
Oracle® Database Vault
Administrator's Guide

21c
F31286-02
December 2020

Oracle Database Vault Administrator's Guide, 21c

F31286-02

Copyright © 1996, 2020, Oracle and/or its affiliates.

Primary Author: Patricia Huey

Contributors: Taousif Ansari , Tom Best, Ji-won Byun, Martin Cheng, Chi Ching Chui, Scott Gaetjen,
Viksit Gaur, Rishabh Gupta, Lijie Heng, Suhas Javagal , Dominique Jeunot, Peter Knaggs, Suman Kumar,
Rudregowda Mallegowda, Yi Ouyang, Hozefa Palitanawala, Gayathri Sairamkrishnan, Vipin Samar, James
Spiller, Srividya Tata, Kamal Tbeileh, Saravana Soundararajan, Sudheesh Varma, Peter Wahl, Alan Williams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiii

Documentation Accessibility xxiii

Related Documents xxiii

Conventions xxiv

 Changes in This Release for Oracle Database Vault Administrator's
Guide

Changes in Oracle Database Vault 21c xxv

1 Introduction to Oracle Database Vault

What Is Oracle Database Vault? 1-1

About Oracle Database Vault 1-2

Controls for Privileged Accounts 1-2

Controls for Database Configuration 1-2

Enterprise Applications Protection Policies 1-3

What Privileges Do You Need to Use Oracle Database Vault? 1-3

Components of Oracle Database Vault 1-4

Oracle Database Vault Access Control Components 1-4

Oracle Database Vault DVSYS and DVF Schemas 1-5

Oracle Database Vault PL/SQL Interfaces and Packages 1-5

Oracle Database Vault Reporting and Monitoring Tools 1-6

Oracle Enterprise Manager Cloud Control Database Vault Administrator Pages 1-6

How Oracle Database Vault Addresses Compliance Regulations 1-6

How Oracle Database Vault Protects Privileged User Accounts 1-7

How Oracle Database Vault Allows for Flexible Security Policies 1-8

How Oracle Database Vault Addresses Database Consolidation Concerns 1-8

How Oracle Database Vault Works in a Multitenant Environment 1-10

iii

2 What to Expect After You Enable Oracle Database Vault

Initialization and Password Parameter Settings That Change 2-1

How Oracle Database Vault Restricts User Authorizations 2-2

New Database Roles to Enforce Separation of Duties 2-3

Privileges That Are Revoked from Existing Users and Roles 2-3

Privileges That Are Prevented for Existing Users and Roles 2-4

Modified AUDIT Statement Settings for a Non-Unified Audit Environment 2-5

3 Getting Started with Oracle Database Vault

About Registering Oracle Database Vault with an Oracle Database 3-1

Registering Oracle Database Vault 3-2

About Registering Database Vault 3-2

Registering Database Vault in the CDB Root 3-3

Registering Database Vault Common Users to Manage Specific PDBs 3-5

Registering Database Vault Local Users to Manage Specific PDBs 3-8

Manually Installing Oracle Database Vault 3-10

Verifying That Database Vault Is Configured and Enabled 3-11

Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control 3-12

Quick Start Tutorial: Securing a Schema from DBA Access 3-13

About This Tutorial 3-14

Step 1: Log On as SYSTEM to Access the HR Schema 3-14

Step 2: Create a Realm 3-15

Step 3: Create the SEBASTIAN User Account 3-16

Step 4: Have User SEBASTIAN Test the Realm 3-16

Step 5: Create an Authorization for the Realm 3-17

Step 6: Test the Realm 3-17

Step 8: Remove the Components for This Tutorial 3-18

4 Configuring Realms

What Are Realms? 4-2

About Realms 4-2

Mandatory Realms to Restrict User Access to Objects within a Realm 4-3

Realms in a Multitenant Environment 4-4

Object Types That Realms Can Protect 4-5

Default Realms 4-5

Oracle Database Vault Realm 4-6

Database Vault Account Management Realm 4-6

Oracle Enterprise Manager Realm 4-7

Oracle Default Schema Protection Realm 4-7

iv

Oracle System Privilege and Role Management Realm 4-7

Oracle Default Component Protection Realm 4-8

Creating a Realm 4-8

Modifying a Realm 4-11

Deleting a Realm 4-12

About Realm-Secured Objects 4-13

About Realm Authorization 4-14

Realm Authorizations in a Multitenant Environment 4-14

How Realms Work 4-15

How Authorizations Work in a Realm 4-17

About Authorizations in a Realm 4-17

Examples of Realm Authorizations 4-17

Example: Unauthorized User Trying to Create a Table 4-18

Example: Unauthorized User Trying to Use the DELETE ANY TABLE
Privilege 4-18

Example: Authorized User Performing DELETE Operation 4-18

Access to Objects That Are Protected by a Realm 4-19

Example of How Realms Work 4-19

How Realms Affect Other Oracle Database Vault Components 4-20

Guidelines for Designing Realms 4-20

How Realms Affect Performance 4-22

Realm Related Reports and Data Dictionary Views 4-22

5 Configuring Rule Sets

What Are Rule Sets? 5-1

Rule Sets and Rules in a Multitenant Environment 5-2

Default Rules and Rule Sets from Releases Earlier Than Release 12.2 5-2

Default Rule Sets 5-3

Creating a Rule Set 5-4

Creating a Rule to Add to a Rule Set 5-7

About Creating Rules 5-7

Default Rules 5-8

Creating a New Rule 5-9

Adding Existing Rules to a Rule Set 5-11

Modifying a Rule Set 5-12

Removing a Rule from a Rule Set 5-12

Modifying a Rule Set 5-13

Deleting a Rule Set 5-14

How Rule Sets Work 5-15

How Oracle Database Vault Evaluates Rules 5-15

Nested Rules within a Rule Set 5-15

v

Creating Rules to Apply to Everyone Except One User 5-16

Tutorial: Configuring Two-Person Integrity, or Dual Key Security 5-16

About This Tutorial 5-17

Step 1: Create Users for This Tutorial 5-17

Step 2: Create a Function to Check if User patch_boss Is Logged In 5-18

Step 3: Create Rules, a Rule Set, and a Command Rule to Control User Access 5-19

Step 4: Test the Users' Access 5-20

Step 5: Remove the Components for This Tutorial 5-21

Guidelines for Designing Rule Sets 5-22

How Rule Sets Affect Performance 5-23

Rule Set and Rule Related Reports and Data Dictionary Views 5-23

6 Configuring Command Rules

What Are Command Rules? 6-1

About Command Rules 6-2

Command Rules in a Multitenant Environment 6-3

Types of Command Rules 6-4

CONNECT Command Rule 6-4

ALTER SESSION and ALTER SYSTEM Command Rules 6-5

Default Command Rules 6-7

SQL Statements That Can Be Protected by Command Rules 6-8

Creating a Command Rule 6-9

Modifying a Command Rule 6-11

Deleting a Command Rule 6-12

How Command Rules Work 6-13

Tutorial: Using a Command Rule to Control Table Creations by a User 6-13

Step 1: Create a Table 6-14

Step 2: Create a Command Rule 6-14

Step 3: Test the Command Rule 6-15

Step 4: Remove the Components for this Tutorial 6-16

Guidelines for Designing Command Rules 6-16

How Command Rules Affect Performance 6-17

Command Rule Related Reports and Data Dictionary View 6-17

7 Configuring Factors

What Are Factors? 7-1

Default Factors 7-2

Creating a Factor 7-5

Adding an Identity to a Factor 7-9

vi

About Factor Identities 7-9

How Factor Identities Work 7-9

About Trust Levels 7-11

About Label Identities 7-11

Creating and Configuring a Factor Identity 7-12

Using Identity Mapping to Configure an Identity to Use Other Factors 7-13

About Identity Mapping 7-13

Mapping an Identity to a Factor 7-14

Deleting an Identity Map 7-15

Modifying a Factor Identity 7-16

Deleting a Factor Identity 7-17

Modifying a Factor 7-17

Deleting a Factor 7-18

How Factors Work 7-19

How Factors Are Processed When a Session Is Established 7-20

How Retrieval Methods Work 7-21

How Factors Are Retrieved 7-22

How Factors Are Set 7-23

How Factor Auditing Works 7-23

Tutorial: Preventing Ad Hoc Tool Access to the Database 7-23

About This Tutorial 7-24

Step 1: Enable the HR and OE User Accounts 7-24

Step 2: Create the Factor 7-25

Step 3: Create the Rule Set and Rules 7-26

Step 4: Create the CONNECT Command Rule 7-27

Step 5: Test the Ad Hoc Tool Access Restriction 7-28

Step 6: Remove the Components for This Tutorial 7-29

Guidelines for Designing Factors 7-29

How Factors Affect Performance 7-30

Factor Related Reports and Data Dictionary Views 7-31

8 Configuring Secure Application Roles for Oracle Database Vault

What Are Secure Application Roles in Oracle Database Vault? 8-1

Security for Oracle Database Vault Secure Application Roles 8-2

Creating an Oracle Database Vault Secure Application Role 8-2

Enabling Oracle Database Secure Application Roles to Work with Oracle Database
Vault 8-4

Modifying a Secure Application Role 8-4

Deleting an Oracle Database Vault Secure Application Role 8-5

How Oracle Database Vault Secure Application Roles Work 8-6

Tutorial: Granting Access with Database Vault Secure Application Roles 8-6

vii

About This Tutorial 8-7

Step 1: Create Users for This Tutorial 8-7

Step 2: Enable the OE User Account 8-7

Step 3: Create the Rule Set and Its Rules 8-8

Step 4: Create the Database Vault Secure Application Role 8-9

Step 5: Grant the SELECT Privilege to the Secure Application Role 8-9

Step 6: Test the Database Vault Secure Application Role 8-9

Step 7: Remove the Components for This Tutorial 8-10

How Secure Application Roles Affect Performance 8-10

Secure Application Role Related Reports and Data Dictionary View 8-11

9 Configuring Oracle Database Vault Policies

What Are Database Vault Policies? 9-1

About Oracle Database Vault Policies 9-1

Oracle Database Vault Policies in a Multitenant Environment 9-3

Default Oracle Database Vault Policies 9-3

Creating an Oracle Database Policy 9-4

Modifying an Oracle Database Vault Policy 9-6

Deleting an Oracle Database Vault Policy 9-7

Related Data Dictionary Views 9-7

10

Using Simulation Mode for Logging Realm and Command Rule
Activities

About Simulation Mode 10-1

Simulation Mode Use Cases 10-2

Logging Realms in Simulation Mode 10-3

Considerations When Logging Realms in Simulation Mode 10-4

Use Case: All New Realms in Simulation Mode 10-5

Use Case: New Realms Introduced to Existing Realms 10-6

Use Case: Testing the Addition of New Objects in a Realm 10-7

Use Case: Testing the Removal of Objects from a Realm 10-7

Use Case: Testing the Addition of an Authorized User to a Realm 10-7

Use Case: Testing the Removal of an Authorized User from a Realm 10-8

Use Case: Testing New Factors with Realms 10-8

Use Case: Testing Changes to an Existing Command Rule 10-8

Tutorial: Tracking Violations to a Realm Using Simulation Mode 10-9

About This Tutorial 10-9

Step 1: Create Users for This Tutorial 10-10

Step 2: Create a Realm and an Oracle Database Vault Policy 10-11

viii

Step 3: Test the Realm and Policy 10-12

Step 4: Query the DBA_DV_SIMULATION_LOG View for Violations 10-12

Step 5: Enable and Re-test the Realm 10-13

Step 6: Remove the Components for This Tutorial 10-14

11

Integrating Oracle Database Vault with Other Oracle Products

Integrating Oracle Database Vault with Enterprise User Security 11-1

About Integrating Oracle Database Vault with Enterprise User Security 11-2

Configuring an Enterprise User Authorization 11-2

Configuring Oracle Database Vault Accounts as Enterprise User Accounts 11-3

Integrating Oracle Database Vault with Transparent Data Encryption 11-5

Attaching Factors to an Oracle Virtual Private Database 11-6

Integrating Oracle Database Vault with Oracle Label Security 11-6

How Oracle Database Vault Is Integrated with Oracle Label Security 11-6

Requirements for Using Oracle Database Vault with Oracle Label Security 11-7

Using Oracle Database Vault Factors with Oracle Label Security Policies 11-8

About Using Oracle Database Vault Factors with Oracle Label Security
Policies 11-8

Configuring Factors to Work with an Oracle Label Security Policy 11-8

Tutorial: Integrating Oracle Database Vault with Oracle Label Security 11-10

About This Tutorial 11-11

Step 1: Create Users for This Tutorial 11-11

Step 2: Create the Oracle Label Security Policy 11-12

Step 3: Create Oracle Database Vault Rules to Control the OLS
Authorization 11-12

Step 4: Update the ALTER SYSTEM Command Rule to Use the Rule Set 11-13

Step 5: Test the Authorizations 11-13

Step 6: Remove the Components for This Tutorial 11-14

Related Reports and Data Dictionary Views 11-15

Integrating Oracle Database Vault with Oracle Data Guard 11-15

Step 1: Configure the Primary Database 11-16

Step 2: Configure the Standby Database 11-17

How Auditing Works After an Oracle Database Vault-Oracle Active Data Guard
Integration 11-17

Registering Oracle Internet Directory Using Oracle Database Configuration Asssitant 11-18

12

DBA Operations in an Oracle Database Vault Environment

Using Oracle Database Vault with Oracle Enterprise Manager 12-2

Propagating Oracle Database Vault Configurations to Other Databases 12-2

Enterprise Manager Cloud Control Alerts for Oracle Database Vault Policies 12-4

ix

Oracle Database Vault-Specific Reports in Enterprise Manager Cloud Control 12-4

Changing the DBSNMP Account Password in a Database Vault Environment 12-5

Using Oracle Data Pump with Oracle Database Vault 12-5

About Using Oracle Data Pump with Oracle Database Vault 12-6

Authorizing Users or Roles for Data Pump Regular Export and Import
Operations 12-6

About Authorizing Users or Roles for Oracle Data Pump Regular Operations 12-6

Levels of Database Vault Authorization for Oracle Data Pump Regular
Operations 12-7

Authorizing Users or Roles for Oracle Data Pump Regular Operations in
Database Vault 12-7

Revoking Oracle Data Pump Authorization from Users or Roles 12-8

Authorizing Users or Roles for Data Pump Transportable Export and Import
Operations 12-9

About Authorizing Users for Oracle Data Pump Transportable Operations 12-9

Levels of Database Vault Authorization for Data Pump Transportable
Operations 12-10

Authorizing Users or Roles for Data Pump Transportable Operations in
Database Vault 12-11

Revoking Transportable Tablespace Authorization from Users or Roles 12-12

Guidelines for Exporting or Importing Data in a Database Vault Environment 12-13

Using Oracle Scheduler with Oracle Database Vault 12-14

About Using Oracle Scheduler with Oracle Database Vault 12-14

Granting a Job Scheduling Administrator Authorization for Database Vault 12-15

Revoking Authorization from Job Scheduling Administrators 12-16

Using Information Lifecycle Management with Oracle Database Vault 12-16

About Using Information Lifecycle Management with Oracle Database Vault 12-17

Authorizing Users for ILM Operations in Database Vault 12-17

Revoking Information Lifecycle Management Authorization from Users 12-18

Using Oracle Database Replay with Oracle Database Vault 12-18

About Using Database Replay with Oracle Database Vault 12-18

Authorizing Users for Database Replay Operations 12-19

Authorizing Users for Workload Capture Operations 12-19

Authorizing Users for Workload Replay Operations 12-19

Revoking Database Replay Authorization from Users 12-20

Revoking Workload Capture Privileges 12-20

Revoking Workload Replay Privileges 12-21

Executing Preprocessor Programs with Oracle Database Vault 12-21

About Executing Preprocessor Programs with Oracle Database Vault 12-21

Authorizing Users to Execute Preprocessor Programs 12-22

Revoking Execute Preprocessor Authorization from Users 12-22

Using Database Vault Operations Control to Restrict Multitenant Common User
Access to Local PDB Data 12-22

x

About Using Database Vault Operations Control 12-23

How the Addition of Common Users and Packages to an Exception List Works 12-23

Enabling Database Vault Operations Control 12-24

Adding Common Users and Packages to an Exception List 12-25

Deleting Common Users and Packages from an Exception List 12-26

Disabling Database Vault Operations Control 12-26

Preventing Multitenant Local Users from Blocking Common Operations 12-27

About Preventing Multitenant Local Users from Blocking Common Operations 12-27

Preventing Local Users from Blocking Common Operations 12-27

Oracle Recovery Manager and Oracle Database Vault 12-28

Privileges for Using XStream with Oracle Database Vault 12-28

Privileges for Using Oracle GoldenGate in with Oracle Database Vault 12-29

Using Data Masking in an Oracle Database Vault Environment 12-30

About Data Masking in an Oracle Database Vault Enabled Database 12-30

Adding Data Masking Users to the Data Dictionary Realm Authorizations 12-31

Giving Users Access to Tables or Schemas That They Want to Mask 12-31

Creating a Command Rule to Control Data Masking Privileges 12-32

Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB 12-33

Using the ORADEBUG Utility with Oracle Database Vault 12-35

Performing Patch Operations in an Oracle Database Vault Environment 12-36

13

Oracle Database Vault Schemas, Roles, and Accounts

Oracle Database Vault Schemas 13-1

DVSYS Schema 13-1

DVF Schema 13-2

Oracle Database Vault Roles 13-3

About Oracle Database Vault Roles 13-4

Privileges of Oracle Database Vault Roles 13-5

Granting Oracle Database Vault Roles to Users 13-9

DV_ACCTMGR Database Vault Account Manager Role 13-10

DV_ADMIN Database Vault Configuration Administrator Role 13-12

DV_AUDIT_CLEANUP Audit Trail Cleanup Role 13-13

DV_DATAPUMP_NETWORK_LINK Data Pump Network Link Role 13-14

DV_GOLDENGATE_ADMIN GoldenGate Administrative Role 13-15

DV_GOLDENGATE_REDO_ACCESS GoldenGate Redo Log Role 13-15

DV_MONITOR Database Vault Monitoring Role 13-16

DV_OWNER Database Vault Owner Role 13-17

DV_PATCH_ADMIN Database Vault Database Patch Role 13-19

DV_POLICY_OWNER Database Vault Owner Role 13-20

DV_SECANALYST Database Vault Security Analyst Role 13-21

xi

DV_XSTREAM_ADMIN XStream Administrative Role 13-22

Oracle Database Vault Accounts Created During Registration 13-23

About Oracle Database Vault Accounts Created During Registration 13-23

Database Accounts Used by Oracle Database Vault 13-23

Model Oracle Database Vault Database Accounts 13-24

Backup Oracle Database Vault Accounts 13-25

14

Oracle Database Vault Realm APIs

ADD_AUTH_TO_REALM Procedure 14-2

ADD_OBJECT_TO_REALM Procedure 14-4

CREATE_REALM Procedure 14-5

DELETE_AUTH_FROM_REALM Procedure 14-7

DELETE_OBJECT_FROM_REALM Procedure 14-8

DELETE_REALM Procedure 14-9

DELETE_REALM_CASCADE Procedure 14-10

RENAME_REALM Procedure 14-10

UPDATE_REALM Procedure 14-11

UPDATE_REALM_AUTH Procedure 14-13

15

Oracle Database Vault Rule Set APIs

DBMS_MACADM Rule Set Procedures 15-1

ADD_RULE_TO_RULE_SET Procedure 15-2

CREATE_RULE Procedure 15-3

CREATE_RULE_SET Procedure 15-5

DELETE_RULE Procedure 15-8

DELETE_RULE_FROM_RULE_SET Procedure 15-8

DELETE_RULE_SET Procedure 15-9

RENAME_RULE Procedure 15-9

RENAME_RULE_SET Procedure 15-10

UPDATE_RULE Procedure 15-11

UPDATE_RULE_SET Procedure 15-11

Oracle Database Vault PL/SQL Rule Set Functions 15-13

DV_SYSEVENT Function 15-14

DV_LOGIN_USER Function 15-14

DV_INSTANCE_NUM Function 15-15

DV_DATABASE_NAME Function 15-15

DV_DICT_OBJ_TYPE Function 15-16

DV_DICT_OBJ_OWNER Function 15-16

DV_DICT_OBJ_NAME Function 15-16

xii

DV_SQL_TEXT Function 15-17

16

Oracle Database Vault Command Rule APIs

CREATE_COMMAND_RULE Procedure 16-2

CREATE_CONNECT_COMMAND_RULE Procedure 16-9

CREATE_SESSION_EVENT_CMD_RULE Procedure 16-11

CREATE_SYSTEM_EVENT_CMD_RULE Procedure 16-13

DELETE_COMMAND_RULE Procedure 16-14

DELETE_CONNECT_COMMAND_RULE Procedure 16-16

DELETE_SESSION_EVENT_CMD_RULE Procedure 16-17

DELETE_SYSTEM_EVENT_CMD_RULE Procedure 16-18

UPDATE_COMMAND_RULE Procedure 16-19

UPDATE_CONNECT_COMMAND_RULE Procedure 16-21

UPDATE_SESSION_EVENT_CMD_RULE Procedure 16-23

UPDATE_SYSTEM_EVENT_CMD_RULE Procedure 16-24

17

Oracle Database Vault Factor APIs

DBMS_MACADM Factor Procedures and Functions 17-1

ADD_FACTOR_LINK Procedure 17-3

ADD_POLICY_FACTOR Procedure 17-4

CHANGE_IDENTITY_FACTOR Procedure 17-4

CHANGE_IDENTITY_VALUE Procedure 17-5

CREATE_DOMAIN_IDENTITY Procedure 17-6

CREATE_FACTOR Procedure 17-7

CREATE_FACTOR_TYPE Procedure 17-9

CREATE_IDENTITY Procedure 17-10

CREATE_IDENTITY_MAP Procedure 17-11

DELETE_FACTOR Procedure 17-12

DELETE_FACTOR_LINK Procedure 17-12

DELETE_FACTOR_TYPE Procedure 17-13

DELETE_IDENTITY Procedure 17-13

DELETE_IDENTITY_MAP Procedure 17-14

DROP_DOMAIN_IDENTITY Procedure 17-15

GET_SESSION_INFO Function 17-16

GET_INSTANCE_INFO Function 17-16

RENAME_FACTOR Procedure 17-17

RENAME_FACTOR_TYPE Procedure 17-18

UPDATE_FACTOR Procedure 17-18

UPDATE_FACTOR_TYPE Procedure 17-21

xiii

UPDATE_IDENTITY Procedure 17-21

Oracle Database Vault Run-Time PL/SQL Procedures and Functions 17-22

About Oracle Database Vault Run-Tine PL/SQL Procedures and Functions 17-23

SET_FACTOR Procedure 17-23

GET_FACTOR Function 17-24

GET_FACTOR_LABEL Function 17-24

GET_TRUST_LEVEL Function 17-25

GET_TRUST_LEVEL_FOR_IDENTITY Function 17-26

ROLE_IS_ENABLED Function 17-27

Oracle Database Vault DVF PL/SQL Factor Functions 17-27

About Oracle Database Vault DVF PL/SQL Factor Functions 17-29

F$AUTHENTICATION_METHOD Function 17-30

F$CLIENT_IP Function 17-30

F$DATABASE_DOMAIN Function 17-31

F$DATABASE_HOSTNAME Function 17-31

F$DATABASE_INSTANCE Function 17-32

F$DATABASE_IP Function 17-32

F$DATABASE_NAME Function 17-32

F$DOMAIN Function 17-33

FDVCLIENT_IDENTIFIER Function 17-33

FDVDBLINK_INFO Function 17-34

FDVMODULE Function 17-34

F$ENTERPRISE_IDENTITY Function 17-35

F$IDENTIFICATION_TYPE Function 17-35

F$LANG Function 17-36

F$LANGUAGE Function 17-36

F$MACHINE Function 17-37

F$NETWORK_PROTOCOL Function 17-37

F$PROXY_ENTERPRISE_IDENTITY Function 17-38

F$PROXY_USER Function 17-38

F$SESSION_USER Function 17-38

18

Oracle Database Vault Secure Application Role APIs

DBMS_MACADM Secure Application Role Procedures 18-1

CREATE_ROLE Procedure 18-2

DELETE_ROLE Procedure 18-2

RENAME_ROLE Procedure 18-3

UPDATE_ROLE Procedure 18-4

DBMS_MACSEC_ROLES Secure Application Role Procedure and Function 18-4

CAN_SET_ROLE Function 18-5

xiv

SET_ROLE Procedure 18-5

19

Oracle Database Vault Oracle Label Security APIs

CREATE_MAC_POLICY Procedure 19-1

CREATE_POLICY_LABEL Procedure 19-3

DELETE_MAC_POLICY_CASCADE Procedure 19-4

DELETE_POLICY_FACTOR Procedure 19-4

DELETE_POLICY_LABEL Procedure 19-5

UPDATE_MAC_POLICY Procedure 19-6

20

Oracle Database Vault Utility APIs

DBMS_MACUTL Constants 20-1

DBMS_MACUTL Listing of Constants 20-1

Example: Creating a Realm Using DBMS_MACUTL Constants 20-5

Example: Creating a Rule Set Using DBMS_MACUTL Constants 20-6

Example: Creating a Factor Using DBMS_MACUTL Constants 20-6

DBMS_MACUTL Package Procedures and Functions 20-7

CHECK_DVSYS_DML_ALLOWED Procedure 20-8

GET_CODE_VALUE Function 20-9

GET_SECOND Function 20-9

GET_MINUTE Function 20-10

GET_HOUR Function 20-11

GET_DAY Function 20-11

GET_MONTH Function 20-12

GET_YEAR Function 20-13

IS_ALPHA Function 20-13

IS_DIGIT Function 20-14

IS_DVSYS_OWNER Function 20-15

IS_OLS_INSTALLED Function 20-15

IS_OLS_INSTALLED_VARCHAR Function 20-16

ROLE_GRANTED_ENABLED_VARCHAR Function 20-16

USER_HAS_OBJECT_PRIVILEGE Function 20-18

USER_HAS_ROLE Function 20-19

USER_HAS_ROLE_VARCHAR Function 20-20

USER_HAS_SYSTEM_PRIVILEGE Function 20-20

21

Oracle Database Vault General Administrative APIs

DBMS_MACADM General System Maintenance Procedures 21-1

ADD_APP_EXCEPTION Procedure 21-3

xv

ADD_NLS_DATA Procedure 21-4

ALLOW_COMMON_OPERATION Procedure 21-5

AUTHORIZE_DATAPUMP_USER Procedure 21-6

AUTHORIZE_DBCAPTURE Procedure 21-7

AUTHORIZE_DBREPLAY Procedure 21-8

AUTHORIZE_DDL Procedure 21-8

AUTHORIZE_DIAGNOSTIC_ADMIN Procedure 21-9

AUTHORIZE_MAINTENANCE_USER Procedure 21-9

AUTHORIZE_PREPROCESSOR Procedure 21-10

AUTHORIZE_PROXY_USER Procedure 21-11

AUTHORIZE_SCHEDULER_USER Procedure 21-12

AUTHORIZE_TTS_USER Procedure 21-13

DELETE_APP_EXCEPTION Procedure 21-14

DISABLE_APP_PROTECTION Procedure 21-15

DISABLE_DV Procedure 21-15

DISABLE_DV_DICTIONARY_ACCTS Procedure 21-16

DISABLE_DV_PATCH_ADMIN_AUDIT Procedure 21-16

DISABLE_ORADEBUG Procedure 21-17

ENABLE_APP_PROTECTION Procedure 21-17

ENABLE_DV Procedure 21-18

ENABLE_DV_DICTIONARY_ACCTS Procedure 21-19

ENABLE_DV_PATCH_ADMIN_AUDIT Procedure 21-19

ENABLE_ORADEBUG Procedure 21-20

UNAUTHORIZE_DATAPUMP_USER Procedure 21-20

UNAUTHORIZE_DBCAPTURE Procedure 21-21

UNAUTHORIZE_DBREPLAY Procedure 21-22

UNAUTHORIZE_DDL Procedure 21-22

UNAUTHORIZE_DIAGNOSTIC_ADMIN Procedure 21-23

UNAUTHORIZE_MAINTENANCE_USER Procedure 21-23

UNAUTHORIZE_PREPROCESSOR Procedure 21-25

UNAUTHORIZE_PROXY_USER Procedure 21-25

UNAUTHORIZE_SCHEDULER_USER Procedure 21-26

UNAUTHORIZE_TTS_USER Procedure 21-27

CONFIGURE_DV General System Maintenance Procedure 21-28

22

Oracle Database Vault Policy APIs

ADD_CMD_RULE_TO_POLICY Procedure 22-2

ADD_OWNER_TO_POLICY Procedure 22-4

ADD_REALM_TO_POLICY Procedure 22-4

CREATE_POLICY Procedure 22-5

xvi

DELETE_CMD_RULE_FROM_POLICY Procedure 22-7

DELETE_OWNER_FROM_POLICY Procedure 22-8

DELETE_REALM_FROM_POLICY Procedure 22-9

DROP_POLICY Procedure 22-10

RENAME_POLICY Procedure 22-10

UPDATE_POLICY_DESCRIPTION Procedure 22-11

UPDATE_POLICY_STATE Procedure 22-11

23

Oracle Database Vault API Reference

DBMS_MACADM PL/SQL Package Contents 23-1

DBMS_MACSEC_ROLES PL/SQL Package Contents 23-7

DBMS_MACUTL PL/SQL Package Contents 23-7

CONFIGURE_DV PL/SQL Procedure 23-8

DVF PL/SQL Interface Contents 23-8

24

Oracle Database Vault Data Dictionary Views

About the Oracle Database Vault Data Dictionary Views 24-5

CDB_DV_STATUS View 24-5

DBA_DV_APP_EXCEPTION View 24-6

DBA_DV_CODE View 24-7

DBA_DV_COMMAND_RULE View 24-8

DBA_DV_DATAPUMP_AUTH View 24-10

DBA_DV_DBCAPTURE_AUTH View 24-11

DBA_DV_DBREPLAY View 24-11

DBA_DV_DDL_AUTH View 24-12

DBA_DV_DICTIONARY_ACCTS View 24-12

DBA_DV_FACTOR View 24-13

DBA_DV_FACTOR_TYPE View 24-15

DBA_DV_FACTOR_LINK View 24-16

DBA_DV_IDENTITY View 24-16

DBA_DV_IDENTITY_MAP View 24-17

DBA_DV_JOB_AUTH View 24-18

DBA_DV_MAC_POLICY View 24-18

DBA_DV_MAC_POLICY_FACTOR View 24-19

DBA_DV_MAINTENANCE_AUTH View 24-20

DBA_DV_ORADEBUG View 24-20

DBA_DV_PATCH_ADMIN_AUDIT View 24-21

DBA_DV_POLICY View 24-21

DBA_DV_POLICY_LABEL View 24-22

xvii

DBA_DV_POLICY_OBJECT View 24-23

DBA_DV_POLICY_OWNER View 24-25

DBA_DV_PREPROCESSOR_AUTH View 24-25

DBA_DV_PROXY_AUTH View 24-26

DBA_DV_PUB_PRIVS View 24-26

DBA_DV_REALM View 24-27

DBA_DV_REALM_AUTH View 24-29

DBA_DV_REALM_OBJECT View 24-30

DBA_DV_ROLE View 24-31

DBA_DV_RULE View 24-32

DBA_DV_RULE_SET View 24-33

DBA_DV_RULE_SET_RULE View 24-35

DBA_DV_SIMULATION_LOG View 24-36

DBA_DV_STATUS or SYS.DBA_DV_STATUS View 24-40

DBA_DV_TTS_AUTH View 24-40

DBA_DV_USER_PRIVS View 24-41

DBA_DV_USER_PRIVS_ALL View 24-42

DVSYS.DV$CONFIGURATION_AUDIT View 24-43

DVSYS.DV$ENFORCEMENT_AUDIT View 24-47

DVSYS.DV$REALM View 24-50

DVSYS.DBA_DV_COMMON_OPERATION_STATUS View 24-51

DVSYS.POLICY_OWNER_COMMAND_RULE View 24-52

DVSYS.POLICY_OWNER_POLICY View 24-53

DVSYS.POLICY_OWNER_REALM View 24-54

DVSYS.POLICY_OWNER_REALM_AUTH View 24-55

DVSYS.POLICY_OWNER_REALM_OBJECT View 24-57

DVSYS.POLICY_OWNER_RULE View 24-58

DVSYS.POLICY_OWNER_RULE_SET View 24-59

DVSYS.POLICY_OWNER_RULE_SET_RULE View 24-61

AUDSYS.DV$CONFIGURATION_AUDIT View 24-62

AUDSYS.DV$ENFORCEMENT_AUDIT View 24-62

25

Monitoring Oracle Database Vault

About Monitoring Oracle Database Vault 25-1

Monitoring Security Violations and Configuration Changes 25-1

26

Oracle Database Vault Reports

About the Oracle Database Vault Reports 26-1

Who Can Run the Oracle Database Vault Reports? 26-2

xviii

Running the Oracle Database Vault Reports 26-2

Oracle Database Vault Configuration Issues Reports 26-3

Command Rule Configuration Issues Report 26-3

Rule Set Configuration Issues Report 26-3

Realm Authorization Configuration Issues Report 26-4

Factor Configuration Issues Report 26-4

Factor Without Identities Report 26-4

Identity Configuration Issues Report 26-4

Secure Application Configuration Issues Report 26-5

Oracle Database Vault Auditing Reports 26-5

Realm Audit Report 26-5

Command Rule Audit Report 26-6

Factor Audit Report 26-6

Label Security Integration Audit Report 26-6

Core Database Vault Audit Trail Report 26-6

Secure Application Role Audit Report 26-6

Oracle Database Vault General Security Reports 26-7

Object Privilege Reports 26-7

Object Access By PUBLIC Report 26-8

Object Access Not By PUBLIC Report 26-8

Direct Object Privileges Report 26-8

Object Dependencies Report 26-9

Database Account System Privileges Reports 26-9

Direct System Privileges By Database Account Report 26-10

Direct and Indirect System Privileges By Database Account Report 26-10

Hierarchical System Privileges by Database Account Report 26-10

ANY System Privileges for Database Accounts Report 26-10

System Privileges By Privilege Report 26-10

Sensitive Objects Reports 26-10

Execute Privileges to Strong SYS Packages Report 26-11

Access to Sensitive Objects Report 26-11

Public Execute Privilege To SYS PL/SQL Procedures Report 26-12

Accounts with SYSDBA/SYSOPER Privilege Report 26-12

Privilege Management - Summary Reports 26-12

Privileges Distribution By Grantee Report 26-13

Privileges Distribution By Grantee, Owner Report 26-13

Privileges Distribution By Grantee, Owner, Privilege Report 26-13

Powerful Database Accounts and Roles Reports 26-13

WITH ADMIN Privilege Grants Report 26-14

Accounts With DBA Roles Report 26-14

Security Policy Exemption Report 26-14

xix

BECOME USER Report 26-15

ALTER SYSTEM or ALTER SESSION Report 26-15

Password History Access Report 26-15

WITH GRANT Privileges Report 26-15

Roles/Accounts That Have a Given Role Report 26-16

Database Accounts With Catalog Roles Report 26-16

AUDIT Privileges Report 26-16

OS Security Vulnerability Privileges Report 26-16

Initialization Parameters and Profiles Reports 26-16

Security Related Database Parameters Report 26-17

Resource Profiles Report 26-17

System Resource Limits Report 26-17

Database Account Password Reports 26-17

Database Account Default Password Report 26-17

Database Account Status Report 26-17

Security Audit Report: Core Database Audit Report 26-18

Other Security Vulnerability Reports 26-18

Java Policy Grants Report 26-19

OS Directory Objects Report 26-19

Objects Dependent on Dynamic SQL Report 26-19

Unwrapped PL/SQL Package Bodies Report 26-19

Username/Password Tables Report 26-20

Tablespace Quotas Report 26-20

Non-Owner Object Trigger Report 26-20

A Auditing Oracle Database Vault

About Auditing in Oracle Database Vault A-1

Protection of the Unified Audit Trail in an Oracle Database Vault Environment A-3

Oracle Database Vault Specific Audit Events A-3

Oracle Database Vault Policy Audit Events A-3

Oracle Database Vault Audit Trail Record Format A-4

Archiving and Purging the Oracle Database Vault Audit Trail A-6

About Archiving and Purging the Oracle Database Vault Audit Trail A-7

Archiving the Oracle Database Vault Audit Trail A-7

Purging the Oracle Database Vault Audit Trail A-9

Oracle Database Audit Settings Created for Oracle Database Vault A-9

B Disabling and Enabling Oracle Database Vault

When You Must Disable Oracle Database Vault B-1

xx

Step 1: Disable Oracle Database Vault B-2

Step 2: Perform the Required Tasks B-3

Step 3: Enable Oracle Database Vault B-4

C Postinstallation Oracle Database Vault Procedures

Configuring Oracle Database Vault on Oracle RAC Nodes C-1

Adding Languages to Oracle Database Vault C-2

Uninstalling Oracle Database Vault C-2

Reinstalling Oracle Database Vault C-3

D Oracle Database Vault Security Guidelines

Separation of Duty Guidelines D-1

How Oracle Database Vault Handles Separation of Duty D-1

Separation of Tasks in an Oracle Database Vault Environment D-2

Separation of Duty Matrix for Oracle Database Vault D-3

Identification and Documentation of the Tasks of Database Users D-4

Managing Oracle Database Administrative Accounts D-5

SYSTEM User Account for General Administrative Uses D-5

SYSTEM Schema for Application Tables D-6

Limitation of the SYSDBA Administrative Privilege D-6

Root and Operating System Access to Oracle Database Vault D-6

Accounts and Roles Trusted by Oracle Database Vault D-7

Accounts and Roles That Should be Limited to Trusted Individuals D-8

Management of Users with Root Access to the Operating System D-8

Management of the Oracle Software Owner D-8

Management of SYSDBA Access D-9

Management of SYSOPER Access D-9

Guidelines for Using Oracle Database Vault in a Production Environment D-10

Secure Configuration Guidelines D-10

General Secure Configuration Guidelines D-10

UTL_FILE and DBMS_FILE_TRANSFER Package Security Considerations D-11

About Security Considerations for the UTL_FILE and
DBMS_FILE_TRANSFER Packages D-11

Securing Access to the DBMS_FILE_TRANFER Package D-12

Example: Creating a Command Rule to Deny Access to CREATE
DATABASE LINK D-12

Example: Creating a Command Rule to Enable Access to CREATE
DATABASE LINK D-13

Example: Command Rules to Disable and Enable Access to CREATE
DIRECTORY D-13

xxi

CREATE ANY JOB Privilege Security Considerations D-14

CREATE EXTERNAL JOB Privilege Security Considerations D-14

LogMiner Package Security Considerations D-14

ALTER SYSTEM and ALTER SESSION Privilege Security Considerations D-14

About ALTER SYSTEM and ALTER SESSION Privilege Security
Considerations D-15

Example: Adding Rules to the Existing ALTER SYSTEM Command Rule D-15

E Troubleshooting Oracle Database Vault

Using Trace Files to Diagnose Oracle Database Vault Events E-1

About Using Trace Files to Diagnose Oracle Database Vault Events E-2

Types of Oracle Database Vault Trace Events That You Can and Cannot Track E-2

Levels of Oracle Database Vault Trace Events E-3

Performance Effect of Enabling Oracle Database Vault Trace Files E-3

Enabling Oracle Database Vault Trace Events E-3

Enabling Trace Events for the Current Database Session E-4

Enabling Trace Events for All Database Sessions E-4

Enabling Trace Events in a Multitenant Environment E-5

Finding Oracle Database Vault Trace File Data E-6

Finding the Database Vault Trace File Directory Location E-6

Using the Linux grep Command to Search Trace Files for Strings E-6

Using the ADR Command Interpreter (ADRCI) Utility to Query Trace Files E-6

Example: Low Level Oracle Database Vault Realm Violations in a Trace File E-7

Example: High Level Trace Enabled for Oracle Database Vault Authorization E-8

Example: Highest Level Traces on Violations on Realm-Protected Objects E-9

Disabling Oracle Database Vault Trace Events E-10

Disabling Trace Events for the Current Database Session E-10

Disabling Trace Events for All Database Sessions E-11

Disabling Trace Events in a Multitenant Environment E-11

General Diagnostic Tips E-12

Configuration Problems with Oracle Database Vault Components E-12

Resetting Oracle Database Vault Account Passwords E-12

Resetting the DV_OWNER User Password E-13

Resetting the DV_ACCTMGR User Password E-13

Index

xxii

Preface

Oracle Database Vault Administrator's Guide explains how to configure access control-
based security in an Oracle Database environment by using Oracle Database Vault.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for security managers, audit managers, label
administrators, and Oracle database administrators (DBAs) who are involved in the
configuration of Oracle Database Vault.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information refer to the following documents:

• Oracle Database Security Guide

• Oracle Label Security Administrator’s Guide

• Oracle Database Administrator’s Guide

• Oracle Database SQL Language Reference

• Oracle Multitenant Administrator's Guide

xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Oracle Technology Network (OTN)

You can download free release notes, installation documentation, updated versions
of this guide, white papers, or other collateral from the Oracle Technology Network
(OTN). Visit

http://www.oracle.com/technetwork/database/security/index.html

For security-specific information on OTN, visit

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

Oracle Database Vault-Specific Sites

For OTN information specific to Oracle Database Vault, visit

http://www.oracle.com/us/products/database/options/database-vault/
overview/index.html

For frequently asked questions about Oracle Database Vault, visit

http://www.oracle.com/technetwork/database/options/oracle-database-vault-
external-faq-2032888.pdf

Oracle Store

Printed documentation is available for sale in the Oracle Store at:

https://shop.oracle.com

My Oracle Support (formerly OracleMetaLink)

You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support at:

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxiv

http://www.oracle.com/technetwork/database/security/index.html
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www.oracle.com/technetwork/documentation/index.html
http://www.oracle.com/us/products/database/options/database-vault/overview/index.html
http://www.oracle.com/us/products/database/options/database-vault/overview/index.html
http://www.oracle.com/technetwork/database/options/oracle-database-vault-external-faq-2032888.pdf
http://www.oracle.com/technetwork/database/options/oracle-database-vault-external-faq-2032888.pdf
https://shop.oracle.com
https://support.oracle.com

Changes in This Release for
Oracle Database Vault Administrator's
Guide

This preface contains:

• Changes in Oracle Database Vault 21c

Changes in Oracle Database Vault 21c
The following are changes in Oracle Database Vault Administrator's Guide for Oracle
Database 21c.

• ADMINISTER KEY MANAGEMENT Statement Now Supported by Oracle
Database Vault Command Rules
You now can protect the ADMINISTER KEY MANAGEMENT statement with Oracle
Database Vault command rules.

• DBA_DV_SIMULATION_LOG View Columns REALM_NAME and
RULE_SET_NAME Now VARCHAR2 Data Type
Starting with this release, the REALM_NAME and RULE_SET_NAME columns will use the
VARCHAR2 data type instead of being in nested tables.

• Ability to Prevent Local Oracle Database Vault Policies from Blocking Common
Operations
Starting with this release, a DV_OWNER common user in the root can prevent local
users from creating Oracle Database Vault controls on common objects in a
pluggable database (PDB).

• Uninstalling and Installing Oracle Label Security and Oracle Database Vault Now
Supported
You now can install and uninstall Oracle Database Vault and Oracle Label Security
in PDBs.

• No Need to Disable Oracle Database Vault Before Upgrades
Starting with this release, you do not need to disable Oracle Database Vault in
every container before upgrading from an earlier release to the current release.

ADMINISTER KEY MANAGEMENT Statement Now Supported by
Oracle Database Vault Command Rules

You now can protect the ADMINISTER KEY MANAGEMENT statement with Oracle Database
Vault command rules.

The ADMINISTER KEY MANAGEMENT statement manages Transparent Data Encryption
(TDE) features.

xxv

Related Topics

• SQL Statements That Can Be Protected by Command Rules
You can protect a large number of SQL statements by using command rules.

DBA_DV_SIMULATION_LOG View Columns REALM_NAME and
RULE_SET_NAME Now VARCHAR2 Data Type

Starting with this release, the REALM_NAME and RULE_SET_NAME columns will use the
VARCHAR2 data type instead of being in nested tables.

This enhancement enables multiple realm names and rule set names to be separated
by a comma in a VARCHAR2 data type instead of using a nested table in the columns.
In the unlikely situation where you may have so many realms or rule set names
protecting a single object in which the VARCHAR2 data exceeds 4000 characters, Oracle
Database Vault will truncate the list of realms or rule sets at 4000 characters in the
column and if the full set is needed, it can be retrieved from the nested table in the
DVSYS.SIMULATION_LOG$ base table.

Storing realm names and rule set names as a VARCHAR2 data type makes it easier for
you to read the realm name or rule set name in the simulation log. Most users only
use a single realm or rule set to protect their sensitive data objects and even if they do
use multiple realms or rule sets, it is easier to read data in a VARCHAR2 data type rather
than a nested table.

Related Topics

• DBA_DV_SIMULATION_LOG View
The DBA_DV_SIMULATION_LOG data dictionary view captures simulation log
information for realms and command rules that have had simulation mode
enabled.

Ability to Prevent Local Oracle Database Vault Policies from Blocking
Common Operations

Starting with this release, a DV_OWNER common user in the root can prevent local
users from creating Oracle Database Vault controls on common objects in a pluggable
database (PDB).

In previous releases, in a multitenant environment, a local Oracle Database Vault
user could create Database Vault policies that could potentially block common
operations to manage the application or overall database. Blocking common
users from common operations can prevent the execution of SQL commands
that are necessary for managing the application or CDB database. To prevent
this occurrence, a user who has the DV_OWNER role in the root can execute
the DBMS_MACADM.ALLOW_COMMON_OPERATION procedure to control whether local PDB
users can create Database Vault controls on common users' objects (database or
application).

This enhancement enables database administrators to manage the CDB database and
application database administrators to manage PDBs without being blocked by local
Database Vault controls from a PDB. Infrastructure database administrators can also
manage the CDB database without being blocked by application common Database
Vault controls.

Changes in This Release for Oracle Database Vault Administrator's Guide

xxvi

Related Topics

• Preventing Multitenant Local Users from Blocking Common Operations
You can prevent multitenant local users from blocking common operations when
they attempt to create Oracle Database Vault protections on common user objects.

Uninstalling and Installing Oracle Label Security and Oracle Database
Vault Now Supported

You now can install and uninstall Oracle Database Vault and Oracle Label Security in
PDBs.

To install a feature into a PDB requires that the feature already be installed in the CDB
root.

This enhancement enables you to configure your own databases with Oracle Label
Security and Oracle Database Vault to meet your site's requirements.

Related Topics

• Uninstalling Oracle Database Vault
You can uninstall Oracle Database Vault from an Oracle Database installation, for
PDBs (but not the root) and Oracle RAC installations.

No Need to Disable Oracle Database Vault Before Upgrades
Starting with this release, you do not need to disable Oracle Database Vault in every
container before upgrading from an earlier release to the current release.

You only need to grant the DV_PATCH_ADMIN role to SYS commonly before you perform
the upgrade. After the upgrade is complete the Database Vault controls work as
before. Then revoke the DV_PATCH_ADMIN role from SYS commonly.

Alternatively, you can explicitly disable Oracle Database Vault in all containers before
the upgrade, and then after the upgrade, explicitly enable Oracle Database Vault in all
the containers.

Related Topics

• When You Must Disable Oracle Database Vault
You may need to disable Oracle Database Vault to perform upgrade tasks or
correct erroneous configurations.

Changes in This Release for Oracle Database Vault Administrator's Guide

xxvii

1
Introduction to Oracle Database Vault

Oracle Database Vault enables you to control administrative access to your data.

• What Is Oracle Database Vault?
Oracle Database Vault provides controls to prevent unauthorized privileged users
from accessing sensitive data and to prevent unauthorized database changes.

• What Privileges Do You Need to Use Oracle Database Vault?
Oracle Database Vault provides database roles that enable different users to
perform specific tasks, based on separation-of-duty guidelines.

• Components of Oracle Database Vault
Oracle Database Vault has a set of components that include PL/SQL packages
and other special tools.

• How Oracle Database Vault Addresses Compliance Regulations
One of the biggest side benefits resulting from regulatory compliance has been
security awareness.

• How Oracle Database Vault Protects Privileged User Accounts
Many security breaches, both external and internal, target privileged users
database accounts to steal data from databases.

• How Oracle Database Vault Allows for Flexible Security Policies
Oracle Database Vault helps you design flexible security policies for your
database.

• How Oracle Database Vault Addresses Database Consolidation Concerns
Consolidation and cloud environments reduce cost but can expose sensitive
application data to those without a true need-to-know.

• How Oracle Database Vault Works in a Multitenant Environment
Using Oracle Database Vault in a multitenant environment increases security for
consolidation.

What Is Oracle Database Vault?
Oracle Database Vault provides controls to prevent unauthorized privileged users from
accessing sensitive data and to prevent unauthorized database changes.

• About Oracle Database Vault
The Oracle Database Vault security controls protect application data from
unauthorized access, and comply with privacy and regulatory requirements.

• Controls for Privileged Accounts
Privileged database accounts are one of the most commonly used pathways for
gaining access to sensitive applications data in the database.

• Controls for Database Configuration
Common audit findings are unauthorized changes to database entitlements and
grants of the DBA role to too many users.

1-1

• Enterprise Applications Protection Policies
Application-specific Oracle Database Vault protection policies and guidelines are
available for major enterprise applications.

About Oracle Database Vault
The Oracle Database Vault security controls protect application data from
unauthorized access, and comply with privacy and regulatory requirements.

You can deploy controls to block privileged account access to application data and
control sensitive operations inside the database using trusted path authorization.
Through the analysis of privileges and roles, you can increase the security of existing
applications by using least privilege best practices. Oracle Database Vault secures
existing database environments transparently, eliminating costly and time consuming
application changes.

Controls for Privileged Accounts
Privileged database accounts are one of the most commonly used pathways for
gaining access to sensitive applications data in the database.

While their broad and unrestricted access facilitates database maintenance, the same
access also creates a point of attack for gaining access to large amounts of data.
Oracle Database Vault realms around application schemas, sensitive tables, and
stored procedures provide controls to prevent privileged accounts from being exploited
by intruders and insiders to access sensitive application data.

Figure 1-1 Oracle Database Vault Realm Blocking DBA Access to Data

DBA

Has
SELECT ANY TABLE

Privilege

SELECT * FROM

FINANCE.VENDORS

PL/SQL

m
eta

data

vendors

PLPLPL/S/S/SQLQL

PLPL/SQL

PLPLPL/S/S/SQLQL

PLPL/SQL

m
eta

dadadata

vendors

Controls for Database Configuration
Common audit findings are unauthorized changes to database entitlements and grants
of the DBA role to too many users.

Chapter 1
What Is Oracle Database Vault?

1-2

Preventing unauthorized changes to production environments is important not only
for security, but also for compliance as such changes can weaken security and open
doors to intruders, violating privacy and compliance regulations. Oracle Database
Vault SQL command rules enable you to control operations inside the database,
including commands such as CREATE TABLE, TRUNCATE TABLE, and CREATE USER.
Various out-of-the-box factors such as IP address, authentication method, and
program name help implement trusted path authorization to deter attacks leveraging
stolen passwords. These controls prevent accidental configuration changes and also
prevent hackers and malicious insiders from tampering with applications.

The Oracle Database Vault realms with the mandatory mode enables you to seal off
access to application objects, even to those with direct object grants, including the
object owner. With mandatory realms, you do not need to analyze who has access
because this is clear from the list of authorized users. You can enable mandatory
realms at runtime and use them in response to a cyber threat, preventing all access
until the threat has been analyzed.

Enterprise Applications Protection Policies
Application-specific Oracle Database Vault protection policies and guidelines are
available for major enterprise applications.

These enterprise applications include Oracle Fusion Applications, Oracle E-Business
Suit, Oracle PeopleSoft, Oracle Siebel, Oracle Financial Services (i-Flex), Oracle
Primavera, SAP, and Finacle from Infosys.

What Privileges Do You Need to Use Oracle Database
Vault?

Oracle Database Vault provides database roles that enable different users to perform
specific tasks, based on separation-of-duty guidelines.

The most commonly used roles are as follows:

• DV_OWNER and DV_ADMIN enable you to create and manage Database Vault policies.

• DV_ACCTMGR enables you to manage user accounts.

When you register Oracle Database Vault, the DV_OWNER role is granted to a user who
must exist before you begin the configuration process, and the DV_ACCTMGR role is
granted to a second, optional user, who must also exist before configuration. You can
grant the Database Vault roles to other users, but ensure that these users are trusted.

During the registration process, you must create backup accounts for the DV_OWNER
and DV_ACCTMGR users. As a best practice, Oracle strongly recommends that you keep
and maintain these backup accounts.

Related Topics

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

Chapter 1
What Privileges Do You Need to Use Oracle Database Vault?

1-3

Components of Oracle Database Vault
Oracle Database Vault has a set of components that include PL/SQL packages and
other special tools.

• Oracle Database Vault Access Control Components
Oracle Database Vault enables you to create a set of components to manage
security for your database instance.

• Oracle Database Vault DVSYS and DVF Schemas
Oracle Database Vault database objects and public functions are stored in the
DVSYS and DVF schemas, respectively.

• Oracle Database Vault PL/SQL Interfaces and Packages
Oracle Database Vault provides PL/SQL interfaces and packages for security
managers or application developers to configure access control policies.

• Oracle Database Vault Reporting and Monitoring Tools
You can generate reports on the various activities that Oracle Database Vault
monitors.

• Oracle Enterprise Manager Cloud Control Database Vault Administrator Pages
Oracle Database Vault is pre-installed by default and can be enabled easily.

Oracle Database Vault Access Control Components
Oracle Database Vault enables you to create a set of components to manage security
for your database instance.

These components are as follows:

• Realms. A realm is a protection zone inside the database where database
schemas, objects, and roles can be secured. For example, you can secure a set
of schemas, objects, and roles that are related to accounting, sales, or human
resources. After you have secured these into a realm, you can use the realm
to control the use of system and object privileges to specific accounts or roles.
This enables you to provide fine-grained access controls for anyone who wants to
use these schemas, objects, and roles. Configuring Realms, discusses realms in
detail. See also Oracle Database Vault Realm APIs.

• Command rules. A command rule is a special security policy that you can
create to control how users can execute almost any SQL statement, including
SELECT, ALTER SYSTEM, database definition language (DDL), and data manipulation
language (DML) statements. Command rules must work with rule sets to
determine whether the statement is allowed. Configuring Command Rules ,
discusses command rules in detail. See also Oracle Database Vault Command
Rule APIs.

• Factors. A factor is a named variable or attribute, such as a user location,
database IP address, or session user, which Oracle Database Vault can recognize
and use as a trusted path. You can use factors in rules to control activities such
as authorizing database accounts to connect to the database or the execution of
a specific database command to restrict the visibility and manageability of data.
Each factor can have one or more identities. An identity is the actual value of
a factor. A factor can have several identities depending on the factor retrieval
method or its identity mapping logic. Configuring Factors, discusses factors in
detail. See also Oracle Database Vault Factor APIs.

Chapter 1
Components of Oracle Database Vault

1-4

• Rule sets. A rule set is a collection of one or more rules that you can associate
with a realm authorization, command rule, factor assignment, or secure application
role. The rule set evaluates to true or false based on the evaluation of each rule it
contains and the evaluation type (All True or Any True). The rule within a rule set
is a PL/SQL expression that evaluates to true or false. You can have the same rule
in multiple rule sets. Configuring Rule Sets , discusses rule sets in detail. See also
Oracle Database Vault Rule Set APIs.

• Secure application roles. A secure application role is a special Oracle Database
role that can be enabled based on the evaluation of an Oracle Database
Vault rule set. Configuring Secure Application Roles for Oracle Database Vault,
discusses secure application roles in detail. See also Oracle Database Vault
Secure Application Role APIs .

To augment these components, Oracle Database Vault provides a set of PL/SQL
interfaces and packages. Oracle Database Vault PL/SQL Interfaces and Packages
provides an overview.

In general, the first step you take is to create a realm composed of the database
schemas or database objects that you want to secure. You can further secure the
realm by creating rules, command rules, factors, identities, rule sets, and secure
application roles. In addition, you can run reports on the activities these components
monitor and protect. Getting Started with Oracle Database Vault, provides a simple
tutorial that will familiarize you with basic Oracle Database Vault functionality. Later
chapters provide more advanced tutorials. Oracle Database Vault Reports, provides
more information about how you can run reports to check the configuration and other
activities that Oracle Database Vault performs.

Oracle Database Vault DVSYS and DVF Schemas
Oracle Database Vault database objects and public functions are stored in the DVSYS
and DVF schemas, respectively.

Oracle Database Vault provides a schema, DVSYS, which stores the database objects
needed to process Oracle data for Oracle Database Vault. This schema contains the
roles, views, accounts, functions, and other database objects that Oracle Database
Vault uses. The DVF schema contains public functions to retrieve (at run time) the
factor values set in the Oracle Database Vault access control configuration. Both of
these schemas are authenticated as schema only accounts.

Related Topics

• Oracle Database Vault Schemas, Roles, and Accounts
Oracle Database Vault provides schemas that contain Database Vault objects,
roles that provide separation of duty for specific tasks, and default user accounts.

Oracle Database Vault PL/SQL Interfaces and Packages
Oracle Database Vault provides PL/SQL interfaces and packages for security
managers or application developers to configure access control policies.

The PL/SQL procedures and functions allow the general database account to operate
within the boundaries of access control policy in the context of a given database
session.

See Oracle Database Vault Realm APIs through Oracle Database Vault API Reference
for more information.

Chapter 1
Components of Oracle Database Vault

1-5

Oracle Database Vault Reporting and Monitoring Tools
You can generate reports on the various activities that Oracle Database Vault
monitors.

In addition, you can monitor policy changes, security violation attempts, and database
configuration and structural changes.

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• Monitoring Oracle Database Vault
You can monitor Oracle Database Vault by checking for violations to the Database
Vault configurations and by tracking changes to policies.

Oracle Enterprise Manager Cloud Control Database Vault
Administrator Pages

Oracle Database Vault is pre-installed by default and can be enabled easily.

Oracle Database Vault administration is fully integrated with Oracle Enterprise
Manager Cloud Control, providing security administrators with a streamlined and
centralized interface to manage Oracle Database Vault.

In Oracle Enterprise Manager Cloud Control, you can access the Oracle Database
Vault Administrator pages if you prefer to use a graphical user interface to configure
Database Vault policies, and view Database Vault alerts and reports. Oracle Database
Vault Administrator provides an extensive collection of security-related reports that
assist in understanding the baseline security configuration. These reports also help
point out deviations from this baseline.

How Oracle Database Vault Addresses Compliance
Regulations

One of the biggest side benefits resulting from regulatory compliance has been
security awareness.

Historically, the focus of the information technology (IT) department has been on
high availability and performance. The focus on regulatory compliance has required
everyone to take a step back and look at their IT infrastructure, databases, and
applications from a security angle. Common questions include:

• Where is the sensitive information stored?

• Who has access to this information?

Regulations such as the Sarbanes-Oxley Act, Health Insurance Portability and
Accountability Act (HIPAA), International Convergence of Capital Measurement and
Capital Standards: a Revised Framework (Basel II), Japan Privacy Law, Payment Card
Industry Data Security Standard (PCI DSS), and the European Union Directive on

Chapter 1
How Oracle Database Vault Addresses Compliance Regulations

1-6

Privacy and Electronic Communications have common themes that include internal
controls, separation of duty, and access control.

While most changes required by regulations such as Sarbanes-Oxley and HIPAA are
procedural in nature, the remainder may require technology investments. A common
security requirement found in regulations is stringent internal controls. The degree to
which Oracle Database Vault helps an organization achieve compliance varies with
the regulation. In general, Oracle Database Vault realms, command rules, factors
and separation of duty features, help reduce the overall security risks that regulation
provisions worldwide address.

Table 1-1 lists regulations that address potential security threats.

Table 1-1 Regulations That Address Potential Security Threats

Regulation Potential Security Threat

Sarbanes-Oxley Section 302 Unauthorized changes to data

Sarbanes-Oxley Section 404 Modification to data, unauthorized access

Sarbanes-Oxley Section 409 Denial of service, unauthorized access

Gramm-Leach-Bliley Unauthorized access, modification, or disclosure

Health Insurance Portability and
Accountability Act (HIPAA) 164.306

Unauthorized access to data

HIPAA 164.312 Unauthorized access to data

Basel II – Internal Risk Management Unauthorized access to data

CFR Part 11 Unauthorized access to data

Japan Privacy Law Unauthorized access to data

EU Directive on Privacy and Electronic
Communications

Unauthorized access to data

Payment Card Industry Data Security
Standard (PCI DSS)

Unauthorized changes to data

How Oracle Database Vault Protects Privileged User
Accounts

Many security breaches, both external and internal, target privileged users database
accounts to steal data from databases.

Oracle Database Vault protects against compromised privilege user account attacks by
using realms, factors, and command rules. Combined, these provide powerful security
tools to help secure access to databases, applications, and sensitive information. You
can combine rules and factors to control the conditions under which commands in the
database are allowed to execute, and to control access to data protected by a realm.
For example, you can create rules and factors to control access to data based on
IP addresses, the time of day, and specific programs. These can limit access to only
those connections that pass these conditions. This can prevent unauthorized access
to application data and access to the database by unauthorized applications.

Oracle Database Vault provides built-in factors that you can use in combination with
rules to control access to the database, realm-protected applications, and commands
within the database.

Chapter 1
How Oracle Database Vault Protects Privileged User Accounts

1-7

You can associate rules and factors with many SQL statements in the database to
provide stronger internal controls within the database. You can customize these to
meet the operational policies for your site. For example, you could define a rule to limit
execution of the ALTER SYSTEM statement to a specific IP address and host name.

How Oracle Database Vault Allows for Flexible Security
Policies

Oracle Database Vault helps you design flexible security policies for your database.

For example, any database user who has the DBA role can make modifications to
basic parameters in a database. Suppose an inexperienced administrator who has
system privileges decides to start a new redo log file but does not realize that
doing so at a particular time may cause problems for the database. With Oracle
Database Vault, you can create a command rule to prevent this user from making
such modifications by limiting his or her usage of the ALTER SYSTEM SWITCH LOGFILE
statement. Furthermore, you can attach rule sets to the command rule to restrict
activity further, such as limiting the statement's execution in the following ways:

• By time (for example, only during 4 p.m. and 5 p.m. on Friday afternoons)

• By local access only, that is, not remotely

• By IP address (for example, allowing the action to only a specified range of IP
addresses)

You can customize Oracle Database Vault separation of duties to fit the requirements
of business of any size. For example, large customers with dedicated IT staff and
some out sourced back end operations can further fine tune separation of duties to
control what out sourced database administrators can do. For smaller organizations
with some users handling multiple responsibilities, separation of duties can be tuned
down and these users can create separate dedicated accounts for each responsibility.
This helps such users keep track of all actions made and prevents intruders from
exploiting compromised privileged database accounts to steal sensitive data. In
addition, it helps auditors verify compliance.

How Oracle Database Vault Addresses Database
Consolidation Concerns

Consolidation and cloud environments reduce cost but can expose sensitive
application data to those without a true need-to-know.

Data from one country may be hosted in an entirely different country, but access
to that data must be restricted based on regulations of the country to which the
data belongs. Oracle Database Vault controls provide increased security for these
environments by preventing database administrators from accessing the applications
data. In addition, controls can be used to help block application bypass and enforce a
trusted-path from the application tier to the application data.

Oracle Database Vault provides four distinct separation of duty controls for security
administration:

• Day-to-day database administrator tasks using the default Oracle Database DBA
role

Chapter 1
How Oracle Database Vault Allows for Flexible Security Policies

1-8

• Security administrator tasks using the DV_OWNER and DV_ADMIN roles

• Account administrator tasks using the DV_ACCTMGR role

• Grants of roles and privileges by a named trusted user

Oracle Database Vault separation of duty controls can be customized and
organizations with limited resources can assign multiple Oracle Database Vault
responsibilities to the same administrator, but using separate accounts for each
separation-of-duty role to minimize damage to the database if any one account is
stolen and leveraged.

Oracle customers today still have hundreds and even thousands of databases
distributed throughout the enterprise and around the world. However, for database
consolidation as a cost-saving strategy in the coming years to be effective, the
physical security provided by the distributed database architecture must be available in
the consolidated environment. Oracle Database Vault addresses the primary security
concerns of database consolidation.

Figure 1-2 illustrates how Oracle Database Vault addresses the following database
security concerns:

• Administrative privileged account access to application data: In this case,
Oracle Database Vault prevents the database administrator from accessing
the schemas that are protected by the Finance realm. Although the database
administrator is the most powerful and trusted user, this administrator does not
need access to application data residing within the database.

• Separation of duties for application data access: In this case, the HR realm
owner, created in Oracle Database Vault, has access to the HR realm schemas.

Figure 1-2 Oracle Database Vault Security

DBA

Procurement

HR

Finance

SELECT * FROM

FINANCE.CUSTOMERS

Application

Chapter 1
How Oracle Database Vault Addresses Database Consolidation Concerns

1-9

Database consolidation can result in multiple powerful user accounts residing in a
single database. This means that in addition to the overall database administrator,
individual application schema owners also may have powerful privileges. Revoking
some privileges may adversely affect existing applications. Using Oracle Database
Vault realms, you can enforce access to applications through a trusted path,
preventing database users who have not been specifically authorized access from
using powerful privileges to look at other application data. For example, a database
administrator who has the SELECT ANY TABLE system privilege can be prevented from
using that privilege to view other application data residing in the same database.

How Oracle Database Vault Works in a Multitenant
Environment

Using Oracle Database Vault in a multitenant environment increases security for
consolidation.

Oracle Database Vault can prevent privileged user access inside a pluggable database
(PDB) and between the PDB and the common privileged user at the container
database. Each PDB has its own Database Vault metadata, such as realms, rule
sets, command rules, default policies (such as default realms), and so on. In addition,
the objects within the DVSYS and DVF schemas are automatically available to any child
PDBs. Both schemas are common user schemas.

You can configure common realms in the application root only, but you can create
common rule sets and command rules in either the application root or the CDB root.
A common command rule in the application root applies to its associated PDBs, and
common command rules in the CDB root apply to all PDBs in the CDB environment.
The ability to create common realms and command rules enables you to create
policies that use a shared set of realms, rule sets, or command rules throughout the
CDB environments, rather than having to create these same components for every
PDB in the multitenant environment.

You can create individual local policies for each PDB. When you use Database Vault to
protect an object, Database Vault subjects common privileges for common objects to
the same enforcement rules as local system privileges.

When you configure a PDB that has Database Vault enabled, the DVSYS schema is a
common user schema that is stored in the root. This means that all the objects within
the DVSYS schema (tables, data dictionary views, user accounts, PL/SQL packages,
default policies, and so on) are subject to the common privileges available for this
schema. In other words, you can create realms, factors, and so on in the root to
protect the schema in the root. Ensure that you configure Database Vault in the root
first, before you configure it in the associated PDBs.

When you enable Oracle Database Vault in the CDB root, you can choose either
regular mode or strict mode. The settings propagate throughout the CDB based
on the setting you choose. For example, suppose a CDB contains both Database
Vault-enabled PDBs and PDBs in which Database Vault is not enabled. If you enable
Database Vault using regular mode, then both types of PDBs continue to function
normally. If you enable Database Vault using strict mode, then the Database Vault-
disabled PDBs operate in restricted mode. If you want to run DBMS_MACADM.ENABLE_DV
in an application container, then you must run it in the application container outside of
application actions.

Chapter 1
How Oracle Database Vault Works in a Multitenant Environment

1-10

Figure 1-3 illustrates how the database in regular mode allows different access for
common and local database administrators depending if Database Vault is enabled. In
this scenario, neither the common user nor the local users have access to the realms
in PDB1 and PDB2. Both the common user and the PDB3 local user have access to
the Custom App application in PDB3, where Database Vault is not enabled.

Figure 1-3 Oracle Database Vault in a Multitenant Environment with Regular
Mode

CDB

PDB1
Database
Vault
Enabled

PDB2
Database
Vault
Enabled

PDB3
Database
Vault Not

Enabled

HR
Realm

Common

CDB DBA

Local

PDB DBA

Root
CDB

Fin
Realm

Custom
App

Local

PDB DBA

Com

CDB

Com

CDB

Related Topics

• Realms in a Multitenant Environment
You can create a realm to protect common objects in the application root.

• Rule Sets and Rules in a Multitenant Environment
You can create a rule set and its associated rules in a PDB or an application root.

• Command Rules in a Multitenant Environment
You can create common and local command rules in either the CDB root or the
application root.

• Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB
You can convert a standalone Oracle Database database from release 12c
through 19c to a PDB, and then plug this PDB into a CDB.

Chapter 1
How Oracle Database Vault Works in a Multitenant Environment

1-11

2
What to Expect After You Enable
Oracle Database Vault

When you enable Oracle Database Vault, several Oracle Database security features,
such as default user authorizations, are modified to provide stronger security
restrictions.

• Initialization and Password Parameter Settings That Change
The Oracle Database Vault configuration modifies several database initialization
parameter settings to better secure your database configuration.

• How Oracle Database Vault Restricts User Authorizations
The Oracle Database configuration requires two additional administrative
database account names.

• New Database Roles to Enforce Separation of Duties
The Oracle Database Vault configuration implements the concept of separation of
duty so that you can meet regulatory, privacy and other compliance requirements.

• Privileges That Are Revoked from Existing Users and Roles
The Oracle Database Vault configuration revokes privileges from several Oracle
Database-supplied users and roles, for better separation of duty.

• Privileges That Are Prevented for Existing Users and Roles
The Oracle Database Vault configuration prevents several privileges for all users
and roles who have been granted these privileges, including users SYS and
SYSTEM.

• Modified AUDIT Statement Settings for a Non-Unified Audit Environment
When you configure Oracle Database Vault and if you decide not to use unified
auditing, then Database Vault configures several AUDIT statements.

Initialization and Password Parameter Settings That Change
The Oracle Database Vault configuration modifies several database initialization
parameter settings to better secure your database configuration.

If these changes adversely affect your organizational processes or database
maintenance procedures, then contact Oracle Support for help in resolving the issue.

Table 2-1 describes the initialization parameter settings that Oracle Database Vault
modifies. Initialization parameters are stored in the init.ora initialization parameter
file. On UNIX and Linux, this file is located in $ORACLE_HOME/dbs. On Windows, this file
is located in $ORACLE_HOME/database.

2-1

Table 2-1 Modified Database Initialization Parameter Settings

Parameter Default Value in
Database

New Value Set
by Database
Vault

Impact of the Change

AUDIT_SYS_OPERATIONS FALSE TRUE Enables the auditing of top-level
operations directly issued by user
SYS, and users connecting with
SYSDBA or SYSOPER privilege.

OS_ROLES Not configured FALSE Disables the operating system to
completely manage the granting and
revoking of roles to users. Any
previous grants of roles to users
using GRANT statements do not
change, because they are still listed
in the data dictionary. Only the
role grants made at the operating
system-level to users apply. Users
can still grant privileges to roles and
users.

REMOTE_LOGIN_PASSWORDFILE EXCLUSIVE EXCLUSIVE Specifies whether Oracle Database
checks for a password file. The
EXCLUSIVE setting enforces the
use of the password file, if
you installed Oracle Database
Vault into a database where
REMOTE_LOGIN_PASSWORDFILE is
not set to EXCLUSIVE.

SQL92_SECURITY TRUE TRUE Ensures that if a user has been
granted the UPDATE or DELETE
object privilege, then the user
must also be granted the SELECT
object privilege before being able
to perform UPDATE or DELETE
operations on tables that have
WHERE or SET clauses.

Be aware that if the user is only
granted the READ object privilege
(instead of SELECT), then the user
is not able to perform UPDATE or
DELETE operations.

How Oracle Database Vault Restricts User Authorizations
The Oracle Database configuration requires two additional administrative database
account names.

In addition, several database roles are created. These accounts are part of the
separation of duties provided by Oracle Database Vault. One common audit problem
that has affected several large organizations is the unauthorized creation of new
database accounts by a database administrator within a production instance. Upon
installation, Oracle Database Vault prevents anyone other than the Oracle Database
Vault account manager or a user granted the Oracle Database Vault account manager
role from creating users in the database.

Chapter 2
How Oracle Database Vault Restricts User Authorizations

2-2

Related Topics

• Separation of Duty Guidelines
Oracle Database Vault is designed to easily implement separation of duty
guidelines.

New Database Roles to Enforce Separation of Duties
The Oracle Database Vault configuration implements the concept of separation of duty
so that you can meet regulatory, privacy and other compliance requirements.

Oracle Database Vault makes clear separation between the account management
responsibility, data security responsibility, and database management responsibility
inside the database. This means that the concept of a super-privileged user (for
example, DBA) is divided among several new database roles to ensure no one user
has full control over both the data and configuration of the system. Oracle Database
Vault prevents privileged users (those with the DBA and other privileged roles and
system privileges) from accessing designated protected areas of the database called
realms. It also introduces new database roles called the Oracle Database Vault Owner
(DV_OWNER) and the Oracle Database Vault Account Manager (DV_ACCTMGR). These new
database roles separate the data security and the account management from the
traditional DBA role. You should map these roles to distinct security professionals within
your organization.

Related Topics

• Separation of Duty Guidelines
Oracle Database Vault is designed to easily implement separation of duty
guidelines.

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

Privileges That Are Revoked from Existing Users and Roles
The Oracle Database Vault configuration revokes privileges from several Oracle
Database-supplied users and roles, for better separation of duty.

Table 2-2 lists privileges that Oracle Database Vault revokes from the Oracle
Database-supplied users and roles. Be aware that if you disable Oracle Database
Vault, these privileges remain revoked. If your applications depend on these privileges,
then grant them to application owner directly. These privileges are revoked from the
users and roles in the CDB root and its PDBs and from the application root and its
PDBs.

Chapter 2
New Database Roles to Enforce Separation of Duties

2-3

Table 2-2 Privileges Oracle Database Vault Revokes

User or Role Privilege That Is Revoked

DBA role • BECOME USER
• SELECT ANY TRANSACTION
• CREATE ANY JOB
• CREATE EXTERNAL JOB
• EXECUTE ANY PROGRAM
• EXECUTE ANY CLASS
• MANAGE SCHEDULER
• DEQUEUE ANY QUEUE
• ENQUEUE ANY QUEUE
• MANAGE ANY QUEUE

IMP_FULL_DATABASE role • BECOME USER
• MANAGE ANY QUEUE

EXECUTE_CATALOG_ROLE role • EXECUTE ON DBMS_LOGMNR_D
• EXECUTE ON DBMS_LOGMNR_LOGREP_DICT
• EXECUTE ON DBMS_FILE_TRANSFER

PUBLIC user • EXECUTE ON UTL_FILE

SCHEDULER_ADMIN role • CREATE ANY JOB
• CREATE EXTERNAL JOB
• EXECUTE ANY PROGRAM
• EXECUTE ANY CLASS
• MANAGE SCHEDULER

Note:

Both the SYS and SYSTEM users retain the SELECT privilege for the
DBA_USERS_WITH_DEFPWD data dictionary view, which lists user accounts that
use default passwords. If you want other users to have access to this view,
grant them the SELECT privilege on it.

Related Topics

• Privileges of Oracle Database Vault Roles
The Oracle Database Vault roles are designed to provide the maximum benefits of
separation of duty.

• DV_ACCTMGR Database Vault Account Manager Role
The DV_ACCTMGR role is a powerful role, used for accounts management.

Privileges That Are Prevented for Existing Users and Roles
The Oracle Database Vault configuration prevents several privileges for all users and
roles who have been granted these privileges, including users SYS and SYSTEM.

The DV_ACCTMGR role has these privileges for separation of duty:

• ALTER PROFILE

Chapter 2
Privileges That Are Prevented for Existing Users and Roles

2-4

• ALTER USER

• CREATE PROFILE

• CREATE USER

• DROP PROFILE

• DROP USER

For better security and to maintain separation-of-duty standards, do not enable SYS or
SYSTEM users the ability to create or manage user accounts.

Any role can be granted to user SYS, but SYS cannot use the role because no roles are
enabled in the SYS session.

Modified AUDIT Statement Settings for a Non-Unified Audit
Environment

When you configure Oracle Database Vault and if you decide not to use unified
auditing, then Database Vault configures several AUDIT statements.

Related Topics

• Oracle Database Audit Settings Created for Oracle Database Vault
When you install Oracle Database Vault, it creates several AUDIT settings in the
database.

Chapter 2
Modified AUDIT Statement Settings for a Non-Unified Audit Environment

2-5

3
Getting Started with Oracle Database Vault

Before you can start using Oracle Database Vault, you must register it with the Oracle
database.

• About Registering Oracle Database Vault with an Oracle Database
After you install Oracle Database, you must register (that is, configure and enable)
Oracle Database Vault with the Oracle CDB and associated PDBs in which it was
installed.

• Registering Oracle Database Vault
You can register Oracle Database Vault based on several scenarios.

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

• Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control
Oracle Enterprise Manager Cloud Control (Cloud Control) provides pages for
managing Oracle Database Vault.

• Quick Start Tutorial: Securing a Schema from DBA Access
This tutorial shows how to create a realm around the HR schema.

About Registering Oracle Database Vault with an Oracle
Database

After you install Oracle Database, you must register (that is, configure and enable)
Oracle Database Vault with the Oracle CDB and associated PDBs in which it was
installed.

Oracle Database includes Database Vault when you choose to include a default
database in the installation process, but you must register it before you can use
it. If you create a custom database, then you can use DBCA to install and enable
Database Vault for it. The registration process enables Oracle Label Security if it is
not already enabled. Oracle Label Security is required for Oracle Database Vault but
it does not require a separate license unless you begin using Oracle Label Security
separately and create Oracle Label Security policies. This procedure applies to the
CDB root, application root, and the current pluggable database (PDB), as well as to
both single-instance and Oracle Real Application Clusters (Oracle RAC) installations.
In a multitenant database, Database Vault must be configured with the CDB root
before any of the PDBs can configure Database Vault.

As part of the registration process, you created the Database Vault backup accounts.
These are accounts that hold the key Database Vault roles. Use these accounts
initially to provision the roles to named users with administrative privileges. Maintaining
a backup account will allow you to recover from the named user losing or somehow
misplacing their credentials because SYS will not be able to reset these passwords for
users with these roles.

3-1

When you register Database Vault, you have several methods to choose from for the
registration.

Note:

If you have upgraded from a release earlier than Oracle Database 12c,
and if the earlier Oracle Database Vault had been enabled in that earlier
release, then after the upgrade process is complete, you must enable Oracle
Database Vault by using the DBMS_MACADM.ENABLE_DV procedure.
If you are migrating a non-Database Vault registered Oracle database from a
release earlier than release 12c, then you must perform a manual installation
of Database Vault.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

Registering Oracle Database Vault
You can register Oracle Database Vault based on several scenarios.

• About Registering Database Vault
You must register Oracle Database Vault in the CDB root before you can register
Database Vault in any of the associated PDBs.

• Registering Database Vault in the CDB Root
You register Oracle Database Vault with common users who will use the Database
Vault-enforced roles in the CDB root.

• Registering Database Vault Common Users to Manage Specific PDBs
You must register Oracle Database Vault in the root first, then in the PDBs
afterward.

• Registering Database Vault Local Users to Manage Specific PDBs
You must register Oracle Database Vault in the root first, and then in the PDBs
afterward.

• Manually Installing Oracle Database Vault
Under certain conditions, you must manually install Oracle Database Vault.

About Registering Database Vault
You must register Oracle Database Vault in the CDB root before you can register
Database Vault in any of the associated PDBs.

The common users who have been assigned the DV_OWNER and DV_ACCTMGR roles in
the CDB root can also have the same role in the PDBs. PDBs can have Database
Vault registered using the same common users or use separate PDB local users. The
DV_ACCTMGR role is granted commonly to the common user in the CDB root. You can
grant DV_OWNER locally or commonly to the CDB root common user when you register
Database Vault with the CDB root. Granting DV_OWNER locally to the common user
prevents the common DV_OWNER user from using this role in any PDB.

Chapter 3
Registering Oracle Database Vault

3-2

Registering Database Vault in the CDB Root
You register Oracle Database Vault with common users who will use the Database
Vault-enforced roles in the CDB root.

1. Log into the root of the database instance as a user who has privileges to create
users and grant the CREATE SESSION and SET CONTAINER privileges.

For example:

sqlplus c##dba_debra
Enter password: password

2. Select user accounts (or create new users) that will be used for the Database
Vault Owner (DV_OWNER role) and Database Vault Account Manager (DV_ACCTMGR
role) accounts.

Oracle strongly recommends that you maintain two accounts for each role. One
account, the primary named user account, will be used on a day-to-day basis and
the other account will be used as a backup account in case the password of the
primary account is lost and must be reset.

Prepend the names of these accounts with c## or C##. For example:

GRANT CREATE SESSION, SET CONTAINER TO c##sec_admin_owen
 IDENTIFIED BY password CONTAINER = ALL;
GRANT CREATE SESSION, SET CONTAINER TO c##dbv_owner_root_backup
 IDENTIFIED BY password CONTAINER = ALL;
GRANT CREATE SESSION, SET CONTAINER TO c##accts_admin_ace
 IDENTIFIED BY password CONTAINER = ALL;
GRANT CREATE SESSION, SET CONTAINER TO c##dbv_acctmgr_root_backup
 IDENTIFIED BY password CONTAINER = ALL;

In this specification:

• Create the primary accounts (c##sec_admin_owen and c##accts_admin_ace)
if these do not already exist for the new roles, DV_ADMIN and DV_ACCTMGR.

• Replace password with a password that is secure.

3. Connect to the root as user SYS with the SYSDBA administrative privilege

CONNECT SYS AS SYSDBA
Enter password: password

4. Configure the two backup Database Vault user accounts.

For example:

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'c##dbv_owner_root_backup',
 dvacctmgr_uname => 'c##dbv_acctmgr_root_backup',
 force_local_dvowner => FALSE);
 END;
/

Chapter 3
Registering Oracle Database Vault

3-3

In this example, setting force_local_dvowner to FALSE enables the common users
to have DV_OWNER privileges for the PDBs that are associated with this CDB root.
Setting it to TRUE restricts the common DV_OWNER user to have the DV_OWNER role
privileges for the CDB root only. If you grant DV_OWNER locally to the CDB root
common user, then that user cannot grant the DV_OWNER role commonly to any
other user.

5. Run the utlrp.sql script to recompile invalidated objects in the root.

@?/rdbms/admin/utlrp.sql

If the script provides instructions, follow them, and then run the script again. If the
script terminates abnormally without giving any instructions, then run it again.

6. Connect to the root as the primary Database Vault Owner user that you just
configured.

For example:

CONNECT c##dbv_owner_root_backup
Enter password: password

7. Enable Oracle Database Vault using one of the following commands:

• To enable Oracle Database Vault to use regular mode:

EXEC DBMS_MACADM.ENABLE_DV;

• If every associated PDB will need to have Database Vault enabled in this
database, then use the following command. (You will need to enable each
of these PDBs after you complete this procedure.) PDBs that do not have
Database Vault enabled will be in restricted mode after the database is
restarted and until Database Vault is enabled in the PDB:

EXEC DBMS_MACADM.ENABLE_DV (strict_mode => 'y');

8. Connect with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

9. Restart the database.

SHUTDOWN IMMEDIATE
STARTUP

10. Verify that Oracle Database Vault and Oracle Label Security are installed and
enabled.

SELECT * FROM DBA_DV_STATUS;
SELECT * FROM DBA_OLS_STATUS;

11. Connect as the backup DV_OWNER user and then grant the DV_OWNER role to the
primary DV_OWNER user that you created earlier.

Chapter 3
Registering Oracle Database Vault

3-4

For example:

CONNECT c##dbv_owner_root_backup
Enter password: password

GRANT DV_OWNER TO c##sec_admin_owen WITH ADMIN OPTION;

12. Connect as the backup DV_ACCTMGR user and then grant the DV_ACCTMGR role to the
backup DV_ACCTMGR user.

For example:

CONNECT c##dbv_acctmgr_root_backup
Enter password: password

GRANT DV_ACCTMGR TO c##accts_admin_ace WITH ADMIN OPTION;

13. Store the two backup account passwords in a safe location such as a privileged
account management (PAM) system in case they are needed in the future.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

• Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control
Oracle Enterprise Manager Cloud Control (Cloud Control) provides pages for
managing Oracle Database Vault.

Related Topics

• DV_PATCH_ADMIN Database Vault Database Patch Role
The DV_PATCH_ADMIN role is used for patching operations.

• CONFIGURE_DV General System Maintenance Procedure
The CONFIGURE_DV procedure configures the initial two Oracle Database user
accounts, which are granted the DV_OWNER and DV_ACCTMGR roles, respectively.

Registering Database Vault Common Users to Manage Specific PDBs
You must register Oracle Database Vault in the root first, then in the PDBs afterward.

If you try to register in a PDB first, then an ORA-47503: Database Vault is not
enabled on CDB$ROOT error appears.

1. If you have not already done so, then identify or create named common user
accounts to be used as the Database Vault accounts along with associated
backup accounts.

2. Ensure that you have registered Oracle Database Vault in the CDB root and that
the DV_OWNER role was granted commonly to the common user.

3. Connect to the PDB as an administrator who is local to the PDB.

Chapter 3
Registering Oracle Database Vault

3-5

For example:

CONNECT dba_debra@pdb_name
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

4. Grant the CREATE SESSION and SET CONTAINER privileges to the users for this PDB.

For example:

GRANT CREATE SESSION, SET CONTAINER TO c##sec_admin_owen CONTAINER
= CURRENT;
GRANT CREATE SESSION, SET CONTAINER TO c##accts_admin_ace CONTAINER
= CURRENT;

5. Connect as user SYS with the SYSDBA administrative privilege

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

6. While still in the PDB, configure the two backup Database Vault user accounts.

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'c##dbv_owner_root_backup',
 dvacctmgr_uname => 'c##dbv_acctmgr_root_backup');
 END;
/

In this example, the force_local_dvowner parameter is omitted because it is
unnecessary. All common users who are configured within a PDB are restricted to
the scope of the PDB.

7. Run the utlrp.sql script to recompile invalidated objects in this PDB.

@?/rdbms/admin/utlrp.sql

If the script provides instructions, follow them, and then run the script again. If the
script terminates abnormally without giving any instructions, then run it again.

8. Connect to the PDB as the backup Database Vault Owner user that you just
configured.

For example:

CONNECT c##dbv_owner_root_backup@pdb_name
Enter password: password

9. Enable Oracle Database Vault in this PDB.

EXEC DBMS_MACADM.ENABLE_DV;

Chapter 3
Registering Oracle Database Vault

3-6

10. Connect to the CDB with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

11. Close and reopen the PDB.

For example:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

12. Verify that the PDB is configured and enabled for Database Vault and Oracle Label
Security.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

SELECT * FROM DBA_DV_STATUS;
SELECT * FROM DBA_OLS_STATUS;

13. Connect as the backup DV_OWNER user and then grant the DV_OWNER role to the
primary DV_OWNER user that you created earlier.

For example:

CONNECT c##dbv_owner_root_backup@pdb_name
Enter password: password

GRANT DV_OWNER TO c##sec_admin_owen WITH ADMIN OPTION;

14. Connect as the backup DV_ACCTMGR user and then grant the DV_ACCTMGR role to the
primary DV_ACCTMGR user.

For example:

CONNECT c##dbv_acctmgr_root_backup@pdb_name
Enter password: password

GRANT DV_ACCTMGR TO c##accts_admin_ace WITH ADMIN OPTION;

15. Store the two backup account passwords in a safe location such as a privileged
account management (PAM) system in case they are needed in the future.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

• Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control
Oracle Enterprise Manager Cloud Control (Cloud Control) provides pages for
managing Oracle Database Vault.

Chapter 3
Registering Oracle Database Vault

3-7

Related Topics

• DV_PATCH_ADMIN Database Vault Database Patch Role
The DV_PATCH_ADMIN role is used for patching operations.

• CONFIGURE_DV General System Maintenance Procedure
The CONFIGURE_DV procedure configures the initial two Oracle Database user
accounts, which are granted the DV_OWNER and DV_ACCTMGR roles, respectively.

• Registering Database Vault in the CDB Root
You register Oracle Database Vault with common users who will use the Database
Vault-enforced roles in the CDB root.

Registering Database Vault Local Users to Manage Specific PDBs
You must register Oracle Database Vault in the root first, and then in the PDBs
afterward.

If you try to register in a PDB first, then an ORA-47503: Database Vault is not
enabled on CDB$ROOT error appears.

1. Log in to the PDB as a user who has privileges to create users and to grant the
CREATE SESSION and SET CONTAINER privileges.

For example:

sqlplus sec_admin@pdb_name
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

2. If you are not using existing local user named accounts for the new Database
Vault roles, create new named local user accounts.

In both cases, you must create backup accounts to hold the Database Vault roles
in case the named user loses or forgets their password.

GRANT CREATE SESSION, SET CONTAINER TO sec_admin_owen
 IDENTIFIED BY password;
GRANT CREATE SESSION, SET CONTAINER TO dbv_owner_backup
 IDENTIFIED BY password;
GRANT CREATE SESSION, SET CONTAINER TO accts_admin_ace
 IDENTIFIED BY password;
GRANT CREATE SESSION, SET CONTAINER TO dbv_acctmgr_backup
 IDENTIFIED BY password;

3. Ensure that you have registered Oracle Database Vault in the CDB root.

Temporarily connect to the root and then query the DBA_DV_STATUS view.

CONNECT SYS / AS SYSDBA
Enter password: password

SELECT * FROM DBA_DV_STATUS;

Chapter 3
Registering Oracle Database Vault

3-8

4. Connect to the PDB as user SYS with the SYSDBA administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

5. While still in the PDB, configure the two backup Database Vault user accounts.

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'dbv_owner_backup',
 dvacctmgr_uname => 'dbv_acctmgr_backup');
 END;
/

In this example, the force_local_dvowner parameter is omitted because it is
unnecessary. Database Vault roles are granted locally when configured in a PDB.

6. Run the utlrp.sql script to recompile invalidated objects in this PDB.

@?/rdbms/admin/utlrp.sql

If the script provides instructions, follow them, and then run the script again. If the
script terminates abnormally without giving any instructions, run it again.

7. Connect to the PDB as the backup Database Vault Owner user that you just
configured.

For example:

CONNECT dbv_owner_backup@pdb_name
Enter password: password

8. Enable Oracle Database Vault in this PDB.

EXEC DBMS_MACADM.ENABLE_DV;

9. Connect to the CDB with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

10. Close and reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

11. Verify that the PDB is configured and enabled for Database Vault and Oracle Label
Security.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

SELECT * FROM DBA_DV_STATUS;
SELECT * FROM DBA_OLS_STATUS;

Chapter 3
Registering Oracle Database Vault

3-9

12. Connect as the backup DV_OWNER user and then grant the DV_OWNER role to the
primary DV_OWNER user that you created earlier.

For example:

CONNECT dbv_owner_backup@pdb_name
Enter password: password

GRANT DV_OWNER TO sec_admin_owen WITH ADMIN OPTION;

13. Connect as the backup DV_ACCTMGR user and then grant the DV_ACCTMGR role to the
backup DV_ACCTMGR user.

For example:

CONNECT dbv_acctmgr_backup@pdb_name
Enter password: password

GRANT DV_ACCTMGR TO c##accts_admin_ace WITH ADMIN OPTION;

14. Store the two backup account passwords in a safe location such as a privileged
account management (PAM) system in case they are needed in the future.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

• Registering Database Vault in the CDB Root
You register Oracle Database Vault with common users who will use the Database
Vault-enforced roles in the CDB root.

• Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control
Oracle Enterprise Manager Cloud Control (Cloud Control) provides pages for
managing Oracle Database Vault.

Manually Installing Oracle Database Vault
Under certain conditions, you must manually install Oracle Database Vault.

For example, you must manually install Oracle Database Vault if a release 11g Oracle
database without Database Vault is upgraded to release 12c, then converted to a PDB
to be plugged into a 12c Database Vault-enabled database. In addition, you must
manually install Oracle Database Vault (and Oracle Label Security) in a PDB if this
PDB does not have these products when the PDB has been plugged into a CDB
where Database Vault and Label Security are installed.

1. As user who has been granted the SYSDBA administrative privilege, log in to the
PDB in which you want to install Oracle Database Vault.

sqlplus sec_admin@pdb_name as sysdba
Enter password: password

Chapter 3
Registering Oracle Database Vault

3-10

Alternatively, log in to the CDB root as a user with DV_OWNER or DV_ADMIN role, and
then check that that all of the PDBs are open and if Oracle Database Vault is in all
of the associated PDBs. You can check if the PDB is open by connecting to it and
then querying the OPEN_MODE column from the V$DATABASE view. To find if there is
an Oracle Database Vault installation on the CDB, execute this query:

SELECT * FROM CDB_DV_STATUS;

2. If necessary, check if Oracle Database Vault and Oracle Label Security are already
installed on this PDB.

If the DVSYS account (for Database Vault) and the LBACSYS account (for Label
Security) exist, then Database Vault and Label Security exist on the PDB.

SELECT USERNAME FROM DBA_USERS WHERE USERNAME IN ('DVSYS',
'LBACSYS');

3. If neither Database Vault nor Label Security have been installed, then install
Oracle Label Security by executing the catols.sql script.

@$ORACLE_HOME/rdbms/admin/catols.sql

Oracle Label Security must be installed before you can install Oracle Database
Vault.

4. Install Oracle Database Vault by executing the catmac.sql script.

@$ORACLE_HOME/rdbms/admin/catmac.sql

5. At the Enter value for 1 prompt, enter SYSTEM as the tablespace to install DVSYS.

6. At the Enter value for 2 prompt, enter the temporary tablespace for the PDB.

After the installation is complete, you can register Oracle Database Vault in the PDB.
If Database Vault is not registered in the CDB already, you must close the PDB before
you can register Database Vault in the CDB root. Database Vault must be registered in
CDB root before it can be registered in the PDB. After Database Vault is registered in
the CDB root and the database has been restarted, then you can open the PDB and
register Database Vault.

Related Topics

• Registering Oracle Database Vault
You can register Oracle Database Vault based on several scenarios.

Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views verify
if Oracle Database is configured and enabled.

In addition to Oracle Database Vault administrators, the Oracle Database SYS user and
users who have been granted the DBA role can query these views.

• For Database Vault:

Chapter 3
Verifying That Database Vault Is Configured and Enabled

3-11

– If you want to find the Database Vault status for the root only or an individual
PDB, then query DBA_DV_STATUS. For example:

SELECT * FROM DBA_DV_STATUS;

Output similar to the following appears:

NAME STATUS
-------------------- -----------
DV_APP_PROTECTION NOT CONFIGURED
DV_CONFIGURE_STATUS TRUE
DV_ENABLE_STATUS TRUE

– If you want to find the Database Vault status of all PDBs in the multitenant
environment, then as a common user with administrative privileges, query
CDB_DV_STATUS, which provides the addition of a container ID (CON_ID) field.

• For Oracle Label Security, query the DBA_OLS_STATUS data dictionary view.

Logging in to Oracle Database Vault from Oracle Enterprise
Cloud Control

Oracle Enterprise Manager Cloud Control (Cloud Control) provides pages for
managing Oracle Database Vault.

The Oracle Database Vault pages can be used to administer and monitor Database
Vault-protected databases from a centralized console. This console enables you to
automate alerts, view Database Vault reports, and propagate Database Vault policies
to other Database Vault-protected databases.

Before you try to log in, ensure that you have configured the Cloud Control target
databases that you plan to use with Database Vault by following the Oracle Enterprise
Manager online help. Oracle Database Vault must also be registered with the Oracle
database.

1. Start Cloud Control.

For example:

https://myserver.example.com:7799/em

2. Log in to Cloud Control as a security administrator.

3. In the Cloud Control home page, from the Targets menu, select Databases.

4. In the Databases page, select the link for the Oracle Database Vault-protected
database to which you want to connect.

The Database home page appears.

5. From the Security menu, select Database Vault.

The Database Login page appears.

6. Enter the following information:

• Username: Enter the name of a user who has been granted the appropriate
Oracle Database Vault role:

Chapter 3
Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control

3-12

– Creating and propagating Database Vault policies: DV_OWNER or DV_ADMIN
role, SELECT ANY DICTIONARY privilege

– Viewing Database Vault alerts and reports: DV_OWNER, DV_ADMIN, or
DV_SECANALYST role, SELECT ANY DICTIONARY privilege

• Password: Enter your password.

• Role: Select NORMAL from the list.

• Save as: Select this check box if you want these credentials to be
automatically filled in for you the next time that this page appears. The
credentials are stored in Enterprise Manager in a secured manner. Access
to these credentials depends on the user who is currently logged in.

The Database Vault home page appears.

Related Topics

• About Oracle Database Vault Roles
Oracle Database Vault provides a set of roles that are required for managing
Oracle Database Vault.

• Using Oracle Database Vault with Oracle Enterprise Manager
Oracle Database Vault administrators can perform tasks in Oracle Enterprise
Manager Cloud Control such as propagating polices to other databases.

Quick Start Tutorial: Securing a Schema from DBA Access
This tutorial shows how to create a realm around the HR schema.

• About This Tutorial
In this tutorial, you create a realm around for the HR sample database schema by
using the Oracle Database Vault PL/SQL packages.

• Step 1: Log On as SYSTEM to Access the HR Schema
You must enable the HR schema for this tutorial.

• Step 2: Create a Realm
Realms can protect one or more schemas, individual schema objects, and
database roles.

Chapter 3
Quick Start Tutorial: Securing a Schema from DBA Access

3-13

• Step 3: Create the SEBASTIAN User Account
At this stage, there are no database accounts or roles authorized to access or
otherwise manipulate the database objects the realm will protect.

• Step 4: Have User SEBASTIAN Test the Realm
At this stage, have user SEBASTIAN test the realm, even though he has the READ
ANY TABLE system privilege.

• Step 5: Create an Authorization for the Realm
Next, user SEBASTIAN must be granted authorization to the HR Apps realm, so that
he can access the HR.EMPLOYEES table.

• Step 6: Test the Realm
To test the realm, you must try to access the EMPLOYEES table as a user other than
HR.

• Step 8: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

About This Tutorial
In this tutorial, you create a realm around for the HR sample database schema by using
the Oracle Database Vault PL/SQL packages.

In the HR schema, the EMPLOYEES table has information such as salaries that should
be hidden from most employees in the company, including those with administrative
access. To accomplish this, you add the HR schema to the secured objects of the
protection zone, which in Oracle Database Vault is called a realm, inside the database.
Then you grant limited authorizations to this realm. Afterward, you test the realm to
make sure it has been properly secured.

Step 1: Log On as SYSTEM to Access the HR Schema
You must enable the HR schema for this tutorial.

Before you begin this tutorial, ensure that the HR sample schema is installed. .

1. Log in to a PDB as a user who has been granted the DBA role, and then access the
HR schema.

For example:

sqlplus system@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the HR.EMPLOYEES table as follows.

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE ROWNUM < 10;

Output similar to the following appears:

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Steven King 24000
Neena Kochhar 17000
Lex De Haan 17000

Chapter 3
Quick Start Tutorial: Securing a Schema from DBA Access

3-14

Alexander Hunold 9000
Bruce Ernst 6000
David Austin 4800
Valli Pataballa 4800
Diana Lorentz 4200
Nancy Greenberg 12008

9 rows selected.

3. If the HR schema is locked and expired, log in to the database instance as the
DV_ACCTMGR user and unlock and unexpire the account. For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password

Replace password with a password that is secure.

As you can see, SYSTEM has access to the salary information in the EMPLOYEES
table of the HR schema. This is because SYSTEM is automatically granted the DBA
role, which includes the SELECT ANY TABLE system privilege.

4. Do not exit SQL*Plus.

Related Topics

• Oracle Database Sample Schemas

• Oracle Database Security Guide

Step 2: Create a Realm
Realms can protect one or more schemas, individual schema objects, and database
roles.

After you create a realm, you can create security restrictions that apply to the schemas
and their schema objects within the realm. You will need to create a realm for the HR
schema.

1. Connect to a PDB as a user who has been granted the DV_OWNER role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

2. Create the HR App realm around the HR.EMPLOYEES table.

a. Create the HR Apps realm itself.

