
Oracle® Database
Migrating and Converting Non-CDBs to a
PDB with a Different Endian Operating
System

19c
F10904-02
May 2019

Oracle Database Migrating and Converting Non-CDBs to a PDB with a Different Endian Operating System,
19c

F10904-02

Copyright © 2018, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Sunil Surabhi, Nirmal Kumar

Contributing Authors: Lance Ashdown, Padmaja Potineni, Rajesh Bhatiya, Prakash Jashnani, Douglas
Williams, Mark Bauer

Contributors: Roy Swonger, Byron Motta, Hector Vieyra Farfan, Carol Tagliaferri, Mike Dietrich, Marcus
Doeringer, Umesh Aswathnarayana Rao, Rae Burns, Subrahmanyam Kodavaluru, Cindy Lim, Amar Mbaye,
Akash Pathak, Thomas Zhang, Zhihai Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Use Case Scenario for this Document iv

Documentation Accessibility v

1 Transporting Databases

Transporting Data Across Platforms 1-1

General Limitations on Transporting Data 1-3

Compatibility Considerations for Transporting Data 1-5

Limitations on Full Transportable Export/import 1-6

2 Converting Data to the Endian Format of the Target Operating
System

Converting Data Between Platforms 2-1

Converting Data Between Platforms Using the DBMS_FILE_TRANSFER Package 2-2

Converting Data Between Platforms Using RMAN 2-3

Converting Tablespaces on the Source System After Export 2-4

Converting Data Files on the Target System Before Import 2-5

3 Connecting to the Database with SQL*Plus

Step 1: Open a Command Window 3-1

Step 2: Set Operating System Environment Variables 3-1

Step 3: Start SQL*Plus 3-2

Step 4: Submit the SQL*Plus CONNECT Command 3-2

4 Migrating Oracle Database

Checking Character Set Compatibility 4-1

Transporting a Database Using an Export Dump File 4-1

iii

Preface

This guide provides a compilation of topics from the Oracle Database user assistance
documentation that are collected to help you complete a specific use case scenario.

• Use Case Scenario for this Document

• Documentation Accessibility

Use Case Scenario for this Document
Use this scenario document to assist you to convert an earlier release non-CDB to a
PDB, running on a different endian operating system. After that conversion, you can
then plug that PDB into Oracle Database 19c.

This scenario applies to the following non-CDBs:

• Oracle Database 11g Release 2 (11.2.0.3)

• Oracle Database 11g Release 2 (11.2.0.4)

• Oracle Database 12c Release 1 (12.1.0.1)

• Oracle Database 12c Release 1 (12.1.0.2)

• Oracle Database 12c Release 2 (12.2.0.1)

Prerequisites for this Scenario

• The source non-CDB and the target CDB host must use compatible character sets
and national character sets.

• You have created and configured Oracle Database 19c on the target CDB host,
using the multitenant architecture as your configuration option, so that you have a
CDB and a default PDB.

• You are prepared to place your user-defined tablespaces on the source non-CDB
into read-only mode.

Outline for this Scenario

1. Transporting Databases. Transport your database to the new platform

2. Converting Data to the Endian Format of the Target Operating System.
Convert your endian format, and then convert data to the new platform.

3. Connecting to Oracle Database

4. Migrating Oracle Database. Migrate the database to the PDB on the target
multitenant architecture host.

These steps correspond to the chapters in this document.

Preface

iv

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Transporting Databases

You can transport a database to a new Oracle Database instance.

• Transporting Data Across Platforms
You can transport data across platforms.

• General Limitations on Transporting Data
There are general limitations on transporting data. There are also limitations that
are specific to full transportable export/import, transportable tablespaces, or
transportable tables.

• Compatibility Considerations for Transporting Data
When transporting data, Oracle Database computes the lowest compatibility level
at which the target database must run.

• Limitations on Full Transportable Export/import
There are limitations on full transportable export/import.

Transporting Data Across Platforms
You can transport data across platforms.

The functionality of transporting data across platforms can be used to:

• Enable a database to be migrated from one platform to another.

• Provide an easier and more efficient means for content providers to publish
structured data and distribute it to customers running Oracle Database on different
platforms.

• Simplify the distribution of data from a data warehouse environment to data marts,
which are often running on smaller platforms.

• Enable the sharing of read-only tablespaces between Oracle Database
installations on different operating systems or platforms, assuming that your
storage system is accessible from those platforms and the platforms all have the
same endianness, as described in the sections that follow.

Many, but not all, platforms are supported for cross-platform data transport. You can
query the V$TRANSPORTABLE_PLATFORM view to see the platforms that are supported,
and to determine each platform's endian format (byte ordering). The following query
displays the platforms that support cross-platform data transport:

COLUMN PLATFORM_NAME FORMAT A40
COLUMN ENDIAN_FORMAT A14

SELECT PLATFORM_ID, PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM
 ORDER BY PLATFORM_ID;

PLATFORM_ID PLATFORM_NAME ENDIAN_FORMAT
----------- -- --------------
 1 Solaris[tm] OE (32-bit) Big
 2 Solaris[tm] OE (64-bit) Big

1-1

 3 HP-UX (64-bit) Big
 4 HP-UX IA (64-bit) Big
 5 HP Tru64 UNIX Little
 6 AIX-Based Systems (64-bit) Big
 7 Microsoft Windows IA (32-bit) Little
 8 Microsoft Windows IA (64-bit) Little
 9 IBM zSeries Based Linux Big
 10 Linux IA (32-bit) Little
 11 Linux IA (64-bit) Little
 12 Microsoft Windows x86 64-bit Little
 13 Linux x86 64-bit Little
 15 HP Open VMS Little
 16 Apple Mac OS Big
 17 Solaris Operating System (x86) Little
 18 IBM Power Based Linux Big
 19 HP IA Open VMS Little
 20 Solaris Operating System (x86-64) Little
 21 Apple Mac OS (x86-64) Little

If the source platform and the target platform are of the same endianness, then the
data is transported from the source platform to the target platform without any data
conversion.

