each In-Memory
specify | NVEMORY in object is distributed among
DDL statement with the the Oracle RAC instances,

DI STRI BUTE or DUPLI CATE effectively employing a share-
keywords to control the nothing architecture for the IM
distribution of data in Oracle ~ column store.

RAC.

In an Oracle Data Guard For example, you can enable

environment, you can use the the IM column store on both a
same Database In-Memory primary and standby database
initialization parameters and by setting | NVEMORY_S| ZE.
statements on a primary or Optionally, use the | NVEMORY
standby database. DI STRI BUTE FOR SERVI CE
clause in DDL to populate a
different set of data in the IM

column store on the primary and

standby databases.

"Deploying IM Column
Stores in Oracle RAC"

"About Manually Enabling
Objects for In-Memory
Population”

1-14

Chapter 1
Tools for the IM Column Store

1.6 Tools for the IM Column Store

No special tools or utilities are required to manage the IM column store or
other Database In-Memory features. Administrative tools such as SQL*Plus, SQL
Developer, and Oracle Enterprise Manager (Enterprise Manager) are fully supported.

This section describes tools that have specific Database In-Memory feature support.

1.6.1 In-Memaory Advisor

The In-Memory Advisor is a downloadable PL/SQL package that analyzes the
analytical processing workload in your database.

The In-Memory Advisor differentiates analytics processing from other database activity
based on SQL plan cardinality, Active Session History (ASH), parallel query usage,
and other statistics. The In-Memory Advisor estimates the size of objects in the IM
column store based on statistics and heuristic compression factors.

The advisor estimates analytic processing performance improvement factors based on
the following:

» Elimination of wait events such as user I/O waits, cluster transfer waits, and buffer
cache latch waits

* Query processing advantages related to specific compression types
» Decompression cost heuristics for specific compression types
e SQL plan cardinality, number of columns in the result set, and so on

The output is a report that recommends a size for the IM column store and a list of
objects that would benefit from In-Memory population. The advisor also generates a
SQL*Plus script that alters the recommended objects with the | NVEMORY clause.

The In-Memory Advisor is not included in the stored PL/SQL packages. You must
download the package from Oracle Support.

¢ See Also:

My Oracle Support note 1965343.1 to learn more about the In-Memory
Advisor

1.6.2 Cloud Control Pages for the IM Column Store

ORACLE

Enterprise Manager Cloud Control (Cloud Control) provides the In-Memory Column
Store Central Home page. This page gives a dashboard interface to the IM column
store.

Use this page to monitor in-memory support for database objects such as tables,
indexes, partitions and tablespaces. You can view In-Memory functionality for objects
and monitor their In-Memaory usage statistics. Unless otherwise stated, this manual
describes the command-line interface to Database In-Memory features.

1-15

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1965343.1

Chapter 1
Tools for the IM Column Store

Related Topics

e Using IM Column Store in Cloud Control
You can configure and manage the IM column store in Oracle Enterprise Manager
Cloud Control (Cloud Control).

¢ See Also:

"Using IM Column Store in Cloud Control" explains how to use Cloud Control
to manage the IM column store.

1.6.3 Oracle Compression Advisor

Oracle Compression Advisor estimates the compression ratio that you can realize
using the MEMCOVPRESS clause. The advisor uses the DBMS_COMPRESSI ON interface.

See Also:

e "Oracle Compression Advisor"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_COMPRESSI ON

1.6.4 Oracle Data Pump and the IM Column Store

You can import database objects that are enabled for the IM column store using the
TRANSFORME=I NVEMORY: y option of the i npdp command.

With this option, Oracle Data Pump keeps the IM column store clause for all objects
that have one. When the TRANSFORM:=I NVEMORY: n option is specified, Data Pump drops
the IM column store clause from all objects that have one.

You can also use the TRANSFORM=I NVEMORY_CLAUSE: st ri ng option to override the IM
column store clause for a database object in the dump file during import. For example,
you can use this option to change the IM column store compression for an imported
database object.

¢ Video:

@ Video

" See Also:

Oracle Database Utilities for more information about the TRANSFORM i npdb
parameter

ORACLE 1-16

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9373

In-Memory Column Store Architecture

The In-Memory Column Store (IM column store) stores tables and partitions in
memory using a columnar format optimized for rapid scans. Oracle Database
uses a sophisticated architecture to manage data in columnar and row formats
simultaneously.

2.1 Dual-Format: Column and Row

When you enable an IM column store, the SGA manages data in separate locations:
the In-Memory Area and the database buffer cache.

The IM column store encodes data in a columnar format: each column is a separate
structure. The columns are stored contiguously, which optimizes them for analytic
gueries. The database buffer cache can modify objects that are also populated in the
IM column store. However, the buffer cache stores data in the traditional row format.
Data blocks store the rows contiguously, optimizing them for transactions.

The following figure illustrates the difference between row-based storage and
columnar storage.

Figure 2-1 Columnar and Row-Based Storage

Rows Stored Contiguously

Sales

Transactions run faster on row format

- Example: Query or Insert a sales order

- Fast processing few rows, many columns
=

—— Query

Columns Stored Contiguously

Sales

Analytics run faster on column format
- Example: Report on sales totals by region
- Fast accessing few columns, many rows

L Query

2.1.1 Columnar Data in the In-Memory Area

ORACLE

The In-Memory Area is an optional SGA component that contains the IM column
store.

2-1

Chapter 2
Dual-Format: Column and Row

2.1.1.1 Size of the In-Memory Area

ORACLE

The In-Memory Area is controlled by the | NVEMORY_SI ZE initialization parameter. By
default, the size of the In-Memory Area is 0, which means the IM column store is
disabled.

To enable the IM column store, set the In-Memory Area to at least 100 MB. The size is
shown in V$SGA.

The In-Memory Area and SGA_TARGET

The In-Memory Area is subtracted from the SGA_TARGET initialization parameter setting.
For example, if you set SGA_TARGET to 10 GB, and if you set the | NVEMORY_SI ZE to

4 GB, then 40% of the SGA TARGET setting is allocated to the In-Memory Area. The
following graphic illustrates the relationship.

Figure 2-2 INMEMORY_SIZE and SGA_TARGET

Unused SGA_MAX_SIZE

SGA X SGA_TARGET

Dynamic

— INMEMORY_SIZE
In-Memory Area

Static

Unlike the other components of the SGA, including the buffer cache and the shared
pool, the In-Memory Area size is not controlled by automatic memory management.
The database does not automatically shrink the In-Memory Area when the buffer
cache or shared pool requires more memory, or increase the In-Memory Area when it
runs out of space.

Dynamic Resizing of the In-Memory Area

Starting in Oracle Database 12c Release 2 (12.2), you can dynamically increase
| NMEMORY_SI ZE by using the ALTER SYSTEMstatement. The database allocates
increased memory when the following conditions are met:

* Free memory is available in the SGA.

e The new size for | NVEMORY_SI ZE is at least 128 MB greater than the current
setting.

2-2

Chapter 2
Dual-Format; Column and Row

< Note:

You cannot use ALTER SYSTEMto reduce | NVEMORY_SI ZE.

The V$I NVEMORY_AREA and V$SGA views immediately reflect the change.

The In-Memory Area in a Multitenant Environment

In a CDB, the size of the IM column store is set by the | NVEMORY_SI ZE parameter in the
CDB root. By default, the IM column store is shared among the PDBs. Consequently, a
PDB can "starve" other PDBs by consuming the available memory.