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'HR Apps',
 description => 'Realm to protect the HR schema',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 0);
END;
/

b. Add the HR.EMPLOYEES table to this realm.

Chapter 3
Quick Start Tutorial: Securing a Schema from DBA Access

3-15

BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'HR Apps',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 object_type => 'TABLE');
END;
/

At this stage, you have created the realm but you have not assigned any
authorizations to it. You will take care of that later on in this tutorial.

Step 3: Create the SEBASTIAN User Account
At this stage, there are no database accounts or roles authorized to access or
otherwise manipulate the database objects the realm will protect.

So, the next step is to authorize database accounts or database roles so that they
can have access to the schemas within the realm. You will create the SEBASTIAN user
account.

1. In SQL*Plus, connect to the PDB as the Database Vault Account Manager, who
has the DV_ACCTMGR role, and create the local user SEBASTIAN.

For example:

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

GRANT CREATE SESSION TO SEBASTIAN IDENTIFIED BY password;

Replace password with a password that is secure.

2. Connect as SYS with the SYSDBA privilege, and then grant SEBASTIAN the following
additional privilege.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

GRANT READ ANY TABLE TO SEBASTIAN;

3. Do not exit SQL*Plus.

Related Topics

• Oracle Database Security Guide

Step 4: Have User SEBASTIAN Test the Realm
At this stage, have user SEBASTIAN test the realm, even though he has the READ ANY
TABLE system privilege.

1. Connect as user SEBASTIAN.

CONNECT sebastian@pdb_name
Enter password: password

2. Query the HR.EMPLOYEES table.

SELECT COUNT(*) FROM HR.EMPLOYEES;

The following output should appear:

Chapter 3
Quick Start Tutorial: Securing a Schema from DBA Access

3-16

ERROR at line 1:
ORA-01031: insufficient privileges

Even though user SEBASTIAN has the READ ANY TABLE system privilege, he cannot
query the HR.EMPLOYEES table, because the HR Apps realm takes precedence over the
READ ANY TABLE system privilege.

Step 5: Create an Authorization for the Realm
Next, user SEBASTIAN must be granted authorization to the HR Apps realm, so that he
can access the HR.EMPLOYEES table.

1. Connect to the PDB as the user who created the HR Apps realm.

For example:

c##sec_admin_owen@pdb_name
Enter passwod: password

2. Create an authorization for the HR Apps realm.

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Apps',
 grantee => 'SEBASTIAN');
END;
/

Step 6: Test the Realm
To test the realm, you must try to access the EMPLOYEES table as a user other than HR.

The SYSTEM account normally has access to all objects in the HR schema, but now
that you have safeguarded the EMPLOYEES table with Oracle Database Vault, this is no
longer the case.

1. In SQL*Plus, connect to the PDB as SYSTEM.

CONNECT SYSTEM@pdb_name
Enter password: password

2. Try accessing the salary information in the EMPLOYEES table again:

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE ROWNUM <10;

The following output should appear:

Error at line 1:
ORA-01031: insufficient privileges

SYSTEM no longer has access to the salary information in the EMPLOYEES table.
(In fact, even user SYS does not have access to this table.) However, user
SEBASTIAN does have access to this information.

3. Connect as user SEBASTIAN.

CONNECT sebastian@pdb_name
Enter password: password

4. Perform the following query:

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE ROWNUM <10;

Chapter 3
Quick Start Tutorial: Securing a Schema from DBA Access

3-17

Output similar to the following appears:

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Steven King 24000
Neena Kochhar 17000
Lex De Haan 17000
Alexander Hunold 9000
Bruce Ernst 6000
David Austin 4800
Valli Pataballa 4800
Diana Lorentz 4200
Nancy Greenberg 12008

9 rows selected.

Step 8: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. Drop user SEBASTIAN.

In SQL*Plus, log in to the PDB on as the Oracle Database Vault account manager
(for example, bea_dvacctmgr) and then drop SEBASTIAN as follows:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

DROP USER SEBASTIAN;

2. Delete the HR Apps realm.

a. Connect to the PDB as the user who created this realm.

For example:

c##sec_admin_owen@pdb_name
Enter password: password

b. Execute the following statement to drop the HR Apps realm and its
authorizations:

EXEC DBMS_MACADM.DELETE_REALM_CASCADE('HR Apps');

3. If necessary, in SQL*Plus, lock and expire the HR account.

ALTER USER HR ACCOUNT LOCK PASSWORD EXPIRE;

Chapter 3
Quick Start Tutorial: Securing a Schema from DBA Access

3-18

4
Configuring Realms

You can create a realm around database objects to protect them, and then set
authorizations to control user access to this data.

• What Are Realms?
Realms enable you to protect database objects, including specific object types.

• Default Realms
Oracle Database Vault provides default realms, which are regular realms, not
mandatory realms.

• Creating a Realm
The first step in enabling realm protection is to create the realm itself, and then
add realm-secured objects, roles, and authorizations.

• Modifying a Realm
You can use the DBMS_MACADM.UPDATE_REALM procedure to modify the definition of
a realm.

• Deleting a Realm
Before you can delete a realm, you must remove references to it from Oracle
Database Vault policies.

• About Realm-Secured Objects
Realm-secured objects define the territory—a set of schema and database objects
and roles—that a realm protects.

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

• Realm Authorizations in a Multitenant Environment
The rules and behavior for common realm authorizations are similar to the
authorizations for other common objects.

• How Realms Work
When an appropriately privileged database account issues a SQL statement that
affects an object within a realm, a special set of activities occur.

• How Authorizations Work in a Realm
Realm authorizations prevent users from performing activities if the users do not
have the correct privileges.

• Access to Objects That Are Protected by a Realm
You can protect an object by a realm, but still enable access to objects that are
part of this realm-protected object.

• Example of How Realms Work
Realms can provide protection in which two users who each have the same
privileges must have separate access levels for an object.

• How Realms Affect Other Oracle Database Vault Components
Realms have no effect on factors, identities, or rule sets, but they do affect
command rules.

4-1

• Guidelines for Designing Realms
Oracle provides a set of guidelines for designing realms.

• How Realms Affect Performance
Realms can affect database performance in a variety situations, such as with DDL
and DML operations.

• Realm Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that are useful
for analyzing realms.

What Are Realms?
Realms enable you to protect database objects, including specific object types.

• About Realms
A realm is a grouping of database schemas, database objects, and database roles
that must be secured for a given application.

• Mandatory Realms to Restrict User Access to Objects within a Realm
By default, users who own or have object privileges are allowed to access realm-
protected objects without explicit realm authorization.

• Realms in a Multitenant Environment
You can create a realm to protect common objects in the application root.

• Object Types That Realms Can Protect
You can create realms around all objects in a schema of certain object types.

About Realms
A realm is a grouping of database schemas, database objects, and database roles that
must be secured for a given application.

Think of a realm as zone of protection for your database objects. A schema is a logical
collection of database objects such as tables, views, and packages, and a role is a
collection of privileges. By arranging schemas and roles into functional groups, you
can control the ability of users to use system privileges against these groups and
prevent unauthorized data access by the database administrator or other powerful
users with system privileges. Oracle Database Vault does not replace the discretionary
access control model in the existing Oracle database. It functions as a layer on top of
this model for both realms and command rules.

Oracle Database Vault provides two types of realms: regular and mandatory. Both
realm types can protect either an entire schema or crucial objects within a schema
selectively, such as tables and indexes. With a regular realm, an object owner
or users who has been granted object privileges can perform queries or DML
operations without realm authorization but must have realm authorization to perform
DDL operations. A mandatory realm provides stronger protection for objects within a
realm. Mandatory realms block both object privilege-based and system privilege-based
access and will not allow users with object privileges to perform queries, DML, or DDL
operations without realm authorization. In other words, even an object owner cannot
access his or her own objects without proper realm authorization if the objects are
protected by mandatory realms.

For databases that use Oracle Flashback Technology, then both regular and
mandatory realms will enforce the same behavior for a flashback table. Users can

Chapter 4
What Are Realms?

4-2

execute a FLASHBACK TABLE SQL statement on a realm-protected table if the user is
authorized to the realm.

For databases that use Information Lifecycle Management (ILM), a Database
Vault administrator can use the DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER and
DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER procedure to control who can perform
ILM operations on realm-protected objects.

You can register schemas, all objects of a certain type in a schema, or individual
objects within a schema into a realm. After you create a realm, you can register a set
of schema objects or roles (secured objects) for realm protection and authorize a set
of users or roles to access the secured objects. Objects that are protected by a regular
realm allow DML access to users who have direct object grants.

For example, you can create a realm to protect all existing database schemas that are
used in an accounting department. The realm prohibits any user who is not authorized
to the realm to use system privileges to access the secured accounting data. When an
entire schema is protected, all objects in the schema are protected, including tables,
indexes, procedures and other objects.

You can run reports on realms that you create in Oracle Database Vault. You can
use simulation mode during development, test, and even production phases to log
only realm violations instead of blocking access. This enables you to quickly test
applications using Database Vault realms.

You can configure realms by using the Oracle Database Vault Administrator pages in
Oracle Enterprise Manager Cloud Control. Alternatively, you can configure realms by
using the PL/SQL interfaces and packages provided by Oracle Database Vault.

Mandatory Realms to Restrict User Access to Objects within a Realm
By default, users who own or have object privileges are allowed to access realm-
protected objects without explicit realm authorization.

You optionally can configure the realm to prevent these users' access by configuring
it to be a mandatory realm. Mandatory realms block system privilege-based access as
well as object privilege-based access. This means that even the object owner cannot
have access if he or she is not authorized to access the realm. Users can access
secured objects in the mandatory realm only if the user or role is authorized to do so.

Mandatory realms have the following additional characteristics:

• If there are multiple mandatory realms on the same object, then you must
authorize the user or role on all the mandatory realms before they can access
the protected object.

• If a role is protected by a mandatory realm, then no privileges can be granted to or
revoked from the protected role except by the realm owner.

• You can update regular realms that you created in earlier releases to be
mandatory realms. This way, you can block owner access and object-privileged
users from accessing the realm-protected objects.

• SYS-owned objects are already protected by data dictionary protection and are not
protected separately by Oracle Database Vault.

Mandatory realms have the following benefits:

Chapter 4
What Are Realms?

4-3

• Mandatory realms can block object owners and object privileged users.
In previous releases, blocking these users could only be done by defining
complicated command rules.

• Mandatory realms provide more flexible configurations for access control.
For example, suppose you want to enable a user to access an object with certain
conditions, such as in a specific time range during the day. You cannot grant object
privileges to that user because realms do not block object privileges. You only can
grant system privileges to the user and then authorize this user to the realm with
a rule, or make a command rule on the command directly. These solutions are
either very expensive in terms of computational cost or undesirable because they
entail the excessive granting of privileges such as system privileges to the user.
With a mandatory realm, you only need to grant object privileges to the user, with
a rule for specific conditions, and then authorize this user to be a realm owner
or participant. Thus, with mandatory realms, Oracle Database Vault policies have
more flexibility without granting users excessive privileges.

• Mandatory realms add a layer of protection during patch upgrades. During
a patch upgrade, a database administrator may need to have direct access to a
realm-protected object in order to perform a patch on the object. If there are tables
that contain sensitive data, such as social security numbers, you can protect these
tables from the administrator's access with mandatory realms during the patch
upgrade. When patching is complete, and the database administrator no long
needs access to the objects, you can disable mandatory realm protection and then
re-enable the normal application realm protection so that the application protection
can return to its normal state.

• You can use mandatory realms to secure tables during runtime. During
runtime, application data can be stored in many tables. It is better to have a single
user such as a runtime schema to access these tables so that you can maintain
the integrity and correctness of the data. If the application data is scattered in
many different schemas, then schema owners and users with object privileges can
change the data if they log in to the database directly. To insure that users cannot
update these tables without going through the runtime schema's procedures, you
can use mandatory realms to protect the tables so that only the authorized user's
procedures can access them. Because a regular realm does not block object
owners and object-privileged users, you can use mandatory realms to block them.
This way, only authorized users can access these tables during runtime.

• You can freeze security settings by preventing changes to configured roles.

Related Topics

• CREATE_REALM Procedure
The CREATE_REALM procedure creates both common and local realms.

• UPDATE_REALM Procedure
The UPDATE_REALM procedure updates a realm.

Realms in a Multitenant Environment
You can create a realm to protect common objects in the application root.

The advantage of creating a realm in the application root instead of creating a
large number objects and realms around these objects within individual pluggable
databases (PDBs) is that you can create them in one place, the application root. This
way, you can manage them centrally.

Chapter 4
What Are Realms?

4-4

You cannot create a common realm in the CDB root.

A Database Vault common realm can be either a regular realm or a mandatory realm.
The realm protects only objects within the application root, not local objects in a PDB.
The CDB root, application root, and any affected PDBs all must be Database Vault
enabled.

To configure a common realm, you must be commonly granted the DV_OWNER or
DV_ADMIN role. To grant common authorizations for a common realm, you must be
in the application root. To propagate the realm to the PDBs that are associated
with the application root, you must synchronize the application root. For example, to
synchronize an application called saas_sales_app:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

Related Topics

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

Object Types That Realms Can Protect
You can create realms around all objects in a schema of certain object types.

These object types are as follows:

Object Types C-J Object Types L-P Object Types R-V

CLUSTER LIBRARY ROLE

DIMENSION MATERIALIZED VIEW SEQUENCE

FUNCTION MATERIALIZED VIEW LOG SYNONYM

INDEX OPERATOR TABLE

INDEX PARTITION PACKAGE TRIGGER

INDEXTYPE PROCEDURE TYPE

JOB PROGRAM VIEW

Default Realms
Oracle Database Vault provides default realms, which are regular realms, not
mandatory realms.

• Oracle Database Vault Realm
The Oracle Database Vault realm protects configuration and role information in
the Oracle Database Vault DVSYS, DVF, and LBACSYS schemas.

• Database Vault Account Management Realm
The Database Vault Account Management realm defines the realm for the
administrators who manage and create database accounts and database profiles.

• Oracle Enterprise Manager Realm
Oracle Database Vault provides a realm specifically for Oracle Enterprise Manager
accounts.

Chapter 4
Default Realms

4-5

• Oracle Default Schema Protection Realm
The Oracle Default Schema Protection Realm protects roles and schemas that
are used with Oracle features such as Oracle Text.

• Oracle System Privilege and Role Management Realm
The Oracle System Privilege and Role Management Realm protects sensitive
roles that are used to export and import data in an Oracle database.

• Oracle Default Component Protection Realm
The Oracle Default Component Protection Realm protects the SYSTEM and
OUTLN schemas.

Oracle Database Vault Realm
The Oracle Database Vault realm protects configuration and role information in the
Oracle Database Vault DVSYS, DVF, and LBACSYS schemas.

The owners of all three of the DVSYS, DVF, and LBACSYS schemas are owners of this
realm.

This realm protects the following objects:

• Entire schemas that are protected: DVSYS, DVF, LABACSYS

• Roles that are protected:

Roles DV_A to DV_G Roles DV_G to DV-P Roles DV_S to L

DV_ADMIN DV_GOLDENGATE_REDO_A
CCESS

DV_SECANALYST

DV_AUDIT_CLEANUP DV_MONITOR DV_STREAMS_ADMIN

DV_DATAPUMP_NETWORK_LINK DV_OWNER DV_XSTREAM_ADMIN

DV_GOLDENGATE_ADMIN DV_PATCH_ADMIN LBAC_DBA

• PL/SQL package that is protected: SYS.DBMS_RLS

Related Topics

• Oracle Database Vault Schemas
The Oracle Database Vault schemas, DVSYS and DVF, support the administration
and run-time processing of Oracle Database Vault.

Database Vault Account Management Realm
The Database Vault Account Management realm defines the realm for the
administrators who manage and create database accounts and database profiles.

This realm protects the DV_ACCTMGR and CONNECT roles. The owner of this realm can
grant or revoke the CREATE SESSION privilege to or from a user.

Related Topics

• DV_ACCTMGR Database Vault Account Manager Role
The DV_ACCTMGR role is a powerful role, used for accounts management.

Chapter 4
Default Realms

4-6

Oracle Enterprise Manager Realm
Oracle Database Vault provides a realm specifically for Oracle Enterprise Manager
accounts.

The Oracle Enterprise Manager realm protects Oracle Enterprise Manager accounts
that are used for monitoring and management (DBSNMP user and the OEM_MONITOR role).

Oracle Default Schema Protection Realm
The Oracle Default Schema Protection Realm protects roles and schemas that are
used with Oracle features such as Oracle Text.

The advantage of this grouping is that Oracle Spatial schemas (MDSYS, MDDATA) are
used extensively with Oracle Text (CTXSYS), and Oracle OLAP is an application rather
than a core Oracle Database kernel feature.

Oracle Default Schema Protection Realm Protected Roles and Schemas

Oracle Default Schema Protection Realm protects several roles and schemas.

• Roles that are protected by default: CTXAPP, OLAP_DBA, EJBCLIENT, OLAP_USER

• Schemas that are protected by default: CTXSYS, EXFSYS, MDDATA, MDSYS

• Roles that are recommended for protection: APEX_ADMINISTRATOR_ROLE,
SPATIAL_CSW_ADMIN, WFS_USR_ROLE, CSW_USR_ROLE, SPATIAL_WFS_ADMIN,
WM_ADMIN_ROLE

• Schemas that are recommended for protection: APEX_030200, OWBSYS, WMSYS

Oracle Default Schema Protection Realm Owners

The SYS, CTXSYS, and EXFSYS users are the default owners of Oracle Default Schema
Protection Realm. These users can grant the roles protected by this realm to other
users, and grant permissions on its schemas to other users as well.

Oracle System Privilege and Role Management Realm
The Oracle System Privilege and Role Management Realm protects sensitive roles
that are used to export and import data in an Oracle database.

This realm also contains authorizations for users who must grant system privileges.

User SYS is the only default owner of this realm. Any user who is responsible for
managing system privileges should be authorized as an owner to this realm. These
users can grant the roles that are protected by this realm to other users.

• Roles that are protected by default:

Roles A-G Roles G-J Roles J-S

AQ_ADMINISTRATOR_ROLE GLOBAL_AQ_USER_ROLE JAVAUSERPRIV

AQ_USER_ROLE HS_ADMIN_ROLE LOGSTDBY_ADMINISTRATOR

DBA IMP_FULL_DATABASE OPTIMIZER_PROCESSING_R
ATE

Chapter 4
Default Realms

4-7

Roles A-G Roles G-J Roles J-S

DBA_OLS_STATUS JAVA_ADMIN RECOVERY_CATALOG_OWNER

DELETE_CATALOG_ROLE JAVADEBUGPRIV RESOURCE

EXECUTE_CATALOG_ROLE JAVA_DEPLOY SCHEDULER_ADMIN

EXP_FULL_DATABASE JAVAIDPRIV SELECT_CATALOG_ROLE

GATHER_SYSTEM_STATIST
ICS

JAVASYSPRIV -

• Roles that are recommended for protection: DBFS_ROLE, HS_ADMIN_EXECUTE_ROLE,
HS_ADMIN_SELECT_ROLE

Oracle Default Component Protection Realm
The Oracle Default Component Protection Realm protects the SYSTEM and OUTLN
schemas.

The authorized users of this realm are users SYS and SYSTEM.

Creating a Realm
The first step in enabling realm protection is to create the realm itself, and then add
realm-secured objects, roles, and authorizations.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Execute the DBMS_MACADM.CREATE_REALM procedure to create the realm.

For example:

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'HR Realm',
 description => 'Realm to protect the HR schema',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 1,
 realm_scope => DBMS_MACUTL.G_SCOPE_LOCAL,
 pl_sql_stack => TRUE);
END;
/

In this specification:

• realm_name can be up to 128 characters in mixed-case. Oracle suggests
that you use the name of the protected application as the realm name (for
example, hr_app for an human resources application). This parameter is
mandatory. The DBA_DV_REALM data dictionary view lists existing realms.

Chapter 4
Creating a Realm

4-8

• description can be 1024 characters in mixed-case. You may want to include
a description for the business objective of the given application protection and
document all other security policies that compliment the realm's protection.
Also document who is authorized to the realm, for what purpose, and any
possible emergency authorizations.

• enabled controls realm checking. Valid settings are DBMS_MACUTL.G_YES ‘y’
to enable realm checking (default), DBMS_MACUTL.G_NO or ‘n’ to disable all
realm checking, including the capture of violations in the simulation log, or
DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to execute but
capture violations in the simulation log.

• audit_options applies only to traditional auditing, not unified auditing
environments. Starting with Oracle Database release 21c, traditional auditing
is deprecated. Oracle recommends that you create unified audit policies
instead of using audit_options.
Valid audit_options settings are DBMS_MACUTL.G_REALM_AUDIT_OFF,
DBMS_MACUTL.G_REALM_AUDIT_FAIL, DBMS_MACUTL.G_REALM_AUDIT_SUCCESS,
and DBMS_MACUTL.G_REALM_AUDIT_FAIL +
DBMS_MACUTL.G_REALM_AUDIT_SUCCESS.

• realm_type defines whether the realm is mandatory (1) or not mandatory (0).
When set to mandatory, only realm owners or realm participants will have
access to objects in a realm. Object owners and object-privileged users who
are not realm owners or participants will have no access.

• realm_scope defines whether the realm is created in a
PDB (DBMS_MACUTL.G_SCOPE_LOCAL) or in an application root
(DBMS_MACUTL.G_SCOPE_COMMON). If you create the common realm in an
application root and want it visible to the associated PDBs, then you must
synchronize the application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

• pl_sql_stack is used for simulation mode, and when enabled (TRUE), it
specifies whether to record the PL/SQL stack for failed operations. To disable,
enter FALSE. The default is FALSE.

At this stage, the realm is created, but it protects no objects nor does it have any
authorizations.

3. Execute the DBMS_MACADM.ADD_OBJECT_TO_REALM procedure to add objects (such
as tables or roles) to the realm so that they can be protected.

For example:

BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'HR Realm',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 object_type => 'TABLE');
END;
/

In this specification:

• realm_name can be up to 128 characters in mixed-case.

Chapter 4
Creating a Realm

4-9

• object_owner is the owner of the object that is being added to a realm. You
can enter the % character if the object you want to secure with the realm is a
role.

• object_name is the name of the object that the realm will protect. Alternatively,
enter % to specify all objects (except roles) for the object owner that you have
specified. If you enter %, then it can encompass all objects in the schema if %
is also used for the object_type parameter. But if object_type is set to TABLE,
then using % for the object_name refers to all tables in the schema. Note that
the % wildcard character applies to objects that do not yet exist and currently
existing objects.

• object_type is the type of object, such as TABLE, INDEX, or ROLE. To create
a realm for all types, enter % or DBMS_MACUTL.G_ALL_OBJECT. You can add as
many objects of any type as you want to the realm.

4. Execute the DBMS_MACADM.ADD_AUTH_TO_REALM procedure to authorize users for
the realm.

For example:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Realm',
 grantee => 'HR',
 rule_set_name => 'Enabled',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER,
 auth_scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

In this specification:

• realm_name can be up to 128 characters in mixed-case.

• grantee is the user or role name to authorize as an owner or a participant. To
find the existing users and roles in the current database instance, query the
DBA_USERS and DBA_ROLES views. To find the authorization of a particular user
or role, query the DVA_DV_REALM_AUTH view. To find existing secure application
roles used in privilege management, query the DBA_DV_ROLE view.

• rule_set_name is an optional rule set to check during runtime. The
DBA_DV_RULE_SET data dictionary view lists available rule sets. You can only
specify one rule set, but this rule set can have multiple rules.

• auth_options determines how to authorize a realm. Valid settings are as
follows:

– DBMS_MACUTL.G_REALM_AUTH_PARTICIPANT provides system or direct
privileges to access, manipulate, and create objects protected by the
realm, provided these rights have been granted using the standard Oracle
Database privilege grant process. (Default)

– DBMS_MACUTL.G_REALM_AUTH_OWNER has the same authorization as the
realm participant, plus the authorization to grant or revoke realm-secured
roles and privileges on realm-protected objects.

A realm can have multiple participants or owners.

• auth_scope defines whether the realm is authorized locally in the
current PDB (DBMS_MACUTL.G_SCOPE_LOCAL) or in an application root
(DBMS_MACUTL.G_SCOPE_COMMON).

Chapter 4
Creating a Realm

4-10

Related Topics

• Oracle Database Vault Realm APIs
The DBMS_MACADM PL/SQL package enables you to configure Oracle Database
Vault realms.

• About Realm-Secured Objects
Realm-secured objects define the territory—a set of schema and database objects
and roles—that a realm protects.

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

Modifying a Realm
You can use the DBMS_MACADM.UPDATE_REALM procedure to modify the definition of a
realm.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the realm name and check its definition.

For example:

SELECT NAME, DESCRIPTION, ENABLED, AUTH_OPTIONS, REALM_TYPE
FROM DBA_DV_REALM ORDER BY NAME;

If you want to change the ENABLED setting, then note the following: If the realm is
managed by a policy, and if the policy status is set to partial, then you can modify
the enablement status of the realm. If the policy is set to enabled, disabled, or
simulation mode, then you cannot modify the enablement status of the realm.

3. Execute the DBMS_MACADM.UPDATE_REALM statement.

For example:

BEGIN
 DBMS_MACADM.UPDATE_REALM(
 realm_name => 'HR Realm',
 description => 'Realm to protect the HR schema',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 1);
END;
/

Chapter 4
Modifying a Realm

4-11

Related Topics

• Oracle Database Vault Realm APIs
The DBMS_MACADM PL/SQL package enables you to configure Oracle Database
Vault realms.

Deleting a Realm
Before you can delete a realm, you must remove references to it from Oracle
Database Vault policies.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the names of the realms that you want to remove.

SELECT NAME FROM DBA_DV_REALM
ORDER BY NAME;

3. Query the DBA_DV_REALM_OBJECT data dictionary view for any object references to
the realm.

For example, to search realm objects that are associated with a realm called HR
Realm:

SELECT OBJECT_OWNER, OBJECT_NAME, OBJECT_TYPE
FROM DBA_DV_REALM_OBJECT
WHERE REALM_NAME = 'HR Realm';

OBJECT_OWNER OBJECT_NAME OBJECT_TYPE
–----------- –---------- –-----------
HR EMPLOYEES TABLE

4. Execute the DBMS_MACADM.DELETE_OBJECT_FROM_REALM procedure to remove the
EMPLOYEES object from the realm.

For example:

BEGIN
 DBMS_MACADM.DELETE_OBJECT_FROM_REALM(
 realm_name => 'HR Realm',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 object_type => 'TABLE');
END;
/

5. Query the DBA_DV_REALM_AUTH data dictionary view to find the authorizations for
the realm.

For example:

SELECT GRANTEE, AUTH_SCOPE
FROM DBA_DV_REALM_AUTH
WHERE REALM_NAME = 'HR Realm';

Chapter 4
Deleting a Realm

4-12

GRANTEE AUTH_SCOPE
–------ –------------------------
HR DBMS_MACUTL.G_SCOPE_LOCAL

6. Remove the authorizations from the realm.

For example, to remove the local authorization for the HR Realm, enter the
following.

BEGIN
DBMS_MACADM.DELETE_AUTH_FROM_REALM(
 realm_name => 'HR Realm',
 grantee => 'HR',
 auth_scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

7. Query the DBA_DV_POLICY_OBJECT data dictionary to find any Oracle Database
Vault policies that are associated with the realm.

For example:

SELECT POLICY_NAME, COMMAND_OBJ_NAME
FROM DBA_DV_POLICY_OBJECT
WHERE COMMAND_OBJ_NAME = 'HR Realm';

8. Execute the DBMS_MACADM.DELETE_REALM_FROM_POLICY to remove the realm from
the policy.

For example:

BEGIN
 DBMS_MACADM.DELETE_REALM_FROM_POLICY(
 policy_name => 'HR_DV_Policy',
 realm_name => 'HR Realm');
END;
/

9. Now that the realm has no references, execute the DBMS_MACADM.DELETE_REALM
procedure to delete the realm.

EXEC DBMS_MACADM.DELETE_REALM('HR Realm');

Related Topics

• Oracle Database Vault Realm APIs
The DBMS_MACADM PL/SQL package enables you to configure Oracle Database
Vault realms.

About Realm-Secured Objects
Realm-secured objects define the territory—a set of schema and database objects and
roles—that a realm protects.

You can create the following types of protections:

• Objects from multiple database accounts or schemas can be under the same
realm.

• One object can belong to multiple realms.

If an object belongs to multiple realms, then Oracle Database Vault checks the
realms for the proper authorization. For SELECT, DDL, and DML statements, as

Chapter 4
About Realm-Secured Objects

4-13

long as a user is a participant in one of the realms, and if the command rules
permit it, then the commands that the user enters are allowed. For GRANT and
REVOKE operations of a database role in multiple realms, the person performing the
GRANT or REVOKE operation must be the realm owner. Schema owners can perform
DML operations on objects that are protected by multiple regular realms.

If one of the realms is a mandatory realm, then the user who wants to access the
object must be a realm owner or participant in the mandatory realm. During the
authorization checking process, the non-mandatory realms are ignored. If there
are multiple mandatory realms that protect the object, then the user who wants to
access the object must be authorized in all of the mandatory realms.

• SYS-owned objects are already protected by data dictionary protection and are not
protected separately by Oracle Database Vault.

About Realm Authorization
Realm authorizations establish the set of database accounts and roles that manage or
access objects protected in realms.

You can grant a realm authorization to an account or role to allow the use of its system
privileges in the following situations:

• When the user must create or access realm-secured objects

• When a user must grant or revoke realm-secured roles

A user who has been granted realm authorization as either a realm owner or a realm
participant can use its system privileges to access secured objects in the realm.

Note the following:

• Realm owners cannot add other users to their realms as owners or participants.
Only users who have the DV_OWNER or DV_ADMIN role are allowed to add users as
owners or participants to a realm.

• Users who have been granted the DV_OWNER role can add themselves to a realm
authorization.

• A realm owner, but not a realm participant, can grant or revoke realm secured
roles or grant or revoke object privileges on realm secured objects to anyone.

• A user can be granted either as a realm owner or a realm participant, but not both.
However, you can update the authorization types of existing realm authorizations.

Related Topics

• Realm Authorization Configuration Issues Report
The Realm Authorization Configuration Issues Report displays Oracle Database
Vault realm configuration issues.

Realm Authorizations in a Multitenant Environment
The rules and behavior for common realm authorizations are similar to the
authorizations for other common objects.

Local Authorization for a Common Realm

The local authorization for a common realm refers to the authorization a user has for
the PDB that this user is accessing.

Chapter 4
About Realm Authorization

4-14

The rules for the local authorization for a common realm are as follows:

• A user who has been commonly granted the DV_OWNER or DV_ADMIN role can grant
local authorization to common users, common roles, local users, and local roles.
The common DV_OWNER or DV_ADMIN user can also remove local authorization from
a common realm in a PDB.

• A local Database Vault administrator can authorize locally (that is, grant local
authorizations to both local and common users) within the PDB. A common
Database Vault administrator can also grant authorizations in each PDB. A
common realm authorization can only be granted by a common Database Vault
administrator in the application root.

• The common Database Vault administrator can both add or remove local
authorization to and from a common realm from within the PDB.

• If a common user has only local authorization for a common realm, then this user
cannot access the common realm in any other PDB than this local authorization.

• A common user or a common role can have both the local authorization and the
common authorization to a common realm at the same time. Removing a common
user’s local authorization from a common realm does not affect the common user’s
common authorization. Removing a common user’s common authorization from a
common realm does not affect the common user’s local authorization.

Common Authorization for a Common Realm

The common authorization for a common realm refers to the authorization a common
user or a common role has in the application root while the authorization takes effect in
every container that is Database Vault enabled.

The rules for the local authorization for a common realm are as follows:

• A user who has been commonly granted the DV_OWNER or DV_ADMIN role can grant
common realm authorization to common users or roles in the application root.
This common Database Vault administrator can perform the removal of common
authorizations while in the application root.

• This common authorization applies to the containers that have been Database
Vault enabled in the CDB.

• If a common user is authorized to a common realm in the application root,
then this user has access to the objects protected by the common realm in the
application root and any application PDBs.

• Any rule sets that are associated with a common realm must be common rule sets.
The rules that are added to a common rule set that is associated with common
authorization cannot involve any local objects.

How the Authorization of a Realm Works in Both the Application Root and in an
Individual PDB

During the Database Vault enforcement in a container, a common realm performs the
same enforcement behaviors as the same realm when it is used locally in a PDB.

How Realms Work
When an appropriately privileged database account issues a SQL statement that
affects an object within a realm, a special set of activities occur.

These privileges include DDL, DML, EXECUTE, GRANT, REVOKE, or SELECT privileges.

Chapter 4
How Realms Work

4-15

1. Does the SQL statement affect objects secured by a realm?

If yes, then go to Step 2. If no, then realms do not affect the SQL statement. Go to
Step 7. If the object affected by the command is not secured in any realms, then
realms do not affect the SQL statement being attempted.

2. Is the realm a mandatory realm or regular realm?

If yes, then go to Step 4. If it is regular realm, then go to Step 3.

3. Is the database account using a system privilege to execute the SQL statement?

If yes, then go to Step 4. If no, then go to Step 6. If the session has object
privileges on the object in question for SELECT, EXECUTE, and DML statements
only, then the realm protection is not enforced. Realms protect against the use of
any system privilege on objects or roles protected by the realm. Even users with
object privileges for objects that are protected by regular realms are prevented
from performing DDL operations.

4. Is the database account a realm owner or realm participant?

If yes, then go to Step 5. Otherwise, a realm violation occurs and the statement
is not allowed to succeed. If the command is a GRANT or REVOKE of a role that is
protected by the realm, or the GRANT or REVOKE of an object privilege on an object
protected by the realm, then the session must be authorized as the realm owner
directly or indirectly through roles.

5. Is the realm authorization for the database account conditionally based on a rule
set?

If yes, then go to Step 6. If no, then go to Step 7.

6. Does the rule set evaluate to TRUE?

If yes, then go to Step 7. If no, then there is a realm violation, so the SQL
statement is not allowed to succeed.

7. Does a command rule prevent the command from executing?

If yes, then there is a command rule violation and the SQL statement fails. If no,
then there is no realm or command rule violation, so the command succeeds.

For example, the HR account may have the DROP ANY TABLE privilege and may
be the owner of the HR realm, but a command rule can prevent HR from dropping
any tables in the HR schema unless it is during its monthly maintenance window.
Command rules apply to the use of the ANY system privileges and object privileges
and are evaluated after the realm checks.

In addition, because a session is authorized in a realm, it does not mean the account
has full control on objects protected by the realm. Realm authorization does not
implicitly grant extra privileges to the account. The account still must have system
privileges or object privileges to access the objects. For example, an account or role
may have the SELECT ANY table privilege and be a participant in the HR realm. This
means the account or the account granted the role could query the HR.EMPLOYEES
table. Being a participant in the realm does not mean the account or role can DROP the
HR.EMPLOYEES table. Oracle Database Vault does not replace the discretionary access
control model in the existing Oracle database. It functions as a layer on top of this
model for both realms and command rules.

Note the following:

Chapter 4
How Realms Work

4-16

• Protecting a table in a realm does not protect the view by default. Any view that
must be protected should be added to the realm regardless of whether the view
was created before or after the table was added to the realm.

• For invoker's right procedures that access realm protected objects, the invoker of
the procedure must be authorized to the realm.

• Be aware that realm protection does not protect a table if access to the table
has been granted to PUBLIC. For example, if SELECT ON table_name is granted to
PUBLIC, then every user has access to table_name (unless the table is protected
by a mandatory realm), even if this table is protected by a realm. As a best
practice, revoke unnecessary privileges from PUBLIC.

How Authorizations Work in a Realm
Realm authorizations prevent users from performing activities if the users do not have
the correct privileges.

• About Authorizations in a Realm
Realms protect data from access through system privileges.

• Examples of Realm Authorizations
You can create realms that protect objects from users who have system privileges
and other powerful privileges, for example.

About Authorizations in a Realm
Realms protect data from access through system privileges.

Realms do not give additional privileges to the data owner or participants.

The realm authorization provides a run-time mechanism to check logically if a user's
command should be allowed or denied to access objects specified in the command
and to proceed with its execution.

System privileges are sweeping database privileges such as CREATE ANY TABLE
and DELETE ANY TABLE. These privileges typically apply across schemas and
bypass the need for object privileges. Data dictionary views such as DBA_SYS_PRIVS,
USER_SYS_PRIVS, and ROLE_SYS_PRIVS list the system privileges for database accounts
and roles. Database authorizations work normally for objects not protected by a realm.
However, a user must be authorized as a realm owner or participant to successfully
use his or her system privileges on objects secured by the realm. A realm violation
prevents the use of system privileges and can be audited.

Mandatory realms block both object privileged-based access and system privilege-
based access. This means that even the object owner cannot have access if he or
she is not authorized to access the realm. Users can access secured objects in the
mandatory realm only if the user or role is authorized to do so.

Examples of Realm Authorizations
You can create realms that protect objects from users who have system privileges and
other powerful privileges, for example.

• Example: Unauthorized User Trying to Create a Table
The ORA-47401 error appears when unauthorized users try to create tables.

Chapter 4
How Authorizations Work in a Realm

4-17

• Example: Unauthorized User Trying to Use the DELETE ANY TABLE Privilege
An ORA-01031: insufficient privileges error appears for unauthorized user
access.

• Example: Authorized User Performing DELETE Operation
Authorized users are allowed to perform the activities for which they are
authorized.

Example: Unauthorized User Trying to Create a Table
The ORA-47401 error appears when unauthorized users try to create tables.

Example 4-1 shows what happens when an unauthorized user who has the CREATE
ANY TABLE system privilege tries to create a table in a realm where the HR schema is
protected by a realm.

Example 4-1 Unauthorized User Trying to Create a Table

CREATE TABLE HR.demo2 (col1 NUMBER(1));

The following output should appear

ORA-47401: Realm violation for CREATE TABLE on HR.DEMO2

As you can see, the attempt by the unauthorized user fails. Unauthorized use of
system privileges such as SELECT ANY TABLE, CREATE ANY TABLE, DELETE ANY TABLE,
UPDATE ANY TABLE, INSERT ANY TABLE, CREATE ANY INDEX, and others results in
failure.

Example: Unauthorized User Trying to Use the DELETE ANY TABLE Privilege
An ORA-01031: insufficient privileges error appears for unauthorized user
access.

Example 4-2 shows what happens when an unauthorized database account tries to
use his DELETE ANY TABLE system privilege to delete an existing record, the database
session returns the following error.

Example 4-2 Unauthorized User Trying to Use the DELETE ANY TABLE
Privilege

DELETE FROM HR.EMPLOYEES WHERE EMPNO = 8002;

The following output should appear:

ERROR at line 1:
ORA-01031: insufficient privileges

Realms do not affect direct privileges on objects. For example, a user granted delete
privileges to the HR.EMPLOYEES table can successfully delete records without requiring
realm authorizations. Therefore, realms should minimally affect normal business
application usage for database accounts.

Example: Authorized User Performing DELETE Operation
Authorized users are allowed to perform the activities for which they are authorized.

Chapter 4
How Authorizations Work in a Realm

4-18

Example 4-3 shows how an authorized user can perform standard tasks allowed within
the realm.

Example 4-3 Authorized User Performing DELETE Operation

DELETE FROM HR.EMPLOYEES WHERE EMPNO = 8002;

1 row deleted.

Access to Objects That Are Protected by a Realm
You can protect an object by a realm, but still enable access to objects that are part of
this realm-protected object.

For example, suppose you create a realm around a specific table. However, you want
users to be able to create an index on this table. You can accomplish this as follows,
depending on the following scenarios.

• The user does not have the CREATE ANY INDEX privilege. As the realm owner
of the table, grant the CREATE INDEX ON table privilege to the user who must
create the index.

• The user has the CREATE ANY INDEX privilege. In this case, create another
realm and make all index types as the secured objects and grant that user
participant authorization to the realm. (Remember that having the CREATE ANY
INDEX privilege alone is not sufficient for a non-realm participant to create an index
in a realm-protected table.)

• You want all of your database administrators to be able to create an index
and they have the CREATE ANY INDEX privilege. In your data protection realm,
specify all object types to be protected except the index types. This permits all of
your administrators to create indexes for the protected table.

Example of How Realms Work
Realms can provide protection in which two users who each have the same privileges
must have separate access levels for an object.

Figure 4-1 illustrates how data within a realm is protected.

In this scenario, two users, each in charge of a different realm, have the same system
privileges. The owner of a realm can be either a database account or a database role.
As such, each of the two roles, OE_ADMIN and HR_ADMIN, can be protected by a realm
as a secured object and be configured as the owner of a realm.

Further, only a realm owner, such as OE_ADMIN, can grant or revoke database roles
that are protected by the realm. The realm owner cannot manage roles protected by
other realms such as the DBA role created by SYS in the Oracle System Privilege
and Role Management realm. Any unauthorized attempt to use a system privilege to
access realm-protected objects raises a realm violation, which can be audited. The
powers of each realm owner are limited within the realm itself. For example, OE_ADMIN
has no access to the Human Resources realm, and HR_ADMIN has no access to the
Order Entry realm.

Chapter 4
Access to Objects That Are Protected by a Realm

4-19

Figure 4-1 How Authorizations Work for Realms and Realm Owners

HR Schema
(All objects)

HR_ADMIN Role

Human Resources
Realm

OE Schema
(All objects)

OE_ADMIN
Role

Order Entry
Realm

DB Role: HR_ADMIN
DB Privileges:

· CREATE ANY TABLE
· DROP ANY TABLE
· SELECT ANY TABLE
· GRANT/REVOKE
.....

Human Resources
Realm Owner

DB Role: OE_ADMIN
DB Privileges:

· CREATE ANY TABLE
· DROP ANY TABLE
· SELECT ANY TABLE
· GRANT/REVOKE
.....

Order Entry
Realm Owner

DATABASE VAULT

Realm
Authorizations

and
Rule Sets

Related Topics

• Quick Start Tutorial: Securing a Schema from DBA Access
This tutorial shows how to create a realm around the HR schema.

How Realms Affect Other Oracle Database Vault
Components

Realms have no effect on factors, identities, or rule sets, but they do affect command
rules.

With command rules, Oracle Database Vault evaluates the realm authorization first
when processing SQL statements.

How Realms Work explains the steps that Oracle Database Vault takes to process
SQL statements that affect objects in a realm. How Command Rules Work describes
how command rules are processed.

Guidelines for Designing Realms
Oracle provides a set of guidelines for designing realms.

• Create realms based on the schemas and roles that form a database application.

Define database roles with the minimum and specific roles and system privileges
required to maintain the application objects and grant the role to named accounts.
You then can add the role as an authorized member of the realm. For object-level
privileges on objects protected by the realm and required by an application, create
a role and grant these minimum and specific object-level privileges to the role, and
then grant named accounts this role. In most cases, these types of roles do not
need to be authorized in the realm unless ANY-style system privileges are already
in use. A model using the principle of least privilege is ideal for any database
application.

Chapter 4
How Realms Affect Other Oracle Database Vault Components

4-20

• A database object can belong to multiple realms and an account or role can be
authorized in multiple realms.

To provide limited access to a subset of a database schema (for example, just the
EMPLOYEES table in the HR schema), or roles protected by a realm, create a new
realm with just the minimum required objects and authorizations.

• If you want to add a role to a realm as a grantee, create a realm to protect the
role. Doing so prevents users who have been granted the GRANT ANY ROLE system
privilege, such as the SYSTEM user account, from granting the role to themselves.

• If you want to add the SYS user account to a realm authorization, you must add
user SYS explicitly and not through a role (such as the DBA role).

• Be mindful of the privileges currently allowed to a role that you plan to add as a
realm authorization.

Realm authorization of a role can be accidentally granted and not readily apparent
if an account such as SYS or SYSTEM creates a role for the first time and the
Oracle Database Vault administrator adds this role as a realm authorization. This
is because the account that creates a role is implicitly granted the role when it is
created.

• Sometimes you must temporarily relax realm protections for an administrative
task. Rather than disabling the realm, have the Security Manager (DV_ADMIN or
DV_OWNER) log in, add the named account to the authorized accounts for the realm,
and set the authorization rule set to Enabled. Then in the enabled rule set, turn
on all auditing for the rule set. You can remove the realm authorization when the
administrative task is complete.

• If you want to grant ANY privileges to new users, Oracle recommends that you
add a database administrative user to the Oracle System Privilege and Role
Management realm so that this user can grant other users ANY privileges, if they
need them. For example, using a named account to perform the GRANT of the ANY
operations enables you to audit these operations, which creates an audit trail for
accountability.

• If you drop a table, index, or role that has been protected by a realm and then
recreate it using the same name, the realm protection is not restored. You must
re-create the realm protection for the new table, index, or role. However, you can
automatically enforce protection for all future tables, indexes, and roles within a
specified schema. For example, to enforce protection for all future tables:

BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM('realm_name', 'schema_name', '%', 'TABLE');
END;
/

• You can test the development phase of a realm by using simulation mode, which
enables the realm but writes detailed information about violations to a log file.

Related Topics

• Using Simulation Mode for Logging Realm and Command Rule Activities
Simulation mode writes violations to the simulation log instead of preventing SQL
execution to quickly test new and modified Oracle Database Vault controls.

Chapter 4
Guidelines for Designing Realms

4-21

How Realms Affect Performance
Realms can affect database performance in a variety situations, such as with DDL and
DML operations.

• DDL and DML operations on realm-protected objects do not have a
measurable effect on Oracle Database. Oracle recommends that you create the
realm around the entire schema, and then authorize specific users to perform only
specific operations related to their assigned tasks. For finer-grained control, you
can define realms around individual tables and authorize users to perform certain
operations on them, and also have a realm around the entire schema to protect
the entire application. Be aware, however, that this type of configuration may slow
performance, but it does enable you to grant realm authorization to some of the
objects in a schema.

• Auditing affects performance. To achieve the best performance, Oracle
recommends that you use fine-grained auditing rather than auditing all operations.

• Periodically check the system performance. You can do so by running tools
such as Oracle Enterprise Manager (including Oracle Enterprise Manager Cloud
Control, which is installed by default with Oracle Database), Automatic Workload
Repository (AWR), and TKPROF.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

Realm Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that are useful for
analyzing realms.

Table 4-1 lists the Oracle Database Vault reports.

Table 4-1 Reports Related to Realms

Report Purpose

Realm Audit Report Audits records generated by the realm protection
and realm authorization operations

Realm Authorization Configuration Issues
Report

Lists authorization configuration information, such
as incomplete or disabled rule sets, or nonexistent
grantees or owners that may affect the realm

Rule Set Configuration Issues Report Lists rule sets that do not have rules defined or
enabled, which may affect the realms that use
them

All object privilege reports List object privileges that the realm affects

Privilege management summary reports Provide information about grantees and owners for
a realm

Sensitive objects reports Lists objects that the command rule affects

Table 4-2 lists data dictionary views that provide information about existing realms.

Chapter 4
How Realms Affect Performance

4-22

Table 4-2 Data Dictionary Views Used for Realms

Data Dictionary View Description

DBA_DV_REALM Lists the realms created in the current database instance.

DBA_DV_REALM_AUTH lists the authorization of a named database user account
or database role (GRANTEE) to access realm objects in a
particular realm

DBA_DV_REALM_OBJECT Lists the database schemas, or subsets of schemas
with specific database objects contained therein, that are
secured by the realms

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Chapter 4
Realm Related Reports and Data Dictionary Views

4-23

5
Configuring Rule Sets

Rule sets group one or more rules together; the rules determine whether a user can
perform an action on an object.

• What Are Rule Sets?
A rule set is a collection of one or more rules.

• Rule Sets and Rules in a Multitenant Environment
You can create a rule set and its associated rules in a PDB or an application root.

• Default Rules and Rule Sets from Releases Earlier Than Release 12.2
Many default rules and rule sets from earlier releases are no longer supported, but
may be in use in your current Oracle Database installation.

• Default Rule Sets
Oracle Database Vault provides a set of default rule sets that you can customize
for your needs.

• Creating a Rule Set
To create a rule set, you first create the rule set itself, and then you can edit the
rule set to associate it with one or more rules.

• Creating a Rule to Add to a Rule Set
A rule defines the behavior that you want to control; a rule set is a named
collection of rules.

• Modifying a Rule Set
You can use the DBMS_MACADM.UPDATE_RULE_SET procedure to modify the definition
of a rule set.

• Deleting a Rule Set
Before you delete a rule set, you must remove any rules from the rule set.

• How Rule Sets Work
Understanding how rule sets work helps to create more effective rule sets.

• Tutorial: Configuring Two-Person Integrity, or Dual Key Security
This tutorial demonstrates how to use Oracle Database Vault to control the
authorization of two users.

• Guidelines for Designing Rule Sets
Oracle provides guidelines for designing rule sets.

• How Rule Sets Affect Performance
The number and complexity of rules can slow database performance.

• Rule Set and Rule Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that are useful
for analyzing rule sets and the rules within them.

What Are Rule Sets?
A rule set is a collection of one or more rules.

5-1

You can associate the rule set with a realm authorization, factor assignment, command
rule, or secure application role.

The rule set evaluates to true or false based on the evaluation of each rule it contains
and the evaluation type (All True or Any True). A rule within a rule set is a PL/SQL
expression that evaluates to true or false. You can create a rule and add the rule to
multiple rule sets.

You can use rule sets to accomplish the following activities:

• As a further restriction to realm authorization, to define the conditions under which
realm authorization is active

• To define when to allow a command rule

• To enable a secure application role

• To define when to assign the identity of a factor

When you create a rule set, Oracle Database Vault makes it available for selection
when you configure the authorization for a realm, command rule, factor, or secure
application role.

Related Topics

• Rule Set and Rule Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that are useful
for analyzing rule sets and the rules within them.

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

Rule Sets and Rules in a Multitenant Environment
You can create a rule set and its associated rules in a PDB or an application root.

A common realm must use a common rule set when the associated realm or
command rule is evaluated by Database Vault. The common rule set and its rules
can only be created in the application root. After the common rule set is created, it
exists in every container that is associated with the root where the common rule set is
created. The common rule set can only include common rules.

To configure a common rule set and its rules, you must be commonly granted the
DV_OWNER or DV_ADMIN role.

Related Topics

• Command Rules in a Multitenant Environment
You can create common and local command rules in either the CDB root or the
application root.

Default Rules and Rule Sets from Releases Earlier Than
Release 12.2

Many default rules and rule sets from earlier releases are no longer supported, but
may be in use in your current Oracle Database installation.

Chapter 5
Rule Sets and Rules in a Multitenant Environment

5-2

If you use default rules and rule sets from releases earlier than Oracle Database
release 12.2, Oracle Database does not remove them during an upgrade in case
you have customized them for your own use. If you customized these rules and rule
sets, or use these older default rule sets, Oracle recommends that you re-implement
the customized rules and rule sets by using the ALTER SYSTEM and ALTER SESSION
command rules, and then disable and drop the old rules and rule sets. If you have not
customized these rules and rule sets, or otherwise use them, you should drop these
earlier rules and rule sets because the same functionality is available in later default
command rules.

Note:

See the release 12.2 version of Oracle Database Vault Administrator’s Guide
for a full listing of the rules and rule sets that may be affected.

Default Rule Sets
Oracle Database Vault provides a set of default rule sets that you can customize for
your needs.

You can find a full list of rule sets by querying the DBA_DV_RULE_SET data dictionary
view. To find rules that are associated with a rule set, query the DBA_DV_RULE_SET_RULE
data dictionary view.

The default rule sets are as follows:

• Allow Dumping Datafile Header prevents the dumping of data blocks.

• Allow Fine Grained Control for Alter System enables you to control the
ability of users to set initialization parameters using the ALTER SYSTEM SQL
statement.

• Allow Sessions controls the ability to create a session in the database. This
rule set enables you to add rules to control database logins using the CONNECT
command rule. The CONNECT command rule is useful to control or limit SYSDBA
access to programs that require its use. This rule set is not populated.

• Can Grant VPD Administration controls the ability to grant the GRANT EXECUTE
or REVOKE EXECUTE privileges on the Oracle Virtual Private Database DBMS_RLS
package, with the GRANT and REVOKE statements.

• Can Maintain Accounts/Profiled controls the roles that manage user accounts
and profiles, through the CREATE USER, DROP USER, CREATE PROFILE, ALTER
PROFILE, or DROP PROFILE statements.

• Can Maintain Own Account allows the accounts with the DV_ACCTMGR role
to manage user accounts and profiles with the ALTER USER statement. Also
allows individual accounts to change their own password using the ALTER USER
statement. See DV_ACCTMGR Database Vault Account Manager Role for more
information about the DV_ACCTMGR role.

• Disabled is a convenience rule set to quickly disable security configurations like
realms, command rules, factors, and secure application roles.

• Enabled is a convenience rule set to quickly enable system features.

Chapter 5
Default Rule Sets

5-3

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/dvadm/release-changes.html#GUID-A4DCA810-2702-42EC-8A5B-5913221F8A9E

• Not allow to set AUDIT_SYS_OPERATIONS to False prevents the
AUDIT_SYS_OPERATIONS initialization parameter from being set to FALSE. If unified
auditing is enabled, then the AUDIT_SYS_OPERATIONS parameter has no effect.

• Not allow to set OPTIMIZER_SECURE_VIEW_MERGING to True prevents the
OPTIMIZER_SECURE_VIEW_MERGING initialization parameter from being set to TRUE.

• Not allow to set OS_ROLES to True prevents the OS_ROLES initialization
parameter from being set to TRUE.

• Not allow to set PLSQL_DEBUG to True prevents the PLSQL_DEBUG initialization
parameter from being set to TRUE.

• Not allow to set REMOTE_OS_ROLES to True prevents the REMOTE_OS_ROLES
initialization parameter from being set to TRUE.

• Not allow to set SQL92_SECURITY to False prevents the SQL92_SECURITY from
being set to FALSE.

• Not allow to turn off AUDIT_TRAIL prevents the AUDIT_TRAIL initialization
parameter from being turned off. If unified auditing is enabled, then the
AUDIT_TRAIL parameter has no effect.

Creating a Rule Set
To create a rule set, you first create the rule set itself, and then you can edit the rule
set to associate it with one or more rules.

You can associate a new rule with the rule set, add existing rules to the rule set, or
delete a rule association from the rule set.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Execute the DBMS_MACADM.CREATE_RULE_SET statement to create the rule set.

For example:

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 description => 'DBA access through predefined processes',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'Evaluation failed',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => '',
 is_static => TRUE,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Chapter 5
Creating a Rule Set

5-4

In this specification:

• rule_set_name can be up to 128 characters in mixed-case. Spaces are
allowed. Oracle suggests that you start the name with a verb and complete
it with the realm or command rule name to which the rule set is attached.The
DBA_DV_RULE_SET data dictionary view lists existing rule sets.

• description can be 1024 characters in mixed-case. You may want to
document the business requirement of the rule set (for example, Rule set
to limit access to SQL*Plus).

• enabled controls whether the rule set is enabled or disabled.
DBMS_MACUTL.G_YES enables the rule set; DBMS_MACUTL.G_NO disables it. The
default is DBMS_MACUTL.G_YES.

• eval_options is used if you plan to have multiple rules associated with the
rule set. DBMS_MACUTL.G_RULESET_EVAL_ALL means all rules must evaluate
to TRUE; DBMS_MACUTL.G_RULESET_EVAL_ANY means at least one rule must
evaluate to TRUE.

• audit_options applies only to traditional auditing, not unified auditing
environments. Starting with Oracle Database release 21c, traditional auditing
is deprecated. Oracle recommends that you create unified audit policies
instead of using audit_options. applies only to traditional auditing, not unified
auditing environments.
Valid audit_options settings are DBMS_MACUTL.G_REALM_AUDIT_OFF,
DBMS_MACUTL.G_REALM_AUDIT_FAIL, DBMS_MACUTL.G_REALM_AUDIT_SUCCESS,
and DBMS_MACUTL.G_REALM_AUDIT_FAIL +
DBMS_MACUTL.G_REALM_AUDIT_SUCCESS.

• fail_options designates whether to show
(DBMS_MACUTL.G_RULESET_FAIL_SHOW) to not show
(DBMS_MACUTL.G_RULESET_FAIL_SILENT) error messages. An advantage of
selecting DBMS_MACUTL.G_RULESET_FAIL_SILENT and then enabling auditing is
that you can track the activities of a potential intruder. The audit report reveals
the activities of the intruder, yet the intruder is unaware that you are doing this
because he or she does not see any error messages.

• fail_message is a text string error message up to 80 characters in mixed-
case, to associate with the fail code you specify for fail_code. If you do not
specify an error message, then Oracle Database Vault displays a generic error
message.

• fail_code is a number in the range of -20000 to -20999 or 20000 to 20999
to associate with the fail_message parameter. If you omit this setting, then
Oracle Database Vault displays a generic error code.

• handler_options enables you to include handler code to define custom event
handler logic. DBMS_MACUTL.G_RULESET_HANDLER_OFF disables error handling
(default), DBMS_MACUTL.G_RULESET_HANDLER_FAIL calls handler on rule set
failure, and DBMS_MACUTL.G_RULESET_HANDLER_SUCCESS calls handler on rule
set success.

• handler is a PL/SQL function or procedure that defines the custom event
handler logic. You can create a custom event method to provide special
processing outside the standard Oracle Database Vault rule set auditing
features. For example, you can use an event handler to initiate a workflow
process or send event information to an external system.

Chapter 5
Creating a Rule Set

5-5

Write the expression as a fully qualified procedure (such as
schema.procedure_name). Do not include any other form of SQL statements. If
you are using application package procedures or standalone procedures, you
must provide DVSYS with the EXECUTE privilege on the object. The procedure
signature can be in one of the following two forms:

– PROCEDURE my_ruleset_handler(p_ruleset_name IN VARCHAR2,
p_ruleset_rules IN BOOLEAN): Use this form when the name of the rule
set and its return value are required in the handler processing.

– PROCEDURE my_ruleset_handler: Use this form when the name of the rule
set and its return value are not required in the handler processing.

Be aware that you cannot use invoker's rights procedures as event handlers.
Doing so can cause the rule set evaluation to fail unexpectedly. Only use
definer's rights procedures as event handlers.

Use the following syntax:

myschema.my_ruleset_handler

• is_static determines how often a rule set is evaluated when it is accessed.
TRUE evaluates the rule set once during the user session. After that, the value
is re-used. FALSE evaluates the rule set each time the rule set is called. The
default is FALSE.

• scope defines whether the rule set is created in a
PDB (DBMS_MACUTL.G_SCOPE_LOCAL) or in an application root
(DBMS_MACUTL.G_SCOPE_COMMON). If you create the common rule set in an
application root and want it visible to the associated PDBs, then you must
synchronize the application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

At this stage the rule set creation is complete.

3. Optionally, add one or more rules to the rule set.

The DBA_DV_RULE data dictionary view lists existing rules.

For example:

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Is Database Administrator',
 rule_order => 1,
 enabled => DBMS_MACUTL.G_YES);
END;
/

Related Topics

• Creating a New Rule
You can create a new rule or use the default Oracle Database Vault rules.

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

• Oracle Database Vault PL/SQL Rule Set Functions
Oracle Database Vault provides functions to use in rule sets to inspect the SQL
statement that the rule set protects.

Chapter 5
Creating a Rule Set

5-6

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

Creating a Rule to Add to a Rule Set
A rule defines the behavior that you want to control; a rule set is a named collection of
rules.

• About Creating Rules
You can create rules during the rule set creation process, or independently of it.

• Default Rules
Default rules are rules that have commonly used behavior, such as checking if an
action evaluates to true or false.

• Creating a New Rule
You can create a new rule or use the default Oracle Database Vault rules.

• Adding Existing Rules to a Rule Set
After you have created one or more rules, you can add them to a rule set.

• Modifying a Rule Set
You can use the DBMS_MACADM.UPDATE_RULE procedure to modify the definition of a
rule.

• Removing a Rule from a Rule Set
Before you remove a rule from a rule set, you must remove references to it from
rule sets.

About Creating Rules
You can create rules during the rule set creation process, or independently of it.

After you create the rule, you can associate a rule set with one or more additional
rules.

If you create a new rule during the rule set creation process, the rule is automatically
added to the current rule set. You also can add existing rules to the rule set.
Alternatively, you can omit adding rules to the rule set and use it as a template for
rule sets you may want to create in the future.

You can add as many rules that you want to a rule set, but for better design and
performance, you should keep the rule sets simple. See Guidelines for Designing Rule
Sets for additional advice.

The rule set evaluation depends on the evaluation of its rules using the Evaluation
Options (All True or Any True). If a rule set is disabled, Oracle Database Vault
evaluates the rule set to true without evaluating its rules.

Related Topics

• How Rule Sets Work
Understanding how rule sets work helps to create more effective rule sets.

Chapter 5
Creating a Rule to Add to a Rule Set

5-7

Default Rules
Default rules are rules that have commonly used behavior, such as checking if an
action evaluates to true or false.

You can find a full list of rules by querying the DBA_DV_RULE data dictionary view. The
following table lists the current default Oracle Database rules.

Table 5-1 Current Default Oracle Database Vault Rules

Rule Description

Are Dest Parameters Allowed Checks if the current SQL statement attempts to alter
initialization parameters related to the size limit of a
dump

Are Dump Parameters Allowed Checks if the current SQL statement attempts to alter
initialization parameters related to the destination of a
dump

False Evaluates to FALSE

Is Alter DVSYS Allowed Note: This default rule has been deprecated.

Checks if the logged-in user can execute the ALTER
USER statement on other users successfully

Is Database Administrator Checks if a user has been granted the DBA role

Is Drop User Allowed Checks if the logged in user can drop users

Is Dump of Block Allowed Checks if the dumping of blocks is allowed

Is First Day of Month Checks if the specified date is the first day of the month

Is Label Administrator Checks if the user has been granted the LBAC_DBA role

Is Last Day of Month Checks if the specified date is the last day of the month

Is Parameter Value False Checks if a specified parameter value has been set to
FALSE

Is Parameter Value None Checks if a specified parameter value has been set to
NONE

Is Parameter Value Not False Checks if a specified parameter value has been set to
<> FALSE

Is Parameter Value Not None Checks if a specified parameter value has been set to
<> NONE

Is Parameter Value Not Off Checks if a specified parameter value has been set to
<> OFF

Is Parameter Value Not On Checks if a specified parameter value has been set to
<> ON

Is Parameter Value Not True Checks if a specified parameter value has been set to
<> TRUE

Is Parameter Value Off Checks if a specified parameter value has been set to
OFF

Is Parameter Value On Checks if a specified parameter value has been set to
ON

Is Parameter Value True Checks if a specified parameter value has been set to
TRUE

Chapter 5
Creating a Rule to Add to a Rule Set

5-8

Table 5-1 (Cont.) Current Default Oracle Database Vault Rules

Rule Description

Is SYS or SYSTEM User Checks if the user is SYS or SYSTEM

Is Security Administrator Checks if a user has been granted the DV_ADMIN role

Is Security Owner Checks if a user has been granted the DV_OWNER role

Is User Manager Checks if a user has been granted the DV_ACCTMGR
role

Login User Is Object User Checks if the logged in user is the same as the user
about to be altered by the current SQL statement

No Exempt Access Policy Role Checks if the user has been granted the EXEMPT
ACCESS POLICY role or is user SYS

Not Export Session Obsolete

True Evaluates to TRUE

Creating a New Rule
You can create a new rule or use the default Oracle Database Vault rules.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Execute the DBMS_MACADM.CREATE_RULE statement to create the rule.

For example:

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Is SYSADM Administrator',
 rule_expr =>'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''SYSADM''',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

In this specification:

• rule_name up to 90 characters in mixed-case. Spaces are allowed.
The DBA_DV_RULE data dictionary view lists existing rules. The
DBA_DV_RULE_SET_RULE lists rule sets that are associated with rules. Oracle
suggests that you start the name with a verb and complete the name with the
purpose of the rule. For example: Prevent non-admin access to SQL*Plus.
Because rules do not have a description parameter, make the name explicit
but be sure to not exceed over 90 characters.

• rule_expr is a PL/SQL Boolean expression. If the expression contains
quotation marks, do not use double quotation marks. Instead, use two single

Chapter 5
Creating a Rule to Add to a Rule Set

5-9

quotation marks. Enclose the entire expression within single quotation marks.
For example:

'TO_CHAR(SYSDATE,''HH24'') = ''12'''

Enter a PL/SQL expression that fits the following requirements:

– It is valid in a SQL WHERE clause.

– It can be a freestanding and valid PL/SQL Boolean expression such as the
following:

TO_CHAR(SYSDATE,'HH24') = '12'

– It must evaluate to a Boolean (TRUE or FALSE) value.

– It must be no more than 1024 characters long.

– It can contain existing and compiled PL/SQL functions from the current
database instance. Ensure that these are fully qualified functions (such
as schema. function_name). Do not include any other form of SQL
statements.

Be aware that you cannot use invoker's rights procedures with rule
expressions. Doing so will cause the rule evaluation to fail unexpectedly.
Only use definer's rights procedures with rule expressions.

If you want to use application package functions or standalone functions,
you must grant the DVSYS account the EXECUTE privilege on the function.
Doing so reduces the chances of errors when you add new rules.

– Ensure that the rule works. You can test the syntax by running the
following statement in SQL*Plus:

SELECT rule_expression FROM DUAL;

For example, suppose you have created the following the rule expression:

SYS_CONTEXT('USERENV','SESSION_USER') != 'TSMITH'

You could test this expression as follows:

SELECT SYS_CONTEXT('USERENV','SESSION_USER') FROM DUAL;

For the Boolean example listed earlier, you would enter the following:

SELECT TO_CHAR(SYSDATE,'HH24')FROM DUAL;

• scope defines whether the rule is created in a
PDB (DBMS_MACUTL.G_SCOPE_LOCAL) or in an application root
(DBMS_MACUTL.G_SCOPE_COMMON).

After you create a rule, you can add it to a rule set.

Related Topics

• Adding Existing Rules to a Rule Set
After you have created one or more rules, you can add them to a rule set.

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

Chapter 5
Creating a Rule to Add to a Rule Set

5-10

• Oracle Database Vault PL/SQL Rule Set Functions
Oracle Database Vault provides functions to use in rule sets to inspect the SQL
statement that the rule set protects.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

Adding Existing Rules to a Rule Set
After you have created one or more rules, you can add them to a rule set.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

2. Query the DBA_DV_RULE data dictionary view to find the rule to add to a rule set.

SELECT NAME FROM DBA_DV_RULE
ORDER BY NAME;

3. Query the DBA_DV_RULE_SET data dictionary view to find the rule set to which you
want to add the rule.

SELECT RULE_SET_NAME
FROM DBA_DV_RULE_SET
ORDER BY RULE_SET_NAME;

You can also query the DBA_DV_RULE_SET_RULE data dictionary view to find if the
rule has already been associated with a rule set.

4. Execute the DBMS_MACADM.ADD_RULE_TO_RULE_SET to add the rule to a rule set.

For example:

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Is SYSADM Administrator',
 rule_order => 1,
 enabled => DBMS_MACUTL.G_NO,
 scope =>);
END;
/

In this specification:

• rule_order does not apply to this release, but you must include a value for the
ADD_RULE_TO_RULE_SET procedure to work. Enter 1.

• enabled determines whether the rule should be checked when the rule set
is evaluated. DBMS_MACUTL.G_YES (default). Enables the rule to be checked
during the rule set evaluation. DBMS_MACUTL.G_NO Prevents the rule from being
checked during the rule set evaluation.

• scope defines whether the rule is created in a
PDB (DBMS_MACUTL.G_SCOPE_LOCAL) or in an application root
(DBMS_MACUTL.G_SCOPE_COMMON).

Chapter 5
Creating a Rule to Add to a Rule Set

5-11

Related Topics

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

Modifying a Rule Set
You can use the DBMS_MACADM.UPDATE_RULE procedure to modify the definition of a
rule.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the rule and check its definition.

For example:

SELECT * FROM DBA_DV_RULE ORDER BY NAME;

3. Execute the DBMS_MACADM.UPDATE_RULE statement.

For example:

BEGIN
 DBMS_MACADM.UPDATE_RULE(
 rule_name => 'Check UPDATE operations',
 rule_expr =>'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''SYSADM'' AND
 (
 UPPER(SYS_CONTEXT(''USERENV'',''MODULE'')) LIKE
''APPSRVR%'' OR
 UPPER(SYS_CONTEXT(''USERENV'',''MODULE'')) LIKE
''DBAPP%'')'
);
END;
/

Related Topics

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

Removing a Rule from a Rule Set
Before you remove a rule from a rule set, you must remove references to it from rule
sets.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

Chapter 5
Creating a Rule to Add to a Rule Set

5-12

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_RULE data dictionary view to find the rule that you want to
remove from a rule set.

SELECT NAME FROM DBA_DV_RULE
ORDER BY NAME;

3. Query the DBA_DV_RULE_SET_RULE data dictionary views to find rule sets that are
associated with the rule.

For example:

SELECT RULE_SET_NAME
FROM DBA_DV_RULE_SET_RULE
WHERE RULE_NAME = 'Is SYSADM Administrator';

4. Execute the DBMS_MACADM.DELETE_RULE_FROM_RULE_SET procedure to remove the
rule from the rule set.

For example:

BEGIN
 DBMS_MACADM.DELETE_RULE_FROM_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Is SYSADM Administrator');
END;
/

After you remove the rule from the rule set, the rule still exists. If you want, you
can associate it with other rule sets. You can also delete the rule by executing the
DBMS_MACADM.DELETE_RULE. For example:

EXEC DBMS_MACADM.DELETE_RULE('Is SYSADM Administrator');

Related Topics

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

Modifying a Rule Set
You can use the DBMS_MACADM.UPDATE_RULE_SET procedure to modify the definition of a
rule set.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the rule set and check its definition.

Chapter 5
Modifying a Rule Set

5-13

For example:

SELECT * FROM DBA_DV_RULE_SET ORDER BY RULE_SET_NAME;

3. Execute the DBMS_MACADM.UPDATE_RULE_SET statement.

For example:

BEGIN
 DBMS_MACADM.UPDATE_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 description => 'DBA access through predefined processes',
 enabled => DBMS_MACUTL.G_NO,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_FAIL,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'Access denied!',
 fail_code => 20900,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => '',
 is_static = TRUE);
END;
/

Related Topics

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

Deleting a Rule Set
Before you delete a rule set, you must remove any rules from the rule set.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_RULE_SET data dictionary view to find the rule set that you want
to delete.

SELECT RULE_SET_NAME
FROM DBA_DV_RULE_SET
ORDER BY RULE_SET_NAME;

3. Query the DBA_DV_RULE_SET_RULE data dictionary view to ensure that no rules are
associated with the rule set that you want to delete.

For example:

SELECT RULE_NAME
FROM DBA_DV_RULE_SET_RULE
WHERE RULE_SET_NAME = 'Limit_DBA_Access';

4. If necessary, execute DBMS_MACADM.DELETE_RULE_FROM_RULE_SET remove the rules
that are associated with the rule set.

Chapter 5
Deleting a Rule Set

5-14

For example:

BEGIN
 DBMS_MACADM.DELETE_RULE_FROM_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Is SYSADM Administrator');
END;
/

5. Execute the DBMS_MACADM.DELETE_RULE_SET procedure to delete the rule set.

For example:

EXEC DBMS_MACADM.DELETE_RULE_SET('Limit_DBA_Access');

Related Topics

• Oracle Database Vault Rule Set APIs
You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database
Vault rule functions to manage rule sets.

How Rule Sets Work
Understanding how rule sets work helps to create more effective rule sets.

• How Oracle Database Vault Evaluates Rules
Oracle Database Vault evaluates the rules within a rule set as a collection of
expressions.

• Nested Rules within a Rule Set
You can nest one or more rules within the rule set.

• Creating Rules to Apply to Everyone Except One User
You can also create rules to apply to everyone except one user (for example, a
privileged user).

How Oracle Database Vault Evaluates Rules
Oracle Database Vault evaluates the rules within a rule set as a collection of
expressions.

If you have set the eval_options parameter in the DBMS_MACADM.CREATE_RULE_SET or
DBMS_MACADM.UPDATE_RULE_SET procedure to DBMS_MACUTL.G_RULESET_EVAL_ALL and if
a rule evaluates to false, then the evaluation stops at that point, instead of attempting
to evaluate the rest of the rules in the rule set. Similarly, if eval_options is set to
DBMS_MACUTL.G_RULESET_EVAL_ANY and if a rule evaluates to true, the evaluation stops
at that point. If a rule set is disabled, then Oracle Database Vault evaluates it to true
without evaluating its rules.

Nested Rules within a Rule Set
You can nest one or more rules within the rule set.

For example, suppose you want to create a nested rule, Is Corporate Network
During Maintenance, that performs the following two tasks:

• It limits table modifications only when the database session originates within the
corporate network.

Chapter 5
How Rule Sets Work

5-15

• It restricts table modifications during the system maintenance window scheduled
between 10:00 p.m. and 10:59 p.m.

The rule definition would be as follows:

DVF.F$NETWORK = 'Corporate' AND TO_CHAR(SYSDATE,'HH24') between '22' AND '23'

Related Topics

• Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

• Configuring Factors
Factors allow you to create and use complex attributes through PL/SQL to make
Oracle Database Vault authorization decisions.

Creating Rules to Apply to Everyone Except One User
You can also create rules to apply to everyone except one user (for example, a
privileged user).

• To create a rule that excludes specific users, user the SYS_CONTEXT function.

For example:

SYS_CONTEXT('USERENV','SESSION_USER') = 'SUPERADMIN_USER' OR additional_rule

If the current user is a privileged user, then the system evaluates the rule to true
without evaluating additional_rule. If the current user is not a privileged user, then
the evaluation of the rule depends on the evaluation of additional_rule.

Tutorial: Configuring Two-Person Integrity, or Dual Key
Security

This tutorial demonstrates how to use Oracle Database Vault to control the
authorization of two users.

• About This Tutorial
In this tutorial, you configure a rule set that defines two-person integrity (TPI).

• Step 1: Create Users for This Tutorial
You must create two users for this tutorial, patch_boss and patch_user.

• Step 2: Create a Function to Check if User patch_boss Is Logged In
The behavior of the Database Vault settings will be determined by the function.

• Step 3: Create Rules, a Rule Set, and a Command Rule to Control User Access
Next, you must create two rules, a rule set to which you will add them, and a
command rule.

• Step 4: Test the Users' Access
After the rules have been created, they are ready to be tested.

• Step 5: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

Chapter 5
Tutorial: Configuring Two-Person Integrity, or Dual Key Security

5-16

About This Tutorial
In this tutorial, you configure a rule set that defines two-person integrity (TPI).

This feature is also called dual key security, dual key connection, and two-man rule
security. In this type of security, two users are required to authorize an action instead
of one user.

The idea is that one user provides a safety check for the other user before that user
can proceed with a task. Two-person integrity provides an additional layer of security
for actions that potentially can be dangerous. This type of scenario is often used for
tasks such as database patch updates, which is what this tutorial will demonstrate.
One user, patch_user must log in to perform a database patch upgrade, but the only
way that he can do this is if his manager, patch_boss is already logged in. You will
create a function, rules, a rule set, and a command rule to control patch_user's ability
to log in.

Step 1: Create Users for This Tutorial
You must create two users for this tutorial, patch_boss and patch_user.

• patch_boss acts in a supervisory role: If patch_boss is not logged in, then the
patch_user user cannot log in.

• patch_user is the user who is assigned to perform the patch upgrade. However,
for this tutorial, user patch_user does not actually perform a patch upgrade. He
only attempts to log in.

To create the users:

1. Log in to a PDB as a user who has been granted the DV_ACCTMGR role.

For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Create the following users and grant them the CREATE SESSION privilege.

GRANT CREATE SESSION TO patch_boss IDENTIFIED BY password;
GRANT CREATE SESSION TO patch_user IDENTIFIED BY password;

Replace password with a password that is secure.

3. Connect as user SYS with the SYSDBA administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

4. Grant the following privileges to the DV_OWNER or DV_ADMIN user.

For example:

GRANT CREATE PROCEDURE TO leo_dvowner;
GRANT SELECT ON V_$SESSION TO leo_dvowner;

The V_$SESSION table is the underlying table for the V$SESSION dynamic view.

Chapter 5
Tutorial: Configuring Two-Person Integrity, or Dual Key Security

5-17

In a real-world scenario, you also would log in as the DV_OWNER user and grant the
DV_PATCH_ADMIN role to user patch_user (but not to patch_boss). But because you are
not really going to perform a database patch upgrade in this tutorial, you do not need
to grant this role to user patch_user.

Related Topics

• Oracle Database Security Guide

Step 2: Create a Function to Check if User patch_boss Is Logged In
The behavior of the Database Vault settings will be determined by the function.

The function that you must create, check_boss_logged_in, does just that: When user
patch_user tries to log in to the database instance, it checks if user patch_boss is
already logged in by querying the V$SESSION data dictionary view.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

2. Create the check_boss_logged_in function as follows:

CREATE OR REPLACE FUNCTION check_boss_logged_in
return varchar2
authid definer as

v_session_number number := 0;
v_allow varchar2(10) := 'TRUE';
v_deny varchar2(10) := 'FALSE';

BEGIN
 SELECT COUNT(*) INTO v_session_number
 FROM SYS.V_$SESSION
 WHERE USERNAME = 'PATCH_BOSS'; -- Enter the user name in capital letters.

 IF v_session_number > 0
 THEN RETURN v_allow;
 ELSE
 RETURN v_deny;
 END IF;
END check_boss_logged_in;
/

3. Grant the EXECUTE privilege on the check_boss_logged_in function to the DVSYS
schema.

GRANT EXECUTE ON check_boss_logged_in to DVSYS;

Chapter 5
Tutorial: Configuring Two-Person Integrity, or Dual Key Security

5-18

Step 3: Create Rules, a Rule Set, and a Command Rule to Control
User Access

Next, you must create two rules, a rule set to which you will add them, and a command
rule.

The rule set triggers the check_boss_logged_in function when user patch_user tries
to logs in to the database.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

2. Create the Check if Boss Is Logged In rule, which checks that the patch_user
user is logged in to the database. In the definition, replace leo_dvowner with the
name of the DVOWNER or DV_ADMIN user who created the check_boss_logged_in
function.

If the check_boss_logged_in function returns TRUE (that is, patch_boss is logged
in to another session), then patch_user can log in.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check if Boss Is Logged In',
 rule_expr => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''PATCH_USER''
and leo_dvowner.check_boss_logged_in = ''TRUE'' ');
END;
/

Enter the user name, PATCH_USER, in upper-case letters, which is how the
SESSION_USER parameter stores it.

3. Create the Allow Connect for Other Database Users rule, which ensures that
the user logged in (patch_user) is not user patch_boss. It also enables all other
valid users to log in.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Allow Connect for Other Database Users',
 rule_expr => 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') !=
''PATCH_USER''');
END;
/
COMMIT;

4. Create the Dual Connect for Boss and Patch rule set, and then add the two
rules to it.

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Dual Connect for Boss and Patch',
 description => 'Checks if both boss and patch users are logged
in.',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => 2,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,

Chapter 5
Tutorial: Configuring Two-Person Integrity, or Dual Key Security

5-19

 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message =>'',
 fail_code => NULL,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => ''
);
END;
/

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Dual Connect for Boss and Patch',
 rule_name => 'Check if Boss Is Logged In'
);
END;
/

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Dual Connect for Boss and Patch',
 rule_name => 'Allow Connect for Other Database Users'
);
END;
/

5. Create the following CONNECT command rule, which permits user patch_user to
connect to the database only if patch_boss is already logged in.

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'CONNECT',
 rule_set_name => 'Dual Connect for Boss and Patch',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES);
END;
/
COMMIT;

Step 4: Test the Users' Access
After the rules have been created, they are ready to be tested.

1. Exit SQL*Plus.

EXIT

2. Create a second shell, for example:

xterm &

3. In the first shell, try to log in as user patch_user.

sqlplus patch_user@pdb_name
Enter password: password

ERROR:
ORA-47400: Command Rule violation for CONNECT on LOGON

Enter user-name:

Chapter 5
Tutorial: Configuring Two-Person Integrity, or Dual Key Security

5-20

User patch_user cannot log in until user patch_boss is already logged in. (Do not
try the Enter user-name prompt yet.)

4. In the second shell and then log in as user patch_boss.

sqlplus patch_boss@pdb_name
Enter password: password
Connected.

User patch_boss can log in.

5. Go back to the first shell, and then try logging in as user patch_user again.

Enter user_name: patch_user
Enter password: password

This time, user patch_user is deemed a valid user, so now he can log in.

Step 5: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. In the session for the user patch_boss, exit SQL*Plus and then close the shell.

EXIT

2. In the first shell, connect the DV_ACCTMGR user and remove the users you created.

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

DROP USER patch_boss;
DROP USER patch_user;

3. Connect as a user SYS with the SYSDBA administrative privilege and revoke the
privileges that you had granted to the DV_OWNER or DV_ADMIN user.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

REVOKE CREATE PROCEDURE FROM leo_dvowner;
REVOKE SELECT ON V_$SESSION FROM leo_dvowner;

4. Connect as the DV_OWNER or DV_ADMIN user and drop the rules, rule set, and
command rule, in the order shown.

CONNECT leo_dvowner@pdb_name
Enter password: password

DROP FUNCTION check_boss_logged_in;
EXEC DBMS_MACADM.DELETE_COMMAND_RULE('CONNECT', '%', '%');
EXEC DBMS_MACADM.DELETE_RULE_FROM_RULE_SET('Dual Connect for Boss and
Patch', 'Check if Boss Is Logged In');
EXEC DBMS_MACADM.DELETE_RULE_FROM_RULE_SET('Dual Connect for Boss and
Patch', 'Allow Connect for Other Database Users');
EXEC DBMS_MACADM.DELETE_RULE('Check if Boss Is Logged In');
EXEC DBMS_MACADM.DELETE_RULE('Allow Connect for Other Database Users');
EXEC DBMS_MACADM.DELETE_RULE_SET('Dual Connect for Boss and Patch');
COMMIT;

Chapter 5
Tutorial: Configuring Two-Person Integrity, or Dual Key Security

5-21

Guidelines for Designing Rule Sets
Oracle provides guidelines for designing rule sets.

• You can share rules among multiple rule sets. This lets you develop a library of
reusable rule expressions. Oracle recommends that you design such rules to be
discrete, single-purpose expressions.

• You can design a rule set so that its evaluation is static, that is, it is evaluated only
once during a user session. Alternatively, it can be evaluated each time the rule
set is accessed. If the rule set is evaluated only once, then the evaluated value
is reused throughout the user session each time the rule set is accessed. Using
static evaluation is useful in cases where the rule set must be accessed multiple
times but the conditions on which the rule set depend do not change during that
session. An example would be a SELECT command rule associated with a rule
set when the same SELECT statement occurs multiple times and if the evaluated
value is acceptable to use again, rather than evaluating the rule set each time the
SELECT occurs.

To control the static evaluation of the rule set, set the is_static parameter of
the CREATE_RULE_SET or UPDATE_RULE_SET procedures of the DBMS_MACADM PL/SQL
package. See DBMS_MACADM Rule Set Procedures for more information.

• Use Oracle Database Vault factors in your rule expressions to provide reusability
and trust in the values used by your rule expressions. Factors can provide
contextual information to use in your rules expressions.

• You can use custom event handlers to extend Oracle Database Vault security
policies to integrate external systems for error handling or alerting. Using Oracle
utility packages such as UTL_TCP, UTL_HTTP, UTL_MAIL, UTL_SMTP, or DBMS_AQ can
help you to achieve this type of integration.

• Test rule sets thoroughly for various accounts and scenarios either on a test
database or on a test realm or command rule for nonsensitive data before you
apply them to realms and command rules that protect sensitive data. You can test
rule expressions directly with the following SQL statement:

SQL> SELECT SYSDATE from DUAL where rule expression

• You can nest rule expressions inside a single rule. This helps to achieve more
complex situations where you would need a logical AND for a subset of rules and
a logical OR with the rest of the rules. For example, suppose you want to create a
nested rule that performs the following two tasks:

– Limits table modifications only when the database session originates within the
corporate network

– Restricts table modifications during the system maintenance window
scheduled between 10:00 p.m. and 10:59 p.m.

A rule definition for this scenario could be as follows:

DVF.F$NETWORK = 'Corporate' AND TO_CHAR(SYSDATE,'HH24') between '22' AND '23'

• You cannot use invoker's rights procedures with rule expressions. Only use
definer's rights procedures with rule expressions.

Chapter 5
Guidelines for Designing Rule Sets

5-22

How Rule Sets Affect Performance
The number and complexity of rules can slow database performance.

Rule sets govern the performance for execution of certain operations. For example,
if you have a very large number of rules in a rule set governing a SELECT statement,
performance could degrade significantly.

If you have rule sets that require many rules, performance improves if you move all the
rules to logic defined in a single PL/SQL standalone or package function. However, if a
rule is used by other rule sets, there is little performance effect on your system.

If possible, consider setting the rule set to use static evaluation, assuming this is
compatible with the associated command rule's usage. See Guidelines for Designing
Rule Sets for more information.

You can check system performance by running tools such as Oracle Enterprise
Manager (including Oracle Enterprise Manager Cloud Control, which is installed by
default with Oracle Database), Automatic Workload Repository (AWR), and TKPROF.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

Rule Set and Rule Related Reports and Data Dictionary
Views

Oracle Database Vault provides reports and data dictionary views that are useful for
analyzing rule sets and the rules within them.

Table 5-2 lists the Oracle Database Vault reports.

Table 5-2 Reports Related to Rule Sets

Report Description

Rule Set Configuration Issues Report Lists rule sets that have no rules defined or
enabled

Secure Application Configuration Issues
Report

Lists secure application roles that have
incomplete or disabled rule sets

Command Rule Configuration Issues
Report

Lists rule sets that are incomplete or disabled

Table 5-3 lists data dictionary views that provide information about existing rules and
rule sets.

Table 5-3 Data Dictionary Views Used for Rules and Rule Sets

Data Dictionary View Description

DBA_DV_RULE Lists the rules that have been defined

Chapter 5
How Rule Sets Affect Performance

5-23

Table 5-3 (Cont.) Data Dictionary Views Used for Rules and Rule Sets

Data Dictionary View Description

DBA_DV_RULE_SET Lists the rule sets that have been created

DBA_DV_RULE_SET_RULE Lists rules that are associated with existing rule
sets

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Chapter 5
Rule Set and Rule Related Reports and Data Dictionary Views

5-24

6
Configuring Command Rules

You can create command rules or use the default command rules to protect DDL and
DML statements.

• What Are Command Rules?
A command rule applies Oracle Database Vault protections with an Oracle
Database SQL statement, such as ALTER SESSION.

• Default Command Rules
Oracle Database Vault provides default command rules, based on commonly used
SQL statements.

• SQL Statements That Can Be Protected by Command Rules
You can protect a large number of SQL statements by using command rules.

• Creating a Command Rule
You can create a different types of command rules using different command rule
APIs.

• Modifying a Command Rule
You can use the DBMS_MACADM.UPDATE_COMMAND_RULE,
DBMS_MACADM.UPDATE_CONNECT_COMMAND_RULE,
DBMS_MACADM.UPDATE_SESSION_EVENT_CMD_RULE, and
DBMS_MACADM.UPDATE_SYSTEM_EVENT_CMD_RULE procedures to modify the definition
of a command rule.

• Deleting a Command Rule
Before you delete a command rule, you can locate the various references to it by
querying the command rule-related Oracle Database Vault views.

• How Command Rules Work
Command rules follow a set of steps to check their associated components.

• Tutorial: Using a Command Rule to Control Table Creations by a User
In this tutorial, you create a simple local command rule to control whether users
can create tables in the SCOTT schema.

• Guidelines for Designing Command Rules
Oracle provides guidelines for designing command rules.

• How Command Rules Affect Performance
The performance of a command rule depends on the complexity of the rules in the
rule set associated with the command rule.

• Command Rule Related Reports and Data Dictionary View
Oracle Database Vault provides reports and a data dictionary view that are useful
for analyzing command rules.

What Are Command Rules?
A command rule applies Oracle Database Vault protections with an Oracle Database
SQL statement, such as ALTER SESSION.

6-1

• About Command Rules
A command rule protects Oracle Database SQL statements that affect one or
more database objects.

• Command Rules in a Multitenant Environment
You can create common and local command rules in either the CDB root or the
application root.

• Types of Command Rules
In addition to command rules for many SQL statements, you can create command
rules specifically for the CONNECT, ALTER SYSTEM, and ALTER SESSION SQL
statements.

About Command Rules
A command rule protects Oracle Database SQL statements that affect one or more
database objects.

These statements can include SELECT, ALTER SYSTEM, database definition language
(DDL), and data manipulation language (DML) statements.

To customize and enforce the command rule, you associate it with a rule set, which
is a collection of one or more rules. The command rule is enforced at run time.
Command rules affect anyone who tries to use the SQL statements it protects,
regardless of the realm in which the object exists.

You can use command rules to protect a wide range of SQL statements, in addition
to basic Oracle Database DDL and DML statements. For example, you can protect
statements that are used with Oracle Flashback Technology.

A command rule has the following attributes, in addition to associating a command rule
to a command:

• SQL statement the command rule protects

• Owner of the object the command rule affects

• Database object the command rule affects

• Whether the command rule is enabled

• An associated rule set

Command rules can be categorized as follows:

• Command rules that have a system-wide scope. With this type, in most cases,
you can only create one command rule for each database instance.

• Command rules that are schema specific. An example of a schema-specific
command rule is a command rule for the DROP TABLE statement. You can create
only one CONNECT command rule for each schema.

• Command rules that are object specific. An example is creating a command
rule for the DROP TABLE statement with a specific table included in the command
rule definition.

When a user executes a statement affected by a command rule, Oracle Database
Vault checks the realm authorization first. If it finds no realm violation and if the
associated command rules are enabled, then Database Vault evaluates the associated
rule sets. If all the rule sets evaluate to TRUE, then the statement is authorized for

Chapter 6
What Are Command Rules?

6-2

further processing. If any of the rule sets evaluate to FALSE, then the statement is not
allowed to be executed and a command rule violation is raised.

You can define a command rule that uses factors for the CONNECT event to permit or
deny sessions after the usual steps–user authentication process, factor initialization,
and Oracle Label Security integration–are complete. For example, you can configure
a command rule that allows DDL statements such as CREATE TABLE, DROP TABLE, and
ALTER TABLE in the BIZAPP schema to be authorized after business hours, but not
during business hours.

You can run reports on the command rules that you create in Oracle Database Vault.

You cannot create command rules that block SYS from executing SYS-owned
procedures.

Related Topics

• Oracle Database Vault Command Rule APIs
The DBMS_MACADM PL/SQL package provides procedures for configuring command
rules. .

• Configuring Rule Sets
Rule sets group one or more rules together; the rules determine whether a user
can perform an action on an object.

• SQL Statements That Can Be Protected by Command Rules
You can protect a large number of SQL statements by using command rules.

Command Rules in a Multitenant Environment
You can create common and local command rules in either the CDB root or the
application root.

Common command rules can be associated only with common realms, rule sets, and
rules. Local command rules can be associated only with local realm, rule sets, and
rules.

To apply these command rules to the entire multitenant environment, you must
execute the command rule procedures from the CDB root or application root as
a common user who has been granted the DVADM or DVOWNER role. A common
command rule that is created in the CDB root will be applied to all PDBs in that CDB
environment. A common command rule that is created in the application root will only
be applied to the PDBs that are associated with this application root. To propagate the
command rule to the PDBs that are associated with the CDB root or application root,
you must synchronize the PDB. For example, to synchronize an application root called
saas_sales_app to its application PDBs:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

To synchronize a common command rule in the CDB root to a PDB:

ALTER PLUGGABLE DATABASE APPLICATION APPCDBSYSTEM SYNC;

You can check a user’s roles by querying the USER_ROLE_PRIVS data dictionary
view. To find information about command rules, query the DBA_DV_COMMAND_RULE data
dictionary view.

Chapter 6
What Are Command Rules?

6-3

Types of Command Rules
In addition to command rules for many SQL statements, you can create command
rules specifically for the CONNECT, ALTER SYSTEM, and ALTER SESSION SQL statements.

• CONNECT Command Rule
The DBMS_MACADM.CREATE_CONNECT_CMD_RULE procedure creates a user-specific
CONNECT command rule.

• ALTER SESSION and ALTER SYSTEM Command Rules
You can create different kinds of ALTER SESSION and ALTER SYSTEM command
rules that provide fine-grained control for these SQL statements.

CONNECT Command Rule
The DBMS_MACADM.CREATE_CONNECT_CMD_RULE procedure creates a user-specific
CONNECT command rule.

This type of command rule specifies a user, an associated rule set, an enablement
status, and where to execute the CONNECT command rule. You can enable or disable
the CONNECT command rule, or you can set it to use simulation mode. In simulation
mode, violations to the command rule are logged in a designated log table with
sufficient information to describe the error, such as the user name or SQL statement
used.

You can create the CONNECT command rule in either the application root or in a specific
PDB. The associated rule set must be consistent with the CONNECT command rule: if
the CONNECT command rule is in the application root, then the rule set and rules must
also be in the application root. You run the CONNECT command rule procedures from
the CDB root as a common user. If the CONNECT command rule is local to a pluggable
database (PDB), then you must run the CONNECT command rule creation command in
that PDB, and the rule set and rules must be local.

The following example shows a CONNECT command rule definition that creates a local,
enabled CONNECT command rule for the HR user. The rule set that is associated with this
command rule is local to the current PDB.

BEGIN
DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Enabled',
 user_name => 'HR',
 enabled => DBMS_MACUTL.G_YES,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Related Topics

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

• Using Simulation Mode for Logging Realm and Command Rule Activities
Simulation mode writes violations to the simulation log instead of preventing SQL
execution to quickly test new and modified Oracle Database Vault controls.

Chapter 6
What Are Command Rules?

6-4

ALTER SESSION and ALTER SYSTEM Command Rules
You can create different kinds of ALTER SESSION and ALTER SYSTEM command rules
that provide fine-grained control for these SQL statements.

The procedures to create these types of command rules are as follows:

• DBMS_MACADM.CREATE_COMMAND_RULE creates ALTER SESSION and ALTER SYSTEM
command rules that use clauses from the corresponding SQL statement, such as
ADVISE, CLOSE DATABASE LINK, COMMIT IN PROCEDURE, and SET for ALTER SESSION,
or ARCHIVE_LOG, CHECK DATAFILES, CHECKPOINT, and SET for ALTER SYSTEM.

• DBMS_MACADM.CREATE_SESSION_EVENT creates a command rule that is specific to
the ALTER SESSION SET EVENTS SQL statement

• DBMS_MACADM_CREATE_SYSTEM_EVENT creates a command rule that is specific to the
ALTER SYSTEM SET EVENTS SQL statement.

To create these command rules, you use the appropriate Database Vault procedure
to specify the clause and if applicable, the parameter of the clause, in the creation
statement. If the ALTER SESSION or ALTER SYSTEM command rule use the SET EVENTS
setting, then you can use special parameters to specify events, components, and
actions.

For example, for an ALTER SYSTEM command rule, you could specify the SECURITY
clause and its RESTRICTED SESSION parameter from the ALTER SYSTEM SQL statement.
To specify whether RESTRICTED SESSION is TRUE or FALSE, you must create a Database
Vault rule and rule set, which can test for the validity of this sequence number.

To understand how this concept works, first create the following rule and rule set,
which are designed to check if the RESTRICTED SESSION parameter is set to TRUE:

EXEC DBMS_MACADM.CREATE_RULE('RESTRICTED SESSION TRUE', 'UPPER(PARAMETER_VALUE)
= ''TRUE''');

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Check RESTRICTED SESSION for TRUE',
 description => 'Checks if restricted session is true',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ALL,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message => 'RESTRICTED SESSION is not TRUE',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_FAIL,
 handler => '',
 is_static => false);
END;
/
EXEC DBMS_MACADM.ADD_RULE_TO_RULE_SET(Check RESTRICTED SESSION for TRUE',
'RESTRICTED SESSION TRUE');

With the rule and rule set in place, you are ready to create an ALTER SYSTEM
command rule that will check if the RESTRICTED SESSION parameter:

BEGIN
DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'ALTER SYSTEM',

Chapter 6
What Are Command Rules?

6-5

 rule_set_name => 'Check RESTRICTED SESSION for TRUE',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES,
 clause_name => 'SECURITY',
 parameter_name => 'RESTRICTED SESSION',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

In this example:

• rule_set_name checks whether RESTRICTED SESSION is set to TRUE or FALSE. You
must create the rule set and rule in the same location as the command rule: either
in the application root or locally in a PDB.

• object_owner and object_name must always be set to % for this kind of ALTER
SESSION or ALTER SYSTEM command rule.

• enabled enables you to enable or disable the command rule, or to use simulation
mode to log violations to the command rule to a designated log table. The log data
describes the error, such as the user name or SQL statement used.

• clause_name specifies the SECURITY clause of the ALTER SYSTEM SQL statement

• parameter_name specifies the RESTRICTED SESSION parameter from the SECURITY
clause

• scope sets the command rule to be local to the current PDB. The associated rule
set and rule must also be local to the current PDB. If you want to create the
command rule in the application root, then as a common user, you would set scope
to DBMS_MACUTL.G_SCOPE_COMMON and run the procedure (and its accompanying
rule set and rule creation procedures) from the application root.

See Also:

• CREATE_COMMAND_RULE Procedure about the
DBMS_MACADM.CREATE_COMMAND_RULE procedure

• CREATE_SESSION_EVENT_CMD_RULE Procedure about the
DVS.DBMS_MACADM.CREATE_SESSION_EVENT_CMD_RULE procedure

• CREATE_SYSTEM_EVENT_CMD_RULE Procedure for more
information about the DBMS_MACADM.CREATE_SYSTEM_EVENT_CMD_RULE
procedure

• DBA_DV_COMMAND_RULE View for information about the
DBA_DV_COMMAND_RULE data dictionary view

• Oracle Database SQL Language Reference for information about the
ALTER SESSION SQL statement

• Oracle Database SQL Language Reference for information about the
ALTER SYSTEM SQL statement

Chapter 6
What Are Command Rules?

6-6

Default Command Rules
Oracle Database Vault provides default command rules, based on commonly used
SQL statements.

Table 6-1 lists the default Database Vault command rules.

Table 6-1 Default Command Rules

SQL Statement Rule Set Name

CREATE USER Can Maintain Accounts/Profiles

ALTER USER Can Maintain Own Account

DROP USER Can Maintain Accounts/Profiles

CREATE PROFILE Can Maintain Accounts/Profiles

ALTER PROFILE Can Maintain Accounts/Profiles

DROP PROFILE Can Maintain Accounts/Profiles

ALTER SYSTEM Allow Fine Grained Control of System Parameters

CHANGE PASSWORD Can Maintain Own Account1

1 The actual SQL statement that the Can Maintain Own Account rule refers to is PASSWORD.

The following set of command rules helps you to achieve separation of duty for user
management:

• ALTER PROFILE

• ALTER USER

• CREATE PROFILE

• CREATE USER

• DROP PROFILE

• DROP USER

To grant a user the ability to use these commands, you can grant the user the role that
the rule set checks. For example, the CREATE USER command rule ensures that a user
who tries to run a CREATE USER statement has the DV_ACCTMGR role.

Note:

To find information about the default command rules, query the
DBA_DV_COMMAND_RULE data dictionary view.

Chapter 6
Default Command Rules

6-7

SQL Statements That Can Be Protected by Command
Rules

You can protect a large number of SQL statements by using command rules.