If the source platform and the target platform are of different endianness, then the data
being transported must be converted to the target platform format. You can convert the
data using one of the following methods:

• The GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package

When you use one of these procedures to move data files between the source
platform and the target platform, each block in each data file is converted to the
target platform's endianness. The conversion occurs on the target platform.

• The RMAN CONVERT command

Run the RMAN CONVERT command on the source or target platform. This
command converts the data being transported to the target platform format.

Note:

Conversion of data files between different endian formats is not
supported for data files having undo segments.

Before the data in a data file can be transported to a different platform, the data file
header must identify the platform to which it belongs. To transport read-only
tablespaces between Oracle Database installations on different platforms, make the
data file read/write at least once.

See Also:

"Converting Data Between Platforms"

Chapter 1
Transporting Data Across Platforms

1-2

General Limitations on Transporting Data
There are general limitations on transporting data. There are also limitations that are
specific to full transportable export/import, transportable tablespaces, or transportable
tables.

Be aware of the following general limitations as you plan to transport data:

• The source and the target databases must use compatible database character
sets. Specifically, one of the following must be true:

– The database character sets of the source and the target databases are the
same.

– The source database character set is a strict (binary) subset of the target
database character set, and the following three conditions are true:

* The source database is Oracle Database 10g Release 1 (10.1.0.3) or
later.

* The tablespaces to be transported contain no table columns with
character length semantics or the maximum character width is the same in
both the source and target database character sets.

* The data to be transported contains no columns with the CLOB data type,
or the source and the target database character sets are both single-byte
or both multibyte.

– The source database character set is a strict (binary) subset of the target
database character set, and the following two conditions are true:

* The source database is before Oracle Database 10g Release 1 (10.1.0.3).

* The maximum character width is the same in the source and target
database character sets.

Note:

The subset-superset relationship between character sets recognized by
Oracle Database is documented in the Oracle Database Globalization
Support Guide.

• The source and the target databases must use compatible national character sets.
Specifically, one of the following must be true:

– The national character sets of the source and target databases are the same.

– The source database is Oracle Database 10g Release 1 (10.1.0.3) or later,
and the tablespaces to be transported contain no columns with NCHAR,
NVARCHAR2, or NCLOB data types.

• When running a transportable export operation, the following limitations apply:

– The default tablespace of the user performing the export must not be one of
the tablespaces being transported.

– The default tablespace of the user performing the export must be writable.

Chapter 1
General Limitations on Transporting Data

1-3

• In a non-CDB, you cannot transport a tablespace to a target database that
contains a tablespace of the same name.

In a CDB, you cannot transport a tablespace to a target container that contains a
tablespace of the same name. However, different containers can have
tablespaces with the same name.

You can use the REMAP_TABLESPACE import parameter to import the database
objects into a different tablespace. Alternatively, before the transport operation,
you can rename either the tablespace to be transported or the target tablespace.

Starting with Oracle Database 12c Release 2 (12.2), the Recovery Manager
(RMAN) RECOVER command can move tables to a different schema while
remapping a tablespace. See Oracle Database Backup and Recovery User’s
Guide for more information.

• In a CDB, the default Data Pump directory object, DATA_PUMP_DIR, does not work
with PDBs. You must define an explicit directory object within the PDB that you are
using with Data Pump export/import.

• Transporting data with XMLTypes has the following limitations:

– The target database must have XML DB installed.

– Schemas referenced by XMLType tables cannot be the XML DB standard
schemas.

– If the schema for a transported XMLType table is not present in the target
database, then it is imported and registered. If the schema already exists in
the target database, then a message is displayed during import.

– You must use only Data Pump to export and import the metadata for data that
contains XMLTypes.

The following query returns a list of tablespaces that contain XMLTypes:

select distinct p.tablespace_name from dba_tablespaces p,
 dba_xml_tables x, dba_users u, all_all_tables t where
 t.table_name=x.table_name and t.tablespace_name=p.tablespace_name
 and x.owner=u.username;

See Oracle XML DB Developer's Guide for information on XMLTypes.

• Types whose interpretation is application-specific and opaque to the database
(such as RAW, BFILE, and the AnyTypes) can be transported, but they are not
converted as part of the cross-platform transport operation. Their actual structure
is known only to the application, so the application must address any endianness
issues after these types are moved to the new platform. Types and objects that
use these opaque types, either directly or indirectly, are also subject to this
limitation.

• When you transport a tablespace containing tables with TIMESTAMP WITH LOCAL
TIME ZONE (TSLTZ) data between databases with different time zones, the tables
with the TSLTZ data are not transported. Error messages describe the tables that
were not transported. However, tables in the tablespace that do not contain TSLTZ
data are transported.

You can determine the time zone of a database with the following query:

SELECT DBTIMEZONE FROM DUAL;

You can alter the time zone for a database with an ALTER DATABASE SQL
statement.

Chapter 1
General Limitations on Transporting Data

1-4

You can use Data Pump to perform a conventional export/import of tables with
TSLTZ data after the transport operation completes.

• Analytic workspaces cannot be part of cross-platform transport operations. If the
source platform and target platform are different, then use Data Pump export/
import to export and import analytic workspaces. See Oracle OLAP DML
Reference for more information about analytic workspaces.

Note:

Do not invoke Data Pump export utility expdp or import utility impdp as
SYSDBA, except at the request of Oracle technical support. SYSDBA is used
internally and has specialized functions; its behavior is not the same as for
general users.

Compatibility Considerations for Transporting Data
When transporting data, Oracle Database computes the lowest compatibility level at
which the target database must run.

You can transport a tablespace or a table from a source database to a target database
having the same or higher compatibility setting using transportable tablespaces, even
if the target database is on the same or a different platform. The data transport
operation fails if the compatibility level of the source database is higher than the
compatibility level of the target database.

The following table shows the minimum compatibility requirements of the source and
target databases in various scenarios. The source and target database need not have
the same compatibility setting.

