Oracle® Database
Database In-Memory Guide

21c
F31239-03
December 2020

ORACLE"

Oracle Database Database In-Memory Guide, 21c
F31239-03

Copyright © 2016, 2020, Oracle and/or its affiliates.
Primary Author: Lance Ashdown

Contributing Authors: Maria Colgan, Vineet Marwah, Andy Rivenes, Randy Urbano, Roopesh Ashok Kumar,
Frederick Kush

Contributors: Yasin Baskan, Nigel Bayliss, Eric Belden, Larry Carpenter, Shasank Chavan, William

Endress, Michael Gleeson, Allison Holloway, Katsumi Inoue, Jesse Kamp, Chinmayi Krishnappa, Vasudha
Krishnaswamy, Hariharan Lakshmanan, Sue Lee, Teck Hua Lee, Huagang Li, Yunrui Li, Yuehua Liu, Roger
Macnicol, Aurosish Mishra, Ajit Mylavarapu, Khoa Nguyen, Jay Patel, Kathy Rich, Beth Roeser, Rich Strohm,
Dina Thomas, Qiuhong Wang, Bob Zebian

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xi
Documentation Accessibility Xi
Related Documents Xi
Conventions Xii

Part | Oracle Database In-Memory Concepts
1 Introduction to Oracle Database In-Memory

Changes in Oracle Database Release 21c for the In-Memory Guide 1-1
Challenges for Analytic Applications 1-2
The Single-Format Approach 1-3
The Oracle Database In-Memory Solution 1-4
What Is Database In-Memory? 1-4
IM Column Store 1-4
Advanced Query Optimizations 1-6
High Availability Support 1-6
Improved Performance for Analytic Queries 1-7
Improved Performance for Data Scans 1-7
Improved Performance for Joins 1-9
Improved Performance for Aggregation 1-10
Improved Performance for Mixed Workloads 1-10
In-Memory Support for Exadata Flash Cache 1-11
High Availability Support 1-12
Ease of Adoption 1-12
Requirements for Database In-Memory 1-14
Principal Tasks for Database In-Memory 1-14
Tools for the IM Column Store 1-18
In-Memory Advisor 1-18
Cloud Control Pages for the IM Column Store 1-19
Oracle Compression Advisor 1-19

ORACLE

Oracle Data Pump and the IM Column Store 1-20
2 In-Memory Column Store Architecture
Dual-Format: Column and Row 2-1
Columnar Data in the In-Memory Area 2-1
Size of the In-Memory Area 2-2
Memory Pools in the In-Memory Area 2-3
Row Data in the Database Buffer Cache 2-5
In-Memory Storage Units 2-7
In-Memory Compression Units (IMCUSs) 2-8
IMCUs and Schema Objects 2-8
Column Compression Units (CUs) 2-14
In-Memory Storage Indexes 2-17
Snapshot Metadata Units (SMUS) 2-18
IMCUs and SMUs 2-19
Transaction Journal 2-19
In-Memory Expression Units (IMEUS) 2-20
Expression Statistics Store (ESS) 2-21
In-Memory Process Architecture 2-22
In-Memory Coordinator Process (IMCO) 2-22
Space Management Worker Processes (Wnnn) 2-23
In-Memory Dynamic Scans 2-23
Purpose of IM Dynamic Scans 2-24
How IM Dynamic Scans Work 2-24
Interface for IM Dynamic Scans 2-26
CPU Architecture: SIMD Vector Processing 2-28
SIMD and Non-JSON LOBs 2-29
SIMD Access for JSON Data 2-30
SIMD and Oracle Numbers 2-30
SIMD and Exadata Smart Flash Cache 2-30
Part || Configuring and Populating the IM Column Store
3 Enabling and Sizing the IM Column Store
Overview of Enabling the IM Column Store 3-1
Estimating the Required Size of the IM Column Store 3-1
Enabling the IM Column Store for a CDB or PDB 3-3
Increasing the Size of the IM Column Store Dynamically 3-5
ORACLE v

Disabling the IM Column Store 3-6

4 Automating Management of In-Memory Objects

Configuring Automatic In-Memory 4-1
Purpose of Automatic In-Memory 4-1
How Automatic In-Memory Works 4-2

Automatic In-Memory Heat Level 4-2
How Enabling Objects for Automatic In-Memory Works 4-3
How Automatic In-Memory Population Works 4-5
How Automatic In-Memory Eviction Works 4-5
User Interface for Automatic In-Memory 4-7
Controlling Automatic In-Memory 4-9
Setting the Time Interval for Automatic In-Memory 4-10

Enabling ADO for the IM Column Store 4-11
About ADO Policies and the IM Column Store 4-11
Purpose of ADO and the IM Column Store 4-12
How ADO Works with Columnar Data 4-13

How Heat Map Works 4-14
How Policy Evaluation Works 4-14
Controls for ADO and the IM Column Store 4-15
Creating an ADO Policy for the IM Column Store 4-17

5 Enabling Objects for In-Memory Population Manually

About Manually Enabling Objects for In-Memory Population 5-1
Purpose of Enabling Objects for In-Memory Population 5-1
Controls for In-Memory Objects 5-2

The INMEMORY Subclause 5-2
Priority Options for the Population of In-Memory Objects 5-6
Compression Levels for In-Memory Objects 5-8
Oracle Compression Advisor 5-10

Enabling and Disabling Tables for the IM Column Store 5-10
Enabling New Tables for the In-Memory Column Store 5-10
Enabling and Disabling Existing Tables for the IM Column Store 5-11
Enabling and Disabling Tables for the IM Column Store: Examples 5-11

Creating an In-Memory Table: Example 5-12
Creating a Table with In-Memory Partitions: Example 5-12
Creating an In-Memory External Table: Example 5-13
Creating an In-Memory Partitioned External Table: Example 5-14
Creating and Populating a Hybrid External Table: Example 5-17

ORACLE Y

Enabling an Existing Table for the IM Column Store: Example 5-20
Setting In-Memory Compression to FOR CAPACITY LOW: Example 5-20
Setting In-Memory Priority to HIGH: Example 5-21
Changing the Compression and Priority Settings for an In-Memory Table:
Example 5-21
Disabling a Table for the IM Column Store: Example 5-22
Disabling Columnar Format on Exadata Smart Flash Cache: Example 5-22
Enabling and Disabling Columns for In-Memory Tables 5-22
About In-Memory Columns 5-22
Selective Columns 5-22
IM Virtual Columns 5-26
IM Full Text Columns 5-27
Enabling IM Virtual Columns 5-29
Enabling IM Full Text Columns 5-33
Enabling a Subset of Columns for the IM Column Store: Example 5-34
Specifying INMEMORY Column Attributes on a NO INMEMORY Table: Example 5-35
Enabling and Disabling Tablespaces for the IM Column Store 5-38
Enabling and Disabling Materialized Views for the IM Column Store 5-39
6 Populating the IM Column Store Manually
About Manual Population of In-Memory Objects 6-1
How Manual In-Memory Population Works 6-1
Prioritization of In-Memory Population 6-1
How Background Processes Populate IMCUs 6-5
User Interface for Manual In-Memory Population 6-6
Population Using SELECT 6-6
Population Using DBMS_INMEMORY.POPULATE 6-6
Population Using DBMS_INMEMORY_ADMIN.POPULATE_WAIT 6-7
Population Using DBMS_INMEMORY.REPOPULATE 6-8
Forcing Initial Population of an In-Memory Object 6-9
Populating In-Memory Tables Manually: Examples 6-11
Populating an In-Memory Table Using a Full Table Scan: Example 6-11
Populating a Table Using the POPULATE Procedure: Example 6-13
Setting a Timeout Using the POPULATE_WAIT Function: Example 6-14
Populating an In-Memory External Table Using DBMS_INMEMORY.POPULATE:
Example 6-15
Refreshing an In-Memory External Table Using the REPOPULATE Procedure:
Example 6-17
ORACLE Vi

Part Ill Optimizing In-Memory Queries

7 Optimizing Queries with In-Memory Expressions

About IM Expressions 7-1
Purpose of IM Expressions 7-2
How IM Expressions Work 7-3

IM Expressions Infrastructure 7-3
Capture of IM Expressions 7-5

How the ESS Works 7-6

How the Database Populates IM Expressions 7-8

How IMEUs Relate to IMCUs 7-9

User Interfaces for IM Expressions 7-9
INMEMORY_EXPRESSIONS_USAGE 7-9
DBMS_INMEMORY_ADMIN and DBMS_INMEMORY 7-10

Basic Tasks for IM Expressions 7-11
Configuring IM Expression Usage 7-12
Capturing and Populating IM Expressions 7-13
Dropping IM Expressions 7-17

8 Optimizing In-Memory Joins

About In-Memory Joins 8-1
Optimizing Joins with Join Groups 8-1
About Join Groups 8-1
Purpose of Join Groups 8-2
How Join Groups Work 8-4
How a Join Group Uses a Common Dictionary 8-4