The SQL statements that you can protect are as follows:

SQL Statements A-A SQL Statements A-D SQL Statements C-U

ADMINISTER KEY MANAGEMENT ANALYZE TABLE CREATE SYNONYM

ALTER CLUSTER ASSOCIATE STATISTICS CREATE TABLE

ALTER DIMENSION AUDIT CREATE TABLESPACE

ALTER FLASHBACK ARCHIVE AUDIT POLICY (for enabling audit
unified audit policies)

CREATE TRIGGER

ALTER FUNCTION CHANGE PASSWORD CREATE TYPE

ALTER INDEX COMMENT CREATE TYPE BODY

ALTER INDEXTYPE CONNECT CREATE VIEW

ALTER JAVA CREATE AUDIT POLICY DELETE

ALTER LIBRARY CREATE EDITION DISASSOCIATE STATISTICS

ALTER OPERATOR CREATE FLASHBACK ARCHIVE DROP CLUSTER

ALTER OUTLINE CREATE USER DROP CONTEXT

ALTER MATERIALIZED VIEW CREATE CLUSTER DROP DATABASE LINK

ALTER MATERIALIZED VIEW LOG CREATE CONTEXT DROP EDITION

ALTER PACKAGE CREATE DATABASE LINK DROP DIMENSION

ALTER PACKAGE BODY CREATE DIMENSION DROP DIRECTORY

ALTER PLUGGABLE DATABASE CREATE DIRECTORY DROP FLASHBACK ARCHIVE

ALTER PROCEDURE CREATE FUNCTION DROP FUNCTION

ALTER PROFILE CREATE INDEX FLASHBACK TABLE

ALTER RESOURCE COST CREATE INDEXTYPE EXECUTE

ALTER ROLE CREATE JAVA GRANT

ALTER ROLLBACK SEGMENT CREATE LIBRARY INSERT

ALTER SEQUENCE CREATE OPERATOR NOAUDIT

ALTER SESSION CREATE OUTLINE NOAUDIT POLICY (for disabling
unified audit policies only)

ALTER SYNONYM CREATE PACKAGE PURGE DBA_RECYCLEBIN

ALTER SYSTEM CREATE PACKAGE BODY PURGE INDEX

ALTER TABLE CREATE PLUGGABLE DATABASE RENAME

ALTER TABLESPACE CREATE PROCEDURE PURGE RECYCLEBIN

ALTER TRIGGER CREATE PROFILE PURGE TABLE

ALTER TYPE CREATE ROLE PURGE TABLESPACE

ALTER TYPE BODY CREATE ROLLBACK SEGMENT REVOKE

ALTER USER CREATE SCHEMA SELECT

Chapter 6
SQL Statements That Can Be Protected by Command Rules

6-8

SQL Statements A-A SQL Statements A-D SQL Statements C-U

ALTER VIEW CREATE SEQUENCE TRUNCATE CLUSTER

ANALYZE CLUSTER CREATE MATERIALIZED VIEW TRUNCATE TABLE

ANALYZE INDEX CREATE MATERIALIZED VIEW LOG UPDATE

Related Topics

• Command Rules in a Multitenant Environment
You can create common and local command rules in either the CDB root or the
application root.

Creating a Command Rule
You can create a different types of command rules using different command rule APIs.

Depending on the command rule that you want to create, you can use
one of the following command rule APIs to create the command rule:
DBMS_MACADM.CREATE_COMMAND_RULE, DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE,
DBMS_MACADM.CREATE_SYSTEM_EVENT_CMD_RULE. The
DBMS_MACADM.CREATE_COMMAND_RULE procedure enables you to create complex
command rules for ALTER SYSTEM and ALTER SESSION statements. This topic describes
how to create a command rule using the DBMS_MACADM.CREATE_COMMAND_RULE
procedure.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. If necessary, create a rule set that the command rule will use.

The DBA_DV_RULE_SET data dictionary view lists existing rule sets.

3. Execute the DBMS_MACADM.CREATE_COMMAND_RULE to create the command rule.

For example, to create a simple command rule:

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'GRANT',
 rule_set_name => 'Can Grant VPD Administration',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 enabled => DBMS_MACUTL.G_YES,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

In this specification:

• command is the SQL statement that you want to protect. The
DBA_DV_COMMAND_RULE data dictionary view lists the SQL statements that are

Chapter 6
Creating a Command Rule

6-9

protected by command rules. If you plan to create a command rule for a
unified audit policy object, then ensure that you specify AUDIT POLICY or
NOAUDIT POLICY, not AUDIT or NOAUDIT, as the command.
If you want to create a command rule for the ALTER SYSTEM or ALTER SESSION
statements, then you must include a set of special parameters to define
the details of these statements: clause_name, parameter_name, event_name,
component_name, and action_name. These parameters, as well as examples of
how to use them, are described in the CREATE_COMMAND_RULE reference. See
Related Topics.

• rule_set_name is the rule set to associate with this command rule. If the rule
set evaluates to true, then the SQL statement succeeds. If it evaluates to
false, the statement fails, and then Oracle Database Vault raises a command
rule violation. The DBA_DV_RULE_SET data dictionary view lists existing rule
sets. This parameter is mandatory.

• object_owner is the schema to which this command rule will apply. This
attribute is mandatory for all SQL statements that operate on objects within
a specific schema. To find the available schema users, query the DBA_USERS
view. You can use wildcard character % to select all owners. However, you
cannot use wildcard characters with text, such as EM% to select all owners
whose names begin in EM.
The wildcard % is not allowed for the command rules for the SELECT, INSERT,
UPDATE, DELETE, and EXECUTE statements. Nor is % allowed for SELECT, INSERT,
UPDATE, DELETE, and EXECUTE statements to do a selection of all (%) or the SYS
and DVSYS schemas.

• object_name is the name of the database object that the command rule
affects. Specify % to select all database objects, which can include tables,
procedures, views, unified audit policies, and so on. This attribute is
mandatory if you specified object_owner.

• enabled controls the status of the command rule. Valid settings
are DBMS_MACUTL.G_YES ‘y’ to enable the command rule (default),
DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including the capture
of violations in the simulation log, or DBMS_MACUTL.G_SIMULATION or ‘s’ to
enable SQL statements to execute but capture violations in the simulation log.

• scope defines whether the command rule is authorized locally in the
current PDB (DBMS_MACUTL.G_SCOPE_LOCAL) or in an application root
(DBMS_MACUTL.G_SCOPE_COMMON). If you create the common command rule in
an application root and want it visible to the associated PDBs, then you must
synchronize the application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

Related Topics

• Configuring Rule Sets
Rule sets group one or more rules together; the rules determine whether a user
can perform an action on an object.

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

• SQL Statements That Can Be Protected by Command Rules
You can protect a large number of SQL statements by using command rules.

Chapter 6
Creating a Command Rule

6-10

• Oracle Database Vault Command Rule APIs
The DBMS_MACADM PL/SQL package provides procedures for configuring command
rules. .

Modifying a Command Rule
You can use the
DBMS_MACADM.UPDATE_COMMAND_RULE, DBMS_MACADM.UPDATE_CONNECT_COMMAND_RULE,
DBMS_MACADM.UPDATE_SESSION_EVENT_CMD_RULE, and
DBMS_MACADM.UPDATE_SYSTEM_EVENT_CMD_RULE procedures to modify the definition of
a command rule.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the command rule and check its definition.

For example:

SELECT COMMAND, ENABLED FROM DBA_DV_COMMAND_RULE ORDER BY COMMAND;

The DBA_DV_COMMAND_RULE view also shows the definition of the command rule.

3. Execute the appropriate procedure to modify the command rule.

• DBMS_MACADM.UPDATE_COMMAND_RULE updates a command rule declaration that
was created with the DBMS_MACADM.CREATE_COMMAND_RULE procedure. For
example:

BEGIN
 DBMS_MACADM.UPDATE_COMMAND_RULE(
 command => 'GRANT',
 rule_set_name => 'Can Grant VPD Administration',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 enabled => DBMS_MACUTL.G_NO,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

• DBMS_MACADM.UPDATE_CONNECT_COMMAND_RULE updates command rules that
were created with DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE.

• DBMS_MACADM.UPDATE_SESSION_EVENT_CMD_RULE updates command rules that
were created with DBMS_MACADM.CREATE_SESSION_EVENT_CMD_RULE.

• DBMS_MACADM.UPDATE_SYSTEM_EVENT_CMD_RULE updates command rules that
were created with DBMS_MACADM.CREATE_SYSTEM_EVENT_CMD_RULE.

Related Topics

• Oracle Database Vault Command Rule APIs
The DBMS_MACADM PL/SQL package provides procedures for configuring command
rules. .

Chapter 6
Modifying a Command Rule

6-11

Deleting a Command Rule
Before you delete a command rule, you can locate the various references to it by
querying the command rule-related Oracle Database Vault views.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_COMMAND_RULE data dictionary to find the command rule to
delete.

For example:

SELECT COMMAND FROM DBA_DV_COMMAND_RULE ORDER BY COMMAND;

The DBA_DV_COMMAND_RULE view also shows the definition of the command rule.

3. Query the DBA_DV_COMMAND_RULE data dictionary to find the definition of the
command rule.

When you drop a command rule, you must omit the rule_set_name and enabled
parameters, and ensure that the rest of the parameters match the settings that
were used the last time the command rule was updated.

For example:

SELECT OBJECT_OWNER, OBJECT_NAME, COMMON
FROM DBA_DV_COMMAND_RULE
WHERE COMMAND = 'GRANT';

4. Execute the appropriate procedure to delete the command rule.

• DBMS_MACADM.DELETE_COMMAND_RULE deletes a command rule that was created
with the DBMS_MACADM.CREATE_COMMAND_RULE procedure. For example:

BEGIN
 DBMS_MACADM.DELETE_COMMAND_RULE(
 command => 'GRANT',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

• DBMS_MACADM.DELETE_CONNECT_COMMAND_RULE deletes command rules that
were created with DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE.

• DBMS_MACADM.DELETE_SESSION_EVENT_CMD_RULE deletes command rules that
were created with DBMS_MACADM.CREATE_SESSION_EVENT_CMD_RULE.

• DBMS_MACADM.DELETES_SYSTEM_EVENT_CMD_RULE deletes command rules that
were created with DBMS_MACADM.CREATE_SYSTEM_EVENT_CMD_RULE.

Chapter 6
Deleting a Command Rule

6-12

Related Topics

• Oracle Database Vault Command Rule APIs
The DBMS_MACADM PL/SQL package provides procedures for configuring command
rules. .

How Command Rules Work
Command rules follow a set of steps to check their associated components.

How Realms Work describes what happens when a database account issues a
SELECT, DDL, or DML statement that affects objects within a realm.

The following actions take place when SELECT, DDL, or DML statement is issued:

1. Oracle Database Vault queries all the command rules that need to be applied.

For SELECT, DDL, and DML statements, multiple command rules may apply
because the object owner and object name support wildcard notation.

You can associate rule sets with both command rules and realm authorizations.
Oracle Database Vault evaluates the realm authorization rule set first, and then it
evaluates the rule sets that apply to the command type being evaluated.

2. For each command rule that applies, Oracle Database Vault evaluates its
associated rule set.

3. If the associated rule set of any of the applicable command rules returns false or
errors, Oracle Database Vault prevents the command from executing. Otherwise,
the command is authorized for further processing. The configuration of the rule
set with respect to auditing and event handlers dictates the auditing or custom
processing that occurs.

Command rules override object privileges. That is, even the owner of an object
cannot access the object if the object is protected by a command rule. You can
disable either a command rule or the rule set of a command. If you disable a
command rule, then the command rule does not perform the check it is designed
to handle. If you disable a rule set, then the rule set always evaluates to TRUE.
However, if you want to disable a command rule for a particular command, then
you should disable the command rule because the rule set may be associated with
other command rules or realm authorizations.

Tutorial: Using a Command Rule to Control Table Creations
by a User

In this tutorial, you create a simple local command rule to control whether users can
create tables in the SCOTT schema.

• Step 1: Create a Table
First, user SCOTT must create a table.

• Step 2: Create a Command Rule
After the table has been created in the SCOTT schema, you can create a command
rule.

• Step 3: Test the Command Rule
Next, you are ready to test the CREATE TABLE local command rule.

Chapter 6
How Command Rules Work

6-13

• Step 4: Remove the Components for this Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

Step 1: Create a Table
First, user SCOTT must create a table.

1. Log in to a PDB as user SCOTT.

sqlplus scott@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

If the SCOTT account is locked and expired, then log in as the Database Vault
Account Manager and unlock SCOTT and create a new password. For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure.

CONNECT SCOTT@pdb_name
Enter password: password

2. As user SCOTT, create a table.

CREATE TABLE t1 (num NUMBER);

3. Now drop the table.

DROP TABLE t1;

At this stage, user SCOTT can create and drop tables. Do not exit SQL*Plus yet, and
remain connected as SCOTT. You must use it later on when SCOTT tries to create
another table.

Related Topics

• Oracle Database Security Guide

Step 2: Create a Command Rule
After the table has been created in the SCOTT schema, you can create a command
rule.

1. Connect to a PDB as a user who has been granted the DV_OWNER role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

2. Create a CREATE TABLE command rule with user SCOTT as the owner.

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'CREATE TABLE',
 rule_set_name => 'Disabled',

Chapter 6
Tutorial: Using a Command Rule to Control Table Creations by a User

6-14

 object_owner => 'SCOTT',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES);
END;
/

This command rule will prevent user SCOTT from creating tables in his schema,
even though he is the schema owner. The object_name will apply the command
rule to all objects in the SCOTT schema.

Command rules take effect immediately. Right away, user SCOTT is prevented from
creating tables, even though he is still in the same user session he was in a moment
ago, before you created the CREATE TABLE command rule.

Step 3: Test the Command Rule
Next, you are ready to test the CREATE TABLE local command rule.

1. In SQL*Plus, ensure that you are logged in to the PDB as user SCOTT.

CONNECT SCOTT@pdb_name
Enter password: password

2. Try to create a table.

CREATE TABLE t1 (num NUMBER);

The following output should appear:

ORA-47400: Command Rule violation for create table on SCOTT.T1

As you can see, SCOTT is no longer allowed to create tables, even in his own
schema.

3. Now enable user SCOTT to create tables again.

a. Connect to the PDB as the user who created the command rule.

b. Update the CREATE TABLE command rule to now enable table creations.

BEGIN
 DBMS_MACADM.UPDATE_COMMAND_RULE(
 command => 'CREATE TABLE',
 rule_set_name => 'Enabled',
 object_owner => 'SCOTT',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES);
END;
/

4. Connect as user SCOTT, and then try creating the table again.

CONNECT scott@hrpdb
Enter password: password

CREATE TABLE t1 (num NUMBER);

Table created.

5. User SCOTT does not really need this table, so drop the table.

DROP TABLE t1;

Chapter 6
Tutorial: Using a Command Rule to Control Table Creations by a User

6-15

Now that the CREATE TABLE command rule is set to Enabled, user SCOTT is once again
permitted to create tables. (Do not exit SQL*Plus.)

Step 4: Remove the Components for this Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. Connect to the PDB as the user who created the CREATE TABLE command rule.

For example:

CONNECT c##sec_admin_owen@hrpdb
Enter password: password

2. Drop the CREATE TABLE command rule.
Remember that the command, object_owner, and object_name arguments must
match exactly the arguments that were used the last time the command rule
was updated. You can check a command rule's definition by querying the
DBA_DV_COMMAND_RULE data dictionary view.

BEGIN
 DBMS_MACADM.DELETE_COMMAND_RULE(
 command => 'CREATE TABLE',
 object_owner => 'SCOTT',
 object_name => '%');
END;
/

3. If you no longer need the SCOTT account to be available, then connect to the
PDB as the Database Vault Account Manager and enter the following ALTER USER
statement:

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

ALTER USER SCOTT ACCOUNT LOCK PASSWORD EXPIRE;

Guidelines for Designing Command Rules
Oracle provides guidelines for designing command rules.

• Create finer-grained command rules, because they are far easier to maintain.

For example, if you want to prevent SELECT statements from occurring on
specific schema objects, then design multiple command rules to stop the SELECT
statements on those specific schema objects, rather than creating a general
command rule to prevent SELECT statements in the schema level.

• When designing rules for the CONNECT event, be careful to include logic that does
not inadvertently lock out any required user connections. If any account has
been locked out accidentally, ask a user who has been granted the DV_ADMIN or
DV_OWNER role to log in and correct the rule that is causing the lock-out problem.
The CONNECT command rule does not apply to users with the DV_OWNER and
DV_ADMIN roles. This prevents improperly configured CONNECT command rules from
causing a complete lock-out.

If the account has been locked out, you can disable Oracle Database Vault,
correct the rule that is causing the lock-out problem, and then reenable Oracle

Chapter 6
Guidelines for Designing Command Rules

6-16

Database Vault. Even when Oracle Database Vault is disabled, you still can use
Database Vault Administrator and the Database Vault PL/SQL packages.

• Sometimes you must temporarily relax an enabled command rule for
an administrative task. Rather than disabling the command rule, have
the security manager (the account with the DV_ADMIN or DV_OWNER role)
log in, for the default rule set Enabled, set the enabled parameter to
DBMS_MACUTL.G_YES, audit_options to DBMS_MACUTL.G_RULESET_AUDIT_FAIL +
DBMS_MACUTL.G_RULESET_AUDIT_SUCCESS, and then set the command rule back to
its original rule set when the task is complete. (Be aware that in a unified auditing
environment, this setting does not work. Instead, you must create a unified audit
policy.)

• When designing command rules, be careful to consider automated processes
such as backup where these procedures may be inadvertently disabled. You can
account for these tasks by creating rules that allow the command when a series of
Oracle Database Vault factors is known to be true (for example, the program being
used), and the account being used or the computer or network on which the client
program is running.

• You can test the development phase of a command rule by using simulation mode,
which enables the command rule but writes detailed information about it to a log
file.

Related Topics

• Using Simulation Mode for Logging Realm and Command Rule Activities
Simulation mode writes violations to the simulation log instead of preventing SQL
execution to quickly test new and modified Oracle Database Vault controls.

How Command Rules Affect Performance
The performance of a command rule depends on the complexity of the rules in the rule
set associated with the command rule.

For example, suppose a rule set invokes a PL/SQL function that takes 5 seconds to
run. In this case, a command rule that uses that rule set would take 5 seconds to grant
access for the command statement to run.

You can check the system performance by running tools such as Oracle Enterprise
Manager (including Oracle Enterprise Manager Cloud Control, which is installed by
default with Oracle Database), Automatic Workload Repository (AWR), and TKPROF.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

Command Rule Related Reports and Data Dictionary View
Oracle Database Vault provides reports and a data dictionary view that are useful for
analyzing command rules.

Table 6-2 lists the Oracle Database Vault report.

Chapter 6
How Command Rules Affect Performance

6-17

Table 6-2 Reports Related to Command Rules

Report Description

Command Rule Audit Report Lists audit records generated by command rule
processing operations

Command Rule Configuration Issues Report Tracks rule violations, in addition to other
configuration issues the command rule may
have

Object privilege reports List object privileges that the command rule
affects

Sensitive object reports List objects that the command rule affects

Rule Set Configuration Issues Report Lists rules sets that have no rules defined or
enabled, which may affect the command rules
that use them

You can use the DBA_DV_COMMAND_RULE data dictionary view to find the SQL statements
that are protected by command rules.

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Chapter 6
Command Rule Related Reports and Data Dictionary View

6-18

7
Configuring Factors

Factors allow you to create and use complex attributes through PL/SQL to make
Oracle Database Vault authorization decisions.

• What Are Factors?
A factor is a named variable or attribute, such as a database IP address, that
Oracle Database Vault can recognize.

• Default Factors
Oracle Database Vault provides a set of default factors.

• Creating a Factor
In general, to create a factor, you first create the factor itself, and then you edit the
factor to include its identity.

• Adding an Identity to a Factor
After you create a new factor, you optionally can add an identity to it.

• Modifying a Factor
You can use the DBMS_MACADM.UPDATE_FACTOR procedure to modify the definition of
a factor.

• Deleting a Factor
Before you delete a factor, you must remove references to the factor.

• How Factors Work
Oracle Database Vault processes factors when a session is established.

• Tutorial: Preventing Ad Hoc Tool Access to the Database
This tutorial demonstrates how to use factors to prevent ad hoc tools (such as
SQL*Plus) from accessing the database.

• Guidelines for Designing Factors
Oracle provides guidelines for designing factors.

• How Factors Affect Performance
The complexity of factors affects the performance of your Oracle database
instance.

• Factor Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that display
information about factors and their identities.

What Are Factors?
A factor is a named variable or attribute, such as a database IP address, that Oracle
Database Vault can recognize.

You can use factors for activities such as authorizing database accounts to connect
to the database or creating filtering logic to restrict the visibility and manageability of
data.

Oracle Database Vault provides a selection of factors that lets you set controls on such
components as the domain for your site, IP addresses, databases, and so on. You also

7-1

can create custom factors, using your own PL/SQL retrieval methods. However, for the
vast majority of cases, you can use the SYS_CONTEXT PL/SQL function to create rules
on the most commonly used factors that are readily available in the database. Such
factors as Session_User, Proxy_User, Network_Protocol, and Module are available
through the SYS_CONTEXT function.

Factors have powerful capabilities that are used in conjunction with Oracle Label
Security and for other database attributes that are not already available through
context parameters. Commonly available factors are listed in this section, but Oracle
recommends that you use the SYS_CONTEXT function in the rule definitions for
these factors. Only create and use factors that are not already available through
SYS_CONTEXT.

Note the following:

• You can use factors in combination with rules in rule sets. The DVF factor functions
are factor-specific functions that you can use in rule expressions.

• Factors have values (identities) and are further categorized by their factor types.

• You also can integrate factors with Oracle Label Security labels.

• You can run reports on the factors that you create in Oracle Database Vault.

• You only can create factors in a PDB, not in the CDB root or the application root.

Related Topics

• Creating a Rule to Add to a Rule Set
A rule defines the behavior that you want to control; a rule set is a named
collection of rules.

• Oracle Database SQL Language Reference

• Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Default Factors
Oracle Database Vault provides a set of default factors.

For each of these factors, there is an associated function that retrieves the value of the
factor.

You can create custom factors by using your own PL/SQL retrieval methods. A useful
PL/SQL function you can use (which is used for many of the default factors) is the
SYS_CONTEXT SQL function, which retrieves data about the user session. For example,
you can use the CLIENT_PROGRAM_NAME attribute of SYS_CONTEXT to find the name of the
program used for the database session. After you create the custom factor, you can
query its values similar to the functions used to query the default factors.

You can use the default factors in your own security configurations. If you do not need
them, you can remove them. (That is, they are not needed for internal use by Oracle
Database Vault.)

The default factors are as follows:

Chapter 7
Default Factors

7-2

• Authentication_Method is the method of authentication. In the list that follows, the
type of user is followed by the method returned:

– Password-authenticated enterprise user, local database user, user with the
SYSDBA or SYSOPER administrative privilege using the password file; proxy with
user name using password: PASSWORD

– Kerberos-authenticated enterprise user or external user (with no administrative
privileges): KERBEROS

– Kerberos-authenticated enterprise user (with administrative privileges):
KERBEROS_GLOBAL

– Kerberos-authenticated external user (with administrative privileges):
KERBEROS_EXTERNAL

– SSL-authenticated enterprise or external user (with no administrative
privileges): SSL

– SSL-authenticated enterprise user (with administrative privileges): SSL_GLOBAL

– SSL-authenticated external user (with administrative privileges): SSL_EXTERNAL

– Radius-authenticated external user: RADIUS

– OS-authenticated external user, or user with the SYSDBA or SYSOPER
administrative privilege: OS

– Proxy with certificate, DN, or username without using password: NONE

– Background process (job queue slave process): JOB

– Parallel Query Slave process: PQ_SLAVE

For non-administrative connections, you can use the Identification_Type factor
to distinguish between external and enterprise users when the authentication
method is PASSWORD, KERBEROS, or SSL. For administrative connections, the
Authentication_Method factor is sufficient for the PASSWORD, SSL_EXTERNAL, and
SSL_GLOBAL authentication methods.

• Client Identifier is an identifier that is set by the application through
the DBMS_SESSION.SET_IDENTIFIER procedure, the Oracle Call Interface (OCI)
attribute OCI_ATTR_CLIENT_IDENTIFIER, or Oracle Dynamic Monitoring Service
(DMS). Various Oracle Database components use this attribute to identify
lightweight application users who authenticate as the same database user.

• Client_IP is the IP address of the machine from which the client is connected.

• Database_Domain is the domain of the database as specified in the DB_DOMAIN
initialization parameter.

• Database_Hostname is the host name of the computer on which the instance is
running.

• Database_Instance is the instance identification number of the current instance.

• Database_IP is the IP address of the computer on which the instance is running.

• Database_Name is the name of the database as specified in the DB_NAME
initialization parameter.

• DBlink_Info is the source of a database link session. The string has this form:

Chapter 7
Default Factors

7-3

SOURCE_GLOBAL_NAME=dblink_src_global_name,
DBLINK_NAME=dblink_name,SOURCE_AUDIT_SESSIONID=dblink_src_audit_sessio
nid

In this specification:

– dblink_src_global_name is the unique global name of the source database

– dblink_name is the name of the database link on the source database

– dblink_src_audit_sessionid source database that initiated source database
that initiated the connection to the remote database using dblink_name

• Domain is a named collection of physical, configuration, or implementation-specific
factors in the run-time environment (for example, a networked IT environment or
subset of it) that operates at a specific sensitivity level. You can identify a domain
using factors such as host name, IP address, and database instance names of the
Database Vault nodes in a secure access path to the database. Each domain can
be uniquely determined using a combination of the factor identifiers that identify
the domain. You can use these identifying factors and possibly additional factors to
define the Maximum Security Label within the domain. This restricts data access
and commands, depending on the physical factors about the Database Vault
session. Example domains of interest may be Corporate Sensitive, Internal Public,
Partners, and Customers.

• Enterprise_Identity is the enterprise-wide identity for the user:

– For enterprise users: the Oracle Internet Directory-distinguished name (DN).

– For external users: the external identity (Kerberos principal name, Radius and
DCE schema names, operating system user name, certificate DN).

– For local users and SYSDBA and SYSOPER logins: NULL.

The value of the attribute differs by proxy method:

– For a proxy with DN: the Oracle Internet Directory DN of the client.

– For a proxy with certificate: the certificate DN of the client for external users;
the Oracle Internet Directory DN for global users.

– For a proxy with user names: the Oracle Internet Directory DN if the client is
an enterprise user; NULL if the client is a local database user.

• Identification_Type is the way the user schema was created in the database.
Specifically, it reflects the IDENTIFIED clause in the CREATE USER and ALTER USER
syntax. In the list that follows, the syntax used during schema creation is followed
by the identification type returned:

– IDENTIFIED BY password: LOCAL

– IDENTIFIED EXTERNALLY: EXTERNAL

– IDENTIFIED GLOBALLY: GLOBAL SHARED

– IDENTIFIED GLOBALLY AS DN: GLOBAL PRIVATE

– GLOBAL EXCLUSIVE for exclusive global user mapping

– GLOBAL SHARED for shared user mapping

– NONE when the schema is created with no authentication

• Lang is the ISO abbreviation for the language name, a shorter form than the
existing LANGUAGE parameter.

Chapter 7
Default Factors

7-4

• Language is the language and territory your session currently uses, along with the
database character set, in the following form:

language_territory.characterset

For example:

AMERICAN_AMERICA.WE8MSWIN1252

• Machine is the host name for the database client that established the current
session. If you must find out whether the computer was used for a client or server
session, then you can compare this setting with the Database_Hostname factor to
make the determination.

• Module is the application name (module) that is set through the
DBMS_APPLICATION_INFO PL/SQL package or OCI.

• Network_Protocol is the network protocol being used for communication, as
specified in the PROTOCOL=protocol portion of the connect string.

• Proxy_Enterprise_Identity is the Oracle Internet Directory DN when the proxy
user is an enterprise user.

• Proxy_User is the name of the database user who opened the current session on
behalf of SESSION_USER.

• Session_User is the database user name by which the current user is
authenticated. This value remains the same throughout the session.

Related Topics

• Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

• Oracle Database SQL Language Reference

• Oracle Database Globalization Support Guide

Creating a Factor
In general, to create a factor, you first create the factor itself, and then you edit the
factor to include its identity.

This procedure explains how to create the factor only, not how to configure an identity
for it.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. If necessary, create a rule set that the factor will use.

The DBA_DV_RULE_SET data dictionary view lists existing rule sets.

3. Execute the DBMS_MACADM.CREATE_FACTOR procedure to create the factor.

Chapter 7
Creating a Factor

7-5

For example:

BEGIN
 DBMS_MACADM.CREATE_FACTOR(
 factor_name => 'Sector2_DB',
 factor_type_name => 'Instance',
 description => 'Factor to restrict DBA access',
 rule_set_name => 'Limit_DBA_Access',
 get_expr => 'UPPER(SYS_CONTEXT(''USERENV'',''DB_NAME''))',
 validate_expr => 'dbavowner.check_db_access',
 identify_by => DBMS_MACUTL.G_IDENTIFY_BY_METHOD,
 labeled_by => DBMS_MACUTL.G_LABELED_BY_SELF,
 eval_options => DBMS_MACUTL.G_EVAL_ON_SESSION,
 audit_options => DBMS_MACUTL.G_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_FAIL_SILENTLY);
END;
/

In this specification:

• factor_name can be up to 128 characters in mixed-case, without spaces. The
the DBA_DV_FACTOR data dictionary view lists existing factors. This parameter is
mandatory.

• factor_type_name can be up to 128 characters in mixed-case, without
spaces. The DBA_DV_FACTOR_TYPE data dictionary view lists existing factor
types. This parameter is mandatory. The
Factor types have a name and description and are used only to help classify
factors. A factor type is the category name used to classify the factor. The
default physical factor types include authentication method, host name, host
IP address, instance identifiers, database account information, and others.
You can create user-defined factor types, such as application name, certificate
information, and so on in addition to the installed factor types, such as time
and authentication method. If you want to find factors that are associated with
a particular factor type, query the DBA_DV_FACTOR view. For example:

SELECT NAME FROM DBA_DV_FACTOR
WHERE FACTOR_TYPE_NAME='Authentication Method';

• description can have up to 1024 characters in mixed-case. This parameter is
mandatory.

• rule_set_name is the rule set name if you want to use a rule set to control
when and how a factor identity is set. The DBA_DV_RULE_SET data dictionary
view lists rules sets. This parameter is mandatory.
This setting is particularly useful for situations where database applications,
such as a Web application using a JDBC connection pool, must dynamically
set a factor identity for the current database session. For example, a Web
application may want to assign the geographic location for a database account
logging in to the Web application. To do so, the Web application can use the
JDBC Callable Statement, or Oracle Data Provider for .NET (ODP.NET) to
execute the PL/SQL function SET_FACTOR, for example:

BEGIN
 SET_FACTOR('GEO_STATE','VIRGINIA');
END;

Then you can create an assignment rule for the GEO_STATE factor to allow
or disallow the setting of the GEO_STATE factor based on other factors or rule
expressions.

Chapter 7
Creating a Factor

7-6

• get_expr is a valid PL/SQL expression that retrieves the identity of a factor.
It can use up to 255 characters in mixed-case. The following retrieval method
sets a value of the DB_NAME factor by retrieving the database name (DB_NAME)
from the USERENV namespace in a user's session:

UPPER(SYS_CONTEXT('USERENV','DB_NAME'))

• validate_expr is a valid PL/SQL expression that returns a Boolean value
(TRUE or FALSE) to validate the identity of the factor being retrieved (with
the GET_FACTOR function) or the value to be assigned to a factor (with the
SET_FACTOR function). It can have up to 255 characters and be in mixed case.
This parameter is mandatory.
If the method is evaluated to false for the value being retrieved or to
be assigned, then the factor identity is set to null. This feature provides
an additional level of assurance that the factor is properly retrieved and
set. You can include any package function or standalone function in the
expression. Ensure that the expression is a fully qualified function, such as
schema.function_name. Do not include complete SQL statements. If you are
using application packages or functions, then you must provide DVSYS with the
EXECUTE privilege on the object.

The PL/SQL expression can use either of these formats:

– FUNCTION IS_VALID RETURN BOOLEAN
In this form, you can use the DVF.F$factor_name function inside the
function logic. This is more appropriate for factors that are evaluated by
session.

– FUNCTION IS_VALID(p_factor_value VARCHAR2) RETURN BOOLEAN
In this form, the factor value is passed to the validation function directly.
This is more appropriate for factors that are evaluated by access. It is also
valid for factors evaluated by session.

• identify_by can be one of the following options for determining the identity of
a factor, based on the expression set for the get_expr parameter:

– DBMS_MACUTL.G_IDENTIFY_BY_CONSTANT: By constant

– DBMS_MACUTL.G_IDENTIFY_BY_METHOD: By method. For example, suppose
the expression retrieves the system date: to_char(sysdate,'yyyy-mm-
dd'). On December 15, 2020, the following value would be returned:
2015-12-15

– DBMS_MACUTL.G_IDENTIFY_BY_FACTOR: By factor. This setting determines
the factor identity by mapping the identities of the child factor to its parent
factor. A parent factor is a factor whose values are resolved based on a
second factor, called a child factor. To establish their relationship, you map
their identities. (You do not need to specify the get_expr parameter for this
option.)

– DBMS_MACUTL.G_IDENTIFY_BY_CONTEXT: By context

• labeled_by controls how the factor identity retrieves an Oracle Label Security
(OLS) label. This parameter is mandatory if you are using the Oracle Label
Security integration.

– DBMS_MACUTL.G_LABELED_BY_SELF labels the identities for the factor
directly from the labels associated with an Oracle Label Security policy
(default)

Chapter 7
Creating a Factor

7-7

– DBMS_MACUTL.G_LABELED_BY_FACTORS derives the factor identity label from
the labels of its child factor identities.

• eval_options evaluate the factor when the user logs on. This parameter is
mandatory.

– DBMS_MACUTL.G_EVAL_ON_SESSION evaluates the factor when the database
session is created (default). Be aware that this setting may affect
performance of the factor.

– DBMS_MACUTL.G_EVAL_ON_ACCESS evaluates the factor each time the factor
is accessed.

– DBMS_MACUTL.G_EVAL_ON_STARTUP evaluates the factor on start-up.

• audit_options applies only to traditional auditing, not unified auditing
environments. Starting with Oracle Database release 21c, traditional auditing
is deprecated. Oracle recommends that you create unified audit policies
instead of using audit_options. applies only to traditional auditing, not unified
auditing environments. Valid options for audit_options are as follows:

– DBMS_MACUTL.G_AUDIT_OFF disables auditing

– DBMS_MACUTL.G_AUDIT_ALWAYS always audits.

– DBMS_MACUTL.G_AUDIT_ON_GET_ERROR audits if get_expr returns an error.

– DBMS_MACUTL.G_AUDIT_ON_GET_NULL audits if get_expr is null.

– DBMS_MACUTL.G_AUDIT_ON_VALIDATE_ERROR audits if the validation
procedure returns an error.

– DBMS_MACUTL.G_AUDIT_ON_VALIDATE_FALSE audits if the validation
procedure is false.

– DBMS_MACUTL.G_AUDIT_ON_TRUST_LEVEL_NULL audits if there is no trust
level set.

– DBMS_MACUTL.G_AUDIT_ON_TRUST_LEVEL_NEG audits if the trust level is
negative.

• fail_options sets options for reporting factor errors.

– DBMS_MACUTL.G_FAIL_WITH_MESSAGE shows an error message (default).

– DBMS_MACUTL.G_FAIL_SILENTLY does not show an error message.

At this stage, the factor is complete and can be used. For more detailed and
customized processing, you can configure an identity for the factor.

Related Topics

• Configuring Rule Sets
Rule sets group one or more rules together; the rules determine whether a user
can perform an action on an object.

• Adding an Identity to a Factor
After you create a new factor, you optionally can add an identity to it.

• About Identity Mapping
While you are creating a factory identity, you can map it.

• How Factors Affect Performance
The complexity of factors affects the performance of your Oracle database
instance.

Chapter 7
Creating a Factor

7-8

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Adding an Identity to a Factor
After you create a new factor, you optionally can add an identity to it.

• About Factor Identities
An identity is the actual value of a factor, such an IP_Address factor identity being
192.0.2.4.

• How Factor Identities Work
A factor identity is the actual value of a factor (for example, the IP address for a
factor that uses the IP_Address type).

• About Trust Levels
Trust levels enable you to assign a numeric value to indicate the measure of trust
allowed.

• About Label Identities
You can assign You Oracle Label Security (OLS) labels to factor identities.

• Creating and Configuring a Factor Identity
You can create and configure a factor identity for an existing factor.

• Using Identity Mapping to Configure an Identity to Use Other Factors
You can use identity mapping to use a group of factors to manage identity values.

• Modifying a Factor Identity
You can use the DBMS_MACADM.UPDATE_IDENTITY procedure to modify a factor
identity.

• Deleting a Factor Identity
Before delete a factor identity, you must remove references to it.

About Factor Identities
An identity is the actual value of a factor, such an IP_Address factor identity being
192.0.2.4.

A factor identity for a given database session is assigned at run time using the
get_expr parameter (to retrieve the identity of a factor) and the identify_by
parameter (to determine the identify of the factor) in the DBMS_MACADM.CREATE_FACTOR
procedure. You can further configure the identity for the following reasons:

• To define the known identities for a factor

• To add a trust level to a factor identity

• To add an Oracle Label Security label to a factor identity

• To resolve a factor identity through its child factors, by using identity mapping

How Factor Identities Work
A factor identity is the actual value of a factor (for example, the IP address for a factor
that uses the IP_Address type).

Chapter 7
Adding an Identity to a Factor

7-9

A factor can have several identities depending on its retrieval method or its identity
mapping logic. For example, a factor such as Database_Hostname could have multiple
identities in an Oracle Real Application Clusters environment; a factor such as
Client_IP can have multiple identities in any database environment. The retrieval
method for these types of factors may return different values because the retrieval
method is based on the database session. Several reports allow you to track the factor
identity configuration.

You can configure the assignment of a factor in the following ways:

• Assign the factor at the time a database session is established.

• Configure individual requests to retrieve the identity of the factor.

With the Oracle Label Security integration, you can label identities with an Oracle
Label Security label. You can also assign an identity trust levels, which are numbers
that indicate the magnitude of trust relative to other identities for the same factor. In
general, the higher the trust level number is set, the greater the trust. Negative trust
levels are not trusted.

Within a database session, a factor assigned identity is available to Oracle Database
Vault and any application with a publicly accessible PL/SQL function that exists in the
DVF schema (which contains functions that retrieve factor values) as follows:

dvf.f$factor_name

This allows the identifier for a factor to be accessed globally from within the Oracle
database (using PL/SQL, SQL, Oracle Virtual Private Database, triggers, and so on).
For example, in SQL*Plus:

CONNECT leo_dvowner
Enter password: password

SELECT DVF.F$DATABASE_IP FROM DUAL;

Output similar to the following appears:

SELECT DVF.F$DATABASE_IP FROM DUAL;

F$DATABASE_IP

192.0.2.1

You can also use the GET_FACTOR function to find the identity of a factor that is made
available for public access. For example:

SELECT GET_FACTOR('DATABASE_IP') FROM DUAL;

The following output appears:

GET_FACTOR('DATABASE_IP')

192.0.2.1

Related Topics

• Adding an Identity to a Factor
After you create a new factor, you optionally can add an identity to it.

• Factor Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that display
information about factors and their identities.

Chapter 7
Adding an Identity to a Factor

7-10

About Trust Levels
Trust levels enable you to assign a numeric value to indicate the measure of trust
allowed.

A trust value of 1 signifies some trust. A higher value indicates a higher level of
trust. A negative value or zero indicates distrust. When the factor identity returned
from a factor retrieval method is not defined in the identity, Oracle Database Vault
automatically assigns the identity a negative trust level.

To determine the trust level of a factor identity at run time, you can use the
GET_TRUST_LEVEL and GET_TRUST_LEVEL_FOR_IDENTITY functions in the DVSYS schema.

For example, suppose you have created a factor named Network. You can create the
following identities for the Network factor:

• Intranet, with a trust level of 10

• VPN (virtual private network), with a trust level of 5

• Public, with a trust level of 1

You then can create rule expressions (or custom application code) that base policy
decisions on the trust level. For example, you can use the GET_TRUST_LEVEL function
to find trust levels greater than 5:

GET_TRUST_LEVEL('Network') > 5

Or, you can use a SELECT statement on the DBA_DV_IDENTITY data dictionary view to
find trust levels for the Network factor greater than or equal to 5:

SELECT VALUE, TRUST_LEVEL FROM DBA_DV_IDENTITY
 WHERE TRUST_LEVEL >= 5
 AND FACTOR_NAME='Network'

Output similar to the following appears:

F$NETWORK GET_TRUST_LEVEL('NETWORK')

VPN 5
INTRANET 10

In the preceding example, the Network factor identity for VPN is trusted (value equals
5), and the identity for the INTRANET domain is 10, which implies a greater trust.

Related Topics

• Oracle Database Vault Realm APIs
The DBMS_MACADM PL/SQL package enables you to configure Oracle Database
Vault realms.

About Label Identities
You can assign You Oracle Label Security (OLS) labels to factor identities.

In brief, a label acts as an identifier for a database table row to assign privileges
to the row. In the DBMS_MACADM.CREATE_FACTOR or DBMS_MACADM.UPDATE_FACTOR
procedure, the labeled_by parameter setting determines whether a factor is
labeled DBMS_MACUTL.G_LABELED_BY_SELF or DBMS_MACUTL.G_LABELED_BY_FACTORS.

Chapter 7
Adding an Identity to a Factor

7-11

If you set labeled_by to DBMS_MACUTL.G_LABELED_BY_SELF, then you can
associate OLS labels with the factor identities. If you set labeled_by to
DBMS_MACUTL.G_LABELED_BY_FACTORS, then Oracle Database Vault derives the factor
identity labels from the labeling of child factor identities. When there are multiple child
factor identities with labels, Oracle Database Vault merges the labels using the OLS
algorithm associated with the applicable factor Oracle Label Security policy.

Related Topics

• Oracle Label Security Administrator’s Guide

Creating and Configuring a Factor Identity
You can create and configure a factor identity for an existing factor.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Execute the DBMS_MACADM.CREATE_IDENTITY procedure.

For example:

BEGIN
 DBMS_MACADM.CREATE_IDENTITY(
 factor_name => 'Sector2_ClientID',
 value => 'intranet',
 trust_level => 5);
END;
/

In this specification:

• factor_name is the name of the existing factor. The DBA_DV_FACTOR data
dictionary view lists factors.

• value is the value of the factor, up to 1024 characters in mixed-case. For
example, the identity of an IP_Address factor could be the IP address of
192.0.2.12.

• trust_level indicates the magnitude of trust relative to other identities for the
same factor. In general, the higher the trust level number is set, the greater the
trust. A trust level of 10 indicates "very trusted." Negative trust levels are not
trusted.

– 10 is very trusted.

– 5 is trusted.

– 1 is somewhat trusted.

– -1 is untrusted.

– NULL is for a trust level that is not defined (default)

Chapter 7
Adding an Identity to a Factor

7-12

After you create a factor identity, you can use it in an identity map with two existing
factors.

Related Topics

• Creating a Factor
In general, to create a factor, you first create the factor itself, and then you edit the
factor to include its identity.

• Mapping an Identity to a Factor
You can map an identity to a factor by creating a parent-child relationship with two
factors.

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Using Identity Mapping to Configure an Identity to Use Other Factors
You can use identity mapping to use a group of factors to manage identity values.

• About Identity Mapping
While you are creating a factory identity, you can map it.

• Mapping an Identity to a Factor
You can map an identity to a factor by creating a parent-child relationship with two
factors.

• Deleting an Identity Map
To remove the parent-child relationship between two factors, you must delete the
identity map.

About Identity Mapping
While you are creating a factory identity, you can map it.

Identity mapping is the process of identifying a factor by using other (child) factors.
This is a way to transform combinations of factors into logical identities for a
factor or to transform continuous identity values (for example, temperature) or
large discrete identity values (for example, IP address ranges) into logical sets. To
check configuration issues in the mapping for an identity, you can run the Identity
Configuration Issues report.

You can map different identities of a parent factor to different identities of the
contributing factor. For example, an INTRANET identity maps to an IP address range
of 192.0.2.1 to 192.0.2.24. A REMOTE identity can map to an IP address range that
excludes the address range 192.0.2.1 to 192.0.2.24.

Based on identity mapping, you can create a security policy. For example, you can
define a reduced set of privileges for an employee connecting over VPN (with REMOTE),
as opposed to an employee connecting from within the corporate network (with
INTRANET).

If you need to change the identity mapping, you must delete and then recreate the
identity map.

Chapter 7
Adding an Identity to a Factor

7-13

Mapping an Identity to a Factor
You can map an identity to a factor by creating a parent-child relationship with two
factors.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Ensure that you have created the factors and factor identities that you that you
plan to use for the mapping.

The DBA_DV_FACTOR data dictionary view lists the existing factors. The
DBA_DV_IDENTITY data dictionary view lists the existing factor identities.

3. Execute the DBMS_MACADM.CREATE_IDENTITY_MAP procedure to create the identity
map.

For example:

BEGIN
 DBMS_MACADM.CREATE_IDENTITY_MAP(
 identity_factor_name => 'Sector2_ClientID',
 identity_factor_value => 'intranet',
 parent_factor_name => 'HQ_ClientID',
 child_factor_name => 'Div1_ClientID',
 operation => '<',
 operand1 => '192.0.2.50',
 operand2 => '192.0.2.100');
END;
/

In this specification:

• identity_factor_name is the factor to be used for the identity map.

• identity_factor_value is value the factor assumes if the identity map
evaluates to TRUE.

• parent_factor_name is the parent factor link to which the map is related. The
DBA_DV_IDENTITY_MAP data dictionary view lists existing parent-child factor
mappings.

• child_factor_name is the child factor link to which the map is related.

• operation is a relational operator for the identity map (for example, <, >, =,
between, and so on).

• operand1 is the left operand for the relational operator and refers to the low
value you enter.

• operand2 is the right operand for the relational operator and refers to the high
value you enter.

Chapter 7
Adding an Identity to a Factor

7-14

For example, consider a scenario where the child factor is set to Client_IP,
operation is set to between, operand1 is set to 192.0.2.1, and operand2 is
set to 192.0.2.24. This means that whenever the client IP address lies in the
specified address range of 192.0.2.1 to 192.0.2.24, the parent factor evaluates
to a predefined identity (for example, INTRANET).

4. Repeat this process to add more contributing factors for a parent factor identity.

For example, you can configure the Network factor to resolve to a value
ACCOUNTING-SENSITIVE, when the Program factor resolves to Oracle General
Ledger and the Client_IP is in between 192.0.2.1 and 192.0.2.24. So, if an
authorized accounting financial application program, running on a client with IP
address 192.0.2.12 accesses the database, then the Network factor is resolved
to ACCOUNTING-SENSITIVE. A database session with the ACCOUNTING-SENSITIVE
Network value would have more access privileges than one with the INTRANET
Network value.

Related Topics

• Creating a Factor
In general, to create a factor, you first create the factor itself, and then you edit the
factor to include its identity.

• Creating and Configuring a Factor Identity
You can create and configure a factor identity for an existing factor.

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Deleting an Identity Map
To remove the parent-child relationship between two factors, you must delete the
identity map.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_FACTOR_LINK data dictionary view to find the factors that have
been used in parent-child mappings.

For example:

SELECT PARENT_FACTOR_NAME, CHILD_FACTOR_NAME FROM DBA_DV_FACTOR_LINK;

PARENT_FACTOR_NAME CHILD_FACTOR_NAME
------------------------------ ------------------------------
Domain Database_Instance
Domain Database_IP
Domain Database_Hostname

3. Query the DBA_DV_IDENTITY_MAP data dictionary view to find the definition of the
mapping that you want to remove.

Chapter 7
Adding an Identity to a Factor

7-15

4. Based on the definition of the mapping, execute the
DBMS_MACADM.DELETE_IDENTITY_MAP procedure.

For example:

BEGIN
 DBMS_MACADM.DELETE_IDENTITY_MAP(
 identity_factor_name => 'intranet-factor',
 identity_factor_value => 'intranet',
 parent_factor_name => 'Domain',
 child_factor_name => 'Database_IP',
 operation => 'between',
 operand1 => '192.0.2.22',
 operand2 => '192.0.2.99');
END;
/

Related Topics

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Modifying a Factor Identity
You can use the DBMS_MACADM.UPDATE_IDENTITY procedure to modify a factor identity.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the factor identity and check its definition.

For example:

SELECT * FROM DBA_DV_IDENTITY ORDER BY FACTOR_NAME;

3. Execute the DBMS_MACADM.UPDATE_IDENTITY statement.

For example:

BEGIN
 DBMS_MACADM.UPDATE_IDENTITY(
 factor_name => 'Sector2_ClientID',
 value => 'intranet',
 trust_level => 7);
END;
/

Related Topics

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Chapter 7
Adding an Identity to a Factor

7-16

Deleting a Factor Identity
Before delete a factor identity, you must remove references to it.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_IDENTITY data dictionary view to find the factor identity to
remove.

For example:

SELECT * FROM DBA_DV_IDENTITY ORDER BY FACTOR_NAME;

3. Execute the DBMS_MACADM.DELETE_IDENTITY procedure.

You must include the factor_name and value parameters. For example:

BEGIN
 DBMS_MACADM.DELETE_IDENTITY(
 factor_name => 'Sector2_ClientID',
 value => 'intranet');
END;
/

Related Topics

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Modifying a Factor
You can use the DBMS_MACADM.UPDATE_FACTOR procedure to modify the definition of a
factor.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the factor and check its definition.

For example:

SELECT * FROM DBA_DV_FACTOR ORDER BY NAME;

3. Execute the DBMS_MACADM.UPDATE_FACTOR statement.

Chapter 7
Modifying a Factor

7-17

For example:

BEGIN
 DBMS_MACADM.UPDATE_FACTOR(
 factor_name => 'Sector2_DB',
 factor_type_name => 'Instance',
 description => 'Factor to restrict DBA access in Sector2_DB',
 rule_set_name => 'Limit_DBA_Access',
 get_expr => 'UPPER(SYS_CONTEXT(''USERENV'',''DB_NAME''))',
 validate_expr => 'dbavowner.check_db_access',
 identify_by => DBMS_MACUTL.G_IDENTIFY_BY_METHOD,
 labeled_by => DBMS_MACUTL.G_LABELED_BY_SELF,
 eval_options => DBMS_MACUTL.G_EVAL_ON_ACCESS,
 audit_options => DBMS_MACUTL.G_AUDIT_ALWAYS,
 fail_options => DBMS_MACUTL.G_FAIL_WITH_MESSAGE);
END;
/

Related Topics

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Deleting a Factor
Before you delete a factor, you must remove references to the factor.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_FACTOR data dictionary to find the name of the factor to delete.

For example:

SELECT NAME FROM DBA_DV_FACTOR ORDER BY NAME;

3. Query the DBA_DV_FACTOR_LINK data dictionary to find if the factor is a parent or a
child factor.

For example, assuming the factor is named Sector2_DB:

SELECT PARENT_FACTOR_NAME, CHILD_FACTOR_NAME
FROM DBA_DV_FACTOR_LINK
WHERE PARENT_FACTOR_NAME = 'Sector2_DB'
OR CHILD_FACTOR_NAME = 'Sector2_DB';

4. If the factor is a parent or child factor, then delete the factor link.

For example:

BEGIN
 DBMS_MACADM.DELETE_FACTOR_LINK(
 parent_factor_name => 'Sector2_DB',
 child_factor_name => 'Div1_ClientID');

Chapter 7
Deleting a Factor

7-18

END;
/

5. Query the DBA_DV_IDENTITY_MAP data dictionary view to find the definition for any
identity maps that may use the factor.

For example:

SELECT * FROM DBA_DV_IDENTITY_MAP
WHERE FACTOR_NAME = 'Sector2_DB';

6. Execute the DBMS_MACADM.DELETE_IDENTITY_MAP to delete the identity map.

For example:

BEGIN
 DBMS_MACADM.DELETE_IDENTITY_MAP(
 identity_factor_name => 'Sector2_DB',
 identity_factor_value => 'intranet',
 parent_factor_name => 'HQ_ClientID',
 child_factor_name => 'Div1_ClientID',
 operation => '<',
 operand1 => '192.0.2.10',
 operand2 => '192.0.2.15');
END;
/

7. Query the DBA_DV_IDENTITY data dictionary view to find if the factor has a
reference to any factor identities.

Query for the factor name and the value. For example:

SELECT VALUE FROM DBA_DV_IDENTITY
WHERE FACTOR_NAME = 'Sector2_DB'

8. Execute the DBMS_MACADM.DELETE_IDENTITY procedure to remove the factor
reference.

You must include both the factor_name and value parameters. For example:

BEGIN
 DBMS_MACADM.DELETE_IDENTITY(
 factor_name => 'Sector2_DB',
 value => 'intranet');
END;
/

9. Execute the DBMS_MACADM.DELETE_FACTOR to delete the factor.

For example:

EXEC DBMS_MACADM.DELETE_FACTOR('Sector2_DB');

Related Topics

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

How Factors Work
Oracle Database Vault processes factors when a session is established.

• How Factors Are Processed When a Session Is Established
Oracle Database Vault evaluates the factors based on when a session begins.

Chapter 7
How Factors Work

7-19

• How Retrieval Methods Work
The Retrieval Method identifies factors where the factor identification is by method
or constant.

• How Factors Are Retrieved
You can retrieve a factor in a database session at any time by using the DVF factor
function or the GET_FACTOR function.

• How Factors Are Set
You can assign a factor identity at any time during a database session, but only if
the factor assignment rule set evaluates to true.

• How Factor Auditing Works
Whether you have unified auditing enabled affects how auditing is handled for
factors.

How Factors Are Processed When a Session Is Established
Oracle Database Vault evaluates the factors based on when a session begins.

When a database session is established, the following actions occur:

1. At the start of each database session, Oracle Database Vault begins to evaluate
all default and user-created factors in the database instance.

This evaluation occurs after the normal database authentication of the session and
the initialization of the Oracle Label Security session information, if applicable.

2. In the factor evaluation stage, the factor initialization process executes the retrieval
method for all factors that are identified by methods or constants, to resolve the
factor identity for the session.

The factor error options setting has no effect on the factor initialization process.

3. If a factor has a validation method defined, Oracle Database Vault validates the
identity (value) of the factor by executing this validation method. If the validation
method fails or returns false, the identity of the factor is undefined (NULL).

4. If a factor has any identities defined for it, Oracle Database Vault resolves the
trust level of the factor based on the identities defined. If an identity of the factor
is defined in this list of defined identities, then Oracle Database Vault assigns the
trust level as configured; otherwise it sets it to -1. If there are no identities defined
for the factor, the trust level is undefined (NULL).

5. Depending on the outcome of this factor evaluation, factor validation, and trust
level resolution, Database Vault audits the details of the evaluation as dictated by
the factor audit configuration.

6. When the evaluation of all factors that are identified by method or constant
completes, Oracle Database Vault resolves the factors that are identified by other
factors by using the identity maps that are defined for the factor configured
identities.

The evaluation order of the factor-configured identities is by ASCII sort on the
identity values: Oracle Database Vault uses the first alphabetically sorted identity
mapping that it evaluates. For example, suppose factor TEST has identities X
and Y. Furthermore, identities X and Y have identity maps that are dependent on
identities for factors A, B, and C. The following mapping occurs:

• X is mapped when A=1 and B=1.

Chapter 7
How Factors Work

7-20

• Y is mapped when A=1, B=1, and C=2.

In this case, the first one evaluated is X. Y is not evaluated, but what if its C
mapping meets the criteria that is needed for the TEST factor's success? You would
need to reverse the mapping, that is, map Y before X so that A, B, and C can be
evaluated first. To reverse the mapping, rename Y to V (or some alphabetic value
that sorts before X) so that it can be correctly resolved.

This algorithm works if the ASCII sort ordering is correct and the identities map the
same number factors at some level.

7. When the factor initialization completes, the Oracle Database Vault integration with
Oracle Label Security occurs.

After this process completes, Oracle Database Vault checks to see if a command rule
is associated with the CONNECT event. If a rule set associated with the CONNECT event,
then Oracle Database Vault evaluates the rule set. If the rule set evaluates to false or
results in an error, then the session is terminated. Oracle Database Vault executes any
auditing or call handlers associated with the rule set before the session is terminated.

Note:

Be careful about associating command rules with the CONNECT event,
because you can inadvertently lock out other users from of the database. In
general, if you create a command rule for CONNECT, set its evaluation option
of the associated rule set to Any True.

If you do inadvertently lock out users, then you should temporarily disable
Oracle Database Vault, disable the CONNECT command rule, re-enable Oracle
Database Vault, and then fix the factor code that is causing the problem. If
the Test Fails provides an example of how to accomplish this.

How Retrieval Methods Work
The Retrieval Method identifies factors where the factor identification is by method or
constant.

If the factor identification is by factors, Oracle Database Vault identifies it by its identity
mappings. You can create your own PL/SQL retrieval methods, or use the functions
supplied with Oracle Database Vault. Oracle Database Vault provides factor-specific
and general utility functions that you can use to build the retrieval method.

See also the default factors provided with Oracle Database Vault for examples of
retrieval methods.

The get_expr parameter is mandatory if you have selected the following
DBMS_MACADM.CREATE_FACTOR or DBMS_MACADM.CREATE_UPDATE settings for the
identify_by parameter:

• DBMS_MACUTL.G_IDENTIFY_BY_METHOD: Enter a method for the get_expr parameter.

• DBMS_MACUTL.G_IDENTIFY_BY_CONSTANT: Enter a constant for the get_expr
parameter.

The value returned as the factor identity must be a VARCHAR2 string or otherwise
convertible to one.

Chapter 7
How Factors Work

7-21

You can include any package function or standalone function in the expression.
Ensure that the expression is a fully qualified function, such as schema.function_name.
Do not include complete SQL statements. If you are using application packages or
functions, you must provide DVSYS with the EXECUTE privilege on the object.

Write the function signature using the following format:

FUNCTION GET_FACTOR RETURN VARCHAR2

Related Topics

• Default Factors
Oracle Database Vault provides a set of default factors.

• Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

• DBMS_MACADM Factor Procedures and Functions
The DBMS_MACADM PL/SQL package provides procedures and functions to configure
factors.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

How Factors Are Retrieved
You can retrieve a factor in a database session at any time by using the DVF factor
function or the GET_FACTOR function.

To find a listing of available factors, query the DBA_DV_FACTOR data dictionary view,
described in .

Example 7-1 shows an example of using the GET_FACTOR function.

Example 7-1 Using GET_FACTOR to Retrieve a Factor

SELECT GET_FACTOR('client_ip') FROM DUAL;

You can use the factor values retrieved from the DVF factor function or the GET_FACTOR
in the following ways:

• Oracle Database Vault rule expressions

• Custom application code that is available to all database sessions in an Oracle
Database Vault environment

If you had set the DBMS_MACADM.CREATE_FACTOR or DBMS_MACADM.UPDATE_FACTOR
eval_options parameter to factor evaluation to DBMS_MACUTL.G_EVAL_ON_SESSION,
then Oracle Database Vault retrieves the value from the session context established,
as described under How Factors Are Processed When a Session Is Established.

If you had set the factor evaluation to DBMS_MACUTL.G_EVAL_ON_ACCESS, then Oracle
Database Vault performs Step 2 through Step 5 (or Step 6), as described under
How Factors Are Processed When a Session Is Established, whenever the factor is
retrieved.

If you had defined error options for the factor and if an error occurs, then Oracle
Database Vault displays the error message.

Chapter 7
How Factors Work

7-22

How Factors Are Set
You can assign a factor identity at any time during a database session, but only if the
factor assignment rule set evaluates to true.

You can do this in the application code by using the SET_FACTOR function. In Java
code, you can use the JDBC class java.sql.CallableStatement to set this value. For
example:

java.sql.Connection connection ;
...
java.sql.CallableStatement statement =
 connection.prepareCall("{call SET_FACTOR('FACTOR_X', ?)}");
statement.setString(1, "MyValue");
boolean result = statement.execute();
...

Applications that can execute Oracle PL/SQL functions can use this procedure (for
example, applications written using Oracle Data Provider for .NET (ODP.NET)).

This concept is similar to the standard Oracle DBMS_SESSION.SET_IDENTIFIER
procedure with an added feature that a rule set controls when a factor value can
be set. If the rule set evaluates to true, Steps 2 through 5 under How Factors Are
Processed When a Session Is Established occur.

If you have not associated a assignment rule set for the factor or if the rule set returns
false (or returns errors), then Oracle Database Vault sends an error message if you
attempt to set the factor using the SET_FACTOR function.

How Factor Auditing Works
Whether you have unified auditing enabled affects how auditing is handled for factors.

In a traditional, non-unified auditing environment, Oracle Database Vault writes the
audit trail to the DVSYS.AUDIT_TRAIL$ table. Be aware that traditional auditing is
deprecated starting with Oracle Database release 21c.

If you have enabled unified auditing, then this setting does not capture audit records.
Instead, you can create unified audit policies to capture this information.

You can use the Factor Audit Report to display the generated audit records. In
addition, you can select multiple audit options at a time. Each option is converted
to a bit mask and added to determine the aggregate behavior. Note that there is little
performance impact in auditing, unless the factor has errors.

Related Topics

• Oracle Database Security Guide

Tutorial: Preventing Ad Hoc Tool Access to the Database
This tutorial demonstrates how to use factors to prevent ad hoc tools (such as
SQL*Plus) from accessing the database.

• About This Tutorial
Many database applications contain features to explicitly control the actions of a
user.

Chapter 7
Tutorial: Preventing Ad Hoc Tool Access to the Database

7-23

• Step 1: Enable the HR and OE User Accounts
You must use the HR and OE accounts later on when you test the Oracle Database
Vault components for this tutorial.

• Step 2: Create the Factor
After you have ensured that the HR and OE accounts are active, you can create a
factor.

• Step 3: Create the Rule Set and Rules
After you have created the factor, you can create a rule set and rules to work with
the factor.

• Step 4: Create the CONNECT Command Rule
The CONNECT command rule controls the CONNECT SQL statement.

• Step 5: Test the Ad Hoc Tool Access Restriction
You do not need to restart your SQL*Plus session for the Oracle Database Vault
changes to take effect.

• Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

About This Tutorial
Many database applications contain features to explicitly control the actions of a user.

However, an ad hoc query tool, such as SQL*Plus, may not have these controls. As a
result, a user could use an ad hoc tool to perform actions in the database that he or
she would normally be prevented from performing in a database application. You can
use a combination of Oracle Database Vault factors, rule sets, and command rules to
prevent unauthorized access to the database by ad hoc query tools.

In the following tutorial, you prevent users HR and OE from using SQL*Plus. To
accomplish this, you must create a factor to find the applications on your system and
a rule and rule set to limit SQL*Plus to these four users. Then you create a command
rule for the CONNECT SQL statement, which is associated with the rule set. This factor,
Client_Prog_Name, uses the CLIENT_PROGRAM_NAME attribute of the SYS_CONTEXT SQL
function USERENV namespace to find the names of the applications that are used
to access the current instance of Oracle Database. The SYS_CONTEXT SQL function
provides many useful methods for finding the state of a user session. SYS_CONTEXT is a
valuable tool for creating custom factors.

Related Topics

• Oracle Database SQL Language Reference

Step 1: Enable the HR and OE User Accounts
You must use the HR and OE accounts later on when you test the Oracle Database
Vault components for this tutorial.

1. Log into the PDB as a user who has been granted the DV_ACCTMGR role.

For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

Chapter 7
Tutorial: Preventing Ad Hoc Tool Access to the Database

7-24

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Check the status of the HR account.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'HR';

3. If the HR account is expired and locked, then enter the following statement to make
it active:

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure.

4. Repeat these steps for the OE account.

Related Topics

• Oracle Database Security Guide

Step 2: Create the Factor
After you have ensured that the HR and OE accounts are active, you can create a factor.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

2. Create the factor.

BEGIN
 DBMS_MACADM.CREATE_FACTOR(
 factor_name => 'Client_Prog_Name',
 factor_type_name => 'Application',
 description => 'Stores client program name that connects to
database',
 rule_set_name => NULL,
 validate_expr => NULL,
 get_expr =>
'UPPER(SYS_CONTEXT(''USERENV'',''CLIENT_PROGRAM_NAME''))',
 identify_by => DBMS_MACUTL.G_IDENTIFY_BY_METHOD,
 labeled_by => DBMS_MACUTL.G_LABELED_BY_SELF,
 eval_options => DBMS_MACUTL.G_EVAL_ON_SESSION,
 audit_options => DBMS_MACUTL.G_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_FAIL_SILENTLY);
END;
/

In this specification:

• factor_type_name specifies that this is an application-based factor.

• get_expr defines the expression for the factor. This expression
calls the SYS_CONTEXT function, using the USERENV namespace and
CLIENT_PROGRAM_NAME attribute, to find the programs that are logged into the
Oracle database.

• identify_by identifies the factor by method.

Chapter 7
Tutorial: Preventing Ad Hoc Tool Access to the Database

7-25

• labeled_by labels the identities for the factor directly from the labels
associated with an Oracle Label Security policy (default).

• eval_options evaluates the factor when the database session is created.

• audit_options audits if get_expr returns an error.

• fail_silently does not show any error messages for the factor.

Step 3: Create the Rule Set and Rules
After you have created the factor, you can create a rule set and rules to work with the
factor.

1. Create the Limit SQL*Plus Access rule set as follows:

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Limit SQL*Plus Access',
 description => 'Limits access to SQL*Plus for Apps Schemas',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'SQL*Plus access not allowed for Apps Schemas',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => NULL,
 is_static => FALSE);
END;
/

In this specification:

• fail_options enables an error message, set by fail_message, and error
code, set by fail_code, to appear if there are errors.

• is_static evaluates the rule set once during the user session. After that, the
value is re-used.

2. Find the exact settings for the computer on which you want to apply the policy,
based on what the CLIENT_PROGRAM_NAME attribute will return.

SELECT SYS_CONTEXT('USERENV', 'CLIENT_PROGRAM_NAME') FROM DUAL;

The output should be similar to the following:

SYS_CONTEXT('USERENV','CLIENT_PROGRAM_NAME')

sqlplus@nemosity (TNS V1-V3)

For this tutorial, the name of the computer is nemosity. The (TN V1-V3) output
refers to the version of the TNS connector.

3. Create the following rules.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Prevent Apps Schemas Access to SQL*Plus',
 rule_expr =>'UPPER (DVF.F$CLIENT_PROG_NAME) != ''SQLPLUS@NEMOSITY (TNS V1-
V3)'' AND DVF.F$SESSION_USER IN (''HR'', ''OE'')');
END;
/

Chapter 7
Tutorial: Preventing Ad Hoc Tool Access to the Database

7-26

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Allow Non-Apps Schemas Access to SQL*Plus',
 rule_expr =>'DVF.F$SESSION_USER NOT IN (''HR'', ''OE'')');
END;
/

The rules translate to the following: "Prevent users HR and OE from logging into
SQL*Plus, but allow other users access."

4. Add the rules to the Limit SQL*Plus Access rule set.

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Limit SQL*Plus Access',
 rule_name => 'Prevent Apps Schemas Access to SQL*Plus',
 rule_order => 1);
END;
/
BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Limit SQL*Plus Access',
 rule_name => 'Allow Non-Apps Schemas Access to SQL*Plus',
 rule_order => 1);
END;
/

The rule_order setting is required to enable the procedure to work.

Step 4: Create the CONNECT Command Rule
The CONNECT command rule controls the CONNECT SQL statement.

This command rule also applies to logging into SQL*Plus from the command line or
other tools your site may use to access SQL*Plus.

• Create the CONNECT command rule as follows:

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'CONNECT',
 rule_set_name => 'Limit SQL*Plus Access',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES);
END;
/

In this specification:

• rule_set_name associates the Limit SQL*Plus Access rule set with the CONNECT
command rule.

• object_owner is set to % so that the command rule applies to all users.

• object_name is set to % so that the command rule applies to all objects.

• enabled enables the command rule so that it can be used right away.

Chapter 7
Tutorial: Preventing Ad Hoc Tool Access to the Database

7-27

Step 5: Test the Ad Hoc Tool Access Restriction
You do not need to restart your SQL*Plus session for the Oracle Database Vault
changes to take effect.

1. In SQL*Plus, try to connect to the PDB as user HR:

CONNECT HR@pdb_name
Enter password: password

The following output should appear:

ERROR:
ORA-47306: 20461: Limit SQL*Plus Access rule set failed

User HR should be prevented from using SQL*Plus.

2. Next, try to connect as user OE:

CONNECT OE@pdb_name
Enter password: password

The following output should appear:

ERROR:
ORA-47306: 20461: Limit SQL*Plus Access rule set failed

User OE also should be prevented from using SQL*Plus.

3. Now try to connect as user SYSTEM:

CONNECT SYSTEM@pdb_name
Enter password: password
Connected.

User SYSTEM should be able to log in to the database instance. So should SYS,
the Database Vault Owner account, and the Database Vault Account Manager
account.

If the Test Fails

If you cannot log in to the database instance as SYSTEM (or as any of the other
administrative users listed in your rule expression), then you are prevented from using
SQL*Plus.

You can remedy the problem as follows:

1. Log in to the database instance as a user who has been granted the DV_OWNER or
DV_ADMIN role.

For example:

CONNECT sec_admin_owen@pdb_name
Enter password: password

2. Enter the following statement to drop the CONNECT command rule.

EXEC DBMS_MACADM.DELETE_COMMAND_RULE ('CONNECT', '%', '%');

Even though you have disabled Oracle Database Vault, you still can use its
PL/SQL packages and Database Vault Administrator.

Chapter 7
Tutorial: Preventing Ad Hoc Tool Access to the Database

7-28

3. Check the policy components for any errors and then correct them. Recreate the
CONNECT command rule, and then test it.

Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. Remove the CONNECT command rule.

EXEC DBMS_MACADM.DELETE_COMMAND_RULE ('CONNECT', '%', '%');

2. Remove the Client_Prog_Name factor.

EXEC DBMS_MACADM.DELETE_FACTOR('Client_Prog_Name');

3. Remove the Limit SQL*Plus Access rule set.

EXEC DBMS_MACADM.DELETE_RULE_SET('Limit SQL*Plus Access');

4. Remove the rules.

EXEC DBMS_MACADM.DELETE_RULE('Prevent Apps Schemas Access to SQL*Plus');
EXEC DBMS_MACADM.DELETE_RULE('Allow Non-Apps Schemas Access to SQL*Plus');

5. If necessary, as a user who has been granted the DBV_ACCTMGR role, lock the HR
and OE accounts.

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

ALTER USER HR ACCOUNT LOCK;
ALTER USER OE ACCOUNT LOCK;

Guidelines for Designing Factors
Oracle provides guidelines for designing factors.

• You can use the Oracle utility packages such as UTL_TCP, UTL_HTTP, DBMS_LDAP,
and DBMS_PIPE to integrate security or other contextual information about the
session from external systems.

• Do not specify a retrieval method (using the get_expr parameter in
DBMS_MACADM.CREATE_FACTOR or DBMS_MACADM.UPDATE_FACTOR) if the identify_by
parameter is set to DBMS_MACUTL.G_IDENTIFY_BY_FACTOR. Retrieval methods are
only needed if you set the factor to DBMS_MACUTL.G_IDENTIFY_BY_CONSTANT or
DBMS_MACUTL.G_IDENTIFY_BY_METHOD.

• Consider using a validation method if a factor has an assignment rule set. Doing
so helps to verify that invalid identities are not submitted.

• Use the client-supplied factors such as Program, OS User, and others with
caution, because the values that are supplied can only be trusted when the client
software is trusted and the communications channel from the client software is
known to be secure.

• Only specify an evaluation option eval_options) of
DBMS_MACUTL.G_EVAL_ON_ACCESS if the value returned by the retrieval method
could change from one invocation to the next in the same session (for example,
time-based factors).

Chapter 7
Guidelines for Designing Factors

7-29

• Optimize the internal logic of a function used for the factor retrieval method using
traditional SQL and PL/SQL optimization techniques.

• If the discrete values returned by the retrieval method are known, be sure to define
identities for each value so that you can assign trust levels for them. Trust levels
add value to factors as you also can use the trust level in application logic based
on factors.

• A security policy based on more factors is generally considered stronger than one
based on fewer factors. You can create a new factor that is identified by other
factors to store combinations of factors into logical grouping using identity maps.
This also makes it easier to label the parent factor when you integrate the factors
with the Oracle Label Security labels.

• It is generally easier to configure and debug a factor whose labeled_by
parameter is set to DBMS_MACUTL.G_LABELED_BY_SELF than one labeled
DBMS_MACUTL.G_LABELED_BY_FACTORS when integrating the Oracle Label Security.

• You can design a database client application to pass one or more security,
end-user, or environmental attributes so that they are available to an associated
database session. To do this, create a single factor for each attribute and then
use an assignment rule set to control when these attributes can be assigned
(for example only when using a specific Web application on specified named
application server computers). Oracle Database Vault factors used in this fashion
are very much like the Oracle procedure DBMS_SESSION.SET_IDENTIFIER but also
include a capability to control when they can be set.

Related Topics

• Integrating Oracle Database Vault with Oracle Label Security
You can integrate Oracle Database Vault with Oracle Label Security, and check
the integration with reports and data dictionary views.

How Factors Affect Performance
The complexity of factors affects the performance of your Oracle database instance.

Each factor has elements that are processed, such as its validation method, trust level,
and so on. For factors that are evaluated by the session, such as Database_Hostname
and Proxy_User, Oracle Database Vault performs this processing during session
initialization, and then caches the results for subsequent requests for that value.

The default factors are cached because they are likely candidates for a typical
security policy. However, if you only use five factors (for example, in rule sets or
other components), then the other factors consume resources that could otherwise be
used elsewhere. In this case, you should remove the unnecessary factors by deleting
them. (Oracle Database Vault does not use any of these factors internally, so you can
remove them if you do not need them.)

If you have a large number of users or if your application server frequently must create
and destroy connections, the resources used can affect system performance. You can
delete the unnecessary factors.

You can check system performance by running tools such as Oracle Enterprise
Manager (including Oracle Enterprise Manager Cloud Control, which is installed by
default with Oracle Database), Automatic Workload Repository (AWR), and TKPROF.

Chapter 7
How Factors Affect Performance

7-30

Related Topics

• Default Factors
Oracle Database Vault provides a set of default factors.

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

Factor Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that display
information about factors and their identities.

Table 7-1 lists the Oracle Database Vault reports.

Table 7-1 Reports Related to Factors and Their Identities

Report Description

Factor Audit Report Audits factors (for example, to find factors that
failed to be evaluated)

Factor Configuration Issues Report Lists configuration issues, such as disabled or
incomplete rule sets, or to audit issues that may
affect the factor

Factor Without Identities Report Lists factors that have had no identities assigned
yet

Identity Configuration Issues Report Lists factors that have invalid label identities or no
map for the identity

Rule Set Configuration Issues Report Lists rule sets that have no rules defined or
enabled, which may affect the factors that use
them

Table 7-2 lists data dictionary views that provide information about existing factors and
factor identities.

Table 7-2 Data Dictionary Views Used for Factors and Factor Identities

Data Dictionary View Description

DBA_DV_FACTOR Lists the existing factors in the current database
instance

DBA_DV_FACTOR_LINK Shows the relationships of each factor whose
identity is determined by the association of child
factors

DBA_DV_FACTOR_TYPE Lists the names and descriptions of factor types
used in the system

DBA_DV_IDENTITY Lists the identities for each factor

DBA_DV_IDENTITY_MAP Lists the mappings for each factor identity

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

Chapter 7
Factor Related Reports and Data Dictionary Views

7-31

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Chapter 7
Factor Related Reports and Data Dictionary Views

7-32

8
Configuring Secure Application Roles
for Oracle Database Vault

Secure application roles enable you to control how much access users have to an
application.

• What Are Secure Application Roles in Oracle Database Vault?
In Oracle Database Vault, you can create a secure application role that you enable
with an Oracle Database Vault rule set.

• Security for Oracle Database Vault Secure Application Roles
Users who have database administrative privileges may try to use the DROP ROLE
statement to delete Oracle Database Vault secure application roles.

• Creating an Oracle Database Vault Secure Application Role
When you create a secure application role, you associate it with a rule set to
determine when the role is enabled or disabled.

• Enabling Oracle Database Secure Application Roles to Work with Oracle
Database Vault
You can modify an existing secure application role only if it has been created in
Oracle Database Vault.

• Modifying a Secure Application Role
You can modify the definition of an Oracle Database Vault secure application role.

• Deleting an Oracle Database Vault Secure Application Role
You can delete Oracle Database Vault secure application roles if no applications
are using them.

• How Oracle Database Vault Secure Application Roles Work
The process flow for an Oracle Database Vault secure application role begins after
you create and set the secure application role.

• Tutorial: Granting Access with Database Vault Secure Application Roles
This tutorial demonstrates how to create a secure application role to control user
access to the OE.ORDERS table during work hours.

• How Secure Application Roles Affect Performance
You can check system performance by using Oracle Database tools, including
Oracle Enterprise Manager Cloud Control.

• Secure Application Role Related Reports and Data Dictionary View
Oracle Database Vault provides reports and a data dictionary view that you can
use to analyze Oracle Database Vault secure application roles.

What Are Secure Application Roles in Oracle Database
Vault?

In Oracle Database Vault, you can create a secure application role that you enable
with an Oracle Database Vault rule set.

8-1

Regular Oracle Database secure application roles are enabled by custom PL/SQL
procedures. You use secure application roles to prevent users from accessing data
from outside an application. This forces users to work within the framework of the
application privileges that have been granted to the role.

You only can create a secure application role in a PDB, not in the CDB root or the
application root.

The advantage of basing database access for a role on a rule set is that you can store
database security policies in one central place, as opposed to storing them in all your
applications. Basing the role on a rule set provides a consistent and flexible method to
enforce the security policies that the role provides. In this way, if you must update the
security policy for the application role, you do it in one place, the rule set. Furthermore,
no matter how the user connects to the database, the result is the same, because the
rule set is bound to the role. All you need to do is to create the role and then associate
it with a rule set. The associated rule set validates the user who is trying to enable the
role.

Related Topics

• Oracle Database Vault Secure Application Role APIs
The DBMS_MACADM and DBMS_MACSEC_ROLES PL/SQL packages manage Database
Vault secure application roles.

Security for Oracle Database Vault Secure Application Roles
Users who have database administrative privileges may try to use the DROP ROLE
statement to delete Oracle Database Vault secure application roles.

Whenever an Oracle Database Vault secure application role has been created,
Database Vault adds the secure application role to the Oracle Database Vault realm.
This prevents database administrator from deleting the secure application role using
the DROP ROLE statement.

Creating an Oracle Database Vault Secure Application Role
When you create a secure application role, you associate it with a rule set to
determine when the role is enabled or disabled.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. If necessary, create a rule set that the secure application role will use.

The DBA_DV_RULE_SET data dictionary view lists existing rule sets.

3. Execute the DBMS_MACADM.CREATE_ROLE procedure to create the security role.

For example:

Chapter 8
Security for Oracle Database Vault Secure Application Roles

8-2

BEGIN
 DBMS_MACADM.CREATE_ROLE(
 role_name => 'access_hr_employees',
 enabled => DBMS_MACUTL.G_YES,
 rule_set_name => 'Can Access HR.EMPLOYEES');
END;
/

In this specification:

• role_name can be up to 128 characters in mixed-case, without spaces. Ensure
that this name follows the standard Oracle naming conventions for role
creation using the CREATE ROLE statement. The DBA_DV_FACTOR data dictionary
view lists existing factors. This parameter is mandatory. The DBA_DV_ROLE data
dictionary view lists existing security roles.

• enabled enables or disables the role to be available for use. This
parameter is mandatory. DBMS_MACUTL.G_YES makes the role available for
enabling; DBMS_MACUTL.G_NO prevents the role from being enabled. The
default is DBMS_MACUTL.G_YES. That is, users are allowed to call the
DBMS_MACSEC_ROLES.SET_ROLE function to try to enable the role. Note that
whether or not the role will be enabled depends on the evaluation result of the
associated rule set.

• rule_set_name is a mandatory rule set that the DBMS_MACSEC_ROLES.SET_ROLE
procedure will use to determine if the role should be enabled or disabled. If
the rule set evaluates to true, then Oracle Database Vault enables the role for
the database session. If the rule set evaluates to false, then the role is not
enabled. The DBA_DV_RULE_SET data dictionary view lists existing rule sets.

4. As the owner of the schema that will be affected by the secure application role,
grant the appropriate privileges to the secure application role.

These privileges should be the same privileges that the secure application role will
control. For example, suppose you created a role that enabled users to select or
update the HR.EMPLOYEES table. The HR user would need to grant the SELECT and
UPDATE privileges to the secure application role.

For example:

CONNECT HR@pdb_name
Enter password: password

GRANT SELECT, UPDATE ON EMPLOYEES TO ACCESS_HR_EMPLOYEES;

5. Test the secure application role.

a. Connect as the user who will be granted or denied the secure application role.

b. Execute the DBMS_MACSEC_ROLES.SET_ROLE procedure on the role. For
example:

EXEC DBMS_MACSEC_ROLES.SET_ROLE('ACCESS_HR_EMPLOYEES');

c. Attempt to perform an action that is controlled by the secure application role.
For example:

SELECT COUNT(*) FROM HR.EMPLOYEES;

If the user should be granted the privileges, then the user can perform the
action. Otherwise, the action will fail.

Chapter 8
Creating an Oracle Database Vault Secure Application Role

8-3

Related Topics

• Configuring Rule Sets
Rule sets group one or more rules together; the rules determine whether a user
can perform an action on an object.

• SET_ROLE Procedure
The SET_ROLE procedure issues the SET ROLE PL/SQL statement for specified
roles.

• Oracle Database Vault Secure Application Role APIs
The DBMS_MACADM and DBMS_MACSEC_ROLES PL/SQL packages manage Database
Vault secure application roles.

Enabling Oracle Database Secure Application Roles to
Work with Oracle Database Vault

You can modify an existing secure application role only if it has been created in Oracle
Database Vault.

You cannot modify secure application roles or database roles that have been created
outside of Oracle Database Vault. However, you can enable non-Oracle Database
Vault roles to work with Oracle Database Vault.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Create a new secure application role in Oracle Database Vault and then grant the
existing role to the secure application role.

For example:

GRANT myExistingDBrole TO myDVrole;

3. Modify your code to use this new role.

You can use DBMS_MACSEC_ROLES.SET_ROLE in your application code to accomplish
this.

Related Topics

• SET_ROLE Procedure
The SET_ROLE procedure issues the SET ROLE PL/SQL statement for specified
roles.

Modifying a Secure Application Role
You can modify the definition of an Oracle Database Vault secure application role.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

Chapter 8
Enabling Oracle Database Secure Application Roles to Work with Oracle Database Vault

8-4

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find the secure application role and check its definition.

For example:

SELECT * FROM DBA_DV_ROLE ORDER BY ROLE;

3. Execute the DBMS_MACADM.UPDATE_ROLE statement.

For example:

BEGIN
 DBMS_MACADM.UPDATE_ROLE(
 role_name => 'access_hr_employees',
 enabled => DBMS_MACUTL.G_NO,
 rule_set_name => 'System Access Controls');
END;
/

Related Topics

• Oracle Database Vault Secure Application Role APIs
The DBMS_MACADM and DBMS_MACSEC_ROLES PL/SQL packages manage Database
Vault secure application roles.

Deleting an Oracle Database Vault Secure Application Role
You can delete Oracle Database Vault secure application roles if no applications are
using them.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_ROLE data dictionary view to find the secure application roles
that you want to delete.

For example:

SELECT ROLE FROM DBA_DV_ROLE ORDER BY ROLE;

3. Check and modify any applications that may be using the secure application role
that you want to delete.

4. Execute the DBMS_MACADM.DELETE_ROLE procedure to delete the role.

For example:

EXEC DBMS_MACADM.DELETE_ROLE('access_hr_employees');

Chapter 8
Deleting an Oracle Database Vault Secure Application Role

8-5

Related Topics

• Oracle Database Vault Secure Application Role APIs
The DBMS_MACADM and DBMS_MACSEC_ROLES PL/SQL packages manage Database
Vault secure application roles.

How Oracle Database Vault Secure Application Roles Work
The process flow for an Oracle Database Vault secure application role begins after you
create and set the secure application role.

1. Create or update the role either in Oracle Database Vault Administrator or by using
the secure application role-specific functions in the DBMS_MACADM package.

2. Modify your application to call the role, by using the DBMS_MACSEC_ROLES.SET_ROLE
function.

3. Oracle Database Vault then evaluates the rule set associated with the secure
application role.

If the rule set evaluates to true, then Oracle Database Vault enables the role for
the current session. If the rule set evaluates to false, the role is not enabled. In
either case, Oracle Database Vault processes the associated auditing and custom
event handlers for the rule set associated with the secure application role.

Related Topics

• DBMS_MACADM Secure Application Role Procedures
The DBMS_MACADM package creates, renames, assigns, unassigns, updates, and
deletes Oracle Database Vault secure application roles.

• SET_ROLE Procedure
The SET_ROLE procedure issues the SET ROLE PL/SQL statement for specified
roles.

Tutorial: Granting Access with Database Vault Secure
Application Roles

This tutorial demonstrates how to create a secure application role to control user
access to the OE.ORDERS table during work hours.

• About This Tutorial
In this tutorial, you restrict the SELECT statement on the ORDERS table in the OE
schema to a specific set of users.

• Step 1: Create Users for This Tutorial
First, you must create users for the tutorial.

• Step 2: Enable the OE User Account
The OE schema will be used for this tutorial.

• Step 3: Create the Rule Set and Its Rules
The rule set and rules will restrict who can modify orders in the OE.ORDERS table.

• Step 4: Create the Database Vault Secure Application Role
The Database Vault secure application role will be set when the rule set conditions
are satisfied.

Chapter 8
How Oracle Database Vault Secure Application Roles Work

8-6

• Step 5: Grant the SELECT Privilege to the Secure Application Role
The secure application role must be granted the SELECT privilege.

• Step 6: Test the Database Vault Secure Application Role
With all the components in place, you can test the Database Vault secure
application role.

• Step 7: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

About This Tutorial
In this tutorial, you restrict the SELECT statement on the ORDERS table in the OE schema
to a specific set of users.

Furthermore, these users can only perform these statements on the OE.ORDERS table
from within the office, not from a remote connection. To accomplish this, you create an
Oracle Database Vault secure application role that is enabled for the user only if the
user passes the checks enforced by the rule set that you associate with the secure
application role.

Step 1: Create Users for This Tutorial
First, you must create users for the tutorial.

1. Log in to a PDB as a user who has been granted the DV_ACCTMGR role.

For example:

sqlplus accts_admin_ace@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Create the following user accounts:

GRANT CREATE SESSION TO eabel IDENTIFIED BY password;
GRANT CREATE SESSION TO ahutton IDENTIFIED BY password;
GRANT CREATE SESSION TO ldoran IDENTIFIED BY password;

Replace password with a password that is secure.

Related Topics

• Oracle Database Security Guide

Step 2: Enable the OE User Account
The OE schema will be used for this tutorial.

1. In SQL*Plus, connect as the DV_ACCTMGR user.

For example:

CONNECT accts_admin_ace@pdb_name
Enter password: password

2. Check the account status of the OE account.

Chapter 8
Tutorial: Granting Access with Database Vault Secure Application Roles

8-7

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'OE';

3. If the OE account is locked and expired, unlock it and assign it a new password.

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure.

Related Topics

• Oracle Database Security Guide

Step 3: Create the Rule Set and Its Rules
The rule set and rules will restrict who can modify orders in the OE.ORDERS table.

1. Connect as a user who has been granted the DV_OWNER role.

CONNECT sec_admin_owen@pdb_name
Enter password: password

2. Create the following rule set.

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Can Modify Orders',
 description => 'Rule set to control who can modify orders in the
OE.ORDERS table',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ALL,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'Failure',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => '',
 is_static => FALSE,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

3. Create the following rule.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Session User',
 rule_expr =>'DVF.F$SESSION_USER IN (''EABEL'',''AHUTTON'')');
END;
/

4. Add the Check Session User rule to the Can Modify Orders rule set.

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Can Modify Orders',
 rule_name => 'Check Session User',
 rule_order => 1);
END;
/

Chapter 8
Tutorial: Granting Access with Database Vault Secure Application Roles

8-8

Step 4: Create the Database Vault Secure Application Role
The Database Vault secure application role will be set when the rule set conditions are
satisfied.

1. If necessary, connect as the user who was granted the DV_OWNER role.

CONNECT sec_admin_owen@pdb_name
Enter password: password

2. Create and enable the secure application role, and associate it with the Can
Modify Orders rule set.

BEGIN
 DBMS_MACADM.CREATE_ROLE(
 role_name => 'ORDERS_MGMT',
 enabled => DBMS_MACUTL.G_YES,
 rule_set_name => 'Can Modify Orders');
END;
/

At this stage, the Database Vault secure application role and its associated rule set are
created, though the role does not yet have any privileges.

Step 5: Grant the SELECT Privilege to the Secure Application Role
The secure application role must be granted the SELECT privilege.

1. In SQL*Plus, connect as user OE.

CONNECT OE@pdb_name
Enter password: password

2. Grant the SELECT privilege to the ORDERS_MGMT secure application role.

GRANT SELECT ON ORDERS TO ORDERS_MGMT;

Step 6: Test the Database Vault Secure Application Role
With all the components in place, you can test the Database Vault secure application
role.

1. Connect as user eabel.

2. Set the ORDERS_MGMT role.

EXEC DBMS_MACSEC_ROLES.SET_ROLE('ORDERS_MGMT');

Typically, you would embed this call in the application to which the user logs in.

3. Select from the OE.ORDERS table.

SELECT COUNT(*) FROM OE.ORDERS;

The following output should appear:

 COUNT(*)

 105

Chapter 8
Tutorial: Granting Access with Database Vault Secure Application Roles

8-9

Because user eabel is configured as a valid session user, she can select from the
OE.ORDERS table. If user ahutton logs in to SQL*Plus in the same manner, she also
can select from the OE.ORDERS table.

4. Connect as user ldoran.

CONNECT ldoran@pdb_name
Enter password: password

5. Enter the following statements:

EXEC DBMS_MACSEC_ROLES.SET_ROLE('ORDERS_MGMT');
SELECT COUNT(*) FROM OE.ORDERS;

Because user ldoran is not a valid user, she cannot enable the ORDERS_MGMT role.
Therefore, she cannot select from the OE.ORDERS table.

Step 7: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. Connect as a user who was granted the DV_OWNER role.

CONNECT sec_admin_owen@pdb_name
Enter password: password

2. Drop the ORDERS_MGMT secure application role.

EXEC DBMS_MACADM.DELETE_ROLE('ORDERS_MGMT');

3. Remove the Check Session User rule from the Can Modify Orders rule set.

BEGIN
 DBMS_MACADM.DELETE_RULE_FROM_RULE_SET(
 rule_set_name => 'Can Modify Orders',
 rule_name => 'Check Session User');
END;
/

4. Drop the rule and rule set.

EXEC DBMS_MACADM.DELETE_RULE('Check Session User');
EXEC DBMS_MACADM.DELETE_RULE_SET('Can Modify Orders');

5. Connect as a user who has been granted the DV_ACCTMGR role.

CONNECT accts_admine_ace@pdb_name
Enter password: password

6. Drop the users.

DROP USER eabel;
DROP USER ahutton;
DROP USER ldoran;

7. If unnecessary, lock and expire the OE user account.

ALTER USER OE ACCOUNT LOCK PASSWORD EXPIRE;

How Secure Application Roles Affect Performance
You can check system performance by using Oracle Database tools, including Oracle
Enterprise Manager Cloud Control.

Chapter 8
How Secure Application Roles Affect Performance

8-10

Other tools that you can use are Automatic Workload Repository (AWR) and TKPROF.

Related Topics

• Oracle Database Performance Tuning Guide

• Oracle Database SQL Tuning Guide

Secure Application Role Related Reports and Data
Dictionary View

Oracle Database Vault provides reports and a data dictionary view that you can use to
analyze Oracle Database Vault secure application roles.

Table 8-1 lists the Oracle Database Vault reports.

Table 8-1 Reports Related to Secure Application Roles

Report Description

Secure Application Role Audit Report Lists audit records generated by the Oracle
Database Vault secure application role-
enabling operation.

To generate this type of audit record, enable
auditing for the rule set associated with the
role.

Secure Application Configuration Issues Report Lists secure application roles that have
nonexistent database roles, or incomplete or
disabled rule sets

Rule Set Configuration Issues Report Lists rule sets that have no rules defined
or enabled, which may affect the secure
application roles that use them

Powerful database accounts and roles reports Provide information about powerful database
accounts and roles

The DBA_DV_ROLE data dictionary view lists the Oracle Database Vault secure
application roles used in privilege management.

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Chapter 8
Secure Application Role Related Reports and Data Dictionary View

8-11

9
Configuring Oracle Database Vault Policies

You can use Oracle Database Vault policies to implement frequently used realm and
command rule settings.

• What Are Database Vault Policies?
An Oracle Database Vault policy groups local realms and command rules into a
named policy that you can enable or disable as necessary.

• Default Oracle Database Vault Policies
Oracle Database Vault provides two default policies that you can use to better
secure user accounts and system privileges.

• Creating an Oracle Database Policy
To create an Oracle Database Vault policy, you create a container policy that
specifies the realms and command rules that encompass the policy.

• Modifying an Oracle Database Vault Policy
You can use the modify an Oracle Database Vault policy.

• Deleting an Oracle Database Vault Policy
You can use Enterprise Manager Cloud Control to delete Oracle Database Vault
policies.

• Related Data Dictionary Views
Oracle Database Vault provides data dictionary views that are useful for analyzing
Database Vault policies.

What Are Database Vault Policies?
An Oracle Database Vault policy groups local realms and command rules into a named
policy that you can enable or disable as necessary.

• About Oracle Database Vault Policies
Oracle Database Vault policies can group realm and command rule definitions into
one policy, which then can be collectively enabled or disabled.

• Oracle Database Vault Policies in a Multitenant Environment
Oracle Database Vault policies are only local to the pluggable database (PDB) in
which they were created.

About Oracle Database Vault Policies
Oracle Database Vault policies can group realm and command rule definitions into one
policy, which then can be collectively enabled or disabled.

Database Vault policies enable you to delegate limited realm administration privileges
to database users without giving them the powerful privileges that the DVADM and
DVOWNER roles provide. Oracle Database Vault provides default policies.

For example, suppose you have a set of Oracle Database Vault objects that are
related to a particular application, such as a realm and several command rules. You
can use a Database Vault policy to group these objects into one policy. You then can

9-1

designate a policy administrator to manage adding users to a realm for this application
and for enabling or disabling the policy. If there is only one primary application, then
it can be used for manageability where a user can enable, disable, or simulate (use
simulation mode) all related objects with one command rather than issuing a command
for each included Database Vault object.

How the enablement of the individual realms and command rules works depends on
how you set the policy state of the policy, as follows:

• Full enabled mode (DBMS_MACADM.G_ENABLED) sets the policy to take precedence
over the individual enablement settings of the associated realms and command
rules. For example, if the associated objects of a policy are individually disabled,
then they will be enabled if the policy is enabled. (Conversely, you can set
DBMS_MACADM.G_PARTIAL to allow the embedded security objects to set their own
enabled, disabled, or simulation mode.)

• Partial enabled mode (DBMS_MACADM.G_PARTIAL) enables the associated realms
and command rules to have different status settings (ENABLED, DISABLED, and
SIMULATION). The other policy status choices force all associated controls to the
same status dictated by the policy. Setting the policy status to partial allows each
realm and command rule to change status as required.

• Simulation mode (DBMS_MACACM.G.SIMULATION) enables the policy but writes
violations to realms or command rules to a designated log table with information
about the type of violation, such as a user name or the SQL statement that was
used. Simulation forces every security object in the policy to be in simulation
mode.

• Disabled mode (DBMS_MACADM.G_DISABLED) disables the policy after you create it.

In general, to create a Database Vault policy, you perform the following steps:

1. Create the necessary realms and command rules to use in the policy.

2. Create the Database Vault policy.

You can use the DBMS_MACADM.CREATE_POLICY procedure to create the policy.

3. Add one or more realms to the policy.

You can use the DBMS_MACADM.ADD_REALM_TO_POLICY procedure to add realms to
the policy.

4. Add one or more command rules to the policy.

You can use the DBMS_MACADM.ADD_CMD_TO_POLICY procedure to add command
rules to the policy.

5. Add one or more database users as owners of the policy.

You can use the DBMS_MACADM.ADD_OWNER_TO_POLICY procedure to add users to
the policy. Afterward, grant this user the DV_POLICY_OWNER role. This user will
be able to perform a limited set of tasks: changing the policy state, adding or
removing authorization from a realm, and having the SELECT privilege for a set of
the DVSYS.POLICY_OWNER* data dictionary views. By default, the DVOWNER user owns
the policy.

After the policy is created, it can be used right away.

Chapter 9
What Are Database Vault Policies?

9-2

Related Topics

• Default Oracle Database Vault Policies
Oracle Database Vault provides two default policies that you can use to better
secure user accounts and system privileges.

• Oracle Database Vault Policy APIs
You can use the DBMS_MACADM PL/SQL package to manage Oracle Database Vault
policies.

• DV_POLICY_OWNER Database Vault Owner Role
The DV_POLICY_OWNER role enables database users to manage to a limited degree
Oracle Database Vault policies.

Oracle Database Vault Policies in a Multitenant Environment
Oracle Database Vault policies are only local to the pluggable database (PDB) in
which they were created.

That is, if you created the policy in a PDB, then only local realms and command rules
can be added to it.

Default Oracle Database Vault Policies
Oracle Database Vault provides two default policies that you can use to better secure
user accounts and system privileges.

You can use the default policies in your own security configurations. If you do not need
them, then you can remove them because they are not needed for internal use by
Oracle Database Vault.

The default policies are as follows:

• Oracle Account Management Controls enforces controls over user-related
operations within Oracle Database Vault. It is used to prevent ad hoc user
account creation, user deletions, and other user account-related operations
by unauthorized privileged users. It includes the Database Vault Account
Management realm and user account management command rules for SQL
statements such as CREATE USER.

• Oracle System Protection Controls enforces controls on important database
schemas, privileges, and roles that are associated with the default Oracle
Database environment. It includes the realms such as Oracle Default Schema
Protection Realm and command rules for the system management SQL
statement ALTER SYSTEM.

Related Topics

• DBA_DV_POLICY_OBJECT View
The DBA_DV_POLICY_OBJECT data dictionary view lists information about the objects
that are protected by Oracle Database Vault policies in the current database
instance.

Chapter 9
Default Oracle Database Vault Policies

9-3

Creating an Oracle Database Policy
To create an Oracle Database Vault policy, you create a container policy that specifies
the realms and command rules that encompass the policy.

You can enable the policy during creation time, or enable it later on by executing the .

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Execute the DBMS_MACADM.CREATE_POLICY procedure to create the policy

For example:

BEGIN
 DBMS_MACADM.CREATE_POLICY(
 policy_name => 'OE Policy',
 description => 'Policy to protect the OE schema',
 policy_state => DBMS_MACADM.G_ENABLED,
 pl_sql_stack => TRUE);
END;
/

In this specification:

• policy_name can be up to 128 characters in mixed case. The DBA_DV_POLICY
data dictionary view lists existing policies.

• description can be up to 4000 characters in mixed-case.

• policy_state enables or disables the policy, using one of the following
settings:

– DBMS_MACADM.G_ENABLED (or 1) enables the policy after you create it.

– DBMS_MACADM.G_DISABLED (or 0) disables the policy after you create it.

– DBMS_MACADM.G_SIMULATION (or 2) sets the policy to simulation mode. In
simulation mode, any violations to realms or command rules used in the
policy are logged in a designated log table with sufficient information to
describe the error, such as the user name or SQL statement used.

– DBMS_MACADM.G_PARTIAL (or 3) sets the policy to partial mode. In partial
mode, the enforcement state of realms or command rules associated with
the policy can be changed individually.

• pl_sql_stack is used when simulation mode is enabled and specifies whether
to record the PL/SQL stack for failed operations. Enter TRUE to record the
PL/SQL stack, FALSE to not record.

3. So that the Database Vault policy owner can query policy related views and
execute the allowed procedures, grant this user the DV_POLICY_OWNER role.

You can grant this role to multiple users.

Chapter 9
Creating an Oracle Database Policy

9-4

For example:

GRANT DV_POLICY_OWNER TO psmith, pfitch;

4. To add a database user as the owner of the policy, execute the
DBMS_MACADM.ADD_OWNER_TO_POLICY procedure.

The policy owner will be able to modify the policy.