Table 1-1 Minimum Compatibility Requirements

Transport Scenario Minimum Compatibility Setting

Source Database Target Database

Transporting a database using full
transportable export/import

12.0 (COMPATIBLE
initialization parameter
setting for an Oracle
Database 12c or later
database

12 (VERSION Data Pump
export parameter setting for
an 11.2.0.3 or later
database)

12.0 (COMPATIBLE
initialization parameter
setting)

Transporting a tablespace
between databases on the same
platform using transportable
tablespaces

8.0 (COMPATIBLE
initialization parameter
setting)

8.0 (COMPATIBLE
initialization parameter
setting)

Transporting a tablespace with
different database block size than
the target database using
transportable tablespaces

9.0 (COMPATIBLE
initialization parameter
setting)

9.0 (COMPATIBLE
initialization parameter
setting)

Chapter 1
Compatibility Considerations for Transporting Data

1-5

Table 1-1 (Cont.) Minimum Compatibility Requirements

Transport Scenario Minimum Compatibility Setting

Source Database Target Database

Transporting a tablespace
between databases on different
platforms using transportable
tablespaces

10.0 (COMPATIBLE
initialization parameter
setting)

10.0 (COMPATIBLE
initialization parameter
setting)

Transporting tables between
databases

11.2.0 (COMPATIBLE
initialization parameter
setting for an Oracle
Database 12c or later
database

11.2.0 (COMPATIBLE
initialization parameter
setting)

Note:

• When you use full transportable export/import, the source database must
be an Oracle Database 11g Release 2 (11.2.0.3) or later database, and
the target database must be an Oracle Database 12c or later database.

• When transporting a database from Oracle Database 11g Release 2
(11.2.0.3) or later database to Oracle Database 12c or later database,
you must set the Data Pump export parameter VERSION to 12 or higher.

• When transporting a database from an Oracle Database 19c database to
an Oracle Database 19c database, you must set the initialization
parameter COMPATIBLE to 19.0.0 or higher.

Limitations on Full Transportable Export/import
There are limitations on full transportable export/import.

Be aware of the following limitations on full transportable export/import:

• The general limitations described in "General Limitations on Transporting Data"
apply to full transportable export/import.

• You cannot transport an encrypted tablespace to a platform with different
endianness.

To transport an encrypted tablespace to a platform with the same endianness,
during export set the ENCRYPTION_PWD_PROMPT export utility parameter to YES, or
use the ENCRYPTION_PASSWORD export utility parameter. During import, use the
equivalent import utility parameter, and set the value to the same password that
was used for the export.

• Full transportable export/import can export and import user-defined database
objects in administrative tablespaces using conventional Data Pump export/import,
such as direct path or external table. Administrative tablespaces are non-user
tablespaces supplied with Oracle Database, such as the SYSTEM and SYSAUX
tablespaces.

Chapter 1
Limitations on Full Transportable Export/import

1-6

• Full transportable export/import cannot transport a database object that is defined
in both an administrative tablespace (such as SYSTEM and SYSAUX) and a user-
defined tablespace. For example, a partitioned table might be stored in both a
user-defined tablespace and an administrative tablespace. If you have such
database objects in your database, then you can redefine them before transporting
them so that they are stored entirely in either an administrative tablespace or a
user-defined tablespace. If the database objects cannot be redefined, then you
can use conventional Data Pump export/import.

• When transporting a database over the network using full transportable export/
import, auditing cannot be enabled for tables stored in an administrative
tablespace (such as SYSTEM and SYSAUX) when the audit trail information itself is
stored in a user-defined tablespace. See Oracle Database Security Guide for more
information about auditing.

Chapter 1
Limitations on Full Transportable Export/import

1-7

2
Converting Data to the Endian Format of
the Target Operating System

Prepare for migrating your data by converting the endian format of the data to the
endian format that is used on your target operating system platform.

• Converting Data Between Platforms
When you perform a transportable operation, and the source platform and the
target platform are of different endianness, you must convert the data being
transported to the target platform format. If the source platform and the target
platform are of the same endianness, then data conversion is not necessary. You
can use the DBMS_FILE_TRANSFER package or the RMAN CONVERT command to
convert data.

• Converting Data Between Platforms Using the DBMS_FILE_TRANSFER Package
You can use the GET_FILE or PUT_FILE procedure of the DBMS_FILE_TRANSFER
package to convert data between platforms during a data file transfer.

• Converting Data Between Platforms Using RMAN
When you use the RMAN CONVERT command to convert data, you can either
convert the data on the source platform after running Data Pump export, or you
can convert the data on the target platform before running Data Pump import. In
either case, you must transfer the data files from the source system to the target
system.

Converting Data Between Platforms
When you perform a transportable operation, and the source platform and the target
platform are of different endianness, you must convert the data being transported to
the target platform format. If the source platform and the target platform are of the
same endianness, then data conversion is not necessary. You can use the
DBMS_FILE_TRANSFER package or the RMAN CONVERT command to convert data.

Note:

Some limitations might apply that are not described in these sections. Refer
to the following documentation for more information:

• "Transporting Data Across Platforms" for information about checking the
endianness of platforms

• Oracle Database PL/SQL Packages and Types Reference for
information about limitations related to the DBMS_FILE_TRANSFER package

• Oracle Database Backup and Recovery Reference for information about
limitations related to the RMAN CONVERT command

2-1

Converting Data Between Platforms Using the
DBMS_FILE_TRANSFER Package

You can use the GET_FILE or PUT_FILE procedure of the DBMS_FILE_TRANSFER package
to convert data between platforms during a data file transfer.

When you use one of these procedures to move data files between the source
platform and the target platform, each block in each data file is converted to the target
platform's endianness.

This section uses an example to describe how to use the DBMS_FILE_TRANSFER
package to convert a data file to a different platform. The example makes the following
assumptions:

• The GET_FILE procedure will transfer the data file.

• The mytable.342.123456789 data file is being transferred to a different platform.

• The endianness of the source platform is different from the endianness of the
target platform.

• The global name of the source database is dbsa.example.com.

• Both the source database and the target database use Oracle Automatic Storage
Management (Oracle ASM).

Note:

You can also use the DBMS_FILE_TRANSFER package to transfer data files
between platforms with the same endianness.