How a Join Group Optimizes Scans 8-5

When a Hash Join Uses Common Dictionary Encodings 8-7
Creating Join Groups 8-9
Monitoring Join Group Usage 8-12
Monitoring Join Groups Using a SQL Monitor Report: Example 8-13
Monitoring Join Groups from the Command Line: Example 8-16
Optimizing Joins Using In-Memory Deep Vectorization 8-18
About In-Memory Deep Vectorization 8-18
How In-Memory Deep Vectorization Works 8-19
How an In-Memory Vectorized Join Works 8-19
User Interface for Deep Vectorization 8-20
In-Memory Vectorized Join: Example 8-20

ORACLE

Vii

9

10

Optimizing Aggregation

Optimizing In-Memory Aggregation with VECTOR GROUP BY 9-1
About IM Aggregation 9-1
Purpose of IM Aggregation 9-1

When IM Aggregation Is Useful 9-2
When IM Aggregation Is Not Beneficial 9-3
How IM Aggregation Works 9-4
When the Optimizer Chooses IM Aggregation 9-4
Key Vector 9-5
Two Phases of IM Aggregation 9-6
IM Aggregation: Scenario 9-7
Controls for IM Aggregation 9-13
In-Memory Aggregation: Example 9-14

Optimizing In-Memory Arithmetic 9-15
About In-Memory Optimized Arithmetic 9-15
Enabling and Disabling In-Memory Optimized Arithmetic 9-16

Optimizing Repopulation of the IM Column Store

About Repopulation of the IM Column Store 10-1
Row Modifications and the Transaction Journal 10-1
Automatic Repopulation 10-1
Manual Repopulation of External Tables 10-2

How Data Loading Works with the IM Column Store 10-2
How Conventional DML Works with the IM Column Store 10-2

Staleness Threshold 10-3
Double Buffering 10-3
How Direct Path Loads Work with the IM Column Store 10-4
How a Partition Exchange Load Works with the IM Column Store 10-5

When the Database Repopulates the IM Column Store 10-7
Threshold-Based and Trickle Repopulation 10-7
Factors Affecting Repopulation 10-9

Controls for Repopulation of the IM Column Store 10-10

Optimizing Trickle Repopulation: Tutorial 10-11

Part IV High Availability and the IM Column Store

ORACLE

viii

11 Managing IM FastStart for the IM Column Store

About IM FastStart 11-1
Purpose of IM FastStart 11-1
How IM FastStart Works 11-1

How the Database Manages the FastStart Area 11-2
How the Database Reads from the FastStart Area 11-5

Enabling IM FastStart for the IM Column Store 11-6

Retrieving the Name of the Current IM FastStart Tablespace 11-8

Migrating the FastStart Area to a Different Tablespace 11-8

Disabling IM FastStart for the IM Column Store 11-10

12 Deploying IM Column Stores in Oracle RAC

Overview of Database In-Memory and Oracle RAC 12-1
Multiple IM Column Stores 12-1
Distribution and Duplication of Columnar Data in Oracle RAC 12-4

Distribution of Columnar Data in Oracle RAC 12-4
Duplication of Columnar Data in Oracle RAC 12-8
Parallelism in Oracle RAC 12-11
Serial and Parallel Queries in Oracle RAC 12-11
Auto DOP in Oracle RAC 12-12
FastStart Area in Oracle RAC 12-13

Configuring In-Memory Services in Oracle RAC 12-14
Instance-Level Service Controls 12-14
Object-Level Service Controls 12-15
Benefits of Services for Database In-Memory in Oracle RAC 12-17
Configuring an In-Memory Service for a Subset of Nodes: Example 12-17

13 Deploying an IM Column Store with Oracle Active Data Guard

About Database In-Memory and Active Data Guard 13-1

Purpose of IM Column Stores in Oracle Active Data Guard 13-1
Identical IM Column Stores in Primary and Standby Databases 13-1

IM Column Store in Standby Database Only 13-2
Different Objects in the Primary and Standby IM Column Stores 13-2

How IM Column Stores Work in Oracle Active Data Guard 13-4
In-Memory Restrictions in Active Data Guard 13-5
Configuring IM Column Stores in an Oracle Active Data Guard Environment 13-5

ORACLE

Part \V Database In-Memory Reference

14

15

In-Memory Initialization Parameters

In-Memory Views

Using IM Column Store in Cloud Control

Meeting Prerequisites for Using IM Column Store in Cloud Control A-1
Using the In-Memory Column Store Central Home Page to Monitor In-Memory
Support for Database Objects A-2
Specifying In-Memory Details When Creating a Table or Partition A-3
Viewing or Editing IM Column Store Details of a Table A-3
Viewing or Editing IM Column Store Details of a Partition A-3
Specifying IM Column Store Details During Tablespace Creation A-4
Viewing and Editing IM Column Store Details of a Tablespace A-4
Specifying IM Column Store Details During Materialized View Creation A-4
Viewing or Editing IM Column Store Details of a Materialized View A-5
Glossary
Index

X

ORACLE"

Preface

Audience

This manual explains the architecture and tasks associated with the Oracle Database
In-Memory feature set.

This preface contains the following topics:

This document is intended for database administrators who manage an In-Memory
Column Store (IM column store), and developers who optimize analytic queries that
use Oracle Database In-Memory features.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

This manual assumes that you are familiar with Oracle Database Concepts. The
following books are frequently referenced:

* Oracle Database Data Warehousing Guide

e Oracle Database VLDB and Partitioning Guide
e Oracle Database SQL Tuning Guide

* Oracle Database SQL Language Reference

* Oracle Database Reference

Many examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database. See Oracle
Database Sample Schemas for information on how these schemas were created and
how you can use them.

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xii

Oracle Database In-Memory Concepts

This part introduces the Oracle Database In-Memory (Database In-Memory) feature
set, and explains the basic architecture of the In-Memory Column Store (IM column
store).

ORACLE

Introduction to Oracle Database In-Memory

Oracle Database In-Memory (Database In-Memory) is a suite of features that greatly
improves performance for real-time analytics and mixed workloads. The In-Memory
Column Store (IM column store) is the key feature of Database In-Memory.

" Note:

Database In-Memory features require the Oracle Database In-Memory
option. For the Database In-Memory Base Level, the IM column store size
is limited to 16 GB at the CDB level. See Oracle Database Licensing
Information User Manual for details on which features are supported for
different editions and services.

Changes in Oracle Database Release 21c for the In-
Memory Guide

ORACLE

The following major features are new in this release.

* Database In-Memory Base Level

Enable the Database In-Memory Base Level by setting the | NVEMORY_FORCE
initialization parameter to BASE_LEVEL. The Base Level enables you to experiment
with In-Memory features without purchasing the Oracle Database In-Memory
option.

When the Base Level is enabled, the IM column store size is limited to 16 GB

for a CDB and for every database instance in an Oracle RAC database. Also, the
compression level for all objects and columns is set to QUERY LONautomatically
and transparently, and Automatic In-Memory is disabled. The CellMemory feature
is disabled for Oracle Exadata.

See "Enabling the IM Column Store for a CDB or PDB" and Oracle Database
Licensing Information User Manual.

e Automatic In-Memory enhancements

When the | NVEMORY_AUTOVATI C_LEVEL initialization parameter is set to H GH, all
segments that do not have a pre-existing | NVEMORY setting are automatically
marked | NMEMORY MEMCOVPRESS AUTO. You do not need to have a thorough
knowledge of the workload, decide which objects to enable for In-Memory access,
and then populate them manually. The IM column store is largely self-managing.

See "Automating Management of In-Memory Objects".

« Database In-Memory external table enhancements

1-1

Chapter 1
Challenges for Analytic Applications

The | NMEMORY clause is supported at the table level and partition level of a
partitioned external table or hybrid external table. For hybrid tables, the table-level
| NVEMORY attribute applies to all partitions, whether internal or external.

See "In-Memory External Tables" and "Creating an In-Memory Partitioned External
Table: Example".

In-Memory full text columns

You can apply the | NVEMORY TEXT clause to non-scalar columns in an In-Memory
table. This clause enables fast In-Memory searching of text, XML, or JSON
documents using the CONTAI NS() or JSON_TEXTCONTAI NS() operators. When the
IM column store contains both scalar and non-scalar columns, OLAP applications
that access both types of data can avoid accessing row-based storage, thereby
improving performance.

See "IM Full Text Columns".
In-Memory hybrid scans

Oracle Database supports In-Memory hybrid scans on tables populated when not
all columns have been populated in the IM column store. A query is eligible for

an In-Memory hybrid scan when some columns in the SELECT list are NO | NVEMORY
and all columns in the predicate are | NVEMORY. In-Memory hybrid scans access
some data from the IM column store, and some data from the row store, potentially
improving performance by orders of magnitude over pure row store queries.