For example:

BEGIN
 DBMS_MACADM.ADD_OWNER_TO_POLICY(
 policy_name => 'OE Policy',
 owner_name => 'PSMITH');
END;
/

5. To add a command rule to the policy, execute the
DBMS_MACADM.ADD_CMD_RULE_TO_POLICY procedure.

If you created the policy in a PDB, then the command rule must be local to this
PDB.

For example, for a simple command rule:

BEGIN
 DBMS_MACADM.ADD_CMD_RULE_TO_POLICY(
 policy_name => 'OE Policy',
 command => 'SELECT',
 object_owner => 'OE',
 object_name => 'ORDERS',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

In this specification, the command rule must exist and match the parameters
included. To fine the command rule definition, query the DBA_DV_COMMAND_RULE.

If you want to add an ALTER SYSTEM or ALTER SESSION command rule, then you
must include the parameters specific to those command rules. For example:

BEGIN
 DBMS_MACADM.ADD_CMD_RULE_TO_POLICY(
 policy_name => 'OE Policy',
 command => 'ALTER SESSION',
 object_owner => '%',
 object_name => '%',
 clause_name => 'PARALLEL DDL',
 parameter_name => '',
 event_name => '',
 action_name => '',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

6. To add a realm to the policy, execute the DBMS_MACADM.ADD_REALM_TO_POLICY
procedure.

If you created the policy in a PDB, then the command rule must be local to this
PDB.

For example:

Chapter 9
Creating an Oracle Database Policy

9-5

BEGIN
 DBMS_MACADM.ADD_REALM_TO_POLICY(
 policy_name => 'OE Policy',
 realm_name => 'Database Vault Account Management');
END;
/

In this specification:

• policy_name is a name of the policy. The DBA_DV_POLICY view lists existing
policies.

• realm_name is the name of the realm. The DBA_DV_REALM view lists existing
realms.

Related Topics

• About Simulation Mode
Simulation mode enables you to capture violations in a simulation log instead of
blocking SQL execution by Oracle Database Vault realms and command rules.

• Oracle Database Vault Policy APIs
You can use the DBMS_MACADM PL/SQL package to manage Oracle Database Vault
policies.

Modifying an Oracle Database Vault Policy
You can use the modify an Oracle Database Vault policy.

You can modify only the description and state of a policy. If you want to make
other modifications, such as changing the realm that is associated with the
policy, then you must delete the object from the policy (for example, with the
DBMS_MACADM.DELETE_REALM_FROM_POLICY procedure) and then add the replacement
object (for example, with DBMS_MACADM.ADD_REALM_TO_POLICY) to the policy.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Find policy and check its definition.

For example:

SELECT * FROM DBA_DV_POLICY ORDER BY NAME;

3. To change the policy description, execute the
DBMS_MACADM.UPDATE_POLICY_DESCRIPTION procedure.

For example:

BEGIN
 DBMS_MACADM.UPDATE_POLICY_DESCRIPTION(
 policy_name => 'OE Policy',
 description => 'Policy to protect the OE schema from external intruders');
END;
/

Chapter 9
Modifying an Oracle Database Vault Policy

9-6

4. To change the policy state, execute the DBMS_MACADM.UPDATE_POLICY_STATE
procedure.

For example:

BEGIN
 DBMS_MACADM.UPDATE_POLICY_STATE(
 policy_name => 'OE Policy',
 policy_state => DBMS_MACADM.G_SIMULATION,
 pl_sql_stack => TRUE);
END;
/

Related Topics

• Oracle Database Vault Policy APIs
You can use the DBMS_MACADM PL/SQL package to manage Oracle Database Vault
policies.

Deleting an Oracle Database Vault Policy
You can use Enterprise Manager Cloud Control to delete Oracle Database Vault
policies.

When you delete an Oracle Database Vault policy, the underlying realms and
command rules are preserved, and they retain their individual enablement status. You
do not need to remove any objects (such as realms) that are associated with the policy
before deleting it.

1. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Query the DBA_DV_POLICY_OBJECT data dictionary view to find the policy to delete.

For example:

SELECT POLICY_NAME FROM DBA_DV_POLICY ORDER BY POLICY_NAME;

3. Execute the DBMS_MACADM.DROP_POLICY procedure to drop the policy.

For example:

EXEC DBMS_MACADM.DROP_POLICY ('OE Policy');

Related Data Dictionary Views
Oracle Database Vault provides data dictionary views that are useful for analyzing
Database Vault policies.

Table 9-1 lists data dictionary views that provide information about existing Oracle
Database Vault policies.

Chapter 9
Deleting an Oracle Database Vault Policy

9-7

Table 9-1 Data Dictionary Views Used for Oracle Database Vault Policies

Data Dictionary View Description

DBA_DV_POLICY Lists the Database Vault policies, a description, and
their state

DBA_DV_POLICY_OBJECT Provides detailed information about the policies, such
as the associated realms and command rules

DBA_DV_POLICY_OWNER Lists the owners of Database Vault policies

DBA_DV_REALM_AUTH Enables users who have been granted the
DV_POLICY_OWNER role to find information about the
authorization that was granted to realms that have been
associated with Database Vault policies, such as the
realm name, grantee, and associated rule set.

DVSYS.POLICY_OWNER_COMMAND_RU
LE

Enbles users who have been granted the
DV_POLICY_OWNER role to find information about
the command rules that have been associated with
Database Vault policies, such as the command rule
name.

DVSYS.POLICY_OWNER_POLICY Enbles users who have been granted the
DV_POLICY_OWNER role to find information such as
the names, descriptions, and states of existing policies
in the current database instance, including policies
created by other policy owners

DVSYS.POLICY_OWNER_REALM Enables users who have been granted the
DV_POLICY_OWNER role to find information about the
realms that have been associated with Database Vault
policies, such as the realm name, audit options, or type

DVSYS.POLICY_OWNER_REALM_OBJE
CT

Enables users who have been granted the
DV_POLICY_OWNER role to find information about the
objects that have been added to realms that are
associated with Database Vault policies, such as the
realm name, grantee, and associated rule set

DVSYS.POLICY_OWNER_RULE Enables users who have been granted the
DV_POLICY_OWNER role to find information about the
rules that have been associated with rule sets in
Database Vault policies, such as the rule name and its
expression

DVSYS.POLICY_OWNER_RULE_SET Enables users who have been granted the
DV_POLICY_OWNER role to find information about the
rule sets that have been associated with Database
Vault policies, such as the rule set name, its handler
information, and whether it is enabled

DVSYS.POLICY_OWNER_RULE_SET_R
ULE

Enables users who have been granted the
DV_POLICY_OWNER role to find information about the
rule sets that contain rules used in Database Vault
policies, such as the rule set name and whether it is
enabled

Related Topics

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Chapter 9
Related Data Dictionary Views

9-8

10
Using Simulation Mode for Logging Realm
and Command Rule Activities

Simulation mode writes violations to the simulation log instead of preventing SQL
execution to quickly test new and modified Oracle Database Vault controls.

• About Simulation Mode
Simulation mode enables you to capture violations in a simulation log instead of
blocking SQL execution by Oracle Database Vault realms and command rules.

• Simulation Mode Use Cases
Simulation mode is useful for testing a development configuration of new realms
and command rules.

• Logging Realms in Simulation Mode
You can set both regular and mandatory realms in simulation mode.

• Tutorial: Tracking Violations to a Realm Using Simulation Mode
This tutorial shows how to create a realm that uses simulation mode and then test
violations to the realm.

About Simulation Mode
Simulation mode enables you to capture violations in a simulation log instead of
blocking SQL execution by Oracle Database Vault realms and command rules.

Simulation mode stores the errors that are captured in one location for easy analysis.
To use simulation mode, when you create or update a realm or command rule, instead
of enabling or disabling the realm or command rule, you can set it to simulation mode.
The realm or command rule is still enabled, but because violations are not blocked and
are instead recorded to the simulation log file, you can test it for any potential errors
before you enable it for a production environment. When simulation mode is enabled,
the report may include violations for multiple realms or command rules. For more
detailed reports that can help you better identify the source of user SQL statements,
you can configure simulation mode to include the PL/SQL call stack. The call stack
captures the calling procedures and functions recursively to better troubleshoot the
Database Vault audit records. Call stack information is stored in the PL_SQL_STACK
column in the DVSYS.DBA_DV_SIMULATION_LOG data dictionary view.

For example, the following creation statement for a realm enables simulation mode
and generates the PL/SQL call stack:

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'HR Apps',
 description => 'Realm to protect the HR realm',
 enabled => DBMS_MACUTL.G_SIMULATION,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 1,
 realm_scope => DBMS_MACUTL.G_SCOPE_LOCAL,
 pl_sql_stack => TRUE);

10-1

END;
/

At this stage, SQL statements that violate realms or command rules are still able
to execute, but these activities are recorded to the DBA_DV_SIMULATION_LOG data
dictionary view. For example, the following query finds violations against the HR
Apps realm and any other realms or command rules that have been configured for
simulation mode:

SELECT USERNAME, COMMAND, SQLTEXT, VIOLATION_TYPE
FROM DBA_DV_SIMULATION_LOG
WHERE REALM_NAME = "HR APPS";

USERNAME COMMAND SQLTEXT VIOLATION_TYPE

-------- ---------- ------------------------------- --------------
DGRANT SELECT SELECT SALARY FROM HR.EMPLOYEES; Realm Violation

After you have completed testing the realm or command rule, a user who has
been granted the DV_ADMIN or DV_OWNER role can clear the DBA_DV_SIMULATION_LOG
data dictionary view by deleting the contents of the underlying table of this view,
DVSYS.SIMULATION_LOG$.

For example:

DELETE FROM DVSYS.SIMULATION_LOG$;

Or:

DELETE FROM DVSYS.SIMULATION_LOG$ WHERE COMMAND = 'SELECT';

Simulation Mode Use Cases
Simulation mode is useful for testing a development configuration of new realms and
command rules.

Use cases are as follows:

• Application certification

When you are certifying applications, you can use simulation mode as follows in
an application test environment:

1. Put all schemas for the application into mandatory realms with simulation
mode enabled.

2. Run a full regression test.

3. Analyze the simulation mode log by querying the DBA_DV_SIMULATION_LOG
data dictionary view to find who can access these schemas.

4. Update the realms with new authorizations, and the enable the realms (that is,
not using simulation mode).

5. Re-run the regression test.

• Introduction of a new command rule

You can use simulation mode on a production database that has Oracle Database
Vault enabled.

Chapter 10
Simulation Mode Use Cases

10-2

1. Put the new command rule into production in simulation mode for however
many weeks that are necessary.

2. Analyze the simulation mode log by querying DBA_DV_SIMULATION_LOG to
determine if the command rule is working correctly.

3. Make changes to the command rule as necessary.

4. Enable the command rule.

• Putting a new realm into a production database in simulation mode.

This method can help to find the system context information needed to set the
trusted path rules in rule sets and find authorized users for realms.

1. Create the new realm in mandatory mode and add the protected objects

2. Do not add any authorized users.

3. Run applications and development operations from the normal IP addresses
that will be used.

4. Check the simulation log file for both authorized users and system context
information that you can use to create trusted paths.

5. Create the trusted paths, and then add the authorized users.

6. Clear the simulation log and run the application and development operation
tasks again.

7. After a period of time, review the simulation log. If all the controls were
updated correctly, then the simulation log is empty. Log entries in the
simulation mode indicate additional changes that you need to make to the
realm and rule sets or the log entries may indicate a malicious use.

Logging Realms in Simulation Mode
You can set both regular and mandatory realms in simulation mode.

• Considerations When Logging Realms in Simulation Mode
There are several use cases to consider if you want to use realms in simulation
mode.

• Use Case: All New Realms in Simulation Mode
In this use case, all realms are either mandatory or regular and all user-created
realms are in simulation mode.

• Use Case: New Realms Introduced to Existing Realms
In this use case, you add a set of new realms to a database that has an existing
set of realms.

• Use Case: Testing the Addition of New Objects in a Realm
In this use case, you add new objects to an existing realm and then test it using
simulation mode without removing the current realm protections.

• Use Case: Testing the Removal of Objects from a Realm
In this use case, you test the removal of objects to an existing realm.

• Use Case: Testing the Addition of an Authorized User to a Realm
In this use case, you loosen security controls by adding more users. You do not
need to simulate anything if you are simply adding more authorized users.

Chapter 10
Logging Realms in Simulation Mode

10-3

• Use Case: Testing the Removal of an Authorized User from a Realm
In this use case, you want to drop an authorized user and use simulation mode to
check if the user still needs to access the realm.

• Use Case: Testing New Factors with Realms
In this use case, you want to test changes to factors.

• Use Case: Testing Changes to an Existing Command Rule
In this use case, you test changes to an existing command rule while keeping the
original command rule enabled.

Considerations When Logging Realms in Simulation Mode
There are several use cases to consider if you want to use realms in simulation mode.

• Testing an application with all new Database Vault controls: all realms are in
simulation mode

• Adding a realm to existing working Database Vault controls: only a subset of
realms are in simulation mode

• Adding new objects to an existing enabled realm and then testing the difference
with simulation mode and not disabling existing controls

• Dropping one or more existing objects from an existing enabled realm and then
testing the difference with simulation mode and not disabling existing controls

• Adding new authorized users to an existing enabled realm and then testing the
difference with simulation mode and not disabling existing controls

• Dropping one or more existing authorized users from an existing enabled realm
and then testing the difference with simulation mode and not disabling existing
controls

• Adding or changing factors in an existing enabled realm and then testing the
difference with simulation mode and not disabling existing controls

• Testing changes to a command rule in production while keeping the original
command rule enabled

When a user executes a SQL statement and it fails, it may fail for realms that
are enabled, fail for realms that are simulated, or it could fail for both of these
reasons. There could be mandatory realms, regular realms, or both. These conditions
determine the data that is captured in the simulation log.

After you create the use cases that are described in the next sections, regular realms
are completely overpowered by mandatory realms when an object has both types of
realms protecting it. In all cases where mandatory and regular realms protect the same
object, regular realms can be ignored with regard to simulation logs. Only mandatory
realm failures are captured in the simulation logs. The only time regular realm failures
are entered into the simulation log is when all realms for an object are regular realms.
And then, the following must happen for regular realms to be written to the simulation
log:

• All regular realms in simulation mode fails and

• All regular realms that are enabled also fail

If at least one enabled or simulation regular realm succeeds, then no simulation
regular realms are logged.

Chapter 10
Logging Realms in Simulation Mode

10-4

Use Case: All New Realms in Simulation Mode
In this use case, all realms are either mandatory or regular and all user-created realms
are in simulation mode.

Examples are as follows:

• Mandatory realms only, which are all in simulation mode

– The user is authorized to execute the SQL statement in all mandatory realms.
Nothing is captured in the simulation log table.

– The user fails one or more mandatory realm checks. All realm check failures
are logged to the simulation log. Mandatory realm checks where the user’s
SQL statement succeeded is not logged.

In this example, there are three mandatory realms. The user SQL statement
succeeds with one realm and fails with the other two. Only the two failed realm
checks are recorded in the simulation log.

• Regular realms only, which are all in simulation mode

– The user is authorized to execute the SQL statement in at least one regular
realm. The user should have access to the data so nothing is logged to the
simulation log.

– The user is not authorized to execute the SQL statement in all regular realms.
The simulation log captures all the failed realm authorization failures. This
enables the user to select which realm to which the user should be authorized.
The SQL only needs to be authorized in one regular realm to work and not all
regular realms need to be updated to authorize the SQL.

• Mix of mandatory and regular realms, which are all in simulation mode

– In this case, you capture the key realms when a user is rejected. In the
case with mandatory and regular realms, the mandatory realms are the key
realms. All mandatory realms must pass the authorization check for the
user to gain access. In fact, regular realms could be considered superfluous
when mandatory realms are protecting an object. So in cases where there
are both mandatory and regular realms protecting the same object, it is
only the mandatory realms that control if the SQL statement is blocked or
allowed to execute. It does not matter whether the user was authorized to the
regular realm or not. This example follows the rules for the first scenario, for
mandatory realms in simulation mode.

– The user is authorized to execute the SQL statement in all mandatory realms.
Nothing is captured in the simulation log table. Even though the user may
succeed or fail in one or more regular realms, nothing about regular realm
failure is captured.

– The user fails one or more mandatory realm checks. All realm check failures
are logged to the simulation log. Mandatory realm checks where the user SQL
statement succeeded are not be logged.

For example, there are three mandatory realms. The user SQL statement
succeeds with one realm and fails with the other two. Only the two failed realm
checks are recorded in the simulation log.

No regular realms need to be captured, because only the mandatory realms
need to be captured in the simulation log.

Chapter 10
Logging Realms in Simulation Mode

10-5

Use Case: New Realms Introduced to Existing Realms
In this use case, you add a set of new realms to a database that has an existing set of
realms.

The existing realms are enabled and working. The new realms are in simulation mode.
This use case applies only if both simulation and enabled realms are protecting the
same object.

Examples:

• New mandatory realms in simulation mode with existing enabled mandatory
realms. This use case shows some additional mandatory realms for an object:
adding more security to an existing object.

– Enabled mandatory realms and mandatory realms in simulation mode all
successful with user SQL statement: in this case, the SQL executes normally
and nothing is captured

– Enabled mandatory realms (at least one) fails and mandatory realms in
simulation mode all successful: SQL is blocked and nothing is written to the
simulation log

– Enabled mandatory realms (at least one) fails and mandatory realms in
simulation mode has one or more failures: SQL is blocked and all failing
mandatory realms in simulation mode are entered into simulation log

– Enabled mandatory realms all successful and mandatory realms in simulation
mode have at least one failure: SQL is not blocked, all failed mandatory
realms in simulation mode entered into simulation log

• New regular realms in simulation mode with existing enabled regular realms: More
regular realms are added to a security object, providing new ways for users to
access sensitive data

– Enabled regular realms (at least one) and regular realms in simulation mode
(at least one) successful: the user SQL executes normally with nothing written
to simulation log

– Enabled regular realms (at least one) is successful, and regular realms in
simulation mode all fail: user SQL executes normally, nothing is entered into
the simulation log

– Enabled regular realms all fail and regular realms in simulation mode all fail:
the user SQL is blocked and all regular realms in simulation mode are entered
into simulation log. The user must evaluate which regular realm to authorize to
if needed. The current implementation blocks the SQL and does not add the
regular realms in simulation mode into the simulation log because the enabled
regular realm would have blocked it anyway. This must change because the
user may have added a new realm to authorize the SQL in this use case.
There is no way to tell what happened if the new SQL should have worked,
but is blocked by all regular realms in simulation mode as well (when one of
the regular realms in simulation mode was designed to allow it to work). This
would simulate an entry into the audit log for this situation.

– Enabled regular realms all fail and regular realms in simulation mode (at
least one) successful: the user SQL is blocked and nothing is written to the
simulation log.

Chapter 10
Logging Realms in Simulation Mode

10-6

• New regular realms with existing enabled mandatory realms: You do not need to
do anything in this situation. The enabled mandatory realms will continue to control
the objects and the new regular realms in simulation mode will have no impact if
they are enabled or not. No simulation logs should be generated in this case.

• New mandatory realms in simulation mode with existing enabled regular realm:
While the enabled regular realm controls the objects for now, when the new
mandatory realms in simulation mode are enabled, then they will have full
control over the objects with no control by the older enabled regular realms. So,
simulation logs will be created for all mandatory realms. This is the same as the
scenario for new mandatory realms with existing enabled mandatory realms.

• New regular realms in simulation mode with existing enabled mandatory and
regular realms: The enabled mandatory realms will be the deciding realms
whether the new regular realms in simulation mode are added to the existing
enabled regular realms in the system. This is the same as the scenario as a mix
of mandatory and regular realms, all in simulation mode. Nothing is written to the
simulation logs.

• New mandatory realms in simulation mode with enabled mandatory and regular
realms: The enabled regular realms can be ignored. This is the same as the
scenario for new mandatory realms with existing enabled mandatory realms.

• Mix of new mandatory and regular realms in simulation mode with existing enabled
mandatory and regular realms: Ignore all enabled and mandatory regular realms.
This is simply adding more mandatory realms to an existing object. This is the
same scenario as new mandatory realms with existing enabled mandatory realms.

Use Case: Testing the Addition of New Objects in a Realm
In this use case, you add new objects to an existing realm and then test it using
simulation mode without removing the current realm protections.

Oracle recommends that you create a duplicate realm in simulation mode for the new
objects with the same authorized users and rule sets. This way, the existing realm can
continue to provide protection to the existing objects while testing the new object.

Use Case: Testing the Removal of Objects from a Realm
In this use case, you test the removal of objects to an existing realm.

Because you are removing security controls for an existing object, there is no need to
use simulation mode. Simply remove the object from the realm.

Use Case: Testing the Addition of an Authorized User to a Realm
In this use case, you loosen security controls by adding more users. You do not need
to simulate anything if you are simply adding more authorized users.

If you are adding new functionality that is accessing data in a realm, but are not
sure which new database users to authorize to the realm, then simply run the new
functionality as a test (which will be blocked if not already authorized). Review the
Database Vault audit logs to see the user name that attempted to access the realm
data and add any new database users that are now authorized.

Chapter 10
Logging Realms in Simulation Mode

10-7

Use Case: Testing the Removal of an Authorized User from a Realm
In this use case, you want to drop an authorized user and use simulation mode to
check if the user still needs to access the realm.

You may not be sure about dropping this user because you must check if the
authorized user is accessing the realm for authorized activities.

If the data is only protected by a regular realm, then you can clone the realm with
authorized users as the only difference. Remove the user to be dropped from the
original realm and then add this user to the cloned realm. Then the cloned realm’s
audit setting is changed to capture audit on success. This enables the dropped user
to be visible in the audit records if they accessed the realm over a period of time. Audit
policies can also be used in this case. For data that is protected by a mandatory realm,
the best solution is to create an audit policy.

Use Case: Testing New Factors with Realms
In this use case, you want to test changes to factors.

There are two scenarios where the factors can change:

• Changes to an application or the infrastructure that force a change to the factors

In this case, you do not need to keep the original factors in place. However,
objects and authorized users should be able to remain enabled during the testing
of the new factors. With an enabled realm, you can remove the factors from
the authorized users. At the same time, create a mandatory realm for the same
protected objects in simulation mode with no authorized users. The regular realm
will protect the objects from unauthorized users while the simulation realm will
capture all access along with the factor information. The simulation log can then
be mined for each user to come up with the new factors which can then be added
to the mandatory realm in simulation mode to make sure it’s clean before being
migrated to the original regular realm.

• No changes to the application or the infrastructure but changes such as new
factors being added or factors being removed take place

When factors are being added, you must clone a second simulation realm from
the original, but with the new factors added in. If the simulation logs shows that
the usage is clean, then you can safely introduce the new factors into the original
realm.

Dropping factors lowers the security profile, so you can simply drop the factor from
the rule set. No testing needs to be done.

Use Case: Testing Changes to an Existing Command Rule
In this use case, you test changes to an existing command rule while keeping the
original command rule enabled.

Command rules may need to be updated and ideally tested before the changes
are enabled in production. For a new command rule that will be added to a set of
already existing command rules, put the new command rule into simulation mode
when you create it. The other pre-existing command rules are already enabled and
offer protection.

Chapter 10
Logging Realms in Simulation Mode

10-8

If you want to modify an existing command rule, there is no way to maintain the
existing protection and test the new modification. Oracle recommends that you create
an audit policy to capture what the original command rule was doing and then set an
alert for it. The audit will not prevent the SQL as a command rule would do, but at least
you can be alerted about the action. Then you can put the new updated command rule
into simulation mode and test it.

Tutorial: Tracking Violations to a Realm Using Simulation
Mode

This tutorial shows how to create a realm that uses simulation mode and then test
violations to the realm.

• About This Tutorial
In this tutorial, you will create a realm around the HR.EMPLOYEES table and test
violations against it.

• Step 1: Create Users for This Tutorial
You must create three users for this tutorial.

• Step 2: Create a Realm and an Oracle Database Vault Policy
Next, you create a realm around the HR.EMPLOYEES table, and then add this realm
to an Oracle Database Vault policy.

• Step 3: Test the Realm and Policy
User tjones_dba will commit a violation on the realm to test the realm and policy.

• Step 4: Query the DBA_DV_SIMULATION_LOG View for Violations
Now you can check the simulation mode log for the violations that user
tjones_dba committed.

• Step 5: Enable and Re-test the Realm
Now that you have captured the violations, user psmith can update the
HR.EMPLOYEES_pol policy.

• Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

About This Tutorial
In this tutorial, you will create a realm around the HR.EMPLOYEES table and test
violations against it.

The HR.EMPLOYEES table contains confidential data such employee salaries. To test
the realm, an administrator, tjones_dba, will look up and modify the salary of
another employee, smavris. The Database Vault administrator, leo_dvowner, will use
simulation mode to track the violations to the HR.EMPLOYEES table. To accomplish this,
user leo_dvowner will create a Database Vault policy, which a delegated administrator,
user psmith, will own. User psmith will then be able to make limited changes to the
policy without needing the DV_OWNER or DV_ADMIN role.

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-9

Step 1: Create Users for This Tutorial
You must create three users for this tutorial.

The users are: psmith, who is the Database Vault policy owner; tjones_dba, who
commits violations on the HR.EMPLOYEES table; and smavris, whose salary is the
recipient of tjones_dba’s violations.

1. Log in to a PDB as a user who has been granted the DV_ACCTMGR role.

For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Create the following users and grant them the CREATE SESSION privilege.

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;
GRANT CREATE SESSION TO tjones_dba IDENTIFIED BY password;
GRANT CREATE SESSION TO smavris IDENTIFIED BY password;

Replace password with a password that is secure.

3. Connect as a user who has been granted the DV_OWNER role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

4. Grant user psmith the DV_POLICY_OWNER role, which enables psmith to manage
Database Vault policies.

GRANT DV_POLICY_OWNER TO psmith;

5. Connect as user SYS with the SYSDBA administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

6. Grant the DBA role to user tjones_dba

GRANT DBA TO tjones_dba;

7. Connect as the HR schema owner.

CONNECT HR@pdb_name
Enter password: password

8. Grant the SELECT privilege on the HR.EMPLOYEES table to user smavris

GRANT SELECT ON HR.EMPLOYEES TO smavris;

At this stage, the users have all been created and granted the appropriate privileges.

Related Topics

• Oracle Database Security Guide

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-10

Step 2: Create a Realm and an Oracle Database Vault Policy
Next, you create a realm around the HR.EMPLOYEES table, and then add this realm to an
Oracle Database Vault policy.

1. Connect to the PDB as a user who has been granted the DV_OWNER role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

2. Create the realm around HR.EMPLOYEES table as follows.

These procedures create the HR.EMPLOYEES_realm realm, add the HR.EMPLOYEES
table to this realm, authenticate HR as an owner, authenticate user psmith as an
participant, and set the realm in simulation mode.

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'HR.EMPLOYEES_realm',
 description => 'Realm to protect HR.EMPLOYEES',
 enabled => DBMS_MACUTL.G_SIMULATION,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 0);
END;
/

BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'HR.EMPLOYEES_realm',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 object_type => 'TABLE');
END;
/

3. Create the HR.EMPLOYEES_pol Database Vault policy and set it to be in simulation
mode.

These procedures create the HR.EMPLOYEES_pol policy, add the realm that was just
created to the policy, and then add user psmith as the owner of the policy.

BEGIN
 DBMS_MACADM.CREATE_POLICY(
 policy_name => 'HR.EMPLOYEES_pol',
 description => 'Policy to protect HR.EMPLOYEES',
 policy_state => DBMS_MACADM.G_SIMULATION);
END;
/

BEGIN
 DBMS_MACADM.ADD_REALM_TO_POLICY(
 policy_name => 'HR.EMPLOYEES_pol',
 realm_name => 'HR.EMPLOYEES_realm');
END;
/

BEGIN
 DBMS_MACADM.ADD_OWNER_TO_POLICY(

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-11

 policy_name => 'HR.EMPLOYEES_pol',
 owner_name => 'PSMITH');
END;
/

At this point, the realm and policy are ready to be tested.

Step 3: Test the Realm and Policy
User tjones_dba will commit a violation on the realm to test the realm and policy.

1. Connect to the PDB as user tjones_dba.

CONNECT tjones_dba@pdb_name
Enter password: password

2. Query the HR.EMPLOYEES table for the salary of smavris.

SELECT SALARY FROM HR.EMPLOYEES WHERE EMAIL = 'SMAVRIS';

Output similar to the following should appear:

 SALARY

 6500

3. Cut smavris’s salary in half.

UPDATE HR.EMPLOYEES
SET SALARY = SALARY / 2
WHERE EMAIL = 'SMAVRIS';

1 row updated.

4. Connect as user smavris.

CONNECT smavris@pdb_name

5. Query the salary of smavris.

SELECT SALARY FROM HR.EMPLOYEES WHERE EMAIL = 'SMAVRIS';

Output similar to the following should appear:

 SALARY

 3250

At this point, tjones_dba’s violations have been recorded in the
DBA_DV_SIMULATION_LOG data dictionary view.

Step 4: Query the DBA_DV_SIMULATION_LOG View for Violations
Now you can check the simulation mode log for the violations that user tjones_dba
committed.

1. Connect to the PDB as a user who has been granted the DV_OWNER role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-12

2. Query the DBA_DV_SIMULATION_LOG data dictionary view.

SELECT USERNAME, COMMAND, SQLTEXT, VIOLATION_TYPE
FROM DBA_DV_SIMULATION_LOG
WHERE REALM_NAME = 'HR.EMPLOYEES_realm';

Output similar to the following should appear:

USERNAME

COMMAND

SQLTEXT

VIOLATION_TYPE

TJONES_DBA
UPDATE
UPDATE HR.EMPLOYEES SET SALARY = SALARY / 2 WHERE EMAIL = 'SMAVRIS'
Realm Violation

USERNAME

COMMAND

SQLTEXT

VIOLATION_TYPE

TJONES_DBA
SELECT
SELECT SALARY FROM HR.EMPLOYEES WHERE EMAIL = 'SMAVRIS'
Realm Violation

The output indicates that user tjones_dba has committed two offences: first, he looked
at another employee’s salary, and not only that, he cut it in half. The violation type is a
realm violation. The query by smavris was not captured because she legitimately can
look at her salary.

Step 5: Enable and Re-test the Realm
Now that you have captured the violations, user psmith can update the
HR.EMPLOYEES_pol policy.

This is so that the HR.EMPLOYEES_realm realm can be enabled. Then you can test the
violations again.

1. Connect to the PDB as user psmith.

CONNECT psmith@pdb_name
Enter password: password

2. Update the policy so that it is enabled.

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-13

BEGIN
 DBMS_MACADM.UPDATE_POLICY_STATE(
 policy_name => 'HR.EMPLOYEES_pol',
 policy_state => 1);
END;
/

3. Connect as user tjones_dba.

CONNECT tjones_dba@pdb_name

4. Try lowering smavris’s salary to new depths.

UPDATE HR.EMPLOYEES
SET SALARY = SALARY / 2
WHERE EMAIL = 'SMAVRIS';

Output similar to the following should appear:

ERROR at line 1:
ORA-01031: insufficient privileges

The policy, now enabled, enables the realm to protect the HR.EMPLOYEES table.
smavris’s salary can shrink no more.

Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. Connect to the PDB as a user who has been granted the DV_OWNER role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

2. Remove the HR.EMPLOYEES_pol Database Vault policy.

EXEC DBMS_MACADM.DROP_POLICY('HR.EMPLOYEES_pol');

You first must remove the policy before you can drop its contents.

3. Remove the HR.EMPLOYEES_realm realm.

EXEC DBMS_MACADM.DELETE_REALM('HR.EMPLOYEES_realm');

4. Remove the simulation mode log data that was accumulated.

Because the simulation mode log only captured information about user
tjones_dba, you can remove only the rows that relate to this user.

DELETE FROM DVSYS.SIMULATION_LOG$ WHERE USERNAME = 'TJONES_DBA';

5. Connect as user HR.

CONNECT HR@pdb_name
Enter password: password

6. Revert smavris’s salary back to its pre-violated state.

UPDATE HR.EMPLOYEES
SET SALARY = 6500
WHERE EMAIL = 'SMAVRIS';

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-14

7. Connect as a user who has been granted the DV_ACCTMGR role.

For example:

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

8. Remove the users psmith, smavris, and tjones_dba.

DROP USER psmith;
DROP USER smavris;
DROP USER tjones_dba;

Chapter 10
Tutorial: Tracking Violations to a Realm Using Simulation Mode

10-15

11
Integrating Oracle Database Vault with
Other Oracle Products

You can integrate Oracle Database Vault with other Oracle products, such as Oracle
Enterprise User Security.

• Integrating Oracle Database Vault with Enterprise User Security
You can integrate Oracle Database Vault with Oracle Enterprise User Security.

• Integrating Oracle Database Vault with Transparent Data Encryption
Transparent Data Encryption complements Oracle Database Vault in that it
provides data protection when the data leaves the secure perimeter of the
database.

• Attaching Factors to an Oracle Virtual Private Database
You can attach factors to an Oracle Virtual Private Database.

• Integrating Oracle Database Vault with Oracle Label Security
You can integrate Oracle Database Vault with Oracle Label Security, and check
the integration with reports and data dictionary views.

• Integrating Oracle Database Vault with Oracle Data Guard
An Oracle Database Vault-Oracle Data Guard integration requires first, the primary
database configuration, then the standby database configration.

• Registering Oracle Internet Directory Using Oracle Database Configuration
Asssitant
You can use Oracle Internet Directory in an Oracle Database Vault-enabled
database.

Integrating Oracle Database Vault with Enterprise User
Security

You can integrate Oracle Database Vault with Oracle Enterprise User Security.

• About Integrating Oracle Database Vault with Enterprise User Security
Enterprise User Security centrally manages database users and authorizations in
one place.

• Configuring an Enterprise User Authorization
To configure an Enterprise User authorization, you must create an Oracle
Database Vault rule set to control the user access.

• Configuring Oracle Database Vault Accounts as Enterprise User Accounts
You can configure existing Oracle Database Vault user accounts as enterprise
user accounts in a PDB.

11-1

About Integrating Oracle Database Vault with Enterprise User Security
Enterprise User Security centrally manages database users and authorizations in one
place.

It is combined with Oracle Identity Management and is available in Oracle Database
Enterprise Edition.

In general, to integrate Oracle Database Vault with Oracle Enterprise User Security,
you configure the appropriate realms to protect the data that you want to protect in the
database.

After you define the Oracle Database Vault realms as needed, you can create a rule
set for the Enterprise users to allow or disallow their access.

Related Topics

• Oracle Database Enterprise User Security Administrator's Guide

Configuring an Enterprise User Authorization
To configure an Enterprise User authorization, you must create an Oracle Database
Vault rule set to control the user access.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Execute the DBMS_MACADM.CREATE_RULE procedure to create the rule that allows or
disallows user access.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Control User Access',
 rule_expr =>'SYS_CONTEXT('USERENV','AUTHENTICATED_IDENTITY') =
'user_domain_name'',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

In this specification:

• rule_name specifies a rule name. Enter any valid name that is appropriate for
your needs.

• rule_expr must use the rule expression given in this example. Replace
'user_domain_name' with the domain. For example:

'SYS_CONTEXT('USERENV','AUTHENTICATED_IDENTITY') =
'myserver.us.example.com''

• scope must be DBMS_MACUTL.G_SCOPE_LOCAL.

Chapter 11
Integrating Oracle Database Vault with Enterprise User Security

11-2

3. Execute the DBMS_MACADM.CREATE_RULE_SET procedure to create a rule set to be
used for the rule.

For example:

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'EM User Authorization',
 description => 'Allows or disallows user access to EM',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message => '',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => ' ',
 is_static => TRUE);
END;
/

4. Execute the DBMS_MACADM.ADD_RULE_TO_RULE_SET procedure to add the rule to the
rule set.

For example:

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'EM User Authorization',
 rule_name => 'Control User Access',
 rule_order => 1);
END;
/

5. Execute the DBMS_MACADM.ADD_AUTH_TO_REALM procedure to add the rule set to the
realm authorization for the data that you want to protect.

For example, for a realm called HR Realm:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Realm',
 grantee => 'pfitch',
 rule_set_name => 'EM User Authorization',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER,
 auth_scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Configuring Oracle Database Vault Accounts as Enterprise User
Accounts

You can configure existing Oracle Database Vault user accounts as enterprise user
accounts in a PDB.

1. Log in to the PDB as a user who has been granted the CREATE ROLE system
privilege.

For example:

sqlplus sec_admin@pdb_name
Enter password: password

Chapter 11
Integrating Oracle Database Vault with Enterprise User Security

11-3

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Create a global role for the DV_OWNER role and a global role for the DV_ACCTMGR
role.

For example:

CREATE ROLE g_dv_owner IDENTIFIED GLOBALLY;
CREATE ROLE g_dv_acctmgr IDENTIFIED GLOBALLY;

3. Connect as a user who has been granted the DV_OWNER role.

For example:

CONNECT sec_admin_owen@pdb_name
Enter password: password

4. Grant the DV_OWNER role to the global DV_OWNER role.

GRANT DV_OWNER TO g_dv_owner;

5. Connect as a user who has been granted the DV_ACCTMGR role.

For example:

CONNECT dbv_acctmgr@pdb_name
Enter password: password

6. Grant the DV_ACCTMGR role to the global DV_ACCTMGR role.

GRANT DV_ACCTMGR TO g_dv_acctmgr;

7. Connect as user SYS with the SYSDBA administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

8. Temporarily grant the DV_ACCTMGR user who will import the Database Vault users
into OID the CREATE TABLE privilege and the SELECT_CATALOG_ROLE role.

GRANT CREATE TABLE, SELECT_CATALOG_ROLE TO dbv_acctmgr;

9. From the command line, run the User Migration Utility (UMU) to import the Database
Vault accounts into Oracle Internet Directory (OID).

The following example imports the Database Vault accounts leo_dvowner and
bea_dvacctmgr into OID. The DV_ACCTMGR user is specified for the DBADMIN setting.

$ORACLE_HOME/rdbms/bin/umu PHASE=ONE
DBADMIN=dbv_acctmgr:password
ENTADMIN=cn=jane_ent_admin,dc=example,dc=com:password
USERS= LIST
DBLOCATION=example.com:7777:orcl
DIRLOCATION=example.com:636
USERSLIST=leo_dvowner:bea_dvacctmgr
MAPSCHEMA=PRIVATE
CONTEXT=CONTEXT="c=Users, c=us"
KREALM=EXAMPLE.COM

$ORACLE_HOME/rdbms/bin/umu PHASE=TWO
DBADMIN=dbv_acctmgr:password
ENTADMIN=cn=jane_ent_admin,dc=example,dc=com:password
DBLOCATION=example.com:7777:orcl
DIRLOCATION=example.com:636

By default, errors are written to the $ORACLE_HOME/network/log/umu.log file.

Chapter 11
Integrating Oracle Database Vault with Enterprise User Security

11-4

Enterprise User Security (EUS) User Migration Utility (UMU) is deprecated in
Oracle Database 21c. Use EUS Manager (EUSM) features instead.

10. From the Oracle Internet Directory Self Service Console (http://hostname:port/
oiddas/), grant the global DV_OWNER and DV_ACCTMGR roles (for example,
g_dv_owner and g_dv_acctmgr) to the enterprise user Database Vault accounts.

See the example of creating enterprise users in Oracle Database Enterprise User
Security Administrator's Guide for a demonstration of creating an enterprise role
from a global role and then granting this role to a user.

11. From SQL*Plus, as user SYS with the SYSDBA administrative privilege, revoke the
CREATE TABLE and SELECT_CATALOG_ROLE role from the DV_ACCTMGR user.

REVOKE CREATE TABLE, SELECT_CATALOG_ROLE FROM dbv_acctmgr;

Related Topics

• Oracle Database Enterprise User Security Administrator's Guide

Integrating Oracle Database Vault with Transparent Data
Encryption

Transparent Data Encryption complements Oracle Database Vault in that it provides
data protection when the data leaves the secure perimeter of the database.

With Transparent Data Encryption, a database administrator or database security
administrator can simply encrypt columns with sensitive content in application tables,
or encrypt entire application tablespaces, without any modification to the application.

If a user passes the authentication and authorization checks, Transparent Data
Encryption automatically encrypts and decrypts information for the user. This way, you
can implement encryption without having to change your applications.

Once you have granted the Transparent Data Encryption user the appropriate
privileges, then Transparent Data Encryption can be managed as usual and be used
complimentary to Database Vault.

Figure 11-1 shows how Oracle Database Vault realms handle encrypted data.

Figure 11-1 Encrypted Data and Oracle Database Vault

Data automatically

decrypted through

SQL

Data automatically

encrypted through

SQL

Sensitive

data remains

encrypted on backup

files

Realm

Realm

Realm

Chapter 11
Integrating Oracle Database Vault with Transparent Data Encryption

11-5

Related Topics

• Oracle Database Advanced Security Guide

Attaching Factors to an Oracle Virtual Private Database
You can attach factors to an Oracle Virtual Private Database.

1. Define a Virtual Private Database policy predicate that is a PL/SQL function or
expression.

2. For each function or expression, use the DVF.F$ PL/SQL function that is created
for each factor.

Related Topics

• Oracle Database Security Guide

Integrating Oracle Database Vault with Oracle Label
Security

You can integrate Oracle Database Vault with Oracle Label Security, and check the
integration with reports and data dictionary views.

• How Oracle Database Vault Is Integrated with Oracle Label Security
An Oracle Database Vault-Oracle Label Security integration enables you to assign
an OLS label to a Database Vault factor identity.

• Requirements for Using Oracle Database Vault with Oracle Label Security
You must fulfill specific requirements in place before you use Oracle Database
Vault with Oracle Label Security.

• Using Oracle Database Vault Factors with Oracle Label Security Policies
To enhance security, you can integrate Oracle Database Vault factors with Oracle
Label Security policies.

• Tutorial: Integrating Oracle Database Vault with Oracle Label Security
An Oracle Database Vault-Oracle Label Security integration can grant different
levels of access to two administrative users who have the same privileges.

• Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that list
information about the Oracle Database Vault-Oracle Label Security integration.

How Oracle Database Vault Is Integrated with Oracle Label Security
An Oracle Database Vault-Oracle Label Security integration enables you to assign an
OLS label to a Database Vault factor identity.

In Oracle Label Security, you can restrict access to records in database tables or
PL/SQL programs. For example, Mary may be able to see data protected by the
HIGHLY SENSITIVE label, an Oracle Label Security label on the EMPLOYEE table that
includes records that should have access limited to certain managers. Another label
can be PUBLIC, which allows more open access to this data.

In Oracle Database Vault, you can create a factor called Network, for the network on
which the database session originates, with the following identities:

Chapter 11
Attaching Factors to an Oracle Virtual Private Database

11-6

• Intranet: Used for when an employee is working on site within the intranet for your
company.

• Remote: Used for when the employee is working at home from a VPN connection.

You then assign a maximum session label to both. For example:

• Assign the Intranet identity to the HIGHLY SENSITIVE Oracle Label Security label.

• Assign the Remote identity to the PUBLIC label.

This means that when Mary is working at home using her VPN connection, she has
access only to the limited table data protected under the PUBLIC identity. But when
she is in the office, she has access to the HIGHLY SENSITIVE data, because she is
using the Intranet identity.

In a traditional auditing environment, you can audit the integration with Oracle Label
Security by using the Label Security Integration Audit Report. Oracle Database Vault
writes the audit trail to the DVSYS.AUDIT_TRAIL$ table. If unified auditing is enabled,
then you can create audit policies to capture this information. Be aware that as of
Oracle Database release 21c, traditional auditing is deprecated.

Related Topics

• Tutorial: Integrating Oracle Database Vault with Oracle Label Security
An Oracle Database Vault-Oracle Label Security integration can grant different
levels of access to two administrative users who have the same privileges.

• Oracle Database Vault Oracle Label Security APIs
You can use the DBMS_MACADM PL/SQL package to manage Oracle Label Security
labels and policies in Oracle Database Vault.

• Oracle Label Security Administrator’s Guide

Requirements for Using Oracle Database Vault with Oracle Label
Security

You must fulfill specific requirements in place before you use Oracle Database Vault
with Oracle Label Security.

• Oracle Label Security is licensed separately. Ensure that you have purchased a
license to use it.

• Before you install Oracle Database Vault, you must have already installed Oracle
Label Security.

• The installation process for Oracle Label Security creates the LBACSYS user
account. As a user who has been granted the DV_ACCTMGR role, unlock this account
and grant it a new password. For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

ALTER USER LBACSYS ACCOUNT UNLOCK IDENTIFIED BY password;

• If you plan to use the LBACSYS user account in Oracle Enterprise Manager, then
log in to Enterprise Manager as user SYS with the SYSDBA administrative privilege,
and grant this user the SELECT ANY DICTIONARY and SELECT_CATALOG_ROLE system
privileges.

• Ensure that you have the appropriate Oracle Label Security policies defined.

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-7

• If you plan to integrate an Oracle Label Security policy with a Database Vault
policy, then ensure that the policy name for Oracle Label Security is less than
24 characters. You can check the names of Oracle Label Security policies by
querying the POLICY_NAME column of the ALL_SA_POLICIES data dictionary view.

Using Oracle Database Vault Factors with Oracle Label Security
Policies

To enhance security, you can integrate Oracle Database Vault factors with Oracle
Label Security policies.

• About Using Oracle Database Vault Factors with Oracle Label Security Policies
And Oracle Database Vault-Oracle Label Security integration enables you to
control the maximum security clearance for a database session.

• Configuring Factors to Work with an Oracle Label Security Policy
You can define factors that contribute to the maximum allowable data label of an
Oracle Label Security policy.

About Using Oracle Database Vault Factors with Oracle Label Security Policies
And Oracle Database Vault-Oracle Label Security integration enables you to control
the maximum security clearance for a database session.

Oracle Database Vault controls the maximum security clearance for a database
session by merging the maximum allowable data for each label in a database session
by merging the labels of Oracle Database Vault factors that are associated to an
Oracle Label Security policy.

In brief, a label acts as an identifier for the access privileges of a database table row.
A policy is a name associated with the labels, rules, and authorizations that govern
access to table rows.

Related Topics

• Oracle Label Security Administrator’s Guide

Configuring Factors to Work with an Oracle Label Security Policy
You can define factors that contribute to the maximum allowable data label of an
Oracle Label Security policy.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Make the user LBACSYS account an owner of the realm that contains the schema to
which a label security policy has been applied.

This enables the LBACSYS account to have access to all the protected data in the
realm, so that it can properly classify the data.

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-8

For example, to make LBACSYS the owner of a realm called HR Realm:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Realm',
 grantee => 'LBACSYS',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER);
END;
/

3. Authorize the schema owner (on which the label security policy has been applied)
as either a realm participant or a realm owner.

For example:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Realm',
 grantee => 'HR',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER);
END;
/

4. Configure a label security policy for the realm.

Optionally set the label-merging algorithm for cases when Oracle Label Security
has merged two labels. In most cases, you may want to configure the label
security policy to use LII (Minimum Level/Intersection/Intersection). This setting
is the most commonly used method that Oracle Label Security administrators
use when they want to merge two labels. This setting provides optimum flexibility
when your applications must determine the resulting label that is required when
combining two data sets that have different labels. It is also necessary for
situations in which you must perform queries using joins on rows with different
data labels.

• To create a new label security policy, execute the
DBMS_MACADM.CREATE_MAC_POLICY procedure. For example:

BEGIN
 DBMS_MACADM.CREATE_MAC_POLICY(
 policy_name => 'Access Locations',
 algorithm => 'LII');
END;
/

• To modify an existing label security policy, execute the
DBMS_MACADM.UPDATE_MAC_POLICY procedure.

5. Execute the DBMS_MACADM.ADD_POLICY_FACTOR factor to associate a factor with the
label security policy.

For example:

BEGIN
 DBMS_MACADM.ADD_POLICY_FACTOR(
 policy_name => 'Access Locations',
 factor_name => 'Sector2_DB');
END;
/

6. Execute the DBMS_MACADM.CREATE_IDENTITY procedure to create a factor identity.

For example:

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-9

BEGIN
 DBMS_MACADM.CREATE_IDENTITY(
 factor_name => 'Sector2_DB',
 value => 'intranet',
 trust_level => 5);
END;
/

7. Label the factor identities using the labels for the policy.

For example:

BEGIN
 DBMS_MACADM.CREATE_POLICY_LABEL(
 identity_factor_name => 'Sector2_DB',
 identity_factor_value => 'intranet',
 policy_name => 'Access Locations',
 label => 'sensitive');
END;
/

Note:

If you do not associate an Oracle Label Security policy with factors, then
Oracle Database Vault maintains the default Oracle Label Security behavior
for the policy.

Related Topics

• ADD_AUTH_TO_REALM Procedure
The ADD_AUTH_TO_REALM procedure authorizes a user or role to access a realm as
an owner or a participant. You can authenticate both common and local realms.

• Oracle Database Vault Oracle Label Security APIs
You can use the DBMS_MACADM PL/SQL package to manage Oracle Label Security
labels and policies in Oracle Database Vault.

• Oracle Database Vault Factor APIs
The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

Tutorial: Integrating Oracle Database Vault with Oracle Label Security
An Oracle Database Vault-Oracle Label Security integration can grant different levels
of access to two administrative users who have the same privileges.

• About This Tutorial
You can use Oracle Database Vault factors with Oracle Label Security and Oracle
Virtual Private Database (VPD) to restrict sensitive data access.

• Step 1: Create Users for This Tutorial
You must create two administrative users for this tutorial.

• Step 2: Create the Oracle Label Security Policy
Next, you can create the Oracle Label Security policy and grant users the
appropriate privileges for it.

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-10

• Step 3: Create Oracle Database Vault Rules to Control the OLS Authorization
After you create the Oracle Label Security policy, you can create Database Vault
rules to work with it.

• Step 4: Update the ALTER SYSTEM Command Rule to Use the Rule Set
Before the rule set can be used, you must update the ALTER SYSTEM command
rule, which is a default command rule.

• Step 5: Test the Authorizations
With all the components in place, you are ready to test the authorization.

• Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

About This Tutorial
You can use Oracle Database Vault factors with Oracle Label Security and Oracle
Virtual Private Database (VPD) to restrict sensitive data access.

You can restrict this data so that it is only exposed to a database session when the
correct combination of factors exists, defined by the security administrator, for any
given database session.

Step 1: Create Users for This Tutorial
You must create two administrative users for this tutorial.

1. Log in to a PDB as a user who has been granted the DV_ACCTMGR role.

For example:

sqlplus bea_dvacctmgr@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Create the following local users:

GRANT CREATE SESSION TO mdale IDENTIFIED BY password CONTAINER = CURRENT;
GRANT CREATE SESSION TO jsmith IDENTIFIED BY password CONTAINER = CURRENT;

Replace password with a password that is secure.

3. Connect as a user who can grant system privileges and who has been granted the
owner authorization for the Oracle System Privilege and Role Management realm,
and then grant administrative privileges to users mdale and jsmith.

CONNECT dba_psmith@pdb_name
Enter password: password

GRANT DBA TO mdale, jsmith;

At this stage, users mdale and jsmith have identical administrative privileges.

Related Topics

• Oracle Database Security Guide

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-11

Step 2: Create the Oracle Label Security Policy
Next, you can create the Oracle Label Security policy and grant users the appropriate
privileges for it.

1. In SQL*Plus, connect to the PDB as the Oracle Label Security administrator,
LBACSYS.

CONNECT LBACSYS@pdb_name
Enter password: password

If user LBACSYS is locked and expired, connect as the Database Vault Account
Manager, unlock and unexpire the LBACSYS account, and then log back in as
LBACSYS.

For example:

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

ALTER USER LBACSYS ACCOUNT UNLOCK IDENTIFIED BY password;

CONNECT LBACSYS
Enter password: password

2. Create a new Oracle Label Security policy:

EXEC SA_SYSDBA.CREATE_POLICY('PRIVACY','PRIVACY_COLUMN','NO_CONTROL');

3. Create the following levels for the PRIVACY policy:

EXEC SA_COMPONENTS.CREATE_LEVEL('PRIVACY',2000,'S','SENSITIVE');
EXEC SA_COMPONENTS.CREATE_LEVEL('PRIVACY',1000,'C','CONFIDENTIAL');

4. Create the PII compartment.

EXEC SA_COMPONENTS.CREATE_COMPARTMENT('PRIVACY',100,'PII','PERS_INFO');

5. Grant users mdale and jsmith the following labels:

EXEC SA_USER_ADMIN.SET_USER_LABELS('PRIVACY','mdale','S:PII');
EXEC SA_USER_ADMIN.SET_USER_LABELS('PRIVACY','jsmith','C');

User mdale is granted the more sensitive label, Sensitive, which includes the PII
compartment. User jsmith gets the Confidential label, which is less sensitive.

Step 3: Create Oracle Database Vault Rules to Control the OLS Authorization
After you create the Oracle Label Security policy, you can create Database Vault rules
to work with it.

1. Connect to the PDB as the Database Vault Owner.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

2. Create the following rule set:

EXEC DBMS_MACADM.CREATE_RULE_SET('PII Rule Set', 'Protect PII data from
privileged users','Y',1,0,2,NULL,NULL,0,NULL);

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-12

3. Create a rule for the PII Rule Set.

EXEC DBMS_MACADM.CREATE_RULE('Check OLS
Factor', 'dominates(sa_utl.numeric_label(''PRIVACY''),
char_to_label(''PRIVACY'',''S:PII'')) = ''1''');

Ensure that you use single quotes, as shown in this example, and not double
quotes.

4. Add the Check OLS Factor rule to the PII Rule Set.

EXEC DBMS_MACADM.ADD_RULE_TO_RULE_SET('PII Rule Set', 'Check OLS Factor');

Step 4: Update the ALTER SYSTEM Command Rule to Use the Rule Set
Before the rule set can be used, you must update the ALTER SYSTEM command rule,
which is a default command rule.

1. As the Database Vault Owner, check the current value of the ALTER SYSTEM
command rule, which is one of the default command rules when you install Oracle
Database Vault.

SELECT * FROM DBA_DV_COMMAND_RULE WHERE COMMAND = 'ALTER SYSTEM';

2. Make a note of these settings so that you can revert them to their original values
later on.

In a default installation, the ALTER SYSTEM command rule uses the Allow Fine
Grained Control of System Parameters rule set, and is enabled.

3. Update the ALTER SYSTEM command rule to be associated with the PII Rule Set.

EXEC DBMS_MACADM.UPDATE_COMMAND_RULE('ALTER SYSTEM', 'PII Rule Set', '%',
'%', 'Y');

This command adds the PII Rule Set to the ALTER SYSTEM command rule,
applies it to all object owners and object names, and enables the command rule.

Step 5: Test the Authorizations
With all the components in place, you are ready to test the authorization.

1. In SQL*Plus, log in to the PDB as user mdale.

CONNECT mdale@pdb_name
Enter password: password

2. Check the current setting for the AUDIT_TRAIL initialization parameter.

SHOW PARAMETER AUDIT_TRAIL

NAME TYPE VALUE
------------------------------------ ----------- ----------------------
audit_trail string DB

Make a note of this setting, so that you can revert it to its original setting later on.

3. As user mdale, use the ALTER SYSTEM statement to modify the CPU_COUNT
parameter.

ALTER SYSTEM SET CPU_COUNT = 4;
System altered.

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-13

Because user mdale was assigned the Sensitive label with the PII compartment,
he can use the ALTER SYSTEM statement to modify the AUDIT_TRAIL system
parameter.

4. Set the CPU_COUNT parameter back to its original value.

For example:

ALTER SYSTEM SET CPU_COUNT = 2;

5. Log in as user jsmith and then issue the same ALTER SYSTEM statement:

CONNECT jsmith@pdb_name
Enter password: password

ALTER SYSTEM SET CPU_COUNT = 14;

The following output should appear:

ERROR at line 1:
ORA-01031: insufficient privileges

Because user jsmith was assigned only the Confidential label, he cannot perform
the ALTER SYSTEM statement.

Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. Connect to the PDB as the Oracle Label Security administrator and remove the
label policy and its components.

CONNECT LBACSYS@pdb_name
Enter password: password

EXEC SA_SYSDBA.DROP_POLICY('PRIVACY', TRUE);

2. Connect as the Oracle Database Vault Owner and issue the following commands
in the order shown, to set the ALTER SYSTEM command rule back to its previous
setting and remove the rule set.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

EXEC DBMS_MACADM.UPDATE_COMMAND_RULE('ALTER SYSTEM', 'Allow System
Parameters','%', '%', 'Y');
EXEC DBMS_MACADM.DELETE_RULE_FROM_RULE_SET('PII Rule Set', 'Check OLS
Factor');
EXEC DBMS_MACADM.DELETE_RULE('Check OLS Factor');
EXEC DBMS_MACADM.DELETE_RULE_SET('PII Rule Set');
COMMIT;

3. Connect as the Database Vault Account Manager and remove users mdale and
jsmith.

CONNECT bea_dvacctmgr@pdb_name
Enter password: password

DROP USER mdale;
DROP USER jsmith;

Chapter 11
Integrating Oracle Database Vault with Oracle Label Security

11-14

Related Reports and Data Dictionary Views
Oracle Database Vault provides reports and data dictionary views that list information
about the Oracle Database Vault-Oracle Label Security integration.

Table 11-1 lists the Oracle Database Vault reports.

Table 11-1 Reports Related to Database Vault and Oracle Label Security
Integration

Report Description

Factor Configuration Issues
Report

Lists factors in which the Oracle Label Security policy does not
exist.

Identity Configuration
Issues Report

Lists invalid label identities (the Oracle Label Security label for this
identity has been removed and no longer exists).

Security Policy Exemption
Report

Lists accounts and roles that have the EXEMPT ACCESS POLICY
system privilege granted to them. Accounts that have this privilege
can bypass all Virtual Private Database policy filters and any
Oracle Label Security policies that use Oracle Virtual Private
Database indirectly.

Table 11-2 lists data dictionary views that provide information about existing Oracle
Label Security policies used with Oracle Database Vault.

Table 11-2 Data Dictionary Views Used for Oracle Label Security

Data Dictionary View Description

DBA_DV_MAC_POLICY Lists the Oracle Label Security policies defined

DBA_DV_MAC_POLICY Lists the factors that are associated with Oracle Label Security
policies

DBA_DV_POLICY_LABEL Lists the Oracle Label Security label for each factor identifier in
the DBA_DV_IDENTITY view for each policy

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Integrating Oracle Database Vault with Oracle Data Guard
An Oracle Database Vault-Oracle Data Guard integration requires first, the primary
database configuration, then the standby database configration.

• Step 1: Configure the Primary Database
You must run the DGMGRL utility, register Database Vault, and then run the ALTER
SYSTEM statement, to configure the primary database.

Chapter 11
Integrating Oracle Database Vault with Oracle Data Guard

11-15

• Step 2: Configure the Standby Database
You can perform the standby database configuration within the database to be
used for the standby database.

• How Auditing Works After an Oracle Database Vault-Oracle Active Data Guard
Integration
After you have integrated Oracle Database Vault with Oracle Active Data Guard,
how auditing is configured affects how audit records are generated.

Step 1: Configure the Primary Database
You must run the DGMGRL utility, register Database Vault, and then run the ALTER
SYSTEM statement, to configure the primary database.

1. For Linux and UNIX systems, ensure there is an /etc/oratab entry for the
database on the node in which you are installing Oracle Database Vault.

2. If you are using Data Guard Broker, then from the command prompt, disable the
configuration as follows:

dgmgrl sys
Enter password: password

DGMGRL> disable configuration;

3. Register (that is, configure and enable) Oracle Database Vault on the primary
server.

By default, Oracle Database Vault is installed as part of Oracle Database. You can
check the registration status by querying the DBA_DV_STATUS data dictionary view.

4. Log in to the PDB as user SYS with the SYSDBA administrative privilege.

sqlplus sys@pdb_name as sysdba
Enter password: password

5. Run the following ALTER SYSTEM statements:

ALTER SYSTEM SET AUDIT_SYS_OPERATIONS=TRUE SCOPE=SPFILE;
ALTER SYSTEM SET OS_ROLES=FALSE SCOPE=SPFILE;
ALTER SYSTEM SET RECYCLEBIN='OFF' SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_LOGIN_PASSWORDFILE='EXCLUSIVE' SCOPE=SPFILE;
ALTER SYSTEM SET SQL92_SECURITY=TRUE SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_OS_AUTHENT=FALSE SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_OS_ROLES=FALSE SCOPE=SPFILE;

6. Run the ALTER SYSTEM statement on each database instance to set the parameters
as shown in Step 5.

7. Close and then reopen each PDB.

CONNECT SYS@pdb_name AS SYSDBA
Enter password: password

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

Related Topics

• Getting Started with Oracle Database Vault
Before you can start using Oracle Database Vault, you must register it with the
Oracle database.

Chapter 11
Integrating Oracle Database Vault with Oracle Data Guard

11-16

Step 2: Configure the Standby Database
You can perform the standby database configuration within the database to be used
for the standby database.

1. Log into the database instance as user SYS with the SYSDBA administrative
privilege.

sqlplus sys@pdb_name as sysdba
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Mount a standby database instance.

ALTER DATABASE MOUNT STANDBY DATABASE;

3. Run the following ALTER SYSTEM statements:

ALTER SYSTEM SET AUDIT_SYS_OPERATIONS=TRUE SCOPE=SPFILE;
ALTER SYSTEM SET OS_ROLES=FALSE SCOPE=SPFILE;
ALTER SYSTEM SET RECYCLEBIN='OFF' SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_LOGIN_PASSWORDFILE='EXCLUSIVE' SCOPE=SPFILE;
ALTER SYSTEM SET SQL92_SECURITY=TRUE SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_OS_AUTHENT=FALSE SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_OS_ROLES=FALSE SCOPE=SPFILE;

4. Close and then reopen the PDB.

For example:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

5. Mount the next standby instance.

6. Restart the managed recovery as follows:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

7. If you are using Data Guard Broker, then from the command line, re-enable the
configuration.

dgmgrl sys
Enter password: password

DGMGRL> enable configuration;

This command applies the changes to the physical standby database made by the
Oracle Database Vault installation on the primary database.

8. Repeat the physical standby installation process on each physical standby
database. For example, if there are three physical standby databases, then run
these procedures or each standby database.

How Auditing Works After an Oracle Database Vault-Oracle Active
Data Guard Integration

After you have integrated Oracle Database Vault with Oracle Active Data Guard, how
auditing is configured affects how audit records are generated.

Chapter 11
Integrating Oracle Database Vault with Oracle Data Guard

11-17

If you want to use the Active Data Guard physical standby database for read-only
queries, then you must use pure unified auditing, not mixed mode. If mixed mode is
used, then any query in the Active Data Guard physical standby that generates Oracle
Database Vault audit records will be blocked. Oracle Database Vault cannot write to
the traditional Database Vault audit table (DVSYS.AUDIT_TRAILS$). Unified auditing will
ensure that the Database Vault audit data is written into the operating system log
files in an Oracle Active Data Guard physical standby database. You can move the
data in these log files to the unified audit trail. Remember that to audit Database
Vault activities, you must create unified audit policies, because the Database Vault
traditional audit settings do not apply to unified auditing.

Registering Oracle Internet Directory Using Oracle
Database Configuration Asssitant

You can use Oracle Internet Directory in an Oracle Database Vault-enabled database.

However, if you want to register Oracle Internet Directory (OID) using Oracle Database
Configuration Assistant (DBCA), then you must first disable Oracle Database Vault.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

Chapter 11
Registering Oracle Internet Directory Using Oracle Database Configuration Asssitant

11-18

12
DBA Operations in an
Oracle Database Vault Environment

Database administrators can perform operations in an Oracle Database Vault
environment, such as using Database Vault with products such as Oracle Data Pump.

• Using Oracle Database Vault with Oracle Enterprise Manager
Oracle Database Vault administrators can perform tasks in Oracle Enterprise
Manager Cloud Control such as propagating polices to other databases.

• Using Oracle Data Pump with Oracle Database Vault
Database administrators can authorize Oracle Data Pump users to work in a
Database Vault environment.

• Using Oracle Scheduler with Oracle Database Vault
Users who are responsible for scheduling database jobs must have Oracle
Database Vault-specific authorization.

• Using Information Lifecycle Management with Oracle Database Vault
Users who perform Information Lifecycle Management operations on an Oracle
Database Vault-enabled database must be granted authorization to perform these
operations.

• Using Oracle Database Replay with Oracle Database Vault
Database administrators can authorize Oracle Database Replay users to work in a
Database Vault environment.

• Executing Preprocessor Programs with Oracle Database Vault
Users who execute preprocessor programs through external tables must have
Oracle Database Vault-specific authorization.

• Using Database Vault Operations Control to Restrict Multitenant Common User
Access to Local PDB Data
You can control PDB access by CDB root common users, such as infrastructure
database administrators.

• Preventing Multitenant Local Users from Blocking Common Operations
You can prevent multitenant local users from blocking common operations when
they attempt to create Oracle Database Vault protections on common user objects.

• Oracle Recovery Manager and Oracle Database Vault
You can use Recovery Manager (RMAN) in an Oracle Database Vault
environment.

• Privileges for Using XStream with Oracle Database Vault
If you want to use XStream in an Oracle Database Vault environment, then you
must have the appropriate privileges.

• Privileges for Using Oracle GoldenGate in with Oracle Database Vault
If you want to use Oracle GoldenGate in an Oracle Database Vault environment,
then you must have the appropriate privileges.

12-1

• Using Data Masking in an Oracle Database Vault Environment
You must have the correct authorization to perform data masking in an Oracle
Database Vault environment.

• Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB
You can convert a standalone Oracle Database database from release 12c
through 19c to a PDB, and then plug this PDB into a CDB.

• Using the ORADEBUG Utility with Oracle Database Vault
The ORADEBUG utility is used primarily by Oracle Support to diagnose problems that
may arise with an Oracle database.

• Performing Patch Operations in an Oracle Database Vault Environment
User SYS must have the DV_PATCH_ADMIN role to perform a patch operations on an
Oracle Database Vault-enabled database.

Using Oracle Database Vault with Oracle Enterprise
Manager

Oracle Database Vault administrators can perform tasks in Oracle Enterprise Manager
Cloud Control such as propagating polices to other databases.

• Propagating Oracle Database Vault Configurations to Other Databases
You can propagate Database Vault configurations (such as a realm configuration)
to other Database Vault-protected databases.

• Enterprise Manager Cloud Control Alerts for Oracle Database Vault Policies
To view Oracle Database Vault alerts, you must be granted the DV_OWNER,
DV_ADMIN, or DV_SECANALYST role.

• Oracle Database Vault-Specific Reports in Enterprise Manager Cloud Control
From the Database Vault home page, you can find information about violations.

• Changing the DBSNMP Account Password in a Database Vault Environment
Before you can change the password for the DBSNMP user account, you must
revoke the DV_MONITOR role from this account.

Propagating Oracle Database Vault Configurations to Other
Databases

You can propagate Database Vault configurations (such as a realm configuration) to
other Database Vault-protected databases.

1. Log in to Oracle Database Vault Administrator from Cloud Control as a user who
has been granted the DV_OWNER or DV_ADMIN role and the SELECT ANY DICTIONARY
privilege. Logging in to Oracle Database Vault from Oracle Enterprise Cloud
Control explains how to log in.

2. In the Database Vault home page, under Database Vault Policy Propagation,
select Database Vault Policy Propagation.

The Available Policies area in the Policy Propagation subpage lists a summary
of the Oracle Database Vault configurations that were created for the current
database: that is, configurations that were created for realms, command rules,
rule sets, and secure application roles. It does not list the Oracle Database Vault

Chapter 12
Using Oracle Database Vault with Oracle Enterprise Manager

12-2

policies that were introduced in Oracle Database release 12c (12.2). From here,
you can propagate these configurations to another database.

3. Under Available Policies, select each configuration that you want to propagate to
another database.

4. Under Destination Databases, click the Add button.

5. Under Search and Select: Database Vault Enabled Destination Databases, search
for the destination databases, and then select each database to which you want to
propagate the configurations. Then click the Select button.

6. Under Destination Databases, do the following:

a. Under Apply credentials across destination database(s), enter the user name
and password of the administrator of the Database Vault database that
contains the configurations you want to propagate.

This feature applies the Database Vault administrator's user name and
password to all of the selected destination databases.

b. Select each database to which you want to propagate the configurations.

c. Enter the Database Vault administrator user name and password for each
database.

d. Click the Apply button.

7. In the Propagate Options page, select from the following options.

Any changes made to the seeded realms, command rules, rule sets, and so on
will not be propagated to the destination databases. Only custom-created data are
propagated.

• Restore on failure: If the propagation operations encounters errors, then the
propagation is rolled back. That is, the original policies on the destination

Chapter 12
Using Oracle Database Vault with Oracle Enterprise Manager

12-3

database are restored. If you do not select this option, then the policy
propagation on the destination database continues and ignores any errors.

• Skip propagation if user defined policies exist: If the destination databases
already have the user-defined configurations, then the propagation operation
is not attempted. If you do not select this option, then regardless of whether
user-defined policies exist on the destination database, all the existing
configurations are cleared, and the configurations from the source database
are applied to the destination database.

• Propagate Enterprise Manager metric thresholds for database vault
metrics: If the source database has Oracle Database Vault metric thresholds
set, then these thresholds are also propagated to the destination databases. If
you do not select this option, then only configurations are propagated and not
the Oracle Database Vault thresholds.

8. Click the OK button.

9. In the Confirmation window, click OK.

A message indicating success or failure appears. If the propagation succeeds,
then the configurations are active right away in their destination databases.

Enterprise Manager Cloud Control Alerts for Oracle Database Vault
Policies

To view Oracle Database Vault alerts, you must be granted the DV_OWNER, DV_ADMIN, or
DV_SECANALYST role.

The alerts are as follows:

• Database Vault Attempted Realm Violations. This alert helps the Oracle
Database Vault security analyst (DV_SECANALYST role) to monitor violation attempts
on the Database Vault database. This user can select the realms to be affected by
the alert and filter these realms based on the different types of attempts by using
error codes. You can enable this metric from the Metrics and Policy Settings page.
By default, the attempted realm violations are collected every 24 hours.

• Database Vault Attempted Command Rule Violations. The functionality for this
alert is the same as for Database Vault Attempted Realm Violations, except that it
focuses on violations on command rules.

• Database Vault Realm Configuration Issues. This metric tracks and raises an
alert if users misconfigure realms. This metric is enabled when you install Oracle
Database vault, and by default it collects data every one hour.

• Database Vault Command Rule Configuration Issues. This functionality for this
alert is that same as Database Vault Realm Configuration Issues, except that it
focuses on configuration changes to command rules.

• Database Vault Policy Changes. This metric raises an alert on any change to
any Database Vault policy, such as policies for realms and command rules. It
provides a detailed policy changes report.

Oracle Database Vault-Specific Reports in Enterprise Manager Cloud
Control

From the Database Vault home page, you can find information about violations.

Chapter 12
Using Oracle Database Vault with Oracle Enterprise Manager

12-4

These violations are as follows:

• Top five attempted violations on realm and command rule

• Top five attempted violations by database users and client host

• Time series-based graphical reports on attempted violations for more detailed
analysis

To have full access to the Database Vault reports, you must log into Database
Vault Administrator as a user who has been granted the DV_OWNER, DV_ADMIN, or
DV_SECANALYST role.

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

Changing the DBSNMP Account Password in a Database Vault
Environment

Before you can change the password for the DBSNMP user account, you must revoke
the DV_MONITOR role from this account.

In an Oracle Database Vault environment, the DBSNMP user account is granted the
DV_MONITOR role. (The DBSNMP user can change his or her own password directly,
without having to have the DV_MONITOR role revoked first.)

1. Log in to the PDB using an account that has been granted the DV_OWNER role.

2. Revoke the DV_MONITOR role from the DBSNMP user account.

3. Connect as a user who has been granted the DV_ACCTMGR role and then change
the DBSNMP user account password.

4. Connect to the PDB as the DV_OWNER user and then grant the DV_MONITOR role
back to the DBSNMP user account.

Using Oracle Data Pump with Oracle Database Vault
Database administrators can authorize Oracle Data Pump users to work in a Database
Vault environment.

• About Using Oracle Data Pump with Oracle Database Vault
Database administrators who use Oracle Data Pump in an Database Vault
environment must have Database Vault-specific authorization to export and import
data.

• Authorizing Users or Roles for Data Pump Regular Export and Import Operations
You can use different authorization types for administrators who perform Oracle
Data Pump export and import operations in a Database Vault environment.

• Authorizing Users or Roles for Data Pump Transportable Export and Import
Operations
You can grant authorization levels for users who must perform Oracle Data Pump
transportable operations, either directly or through a role.

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-5

• Guidelines for Exporting or Importing Data in a Database Vault Environment
After you grant the Oracle Data Pump database administrator the proper
authorization, this user can perform any export or import operations that are
necessary.

About Using Oracle Data Pump with Oracle Database Vault
Database administrators who use Oracle Data Pump in an Database Vault
environment must have Database Vault-specific authorization to export and import
data.

This type of user must have Database Vault privileges in addition to the standard
Oracle Data Pump privileges. If these users want to perform Oracle Data Pump
transportable tablespace operations, then they must have special authorization. You
can check a user's authorizations for using Data Pump in an Oracle Database Vault
environment by querying the DBA_DV_DATAPUMP_AUTH data dictionary view. You can
grant this authorization to either individual users or to database roles.

Authorizing Users or Roles for Data Pump Regular Export and Import
Operations

You can use different authorization types for administrators who perform Oracle Data
Pump export and import operations in a Database Vault environment.

• About Authorizing Users or Roles for Oracle Data Pump Regular Operations
Users who have Oracle Data Pump authorization can perform regular Oracle Data
Pump operations in a Database Vault environment.

• Levels of Database Vault Authorization for Oracle Data Pump Regular Operations
Oracle Database Vault provides several levels of authorization required for Oracle
Data Pump regular operations in a Database Vault environment.

• Authorizing Users or Roles for Oracle Data Pump Regular Operations in Database
Vault
You can authorize a database administrator or a role to use Data Pump for regular
operations in an Oracle Database Vault environment.

• Revoking Oracle Data Pump Authorization from Users or Roles
You can revoke authorization from the database administrator or role who is using
Oracle Data Pump for regular operations.

About Authorizing Users or Roles for Oracle Data Pump Regular Operations
Users who have Oracle Data Pump authorization can perform regular Oracle Data
Pump operations in a Database Vault environment.

Full level Data Pump authorization enables these users to perform transportable
export and import operations as well.

Related Topics

• Authorizing Users or Roles for Data Pump Transportable Export and Import
Operations
You can grant authorization levels for users who must perform Oracle Data Pump
transportable operations, either directly or through a role.

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-6

Levels of Database Vault Authorization for Oracle Data Pump Regular
Operations

Oracle Database Vault provides several levels of authorization required for Oracle
Data Pump regular operations in a Database Vault environment.

Table 12-1 describes these levels.

Table 12-1 Levels of Authorization for Oracle Data Pump Regular Operations

Scenario Authorization Required

A database administrator
wants to import data into
another schema.

You must grant this user (or a role) the BECOME USER
system privilege and the IMP_FULL_DATABASE role.1 To find the
privileges a user has been granted, query the USER_SYS_PRIVS
data dictionary view.

A database administrator
wants to export or import
data in a schema that
has no Database Vault
protection.

You only need to grant this user (or a role) the standard Oracle
Data Pump privileges, which are the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles. If the user wants to import data,
grant this user the BECOME USER system privilege.

A database administrator
wants to export or import
data in a protected schema.

In addition to the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles, you must grant this user (or
a role) Database Vault-specific authorization by using the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure. This
authorization applies to both the EXPDP and IMPDP utilities.
Later on, you can revoke this authorization by using the
DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER procedure.

If the user wants to import data, also grant this user the BECOME
USER system privilege.

A database administrator
wants to export or import
the contents of an entire
database.

In addition to the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles and the authorization granted by
the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure, you
must grant this user (or a role) the DV_OWNER role. If the user
wants to import data, grant this user the BECOME USER system
privilege.

1 The BECOME USER privilege is part of the IMP_FULL_DATABASE role by default, but in an Oracle
Database Vault environment, this privilege is revoked.

Authorizing Users or Roles for Oracle Data Pump Regular Operations in
Database Vault

You can authorize a database administrator or a role to use Data Pump for regular
operations in an Oracle Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

2. Ensure that the user or role to whom you want to grant authorization has been
granted the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles, which are required
for using Oracle Data Pump.

SELECT GRANTEE, GRANTED_ROLE FROM DBA_ROLE_PRIVS WHERE GRANTED_ROLE LIKE
'%FULL%';

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-7

3. Grant this user or role Oracle Database Vault authorization for Oracle Data Pump
regular operations.

For example, to authorize the Data Pump user DP_MGR to export and import objects
for the database table EMPLOYEES:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR', 'EMPLOYEES');

To restrict DP_MGR's activities to a specific schema, you would enter the following
procedure:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR');

To authorize users who have been granted the DP_MGR_ROLE role to export and
import objects for the entire database, enter the following:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR_ROLE');

After you run the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure, you can
check the authorization of the user or role by querying the DBA_DV_DATAPUMP_AUTH
data dictionary view.

4. If the user must export the entire database, then grant the user (or role) the
DV_OWNER role.

For example, for a role:

GRANT DV_OWNER TO DP_MGR_ROLE;

Related Topics

• AUTHORIZE_DATAPUMP_USER Procedure
The AUTHORIZE_DATAPUMP_USER procedure authorizes a user to perform Oracle
Data Pump operations when Oracle Database Vault is enabled.

• DBA_DV_DATAPUMP_AUTH View
The DBA_DV_DATAPUMP_AUTH data dictionary view lists the authorizations for using
Oracle Data Pump in an Oracle Database Vault environment.

Revoking Oracle Data Pump Authorization from Users or Roles
You can revoke authorization from the database administrator or role who is using
Oracle Data Pump for regular operations.

1. If you granted the user or role the DV_OWNER role, then optionally revoke the
DV_OWNER role.

REVOKE DV_OWNER FROM DP_MGR;

2. Query the DBA_DV_DATAPUMP_AUTH data dictionary view to find the users or roles
that have been granted Oracle Data Pump authorizations.

SELECT GRANTEE, SCHEMA, OBJECT FROM DBA_DV_DATAPUMP_AUTH;

3. Use the information you gathered from the preceding step to build the
DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER command.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR', 'EMPLOYEES');

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-8

Ensure that this unauthorization complements the original authorization action. In
other words, if you originally gave DP_MGR authorization over the entire database,
then the following commands will not work:

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR');

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR', 'EMPLOYEES');

Related Topics

• UNAUTHORIZE_DATAPUMP_USER Procedure
The UNAUTHORIZE_DATAPUMP_USER procedure revokes the authorization that was
granted by the AUTHORIZE_DATAPUMP_USER procedure.

• DBA_DV_DATAPUMP_AUTH View
The DBA_DV_DATAPUMP_AUTH data dictionary view lists the authorizations for using
Oracle Data Pump in an Oracle Database Vault environment.

Authorizing Users or Roles for Data Pump Transportable Export and
Import Operations

You can grant authorization levels for users who must perform Oracle Data Pump
transportable operations, either directly or through a role.

• About Authorizing Users for Oracle Data Pump Transportable Operations
You can grant users (either directly or through a role) different levels of
transportable operation authorization.

• Levels of Database Vault Authorization for Data Pump Transportable Operations
Oracle Database Vault provides levels of authorization required for users who
must perform export and import transportable operations in a Database Vault
environment.

• Authorizing Users or Roles for Data Pump Transportable Operations in Database
Vault
You can authorize users or roles to perform Oracle Data Pump transportable
export or import operations in a Database Vault environment.

• Revoking Transportable Tablespace Authorization from Users or Roles
You can revoke authorization from the database administrator who is using Data
Pump.

About Authorizing Users for Oracle Data Pump Transportable Operations
You can grant users (either directly or through a role) different levels of transportable
operation authorization.

If you want users to only have the authorization to perform transportable export and
import operations, then you must grant users or roles the correct authorization, based
on their tasks.

Related Topics

• Authorizing Users or Roles for Data Pump Regular Export and Import Operations
You can use different authorization types for administrators who perform Oracle
Data Pump export and import operations in a Database Vault environment.

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-9

Levels of Database Vault Authorization for Data Pump Transportable
Operations

Oracle Database Vault provides levels of authorization required for users who must
perform export and import transportable operations in a Database Vault environment.

Table 12-2 describes these levels.

Table 12-2 Levels of Authorization for Oracle Data Pump Transporatable Operations

Scenario Authorization Required

A database administrator wants to
transportable export a tablespace or table
that has no Database Vault protection.

You only need to grant this user (or a role) the standard Oracle
Data Pump privileges, which are the EXP_FULL_DATABASE and
IMP_FULL_DATABASE roles.

A database administrator wants to
transportable export a tablespace where
there is Database Vault protection (for
example, realm or command rule for a table
object residing on that tablespace).

In addition to the EXP_FULL_DATABASE and IMP_FULL_DATABASE
roles, you must grant this user (or a role) Database
Vault-specific transportable tablespace authorization by using
the DBMS_MACADM.AUTHORIZE_TTS_USER procedure. Later
on, you can revoke this authorization by using the
DBMS_MACADM.UNAUTHORIZE_TTS_USER procedure.

Remember that users who have been granted full
database level Oracle Data Pump authorization (through the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure) can perform
these operations as well.

A database administrator wants to
transportable export a table within a
tablespace where there is Database
Vault protection (for example, a realm or
command rule for a table object residing on
the tablespace that contains the table to be
exported).

In addition to the EXP_FULL_DATABASE and IMP_FULL_DATABASE
roles, you must grant this user (or a role) Database Vault-
specific transportable tablespace authorization for the tablespace
that contains the table to be exported by using the
DBMS_MACADM.AUTHORIZE_TTS_USER procedure.

Remember that users who have been granted full
database level Oracle Data Pump authorization (from the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure) can perform
these operations as well.

A database administrator wants to
transportable export the contents of an
entire database.

In addition to the DV_OWNER, EXP_FULL_DATABASE,
and IMP_FULL_DATABASE roles, you must grant this
user (or a role) Database Vault-specific full database
level Oracle Data Pump authorization by using the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure. You do not
need to run the DBMS_MACADM.AUTHORIZE_TTS_USER procedure for
this user.

A database administrator wants to use
a network link to transportable import a
tablespace or a table that has no Database
Vault protection.

In addition to the EXP_FULL_DATABASE and IMP_FULL_DATABASE
roles for both the database administrator and the connecting user,
you must grant the connecting user (or a role) specified in the network
link the DV_DATAPUMP_NETWORK_LINK role.

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-10

Table 12-2 (Cont.) Levels of Authorization for Oracle Data Pump Transporatable Operations

Scenario Authorization Required

A database administrator wants to use
a network link to transportable import a
tablespace where there is Database Vault
protection (for example, realm or command
rule for a table object residing on that
tablespace)

In addition to the EXP_FULL_DATABASE and IMP_FULL_DATABASE
roles, you must grant the connecting user (or a role) specified
in the network link the Database Vault-specific transportable
tablespace authorization for that tablespace by using the
DBMS_MACADM.AUTHORIZE_TTS_USER procedure. You must also
grant the connecting user the DV_DATAPUMP_NETWORK_LINK role.

Remember that users that have been granted Database Vault-specific
full database level Oracle Data Pump authorization (through the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure) can perform
these operations.

A database administrator wants to use a
network link to import a table within a
transportable tablespace where there is
Database Vault protection (for example,
realm or command rule for a table object
residing on the tablespace that contains the
table to be exported)

In addition to the EXP_FULL_DATABASE and IMP_FULL_DATABASE
roles, you must grant the connecting user (or a role) the
Database Vault-specific transportable tablespace authorization for
the tablespace that contains the table to be exported by using
the DBMS_MACADM.AUTHORIZE_TTS_USER procedure. You also must
grant the connecting user (or a role) specified in the network link the
DV_DATAPUMP_NETWORK_LINK role.

Remember that users who have been granted Database Vault-
specific full database level Oracle Data Pump authorization (through
the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure) can
perform the operations.

A database administrator wants to use a
network link to transportable import the
contents of an entire database.

In addition to the DV_OWNER role, you must grant the
connecting user (or a role) Database Vault-specific full
database level Oracle Data Pump authorization by using the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure. You do not
need to run the DBMS_MACADM.AUTHORIZE_TTS_USER procedure for
this user. You must also grant the connecting user (or a role) who is
specified in the network link the DV_DATAPUMP_NETWORK_LINK role.

Authorizing Users or Roles for Data Pump Transportable Operations in
Database Vault

You can authorize users or roles to perform Oracle Data Pump transportable export or
import operations in a Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

2. Ensure that the user or role to whom you want to grant authorization has been
granted the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles, which are required
for using Oracle Data Pump.

SELECT GRANTEE, GRANTED_ROLE FROM DBA_ROLE_PRIVS
 WHERE GRANTED_ROLE LIKE '%FULL%';

3. If the user wants to transportable export or use a network link to transportable
import the contents of an entire database, then grant the full database
level Oracle Data Pump authorization to the user or role by using the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure. Otherwise, bypass this step.

For example:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR');

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-11

4. If the user must have Database Vault-specific transportable tablespace
authorization only, then grant this user or role this authorization.

For example:

EXEC DBMS_MACADM.AUTHORIZE_TTS_USER('DP_MGR', 'HR_TS');

5. If the user who wants to perform a transportable import operation wants to
use a network link to perform the operation, then grant this user or role the
DV_DATAPUMP_NETWORK_LINK role.

For example:

GRANT DV_DATAPUMP_NETWORK_LINK TO DP_MGR;

6. If the user wants to perform a transportable export or use a network link to
transportable import the entire database, then grant this user or role the DV_OWNER
role.

GRANT DV_OWNER TO DP_MGR;

Related Topics

• AUTHORIZE_TTS_USER Procedure
The AUTHORIZE_TTS_USER procedure authorizes a user to perform Oracle
Data Pump transportable tablespace operations for a tablespace when Oracle
Database Vault is enabled.

• AUTHORIZE_DATAPUMP_USER Procedure
The AUTHORIZE_DATAPUMP_USER procedure authorizes a user to perform Oracle
Data Pump operations when Oracle Database Vault is enabled.

• DV_DATAPUMP_NETWORK_LINK Data Pump Network Link Role
The DV_DATAPUMP_NETWORK_LINK role is used for Data Pump import operations.

Revoking Transportable Tablespace Authorization from Users or Roles
You can revoke authorization from the database administrator who is using Data
Pump.

1. If you granted the user or role the DV_OWNER role, then optionally revoke this role.

REVOKE DV_OWNER FROM DP_MGR;

2. Query the DBA_DV_TTS_AUTH data dictionary view to find the users and roles that
have been granted Oracle Data Pump authorizations.

SELECT GRANTEE, TSNAME FROM DBA_DV_TTS_AUTH;

3. Use the information you gathered from the preceding step to build the
DBMS_MACADM.UNAUTHORIZE_TTS_USER statement.

For example:

EXEC DBMS_MACADM.UNUTHORIZE_TTS_USER('DP_MGR', 'HR_TS');

4. If the user had transportable exported or used a network link to transportable
import the contents of an entire database, then revoke the full database level
Oracle Data Pump authorization from the user or role.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('DP_MGR');

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-12

5. If the user who had performed a transportable import operation used a network
link to perform the operation, then revoke the DV_DATAPUMP_NETWORK_LINK role
from the user or role.

For example:

REVOKE DV_DATAPUMP_NETWORK_LINK FROM DP_MGR;

Related Topics

• UNAUTHORIZE_TTS_USER Procedure
The UNAUTHORIZE_TTS_USER procedure removes from authorization users who
had previously been granted the authorization to perform Oracle Data Pump
transportable tablespace operations.

• UNAUTHORIZE_DATAPUMP_USER Procedure
The UNAUTHORIZE_DATAPUMP_USER procedure revokes the authorization that was
granted by the AUTHORIZE_DATAPUMP_USER procedure.

• DV_DATAPUMP_NETWORK_LINK Data Pump Network Link Role
The DV_DATAPUMP_NETWORK_LINK role is used for Data Pump import operations.

Guidelines for Exporting or Importing Data in a Database Vault
Environment

After you grant the Oracle Data Pump database administrator the proper authorization,
this user can perform any export or import operations that are necessary.

Before this user begins work, he or she should follow these guidelines:

• Create a full backup of the database datafiles. This way, if you or other users
do not like the newly-imported data, then you easily can revert the database to its
previous state. This guideline is especially useful if an intruder had managed to
modify Oracle Data Pump exported data to use his or her own policies.

• Decide how to handle exporting and importing multiple schemas
or tables. You cannot specify multiple schemas or tables in the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure, but you can use either of the
following methods to accomplish this task:

– Run the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure for each schema
or table, and then specify the list of these objects in the SCHEMAS or TABLES
parameter of the EXPDP and IMPDP utilities.

– Perform a full database export or import operation. If so, see the next
guideline.

• When performing an export or import operation for an entire database, set
the EXPDP or IMPDP FULL option to Y. Remember that this setting will capture
the DVSYS schema, so ensure that the user or role has that you have authorized
been granted the DV_OWNER role.

Note the following:

• You cannot use the legacy EXP and IMP utilities with the direct path option
(direct=y) if Oracle Database Vault is enabled.

• Users, either through a direct grant or a role grant, that have been
granted Database Vault-specific Oracle Data Pump authorization through the
DBMS_MACADM.AUTHORIZE_DATAPUMP_USER procedure or transportable tablespace

Chapter 12
Using Oracle Data Pump with Oracle Database Vault

12-13

authorization through the DBMS_MACADM.AUTHORIZE_TTS_USER procedure can export
and import database objects, but they cannot perform other activities, such as
SELECT queries on schema tables to which they normally do not have access.
Similarly, users are not permitted to perform Data Pump operations on objects
outside the designated data objects.

• You must grant the DV_OWNER role to users who must export or import an entire
database, because a full database export requires access to the DVSYS schema,
which stores the Oracle Database Vault policies. However, you cannot export
the DVSYS schema itself. Data Pump only exports the protection definitions. The
target database must have the DVSYS schema in it and Database Vault enabled
before you can begin the import process.) Conversely, for a Data Pump import
operation to apply the imported policies to the target database, it internally uses
the DBMS_MACADM PL/SQL package, which in turn requires the Data Pump user to
have the DV_OWNER role.

Using Oracle Scheduler with Oracle Database Vault
Users who are responsible for scheduling database jobs must have Oracle Database
Vault-specific authorization.

• About Using Oracle Scheduler with Oracle Database Vault
The level of authorization that you must grant depends on the schema in which the
administrator wants to perform a task.

• Granting a Job Scheduling Administrator Authorization for Database Vault
You can authorize a user to schedule database jobs in a Database Vault
environment.

• Revoking Authorization from Job Scheduling Administrators
You can revoke authorization from a user for scheduling database jobs.

About Using Oracle Scheduler with Oracle Database Vault
The level of authorization that you must grant depends on the schema in which the
administrator wants to perform a task.

Possible scenarios are as follows:

• An administrator wants to schedule a job in his or her own schema. An
administrator who has been granted privileges to schedule database jobs can
continue to do so without any Oracle Database Vault-specific authorizations,
unless this schema is protected by a realm. In that case, ensure that this user
is authorized to access the realm.

• An administrator wants to run a job in another schema, but this job does not
access any Oracle Database Vault realm or command rule protected object.
In this case, this user only needs job related system privileges, not the Oracle
Database Vault privileges.

• An administrator wants to run a job under the schema of another user,
including any schema in the database or a remote database. If this job
accesses an Oracle Database Vault realm or command rule protected object,
then you must grant this user Database Vault-specific authorization by using the
DBMS_MACADM.AUTHORIZE_SCHEDULER_USER procedure. This authorization applies to
both background and foreground jobs. For background jobs, the authorization
applies to the last user who created or modified the job. In addition, ensure that

Chapter 12
Using Oracle Scheduler with Oracle Database Vault

12-14

the schema owner (the protected schema in which the job is created) authorized to
the realm.

Later on, you can revoke this authorization by using the
DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER procedure. If the schema is
not protected by a realm, then you do not need to run the
DBMS_MACADM.AUTHORIZE_SCHEDULER_USER procedure for the user.

Related Topics

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

Granting a Job Scheduling Administrator Authorization for Database
Vault

You can authorize a user to schedule database jobs in a Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant the necessary
authorization.

2. Ensure that the user to whom you want to grant authorization has been granted
system privileges to schedule database jobs.

These privileges include any of the following: CREATE JOB, CREATE ANY JOB,
CREATE EXTERNAL JOB, EXECUTE ANY PROGRAM, EXECUTE ANY CLASS, MANAGE
SCHEDULER. The DBA and SCHEDULER_ADMIN roles provide these privileges; however,
when Oracle Database Vault is enabled, the privileges are revoked from these
roles.

For example:

SELECT GRANTEE, PRIVILEGE FROM DBA_SYS_PRIVS
 WHERE PRIVILEGE IN ('CREATE JOB', 'CREATE ANY JOB');

3. Grant this user Oracle Database Vault authorization.

For example, to authorize the user job_mgr to schedule jobs for any schema in the
database:

EXEC DBMS_MACADM.AUTHORIZE_SCHEDULER_USER('JOB_MGR');

Optionally, you can restrict job_mgr's activities to a specific schema, as follows:

EXEC DBMS_MACADM.AUTHORIZE_SCHEDULER_USER('JOB_MGR', 'HR');

4. Ensure that the user has been authorized by querying the DBA_DV_JOB_AUTH data
dictionary view as follows:

SELECT GRANTEE,SCHEMA FROM DBA_DV_JOB_AUTH WHERE GRANTEE = 'user_name';

Related Topics

• AUTHORIZE_SCHEDULER_USER Procedure
The AUTHORIZE_SCHEDULER_USER procedure grants a user authorization to
schedule database jobs when Oracle Database Vault is enabled.

Chapter 12
Using Oracle Scheduler with Oracle Database Vault

12-15

• DBA_DV_JOB_AUTH View
The DBA_DV_JOB_AUTH data dictionary view lists the authorizations for using Oracle
Scheduler in an Oracle Database Vault environment.

Revoking Authorization from Job Scheduling Administrators
You can revoke authorization from a user for scheduling database jobs.

1. Query the DBA_DV_JOB_AUTH data dictionary view to find the user's authorization.

SELECT GRANTEE, SCHEMA FROM DBA_DV_JOB_AUTH WHERE GRANTEE='username';

2. Use the information you gathered from the preceding step to build the
DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER command.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER('JOB_MGR');

Ensure that this unauthorization complements the original authorization action. In
other words, if you originally gave job_mgr authorization over the entire database,
then the following command will not work:

EXEC DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER('JOB_MGR', 'HR');

Related Topics

• UNAUTHORIZE_SCHEDULER_USER Procedure
The UNAUTHORIZE_SCHEDULER_USER procedure revokes the authorization that was
granted by the AUTHORIZE_SCHEDULER_USER procedure.

Using Information Lifecycle Management with Oracle
Database Vault

Users who perform Information Lifecycle Management operations on an Oracle
Database Vault-enabled database must be granted authorization to perform these
operations.

• About Using Information Lifecycle Management with Oracle Database Vault
You can grant authorization to and from users who are responsible for performing
Information Lifecycle Management (ILM) operations on Oracle Database Vault
realm- and command rule-protected objects.

• Authorizing Users for ILM Operations in Database Vault
You can authorize a user to perform Information Lifecycle Management (ILM)
operations in an Oracle Database Vault environment.

• Revoking Information Lifecycle Management Authorization from Users
You can revoke authorization from users so that they cannot perform Information
Lifecycle Management (ILM) operations in an Oracle Database Vault environment.

Chapter 12
Using Information Lifecycle Management with Oracle Database Vault

12-16

About Using Information Lifecycle Management with Oracle Database
Vault

You can grant authorization to and from users who are responsible for performing
Information Lifecycle Management (ILM) operations on Oracle Database Vault realm-
and command rule-protected objects.

You must first authorize users before they can perform the following SQL statements
for ILM operations in a Database Vault-enabled database:

• ALTER TABLE

– ILM

– FLASHBACK ARCHIVE

– NO FLASHBACK ARCHIVE

• ALTER TABLESPACE

– FLASHBACK MODE

Authorizing Users for ILM Operations in Database Vault
You can authorize a user to perform Information Lifecycle Management (ILM)
operations in an Oracle Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant the necessary
authorization.

2. Use the DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER to authorize the user.

For example, to grant a user authorization to perform ILM operations on the
HR.EMPLOYEES table:

EXEC DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER ('PSMITH', 'HR', 'EMPLOYEES',
'TABLE', 'ILM');

If you wanted to grant user psmith ILM authorizations for the entire database, you
would enter a procedure similar to the following:

EXEC DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER ('PSMITH', '%', '%', '%', '%');

3. Ensure that the user has been authorized by querying the
DBA_DV_MAINTENANCE_AUTH data dictionary view.

Related Topics

• AUTHORIZE_MAINTENANCE_USER Procedure
The AUTHORIZE_MAINTENANCE_USER procedure grants a user authorization to
perform Information Lifecycle Management (ILM) operations in an Oracle
Database Vault environment.

• DBA_DV_MAINTENANCE_AUTH View
The DBA_DV_MAINTENANCE_AUTH data dictionary view provides information about
the configuration of Oracle Database Vault authorizations to use Information Life
Management (ILM) features.

Chapter 12
Using Information Lifecycle Management with Oracle Database Vault

12-17

Revoking Information Lifecycle Management Authorization from Users
You can revoke authorization from users so that they cannot perform Information
Lifecycle Management (ILM) operations in an Oracle Database Vault environment.

1. Log into the database instance as a user who has been granted the DV_OWNER or
DV_ADMIN role.

Only a user who has been granted either of these roles can grant the necessary
authorization.

2. Query the DBA_DV_MAINTENANCE_AUTH data dictionary view to find the kind of
authorization that was granted to the ILM user.

3. Use the DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER to revoke the authorization
from the user.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER ('PSMITH', 'HR', '%', 'TABLE',
'ILM');

Related Topics

• DBA_DV_MAINTENANCE_AUTH View
The DBA_DV_MAINTENANCE_AUTH data dictionary view provides information about
the configuration of Oracle Database Vault authorizations to use Information Life
Management (ILM) features.

• UNAUTHORIZE_MAINTENANCE_USER Procedure
The UNAUTHORIZE_MAINTENANCE_USER procedure revokes privileges from users
who have been granted authorization to perform Information Lifecycle
Management (ILM) operations in an Oracle Database Vault environment.

Using Oracle Database Replay with Oracle Database Vault
Database administrators can authorize Oracle Database Replay users to work in a
Database Vault environment.

• About Using Database Replay with Oracle Database Vault
You can grant Database Vault authorizations for users to perform both workload
capture and workload replay operations with Oracle Database Replay.

• Authorizing Users for Database Replay Operations
You can authorize Oracle Database Replay users for both workload capture and
workload replay operations.

• Revoking Database Replay Authorization from Users
You can remove authorization for both Oracle Database Replay workload capture
and workload replay operations.

About Using Database Replay with Oracle Database Vault
You can grant Database Vault authorizations for users to perform both workload
capture and workload replay operations with Oracle Database Replay.

Chapter 12
Using Oracle Database Replay with Oracle Database Vault

12-18

Authorizing Users for Database Replay Operations
You can authorize Oracle Database Replay users for both workload capture and
workload replay operations.

• Authorizing Users for Workload Capture Operations
You can authorize a user to perform Oracle Database Replay workload capture
operations in an Oracle Database Vault environment.

• Authorizing Users for Workload Replay Operations
You can authorize a user to perform Oracle Database Replay workload replay
operations in an Oracle Database Vault environment.

Authorizing Users for Workload Capture Operations
You can authorize a user to perform Oracle Database Replay workload capture
operations in an Oracle Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant this
authorization.

2. Use the DBMS_MACADM.AUTHORIZE_DBCAPTURE procedure to authorize the user.

For example:

EXEC DBMS_MACADM.AUTHORIZE_DBCAPTURE ('PFITCH');

3. Ensure that the user has been authorized by querying the DBA_DV_DBCAPTURE_AUTH
data dictionary view.

Related Topics

• AUTHORIZE_DBCAPTURE Procedure
The AUTHORIZE_DBCAPTURE procedure grants a user authorization to perform
Oracle Database Replay workload capture operations.