Complete the following steps to convert the data file by transferring it with the
GET_FILE procedure:

1. Use SQL*Plus to connect to the source database as an administrative user who
can create directory objects.

2. Create a directory object to store the data files that you want to transfer to the
target database.

For example, to create a directory object named sales_dir_source for the +data/
dbsa/datafile directory, execute the following SQL statement:

CREATE OR REPLACE DIRECTORY sales_dir_source
 AS '+data/dbsa/datafile';

The specified file system directory must exist when you create the directory object.

3. Use SQL*Plus to connect to the target database as an administrative user who
can create database links, create directory objects, and run the procedures in the
DBMS_FILE_TRANSFER package.

4. Create a database link from the target database to the source database.

The connected user at the source database must have read privileges on the
directory object that you created in Step 2.

Chapter 2
Converting Data Between Platforms Using the DBMS_FILE_TRANSFER Package

2-2

5. Create a directory object to store the data files that you want to transfer from the
source database.

The user at the local database who will run the procedure in the
DBMS_FILE_TRANSFER package must have write privileges on the directory object.

For example, to create a directory object named sales_dir_target for the +data/
dbsb/datafile directory, run the following SQL statement:

CREATE OR REPLACE DIRECTORY sales_dir_target
 AS '+data/dbsb/datafile';

6. Run the GET_FILE procedure in the DBMS_FILE_TRANSFER package to transfer the
data file.

For example, run the following procedure to transfer the mytable.342.123456789
data file from the source database to the target database using the database link
you created in Step 4:

BEGIN
 DBMS_FILE_TRANSFER.GET_FILE(
 source_directory_object => 'sales_dir_source',
 source_file_name => 'mytable.342.123456789',
 source_database => 'dbsa.example.com',
 destination_directory_object => 'sales_dir_target',
 destination_file_name => 'mytable');
END;
/

Note:

In this example, the destination data file name is mytable. Oracle ASM does
not allow a fully qualified file name form in the destination_file_name
parameter of the GET_FILE procedure.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about using the DBMS_FILE_TRANSFER package

• Oracle Automatic Storage Management Administrator's Guide for
information about fully qualified file name forms in ASM

• Oracle Database SQL Language Reference for information about how to
create a database link

Converting Data Between Platforms Using RMAN
When you use the RMAN CONVERT command to convert data, you can either convert
the data on the source platform after running Data Pump export, or you can convert
the data on the target platform before running Data Pump import. In either case, you
must transfer the data files from the source system to the target system.

Chapter 2
Converting Data Between Platforms Using RMAN

2-3

You can convert data with the following RMAN CONVERT commands:

• CONVERT DATAFILE

• CONVERT TABLESPACE

• CONVERT DATABASE

Note:

• Datatype restrictions apply to the RMAN CONVERT command.

• RMAN CONVERT commands do not support conversion of data files
between different endian formats for data files having undo segments.

• Converting Tablespaces on the Source System After Export
An example illustrates how to use the RMAN CONVERT TABLESPACE command to
convert tablespaces to a different platform.

• Converting Data Files on the Target System Before Import
An example illustrates how to use the RMAN CONVERT DATAFILE command to
convert data files to a different platform.

See Also:

• Oracle Database Backup and Recovery Reference

• Oracle Database Backup and Recovery User's Guide

Converting Tablespaces on the Source System After Export
An example illustrates how to use the RMAN CONVERT TABLESPACE command to
convert tablespaces to a different platform.

The example makes the following assumptions:

• The sales_1 and sales_2 tablespaces are being transported to a different
platform.

• The endianness of the source platform is different from the endianness of the
target platform.

• You want to convert the data on the source system, before transporting the
tablespace set to the target system.

• You have completed the Data Pump export on the source database.

Complete the following steps to convert the tablespaces on the source system:

1. At a command prompt, start RMAN and connect to the source database:

$ RMAN TARGET /

Recovery Manager: Release 12.1.0.1.0 - Production

Chapter 2
Converting Data Between Platforms Using RMAN

2-4

Copyright (c) 1982, 2012, Oracle and/or its affiliates. All rights reserved.

connected to target database: salesdb (DBID=3295731590)

2. Use the RMAN CONVERT TABLESPACE command to convert the data files into a
temporary location on the source platform.

In this example, assume that the temporary location, directory /tmp, has already
been created. The converted data files are assigned names by the system.

RMAN> CONVERT TABLESPACE sales_1,sales_2
2> TO PLATFORM 'Microsoft Windows IA (32-bit)'
3> FORMAT '/tmp/%U';

Starting conversion at source at 30-SEP-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile conversion
input datafile file number=00007 name=/u01/app/oracle/oradata/salesdb/
sales_101.dbf
converted datafile=/tmp/data_D-SALESDB_I-1192614013_TS-SALES_1_FNO-7_03jru08s
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:45
channel ORA_DISK_1: starting datafile conversion
input datafile file number=00008 name=/u01/app/oracle/oradata/salesdb/
sales_201.dbf
converted datafile=/tmp/data_D-SALESDB_I-1192614013_TS-SALES_2_FNO-8_04jru0aa
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:25
Finished conversion at source at 30-SEP-08

See Also:

Oracle Database Backup and Recovery Reference for a description of
the RMAN CONVERT command

3. Exit Recovery Manager:

RMAN> exit
Recovery Manager complete.

4. Transfer the data files to the target system.

Converting Data Files on the Target System Before Import
An example illustrates how to use the RMAN CONVERT DATAFILE command to convert
data files to a different platform.

During the conversion, you identify the data files by file name, not by tablespace
name. Until the tablespace metadata is imported, the target instance has no way of
knowing the desired tablespace names.

The example makes the following assumptions:

• You have not yet converted the data files for the tablespaces being transported.

If you used the DBMS_FILE_TRANSFER package to transfer the data files to the target
system, then the data files were converted automatically during the file transfer.
See "Converting Data Between Platforms Using the DBMS_FILE_TRANSFER
Package".

Chapter 2
Converting Data Between Platforms Using RMAN

2-5

• The following data files are being transported to a different platform:

– C:\Temp\sales_101.dbf

– C:\Temp\sales_201.dbf

• The endianness of the source platform is different from the endianness of the
target platform.