See "In-Memory Hybrid Scans".
In-Memory deep vectorization

The In-Memory deep vectorization framework optimizes complex SQL operators
such as joins using SIMD vector processing techniques. This feature is enabled
by default, but can be disabled by setting the | NVEMORY_DEEP_VECTORI ZATI ON
initialization parameter to false.

See "Optimizing Joins Using In-Memory Deep Vectorization".
JSON data type

The JSON data type represents a JSON document in an Oracle proprietary binary
format. This format is optimized for query and DML processing and can yield
performance improvements for JSON processing in the IM column store.

See "SIMD Access for JSON Data" and "Static Expressions: Binary JSON
Columns".

Spatial Support for Database In-Memory

You can perform spatial filter operations (SDO_FI LTER) on spatial tables stored in
the IM column store. To achieve faster query performance, you no longer need to
create and maintain spatial indexes for In-Memory spatial tables.

See "Enabling IM Virtual Columns".

Challenges for Analytic Applications

ORACLE

Traditionally, obtaining good performance for analytic queries meant satisfying several
requirements.

In a typical data warehouse or mixed-use database, requirements include the
following:

1-2

Chapter 1
The Single-Format Approach

e You must understand user access patterns.

* You must provide good performance, which typically requires creating indexes,
materialized views, and OLAP cubes.

For example, if you create 1 to 3 indexes for a table (1 primary key and 2 foreign key
indexes) to provide good performance for an OLTP application, then you may need to
create additional indexes to provide good performance for analytic queries.

Figure 1-1 Multiple Indexes

OLTP i Analytic
Table Indexes : Indexes
—— —— —— —t—
—/ " | /= LS4 L5
.
P ! . e e e e
.
.
—— ! —— —— ——
— ! e S B

Meeting the preceding requirements creates manageability and performance
problems. Additional access structures cause performance overhead because you
must create, manage, and tune them. For example, inserting a single row into a table
requires an update to all indexes on this table, which increases response time.

The demand for real-time analytics means that more analytic queries are being
executed in a mixed-workload database. The traditional approach is not sustainable.

The Single-Format Approach

ORACLE

Traditionally, relational databases store data in either row or columnar formats.
Memory and disk store data in the same format.

An Oracle database stores rows contiguously in data blocks. For example, in a table
with three rows, an Oracle data block stores the first row, and then the second row,
and then the third row. Each row contains all column values for the row. Data stored in
row format is optimized for transaction processing. For example, updating all columns
in a small number of rows may modify only a small number of blocks.

To address the problems relating to analytic queries, some database vendors have
introduced a columnar format. A columnar database stores selected columns—not
rows—contiguously. For example, in a large sales table, the sales IDs reside in one
column, and sales regions reside in a different column.

Analytical workloads access few columns while scanning, but scan the entire data

set. For this reason, the columnar format is the most efficient for analytics. Because
columns are stored separately, an analytical query can access only required columns,
and avoid reading inessential data. For example, a report on sales totals by region can
rapidly process many rows while accessing only a few columns.

Database vendors typically force customers to choose between a columnar and row-
based format. For example, if the data format is columnar, then the database stores
data in columnar format both in memory and on disk. Gaining the advantages of

one format means losing the advantages of the alternate format. Applications either

1-3

Chapter 1
The Oracle Database In-Memory Solution

achieve rapid analytics or rapid transactions, but not both. The performance problems
for mixed-use databases are not solved by storing data in a single format.

The Oracle Database In-Memaory Solution

The Oracle Database In-Memory (Database In-Memory) feature set includes the
In-Memory Column Store (IM column store), advanced query optimizations, and
availability solutions.

The Database In-Memory optimizations enable analytic queries to run orders of
magnitude faster on data warehouses and mixed-use databases.

What Is Database In-Memory?

The Database In-Memory feature set includes the IM column store, advanced query
optimizations, and availability solutions.

Database In-Memory features combine to accelerate analytic queries by orders of
magnitude without sacrificing OLTP performance or availability.

¢ See Also:

Oracle Database Licensing Information User Manual to learn about the
Database In-Memory option

IM Column Store

ORACLE

The IM column store maintains copies of tables, partitions, and individual columns in
a compressed columnar format that is optimized for rapid scans.

The IM column store stores the data for each table or view by column rather than

by row. Each column is divided into separate row subsets. A container called an
In-Memory Compression Unit (IMCU) stores all columns for a subset of rows in a table
segment.

¢ Video:

G} Video

Storage in the SGA

The IM column store resides in the In-Memory Area, which is an optional portion of the
system global area (SGA). The IM column store does not replace row-based storage
or the database buffer cache, but supplements it. The database enables data to be in
memory in both a row-based and columnar format, providing the best of both worlds.
The IM column store provides an additional transaction-consistent copy of table data
that is independent of the disk format.

1-4

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9370

ORACLE

Chapter 1
The Oracle Database In-Memory Solution

Figure 1-2 Dual-Format Database

Normal Buffer New In-Memory
Cache Format
— —
[3
Transactions
Reports
Sales Sales
Row Columnar
Format Format
Server
|
Sales
Table
Database
Note:

Objects populated in the IM column store do not also need to be loaded into
the buffer cache.

Population of Objects in the IM Column Store

In-Memory population is the automatic transformation of row-based data on disk

into columnar data in the IM column store. When the | NVEMORY_AUTOVATI C_LEVEL
initialization parameter is set to H GH, the database automatically decides the optimal
segments and columns to populate in the IM column store, evicting infrequently
accessed segments. No user decision-making is required.

Alternatively, you can manage the IM column store manually, specifying the | NVEMORY
clause at the object or column level, and then choosing when to populate objects. You
can specify the | NVEMORY clause at any of the following levels, listed from lowest level
to highest level:

e Column (nonvirtual or virtual)

e Table partition (internal or external)

e Table (internal or external) or materialized view
e Tablespace

For any object, you can configure all or a subset of its columns for population.
Similarly, for a partitioned table or materialized view, you can configure all or a subset
of the partitions for population.

1-5

Chapter 1
The Oracle Database In-Memory Solution

¢ See Also:

* "In-Memory Column Store Architecture”
e "Enabling the IM Column Store for a CDB or PDB"
e "Automating Management of In-Memory Objects"

e Oracle Database SQL Language Reference for more information about
the | NVEMORY clause

Advanced Query Optimizations

Database In-Memory includes several performance optimizations for analytic queries.

Optimizations include:

An expression is a combination of one or more values, operators,

and SQL functions (DETERM NI STI C only) that resolve to a value. By

default, the In-Memory Expression (IM expression) optimization enables

the DBMS_| NMEMORY_ADM N. | ME_ CAPTURE_EXPRESSI ONS procedure to identify and
populate “hot” expressions in the IM column store. An IM expression is
materialized as a hidden virtual column, but is accessed in the same way as a
non-virtual column.

A join group is a user-defined object that specifies a set of columns frequently
used to join a set of tables. In certain queries, join groups enable the database
to eliminate the performance overhead of decompressing and hashing column
values.

For aggregation queries that join small dimension tables to a large fact table,
In-Memory Aggregation (IM aggregation) uses the VECTOR GROUP BY operation to
enhance performance. This optimization aggregates data during the scan of the
fact table rather than afterward.

In the IM column store, repopulation is the automatic update of IMCUs after the
data within them has been significantly modified. If an IMCU has stale entries but
does not meet the staleness threshold, then background processes may instigate
trickle repopulation, which is the gradual repopulation of the IM column store.

Related Topics

Optimizing In-Memory Queries

This Part explains how to optimize queries using In-Memory Expressions, join
groups, and In-Memory aggregation. It also explains how the IM column store
repopulates modified data.

High Availability Support

ORACLE

Availability is the degree to which an application, service, or function is accessible on
demand.

Database In-Memory supports the following availability features:

In-Memory FastStart (IM FastStart) reduces the time to populate data into the IM
column store when a database instance restarts. IM FastStart achieves this by

1-6

Chapter 1
The Oracle Database In-Memory Solution

periodically saving a copy of the data currently populated in the IM column store
on the disk in its compressed columnar format.

Each node in an Oracle Real Application Clusters (Oracle RAC) environment

has its own IM column store. It is possible to have completely different objects
populated on every node, or to have larger objects distributed across all IM column
stores in the cluster. In Engineered Systems, it is also possible to have the same
objects appear in the IM column store on every node.

Starting in Oracle Database 12c Release 2 (12.2), an IM column store is
supported on a standby database in an Active Data Guard environment.

Related Topics

High Availability and the IM Column Store

This part explains how to use the IM column store with high availability features
such as In-Memory FastStart (IM FastStart), Oracle Data Guard, and Oracle Real
Application Clusters (Oracle RAC).

Improved Performance for Analytic Queries

The compressed columnar format enables faster scans, queries, joins, and
aggregates.

Improved Performance for Data Scans

ORACLE

The columnar format provides fast throughput for scanning large amounts of data.