• DBA_DV_DBCAPTURE_AUTH View
The DBA_DV_DBCAPTURE_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload capture
operations.

Authorizing Users for Workload Replay Operations
You can authorize a user to perform Oracle Database Replay workload replay
operations in an Oracle Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant this
authorization.

2. Use the DBMS_MACADM.AUTHORIZE_DBREPLAY procedure to authorize the user.

For example:

EXEC DBMS_MACADM.AUTHORIZE_DBREPLAY ('PFITCH');

3. Ensure that the user has been authorized by querying the DBA_DV_DBREPLAY_AUTH
data dictionary view.

Chapter 12
Using Oracle Database Replay with Oracle Database Vault

12-19

Related Topics

• AUTHORIZE_DBREPLAY Procedure
The AUTHORIZE_DBREPLAY procedure grants a user authorization to perform Oracle
Database Replay workload replay operations.

• DBA_DV_DBREPLAY View
The DBA_DV_DBREPLAY_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload replay
operations.

Revoking Database Replay Authorization from Users
You can remove authorization for both Oracle Database Replay workload capture and
workload replay operations.

• Revoking Workload Capture Privileges
You can revoke authorization from users so that they cannot perform Oracle
Database Replay workload capture operations in an Oracle Database Vault
environment.

• Revoking Workload Replay Privileges
You can revoke authorization from users so that they cannot perform Oracle
Database Replay workload replay operations in an Oracle Database Vault
environment.

Revoking Workload Capture Privileges
You can revoke authorization from users so that they cannot perform Oracle Database
Replay workload capture operations in an Oracle Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant this
authorization.

2. Query the DBA_DV_DBCAPTURE_AUTH data dictionary view to find users whose
workload capture authorization you want to revoke.

3. Use the DBMS_MACADM.UNAUTHORIZE_DBCAPTURE procedure to revoke
authorizization from the user.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_DBCAPTURE ('PFITCH');

Related Topics

• DBA_DV_DBCAPTURE_AUTH View
The DBA_DV_DBCAPTURE_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload capture
operations.

• UNAUTHORIZE_DBCAPTURE Procedure
The UNAUTHORIZE_DBCAPTURE procedure revokes authorization from users to
perform Oracle Database Replay workload capture operations.

Chapter 12
Using Oracle Database Replay with Oracle Database Vault

12-20

Revoking Workload Replay Privileges
You can revoke authorization from users so that they cannot perform Oracle Database
Replay workload replay operations in an Oracle Database Vault environment.

1. Log into the database instance as a user who has been granted the DV_OWNER or
DV_ADMIN role.

Only a user who has been granted either of these roles can grant this
authorization.

2. Query the DBA_DV_DBREPLAY_AUTH data dictionary view to find users whose
workload replay authorization you want to revoke.

3. Use the DBMS_MACADM.UNAUTHORIZE_DBDBREPLAY procedure to revoke authorization
from the user.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_DBREPLAY ('PFITCH');

Related Topics

• DBA_DV_DBREPLAY View
The DBA_DV_DBREPLAY_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload replay
operations.

• UNAUTHORIZE_DBREPLAY Procedure
The UNAUTHORIZE_DBREPLAY procedure revokes authorization from users to
perform Oracle Database Replay workload replay operations.

Executing Preprocessor Programs with Oracle Database
Vault

Users who execute preprocessor programs through external tables must have Oracle
Database Vault-specific authorization.

• About Executing Preprocessor Programs with Oracle Database Vault
You can grant and revoke Database Vault authorizations for users to execute
preprocessor programs through external tables.

• Authorizing Users to Execute Preprocessor Programs
The DBMS_MACADM.AUTHORIZE_PREPROCESSOR procedure grants users authorization
to execute preprocessor programs through external tables.

• Revoking Execute Preprocessor Authorization from Users
The DBMS_MACADM.UNAUTHORIZE_PREPROCESSOR procedure revokes authorization
from users so that they cannot execute preprocessor programs through external
tables in an Oracle Database Vault environment.

About Executing Preprocessor Programs with Oracle Database Vault
You can grant and revoke Database Vault authorizations for users to execute
preprocessor programs through external tables.

Chapter 12
Executing Preprocessor Programs with Oracle Database Vault

12-21

Authorizing Users to Execute Preprocessor Programs
The DBMS_MACADM.AUTHORIZE_PREPROCESSOR procedure grants users authorization to
execute preprocessor programs through external tables.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant this
authorization.

2. Use the DBMS_MACADM.AUTHORIZE_PREPROCESSOR procedure to authorize the user.

For example:

EXEC DBMS_MACADM.AUTHORIZE_PREPROCESSOR ('PFITCH');

3. Ensure that the user has been authorized by querying the
DBA_DV_PREPROCESSOR_AUTH data dictionary view.

Revoking Execute Preprocessor Authorization from Users
The DBMS_MACADM.UNAUTHORIZE_PREPROCESSOR procedure revokes authorization from
users so that they cannot execute preprocessor programs through external tables in
an Oracle Database Vault environment.

1. Log into the PDB as a user who has been granted the DV_OWNER or DV_ADMIN role.

Only a user who has been granted either of these roles can grant this
authorization.

2. Use the DBMS_MACADM.UNAUTHORIZE_PREPROCESSOR procedure to revoke the
authorization from the user.

For example:

EXEC DBMS_MACADM.UNAUTHORIZE_PREPROCESSOR ('PFITCH');

3. Query the DBA_DV_PREPROCESSOR_AUTH data dictionary view to ensure that the user
is no longer authorized.

Using Database Vault Operations Control to Restrict
Multitenant Common User Access to Local PDB Data

You can control PDB access by CDB root common users, such as infrastructure
database administrators.

• About Using Database Vault Operations Control
You can automatically restrict common users from accessing pluggable database
(PDB) local data in autonomous, regular Cloud, or on-premises environments.

• How the Addition of Common Users and Packages to an Exception List Works
Before you add a common user or package to an exception list, they must fulfill
special requirements.

• Enabling Database Vault Operations Control
To enable Database Vault operations control, use the
DBMS_MACADM.ENABLE_APP_PROTECTION PL/SQL procedure.

Chapter 12
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

12-22

• Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to
an exception list.

• Deleting Common Users and Packages from an Exception List
Users and applications that no longer need to access PDB local data can be
removed from the exception list.

• Disabling Database Vault Operations Control
To disable Database Vault operations control, use the
DBMS_MACADM.DISABLE_APP_PROTECTION PL/SQL procedure.

About Using Database Vault Operations Control
You can automatically restrict common users from accessing pluggable database
(PDB) local data in autonomous, regular Cloud, or on-premises environments.

To accomplish this, you can use Oracle Database Vault operations control, which
applies to common users such as infrastructure database administrators and
applications.

Database Vault operations control is useful for situations where a database
administrator must log in to the CDB root as a highly privileged user, but still not be
able to access PDB customer data. Database operations control does not block PDB
database administrators. To block these users, enable Oracle Database Vault in the
PDB and then use the Database Vault features such as realm control to block these
users.

You can create an exception list for Database Vault operations control of common
users and packages for situations where a common user or application must perform
tasks that must access local data on a PDB. An example of the type of common user
that you would specify for the exception list is the CTXSYS application account, which
is responsible for Oracle Text. Specifying a package in an exception list enables you
to apply more fine-grained control instead of providing full access to a user in an
exception list.

The general process for using Database Vault operations control is as follows:

1. Enable Database Vault operations control and keep it enabled for the production
environment.

2. At this stage Database Vault operations control applies to all PDBs in the
environment, regardless of whether the PDB has enabled Database Vault or not.

3. To enable specific users and packages to have access to the local schemas of the
PDBs, add them to an exception list. When the user or package no longer needs
access, then you can remove them from the exception list. For example, if the
database is using Oracle Text, then you can add the CTXSYS administrative user
account and the package to the exception list.

How the Addition of Common Users and Packages to an Exception
List Works

Before you add a common user or package to an exception list, they must fulfill special
requirements.

Chapter 12
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

12-23

You can add a user package to the exception list if the package is the only object
in the user account that needs access to the PDB local data. This allows for fine
grained control over what is put into the exception list. The kinds of common users and
packages that you would add to the exception list are ones that are necessary for the
functioning of the PDB. For example, if you are using Oracle Spatial, then you should
add the MDSYS account to the exception list. MDSYS requires access to customer PDB
data for Oracle Spatial functions.

A PL/SQL procedure on the Ops Control exception list can be run by any common
user, as long as the common user has system or direct object privileges to run the
PL/SQL procedure. (Only definer’s rights procedures can be added to the exception
list, not invoker’s rights.)

Only users on the operations control exception list (user, % exception) can modify
PL/SQL procedures on an exception list and only if they have the privileges to modify
the PL/SQL procedures. For example, User X cannot modify his or her own User X
PL/SQL procedure if the procedure is on the operations control exception list, but User
X is not on the exception list. User Y can modify User X procedures if User Y is on the
exception list (Y, %) and if User Y has privileges to modify User X procedures.

To add a common user and a package to the Database Vault operations control
exception list, you can use the DBMS_MACADM.ADD_APP_EXCEPTION PL/SQL procedure.
To find existing exceptions, you can query the DBA_DV_APP_EXCEPTION data dictionary
view.

Enabling Database Vault Operations Control
To enable Database Vault operations control, use the
DBMS_MACADM.ENABLE_APP_PROTECTION PL/SQL procedure.

Oracle recommends that if you elect to use Database Vault operations control for your
multitenant production server, then you should keep Database Vault operations control
enabled full time.

In most cases, you will enable Database Operations control for the entire
CDB, not just a specific PDB. If you need to disable it for a specific
PDB (for example, for troubleshooting purposes), then you can execute the
DBMS_MACADM.DISABLE_APP_PROTECTION procedure on the PDB. When you are finished
troubleshooting the PDB, re-enable it for Database Vault operations control, as shown
in the example in this topic.

Before you enable Database Vault operations control, Database Vault must be enabled
and configured in the CDB root. However, Database Vault does not need to be
enabled in the PDBs.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.ENABLE_APP_PROTECTION procedure.

Chapter 12
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

12-24

• To enable Database Vault operations control for all PDBs in the CDB
environment:

EXEC DBMS_MACADM.ENABLE_APP_PROTECTION;

• The operations control for a specific PDB may have been disabled for
troubleshooting reasons. To re-enable Database Vault operations control for
a specific PBB (for example, HRPDB):

EXEC DBMS_MACADM.ENABLE_APP_PROTECTION ('HRPDB');

At this stage, one or all of the PDBs are enabled for Database Vault operations control.
You can confirm by connecting as user SYS with the SYSDBA administrative privilege
and then executing the SELECT * FROM DBA_DV_STATUS; query. If specific trusted
common users or packages must have access to the local schemas of these PDBs to
perform special operations, then you can use the DBMS_MACADM.ADD_APP_EXCEPTION
procedure to add the user or package to an exception list for Database Vault
operations control.

Related Topics

• Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to
an exception list.

Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to an
exception list.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Ensure that the package that you will specify for the common user meets the
following requirements:

• The package must be owned by the common user.

• A user-created package must be created with definer's rights procedures.

You can find more information about user-created packages by querying the
DBA_OBJECTS data dictionary view.

3. Execute the DBMS_MACADM.ADD_APP_EXCEPTION procedure.

For example:

DBMS_MACADM.ADD_APP_EXCEPTION ('MDSYS', 'PATCH_APP');

Chapter 12
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

12-25

Deleting Common Users and Packages from an Exception List
Users and applications that no longer need to access PDB local data can be removed
from the exception list.

To remove a common user and a package from the Database Vault operations
control exception list, you can use the DBMS_MACADM.DELETE_APP_PROTECTION PL/SQL
procedure. To find existing exceptions, you can query the DBA_DV_APP_EXCEPTION data
dictionary view.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.DELETE_APP_EXCEPTION procedure.

For example:

DBMS_MACADM.DELETE_APP_EXCEPTION ('MDSYS', 'PATCH_APP');

Disabling Database Vault Operations Control
To disable Database Vault operations control, use the
DBMS_MACADM.DISABLE_APP_PROTECTION PL/SQL procedure.

In most cases, you should keep Database Vault operations control enabled. If
troubleshooting requires that a PDB be dropped from Database Vault operations
control, then Oracle recommends that you temporarily disable Database Vault
operations control for the PDB (and maintain operations control for the rest of the
PDBs). After the troubleshooting is complete, then you should re-enable Database
Vault operations control.

1. Log in to the CDB root as a common user who has been granted the DV_OWNER
role.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.DISABLE_APP_PROTECTION procedure.

• To disable Database Vault operations control for all PDBs in the CDB
environment:

EXEC DBMS_MACADM.DISABLE_APP_PROTECTION;

• To disable Database Vault operations control for a specific PBB (for example,
HRPDB):

EXEC DBMS_MACADM.DISABLE_APP_PROTECTION ('HRPDB');

Chapter 12
Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data

12-26

Preventing Multitenant Local Users from Blocking Common
Operations

You can prevent multitenant local users from blocking common operations when they
attempt to create Oracle Database Vault protections on common user objects.

• About Preventing Multitenant Local Users from Blocking Common Operations
A user who has the DV_OWNER role in the root can control whether local PDB users
can create Oracle Database Vault controls on a common user's local objects.

• Preventing Local Users from Blocking Common Operations
To prevent local users from blocking common operations, execute the
DBMS_MACADM.ALLOW_COMMON_OPERATION procedure in the root.

About Preventing Multitenant Local Users from Blocking Common
Operations

A user who has the DV_OWNER role in the root can control whether local PDB users can
create Oracle Database Vault controls on a common user's local objects.

If a local user can apply Oracle Database Vault controls (such as realms or command
rules) to a local object that is owned by a common user, or to an object owned by
an application common user, then the common user or the application common user
could be blocked from accessing local data in their own schema in the PDB. This may
prevent them from running common operations necessary for the maintenance of the
database or application. In addition, a local user could be able to create a CONNECT
command rule on a common user that can prevent this common user from logging in
to the PDB in which the common user's objects reside.

To prevent local users from being able to block common operations, a common
user who has been granted the DV_OWNER role in the root can execute the
DBMS_MACADM.ALLOW_COMMON_OPERATION procedure in the root.

To find the current status of how DBMS_MACADM.ALLOW_COMMON_OPERATION has
been set, a user with the DV_OWNER or DV_ADMIN role can query the
DVSYS.DBA_DV_COMMON_OPERATION_STATUS data dictionary view.

Related Topics

• DVSYS.DBA_DV_COMMON_OPERATION_STATUS View
The DVSYS.DBA_DV_COMMON_OPERATION_STATUS data dictionary view displays the
status of the DBMS_MACADM.ALLOW_COMMON_OPERATION procedure setting.

Preventing Local Users from Blocking Common Operations
To prevent local users from blocking common operations, execute the
DBMS_MACADM.ALLOW_COMMON_OPERATION procedure in the root.

When you set ALLOW COMMON OPERATION to TRUE, then local users are restricted from
creating Oracle Database Vault controls on common user objects. This setting applies
to existing local PDB Database Vault controls that were created on common user
objects, so that they will not be enforced on common users.

Chapter 12
Preventing Multitenant Local Users from Blocking Common Operations

12-27

1. Log in to the root as a user who has been granted the DV_OWNER role for the root.

For example:

sqlplus c##sec_admin_owen_root
Enter password: password

2. Execute the DBMS_MACADM.ALLOW_COMMON_OPERATION procedure as follows:

EXEC DBMS_MACADM.ALLOW_COMMON_OPERATION (TRUE);

In this specification:

• TRUE prevents local users from creating Oracle Database Vault controls on
common user objects. Alternatively, you can execute this procedure without
including any parameter to achieve a TRUE result.

• FALSE enables local users to create Database Vault controls on common user
objects. If you do not execute DBMS_MACADM.ALLOW_COMMON_OPERATION at all,
then the default ALLOW COMMON OPERATION status is FALSE, and the default
behavior will be to allow local users to create Database Vault controls on
common user objects.

If a realm or command rule was already created on a common object while
DBMS_MACADM.ALLOW_COMMON_OPERATION is set to FALSE, and then subsequently,
DBMS_MACADM.ALLOW_COMMON_OPERATION is set to TRUE, then the realm and
command rule on the common object are not enforced.

Oracle Recovery Manager and Oracle Database Vault
You can use Recovery Manager (RMAN) in an Oracle Database Vault environment.

The functionality of RMAN with Oracle Database Vault is almost the same as its
functionality in a standard Oracle Database environment. However, be aware that the
RMAN recover table and table partitions features do not work with realm-protected
tables when you attempt an export operation. To perform an export operation, you
must perform a full table recovery and then have a Database Vault authorized user
perform the export of the real-protected protected table.

Be aware that the RMAN recover table and table partitions features do not work
with realm-protected tables when you attempt to recover the table. To recover the
table, you must perform a full database recovery and then have a Database Vault
authorized user perform the export of the realm-protected table to import into the
existing database.

Related Topics

• Oracle Database Backup and Recovery User’s Guide

• Oracle Database Backup and Recovery Reference

Privileges for Using XStream with Oracle Database Vault
If you want to use XStream in an Oracle Database Vault environment, then you must
have the appropriate privileges.

These privileges are as follows:

• You must be granted the DV_XSTREAM_ADMIN role in order to configure the
XStream.

Chapter 12
Oracle Recovery Manager and Oracle Database Vault

12-28

• Before you can apply changes to any tables that are protected by a realm, you
must be authorized to have access to that realm. For example:

EXEC DBMS_MACADM.ADD_AUTH_TO_REALM('realm_name','username');

Related Topics

• DV_XSTREAM_ADMIN XStream Administrative Role
The DV_XSTREAM_ADMIN role is used for Oracle XStream.

• ADD_AUTH_TO_REALM Procedure
The ADD_AUTH_TO_REALM procedure authorizes a user or role to access a realm as
an owner or a participant. You can authenticate both common and local realms.

Privileges for Using Oracle GoldenGate in with Oracle
Database Vault

If you want to use Oracle GoldenGate in an Oracle Database Vault environment, then
you must have the appropriate privileges.

These privileges are as follows:

• The user must be granted the DV_GOLDENGATE_ADMIN role in order to configure the
Oracle GoldenGate.

• The user must be granted the DV_GOLDENGATE_REDO_ACCESS role if the user must
use the Oracle GoldenGate TRANLOGOPTIONS DBLOGREADER method to access redo
logs.

For example, to grant the DV_GOLDENGATE_ADMIN and DV_GOLDENGATE_REDO_ACCESS
roles to a user named gg_admin:

GRANT DV_GOLDENGATE_ADMIN, DV_GOLDENGATE_REDO_ACCESS TO gg_admin;

• The user must be granted the DV_ACCTMGR role before this user can create users
on the replicated side.

• The user must perform extract operations in triggerless mode before attempting to
perform procedural replication.

• Before users can apply changes to any tables that are protected by a realm, they
must be authorized to have access to that realm. For example:

EXEC DBMS_MACADM.ADD_AUTH_TO_REALM('realm_name','username');

• The SYS user must be authorized to perform Data Definition Language (DDL)
operations in the SYSTEM schema, as follows:

EXECUTE DVSYS.DBMS_MACADM.AUTHORIZE_DDL('SYS', 'SYSTEM');

• The user must be granted authorization to the Oracle Default Component
Protection Realm. For example, to grant this realm authorization to a user named
gg_admin:

BEGIN
 DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM(
 REALM_NAME => 'Oracle Default Component Protection Realm',
 GRANTEE => 'gg_admin',
 AUTH_OPTIONS => 1);
END;
/

Chapter 12
Privileges for Using Oracle GoldenGate in with Oracle Database Vault

12-29

Related Topics

• DV_GOLDENGATE_ADMIN GoldenGate Administrative Role
The DV_GOLDENGATE_ADMIN role is used with Oracle GoldenGate.

• DV_GOLDENGATE_REDO_ACCESS GoldenGate Redo Log Role
The DV_GOLDENGATE_REDO_ACCESS role is used with Oracle GoldenGate.

• ADD_AUTH_TO_REALM Procedure
The ADD_AUTH_TO_REALM procedure authorizes a user or role to access a realm as
an owner or a participant. You can authenticate both common and local realms.

Using Data Masking in an Oracle Database Vault
Environment

You must have the correct authorization to perform data masking in an Oracle
Database Vault environment.

• About Data Masking in an Oracle Database Vault Enabled Database
In an Oracle Database Vault-enabled database, only users who have Database
Vault authorizations can mask data in Database Vault-protected database objects.

• Adding Data Masking Users to the Data Dictionary Realm Authorizations
You can add data masking users to the Oracle Default Component Protection
realm to give them data dictionary realm authorizations.

• Giving Users Access to Tables or Schemas That They Want to Mask
To give users access to tables or schemas that they want to mask, you must
authorize them for the appropriate realm.

• Creating a Command Rule to Control Data Masking Privileges
You must have privileges to manage tables, packages, and triggers before you can
use data masking in an Oracle Database Vault environment.

About Data Masking in an Oracle Database Vault Enabled Database
In an Oracle Database Vault-enabled database, only users who have Database Vault
authorizations can mask data in Database Vault-protected database objects.

In a non-Database Vault environment, users who have been granted the
SELECT_CATALOG_ROLE and DBA roles can perform data masking. However, with
Database Vault, users must have additional privileges. This section describes three
ways that you can use to enable users to mask data in Database Vault-protected
objects.

If users do not have the correct privileges, then the following errors can occur while
creating the masking definition or when the job is executing:

ORA-47400: Command Rule violation for string on string

ORA-47401: Realm violation for string on string.

ORA-47408: Realm violation for the EXECUTE command

ORA-47409: Command Rule violation for the EXECUTE command

ORA-01301: insufficient privileges

Chapter 12
Using Data Masking in an Oracle Database Vault Environment

12-30

Adding Data Masking Users to the Data Dictionary Realm
Authorizations

You can add data masking users to the Oracle Default Component Protection realm to
give them data dictionary realm authorizations.

The Oracle Data Dictionary controls access to the Oracle Database catalog schemas,
such as SYS and SYSTEM. (See Default Realms for a full list of these schemas.) It
also controls the ability to grant system privileges and database administrator roles.
If you add users to the Oracle Default Component Protection realm, and assuming
these users already have the privileges associated with the Oracle Data Dictionary,
then these users will have these same privileges in a Database Vault environment.
Therefore, if you do add a user to this realm, ensure that this user is a trusted user.

• To add a user to the Oracle Default Component Protection realm, use the
DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

For example:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'Oracle Default Component Protection Realm',
 grantee => 'DBA_JSMITH',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_PARTICIPANT);
END;
/

Giving Users Access to Tables or Schemas That They Want to Mask
To give users access to tables or schemas that they want to mask, you must authorize
them for the appropriate realm.

If the table or schema of a table that is to be data masked is in a realm, then you
must add the user responsible for data masking to the realm authorization as a
participant or owner. If the table or schema has dependent objects that are in other
realm-protected tables, then you must grant the user participant or owner authorization
for those realms as well.

• To authorize users for data masking to a realm that protects the objects they want
to data mask, use the DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

The following example shows how to grant user DBA_JSMITH authorization for the
HR.EMPLOYEES table, which is protected by a realm called Business Apps Realm:

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'Business Apps Realm',
 grantee => 'DBA_JSMITH',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_PARTICIPANT;
END;
/

Chapter 12
Using Data Masking in an Oracle Database Vault Environment

12-31

Creating a Command Rule to Control Data Masking Privileges
You must have privileges to manage tables, packages, and triggers before you can
use data masking in an Oracle Database Vault environment.

For data masking, users must have the CREATE TABLE, SELECT TABLE, ALTER TABLE,
and DROP TABLE privileges for the masking objects and if there are any dependent
objects to be created, the user must have the appropriate privileges such as CREATE
PACKAGE, CREATE TRIGGER, and so on.

You can create command rules to control data masking privileges at a granular level.
To do so, create a command rule that can either prevent or allow the user access to
objects that must have to be data masked. For example, you can create a command
rule called Allow Data Masking that checks if the user is in a list of users who are
responsible for data masking. If the user logging in is one of these users, then the
command rule evaluates to true and the user is permitted to create the data mask for
the protected object.

To create a command rule that controls data masking privileges:

1. Create the rule set rule.

For example:

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Is HDRISCOLL or DBA_JSMITH User',
 rule_expr =>'USER IN(''HDRISCOLL'',''DBA_JSMITH'')';
END;
/

2. Create a rule set and then add the rule to it:

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Allow Data Masking',
 description => 'Allows users HDRISCOLL and DBA_JSMITH access',
 enabled => 'DBMS_MACUTL.G_YES',
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ALL,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'You do not have access to this object.',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 is_static => TRUE);
END;
/
BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Allow Data Masking',
 rule_name => 'Is HDRISCOLL or DBA_JSMITH User'),
 rule_order => 1);
END;
/

3. Create a command rule and then add this rule to it:

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'CREATE TABLE',
 rule_set_name => 'Allow Data Masking',

Chapter 12
Using Data Masking in an Oracle Database Vault Environment

12-32

 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 enabled => DBMS_MACUTL.G_YES);
END;
/

Converting a Standalone Oracle Database to a PDB and
Plugging It into a CDB

You can convert a standalone Oracle Database database from release 12c through
19c to a PDB, and then plug this PDB into a CDB.

1. Connect to the root as a user who has been granted the DV_OWNER role.

For example:

sqlplus c##sec_admin
Enter password: password

2. Grant the DV_PATCH_ADMIN role to user SYS with CONTAINER = CURRENT.

GRANT DV_PATCH_ADMIN TO SYS CONTAINER = CURRENT;

3. In the root, connect as user SYS with the SYSOPER system privilege.

For example:

CONNECT SYS AS SYSOPER
Enter password: password

4. Restart the database in read-only mode.

For example:

SHUTDOWN IMMEDIATE
STARTUP MOUNT
ALTER DATABASE OPEN READ ONLY

5. Connect to the Database Vault-enabled PDB as a user who has the DV_OWNER role.

For example:

CONNECT sec_admin@pdb_name

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

6. Grant the DV_PATCH_ADMIN role to user SYS in this PDB.

GRANT DV_PATCH_ADMIN TO SYS;

7. Optionally, run the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function to determine
whether the unplugged PDB is compatible with the CDB.

When you run the function, set the following parameters:

Chapter 12
Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB

12-33

• pdb_descr_file: Set this parameter to the full path to the XML file that will
contain a description of the PDB.

• store_report: Set this parameter to indicate whether you want to generate a
report if the PDB is not compatible with the CDB. Set it to TRUE to generate a
report or FALSE to not generate a report. A generated report is stored in the
PDB_PLUG_IN_VIOLATIONS temporary table and is generated only if the PDB is
not compatible with the CDB.

For example, to determine whether a PDB described by the /disk1/usr/
dv_db_pdb.xml file is compatible with the current CDB, run the following PL/SQL
block:

SET SERVEROUTPUT ON
DECLARE
 compatible CONSTANT VARCHAR2(3) :=
 CASE DBMS_PDB.CHECK_PLUG_COMPATIBILITY(
 pdb_descr_file => '/disk1/usr/dv_db_pdb.xml',
 store_report => TRUE)
 WHEN TRUE THEN 'YES'
 ELSE 'NO'
END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(compatible);
END;
/

If the output is YES, then the PDB is compatible, and you can continue with the
next step.

If the output is NO, then the PDB is not compatible. You can check the
PDB_PLUG_IN_VIOLATIONS temporary table to see why it is not compatible.

8. Create an XML file that describes the PDB.

For example:

BEGIN
 DBMS_PDB.DESCRIBE(
 pdb_descr_file => '/disk1/oracle/dv_db.xml');
END;
/

9. Run the CREATE PLUGGABLE DATABASE statement, and specify the XML file in the
USING clause. Specify other clauses when they are required.

For example:

CREATE PLUGGABLE DATABASE dv_db_pdb AS CLONE USING 'dv_db.xml'
NOCOPY;

10. Connect to the PDB that you just created as user SYS with the SYSDBA
administrative privilege.

CONNECT SYS@pdb_name AS SYSDBA

Chapter 12
Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB

12-34

11. Execute the noncdb_to_pdb.sql script.

@$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql

12. Open this PDB in a read/write restricted mode.

ALTER PLUGGABLE DATABASE pdb_name OPEN READ WRITE RESTRICTED;

13. Run the following procedure to synchronize the PDB:

EXECUTE DBMS_PDB.SYNC_PDB;

14. Connect to the root as a user who has been granted the DV_OWNER role.

sqlplus c##sec_admin
Enter password: password

15. Revoke the DV_PATCH_ADMIN role from user SYS with CONTAINER = CURRENT.

REVOKE DV_PATCH_ADMIN FROM SYS CONTAINER = CURRENT;

16. Connect to the legacy Database Vault-enabled PDB as user SYS with the SYSOPER
system privilege.

CONNECT SYS@pdb_name AS SYSOPER

17. Close and then reopen the PDB.

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

18. Revoke the DV_PATCH_ADMIN role from user SYS.

REVOKE DV_PATCH_ADMIN FROM SYS;

Using the ORADEBUG Utility with Oracle Database Vault
The ORADEBUG utility is used primarily by Oracle Support to diagnose problems that
may arise with an Oracle database.

You can control whether users can run the ORADEBUG utility in an Oracle Database
Vault-enabled environment. In a traditional auditing environment, you can audit the use
of ORADEBUG by setting the AUDIT_SYS_OPERATIONS initialization parameter to TRUE. In a
unified auditing environment, ORADBUG commands are mandatorily audited. This control
does not apply to a privileged OS user, which is the OS user with the same OS user
ID as the Oracle server process. This exception is made because such a user can
completely control and examine the Oracle process using other means (for example,
with a debugger).

1. Log into the database instance as a user who has been granted the DV_OWNER or
DV_ADMIN role.

2. If necessary, find out if ORADEBUG is already disabled or enabled.

Chapter 12
Using the ORADEBUG Utility with Oracle Database Vault

12-35

SELECT * FROM DBA_DV_ORADEBUG;

3. Run one of the following procedures:

• To disable the use of ORADEBUG:

EXEC DBMS_MACADM.DISABLE_ORADEBUG;

• To enable the use of ORADEBUG:

EXEC DBMS_MACADM.ENABLE_ORADEBUG;

Related Topics

• DBA_DV_ORADEBUG View
The DBA_DV_ORADEBUG data dictionary view indicates whether users can use the
ORADEBUG utility in an Oracle Database Vault environment.

• DISABLE_ORADEBUG Procedure
The DISABLE_ORADEBUG procedure disables the use of the ORADEBUG utility in an
Oracle Database Vault environment.

• ENABLE_ORADEBUG Procedure
The ENABLE_ORADEBUG procedure enables the use of the ORADEBUG utility in an
Oracle Database Vault environment.

Performing Patch Operations in an Oracle Database Vault
Environment

User SYS must have the DV_PATCH_ADMIN role to perform a patch operations on an
Oracle Database Vault-enabled database.

1. Connect to the PDB or the application root as a user who has been granted the
DV_OWNER or DV_ADMIN role.

For example:

CONNECT c##sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Temporarily grant the SYS user the DV_PATCH_ADMIN role.

GRANT DV_PATCH_ADMIN TO SYS;

3. After the SYS user has performed the patch operation, carefully following the
instructions in the patch readme file, then revoke DV_PATCH_ADMIN from user SYS.

REVOKE DV_PATCH_ADMIN FROM SYS;

Chapter 12
Performing Patch Operations in an Oracle Database Vault Environment

12-36

13
Oracle Database Vault Schemas, Roles,
and Accounts

Oracle Database Vault provides schemas that contain Database Vault objects, roles
that provide separation of duty for specific tasks, and default user accounts.

• Oracle Database Vault Schemas
The Oracle Database Vault schemas, DVSYS and DVF, support the administration
and run-time processing of Oracle Database Vault.

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

• Oracle Database Vault Accounts Created During Registration
The accounts that you create during registration enable Oracle Database Vault to
adhere to separation of duty concepts and provide flexibility for users based on the
tasks they perform.

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

Oracle Database Vault Schemas
The Oracle Database Vault schemas, DVSYS and DVF, support the administration and
run-time processing of Oracle Database Vault.

• DVSYS Schema
The DVSYS schema contains Oracle Database Vault database objects.

• DVF Schema
The DVF schema is the owner of the Oracle Database Vault
DBMS_MACSEC_FUNCTION PL/SQL package.

DVSYS Schema
The DVSYS schema contains Oracle Database Vault database objects.

These objects store Oracle Database Vault configuration information and support the
administration and run-time processing of Oracle Database Vault.

In a default installation, the DVSYS schema is locked. The DVSYS schema also owns the
AUDIT_TRAIL$ table.

The DVSYS schema is considered a common schema, which means that the objects
within DVSYS (tables, views, PL/SQL packages, and so on) are automatically available
to any child pluggable databases (PDBs). In addition, the DVSYS schema account
cannot switch to other containers using the ALTER SESSION statement.

13-1

Oracle Database Vault secures the DVSYS schema by using a protected schema
design. A protected schema design guards the schema against improper use of
system privileges (for example, SELECT ANY TABLE, CREATE ANY VIEW, or DROP ANY).

Oracle Database Vault protects and secures the DVSYS schema in the following ways:

• The DVSYS protected schema and its administrative roles cannot be dropped. By
default, the DVSYS account is locked.

• By default, users cannot directly log into the DVSYS account. To control
the ability of users to directly log into this account, you can run the
DBMS_MACADM.DISABLE_DV_DICTIONARY_ACCTS procedure to prevent users from
logging in and the DBMS_MACADM.ENABLE_DV_DICTIONARY_ACCTS procedure to allow
users to log in.

• Statements such as CREATE USER, ALTER USER, DROP USER, CREATE PROFILE, ALTER
PROFILE, and DROP PROFILE can only be issued by a user with the DV_ACCTMGR
role. A user logged in with the SYSDBA administrative privilege can issue these
statements only if it is allowed to do so by modifying the Can Maintain Accounts/
Profiles rule set.

• The powerful ANY system privileges for database definition language (DDL) and
data manipulation language (DML) commands are blocked in the protected
schema. This means that the objects in the DVSYS schema must be created by
the schema account itself. Also, access to the schema objects must be authorized
through object privilege grants.

• Object privileges in the DVSYS schema can only be granted to Database Vault
administrative roles in the schema. This means that users can access the
protected schema only through predefined administrative roles.

• Only the protected schema account DVSYS can issue ALTER ROLE statements on
Database Vault predefined administrative roles of the schema.

• The SYS.DBMS_SYS_SQL.PARSE_AS_USER procedure cannot be used to run SQL
statements on behalf of the protected schema DVSYS.

Note:

Database users can grant additional object privileges and roles to the Oracle
Database Vault administrative roles (DV_ADMIN and DV_OWNER, for example)
provided they have sufficient privileges to do so.

Related Topics

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

DVF Schema
The DVF schema is the owner of the Oracle Database Vault DBMS_MACSEC_FUNCTION
PL/SQL package.

This package contains the functions that retrieve factor identities. After you install
Oracle Database Vault, the installation process locks the DVF account to better secure

Chapter 13
Oracle Database Vault Schemas

13-2

it. When you create a new factor, Oracle Database Vault creates a new retrieval
function for the factor and saves it in this schema.

The DVF user cannot switch to other containers using the ALTER SESSION statement.

By default, users cannot directly log into the DVF account. To control
the ability of users to directly log into this account, you can run the
DBMS_MACADM.DISABLE_DV_DICTIONARY_ACCTS procedure to prevent users from logging
in and the DBMS_MACADM.ENABLE_DV_DICTIONARY_ACCTS procedure to allow users to log
in.

Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks and
adhere to separation of duty concepts.

• About Oracle Database Vault Roles
Oracle Database Vault provides a set of roles that are required for managing
Oracle Database Vault.

• Privileges of Oracle Database Vault Roles
The Oracle Database Vault roles are designed to provide the maximum benefits of
separation of duty.

• Granting Oracle Database Vault Roles to Users
You can use Enterprise Manager Cloud Control to grant Oracle Database Vault
roles to users.

• DV_ACCTMGR Database Vault Account Manager Role
The DV_ACCTMGR role is a powerful role, used for accounts management.

• DV_ADMIN Database Vault Configuration Administrator Role
The DV_ADMIN role controls the Oracle Database Vault PL/SQL packages.

• DV_AUDIT_CLEANUP Audit Trail Cleanup Role
The DV_AUDIT_CLEANUP role is used for purge operations.

• DV_DATAPUMP_NETWORK_LINK Data Pump Network Link Role
The DV_DATAPUMP_NETWORK_LINK role is used for Data Pump import operations.

• DV_GOLDENGATE_ADMIN GoldenGate Administrative Role
The DV_GOLDENGATE_ADMIN role is used with Oracle GoldenGate.

• DV_GOLDENGATE_REDO_ACCESS GoldenGate Redo Log Role
The DV_GOLDENGATE_REDO_ACCESS role is used with Oracle GoldenGate.

• DV_MONITOR Database Vault Monitoring Role
The DV_MONITOR role is used for monitoring Oracle Database Vault.

• DV_OWNER Database Vault Owner Role
The DV_OWNER role enables you to manage the Oracle Database Vault roles and its
configuration.

• DV_PATCH_ADMIN Database Vault Database Patch Role
The DV_PATCH_ADMIN role is used for patching operations.

• DV_POLICY_OWNER Database Vault Owner Role
The DV_POLICY_OWNER role enables database users to manage to a limited degree
Oracle Database Vault policies.

Chapter 13
Oracle Database Vault Roles

13-3

• DV_SECANALYST Database Vault Security Analyst Role
The DV_SECANALYST role enables users to analyze activities.

• DV_XSTREAM_ADMIN XStream Administrative Role
The DV_XSTREAM_ADMIN role is used for Oracle XStream.

About Oracle Database Vault Roles
Oracle Database Vault provides a set of roles that are required for managing Oracle
Database Vault.

The following illustration shows how these roles are designed to implement the first
level of separation of duties within the database. How you use these roles depends on
the requirements that your company has in place.

Figure 13-1 How Oracle Database Vault Roles Are Categorized

Account management responsibility role

DV_ACCTMGR

Security administrative roles

DV_DATAPUMP_NETWORK_LINK

DV_XSTREAM_ADMIN

DV_GOLDENGATE_ADMIN

DV_GOLDENGATE_REDO_ACCESS

DV_AUDIT_CLEANUP

DV_OWNER

DV_ADMIN

DV_MONITOR

DV_SECANALYST

DV_PATCH_ADMIN

Resource management role

DV_POLICY_OWNER

Note:

You can grant additional object privileges and roles to the Oracle Database
Vault roles to extend their scope of privileges. For example, a user logged
in with the SYSDBA administrative privilege can grant object privileges to an
Oracle Database Vault role as long as the object is not in the DVSYS schema
or realm.

Related Topics

• Separation of Duty Guidelines
Oracle Database Vault is designed to easily implement separation of duty
guidelines.

• Managing Oracle Database Administrative Accounts
Oracle provides guidelines for managing security for administrative accounts such
as SYSTEM or users who have the SYSDBA administrative privilege.

Chapter 13
Oracle Database Vault Roles

13-4

Privileges of Oracle Database Vault Roles
The Oracle Database Vault roles are designed to provide the maximum benefits of
separation of duty.

The DV_PATCH_ADMIN, DV_XSTREAM, DV_GOLDENGATE_ADMIN, and
DV_GOLDENGATE_REDO_ACCESS roles are not included in the following sections because
they have no system privileges.

DVSYS Schema, EXECUTE Privilege

Roles that can use this privilege:

• DV_ADMIN (includes the EXECUTE privilege on all Oracle Database Vault PL/SQL
packages)

• DV_OWNER (includes the EXECUTE privilege on all Oracle Database Vault PL/SQL
packages)

• DV_POLICY_OWNER (on some DBMS_MACADM procedures)

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_SECANALYST

DVSYS Schema, SELECT Privilege

Roles that can use this privilege:

• DV_ADMIN

• DV_AUDIT_CLEANUP (on some Database Vault tables and views; can perform
SELECT statements on the AUDIT_TRAIL$ table, and the DV$ENFORCEMENT_AUDIT
and DV$CONFIGURATION_AUDIT views)

• DV_MONITOR

• DV_OWNER

• DV_POLICY_OWNER (on some DBMS_MACADM procedures and on POLICY_OWNER* views
only)

• DV_SECANALYST (on some Database Vault views: DV_SECANALYST can query DVSYS
schema objects through Oracle Database Vault-supplied views)

Roles that are denied this privilege:

• DV_ACCTMGR

DVSYS Schema, DELETE Privilege

Roles that can use this privilege:

• DV_AUDIT_CLEANUP (can perform DELETE on some Database Vault tables
and views, on the AUDIT_TRAIL$ table, and the DV$ENFORCEMENT_AUDIT and
DV$CONFIGURATION_AUDIT views)

Chapter 13
Oracle Database Vault Roles

13-5

• DV_OWNER (can perform DELETE on some Database Vault tables and
views, on the AUDIT_TRAIL$ table, and the DV$ENFORCEMENT_AUDIT and
DV$CONFIGURATION_AUDIT views)

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_ADMIN

• DV_MONITOR

• DV_POLICY_OWNER

• DV_SECANALYST

DVSYS Schema, Grant Privileges on Objects

Roles that can use this privilege: None

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_ADMIN

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_OWNER

• DV_POLICY_OWNER

• DV_SECANALYST

DVF Schema, EXECUTE Privilege

Roles that can use this privilege:

• DV_OWNER

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_ADMIN

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_OWNER

• DV_POLICY_OWNER

• DV_SECANALYST

DVF Schema, SELECT Privilege

Roles that can use this privilege:

• DV_OWNER

• DV_SECANALYST

Roles that are denied this privilege:

Chapter 13
Oracle Database Vault Roles

13-6

• DV_ACCTMGR

• DV_ADMIN

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_POLICY_OWNER

Monitor Database Vault Privilege

Roles that can use this privilege:

• DV_ADMIN

• DV_OWNER

• DV_MONITOR

• DV_SECANALYST

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_AUDIT_CLEANUP

• DV_POLICY_OWNER

Run Database Vault Reports Privilege

Roles that can use this privilege:

• DV_ADMIN

• DV_OWNER

• DV_SECANALYST

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_POLICY_OWNER

SYS Schema, SELECT Privilege

Roles that can use this privilege:

• DV_MONITOR

• DV_OWNER

• DV_SECANALYST (on the same system views as DV_OWNER and DV_ADMIN)

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_ADMIN

• DV_AUDIT_CLEANUP

Chapter 13
Oracle Database Vault Roles

13-7

• DV_POLICY_OWNER

SYSMAN Schema, SELECT Privilege

Roles that can use this privilege:

• DV_OWNER (portions of SYSMAN)

• DV_SECANALYST (portions of SYSMAN)

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_ADMIN

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_POLICY_OWNER

CREATE , ALTER , DROP User Accounts and Profiles Privilege

This privilege does not include the ability to drop or alter the DVSYS account, nor
change the DVSYS password.

Role that can use this privilege:

• DV_ACCTMGR

Roles that are denied this privilege:

• DV_ADMIN

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_OWNER

• DV_POLICY_OWNER

• DV_SECANALYST

Manage Objects in Schemas that Define a Realm

This privilege includes ANY privileges, such as CREATE ANY , ALTER ANY , and DROP ANY.

Roles that can use this privilege: None

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_AUDIT_CLEANUP

• DV_ADMIN

• DV_MONITOR

• DV_OWNER (portions of SYSMAN)

• DV_POLICY_OWNER

• DV_SECANALYST (portions of SYSMAN)

Chapter 13
Oracle Database Vault Roles

13-8

RESOURCE Role Privileges

The RESOURCE role provides the following system privileges: CREATE CLUSTER , CREATE
INDEXTYPE , CREATE OPERATOR , CREATE PROCEDURE , CREATE SEQUENCE , CREATE
TABLE , CREATE TRIGGER, CREATE TYPE.

Roles that can use this privilege: None

Roles that are denied this privilege:

• DV_ACCTMGR

• DV_ADMIN

• DV_AUDIT_CLEANUP

• DV_MONITOR

• DV_OWNER (portions of SYSMAN)

• DV_POLICY_OWNER

• DV_SECANALYST (portions of SYSMAN)

Granting Oracle Database Vault Roles to Users
You can use Enterprise Manager Cloud Control to grant Oracle Database Vault roles
to users.

1. From Cloud Control, log into Oracle Database Vault Administrator as a user who
has been granted the DV_OWNER role and the SELECT ANY DICTIONARY privilege..

Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control
explains how to log in.

Refer to the role descriptions to find the requirements for who can grant roles to
other users.

2. In the Administration page, under Database Vault Components, click Database
Vault Role Management.

The Database Vault Role Management page appears.

Chapter 13
Oracle Database Vault Roles

13-9

3. Do one of the following:

• To add a new user or role for a grant, click the Add button to display the
Add Authorization dialog box. Enter the grantee in the Grantee field, and then
select the roles for the grant. Then click OK.

• To grant different roles or modify role grants for a user or role listed in the
Database Vault Role Management page, select the user or role, click Edit, and
then modify the role grants as necessary. Then click OK.

DV_ACCTMGR Database Vault Account Manager Role
The DV_ACCTMGR role is a powerful role, used for accounts management.

Use the DV_ACCTMGR role to create and maintain database accounts and database
profiles. In this manual, the example DV_ACCTMGR role is assigned to a user named
bea_dvacctmgr.

Privileges Associated with the DV_ACCTMGR Role

A user who has been granted this role can use the CREATE, ALTER, and DROP
statements for user accounts or profiles, including users who have been granted the
DV_SECANALYST, DV_AUDIT_CLEANUP, and DV_MONITOR roles.

This user also can grant the CREATE SESSION privilege to other users. However,
a person who has been granted the DV_ACCTMGR role cannot perform the following
operations:

• ALTER or DROP statements on the DVSYS account

Chapter 13
Oracle Database Vault Roles

13-10

• ALTER or DROP statements on users who have been granted the DV_ADMIN or
DV_OWNER role

• Change passwords for users who have been granted the DV_ADMIN or DV_OWNER
role

A common user who has been granted the DV_ACCTMGR role in the CDB root can alter
a common user or a common profile in the CDB root even if the common DV_ACCTMGR
user does not have the SET CONTAINER privilege or the DV_ACCTMGR role in any PDB.

To find the full list of system and object privileges associated with the DV_ACCTMGR role,
log into the database instance with sufficient privileges and then enter the following
queries:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_ACCTMGR';
SELECT PRIVILEGE FROM DBA_SYS_PRIVS WHERE GRANTEE = 'DV_ACCTMGR';

Tips:

• If you want the DV_ACCTMGR user to be able to grant or revoke the
ANY privileges for other users, then log in as user SYS with the SYSDBA
privilege and grant this user the GRANT ANY PRIVILEGE and REVOKE ANY
PRIVILEGE privileges. Then add this user to the Oracle System Privilege
and Role Management Realm as an owner.

• Oracle strongly recommends that you create a separate, named account
for the DV_ACCTMGR user. This way, if this user forgets his or her
password, you can log in as the original DV_ACCTMGR account and reset
the user's password. Otherwise, you must disable Oracle Database
Vault, log in as SYS or SYSTEM to recreate the password, and then re-
enable Database Vault.

How Are GRANT and REVOKE Operations Affected by DV_ACCTMGR?

Any account, such as SYS or SYSTEM, with the GRANT ANY ROLE system privilege alone
does not have the rights to grant this role to or revoke this role from any other
database account.

The account with the DV_ACCTMGR role and the ADMIN OPTION can grant this role to any
given database account and revoke this role from another account.

DV_ACCTMGR Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database roles is enforced only if Oracle Database Vault is
enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

Chapter 13
Oracle Database Vault Roles

13-11

DV_ADMIN Database Vault Configuration Administrator Role
The DV_ADMIN role controls the Oracle Database Vault PL/SQL packages.

These packages are the underlying interface for the Database Vault Administrator user
interface in Oracle Enterprise Manager Cloud Control.

Privileges Associated with the DV_ADMIN Role

The DV_ADMIN role has the EXECUTE privilege on the DVSYS packages (DBMS_MACADM,
DBMS_MACSECROLES, and DBMS_MACUTL).

DV_ADMIN also has the capabilities provided by the DV_SECANALYST role, which allow
the user to run Oracle Database Vault reports and monitor Oracle Database Vault.
During installation, the DV_ADMIN role is granted to the DV_OWNER role with the ADMIN
OPTION.

In addition, the DV_ADMIN role provides the SELECT privilege on the DBA_DV_POLICY,
DBA_DV_POLICY_OWNER, and DBA_DV_POLICY_OBJECT data dictionary views. The
DV_ADMIN role also has the REGISTER SESSION system privilege.

To find the full list of system and object privileges associated with the DV_ADMIN role,
log into the database instance with sufficient privileges and then enter the following
queries:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_ADMIN';
SELECT PRIVILEGE FROM DBA_SYS_PRIVS WHERE GRANTEE = 'DV_ADMIN';

How Are GRANT and REVOKE Operations Affected by DV_ADMIN?

Accounts such as SYS or SYSTEM, with the GRANT ANY ROLE system privilege alone do
not have the rights to grant or revoke DV_ADMIN from any other database account.

The user with the DV_OWNER role can grant or revoke this role to and from any database
account.

Managing Password Changes for Users Who Have the DV_ADMIN Role

Before you can change the password for a user who has been granted the DV_ADMIN
role, you must revoke the DV_ADMIN role from this account.

If you have been granted the DV_ADMIN role, then you can change your own password
without having to revoke the role from yourself.

To change the DV_ADMIN user password:

1. Log into the root or the PDB using an account that has been granted the DV_OWNER
role.

2. Revoke the DV_ADMIN role from the user account whose password needs to
change.

3. Connect as a user who has been granted the DV_ACCTMGR role and then change
the password for this user.

4. Connect as the DV_OWNER user and then grant the DV_ADMIN role back to the user
whose password you changed.

Chapter 13
Oracle Database Vault Roles

13-12

DV_ADMIN Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database Vault roles is enforced only if Oracle Database
Vault is enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

DV_AUDIT_CLEANUP Audit Trail Cleanup Role
The DV_AUDIT_CLEANUP role is used for purge operations.

Grant the DV_AUDIT_CLEANUP role to any user who is responsible for purging the
Database Vault audit trail in a non-unified auditing environment.

Archiving and Purging the Oracle Database Vault Audit Trail explains how to use this
role to complete a purge operation.

Privileges Associated with the DV_AUDIT_CLEANUP Role

The DV_AUDIT_CLEANUP role has SELECT and DELETE privileges for three Database
Vault-related auditing views.

• SELECT and DELETE on the DVSYS.AUDIT_TRAIL$ table

• SELECT and DELETE on the DVSYS.DV$ENFORCEMENT_AUDIT view

• SELECT and DELETE on the DVSYS.DV$CONFIGURATION_AUDIT view

How Are GRANT and REVOKE Operations Affected by DV_AUDIT_CLEANUP?

By default, this role is granted to the DV_OWNER role with the ADMIN OPTION.

Only a user who has been granted the DV_OWNER role can grant or revoke the
DV_AUDIT_CLEANUP role to another user.

DV_AUDIT_CLEANUP Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database Vault roles is enforced only if Oracle Database
Vault is enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

Chapter 13
Oracle Database Vault Roles

13-13

DV_DATAPUMP_NETWORK_LINK Data Pump Network Link Role
The DV_DATAPUMP_NETWORK_LINK role is used for Data Pump import operations.

Grant the DV_DATAPUMP_NETWORK_LINK role to any user who is responsible for
conducting the NETWORK_LINK transportable Data Pump import operation in an Oracle
Database Vault environment.

This role enables the management of the Oracle Data Pump NETWORK_LINK
transportable import processes to be tightly controlled by Database Vault, but does not
change or restrict the way you would normally conduct Oracle Data Pump operations.

Privileges Associated with the DV_DATAPUMP_NETWORK_LINK Role

There are no system privileges associated with the DV_DATAPUMP_NETWORK_LINK role,
but it does have the EXECUTE privilege on DVSYS objects.

To find the full list of DV_DATAPUMP_NETWORK_LINK object privileges, log into the
database instance with sufficient privileges and then enter the following query:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_DATAPUMP_NETWORK_LINK';

Be aware that the DV_DATAPUMP_NETWORK_LINK role does not provide a sufficient set
of database privileges to conduct NETWORK_LINK transportable Data Pump import
operation. Rather, the DV_DATAPUMP_NETWORK_LINK role is an additional requirement
(that is, in addition to the privileges that Oracle Data Pump currently requires) for
database administrators to conduct NETWORK_LINK transportable Data Pump import
operations in an Oracle Database Vault environment.

How Are GRANT and REVOKE Operations Affected by
DV_DATAPUMP_NETWORK_LINK?

Only users who have been granted the DV_OWNER role can grant or revoke the
DV_DATAPUMP_NETWORK_LINK role to or from other users.

DV_DATAPUMP_NETWORK_LINK Status When Oracle Database Vault Security
Is Disabled

The protection of all Oracle Database roles is enforced only if Oracle Database Vault is
enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Using Oracle Data Pump with Oracle Database Vault
Database administrators can authorize Oracle Data Pump users to work in a
Database Vault environment.

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

Chapter 13
Oracle Database Vault Roles

13-14

DV_GOLDENGATE_ADMIN GoldenGate Administrative Role
The DV_GOLDENGATE_ADMIN role is used with Oracle GoldenGate.

Grant theto any user who is responsible for configuring Oracle GoldenGate in an
Oracle Database Vault environment.

This enables the management of Oracle GoldenGate processes to be tightly controlled
by Database Vault, but does not change or restrict the way an administrator would
normally configure Oracle GoldenGate.

Privileges Associated with the DV_GOLDENGATE_ADMIN Role

There are no privileges associated with the DV_GOLDENGATE_ADMIN role.

Be aware that the DV_GOLDENGATE_ADMIN role does not provide a sufficient
set of database privileges for configuring Oracle GoldenGate. Rather, the
DV_GOLDENGATE_ADMIN role is an additional requirement (that is, in addition to the
privileges that Oracle GoldenGate currently requires) for database administrators to
configure Oracle GoldenGate in an Oracle Database Vault environment.

How Are GRANT and REVOKE Operations Affected by
DV_GOLDENGATE_ADMIN?

Only users who have been granted the DV_OWNER role can grant or revoke the
DV_GOLDENGATE_ADMIN role to or from other users.

DV_GOLDENGATE_ADMIN Status When Oracle Database Vault Security Is
Disabled

The protection of all Oracle Database roles is enforced only if Oracle Database Vault is
enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

• Privileges for Using Oracle GoldenGate in with Oracle Database Vault
If you want to use Oracle GoldenGate in an Oracle Database Vault environment,
then you must have the appropriate privileges.

DV_GOLDENGATE_REDO_ACCESS GoldenGate Redo Log Role
The DV_GOLDENGATE_REDO_ACCESS role is used with Oracle GoldenGate.

Grant the DV_GOLDENGATE_REDO_ACCESS role to any user who is responsible for using
the Oracle GoldenGate TRANLOGOPTIONS DBLOGREADER method to access redo logs in
an Oracle Database Vault environment.

Chapter 13
Oracle Database Vault Roles

13-15

This enables the management of Oracle GoldenGate processes to be tightly controlled
by Database Vault, but does not change or restrict the way an administrator would
normally configure Oracle GoldenGate.

Privileges Associated with the DV_GOLDENGATE_REDO_ACCESS Role

There are no privileges associated with the DV_GOLDENGATE_REDO_ACCESS role.

Be aware that the DV_GOLDENGATE_REDO_ACCESS role does not provide a sufficient
set of database privileges for configuring Oracle GoldenGate. Rather, the
DV_GOLDENGATE_REDO_ACCESS role is an additional requirement (that is, in addition to
the privileges that Oracle GoldenGate currently requires) for database administrators.

How Are GRANT and REVOKE Operations Affected by
DV_GOLDENGATE_REDO_ACCESS?

You cannot grant the DV_GOLDENGATE_REDO_ACCESS role with ADMIN OPTION.

Only users who have been granted the DV_OWNER role can grant or revoke the
DV_GOLDENGATE_REDO_ACCESS role to or from other users.

DV_GOLDENGATE_REDO_ACCESS Status When Oracle Database Vault
Security Is Disabled

The protection of all Oracle Database roles is enforced only if Oracle Database Vault is
enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

• Privileges for Using Oracle GoldenGate in with Oracle Database Vault
If you want to use Oracle GoldenGate in an Oracle Database Vault environment,
then you must have the appropriate privileges.

DV_MONITOR Database Vault Monitoring Role
The DV_MONITOR role is used for monitoring Oracle Database Vault.

The DV_MONITOR role enables the Oracle Enterprise Manager Cloud Control agent to
monitor Oracle Database Vault for attempted violations and configuration issues with
realm or command rule definitions.

This role enables Cloud Control to read and propagate realm definitions and command
rule definitions between databases.

Privileges Associated with the DV_MONITOR Role

There are no system privileges associated with the DV_MONITOR role, but it does have
the SELECT privilege on SYS and DVSYS objects.

In addition, the DV_MONITOR role provides the SELECT privilege on the DBA_DV_POLICY,
DBA_DV_POLICY_OWNER, and DBA_DV_POLICY_OBJECT data dictionary views.

Chapter 13
Oracle Database Vault Roles

13-16

To find the full list of DV_MONITOR object privileges, log into the database instance with
sufficient (such as DV_OWNER) privileges and then enter the following query:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_MONITOR';

How Are GRANT and REVOKE Operations Affected by DV_MONITOR?

By default, the DV_MONITOR role is granted to the DV_OWNER role and the DBSNMP user.

Only a user who has been granted the DV_OWNER role can grant or revoke the
DV_MONITOR role to another user.

DV_MONITOR Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database Vault roles is enforced only if Oracle Database
Vault is enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Monitoring Oracle Database Vault
You can monitor Oracle Database Vault by checking for violations to the Database
Vault configurations and by tracking changes to policies.

• Auditing Oracle Database Vault
You can audit activities in Oracle Database Vault, such as changes to policy
configurations.

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

DV_OWNER Database Vault Owner Role
The DV_OWNER role enables you to manage the Oracle Database Vault roles and its
configuration.

In Oracle Database Vault Administrator's Guide, the example account that uses this
role is leo_dvowner.

Privileges Associated with the DV_OWNER Role

The DV_OWNER role has the administrative capabilities that the DV_ADMIN role provides,
and the reporting capabilities the DV_SECANALYST role provides.

This role also provides privileges for monitoring Oracle Database Vault. It is created
when you install Oracle Database Vault, and has the most privileges on the DVSYS
schema. It also has the DV_ADMIN role.

To find the full list of system and object privileges associated with the DV_OWNER role,
you can log into the database instance and enter the following queries:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_OWNER';
SELECT PRIVILEGE FROM DBA_SYS_PRIVS WHERE GRANTEE = 'DV_OWNER';

Chapter 13
Oracle Database Vault Roles

13-17

When you install and register Oracle Database Vault, the DV_OWNER account is created.
The user who is granted this role is also granted the ADMIN option and can grant any
Oracle Database Vault roles (except DV_ACCTMGR) to any account. Users granted this
role also can run Oracle Database Vault reports and monitor Oracle Database Vault.

Tip:

Oracle strongly recommends that you create separate, named account for
the DV_OWNER user. This way, if the user is no longer available (for example,
he or she left the company), then you can easily recreate this user account
and then grant this user the DV_OWNER role.

How Are GRANT and REVOKE Operations Affected by DV_OWNER?

Anyone with the DV_OWNER role can grant the DV_OWNER and DV_ADMIN roles to another
user.

The account granted this role can revoke any granted Database Vault role from
another account. Accounts such as SYS or SYSTEM, with the GRANT ANY ROLE system
privilege alone (directly granted or indirectly granted using a role) do not have the right
to grant or revoke the DV_OWNER role to or from any other database account. Note also
that a user with the DV_OWNER role cannot grant or revoke the DV_ACCTMGR role.

Managing Password Changes for Users Who Have the DV_OWNER Role

Before you can change the password for another user who has been granted the
DV_OWNER role, you must revoke the DV_OWNER role from that user account.

However, be cautious about revoking the DV_OWNER role. At least one user on your
site must have this role granted. If another DV_OWNER user has been granted this role
and needs to have his or her password changed, then you can temporarily revoke
DV_OWNER from that user. Note also that if you have been granted the DV_OWNER role,
then you can change your own password without having to revoke the role from
yourself.

To change the DV_OWNER user password:

1. Log into the root or the PDB using an account that has been granted the DV_OWNER
role.

2. Revoke the DV_OWNER role from the user account whose password needs to
change.

3. Connect as a user who has been granted the DV_ACCTMGR role and then change
the password for this user.

4. Connect as the DV_OWNER user and then grant the DV_OWNER role back to the user
whose password you changed.

DV_OWNER Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database Vault roles is enforced only if Oracle Database
Vault is enabled.

Chapter 13
Oracle Database Vault Roles

13-18

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

DV_PATCH_ADMIN Database Vault Database Patch Role
The DV_PATCH_ADMIN role is used for patching operations.

In order to generate all Database Vault-related audit records in accordance with
the audit policies specified in the Database Vault metadata as well as Database
Vault unified audit policies, execute the DBMS_MACADM.ENABLE_DV_PATCH_ADMIN_AUDIT
procedure as a user who has been granted the DV_ADMIN role before using the
DV_PATCH_ADMIN role.

Temporarily grant the DV_PATCH_ADMIN role to any database administrator who is
responsible for performing database patching. Before this administrator performs the
patch operation, run the DBMS_MACADM.ENABLE_DV_PATCH_ADMIN_AUDIT procedure. This
procedure enables realm, command rule, and rule set auditing of the actions by users
who have been granted the DV_PATCH_ADMIN role, in accordance with the existing audit
configuration. If you have mixed-mode auditing, then this user's actions are written to
the AUDIT_TRAIL$ table. If you have pure unified auditing enabled, then you should
create a unified audit policy to capture this user's actions.

After the patch operation is complete, do not immediately disable the auditing of users
who are responsible for performing database patch operations. This way, you can
track the actions of the DV_PATCH_ADMIN role users. For backwards compatibility, this
type of auditing is disabled by default.

Privileges Associated with the DV_PATCH_ADMIN Role

The DV_PATCH_ADMIN role does not provide access to any secured data.

The DV_PATCH_ADMIN role a special Database Vault role that does not have any object
or system privilege. It is designed to allow the database administrator or the user SYS
to patch Database Vault enabled databases (for example, applying a database patch
without disabling Database Vault). It also enables the database administrator to create
users, because some patches may require the need to create new schemas.

How Are GRANT and REVOKE Operations Affected by DV_PATCH_ADMIN?

Only a user who has the DV_OWNER role can grant or revoke the DV_PATCH_ADMIN role to
and from another user.

DV_PATCH_ADMIN Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database roles is enforced only if Oracle Database Vault is
enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Chapter 13
Oracle Database Vault Roles

13-19

Guidance for Registering Database Vault When Patching in Multitenant
Environments

The DV_OWNER user can be configured locally or commonly to a common user in
CDB root. When DV_PATCH_ADMIN must be granted to patch the database, there is
no difference in what a locally granted DV_OWNER user has to do. By its structure,
DV_PATCH_ADMIN acts as the user has DV_PATCH_ADMIN in every PDB to complete the
patch, even if granted by a locally granted DV_OWNER common user in the CDB root.

Related Topics

• Introduction to Auditing

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

DV_POLICY_OWNER Database Vault Owner Role
The DV_POLICY_OWNER role enables database users to manage to a limited degree
Oracle Database Vault policies.

Privileges Associated with the DV_POLICY_OWNER Role

The DV_POLICY_OWNER role provides non-Database Vault administrative users the
sufficient privileges to enable or disable a Database Vault policy, add or remove
authorization to or from a realm, and use the SELECT privilege for the following
database views:

• DVSYS.POLICY_OWNER_COMMAND_RULE

• DVSYS.POLICY_OWNER_POLICY

• DVSYS.POLICY_OWNER_REALM

• DVSYS.POLICY_OWNER_REALM_AUTH

• DVSYS.POLICY_OWNER_REALM_OBJECT

• DVSYS.POLICY_OWNER_RULE_SET

• DVSYS.POLICY_OWNER_RULE

• DVSYS.POLICY_OWNER_RULE_SET_RULE

Only the DV_POLICY_OWNER can query these views. Even users who have the DV_OWNER
and DV_ADMIN roles cannot query these views.

The DV_POLICY_OWNER role does not have any system privileges. To find the full list of
object privileges that are associated with the DV_POLICY_OWNER role, you can log into
the database instance enter the following query:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_POLICY_OWNER';

How Are GRANT and REVOKE Operations Affected by DV_POLICY_OWNER?

Users who have been granted DV_POLICY_OWNER role cannot grant or revoke this role
to or from other users.

Chapter 13
Oracle Database Vault Roles

13-20

DV_POLICY_OWNER Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database Vault roles is enforced only if Oracle Database
Vault is enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

DV_SECANALYST Database Vault Security Analyst Role
The DV_SECANALYST role enables users to analyze activities.

Use the DV_SECANALYST role to run Oracle Database Vault reports and monitor Oracle
Database Vault.

This role is also used for database-related reports. In addition, this role enables you
to check the DVSYS configuration by querying the DVSYS views described in Oracle
Database Vault Data Dictionary Views.

Privileges Associated with the DV_SECANALYST Role

There are no system privileges associated with the DV_SECANALYST role, but it does
have the SELECT privilege for some DVSYS schema objects and portions of the SYS and
SYSMAN schema objects for reporting on DVSYS- and DVF-related entities.

In addition, the DV_SECANALYST role provides the SELECT privilege on the
DBA_DV_POLICY, DBA_DV_POLICY_OWNER, and DBA_DV_POLICY_OBJECT data dictionary
views.

To find the full list of DV_SECANALYST object privileges, log into the database instance
with sufficient privileges and then enter the following query:

SELECT TABLE_NAME, OWNER, PRIVILEGE FROM DBA_TAB_PRIVS WHERE GRANTEE =
'DV_SECANALYST';

How Are GRANT and REVOKE Operations Affected by DV_SECANALYST?

Any account, such as SYS or SYSTEM, with the GRANT ANY ROLE system privilege alone
does not have the rights to grant this role to or revoke this role from any other
database account.

Only the user with the DV_OWNER role can grant or revoke this role to and from another
user.

DV_SECANALYST Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database Vault roles is enforced only if Oracle Database
Vault is enabled.

Chapter 13
Oracle Database Vault Roles

13-21

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

DV_XSTREAM_ADMIN XStream Administrative Role
The DV_XSTREAM_ADMIN role is used for Oracle XStream.

Grant the DV_XSTREAM_ADMIN role to any user who is responsible for configuring Oracle
XStream in an Oracle Database Vault environment.

This enables the management of XStream processes to be tightly controlled by
Database Vault, but does not change or restrict the way an administrator would
normally configure XStream.

Privileges Associated with the DV_XSTREAM_ADMIN Role

There are no privileges associated with the DV_XSTREAM_ADMIN role.

Be aware that the DV_XSTREAM_ADMIN role does not provide a sufficient set of database
privileges for configuring XStream. Rather, the DV_XSTREAM_ADMIN role is an additional
requirement (that is, in addition to the privileges that XStream currently requires)
for database administrators to configure XStream in an Oracle Database Vault
environment.

How Are GRANT and REVOKE Operations Affected by DV_XSTREAM_ADMIN?

Only users who have been granted the DV_OWNER role can grant or revoke the
DV_XSTREAM_ADMIN role to or from other users.

DV_XSTREAM_ADMIN Status When Oracle Database Vault Security Is Disabled

The protection of all Oracle Database roles is enforced only if Oracle Database Vault is
enabled.

If Oracle Database Vault is disabled, then any account with the GRANT ANY ROLE
system privilege can perform GRANT and REVOKE operations on protected Database
Vault roles.

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

• Privileges for Using XStream with Oracle Database Vault
If you want to use XStream in an Oracle Database Vault environment, then you
must have the appropriate privileges.

Chapter 13
Oracle Database Vault Roles

13-22

Oracle Database Vault Accounts Created During
Registration

The accounts that you create during registration enable Oracle Database Vault to
adhere to separation of duty concepts and provide flexibility for users based on the
tasks they perform.

• About Oracle Database Vault Accounts Created During Registration
You must create accounts for the Oracle Database Vault Owner and Oracle
Database Vault Account Manager during the registration process.

• Database Accounts Used by Oracle Database Vault
Oracle Database Vault provides accounts that provide access to system and
object privileges, and Oracle Label Security.

• Model Oracle Database Vault Database Accounts
You can create different database accounts to implement the separation of duties
requirements for Oracle Database Vault.

About Oracle Database Vault Accounts Created During Registration
You must create accounts for the Oracle Database Vault Owner and Oracle Database
Vault Account Manager during the registration process.

You must supply an account name and password for the Oracle Database Vault Owner
accounts during installation. Creating an Oracle Database Vault Account Manager is
optional but strongly recommended for better separation of duty.

The Oracle Database Vault Owner account is granted the DV_OWNER role. This account
can manage Oracle Database Vault roles and configuration.

The Oracle Database Vault Account Manager account is granted the DV_ACCTMGR role.
This account is used to manage database user accounts to facilitate separation of
duties.

If you choose not to create the Oracle Database Vault Account Manager account
during installation, then both the DV_OWNER and DV_ACCTMGR roles are granted to the
Oracle Database Vault Owner user account.

Database Accounts Used by Oracle Database Vault
Oracle Database Vault provides accounts that provide access to system and object
privileges, and Oracle Label Security.

The following table lists the Oracle Database Vault database accounts that are needed
in addition to the accounts that you create during installation.

Chapter 13
Oracle Database Vault Accounts Created During Registration

13-23

Table 13-1 Database Accounts Used by Oracle Database Vault

Database Account Roles and Privileges Description

DVSYS Several system and object privileges are
provided to support Oracle Database Vault.
The ability to create a session with this
account is revoked at the end of the
installation, and the account is locked.

Owner of Oracle
Database Vault schema
and related objects

DVF A limited set of system privileges are provided
to support Oracle Database Vault. The ability
to create a session with this account is
revoked at the end of the installation, and the
account is locked.

Owner of the
Oracle Database Vault
functions that are
created to retrieve factor
identities

LBACSYS This account is created when you install
Oracle Label Security by using the Oracle
Universal Installer custom installation option.
(It is not created when you install Oracle
Database Vault.) Do not drop or re-create this
account.

If you plan to integrate a factor with an Oracle
Label Security policy, you must assign this
user as the owner of the realm that uses this
factor.

Owner of the Oracle
Label Security schema

Related Topics

• Using Oracle Database Vault Factors with Oracle Label Security Policies
To enhance security, you can integrate Oracle Database Vault factors with Oracle
Label Security policies.

Model Oracle Database Vault Database Accounts
You can create different database accounts to implement the separation of duties
requirements for Oracle Database Vault.

The following table lists some model database accounts that can act as a guide. (The
accounts listed in this table serve as a guide to implementing Oracle Database Vault
roles. These are not actual accounts that are created during installation.)

Table 13-2 Model Oracle Database Vault Database Accounts

Database
Account

Roles and Privileges Description

EBROWN DV_OWNER (with
DV_ADMIN and
DV_SECANALYST)

Account that is the realm owner for the Oracle
Database Vault realm. This account can:

• Execute DVSYS packages
• Grant privileges on the DVSYS schema objects
• Select objects in the DVSYS schema
• Monitor Oracle Database Vault activity
• Run reports on the Oracle Database Vault

configuration

Chapter 13
Oracle Database Vault Accounts Created During Registration

13-24

Table 13-2 (Cont.) Model Oracle Database Vault Database Accounts

Database
Account

Roles and Privileges Description

JGODFREY DV_ACCTMGR Account for administration of database accounts
and profiles. This account can:

• Create, alter, and drop users
• Create, alter, and drop profiles
• Grant and revoke the CREATE SESSION

privilege
• Grant and revoke the DV_ACCTMGR role, but

only if this account was created during the
Database Vault installation (this account is
created with the ADMIN option)

• Grant and revoke the CONNECT role
Note: This account cannot create roles, or grant
the RESOURCE or DBA roles.

RLAYTON DV_ADMIN (with
DV_SECANALYST)

Account to serve as the access control
administrator. This account can:

• Execute DVSYS packages
• Monitor Oracle Database Vault activity
• Run reports on the Oracle Database Vault

configuration
Note: This account cannot directly update the
DVSYS tables.

PSMYTHE DV_SECANALYST Account for running Oracle Database Vault reports

Related Topics

• Configuring Oracle Database Vault Accounts as Enterprise User Accounts
You can configure existing Oracle Database Vault user accounts as enterprise
user accounts in a PDB.

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

The Oracle Database Vault registration process entails creating both day-to-day and
backup accounts for the DV_OWNER and DV_ACCTMGR roles. You should keep and
maintain these accounts as a safety measure in case a user who has been granted
one of these roles forgets his or her password or leaves the organization. Then you
can log in to the backup account to recover the password or grant the role to a new
account. These should be only used as a backup account kept safe in a privileged
account management system or an organization break-glass (or emergency password
recovery) system. When you grant a user one of these roles, include the WITH ADMIN
OPTION clause in the GRANT statement.

Chapter 13
Backup Oracle Database Vault Accounts

13-25

Because of the strong separation of duty that Oracle Database Vault implements, loss
of access to the DV_OWNER account will force you to rebuild the database. The SYS
account cannot override the DV_OWNER account

Related Topics

• Resetting Oracle Database Vault Account Passwords
Backup accounts can help you reset lost passwords for users who have been
granted the DV_OWNER and DV_ACCTMGR roles.

Chapter 13
Backup Oracle Database Vault Accounts

13-26

14
Oracle Database Vault Realm APIs

The DBMS_MACADM PL/SQL package enables you to configure Oracle Database Vault
realms.

Only users who have been granted the DV_OWNER or DV_ADMIN role can use these
procedures. For constants that you can use with these procedures, see Table 20-1 for
more information.

• ADD_AUTH_TO_REALM Procedure
The ADD_AUTH_TO_REALM procedure authorizes a user or role to access a realm as
an owner or a participant. You can authenticate both common and local realms.

• ADD_OBJECT_TO_REALM Procedure
The ADD_OBJECT_TO_REALM procedure registers a set of objects for realm
protection.

• CREATE_REALM Procedure
The CREATE_REALM procedure creates both common and local realms.

• DELETE_AUTH_FROM_REALM Procedure
The DELETE_AUTH_FROM_REALM procedure removes the authorization of a user or
role to access a realm.

• DELETE_OBJECT_FROM_REALM Procedure
The DELETE_OBJECT_FROM_REALM procedure removes a set of objects from realm
protection.

• DELETE_REALM Procedure
The DELETE_REALM procedure deletes a realm, including its related configuration
information that specifies who is authorized and what objects are protected.

• DELETE_REALM_CASCADE Procedure
The DELETE_REALM_CASCADE procedure deletes a realm, including its related
Database Vault configuration information that specifies who is authorized and the
objects that are protected.

• RENAME_REALM Procedure
The RENAME_REALM procedure renames a realm; the name change takes effect
everywhere the realm is used.

• UPDATE_REALM Procedure
The UPDATE_REALM procedure updates a realm.

• UPDATE_REALM_AUTH Procedure
The UPDATE_REALM_AUTH procedure updates the authorization of a user or role to
access a realm.

14-1

ADD_AUTH_TO_REALM Procedure
The ADD_AUTH_TO_REALM procedure authorizes a user or role to access a realm as an
owner or a participant. You can authenticate both common and local realms.

Optionally, you can specify a rule set that must be checked before allowing the
authorization to be enabled.

Syntax

DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name IN VARCHAR2,
 grantee IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 auth_options IN NUMBER
 auth_scope IN NUMBER DEFAULT);

Parameters

Table 14-1 ADD_AUTH_TO_REALM Parameters

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

grantee User or role name to authorize as an owner or a participant.

To find the existing users and roles in the current database instance, query
the DBA_USERS and DBA_ROLES views.

To find the authorization of a particular user or role, query the
DVA_DV_REALM_AUTH view.

To find existing secure application roles used in privilege management,
query the DBA_DV_ROLE view.

rule_set_name Optional. The rule set to check during runtime. The realm authorization is
enabled only if the rule set evaluates to TRUE.

To find the available rule sets, query the DBA_DV_RULE_SET view.

auth_options Optional. Specify one of the following options to authorize the realm:

• DBMS_MACUTL.G_REALM_AUTH_PARTICIPANT: Participant. This
account or role provides system or direct privileges to access,
manipulate, and create objects protected by the realm, provided
these rights have been granted using the standard Oracle Database
privilege grant process. (Default)

• DBMS_MACUTL.G_REALM_AUTH_OWNER: Owner. This account or role
has the same authorization as the realm participant, plus the
authorization to grant or revoke realm-secured roles and privileges on
realm-protected objects.

See Related Topics for more information about participants and owners.

auth_scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) to authorize the realm locally in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) to authorize the realm in the
application root

Chapter 14
ADD_AUTH_TO_REALM Procedure

14-2

Examples

The following example authorizes user SYSADM as a participant in the Performance
Statistics Realm. Because the default is to authorize the user as a participant, the
auth_options parameter can be omitted.

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'Performance Statistics Realm',
 grantee => 'SYSADM');
END;
/

This example sets user SYSADM as the owner of the Performance Statistics Realm.

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'Performance Statistics Realm',
 grantee => 'SYSADM',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER);
END;
/

The next example triggers the Check Conf Access rule set before allowing user SYSADM
to act as the owner of the Performance Statistics Realm.

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'Performance Statistics Realm',
 grantee => 'SYSADM',
 rule_set_name => 'Check Conf Access',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER);
END;
/

This example shows how to commonly grant the common user C##HR_ADMIN access to
the common realm HR Statistics Realm. The user running this procedure must be in
the CDB root, and the rule set must be a common rule set residing in the application
root.

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Statistics Realm',
 grantee => 'C##HR_ADMIN',
 rule_set_name => 'Check Access',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER,
 auth_scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

This example shows how to locally grant the common user C##HR_CLERK access to
the common realm HR Statistics Realm. The user running this procedure must be in
the same PDB in which the authorization applies. To find the existing PDBs query the
DBA_PDBS data dictionary view. The rule set must be a local rule set.

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'HR Statistics Realm',
 grantee => 'C##HR_CLERK',
 rule_set_name => 'Check Access',

Chapter 14
ADD_AUTH_TO_REALM Procedure

14-3

 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER,
 auth_scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Related Topics

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

ADD_OBJECT_TO_REALM Procedure
The ADD_OBJECT_TO_REALM procedure registers a set of objects for realm protection.

Syntax

DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2);

Parameters

Table 14-2 ADD_OBJECT_TO_REALM Parameters

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

object_owner The owner of the object that is being added to the realm. If you add
a role to a realm, the object owner of the role is shown as % (for all),
because roles do not have owners.

To find the available users, query the DBA_USERS view.

To find the authorization of a particular user or role, query the
DVA_DV_REALM_AUTH view.

object_name Object name. (The wildcard % is allowed.) You can also use the
DBMS_MACUTL.G_ALL_OBJECT constant.

To find the available objects, query the ALL_OBJECTS view.

To find objects that are secured by existing realms, query the
DBA_DV_REALM_OBJECT view.

object_type Object type, such as TABLE, INDEX, or ROLE. (The wildcard % is
allowed.)

You can also use the DBMS_MACUTL.G_ALL_OBJECT constant.

Example

BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'Performance Statistics Realm',
 object_owner => '%',
 object_name => 'GATHER_SYSTEM_STATISTICS',
 object_type => 'ROLE');

Chapter 14
ADD_OBJECT_TO_REALM Procedure

14-4

END;
/

Related Topics

• About Realm-Secured Objects
Realm-secured objects define the territory—a set of schema and database objects
and roles—that a realm protects.

CREATE_REALM Procedure
The CREATE_REALM procedure creates both common and local realms.

After you create the realm, use the following procedures to complete the realm
definition:

• ADD_OBJECT_TO_REALM procedure registers one or more objects for the realm.

• ADD_AUTH_TO_REALM procedure authorizes users or roles for the realm.

Syntax

DBMS_MACADM.CREATE_REALM(
 realm_name IN VARCHAR2,
 description IN VARCHAR2,
 enabled IN VARCHAR2,
 audit_options IN NUMBER,
 realm_type IN NUMBER DEFAULT,
 realm_scope IN NUMBER DEFAULT
 pl_sql_stack IN BOOLEAN DEFAULT);

Parameters

Table 14-3 CREATE_REALM Parameters

Parameter Description

realm_name Realm name, up to 128 characters in mixed-case. Oracle suggests that
you use the name of the protected application as the realm name (for
example, hr_app for an human resources application). This parameter
is mandatory.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

description Description of the purpose of the realm, up to 1024 characters in
mixed-case. This parameter is optional.

You may want to include a description for the business objective
of the given application protection and document all other security
policies that compliment the realm's protection. Also document who is
authorized to the realm, for what purpose, and any possible emergency
authorizations.

enabled Specify one of the following mandatory options to set the status of the
realm:

• DBMS_MACUTL.G_YES or ‘y’ to enable realm checking (default)
• DBMS_MACUTL.G_NO or ‘n’ to disable all realm checking, including

the capture of violations in the simulation log
• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements

to execute but capture violations in the simulation log

Chapter 14
CREATE_REALM Procedure

14-5

Table 14-3 (Cont.) CREATE_REALM Parameters

Parameter Description

audit_options Specify one of the following optional options to audit the realm:

• DBMS_MACUTL.G_REALM_AUDIT_OFF: Disables auditing for the
realm (default)

• DBMS_MACUTL.G_REALM_AUDIT_FAIL: Creates an audit record
when a realm violation occurs (for example, when an unauthorized
user tries to modify an object that is protected by the realm)

• DBMS_MACUTL.G_REALM_AUDIT_SUCCESS: Creates an audit
record for authorized activities on objects protected by the realm

• DBMS_MACUTL.G_REALM_AUDIT_FAIL +
DBMS_MACUTL.G_REALM_AUDIT_SUCCESS: Creates an audit
record for both authorized and unauthorized activities on objects
protected by the realm

Starting with Oracle Database release 21c, traditional auditing is
deprecated. Oracle recommends that you create Oracle Database
Vault unified audit policies instead of using the audit_options
parameter.

realm_type Specify one of the following options:

• 0: Disables mandatory realm checking.
• 1: Enables mandatory realm checking for realm objects. Only

realm owners or realm participants will have access to objects in
a realm. Object owners and object-privileged users who are not
realm owners or participants will have no access.

See also Related Topics.

realm_scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the realm must be local in
the current PDB.

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the realm must be in
the application root. This setting duplicates the realm in all of the
associated PDBs.

If you create the common realm in an application root and want
it visible to the associated PDBs, then you must synchronize the
application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record. The default is FALSE.

Examples

The following example shows how to create a realm that is enabled, has auditing
set to track both failed and successful access, uses mandatory realm checking, and
records the PL/SQL stack.

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Performance Statistics Realm',
 description => 'Realm to measure performance',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,

Chapter 14
CREATE_REALM Procedure

14-6

 realm_type => 1,
 pl_sql_stack => TRUE);
END;
/

This example shows how to create a variation of the preceding example, but as a
common realm located in the application root. The user who creates this realm must
be a common user and must execute the procedure in the CDB root.

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Performance Statistics Realm',
 description => 'Realm to measure performance',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 1,
 realm_scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

This example shows how to create a local version n of the preceding example. The
user who creates this realm must be in the PDB in which the realm will reside. To find
existing PDBs, query the DBA_PDBS data dictionary view.

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Performance Statistics Realm',
 description => 'Realm to measure performance',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 1,
 realm_scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Related Topics

• Mandatory Realms to Restrict User Access to Objects within a Realm
By default, users who own or have object privileges are allowed to access realm-
protected objects without explicit realm authorization.

DELETE_AUTH_FROM_REALM Procedure
The DELETE_AUTH_FROM_REALM procedure removes the authorization of a user or role to
access a realm.

Syntax

DBMS_MACADM.DELETE_AUTH_FROM_REALM(
 realm_name IN VARCHAR2,
 grantee IN VARCHAR2,
 auth_scope IN NUMBER DEFAULT);

Chapter 14
DELETE_AUTH_FROM_REALM Procedure

14-7

Parameters

Table 14-4 DELETE_AUTH_FROM_REALM Parameters

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

grantee User or role name.

To find the authorization of a particular user or role, query the
DVA_DV_REALM_AUTH view.

auth_scope Determines how to execute this procedure. The default is local. Options are as
follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the realm was authorized locally
in the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2 if the realm was authorized in the
application root

Example

BEGIN
DBMS_MACADM.DELETE_AUTH_FROM_REALM(
 realm_name => 'Performance Statistics Realm',
 grantee => 'PSMITH',
 auth_scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

DELETE_OBJECT_FROM_REALM Procedure
The DELETE_OBJECT_FROM_REALM procedure removes a set of objects from realm
protection.

Syntax

DBMS_MACADM.DELETE_OBJECT_FROM_REALM(
 realm_name IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2);

Parameters

Table 14-5 DELETE_OBJECT_FROM_REALM Parameters

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

object_owner The owner of the object that was added to the realm.

To find the available users, query the DBA_USERS view.

Chapter 14
DELETE_OBJECT_FROM_REALM Procedure

14-8

Table 14-5 (Cont.) DELETE_OBJECT_FROM_REALM Parameters

Parameter Description

object_name Object name. (The wildcard % is allowed.) You can also use the
DBMS_MACUTL.G_ALL_OBJECT constant.

To find objects that are secured by existing realms, query the
DBA_DV_REALM_OBJECT view.

See also Related Topics.

object_type Object type, such as TABLE, INDEX, or ROLE. (The wildcard % is
allowed.)

You can also use the DBMS_MACUTL.G_ALL_OBJECT constant.

See also Related Topics.

Example

BEGIN
 DBMS_MACADM.DELETE_OBJECT_FROM_REALM(
 realm_name => 'Performance Statistics Realm',
 object_owner => 'SYS',
 object_name => 'GATHER_SYSTEM_STATISTICS',
 object_type => 'ROLE');
END;
/

Related Topics

• About Realm-Secured Objects
Realm-secured objects define the territory—a set of schema and database objects
and roles—that a realm protects.

DELETE_REALM Procedure
The DELETE_REALM procedure deletes a realm, including its related configuration
information that specifies who is authorized and what objects are protected.

This procedure does not delete the actual database objects or users.

To find users who are authorized for the realm, query the DBA_DV_REALM_AUTH view. To
find the objects that are protected by the realm, query the DBA_DV_REALM_OBJECT view.

Syntax

DBMS_MACADM.DELETE_REALM(
 realm_name IN VARCHAR2);

Parameters

Table 14-6 DELETE_REALM Parameter

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

Chapter 14
DELETE_REALM Procedure

14-9

Example

EXEC DBMS_MACADM.DELETE_REALM('Performance Statistics Realm');

DELETE_REALM_CASCADE Procedure
The DELETE_REALM_CASCADE procedure deletes a realm, including its related Database
Vault configuration information that specifies who is authorized and the objects that are
protected.

The DBA_DV_REALM_AUTH view lists who is authorized in the realm and the
DBA_DV_REALM_OBJECT view lists the protected objects.

It does not delete the actual database objects or users. This procedure works the
same as the DELETE_REALM procedure. (In previous releases, these procedures were
different, but now they are the same. Both are retained for earlier compatibility.) To
find a listing of the realm-related objects, query the DBA_DV_REALM view. To find its
authorizations, query DBA_DV_REALM_AUTH.

Syntax

DBMS_MACADM.DELETE_REALM_CASCADE(
 realm_name IN VARCHAR2);

Parameters

Table 14-7 DELETE_REALM_CASCADE Parameter

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

Example

EXEC DBMS_MACADM.DELETE_REALM_CASCADE('Performance Statistics Realm');

RENAME_REALM Procedure
The RENAME_REALM procedure renames a realm; the name change takes effect
everywhere the realm is used.

Syntax

DBMS_MACADM.RENAME_REALM(
 realm_name IN VARCHAR2,
 new_name IN VARCHAR2);

Chapter 14
DELETE_REALM_CASCADE Procedure

14-10

Parameters

Table 14-8 RENAME_REALM Parameters

Parameter Description

realm_name Current realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

new_name New realm name, up to 128 characters in mixed-case.

Example

BEGIN
 DBMS_MACADM.RENAME_REALM(
 realm_name => 'Performance Statistics Realm',
 new_name => 'Sector 2 Performance Statistics Realm');
END;
/

UPDATE_REALM Procedure
The UPDATE_REALM procedure updates a realm.

To find information about the current settings for a realm, query the DVSYS.DV$REALM
view.

Syntax

DBMS_MACADM.UPDATE_REALM(
 realm_name IN VARCHAR2,
 description IN VARCHAR2,
 enabled IN VARCHAR2,
 audit_options IN NUMBER DEFAULT NULL,
 realm_type IN NUMBER DEFAULT NULL
 pl_sql_stack IN BOOLEAN DEFAULT NULL);

Parameters

Table 14-9 UPDATE_REALM Parameters

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

description Description of the purpose of the realm, up to 1024 characters in mixed-
case.

Chapter 14
UPDATE_REALM Procedure

14-11

Table 14-9 (Cont.) UPDATE_REALM Parameters

Parameter Description

enabled Specify one of the following options to set the status of the realm:
• DBMS_MACUTL.G_YES or ‘y’ to enable realm checking
• DBMS_MACUTL.G_NO or ‘n’ to disable all realm checking, including

the capture of violations in the simulation log
• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to

execute but capture violations in the simulation log

The default for enabled is the previously set value, which you can find by
querying the DBA_DV_REALM data dictionary view.

audit_options Specify one of the following options to audit the realm:

• DBMS_MACUTL.G_REALM_AUDIT_OFF: Disables auditing for the
realm

• DBMS_MACUTL.G_REALM_AUDIT_FAIL: Creates an audit record
when a realm violation occurs (for example, when an unauthorized
user tries to modify an object that is protected by the realm

• DBMS_MACUTL.G_REALM_AUDIT_SUCCESS: Creates an audit record
for authorized activities on objects protected by the realm.

• DBMS_MACUTL.G_REALM_AUDIT_FAIL +
DBMS_MACUTL.G_REALM_AUDIT_SUCCESS: Creates an audit record
for both authorized and unauthorized activities on objects protected
by the realm

The default for audit_options is the previously set value, which you
can find by querying the DBA_DV_REALM data dictionary view.

Starting with Oracle Database release 21c, traditional auditing is
deprecated. Oracle recommends that you create Oracle Database Vault
unified audit policies instead of using the audit_options parameter.

realm_type If you do not specify the realm_type parameter, then Oracle Database
Vault does not update the current realm_type setting.

Specify one of the following options:

• 0: Sets the realm to be a regular realm, which does not have
mandatory realm checking.

• 1: Enables mandatory realm checking for realm objects. Only realm
owners or realm participants will have access to objects in a realm.
Object owners and object-privileged users who are not realm owners
or participants will have no access.

See also Related Topics.

pl_sql_stack When simulation mode is enabled, indicates whether the PL/SQL stack
has been recorded for failed operations. TRUE indicates that the PL/SQL
stack has been recorded; FALSE indicates that the PL/SQL stack has not
been recorded.

Example

BEGIN
 DBMS_MACADM.UPDATE_REALM(
 realm_name => 'Sector 2 Performance Statistics Realm',
 description => 'Realm to measure performance for Sector 2 applications',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF,
 realm_type => 1);

Chapter 14
UPDATE_REALM Procedure

14-12

END;
/

Related Topics

• Mandatory Realms to Restrict User Access to Objects within a Realm
By default, users who own or have object privileges are allowed to access realm-
protected objects without explicit realm authorization.

UPDATE_REALM_AUTH Procedure
The UPDATE_REALM_AUTH procedure updates the authorization of a user or role to
access a realm.

Syntax

DBMS_MACADM.UPDATE_REALM_AUTH(
 realm_name IN VARCHAR2,
 grantee IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 auth_options IN NUMBER,
 auth_scope IN NUMBER DEFAULT);

Parameters

Table 14-10 UPDATE_REALM_AUTH Parameters

Parameter Description

realm_name Realm name.

To find the existing realms in the current database instance, query the
DBA_DV_REALM view.

grantee User or role name.

To find the available users and roles in the current database instance,
query the DBA_USERS and DBA_ROLES data dictionary views.

To find the authorization of a particular user or role, query the
DVA_DV_REALM_AUTH view.

To find existing secure application roles used in privilege management,
query the DBA_DV_ROLE view.

rule_set_name Optional. A rule set to check during runtime. The realm authorization is
enabled only if the rule set evaluates to TRUE.

To find the available rule sets, query the DBA_DV_RULE_SET view.
To find rules that are associated with the rule sets, query the
DBA_DB_RULE_SET_RULE view.

Chapter 14
UPDATE_REALM_AUTH Procedure

14-13

Table 14-10 (Cont.) UPDATE_REALM_AUTH Parameters

Parameter Description

auth_options Optional. Specify one of the following options to authorize the realm:

• DBMS_MACUTL.G_REALM_AUTH_PARTICIPANT: Participant. This
account or role provides system or direct privileges to access,
manipulate, and create objects protected by the realm, provided
these rights have been granted using the standard Oracle Database
privilege grant process.

• DBMS_MACUTL.G_REALM_AUTH_OWNER: Owner. This account or role
has the same authorization as the realm participant, plus the
authorization to grant or revoke realm-secured roles and privileges
on realm-protected objects. A realm can have multiple owners.

The default for auth_options value is the previously set value, which you
can find by querying the DBA_DV_REALM_AUTH data dictionary view.

realm_auth Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the realm is authorized
locally in the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the realm is authorized in
the application root

Example

BEGIN
 DBMS_MACADM.UPDATE_REALM_AUTH(
 realm_name => 'Sector 2 Performance Statistics Realm',
 grantee => 'SYSADM',
 rule_set_name => 'Check Conf Access',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER);
END;
/

Chapter 14
UPDATE_REALM_AUTH Procedure

14-14

15
Oracle Database Vault Rule Set APIs

You can use the DBMS_MACADM PL/SQL package and a set of Oracle Database Vault
rule functions to manage rule sets.

• DBMS_MACADM Rule Set Procedures
The DBMS_MACADM rule set procedures enable you to configure both rule sets and
individual rules that go within these rule sets.

• Oracle Database Vault PL/SQL Rule Set Functions
Oracle Database Vault provides functions to use in rule sets to inspect the SQL
statement that the rule set protects.

DBMS_MACADM Rule Set Procedures
The DBMS_MACADM rule set procedures enable you to configure both rule sets and
individual rules that go within these rule sets.

Only users who have been granted the DV_OWNER or DV_ADMIN role can use these
procedures.

• ADD_RULE_TO_RULE_SET Procedure
The ADD_RULE_TO_RULE_SET procedure adds rule to a rule set; you can enable
having the rule checked when the rule set is evaluated.

• CREATE_RULE Procedure
The CREATE_RULE procedure creates both common and local rules, which
afterward, can be added to a rule set.

• CREATE_RULE_SET Procedure
The CREATE_RULE_SET procedure creates a rule set.

• DELETE_RULE Procedure
The DELETE_RULE procedure deletes a rule.

• DELETE_RULE_FROM_RULE_SET Procedure
The DELETE_RULE_FROM_RULE_SET procedure deletes a rule from a rule set.

• DELETE_RULE_SET Procedure
The DELETE_RULE_SET procedure deletes a rule set.

• RENAME_RULE Procedure
The RENAME_RULE procedure renames a rule and causes the name change to take
effect everywhere the rule is used

• RENAME_RULE_SET Procedure
The RENAME_RULE_SET procedure renames a rule set and causes the name change
to take effect everywhere the rule set is used.

• UPDATE_RULE Procedure
The UPDATE_RULE procedure updates a rule.

• UPDATE_RULE_SET Procedure
The UPDATE_RULE_SET procedure updates a rule set.

15-1

Related Topics

• Configuring Rule Sets
Rule sets group one or more rules together; the rules determine whether a user
can perform an action on an object.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

ADD_RULE_TO_RULE_SET Procedure
The ADD_RULE_TO_RULE_SET procedure adds rule to a rule set; you can enable having
the rule checked when the rule set is evaluated.

Syntax

DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name IN VARCHAR2,
 rule_name IN VARCHAR2,
 rule_order IN NUMBER,
 enabled IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Parameters

Table 15-1 ADD_RULE_TO_RULE_SET Parameters

Parameter Description

rule_set_name Rule set name.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

rule_name Rule to add to the rule set.

To find existing rules, query the DBA_DV_RULE view.

To find rules that have been associated with rule sets, query
DBA_DV_RULE_SET_RULE.

rule_order Does not apply to this release, but you must include a value for the
ADD_RULE_TO_RULE_SET procedure to work. Enter 1.

enabled Optional. Determines whether the rule should be checked when the rule
set is evaluated. Possible values are:

• DBMS_MACUTL.G_YES (default). Enables the rule to be checked
during the rule set evaluation.

• DBMS_MACUTL.G_NO Prevents the rule from being checked during the
rule set evaluation.

See also Related Topics.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the rule and rule set are
local in the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the rule and rule set are in
the application root

Chapter 15
DBMS_MACADM Rule Set Procedures

15-2

Examples

The following example adds a rule to a rule set, and by omitting the enabled
parameter, automatically enables the rule to be checked when the rule set is
evaluated.

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Restrict DROP TABLE operations',
 rule_order => 1);
END;
/

This example adds the rule to the rule set but disables rule checking.

BEGIN
 DBMS_MACADM.ADD_RULE_TO_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Check UPDATE operations',
 rule_order => 1,
 enabled => DBMS_MACUTL.G_NO);
END;
/

Related Topics

• DBMS_MACUTL Constants
You can use a set of constants, available in the DBMS_MACUTL PL/SQL package.

CREATE_RULE Procedure
The CREATE_RULE procedure creates both common and local rules, which afterward,
can be added to a rule set.

Syntax

DBMS_MACADM.CREATE_RULE(
 rule_name IN VARCHAR2,
 rule_expr IN VARCHAR2
 scope IN NUMBER DEFAULT);

Parameters

Table 15-2 CREATE_RULE Parameters

Parameter Description

rule_name Rule name, up to 128 characters in mixed-case. Spaces are allowed.

To find existing rules in the current database instance, query the
DBA_DV_RULE view.

To find rules that have been associated with rule sets, query
DBA_DV_RULE_SET_RULE.

Chapter 15
DBMS_MACADM Rule Set Procedures

15-3

Table 15-2 (Cont.) CREATE_RULE Parameters

Parameter Description

rule_expr PL/SQL BOOLEAN expression.

If the expression contains quotation marks, do not use double quotation
marks. Instead, use two single quotation marks. Enclose the entire
expression within single quotation marks. For example:

'TO_CHAR(SYSDATE,''HH24'') = ''12'''

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the rule is local in the
current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the rule is in the
application root

Examples

The following example shows how to create a local rule expression that checks if the
current session user is SYSADM. The user running this procedure must be in the same
PDB in which the rule and its rule set reside. To find the existing PDBs, run the show
pdbs command. The rule and rule set must be local.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check UPDATE operations',
 rule_expr =>'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''SYSADM''',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

This example shows a multitenant environment common version of the preceding
example. The user running this procedure must be in the CDB root, and the rule and
its associated rule set must be common. The rule will reside in the application root.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check UPDATE operations',
 rule_expr =>'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''SYSADM''',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

This example shows how to create a rule expression that uses the public standalone
function OLS_LABEL_DOMINATES to find if the session label of the hr_ols_pol Oracle
Label Security policy dominates or is equal to the hs label. The value 0 indicates if it is
false. (To check if it is equal, you would specify 1.)

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check OLS Factor',
 rule_expr => 'OLS_LABEL_DOMINATES(''hr_ols_pol'', ''hs'') = 1');
END;
/

Chapter 15
DBMS_MACADM Rule Set Procedures

15-4

Related Topics

• Creating a New Rule
You can create a new rule or use the default Oracle Database Vault rules.

CREATE_RULE_SET Procedure
The CREATE_RULE_SET procedure creates a rule set.

After you create a rule set, you can use the CREATE_RULE and ADD_RULE_TO_RULE_SET
procedures to create and add rules to the rule set.