• You want to convert the data on the target system, before performing the Data
Pump import.

• The converted data files are placed in C:\app\orauser\oradata\orawin\, which is the
location of the existing data files for the target system:

Complete the following steps to convert the tablespaces on the target system:

1. If you are in SQL*Plus, then return to the host system:

SQL> HOST

2. Use the RMAN CONVERT DATAFILE command to convert the data files on the target
platform:

C:\>RMAN TARGET /

Recovery Manager: Release 12.1.0.1.0 - Production

Copyright (c) 1982, 2012, Oracle and/or its affiliates. All rights reserved.

connected to target database: ORAWIN (DBID=3462152886)

RMAN> CONVERT DATAFILE
2>'C:\Temp\sales_101.dbf',
3>'C:\Temp\sales_201.dbf'
4>TO PLATFORM="Microsoft Windows IA (32-bit)"
5>FROM PLATFORM="Solaris[tm] OE (32-bit)"
6>DB_FILE_NAME_CONVERT=
7>'C:\Temp\', 'C:\app\orauser\oradata\orawin\'
8> PARALLELISM=4;

If the source location, the target location, or both do not use Oracle Automatic
Storage Management (Oracle ASM), then the source and target platforms are
optional. RMAN determines the source platform by examining the data file, and the
target platform defaults to the platform of the host running the conversion.

If both the source and target locations use Oracle ASM, then you must specify the
source and target platforms in the DB_FILE_NAME_CONVERT clause.

See Also:

Oracle Database Backup and Recovery Reference for a description of
the RMAN CONVERT command

3. Exit Recovery Manager:

RMAN> exit
Recovery Manager complete.

Chapter 2
Converting Data Between Platforms Using RMAN

2-6

3
Connecting to the Database with SQL*Plus

Connect to the Oracle Database instance using SQL*Plus.

• Step 1: Open a Command Window
Take the necessary action on your platform to open a window into which you can
enter operating system commands.

• Step 2: Set Operating System Environment Variables
Depending on your platform, you may have to set environment variables before
starting SQL*Plus, or at least verify that they are set properly.

• Step 3: Start SQL*Plus
Start SQL*Plus.

• Step 4: Submit the SQL*Plus CONNECT Command
Submit the SQL*Plus CONNECT command to initially connect to the Oracle database
instance or at any time to reconnect as a different user.

Step 1: Open a Command Window
Take the necessary action on your platform to open a window into which you can enter
operating system commands.

• Open a command window.

Step 2: Set Operating System Environment Variables
Depending on your platform, you may have to set environment variables before
starting SQL*Plus, or at least verify that they are set properly.

For example, on most platforms, you must set the environment variables ORACLE_SID
and ORACLE_HOME. In addition, you must configure the PATH environment variable to
include the ORACLE_HOME/bin directory. Some platforms may require additional
environment variables:

• On UNIX and Linux, set environment variables by entering operating system
commands.

• On Windows, Oracle Universal Installer (OUI) automatically assigns values to
ORACLE_HOME and ORACLE_SID in the Windows registry.

If you did not create a database upon installation, OUI does not set ORACLE_SID in the
registry; after you create your database at a later time, you must set the ORACLE_SID
environment variable from a command window.

UNIX and Linux installations come with two scripts, oraenv and coraenv, that you can
use to easily set environment variables. For more information, see Oracle Database
Administrator's Reference for Linux and UNIX-Based Operating Systems.

3-1

For all platforms, when switching between instances with different Oracle homes, you
must change the ORACLE_HOME environment variable. If multiple instances share the
same Oracle home, then you must change only ORACLE_SID when switching instances.

Example 3-1 Setting Environment Variables in UNIX (C Shell)

setenv ORACLE_SID orcl
setenv ORACLE_HOME /u01/app/oracle/product/database_release_number/dbhome_1
setenv LD_LIBRARY_PATH $ORACLE_HOME/lib:/usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

Example 3-2 Setting Environment Variables in UNIX (Bash Shell)

export ORACLE_SID=orcl
export ORACLE_HOME=/u01/app/oracle/product/database_release_number/dbhome_1
export LD_LIBRARY_PATH=$ORACLE_HOME/lib:/usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

Example 3-3 Setting Environment Variables in Windows

SET ORACLE_SID=orawin2

Example 3-3 assumes that ORACLE_HOME and ORACLE_SID are set in the registry but
that you want to override the registry value of ORACLE_SID to connect to a different
instance.

On Windows, environment variable values that you set in a command prompt window
override the values in the registry.

Step 3: Start SQL*Plus
Start SQL*Plus.

1. Do one of the following:

• Ensure that the PATH environment variable contains ORACLE_HOME/bin.

• Change directory to ORACLE_HOME/bin. Ensure that the PATH environment
variable contains a dot (“.”).

2. Enter the following command (case-sensitive on UNIX and Linux):

sqlplus /nolog

You can also run the sqlplus command by specifying its complete path:

ORACLE_HOME/bin/sqlplus /nolog

Step 4: Submit the SQL*Plus CONNECT Command
Submit the SQL*Plus CONNECT command to initially connect to the Oracle database
instance or at any time to reconnect as a different user.

• In SQL*Plus, submit the CONNECT command.

Example 3-4 Connecting to a Local Database User

This simple example connects to a local database as user SYSTEM. SQL*Plus prompts
for the SYSTEM user password.

connect system

Chapter 3
Step 3: Start SQL*Plus

3-2

Example 3-5 Connecting to a Local Database User with SYSDBA Privilege

This example connects to a local database as user SYS with the SYSDBA privilege.
SQL*Plus prompts for the SYS user password.

connect sys as sysdba

When connecting as user SYS, you must connect AS SYSDBA.

Example 3-6 Connecting to a Local Database User with SYSBACKUP Privilege

This example connects to a local database as user SYSBACKUP with the SYSBACKUP
privilege. SQL*Plus prompts for the SYSBACKUP user password.

connect sysbackup as sysbackup

When connecting as user SYSBACKUP, you must connect AS SYSBACKUP.