Within a PDB, you can limit memory consumption by using ALTER SYSTEM SET
I NVEMORY_SI ZE. For example, at the CDB level, you might set | NVEMORY_SI ZE to 20G,
and then configure the PDBs as follows:

e Inhrpdb, set | NNEMORY_SI ZE to 0
* Insal espdb, set | NVEMORY_SI ZE to 10G
* Inoepdb, set | NMEMORY_SI ZE to 11G

In the preceding example, the | NVEMORY_S| ZE settings at the PDB level add up to 21G,
even though | NVEMORY_SI ZE at the CDB level is only 20G. Oversubscription ensures
that valuable space in the IM column store is not wasted if a PDB is shut down or
unplugged.

¢ See Also:

e "Increasing the Size of the IM Column Store Dynamically"

e Oracle Database Administrator’s Guide to learn more about automatic
memory management

e Oracle Database Reference to learn about | NVEMORY_SI ZE,
V$I NVEMORY_AREA, and V$SGA

2.1.1.2 Memory Pools in the In-Memory Area

ORACLE

The In-Memory Area is divided into subpools for columnar data and metadata.
The In-Memory area is subdivided into the following subpools:

e The columnar data pool

This subpool stores the IMCUs, which contain the columnar data. The
V$I NMEMORY_AREA. POCOL column identifies this subpool as 1MB PQOCOL, as shown in
Example 2-1.

* The metadata pool

This subpool stores metadata about the objects that reside in the IM column
store. The V3l NVEMORY_AREA. POOL column identifies this subpool as 64KB POOL, as
shown in Example 2-1.

2-3

ORACLE

Chapter 2
Dual-Format: Column and Row

Figure 2-3 Subpools in the In-Memory Area

In-Memory Area

Columnar Data Pool

f

Metadata Pool

The database determines the relative size of the two subpools using internal
heuristics. The database allocates the majority of space in the In-Memory Area to
the columnar data pool (1 MB pool).

Note:

Oracle Database automatically determines the subpool sizes. You cannot
change the space allocations.

Example 2-1 VSINMEMORY_AREA View

This example queries the V3| NVEMORY_AREA view to determine the amount of available
memory in each subpool (sample output included):

COL POOL FORMAT a9

COL PCPULATE_STATUS FORMAT alb5

SSELECT POOL, TRUNC(ALLOC BYTES/ (1024*1024*1024),2) "ALLOCC GB',
TRUNC(USED _BYTES/ (1024*1024*1024), 2) "USED GB',
POPULATE_STATUS

FROM V$I NVEMORY_AREA,

POCL ALLOC_GB USED GB POPULATE_STATUS
IMB POOL 7.99 0 DONE
64KB POCL 1.98 0 DONE

The current size of the In-Memory area is visible in VESGA:

SELECT NAME, VALUE/ (1024*1024*1024) "SI ZE | N_GB"
FROM V$SGA
WHERE NAME LI KE ' %vents ;

NAVE SIZE IN.GB

I n-Menory Area 10

In this example, the memory allocated to the subpools is 9.97 GB, whereas the size of
the In-Memory Area is 10 GB. The database uses a small percentage of memory for
internal management structures.

2-4

Chapter 2
Dual-Format; Column and Row

¢ See Also:
Oracle Database Reference to learn about V$l| NVEMORY AREA

2.1.2 Row Data in the Database Buffer Cache

ORACLE

The database buffer cache stores and processes data blocks in the same way whether
the IM column store is enabled or disabled. Buffer I/O and buffer pools function the
same.

The IM column store enables data to be simultaneously populated in the SGA in both
the traditional row format (the buffer cache) and the columnar format. The database
transparently sends OLTP queries (such as primary key lookups) to the buffer cache,
and analytic and reporting queries to the IM column store. When fetching data, Oracle
Database can also read data from both memory areas within the same query.

Note:

In the execution plan, the operation TABLE ACCESS | N MEMORY FULL indicates
that some or all data is accessed in the IM column store.

The dual-format architecture does not double memory requirements. The buffer cache
is optimized to run with a much smaller size than the size of the database.

The following figure shows a sample IM column store. The database stores the
sh. sal es table on disk in traditional row format. The SGA stores the data in columnar
format in the IM column store, and in row format in the database buffer cache.

2-5

Figure 2-4

Chapter 2
Dual-Format: Column and Row

IM Column Store

Instance

System Global Area (SGA)

Database Buffer Cache In-Memory Column Store
products
EIMCU 1
:;________\:__ __:_li__‘?—_—_—_—_—_—_—a:
EIMCUZ .
‘ customers
|- L
A :;________\:__ __:_li__\i__\i_\i____‘:
salesl
EIMCUS
i________\:__i__:_li__\?__\i_\f_-___al
EIMCU 6

sh Schema

|
[products | |customers | sales i/
\ \

Every on-disk data format for permanent, heap-organized tables is supported by the
IM column store. The columnar format does not affect the format of data stored in data
files or in the buffer cache, nor does it affect undo data and online redo logging.

The database processes DML modifications in the same way, regardless of whether
the IM column store is enabled, by updating the buffer cache, online redo log,
and undo tablespace. However, the database uses an internal mechanism to track

ORACLE 2-6

Chapter 2
In-Memory Storage Units

changes and ensure that the IM column store is consistent with the rest of the
database. For example, if the sal es table is populated in the IM column store, and
if an application updates a row in sal es, then the database automatically keeps the
copy of the sal es table in the IM column store transactionally consistent. A query
that accesses the IM column store always returns the same results for a query that
accesses the buffer cache.

" See Also:

Oracle Database Concepts to learn more about the database buffer cache

2.2 In-Memory Storage Units

ORACLE

The IM column store manages both data and metadata in optimized storage units, not
in traditional Oracle data blocks.

Oracle Database maintains the storage units in the In-Memory Area. The following
graphic gives an overview of the In-Memory Area and the database processes that
interact with it. The remaining chapter describes the various memory components.

2-7

Chapter 2
In-Memory Storage Units

Figure 2-5 IM Column Store: Memory and Process Architecture

Expression Statistics Store (ESS)
and
User-Defined Virtual Columns

|
|
|
In-Memory Area :
Background Columnar Data ; Metadata Foreground
Processes Processes
IMCU IMEU SMU
IMCO Populate —> Queries
77777 'l g Scans
L w000
-
woot IMCU IMEU SMU
————— DML
Invalidations
w002 | populate
77777 —>
In-Memory
Area
Scans
Database
Scans

2.2.1 In-Memory Compression Units (IMCUs)

An In-Memory Compression Unit (IMCU) is a compressed, read-only storage unit
that contains data for one or more columns.

An IMCU is analogous to a tablespace extent. An IMCU has two parts: a set of
Column Compression Units (CUs), and a header that contains metadata such as the
IM storage index.

2.2.1.1 IMCUs and Schema Objects

The IM column store stores data for a single object (table, partition, materialized view)
in a set of IMCUs. An IMCU stores columnar data for one and only one object.

ORACLE 2-8

Chapter 2
In-Memory Storage Units

2.2.1.1.1 IMCUs and INMEMORY Columns

ORACLE

For an object specified as | NVEMCRY, every column listed in the | NVEMORY clause is
included in every IMCU.