The IM column store enables you to analyze data in real time, enabling you to explore
different possibilities and perform iterations. Specifically, the IM column store can
drastically improve performance for queries that do the following:

Scan many rows and applies filters that use operators such as <, >, =, and I N

Select few columns from a table or a materialized view that has many columns,
such as a query that accesses 5 out of 100 columns

Enable fast In-Memory searching of text, XML, or JSON documents when queries
specify the CONTAI NS() or JSON_TEXTCONTAI NS() operators

" Note:

"IM Full Text Columns"

Related Topics

CPU Architecture: SIMD Vector Processing
For data that is populated in the IM column store, the database uses SIMD (single
instruction, multiple data) processing.

Dual-Format: Column and Row
When you enable an IM column store, the SGA manages data in separate
locations: the In-Memory Area and the database buffer cache.

1-7

Chapter 1
The Oracle Database In-Memory Solution

» Configuring and Populating the IM Column Store
You can enable and size the In-Memory Column Store (IM column store). You can
also configure In-Memory settings for objects, and populate these objects in the IM
column store.

Pure In-Memory Scans

ORACLE

In a pure In-Memory scan, all data is accessed from the IM column store.

Scans of the IM column store are faster than scans of row-based data for the following
reasons:

» Elimination of buffer cache overhead

The IM column store stores data in a pure, In-Memory columnar format. The data
does not persist in the data files or generate redo, so the database avoids the
overhead of reading data from disk into the buffer cache.

e Data pruning

The database scans only the columns necessary for the query rather than entire
rows of data. Furthermore, the database uses storage indexes and an internal
dictionary to read only the necessary IMCUs for a specific query. For example, if a
query requests all sales for a store with a store ID less than 8, then the database
can use IMCU pruning to eliminate IMCUs that do not contain this value.

e Compression

Traditionally, the goal of compression is to save space. In the IM column store,
the goal of compression is to accelerate scans. The database automatically
compresses columnar data using algorithms that allow WHERE clause predicates
to be applied against the compressed formats. Depending on the type of
compression applied, Oracle Database can scan data in its compressed format
without decompressing it first. Therefore, the volume of data that the database
must scan in the IM column store is less than the corresponding volume in the
database buffer cache.

« Vector processing

Each CPU core scans local in-memory columns. To process data as an array,

the scans use SIMD (single instructional, multiple data) vector instructions. For
example, a query can read a set of values in a single CPU instruction rather than
read the values one by one. Vector scans by a CPU core are orders of magnitude
faster than row scans.

For example, suppose a user executes the following ad hoc query:

SELECT cust _id, time_id, channel _id
FROM sales

WHERE prod_id BETWEEN 14 and 29
ORDER BY 1, 2, 3;

When using the buffer cache, the database would typically scan an index to find the
product IDs, use the rowids to fetch the rows from disk into the buffer cache, and then
discard the unwanted column values. Scanning data in row format in the buffer cache
requires many CPU instructions, and can result in suboptimal CPU efficiency.

When using the IM column store, the database can scan only the requested sal es
columns, avoiding disk altogether. Scanning data in columnar format pipelines only

1-8

Chapter 1
The Oracle Database In-Memory Solution

necessary columns to the CPU, increasing efficiency. Each CPU core scans local
in-memory columns using SIMD vector instructions.

¢ Video:

@ Video

In-Memory Hybrid Scans

An In-Memory hybrid scan retrieves rows from both the IM column store and row store.

Using the selective columns feature, you can enable a subset of columns in an
object for In-Memory access. For example, if the only sal es columns specified in
application queries are prod_i d, cust _i d, and amount _sol d, then you might decide to
save memory by applying the | NVEMORY attribute to only these columns. However, a
user might issue the following ad hoc query:

SELECT prod_id, time_id FROM sal es WHERE cust _id IN (100, 200, 300);

Because time_i d is a NO | NVEMORY column, the query must retrieve data from the
row store, possibly reducing performance. However, the optimizer can consider an
In-Memory hybrid scan because the following conditions are met:

e All columns in the predicate are | NVEMORY. In this example, cust _i d is the only
predicate column, and it is | NVEMORY.

e The SELECT list contains an arbitrary mix of NO | NVEMORY and | NVEMORY columns. In
this example, prod_i d is | NVEMORY, but ti me_i d is NO | NVEMORY.

Within a single table scan of sal es, an In-Memory hybrid scan filters data in the IM
column store and projects data from the row store. In this way, an In-Memory hybrid
scan can increase response time by orders of magnitude.

¢ Note:

"In-Memory Hybrid Scans"

Improved Performance for Joins

ORACLE

A Bloom filter is a low-memory data structure that tests membership in a set. The IM
column store takes advantage of Bloom filters to improve the performance of joins.

Bloom filters speed up joins by converting predicates on small dimension tables to
filters on large fact tables. This optimization is useful when performing a join of multiple
dimensions with one large fact table. The dimension keys on fact tables have many
repeat values. The scan performance and repeat value optimization speeds up joins
by orders of magnitude.

1-9

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9371

Chapter 1
The Oracle Database In-Memory Solution

Related Topics

e About In-Memory Joins
Joins are an integral part of data warehousing workloads. The IM column store
enhances the performance of joins when the tables being joined are stored in
memory.

" See Also:

"About In-Memory Joins"

Improved Performance for Aggregation

An important aspect of analytics is to determine patterns and trends by aggregating
data. Aggregations and complex SQL queries run faster when data is stored in the IM
column store.

In Oracle Database, aggregation typically involves a GROUP BY clause. Traditionally,
the database used SORT and HASH operators. Starting in Oracle Database 12c Release
1 (12.1), the database offered VECTOR GROUP BY transformations to enable efficient
in-memory, array-based aggregation.

During a fact table scan, the database accumulates aggregate values into in-memory
arrays, and uses efficient algorithms to perform aggregation. Joins based on the
primary key and foreign key relationships are optimized for both star schemas and
snowflake schemas.

" See Also:

e "Optimizing In-Memory Aggregation with VECTOR GROUP BY"

e Oracle Database Data Warehousing Guide to learn more about SQL
aggregation

Improved Performance for Mixed Workloads

ORACLE

Although OLTP applications do not benefit from accessing data in the IM column store,
the dual-memory format can indirectly improve OLTP performance.

When all data is stored in rows, improving analytic query performance requires
creating access structures. The standard approach is to create analytic indexes,
materialized views, and OLAP cubes. For example, a table might require 3 indexes

to improve the performance of the OLTP application (1 primary key and 2 foreign

key indexes) and 10-20 additional indexes to improve the performance of the analytic
queries. While this technique can improve analytic query performance, it slows down
OLTP performance. Inserting a row into the table requires modifying all indexes on the
table. As the number of indexes increases, insertion speed decreases.

When you populate data into the IM column store, you can drop analytic access
structures. This technique reduces storage space and processing overhead because

1-10

Chapter 1
The Oracle Database In-Memory Solution

fewer indexes, materialized views, and OLAP cubes are required. For example, an
insert results in modifying 1-3 indexes instead of 11-23 indexes.

While the IM column store can drastically improve performance for analytic queries in
business applications, ad hoc analytic queries, and data warehouse workloads, pure
OLTP databases that perform short transactions using index lookups benefit less. The
IM column store does not improve performance for the following types of queries:

e A query with complex predicates
e A query that selects many columns

« A query that returns many rows

¢ See Also:

Oracle Database Data Warehousing Guide to learn more about physical data
warehouse design

In-Memory Support for Exadata Flash Cache

ORACLE

Not all objects marked | NVEMORY may fit in DRAM memory at the same time. If you use
Oracle Exadata Storage Server Software, then Exadata Smart Flash Cache can serve
as supplemental memory.

When the IM column store is enabled, Exadata Smart Flash Cache reformats data
automatically into In-Memory columnar format. In previous Exadata releases, only
Hybrid Column Compressed data was eligible for flash storage in IM columnar format.
The reformatting occurs for both compressed (including OLTP compression) and
uncompressed tables.

< Note:

If Database In-Memory Base Level is enabled, then the CELLMEMORY
feature is disabled for Oracle Exadata.

With this format, most Database In-Memory performance enhancements are
supported in Smart Scan, including joins and aggregation. Also, reformatting
uncompressed and OLTP-compressed data blocks into IM columnar format can
significantly reduce the amount of flash memory required.

Exadata Smart Flash Cache transforms the data in the following stages:

1. Oracle Exadata caches data from eligible scans in a legacy columnar format so
that the data is available immediately. This format is columnar, but it is not the
same format used by the IM column store.

2. In the background, Oracle Exadata reformats data into the pure IM column store
format at a lower priority. The background writes prevent interference with the
main workload.

If the database is not running an OLTP workload, then a data warehousing workload
can consume 100% of the flash cache. However, an OLTP workload limits the data

1-11

Chapter 1
The Oracle Database In-Memory Solution

warehouse workload to no more than 50% of the flash cache. This optimization
ensures that OLTP workload performance is not sacrificed for analytic scans.