Example 3-7 Connecting Locally with SYSDBA Privilege with Operating
System Authentication

This example connects locally with the SYSDBA privilege with operating system
authentication.

connect / as sysdba

Example 3-8 Connecting with Easy Connect Syntax

This example uses easy connect syntax to connect as user salesadmin to a remote
database running on the host dbhost.example.com. The Oracle Net listener (the
listener) is listening on the default port (1521). The database service is
sales.example.com. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@"dbhost.example.com/sales.example.com"

Example 3-9 Connecting with Easy Connect Syntax with the Service Handler
Type Indicated

This example is identical to Example 3-8, except that the service handler type is
indicated.

connect salesadmin@"dbhost.example.com/sales.example.com:dedicated"

Example 3-10 Connecting with Easy Connect Syntax with a Nondefault
Listener Port

This example is identical to Example 3-8, except that the listener is listening on the
nondefault port number 1522.

connect salesadmin@"dbhost.example.com:1522/sales.example.com"

Example 3-11 Connecting with Easy Connect Syntax with the Host IP Address

This example is identical to Example 3-8, except that the host IP address is substituted
for the host name.

connect salesadmin@"192.0.2.5/sales.example.com"

Example 3-12 Connecting with an IPv6 Address

This example connects using an IPv6 address. Note the enclosing square brackets.

Chapter 3
Step 4: Submit the SQL*Plus CONNECT Command

3-3

connect salesadmin@"[2001:0DB8:0:0::200C:417A]/sales.example.com"

Example 3-13 Connecting by Specifying an Instance

This example specifies the instance to which to connect and omits the database
service name. Note that when you specify only the instance, you cannot specify the
service handler type.

connect salesadmin@"dbhost.example.com//orcl"

Example 3-14 Connecting with a Net Service Name

This example connects remotely as user salesadmin to the database service
designated by the net service name sales1. SQL*Plus prompts for the salesadmin
user password.

connect salesadmin@sales1

Example 3-15 Connecting with External Authentication

This example connects remotely with external authentication to the database service
designated by the net service name sales1.

connect /@sales1

Example 3-16 Connecting with SYSDBA Privilege and External Authentication

This example connects remotely with the SYSDBA privilege and with external
authentication to the database service designated by the net service name sales1.

connect /@sales1 as sysdba

Example 3-17 Connecting as a User with a Service Name

This example connects remotely as user salesadmin to the database service
designated by the net service name sales1. The database session starts in the rev21
edition. SQL*Plus prompts for the salesadmin user password.

connect salesadmin@sales1 edition=rev21

Note:

If you come across any issues while connecting to the database as a user
with the SYSDBA privileges, then refer to My Oracle Support Notes 69642.1,
233223.1, 18089.1, and 747456.1.

Chapter 3
Step 4: Submit the SQL*Plus CONNECT Command

3-4

4
Migrating Oracle Database

Use the full transportable export/import feature to copy an entire database from one
Oracle Database instance to another.

• Checking Character Set Compatibility
Run these commands on the source and destination databases to find character
sets that are compatible.

• Transporting a Database Using an Export Dump File
You can transport a database using an export dump file.

Checking Character Set Compatibility
Run these commands on the source and destination databases to find character sets
that are compatible.

SQL> show parameter CHARACTER

NAME TYPE VALUE
--------- --------- ----------
nls_numeric_characters string

SQL> select * from database_properties where PROPERTY_NAME in
('NLS_CHARACTERSET','NLS_NCHAR_CHARACTERSET');

PROPERTY_NAME PROPERTY_VALUE DESCRIPTION
----------------------- ------------ ------------------
NLS_NCHAR_CHARACTERSET AL16UTF16 NCHAR Character set
NLS_CHARACTERSET WE8MSWIN1252 Character set

SQL> select * from nls_database_parameters where parameter like '%SET%';

PROPERTY_NAME VALUE
------------------------ ---------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8MSWIN1252

Transporting a Database Using an Export Dump File
You can transport a database using an export dump file.

The following list of tasks summarizes the process of transporting a database using an
export dump file. Details for each task are provided in the subsequent example.

1. At the source database, configure each of the user-defined tablespaces in read-
only mode and export the database.

4-1

Ensure that the following parameters are set to the specified values:

• TRANSPORTABLE=ALWAYS

• FULL=Y

If the source database is an Oracle Database 11g database (11.2.0.3 or later),
then you must set the VERSION parameter to 12 or higher.

If the source database contains any encrypted tablespaces or tablespaces
containing tables with encrypted columns, then you must either specify
ENCRYPTION_PWD_PROMPT=YES, or specify the ENCRYPTION_PASSWORD parameter.

The export dump file includes the metadata for objects contained within the user-
defined tablespaces and both the metadata and data for user-defined objects
contained within the administrative tablespaces, such as SYSTEM and SYSAUX.

2. Transport the export dump file.

Copy the export dump file to a place that is accessible to the target database.

3. Transport the data files for all of the user-defined tablespaces in the database.

Copy the data files to a place that is accessible to the target database.

If the source platform and target platform are different, then check the endian
format of each platform by running the query on the V$TRANSPORTABLE_PLATFORM
view in "Transporting Data Across Platforms".

If the source platform's endian format is different from the target platform's endian
format, then use one of the following methods to convert the data files:

• Use the GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package
to transfer the data files. These procedures convert the data files to the target
platform's endian format automatically.

• Use the RMAN CONVERT command to convert the data files to the target
platform's endian format.

Note:

Conversion of data files between different endian formats is not
supported for data files having undo segments.

See "Converting Data Between Platforms" for more information.

4. (Optional) Restore the user-defined tablespaces to read/write mode on the source
database.

5. At the target database, import the database.

When the import is complete, the user-defined tablespaces are in read/write mode.

Example

The tasks for transporting a database are illustrated in detail in this example. This
example assumes that the source platform is Solaris and the target platform is
Microsoft Windows.