For example, the sh. sal es table has 7 columns. The following DDL statement
specifies the table as | NVEMORY, which means that every IMCU for sal es includes
columnar data for these 7 columns:

ALTER TABLE sh. sal es | NVEMORY MEMCOMPRESS FOR QUERY LOW

NO INMEMORY Columns in INMEMORY Obijects

You can specify that some but not all columns in an | NVEMORY table have the | NVEMORY
attribute. For example, the sh. cust oner s table has 23 columns. The following DDL
statement specifies that 15 columns in sh. cust oner s have the NO | NVEMORY attribute,
which means that the other 8 columns in the table have the | NVEMORY attribute:

ALTER TABLE sh. cust oners | NMEMORY
MEMCOMPRESS FOR QUERY LOW
NO | NVEMORY (cust_gender, cust_year of birth, cust_narital status,
cust _postal code, cust _city, cust_state_province,
cust _mai n_phone_nunber, cust_incone_| evel,
cust credit _limt,
cust_email, cust _total, cust total id, cust eff from
cust_eff to, cust valid);

The following query shows the compression levels of the columns in sh. cust oners,
indicating which columns are NO | NVEMORY:

SET LI NESI ZE 200
COL TABLE_NAME FORMAT a25

COL SEG COL_I D FORMAT 999

COL COLUMN_NAME FORMAT a25

COL | NVEMORY_COMPRESS| ON FORMAT all

SELECT SEGVENT_COLUMN | D AS "SEG COL_| D', COLUWN_NAME,
| NVEMORY_COVPRESSI ON

FROM V$I M COLUMN LEVEL WHERE TABLE_NAME = ' CUSTOVERS
ORDER BY SEG COL_| D;

SEG COL_| D COLUMN_NANVE | NVEMORY_CO
1 CUST_ID DEFAULT
2 CUST_FI RST_NAME DEFAULT
3 CUST_LAST_NAME DEFAULT
4 CUST_GENDER NO | NVEMORY
5 CUST_YEAR OF BI RTH NO | NVEMORY
6 CUST_MARI TAL_STATUS NO | NVEMORY
7 CUST_STREET ADDRESS DEFAULT
8 CUST_POSTAL_CODE NO | NVEMORY
9 CUST CITY NO | NVEMORY
10 CUST CITY_ID DEFAULT
11 CUST_STATE_PROVI NCE NO | NVEMORY

2-9

ORACLE

12
13
14
15
16
17
18
19
20
21
22
23

CUST_STATE_PROVI NCE_| D
COUNTRY_| D

CUST_MAI N_PHONE_NUMBER
CUST_| NCOVE_LEVEL

CUST CREDIT LIMT
CUST_EMAI L

CUST_TOTAL

CUST_TOTAL_I D
CUST_SRC_ID
CUST_EFF_FROM
CUST_EFF_TO

CUST_VALI D

DEFAULT

DEFAULT

NO | NVEMORY
NO | NVEMORY
NO | NVEMORY
NO | NMEMORY
NO | NMEMORY
NO | NMEMORY
DEFAULT

NO | NMEMORY
NO | NMEMORY
NO | NMEMORY

Chapter 2
In-Memory Storage Units

The following graphic represents three tables from the sh schema populated in the
IM column store: cust oner s, product s, and sal es. In this example, each table has
a different number of columns specified | NVEMORY. The IMCUSs for each table include
only data for the | NVEMORY columns.

2-10

Chapter 2
In-Memory Storage Units

Figure 2-6 Columns and IMCUs

In-Memory Column Store
customers
cust_id ‘ cust_last_name cust_city_id ccountry_id
cust_first_name cust_street_address cust_state_province_id cust_src_id
i IMCU 1
| IMCU 2 E
products
prod_id ‘ prod_category_id prod_total_id
‘ prod_subcategory_idL supplier_id
i IMCU 3
. IMCU 4 i
sales‘
prod_id ‘ time_id promo_id ‘ amount_sold
| cust_id channel_id | quantity_sold ‘ ‘
i IMCU 5 i
i IMCU 6

ORACLE 2-11

Chapter 2
In-Memory Storage Units

Queries That Reference NO INMEMORY Columns

When a query references a NO | NVEMORY column, the table scan retrieves data from
the row store rather than the IMCUs in the IM column store. Row store access occurs
even if all other columns referenced in the query are populated | NVEMORY columns.

For example, assume that the cust orer s table is populated into the IM column
store. The cust _i d and cust _| ast _nane columns are specified | NVEMORY, but the
cust _postal _code column is specified as NO | NVEMORY. You issue the following query:

SELECT cust _id, cust_last_name, cust_postal code
FROM customers

WHERE cust id < 5001

ORDER BY cust _i d;

In this case, the database accesses the row store, not the IM column store, even
though cust _post al _code is the only NO | NVEMORY column referenced in the query.
The following query, which has cust _postal _code in the predicate but not the SELECT
list, must also access the row store:

SELECT cust _id, cust _|ast _nane
FROM custoners
WHERE cust _postal _code = 77501
ORDER BY cust _i d;

¢ See Also:

e "About Enabling INMEMORY Columns"

e https://blogs.oracle.com/in-memory/what-happens-if-a-column-is-not-
populated for a blog entry on accessing columns that are
not populated in the IM column store

e Oracle Database SQL Language Reference to learn about the ALTER
TABLE statement

2.2.1.1.2 In-Memory Compression

ORACLE

The IM column store uses special compression formats optimized for access speed
rather than storage reduction. The columnar format enables queries to execute directly
against the compressed columns.

Compression enables scanning and filtering operations to process a much smaller
amount of data, which optimizes query performance. Oracle Database only
decompresses data when it is required for the result set.

The compression applied in the IM column store is closely related to Hybrid Columnar
Compression. Both technologies process column vectors. The primary difference is
that the column vectors for the IM column store are optimized for SIMD vector
processing, whereas the column vectors for Hybrid Columnar Compression are
optimized for disk storage.

2-12

https://blogs.oracle.com/in-memory/what-happens-if-a-column-is-not-populated
https://blogs.oracle.com/in-memory/what-happens-if-a-column-is-not-populated

Chapter 2
In-Memory Storage Units

When you enable an object for population into the IM column store, you specify the
type of compression in the | NVEMORY clause: FOR DM, FOR QUERY (LOWor HI GH), FOR
CAPACI TY (LOWor HI GH), or NONE.

¢ See Also:

e "Controls for In-Memory Objects"

e Oracle Database Concepts to learn more about Hybrid Columnar
Compression

2.2.1.1.3 IMCUs and Rows

Each IMCU contains all column values (including nulls) for a subset of rows in a table
segment. A subset of rows is called a granule.

All IMCUs for a given segment contain approximately the same number of rows.
Oracle Database determines the size of a granule automatically depending on data
type, data format, and compression type. A higher compression level results in more
rows in the IMCU.

A one-to-many mapping exists between an IMCU and a set of database blocks. As
illustrated in Example 2-2, each IMCU stores the values for columns for a different set
of blocks.

The columns in an IMCU are not sorted. Oracle Database populates them in the order
that they are read from disk.

The number of rows in an IMCU dictates the amount of space an IMCU consumes. If
the target number of rows causes an IMCU to grow beyond the amount of contiguous
1 MB extents available in the 1 MB pool, then the IMCU creates additional extents
(pieces) to hold the remaining column CUs. An IMCU always allocates space in 1 MB
increments.

Example 2-2 IMCUs and Row Subsets

In this simplified example, only the following 4 columns of the cust oner s table have
the | NVEMORY attribute: cust _id, cust_first_name, cust | ast _name, and cust _gender.
Only 5 rows exist in the table, stored in 2 data blocks. Conceptually, the first data block
stores its rows as follows:

82, Madel i ne, Li, F; 37004, Abel , Enbrey, M 1714, Har dy, Gentl e, M

The second data block stores rows as follows:

100439, Ua, Canpbel |, F; 3047, Luci a, Downey, F

ORACLE 2-13

Chapter 2
In-Memory Storage Units

Assume IMCU 1 stores the data for the first data block. In this case, the cust _id
column values for the 3 rows in this data block stores are stored “vertically” within a
CU as follows:

82
37004
1714

IMCU 2 stores the data from the second data block. The cust _i d column values for
these 2 rows are stored within a CU as follows:

100439
3047

Because the cust _i d value is the first value for each row in the data block, the

cust _i d column is in the first position within the IMCU. Columns always occupy the
same position, so Oracle Database can reconstruct the rows by reading the IMCUs for
a segment.