By default, Exadata Smart Flash Cache compresses data using the level MEMCOVWPRESS
FOR CAPACI TY LOW To change the compression level or disable the columnar format
altogether, use the ALTER TABLE ... NO CELLMEMORY statement.

¢ See Also:

e "Enabling the IM Column Store for a CDB or PDB"
e "CPU Architecture: SIMD Vector Processing"

e Oracle Exadata Database Machine System Overview to learn more
about the CELLMEMORY attribute

e Oracle Database Licensing Information User Manual for details on which
features are supported for different editions and services

High Availability Support

The IM column store is fully integrated into Oracle Database. All High Availability
features are supported.

The columnar format does not change the Oracle database on-disk storage format.
Thus, buffer cache modifications and redo logging function in the same way. Features
such as RMAN, Oracle Data Guard, and Oracle ASM are fully supported.

In an Oracle Real Application Clusters (Oracle RAC) environment, each node has its
own IM column store by default. Depending on your requirements, you can populate
objects in different ways:

- Different tables are populated on every node. For example, the sal es fact table is
on one node, whereas the product s dimension table is on a different node.

* Asingle table is distributed among different nodes. For example, different
partitions of the same hash-partitioned table are on different nodes, or different
rowid ranges of a single nonpartitioned table are on different nodes.

* Some objects appear in the IM column store on every node. For example,
you might populate the product s dimension table in every node, but distribute
partitions of the sal es fact table across different nodes.

See Also:

"High Availability and the IM Column Store"

Ease of Adoption

Database In-Memory is simple to implement, and requires no application changes.

Key aspects of Database In-Memory adoption include:

ORACLE 1-12

ORACLE

Chapter 1
The Oracle Database In-Memory Solution

Ease of deployment

No user-managed data migration is required. The database stores data in row
format on disk and automatically converts row data into columnar format when
populating the IM column store.

Compatibility with existing applications

No application changes are required. The optimizer automatically takes advantage
of the columnar format. If your application connects to the database and issues
SQL, then it can benefit from Database In-Memory features.

Full SQL compatibility

Database In-Memory places no restrictions on SQL. Analytic queries can benefit
whether they use Oracle analytic functions or customized PL/SQL code.

Ease of setup

No complex setup is required. The | NVEMORY_SI ZE initialization parameter
specifies the amount of memory reserved for use by the IM column store. By
configuring the IM column store, you can immediately improve the performance of
existing analytic workloads and ad hoc queries.

Ease of object management

Automatic In-Memory uses access tracking and column statistics to manage
objects in the IM column store. When the | NVEMORY_AUTOMATI C_LEVEL initialization
parameter is set to H GH, the database automatically decides the optimal segments
and columns to retain in the IM column store, evicting "cold" (infrequently
accessed) segments. No user decision-making is required.

< Note:

If the | NMEMORY_FORCE initialization parameter is set to BASE_LEVEL, then
Automatic In-Memory is disabled even if | NVEMORY_AUTOVATI C_LEVEL

is set. Even if tables have a compression level of AUTO, Automatic In-
Memory background operations do not run.

Optional fine-grained control of In-Memory objects and columns

When | NVEMORY_AUTQOVATI C_LEVEL is not set to H GH, the | NVEMORY clause in DDL
statements specifies the objects or columns to be populated into the IM column
store. You can specify that only certain objects or certain columns are eligible for
In-Memory population.

¢ See Also:

e "Enabling and Sizing the IM Column Store" to learn how to enable the IM
column store

e "Configuring Automatic In-Memory"

e Oracle Database Reference to learn about the | NVEMORY_SI ZE,
I NMEMORY _FORCE, and | NVEMORY_AUTOVATI C_LEVEL initialization
parameters

1-13

Chapter 1
Requirements for Database In-Memory

Requirements for Database In-Memory

The Oracle Database In-Memory option is required for all Database In-Memory
features. The Database In-Memory Base Level is available for an IM column store
that is 16 GB or less.

Requirements include:

e To use the Database In-Memory Base Level, the | NVEMORY_FORCE initialization
parameter must be set to BASE_LEVEL in the initialization parameter file at the CDB
level. You cannot set this parameter dynamically, or set it at the PDB level. The
BASE_LEVEL setting has the following consequences:

— All NMEMORY objects and columns automatically and transparently use the
compression level of QUERY LOWN

— Automatic In-Memory is disabled.

e To use the CellMemory feature without incurring the overhead of creating an IM
column store, set this parameter to CELLMEMORY_LEVEL. This option is valid only for
on-premises Oracle Exadata systems.

Note that if the value of | NVEMORY_SI ZE is greater than 0,

then setting | NVEMORY_FORCE=CELLMEMORY_LEVEL is equivalent to setting

| NVEMORY _FORCE=DEFAULT. In this case, the Database In-Memory option is
enabled, even if you use CellMemory only.

e For the Base Level, the IM column store size must not exceed 16 GB.

e The IM column store requires a minimum of 100 MB of memory. The store size is
included in MEMORY_TARCET.

e For Oracle RAC databases, if the | NVEMORY_FORCE initialization parameter is set to
BASE_LEVEL, then the column store size of each database is limited to 16 GB.

No special hardware is required for an IM column store.

¢ See Also:

e "Estimating the Required Size of the IM Column Store"
e "Deploying IM Column Stores in Oracle RAC"

e Oracle Database Licensing Information User Manual for all licensing-
related information for Database In-Memory

Principal Tasks for Database In-Memaory

ORACLE

For queries to benefit from the IM column store, the only required task is sizing
the IM column store. Query optimization and availability features require additional
configuration.

Principal Tasks for Configuring the IM Column Store

The following table lists the principal configuration tasks.

1-14

Table 1-1 Configuration Tasks

Chapter 1

Principal Tasks for Database In-Memory

Task

Notes

When Required

To Learn More

Enable the IM column
store by specifying its
size.

Set | NVEMORY_SI ZE to a
minimum of 100 MB.

For the Database In-Memory
Base Level only, the size must
be less than or equal to 16
GB for the entire CDB, and for
each database instance in an
Oracle RAC database.

The COVPATI BLE initialization
parameter must be set to
12. 1. 0 or higher.

Required for all Database In-
Memory features

"Enabling the IM
Column Store for a
CDB or PDB"

For the Database In-
Memory Base Level,
perform additional
configuration.

For the Database In-Memory
Base Level only, the

I NMEMORY_FORCE initialization
parameter must be set to
BASE _LEVEL at the CDB level,
and | NVEMORY_SI ZE must be
less than or equal to 16 GB.

Required only for the
Database In-Memory Base
Level

"Enabling the IM
Column Store for a
CDB or PDB"

Configure Automatic In-
Memory to enable,
populate, and evict cold
segments to ensure
that the working data
set is always populated

When the

| NVEMORY_AUTOVATI C_LEVE
L initialization parameter is set
to Hl GH, Oracle Database
uses internal usage statistics
to manage the workload. For
example, if the database
determines that certain
partitions of the sal es table
are frequently queried, then it
enables them as | NVEMORY
and populates them. As the
workload changes, and
segments become “cold," they
are replaced by hot segments.

Note: If the | NVEMORY_FORCE
initialization parameter is set
to BASE_LEVEL, then
Automatic In-Memory is
disabled even if

| NVEMORY_AUTOVATI C_LEVE
L is set. Even if tables have a
compression level of AUTO,
Automatic In-Memory
background operations do not
run.

Required for fully automated
management of Database In-
Memory objects

"Configuring Automatic
In-Memory"

ORACLE

1-15

Table 1-1 (Cont.) Configuration Tasks
]

Task

Notes

Chapter 1

Principal Tasks for Database In-Memory

When Required

To Learn More

Enable columns,
partitions, tables or
materialized views,
or tablespaces for
population into the IM
column store.

Unless

| NVEMORY_AUTOVATI C_LEVE
L is set to Hl GH, all objects are
NO | NVEMORY by default. This
means that they cannot be
populated in the IM column
store. Manually specifying the
| NMEMORY clause in a DDL
statement enables an object
for In-Memory access, that is,
makes it eligible to be
populated.

Note: If the | NVEMORY_FORCE
initialization parameter is

set to BASE_LEVEL, then

| NVEMCRY objects and
columns automatically use
QUERY LOWcompression.
The data dictionary views
may continue to show pre-
existing compression settings,
but the Base Level always
transparently compresses
objects and columns at the
QUERY LOWlevel.

Required when
I NVEMORY_AUTOVATI C_LEVE
Lis not H GH

"Enabling Objects for
In-Memory Population
Manually"

Populate objects into to
the IM column store
manually

Enabling an object for In-
Memory access is a separate
step from populating it. Unless
| NMEMORY_AUTOVATI C_LEVE
L is set to Hl GH, the population
of an object depends on its

I NMEMORY ... PRIORITY
setting. When set to NONE
(default), you must manually
populate the object using a
query or PL/SQL call. It will not
be populated otherwise.