Syntax

DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name IN VARCHAR2,
 description IN VARCHAR2,
 enabled IN VARCHAR2,
 eval_options IN NUMBER,
 audit_options IN NUMBER,
 fail_options IN NUMBER,
 fail_message IN VARCHAR2,
 fail_code IN NUMBER,
 handler_options IN NUMBER,
 handler IN VARCHAR2,
 is_static IN BOOLEAN DEFAULT,
 scope IN NUMBER DEFAULT);

Parameters

Table 15-3 CREATE_RULE_SET Parameters

Parameter Description

rule_set_name Rule set name, up to 128 characters in mixed-case. Spaces are allowed.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

description Description of the purpose of the rule set, up to 1024 characters in
mixed-case.

enabled DBMS_MACUTL.G_YES (Yes) enables the rule set; DBMS_MACUTL.G_NO
(No) disables it. The default is DBMS_MACUTL.G_YES.

eval_options If you plan to assign multiple rules to the rule set, enter one of the
following settings:

• DBMS_MACUTL.G_RULESET_EVAL_ALL: All rules in the rule set must
evaluate to true for the rule set itself to evaluate to true (default).

• DBMS_MACUTL.G_RULESET_EVAL_ANY: At least one rule in the rule
set must evaluate to true for the rule set itself to evaluate to true.

Chapter 15
DBMS_MACADM Rule Set Procedures

15-5

Table 15-3 (Cont.) CREATE_RULE_SET Parameters

Parameter Description

audit_options Select one of the following settings:

• DBMS_MACUTL.G_RULESET_AUDIT_OFF: Disables auditing for the
rule set (default)

• DBMS_MACUTL.G_RULESET_AUDIT_FAIL: Creates an audit record
when a rule set violation occurs

• DBMS_MACUTL.G_RULESET_AUDIT_SUCCESS: Creates an audit
record for a successful rule set evaluation

• DBMS_MACUTL.G_RULESET_AUDIT_FAIL +
DBMS_MACUTL.G_RULESET_AUDIT_SUCCESS: Creates an audit
record for both successful and failed rule set evaluations

Starting with Oracle Database release 21c, traditional auditing is
deprecated. Oracle recommends that you create Oracle Database Vault
unified audit policies instead of using the audit_options parameter.

fail_options Options for reporting errors:

• DBMS_MACUTL.G_RULESET_FAIL_SHOW: Shows an error message
(default)

• DBMS_MACUTL.G_RULESET_FAIL_SILENT: Does not show an error
message

fail_message Enter an error message for failure, up to 80 characters in mixed-case, to
associate with the fail code you specify for fail_code.

fail_code Enter a number in the range of -20000 to -20999 or 20000 to 20999 to
associate with the fail_message parameter.

handler_options Select one of the following settings:

• DBMS_MACUTL.G_RULESET_HANDLER_OFF: Disables error handling
(default)

• DBMS_MACUTL.G_RULESET_HANDLER_FAIL: Calls handler on rule
set failure

• DBMS_MACUTL.G_RULESET_HANDLER_SUCCESS: Calls handler on
rule set success

handler Name of the PL/SQL function or procedure that defines the custom event
handler logic.

is_static Optional. Determines how often a rule set is evaluated when it is
accessed. The default is FALSE.

• TRUE: The rule set is evaluated once during the user session. After
that, the value is re-used.

• FALSE: The rule set is evaluated every time.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the rule set is to be local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the rule set is to be in the
application root

Examples

The following example creates a rule set that is enabled, is set so that at least one
rule must evaluate to true for the rule set itself to evaluate to true, and audits both
failed and successful attempts. It does not show error messages but uses the fail code

Chapter 15
DBMS_MACADM Rule Set Procedures

15-6

20461 to track failures. It also uses a handler to send email alerts to the appropriate
users if their are violations to the rule set.

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 description => 'DBA access through predefined processes',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message => '',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_FAIL,
 handler => 'dbavowner.email_alert',
 is_static => TRUE);
END;
/

This rule set uses no fail messages or fail codes, nor does it use any handlers. This
rule set will be in the application root of a multitenant environment, so the user running
this procedure must be in the application root. Any rules or command rules that are
associated with this rule set must be common.

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Check_HR_Access',
 description => 'Checks for failed access attempts to the HR schema',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message => '',
 fail_code => '',
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => '',
 is_static => TRUE,
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

This rule set is a local version of the preceding rule set. The user who creates this
rule set must be in the PDB in which this rule set will reside. To find the existing
PDBs, query the DBA_PDBS data dictionary view. Any rules or command rules that are
associated with this rule set must be local.

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Check_HR_Access',
 description => 'Checks for failed access attempts to the HR schema',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message => '',
 fail_code => '',
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => '',
 is_static => TRUE,
 scope => DBMS_MACUTL.G_SCOPE_COMMON);

Chapter 15
DBMS_MACADM Rule Set Procedures

15-7

END;
/

DELETE_RULE Procedure
The DELETE_RULE procedure deletes a rule.

Syntax

DBMS_MACADM.DELETE_RULE(
 rule_name IN VARCHAR2);

Parameter

Table 15-4 DELETE_RULE Parameter

Parameter Description

rule_name Rule name.

To find existing rules in the current database instance, query the
DBA_DV_RULE view.

To find rules that have been associated with rule sets, query
DBA_DV_RULE_SET_RULE.

Example

EXEC DBMS_MACADM.DELETE_RULE('Check UPDATE operations');

DELETE_RULE_FROM_RULE_SET Procedure
The DELETE_RULE_FROM_RULE_SET procedure deletes a rule from a rule set.

Syntax

DBMS_MACADM.DELETE_RULE_FROM_RULE_SET(
 rule_set_name IN VARCHAR2,
 rule_name IN VARCHAR2);

Parameters

Table 15-5 DELETE_RULE_FROM_RULE_SET Parameters

Parameter Description

rule_set_name Rule set name.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

rule_name Rule to remove from the rule set.

To find existing rules in the current database instance, query the
DBA_DV_RULE view.

To find rules that have been associated with rule sets, query
DBA_DV_RULE_SET_RULE.

Chapter 15
DBMS_MACADM Rule Set Procedures

15-8

Example

BEGIN
 DBMS_MACADM.DELETE_RULE_FROM_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 rule_name => 'Check UPDATE operations');
END;
/

DELETE_RULE_SET Procedure
The DELETE_RULE_SET procedure deletes a rule set.

Syntax

DBMS_MACADM.DELETE_RULE_SET(
 rule_set_name IN VARCHAR2);

Parameters

Table 15-6 DELETE_RULE_SET Parameter

Parameter Description

rule_set_name Rule set name.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

Example

EXEC DBMS_MACADM.DELETE_RULE_SET('Limit_DBA_Access');

RENAME_RULE Procedure
The RENAME_RULE procedure renames a rule and causes the name change to take
effect everywhere the rule is used

Syntax

DBMS_MACADM.RENAME_RULE(
 rule_name IN VARCHAR2,
 new_name IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Parameters

Table 15-7 RENAME_RULE Parameters

Parameter Description

rule_name Current rule name.

To find existing rules in the current database instance, query the
DBA_DV_RULE view.

To find rules that have been associated with rule sets, query
DBA_DV_RULE_SET_RULE.

Chapter 15
DBMS_MACADM Rule Set Procedures

15-9

Table 15-7 (Cont.) RENAME_RULE Parameters

Parameter Description

new_name New rule name, up to 128 characters in mixed-case.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the rule is local in the current
PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the rule is in the application
root

Example

BEGIN
 DBMS_MACADM.RENAME_RULE(
 rule_name => 'Check UPDATE operations',
 new_name => 'Check Sector 2 Processes');
END;
/

RENAME_RULE_SET Procedure
The RENAME_RULE_SET procedure renames a rule set and causes the name change to
take effect everywhere the rule set is used.

Syntax

DBMS_MACADM.RENAME_RULE_SET(
 rule_set_name IN VARCHAR2,
 new_name IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Parameters

Table 15-8 RENAME_RULE_SET Parameters

Parameter Description

rule_set_name Current rule set name.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

new_name New rule set name, up to 128 characters in mixed-case. Spaces are
allowed.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the rule set is local in the
current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the rule set is in the
application root

Example

BEGIN
 DBMS_MACADM.RENAME_RULE_SET(

Chapter 15
DBMS_MACADM Rule Set Procedures

15-10

 rule_set_name => 'Limit_DBA_Access',
 new_name => 'Limit Sector 2 Access');
END;
/

UPDATE_RULE Procedure
The UPDATE_RULE procedure updates a rule.

Syntax

DBMS_MACADM.UPDATE_RULE(
 rule_name IN VARCHAR2,
 rule_expr IN VARCHAR2);

Parameters

Table 15-9 UPDATE_RULE Parameters

Parameter Description

rule_name Rule name.

To find existing rules in the current database instance.

To find rules that have been associated with rule sets, query
DBA_DV_RULE_SET_RULE.

rule_expr PL/SQL BOOLEAN expression.

If the expression contains quotation marks, do not use double quotation
marks. Instead, use two single quotation marks. Enclose the entire
expression within single quotation marks. For example:

'TO_CHAR(SYSDATE,''HH24'') = ''12'''

See Creating a New Rule for more information on rule expressions.

To find existing rule expressions, query the DBA_DV_RULE view.

Example

BEGIN
 DBMS_MACADM.UPDATE_RULE(
 rule_name => 'Check UPDATE operations',
 rule_expr =>'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''SYSADM'' AND
 (
 UPPER(SYS_CONTEXT(''USERENV'',''MODULE'')) LIKE ''APPSRVR%'' OR
 UPPER(SYS_CONTEXT(''USERENV'',''MODULE'')) LIKE ''DBAPP%'')'
);
END;
/

UPDATE_RULE_SET Procedure
The UPDATE_RULE_SET procedure updates a rule set.

Syntax

DBMS_MACADM.UPDATE_RULE_SET(
 rule_set_name IN VARCHAR2,
 description IN VARCHAR2,

Chapter 15
DBMS_MACADM Rule Set Procedures

15-11

 enabled IN VARCHAR2,
 eval_options IN NUMBER,
 audit_options IN NUMBER,
 fail_options IN NUMBER,
 fail_message IN VARCHAR2,
 fail_code IN NUMBER,
 handler_options IN NUMBER,
 handler IN VARCHAR2,
 is_static IN BOOLEAN DEFAULT);

Parameters

Table 15-10 UPDATE_RULE_SET Parameters

Parameter Description

rule_set_name Rule set name.

To find existing rule sets in the current database instance.

description Description of the purpose of the rule set, up to 1024 characters in
mixed-case.

enabled DBMS_MACUTL.G_YES (Yes) enables rule set checking;
DBMS_MACUTL.G_NO (No) disables it.

The default for the enabled setting is the previously set value, which
you can find by querying the DBA_DV_RULE_SET data dictionary view.

eval_options If you plan to assign multiple rules to the rule set, enter one of the
following settings:

• DBMS_MACUTL.G_RULESET_EVAL_ALL: All rules in the rule set must
evaluate to true for the rule set itself to evaluate to true.

• DBMS_MACUTL.G_RULESET_EVAL_ANY: At least one rule in the rule
set must evaluate to true for the rule set itself to evaluate to true.

The default for eval_options is the previously set value, which you can
find by querying the DBA_DV_RULE_SET data dictionary view.

audit_options Select one of the following settings:

• DBMS_MACUTL.G_RULESET_AUDIT_OFF: Disables auditing for the
rule set

• DBMS_MACUTL.G_RULESET_AUDIT_FAIL: Creates an audit record
when a rule set violation occurs

• DBMS_MACUTL.G_RULESET_AUDIT_SUCCESS: Creates an audit
record for a successful rule set evaluation

• DBMS_MACUTL.G_RULESET_AUDIT_FAIL +
DBMS_MACUTL.G_RULESET_AUDIT_SUCCESS: Creates an audit
record for both successful and failed rule set evaluations

The default for audit_options is the previously set value, which you
can find by querying the DBA_DV_RULE_SET data dictionary view.

Starting with Oracle Database release 21c, traditional auditing is
deprecated. Oracle recommends that you create Oracle Database Vault
unified audit policies instead of using the audit_options parameter.

fail_options Options for reporting errors:

• DBMS_MACUTL.G_RULESET_FAIL_SHOW: Shows an error message.
• DBMS_MACUTL.G_RULESET_FAIL_SILENT: Does not show an error

message.
The default for fail_options is the previously set value, which you can
find by querying the DBA_DV_RULE_SET data dictionary view.

Chapter 15
DBMS_MACADM Rule Set Procedures

15-12

Table 15-10 (Cont.) UPDATE_RULE_SET Parameters

Parameter Description

fail_message Error message for failure, up to 80 characters in mixed-case, to
associate with the fail code you specify for fail_code.

fail_code Enter a number in the range of -20000 to -20999 or 20000 to 20999 to
associate with the fail_message parameter.

handler_options Select one of the following settings:

• DBMS_MACUTL.G_RULESET_HANDLER_OFF: Disables error handling.
• DBMS_MACUTL.G_RULESET_HANDLER_FAIL: Call handler on rule

set failure.
• DBMS_MACUTL.G_RULESET_HANDLER_SUCCESS: Call handler on

rule set success.
The default for handler_options is the previously set value, which you
can find by querying the DBA_DV_RULE_SET data dictionary view.

handler Name of the PL/SQL function or procedure that defines the custom
event handler logic.

is_static Optional. Determines how often a rule set is evaluated when it is
accessed by a SQL statement. The default is FALSE.

• TRUE: The rule set is evaluated once during the user session. After
that, the value is re-used.

• FALSE: The rule set evaluated each time a SQL statement
accesses it.

Example

BEGIN
 DBMS_MACADM.UPDATE_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 description => 'DBA access through predefined processes',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ANY,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'Access denied!',
 fail_code => 20900,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_OFF,
 handler => '',
 is_static = TRUE);
END;
/

Oracle Database Vault PL/SQL Rule Set Functions
Oracle Database Vault provides functions to use in rule sets to inspect the SQL
statement that the rule set protects.

• DV_SYSEVENT Function
The DV_SYSEVENT function returns the system event firing the rule set. .

• DV_LOGIN_USER Function
The DV_LOGIN_USER function returns the login user name, in VARCHAR2 data type.

Chapter 15
Oracle Database Vault PL/SQL Rule Set Functions

15-13

• DV_INSTANCE_NUM Function
The DV_INSTANCE_NUM function returns the database instance number, in NUMBER
data type.

• DV_DATABASE_NAME Function
The DV_DATABASE_NAME function returns the database name, in VARCHAR2 data
type.

• DV_DICT_OBJ_TYPE Function
The DV_DICT_OBJ_TYPE function returns the type of the dictionary object on which
the database operation occurred.

• DV_DICT_OBJ_OWNER Function
The DV_DICT_OBJ_OWNER function returns the name of the owner of the dictionary
object on which the database operation occurred.

• DV_DICT_OBJ_NAME Function
The DV_DICT_OBJ_NAME function returns the name of the dictionary object on which
the database operation occurred.

• DV_SQL_TEXT Function
The DV_SQL_TEXT function returns the first 4000 characters of SQL text of the
database statement used in the operation.

DV_SYSEVENT Function
The DV_SYSEVENT function returns the system event firing the rule set. .

The event name is the same as that in the syntax of the SQL statement (for example,
INSERT, CREATE.) The return type is VARCHAR2.

Syntax

DV_SYSEVENT ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get System Event Firing the Maintenance Rule Set',
 rule_expr => 'DV_SYSEVENT = ''CREATE''');
END;
/

DV_LOGIN_USER Function
The DV_LOGIN_USER function returns the login user name, in VARCHAR2 data type.

Syntax

DV_LOGIN_USER ()
RETURN VARCHAR2;

Chapter 15
Oracle Database Vault PL/SQL Rule Set Functions

15-14

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check System Login User Name',
 rule_expr => 'DV_LOGIN_USER = ''SEBASTIAN''');
END;
/

DV_INSTANCE_NUM Function
The DV_INSTANCE_NUM function returns the database instance number, in NUMBER data
type.

Syntax

DV_INSTANCE_NUM ()
RETURN NUMBER;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database Instance Number',
 rule_expr => 'DV_INSTANCE_NUM BETWEEN 6 AND 9');
END;
/

DV_DATABASE_NAME Function
The DV_DATABASE_NAME function returns the database name, in VARCHAR2 data type.

Syntax

DV_DATABASE_NAME ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database Name',
 rule_expr => 'DV_DATABASE_NAME = ''ORCL''');
END;
/

Chapter 15
Oracle Database Vault PL/SQL Rule Set Functions

15-15

DV_DICT_OBJ_TYPE Function
The DV_DICT_OBJ_TYPE function returns the type of the dictionary object on which the
database operation occurred.

For example, dictionary objects it returns are table, procedure, or view. The return type
is VARCHAR2.

Syntax

DV_DICT_OBJ_TYPE ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Dictionary Object Type',
 rule_expr => 'DV_DICT_OBJ_TYPE IN (''TABLE'', ''VIEW'')');
END;
/

DV_DICT_OBJ_OWNER Function
The DV_DICT_OBJ_OWNER function returns the name of the owner of the dictionary
object on which the database operation occurred.

The return type is VARCHAR2.

Syntax

DV_DICT_OBJ_OWNER ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Dictionary Object Owner',
 rule_expr => 'DV_DICT_OBJ_OWNER = ''JSMITH''');
END;
/

DV_DICT_OBJ_NAME Function
The DV_DICT_OBJ_NAME function returns the name of the dictionary object on which the
database operation occurred.

The return type is VARCHAR2.

Chapter 15
Oracle Database Vault PL/SQL Rule Set Functions

15-16

Syntax

DV_DICT_OBJ_NAME ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Dictionary Object Name',
 rule_expr => 'DV_DICT_OBJ_NAME = ''SALES''');
END;
/

DV_SQL_TEXT Function
The DV_SQL_TEXT function returns the first 4000 characters of SQL text of the database
statement used in the operation.

The return type is VARCHAR2.

Syntax

DV_SQL_TEXT ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check SQL Text',
 rule_expr => 'DV_SQL_TEXT = ''SELECT SALARY FROM HR.EMPLOYEES''');
END;
/

Chapter 15
Oracle Database Vault PL/SQL Rule Set Functions

15-17

16
Oracle Database Vault Command Rule
APIs

The DBMS_MACADM PL/SQL package provides procedures for configuring command
rules. .

Only users who have been granted the DV_OWNER or DV_ADMIN role can use these
procedures.

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

• CREATE_CONNECT_COMMAND_RULE Procedure
The CREATE_CONNECT_COMMAND_RULE procedure creates both common and local
CONNECT command rules that you can associate with a user and a rule set.

• CREATE_SESSION_EVENT_CMD_RULE Procedure
The CREATE_SESSION_EVENT_CMD_RULE procedure creates both common and local
command rules that you can associate with session events, based on the ALTER
SESSION statement.

• CREATE_SYSTEM_EVENT_CMD_RULE Procedure
The CREATE_SYSTEM_EVENT_CMD_RULE procedure creates both command and local
command rules that you can associate with system events, based on the ALTER
SYSTEM statement.

• DELETE_COMMAND_RULE Procedure
The DELETE_COMMAND_RULE procedure drops a command rule declaration.

• DELETE_CONNECT_COMMAND_RULE Procedure
The DELETE_CONNECT_COMMAND_RULE procedure deletes a CONNECT command rule
that had been created with the CREATE_CONNECT_COMMAND_RULE procedure.

• DELETE_SESSION_EVENT_CMD_RULE Procedure
The DELETE_SESSION_EVENT_CMD_RULE procedure deletes a session command rule
that was associated with events.

• DELETE_SYSTEM_EVENT_CMD_RULE Procedure
The DELETE_SYSTEM_EVENT_CMD_RULE procedure deletes a system command rule
that was associated with events.

• UPDATE_COMMAND_RULE Procedure
The UPDATE_COMMAND_RULE procedure updates the command rule declaration for
both common and local command rules.

• UPDATE_CONNECT_COMMAND_RULE Procedure
The UPDATE_CONNECT_COMMAND_RULE procedure updates a CONNECT command rule
that had been created with the CREATE_CONNECT_COMMAND_RULE procedure.

• UPDATE_SESSION_EVENT_CMD_RULE Procedure
The UPDATE_SESSION_EVENT_CMD_RULE procedure updates both common and local
session event command rules, based on the ALTER SESSION statement.

16-1

• UPDATE_SYSTEM_EVENT_CMD_RULE Procedure
The UPDATE_SYSTEM_EVENT_CMD_RULE procedure updates both common and local
system event command rules, based on the ALTER SYSTEM statement.

Related Topics

• Configuring Command Rules
You can create command rules or use the default command rules to protect DDL
and DML statements.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

Optionally, you can use it to enable the command rule for rule checking with a rule set.

Syntax

DBMS_MACADM.CREATE_COMMAND_RULE(
 command IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 enabled IN VARCHAR2,
 privilege_scope IN NUMBER,
 clause_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 event_name IN VARCHAR2,
 component_name IN VARCHAR2,
 action_name IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Parameters

Table 16-1 CREATE_COMMAND_RULE Parameters

Parameter Description

command SQL statement to protect.

To find existing command rules, query the DBA_DV_COMMAND_RULE data
dictionary view.

See also Related Topics.

rule_set_name Name of rule set to associate with this command rule.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

object_owner Database schema to which this command rule will apply. The wildcard % is
allowed, except for the SELECT, INSERT, UPDATE, DELETE, and EXECUTE
statements.

To find the available users, query the DBA_USERS view.

object_name Object to be protected by the command rule. (The wildcard % is allowed.)

To find the available objects, query the ALL_OBJECTS view.

Chapter 16
CREATE_COMMAND_RULE Procedure

16-2

Table 16-1 (Cont.) CREATE_COMMAND_RULE Parameters

Parameter Description

enabled Specify one of the following options to set the status of the command rule:

• DBMS_MACUTL.G_YES or ‘y’ (Yes) to enable the command rule
(default)

• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including
the capture of violations in the simulation log

• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to
execute but capture violations in the simulation log

privilege_scope Obsolete parameter

clause_name A clause from the SQL statement that was used to create the command
rule. For example, a command rule for the ALTER SESSION SQL
statement could have the SET clause as the clause_name parameter.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

parameter_name A parameter from the clause_name parameter. For example, for an
ALTER SESSION command rule, you could set parameter_name to
EVENTS if the clause_name is SET.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

event_name An event that the command rule defines. For example, suppose an ALTER
SESSION command rule uses SET for the clause_name and EVENTS as
the parameter_name. The event_name could be set to TRACE if you
want to track trace events.

Applies only to ALTER SYSTEM and ALTER SESSION command rules that
have the parameter parameter set to EVENTS.

component_name A component of the event_name setting. For example, for a TRACE event,
the component_name could be GCS.

Applies only to ALTER SYSTEM and ALTER SESSION command rules that
have the parameter parameter set to EVENTS.

action_name An action of the component_name setting.

Applies only to ALTER SYSTEM and ALTER SESSION command rules that
have the parameter parameter set to EVENTS.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

If you create the common command rule in an application root and want it
visible to the associated PDBs, then you must synchronize the application.
For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

ALTER SYSTEM Command Rule Settings

Table 16-2 describes the ALTER SYSTEM command rule settings.

Chapter 16
CREATE_COMMAND_RULE Procedure

16-3

Table 16-2 ALTER SYSTEM Command Rule Settings

clause_name parameter_name — Parameter Value

ARCHIVE LOG • ALL — sequence_number
• CHANGE — change_number
• CURRENT — N/A
• GROUP — group_number
• LOGFILE — log_file_name
• NEXT — N/A
• SEQUENCE — N/A

CHECK DATAFILES N/A — global or local

CHECKPOINT N/A — global or local

COPY LOGFILE N/A — N/A

DISTRIBUTED RECOVERY N/A — enable or disable

DUMP • DATAFILE — N/A
• FLASHBACK — N/A
• LOGFILE — N/A
• REDO — N/A
• TEMPFILE — N/A
• UNDO — N/A

END SESSION DISCONNECT SESSION — N/A

KILL SESSION — N/A

FLUSH BUFFER_CACHE — N/A

GLOBAL CONTEXT — N/A

REDO — target_db_name

SHARED_POOL — N/A

QUIESCE QUIESCE RESTRICTED — N/A

UNQUIESCE — N/A

REFRESH LDAP_REGISTRATION — N/A

REGISTER N/A — N/A

RESET initialization_parameter_name — N/A

RESUME N/A — N/A

SECURITY RESTRICTED SESSION — enable or disable

SET ENCRYPTION KEY — N/A

SET ENCRYPTION WALLET — open or close

SET EVENTS — event_string

GLOBAL_TOPIC_ENABLED — true or false

initialization_parameter_name — parameter_value

LDAP_REGISTRATION_ENABLED — true or false

LDAP_REG-SYNC_INTERVAL — Number

SINGLETASK DEBUG — N/A

USE_STORED_OUTLINES — true , false, or
category_name

SHUTDOWN DISPPATCHER N/A — dispatcher_name

Chapter 16
CREATE_COMMAND_RULE Procedure

16-4

Table 16-2 (Cont.) ALTER SYSTEM Command Rule Settings

clause_name parameter_name — Parameter Value

SWITCH LOGFILE N/A — all or none

SUSPEND N/A — N/A

TX RECOVERY N/A — enable or disable

ALTER SESSION Command Rule Settings

Table 16-3 describes the ALTER SESSION command rule settings.

Table 16-3 ALTER SESSION Command Rule Settings

clause_name parameter_name — Parameter Value

ADVISE N/A — COMMIT, ROLLBACK, or NOTHING

CLOSE DATABASE LINK N/A — database_link

COMMIT IN PROCEDURE N/A — ENABLE or DISABLE

GUARD N/A — ENABLE or DISABLE

ILM ROW ACCESS TRACKING — N/A

ROW MODIFICATION TRACKING — N/A

LOGICAL REPLICATION N/A — N/A

PARALLEL DML N/A — ENABLE, DISABLE, or FORCE

PARALLEL DDL N/A — ENABLE, DISABLE, or FORCE

PARALLEL QUERY N/A — ENABLE, DISABLE, or FORCE

RESUMABLE N/A — ENABLE or DISABLE

SYNC WITH PRIMARY N/A — N/A

Chapter 16
CREATE_COMMAND_RULE Procedure

16-5

Table 16-3 (Cont.) ALTER SESSION Command Rule Settings

clause_name parameter_name — Parameter Value

SET APPLICATION ACTION — action_name

APPLICATION MODULE — module_name

CONSTRAINTS — IMMEDIATE, DEFERRED, or DEFAULT

CONTAINER — container_name

CURRENT SCHEMA — schema_name

EDITION — edition_name

ERROR ON OVERLAP TIME — TRUE or FALSE

EVENTS — event_string

FLAGGER — OFF, FULL, INTERMEDIATE, ENTRY

initialization_parameter_name — parameter_name

INSTANCE — instance_number

ISOLATION_LEVEL — SERIALIZABLE or READ COMMITTED

ROW_ARCHIVAL_VISABILITY — ACTIVE or ALL

SQL_TRANSFORMATION_PROFILE — profile_name

STANDBY_MAX_DATA_DELAY — NONEnumber

TIME_ZONE — LOCAL, DBTIMEZONE, or other_value

USE_PRIVATE_OUTLINES — TRUE, FALSE, or
category_name

USE_STORED_OUTLINES — TRUE, FALSE, or
category_name

Examples

Simple Command Rules

The following example shows how to create a simple command rule for the SELECT
statement on the OE.ORDERS table. This command rule uses no command rules.

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'SELECT',
 rule_set_name => 'Check User Role',
 object_owner => 'OE',
 object_name => 'ORDERS',
 enabled => DBMS_MACUTL.G_YES);
END;
/

This example shows how to create a command rule that checks if users can enable or
disable the hr_audit_pol unified audit policy. Note that if the object is a unified audit
policy, then you must have AUDIT POLICY, not just AUDIT, for the command parameter.

BEGIN
DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'AUDIT POLICY',
 rule_set_name => 'Check ability to audit',
 object_owner => '%',
 object_name => 'hr_audit_pol',
 enabled => DBMS_MACUTL.G_YES,

Chapter 16
CREATE_COMMAND_RULE Procedure

16-6

 scope => DBMS_MACUTL.G.SCOPE_LOCAL);
END;
/

ALTER SESSION Command Rule Using the SET Clause

The following example shows how to create an ALTER SESSION command rule that
uses the SET clause with the ERROR_ON_OVERLAP_TIME parameter.

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'ALTER SESSION',
 rule_set_name => 'Test ERROR_ON_OVERLAP_TIME for FALSE',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES,
 clause_name => 'SET',
 parameter_name => 'ERROR_ON_OVERLAP_TIME',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

In this example:

• rule_set_name: The ALTER SESSION SQL statement ERROR_ON_OVERLAP_TIME
session parameter must be set to either TRUE or FALSE. You can create a rule
set that checks if this setting. For example, for the rule:

EXEC DBMS_MACADM.CREATE_RULE('RULE_TRUE', 'UPPER(PARAMETER_VALUE) =
''TRUE''');

The rule set that is used with this rule can be similar to the following:

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Test ERROR_ON_OVERLAP_TIME',
 description => 'Checks if the ERROR_ON_OVERLAP_TIME setting is TRUE
or FALSE',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ALL,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SILENT,
 fail_message => 'false error on overlaptime',
 fail_code => 20461,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_FAIL,
 handler => '',
 is_static => false);
END;
/
EXEC DBMS_MACADM.ADD_RULE_TO_RULE_SET('Test ERROR_ON_OVERLAP_TIME',
'RULE_TRUE');

• object_owner and object_name must be set to % for ALTER SESSION and ALTER
SYSTEM command rules.

• enabled uses the DBMS_MACUTL.G_YES constant to enable the command rule when
it is created.

• clause_name sets the ALTER SESSION command rule to use the SET clause of the
ALTER SESSION PL/SQL statement.

Chapter 16
CREATE_COMMAND_RULE Procedure

16-7

• parameter_name is set to the ERROR_ON_OVERLAP_TIME parameter of the SET
clause.

• scope uses the DBMS_MACUTL.G_SCOPE_COMMON constant to set the command rule to
be a common command rule. This command rule will be in the application root of
a multitenant environment, so the user running this procedure must be in the CDB
root. Any rules or rule sets that are associated with this command rule must be
common.

If you were creating the command rule locally, you would set scope to
DBMS_MACUTL.G_SCOPE_LOCAL. In that case, the user who runs this procedure must
be in the PDB in which the command rule will reside. To find the existing PDBs,
you can query the DBA_PDBS data dictionary view. Any rules or rule sets that are
associated with this command rule must be local.

ALTER SYSTEM Command Rule Using the CHECKPOINT Clause

This example shows how to create an ALTER SYSTEM command rule that users the
CHECKPOINT clause. To have the command rule test for the CHECKPOINT setting, you
must create a rule set and rule, similar to the ALTER SESSION command rule in the
previous example. In this example, the parameter setting is not specified because the
CHECKPOINT setting does not have parameters.

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'ALTER SYSTEM',
 rule_set_name => 'Test CHECKPOINT Setting',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES,
 clause_name => 'CHECKPOINT',
 parameter_name => '',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

ALTER SESSION Command Rule Using the SET Clause

The following ALTER SESSION command rule uses the SET clause to specify an
event_name and component_name. You can only use the event_name, component_name,
and action_name parameters if the clause_name parameter specifies SET.

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'ALTER SESSION',
 rule_set_name => 'Check Trace Events',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES,
 clause_name => 'SET',
 parameter_name => 'EVENTS',
 event_name => 'TRACE',
 component_name => 'GCS',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Chapter 16
CREATE_COMMAND_RULE Procedure

16-8

Related Topics

• ALTER SESSION and ALTER SYSTEM Command Rules
You can create different kinds of ALTER SESSION and ALTER SYSTEM command
rules that provide fine-grained control for these SQL statements.

• SQL Statements That Can Be Protected by Command Rules
You can protect a large number of SQL statements by using command rules.

CREATE_CONNECT_COMMAND_RULE Procedure
The CREATE_CONNECT_COMMAND_RULE procedure creates both common and local
CONNECT command rules that you can associate with a user and a rule set.

Syntax

DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 user_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 enabled IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Parameters

Table 16-4 CREATE_CONNECT_COMMAND_RULE Parameters

Parameter Description

user_name User to whom the CONNECT command rule will apply. If you enter the
% wildcard, then the CONNECT command rule will be applied to every
database user.

If you execute this procedure in the root, then specifying % applies to all
common users. If you run the procedure in a PDB, then it applies to all
local and common users who have access to this PDB. If there are two
command rules, one common and one local, and they both apply to the
same object, then both must evaluate successfully for the operation to
succeed.

Ensure that this user is common if the CONNECT command rule is
common, and local or common if the CONNECT command rule is local.

To find existing database users in the current instance, query the
DBA_USERS view, described in Oracle Database Reference.

rule_set_name Name of rule set to associate with this command rule. Ensure that this
rule set is common if the CONNECT command rule is common, and local
if the CONNECT command rule is local.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view, described in DBA_DV_RULE_SET View.

enabled Specify one of the following options to set the status of the command rule:

• DBMS_MACUTL.G_YES or ‘y’ (Yes) to enable the command rule
(default)

• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including
the capture of violations in the simulation log

• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to
execute but capture violations in the simulation log

Chapter 16
CREATE_CONNECT_COMMAND_RULE Procedure

16-9

Table 16-4 (Cont.) CREATE_CONNECT_COMMAND_RULE Parameters

Parameter Description

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

If you create the common CONNECT command rule in an application root
and want it visible to the associated PDBs, then you must synchronize the
application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

Examples

The following example shows how to create a common CONNECT command rule.
This command rule will be in the CDB root, so the user who runs this procedure
must be in the CDB root. Any user names or rule sets that are associated with this
command rule must be common.

BEGIN
 DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Allow Sessions',
 user_name => 'C##HR_ADMIN',
 enabled => DBMS_MACUTL.G_SIMULATION,
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

This example is a local version of the preceding example. The user who runs this
procedure must be in the PDB in which the local CONNECT command rule will reside.
To find the available PDBs, run the show pdbs command. Any rule sets that are
associated with this command rule must be local. The user can be either common or
local.

BEGIN
 DBMS_MACADM.CREATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Allow Sessions',
 user_name => 'PSMITH',
 enabled => DBMS_MACUTL.G_SIMULATION,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Chapter 16
CREATE_CONNECT_COMMAND_RULE Procedure

16-10

CREATE_SESSION_EVENT_CMD_RULE Procedure
The CREATE_SESSION_EVENT_CMD_RULE procedure creates both common and local
command rules that you can associate with session events, based on the ALTER
SESSION statement.

Syntax

DBMS_MACADM.CREATE_SESSION_EVENT_CMD_RULE(
 rule_set_name IN VARCHAR2,
 enabled IN VARCHAR2,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT,
 pl_sql_stack IN BOOLEAN DEFAULT);

Parameters

Table 16-5 CREATE_SESSION_EVENT_CMD_RULE Parameters

Parameter Description

rule_set_name Name of the rule set to associate with the command rule. Ensure
that this rule set is common if the session event command rule is
common, and local if the command rule is local.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

enabled Specify one of the following options to set the status of the command
rule:

• DBMS_MACUTL.G_YES or ‘y’ (Yes) to enable the command rule
(default)

• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule,
including the capture of violations in the simulation log

• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements
to execute but capture violations in the simulation log

event_name An event that the command rule defines. This setting enables the
command rule to correspond with an ALTER SESSION SET EVENTS
event_name statement. For example, to track trace events, you
would set event_name to TRACE.

component_name A component of the event_name setting. Example settings are DV,
OLS, or GCS.

You can find valid component names by issuing ORADEBUG DOC
COMPONENT RDBMS as user SYS. The output displays parent and child
components, which you can use for the component_name setting.
For example, both XS (parent) and XSSESSION (child of XS) are valid
component names. If you select the parent component, then the
command rule applies to it and the child components.

action_name An action of the component_name setting

Chapter 16
CREATE_SESSION_EVENT_CMD_RULE Procedure

16-11

Table 16-5 (Cont.) CREATE_SESSION_EVENT_CMD_RULE Parameters

Parameter Description

scope Determines how to execute this procedure. The default is local.
Options are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is
local in the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in
the application root

If you create the common command rule in an application root and
want it visible to the associated PDBs, then you must synchronize the
application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record. The default is FALSE.

Examples

The following example shows how to create a common session event command rule
in a multitenant environment. This command rule will be in the application root, so the
user running this procedure must be in the CDB root. Any user names or rule sets that
are associated with this command rule must be common.

BEGIN
 DBMS_MACADM.CREATE_SESSION_EVENT_CMD_RULE(
 rule_set_name => 'Allow Sessions',
 event_name => 'TRACE',
 component_name => 'DV',
 action_name => 'CURSORTRACE',
 enabled => DBMS_MACUTL.G_SIMULATION,
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

This example shows how to create a session event for the 47998 trace event. This
example will records the PL/SQL stack for failed operations.

BEGIN
 DBMS_MACADM.CREATE_SESSION_EVENT_CMD_RULE(
 rule_set_name => 'Allow Sessions',
 event_name => '47998',
 enabled => 'y',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL,
 pl_sql_stack => TRUE);
END;
/

Chapter 16
CREATE_SESSION_EVENT_CMD_RULE Procedure

16-12

CREATE_SYSTEM_EVENT_CMD_RULE Procedure
The CREATE_SYSTEM_EVENT_CMD_RULE procedure creates both command and local
command rules that you can associate with system events, based on the ALTER
SYSTEM statement.

Syntax

DBMS_MACADM.CREATE_SYSTEM_EVENT_CMD_RULE(
 rule_set_name IN VARCHAR2,
 enabled IN VARCHAR2,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT
 pl_sql_stack IN BOOLEAN DEFAULT);

Parameters

Table 16-6 CREATE_SYSTEM_EVENT_CMD_RULE Parameters

Parameter Description

rule_set_name Name of the rule set to associate with the command rule. Ensure that
this rule set is common if the system event command rule is common,
and local if the command rule is local.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

event_name An event that the command rule defines. This setting enables the
command rule to correspond to an ALTER SYSTEM SET EVENTS
event_name statement. For example, to track trace events, you would
set event_name to TRACE.

component_name A component of the event_name setting. Example settings are DV,
OLS, or GCS.

You can find valid component names by issuing ORADEBUG DOC
COMPONENT RDBMS as user SYS. The output displays parent and child
components, which you can use for the component_name setting.
For example, both XS (parent) and XSSESSION (child of XS) are valid
component names. If you select the parent component, then the
command rule applies to it and the child components.

action_name An action of the component_name setting

enabled Specify one of the following options to set the status of the command
rule:

• DBMS_MACUTL.G_YES or ‘y’ to enable the command rule
(default)

• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule,
including the capture of violations in the simulation log

• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements
to execute but capture violations in the simulation log

Chapter 16
CREATE_SYSTEM_EVENT_CMD_RULE Procedure

16-13

Table 16-6 (Cont.) CREATE_SYSTEM_EVENT_CMD_RULE Parameters

Parameter Description

scope Determines how to execute this procedure. The default is local.
Options are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is
local in the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in
the application root

If you create the common command rule in an application root and
want it visible to the associated PDBs, then you must synchronize the
application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record. The default is FALSE.

Example

The following example shows how to create a common system event command rule
in a multitenant environment. This command rule will be in the application root, so the
user running this procedure must be in the CDB root. Any user names or rule sets that
are associated with this command rule must be common.

BEGIN
 DBMS_MACADM.CREATE_SYSTEM_EVENT_CMD_RULE(
 rule_set_name => 'Enabled',
 event_name => 'TRACE',
 component_name => 'GSIPC',
 action_name => 'HEAPDUMP',
 enabled => DBMS_MACUTL.G_YES,
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

DELETE_COMMAND_RULE Procedure
The DELETE_COMMAND_RULE procedure drops a command rule declaration.

Syntax

DBMS_MACADM.DELETE_COMMAND_RULE(
 command IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 clause_name IN VARCHAR2,
 parameter_name IN VARCHAR2 DEFAULT,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT);

Chapter 16
DELETE_COMMAND_RULE Procedure

16-14

Parameters

Table 16-7 DELETE_COMMAND_RULE Parameters

Parameter Description

command SQL statement the command rule protects.

To find available command rules, query the DBA_DV_COMMAND_RULE view.

object_owner Database schema to which this command rule applies.

To find the available users in the current database instance, query the
DBA_USERS view.

object_name Object name. The wildcard % is allowed.

To find the available objects in the current database instance, query the
ALL_OBJECTS view.

clause_name A clause from the SQL statement that was used to create the command
rule.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

parameter_name A parameter from the clause_name parameter.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

event_name An event that the command rule defines.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

component_name A component of the event_name setting.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

action_name An action of the component_name setting.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

Examples

When you drop a command rule, you must omit the rule_set_name and enabled
parameters, and ensure that the rest of the parameters match the settings that were
used the last time the command rule was updated. You can check the most recent
settings by querying the DBA_DV_COMMAND_RULE data dictionary view.

For example, suppose you created the following command rule:

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE(
 command => 'SELECT',
 rule_set_name => 'Enabled',
 object_owner => 'OE',
 object_name => 'ORDERS',
 enabled => DBMS_MACUTL.G_YES,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Chapter 16
DELETE_COMMAND_RULE Procedure

16-15

To drop this command rule, use the most of same parameters as shown here, but omit
rule_set_name and enabled.

BEGIN
 DBMS_MACADM.DELETE_COMMAND_RULE(
 command => 'SELECT',
 object_owner => 'OE',
 object_name => 'ORDERS',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

The following example shows how to delete an ALTER SESSION command rule.

BEGIN
 DBMS_MACADM.DELETE_COMMAND_RULE(
 command => 'ALTER SESSION',
 object_owner => '%',
 object_name => '%',
 clause_name => 'SET',
 parameter_name => 'EVENTS',
 event_name => 'TRACE',
 component_name => 'GCS',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Related Topics

• DBA_DV_COMMAND_RULE View
The DBA_DV_COMMAND_RULE data dictionary view lists the SQL statements that are
protected by command rules.

DELETE_CONNECT_COMMAND_RULE Procedure
The DELETE_CONNECT_COMMAND_RULE procedure deletes a CONNECT command rule that
had been created with the CREATE_CONNECT_COMMAND_RULE procedure.

Syntax

DBMS_MACADM.DELETE_CONNECT_COMMAND_RULE(
 user_name IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Parameters

Table 16-8 DELETE_CONNECT_COMMAND_RULE Parameters

Parameter Description

user_name User to whom the CONNECT command rule applied.

To find this user, query the OBJECT_OWNER field of the
DBA_DV_COMMAND_RULE view.

Chapter 16
DELETE_CONNECT_COMMAND_RULE Procedure

16-16

Table 16-8 (Cont.) DELETE_CONNECT_COMMAND_RULE Parameters

Parameter Description

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

Example

BEGIN
 DBMS_MACADM.DELETE_CONNECT_COMMAND_RULE(
 user_name => 'PSMITH',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

DELETE_SESSION_EVENT_CMD_RULE Procedure
The DELETE_SESSION_EVENT_CMD_RULE procedure deletes a session command rule that
was associated with events.

Syntax

DBMS_MACADM.DELETE_SESSION_EVENT_CMD_RULE(
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT);

Parameters

Table 16-9 DELETE_SESSION_EVENT_CMD_RULE Parameters

Parameter Description

event_name An event that the session event command rule defines. The
DBA_CV_COMMAND_RULE view lists information about existing command
rules.

component_name A component of the event_name setting

action_name An action of the component_name setting

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

Chapter 16
DELETE_SESSION_EVENT_CMD_RULE Procedure

16-17

Example

The following example shows how to delete a common session event command rule
in the application root a multitenant environment. The user running this procedure
must be a common user in the CDB root. When you specify the parameters, ensure
that they match exactly the parameters that were used the last time the command
rule was updated. To find the current settings of the command rule, query the
DBA_DV_COMMAND_RULE view.

BEGIN
DBMS_MACADM.DELETE_SESSION_EVENT_CMD_RULE(
 event_name => '47999',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
 /

DELETE_SYSTEM_EVENT_CMD_RULE Procedure
The DELETE_SYSTEM_EVENT_CMD_RULE procedure deletes a system command rule that
was associated with events.

Syntax

DBMS_MACADM.DELETE_SYSTEM_EVENT_CMD_RULE(
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT);

Parameters

Table 16-10 DELETE_SYSTEM_EVENT_CMD_RULE Parameters

Parameter Description

event_name An event that the system event command rule defines. The
DBA_DV_COMMAND_RULE view lists information about existing command
rules.

component_name A component of the event_name setting

action_name An action of the component_name setting

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

Examples

The following example shows how to delete a common system event command rule
in the application root. The user running this procedure must be a common user in
the CDB root. When you specify the parameters, ensure that they match exactly the
parameters that were used the last time the command rule was updated. To find the
current settings of the command rule, query the DBA_DV_COMMAND_RULE view.

Chapter 16
DELETE_SYSTEM_EVENT_CMD_RULE Procedure

16-18

BEGIN
 DBMS_MACADM.DELETE_SYSTEM_EVENT_CMD_RULE(
 event_name => 'TRACE',
 component_name => 'DV',
 action_name => '',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

UPDATE_COMMAND_RULE Procedure
The UPDATE_COMMAND_RULE procedure updates the command rule declaration for both
common and local command rules.

Syntax

DBMS_MACADM.UPDATE_COMMAND_RULE(
 command IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 enabled IN VARCHAR2,
 privilege_scope IN NUMBER,
 clause_name IN VARCHAR2,
 parameter_name IN VARCHAR2 DEFAULT,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT,
 pl_sql_stack IN BOOLEAN DEFAULT);

Parameters

Table 16-11 UPDATE_COMMAND_RULE Parameters

Parameter Description

command Command rule to update

See also Related Topics.

rule_set_name Name of rule set to associate with this command rule.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

object_owner Database schema to which this command rule applies.

To find the available users, query the DBA_USERS view. See also Related
Topic on creating a command rule for more details about object owners.

object_name Object name. (The wildcard % is allowed. See also Related Topic on
creating a command rule for more details about object names.

To find the available objects, query the ALL_OBJECTS view.

enabled Specify one of the following options to set the status of the command
rule:

• DBMS_MACUTL.G_YES or ‘y’ to enable the command rule (default)
• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including

the capture of violations in the simulation log
• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to

execute but capture violations in the simulation log

Chapter 16
UPDATE_COMMAND_RULE Procedure

16-19

Table 16-11 (Cont.) UPDATE_COMMAND_RULE Parameters

Parameter Description

privilege_scope Obsolete parameter

clause_name A clause from the SQL statement that was used to create the command
rule. For example, a command rule for the ALTER SESSION SQL
statement could have the SET clause as the clause_name parameter.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.

The command rule settings for these two statements are described in the
DBMS_MACADM.CREATE_COMMAND_RULE procedure. See Related Topics.

parameter_name A parameter from the clause_name parameter. For example, for an
ALTER SESSION command rule, you could set parameter_name to
EVENTS if the clause_name is SET.

Applies only to command rules for ALTER SYSTEM and ALTER SESSION.
See Related Topics.

event_name An event that the command rule defines. For example, for an ALTER
SESSION command rule that uses SET for the clause_name and EVENTS
as the parameter_name, then the event_name could be set to TRACE.

Applies only to ALTER SYSTEM and ALTER SESSION command rules that
have the parameter parameter set to events. See Related Topics.

component_name A component of the event_name setting. For example, for a TRACE event,
the component_name could be GCS.

Applies only to ALTER SYSTEM and ALTER SESSION command rules that
have the parameter parameter set to events. See Related Topics.

action_name An action of the component_name setting. For example, if
component_name is set to GCS, then the action_name setting could be
DISK HIGH.

Applies only to ALTER SYSTEM and ALTER SESSION command rules that
have the parameter parameter set to events. See Related Topics.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

If you update the common command rule in an application root and
want it visible to the associated PDBs, then you must synchronize the
application. For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record.

Examples

The following example shows how to update a simple command rule that protects the
HR.EMPLOYEES schema (for example, changing its rule set).

BEGIN
 DBMS_MACADM.UPDATE_COMMAND_RULE(

Chapter 16
UPDATE_COMMAND_RULE Procedure

16-20

 command => 'SELECT',
 rule_set_name => 'Disabled',
 object_owner => 'HR',
 object_name => 'EMPLOYEES',
 enabled => DBMS_MACUTL.G_SIMULATION,
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

This example shows how to update a more complex command rule, which is based on
the ALTER SESSION SQL statement.

BEGIN
 DBMS_MACADM.UPDATE_COMMAND_RULE(
 command => 'ALTER SESSION',
 rule_set_name => 'Enabled',
 object_owner => '%',
 object_name => '%',
 enabled => 's',
 clause_name => 'SET',
 parameter_name => 'EVENTS',
 event_name => 'TRACE',
 component_name => 'GCS',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);
END;
/

Related Topics

• SQL Statements That Can Be Protected by Command Rules
You can protect a large number of SQL statements by using command rules.

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

• Creating a Command Rule
You can create a different types of command rules using different command rule
APIs.

UPDATE_CONNECT_COMMAND_RULE Procedure
The UPDATE_CONNECT_COMMAND_RULE procedure updates a CONNECT command rule that
had been created with the CREATE_CONNECT_COMMAND_RULE procedure.

Syntax

DBMS_MACADM.UPDATE_CONNECT_COMMAND_RULE(
 user_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 enabled IN VARCHAR2,
 scope IN NUMBER DEFAULT);

Chapter 16
UPDATE_CONNECT_COMMAND_RULE Procedure

16-21

Parameters

Table 16-12 UPDATE_CONNECT_COMMAND_RULE Parameters

Parameter Description

user_name User to whom the CONNECT command rule will apply. If you enter the
% wildcard, then the CONNECT command rule will be applied to every
database user.

If you execute this procedure in the root, then specifying % applies to all
common users. If you run the procedure in a PDB, then it applies to all
local and common users who have access to this PDB. If there are two
command rules, one common and one local, and they both apply to the
same object, then both must evaluate successfully for the operation to
succeed.

Environment, ensure that this user is common if the CONNECT command
rule is common, and local or common if the CONNECT command rule is
local.

To find existing command rules, query the DBA_DV_COMMAND_RULE view,
described in DBA_DV_COMMAND_RULE View.

To find existing database users in the current instance, query the
DBA_USERS view, described in Oracle Database Reference.

rule_set_name Name of rule set to associate with this command rule. Ensure that this
rule set is common if the CONNECT command rule is common, and local if
the CONNECT command rule is local.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view, described in DBA_DV_RULE_SET View.

enabled Specify one of the following options to set the status of the command rule:

• DBMS_MACUTL.G_YES or ‘y’ to enable the command rule (default)
• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including

the capture of violations in the simulation log
• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to

execute but capture violations in the simulation log

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

If you update the common command rule in an application root and want it
visible to the associated PDBs, then you must synchronize the application.
For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

Example

BEGIN
 DBMS_MACADM.UPDATE_CONNECT_COMMAND_RULE(
 rule_set_name => 'Allow Sessions',
 user_name => 'PSMITH',
 enabled => 'DBMS_MACUTL.G_YES',
 scope => DBMS_MACUTL.G_SCOPE_LOCAL);

Chapter 16
UPDATE_CONNECT_COMMAND_RULE Procedure

16-22

END;
/

UPDATE_SESSION_EVENT_CMD_RULE Procedure
The UPDATE_SESSION_EVENT_CMD_RULE procedure updates both common and local
session event command rules, based on the ALTER SESSION statement.

Syntax

DBMS_MACADM.UPDATE_SESSION_EVENT_CMD_RULE(
 rule_set_name IN VARCHAR2,
 enabled IN VARCHAR2,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT,
 pl_sql_stack IN BOOLEAN DEFAULT);

Parameters

Table 16-13 UPDATE_SESSION_EVENT_CMD_RULE Parameters

Parameter Description

rule_set_name Name of the rule set to associate with the command rule. Ensure that this
rule set is common if the session event command rule is common, and
local if the command rule is local.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

enabled Specify one of the following options to set the status of the command rule:

• DBMS_MACUTL.G_YES or ‘y’ to enable the command rule (default)
• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including

the capture of violations in the simulation log
• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to

execute but capture violations in the simulation log

event_name An event that the command rule defines. This setting enables the
command rule to correspond with an ALTER SESSION SET EVENTS
event_name statement. For example, to track trace events, you would
set event_name to TRACE.

component_name A component of the event_name setting. Example settings are DV, OLS,
or GCS.

You can find valid component names by issuing ORADEBUG DOC
COMPONENT RDBMS as user SYS. The output displays parent and child
components, which you can use for the component_name setting. For
example, both XS (parent) and XSSESSION (child of XS) are valid
component names. If you select the parent component, then the
command rule applies to it and the child components.

action_name An action of the component_name setting

Chapter 16
UPDATE_SESSION_EVENT_CMD_RULE Procedure

16-23

Table 16-13 (Cont.) UPDATE_SESSION_EVENT_CMD_RULE Parameters

Parameter Description

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

If you update the common command rule in an application root and want it
visible to the associated PDBs, then you must synchronize the application.
For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record.

Example

The following example shows how to update a common session event command
rule. This command rule is in the application root, so the user running this procedure
must be in the CDB root. Any user names or rule sets that are associated with this
command rule must be common.

BEGIN
 DBMS_MACADM.UPDATE_SESSION_EVENT_CMD_RULE(
 rule_set_name => 'Allow Sessions',
 event_name => '47999',
 enabled => DBMS_MACUTL.G_NO,
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

UPDATE_SYSTEM_EVENT_CMD_RULE Procedure
The UPDATE_SYSTEM_EVENT_CMD_RULE procedure updates both common and local
system event command rules, based on the ALTER SYSTEM statement.

Syntax

DBMS_MACADM.UPDATE_SYSTEM_EVENT_CMD_RULE(
 rule_set_name IN VARCHAR2,
 enabled IN VARCHAR2,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT,
 pl_sql_stack IN BOOLEAN DEFAULT);

Chapter 16
UPDATE_SYSTEM_EVENT_CMD_RULE Procedure

16-24

Parameters

Table 16-14 UPDATE_SYSTEM_EVENT_CMD_RULE Parameters

Parameter Description

rule_set_name Name of the rule set to associate with the command rule. Ensure that this
rule set is common if the system event command rule is common, and
local if the command rule is local.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

enabled Specify one of the following options to set the status of the command rule:

• DBMS_MACUTL.G_YES or ‘y’ to enable the command rule (default)
• DBMS_MACUTL.G_NO or ‘n’ to disable the command rule, including

the capture of violations in the simulation log
• DBMS_MACUTL.G_SIMULATION or ‘s’ to enable SQL statements to

execute but capture violations in the simulation log

event_name An event that the command rule defines. This setting enables the
command rule to correspond to an ALTER SYSTEM SET EVENTS
event_name statement. For example, to track trace events, you would
set event_name to TRACE.

component_name A component of the event_name setting. Example settings are DV, OLS,
or GCS.

You can find valid component names by issuing ORADEBUG DOC
COMPONENT RDBMS as user SYS. The output displays parent and child
components, which you can use for the component_name setting. For
example, both XS (parent) and XSSESSION (child of XS) are valid
component names. If you select the parent component, then the
command rule applies to it and the child components.

action_name An action of the component_name setting

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

If you update the common command rule in an application root and want it
visible to the associated PDBs, then you must synchronize the application.
For example:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record.

Example

The following example shows how to update a common system event command rule.
This command rule is in the application root, so the user running this procedure
must be in the CDB root. Any user names or rule sets that are associated with this
command rule must be common.

Chapter 16
UPDATE_SYSTEM_EVENT_CMD_RULE Procedure

16-25

BEGIN
 DBMS_MACADM.UPDATE_SYSTEM_EVENT_CMD_RULE(
 rule_set_name => 'Disabled',
 event_name => 'TRACE',
 component_name => 'DV',
 enabled => 'n',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

Chapter 16
UPDATE_SYSTEM_EVENT_CMD_RULE Procedure

16-26

17
Oracle Database Vault Factor APIs

The DBMS_MACADM PL/SQL package has factor-related Oracle Database Vault rule
procedures and functions, and DVF has functions to manage factors.

• DBMS_MACADM Factor Procedures and Functions
The DBMS_MACADM PL/SQL package provides procedures and functions to configure
factors.

• Oracle Database Vault Run-Time PL/SQL Procedures and Functions
Oracle Database Vault provides procedural interfaces to administer Database
Vault security options and manage Database Vault security enforcements.

• Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

DBMS_MACADM Factor Procedures and Functions
The DBMS_MACADM PL/SQL package provides procedures and functions to configure
factors.

Only users who have been granted the DV_OWNER or DV_ADMIN role can use these
procedures and functions.

• ADD_FACTOR_LINK Procedure
The ADD_FACTOR_LINK procedure specifies a parent-child relationship for two
factors.

• ADD_POLICY_FACTOR Procedure
The ADD_POLICY_FACTOR procedure specifies that the label for a factor contributes
to the Oracle Label Security label for a policy.

• CHANGE_IDENTITY_FACTOR Procedure
The CHANGE_IDENTITY_FACTOR procedure associates an identity with a different
factor.

• CHANGE_IDENTITY_VALUE Procedure
The CHANGE_IDENTITY_FACTOR procedure updates the value of an identity.

• CREATE_DOMAIN_IDENTITY Procedure
The CREATE_DOMAIN_IDENTITY procedure is used for Oracle Real Application
Clusters (Oracle RAC) and Oracle Label Security.

• CREATE_FACTOR Procedure
The CREATE_FACTOR procedure creates a factor.

• CREATE_FACTOR_TYPE Procedure
The CREATE_FACTOR_TYPE procedure creates a user-defined factor type.

• CREATE_IDENTITY Procedure
The CREATE_IDENTITY procedure assigns an identity and an associated trust level
for a given factor.

17-1

• CREATE_IDENTITY_MAP Procedure
The CREATE_IDENTITY_MAP procedure defines tests that can derive the identity of a
factor from the value of linked child factors (subfactors).

• DELETE_FACTOR Procedure
The DELETE_FACTOR procedure deletes a factor.

• DELETE_FACTOR_LINK Procedure
The DELETE_FACTOR_LINK procedure removes a parent-child relationship for two
factors.

• DELETE_FACTOR_TYPE Procedure
The DELETE_FACTOR_TYPE procedure deletes a factor type.

• DELETE_IDENTITY Procedure
The DELETE_IDENTITY procedure removes an identity from an existing factor.

• DELETE_IDENTITY_MAP Procedure
The DELETE_IDENTITY_MAP procedure removes an identity map for a factor.

• DROP_DOMAIN_IDENTITY Procedure
The DROP_DOMAIN_IDENTITY procedure removes an Oracle Real Application
Clusters database node from a domain.

• GET_SESSION_INFO Function
The GET_SESSION_INFO function returns information from the SYS.V_$SESSION
system table for the current session.

• GET_INSTANCE_INFO Function
The GET_INSTANCE_INFO function returns information from the SYS.V_$INSTANCE
system table about the current database instance.

• RENAME_FACTOR Procedure
The RENAME_FACTOR procedure renames a factor; the name change takes effect
everywhere the factor is used.

• RENAME_FACTOR_TYPE Procedure
The RENAME_FACTOR procedure renames a factor type; the name change takes
effect everywhere the factor type is used.

• UPDATE_FACTOR Procedure
The UPDATE_FACTOR procedure updates the description of a factor type.

• UPDATE_FACTOR_TYPE Procedure
The UPDATE_FACTOR_TYPE procedure updates a factor type.

• UPDATE_IDENTITY Procedure
The UPDATE_IDENTITY procedure updates the trust level of a factor identity.

Related Topics

• Configuring Factors
Factors allow you to create and use complex attributes through PL/SQL to make
Oracle Database Vault authorization decisions.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-2

ADD_FACTOR_LINK Procedure
The ADD_FACTOR_LINK procedure specifies a parent-child relationship for two factors.

Syntax

DBMS_MACADM.ADD_FACTOR_LINK(
 parent_factor_name IN VARCHAR2,
 child_factor_name IN VARCHAR2,
 label_indicator IN VARCHAR2);

Parameters

Table 17-1 ADD_FACTOR_LINK Parameters

Parameter Description

parent_factor_name Parent factor name.

To find existing parent and child factors in the current database
instance, query the DBA_DV_FACTOR_LINK view.

child_factor_name Child factor name.

label_indicator Indicates that the child factor being linked to the parent factor
contributes to the label of the parent factor in an Oracle Label
Security integration. Specify either DBMS_MACUTL.G_YES (for
Yes) or DBMS_MACUTL.G_NO (for No).

To find the Oracle Label Security policies and labels associated
with factors, query the following views:

• DBA_DV_MAC_POLICY: Lists Oracle Label Security policies
defined in the current database instance.

• DBA_DV_MAC_POLICY_FACTOR: Lists the factors that are
associated with Oracle Label Security policies for the
current database instance.

• DBA_DV_POLICY_LABEL: Lists the Oracle Label Security
label for each factor identifier in the DBA_DV_IDENTITY view
for each policy.

Example

BEGIN
 DBMS_MACADM.ADD_FACTOR_LINK(
 parent_factor_name => 'HQ_ClientID',
 child_factor_name => 'Div1_ClientID',
 label_indicator => DBMS_MACUTL.G_YES);
END;
/

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-3

ADD_POLICY_FACTOR Procedure
The ADD_POLICY_FACTOR procedure specifies that the label for a factor contributes to
the Oracle Label Security label for a policy.

Syntax

DBMS_MACADM.ADD_POLICY_FACTOR(
 policy_name IN VARCHAR2,
 factor_name IN VARCHAR2);

Parameters

Table 17-2 ADD_POLICY_FACTOR Parameters

Parameter Description

policy_name Oracle Label Security policy name.

To find the policies defined in the current database instance, query the
DBA_DV_MAC_POLICY view.

To find factors that are associated with Oracle Label Security policies,
query DBA_DV_MAC_POLICY_FACTOR.

factor_name Factor name.

To find existing factors, query the DBA_DV_FACTOR view.

Example

BEGIN
 DBMS_MACADM.ADD_POLICY_FACTOR(
 policy_name => 'AccessData',
 factor_name => 'Sector2_ClientID');
END;
/

CHANGE_IDENTITY_FACTOR Procedure
The CHANGE_IDENTITY_FACTOR procedure associates an identity with a different factor.

Syntax

DBMS_MACADM.CHANGE_IDENTITY_FACTOR(
 factor_name IN VARCHAR2,
 value IN VARCHAR2,
 new_factor_name IN VARCHAR2);

Parameters

Table 17-3 CHANGE_IDENTITY_FACTOR Parameters

Parameter Description

factor_name Current factor name.

To find existing factors, query the DBA_DV_FACTOR view.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-4

Table 17-3 (Cont.) CHANGE_IDENTITY_FACTOR Parameters

Parameter Description

value Value of the identity to update.

To find existing identities for each factor in the current database
instance, query the DBA_DV_IDENTITY view.

To find current identity mappings, query the DBA_DV_IDENTITY_MAP
view.

new_factor_name Name of the factor to associate with the identity, which you can find by
querying the DBA_DV_FACTOR view.

Example

BEGIN
 DBMS_MACADM.CHANGE_IDENTITY_FACTOR(
 factor_name => 'Sector2_ClientID',
 value => 'intranet',
 new_factor_name => 'Sector4_ClientID');
END;
/

CHANGE_IDENTITY_VALUE Procedure
The CHANGE_IDENTITY_FACTOR procedure updates the value of an identity.

Syntax

DBMS_MACADM.CHANGE_IDENTITY_VALUE(
 factor_name IN VARCHAR2,
 value IN VARCHAR2,
 new_value IN VARCHAR2);

Parameters

Table 17-4 CHANGE_IDENTITY_VALUE Parameters

Parameter Description

factor_name Factor name.

To find existing factors, query the DBA_DV_FACTOR view.

value Current value associated with the identity.

To find existing identities for each factor in the current database instance,
query the DBA_DV_IDENTITY view.

To find current identity mappings, query the DBA_DV_IDENTITY_MAP view.

new_value New identity value, up to 1024 characters in mixed-case.

Example

BEGIN
 DBMS_MACADM.CHANGE_IDENTITY_VALUE(
 factor_name => 'Sector2_ClientID',
 value => 'remote',
 new_value => 'intranet');

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-5

END;
/

CREATE_DOMAIN_IDENTITY Procedure
The CREATE_DOMAIN_IDENTITY procedure is used for Oracle Real Application Clusters
(Oracle RAC) and Oracle Label Security.

It adds an Oracle RAC database node to the domain factor identities and labels it
according to an Oracle Label Security policy

Syntax

DBMS_MACADM.CREATE_DOMAIN_IDENTITY(
 domain_name IN VARCHAR2,
 domain_host IN VARCHAR2,
 policy_name IN VARCHAR2 DEFAULT NULL,
 domain_label IN VARCHAR2 DEFAULT NULL);

Parameters

Table 17-5 CREATE_DOMAIN_IDENTITY Parameters

Parameter Description

domain_name Name of the domain to which to add the host.

To find the logical location of the database within the network structure
within a distributed database system, run the DVF.F$DATABASE_DOMAIN
function. See Related Topics.

domain_host Oracle Real Application Clusters host name being added to the domain.

To find host name of a database, run the DVF.F$DATABASE_HOSTNAME
function. See Related Topics.

policy_name Oracle Label Security policy name. If you omit the policy name, then the
domain is not associated with any policy.

To find the available policies, query the DBA_DV_MAC_POLICY view.

domain_label Name of the domain to which to add the Oracle Label Security policy.

Examples

BEGIN
 DBMS_MACADM.CREATE_DOMAIN_IDENTITY(
 domain_name => 'example',
 domain_host => 'mydom_host',
 policy_name => 'AccessData',
 domain_label => 'sensitive');
END;
/

Related Topics

• Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-6

CREATE_FACTOR Procedure
The CREATE_FACTOR procedure creates a factor.

After you create a factor, you can give it an identity by using the CREATE_IDENTITY
procedure.

Syntax

DBMS_MACADM.CREATE_FACTOR(
 factor_name IN VARCHAR2,
 factor_type_name IN VARCHAR2,
 description IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 get_expr IN VARCHAR2,
 validate_expr IN VARCHAR2,
 identify_by IN NUMBER,
 labeled_by IN NUMBER,
 eval_options IN NUMBER,
 audit_options IN NUMBER,
 fail_options IN NUMBER);

Parameters

Table 17-6 CREATE_FACTOR Parameters

Parameter Description

factor_name Factor name, up to 128 characters in mixed-case, without spaces.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR view.

factor_type_name Type of the factor, up to 128 characters in mixed-case, without spaces.

To find existing factor types, query the DBA_DV_FACTOR_TYPE view,
described in .

description Optional description of the purpose of the factor, up to 1024 characters
in mixed-case.

rule_set_name Rule set name if you want to use a rule set to control when and how a
factor identity is set.

To find existing rule sets, query the DBA_DV_RULE_SET view. For
more details, see the rule_set_name description for creating factors.
(Refer to Related Topics.)

get_expr Valid PL/SQL expression that retrieves the identity of a factor. It can
use up to 255 characters in mixed-case. For more details, see the
get_expr description for creating factors. (Refer to Related Topics.)

validate_expr Name of the procedure to validate the factor. This is a valid PL/SQL
expression that returns a Boolean value (TRUE or FALSE) to validate
the identity of the factor. For more details, see the validate_expr
description for creating factors. (Refer to Related Topics.)

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-7

Table 17-6 (Cont.) CREATE_FACTOR Parameters

Parameter Description

identify_by Options for determining the identity of a factor, based on the
expression set for the get_expr parameter:

• DBMS_MACUTL.G_IDENTIFY_BY_CONSTANT: By constant
• DBMS_MACUTL.G_IDENTIFY_BY_METHOD: By method
• DBMS_MACUTL.G_IDENTIFY_BY_FACTOR: By factor
• DBMS_MACUTL.G_IDENTIFY_BY_CONTEXT: By context
For more details, see the identify_by description for creating
factors. (Refer to Related Topics.)

labeled_by Options for labeling the factor:

• DBMS_MACUTL.G_LABELED_BY_SELF: Labels the identities for the
factor directly from the labels associated with an Oracle Label
Security policy (default)

• DBMS_MACUTL.G_LABELED_BY_FACTORS: Derives the factor
identity label from the labels of its child factor identities.

For more details, see the labeled_by description for creating factors.
(Refer to Related Topics.)

eval_options Options for evaluating the factor when the user logs on:

• DBMS_MACUTL.G_EVAL_ON_SESSION: When the database
session is created (default)

• DBMS_MACUTL.G_EVAL_ON_ACCESS: Each time the factor is
accessed

• DBMS_MACUTL.G_EVAL_ON_STARTUP: On start-up
For more details, see the eval_options description for creating
factors. (Refer to Related Topics.)

audit_options Options for auditing the factor if you want to generate a custom Oracle
Database Vault audit record.

• DBMS_MACUTL.G_AUDIT_OFF: Disables auditing.
• DBMS_MACUTL.G_AUDIT_ALWAYS: Always audits.
• DBMS_MACUTL.G_AUDIT_ON_GET_ERROR: Audits if get_expr

returns an error.
• DBMS_MACUTL.G_AUDIT_ON_GET_NULL: Audits if get_expr is

null.
• DBMS_MACUTL.G_AUDIT_ON_VALIDATE_ERROR: Audits if the

validation procedure returns an error.
• DBMS_MACUTL.G_AUDIT_ON_VALIDATE_FALSE: Audits if the

validation procedure is false.
• DBMS_MACUTL.G_AUDIT_ON_TRUST_LEVEL_NULL: Audits if there

is no trust level set.
• DBMS_MACUTL.G_AUDIT_ON_TRUST_LEVEL_NEG: Audits if the

trust level is negative.
Starting with Oracle Database release 21c, traditional auditing is
deprecated. Oracle recommends that you create Oracle Database
Vault unified audit policies instead of using the audit_options
parameter.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-8

Table 17-6 (Cont.) CREATE_FACTOR Parameters

Parameter Description

fail_options Options for reporting factor errors:

• DBMS_MACUTL.G_FAIL_WITH_MESSAGE: Shows an error
message (default)

• DBMS_MACUTL.G_FAIL_SILENTLY: Does not show an error
message

For more details, see the fail_options description for creating
factors. (Refer to Related Topics.)

Example

BEGIN
 DBMS_MACADM.CREATE_FACTOR(
 factor_name => 'Sector2_DB',
 factor_type_name => 'Instance',
 description => ' ',
 rule_set_name => 'Limit_DBA_Access',
 get_expr => 'UPPER(SYS_CONTEXT(''USERENV'',''DB_NAME''))',
 validate_expr => 'dbavowner.check_db_access',
 identify_by => DBMS_MACUTL.G_IDENTIFY_BY_METHOD,
 labeled_by => DBMS_MACUTL.G_LABELED_BY_SELF,
 eval_options => DBMS_MACUTL.G_EVAL_ON_SESSION,
 audit_options => DBMS_MACUTL.G_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_FAIL_SILENTLY);
END;
/

Related Topics

• CREATE_IDENTITY Procedure
The CREATE_IDENTITY procedure assigns an identity and an associated trust level
for a given factor.

• Creating a Factor
In general, to create a factor, you first create the factor itself, and then you edit the
factor to include its identity.

CREATE_FACTOR_TYPE Procedure
The CREATE_FACTOR_TYPE procedure creates a user-defined factor type.

Syntax

DBMS_MACADM.CREATE_FACTOR_TYPE(
 name IN VARCHAR2,
 description IN VARCHAR2);

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-9

Parameters

Table 17-7 CREATE_FACTOR_TYPE Parameters

Parameter Description

name Factor type name, up to 128 characters in mixed-case, without spaces.

To find existing factor types, query the DBA_DV_FACTOR_TYPE view.

description Description of the purpose of the factor type, up to 1024 characters in
mixed-case.

Example

BEGIN
 DBMS_MACADM.CREATE_FACTOR_TYPE(
 name => 'Sector2Instance',
 description => 'Checks DB instances used in Sector 2');
END;
/

CREATE_IDENTITY Procedure
The CREATE_IDENTITY procedure assigns an identity and an associated trust level for a
given factor.

After you create a factor, you must assign it an identity.

Syntax

DBMS_MACADM.CREATE_IDENTITY(
 factor_name IN VARCHAR2,
 value IN VARCHAR2,
 trust_level IN NUMBER);

Parameters

Table 17-8 CREATE_IDENTITY Parameters

Parameter Description

factor_name Factor name.

To find existing factors, query the DBA_DV_FACTOR view.

value The actual value of the factor, up to 1024 characters in mixed-case. For
example, the identity of an IP_Address factor could be the IP address of
192.0.2.12.

trust_level Number that indicates the magnitude of trust relative to other identities for
the same factor. In general, the higher the trust level number is set, the
greater the trust. A trust level of 10 indicates "very trusted." Negative trust
levels are not trusted. See Related Topics for more information about trust
levels and label security.

Example

BEGIN
 DBMS_MACADM.CREATE_IDENTITY(

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-10

 factor_name => 'Sector2_ClientID',
 value => 'intranet',
 trust_level => 5);
END;
/

Related Topics

• Creating and Configuring a Factor Identity
You can create and configure a factor identity for an existing factor.

CREATE_IDENTITY_MAP Procedure
The CREATE_IDENTITY_MAP procedure defines tests that can derive the identity of a
factor from the value of linked child factors (subfactors).

Syntax

DBMS_MACADM.CREATE_IDENTITY_MAP(
 identity_factor_name IN VARCHAR2,
 identity_factor_value IN VARCHAR2,
 parent_factor_name IN VARCHAR2,
 child_factor_name IN VARCHAR2,
 operation IN VARCHAR2,
 operand1 IN VARCHAR2,
 operand2 IN VARCHAR2);

Parameters

Table 17-9 CREATE_IDENTITY_MAP Parameters

Parameter Description

identity_factor_name Factor the identity map is for.

To find existing factors in the current database instance, query
the DBA_DV_FACTOR view.

identity_factor_value Value the factor assumes if the identity map evaluates to
TRUE.

To find existing factor identities, query the DBA_DV_IDENTITY
view.

To find current factor identity mappings, use
DBA_DV_IDENTITY_MAP.

parent_factor_name The parent factor link to which the map is related.

To find existing parent-child factor mappings, query the
DBA_DV_IDENTITY_MAP view.

child_factor_name The child factor link to which the map is related.

operation Relational operator for the identity map (for example, <, >, =,
and so on).

operand1 Left operand for the relational operator; refers to the low value
you enter.

operand2 Right operand for the relational operator; refers to the high
value you enter.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-11

Example

BEGIN
 DBMS_MACADM.CREATE_IDENTITY_MAP(
 identity_factor_name => 'Sector2_ClientID',
 identity_factor_value => 'intranet',
 parent_factor_name => 'HQ_ClientID',
 child_factor_name => 'Div1_ClientID',
 operation => '<',
 operand1 => '192.0.2.50',
 operand2 => '192.0.2.100');
END;
/

DELETE_FACTOR Procedure
The DELETE_FACTOR procedure deletes a factor.

Syntax

DBMS_MACADM.DELETE_FACTOR(
 factor_name IN VARCHAR2);

Parameters

Table 17-10 DELETE_FACTOR Parameter

Parameter Description

factor_name Factor name.

To find existing factors in the current database instance, query
the DBA_DV_FACTOR view.

Example

EXEC DBMS_MACADM.DELETE_FACTOR('Sector2_ClientID');

DELETE_FACTOR_LINK Procedure
The DELETE_FACTOR_LINK procedure removes a parent-child relationship for two
factors.

Syntax

DBMS_MACADM.DELETE_FACTOR_LINK(
 parent_factor_name IN VARCHAR2,
 child_factor_name IN VARCHAR2);

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-12

Parameters

Table 17-11 DELETE_FACTOR_LINK Parameters

Parameter Description

parent_factor_name Factor name.

To find factors that are used in parent-child mappings in the current
database instance, query the DBA_DV_FACTOR_LINK view.

child_factor_name Factor name

Example

BEGIN
 DBMS_MACADM.DELETE_FACTOR_LINK(
 parent_factor_name => 'HQ_ClientID',
 child_factor_name => 'Div1_ClientID');
END;
/

DELETE_FACTOR_TYPE Procedure
The DELETE_FACTOR_TYPE procedure deletes a factor type.

Syntax

DBMS_MACADM.DELETE_FACTOR_TYPE(
 name IN VARCHAR2);

Parameters

Table 17-12 DELETE_FACTOR_TYPE Parameters

Parameter Description

name Factor type name.

To find existing factor types, query the DBA_DV_FACTOR_TYPE view.

Example

EXEC DBMS_MACADM.DELETE_FACTOR_TYPE('Sector2Instance');

DELETE_IDENTITY Procedure
The DELETE_IDENTITY procedure removes an identity from an existing factor.

Syntax

DBMS_MACADM.DELETE_IDENTITY(
 factor_name IN VARCHAR2,
 value IN VARCHAR2);

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-13

Parameters

Table 17-13 DELETE_IDENTITY Parameters

Parameter Description

factor_name Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR view.

value Identity value associated with the factor.

To find the identities for each factor in the current database instance,
query the DBA_DV_IDENTITY view.

Example

BEGIN
 DBMS_MACADM.DELETE_IDENTITY(
 factor_name => 'Sector2_ClientID',
 value => 'intranet');
END;
/

DELETE_IDENTITY_MAP Procedure
The DELETE_IDENTITY_MAP procedure removes an identity map for a factor.

Syntax

DBMS_MACADM.DELETE_IDENTITY_MAP(
 identity_factor_name IN VARCHAR2,
 identity_factor_value IN VARCHAR2,
 parent_factor_name IN VARCHAR2,
 child_factor_name IN VARCHAR2,
 operation IN VARCHAR2,
 operand1 IN VARCHAR2,
 operand2 IN VARCHAR2);

Parameters

Table 17-14 DELETE_IDENTITY_MAP Parameters

Parameter Description

identity_factor_name Factor the identity map is for.

To find existing factors in the current database instance, query
the DBA_DV_FACTOR view.

identity_factor_value Value the factor assumes if the identity map evaluates to
TRUE.

To find existing factor identities, query the DBA_DV_IDENTITY
view.

To find current factor identity mappings, query
DBA_DV_IDENTITY_MAP.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-14

Table 17-14 (Cont.) DELETE_IDENTITY_MAP Parameters

Parameter Description

parent_factor_name The parent factor link to which the map is related.

To find existing parent-child factors, query the
DBA_DV_FACTOR view.

child_factor_name The child factor to which the map is related.

operation Relational operator for the identity map (for example, <, >, =,
and so on).

operand1 Left (low value) operand for the relational operator.

operand2 Right (high value) operand for the relational operator.

Example

BEGIN
 DBMS_MACADM.DELETE_IDENTITY_MAP(
 identity_factor_name => 'Sector2_ClientID',
 identity_factor_value => 'intranet',
 parent_factor_name => 'HQ_ClientID',
 child_factor_name => 'Div1_ClientID',
 operation => '<',
 operand1 => '192.0.2.10',
 operand2 => '192.0.2.15');
END;
/

DROP_DOMAIN_IDENTITY Procedure
The DROP_DOMAIN_IDENTITY procedure removes an Oracle Real Application Clusters
database node from a domain.

Syntax

DBMS_MACADM.DROP_DOMAIN_IDENTITY(
 domain_name IN VARCHAR2,
 domain_host IN VARCHAR2);

Parameters

Table 17-15 DROP_DOMAIN_IDENTITY Parameters

Parameter Description

domain_name Name of the domain to which the host was added.

To find the domain of a database as specified by the DB_DOMAIN
initialization parameter, run the DVF.F$DATABASE_DOMAIN function.

domain_host Oracle Real Application Clusters host name being that was added to the
domain.

To find the host name for a specified database, run the
DVF.F$DATABASE_HOSTNAME function.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-15

Example

BEGIN
 DBMS_MACADM.DROP_DOMAIN_IDENTITY(
 domain_name => 'example',
 domain_host => 'mydom_host');
END;
/

Related Topics

• F$DATABASE_DOMAIN Function
The F$DATABASE_DOMAIN function returns the domain of the database as specified
in the DB_DOMAIN initialization parameter, in VARCHAR2 data type.

GET_SESSION_INFO Function
The GET_SESSION_INFO function returns information from the SYS.V_$SESSION system
table for the current session.

The V$SESSION data dictionary view also contains session information from this table.

Syntax

DBMS_MACADM.GET_SESSION_INFO(
 p_parameter IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 17-16 GET_SESSION_INFO Parameter

Parameter Description

p_parameter Column name in the SYS.V_$SESSION system table.

Example

DECLARE
 session_var varchar2 := null;
BEGIN
 session_var = DBMS_MACADM.GET_SESSION_INFO('PROCESS');
END;
/

GET_INSTANCE_INFO Function
The GET_INSTANCE_INFO function returns information from the SYS.V_$INSTANCE
system table about the current database instance.

The V$INSTANCE data dictionary view also contains database instance information from
this table.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-16

Syntax

DBMS_MACADM.GET_INSTANCE_INFO(
 p_parameter IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 17-17 GET_INSTANCE_INFO Parameter

Parameter Description

p_parameter Column name in the SYS.V_$INSTANCE system table

Example

DECLARE
 instance_var varchar2 := null;
BEGIN
 instance_var = DBMS_MACADM.GET_INSTANCE_INFO('INSTANCE_NAME');
END;
/

RENAME_FACTOR Procedure
The RENAME_FACTOR procedure renames a factor; the name change takes effect
everywhere the factor is used.

Syntax

DBMS_MACADM.RENAME_FACTOR(
 factor_name IN VARCHAR2,
 new_factor_name IN VARCHAR2);

Parameters

Table 17-18 RENAME_FACTOR Parameters

Parameter Description

factor_name Current factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR view.

new_factor_name New factor name, up to 128 characters in mixed-case, without spaces.

Example

BEGIN
 DBMS_MACADM.RENAME_FACTOR(
 factor_name => 'Sector2_ClientID',
 new_factor_name => 'Sector2_Clients');
END;
/

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-17

RENAME_FACTOR_TYPE Procedure
The RENAME_FACTOR procedure renames a factor type; the name change takes effect
everywhere the factor type is used.

Syntax

DBMS_MACADM.RENAME_FACTOR_TYPE(
 old_name IN VARCHAR2,
 new_name IN VARCHAR2);

Parameters

Table 17-19 RENAME_FACTOR_TYPE Parameters

Parameter Description

old_name Current factor type name.

To find existing factor types in the current database instance, query the
DBA_DV_FACTOR_TYPE view.

new_name New factor type name, up to 128 characters in mixed-case, without spaces.

Example

BEGIN
 DBMS_MACADM.RENAME_FACTOR_TYPE(
 old_name => 'Sector2Instance',
 new_name => 'Sector2DBInstance');
END;
/

UPDATE_FACTOR Procedure
The UPDATE_FACTOR procedure updates the description of a factor type.

Syntax

DBMS_MACADM.UPDATE_FACTOR(
 factor_name IN VARCHAR2,
 factor_type_name IN VARCHAR2,
 description IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 get_expr IN VARCHAR2,
 validate_expr IN VARCHAR2,
 identify_by IN NUMBER,
 labeled_by IN NUMBER,
 eval_options IN NUMBER,
 audit_options IN NUMBER,
 fail_options IN NUMBER);

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-18

Parameters

Table 17-20 UPDATE_FACTOR

Parameter Description

factor_name Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR view.

factor_type_name Factor type name.

To find existing factor types, query the DBA_DV_FACTOR_TYPE view.

description Description of the purpose of the factor, up to 1024 characters in
mixed-case.

rule_set_name Name of the rule set used to control when and how a factor identity
is set.

To find existing rule sets, query the DBA_DV_RULE_SET view .

get_expr Valid PL/SQL expression that retrieves the identity of a factor.
It can use up to 255 characters in mixed-case. See also the
audit_options parameter.

validate_expr Name of the procedure to validate factor. This is a valid PL/SQL
expression that returns a Boolean value (TRUE or FALSE) to validate
the identity of the factor.

identify_by Options for determining the identity of a factor, based on the
expression set for the get_expr parameter:

• DBMS_MACUTL.G_IDENTIFY_BY_CONSTANT: By constant
• DBMS_MACUTL.G_IDENTIFY_BY_METHOD: By method
• DBMS_MACUTL.G_IDENTIFY_BY_FACTOR: By factor
• DBMS_MACUTL.G_IDENTIFY_BY_CONTEXT: By context

labeled_by Options for labeling the factor:

• DBMS_MACUTL.G_LABELED_BY_SELF: Labels the identities for
the factor directly from the labels associated with an Oracle
Label Security policy

• DBMS_MACUTL.G_LABELED_BY_FACTORS: Derives the factor
identity label from the labels of its child factor identities.

The default for labeled_by is the previously set value, which you
can find by querying the DBA_DV_FACTOR data dictionary view.

eval_options Options for evaluating the factor when the user logs on:

• DBMS_MACUTL.G_EVAL_ON_SESSION: When the database
session is created

• DBMS_MACUTL.G_EVAL_ON_ACCESS: Each time the factor is
accessed

• DBMS_MACUTL.G_EVAL_ON_STARTUP: On start-up
The default for eval_options is the previously set value, which you
can find by querying the DBA_DV_FACTOR data dictionary view.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-19

Table 17-20 (Cont.) UPDATE_FACTOR

Parameter Description

audit_options Options for auditing the factor if you want to generate a custom
Oracle Database Vault audit record.

• DBMS_MACUTL.G_AUDIT_OFF: Disables auditing.
• DBMS_MACUTL.G_AUDIT_ALWAYS: Always audits.
• DBMS_MACUTL.G_AUDIT_ON_GET_ERROR: Audits if get_expr

returns an error.
• DBMS_MACUTL.G_AUDIT_ON_GET_NULL: Audits if get_expr is

null.
• DBMS_MACUTL.G_AUDIT_ON_VALIDATE_ERROR: Audits if the

validation procedure returns an error.
• DBMS_MACUTL.G_AUDIT_ON_VALIDATE_FALSE: Audits if the

validation procedure is false.
• DBMS_MACUTL.G_AUDIT_ON_TRUST_LEVEL_NULL: Audits if

there is no trust level set.
• DBMS_MACUTL.G_AUDIT_ON_TRUST_LEVEL_NEG: Audits if the

trust level is negative.
The default for audit_options is the previously set value, which
you can find by querying the DBA_DV_FACTOR data dictionary view.

Starting with Oracle Database release 21c, traditional auditing is
deprecated. Oracle recommends that you create Oracle Database
Vault unified audit policies instead of using the audit_options
parameter.

fail_options Options for reporting factor errors:

• DBMS_MACUTL.G_FAIL_WITH_MESSAGE: Shows an error
message.

• DBMS_MACUTL.G_FAIL_SILENTLY: Does not show an error
message.

The default for fail_options is the previously set value, which you
can find by querying the DBA_DV_FACTOR data dictionary view.

Example

BEGIN
 DBMS_MACADM.UPDATE_FACTOR(
 factor_name => 'Sector2_DB',
 factor_type_name => 'Instance',
 description => ' ',
 rule_set_name => 'Limit_DBA_Access',
 get_expr => 'UPPER(SYS_CONTEXT(''USERENV'',''DB_NAME''))',
 validate_expr => 'dbavowner.check_db_access',
 identify_by => DBMS_MACUTL.G_IDENTIFY_BY_METHOD,
 labeled_by => DBMS_MACUTL.G_LABELED_BY_SELF,
 eval_options => DBMS_MACUTL.G_EVAL_ON_ACCESS,
 audit_options => DBMS_MACUTL.G_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_FAIL_WITH_MESSAGE);
END;
/

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-20

UPDATE_FACTOR_TYPE Procedure
The UPDATE_FACTOR_TYPE procedure updates a factor type.

Syntax

DBMS_MACADM.UPDATE_FACTOR_TYPE(
 name IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Table 17-21 UPDATE_FACTOR_TYPE Parameters

Parameter Description

name Factor type name.

To find existing factor types in the current database instance, query the
DBA_DV_FACTOR_TYPE view.

description Description of the purpose of the factor type, up to 1024 characters in
mixed case.

Example

BEGIN
 DBMS_MACADM.UPDATE_FACTOR_TYPE(
 name => 'Sector2DBInstance',
 description => 'Checks DB instances used in Sector 2');
END;
/

UPDATE_IDENTITY Procedure
The UPDATE_IDENTITY procedure updates the trust level of a factor identity.

Syntax

DBMS_MACADM.UPDATE_IDENTITY(
 factor_name IN VARCHAR2,
 value IN VARCHAR2,
 trust_level IN NUMBER);

Parameters

Table 17-22 UPDATE_IDENTITY Parameters

Parameter Description

factor_name Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR view.

To find factors that have identities, query DBA_DV_IDENTITY.

value New factor identity, up to 1024 characters in mixed-case. For example, the
identity of an IP_Address factor could be the IP address of 192.0.2.12.

Chapter 17
DBMS_MACADM Factor Procedures and Functions

17-21

Table 17-22 (Cont.) UPDATE_IDENTITY Parameters

Parameter Description

trust_level Number that indicates the magnitude of trust relative to other identities for
the same factor. In general, the higher the trust level number is set, the
greater the trust. A trust level of 10 indicates "very trusted." Negative trust
levels are not trusted.

Example

BEGIN
 DBMS_MACADM.UPDATE_IDENTITY(
 factor_name => 'Sector2_ClientID',
 value => 'intranet',
 trust_level => 10);
END;
/

Related Topics

• Creating and Configuring a Factor Identity
You can create and configure a factor identity for an existing factor.

Oracle Database Vault Run-Time PL/SQL Procedures and
Functions

Oracle Database Vault provides procedural interfaces to administer Database Vault
security options and manage Database Vault security enforcements.

• About Oracle Database Vault Run-Tine PL/SQL Procedures and Functions
Oracle Database Vault provides a set of PL/SQL procedures and functions that are
specific to factors.

• SET_FACTOR Procedure
The SET_FACTOR procedure can be exposed to an application that requires the
ability to set factor identities dynamically.

• GET_FACTOR Function
The GET_FACTOR function is exposed to the DVF schema to allow the public factor
functions to resolve the identity of a factor. The return type is VARCHAR2.

• GET_FACTOR_LABEL Function
The GET_FACTOR_LABEL function returns the label for the specified factor when the
factor has a label assigned to it for the specified Oracle Label Security policy. The
return type is VARCHAR2.

• GET_TRUST_LEVEL Function
The GET_TRUST_LEVEL function returns the trust level of the current session identity
for the factor requested. The return type is VARCHAR2.

• GET_TRUST_LEVEL_FOR_IDENTITY Function
The GET_TRUST_LEVEL_FOR_IDENTITY function returns the trust level for the factor
and identity requested. The return type is VARCHAR2.

Chapter 17
Oracle Database Vault Run-Time PL/SQL Procedures and Functions

17-22

• ROLE_IS_ENABLED Function
The ROLE_IS_ENABLED function returns a boolean value that specifies whether a
database role has been enabled. The return type is BOOLEAN.

About Oracle Database Vault Run-Tine PL/SQL Procedures and
Functions

Oracle Database Vault provides a set of PL/SQL procedures and functions that are
specific to factors.

These procedures and functions that expose the logic to validate a DDL command for
realm violations and command authorizations. Additional procedures and functions are
provided to set the value of a factor (assuming their associated rule sets evaluate to
true) (for example, from a Web application), to retrieve the trust level for a session or
specific factor identity, and to get the label for a factor identity. These procedures and
functions are provided so that a database administrator does not grant the EXECUTE
privilege on all DVSYS package procedures to the general database account population.
The procedures and functions expose only the minimum methods that are required.
All of these functions and procedures are publicly available for applications that need
them.

SET_FACTOR Procedure
The SET_FACTOR procedure can be exposed to an application that requires the ability to
set factor identities dynamically.

It wraps the package procedure DBMS_MACADM.SET_FACTOR. When a factor has a rule
set associated with it for assignment and if the rule set returns true, then the value is
set. Normal rule set handling occurs, and the factor value (identity) validation method
is called. This procedure is available (to execute) to the general database account
population.

Syntax

SET_FACTOR(
 p_factor IN VARCHAR2,
 p_value IN VARCHAR2);

Parameters

Table 17-23 SET_FACTOR Parameters

Parameter Description

p_factor Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR data dictionary view.

p_value Identity value, up to 1024 characters in mixed case.

To find the identities for each factor in the current database instance, query
the DBA_DV_IDENTITY data dictionary view.

Example

EXECUTE SET_FACTOR(''Sector2_ClientID'', ''identity'');

Chapter 17
Oracle Database Vault Run-Time PL/SQL Procedures and Functions

17-23

GET_FACTOR Function
The GET_FACTOR function is exposed to the DVF schema to allow the public factor
functions to resolve the identity of a factor. The return type is VARCHAR2.

This function enables the F$ functions in the DVF schema. This function is available (to
execute) to the general database account population.

Syntax

GET_FACTOR(
 p_factor IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table 17-24 GET_FACTOR Parameter

Parameter Description

p_factor Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR data dictionary view.

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get Client ID Factor Identity',
 rule_expr => 'GET_FACTOR(''Sector2_ClientID'')');
END;
/

GET_FACTOR_LABEL Function
The GET_FACTOR_LABEL function returns the label for the specified factor when the
factor has a label assigned to it for the specified Oracle Label Security policy. The
return type is VARCHAR2.

The function returns a label that is merged with the maximum session label for the
policy if the policy is configured with Oracle Label Security. The function is available (to
execute) to the general database population.

Syntax

GET_FACTOR_LABEL(
 p_factor IN VARCHAR2,
 p_policy_name IN VARCHAR2)
RETURN VARCHAR2;

Chapter 17
Oracle Database Vault Run-Time PL/SQL Procedures and Functions

17-24

Parameters

Table 17-25 GET_FACTOR_LABEL Parameters

Parameter Description

p_factor Factor name.

To find the available factors in the current database instance, query the
DBA_DV_FACTOR data dictionary view. To find factors that are associated
with Oracle Label Security policies, use DBA_DV_MAC_POLICY_FACTOR.

p_policy_name Oracle Label Security policy name.

Use the following data dictionary views to find information about policies
and factors in the current database instance:

• DBA_DV_MAC_POLICY: Lists Oracle Label Security policies defined
in the current database instance.

• DBA_DV_MAC_POLICY_FACTOR: Lists the factors that are
associated with Oracle Label Security policies for the current
database instance.

• DBA_DV_POLICY_LABEL: Lists the Oracle Label Security label for
each factor identifier in the DBA_DV_IDENTITY view for each policy.

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get the ClientID Factor Label',
 rule_expr => 'GET_FACTOR_LABEL(''Sector2_ClientID'', ''Access Locations'')');
END;
/

GET_TRUST_LEVEL Function
The GET_TRUST_LEVEL function returns the trust level of the current session identity for
the factor requested. The return type is VARCHAR2.

This function is available (to execute) to the general database account population.

Syntax

GET_TRUST_LEVEL(
 p_factor IN VARCHAR2)
RETURN VARCHAR2;

Parameter

Table 17-26 GET_TRUST_LEVEL Parameter

Parameter Description

p_factor Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR data dictionary view.

Chapter 17
Oracle Database Vault Run-Time PL/SQL Procedures and Functions

17-25

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get Client ID Trust Level',
 rule_expr => 'GET_TRUST_LEVEL(''Sector2_ClientID'')');
END;
/

Related Topics

• Creating and Configuring a Factor Identity
You can create and configure a factor identity for an existing factor.

GET_TRUST_LEVEL_FOR_IDENTITY Function
The GET_TRUST_LEVEL_FOR_IDENTITY function returns the trust level for the factor and
identity requested. The return type is VARCHAR2.

This function is available (to execute) to the general database account population.

Syntax

GET_TRUST_LEVEL_FOR_IDENTITY(
 p_factor IN VARCHAR2,
 p_identity IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 17-27 GET_TRUST_LEVEL_FOR_IDENTITY Parameters

Parameter Description

p_factor Factor name.

To find existing factors in the current database instance, query the
DBA_DV_FACTOR view.

p_identity Identity value.

To find the identities for each factor in the current database instance, use
the DBA_DV_IDENTITY data dictionary view.

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get Client ID Identity Trust Level',
 rule_expr => 'GET_TRUST_LEVEL_FOR_IDENTITY(''Sector2_ClientID'',
''identity'')');
END;
/

Chapter 17
Oracle Database Vault Run-Time PL/SQL Procedures and Functions

17-26

ROLE_IS_ENABLED Function
The ROLE_IS_ENABLED function returns a boolean value that specifies whether a
database role has been enabled. The return type is BOOLEAN.

This function is available (to execute) to the general database account population.

Syntax

ROLE_IS_ENABLED(
 p_role IN VARCHAR2)
RETURN BOOLEAN;

Parameter

Table 17-28 ROLE_IS_ENABLED Parameter

Parameter Description

p_role Database role name to check.

To find existing roles, use the following data dictionary views:

• DBA_ROLES: Finds available roles in the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular role.
• DBA_DV_ROLE: Finds existing secure application roles used in privilege

management.

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check if SYSADM Role Is Enabled',
 rule_expr => 'ROLE_IS_ENABLED(''SYSADM'')');
END;
/

Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault maintains the DVF schema functions when you use the
DBMS_MACADM PL/SQL package to manage the various factors.

• About Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault provides DVF factor-specific functions for frequently used
activities.

• F$AUTHENTICATION_METHOD Function
The F$AUTHENTICATION_METHOD function returns the method of authentication in
VARCHAR2 data type.

• F$CLIENT_IP Function
The F$CLIENT_IP function returns the IP address of the computer from which the
client is connected, in VARCHAR2 data type.

• F$DATABASE_DOMAIN Function
The F$DATABASE_DOMAIN function returns the domain of the database as specified
in the DB_DOMAIN initialization parameter, in VARCHAR2 data type.

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-27

• F$DATABASE_HOSTNAME Function
The F$DATABASE_HOSTNAME function returns the host name of the computer on
which the instance is running, in VARCHAR2 data type.

• F$DATABASE_INSTANCE Function
The F$DATABASE_INSTANCE function returns the instance identification number of
the current database instance, in VARCHAR2 data type.

• F$DATABASE_IP Function
The F$DATABASE_IP function returns the IP address of the computer on which the
database instance is running, in VARCHAR2 data type.

• F$DATABASE_NAME Function
The F$DATABASE_NAME function returns the name of the database as specified in
the DB_NAME initialization parameter, in VARCHAR2 data type.

• F$DOMAIN Function
The F$DOMAIN function returns a named collection of physical, configuration,
or implementation-specific factors in the run-time environment (for example, a
networked IT environment or subset of it) that operates at a specific sensitivity
level. The return type is VARCHAR2.

• FDVCLIENT_IDENTIFIER Function
The FDVCLIENT_IDENTIFIER function returns an Oracle Database Vault client
identifier.

• FDVDBLINK_INFO Function
The FDVDBLINK_INFO function returns information about an Oracle Database
Vault database link.

• FDVMODULE Function
The FDVMODULE function returns information about an Oracle Database Vault
module.

• F$ENTERPRISE_IDENTITY Function
The F$ENTERPRISE_IDENTITY function returns the enterprise-wide identity for a
user, in VARCHAR2 data type.

• F$IDENTIFICATION_TYPE Function
The F$IDENTIFICATION_TYPE function returns the way the schema of a user was
created in the database. Specifically, it reflects the IDENTIFIED clause in the
CREATE/ALTER USER syntax. The return type is VARCHAR2.

• F$LANG Function
The F$LANG function returns the ISO abbreviation for the language name, a shorter
form than the existing LANGUAGE parameter, for the session of the user. The return
type is VARCHAR2.

• F$LANGUAGE Function
The F$LANGUAGE function returns the language and territory currently used by a
user session, along with the database character set. The return type is VARCHAR2.

• F$MACHINE Function
The F$MACHINE function returns the computer (host) name for the database client
that established the database session. The return type is VARCHAR2.

• F$NETWORK_PROTOCOL Function
The F$NETWORK_PROTOCOL function returns the network protocol being used for
communication, as specified in the PROTOCOL=protocol portion of the connect
string. The return type is VARCHAR2.

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-28

• F$PROXY_ENTERPRISE_IDENTITY Function
The F$PROXY_ENTERPRISE_IDENTITY function returns the Oracle Internet Directory
distinguished name (DN) when the proxy user is an enterprise user. The return
type is VARCHAR2.

• F$PROXY_USER Function
The F$PROXY_USER function returns the name of a proxy user.

• F$SESSION_USER Function
The F$SESSION_USER function returns the database user name by which the
current user is authenticated. This value remains the same throughout the
session. The return type is VARCHAR2.