It also assumes that the source platform has the following data files and tablespaces:

Chapter 4
Transporting a Database Using an Export Dump File

4-2

Tablespace Type Data File

sales User-defined /u01/app/oracle/oradata/mydb/sales01.dbf

customers User-defined /u01/app/oracle/oradata/mydb/cust01.dbf

employees User-defined /u01/app/oracle/oradata/mydb/emp01.dbf

SYSTEM Administrative /u01/app/oracle/oradata/mydb/system01.dbf

SYSAUX Administrative /u01/app/oracle/oradata/mydb/sysaux01.dbf

This example makes the following additional assumptions:

• The target database is a new database that is being populated with the data from
the source database. The name of the source database is mydb.

• Both the source database and the target database are Oracle Database 19c
databases.

Complete the following tasks to transport the database using an export dump file:

Task 1 Generate the Export Dump File
Generate the export dump file by completing the following steps:

1. Start SQL*Plus and connect to the database as an administrator or as a user who
has either the ALTER TABLESPACE or MANAGE TABLESPACE system privilege.

2. Make all of the user-defined tablespaces in the database read-only.

ALTER TABLESPACE sales READ ONLY;

ALTER TABLESPACE customers READ ONLY;

ALTER TABLESPACE employees READ ONLY;

3. Invoke the Data Pump export utility as a user with DATAPUMP_EXP_FULL_DATABASE
role and specify the full transportable export/import options.

SQL> HOST

$ expdp user_name full=y dumpfile=expdat.dmp directory=data_pump_dir
 transportable=always logfile=export.log

Password: password

You must always specify TRANSPORTABLE=ALWAYS, which determines whether the
transportable option is used.

This example specifies the following Data Pump parameters:

• The FULL parameter specifies that the entire database is being exported.

• The DUMPFILE parameter specifies the name of the structural information
export dump file to be created, expdat.dmp.

• The DIRECTORY parameter specifies the directory object that points to the
operating system or Oracle Automatic Storage Management location of the
dump file. You must create the DIRECTORY object before invoking Data Pump,
and you must grant the READ and WRITE object privileges on the directory to

Chapter 4
Transporting a Database Using an Export Dump File

4-3

the user running the Export utility. See Oracle Database SQL Language
Reference for information on the CREATE DIRECTORY command.

In a non-CDB, the directory object DATA_PUMP_DIR is created automatically.
Read and write access to this directory is automatically granted to the DBA
role, and thus to users SYS and SYSTEM.

However, the directory object DATA_PUMP_DIR is not created automatically in a
PDB. Therefore, when importing into a PDB, create a directory object in the
PDB and specify the directory object when you run Data Pump.

See Also:

– Oracle Database Utilities for information about the default
directory when the DIRECTORY parameter is omitted

– Oracle Multitenant Administrator's Guide for more information
about PDBs

• The LOGFILE parameter specifies the file name of the log file to be written by
the export utility. In this example, the log file is written to the same directory
as the dump file, but it can be written to a different location.

To perform a full transportable export on an Oracle Database 11g Release 2
(11.2.0.3) or later Oracle Database 11g database, use the VERSION parameter, as
shown in the following example:

expdp user_name full=y dumpfile=expdat.dmp directory=data_pump_dir
 transportable=always version=12 logfile=export.log

Full transportable import is supported only for Oracle Database 12c and later
databases.

Note:

In this example, the Data Pump utility is used to export only data
dictionary structural information (metadata) for the user-defined
tablespaces. Actual data is unloaded only for the administrative
tablespaces (SYSTEM and SYSAUX), so this operation goes relatively
quickly even for large user-defined tablespaces.

4. Check the log file for errors, and take note of the dump file and data files that you
must transport to the target database. expdp outputs the names and paths of
these files in messages like these:

**
Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:
 /u01/app/oracle/admin/mydb/dpdump/expdat.dmp
**
Datafiles required for transportable tablespace SALES:
 /u01/app/oracle/oradata/mydb/sales01.dbf
Datafiles required for transportable tablespace CUSTOMERS:

Chapter 4
Transporting a Database Using an Export Dump File

4-4

 /u01/app/oracle/oradata/mydb/cust01.dbf
Datafiles required for transportable tablespace EMPLOYEES:
 /u01/app/oracle/oradata/mydb/emp01.dbf

5. When finished, exit back to SQL*Plus:

$ exit

See Also:

Oracle Database Utilities for information about using the Data Pump utility

Task 2 Transport the Export Dump File
Transport the dump file to the directory pointed to by the DATA_PUMP_DIR directory
object, or to any other directory of your choosing. The new location must be
accessible to the target database.
At the target database, run the following query to determine the location of
DATA_PUMP_DIR:

SELECT * FROM DBA_DIRECTORIES WHERE DIRECTORY_NAME = 'DATA_PUMP_DIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- ---------------- -----------------------------------
SYS DATA_PUMP_DIR C:\app\orauser\admin\orawin\dpdump\

Task 3 Transport the Data Files for the User-Defined Tablespaces
Transport the data files of the user-defined tablespaces in the database to a place
that is accessible to the target database.
In this example, transfer the following data files from the source database to the target
database:

• sales01.dbf

• cust01.dbf

• emp01.dbf

If you are transporting the database to a platform different from the source platform,
then determine if cross-platform database transport is supported for both the source
and target platforms, and determine the endianness of each platform. If both platforms
have the same endianness, then no conversion is necessary. Otherwise, you must do
a conversion of each tablespace in the database, either at the source database or at
the target database.
If you are transporting the database to a different platform, you can execute the
following query on each platform. If the query returns a row, then the platform
supports cross-platform tablespace transport.

SELECT d.PLATFORM_NAME, ENDIAN_FORMAT
 FROM V$TRANSPORTABLE_PLATFORM tp, V$DATABASE d
 WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

The following is the query result from the source platform:

PLATFORM_NAME ENDIAN_FORMAT
---------------------------------- --------------
Solaris[tm] OE (32-bit) Big

The following is the query result from the target platform:

Chapter 4
Transporting a Database Using an Export Dump File

4-5

PLATFORM_NAME ENDIAN_FORMAT
---------------------------------- --------------
Microsoft Windows IA (32-bit) Little

In this example, you can see that the endian formats are different. Therefore, in this
case, a conversion is necessary for transporting the database. Use either the
GET_FILE or PUT_FILE procedure in the DBMS_FILE_TRANSFER package to transfer the
data files. These procedures convert the data files to the target platform's endian
format automatically. Transport the data files to the location of the existing data files of
the target database. On the UNIX and Linux platforms, this location is
typically /u01/app/oracle/oradata/dbname/ or +DISKGROUP/dbname/datafile/.
Alternatively, you can use the RMAN CONVERT command to convert the data files. See
"Converting Data Between Platforms" for more information.