Related Topics

e Controls for In-Memory Objects
Use the | NMEMORY clause in DDL statements to specify which objects are eligible
for population into the IM column store. You can enable tablespaces, tables
(internal and external), partitions, and materialized views.

2.2.1.2 Column Compression Units (CUSs)

A Column Compression Unit (CU) is contiguous storage for a single column in an
IMCU. Every IMCU has one or more CUs.

2.2.1.2.1 Structure of a CU

A CU is divided into a body and a header.

The body of every CU stores the column values for the range of rows included in
the IMCU. The header contains metadata about the values stored in the CU body,
for example, the minimum and maximum value within the CU. It may also contain a
local dictionary, which is a sorted list of the distinct values in that column and their
corresponding dictionary codes.

The following figure shows an IMCU with 4 CUs for the sal es table: prod_i d, cust i d,
time_i d, and channel _i d. Each CU stores the column values for the range of rows
included in the IMCU.

ORACLE 2-14

Chapter 2
In-Memory Storage Units

Figure 2-7 CUs in an IMCU

IMCU Header
Column CUs

ROWID time _id

channel_id

cust_id

prod_id

The CUs store values in rowid order. For this reason, the database can answer
gueries by “stitching” the rows back together. For example, an application issues the
following query:

SELECT cust _id, time_id, channel _id
FROM sales
WHERE prod_id =5;

The database begins by scanning the prod_i d column for entries with the value 5.
Assume that the database finds 5 in position two in the prod_i d column. The database
now must find the corresponding cust _i d, ti me_i d, and channel _i d for this row.
Because the CUs store data in rowid order, the database can find the corresponding
cust _id, time_id, and channel _id values in position 2 in those columns. Thus, to
answer the query, the database must extract the values from position 2 in the cust _i d,
time_id, and channel _i d columns, and then stitch the row back together to return it to
the end user.

2.2.1.2.2 Local Dictionary

In a CU, the local dictionary has a list of distinct values and their corresponding
dictionary codes.

The local dictionary stores the symbol contained in the column. The following figure
illustrates how a CU stores a nane column in a vehi cl es table.

ORACLE 2-15

ORACLE

Chapter 2
In-Memory Storage Units

Figure 2-8 Local Dictionary

Column CU
Min: Audi
— Value ID Max: Cadillac
Cad_illac > 2 Audi O
Audl_ o———> 0 BMW 1
Gadilaeks T—> B2 Cadillac 2
BMW e&—t+———> 1
Cadillac &+—> 2
Audi ———> 0
Audi ————> 0

In the preceding figure, the CU contains only 7 rows. Every distinct value in this
CU, such as Cadi | | ac or Audi , is assigned a different dictionary code, such as 2 for
Cadi | I ac and 0 for Audi . The CU stores the dictionary code rather than the original
value.

Note:

When the database uses a common dictionary for a join group, the local
dictionary contains references to the common dictionary rather than the
symbols. For example, rather than storing the values Audi , BWM and

Cadi | | ac for the vehi cl es. name column, the local dictionary stores dictionary
codes such as 101, 220, and 66.

The CU header contains the minimum and maximum values for the column. In this
example, the minimum value is Audi and the maximum value is Cadi | | ac. The
local dictionary stores the list of distinct values: Audi , BMW and Cadi | | ac. Their
corresponding dictionary codes (0, 1, and 2) are implicit. The local dictionary for a
CU in each IMCU is independent of the local dictionaries in other IMCUSs.

If a query filters on Audi automobiles, then the database scans this IMCU for only 0
codes.

Related Topics

e How a Join Group Uses a Common Dictionary
A common dictionary is a table-level, instance-specific set of dictionary codes.

¢ See Also:

"How a Join Group Uses a Common Dictionary"

2-16

Chapter 2
In-Memory Storage Units

2.2.1.3 In-Memory Storage Indexes

Every IMCU header automatically creates and manages In-Memory Storage Indexes
(IM storage indexes) for its CUs. An IM storage index stores the minimum and
maximum for all columns within the IMCU.

For example, sal es is populated in the IM column store. Every IMCU for this table has
all columns. The sal es. prod_i d column is stored in a separate CU within every IMCU.
The IMCU header has the minimum and maximum values of each prod_i d CU (and
every other CU).

To eliminate unnecessary scans, the database can perform IMCU pruning based on
SQL filter predicates. The database scans only the IMCUs that satisfy the query
predicate, as shown in the WHERE prod_id > 14 AND prod_i d < 29 example in the
following graphic.

ORACLE 2-17

Chapter 2
In-Memory Storage Units

Figure 2-9 Storage Index for Columnar Data

prod_id
min 1, max 7
1
2
3
IMCU 1

o

min 8, max 14
8
9
10
IMCU 2

83
14

min 15, max 21
15
16
17
IMCU 3 18
19
20
21

min 22, max 28
22
23
24
IMCU 4 25
26
27
28

2.2.2 Snapshot Metadata Units (SMUS)

A Snapshot Metadata Unit (SMU) contains metadata and transactional information for
an associated IMCU.

ORACLE 2-18

Chapter 2
In-Memory Storage Units

2.2.2.1 IMCUs and SMUs

The columnar pool of the In-Memory Area stores the actual data: IMCUs and IMEUSs.
The metadata pool in the In-Memory Area stores the SMUSs.

Figure 2-10 IMCUs and SMUs
This figure shows IMCUs in the data pool, and SMUs in the metadata pool.

SGA

In-Memory Area

Columnar Data Metadata
IMCU Pool
IMCU IMCU SMU Pool
SMU
SMU
IMCU IMCU SMU
SMU

Every IMCU maps to a separate SMU. Thus, if the columnar data pool contains 100
IMCUs, then the metadata pool contains 100 SMUs. The SMUs store several types of
metadata for their associated IMCUSs, including the following:

e Object numbers
e Column numbers

* Mapping information for rows

2.2.2.2 Transaction Journal

ORACLE

Every SMU contains a transaction journal. The database uses the transaction journal
to keep the IMCU transactionally consistent.

The database uses the buffer cache to process DML, just as when the IM column store
is not enabled. For example, an UPDATE statement might modify a row in an IMCU. In
this case, the database adds the rowid for the modified row to the transaction journal
and marks it stale as of the SCN of the DML statement. If a query needs to access

2-19

Chapter 2
In-Memory Storage Units

the new version of the row, then the database obtains the row from the database buffer
cache.

Figure 2-11 Transaction Journal

In-Memory Area

Columnar Format Metadata
Data

IMCU Journal

X X X X

SMU

The database achieves read consistency by merging the contents of the column,
transaction journal, and buffer cache. When the IMCU is refreshed during
repopulation, queries can access the up-to-date row directly from the IMCU.

¢ See Also:

"Optimizing Repopulation of the IM Column Store" for an in-depth discussion
of how the IM column store maintains transactional consistency

2.2.3 In-Memory Expression Units (IMEUS)

An In-Memory Expression Unit (IMEU) is a storage container for materialized In-
Memory Expressions (IM expressions) and user-defined virtual columns.

The database treats materialized expressions just like other columns in the IMCU.
Conceptually, an IMEU is a logical extension of its parent IMCU. Just as an IMCU can
contain multiple columns, an IMEU can contain multiple virtual columns.