About Oracle Database Vault DVF PL/SQL Factor Functions
Oracle Database Vault provides DVF factor-specific functions for frequently used
activities.

In addition to the functions and procedures made available from the DVSYS schema,
the DVF schema contains a single function for each factor defined in the system.

The functions are then available to the general database account population through
PL/SQL functions and standard SQL. This enables factors to be used in Oracle Label
Security, Oracle Virtual Private Database (VPD), and so on.

Typically, you can incorporate these functions into rule expressions. For example:

The functions are then available to the general database account population through
PL/SQL functions and standard SQL. This enables factors to be used in Oracle Label
Security, Oracle Virtual Private Database (VPD), and so on.

Typically, you can incorporate these functions into rule expressions. For example:

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Not Internal DBA',
 rule_expr => 'DVF.F$SESSION_USER NOT IN (''JSMTIH'', ''TBROWN'')');
END;
/

To find the value of a factor function, select from the DUAL system table. For example:

SELECT DVF.F$SESSION_USER FROM DUAL;

F$SESSION_USER
--
LEO_DVOWNER

The name of the factor itself is case-insensitive. For example, the following statements
return the same result

select dvf.f$session_user from dual;

SELECT DVF.F$SESSION_USER FROM DUAL;

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-29

F$AUTHENTICATION_METHOD Function
The F$AUTHENTICATION_METHOD function returns the method of authentication in
VARCHAR2 data type.

In the list that follows, the type of user is followed by the method returned:

• Password-authenticated enterprise user, local database user, or SYSDBA/SYSOPER
using Password File; proxy with user name using password: PASSWORD

• Kerberos-authenticated enterprise or external user: KERBEROS

• SSL-authenticated enterprise or external user: SSL

• Radius-authenticated external user: RADIUS

• Operating system-authenticated external user or SYSDBA/SYSOPER: OS

• DCE-authenticated external user: DCE

• Proxy with certificate, distinguished name (DN), or user name without using
password: NONE

You can use IDENTIFICATION_TYPE to distinguish between external and enterprise
users when the authentication method is Password, Kerberos, or SSL.

Syntax

DVF.F$AUTHENTICATION_METHOD ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check SSL Authentication Method',
 rule_expr => 'DVF.F$AUTHENTICATION_METHOD = ''SSL''');
END;
/

F$CLIENT_IP Function
The F$CLIENT_IP function returns the IP address of the computer from which the client
is connected, in VARCHAR2 data type.

Syntax

DVF.F$CLIENT_IP ()
RETURN VARCHAR2;

Parameters

None

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-30

Example

The following example shows how to use DVF.F$CLIENT_IP in a rule creation
statement. Note that you can only enter one IP address, not a range of IP addresses.

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Client IP Address',
 rule_expr => 'DVF.F$CLIENT_IP = ''192.0.2.10''');
END;
/

F$DATABASE_DOMAIN Function
The F$DATABASE_DOMAIN function returns the domain of the database as specified in
the DB_DOMAIN initialization parameter, in VARCHAR2 data type.

Syntax

DVF.F$DATABASE_DOMAIN ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Client Database Domain',
 rule_expr => 'DVF.F$DATABASE_DOMAIN NOT IN (''EXAMPLE'', ''YOURDOMAIN'')');
END;
/

F$DATABASE_HOSTNAME Function
The F$DATABASE_HOSTNAME function returns the host name of the computer on which
the instance is running, in VARCHAR2 data type.

Syntax

DVF.F$DATABASE_HOSTNAME ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Host Name',
 rule_expr => 'DVF.F$DATABASE_HOSTNAME IN (''SHOBEEN'', ''MAU'')');
END;
/

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-31

F$DATABASE_INSTANCE Function
The F$DATABASE_INSTANCE function returns the instance identification number of the
current database instance, in VARCHAR2 data type.

Syntax

DVF.F$DATABASE_INSTANCE ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database Instance ID',
 rule_expr => 'DVF.F$DATABASE_INSTANCE = ''SALES_DB''');
END;
/

F$DATABASE_IP Function
The F$DATABASE_IP function returns the IP address of the computer on which the
database instance is running, in VARCHAR2 data type.

Syntax

DVF.F$DATABASE_IP ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database IP address',
 rule_expr => 'DVF.F$DATABASE_IP = ''192.0.2.5''');
END;
/

F$DATABASE_NAME Function
The F$DATABASE_NAME function returns the name of the database as specified in the
DB_NAME initialization parameter, in VARCHAR2 data type.

Syntax

DVF.F$DATABASE_NAME ()
RETURN VARCHAR2;

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-32

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database DB_NAME Name',
 rule_expr => 'DVF.F$DATABASE_NAME = ''ORCL''');
END;
/

F$DOMAIN Function
The F$DOMAIN function returns a named collection of physical, configuration, or
implementation-specific factors in the run-time environment (for example, a networked
IT environment or subset of it) that operates at a specific sensitivity level. The return
type is VARCHAR2.

You can identify a domain using factors such as host name, IP address, and database
instance names of the Oracle Database Vault nodes in a secure access path to
the database. Each domain can be uniquely determined using a combination of the
factor identifiers that identify the domain. You can use these identifying factors and
possibly additional factors to define the Maximum Security Label within the domain.
This restricts data access and commands, depending on the physical factors about
the Oracle Database Vault session. Example domains of interest may be Corporate
Sensitive, Internal Public, Partners, and Customers.

Syntax

DVF.F$DOMAIN ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Domain',
 rule_expr => 'DVF.F$DOMAIN = ''EXAMPLE.COM''');
END;
/

FDVCLIENT_IDENTIFIER Function
The FDVCLIENT_IDENTIFIER function returns an Oracle Database Vault client
identifier.

Syntax

DVF.FDVCLIENT_IDENTIFIER ()
RETURN VARCHAR2;

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-33

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database Vault Client Identifiers',
 rule_expr => 'DVF.FDVCLIENT_IDENTIFIER = ''14903BUA765454'';
END;/

FDVDBLINK_INFO Function
The FDVDBLINK_INFO function returns information about an Oracle Database Vault
database link.

Syntax

DVF.FDVDBLINK_INFO ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database Vault database link info',
 rule_expr => 'DVF.FDVDBLINK_INFO =
''SOURCE_GLOBAL_NAME=SALES.US.EXAMPLE.COM, DBLINK_NAME=PDB2_LINK,
SOURCE_AUDIT_SESSIONID=200057'';
END;/

FDVMODULE Function
The FDVMODULE function returns information about an Oracle Database Vault module.

Syntax

DVF.FDVMODULE ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database Vault modules',
 rule_expr => 'DVF.FDVMODULE = ''SQL*Plus'';
END;/

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-34

F$ENTERPRISE_IDENTITY Function
The F$ENTERPRISE_IDENTITY function returns the enterprise-wide identity for a user, in
VARCHAR2 data type.

• For enterprise users: the Oracle Internet Directory DN.

• For external users: the external identity (Kerberos principal name, Radius and
DCE schema names, operating system user name, certificate DN).

• For local users and SYSDBA/SYSOPER logins: NULL.

The value of the attribute differs by proxy method:

• For a proxy with DN: the Oracle Internet Directory DN of the client.

• For a proxy with certificate: the certificate DN of the client for external users; the
Oracle Internet Directory DN for global users.

• For a proxy with user name: the Oracle Internet Directory DN if the client is an
enterprise user; NULL if the client is a local database user.

Syntax

DVF.F$ENTERPRISE_IDENTITY ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check User Enterprise Identity',
 rule_expr => 'DVF.F$ENTERPRISE_IDENTITY NOT IN (''JSMITH'', ''TSMITH'')');
END;
/

F$IDENTIFICATION_TYPE Function
The F$IDENTIFICATION_TYPE function returns the way the schema of a user was
created in the database. Specifically, it reflects the IDENTIFIED clause in the CREATE/
ALTER USER syntax. The return type is VARCHAR2.

In the list that follows, the syntax used during schema creation is followed by the
identification type returned:

• IDENTIFIED BY password: LOCAL

• IDENTIFIED EXTERNALLY: EXTERNAL

• IDENTIFIED GLOBALLY: GLOBAL SHARED

• IDENTIFIED GLOBALLY AS DN: GLOBAL PRIVATE

Syntax

DVF.F$IDENTIFICATION_TYPE ()
RETURN VARCHAR2;

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-35

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check User Schema Creation Type',
 rule_expr => 'DVF.F$IDENTIFICATION_TYPE = ''GLOBAL SHARED''');
END;
/

F$LANG Function
The F$LANG function returns the ISO abbreviation for the language name, a shorter
form than the existing LANGUAGE parameter, for the session of the user. The return type
is VARCHAR2.

Syntax

DVF.F$LANG ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check ISO Abbreviated Language Name',
 rule_expr => 'DVF.F$LANG IN (''EN'', ''DE'', ''FR'')');
END;
/

Related Topics

• Oracle Database Globalization Support Guide

F$LANGUAGE Function
The F$LANGUAGE function returns the language and territory currently used by a user
session, along with the database character set. The return type is VARCHAR2.

The return type is in the following format:

language_territory.characterset

Syntax

DVF.F$LANGUAGE ()
RETURN VARCHAR2;

Parameters

None

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-36

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Session Language and Territory',
 rule_expr => 'DVF.F$LANGUAGE = ''AMERICAN_AMERICA.WE8ISO8859P1''');
END;
/

Related Topics

• Oracle Database Globalization Support Guide

F$MACHINE Function
The F$MACHINE function returns the computer (host) name for the database client that
established the database session. The return type is VARCHAR2.

Syntax

DVF.F$MACHINE ()
RETURN VARCHAR2;

Parameter

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Client Computer Host Name',
 rule_expr => 'DVF.F$MACHINE NOT IN (''SHOBEEN'', ''SEBASTIAN'')');
END;
/

F$NETWORK_PROTOCOL Function
The F$NETWORK_PROTOCOL function returns the network protocol being used for
communication, as specified in the PROTOCOL=protocol portion of the connect string.
The return type is VARCHAR2.

Syntax

DVF.F$NETWORK_PROTOCOL ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Network Protocol',
 rule_expr => 'DVF.F$NETWORK_PROTOCOL = ''TCP''');

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-37

END;
/

F$PROXY_ENTERPRISE_IDENTITY Function
The F$PROXY_ENTERPRISE_IDENTITY function returns the Oracle Internet Directory
distinguished name (DN) when the proxy user is an enterprise user. The return type is
VARCHAR2.

Syntax

DVF.F$PROXY_ENTERPRISE_IDENTITY ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get OID DN of Enterprise User',
 rule_expr => 'DVF.F$PROXY_ENTERPRISE_IDENTITY = ''cn=Provisioning Admins''');
END;
/

F$PROXY_USER Function
The F$PROXY_USER function returns the name of a proxy user.

Syntax

DVF.PROXY_USER ()
RETURN VARCHAR2;

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Proxy Users',
 rule_expr => 'DVF.PROXY_USER NOT IN (''ECHICHESTER'', ''PFITCH'')');
END;/

F$SESSION_USER Function
The F$SESSION_USER function returns the database user name by which the current
user is authenticated. This value remains the same throughout the session. The return
type is VARCHAR2.

Syntax

DVF.F$SESSION_USER ()
RETURN VARCHAR2;

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-38

Parameters

None

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Check Database User Name',
 rule_expr => 'DVF.F$SESSION_USER IN (''JSMITH'', ''TSMITH'')');
END;
/

Chapter 17
Oracle Database Vault DVF PL/SQL Factor Functions

17-39

18
Oracle Database Vault
Secure Application Role APIs

The DBMS_MACADM and DBMS_MACSEC_ROLES PL/SQL packages manage Database Vault
secure application roles.

• DBMS_MACADM Secure Application Role Procedures
The DBMS_MACADM package creates, renames, assigns, unassigns, updates, and
deletes Oracle Database Vault secure application roles.

• DBMS_MACSEC_ROLES Secure Application Role Procedure and Function
The DBMS_MACSEC_ROLES package checks the authorization for users and sets
Oracle Database Vault secure application roles.

Related Topics

• Configuring Secure Application Roles for Oracle Database Vault
Secure application roles enable you to control how much access users have to an
application.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

DBMS_MACADM Secure Application Role Procedures
The DBMS_MACADM package creates, renames, assigns, unassigns, updates, and
deletes Oracle Database Vault secure application roles.

• CREATE_ROLE Procedure
The CREATE_ROLE procedure creates an Oracle Database Vault secure application
role.

• DELETE_ROLE Procedure
The DELETE_ROLE procedure deletes an Oracle Database Vault secure application
role.

• RENAME_ROLE Procedure
The RENAME_ROLE procedure renames an Oracle Database Vault secure
application role. The name change takes effect everywhere the role is used.

• UPDATE_ROLE Procedure
The UPDATE_ROLE procedure updates a Oracle Database Vault secure application
role.

18-1

CREATE_ROLE Procedure
The CREATE_ROLE procedure creates an Oracle Database Vault secure application role.

Syntax

DBMS_MACADM.CREATE_ROLE(
 role_name IN VARCHAR2,
 enabled IN VARCHAR2,
 rule_set_name IN VARCHAR2);

Parameters

Table 18-1 CREATE_ROLE Parameters

Parameter Description

role_name Role name, up to 128 characters, with no spaces. Prepend the role name
with c## or C## if it is a common role.

To find existing secure application roles in the current database instance,
query the DBA_DV_ROLE view.

enabled DBMS_MACUTL.G_YES makes the role available for enabling;
DBMS_MACUTL.G_NO prevents the role from being enabled. The default
is DBMS_MACUTL.G_YES.

rule_set_name Name of rule set to determine whether this secure application can be
enabled.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

Example

BEGIN
 DBMS_MACADM.CREATE_ROLE(
 role_name => 'Sector2_APP_MGR',
 enabled => DBMS_MACUTL.G_YES,
 rule_set_name => 'Check App2 Access');
END;
/

DELETE_ROLE Procedure
The DELETE_ROLE procedure deletes an Oracle Database Vault secure application role.

Syntax

DBMS_MACADM.DELETE_ROLE(
 role_name IN VARCHAR2);

Chapter 18
DBMS_MACADM Secure Application Role Procedures

18-2

Parameters

Table 18-2 DELETE_ROLE Parameter

Parameter Description

role_name Role name.

To find existing secure application roles in the current database instance,
query the DBA_DV_ROLE view.

Example

EXEC DBMS_MACADM.DELETE_ROLE('SECT2_APP_MGR');

RENAME_ROLE Procedure
The RENAME_ROLE procedure renames an Oracle Database Vault secure application
role. The name change takes effect everywhere the role is used.

Syntax

DBMS_MACADM.RENAME_ROLE(
 role_name IN VARCHAR2,
 new_role_name IN VARCHAR2);

Parameters

Table 18-3 RENAME_ROLE Parameters

Parameter Description

role_name Current role name.

To find existing secure application roles in the current database instance,
query the DBA_DV_ROLE view.

new_role_name Role name, up to 128 characters, with no spaces. Ensure that this
name follows the standard Oracle naming conventions for role creation
described in Oracle Database SQL Language Reference. Prepend the
role name with c## or C## if it is a common role.

Example

BEGIN
 DBMS_MACADM.RENAME_ROLE(
 role_name => 'SECT2_APP_MGR',
 new_role_name => 'SECT2_SYSADMIN');
END;
/

Related Topics

• Oracle Database SQL Language Reference

Chapter 18
DBMS_MACADM Secure Application Role Procedures

18-3

UPDATE_ROLE Procedure
The UPDATE_ROLE procedure updates a Oracle Database Vault secure application role.

Syntax

DBMS_MACADM.UPDATE_ROLE(
 role_name IN VARCHAR2,
 enabled IN VARCHAR2,
 rule_set_name IN VARCHAR2);

Parameters

Table 18-4 UPDATE_ROLE Parameters

Parameter Description

role_name Role name.

To find existing secure application roles in the current database instance,
query the DBA_DV_ROLE view.

enabled DBMS_MACUTL.G_YES (Yes) makes the role available for enabling;
DBMS_MACUTL.G_NO (No) prevents the role from being enabled.

The default for enabled is the previously set value, which you can find by
querying the DBA_DV_ROLE data dictionary view.

rule_set_name Name of rule set to determine whether this secure application can be
enabled.

To find existing rule sets in the current database instance, query the
DBA_DV_RULE_SET view.

Example

BEGIN
 DBMS_MACADM.UPDATE_ROLE(
 role_name => 'SECT2_SYSADMIN',
 enabled => DBMS_MACUTL.G_YES,
 rule_set_name => 'System Access Controls');
END;
/

DBMS_MACSEC_ROLES Secure Application Role
Procedure and Function

The DBMS_MACSEC_ROLES package checks the authorization for users and sets Oracle
Database Vault secure application roles.

The DBMS_MACSEC_ROLES package is available to all users.

• CAN_SET_ROLE Function
The CAN_SET_ROLE function checks if the user invoking the method is authorized to
use an Oracle Database Vault secure application role.

Chapter 18
DBMS_MACSEC_ROLES Secure Application Role Procedure and Function

18-4

• SET_ROLE Procedure
The SET_ROLE procedure issues the SET ROLE PL/SQL statement for specified
roles.

CAN_SET_ROLE Function
The CAN_SET_ROLE function checks if the user invoking the method is authorized to use
an Oracle Database Vault secure application role.

The authorization is determined by checking the rule set associated with the role. The
return type is BOOLEAN.

Syntax

DBMS_MACSEC_ROLES.CAN_SET_ROLE(
 p_role IN VARCHAR2)
RETURN BOOLEAN;

Parameters

Table 18-5 CAN_SET_ROLE Parameter

Parameter Description

p_role Role name.

To find existing secure application roles in the current database instance,
query the DBA_DV_ROLE view.

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACSEC_ROLES.CAN_SET_ROLE('SECTOR2_APP_MGR')
 THEN DBMS_OUTPUT.PUT_LINE('''SECTOR2_APP_MGR'' can be enabled.');
 END IF;
END;
/

SET_ROLE Procedure
The SET_ROLE procedure issues the SET ROLE PL/SQL statement for specified roles.

This procedure includes both Oracle Database Vault secure application roles and
regular Oracle Database roles in its checking process.

This procedure sets an Oracle Database Vault secure application role only if the rule
set that is associated with the role evaluates to true. Before SET ROLE is issued, the
CAN_SET_ROLE method is called to check the rule set associated with the role. Run-time
rule set behavior such as auditing, failure processing, and event handling occur during
this process.

The SET_ROLE procedure is available to the general database account population.

Syntax

DBMS_MACSEC_ROLES.SET_ROLE(
 p_role IN VARCHAR2);

Chapter 18
DBMS_MACSEC_ROLES Secure Application Role Procedure and Function

18-5

Parameters

Table 18-6 SET_ROLE Parameter

Parameter Description

p_role Role names. You can enter multiple roles, separated by commas (,), including
secure application roles and regular roles.

To find existing secure application roles in the current database instance,
query the DBA_DV_ROLE view.

To find all of the existing roles in the database, query the DBA_ROLES data
dictionary view.

Example

EXEC DBMS_MACSEC_ROLES.SET_ROLE('SECTOR2_APP_MGR, APPS_MGR');

You can enter the name of the role in any case (for example, Sector2_APP_MGR).

Chapter 18
DBMS_MACSEC_ROLES Secure Application Role Procedure and Function

18-6

19
Oracle Database Vault
Oracle Label Security APIs

You can use the DBMS_MACADM PL/SQL package to manage Oracle Label Security
labels and policies in Oracle Database Vault.

• CREATE_MAC_POLICY Procedure
The CREATE_MAC_POLICY procedure specifies the algorithm to merge labels when
computing the label for a factor, or the Oracle Label Security Session label.

• CREATE_POLICY_LABEL Procedure
The CREATE_POLICY_LABEL procedure labels an identity within an Oracle Label
Security policy.

• DELETE_MAC_POLICY_CASCADE Procedure
The DELETE_MAC_POLICY_CASCADE procedure deletes all Oracle Database Vault
objects related to an Oracle Label Security policy.

• DELETE_POLICY_FACTOR Procedure
The DELETE_POLICY_FACTOR procedure removes the factor from contributing to the
Oracle Label Security label.

• DELETE_POLICY_LABEL Procedure
The DELETE_POLICY_LABEL procedure removes the label from an identity within an
Oracle Label Security policy.

• UPDATE_MAC_POLICY Procedure
The UPDATE_MAC_POLICY procedure specifies the algorithm to merge labels when
computing the label for a factor, or the Oracle Label Security Session label.

Related Topics

• Integrating Oracle Database Vault with Other Oracle Products
You can integrate Oracle Database Vault with other Oracle products, such as
Oracle Enterprise User Security.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

CREATE_MAC_POLICY Procedure
The CREATE_MAC_POLICY procedure specifies the algorithm to merge labels when
computing the label for a factor, or the Oracle Label Security Session label.

Syntax

DBMS_MACADM.CREATE_MAC_POLICY(
 policy_name IN VARCHAR2,
 algorithm IN VARCHAR2);

19-1

Parameters

Table 19-1 CREATE_MAC_POLICY Parameters

Parameter Description

policy_name Name of an existing policy.

To find existing policies in the current database instance, query the
DBA_DV_MAC_POLICY view.

algorithm Merge algorithm for cases when Oracle Label Security has merged two
labels. Enter the code listed in Table 19-2 that corresponds to the merge
algorithm you want. For example, enter HUU to if you want to select the
Maximum Level/Union/Union merge algorithm.

Table 19-2 Oracle Label Security Merge Algorithm Codes

Code Value

HUU Maximum Level/Union/Union

HIU Maximum Level/Intersection/Union

HMU Maximum Level/Minus/Union

HNU Maximum Level/Null/Union

HUI Maximum Level/Union/Intersection

HII Maximum Level/Intersection/Intersection

HMI Maximum Level/Minus/Intersection

HNI Maximum Level/Null/Intersection

HUM Maximum Level/Union/Minus

HIM Maximum Level/Intersection/Minus

HMM Maximum Level/Minus/Minus

HNM Maximum Level/Null/Minus

HUN Maximum Level/Union/Null

HIN Maximum Level/Intersection/Null

HMN Maximum Level/Minus/Null

HNN Maximum Level/Null/Null

LUU Minimum Level/Union/Union

LIU Minimum Level/Intersection/Union

LMU Minimum Level/Minus/Union

LNU Minimum Level/Null/Union

LUI Minimum Level/Union/Intersection

LII Minimum Level/Intersection/Intersection

LMI Minimum Level/Minus/Intersection

LNI Minimum Level/Null/Intersection

LUM Minimum Level/Union/Minus

LIM Minimum Level/Intersection/Minus

Chapter 19
CREATE_MAC_POLICY Procedure

19-2

Table 19-2 (Cont.) Oracle Label Security Merge Algorithm Codes

Code Value

LMM Minimum Level/Minus/Minus

LNM Minimum Level/Null/Minus

LUN Minimum Level/Union/Null

LIN Minimum Level/Intersection/Null

LMN Minimum Level/Minus/Null

LNN Minimum Level/Null/Null

Example

BEGIN
 DBMS_MACADM.CREATE_MAC_POLICY(
 policy_name => 'Access Locations',
 algorithm => 'HUU');
END;
/

CREATE_POLICY_LABEL Procedure
The CREATE_POLICY_LABEL procedure labels an identity within an Oracle Label Security
policy.

Syntax

DBMS_MACADM.CREATE_POLICY_LABEL(
 identity_factor_name IN VARCHAR2,
 identity_factor_value IN VARCHAR2,
 policy_name IN VARCHAR2,
 label IN VARCHAR2);

Parameters

Table 19-3 CREATE_POLICY_LABEL Parameters

Parameter Description

identity_factor_name Name of the factor being labeled.

To find existing factors in the current database instance, query
the DBA_DV_FACTOR view.

To find factors that are associated with Oracle Label Security
policies, use DBA_DV_MAC_POLICY_FACTOR.

identity_factor_value Value of identity for the factor being labeled.

To find the identities of existing factors in the current database
instance, query the DBA_DV_IDENTITY view.

policy_name Name of an existing policy.

To find existing policies in the current database instance, query
the DBA_DV_MAC_POLICY view.

Chapter 19
CREATE_POLICY_LABEL Procedure

19-3

Table 19-3 (Cont.) CREATE_POLICY_LABEL Parameters

Parameter Description

label Oracle Label Security label name.

To find existing policy labels for factor identifiers, query the
DBA_DV_POLICY_LABEL view.

Example

BEGIN
 DBMS_MACADM.CREATE_POLICY_LABEL(
 identity_factor_name => 'App_Host_Name',
 identity_factor_value => 'Sect2_Fin_Apps',
 policy_name => 'Access Locations',
 label => 'Sensitive');
END;
/

DELETE_MAC_POLICY_CASCADE Procedure
The DELETE_MAC_POLICY_CASCADE procedure deletes all Oracle Database Vault objects
related to an Oracle Label Security policy.

Syntax

DBMS_MACADM.DELETE_MAC_POLICY_CASCADE(
 policy_name IN VARCHAR2);

Parameters

Table 19-4 DELETE_MAC_POLICY_CASCADE Parameter

Parameter Description

policy_name Name of an existing policy.

To find existing policies in the current database instance, query
the DBA_DV_MAC_POLICY view.

Example

EXEC DBMS_MACADM.DELETE_MAC_POLICY_CASCADE('Access Locations');

DELETE_POLICY_FACTOR Procedure
The DELETE_POLICY_FACTOR procedure removes the factor from contributing to the
Oracle Label Security label.

Syntax

DBMS_MACADM.DELETE_POLICY_FACTOR(
 policy_name IN VARCHAR2,
 factor_name IN VARCHAR2);

Chapter 19
DELETE_MAC_POLICY_CASCADE Procedure

19-4

Parameters

Table 19-5 DELETE_POLICY_FACTOR Parameters

Parameter Description

policy_name Name of an existing policy.

To find existing policies in the current database instance, query the
DBA_DV_MAC_POLICY view.

factor_name Name of factor associated with the Oracle Label Security label.

To find factors that are associated with Oracle Label Security policies,
query DBA_DV_MAC_POLICY_FACTOR.

Example

BEGIN
 DBMS_MACADM.DELETE_POLICY_FACTOR(
 policy_name => 'Access Locations',
 factor_name => 'App_Host_Name');
END;
/

DELETE_POLICY_LABEL Procedure
The DELETE_POLICY_LABEL procedure removes the label from an identity within an
Oracle Label Security policy.

Syntax

DBMS_MACADM.DELETE_POLICY_LABEL(
 identity_factor_name IN VARCHAR2,
 identity_factor_value IN VARCHAR2,
 policy_name IN VARCHAR2,
 label IN VARCHAR2);

Parameters

Table 19-6 DELETE_POLICY_LABEL Parameters

Parameter Description

identity_factor_name Name of the factor that was labeled.

To find existing factors in the current database instance that
are associated with Oracle Label Security policies, query
DBA_DV_MAC_POLICY_FACTOR.

identity_factor_value Value of identity for the factor that was labeled.

To find the identities of existing factors in the current database
instance, query the DBA_DV_IDENTITY view.

policy_name Name of an existing policy.

To find existing policies in the current database instance, query
the DBA_DV_MAC_POLICY view.

Chapter 19
DELETE_POLICY_LABEL Procedure

19-5

Table 19-6 (Cont.) DELETE_POLICY_LABEL Parameters

Parameter Description

label Oracle Label Security label name.

To find existing policy labels for factor identifiers, query the
DBA_DV_POLICY_LABEL view.

Example

BEGIN
 DBMS_MACADM.DELETE_POLICY_LABEL(
 identity_factor_name => 'App_Host_Name',
 identity_factor_value => 'Sect2_Fin_Apps',
 policy_name => 'Access Locations',
 label => 'Sensitive');
END;
/

UPDATE_MAC_POLICY Procedure
The UPDATE_MAC_POLICY procedure specifies the algorithm to merge labels when
computing the label for a factor, or the Oracle Label Security Session label.

Syntax

DBMS_MACADM.UPDATE_MAC_POLICY(
 policy_name IN VARCHAR2,
 algorithm IN VARCHAR2);

Parameters

Table 19-7 UPDATE_MAC_POLICY

Parameter Description

policy_name Name of an existing policy.

To find existing policies in the current database instance, query
the DBA_DV_MAC_POLICY view.

algorithm Merge algorithm for cases when Oracle Label Security
has merged two labels. See the codes listed in the
DBMS_MACADM.CREATE_MAC_POLICY description.

Example

BEGIN
 DBMS_MACADM.UPDATE_MAC_POLICY(
 policy_name => 'Access Locations',
 algorithm => 'LUI');
END;
/

Chapter 19
UPDATE_MAC_POLICY Procedure

19-6

Related Topics

• CREATE_MAC_POLICY Procedure
The CREATE_MAC_POLICY procedure specifies the algorithm to merge labels when
computing the label for a factor, or the Oracle Label Security Session label.

Chapter 19
UPDATE_MAC_POLICY Procedure

19-7

20
Oracle Database Vault Utility APIs

Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

• DBMS_MACUTL Constants
You can use a set of constants, available in the DBMS_MACUTL PL/SQL package.

• DBMS_MACUTL Package Procedures and Functions
The DBMS_MACUTL PL/SQL package can perform tasks such as finding a time value
or whether a user has the the appropriate privileges.

DBMS_MACUTL Constants
You can use a set of constants, available in the DBMS_MACUTL PL/SQL package.

• DBMS_MACUTL Listing of Constants
The DBMS_MACUTL PL/SQL package provides constants (fields) to use with Oracle
Database Vault PL/SQL packages.

• Example: Creating a Realm Using DBMS_MACUTL Constants
Constants can be used to answer simple Yes or No settings when you create
objects in Oracle Database Vault.

• Example: Creating a Rule Set Using DBMS_MACUTL Constants
Constants can be used to set options such as the type of auditing used or fail
options.

• Example: Creating a Factor Using DBMS_MACUTL Constants
Constants can be used to set information specific to factors, such as identity or
labeling.

DBMS_MACUTL Listing of Constants
The DBMS_MACUTL PL/SQL package provides constants (fields) to use with Oracle
Database Vault PL/SQL packages.

Table 20-1 summarizes constant (that is, fields) descriptions for the DBMS_MACUTL
package.

Many of these constants have equivalents in the Oracle Database Vault package. For
example, the enabled parameter, which is available in several procedures, can accept
either Y (for Yes) or the constant G_YES. Choosing one over the other is a matter of
personal preference. They both have the same result.

20-1

Table 20-1 DBMS_MACUTL Listing of Constants

Constant Name Data Type Description

G_ALL_OBJECT VARCHAR2(1) Used with the realm API
object_name and object_type
parameters as a wildcard to indicate
all object names or all object types.

G_AUDIT_ALWAYS NUMBER Used with the factor API
audit_options parameter to
enable traditional auditing.

Starting with Oracle Database
release 21c, traditional auditing will
be deprecated.

G_AUDIT_OFF NUMBER Used with the factor API
audit_options parameter to
disable traditional auditing.

G_AUDIT_ON_GET_ERROR NUMBER Used with the factor API
audit_options parameter to
audit using traditional auditing if
the expression specified in the
get_expr parameter returns an
error.

G_AUDIT_ON_GET_NULL NUMBER Used with the factor API
audit_options parameter to audit
using traditional auditing if the
expression in the get_expr field is
null.

G_AUDIT_ON_TRUST_LEVEL_NEG NUMBER Used with the factor API
audit_options parameter to audit
using traditional auditing if the trust
level is negative.

G_AUDIT_ON_TRUST_LEVEL_NULL NUMBER Used with the factor API
audit_options parameter to audit
using traditional auditing if no trust
level exists.

G_AUDIT_ON_VALIDATE_ERROR NUMBER Used with the factor API
audit_options parameter to audit
using traditional auditing if the
validation function returns an error.

G_AUDIT_ON_VALIDATE_FALSE NUMBER Used with the factor API
audit_options parameter to audit
using traditional auditing if validation
function is false.

G_DISABLE NUMBER Used to disnable Oracle Database
Vault policies and command rules

G_ENABLE NUMBER Used to enable Oracle Database
Vault policies and command rules

G_EVAL_ON_ACCESS NUMBER Used with the factor API
eval_options parameter to
reevaluate the factor each time it is
accessed.

Chapter 20
DBMS_MACUTL Constants

20-2

Table 20-1 (Cont.) DBMS_MACUTL Listing of Constants

Constant Name Data Type Description

G_EVAL_ON_SESSION NUMBER Used with the factor API
eval_options parameter to
evaluate the factor only once, when
the user logs in to the session.

G_FAIL_SILENTLY NUMBER Used with the fail_options
parameter to fail and show no error
message.

G_FAIL_WITH_MESSAGE NUMBER Used with the fail_options
parameter to fail and show an error
message.

G_IDENTIFY_BY_CONSTANT NUMBER Used with the factor API
identify_by parameter: Fixed
value in PL/SQL expression defined
in the get_expr parameter.

G_IDENTIFY_BY_CONTEXT NUMBER Used with the factor API
identify_by parameter to indicate
context.

G_IDENTIFY_BY_FACTOR NUMBER Used with the factor
API identify_by parameter
for subfactors through the
factor_link$ table.

G_IDENTIFY_BY_METHOD NUMBER Used with the factor
API identify_by parameter:
Expression in get_expr field

G_IDENTIFY_BY_RULESET NUMBER Used with the factor
API identify_by parameter:
Expression and Rule Set with the
factor_expr$ table

G_LABELED_BY_FACTORS NUMBER Used with the factor API
labeled_by parameter to derive
the label from subfactor and merge
algorithm.

G_LABELED_BY_SELF NUMBER Used with the factor API
labeled_by parameter to label the
factor identities.

G_MAX_SESSION_LABEL VARCHAR2(30) This is the highest label a user could
set based on the factors. It does not
consider the label for a user.

G_MIN_POLICY_LABEL VARCHAR2(30) The label to which a factor with a null
label defaults.

Chapter 20
DBMS_MACUTL Constants

20-3

Table 20-1 (Cont.) DBMS_MACUTL Listing of Constants

Constant Name Data Type Description

G_NO VARCHAR2(1) Used with the following APIs:

• The factor API
label_indicator parameter
to indicate that a child factor
linked to a parent factor does
not contribute to the label of the
parent factor in an Oracle Label
Security integration.

• Any API that uses the enabled
parameter.

G_OLS_SESSION_LABEL VARCHAR2(30) The Oracle Label Security session
label for a user at the time
init_session is run.

G_PARTIAL NUMBER Sets the enforcement state of the
realms and command rules under an
Oracle Database Vault policy to be
changed individually

G_REALM_AUDIT_FAIL NUMBER Used with the realm API
audit_options parameter to audit
when the realm is violated.

G_REALM_AUDIT_OFF NUMBER Used with the realm API
audit_options parameter to
disable auditing.

G_REALM_AUDIT_SUCCESS NUMBER Used with the realm API
audit_options parameter: Audit
on successful realm access

G_REALM_AUTH_OWNER NUMBER Used with the realm API
auth_options parameter to set the
realm authorization to Owner.

G_REALM_AUTH_PARTICIPANT NUMBER Used with the realm API
auth_options parameter to set the
realm authorization to Participant.

G_RULESET_AUDIT_FAIL NUMBER Used with the rule set API
audit_options parameter to audit
on rule set failure.

G_RULESET_AUDIT_OFF NUMBER Used with the rule set API
audit_options parameter to
disable auditing.

G_RULESET_AUDIT_SUCCESS NUMBER Used with the rule set API
audit_options parameter to audit
on rule set success.

G_RULESET_EVAL_ALL NUMBER Used with the rule set API
eval_options parameter to enable
the rule set to succeed if all rules
evaluate to true.

G_RULESET_EVAL_ANY NUMBER Used with the rule set API
eval_options parameter to
succeed if any of the rules evaluate
to true.

Chapter 20
DBMS_MACUTL Constants

20-4

Table 20-1 (Cont.) DBMS_MACUTL Listing of Constants

Constant Name Data Type Description

G_RULESET_FAIL_SHOW NUMBER Used with the rule set API
fail_options parameter to show
an error message if the rule set fails.

G_RULESET_FAIL_SILENT NUMBER Used with the rule set API
fail_options parameter to not
show an error message if the rule
set fails.

G_RULESET_HANDLER_FAIL NUMBER Used with the rule set API
handler_options parameter to call
a handler (specified by the handler
parameter) if the rule set fails.

G_RULESET_HANDLER_OFF NUMBER Used with the rule set API
handler_options parameter to
disable calls to a handler or if no
handler is used.

G_RULESET_HANDLER_SUCCESS NUMBER Used with the rule set API
handler_options parameter to call
a handler if the rule set succeeds.

G_SIMULATION NUMBER Used to set the enforcement state
of a policy to simulation mode. This
mode does not raise errors for realm
or command rule violations. Instead,
an error is logged in a designated
log table with sufficient information
relevant to the error (for example,
users or SQL command.)

G_USER_POLICY_LABEL VARCHAR2(30) This is what Oracle Label Security
has decided the user's label should
be set to after factoring in the
preceding values.

G_YES VARCHAR2(1) Used with the following APIs:

• The factor API
label_indicator parameter
to indicate that a child factor
linked to a parent factor
contributes to the label of the
parent factor in an Oracle Label
Security integration.

• Any API that uses the enabled
parameter.

Example: Creating a Realm Using DBMS_MACUTL Constants
Constants can be used to answer simple Yes or No settings when you create objects
in Oracle Database Vault.

Example 20-1 shows how to use the G_YES and G_REALM_AUDIT_FAIL DBMS_MACUTL
constants when creating a realm.

Chapter 20
DBMS_MACUTL Constants

20-5

Example 20-1 Creating a Realm Using DBMS_MACUTL Constants

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'Performance Statistics Realm',
 description => 'Realm to measure performance',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_OFF);
END;
/

Example: Creating a Rule Set Using DBMS_MACUTL Constants
Constants can be used to set options such as the type of auditing used or fail options.

Example 20-2 shows how to use several DBMS_MACUTL constants when creating a rule
set.

Example 20-2 Creating a Rule Set Using DBMS_MACUTL Constants

BEGIN
 DBMS_MACADM.CREATE_RULE_SET(
 rule_set_name => 'Limit_DBA_Access',
 description => 'DBA access through predefined processes',
 enabled => DBMS_MACUTL.G_YES,
 eval_options => DBMS_MACUTL.G_RULESET_EVAL_ALL,
 audit_options => DBMS_MACUTL.G_RULESET_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_RULESET_FAIL_SHOW,
 fail_message => 'Rule Set Limit_DBA_Access has failed.',
 fail_code => 20000,
 handler_options => DBMS_MACUTL.G_RULESET_HANDLER_FAIL,
 handler => 'dbavowner.email_alert');
END;
/

Example: Creating a Factor Using DBMS_MACUTL Constants
Constants can be used to set information specific to factors, such as identity or
labeling.

Example 20-3 shows how to use constants when creating a factor.

Example 20-3 Creating a Factor Using DBMS_MACUTL Constants

BEGIN
 DBMS_MACADM.CREATE_FACTOR(
 factor_name => 'Sector2_DB',
 factor_type_name => 'Instance',
 description => ' ',
 rule_set_name => 'DB_access',
 get_expr => 'UPPER(SYS_CONTEXT(''USERENV'',''DB_NAME''))',
 validate_expr => 'dbavowner.check_db_access',
 identify_by => DBMS_MACUTL.G_IDENTIFY_BY_FACTOR,
 labeled_by => DBMS_MACUTL.G_LABELED_BY_SELF,
 eval_options => DBMS_MACUTL.G_EVAL_ON_SESSION,
 audit_options => DBMS_MACUTL.G_AUDIT_OFF,
 fail_options => DBMS_MACUTL.G_FAIL_SILENTLY);
END;
/

Chapter 20
DBMS_MACUTL Constants

20-6

DBMS_MACUTL Package Procedures and Functions
The DBMS_MACUTL PL/SQL package can perform tasks such as finding a time value or
whether a user has the the appropriate privileges.

• CHECK_DVSYS_DML_ALLOWED Procedure
The CHECK_DVSYS_DML_ALLOWED procedure checks if a user can issue Data
Modification Language (DML) commands to access the DVSYS objects.

• GET_CODE_VALUE Function
The GET_CODE_VALUE function finds the value for a code within a code group, and
then returns a VARCHAR2 value.

• GET_SECOND Function
The GET_SECOND function returns the seconds in Oracle SS (seconds) format (00–
59), and then returns a NUMBER value.

• GET_MINUTE Function
The GET_MINUTE function returns the minute in Oracle MI (minute) format (00–59),
in a NUMBER value.

• GET_HOUR Function
The GET_HOUR function returns the hour in Oracle HH24 (hour) format (00–23), in a
NUMBER value.

• GET_DAY Function
The GET_DAY function returns the day in Oracle DD (day) format (01–31), in a
NUMBER value.

• GET_MONTH Function
The GET_MONTH function returns the month in Oracle MM (month) format (01–12),
in a NUMBER value.

• GET_YEAR Function
The GET_YEAR function returns the year in Oracle YYYY (year) format (0001–
9999), in a NUMBER value.

• IS_ALPHA Function
The IS_ALPHA function returns a BOOLEAN value indicating if a character is
alphabetic.

• IS_DIGIT Function
The IS_DIGIT function checks returns a BOOLEAN value indicating if a character is
numeric.

• IS_DVSYS_OWNER Function
The IS_DVSYS_OWNER function returns a BOOLEAN value indicating if a user is
authorized to manage the Oracle Database Vault configuration.

• IS_OLS_INSTALLED Function
The IS_OLS_INSTALLED function returns a BOOLEAN value indicating if Oracle Label
Security is installed.

• IS_OLS_INSTALLED_VARCHAR Function
The IS_OLS_INSTALLED_VARCHAR function returns a BOOLEAN value indicating if
Oracle Label Security is installed.

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-7

• ROLE_GRANTED_ENABLED_VARCHAR Function
The ROLE_GRANTED_ENABLED_VARCHAR function returns a VARCHAR2 value indicating
the role grant and enablement status of a user.

• USER_HAS_OBJECT_PRIVILEGE Function
The USER_HAS_OBJECT_PRIVILEGE function returns a BOOLEAN value indicating if
user or role can access an object through a single specified object privilege grant.

• USER_HAS_ROLE Function
The USER_HAS_ROLE function returns a BOOLEAN value indicating if a user has a role
privilege, directly or indirectly (through another role).

• USER_HAS_ROLE_VARCHAR Function
The USER_HAS_ROLE_VARCHAR function returns a VARCHAR2 value indicating if a user
has a role privilege, directly or indirectly (through another role).

• USER_HAS_SYSTEM_PRIVILEGE Function
The USER_HAS_SYSTEM_PRIVILEGE function returns a BOOLEAN value indicating if a
user has a system privilege, directly or indirectly (through a role).

CHECK_DVSYS_DML_ALLOWED Procedure
The CHECK_DVSYS_DML_ALLOWED procedure checks if a user can issue Data Modification
Language (DML) commands to access the DVSYS objects.

Syntax

DBMS_MACUTL.CHECK_DVSYS_DML_ALLOWED(
 p_user IN VARCHAR2 DEFAULT USER);

Parameter

Table 20-2 CHECK_DVSYS_DML_ALLOWED Parameter

Parameter Description

p_user User to check.

To find existing users in the current database instance, query the following
views:

• DBA_USERS: Finds available users for the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.
• DBA_DV_ROLE: Finds existing secure application roles used in

privilege management.

Example

User SYSTEM fails the check:

EXEC DBMS_MACUTL.CHECK_DVSYS_DML_ALLOWED('system');

ERROR at line 1:
ORA-47920: Authorization failed for user system to perform this operation
ORA-06512: at "DBMS_MACUTL", line 23
ORA-06512: at "DBMS_MACUTL", line 372
ORA-06512: at "DBMS_MACUTL", line 508
ORA-06512: at "DBMS_MACUTL", line 572
ORA-06512: at line 1

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-8

User leo_dvowner, who has the DV_OWNER role, passes the check:

EXEC DBMS_MACUTL.CHECK_DVSYS_DML_ALLOWED('leo_dvowner');

PL/SQL procedure successfully completed.

GET_CODE_VALUE Function
The GET_CODE_VALUE function finds the value for a code within a code group, and then
returns a VARCHAR2 value.

Syntax

DBMS_MACUTL.GET_CODE_VALUE(
 p_code_group IN VARCHAR2,
 p_code IN VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 20-3 GET_CODE_VALUE Parameters

Parameter Description

p_code_group Code group (for example, AUDIT_EVENTS or BOOLEAN).

To find available code groups in the current database instance, query the
DBA_DV_CODE view.

p_code ID of the code.

This ID is listed when you run the DBA_DV_CODE view.

Example

BEGIN
 DBMS_MACADM.CREATE_RULE(
 rule_name => 'Get Label Algorithm for Maximum Level/Union/Null',
 rule_expr => 'DBMS_MACUTL.GET_CODE_VALUE(''LABEL_ALG'', ''HUN'') = ''Union''');
END;
/

GET_SECOND Function
The GET_SECOND function returns the seconds in Oracle SS (seconds) format (00–59),
and then returns a NUMBER value.

It is useful for rule expressions based on time data.

Syntax

DBMS_MACUTL.GET_SECOND(
 p_date IN DATE DEFAULT SYSDATE)
RETURN NUMBER;

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-9

Parameter

Table 20-4 GET_SECOND Parameter

Parameter Description

p_date Date in SS format (for example, 59).

If you do not specify a date, then Oracle Database Vault uses the Oracle
Database SYSDATE function to retrieve the current date and time set for the
operating system on which the database resides.

Example

SET SERVEROUTPUT ON
DECLARE
 seconds number;
BEGIN
 seconds := DBMS_MACUTL.GET_SECOND(TO_DATE('03-APR-2009 6:56 PM',
 'dd-mon-yyyy hh:mi PM'));
 DBMS_OUTPUT.PUT_LINE('Seconds: '||seconds);
END;
/

This example, which uses a fixed date and time, returns the following:

Seconds: 56

GET_MINUTE Function
The GET_MINUTE function returns the minute in Oracle MI (minute) format (00–59), in a
NUMBER value.

It is useful for rule expressions based on time data.

Syntax

DBMS_MACUTL.GET_MINUTE(
 p_date IN DATE DEFAULT SYSDATE)
RETURN NUMBER;

Parameter

Table 20-5 GET_MINUTE Parameter

Parameter Description

p_date Date in MI format (for example, 30, as in 2:30).

If you do not specify a date, then Oracle Database Vault uses the Oracle
Database SYSDATE function to retrieve the current date and time set for the
operating system on which the database resides.

Example

SET SERVEROUTPUT ON
DECLARE
 minute number;

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-10

BEGIN
 minute := DBMS_MACUTL.GET_MINUTE(SYSDATE);
 DBMS_OUTPUT.PUT_LINE('Minute: '||minute);
END;
/

Output similar to the following appears:

Minute: 17

GET_HOUR Function
The GET_HOUR function returns the hour in Oracle HH24 (hour) format (00–23), in a
NUMBER value.

It is useful for rule expressions based on time data.

Syntax

DBMS_MACUTL.GET_HOUR(
 p_date IN DATE DEFAULT SYSDATE)
RETURN NUMBER;

Parameter

Table 20-6 GET_HOUR Parameter

Parameter Description

p_date Date in HH24 format (for example, 14 for 2:00 p.m.)

If you do not specify a date, then Oracle Database Vault uses the Oracle
Database SYSDATE function to retrieve the current date and time set for the
operating system on which the database resides.

Example

SET SERVEROUTPUT ON
DECLARE
 hours number;
BEGIN
 hours := DBMS_MACUTL.GET_HOUR(SYSDATE);
 DBMS_OUTPUT.PUT_LINE('Hour: '||hours);
END;
/

Output similar to the following appears:

Hour: 12

GET_DAY Function
The GET_DAY function returns the day in Oracle DD (day) format (01–31), in a NUMBER
value.

It is useful for rule expressions based on time data.

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-11

Syntax

DBMS_MACUTL.GET_DAY(
 p_date IN DATE DEFAULT SYSDATE)
RETURN NUMBER;

Parameter

Table 20-7 GET_DAY Parameter

Parameter Description

p_date Date in DD format (for example, 01 for the first day of the month).

If you do not specify a date, then Oracle Database Vault uses the Oracle
Database SYSDATE function to retrieve the current date and time set for the
operating system on which the database resides.

Example

SET SERVEROUTPUT ON
DECLARE
 day number;
BEGIN
 day := DBMS_MACUTL.GET_DAY(SYSDATE);
 DBMS_OUTPUT.PUT_LINE('Day: '||day);
END;
/

Output similar to the following appears:

Day: 3

GET_MONTH Function
The GET_MONTH function returns the month in Oracle MM (month) format (01–12), in a
NUMBER value.

It is useful for rule expressions based on time data.

Syntax

DBMS_MACUTL.GET_MONTH(
 p_date IN DATE DEFAULT SYSDATE)
RETURN NUMBER;

Parameter

Table 20-8 GET_MONTH Parameter

Parameter Description

p_date Date in MM format (for example, 08 for the month of August).

If you do not specify a date, then Oracle Database Vault uses the Oracle
Database SYSDATE function to retrieve the current date and time set for the
operating system on which the database resides.

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-12

Example

SET SERVEROUTPUT ON
DECLARE
 month number;
BEGIN
 month := DBMS_MACUTL.GET_MONTH(SYSDATE);
 DBMS_OUTPUT.PUT_LINE('Month: '||month);
END;
/

Output similar to the following appears:

Month: 4

GET_YEAR Function
The GET_YEAR function returns the year in Oracle YYYY (year) format (0001–9999), in
a NUMBER value.

It is useful for rule expressions based on time data.

Syntax

DBMS_MACUTL.GET_YEAR(
 p_date IN DATE DEFAULT SYSDATE)
RETURN NUMBER;

Parameter

Table 20-9 GET_YEAR Parameter

Parameter Description

p_date Date in YYYY format (for example, 1984).

If you do not specify a date, then Oracle Database Vault uses the SYSDATE
function to retrieve the current date and time set for the operating system on
which the database resides.

Example

SET SERVEROUTPUT ON
DECLARE
 year number;
BEGIN
 year := DBMS_MACUTL.GET_YEAR(SYSDATE);
 DBMS_OUTPUT.PUT_LINE('Year: '||year);
END;
/

IS_ALPHA Function
The IS_ALPHA function returns a BOOLEAN value indicating if a character is alphabetic.

IS_ALPHA returns TRUE if the character is alphabetic.

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-13

Syntax

DBMS_MACUTL.IS_ALPHA(
 c IN VARCHAR2)
RETURN BOOLEAN;

Parameter

Table 20-10 IS_ALPHA Parameter

Parameter Description

c String with one character

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.IS_ALPHA('z')
 THEN DBMS_OUTPUT.PUT_LINE('The alphabetic character was found');
 ELSE
 DBMS_OUTPUT.PUT_LINE('No alphabetic characters today.');
 END IF;
END;
/

IS_DIGIT Function
The IS_DIGIT function checks returns a BOOLEAN value indicating if a character is
numeric.

IS_DIGIT returns TRUE if the character is a digit.

Syntax

DBMS_MACUTL.IS_DIGIT(
 c IN VARCHAR2)
RETURN BOOLEAN;

Parameter

Table 20-11 IS_DIGIT Parameter

Parameter Description

c String with one character

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.IS_DIGIT('7')
 THEN DBMS_OUTPUT.PUT_LINE('The numeric character was found');
 ELSE
 DBMS_OUTPUT.PUT_LINE('No numeric characters today.');
 END IF;

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-14

END;
/

IS_DVSYS_OWNER Function
The IS_DVSYS_OWNER function returns a BOOLEAN value indicating if a user is authorized
to manage the Oracle Database Vault configuration.

IS_DVSYS_OWNER returns TRUE if the user is authorized.

Syntax

DBMS_MACUTL.IS_DVSYS_OWNER(
 p_user IN VARCHAR2 DEFAULT USER)
RETURN BOOLEAN;

Parameter

Table 20-12 IS_DVSYS_OWNER Parameter

Parameter Description

p_user User to check.

To find existing users, query the following data dictionary views:

• DBA_USERS: Finds available users for the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.
• DBA_DV_ROLE: Finds existing secure application roles used in

privilege management.

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.IS_DVSYS_OWNER('PSMITH')
 THEN DBMS_OUTPUT.PUT_LINE('PSMITH is authorized to manage Database Vault.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('PSMITH is not authorized to manage Database Vault.');
 END IF;
END;
/

IS_OLS_INSTALLED Function
The IS_OLS_INSTALLED function returns a BOOLEAN value indicating if Oracle Label
Security is installed.

If Oracle Label Security is installed, IS_OLS_INSTALLED returns TRUE.

Syntax

DBMS_MACUTL.IS_OLS_INSTALLED()
RETURN BOOLEAN;

Parameters

None

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-15

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.IS_OLS_INSTALLED()
 THEN DBMS_OUTPUT.PUT_LINE('OLS is installed');
 ELSE
 DBMS_OUTPUT.PUT_LINE('OLS is not installed');
 END IF;
END;
/

IS_OLS_INSTALLED_VARCHAR Function
The IS_OLS_INSTALLED_VARCHAR function returns a BOOLEAN value indicating if Oracle
Label Security is installed.

If Oracle Label Security is installed, then IS_OLS_INSTALLED_VARCHAR returns Y.

Syntax

DBMS_MACUTL.IS_OLS_INSTALLED_VARCHAR()
RETURN VARCHAR2;

Parameters

None

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.IS_OLS_INSTALLED()
 THEN DBMS_OUTPUT.PUT_LINE('OLS is installed');
 ELSE
 DBMS_OUTPUT.PUT_LINE('OLS is not installed');
 END IF;
END;
/

ROLE_GRANTED_ENABLED_VARCHAR Function
The ROLE_GRANTED_ENABLED_VARCHAR function returns a VARCHAR2 value indicating the
role grant and enablement status of a user.

ROLE_GRANTED_ENABLED_VARCHAR function checks whether a user has a role granted
directly or indirectly (through another role) with a sufficient scope or the role currently
is enabled in the session while the role is not granted. If either of these conditions are
true, then it returns Y.

Because the SYS_SESSION_ROLES namespace of the SYS_CONTEXT function does not
represent the logged in user roles when it is evaluated as a DVSYS command rule,
Oracle recommends that you use the ROLE_GRANTED_ENABLED_VARCHAR function to
check if a role is enabled for a logged in user.

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-16

Syntax

DBMS_MACUTL.ROLE_GRANTED_ENABLED_VARCHAR(
 p_role IN VARCHAR2,
 p_user IN VARCHAR2 DEFAULT USER,
 p_profile IN NUMBER(38) DEFAULT 1,
 p_scope IN VARCHAR2 DEFAULT LOCAL)
RETURN VARCHAR2;

Parameters

Table 20-13 ROLE_GRANTED_ENABLED_VARCHAR Parameters

Parameter Description

p_role Role to check.

To find existing roles, query the following views:

• DBA_ROLES: Finds available roles in the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.
• DBA_DV_ROLE: Finds existing secure application roles used in

privilege management.

p_user User to check. If you want to use ROLE_GRANTED_ENABLED_VARCHAR
function as part of a rule evaluation, then you cannot set p_user
to CURRENT_USER when ROLE_GRANTED_ENABLED_VARCHAR is being
evaluated as an Oracle Database Vault rule. Instead, you can use
the SYS_CONTEXT function USERENV namespace SESSION_USER to
represent the login user.

To find existing users, query the following views:

• DBA_USERS: Finds available users for the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.

p_profile If you are using privilege analysis and the role being checked is used,
then specify 1 so that privilege analysis can capture the usage of the
role. Otherwise, enter 0.

p_scope Specify either COMMON for a commonly granted role, or LOCAL for a locally
granted role.

Example

This example shows how to use the DBMS_MACUTL.ROLE_GRANTED_ENABLED_VARCHAR
function in a command rule to check if the logged in user has the enabled role of
EMPLOYEE.

BEGIN
DBMS_MACADM.CREATE_RULE(
 rule_name => 'does role exist',
 rule_expr
=> 'DVSYS.DBMS_MACUTL.ROLE_GRANTED_ENABLED_VARCHAR(''EMPLOYEE'',''"''||
dvsys.dv_login_user||''"'') = ''Y''');
END;
/

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-17

USER_HAS_OBJECT_PRIVILEGE Function
The USER_HAS_OBJECT_PRIVILEGE function returns a BOOLEAN value indicating if user or
role can access an object through a single specified object privilege grant.

If the user or role has the object privilege, then USER_HAS_OBJECT_PRIVILEGE returns
TRUE.

Syntax

DBMS_MACUTL.USER_HAS_OBJECT_PRIVILEGE(
 p_user VARCHAR2,
 p_object_owner VARCHAR2,
 p_object_name VARCHAR2,
 p_privilege VARCHAR2)
RETURNS BOOLEAN;

Parameters

Table 20-14 USER_HAS_OBJECT_PRIVILEGE Parameters

Parameter Description

p_user User or role to check.

To find existing users, query they following views:

• DBA_USERS: Finds available users for the current database
instance.

• DBA_ROLES: Finds available roles in the current database
instance.

• DVA_DV_REALM_AUTH: Finds the authorization of a particular user
or role.

• DBA_DV_ROLE: Finds existing secure application roles used in
privilege management.

p_object_owner Object owner, such as a schema.

To find the available users, query they DBA_USERS view.

To find the authorization of a particular user, query they
DVA_DV_REALM_AUTH view.

p_object_name Object name, such as a table within the schema specified in the
p_object_owner parameter.

To find the available objects, query the ALL_OBJECTS view.

To find objects that are secured by existing realms, query they
DBA_DV_REALM_OBJECT view.

p_privilege Object privilege, such as, UPDATE.

To find privileges for a database account excluding PUBLIC privileges,
query they DBA_DV_USER_PRIVS view.

To find all privileges for a database account, query the
DBA_DV_USER_PRIVS_ALL. view

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.USER_HAS_OBJECT_PRIVILEGE(

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-18

 'SECTOR2_APP_MGR', 'OE', 'ORDERS', 'UPDATE')
 THEN DBMS_OUTPUT.PUT_LINE('SECTOR2_APP_MGR has the UPDATE privilege for the
OE.ORDERS table');
 ELSE
 DBMS_OUTPUT.PUT_LINE('SECTOR2_APP_MGR does not have the UPDATE privilege for
the OE.ORDERS table.');
 END IF;
END;
/

USER_HAS_ROLE Function
The USER_HAS_ROLE function returns a BOOLEAN value indicating if a user has a role
privilege, directly or indirectly (through another role).

If the user has a role privilege, then USER_HAS_ROLE returns TRUE.

Syntax

DBMS_MACUTL.USER_HAS_ROLE(
 p_role IN VARCHAR2,
 p_user IN VARCHAR2 DEFAULT USER)
RETURN BOOLEAN;

Parameters

Table 20-15 USER_HAS_ROLE Parameters

Parameter Description

p_role Role privilege to check.

To find existing roles, query the following views:

• DBA_ROLES: Finds available roles in the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.
• DBA_DV_ROLE: Finds existing secure application roles used in

privilege management.

p_user User to check.

To find existing users, query the following views:

• DBA_USERS: Finds available users for the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.USER_HAS_ROLE('SECTOR2_APP_MGR', 'PSMITH')
 THEN DBMS_OUTPUT.PUT_LINE('User PSMITH has the SECTOR2_APP_MGR role');
 ELSE
 DBMS_OUTPUT.PUT_LINE('User PSMITH does not have the SECTOR2_APP_MGR role.');
 END IF;
END;
/

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-19

USER_HAS_ROLE_VARCHAR Function
The USER_HAS_ROLE_VARCHAR function returns a VARCHAR2 value indicating if a user has
a role privilege, directly or indirectly (through another role).

If the user has the role privilege specified, then USER_HAS_ROLE_VARCHAR returns Y.

Syntax

DBMS_MACUTL.USER_HAS_ROLE_VARCHAR(
 p_role IN VARCHAR2,
 p_user IN VARCHAR2 DEFAULT USER)
RETURN VARCHAR2;

Parameters

Table 20-16 USER_HAS_ROLE_VARCHAR Parameters

Parameter Description

p_role Role to check.

To find existing roles, query the following views:

• DBA_ROLES: Finds available roles in the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.
• DBA_DV_ROLE: Finds existing secure application roles used in

privilege management.

p_user User to check.

To find existing users, query the following views:

• DBA_USERS: Finds available users for the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.

USER_HAS_SYSTEM_PRIVILEGE Function
The USER_HAS_SYSTEM_PRIVILEGE function returns a BOOLEAN value indicating if a user
has a system privilege, directly or indirectly (through a role).

If the user has the system privilege specified, then USER_HAS_SYSTEM_PRIVILEGE
returns TRUE.

Syntax

DBMS_MACUTL.USER_HAS_SYSTEM_PRIVILEGE(
 p_privilege IN VARCHAR2,
 p_user IN VARCHAR2 DEFAULT USER)
RETURN BOOLEAN;

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-20

Parameters

Table 20-17 USER_HAS_SYSTEM_PRIVILEGE Parameters

Parameter Description

p_privilege System privilege to check for.

To find privileges for a database account excluding PUBLIC privileges,
query the DBA_DV_USER_PRIVS view.

To find all privileges for a database account, use
DBA_DV_USER_PRIVS_ALL.

p_user User to check.

To find existing users, query the following views:

• DBA_USERS: Finds available users for the current database instance.
• DBA_DV_REALM_AUTH: Finds the authorization of a particular user or

role.

Example

SET SERVEROUTPUT ON
BEGIN
 IF DBMS_MACUTL.USER_HAS_SYSTEM_PRIVILEGE('EXECUTE', 'PSMITH')
 THEN DBMS_OUTPUT.PUT_LINE('User PSMITH has the EXECUTE ANY PRIVILEGE
privilege.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('User PSMITH does not have the EXECUTE ANY PRIVILEGE
privilege.');
 END IF;
END;
/

Chapter 20
DBMS_MACUTL Package Procedures and Functions

20-21

21
Oracle Database Vault
General Administrative APIs

The DBMS_MACADM PL/SQL package and the CONFIGURE_DV standalone procedure
enable you to you perform general maintenance tasks.

• DBMS_MACADM General System Maintenance Procedures
The DBMS_MACADM PL/SQL package general system maintenance procedures
perform tasks such as authorizing users or adding new language to Oracle
Database Vault.

• CONFIGURE_DV General System Maintenance Procedure
The CONFIGURE_DV procedure configures the initial two Oracle Database user
accounts, which are granted the DV_OWNER and DV_ACCTMGR roles, respectively.

DBMS_MACADM General System Maintenance Procedures
The DBMS_MACADM PL/SQL package general system maintenance procedures perform
tasks such as authorizing users or adding new language to Oracle Database Vault.

• ADD_APP_EXCEPTION Procedure
The ADD_APP_EXCEPTION procedure enables a common user or package to access
local schemas.

• ADD_NLS_DATA Procedure
The ADD_NLS_DATA procedure adds a new language to Oracle Database Vault.

• ALLOW_COMMON_OPERATION Procedure
The ALLOW_COMMON_OPERATION procedure controls the access that a local user has
on common objects in a PDB.

• AUTHORIZE_DATAPUMP_USER Procedure
The AUTHORIZE_DATAPUMP_USER procedure authorizes a user to perform Oracle
Data Pump operations when Oracle Database Vault is enabled.

• AUTHORIZE_DBCAPTURE Procedure
The AUTHORIZE_DBCAPTURE procedure grants a user authorization to perform
Oracle Database Replay workload capture operations.

• AUTHORIZE_DBREPLAY Procedure
The AUTHORIZE_DBREPLAY procedure grants a user authorization to perform Oracle
Database Replay workload replay operations.

• AUTHORIZE_DDL Procedure
The AUTHORIZE_DDL procedure grants a user authorization to execute Data
Definition Language (DDL) statements on the specified schema.

• AUTHORIZE_DIAGNOSTIC_ADMIN Procedure
The AUTHORIZE_DIAGNOSTIC_ADMIN procedure authorizes a user to query
diagnostic views and tables.

21-1

• AUTHORIZE_MAINTENANCE_USER Procedure
The AUTHORIZE_MAINTENANCE_USER procedure grants a user authorization to
perform Information Lifecycle Management (ILM) operations in an Oracle
Database Vault environment.

• AUTHORIZE_PREPROCESSOR Procedure
The AUTHORIZE_PREPROCESSOR procedure grants a user authorization to execute
preprocessor programs through external tables.

• AUTHORIZE_PROXY_USER Procedure
The AUTHORIZE_PROXY_USER procedure grants a proxy user authorization to proxy
other user accounts, as long as the proxy user has database authorization.

• AUTHORIZE_SCHEDULER_USER Procedure
The AUTHORIZE_SCHEDULER_USER procedure grants a user authorization to
schedule database jobs when Oracle Database Vault is enabled.

• AUTHORIZE_TTS_USER Procedure
The AUTHORIZE_TTS_USER procedure authorizes a user to perform Oracle
Data Pump transportable tablespace operations for a tablespace when Oracle
Database Vault is enabled.

• DELETE_APP_EXCEPTION Procedure
The DELETE_APP_EXCEPTION procedure removes a common user or a common
user's package from the Database Vault operations control exception list.

• DISABLE_APP_PROTECTION Procedure
The DISABLE_APP_PROTECTION procedure disables Database Vault operations
control.

• DISABLE_DV Procedure
The DISABLE_DV procedure disables Oracle Database Vault.

• DISABLE_DV_DICTIONARY_ACCTS Procedure
The DISABLE_DV_DICTIONARY_ACCTS procedure prevents any user from logging
into the database as the DVSYS or DVF schema user.

• DISABLE_DV_PATCH_ADMIN_AUDIT Procedure
The DISABLE_DV_PATCH_ADMIN_AUDIT procedure disables realm, command rule,
and rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

• DISABLE_ORADEBUG Procedure
The DISABLE_ORADEBUG procedure disables the use of the ORADEBUG utility in an
Oracle Database Vault environment.

• ENABLE_APP_PROTECTION Procedure
The ENABLE_APP_PROTECTION procedure enables Database Vault operations
control.

• ENABLE_DV Procedure
The ENABLE_DV procedure enables Oracle Database Vault and Oracle Label
Security.

• ENABLE_DV_DICTIONARY_ACCTS Procedure
The ENABLE_DV_DICTIONARY_ACCTS procedure enables users to log into the
database as the DVSYS or DVF user.

• ENABLE_DV_PATCH_ADMIN_AUDIT Procedure
The ENABLE_DV_PATCH_ADMIN_AUDIT procedure enables realm, command rule, and
rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-2

• ENABLE_ORADEBUG Procedure
The ENABLE_ORADEBUG procedure enables the use of the ORADEBUG utility in an
Oracle Database Vault environment.

• UNAUTHORIZE_DATAPUMP_USER Procedure
The UNAUTHORIZE_DATAPUMP_USER procedure revokes the authorization that was
granted by the AUTHORIZE_DATAPUMP_USER procedure.

• UNAUTHORIZE_DBCAPTURE Procedure
The UNAUTHORIZE_DBCAPTURE procedure revokes authorization from users to
perform Oracle Database Replay workload capture operations.

• UNAUTHORIZE_DBREPLAY Procedure
The UNAUTHORIZE_DBREPLAY procedure revokes authorization from users to
perform Oracle Database Replay workload replay operations.

• UNAUTHORIZE_DDL Procedure
The UNAUTHORIZE_DDL procedure revokes authorization from a user who
was granted authorization to execute DDL statements through the
DBMS_MACDM.AUTHORIZE_DDL procedure.

• UNAUTHORIZE_DIAGNOSTIC_ADMIN Procedure
The UNAUTHORIZE_DIAGNOSTIC_ADMIN procedure revokes authorization from a
user who was authorized with the DBMS_MACADM.AUTHORIZE_DIAGNOSTIC_ADMIN
procedure to query diagnostic views and tables.

• UNAUTHORIZE_MAINTENANCE_USER Procedure
The UNAUTHORIZE_MAINTENANCE_USER procedure revokes privileges from users
who have been granted authorization to perform Information Lifecycle
Management (ILM) operations in an Oracle Database Vault environment.

• UNAUTHORIZE_PREPROCESSOR Procedure
The UNAUTHORIZE_PREPROCESSOR procedure revokes authorization from a user to
execute preprocessor programs through external tables.

• UNAUTHORIZE_PROXY_USER Procedure
The UNAUTHORIZE_PROXY_USER procedure revokes authorization from a user who
was granted proxy authorization from the DBMS_MACADM.AUTHORIZE_PROXY_USER
procedure.

• UNAUTHORIZE_SCHEDULER_USER Procedure
The UNAUTHORIZE_SCHEDULER_USER procedure revokes the authorization that was
granted by the AUTHORIZE_SCHEDULER_USER procedure.

• UNAUTHORIZE_TTS_USER Procedure
The UNAUTHORIZE_TTS_USER procedure removes from authorization users who
had previously been granted the authorization to perform Oracle Data Pump
transportable tablespace operations.

ADD_APP_EXCEPTION Procedure
The ADD_APP_EXCEPTION procedure enables a common user or package to access
local schemas.

Use this procedure when you are configuring Database Vault operations control to
automatically restrict common users from accessing pluggable database (PDB) local
data. The procedure applies to the entire container, so you must run it from the CDB
root. When the exception is for a package, then owner statements from the given
package can access local schemas.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-3

Syntax

DBMS_MACADM.ADD_APP_EXCEPTION(
 owner IN VARCHAR2,
 package_name IN VARCHAR2);

Parameters

Table 21-1 ADD_APP_EXCEPTION

Parameter Description

owner Name of the user who you want to add as an exception

To find a list of available common users, query the USERNAME and COMMON
columns of the DBA_USERS data dictionary view.

package_name Name of the package that you want to add as an exception if you want to
specify a package instead of the entire user account. This package must
be owned by the user specified in the owner parameter. If you want to
create an exception for the entire schema and not any particular package,
then specify '%' for the package_name parameter.

Examples

EXEC DBMS_MACADM.ADD_APP_EXCEPTION ('C##HR_ADMIN', '%'); --Applies to the user
c##hr_admin

EXEC DBMS_MACADM.ADD_APP_EXCEPTION('C##HR_ADMIN', 'validateHRdata'); --Applies
to the package validateHRdata

Related Topics

• Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to
an exception list.

• ENABLE_APP_PROTECTION Procedure
The ENABLE_APP_PROTECTION procedure enables Database Vault operations
control.

• DISABLE_APP_PROTECTION Procedure
The DISABLE_APP_PROTECTION procedure disables Database Vault operations
control.

• DELETE_APP_EXCEPTION Procedure
The DELETE_APP_EXCEPTION procedure removes a common user or a common
user's package from the Database Vault operations control exception list.

ADD_NLS_DATA Procedure
The ADD_NLS_DATA procedure adds a new language to Oracle Database Vault.

Syntax

DBMS_MACADM.ADD_NLS_DATA(
 language IN VARCHAR);

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-4

Parameters

Table 21-2 ADD_NLS_DATA

Parameter Description

language Enter one of the following settings. (This parameter is case insensitive.)

• ENGLISH
• GERMAN
• SPANISH
• FRENCH
• ITALIAN
• JAPANESE
• KOREAN
• BRAZILIAN PORTUGUESE
• SIMPLIFIED CHINESE
• TRADITIONAL CHINESE

Examples

EXEC DBMS_MACADM.ADD_NLS_DATA('french');

ALLOW_COMMON_OPERATION Procedure
The ALLOW_COMMON_OPERATION procedure controls the access that a local user has on
common objects in a PDB.

This procedure can only be run in the CDB root by a common user who has been
granted the DV_OWNER role in the root.

Syntax

DBMS_MACADM.ALLOW_COMMON_OPERATION(
 status IN BOOLEAN DEFAULT TRUE);

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-5

Parameters

Table 21-3 ALLOW_COMMON_OPERATION

Parameter Description

status Enter one of the following settings:

• TRUE prevents local users from creating Oracle Database Vault
controls on common user objects. This setting applies to existing
local PDB Database Vault controls that were created on common
user objects, so that they will not be enforced on common users.
Alternatively, you can execute this procedure without including any
parameter to achieve a TRUE result.

• FALSE enables local users to create Database Vault controls on
common user objects. Existing local PDB controls that were created
on common user objects will continue to be enforced. If you do not
execute DBMS_MACADM.ALLOW_COMMON_OPERATION at all, then the
default ALLOW COMMON OPERATION status is FALSE, and the default
behavior will be to allow local users to create Database Vault controls
on common user objects

Example

EXEC DBMS_MACADM.ALLOW_COMMON_OPERATION('TRUE');

AUTHORIZE_DATAPUMP_USER Procedure
The AUTHORIZE_DATAPUMP_USER procedure authorizes a user to perform Oracle Data
Pump operations when Oracle Database Vault is enabled.

It applies to both the expdp and impdp utilities.

Syntax

DBMS_MACADM.AUTHORIZE_DATAPUMP_USER(
 user_name IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-4 AUTHORIZE_DATAPUMP_USER

Parameter Description

user_name Name of the Oracle Data Pump user to whom you want to grant
authorization.

To find a list of users who have privileges to use Oracle Data Pump (that
is, the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles), query the
DBA_ROLE_PRIVS data dictionary view as follows:

SELECT GRANTEE, GRANTED_ROLE FROM DBA_ROLE_PRIVS WHERE
GRANTED_ROLE LIKE '%FULL%'

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-6

Table 21-4 (Cont.) AUTHORIZE_DATAPUMP_USER

Parameter Description

schema_name Name of the database schema that the Oracle Data Pump user must
export or import. If you omit this parameter, then the user is granted global
authorization to export and import any schema in the database. In this
case, ensure the user has been granted the DV_OWNER role.

table_name Name of the table within the schema specified by the schema_name
parameter. If you omit this parameter, then the user you specified
can export and import all tables within the schema specified by the
schema_name parameter.

Examples

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR');

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR');

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR', 'HR', 'EMPLOYEES');

Related Topics

• Authorizing Users or Roles for Data Pump Regular Export and Import Operations
You can use different authorization types for administrators who perform Oracle
Data Pump export and import operations in a Database Vault environment.

AUTHORIZE_DBCAPTURE Procedure
The AUTHORIZE_DBCAPTURE procedure grants a user authorization to perform Oracle
Database Replay workload capture operations.

To find information about users who have been granted this authorization, query the
DBA_DV_DBCAPTURE_AUTH data dictionary view.

Syntax

DBMS_MACADM.AUTHORIZE_DBCAPTURE(
 uname IN VARCHAR2);

Parameters

Table 21-5 AUTHORIZE_DBCAPTURE

Parameter Description

uname Name of the user to whom you want to grant Database Replay workload
capture authorization

Example 21-1 Example

EXEC DBMS_MACADM.AUTHORIZE_DBCAPTURE('PFITCH');

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-7

AUTHORIZE_DBREPLAY Procedure
The AUTHORIZE_DBREPLAY procedure grants a user authorization to perform Oracle
Database Replay workload replay operations.

To find information about users who have been granted this authorization, query the
DBA_DV_DBREPLAY_AUTH data dictionary view.

Syntax

DBMS_MACADM.AUTHORIZE_DBREPLAY(
 uname IN VARCHAR2);

Parameters

Table 21-6 AUTHORIZE_DBREPLAY

Parameter Description

uname Name of the user to whom you want to grant Database Replay workload
replay authorization

Example 21-2 Example

EXEC DBMS_MACADM.AUTHORIZE_DBREPLAY('PFITCH');

AUTHORIZE_DDL Procedure
The AUTHORIZE_DDL procedure grants a user authorization to execute Data Definition
Language (DDL) statements on the specified schema.

The DDL authorization allows the grantee to perform DDL operations on users who
are authorized to realms or granted Oracle Database Vault roles. However, the
DDL authorization does not allow the grantee to perform DDL operations on realm-
protected schemas. To enable such operations, you must authorize the user for the
realm.

To find information about users who have been granted this authorization, query the
DBA_DV_DDL_AUTH data dictionary view.

Syntax

DBMS_MACADM.AUTHORIZE_DDL(
 user_name IN VARCHAR2,
 schema_name IN VARCHAR2);

Parameters

Table 21-7 AUTHORIZE_DDL

Parameter Description

user_name Name of the user to whom you want to grant DDL authorization.

schema_name Name of the database schema in which the user wants to perform the
DDL statements. Enter % to specify all schemas.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-8

Examples

The following example enables user psmith to execute DDL statements in any
schema:

EXEC DBMS_MACADM.AUTHORIZE_DDL('psmith', '%');

This example enables user psmith to execute DDL statements in the HR schema only.

EXEC DBMS_MACADM.AUTHORIZE_DDL('psmith', 'HR');

AUTHORIZE_DIAGNOSTIC_ADMIN Procedure
The AUTHORIZE_DIAGNOSTIC_ADMIN procedure authorizes a user to query diagnostic
views and tables.

These views and tables are as follows:

Views and Tables V$ Views and Tables X$

V$DIAG_OPT_TRACE_RECORDS X$DBGTFOPTT

V$DIAG_SESS_OPT_TRACE_RECORDS X$DBGTFSOPTT

V$DIAG_TRACE_FILE_CONTENTS X$DBGTFVIEW

Without this authorization, when a user queries these tables and views, no values are
returned.

Syntax

DBMS_MACADM.AUTHORIZE_DIAGNOSTIC_ADMIN(
 uname IN VARCHAR2);

Parameters

Table 21-8 AUTHORIZE_DIAGNOSTIC_ADMIN

Parameter Description

uname Name of the user to whom you want to grant authorization.

Example

EXEC DBMS_MACADM.AUTHORIZE_DIAGNOSTIC_ADMIN('PFITCH');

AUTHORIZE_MAINTENANCE_USER Procedure
The AUTHORIZE_MAINTENANCE_USER procedure grants a user authorization to perform
Information Lifecycle Management (ILM) operations in an Oracle Database Vault
environment.

To find information about users who have been granted this authorization, query the
DBA_DV_MAINTENANCE_AUTH view.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-9

Syntax

DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER(
 uname IN VARCHAR2,
 sname IN VARCHAR2 DEFAULT NULL,
 objname IN VARCHAR2 DEFAULT NULL,
 objtype IN VARCHAR2 DEFAULT NULL,
 action IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-9 AUTHORIZE_MAINTENANCE_USER

Parameter Description

uname Name of the user to whom you want to grant authorization

sname Name of the database schema for which the maintenance operations are
to be performed. Enter % to specify all schemas.

objname Name of the object (such as the name of a table) in the schema that is
specified in the sname parameter for which maintenance operations are to
be performed

objtype Type of the objname object, such as table, index, tablespace, and so
on

action Maintenance action. Enter ilm for Information Lifecycle Management

Example

The following example enables user psmith to have Database Vault authorization to
manage ILM features for the HR.EMPLOYEES table:

BEGIN
 DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER (
 uname => 'psmith',
 sname => 'HR',
 objname => 'EMPLOYEES',
 objtype => 'TABLE',
 action => 'ILM');
END;
/

Related Topics

• Using Information Lifecycle Management with Oracle Database Vault
Users who perform Information Lifecycle Management operations on an Oracle
Database Vault-enabled database must be granted authorization to perform these
operations.

AUTHORIZE_PREPROCESSOR Procedure
The AUTHORIZE_PREPROCESSOR procedure grants a user authorization to execute
preprocessor programs through external tables.

To find information about users who have been granted this authorization, query the
DBA_DV_PREPROCESSOR_AUTH data dictionary view.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-10

Syntax

DBMS_MACADM.AUTHORIZE_PREPROCESSOR(
 uname IN VARCHAR2);

Parameters

Table 21-10 AUTHORIZE_PREPROCESSOR

Parameter Description

uname Name of the user to whom you want to grant authorization to execute
preprocessor programs through external tables

Example 21-3 Example

EXEC DBMS_MACADM.AUTHORIZE_PREPROCESSOR('PFITCH');

Related Topics

• Executing Preprocessor Programs with Oracle Database Vault
Users who execute preprocessor programs through external tables must have
Oracle Database Vault-specific authorization.

• DBA_DV_PREPROCESSOR_AUTH View
The DBA_DV_PREPROCESSOR_AUTH data dictionary view shows users who have been
granted authorization to execute preprocessor programs through external tables.

AUTHORIZE_PROXY_USER Procedure
The AUTHORIZE_PROXY_USER procedure grants a proxy user authorization to proxy other
user accounts, as long as the proxy user has database authorization.

For example, the CREATE SESSION privilege is a valid database authorization.

AUTHORIZE_PROXY_USER does not control whether a particular user can connect
as a proxy of another user. That part is controlled by GRANT CONNECT THROUGH,
which can be issued only by the a user who has the DV_ACCTMGR role. Instead,
AUTHORIZE_PROXY_USER controls whether the proxy user is allowed to assume all
the Database Vault authorizations that the target user has. For example, suppose
that the proxy user hr_proxy_user successfully connects as user HR. Now being
HR, hr_proxy_user can access all the objects to which HR has access. However,
if the target objects are Database Vault protected and HR is authorized to access
it, hr_proxy_user can access the objects if and only if hr_proxy_user is proxy-
authorized for HR. If hr_proxy_user is not proxy-authorized for HR, then even after
connecting as HR, hr_proxy_user cannot access the Database Vault-protected objects
for which HR is authorized.

To find information about users who have been granted authorization using
AUTHORIZE_PROXY_USER, query the DBA_DV_PROXY_AUTH view.

Syntax

DBMS_MACADM.AUTHORIZE_PROXY_USER(
 proxy_user IN VARCHAR2,
 user_name IN VARCHAR2);

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-11

Parameters

Table 21-11 AUTHORIZE_PROXY_USER

Parameter Description

proxy_user Name of the proxy user.

user_name Name of the database user who will be proxied by the proxy_user user.
Enter % to specify all users.

Examples

The following example enables proxy user preston to proxy all users:

EXEC DBMS_MACADM.AUTHORIZE_PROXY_USER('preston', '%');

This example enables proxy user preston to proxy database user dkent only.

EXEC DBMS_MACADM.AUTHORIZE_PROXY_USER('preston', 'dkent');

AUTHORIZE_SCHEDULER_USER Procedure
The AUTHORIZE_SCHEDULER_USER procedure grants a user authorization to schedule
database jobs when Oracle Database Vault is enabled.

This authorization applies to anyone who has privileges to schedule database jobs.
These privileges include any of the following: CREATE JOB, CREATE ANY JOB, CREATE
EXTERNAL JOB, EXECUTE ANY PROGRAM, EXECUTE ANY CLASS, MANAGE SCHEDULER.

Syntax

DBMS_MACADM.AUTHORIZE_SCHEDULER_USER(
 user_name IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-12 AUTHORIZE_SCHEDULER_USER

Parameter Description

user_name Name of the user to whom you want to grant authorization.

To find a list of users who have privileges (for example, CREATE JOB and
CREATE ANY JOB) to schedule jobs, query the GRANTEE and PRIVILEGE
columns of the DBA_SYS_PRIVS data dictionary view.

schema_name Name of the database schema for which a job will be scheduled. If
you omit this parameter, then the user is granted global authorization to
schedule a job for any schema in the database.

Examples

The following example authorizes the user JOB_MGR to run a job under any schema.

EXEC DBMS_MACADM.AUTHORIZE_SCHEDULER_USER('JOB_MGR');

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-12

This example authorizes user JOB_MGR to run a job under the HR schema only.

EXEC DBMS_MACADM.AUTHORIZE_SCHEDULER_USER('JOB_MGR', 'HR');

Related Topics

• Using Oracle Scheduler with Oracle Database Vault
Users who are responsible for scheduling database jobs must have Oracle
Database Vault-specific authorization.

AUTHORIZE_TTS_USER Procedure
The AUTHORIZE_TTS_USER procedure authorizes a user to perform Oracle Data Pump
transportable tablespace operations for a tablespace when Oracle Database Vault is
enabled.

It applies to both the EXPDP and IMPDP utilities.

Syntax

DBMS_MACADM.AUTHORIZE_TTS_USER(
 uname IN VARCHAR2,
 tsname IN VARCHAR2);

Parameters

Table 21-13 AUTHORIZE_TTS_USER

Parameter Description

uname Name of the user who you want to authorize to perform Oracle
Data Pump transportable tablespace operations.

To find a list of users and their current privileges, query the
DBA_SYS_PRIVS data dictionary view.

tsname Name of the tablespace in which the uname user is to perform
the transportable tablespace operation.

To find a list of tablespaces, query the DBA_TABLESPACES data
dictionary view.

Example

EXEC DBMS_MACADM.AUTHORIZE_TTS_USER('PSMITH', 'HR_TS');

Related Topics

• Authorizing Users or Roles for Oracle Data Pump Regular Operations in Database
Vault
You can authorize a database administrator or a role to use Data Pump for regular
operations in an Oracle Database Vault environment.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-13

DELETE_APP_EXCEPTION Procedure
The DELETE_APP_EXCEPTION procedure removes a common user or a common user's
package from the Database Vault operations control exception list.

The exception list allows a user or package to access local PDB data. Removing a
user or package from the exception list will block the user or package from accessing
PDB local data.

Syntax

DBMS_MACADM.DELETE_APP_EXCEPTION(
 owner IN VARCHAR2,
 package_name IN VARCHAR2);

Parameters

Table 21-14 DELETE_APP_EXCEPTION

Parameter Description

owner Name of the user who you want to remove from being an exception

package_name Name of the package that you want to remove from being an exception

Examples

EXEC DBMS_MACADM.DELETE_APP_EXCEPTION ('C##HR_ADMIN'); --Applies to the user
c##hr_admin

EXEC DBMS_MACADM.DELETE_APP_EXCEPTION('C##HR_ADMIN', 'validateHRdata'); --
Applies to the package validateHRdata

Related Topics

• Adding Common Users and Packages to an Exception List
Common users and applications that must access PDB local data can be added to
an exception list.

• ADD_APP_EXCEPTION Procedure
The ADD_APP_EXCEPTION procedure enables a common user or package to access
local schemas.

• ENABLE_APP_PROTECTION Procedure
The ENABLE_APP_PROTECTION procedure enables Database Vault operations
control.

• DISABLE_APP_PROTECTION Procedure
The DISABLE_APP_PROTECTION procedure disables Database Vault operations
control.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-14

DISABLE_APP_PROTECTION Procedure
The DISABLE_APP_PROTECTION procedure disables Database Vault operations control.

Syntax

DBMS_MACADM.DISABLE_APP_PROTECTION(
 pdb_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-15 DISABLE_APP_PROTECTION

Parameter Description

pdb_name Name of the pluggable database (PDB) for which you want to disable
Database Vault operations control. If you omit this setting, then it applies
to all PDBs in the CDB environment.

To find a list of available PDBs, query the DBA_PDBS data dictionary view.

Examples

EXEC DBMS_MACADM.DISABLE_APP_PROTECTION; --Applies to all PDBs

EXEC DBMS_MACADM.DISABLE_APP_PROTECTION('hr_pdb'); --Applies to a specific PDB

Related Topics

• Disabling Database Vault Operations Control
To disable Database Vault operations control, use the
DBMS_MACADM.DISABLE_APP_PROTECTION PL/SQL procedure.

DISABLE_DV Procedure
The DISABLE_DV procedure disables Oracle Database Vault.

After you run this procedure, you must restart the database.

Syntax

DBMS_MACADM.DISABLE_DV;

Parameters

None

Example

EXEC DBMS_MACADM.DISABLE_DV;

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-15

DISABLE_DV_DICTIONARY_ACCTS Procedure
The DISABLE_DV_DICTIONARY_ACCTS procedure prevents any user from logging into the
database as the DVSYS or DVF schema user.

By default these two accounts are locked. Only a user who has been granted the
DV_OWNER role can execute this procedure. To find the status of whether users can
log into DVSYS and DVF, query the DBA_DV_DICTIONARY_ACCTS data dictionary view. For
stronger security, run this procedure to better protect the DVSYS and DVF schemas. The
disablement takes place immediately, so you do not need to restart the database after
running this procedure.

Syntax

DBMS_MACADM.DISABLE_DV_DICTIONARY_ACCTS;

Parameters

None

Example

EXEC DBMS_MACADM.DISABLE_DV_DICTIONARY_ACCTS;

Related Topics

• Archiving and Purging the Oracle Database Vault Audit Trail
If you have not migrated to unified auditing, you should periodically archive and
purge the Oracle Database Vault audit trail.

DISABLE_DV_PATCH_ADMIN_AUDIT Procedure
The DISABLE_DV_PATCH_ADMIN_AUDIT procedure disables realm, command rule, and
rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

This procedure disables the successful actions of this user, not the failed actions.
You should run this procedure after the DV_PATCH_ADMIN user has completed database
patch operation. To find if auditing is enabled or not, query the DBA_DV_PATCH_AUDIT
data dictionary view.

Syntax

DBMS_MACADM.DISABLE_DV_PATCH_ADMIN_AUDIT;

Parameters

None

Example

EXEC DBMS_MACADM.DISABLE_DV_PATCH_ADMIN_AUDIT;

Related Topics

• DV_PATCH_ADMIN Database Vault Database Patch Role
The DV_PATCH_ADMIN role is used for patching operations.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-16

• ENABLE_DV_PATCH_ADMIN_AUDIT Procedure
The ENABLE_DV_PATCH_ADMIN_AUDIT procedure enables realm, command rule, and
rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

DISABLE_ORADEBUG Procedure
The DISABLE_ORADEBUG procedure disables the use of the ORADEBUG utility in an Oracle
Database Vault environment.

The disablement takes place immediately, so you do not need to restart the database
after running this procedure. To find the status of whether the ORADEBUG utility is
available in Database Vault, query the DVYS.DBA_DV_ORADEBUG data dictionary view.

Syntax

DBMS_MACADM.DISABLE_ORADEBUG;

Parameters

None

Example

EXEC DBMS_MACADM.DISABLE_ORADEBUG;

Related Topics

• Using the ORADEBUG Utility with Oracle Database Vault
The ORADEBUG utility is used primarily by Oracle Support to diagnose problems that
may arise with an Oracle database.

ENABLE_APP_PROTECTION Procedure
The ENABLE_APP_PROTECTION procedure enables Database Vault operations control.

Syntax

DBMS_MACADM.ENABLE_APP_PROTECTION(
 pdb_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-16 ENABLE_APP_PROTECTION

Parameter Description

pdb_name Allows a single PDB to have Database Vault operations control re-enabled
after it was disabled. The default is to omit the pdb_name setting and then
enable operations control across all of the PDBs.

To find a list of available PDBs, query the DBA_PDBS data dictionary view.

Examples

EXEC DBMS_MACADM.ENABLE_APP_PROTECTION; --Applies to all PDBs

EXEC DBMS_MACADM.ENABLE_APP_PROTECTION('hr_pdb'); --Applies to a specific PDB

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-17

Related Topics

• Enabling Database Vault Operations Control
To enable Database Vault operations control, use the
DBMS_MACADM.ENABLE_APP_PROTECTION PL/SQL procedure.

ENABLE_DV Procedure
The ENABLE_DV procedure enables Oracle Database Vault and Oracle Label Security.

If you want to run DBMS_MACADM.ENABLE_DV in an application container, then you must
run it in the application container outside of application actions.

After you run this procedure, you must restart the database.

Syntax

DBMS_MACADM.ENABLE_DV(
 strict_mode IN VARCHAR2 DEFAULT);

Parameters

Table 21-17 ENABLE_DV

Parameter Description

strict_mode Specifies one of the following modes:

• n specifies regular mode, which allows the PDBs to be
Database Vault enabled or disabled. (Default)

• y specifies strict mode, which puts the PDBs that have not
been Database Vault-enabled in restricted mode, until you
enable Database Vault in them and then restart the PDB.

To apply this setting to all PDBs, run the
DBMS_MACADM.ENABLE_DV procedure in the CDB root. To apply
it to all PDBs in an application container, run the procedure in the
application root.

Examples

The following example enables Oracle Database Vault in regular mode.

EXEC DBMS_MACADM.ENABLE_DV;

This example enables Oracle Database Vault in strict mode.

EXEC DBMS_MACADM.ENABLE_DV (strict_mode => 'y');

Related Topics

• Disabling and Enabling Oracle Database Vault
Periodically you must disable and then re-enable Oracle Database Vault, for
activities such as installing Oracle Database optional products or features.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-18

ENABLE_DV_DICTIONARY_ACCTS Procedure
The ENABLE_DV_DICTIONARY_ACCTS procedure enables users to log into the database
as the DVSYS or DVF user.

By default, the DVSYS and DVF accounts are locked.

Only a user who has been granted the DV_OWNER role can execute this procedure.
To find the status of whether users can log into DVSYS and DVF, query the
DBA_DV_DICTIONARY_ACCTS data dictionary view. For stronger security, only run this
procedure when you need to better protect the DVSYS and DVF schemas. The
enablement takes place immediately, so you do not need to restart the database after
running this procedure.

Syntax

DBMS_MACADM.ENABLE_DV_DICTIONARY_ACCTS;

Parameters

None

Example

EXEC DBMS_MACADM.ENABLE_DV_DICTIONARY_ACCTS;

Related Topics

• Archiving and Purging the Oracle Database Vault Audit Trail
If you have not migrated to unified auditing, you should periodically archive and
purge the Oracle Database Vault audit trail.

ENABLE_DV_PATCH_ADMIN_AUDIT Procedure
The ENABLE_DV_PATCH_ADMIN_AUDIT procedure enables realm, command rule, and rule
set auditing of the actions by users who have the DV_PATCH_ADMIN role.

This procedure is designed to audit these users' actions during a patch upgrade. To
find if this auditing is enabled or not, query the DBA_DV_PATCH_AUDIT data dictionary
view.

Syntax

DBMS_MACADM.ENABLE_DV_PATCH_ADMIN_AUDIT;

Parameters

None

Example

EXEC DBMS_MACADM.ENABLE_DV_PATCH_ADMIN_AUDIT;

Related Topics

• DV_PATCH_ADMIN Database Vault Database Patch Role
The DV_PATCH_ADMIN role is used for patching operations.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-19

• DISABLE_DV_PATCH_ADMIN_AUDIT Procedure
The DISABLE_DV_PATCH_ADMIN_AUDIT procedure disables realm, command rule,
and rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

ENABLE_ORADEBUG Procedure
The ENABLE_ORADEBUG procedure enables the use of the ORADEBUG utility in an Oracle
Database Vault environment.

The enablement takes place immediately, so you do not need to restart the database
after running this procedure. To find the status of whether the ORADEBUG utility is
available in Database Vault, query the DVYS.DBA_DV_ORADEBUG data dictionary view.

Syntax

DBMS_MACADM.ENABLE_ORADEBUG;

Parameters

None

Example

EXEC DBMS_MACADM.ENABLE_ORADEBUG;

Related Topics

• Using the ORADEBUG Utility with Oracle Database Vault
The ORADEBUG utility is used primarily by Oracle Support to diagnose problems that
may arise with an Oracle database.

UNAUTHORIZE_DATAPUMP_USER Procedure
The UNAUTHORIZE_DATAPUMP_USER procedure revokes the authorization that was
granted by the AUTHORIZE_DATAPUMP_USER procedure.

When you run this procedure, ensure that its settings correspond exactly to the
equivalent AUTHORIZE_DATAPUMP_USER procedure.

For example, the following two procedures will work because the parameters are
consistent:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('DP_MGR');

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('DP_MGR');

However, because the parameters in the following procedures are not consistent, the
UNAUTHORIZE_DATAPUMP_USER procedure will not work:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('JSMITH');

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('JSMITH', 'HR');

Syntax

DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER(
 user_name IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2 DEFAULT NULL);

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-20

Parameters

Table 21-18 UNAUTHORIZE_DATAPUMP_USER

Parameter Description

user_name Name of the Oracle Data Pump user from whom you want to
revoke authorization.

To find a list of users and authorizations from
the AUTHORIZE_DATAPUMP_USER procedure, query the
DBA_DV_DATAPUMP_AUTH data dictionary view as follows:

SELECT * FROM DBA_DV_DATAPUMP_AUTH;

schema_name Name of the database schema that the Oracle Data Pump user
is authorized to export or import.

table_name Name of the table within the schema specified by the schema
name parameter.

Examples

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('JSMITH');

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('JSMITH', 'HR');

EXEC DBMS_MACADM.UNAUTHORIZE_DATAPUMP_USER('JSMITH', 'HR', 'SALARY');

UNAUTHORIZE_DBCAPTURE Procedure
The UNAUTHORIZE_DBCAPTURE procedure revokes authorization from users to perform
Oracle Database Replay workload capture operations.

To find information about users who have been granted this authorization, query the
DBA_DV_DBCAPTURE_AUTH data dictionary view.

Syntax

DBMS_MACADM.UNAUTHORIZE_DBCAPTURE(
 uname IN VARCHAR2);

Parameters

Table 21-19 UNAUTHORIZE_DBCAPTURE

Parameter Description

uname Name of the user from whom you want to revoke Database Replay
workload capture authorization

Example 21-4 Example

EXEC DBMS_MACADM.UNAUTHORIZE_DBCAPTURE('PFITCH');

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-21

UNAUTHORIZE_DBREPLAY Procedure
The UNAUTHORIZE_DBREPLAY procedure revokes authorization from users to perform
Oracle Database Replay workload replay operations.

To find information about users who have been granted this authorization, query the
DBA_DV_DBREPLAY_AUTH data dictionary view.

Syntax

DBMS_MACADM.UNAUTHORIZE_DBREPLAY(
 uname IN VARCHAR2);

Parameters

Table 21-20 UNAUTHORIZE_DBREPLAY

Parameter Description

uname Name of the user from whom you want to revoke Database Replay
workload replay authorization

Example 21-5 Example

EXEC DBMS_MACADM.UNAUTHORIZE_DBREPLAY('PFITCH');

UNAUTHORIZE_DDL Procedure
The UNAUTHORIZE_DDL procedure revokes authorization from a user who was granted
authorization to execute DDL statements through the DBMS_MACDM.AUTHORIZE_DDL
procedure.

To find information about users who have been granted this authorization, query the
DBA_DV_DDL_AUTH data dictionary view.

Syntax

DBMS_MACADM.UNAUTHORIZE_DDL(
 user_name IN VARCHAR2,
 schema_name IN VARCHAR2);

Parameters

Table 21-21 UNAUTHORIZE_DDL

Parameter Description

user_name Name of the user from whom you want to revoke DDL authorization.

schema_name Name of the database schema in which the user wants to perform the
DDL statements. Enter % specify all schemas.

Examples

The following example revokes DDL statement execution authorization from user
psmith for all schemas:

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-22

EXEC DBMS_MACADM.UNAUTHORIZE_DDL('psmith', '%');

This example revokes DDL statement execution authorization from user psmith for the
HR schema only.

EXEC DBMS_MACADM.UNAUTHORIZE_DDL('psmith', 'HR');

UNAUTHORIZE_DIAGNOSTIC_ADMIN Procedure
The UNAUTHORIZE_DIAGNOSTIC_ADMIN procedure revokes authorization from a user
who was authorized with the DBMS_MACADM.AUTHORIZE_DIAGNOSTIC_ADMIN procedure
to query diagnostic views and tables.

These views and tables are as follows:

Views and Tables V$ Views and Tables X$

V$DIAG_OPT_TRACE_RECORDS X$DBGTFOPTT

V$DIAG_SESS_OPT_TRACE_RECORDS X$DBGTFSOPTT

V$DIAG_TRACE_FILE_CONTENTS X$DBGTFVIEW

Without this authorization, when a user queries these tables and views, no values are
returned.

Syntax

DBMS_MACADM.UNAUTHORIZE_DIAGNOSTIC_ADMIN(
 uname IN VARCHAR2);

Parameters

Table 21-22 UNAUTHORIZE_DIAGNOSTIC_ADMIN

Parameter Description

uname Name of the user from whom you want to revoke authorization.

Example

EXEC DBMS_MACADM.UNAUTHORIZE_DIAGNOSTIC_ADMIN('PFITCH');

UNAUTHORIZE_MAINTENANCE_USER Procedure
The UNAUTHORIZE_MAINTENANCE_USER procedure revokes privileges from users who
have been granted authorization to perform Information Lifecycle Management (ILM)
operations in an Oracle Database Vault environment.

To find information about the settings for the ILM authorization, query the
DBA_DV_MAINTENANCE_AUTH view.

When you run this procedure, ensure that its settings correspond exactly to the
equivalent AUTHORIZE_MAINTENANCE_USER procedure.