When | NVEMORY . ..

PRI ORI TY is not set to NONE,
the database automatically
populates | NVEMORY objects
after instance startup based
on their position in the queue.
For example, objects with

HI GH priority are populated
before objects of LONpriority.
In this case, you do not need
to manually populate an object
unless you want to override
the queue.

Required when the PRI ORI TY
setting is NONE

"Populating the
IM Column Store
Manually"

ORACLE

1-16

Chapter 1

Principal Tasks for Database In-Memory

Table 1-1 (Cont.) Configuration Tasks
]

Task Notes

When Required

To Learn More

Create Automatic Data
Optimization (ADO)
policies to set

I NVEMORY attributes on
objects in the IM
column store.

For example, a policy can
evict the sal es table from

the IM column store after 10
days of no access. In-Memory
ADO features require that
HEAT _MAP=ONis set to ON and
| NVEMORY_SI ZE is set to a
nonzero value.

Optional

"Enabling ADO for the
IM Column Store"

Principal Tasks for Optimizing In-Memory Queries

In-Memory query optimizations are not required for the IM column store to function.
The following optimization tasks are optional.

Table 1-2 Query Optimization Tasks

Task

Notes

To Learn More

Manage automatic detection of IM
expressions in the IM column store
by using the DBMS_| NVEMORY_ADM N
package.

For example, invoke

the | ME_CAPTURE_EXPRESSI ONS
procedure to define the period

in which the database can

identify “hot” expressions, and

then gradually populate them.

The | NVEMORY_EXPRESSI ONS_USACE
initialization parameter controls the type
of IM expression that the database can
populate: static, dynamic, or both.

"INMEMORY_EXPRESSIONS _
USAGE"

Define join groups using the CREATE
I NVEMCRY JO N GROUP statement.

Candidates are columns that are
frequently paired in a join predicate, for
example, a column joining a fact and
dimension table.

"Creating Join Groups"

If necessary for a query block,

specify the VECTOR_TRANSFORMhint
to enable in-memory aggregation, or
NO_VECTOR_TRANSFORMto disable it.

In-memory aggregation is an
automatically enabled feature that
cannot be controlled with initialization
parameters or DDL.

"Controls for IM Aggregation”

Limit the number of IMCUs updated
through trickle repopulation within a
two minute interval by setting the
initialization parameter

[NVEMORY_TRI CKLE_REPOPULATE_S
ERVERS_PERCENT.

You can disable trickle repopulation by
setting this initialization parameter to 0.

"Threshold-Based and Trickle
Repopulation”

Principal Tasks for Managing Availability

The principal tasks are shown in the following table.

ORACLE

1-17

Table 1-3 Availability Tasks

Chapter 1
Tools for the IM Column Store

Task

Notes

To Learn More

Specify an In-Memory FastStart (IM
FastStart) tablespace using the
DBMS_| NVEMORY_ADM N. ENABLE_F
ASTSTART procedure.

IM FastStart optimizes the population
of database objects in the IM column
store when the database is restarted.
IM FastStart stores information on disk
for faster population of the IM column
store.

"Enabling IM FastStart for the IM
Column Store"

For an object or tablespace, specify

| NMEMORY in DDL statement with

the DI STRI BUTE or DUPLI CATE
keywords to control the distribution of
data in Oracle RAC.

By default, each In-Memory object is
distributed among the Oracle RAC
instances, effectively employing a
share-nothing architecture for the IM
column store.

"Deploying IM Column Stores in
Oracle RAC"

In an Oracle Data Guard
environment, you can use the same
Database In-Memory initialization
parameters and statements on a
primary or standby database.

For example, you can enable

the IM column store on both a
primary and standby database by
setting | NVEMORY_SI ZE. Optionally,
use the | NVEMORY DI STRI BUTE FOR
SERVI CE clause in DDL to populate a
different set of data in the IM column
store on the primary and standby
databases.

"About Manually Enabling Objects
for In-Memory Population”

Tools for the IM Column Store

No special tools or utilities are required to manage the IM column store or
other Database In-Memory features. Administrative tools such as SQL*Plus, SQL
Developer, and Oracle Enterprise Manager (Enterprise Manager) are fully supported.

This section describes tools that have specific Database In-Memory feature support.

In-Memory Advisor

The In-Memory Advisor is a downloadable PL/SQL package that analyzes the
analytical processing workload in your database.

The In-Memory Advisor differentiates analytics processing from other database activity
based on SQL plan cardinality, Active Session History (ASH), parallel query usage,
and other statistics. The In-Memory Advisor estimates the size of objects in the IM
column store based on statistics and heuristic compression factors.

The advisor estimates analytic processing performance improvement factors based on

the following:

« Elimination of wait events such as user I/O waits, cluster transfer waits, and buffer
cache latch waits

* Query processing advantages related to specific compression types

» Decompression cost heuristics for specific compression types

* SQL plan cardinality, number of columns in the result set, and so on

ORACLE

1-18

Chapter 1
Tools for the IM Column Store

The output is a report that recommends a size for the IM column store and a list of
objects that would benefit from In-Memory population. The advisor also generates a
SQL*Plus script that alters the recommended objects with the | NVEMORY clause.

The In-Memory Advisor is not included in the stored PL/SQL packages. You must
download the package from Oracle Support.

See Also:

My Oracle Support note 1965343.1 to learn more about the In-Memory
Advisor

Cloud Control Pages for the IM Column Store

Enterprise Manager Cloud Control (Cloud Control) provides the In-Memory Column
Store Central Home page. This page gives a dashboard interface to the IM column
store.

Use this page to monitor in-memory support for database objects such as tables,
indexes, partitions and tablespaces. You can view In-Memory functionality for objects
and monitor their In-Memory usage statistics. Unless otherwise stated, this manual
describes the command-line interface to Database In-Memory features.

Related Topics

e Using IM Column Store in Cloud Control
You can configure and manage the IM column store in Oracle Enterprise Manager
Cloud Control (Cloud Control).

¢ See Also:

"Using IM Column Store in Cloud Control" explains how to use Cloud Control
to manage the IM column store.

Oracle Compression Advisor

Oracle Compression Advisor estimates the compression ratio that you can realize
using the MEMCOVPRESS clause. The advisor uses the DBMS_COVPRESSI ON interface.

¢ See Also:

e "Oracle Compression Advisor"

e Oracle Database PL/SQL Packages and Types Reference to learn more
about DBMS_COMPRESSI ON

ORACLE 1-19

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1965343.1

Chapter 1
Tools for the IM Column Store

Oracle Data Pump and the IM Column Store

ORACLE

You can import database objects that are enabled for the IM column store using the
TRANSFORM=I NVEMORY: y option of the i npdp command.

With this option, Oracle Data Pump keeps the IM column store clause for all objects
that have one. When the TRANSFORM:=I NVEMORY: n option is specified, Data Pump drops
the IM column store clause from all objects that have one.

You can also use the TRANSFORM=I NMEMORY _CLAUSE: st ri ng option to override the IM
column store clause for a database object in the dump file during import. For example,
you can use this option to change the IM column store compression for an imported
database object.

¢ Video:

@ Video

¢ See Also:

Oracle Database Utilities for more information about the TRANSFORM i npdb
parameter

1-20

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:9373

In-Memory Column Store Architecture

The In-Memory Column Store (IM column store) stores tables and partitions in
memory using a columnar format optimized for rapid scans. Oracle Database
uses a sophisticated architecture to manage data in columnar and row formats
simultaneously.

Dual-Format: Column and Row

When you enable an IM column store, the SGA manages data in separate locations:
the In-Memory Area and the database buffer cache.

The IM column store encodes data in a columnar format: each column is a separate
structure. The columns are stored contiguously, which optimizes them for analytic
gueries. The database buffer cache can modify objects that are also populated in the
IM column store. However, the buffer cache stores data in the traditional row format.
Data blocks store the rows contiguously, optimizing them for transactions.

The following figure illustrates the difference between row-based storage and
columnar storage.

Figure 2-1 Columnar and Row-Based Storage

Rows Stored Contiguously

Sales

Transactions run faster on row format

- Example: Query or Insert a sales order

- Fast processing few rows, many columns
=

—— Query

Columns Stored Contiguously

Sales

Analytics run faster on column format
- Example: Report on sales totals by region
- Fast accessing few columns, many rows

L Query

Columnar Data in the In-Memory Area

ORACLE

The In-Memory Area is an optional SGA component that contains the IM column
store.

2-1

Chapter 2
Dual-Format: Column and Row

Size of the In-Memory Area

ORACLE

The In-Memory Area is controlled by the | NVEMORY_SI ZE initialization parameter. By
default, the size of the In-Memory Area is 0, which means the IM column store is
disabled.

To enable the IM column store, set the In-Memory Area to at least 100 MB. The size is
shown in V$SGA.