Every IMEU maps to exactly one IMCU, mapping to the same row set. The IMEU
contains expression results for the data contained in its associated IMCU. When the
IMCU is populated, the associated IMEU is also populated.

A typical IM expression involves one or more columns, possibly with constants, and
has a one-to-one mapping with the rows in the table. For example, an IMCU for an
enpl oyees table contains rows 1-1000 for the column weekl y_sal ary. For the rows
stored in this IMCU, the IMEU calculates the automatically detected IM expression
weekl y_sal ary*52, and the user-defined virtual column quarterly_sal ary defined as
weekl y_sal ary*12. The 3rd row down in the IMCU maps to the 3rd row down in the
IMEU.

ORACLE 2-20

Chapter 2
Expression Statistics Store (ESS)

The IMEU is a logical extension of the IMCUs of a particular segment. By default,
the IMEU inherits the | NVEMORY clause properties, including Oracle Real Application
Clusters (Oracle RAC) properties such as DI STRI BUTE and DUPLI CATE, from the base
segment. You can selectively enable or disable virtual columns for storage in IMEUS.
You can also specify compression levels for different columns.

Related Topics

e About Enabling INMEMORY Columns
For internal tables, both In-Memory virtual columns (IM virtual columns) and
nonvirtual columns are eligible for IM population. For external tables, only
nonvirtual columns are eligible.

* In-Memory Views
This topic describes data dictionary and dynamic performance views related to the
In-Memory Column Store (IM column store).

2.3 Expression Statistics Store (ESS)

ORACLE

The Expression Statistics Store (ESS) is a repository maintained by the optimizer to
store statistics about expression evaluation. The ESS resides in the SGA and persists
on disk.

When an IM column store is enabled, the database leverages the ESS for its In-
Memory Expressions (IM expressions) feature. However, the ESS is independent of
the IM column store. The ESS is a permanent component of the database and cannot
be disabled.

The database uses the ESS to determine whether an expression is “hot” (frequently
accessed), and thus a candidate for an IM expression. During a hard parse of a query,
the ESS looks for active expressions in the SELECT list, WHERE clause, GROUP BY clause,
and so on.

For each segment, the ESS maintains expression statistics such as the following:

* Frequency of execution
* Cost of evaluation
e Timestamp evaluation

The optimizer assigns each expression a weighted score based on cost and the
number of times it was evaluated. The values are approximate rather than exact. More
active expressions have higher scores. The ESS maintains an internal list of the most
frequently accessed expressions.

Control the behavior of IM expressions using the DBVMS_| NVEMORY_ADM N package.
For example, the | ME_CAPTURE_EXPRESSI ONS procedure prompts the database

to identify and gradually populate the hottest expressions in the database.

The | ME_POPULATE_EXPRESSI ONS procedure forces the database to populate the
expressions immediately.

ESS information is stored in the data dictionary and exposed in the

DBA EXPRESSI ON_STATI STI CS view. This view shows the metadata that the optimizer
has collected in the ESS. IM expressions are exposed as system-generated virtual
columns, prefixed by the string SYS_| M, in the DBA_| M_EXPRESSI ONS view.

2-21

Chapter 2
In-Memory Process Architecture

¢ See Also:

e "About IM Expressions"
e Oracle Database SQL Tuning Guide to learn more about ESS

e Oracle Database Reference to learn more about the
DBA EXPRESSI ON_STATI STI CS view

e Oracle Database PL/SQL Packages and Types Reference to learn more
about the DBMS_| NVEMORY_ADM N package

2.4 In-Memory Process Architecture

In response to queries and DML, server processes scan columnar data and update
SMU metadata. Background processes populate row data from disk into the IM
column store.

2.4.1 In-Memory Coordinator Process (IMCO)

The In-Memory Coordinator Process (IMCO) manages many tasks for the IM column
store. Its primary task is to initiate background population and repopulation of
columnar data.

Population is a streaming mechanism, converting row data into columnar format, and
then compressing it. IMCO automatically initiates population of | NVEMORY objects with
any priority other than NONE. When objects with priority NONE are accessed, IMCO
populates them using Space Management Worker Process (Wnnn) processes.

The IMCO background process also initiates threshold-based repopulation of IM
column store objects when they meet a staleness threshold. IMCO may instigate
trickle repopulation for any IMCU in the IM column store that has stale entries but does
not meet the staleness threshold.

Trickle repopulation occurs automatically in the background. The steps are as follows:

1. IMCO wakes up.

2. IMCO determines whether population tasks need to be performed, including
whether any stale entries exist in an IMCU.

3. If IMCO finds stale entries, then it triggers a Space Management Worker Process
to repopulate these entries in the IMCU.

4. IMCO sleeps for two minutes, and then returns to Step 1.

¢ See Also:

e "Optimizing Repopulation of the IM Column Store"

e Oracle Database Reference to learn more about background processes

ORACLE 2-22

Chapter 2
In-Memory Process Architecture

2.4.2 Space Management Worker Processes (Wnnn)

Space Management Worker Processes (Wnnn) populate or repopulate data on behalf
of IMCO.

During population, Wnnn processes are responsible for creating IMCUs, SMUs, and
IMEUs. When creating IMEUSs, the worker processes perform the following tasks:

e ldentify virtual columns for population
e Create virtual column values

e Compute values for each row, transform the data into columnar format, and
compress it

* Register the objects with the space layer

e Associate the IMEUs with their corresponding IMCUs

< Note:

During IMEU creation, parent IMCUs remain available for queries.

During repopulation, the Wnnn processes create new versions of the IMCUs based
on the existing IMCUs and transactions journals, while temporarily retaining the old
versions. This mechanism is called double buffering.

The database can quickly move IM expressions in and out of the IM column store.
For example, if an IMCU was created without an IMEU, then the database can add an
IMEU later without forcing the IMCU to undergo the full repopulation mechanism.

The | NVEMORY_MAX_POPULATE_SERVERS initialization parameter controls the maximum
number of worker processes that can be started for population. The

| NVEMORY_TRI CKLE_REPOPULATE_PERCENT initialization parameter controls the maximum
percentage of time that worker processes can perform trickle repopulation.

¢ See Also:

e "About Manually Enabling Objects for In-Memory Population”
e "About Repopulation of the IM Column Store"
e "In-Memory Initialization Parameters”

e Oracle Database Reference to learn more about background processes

2.4.3 In-Memory Dynamic Scans

In-Memory Dynamic Scans (IM dynamic scans) use lightweight threads to
parallelize In-Memory table scans.

ORACLE 2-23

Chapter 2
In-Memory Process Architecture

2.4.3.1 Purpose of IM Dynamic Scans

When additional CPU is available, IM dynamic scans accelerate In-Memory table
scans that are CPU bound.

IM dynamic scans automatically use idle CPU resources to scan IMCUs in parallel
and maximize CPU usage. When CPU resources are available, applications can get
even faster analytic query results automatically. Because the scans are dynamic, they
enable the use of excess CPU bandwidth without affecting existing workload.

IM dynamic scans are more flexible than traditional Oracle parallel execution, although
the two are not mutually exclusive. Dynamic scans use multiple lightweight threads of
execution within a process. Typically, the performance overhead for dynamic scans is
low.

¢ See Also:

Oracle Database Administrator’s Guide to learn more about Resource
Manager

2.4.3.2 How IM Dynamic Scans Work

IM Dynamic Scans attain optimal performance by reading IMCUs in parallel.

2.4.3.2.1 About Lightweight Threads

ORACLE

A lightweight thread is an execution entity that helps to parallelize full table scans.
It is “lightweight” because it does not incur the higher memory overhead of Oracle
processes.