Note:

If no endianness conversion of the tablespaces is needed, then you can
transfer the files using any file transfer method.

Task 4 (Optional) Restore Tablespaces to Read/Write Mode
Make the transported tablespaces read/write again at the source database, as
follows:

ALTER TABLESPACE sales READ WRITE;
ALTER TABLESPACE customers READ WRITE;
ALTER TABLESPACE employees READ WRITE;

You can postpone this task to first ensure that the import process succeeds.

Task 5 At the Target Database, Import the Database
Invoke the Data Pump import utility as a user with DATAPUMP_IMP_FULL_DATABASE role
and specify the full transportable export/import options.

impdp user_name full=Y dumpfile=expdat.dmp directory=data_pump_dir
 transport_datafiles=
 '/u01/app/oracle/oradata/mydb/sales01.dbf',
 '/u01/app/oracle/oradata/mydb/cust01.dbf',
 '/u01/app/oracle/oradata/mydb/emp01.dbf'
 logfile=import.log

Password: password

This example specifies the following Data Pump parameters:

• The FULL parameter specifies that the entire database is being imported in FULL
mode.

• The DUMPFILE parameter specifies the exported file containing the metadata for
the user-defined tablespaces and both the metadata and data for the
administrative tablespaces to be imported.

• The DIRECTORY parameter specifies the directory object that identifies the location
of the export dump file. You must create the DIRECTORY object before invoking
Data Pump, and you must grant the READ and WRITE object privileges on the

Chapter 4
Transporting a Database Using an Export Dump File

4-6

directory to the user running the Import utility. See Oracle Database SQL
Language Reference for information on the CREATE DIRECTORY command.

In a non-CDB, the directory object DATA_PUMP_DIR is created automatically. Read
and write access to this directory is automatically granted to the DBA role, and thus
to users SYS and SYSTEM.

However, the directory object DATA_PUMP_DIR is not created automatically in a
PDB. Therefore, when importing into a PDB, create a directory object in the PDB
and specify the directory object when you run Data Pump.

See Also:

– Oracle Database Utilities for information about the default directory
when the DIRECTORY parameter is omitted

– Oracle Multitenant Administrator's Guide for more information about
PDBs

• The TRANSPORT_DATAFILES parameter identifies all of the data files to be imported.

You can specify the TRANSPORT_DATAFILES parameter multiple times in a
parameter file specified with the PARFILE parameter if there are many data files.

• The LOGFILE parameter specifies the file name of the log file to be written by the
import utility. In this example, the log file is written to the directory from which the
dump file is read, but it can be written to a different location.

After this statement executes successfully, check the import log file to ensure that no
unexpected error has occurred.
When dealing with a large number of data files, specifying the list of data file names in
the statement line can be a laborious process. It can even exceed the statement line
limit. In this situation, you can use an import parameter file. For example, you can
invoke the Data Pump import utility as follows:

impdp user_name parfile='par.f'

For example, par.f might contain the following lines:

FULL=Y
DUMPFILE=expdat.dmp
DIRECTORY=data_pump_dir
TRANSPORT_DATAFILES=
'/u01/app/oracle/oradata/mydb/sales01.dbf',
'/u01/app/oracle/oradata/mydb/cust01.dbf',
'/u01/app/oracle/oradata/mydb/emp01.dbf'
LOGFILE=import.log

Chapter 4
Transporting a Database Using an Export Dump File

4-7

Note:

• During the import, user-defined tablespaces might be temporarily made
read/write for metadata loading. Ensure that no user changes are made
to the data during the import. At the successful completion of the import,
all user-defined tablespaces are made read/write.

• When performing a network database import, the TRANSPORTABLE
parameter must be set to always.

• When you are importing into a PDB in a CDB, specify the connect
identifier for the PDB after the user name. For example, if the connect
identifier for the PDB is hrpdb, then enter the following when you run the
Oracle Data Pump Import utility:

impdp user_name@hrpdb ...

See Also:

• Oracle Database Utilities for information about using the import utility

• Oracle Multitenant Administrator's Guide

Chapter 4
Transporting a Database Using an Export Dump File

4-8

Index

C
CONNECT command, SQL*Plus, 3-2

E
editions

in CONNECT command, 3-2

F
full transportable export/import, 1-1

I
import operations

PDBs, 4-8

P
PDBs

import operations, 4-8

T
tablespaces

containing XMLTypes, 1-3
transporting data

across platforms, 1-1
character sets, 1-3
compatibility considerations, 1-5
full transportable export/import, 1-1

limitations, 1-6
limitations, 1-3
national character sets, 1-3
PDBs, 4-8
XMLTypes in, 1-3

X
XMLTypes

transporting data, 1-3

Index-1

	Contents
	Preface
	Use Case Scenario for this Document
	Documentation Accessibility

	1 Transporting Databases
	Transporting Data Across Platforms
	General Limitations on Transporting Data
	Compatibility Considerations for Transporting Data
	Limitations on Full Transportable Export/import

	2 Converting Data to the Endian Format of the Target Operating System
	Converting Data Between Platforms
	Converting Data Between Platforms Using the DBMS_FILE_TRANSFER Package
	Converting Data Between Platforms Using RMAN
	Converting Tablespaces on the Source System After Export
	Converting Data Files on the Target System Before Import

	3 Connecting to the Database with SQL*Plus
	Step 1: Open a Command Window
	Step 2: Set Operating System Environment Variables
	Step 3: Start SQL*Plus
	Step 4: Submit the SQL*Plus CONNECT Command

	4 Migrating Oracle Database
	Checking Character Set Compatibility
	Transporting a Database Using an Export Dump File