The In-Memory Area and SGA_TARGET

The In-Memory Area is subtracted from the SGA_TARGET initialization parameter setting.
For example, if you set SGA_TARGET to 10 GB, and if you set the | NVEMORY_SI ZE to

4 GB, then 40% of the SGA TARGET setting is allocated to the In-Memory Area. The
following graphic illustrates the relationship.

Figure 2-2 INMEMORY_SIZE and SGA_TARGET

Unused SGA_MAX_SIZE

SGA X SGA_TARGET

Dynamic

— INMEMORY_SIZE
In-Memory Area

Static

Unlike the other components of the SGA, including the buffer cache and the shared
pool, the In-Memory Area size is not controlled by automatic memory management.
The database does not automatically shrink the In-Memory Area when the buffer
cache or shared pool requires more memory, or increase the In-Memory Area when it
runs out of space.

Dynamic Resizing of the In-Memory Area

Starting in Oracle Database 12c Release 2 (12.2), you can dynamically increase
| NMEMORY_SI ZE by using the ALTER SYSTEMstatement. The database allocates
increased memory when the following conditions are met:

* Free memory is available in the SGA.

e The new size for | NVEMORY_SI ZE is at least 128 MB greater than the current
setting.

2-2

Chapter 2
Dual-Format; Column and Row

< Note:

You cannot use ALTER SYSTEMto reduce | NVEMORY_SI ZE.

The V$I NVEMORY_AREA and V$SGA views immediately reflect the change.

In-Memory Resource Management in a CDB

In a CDB, the size of the IM column store is set by the | NVEMORY_SI ZE parameter in the
CDB root. By default, the IM column store is shared among the PDBs. Consequently, a
PDB can "starve" other PDBs by consuming the available memory.

Within a PDB, you can limit memory consumption by using ALTER SYSTEM SET
I NVEMORY_SI ZE. For example, at the CDB level, you might set | NVEMORY_SI ZE to 20G,
and then configure the PDBs as follows:

e Inhrpdb, set | NNEMORY_SI ZE to 0
* Insal espdb, set | NVEMORY_SI ZE to 10G
* Inoepdb, set | NMEMORY_SI ZE to 11G

In the preceding example, the | NVEMORY_S| ZE settings at the PDB level add up to 21G,
even though | NVEMORY_SI ZE at the CDB level is only 20G. Oversubscription ensures
that valuable space in the IM column store is not wasted if a PDB is shut down or
unplugged.

¢ See Also:

e "Increasing the Size of the IM Column Store Dynamically"

e Oracle Database Administrator’s Guide to learn more about automatic
memory management

e Oracle Database Reference to learn about | NVEMORY_SI ZE,
V$I NVEMORY_AREA, and V$SGA

Memory Pools in the In-Memory Area

ORACLE

The In-Memory Area is divided into subpools for columnar data and metadata.
The In-Memory area is subdivided into the following subpools:

e The columnar data pool

This subpool stores the IMCUSs, which contain the columnar data. The
V$I NMEMORY_AREA. POCOL column identifies this subpool as 1MB PQOOL, as shown in
Example 2-1.

* The metadata pool

This subpool stores metadata about the objects that reside in the IM column
store. The V$I NVEMORY_AREA. POOL column identifies this subpool as 64KB POOL, as
shown in Example 2-1.

2-3

ORACLE

Chapter 2
Dual-Format: Column and Row

Figure 2-3 Subpools in the In-Memory Area

In-Memory Area

Columnar Data Pool

f

Metadata Pool

The database determines the relative size of the two subpools using internal
heuristics. The database allocates the majority of space in the In-Memory Area to
the columnar data pool (1 MB pool).

Note:

Oracle Database automatically determines the subpool sizes. You cannot
change the space allocations.

Example 2-1 VSINMEMORY_AREA View

This example queries the V3| NVEMORY_AREA view to determine the amount of available
memory in each subpool (sample output included):

COL POOL FORMAT a9

COL PCPULATE_STATUS FORMAT alb5

SSELECT POOL, TRUNC(ALLOC BYTES/ (1024*1024*1024),2) "ALLOCC GB',
TRUNC(USED _BYTES/ (1024*1024*1024), 2) "USED GB',
POPULATE_STATUS

FROM V$I NVEMORY_AREA,

POCL ALLOC_GB USED GB POPULATE_STATUS
IMB POOL 7.99 0 DONE
64KB POCL 1.98 0 DONE

The current size of the In-Memory area is visible in VESGA:

SELECT NAME, VALUE/ (1024*1024*1024) "SI ZE | N_GB"
FROM V$SGA
WHERE NAME LI KE ' %vents ;

NAVE SIZE IN.GB

I n-Menory Area 10

In this example, the memory allocated to the subpools is 9.97 GB, whereas the size of
the In-Memory Area is 10 GB. The database uses a small percentage of memory for
internal management structures.

2-4

Chapter 2
Dual-Format; Column and Row

¢ See Also:
Oracle Database Reference to learn about V$l| NVEMORY AREA

Row Data in the Database Buffer Cache

ORACLE

The database buffer cache stores and processes data blocks in the same way whether
the IM column store is enabled or disabled. Buffer I/O and buffer pools function the
same.

The IM column store enables data to be simultaneously populated in the SGA in both
the traditional row format (the buffer cache) and the columnar format. The database
transparently sends OLTP queries (such as primary key lookups) to the buffer cache,
and analytic and reporting queries to the IM column store. When fetching data, Oracle
Database can also read data from both memory areas within the same query.

Note:

In the execution plan, the operation TABLE ACCESS | N MEMORY FULL indicates
that some or all data is accessed in the IM column store.

The dual-format architecture does not double memory requirements. The buffer cache
is optimized to run with a much smaller size than the size of the database.

The following figure shows a sample IM column store. The database stores the
sh. sal es table on disk in traditional row format. The SGA stores the data in columnar
format in the IM column store, and in row format in the database buffer cache.

2-5

Figure 2-4

Chapter 2
Dual-Format: Column and Row

IM Column Store

Instance

System Global Area (SGA)

Database Buffer Cache In-Memory Column Store
products
EIMCU 1
:;________\:__ __:_li__‘?—_—_—_—_—_—_—a:
EIMCUZ .
‘ customers
|- L
A :;________\:__ __:_li__\i__\i_\i____‘:
salesl
EIMCUS
i________\:__i__:_li__\?__\i_\f_-___al
EIMCU 6

sh Schema

|
[products | |customers | sales i/
\ \

Every on-disk data format for permanent, heap-organized tables is supported by the
IM column store. The columnar format does not affect the format of data stored in data
files or in the buffer cache, nor does it affect undo data and online redo logging.

The database processes DML modifications in the same way, regardless of whether
the IM column store is enabled, by updating the buffer cache, online redo log,
and undo tablespace. However, the database uses an internal mechanism to track

ORACLE 2-6

Chapter 2
In-Memory Storage Units

changes and ensure that the IM column store is consistent with the rest of the
database. For example, if the sal es table is populated in the IM column store, and
if an application updates a row in sal es, then the database automatically keeps the
copy of the sal es table in the IM column store transactionally consistent. A query
that accesses the IM column store always returns the same results for a query that
accesses the buffer cache.

" See Also:

Oracle Database Concepts to learn more about the database buffer cache

In-Memory Storage Units

ORACLE

The IM column store manages both data and metadata in optimized storage units, not
in traditional Oracle data blocks.

Oracle Database maintains the storage units in the In-Memory Area. The following
graphic gives an overview of the In-Memory Area and the database processes that
interact with it. The remaining chapter describes the various memory components.

2-7

Chapter 2
In-Memory Storage Units

Figure 2-5 IM Column Store: Memory and Process Architecture

Expression Statistics Store (ESS)
and
User-Defined Virtual Columns

|
|
|
In-Memory Area :
Background Columnar Data ; Metadata Foreground
Processes Processes
IMCU IMEU SMU
IMCO Populate —> Queries
77777 'l g Scans
L w000
-
woot IMCU IMEU SMU
————— DML
Invalidations
w002 | populate
77777 —>
In-Memory
Area
Scans
Database
Scans

In-Memory Compression Units (IMCUs)

An In-Memory Compression Unit (IMCU) is a compressed, read-only storage unit
that contains data for one or more columns.

An IMCU is analogous to a tablespace extent. An IMCU has two parts: a set of
Column Compression Units (CUs), and a header that contains metadata such as the
IM storage index.

IMCUs and Schema Objects

The IM column store stores data for a single object (table, partition, materialized view)
in a set of IMCUs. An IMCU stores columnar data for one and only one object.

ORACLE 2-8

Chapter 2
In-Memory Storage Units

IMCUs and INMEMORY Columns

ORACLE

For an object specified as | NVEMCRY, every column listed in the | NVEMORY clause is
included in every IMCU.