Note:

A lightweight thread used by IM dynamic scans is not the same as a regular
thread in the multithreaded Oracle Database model.

Lightweight threads share the resources of the parent foreground or PQ process,
called the table scan process, that coordinates the scan of a set of IMCUs. Threads
maintain their own independent flow of execution. The database can parallelize scans
by prioritizing threads and executing them asynchronously.

For eligible queries, the process allocates a pool of threads. Resource Manager
automatically determines the number of threads in the pool based on the CPU count
in the database host and the current load on the system. The pool of threads remains
available to the session for subsequent queries unless the idle time reaches an
internal threshold, at which point the database terminates the threads.

Communication between threads occurs exclusively within a process. For this reason,
contention does not occur at the database instance level.

2-24

Chapter 2
In-Memory Process Architecture

¢ See Also:

Oracle Database Concepts to learn about the multithreaded Oracle
Database model

2.4.3.2.2 When the Database Considers IM Dynamic Scans

Lightweight threads are enabled when a CPU resource plan is enabled (for example,
RESOURCE_MANAGER_PLAN=DEFAULT_PLAN) and CPU utilization of the database is low.

If lightweight threads are enabled, then the database considers an IM dynamic scan
when an application queries an object that is currently populated in the IM column
store. Typically, a serial or parallel query is a candidate for IM dynamic scans when it
has the following characteristics:

* Accesses a high number of IMCUs or columns
e Consumes all rows in the table
e |s CPU-intensive

Oracle Database Resource Manager (the Resource Manager), which is automatically
enabled when | NMEMORY_SI ZE is greater than 0, is required for IM dynamic scans. The
Resource Manager decides when and how to use the lightweight threads. Lightweight
threads are the lowest priority operation in the database because they are capitalizing
on unused resources.

2.4.3.2.3 How IM Dynamic Scans Work

Resource Manager allocates lightweight threads to parallelize the scan of IMCUs.

When the database determines that a query can benefit from an IM dynamic scan, it
typically proceeds as follows:

1. A table scan process spawns a pool of lightweight threads.

2. The table scan process creates a separate task for every IMCU that must be
scanned, and then adds each task to a task queue.

3. Resource Manager determines how many threads can participate in the table
scan.

4. Active threads pick up tasks from the task queue, with the table scan process
consuming results from completed tasks.

Depending on the database load, Resource Manager continuously adjusts the number
of active lightweight threads while the query is running. If CPU resources are not
available, then the table scan process performs the scan without using lightweight
threads.

The following graphic illustrates an IM dynamic scan of 12 IMCUs in the sal es table.

ORACLE 2-25

Chapter 2
In-Memory Process Architecture

Figure 2-12 IM Dynamic Scan

Table Scan InMemory Area
Process Sales Data
= ﬁ 5 IMCU 1 IMCU & IMCU 0
Active Core HEmEEm i . 5SS
"Il'é}read
.22 Idle Core
Imﬂgd ﬂ » IMCU 2 IMCU & IMCU 10
; AR R IR A IR IR I R .
Active Cora Ly =
"Il'é}read
%8 idie Core
lmﬂgd D---,,lmcua IMCU 7 IMCU 11
Active Core AEEEER EEEEm EEmmm
[Thraad
Udle | gie Core
Imﬂgd ﬂ 5 IMCU 4 IMCU 8 IMCU 12
Active Core AEEEE EEmE IEoe
'Thraad|
{Idle Idls Cora
4 v
ahln. .nfls
B — B —
i — B —
o — W —
=(E] M
Task Rasult Resourca
Quaua Queua Managar

In the preceding graphic, the database host has 8 CPU cores. Based on an internal
algorithm, Resource Manager assigns 4 threads to assist the table scan process. In
this scenario, 4 CPU cores remain idle for other concurrent database operations to

use.

2.4.3.3 Interface for IM Dynamic Scans

IM dynamic scans are transparent, which means that they require no application
changes and are automatically controlled by the Resource Manager.

IM dynamic scans require the Resource Manager, which is automatically enabled
when | NVEMORY_SI ZE is greater than 0. No specific resource plan is required.

Several new session statistics track the usage of IM dynamic scans. Each thread
writes trace data to a separate trace file.

Execution plans are unchanged. The following figure shows a sample execution plan.

SQ.> SELECT MAX(| quantity) largest _order FROMIineitem

LARGEST_ORDER

ORACLE 2-26

Chapter 2
In-Memory Process Architecture

El apsed: 00:00: 03. 41

Execution Pl an

Plan hash val ue: 1885658499

[1d] Operation | Name | Rows| Bytes | Cost(%CPU)| Time |Pstart]
Pst op|

| O] SELECT STATEMENT | | 1| 3] 116K (4)| 00:00:05 |

I I

| 1] SORT AGGREGATE | | 1| 3| | |

I I

| 2| PARTI TI ON RANGE ALL | | 600M |1716M 116K (4)| 00:00:05 | 1
| 84]

| 3| TABLE ACCESS | NVEMORY FULL| LINEITEM| 600M |1716M 116K (4)| 00:00:05 | 1
| 84]

NAVE VALUE

I M scan CUs menconpress for query |ow 1147

I M scan bytes in-menmory 5. 1790E+10

I M scan bytes unconpressed 7.6722E+10

IMscan CUs col ums accessed 1147

I M scan rows 600037902

I M scan rows projected 29

I M scan (dynanic) rows 600037902

I M scan (dynamc) nulti-threaded scans 1

I M scan (dynam c) tasks processed by thread 1146

ORACLE

Consider the characteristics of the plan:

1.

The execution plan is unchanged.

Note that the plan does not mention IM dynamic scans in Step 3. However,
clicking the binocular icon in a SQL Monitor report would show “Dynamic Scan
Tasks on Thread.”

I Mscan (dynam c¢) nulti-threaded scans is nonzero, which means that the
database used an IM dynamic scan.

I M scan CUs menconpress for query |owindicates that 1147 IMCUs exist in the
I'i nei t emtable.

I Mscan (dynam c) tasks processed by thread indicates how many IMCUs
were processed in parallel.

The number is 1146, which is less than the total number of 1147 shown in | M scan
CUs menconpress for query | ow. The database analyzed the first IMCU without
parallelization to determine whether parallelization was worthwhile. Because the
answer was yes, the database proceeded to scan the remaining 1146 IMCUs in
parallel.

2-27

Chapter 2
CPU Architecture: SIMD Vector Processing

5. IMscan (dynamc) rows and I M scan rows are equal , which means that the
threads retrieved all rows for the query.

¢ See Also:

e Oracle Database Administrator’s Guide to learn more about the
Resource Manager

e Oracle Database Reference for descriptions of In-Memory statistics

2.5 CPU Architecture: SIMD Vector Processing

ORACLE

For data that is populated in the IM column store, the database uses SIMD (single
instruction, multiple data) processing.

A SIMD unit is a processor that enables a single instruction to process data as a unit,
called a vector, rather than processing data in separate instructions. For example,
instead of using a loop to execute four addition operations, SIMD could load the four
sets of numbers into vectors and perform one addition operation. SIMD processing is
sometimes called vectorization.

The IM column store maximizes the number of column entries that the CPU can

load into the vector registers and evaluate. Instead of evaluating each entry in the
column one at a time, the database evaluates a set of column values in a single CPU
instruction. SIMD vector processing enables the database to scan billions of rows per
second.

For example, an application issues a query to find the total number of orders in the
sal es table that use the prono_i d value of 9999. The sal es table resides in the IM
column store. The query begins by scanning only the sal es. prono_i d column, as

shown in the following diagram:

2-28

Chapter 2
CPU Architecture: SIMD Vector Processing

Figure 2-13 SIMD Vector Processing

In-Memory Column Store

promo_id = 9999

l Find Sales with

Promo ID
CPU

—_— 9999

—>
Load Multiple e 9999 Use Vectors
promo_id > VECTOR 9999 to Compare
Values ~ REGISTER All Values in

One Cycle
_ 9999
| =S |

The CPU evaluates the data as follows:

1.

Loads the first 8 values (the number varies depending on data type and
compression mode) from the prono_i d column into the SIMD register, and then
compares them with the value 9999 in a single instruction

Discards the entries.

Loads another 8 values into the SIMD register, and then continues in this way until
it has evaluated all entries.

2.5.1 SIMD and Oracle LOBs

Oracle Database 18c provides SIMD vector support for queries involving SQL
operators on specific LOB columns.

ORACLE

The nature of the support depends on the type of LOB:

Inline LOBs

The IM column store provides contiguous storage for inline LOBs, which are
LOBs less than 4 KB, within the IMCUs. Columnar storage enables faster query
processing by removing the overhead of assembling LOB data from the database
buffer cache.

Out-of-line LOBs

In this case, the IM column store only stores the LOB locator, which is 40 byes.
Out-of-line columns do not benefit from columnar optimization.

There is one exception to the preceding rule. An IMEU can allocate up to 32 KB of
contiguous storage for JSON columns defined as a LOB data type. The IMEU stores
these columns in the OSON format, which can provide faster query performance using
SIMD processing.

2-29

Chapter 2
CPU Architecture: SIMD Vector Processing

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide to learn
more about LOBs

2.5.2 SIMD and Oracle Numbers

For tables compressed with QUERY LON NUMBER columns are encoded using an
optimized format that enables native calculations in hardware.

SIMD vector processing enables simple aggregations, GROUP BY aggregations, and
arithmetic operations to benefit significantly. The performance improvement depends
on the amount of time the aggregation spends on arithmetic computation. Some
aggregations may benefit by up to a factor of 9.

¢ See Also:

e "Optimizing In-Memory Arithmetic"

e Oracle Database SQL Language Reference

2.5.3 SIMD and Exadata Smart Flash Cache

Besides storing data in Hybrid Columnar Compression format, Exadata Smart Flash
Cache can store data in pure columnar format.

Exadata Smart Scan supports SIMD predicates. The advantage is that In-Memory
performance extends from DRAM storage to secondary storage.

By default, Exadata Smart Flash Cache compresses data using the level MEMCOVWPRESS
FOR CAPACI TY LOW To change the compression level or disable the columnar format
altogether, use the ALTER TABLE ... NO CELLMEMORY statement.

See Also:

e "In-Memory Support for Exadata Flash Cache"

e Oracle Exadata Database Machine System Overview

ORACLE 2-30

Configuring and Populating the IM Column
Store

You can enable and size the In-Memory Column Store (IM column store). You can also
configure In-Memory settings for objects, and populate these objects in the IM column
store.

ORACLE

Enabling and Sizing the IM Column Store

To enable or disable the IM column store, specify a value for the | NVEMORY_SI ZE
initialization parameter.

3.1 Overview of Enabling the IM Column Store

Enable the IM column store size by setting the | NVEMORY_SI| ZE initialization parameter.

By default, | NVEMORY_SI ZE is set to 0, which means the IM column store is disabled.
To enable the IM column store, set the initialization parameter | NVEMORY_SI ZE to

a minimum value of 100 MB before restarting the database instance. You can
dynamically increase the | NVEMORY_S| ZE size setting by using an ALTER SYSTEM
statement.

For the Database In-Memory Base Level only, the size must be less than or equal to
16 GB for a CDB. In an Oracle RAC database, every instance must be less than or
equal to 16 GB.

By default, you must specify candidates for population in the IM column store using
the | NVEMORY clause of a CREATE or ALTER statement for a table, tablespace, or
materialized view.

¢ See Also:

* "In-Memory Initialization Parameters"

e Oracle Database Reference to learn more about the | NVEMORY_SI ZE
initialization parameter

e Oracle Database SQL Language Reference for more information about
the | NMEMORY clause

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

3.2 Estimating the Required Size of the IM Column Store

ORACLE

Estimate the size of the IM column store based on your requirements, and then resize
the IM column store to meet those requirements. Applying compression can reduce
memory size.

The amount of memory required by the IM column store depends on the database
objects stored in it and the compression method applied on each object. When
choosing a compression method for the | NVEMORY objects, balance the performance
benefits against the amount of available memory:

3-1

Chapter 3
Estimating the Required Size of the IM Column Store

* To make the greatest reduction in memory size, choose the FOR CAPACI TY H GH
or FOR CAPACI TY LONcompression methods. However, these options require
additional CPU during query execution to decompress the data.

* To get the best query performance, choose the FOR QUERY HI GHor FOR QUERY LOW
compression methods. However, these options consume more memory.

When sizing the IM column store, consider the following guidelines:

1. For every object to be populated into the IM column store, estimate the amount of
memory it consumes.

Oracle Compression Advisor estimates the compression ratio that you can realize
using the MEMCOVPRESS clause. The advisor uses the DBMS_COVPRESSI ON interface.

2. Add the individual amounts to together.

¢ Note:

After population, V§I M_SEGVENTS shows the actual size of the objects on
disk and their size in the IM column store. You can use this information
to calculate the compression ratio for the populated objects. However, if
the objects were compressed on disk, then this query does not show the
correct compression ratio.

3. If you configured In-Memory Optimized Arithmetic, and if In-Memory tables use
FOR QUERY LOWNcompression, then add roughly 15% to account for the dual
storage of NUMBER columns.

4. Add space to account for the growth of database objects, and to store updated
versions of rows after DML operations.

The minimum amount for dynamic resizing is 128 MB.

" See Also:

e "IM Column Store Compression Methods"

* "Enabling the IM Column Store for a Database"

e "Increasing the Size of the IM Column Store Dynamically"
e "About In-Memory Optimized Arithmetic"

e Oracle Database Administrator’s Guide to learn how to estimate
compression ratio using Compression Advisor

* Oracle Database Reference to learn about V$| M_SEGVENTS

ORACLE 3-2

Chapter 3
Enabling the IM Column Store for a Database

3.3 Enabling the IM Column Store for a Database

ORACLE

Before tables or materialized views can be populated into the IM column store, you
must enable the IM column store for the database.

In this context, "database" is a non-CDB, CDB, or PDB. In a CDB, the | NVEMORY_SI ZE
setting in the CDB root determines the overall size of the IM column store. By default,
all PDBs have access to the IM column store.

Within an individual PDB, you can limit access to the shared In-Memory Area by
setting | NMEMORY_SI ZE to a different value. For example, in a CDB with 100 PDBs, you
could set | NVEMORY_SI ZE to 16G at the CDB level, and then set | NVEMORY_SI ZE to 10G
in one PDB, to 6Gin a second PDB, and to 0 in the remaining PDBs.

Prerequisites

This task assumes that the following:

* The database is open.

* The COVPATI BLE initialization parameter is set to 12. 1. 0 or higher.
e The | NVEMORY_SI ZE initialization parameter is set to 0 (default).

* You want to use the Database In-Memory Base Level.

To enable the IM column store:

1. In SQL*Plus or SQL Developer, log in to the database as a user with
administrative privileges.

2. Setthe | NVEMORY_SI ZE initialization parameter to a nonzero value.
The minimum setting is 100M

When you set this initialization parameter in a server parameter file (SPFILE)
using the ALTER SYSTEMstatement, you must specify SCOPE=SPFI LE.