For example, the sh. sal es table has 7 columns. The following DDL statement
specifies the table as | NVEMORY, which means that every IMCU for sal es includes
columnar data for these 7 columns:

ALTER TABLE sh. sal es | NVEMORY MEMCOMPRESS FOR QUERY LOW

NO INMEMORY Columns in INMEMORY Obijects

You can specify that some but not all columns in an | NVEMORY table have the | NVEMORY
attribute. For example, the sh. cust oner s table has 23 columns. The following DDL
statement specifies that 15 columns in sh. cust oner s have the NO | NVEMORY attribute,
which means that the other 8 columns in the table have the | NVEMORY attribute:

ALTER TABLE sh. cust oners | NMEMORY
MEMCOMPRESS FOR QUERY LOW
NO | NVEMORY (cust_gender, cust_year of birth, cust_narital status,
cust _postal code, cust _city, cust_state_province,
cust _mai n_phone_nunber, cust_incone_| evel,
cust credit _limt,
cust_email, cust _total, cust total id, cust eff from
cust_eff to, cust valid);

The following query shows the compression levels of the columns in sh. cust oners,
indicating which columns are NO | NVEMORY:

SET LI NESI ZE 200
COL TABLE_NAME FORMAT a25

COL SEG COL_I D FORMAT 999

COL COLUMN_NAME FORMAT a25

COL | NVEMORY_COMPRESS| ON FORMAT all

SELECT SEGVENT_COLUMN | D AS "SEG COL_| D', COLUWN_NAME,
| NVEMORY_COVPRESSI ON

FROM V$I M COLUMN LEVEL WHERE TABLE_NAME = ' CUSTOVERS
ORDER BY SEG COL_| D;

SEG COL_| D COLUMN_NANVE | NVEMORY_CO
1 CUST_ID DEFAULT
2 CUST_FI RST_NAME DEFAULT
3 CUST_LAST_NAME DEFAULT
4 CUST_GENDER NO | NVEMORY
5 CUST_YEAR OF BI RTH NO | NVEMORY
6 CUST_MARI TAL_STATUS NO | NVEMORY
7 CUST_STREET ADDRESS DEFAULT
8 CUST_POSTAL_CODE NO | NVEMORY
9 CUST CITY NO | NVEMORY
10 CUST CITY_ID DEFAULT
11 CUST_STATE_PROVI NCE NO | NVEMORY

2-9

ORACLE

12
13
14
15
16
17
18
19
20
21
22
23

CUST_STATE_PROVI NCE_| D
COUNTRY_| D

CUST_MAI N_PHONE_NUMBER
CUST_| NCOVE_LEVEL

CUST CREDIT LIMT
CUST_EMAI L

CUST_TOTAL

CUST_TOTAL_I D
CUST_SRC_ID
CUST_EFF_FROM
CUST_EFF_TO

CUST_VALI D

DEFAULT

DEFAULT

NO | NVEMORY
NO | NVEMORY
NO | NVEMORY
NO | NMEMORY
NO | NMEMORY
NO | NMEMORY
DEFAULT

NO | NMEMORY
NO | NMEMORY
NO | NMEMORY

Chapter 2
In-Memory Storage Units

The following graphic represents three tables from the sh schema populated in the
IM column store: cust oner s, product s, and sal es. In this example, each table has
a different number of columns specified | NVEMORY. The IMCUSs for each table include
only data for the | NVEMORY columns.

2-10

Chapter 2
In-Memory Storage Units

Figure 2-6 Columns and IMCUs

In-Memory Column Store
customers
cust_id ‘ cust_last_name cust_city_id ccountry_id
cust_first_name cust_street_address cust_state_province_id cust_src_id
i IMCU 1
| IMCU 2 E
products
prod_id ‘ prod_category_id prod_total_id
‘ prod_subcategory_idL supplier_id
i IMCU 3
. IMCU 4 i
sales‘
prod_id ‘ time_id promo_id ‘ amount_sold
| cust_id channel_id | quantity_sold ‘ ‘
i IMCU 5 i
i IMCU 6

ORACLE 2-11

Chapter 2
In-Memory Storage Units

Queries That Reference NO INMEMORY Columns

When a query references a NO | NVEMORY column, the table scan retrieves data from
the row store rather than the IMCUs in the IM column store. Row store access occurs
even if all other columns referenced in the query are populated | NVEMORY columns.

For example, assume that the cust orer s table is populated into the IM column
store. The cust _i d and cust _| ast _nane columns are specified | NVEMORY, but the
cust _postal _code column is specified as NO | NVEMORY. You issue the following query:

SELECT cust _id, cust_last_name, cust_postal code
FROM customers

WHERE cust id < 5001

ORDER BY cust _i d;

In this case, the database accesses the row store, not the IM column store, even
though cust _post al _code is the only NO | NVEMORY column referenced in the query.
The following query, which has cust _postal _code in the predicate but not the SELECT
list, must also access the row store:

SELECT cust _id, cust _|ast _nane
FROM custoners
WHERE cust _postal _code = 77501
ORDER BY cust _i d;

¢ See Also:

e "About In-Memory Columns"

e https://blogs.oracle.com/in-memory/what-happens-if-a-column-is-not-
populated for a blog entry on accessing columns that are
not populated in the IM column store

e Oracle Database SQL Language Reference to learn about the ALTER
TABLE statement

In-Memory Compression

ORACLE

The IM column store uses special compression formats optimized for access speed
rather than storage reduction. The columnar format enables queries to execute directly
against the compressed columns.

Compression enables scanning and filtering operations to process a much smaller
amount of data, which optimizes query performance. Oracle Database only
decompresses data when it is required for the result set.

The compression applied in the IM column store is closely related to Hybrid Columnar
Compression. Both technologies process column vectors. The primary difference is
that the column vectors for the IM column store are optimized for SIMD vector
processing, whereas the column vectors for Hybrid Columnar Compression are
optimized for disk storage.

2-12

https://blogs.oracle.com/in-memory/what-happens-if-a-column-is-not-populated
https://blogs.oracle.com/in-memory/what-happens-if-a-column-is-not-populated

Chapter 2
In-Memory Storage Units

When you manually enable an object for population into the IM column store,

you specify the type of compression in the | NVEMORY MEMCOVWPRESS clause: FOR

DM, FOR QUERY (LOWor H GH), FOR CAPACI TY (LOWNor HI GH), or NONE. When

| NVEMORY_AUTOMATI C_LEVEL is HI GH, the database automatically applies MEMCOVPRESS
AUTOto all objects.

¢ See Also:

e "Controls for In-Memory Objects"
e "Configuring Automatic In-Memory"

e Oracle Database Concepts to learn more about Hybrid Columnar
Compression

IMCUs and Rows

ORACLE

Each IMCU contains all column values (including nulls) for a subset of rows in a table
segment. A subset of rows is called a granule.

All IMCUs for a given segment contain approximately the same number of rows.
Oracle Database determines the size of a granule automatically depending on data
type, data format, and compression type. A higher compression level results in more
rows in the IMCU.

A one-to-many mapping exists between an IMCU and a set of database blocks. As
illustrated in Example 2-2, each IMCU stores the values for columns for a different set
of blocks.

The columns in an IMCU are not sorted. Oracle Database populates them in the order
that they are read from disk.

The number of rows in an IMCU dictates the amount of space an IMCU consumes. If
the target number of rows causes an IMCU to grow beyond the amount of contiguous
1 MB extents available in the 1 MB pool, then the IMCU creates additional extents
(pieces) to hold the remaining column CUs. An IMCU always allocates space in 1 MB
increments.

Example 2-2 IMCUs and Row Subsets

In this simplified example, only the following 4 columns of the cust oner s table have
the | NVEMORY attribute: cust _i d, cust _first_nane, cust | ast _name, and cust _gender.
Only 5 rows exist in the table, stored in 2 data blocks. Conceptually, the first data block
stores its rows as follows:

82, Madel i ne, Li , F; 37004, Abel , Enbrey, M 1714, Har dy, Gentl e, M

The second data block stores rows as follows:

100439, Ua, Canpbel |, F; 3047, Luci a, Downey, F

2-13

Chapter 2
In-Memory Storage Units

Assume IMCU 1 stores the data for the first data block. In this case, the cust _id
column values for the 3 rows in this data block stores are stored “vertically” within a
CU as follows:

82
37004
1714

IMCU 2 stores the data from the second data block. The cust _i d column values for
these 2 rows are stored within a CU as follows:

100439
3047

Because the cust _i d value is the first value for each row in the data block, the

cust _i d column is in the first position within the IMCU. Columns always occupy the
same position, so Oracle Database can reconstruct the rows by reading the IMCUs for
a segment.

Related Topics

e Controls for In-Memory Objects
You can enable tablespaces, tables (internal and external), partitions, and
materialized views for In-Memory access. You can also specify options such as
compression and population priority.

Column Compression Units (CUs)

A Column Compression Unit (CU) is contiguous storage for a single column in an
IMCU. Every IMCU has one or more CUs.

Structure of a CU

A CU is divided into a body and a header.

The body of every CU stores the column values for the range of rows included in
the IMCU. The header contains metadata about