For example, the following statement sets the In-Memory Area size to 16 GB:

ALTER SYSTEM SET | NVEMORY_SI ZE = 16G SCOPE=SPFI LE;

3. For the Database In-Memory Base Level, set the | NVEMORY_FORCE initialization
parameter to BASE_LEVEL.

For example, the following statement specifies the Base Level:

ALTER SYSTEM SET | NMEMORY_FORCE=BASE_LEVEL SCOPE=SPFI LE;

You cannot set | NVEMORY_FORCE=BASE_LEVEL at the PDB level. Also, you cannot
set this parameter dynamically.

4. Shut down the database, and then reopen it.

You must reopen the database to initialize the IM column store in the SGA.

3-3

Chapter 3
Enabling the IM Column Store for a Database

5. Optionally, check the amount of memory currently allocated for the IM column
store:

SHOW PARAMETER | NVEMORY_SI ZE

" Note:

After the IM column store is enabled, you can increase its size
dynamically without reopening the database.

Example 3-1 Enabling the IM Column Store

Assume that the | NVEMORY_SI ZE initialization parameter is set to 0. The following
SQL*Plus example sets | NVEMORY_SI ZE to 16 GB, shuts down the database instance,
and then reopens the database so that the change can take effect:

SQ.> SHOW PARAMETER | NVEMORY_SI ZE

i nnenory_si ze big integer 0
SQL> ALTER SYSTEM SET | NMEMORY_SI ZE=16G SCOPE=SPFI LE;
System al tered.

SQL> SHUTDOWN | MVEDI ATE

Dat abase cl osed.

Dat abase di srmount ed.

ORACLE i nstance shut down.

SQL> STARTUP
ORACLE instance started.

Total System dobal Area 11525947392 bytes

Fi xed Size 8213456 bytes
Variable Size 754977840 bytes
Dat abase Buffers 16777216 bytes
Redo Buffers 8560640 bytes
I n- Menory Area 10737418240 bytes

Dat abase nount ed.
Dat abase opened.

SQ.> SHOW PARAMVETER | NVEMORY_SI ZE

i nnenory_si ze big integer 16G

ORACLE 3-4

Chapter 3
Increasing the Size of the IM Column Store Dynamically

¢ See Also:

e "Multiple IM Column Stores"

e Oracle Database Upgrade Guide for information about setting the
database compatibility level

e QOracle Database Reference for more information about the
| NMEMORY_SI ZE initialization parameter

3.4 Increasing the Size of the IM Column Store Dynamically

When more memory is required for the IM column store, you can increase its size
dynamically.

ORACLE

The size of the IM column store cannot be decreased dynamically. If you set

| NVEMORY_SI ZE to a value smaller than its current setting, then you must specify
SCOPE=SPFI LE in the ALTER SYSTEMstatement. If you set this parameter by specifying
SCOPE=SPFI LE, then you must restart the database for the change to take effect.

Prerequisites

To increase the size of the IM column store dynamically, you must meet the following
prerequisites:

The column store must be enabled.

The compatibility level must be 12. 2. 0 or higher.

The database instances must be started with an SPFILE.

The new size of the IM column store must be at least 128 megabytes greater than
the current | NVEMORY_SI ZE setting.

In SQL*Plus or SQL Developer, log in to the database with administrative
privileges.

Optionally, check the amount of memory currently allocated for the IM column
store:

SHOW PARAMETER | NVEMORY_SI ZE

Set the | NVEMORY_SI ZE initialization parameter to a value greater than the current
size of the IM column store with an ALTER SYSTEMstatement that specifies
SCOPE=BOTH or SCOPE=MEMCRY.

When you set this parameter dynamically, you must set it to a value that is higher
than its current value, and there must be enough memory available in the SGA to
increase the size of the IM column store dynamically to the new value.

For example, the following statement sets | NVEMORY_SI ZE to 500Mdynamically:

ALTER SYSTEM SET | NMEMORY_SI ZE = 500M SCOPE=BOTH,

3-5

Chapter 3
Disabling the IM Column Store

¢ See Also:

* "Enabling the IM Column Store for a Database"

e Oracle Database Reference for more information about the
| NMEMORY_SI ZE initialization parameter

3.5 Disabling the IM Column Store

ORACLE

You can disable the IM column store by setting the | NVEMORY_SI ZE initialization
parameter to zero, and then reopening the database.

Assumptions

This task assumes that the IM column store is enabled in an open database.

To disable the IM column store:

1. Setthe | NVEMORY_SI ZE initialization parameter to 0 in the server parameter file
(SPFILE).

2. Shut down the database.

3. Start a database instance, and then open the database.

¢ See Also:

Oracle Database Reference for information about the | NVEMORY_SI ZE
initialization parameter

3-6

Enabling Objects for In-Memory Population

This chapter explains how to enable and disable objects for population in the IM
column store, including setting compression and priority options.

This chapter contains the following topics:

4.1 About Manually Enabling Objects for In-Memory
Population

Only objects with the | NVEMORY clause are eligible for population into the IM column
store. To apply this clause manually, you must use DDL statements such as CREATE
TABLE or ALTER TABLE.

4.1.1 Purpose of Enabling Objects for In-Memory Population

By default, objects implicitly have the NO | NVEMORY attribute, which means they are
ineligible for population into the IM column store.

Only when you use DDL to specify objects as | NVEMORY are they eligible for population.
Enabling an object as | NVEMORY is specifying that an object can potentially reside in
the IM column store. In-Memory population is a separate step that occurs when the
database reads existing row-format data from disk, transforms it into columnar format,
and then stores it in the IM column store.

Population, which transforms existing data on disk into columnar format, is different
from repopulation, which transforms new data into columnar format. Because IMCUs
are read-only structures, Oracle Database does not populate them when rows change.
Rather, the database records the row changes in a transaction journal, and then
creates new IMCUs as part of repopulation.

Related Topics

* Optimizing Repopulation of the IM Column Store
The IM column store periodically refreshes objects that have been modified. You
can control this behavior using initialization parameters and the DBVS_| NVEMORY
package.

e In-Memory Compression Units (IMCUS)
An In-Memory Compression Unit (IMCU) is a compressed, read-only storage
unit that contains data for one or more columns.

4.1.2 How In-Memory Population Works

ORACLE

You can specify that the database populates objects in the IM column store either at
database instance startup or when | NVEMORY objects are accessed.

The population algorithm also varies depending on whether you use single-instance or
Oracle RAC.

4-1

Chapter 4
About Manually Enabling Objects for In-Memory Population

This section contains the following topics:

4.1.2.1 Prioritization of In-Memory Population

ORACLE

DDL statements include an | NMEMORY PRI ORI TY subclause that provides more control
over the population queue.

Note:

The | NVEMORY PRI ORI TY subclause controls the priority of population, but not
the speed of population.

The priority level setting applies to an entire table, partition, or subpartition, not to
different column subsets. Setting the | NVEMORY attribute on an object means that this
object is a candidate for population in the IM column store. It does not mean that the
database immediately populates the object.

¢ Note:

If a segment on disk is 64 KB or less, then it is not populated in the IM
column store. Therefore, some small database objects that were enabled for
the IM column store might not be populated.

Oracle Database manages prioritization as follows:

On-demand population

By default, the | NVEMCRY PRI ORI TY parameter is set to NONE. In this case, the
database only populates the object when it is accessed through a full table scan.
If the object is never accessed, or if it is accessed only through an index scan or
fetch by rowid, then populati