For example, the following two procedures will work because the parameter settings
correspond:

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-23

EXEC DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER('psmith', 'OE', 'ORDERS', 'TABLE',
'ILM');
EXEC DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER('psmith', 'OE', 'ORDERS', 'TABLE',
'ILM');

However, these two statements will fail because the settings do not correspond:

EXEC DBMS_MACADM.AUTHORIZE_MAINTENANCE_USER('psmith', 'OE', 'ORDERS', 'TABLE',
'ILM');

EXEC DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER('psmith', '%', '%', '%', 'ILM');

Syntax

DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER(
 uname IN VARCHAR2,
 sname IN VARCHAR2 DEFAULT NULL,
 objname IN VARCHAR2 DEFAULT NULL,
 objtype IN VARCHAR2 DEFAULT NULL,
 action IN VARCHAR2 DEFAULT NULL);

Parameters

Table 21-23 UNAUTHORIZE_MAINTENANCE_USER

Parameter Description

uname Name of the user from whom you want to revoke authorization

sname Name of the database schema for which the maintenance operations are
performed. Enter % to specify all schemas.

objname Name of the object (such as the name of a table) in the schema that is
specified in the sname parameter for which maintenance operations are
performed

objtype Type of the objname object, such as table, index, tablespace, and so
on

action Maintenance action. Enter ilm for Information Lifecycle Management

Example

The following example revokes privileges from Database Vault user psmith so that she
can no longer perform ILM operations in any HR schema objects:

BEGIN
 DBMS_MACADM.UNAUTHORIZE_MAINTENANCE_USER (
 uname => 'psmith',
 sname => 'HR',
 objname => 'EMPLOYEES',
 objtype => 'TABLE',
 action => 'ILM');
END;
/

Related Topics

• Using Information Lifecycle Management with Oracle Database Vault
Users who perform Information Lifecycle Management operations on an Oracle
Database Vault-enabled database must be granted authorization to perform these
operations.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-24

UNAUTHORIZE_PREPROCESSOR Procedure
The UNAUTHORIZE_PREPROCESSOR procedure revokes authorization from a user to
execute preprocessor programs through external tables.

To find information about users who have been granted this authorization, query the
DBA_DV_PREPROCESSOR_AUTH data dictionary view.

Syntax

DBMS_MACADM.UNAUTHORIZE_PREPROCESSOR(
 uname IN VARCHAR2);

Parameters

Table 21-24 UNAUTHORIZE_PREPROCESSOR

Parameter Description

uname Name of the user from whom you want to revoke authorization to execute
preprocessor programs through external tables

Example 21-6 Example

EXEC DBMS_MACADM.UNAUTHORIZE_PREPROCESSOR('PFITCH');

Related Topics

• Executing Preprocessor Programs with Oracle Database Vault
Users who execute preprocessor programs through external tables must have
Oracle Database Vault-specific authorization.

• DBA_DV_PREPROCESSOR_AUTH View
The DBA_DV_PREPROCESSOR_AUTH data dictionary view shows users who have been
granted authorization to execute preprocessor programs through external tables.

UNAUTHORIZE_PROXY_USER Procedure
The UNAUTHORIZE_PROXY_USER procedure revokes authorization from a user who was
granted proxy authorization from the DBMS_MACADM.AUTHORIZE_PROXY_USER procedure.

Syntax

DBMS_MACADM.UNAUTHORIZE_PROXY_USER(
 proxy_user IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

Table 21-25 UNAUTHORIZE_PROXY_USER

Parameter Description

proxy_user Name of the proxy user from whom you want to revoke authorization.

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-25

Table 21-25 (Cont.) UNAUTHORIZE_PROXY_USER

Parameter Description

user_name Name of the database user who was proxied by the proxy_user user.
Enter % to specify all users.

Examples

The following example revokes proxy authorization from user preston for proxying all
users:

DBMS_MACADM.UNAUTHORIZE_PROXY_USER('preston', '%');

This example revokes proxy authorization from user preston for proxying database
user psmith only.

EXEC DBMS_MACADM.UNAUTHORIZE_PROXY_USER('preston', 'psmith');

UNAUTHORIZE_SCHEDULER_USER Procedure
The UNAUTHORIZE_SCHEDULER_USER procedure revokes the authorization that was
granted by the AUTHORIZE_SCHEDULER_USER procedure.

When you run this procedure, ensure that its settings correspond exactly to the
equivalent AUTHORIZE_SCHEDULER_USER procedure. For example, the following two
procedures will work because the parameters are consistent:

EXEC DBMS_MACADM.AUTHORIZE_SCHEDULER_USER('JOB_MGR');

EXEC DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER('JOB_MGR');

However, because the parameters in the following procedures are not consistent, the
UNAUTHORIZE_SCHEDULER_USER procedure will not work:

EXEC DBMS_MACADM.AUTHORIZE_SCHEDULER_USER('JOB_MGR');

EXEC DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER('JOB_MGR', 'HR');

Syntax

DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER
 user_name IN VARCHAR2,
 schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-26

Parameters

Table 21-26 UNAUTHORIZE_SCHEDULER_USER

Parameter Description

user_name Name of the job scheduling user from whom you want to revoke
authorization.

To find a list of users and authorizations from
the AUTHORIZE_SCHEDULER_USER procedure, query the
DBA_DV_JOB_AUTH data dictionary view as follows:

SELECT * FROM DBA_DV_JOB_AUTH;

schema_name Name of the database schema for which the user is authorized
to schedule jobs.

Examples

EXEC DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER('JOB_MGR');

EXEC DBMS_MACADM.UNAUTHORIZE_SCHEDULER_USER('JOB_MGR', 'HR');

UNAUTHORIZE_TTS_USER Procedure
The UNAUTHORIZE_TTS_USER procedure removes from authorization users who had
previously been granted the authorization to perform Oracle Data Pump transportable
tablespace operations.

Syntax

DBMS_MACADM.UNAUTHORIZE_TTS_USER
 uname IN VARCHAR2,
 tsname IN VARCHAR2);

Parameters

Table 21-27 UNAUTHORIZE_TTS_USER

Parameter Description

uname Name of the user who you want to remove from being authorized
to perform Oracle Data Pump transportable tablespace
operations.

To find a list of users and their current privileges, query the
DBA_SYS_PRIVS data dictionary view.

tsname Name of the tablespace that is used in the transportable
tablespace operation.

To find a list of tablespaces, query the DBA_TABLESPACES data
dictionary view.

Example

EXEC DBMS_MACADM.UNAUTHORIZE_TTS_USER('PSMITH', 'HR_TS');

Chapter 21
DBMS_MACADM General System Maintenance Procedures

21-27

CONFIGURE_DV General System Maintenance Procedure
The CONFIGURE_DV procedure configures the initial two Oracle Database user
accounts, which are granted the DV_OWNER and DV_ACCTMGR roles, respectively.

You can check the status of this configuration by querying the DBA_DV_STATUS data
dictionary view. Before you run the CONFIGURE_DV procedure, you must create the two
user accounts and grant them the CREATE SESSION privilege. The accounts can be
either local or common. If you create common user accounts, then the Database Vault
roles that are granted to these users apply to the current pluggable database (PDB)
only. You then refer to these user accounts for the CONFIGURE_DV procedure.

The CONFIGURE_DV procedure resides in the SYS schema. Oracle provides a synonym,
DVSYS.CONFIGURE_DV, so that any existing Oracle Database Vault configuration scripts
that you may have created in previous releases will continue to work in this release.

You only can run the CONFIGURE_DV procedure once, when you are ready to register
Oracle Database Vault with an Oracle database. After you run this procedure,
you must run utlrp.sql script and then DBMS_MACADM.ENABLE_DV to complete the
registration process. Oracle strongly recommends that for better security, you use
the two accounts you create here as back-up accounts and then create additional
accounts for every day use.

If after running CONFIGURE_DV you decide that you want to modify the settings that you
had entered, you or another user who has the DV_OWNER role must disable Database
Vault, and then have an administrator with the SYSDBA or SYSOPER administrative
privilege restart the database. As user SYS, then commonly grant the DV_OWNER user
the DV_OWNER role, with the CONTAINER clause set to ALL.

When you run the CONFIGURE_DV procedure, it checks the DVSYS schema for problems
such as missing tables or packages. If it finds problems, then it raises an ORA-47500
Database Vault cannot be configured error. If this happens, then you can reinstall
Oracle Database Vault onto a PDB by running catmac.sql.

Together, the CONFIGURE_DV and DBMS_MACADM.ENABLE_DV procedures, and the and
utlrp.sql script, are designed to be a command-line alternative to using Oracle
Database Configuration Assistant (DBCA) to register Oracle Database Vault with an
Oracle database.

When you register Oracle Database Vault with an Oracle database, you must run the
CONFIGURE_DV procedure as user SYS.

Syntax

CONFIGURE_DV
 dvowner_uname IN VARCHAR2,
 dvacctmgr_uname IN VARCHAR2,
 force_local_dvowner IN BOOLEAN;

Chapter 21
CONFIGURE_DV General System Maintenance Procedure

21-28

Parameters

Table 21-28 CONFIGURE_DV

Parameter Description

dvowner_uname Name of the user who will be the Database Vault Owner. This
user will be granted the DV_OWNER role.

dvacctmgr_uname Name of the user who will be the Database Vault Account
Manager. This user will be granted the DV_ACCTMGR role. If
you omit this setting, the user specified by the dvowner_uname
parameter is made the Database Vault Account Manager and
granted the DV_ACCTMGR role.

force_local_dvowner Applies only to the DV_OWNER (dvowner_unname user) in the
CDB root or an application root. It does not apply to users who
are created in a PDB.

• TRUE restricts the DV_OWNER role privileges of the
dvowner_unname user to be local to the root.

• FALSE, the default setting,enables the dvowner_unname
user to have DV_OWNER privileges for all containers that are
associated with the root.

Example

CREATE USER c##dbv_owner_root_backup IDENTIFIED BY password CONTAINER = CURRENT;
CREATE USER c##dbv_acctmgr_root_backup IDENTIFIED BY password CONTAINER =
CURRENT;
GRANT CREATE SESSION TO c##dbv_owner_root_backup, c##dbv_acctmgr_root_backup;

BEGIN
 CONFIGURE_DV (
 dvowner_uname => 'c##dbv_owner_root_backup',
 dvacctmgr_uname => 'c##adbv_acctmgr_root_backup',
 force_local_dvowner => TRUE);
 END;
/

Related Topics

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

• Uninstalling Oracle Database Vault
You can uninstall Oracle Database Vault from an Oracle Database installation, for
PDBs (but not the root) and Oracle RAC installations.

• Reinstalling Oracle Database Vault
You can reinstall Oracle Database Vault by manually installing it, and then
afterward, registering it.

• Getting Started with Oracle Database Vault
Before you can start using Oracle Database Vault, you must register it with the
Oracle database.

Chapter 21
CONFIGURE_DV General System Maintenance Procedure

21-29

22
Oracle Database Vault Policy APIs

You can use the DBMS_MACADM PL/SQL package to manage Oracle Database Vault
policies.

Only users who have been granted the DV_OWNER or DV_ADMIN role can use these
procedures.

• ADD_CMD_RULE_TO_POLICY Procedure
The ADD_COMMAND_RULE_TO_POLICY procedure enables you to add an existing
command rule to an Oracle Database Vault policy.

• ADD_OWNER_TO_POLICY Procedure
The ADD_OWNER_TO_POLICY procedure enables you to add an existing database
user to an Oracle Database Vault policy as an owner.

• ADD_REALM_TO_POLICY Procedure
The ADD_REALM_TO_POLICY procedure enables you to add an existing realm to an
Oracle Database Vault policy.

• CREATE_POLICY Procedure
The CREATE_POLICY procedure enables you to create an Oracle Database Vault
policy.

• DELETE_CMD_RULE_FROM_POLICY Procedure
The DELETE_CMD_RULE_FROM_POLICY procedure enables you to remove an existing
command rule from an Oracle Database Vault policy.

• DELETE_OWNER_FROM_POLICY Procedure
The DELETE_OWNER_FROM_POLICY procedure enables you to remove an owner from
an Oracle Database Vault policy.

• DELETE_REALM_FROM_POLICY Procedure
The DELETE_REALM_FROM_POLICY procedure enables you to remove an existing
realm from an Oracle Database Vault policy.

• DROP_POLICY Procedure
The DROP_POLICY procedure enables you to drop an existing Oracle Database
Vault policy.

• RENAME_POLICY Procedure
The UPDATE_POLICY_DESCRIPTION procedure enables you to rename an existing
Oracle Database Vault policy.

• UPDATE_POLICY_DESCRIPTION Procedure
The UPDATE_POLICY_DESCRIPTION procedure enables you to update the
description field in an Oracle Database Vault policy.

• UPDATE_POLICY_STATE Procedure
The UPDATE_POLICY_STATE procedure enables you to update the policy_state
field in an Oracle Database Vault policy.

22-1

Related Topics

• Configuring Oracle Database Vault Policies
You can use Oracle Database Vault policies to implement frequently used realm
and command rule settings.

• Oracle Database Vault Utility APIs
Oracle Database Vault provides a set of utility APIs in the DBMS_MACUTL PL/SQL
package.

ADD_CMD_RULE_TO_POLICY Procedure
The ADD_COMMAND_RULE_TO_POLICY procedure enables you to add an existing
command rule to an Oracle Database Vault policy.

You can add a command rule to a policy when the command rule is in any state. For
example, you can add a disabled command rule to an enabled policy. In this case,
the disabled command rule will automatically become enabled when it is added to the
policy. A command rules can be added to only one policy. In other words, you cannot
assign the same command rule to multiple policies.

Syntax

DBMS_MACADM.ADD_CMD_RULE_TO_POLICY(
 policy_name IN VARCHAR2,
 command IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 clause_name IN VARCHAR2 DEFAULT,
 parameter_name IN VARCHAR2 DEFAULT,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT);

Parameters

Table 22-1 ADD_CMD_RULE_TO_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

command Command rule name

To find existing Database Vault command rules in the current database
instance, query the DBA_DV_COMMAND_RULE view.

object_owner Database schema to which the command rule applies

To find existing object owners for this command rule, query the
DBA_DV_COMMAND_RULE view.

object_name Object to be protected by the command rule

To find existing objects for this command rule, query the
DBA_DV_COMMAND_RULE view.

Chapter 22
ADD_CMD_RULE_TO_POLICY Procedure

22-2

Table 22-1 (Cont.) ADD_CMD_RULE_TO_POLICY Parameters

Parameter Description

clause_name For ALTER SYSTEM and ALTER SESSION command rules, a clause from
the SQL statement that was used to create the command rule

To find existing clauses for this command rule, query the
DBA_DV_COMMAND_RULE view.

parameter_name For ALTER SYSTEM and ALTER SESSION command rules, a parameter
from the clause_name parameter.

To find existing parameters for this command rule, query the
DBA_DV_COMMAND_RULE view.

event_name For ALTER SYSTEM and ALTER SESSION command rules, an event that
the command rule defines

To find existing event names for this command rule, query the
DBA_DV_COMMAND_RULE view.

component_name A component of the event_name setting

To find existing component names for this command rule, query the
DBA_DV_COMMAND_RULE view.

action_name An action of the component_name setting.

To find existing action names for this command rule, query the
DBA_DV_COMMAND_RULE view.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule applies
to all the PDBs

Example

The following example shows how to add a common command rule to a Database
Vault policy. This command rule is in the application root of a multitenant environment,
so the user running this procedure must be in the application root or the CDB root. Any
rules or rule sets that are associated with this command rule must be common.

BEGIN
 DBMS_MACADM.ADD_CMD_RULE_TO_POLICY(
 policy_name => 'HR_DV_Policy',
 command => 'ALTER SESSION',
 object_owner => '%',
 object_name => '%',
 clause_name => 'PARALLEL DDL',
 parameter_name => '',
 event_name => '',
 action_name => '',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

Chapter 22
ADD_CMD_RULE_TO_POLICY Procedure

22-3

ADD_OWNER_TO_POLICY Procedure
The ADD_OWNER_TO_POLICY procedure enables you to add an existing database user to
an Oracle Database Vault policy as an owner.

When you add an owner to an enabled policy, the change takes place immediately.
There is no limit to the number of users that you add to the policy.

Syntax

DBMS_MACADM.ADD_OWNER_TO_POLICY(
 policy_name IN VARCHAR2,
 owner_name IN VARCHAR2);

Parameters

Table 22-2 ADD_OWNER_TO_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

owner_name User name. To find existing database users (not roles) in the current
instance, query the DBA_USERS view. To find existing policy owners,
query the DBA_DV_POLICY_OWNER view.

Example

BEGIN
 DBMS_MACADM.ADD_OWNER_TO_POLICY(
 policy_name => 'HR_DV_Policy',
 owner_name => 'PSMITH');
END;
/

ADD_REALM_TO_POLICY Procedure
The ADD_REALM_TO_POLICY procedure enables you to add an existing realm to an
Oracle Database Vault policy.

You can add a disabled realm to an enabled policy. In this case, the realm
automatically becomes enabled when it is added. A realm can be added to only one
policy. In other words, you cannot assign the same realm to multiple policies.

Syntax

DBMS_MACADM.ADD_REALM_TO_POLICY(
 policy_name IN VARCHAR2,
 realm_name IN VARCHAR2);

Chapter 22
ADD_OWNER_TO_POLICY Procedure

22-4

Parameters

Table 22-3 ADD_REALM_TO_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

realm_name Realm name. To find existing Database Vault realms in the current
database instance.

Example

BEGIN
 DBMS_MACADM.ADD_REALM_TO_POLICY(
 policy_name => 'HR_DV_Policy',
 realm_name => 'HR Realm');
END;
/

CREATE_POLICY Procedure
The CREATE_POLICY procedure enables you to create an Oracle Database Vault policy.

After you create the policy, you must add at least one realm and one command rule
to the policy. Optionally, you can set these realms and command rules to be enforced
individually or use the enforcement that the policy uses.

An owner for the policy is not required, but if you do not assign an owner to the
policy, a user who has been granted the DV_OWNER or DV_ADMIN role must administer
the policy.

After you create the policy, use the following procedures to complete the policy
definition:

• ADD_REALM_TO_POLICY adds realms to the policy.

• ADD_CMD_RULE_TO_POLICY adds command rules to the policy.

• ADD_OWNER_TO_POLICY enables the specified database users to manage the policy.

Syntax

DBMS_MACADM.CREATE_POLICY(
 policy_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT,
 policy_state IN NUMBER,
 pl_sql_stack IN BOOLEAN DEFAULT);

Chapter 22
CREATE_POLICY Procedure

22-5

Parameters

Table 22-4 CREATE_POLICY Parameters

Parameter Description

policy_name Policy name, up to 128 characters in mixed case

To find existing policies in the current database instance, query the
DBA_DV_POLICY view.

description Description of the purpose of the policy, up to 4000 characters in mixed-
case.

policy_state Specifies how the policy is enabled. Possible values are:

• DBMS_MACADM.G_ENABLED (1), which enables the policy after you
create it

• DBMS_MACADM.G_DISABLED (0), which disables the policy after you
create it

• DBMS_MACADM.G_SIMULATION (2), which sets the policy to
simulation mode. In simulation mode, any violations to realms or
command rules used in the policy are logged in a designated log
table with sufficient information to describe the error, such as the
user name or SQL statement used. See also Related Topics.

• DBMS_MACADM.G_PARTIAL (3), which sets the policy to partial mode.
In partial mode, the enforcement state of realms or command rules
associated with the policy can be changed individually.

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record.

Example

The following example creates a policy that uses the partial state and enables the
capture of the PL/SQL stack. Later on, when a realm or a command rule is added to
this policy, their enforcement state will be able to be changed individually.

BEGIN
 DBMS_MACADM.CREATE_POLICY(
 policy_name => 'HR Database Vault Policy',
 description => 'Policy to protect the HR schema',
 policy_state => DBMS_MACADM.G_ENABLED,
 pl_sql_stack => TRUE);
END;
/

Related Topics

• About Simulation Mode
Simulation mode enables you to capture violations in a simulation log instead of
blocking SQL execution by Oracle Database Vault realms and command rules.

Chapter 22
CREATE_POLICY Procedure

22-6

DELETE_CMD_RULE_FROM_POLICY Procedure
The DELETE_CMD_RULE_FROM_POLICY procedure enables you to remove an existing
command rule from an Oracle Database Vault policy.

You can remove command rules from a policy anytime regardless of the state of the
policy. When a command rule is removed from a policy, the state of command rule
remains the same. That is, if the policy is enabled, and a command rule is removed
from the policy, then the command rule will be still enabled after you have removed it
from the policy.

Syntax

DBMS_MACADM.DELETE_CMD_RULE_FROM_POLICY(
 policy_name IN VARCHAR2,
 command IN VARCHAR2,
 object_owner IN VARCHAR2,
 object_name IN VARCHAR2,
 clause_name IN VARCHAR2 DEFAULT,
 parameter_name IN VARCHAR2 DEFAULT,
 event_name IN VARCHAR2 DEFAULT,
 component_name IN VARCHAR2 DEFAULT,
 action_name IN VARCHAR2 DEFAULT,
 scope IN NUMBER DEFAULT);

Parameters

Table 22-5 DELETE_CMD_RULE_FROM_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

command Command rule name

To find existing Database Vault command rules in the current database
instance, query the DBA_DV_COMMAND_RULE view.

object_owner Database schema to which the command rule applies

To find existing object owners for this command rule, query the
DBA_DV_COMMAND_RULE view.

object_name Object to be protected by the command rule

To find existing objects for this command rule, query the
DBA_DV_COMMAND_RULE view.

clause_name For ALTER SYSTEM and ALTER SESSION command rules, a clause from
the SQL statement that was used to create the command rule

To find existing clauses for this command rule, query the
DBA_DV_COMMAND_RULE view.

parameter_name For ALTER SYSTEM and ALTER SESSION command rules, a parameter
from the clause_name parameter.

To find existing parameters for this command rule, query the
DBA_DV_COMMAND_RULE view.

Chapter 22
DELETE_CMD_RULE_FROM_POLICY Procedure

22-7

Table 22-5 (Cont.) DELETE_CMD_RULE_FROM_POLICY Parameters

Parameter Description

event_name For ALTER SYSTEM and ALTER SESSION command rules, an event that
the command rule defines

To find existing event names for this command rule, query the
DBA_DV_COMMAND_RULE view.

component_name A component of the event_name setting

To find existing component names for this command rule, query the
DBA_DV_COMMAND_RULE view.

action_name An action of the component_name setting.

To find existing action names for this command rule, query the
DBA_DV_COMMAND_RULE view.

scope Determines how to execute this procedure. The default is local. Options
are as follows:

• DBMS_MACUTL.G_SCOPE_LOCAL (or 1) if the command rule is local in
the current PDB

• DBMS_MACUTL.G_SCOPE_COMMON (or 2) if the command rule is in the
application root

Example

The following example shows how to delete a common command rule from a
Database Vault policy. This command rule is in the application root of a multitenant
environment, so the user running this procedure must be in the CDB root.

BEGIN
 DBMS_MACADM.DELETE_CMD_RULE_FROM_POLICY(
 policy_name => 'HR_DV_Policy',
 command => 'ALTER SESSION',
 object_owner => '%',
 object_name => '%',
 clause_name => 'END SESSION',
 parameter_name => 'KILL SESSION',
 event_name => '',
 action_name => '',
 scope => DBMS_MACUTL.G_SCOPE_COMMON);
END;
/

DELETE_OWNER_FROM_POLICY Procedure
The DELETE_OWNER_FROM_POLICY procedure enables you to remove an owner from an
Oracle Database Vault policy.

You can remove owners from policies any time, regardless of the state (enabled or
disabled) of the policy. The change takes effect immediately.

Syntax

DBMS_MACADM.DELETE_OWNER_FROM_POLICY(
 policy_name IN VARCHAR2,
 owner_name IN VARCHAR2);

Chapter 22
DELETE_OWNER_FROM_POLICY Procedure

22-8

Parameters

Table 22-6 DELETE_OWNER_FROM_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

owner_name User name. To find existing policy owners in the current instance, query
the DBA_DV_POLICY_OWNER view.

Example

BEGIN
 DBMS_MACADM.DELETE_OWNER_FROM_POLICY(
 policy_name => 'HR_DV_Policy',
 owner_name => 'PSMITH');
END;
/

DELETE_REALM_FROM_POLICY Procedure
The DELETE_REALM_FROM_POLICY procedure enables you to remove an existing realm
from an Oracle Database Vault policy.

You can remove realms from policies any time, regardless of the state (enabled or
disabled) of the policy. The change takes effect immediately.

Syntax

DBMS_MACADM.DELETE_REALM_FROM_POLICY(
 policy_name IN VARCHAR2,
 realm_name IN VARCHAR2);

Parameters

Table 22-7 DELETE_REALM_FROM_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

realm_name Realm name. To find existing Database Vault realms in the current
database instance, query the DV_REALM view.

Example

BEGIN
 DBMS_MACADM.DELETE_REALM_FROM_POLICY(
 policy_name => 'HR_DV_Policy',
 realm_name => 'HR Realm');
END;
/

Chapter 22
DELETE_REALM_FROM_POLICY Procedure

22-9

DROP_POLICY Procedure
The DROP_POLICY procedure enables you to drop an existing Oracle Database Vault
policy.

You can remove a policy at any time, regardless of the state (enabled or disabled) of
the policy.

Syntax

DBMS_MACADM.DROP_POLICY(
 policy_name IN VARCHAR2);

Parameters

Table 22-8 DROP_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

Example

EXEC DBMS_MACADM.DROP_POLICY ('HR_DV_Policy');

RENAME_POLICY Procedure
The UPDATE_POLICY_DESCRIPTION procedure enables you to rename an existing
Oracle Database Vault policy.

You can rename a policy at any time, regardless of the state (enabled or disabled) of
the policy. The change takes effect immediately.

Syntax

DBMS_MACADM.RENAME_POLICY(
 policy_name IN VARCHAR2,
 new_policy_name IN VARCHAR2);

Parameters

Table 22-9 RENAME_POLICY Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

new_policy_name New policy name, up to 128 characters in mixed case

Example

BEGIN
 DBMS_MACADM.RENAME_POLICY(
 policy_name => 'HR Database Vault Policy',

Chapter 22
DROP_POLICY Procedure

22-10

 new_policy_name => 'HR_DV_Policy');
END;
/

UPDATE_POLICY_DESCRIPTION Procedure
The UPDATE_POLICY_DESCRIPTION procedure enables you to update the description
field in an Oracle Database Vault policy.

Syntax

DBMS_MACADM.UPDATE_POLICY_DESCRIPTION(
 policy_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT);

Parameters

Table 22-10 UPDATE_POLICY_DESCRIPTION Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

description New description of the purpose of the policy, up to 4000 characters in
mixed-case

Example

BEGIN
 DBMS_MACADM.UPDATE_POLICY_DESCRIPTION(
 policy_name => 'HR_DV_Policy',
 description => 'HR schema protection policy');
END;
/

UPDATE_POLICY_STATE Procedure
The UPDATE_POLICY_STATE procedure enables you to update the policy_state field in
an Oracle Database Vault policy.

Syntax

DBMS_MACADM.UPDATE_POLICY_STATE(
 policy_name IN VARCHAR2,
 policy_state IN NUMBER,
 pl_sql_stack IN BOOLEAN DEFAULT);

Parameters

Table 22-11 UPDATE_POLICY_STATE Parameters

Parameter Description

policy_name Policy name. To find existing Database Vault policies in the current
database instance, query the DBA_DV_POLICY view.

Chapter 22
UPDATE_POLICY_DESCRIPTION Procedure

22-11

Table 22-11 (Cont.) UPDATE_POLICY_STATE Parameters

Parameter Description

policy_state Specifies how the policy is enabled. Possible values are:

• DBMS_MACADM.G_ENABLED (1), which enables the policy after you
create it

• DBMS_MACADM.G_DISABLED (0), which disables the policy after you
create it

• DBMS_MACADM.G_SIMULATION (2), which sets the policy to
simulation mode. In simulation mode, any violations to realms or
command rules used in the policy are logged in a designated log
table with sufficient information to describe the error, such as the
user name or SQL statement used. See also Related Topics.

• DBMS_MACADM.G_PARTIAL (3), which sets the policy to partial mode.
In partial mode, the enforcement state of realms or command rules
associated with the policy can be changed individually.

See About Simulation Mode for more information about simulation mode

pl_sql_stack When simulation mode is enabled, specifies whether to record the
PL/SQL stack for failed operations. Enter TRUE to record the PL/SQL
stack, FALSE to not record.

Example

BEGIN
 DBMS_MACADM.UPDATE_POLICY_STATE(
 policy_name => 'HR_DV_Policy',
 policy_state => DBMS_MACADM.G_DISABLED,
 pl_sql_stack => TRUE);
END;
/

Related Topics

• About Simulation Mode
Simulation mode enables you to capture violations in a simulation log instead of
blocking SQL execution by Oracle Database Vault realms and command rules.

Chapter 22
UPDATE_POLICY_STATE Procedure

22-12

23
Oracle Database Vault API Reference

Oracle Database Vault provides a rich set of APIs, both in PL/SQL packages and in
standalone procedures.

• DBMS_MACADM PL/SQL Package Contents
The DBMS_MACADM package enables you to configure the realms, factors, rule sets,
command rules, secure application roles, and Oracle Label Security policies.

• DBMS_MACSEC_ROLES PL/SQL Package Contents
The DBMS_MACSEC_ROLES package enables you to check and set Oracle Database
Vault secure application roles.

• DBMS_MACUTL PL/SQL Package Contents
The DBMS_MACUTL PL/SQL package defines constants and utility methods that are
commonly used by other Oracle Database Vault packages, such as error handling.

• CONFIGURE_DV PL/SQL Procedure
The CONFIGURE_DV configures the initial two Oracle Database user accounts, which
are granted the DV_OWNER and DV_ACCTMGR roles, respectively.

• DVF PL/SQL Interface Contents
The DVF schema provides a set of factor-related PL/SQL functions.

DBMS_MACADM PL/SQL Package Contents
The DBMS_MACADM package enables you to configure the realms, factors, rule sets,
command rules, secure application roles, and Oracle Label Security policies.

The DBMS_MACADM package is available only for users who have been granted the
DV_ADMIN or DV_OWNER role.

DBMS_MACADM Realm Procedures

Table 23-1 lists the realm procedures in the DBMS_MACADM package.

Table 23-1 DBMS_MACADM Realm Procedures

Procedure Description

ADD_AUTH_TO_REALM procedure Authorizes a user or role to access a realm as an
owner or a participant

ADD_OBJECT_TO_REALM procedure Registers a set of objects for realm protection

CREATE_REALM procedure Creates a realm

DELETE_AUTH_FROM_REALM
procedure

Removes the authorization of a user or role to access
a realm

DELETE_OBJECT_FROM_REALM
procedure

Removes a set of objects from realm protection

23-1

Table 23-1 (Cont.) DBMS_MACADM Realm Procedures

Procedure Description

DELETE_REALM procedure Deletes a realm, including its related Database
Vault configuration information that specifies who is
authorized and what objects are protected

DELETE_REALM_CASCADE procedure Deletes a realm, including its related Database
Vault configuration information that specifies who is
authorized and what objects are protected

RENAME_REALM procedure Renames a realm. The name change takes effect
everywhere the realm is used.

UPDATE_REALM procedure Updates a realm

UPDATE_REALM_AUTH procedure Updates the authorization of a user or role to access a
realm

DBMS_MACADM Rule Set and Rule Procedures

Table 23-2 lists the rule set and rule procedures in the DBMS_MACADM package.

Table 23-2 DBMS_MACADM Rule Set and Rule Procedures

Procedure Description

CREATE_RULE_SET procedure Creates a rule set

RENAME_RULE_SET procedure Renames a rule set. The name change takes effect
everywhere the rule set is used.

DELETE_RULE_FROM_RULE_SET
procedure

Deletes a rule from a rule set

DELETE_RULE_SET procedure Deletes a rule set

UPDATE_RULE_SET procedure Updates a rule set

CREATE_RULE procedure Creates a rule

ADD_RULE_TO_RULE_SET procedure Adds a rule to a rule set

DELETE_RULE procedure Deletes a rule

RENAME_RULE procedure Renames a rule. The name change takes effect
everywhere the rule is used.

UPDATE_RULE procedure Updates a rule

DBMS_MACADM Command Rule Procedures

Table 23-3 lists the command rule procedures in the DBMS_MACADM package.

Table 23-3 DBMS_MACADM Command Rule Procedures

Procedure Description

CREATE_COMMAND_RULE procedure Creates a command rule, associates it with a rule
set, and lets you enable the command rule for rule
checking with a rule set

Chapter 23
DBMS_MACADM PL/SQL Package Contents

23-2

Table 23-3 (Cont.) DBMS_MACADM Command Rule Procedures

Procedure Description

CREATE_CONNECT_COMMAND_RULE
procedure

Creates a CONNECT command rule

CREATE_SESSION_EVENT_CMD_RULE
procedure

Creates a session event command rule, using the
ALTER SESSION SQL statement

CREATE_SYSTEM_EVENT_CMD_RULE
procedure

Creates a system event command rule, using the
ALTER SYSTEM SQL statement

DELETE_COMMAND_RULE procedure Drops a command rule declaration

DELETE_CONNECT_COMMAND_RULE
procedure

Drops a CONNECT command rule declaration

DELETE_SESSION_EVENT_CMD_RULE
procedure

Drops a SESSION_EVENT_CMD command rule
declaration

DELETE_SYSTEM_EVENT_CMD_RULE
procedure

Drops a SYSTEM_EVENT_CMD command rule
declaration

UPDATE_COMMAND_RULE procedure Updates a command rule declaration

UPDATE_CONNECT_COMMAND_RULE
procedure

Updates a CONNECT command rule declaration

UPDATE_SESSION_EVENT_CMD_RULE
procedure

Updates a SESSION_EVENT_CMD command rule
declaration

UPDATE_SYSTEM_EVENT_CMD_RULE
procedure

Updates a SYSTEM_EVENT_CMD command rule
declaration

DBMS_MACADM Factor Procedures and Functions

lists the factor procedures and functions in the DBMS_MACADM package.

Table 23-4 DBMS_MACADM Factor Procedures and Functions

Procedure or Function Description

ADD_FACTOR_LINK procedure Specifies a parent-child relationship for two factors

ADD_POLICY_FACTOR procedure Specifies that the label for a factor contributes to the
Oracle Label Security label for a policy.

CHANGE_IDENTITY_FACTOR procedure Associates an identity with a different factor

CHANGE_IDENTITY_VALUE procedure Updates the value of an identity

CREATE_DOMAIN_IDENTITY procedure Adds an Oracle Real Application Clusters (Oracle
RAC) database node to the domain factor identities
and labels it according to the Oracle Label Security
policy.

CREATE_FACTOR procedure Creates a factor

CREATE_FACTOR_TYPE procedure Creates a factor type

CREATE_IDENTITY procedure Creates an identity

CREATE_IDENTITY_MAP procedure Defines a set of tests that are used to derive the
identity of a factor from the value of linked child
factors (subfactors)

Chapter 23
DBMS_MACADM PL/SQL Package Contents

23-3

Table 23-4 (Cont.) DBMS_MACADM Factor Procedures and Functions

Procedure or Function Description

DELETE_FACTOR procedure Deletes a factor

DELETE_FACTOR_LINK procedure Removes a parent-child relationship for two factors

DELETE_FACTOR_TYPE procedure Deletes a factor type

DELETE_IDENTITY procedure Removes an identity

DELETE_IDENTITY_MAP procedure Removes an identity map from a factor

DROP_DOMAIN_IDENTITY procedure Removes an Oracle RAC database node from a
domain

GET_INSTANCE_INFO function Returns information from the SYS.V_$INSTANCE
system table about the current database instance;
returns a VARCHAR2 value

GET_SESSION_INFO function Returns information from the SYS.V_$SESSION
system table for the current session; returns a
VARCHAR2 value

RENAME_FACTOR procedure Renames a factor. The name change takes effect
everywhere the factor is used.

RENAME_FACTOR_TYPE procedure Renames a factor type. The name change takes
effect everywhere the factor type is used.

UPDATE_FACTOR procedure Updates a factor

UPDATE_FACTOR_TYPE procedure Updates the description of a factor type

UPDATE_IDENTITY procedure Updates the trust level of a factor identity

DBMS_MACADM Secure Application Role Procedures

Table 23-5 lists the secure application role procedures in the DBMS_MACADM package.

Table 23-5 DBMS_MACADM Secure Application Role Procedures

Procedure Description

CREATE_ROLE procedure Creates an Oracle Database Vault secure application
role

DELETE_ROLE procedure Deletes an Oracle Database Vault secure application
role

RENAME_ROLE procedure Renames an Oracle Database Vault secure
application role. The name change takes effect
everywhere the role is used.

UNASSIGN_ROLE procedure Unassigns an Oracle Database Vault secure
application role from a user

UPDATE_ROLE procedure Updates a Oracle Database Vault secure application
role

DBMS_MACADM Oracle Label Security Procedures

Table 23-6 lists the Oracle Label Security procedures in the DBMS_MACADM package.

Chapter 23
DBMS_MACADM PL/SQL Package Contents

23-4

Table 23-6 DBMS_MACADM Oracle Label Security Procedures

Procedure Description

CREATE_MAC_POLICY procedure Specifies the algorithm that is used to merge labels
when computing the label for a factor, or the Oracle
Label Security Session label

CREATE_POLICY_LABEL procedure Labels an identity within an Oracle Label Security
policy

DELETE_MAC_POLICY_CASCADE
procedure

Deletes all Oracle Database Vault objects related to
an Oracle Label Security policy.

DELETE_POLICY_FACTOR procedure Removes the factor from contributing to the Oracle
Label Security label

DELETE_POLICY_LABEL procedure Removes the label from an identity within an Oracle
Label Security policy

UPDATE_MAC_POLICY procedure Specifies the algorithm that is used to merge labels
when computing the label for a factor, or the Oracle
Label Security Session label

DBMS_MACADM Database Vault Policy Procedures

Table 23-7 lists the Database Vault policy procedures in the DBMS_MACADM package.

Table 23-7 DBMS_MACADM Database Vault Policy Procedures

Procedure Description

ADD_CMD_RULE_TO_POLICY
procedure

Adds a command rule to a Database Vault policy

ADD_OWNER_TO_POLICY procedure Adds an owner to a Database Vault policy

ADD_REALM_TO_POLICY procedure Adds a realm to a Database Vault policy

CREATE_POLICY procedure Creates a Database Vault policy

DELETE_CMD_RULE_FROM_POLICY
procedure

Deletes a command rule from a Database Vault policy

DELETE_OWNER_FROM_POLICY
procedure

Deletes an owner from a Database Vault policy

DELETE_REALM_FROM_POLICY
procedure

Deletes a realm from a Database Vault policy

DROP_POLICY procedure Drops a Database Vault policy

RENAME_POLICY procedure Renames a Database Vault policy

UPDATE_POLICY_DESCRIPTION
procedure

Updates a Database Vault policy description

UPDATE_POLICY_STATE procedure Updates the enablement status of the a Database
Vault policy

DBMS_MACADM General Administrative Procedures

Table 23-8 lists the general administrative procedures in the DBMS_MACADM package.

Chapter 23
DBMS_MACADM PL/SQL Package Contents

23-5

Table 23-8 DBMS_MACADM General Administrative Procedures

Procedure Description

ADD_NLS_DATA procedure Adds a new language to Oracle Database Vault

ADD_APP_EXCEPTION procedure Enables a common user or package to access local
schemas

AUTHORIZE_DATAPUMP_USER
procedure

Authorizes a user to perform Oracle Data Pump
operations when Oracle Database Vault is enabled

AUTHORIZE_DDL procedure Grants a user authorization to execute data definition
language (DDL) statements

AUTHORIZE_MAINTENANCE_USER
procedure

Grants a user authorization to perform Information
Lifecycle Management (ILM) operations

AUTHORIZE_PROXY_USER procedure Grants a proxy user authorization to proxy other user
accounts

AUTHORIZE_SCHEDULER_USER
procedure

Authorizes a user to schedule database jobs when
Oracle Database Vault is enabled

AUTHORIZE_TTS_USER procedure Authorizes a user to perform Oracle Data Pump
transportable tablespace operations for a tablespace
when Oracle Database Vault is enabled

DELETE_APP_EXCEPTION procedure Deletes the exception for a common user or package
to access a local schema

DISABLE_DV_DICTIONARY_ACCTS
procedure

Prevents users from logging into the DVSYS and DFV
schema accounts

DISABLE_DV_PATCH_ADMIN Disables auditing of the DV_PATCH_ADMIN user

DISABLE_DV procedure Disables Oracle Database Vault

DISABLE_APP_PROTECTION
procedure

Disables Database Vault operation control

DISABLE_ORADEBUG procedure Disables the use of the ORADEBUG utility in an Oracle
Database Vault environment

ENABLE_DV_DICTIONARY_ACCTS
procedure

Enables users to log into the DVSYS and DFV schema
accounts

ENABLE_DV_PATCH_ADMIN Enables auditing of the DV_PATCH_ADMIN user

ENABLE_DV procedure Enables Oracle Database Vault

ENABLE_APP_PROTECTION procedure Enables Database Vault operations control

ENABLE_ORADEBUG procedure Enables the use of the ORADEBUG utility in an Oracle
Database Vault environment

UNAUTHORIZE_DATAPUMP_USER
procedure

Revokes the authorization that was granted
by the DBMS_MACADM.AUTHORIZE_DATAPUMP_USER
procedure

UNAUTHORIZE_DDL procedure Revokes authorization from a user who was granted
authorization to execute DDL statements through the
DBMS_MACDM.AUTHORIZE_DDL procedure

UNAUTHORIZE_MAINTENANCE_USER
procedure

Revokes authorization to perform ILM operations

UNAUTHORIZE_PROXY_USER procedure Revokes authorization from a user who
was granted proxy authorization from the
DBMS_MACADM.AUTHORIZE_PROXY_USER procedure

Chapter 23
DBMS_MACADM PL/SQL Package Contents

23-6

Table 23-8 (Cont.) DBMS_MACADM General Administrative Procedures

Procedure Description

UNAUTHORIZE_SCHEDULER_USER
procedure

Revokes authorization that was granted by
the DBMS_MACADM.AUTHORIZE_SCHEDULER_USER
procedure

UNAUTHORIZE_TTS_USER procedure Revokes from authorization a user who had been
granted authorization to perform Oracle Data Pump
transportable tablespace operations for a tablespace
when Oracle Database Vault is enabled

DBMS_MACSEC_ROLES PL/SQL Package Contents
The DBMS_MACSEC_ROLES package enables you to check and set Oracle Database Vault
secure application roles.

This package is available to the general database account population.

Table 23-9 lists the contents of the DBMS_MACSEC_ROLES package.

Table 23-9 DBMS_MACSEC_ROLES PL/SQL Package Contents

Procedure or Function Description

CAN_SET_ROLE function Checks whether the user invoking the method is authorized
to use the specified Oracle Database Vault secure application
role. Returns a BOOLEAN value.

SET_ROLE procedure Issues the SET ROLE statement for an Oracle Database Vault
secure application role.

DBMS_MACUTL PL/SQL Package Contents
The DBMS_MACUTL PL/SQL package defines constants and utility methods that are
commonly used by other Oracle Database Vault packages, such as error handling.

This package can be run by the general database account population. This allows
for security developers to leverage the constants in scripted configuration files. Utility
methods such as USER_HAS_ROLE can also be used in Oracle Database Vault rules.

Table 23-10 lists the DBMS_MACUTL package contents.

Table 23-10 DBMS_MACUTL PL/SQL Package Contents

Procedure or Function Description

CHECK_DVSYS_DML_ALLOWED
procedure

Verifies that public-packages are not being bypassed by users
updating the Oracle Database Vault configuration

GET_CODE_VALUE function Looks up the value for a code within a code group.

GET_SECOND function Returns the seconds in Oracle SS format (00-59). Useful for
rule expressions based on time data

Chapter 23
DBMS_MACSEC_ROLES PL/SQL Package Contents

23-7

Table 23-10 (Cont.) DBMS_MACUTL PL/SQL Package Contents

Procedure or Function Description

GET_MINUTE function Returns the minute in Oracle MI format (00–59). Useful for
rule expressions based on time data

GET_HOUR function Returns the month in Oracle HH24 format (00–23). Useful for
rule expressions based on time data

GET_DAY function Returns the day in Oracle DD format (01–31). Useful for rule
expressions based on time data

GET_MONTH function Returns the month in Oracle MM format (01–12). Useful for
rule expressions based on time data

GET_YEAR function Returns the year in Oracle YYYY format (0001–9999). Useful
for rule expressions based on time data

IS_ALPHA function Checks whether the character is alphabetic

IS_DIGIT function Checks whether the character is numeric

IS_DVSYS_OWNER function Determines whether a user is authorized to manage the
Oracle Database Vault configuration

IS_OLS_INSTALLED function Returns an indicator regarding whether Oracle Label Security
is installed

IS_OLS_INSTALLED_VARCHAR
function

Returns an indicator regarding whether Oracle Label Security
is installed

USER_HAS_ROLE function Checks whether a user has a role privilege, directly or
indirectly (through another role)

USER_HAS_ROLE_VARCHAR
function

Checks whether a user has a role privilege, directly or
indirectly (through another role)

USER_HAS_SYSTEM_PRIVILEG
E function

Checks whether a user has a system privilege, directly or
indirectly (through a role)

CONFIGURE_DV PL/SQL Procedure
The CONFIGURE_DV configures the initial two Oracle Database user accounts, which are
granted the DV_OWNER and DV_ACCTMGR roles, respectively.

This procedure is used as part of the registration process for Oracle Database Vault
with an Oracle database. You only need to use it once for the database instance.

DVF PL/SQL Interface Contents
The DVF schema provides a set of factor-related PL/SQL functions.

The functions are then available to the general database account population through
PL/SQL functions and standard SQL.

Table 23-11 lists the DVF factor functions.

Chapter 23
CONFIGURE_DV PL/SQL Procedure

23-8

Table 23-11 DVF PL/SQL Interface Contents

Function Description

F$CLIENT_IP Returns the IP address of the computer from which the client
is connected

F$DATABASE_DOMAIN Returns the domain of the database as specified in the
DB_DOMAIN initialization parameter

F$DATABASE_HOSTNAME Returns the host name of the computer on which the
database instance is running

F$DATABASE_INSTANCE Returns the database instance identification number of the
current database instance

F$DATABASE_IP Returns the IP address of the computer on which the
database instance is running

F$DATABASE_NAME Returns the name of the database as specified in the
DB_NAME initialization parameter

F$DOMAIN Returns a named collection of physical, configuration, or
implementation-specific factors in the run-time environment
(for example, a networked IT environment or subset of it) that
operates at a specific sensitivity level

F$ENTERPRISE_IDENTITY Returns the enterprise-wide identity for a user

F$IDENTIFICATION_TYPE Returns the way the schema of a user was created in the
database. Specifically, it reflects the IDENTIFIED clause in
the CREATE USER or ALTER USER syntax.

F$LANG Returns the ISO abbreviation for the language name, a
shorter form than the existing LANGUAGE parameter

F$LANGUAGE Returns the language and territory currently used by your
session, in VARCHAR2 data type, along with the database
character set

F$MACHINE Returns the computer (host) name for the database client
that established the database session.

F$NETWORK_PROTOCOL Returns the network protocol being used for communication,
as specified in the PROTOCOL=protocol portion of the
connect string

F$PROXY_ENTERPRISE_IDENTI
TY

Returns the Oracle Internet Directory distinguished name
(DN) when the proxy user is an enterprise user

F$SESSION_USER Returns the database user name by which the current user
is authenticated

Chapter 23
DVF PL/SQL Interface Contents

23-9

24
Oracle Database Vault Data Dictionary
Views

You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

• About the Oracle Database Vault Data Dictionary Views
Oracle Database Vault provides a set of DBA-style data dictionary views that can be
accessed through the DV_SECANALYST role or the DV_ADMIN role.

• CDB_DV_STATUS View
The CDB_DV_STATUS data dictionary view shows the Database Vault operations
control, configuration, and enablement status for all PDBs.

• DBA_DV_APP_EXCEPTION View
The DBA_DV_APP_EXCEPTION data dictionary view lists the common schemas and
package names that are in the Database Vault operations control exception list.

• DBA_DV_CODE View
The DBA_DV_CODE data dictionary view lists generic lookup codes for the user
interface, error messages, and constraint checking.

• DBA_DV_COMMAND_RULE View
The DBA_DV_COMMAND_RULE data dictionary view lists the SQL statements that are
protected by command rules.

• DBA_DV_DATAPUMP_AUTH View
The DBA_DV_DATAPUMP_AUTH data dictionary view lists the authorizations for using
Oracle Data Pump in an Oracle Database Vault environment.

• DBA_DV_DBCAPTURE_AUTH View
The DBA_DV_DBCAPTURE_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload capture
operations.

• DBA_DV_DBREPLAY View
The DBA_DV_DBREPLAY_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload replay
operations.

• DBA_DV_DDL_AUTH View
The DBA_DV_DDL data dictionary view lists the users and schemas that were
specified by the DBMS_MACADM.AUTHORIZE_DDL procedure.

• DBA_DV_DICTIONARY_ACCTS View
The DBA_DV_DICTIONARY_ACCTS data dictionary view indicates whether users can
directly log into the DVSYS and DVF schema accounts.

• DBA_DV_FACTOR View
The DBA_DV_FACTOR data dictionary view lists the existing factors in the current
PDB.

24-1

• DBA_DV_FACTOR_TYPE View
The DBA_DV_FACTOR_TYPE data dictionary view lists the names and descriptions of
factor types used in the system.

• DBA_DV_FACTOR_LINK View
The DBA_DV_FACTOR_LINK data dictionary view shows the relationships of each
factor whose identity is determined by the association of child factors.

• DBA_DV_IDENTITY View
The DBA_DV_IDENTITY data dictionary view lists the identities for each factor.

• DBA_DV_IDENTITY_MAP View
The DBA_DV_IDENTITY_MAP data dictionary view lists the mappings for each factor
identity.

• DBA_DV_JOB_AUTH View
The DBA_DV_JOB_AUTH data dictionary view lists the authorizations for using Oracle
Scheduler in an Oracle Database Vault environment.

• DBA_DV_MAC_POLICY View
The DBA_DV_MAC_POLICY data dictionary view lists the Oracle Label Security
policies defined for use with Oracle Database Vault.

• DBA_DV_MAC_POLICY_FACTOR View
The DBA_DV_MAC_POLICY data dictionary view lists the factors that are associated
with Oracle Label Security policies.

• DBA_DV_MAINTENANCE_AUTH View
The DBA_DV_MAINTENANCE_AUTH data dictionary view provides information about
the configuration of Oracle Database Vault authorizations to use Information Life
Management (ILM) features.

• DBA_DV_ORADEBUG View
The DBA_DV_ORADEBUG data dictionary view indicates whether users can use the
ORADEBUG utility in an Oracle Database Vault environment.

• DBA_DV_PATCH_ADMIN_AUDIT View
The DBA_DV_PATCH_ADMIN_AUDIT data dictionary view indicates if auditing has
been enabled or disabled for the user who has been granted the DV_ADMIN_PATCH
role.

• DBA_DV_POLICY View
The DBA_DV_POLICY data dictionary view lists the Oracle Database Vault policies
that were created in the current database instance.

• DBA_DV_POLICY_LABEL View
The DBA_DV_POLICY_LABEL data dictionary view lists the Oracle Label Security
label for each factor identifier in the DBA_DV_IDENTITY view for each policy.

• DBA_DV_POLICY_OBJECT View
The DBA_DV_POLICY_OBJECT data dictionary view lists information about the objects
that are protected by Oracle Database Vault policies in the current database
instance.

• DBA_DV_POLICY_OWNER View
The DBA_DV_POLICY_OWNER data dictionary view lists the owners of Oracle
Database Vault policies that were created in the current database instance.

• DBA_DV_PREPROCESSOR_AUTH View
The DBA_DV_PREPROCESSOR_AUTH data dictionary view shows users who have been
granted authorization to execute preprocessor programs through external tables.

Chapter 24

24-2

• DBA_DV_PROXY_AUTH View
The DBA_DV_PROXY_AUTH data dictionary view lists the proxy users and schemas
that were specified by the DBMS_MACADM.AUTHORIZE_PROXY_USER procedure.

• DBA_DV_PUB_PRIVS View
The DBA_DV_PUB_PRIVS data dictionary view lists data reflected in the Oracle
Database Vault privilege management reports used in Oracle Database Vault
Administrator.

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

• DBA_DV_REALM_AUTH View
The DBA_DV_REALM_AUTH data dictionary view lists database user account or role
authorization (GRANTEE) who can access realm objects.

• DBA_DV_REALM_OBJECT View
The DBA_DV_REALM_OBJECT data dictionary view lists the database schemas, or
subsets of schemas, that are secured by the realms.

• DBA_DV_ROLE View
The DBA_DV_ROLE data dictionary view lists the Oracle Database Vault secure
application roles used in privilege management.

• DBA_DV_RULE View
The DBA_DV_RULE data dictionary view lists the rules that have been defined.

• DBA_DV_RULE_SET View
The DBA_DV_RULE_SET data dictionary view lists the rules sets that have been
created.

• DBA_DV_RULE_SET_RULE View
The DBA_DV_RULE_SET_RULE data dictionary view lists rules that are associated
with existing rule sets.

• DBA_DV_SIMULATION_LOG View
The DBA_DV_SIMULATION_LOG data dictionary view captures simulation log
information for realms and command rules that have had simulation mode
enabled.

• DBA_DV_STATUS or SYS.DBA_DV_STATUS View
The DBA_DV_STATUS (or SYS.DBA_DV_STATUS) data dictionary view shows the status
of Oracle Database Vault being enabled and configured.

• DBA_DV_TTS_AUTH View
The DBA_DV_TTS_AUTH data dictionary view lists users who have been granted
authorization through the DBMS_MACADM.AUTHORIZE_TTS_USER procedure to perform
Oracle Data Pump transportable operations.

• DBA_DV_USER_PRIVS View
The DBA_DV_USER_PRIVS data dictionary view lists the privileges for a database
user account excluding privileges granted through the PUBLIC role.

• DBA_DV_USER_PRIVS_ALL View
The DBA_DV_USER_PRIVS_ALL data dictionary view lists the privileges for a
database account including privileges granted through PUBLIC.

• DVSYS.DV$CONFIGURATION_AUDIT View
The DVSYS.DV$CONFIGURATION_AUDIT data dictionary view captures
DVSYS.AUDIT_TRAIL$ table audit trail records.

Chapter 24

24-3

• DVSYS.DV$ENFORCEMENT_AUDIT View
The DVSYS.DV$ENFORCEMENT_AUDIT data dictionary view provides information about
enforcement-related audits from the DVSYS.AUDIT_TRAIL$ table.

• DVSYS.DV$REALM View
The DVSYS.DV$REALM data dictionary view describes settings that were used to
create Oracle Database Vault realms, such as which audit options have been
assigned or whether the realm is a mandatory realm.

• DVSYS.DBA_DV_COMMON_OPERATION_STATUS View
The DVSYS.DBA_DV_COMMON_OPERATION_STATUS data dictionary view displays the
status of the DBMS_MACADM.ALLOW_COMMON_OPERATION procedure setting.

• DVSYS.POLICY_OWNER_COMMAND_RULE View
The DVSYS.POLICY_OWNER_COMMAND_RULE data dictionary view enables
DV_POLICY_OWNER role users to find information about the command rules that are
used by Database Vault policies.

• DVSYS.POLICY_OWNER_POLICY View
The DVSYS.POLICY_OWNER_POLICY data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information such as the names,
descriptions, and states of existing policies in the current database instance,
including policies created by other policy owners.

• DVSYS.POLICY_OWNER_REALM View
The POLICY_OWNER_REALM data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the realms that have
been associated with Database Vault policies.

• DVSYS.POLICY_OWNER_REALM_AUTH View
The DVSYS.POLICY_OWNER_REALM_AUTH data dictionary view enables users who
have been granted the DV_POLICY_OWNER role to find information about the
authorization that was granted to realms that have been associated with Database
Vault policies.

• DVSYS.POLICY_OWNER_REALM_OBJECT View
The DVSYS.POLICY_OWNER_REALM_OBJECT data dictionary view enables users to find
information about the objects that have been added to realms that are associated
with Database Vault policies, such as. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

• DVSYS.POLICY_OWNER_RULE View
The DVSYS.POLICY_OWNER_RULE data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the rules that have
been associated with rule sets in Database Vault policies, such as the rule name
and its expression. Only users who have been granted the DV_POLICY_OWNER role
can query this view.

• DVSYS.POLICY_OWNER_RULE_SET View
The DVSYS.POLICY_OWNER_RULE_SET data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information about the rule sets that
have been associated with Database Vault policies.

• DVSYS.POLICY_OWNER_RULE_SET_RULE View
The DVSYS.POLICY_OWNER_RULE_SET_RULE data dictionary view enables users who
have been granted the DV_POLICY_OWNER role to find information about the rule
sets that contain rules used in Database Vault policies.

Chapter 24

24-4

• AUDSYS.DV$CONFIGURATION_AUDIT View
The AUDSYS.DV$CONFIGURATION_AUDIT view is almost the same as the
DVSYS.DV$CONFIGURATION_AUDIT view except that it captures unified audit trail
Database Vault audit records.

• AUDSYS.DV$ENFORCEMENT_AUDIT View
The AUDSYS.DV$ENFORCEMENT_AUDIT view is almost the same as the
DVSYS.DV$ENFORCEMENT_AUDIT view except that it captures unified audit trail
Database Vault audit records.

About the Oracle Database Vault Data Dictionary Views
Oracle Database Vault provides a set of DBA-style data dictionary views that can be
accessed through the DV_SECANALYST role or the DV_ADMIN role.

These views provide access to the various underlying Oracle Database Vault tables
in the DVSYS and LBACSYS schemas without exposing the primary and foreign
key columns that may be present. These views are intended for the database
administrative user to report on the state of the Oracle Database Vault configuration
without having to perform the joins required to get the labels for codes that are stored
in the core tables or from the related tables.

See Also:

Oracle Database Vault Reports if you are interested in running reports on
Oracle Database Vault

CDB_DV_STATUS View
The CDB_DV_STATUS data dictionary view shows the Database Vault operations control,
configuration, and enablement status for all PDBs.

Only Oracle Database administrative users, such users who have been granted the
DBA role, can query this view. Database Vault administrators do not have access to this
view.

For example:

SELECT * FROM CDB_DV_STATUS;

Output similar to the following appears:

NAME STATUS CON_ID
-------------------- ------- ------
DV_APP_PROTECTION ENABLED 5
DV_CONFIGURE_STATUS TRUE 5
DV_ENABLE_STATUS TRUE 5

Chapter 24
About the Oracle Database Vault Data Dictionary Views

24-5

Column Datatype Null Description

NAME VARCHAR2(19) NOT NULL Shows either of the following settings:

• DV_APP_PROTECTION shows whether
Database Vault operations control is enabled
or not enabled.

• DV_CONFIGURE_STATUS shows whether
Oracle Database Vault is configured (that is,
with the CONFIGURE_DV procedure).

• DV_ENABLE_STATUS shows whether Oracle
Database Vault is enabled (that is, with the
DBMS_MACADM.ENABLE_DV procedure).

STATUS VARCHAR2(64) NOT NULL For DV_CONFIGURE_STATUS and
DV_ENABLE_STATUS, TRUE means that Oracle
Database Vault is configured or enabled; FALSE
means that it is not. For DV_APP_PROTECTION, the
output is ENABLED or DISABLED.

CON_ID NUMBER NOT NULL The identification number of the PDB container in
which Oracle Database Vault is used

Related Topics

• DBA_DV_STATUS or SYS.DBA_DV_STATUS View
The DBA_DV_STATUS (or SYS.DBA_DV_STATUS) data dictionary view shows the status
of Oracle Database Vault being enabled and configured.

DBA_DV_APP_EXCEPTION View
The DBA_DV_APP_EXCEPTION data dictionary view lists the common schemas and
package names that are in the Database Vault operations control exception list.

You must query this view from the CDB root only. If you try to query this view from a
pluggable database (PDB), then no output appears.

For example:

SELECT * FROM DBA_DV_APP_EXCEPTION WHERE GRANTEE = 'C##HR_ADMIN';

Output similar to the following appears:

GRANTEE PACKAGE_NAME
--------------- ------------
C##HR_ADMIN PATCH_APP

Column Datatype Null Description

GRANTEE VARCHAR(128) NOT NULL Name of the grantee

To find the names of common users, query the USERNAME
and COMMON columns of the DBA_USERS data dictionary
view.

PACKAGE_NAME VARCHAR(128) NOT NULL Name of the package

Chapter 24
DBA_DV_APP_EXCEPTION View

24-6

DBA_DV_CODE View
The DBA_DV_CODE data dictionary view lists generic lookup codes for the user interface,
error messages, and constraint checking.

These codes are used for the user interface, views, and for validating input in a
translatable fashion.

For example:

SELECT CODE, VALUE FROM DBA_DV_CODE WHERE CODE_GROUP = 'BOOLEAN';

Output similar to the following appears:

CODE VALUE
------- --------
Y True
N False

Column Datatype Null Description

CODE_GROUP VARCHAR(128) NOT NULL Displays one of the code groups that are listed in Table 24-1

CODE VARCHAR(128) NOT NULL Boolean code used; either Y (Yes) or N (No).

VALUE VARCHAR(4000) NULL Boolean value used; either True if the Boolean code is Y or
False if the Boolean code is N.

LANGUAGE VARCHAR(3) NOT NULL Language for this installation of Oracle Database Vault.

Supported languages are as follows:

• en: English
• de: German
• es: Spanish
• fr: French
• it: Italian
• ja: Japanese
• ko: Korean
• pt_BR: Brazilian Portuguese
• zh_CN: Simplified Chinese
• zh_TW: Traditional Chinese

DESCRIPTION VARCHAR(1024) NULL Brief description of the code group.

Table 24-1 describes the possible values from the CODE_GROUP column in the
DBA_DV_CODE data dictionary view.

Table 24-1 DBA_DV_CODE View CODE_GROUP Values

CODE_GROUP Name Description

AUDIT_EVENTS Contains the action numbers and action names that are used for
the custom event audit trail records

BOOLEAN A simple Yes or No or True or False lookup

DB_OBJECT_TYPE The database object types that can be used for realm objects
and command authorizations

Chapter 24
DBA_DV_CODE View

24-7

Table 24-1 (Cont.) DBA_DV_CODE View CODE_GROUP Values

CODE_GROUP Name Description

SQL_CMDS The DDL commands that can be protected through command
rules

FACTOR_AUDIT The auditing options for factor retrieval processing

FACTOR_EVALUATE The evaluation options (by session or by access) for factor
retrieval

FACTOR_FAIL The options for propagating errors when a factor retrieval method
fails

FACTOR_IDENTIFY The options for determining how a factor identifier is resolved (for
example, by method or by factors)

FACTOR_LABEL The options for determining how a factor identifier is labeled in
the session establishment phase

LABEL_ALG The algorithms that can be used to determine the maximum
session label for a database session for each policy. See Related
Topics.

OPERATORS The Boolean operators that can be used for identity maps

REALM_AUDIT The options for auditing realm access or realm violations

REALM_OPTION The options for ownership of a realm

RULESET_AUDIT The options for auditing rule set execution or rule set errors

RULESET_EVALUATE The options for determining the success or failure of a rule set
based on all associated rules being true or any associated rule
being true

RULESET_EVENT The options to invoke a custom event handler when a rule set
evaluates to Succeeds or Fails

RULESET_FAIL The options to determine the run-time visibility of a rule set
failing

Related Topics

• Table 19-2

DBA_DV_COMMAND_RULE View
The DBA_DV_COMMAND_RULE data dictionary view lists the SQL statements that are
protected by command rules.

For example:

SELECT COMMAND, RULE_SET_NAME FROM DBA_DV_COMMAND_RULE;

Output similar to the following appears:

COMMAND RULE_SET_NAME
--------------- -----------------------------
GRANT Can Grant VPD Administration
REVOKE Can Grant VPD Administration
ALTER SYSTEM Allow System Parameters
ALTER USER Can Maintain Own Account
CREATE USER Can Maintain Account/Profiles

Chapter 24
DBA_DV_COMMAND_RULE View

24-8

DROP USER Can Maintain Account/Profiles
CREATE PROFILE Can Maintain Account/Profiles
DROP PROFILE Can Maintain Account/Profiles
ALTER PROFILE Can Maintain Account/Profiles

Column Datatype Null Description

COMMAND VARCHAR(128) NOT NULL Name of the command rule.

CLAUSE_NAME VARCHAR(100) NOT NULL A clause from either the ALTER SYSTEM or ALTER
SESSION SQL statement, which was used to create the
command rule. For example, you it could list the SET
clause for the ALTER SESSION statement.

The command rule settings for these two statements are
described in the DBMS_MACADM.CREATE_COMMAND_RULE
procedure. See Related Topics.

PARAMETER_NAME VARCHAR(128) NOT NULL A parameter from the ALTER SYSTEM or ALTER SESSION
command rule CLAUSE_NAME setting.

See Related Topics.

EVENT_NAME VARCHAR(128) NOT NULL An event that the ALTER SYSTEM or ALTER SESSION
command rule defines.

See Related Topics.

COMPONENT_NAME VARCHAR(128) NOT NULL A component of the EVENT_NAME setting for the ALTER
SYSTEM or ALTER SESSION command rule.

See Related Topics.

ACTION_NAME VARCHAR(128) NOT NULL An action of the EVENT_NAME setting for the ALTER
SYSTEM or ALTER SESSION command rule.

See Related Topics.

RULE_SET_NAME VARCHAR(128) NOT NULL Name of the rule set associated with this command rule.

OBJECT_OWNER VARCHAR(128) NOT NULL The owner of the object that the command rule affects.

OBJECT_NAME VARCHAR(128) NOT NULL The name of the database object the command rule
affects (for example, a database table).

ENABLED VARCHAR(1) NOT NULL Possible values are as follows:

• Y indicates the command rule is enabled
• N indicates it is disabled
• S indicates it is in simulation mode

PRIVILEGE_SCOPE NUMBER NOT NULL Obsolete column

COMMON VARCHAR(3) NOT NULL Indicates whether the command rule is local or common.
Possible values are:

• YES if the command rule is common
• NO if the command rule is local

Chapter 24
DBA_DV_COMMAND_RULE View

24-9

Column Datatype Null Description

INHERITED VARCHAR(3) NOT NULL Shows the inheritance status of the command rule, when
the COMMON column output is YES. Values are as follows:
• YES means that the command rule was defined in

another container that is higher in the hierarchy of
the container tree, and inherited in this container
when the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the command rule is a local object,
or it is common from that container. For example,
in an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

ID# NUMBER NOT NULL The ID number of the command rule, which is
automatically generated when the command rule is
created

ORACLE_SUPPLIED VARCHAR(3) NULL Indicates whether the command rule is a default (that
is, Oracle-supplied) command rule or a user-created
command rule. Possible values are:

• YES if the command rule is a default command rule
• NO if the command rule is a user-created command

rule

PL_SQL_STACK VARCHAR(3) NULL When simulation mode is enabled, indicates whether the
PL/SQL stack has been recorded for failed operations.
TRUE indicates that the PL/SQL stack has been recorded;
FALSE indicates that the PL/SQL stack has not been
recorded.

Related Topics

• Configuring Command Rules
You can create command rules or use the default command rules to protect DDL
and DML statements.

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

DBA_DV_DATAPUMP_AUTH View
The DBA_DV_DATAPUMP_AUTH data dictionary view lists the authorizations for using
Oracle Data Pump in an Oracle Database Vault environment.

For example:

SELECT * FROM DBA_DV_DATAPUMP_AUTH WHERE GRANTEE = 'PRESTON';

Output similar to the following appears:

GRANTEE SCHEMA OBJECT
------- ------ -------
PRESTON OE ORDERS

Chapter 24
DBA_DV_DATAPUMP_AUTH View

24-10

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the user who has been granted Data
Pump authorization

SCHEMA VARCHAR2(128) NOT NULL Name of the schema on which the user GRANTEE
is authorized to perform Data Pump operations

OBJECT VARCHAR2(128) NOT NULL Name of the object within the schema specified
by the SCHEMA parameter on which the GRANTEE
user has Data Pump authorization (such as a
table)

Related Topics

• Using Oracle Data Pump with Oracle Database Vault
Database administrators can authorize Oracle Data Pump users to work in a
Database Vault environment.

DBA_DV_DBCAPTURE_AUTH View
The DBA_DV_DBCAPTURE_AUTH data dictionary view shows users who have been
granted authorization to perform Oracle Database Replay workload capture
operations.

For example:

SELECT * FROM DBA_DV_DBCAPTURE_AUTH WHERE GRANTEE = 'PFITCH';

Output similar to the following appears:

GRANTEE

PFITCH

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the user who has been granted
Database Replay workload capture authorization

Related Topics

• Using Oracle Database Replay with Oracle Database Vault
Database administrators can authorize Oracle Database Replay users to work in a
Database Vault environment.

DBA_DV_DBREPLAY View
The DBA_DV_DBREPLAY_AUTH data dictionary view shows users who have been granted
authorization to perform Oracle Database Replay workload replay operations.

For example:

SELECT * FROM DBA_DV_DBREPLAY_AUTH WHERE GRANTEE = 'PFITCH';

Output similar to the following appears:

Chapter 24
DBA_DV_DBCAPTURE_AUTH View

24-11

GRANTEE

PFITCH

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the user who has been granted
Database Replay workload replay authorization

Related Topics

• Using Oracle Database Replay with Oracle Database Vault
Database administrators can authorize Oracle Database Replay users to work in a
Database Vault environment.

DBA_DV_DDL_AUTH View
The DBA_DV_DDL data dictionary view lists the users and schemas that were specified
by the DBMS_MACADM.AUTHORIZE_DDL procedure.

This procedure grants a user authorization to execute Data Definition Language (DDL)
statements.

For example:

SELECT * FROM DBA_DV_DDL_AUTH WHERE GRANTEE = 'psmith';

Output similar to the following appears:

GRANTEE SCHEMA
------- ------
PSMITH HR

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the user who has been granted DDL
authorization

SCHEMA VARCHAR2(128) NOT NULL Name of the schema on which the user GRANTEE
is authorized to perform DDL operations

Related Topics

• AUTHORIZE_DDL Procedure
The AUTHORIZE_DDL procedure grants a user authorization to execute Data
Definition Language (DDL) statements on the specified schema.

• UNAUTHORIZE_DDL Procedure
The UNAUTHORIZE_DDL procedure revokes authorization from a user who
was granted authorization to execute DDL statements through the
DBMS_MACDM.AUTHORIZE_DDL procedure.

DBA_DV_DICTIONARY_ACCTS View
The DBA_DV_DICTIONARY_ACCTS data dictionary view indicates whether users can
directly log into the DVSYS and DVF schema accounts.

For example:

Chapter 24
DBA_DV_DDL_AUTH View

24-12

SELECT * FROM DBA_DV_DICTIONARY_ACCTS;

Output similar to the following appears:

STATE

ENABLED

Column Datatype Null Description

STATE VARCHAR2(8) NOT NULL Describes whether users can log directly into the
DVSYS and DVF schemas. Possible values are:

• ENABLED means that users can log directly
into the DVSYS and DVF schemas

• DISABLED means that users cannot log
directly into the DVSYS and DVF schemas

DBA_DV_FACTOR View
The DBA_DV_FACTOR data dictionary view lists the existing factors in the current PDB.

For example:

SELECT NAME, GET_EXPR FROM DBA_DV_FACTOR WHERE NAME = 'Session_User';

Output similar to the following appears:

NAME GET_EXPR
------------- ---
Session_User UPPER(SYS_CONTEXT('USERENV', 'SESSION_USER'))

Column Datatype Null Description

NAME VARCHAR2(128) NOT NULL Name of the factor.

DESCRIPTION VARCHAR2(4000) NULL Description of the factor.

FACTOR_TYPE_NAME VARCHAR2(128) NOT NULL Category of the factor, which is used to classify
the purpose of the factor.

ASSIGN_RULE_SET_NAME VARCHAR2(128) NULL Rule set used to control the identify of the
factor.

GET_EXPR VARCHAR2(1024) NULL PL/SQL expression that retrieves the identity of
a factor.

VALIDATE_EXPR VARCHAR2(1024) NULL PL/SQL expression used to validate the identify
of the factor. It returns a Boolean value.

IDENTIFIED_BY NUMBER NOT NULL Determines the identity of a factor, based on
the expression listed in the GET_EXPR column.
Possible values are:

• 0: By constant
• 1: By method
• 2: By factors

Chapter 24
DBA_DV_FACTOR View

24-13

Column Datatype Null Description

IDENTIFIED_BY_MEANING VARCHAR2(4000) NULL Provides a text description for the
corresponding value in the IDENTIFIED_BY
column. Possible values are:

• By Constant: If IDENTIFIED_COLUMN is
0

• By Method: If IDENTIFIED_COLUMN is 1
• By Factors: If IDENTIFIED_COLUMN is 2

LABELED_BY NUMBER NOT NULL Determines the labeling the factor:

• 0: Labels the identities for the factor
directly from the labels associated with an
Oracle Label Security policy

• 1: Derives the factor identity label from the
labels of its child factor identities.

LABELED_BY_MEANING VARCHAR2(4000) NULL Provides a text description for the
corresponding value in the LABELED_BY
column. Possible values are:

• By Self: If LABELED_BY column is 0
• By Factors: If LABELED_BY column is 1

EVAL_OPTIONS NUMBER NOT NULL Determines how the factor is evaluated when
the user logs on:

• 0: When the database session is created
• 1: Each time the factor is accessed
• 2: On start-up

EVAL_OPTIONS_MEANING VARCHAR2(4000) NULL Provides a text description for the
corresponding value in the EVAL_OPTIONS
column. Possible values are:

• For Session: If EVAL_OPTIONS is 0
• By Access: If EVAL_OPTIONS is 1
• On Startup: If EVAL_OPTIONS is 2

AUDIT_OPTIONS NUMBER NOT NULL Option for auditing the factor using traditional
auditing if you want to generate a custom
Oracle Database Vault audit record. Possible
values are:

• 0: No auditing set
• 1: Always audits
• 2: Audits if get_expr returns an error
• 4: Audits if get_expr is null
• 8: Audits if the validation procedure returns

an error
• 16: Audits if the validation procedure is

false
• 32: Audits if there is no trust level set
• 64: Audits if the trust level is negative.
Starting with Oracle Database release 21c,
traditional auditing is deprecated.

FAIL_OPTIONS NUMBER NOT NULL Options for reporting factor errors:

• 1: Shows an error message.
• 2: Does not show an error message.

Chapter 24
DBA_DV_FACTOR View

24-14

Column Datatype Null Description

FAIL_OPTIONS_MEANING VARCHAR2(4000) NULL Provides a text description for the
corresponding value in the FAIL_OPTIONS
column. Possible values are:

• Show Error Message
• Do Not Show Error Message:

ID# NUMBER NOT NULL The ID number of the factor, which is
automatically generated when the factor is
created

ORACLE_SUPPLIED VARCHAR(3) NOT NULL Indicates whether the factor is a default (that is,
Oracle-supplied) factor or a user-created factor.
Possible values are:

• YES if the factor is a default factor
• NO if the factor is a user-created factor

Related Topics

• DBA_DV_FACTOR_LINK View
The DBA_DV_FACTOR_LINK data dictionary view shows the relationships of each
factor whose identity is determined by the association of child factors.

• DBA_DV_FACTOR_TYPE View
The DBA_DV_FACTOR_TYPE data dictionary view lists the names and descriptions of
factor types used in the system.

DBA_DV_FACTOR_TYPE View
The DBA_DV_FACTOR_TYPE data dictionary view lists the names and descriptions of
factor types used in the system.

For example:

SELECT * FROM DBA_DV_FACTOR_TYPE WHERE NAME = 'Time';

Output similar to the following appears:

NAME DESCRIPTION
--------- --
Time Time-based factor

Column Datatype Null Description

NAME VARCHAR(128) NOT NULL Name of the factor type.

DESCRIPTION VARCHAR(1024) NULL Description of the factor type.

Related Topics

• DBA_DV_FACTOR View
The DBA_DV_FACTOR data dictionary view lists the existing factors in the current
PDB.

• DBA_DV_FACTOR_LINK View
The DBA_DV_FACTOR_LINK data dictionary view shows the relationships of each
factor whose identity is determined by the association of child factors.

Chapter 24
DBA_DV_FACTOR_TYPE View

24-15

DBA_DV_FACTOR_LINK View
The DBA_DV_FACTOR_LINK data dictionary view shows the relationships of each factor
whose identity is determined by the association of child factors.

This view contains one entry for each parent factor and child factor. You can use this
view to resolve the relationships from the factor links to identity maps.

For example:

SELECT PARENT_FACTOR_NAME, CHILD_FACTOR_NAME FROM DBA_DV_FACTOR_LINK;

Output similar to the following appears:

PARENT_FACTOR_NAME CHILD_FACTOR_NAME
------------------------------ ------------------------------
Domain Database_Instance
Domain Database_IP
Domain Database_Hostname

Related Views

• DBA_DV_FACTOR View

• DBA_DV_FACTOR_TYPE View

Column Datatype Null Description

PARENT_FACTOR_NAME VARCHAR(128) NOT NULL Name of the parent factor

CHILD_FACTOR_NAME VARCHAR(128) NOT NULL Name of the child factor of the parent factor

LABEL_IND VARCHAR(1) NOT NULL Indicates whether the child factor that is linked to
the parent factor contributes to the label of the
parent factor in an Oracle Label Security integration.
Possible values are:

• Y (for Yes)
• N (for No)

Related Topics

• DBA_DV_FACTOR View
The DBA_DV_FACTOR data dictionary view lists the existing factors in the current
PDB.

• DBA_DV_FACTOR_TYPE View
The DBA_DV_FACTOR_TYPE data dictionary view lists the names and descriptions of
factor types used in the system.

DBA_DV_IDENTITY View
The DBA_DV_IDENTITY data dictionary view lists the identities for each factor.

For example:

SELECT * FROM DBA_DV_IDENTITY WHERE VALUE = 'GLOBAL SHARED';

Output similar to the following appears, assuming you have created only one factor
identity:

Chapter 24
DBA_DV_FACTOR_LINK View

24-16

FACTOR_NAME VALUE TRUST_LEVEL
---------------- -------------- ------------
Identification_Type GLOBAL SHARED 1

Related Views

• DBA_DV_FACTOR View

• DBA_DV_IDENTITY_MAP View

Column Datatype Null Description

FACTOR_NAME VARCHAR(128) NOT NULL Name of the factor.

VALUE VARCHAR(1024) NOT NULL Value of the factor.

TRUST_LEVEL NUMBER NOT NULL Number that indicates the magnitude of trust relative to
other identities for the same factor.

Related Topics

• DBA_DV_FACTOR View
The DBA_DV_FACTOR data dictionary view lists the existing factors in the current
PDB.

• DBA_DV_IDENTITY_MAP View
The DBA_DV_IDENTITY_MAP data dictionary view lists the mappings for each factor
identity.

DBA_DV_IDENTITY_MAP View
The DBA_DV_IDENTITY_MAP data dictionary view lists the mappings for each factor
identity.

The view includes mapping factors that are identified by other factors to combinations
of parent-child factor links. For each factor, the maps are joined by the OR operation,
and for different factors, the maps are joined by the AND operation.

You can use this view to resolve the identity for factors that are identified by other
factors (for example, a domain) or for factors that have continuous domains (for
example, Age or Temperature).

For example:

SELECT FACTOR_NAME, IDENTITY_VALUE FROM DBA_DV_IDENTITY_MAP;

Output similar to the following appears:

FACTOR_NAME IDENTITY_VALUE
---------------- --------------------
Sector2_Program Accounting-Sensitive

Column Datatype Null Description

FACTOR_NAME VARCHAR(128) NOT NULL Factor the identity map is for.

IDENTITY_VALUE VARCHAR(1024) NOT NULL Value the factor assumes if the identity map
evaluates to TRUE.

OPERATION_CODE VARCHAR(128) NOT NULL Descriptive name of the operation in the
OPERATION_VALUE column.

Chapter 24
DBA_DV_IDENTITY_MAP View

24-17

Column Datatype Null Description

OPERATION_VALUE VARCHAR(4000) NULL Relational operator for the identity map (for example,
<, >, =, and so on).

OPERAND1 VARCHAR(1024) NULL Left operand for the relational operator; refers to the
low value you enter.

OPERAND2 VARCHAR(1024) NULL Right operand for the relational operator; refers to
the high value you enter.

PARENT_FACTOR_NAME VARCHAR(128) NULL The parent factor link to which the map is related.

CHILD_FACTOR_NAME VARCHAR(128) NULL The child factor link to which the map is related.

LABEL_IND VARCHAR(1) NULL Indicates whether the child factor being linked to
the parent factor contributes to the label of the
parent factor in an Oracle Label Security integration.
Possible values are:

• Y (for Yes)
• N (for No)

Related Topics

• DBA_DV_FACTOR View
The DBA_DV_FACTOR data dictionary view lists the existing factors in the current
PDB.

• DBA_DV_IDENTITY View
The DBA_DV_IDENTITY data dictionary view lists the identities for each factor.

DBA_DV_JOB_AUTH View
The DBA_DV_JOB_AUTH data dictionary view lists the authorizations for using Oracle
Scheduler in an Oracle Database Vault environment.

For example:

SELECT * FROM DBA_DV_JOB_AUTH WHERE GRANTEE = 'PRESTON';

Output similar to the following appears:

GRANTEE SCHEMA
------- ------
PRESTON OE

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the user who has been granted Oracle
Scheduler authorization

SCHEMA VARCHAR2(128) NOT NULL Name of the schema on which the user GRANTEE is
authorized to perform Oracle Scheduler operations

DBA_DV_MAC_POLICY View
The DBA_DV_MAC_POLICY data dictionary view lists the Oracle Label Security policies
defined for use with Oracle Database Vault.

For example:

Chapter 24
DBA_DV_JOB_AUTH View

24-18

SELECT POLICY_NAME, ALGORITHM_CODE, ALGORITHM_MEANING
 FROM DBA_DV_MAC_POLICY;

Output similar to the following appears:

POLICY_NAME ALGORITHM_CODE ALGORITHM_MEANING
--------------- ----------------- --------------------------------
ACCESS_DATA LUI Minimum Level/Union/Intersection

Column Datatype Null Description

POLICY_NAME VARCHAR(128) NOT NULL Name of the policy.

ALGORITHM_CODE VARCHAR(128) NOT NULL Merge algorithm code used for the policy. See Related
Topics.

ALGORITHM_MEANING VARCHAR(4000) NULL Provides a text description for the corresponding value
in the ALGORITHM_CODE column. See Related Topics.

ERROR_LABEL VARCHAR(4000) NULL Label specified for initialization errors, to be set when
a configuration error or run-time error occurs during
session initialization.

Related Topics

• Table 19-2

• DBA_DV_MAC_POLICY_FACTOR View
The DBA_DV_MAC_POLICY data dictionary view lists the factors that are associated
with Oracle Label Security policies.

• DBA_DV_POLICY_LABEL View
The DBA_DV_POLICY_LABEL data dictionary view lists the Oracle Label Security
label for each factor identifier in the DBA_DV_IDENTITY view for each policy.

DBA_DV_MAC_POLICY_FACTOR View
The DBA_DV_MAC_POLICY data dictionary view lists the factors that are associated with
Oracle Label Security policies.

You can use this view to determine what factors contribute to the maximum session
label for each policy using the DBA_DV_MAC_POLICY view.

For example:

SELECT * FROM DBA_DV_MAC_POLICY_FACTOR;

Output similar to the following appears:

FACTOR_NAME MAC_POLICY_NAME
-------------- ------------------
App_Host_Name Access Locations

Column Datatype Null Description

FACTOR_NAME VARCHAR(128) NOT NULL Name of the factor

MAC_POLICY_NAME VARCHAR(128) NOT NULL Name of the Oracle Label Security policy associated with
this factor

Chapter 24
DBA_DV_MAC_POLICY_FACTOR View

24-19

Related Topics

• DBA_DV_MAC_POLICY View
The DBA_DV_MAC_POLICY data dictionary view lists the Oracle Label Security
policies defined for use with Oracle Database Vault.

• DBA_DV_POLICY_LABEL View
The DBA_DV_POLICY_LABEL data dictionary view lists the Oracle Label Security
label for each factor identifier in the DBA_DV_IDENTITY view for each policy.

DBA_DV_MAINTENANCE_AUTH View
The DBA_DV_MAINTENANCE_AUTH data dictionary view provides information about
the configuration of Oracle Database Vault authorizations to use Information Life
Management (ILM) features.

For example:

SELECT GRANTEE, ACTION STATE FROM DBA_DV_MAINTENANCE_AUTH;

Output similar to the following appears:

GRANTEE ACTION
------------------------- --------
PSMITH ILM

Column Datatype Null Description

GRANTEE VARCHAR(128) NOT NULL Name of the grantee

SCHEMA VARCHAR(128) NOT NULL Schema name or % (for all schemas)

OBJECT VARCHAR(128) NOT NULL Object name or % (for all objects in a schema)

OBJECT_TYPE VARCHAR(30) NOT NULL Object type

ACTION VARCHAR(30) NOT NULL Maintenance action ILM for ILM operations

DBA_DV_ORADEBUG View
The DBA_DV_ORADEBUG data dictionary view indicates whether users can use the
ORADEBUG utility in an Oracle Database Vault environment.

For example:

SELECT * FROM DBA_DV_ORADEBUG;

Output similar to the following appears:

STATE

DISABLED

Chapter 24
DBA_DV_MAINTENANCE_AUTH View

24-20

Column Datatype Null Description

STATE VARCHAR2(8) NOT NULL Describes whether the ORADEBUG utility can be used in
a Database Vault-enabled environment. Possible values
are:

• ENABLED means that users can run the ORADEBUG
utility

• DISABLED means that users cannot run the
ORADEBUG utility

DBA_DV_PATCH_ADMIN_AUDIT View
The DBA_DV_PATCH_ADMIN_AUDIT data dictionary view indicates if auditing has been
enabled or disabled for the user who has been granted the DV_ADMIN_PATCH role.

The DBMS_MACADM.ENABLE_DV_PATCH_ADMIN_AUDIT procedure enables this type of
auditing.

For example:

SELECT * FROM DBA_DV_PATCH_ADMIN_AUDIT;

Output similar to the following appears:

STATE

DISABLED

Column Datatype Null Description

STATE VARCHAR2(8) NOT NULL Describes whether auditing has been enabled or disabled
for the DV_ADMIN_PATCH role user. Possible values are:

• ENABLED means that the auditing has been enabled
• DISABLED means that the auditing has been disabled

Related Topics

• ENABLE_DV_PATCH_ADMIN_AUDIT Procedure
The ENABLE_DV_PATCH_ADMIN_AUDIT procedure enables realm, command rule, and
rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

• DISABLE_DV_PATCH_ADMIN_AUDIT Procedure
The DISABLE_DV_PATCH_ADMIN_AUDIT procedure disables realm, command rule,
and rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

DBA_DV_POLICY View
The DBA_DV_POLICY data dictionary view lists the Oracle Database Vault policies that
were created in the current database instance.

For example:

SELECT POLICY_NAME, STATE FROM DBA_DV_POLICY
 WHERE STATE = 'ENABLED';

Output similar to the following appears:

Chapter 24
DBA_DV_PATCH_ADMIN_AUDIT View

24-21

POLICY_NAME STATE
---------------------------------- -------
Oracle Account Management Controls ENABLED
Oracle System Protection Controls ENABLED

Column Datatype Null Description

POLICY_NAME VARCHAR(128) NOT NULL Names of the Oracle Database Vault policies that have
been created.

DESCRIPTION VARCHAR(1024) NULL Description of the policy that was created

STATE VARCHAR(8) NULL Specifies whether the policy is enabled. Possible values
are:

• ENABLED
• DISABLED
• SIMULATION

ID# VARCHAR(1) NOT NULL Is a system-generated ID that was assigned to the policy
when the policy was created

ORACLE_SUPPLIED VARCHAR(3) NULL Indicates whether the policy is a default Oracle Database
Vault policy

PL_SQL_STACK VARCHAR(3) NULL When simulation mode is enabled, indicates whether the
PL/SQL stack has been recorded for failed operations.
TRUE indicates that the PL/SQL stack has been recorded;
FALSE indicates that the PL/SQL stack has not been
recorded.

Related Topics

• DBA_DV_POLICY_OBJECT View
The DBA_DV_POLICY_OBJECT data dictionary view lists information about the objects
that are protected by Oracle Database Vault policies in the current database
instance.

• DBA_DV_SIMULATION_LOG View
The DBA_DV_SIMULATION_LOG data dictionary view captures simulation log
information for realms and command rules that have had simulation mode
enabled.

• DVSYS.POLICY_OWNER_POLICY View
The DVSYS.POLICY_OWNER_POLICY data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information such as the names,
descriptions, and states of existing policies in the current database instance,
including policies created by other policy owners.

DBA_DV_POLICY_LABEL View
The DBA_DV_POLICY_LABEL data dictionary view lists the Oracle Label Security label for
each factor identifier in the DBA_DV_IDENTITY view for each policy.

For example:

SELECT * FROM DBA_DV_POLICY_LABEL;

Output similar to the following appears:

Chapter 24
DBA_DV_POLICY_LABEL View

24-22

IDENTITY_VALUE FACTOR_NAME POLICY_NAME LABEL
---------------- -------------- ---------------- ---------
App_Host_Name Sect2_Fin_Apps Access Locations Sensitive

Column Datatype Null Description

IDENTITY_VALUE VARCHAR(1024) NOT NULL Name of the factor identifier.

FACTOR_NAME VARCHAR(128) NOT NULL Name of the factor associated with the factor identifier.

POLICY_NAME VARCHAR(128) NOT NULL Name of the Oracle Label Security policy associated with
this factor.

LABEL VARCHAR(4000) NOT NULL Name of the Oracle Label Security label associated with
the policy.

Related Topics

• DBA_DV_MAC_POLICY View
The DBA_DV_MAC_POLICY data dictionary view lists the Oracle Label Security
policies defined for use with Oracle Database Vault.

• DBA_DV_MAC_POLICY_FACTOR View
The DBA_DV_MAC_POLICY data dictionary view lists the factors that are associated
with Oracle Label Security policies.

DBA_DV_POLICY_OBJECT View
The DBA_DV_POLICY_OBJECT data dictionary view lists information about the objects
that are protected by Oracle Database Vault policies in the current database instance.

For example:

SELECT POLICY_NAME, OBJECT_TYPE FROM DBA_DV_POLICY_OBJECT WHERE POLICY_NAME LIKE
'%Protection Controls';

Output similar to the following appears:

POLICY_NAME OBJECT_TYPE
---------------------------------- ------------
Oracle System Protection Controls REALM

Column Datatype Null Description

POLICY_NAME VARCHAR(128) NOT NULL Names of the Oracle Database Vault policies that have
been created.

OBJECT_TYPE VARCHAR(12) NULL Type of object that is being protected, such as REALM

COMMAND VARCHAR(128) NULL Name of the command rules that are protected by
Database Vault policies

COMMAND_OBJ_OWN
ER

VARCHAR(128) NULL Names of object owners that are associated with
Database Vault policies

COMMAND_OBJ_NAM
E

VARCHAR(128) NULL Names of objects that are associated with Database Vault
policies

Chapter 24
DBA_DV_POLICY_OBJECT View

24-23

Column Datatype Null Description

COMMAND_CLAUSE VARCHAR(100) NULL A clause from either the ALTER SYSTEM or ALTER
SESSION SQL statement, which was used to create the
command rule. For example, you it could list the SET
clause for the ALTER SESSION statement.

The command rule settings for these two statements are
described in the DBMS_MACADM.CREATE_COMMAND_RULE
procedure. See Related Topics.

COMMAND_PARAMET
ER

VARCHAR(128) NULL A parameter from the ALTER SYSTEM or ALTER
SESSIONcommand rule CLAUSE_NAME setting.

See Related Topics.

COMMAND_EVENT VARCHAR(128) NULL An event that the ALTER SYSTEM or ALTER SESSION
command rule defines.

See Related Topics.

COMMAND_COMPONE
NT

VARCHAR(128) NULL A component of the EVENT_NAME setting for the ALTER
SYSTEM or ALTER SESSION command rule.

See Related Topics.

COMMAND_ACTION VARCHAR(128) NULL An action of the EVENT_NAME setting for the ALTER
SYSTEM or ALTER SESSION command rule.

See Related Topics.

COMMON VARCHAR(3) NULL Indicates if the policy objects are local or common.
Possible values are:

• YES if the policy objects are common
• NO if the policy objects are local

INHERITED VARCHAR(3) NULL Shows the inheritance status of the policy object, when
the COMMON column output is YES. Values are as follows:

• YES means that the policy object was defined in
another container that is higher in the hierarchy of
the container tree, and inherited in this container
when the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the policy object is a local object,
or it is common from that container. For example,
in an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

Related Topics

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

• DBA_DV_POLICY View
The DBA_DV_POLICY data dictionary view lists the Oracle Database Vault policies
that were created in the current database instance.

• DBA_DV_POLICY_OWNER View
The DBA_DV_POLICY_OWNER data dictionary view lists the owners of Oracle
Database Vault policies that were created in the current database instance.

Chapter 24
DBA_DV_POLICY_OBJECT View

24-24

DBA_DV_POLICY_OWNER View
The DBA_DV_POLICY_OWNER data dictionary view lists the owners of Oracle Database
Vault policies that were created in the current database instance.

For example:

SELECT * FROM DBA_DV_POLICY_OWNER;

Output similar to the following appears:

POLICY_OWNER POLICY_OWNER
---------------------------------- ------------
Oracle System Protection Controls PSMITH

Column Datatype Null Description

POLICY_NAME VARCHAR(128) NOT NULL Names of the Oracle Database Vault policies that have
been created.

POLICY_OWNER VARCHAR(128) NOT NULL Names of users who have own Database Vault policies

Related Topics

• DBA_DV_POLICY View
The DBA_DV_POLICY data dictionary view lists the Oracle Database Vault policies
that were created in the current database instance.

• DBA_DV_POLICY_OBJECT View
The DBA_DV_POLICY_OBJECT data dictionary view lists information about the objects
that are protected by Oracle Database Vault policies in the current database
instance.

DBA_DV_PREPROCESSOR_AUTH View
The DBA_DV_PREPROCESSOR_AUTH data dictionary view shows users who have been
granted authorization to execute preprocessor programs through external tables.

For example:

SELECT * FROM DBA_DV_PREPROCESSOR_AUTH WHERE GRANTEE = 'PFITCH';

Output similar to the following appears:

GRANTEE

PFITCH

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the user who has been granted
authorization to execute preprocessor programs

Related Topics

• Using Oracle Database Replay with Oracle Database Vault
Database administrators can authorize Oracle Database Replay users to work in a
Database Vault environment.

Chapter 24
DBA_DV_POLICY_OWNER View

24-25

DBA_DV_PROXY_AUTH View
The DBA_DV_PROXY_AUTH data dictionary view lists the proxy users and schemas that
were specified by the DBMS_MACADM.AUTHORIZE_PROXY_USER procedure.

This procedure grants a proxy user authorization to proxy other user accounts.

For example:

SELECT * FROM DBA_DV_DDL_AUTH WHERE GRANTEE = 'PRESTON';

Output similar to the following appears:

GRANTEE SCHEMA
------- ------
PRESTON DKENT

Column Datatype Null Description

GRANTEE VARCHAR2(128) NOT NULL Name of the proxy user

SCHEMA VARCHAR2(128) NOT NULL Name of the schema that is proxied by the
GRANTEE user.

Related Topics

• AUTHORIZE_PROXY_USER Procedure
The AUTHORIZE_PROXY_USER procedure grants a proxy user authorization to proxy
other user accounts, as long as the proxy user has database authorization.

• UNAUTHORIZE_PROXY_USER Procedure
The UNAUTHORIZE_PROXY_USER procedure revokes authorization from a user who
was granted proxy authorization from the DBMS_MACADM.AUTHORIZE_PROXY_USER
procedure.

DBA_DV_PUB_PRIVS View
The DBA_DV_PUB_PRIVS data dictionary view lists data reflected in the Oracle Database
Vault privilege management reports used in Oracle Database Vault Administrator.

See also Privilege Management - Summary Reports.

For example:

SELECT USERNAME, ACCESS_TYPE FROM DBA_DV_PUB_PRIVS WHERE USERNAME = 'OE';

Output similar to the following appears:

USERNAME ACCESS_TYPE
----------- -----------------
OE PUBLIC

Column Datatype Null Description

USERNAME VARCHAR(128) NOT NULL Database schema in the current database instance.

ACCESS_TYPE VARCHAR(128) NULL Access type granted to the user listed in the USERNAME
column (for example, PUBLIC).

Chapter 24
DBA_DV_PROXY_AUTH View

24-26

Column Datatype Null Description

PRIVILEGE VARCHAR(40) NOT NULL Privilege granted to the user listed in the USERNAME
column.

OWNER VARCHAR(128) NOT NULL Owner of the database schema to which the USERNAME
user has been granted privileges.

OBJECT_NAME VARCHAR(128) NOT NULL Name of the object within the schema listed in the OWNER
column.

Related Topics

• Privilege Management - Summary Reports
The privilege management summary reports track privilege distribution by
grantees, owners, and privileges.

• DBA_DV_USER_PRIVS View
The DBA_DV_USER_PRIVS data dictionary view lists the privileges for a database
user account excluding privileges granted through the PUBLIC role.

• DBA_DV_USER_PRIVS_ALL View
The DBA_DV_USER_PRIVS_ALL data dictionary view lists the privileges for a
database account including privileges granted through PUBLIC.

• DBA_DV_ROLE View
The DBA_DV_ROLE data dictionary view lists the Oracle Database Vault secure
application roles used in privilege management.

DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current database
instance.

For example:

SELECT NAME, ENABLED, COMMON FROM DBA_DV_REALM ORDER BY NAME;

Output similar to the following appears:

NAME ENABLED COMMON
--------------------------------- -------- ------
Database Vault Account Management Y NO
...

Column Datatype Null Description

NAME VARCHAR(128) NOT NULL Names of the realms created.

DESCRIPTION VARCHAR(1024) NOT NULL Description of the realm created.

Chapter 24
DBA_DV_REALM View

24-27

Column Datatype Null Description

AUDIT_OPTIONS NUMBER NOT NULL Specifies whether auditing using traditional auditing is
enabled. Possible values are:

• 0: No auditing for the realm.
• 1: Creates an audit record when a realm violation

occurs (for example, when an unauthorized user tries
to modify an object that is protected by the realm).

• 2: Creates an audit record for authorized activities on
objects protected by the realm.

• 3: Creates an audit record for both authorized and
unauthorized activities on objects protected by the
realm.

Starting with Oracle Database release 21c, traditional
auditing is deprecated.

REALM_TYPE VARCHAR(9) NULL Type of realm: whether it is a regular realm
or a mandatory realm. See realm_type in
the UPDATE_REALM command description for more
information about possible values. (See Related Topics.)

COMMON VARCHAR(3) NOT NULL Indicates whether the realm is local or common. Possible
values are:

• YES if the realm is common
• NO if the realm is local

INHERITED VARCHAR(3) NULL Shows the inheritance status of the realm, when the
COMMON column output is YES. Values are as follows:
• YES means that the realm was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the realm is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

ENABLED VARCHAR(1) NOT NULL Possible values are as follows:

• Y indicates that realm checking is enabled
• N indicates it is disabled
• S indicates the realm is in simulation mode

ID# NUMBER NOT NULL The ID number of the realm, which is automatically
generated when the realm is created

ORACLE_SUPPLIED VARCHAR(3) NOT NULL Indicates whether the realm is a default (that is, Oracle-
supplied) realm or a user-created command rule. Possible
values are:

• YES if the realm is a default realm
• NO if the realm is a user-created realm

PL_SQL_STACK VARCHAR(3) NULL When simulation mode is enabled, indicates whether the
PL/SQL stack has been recorded for failed operations.
TRUE indicates that the PL/SQL stack has been recorded;
FALSE indicates that the PL/SQL stack has not been
recorded.

Chapter 24
DBA_DV_REALM View

24-28

Related Topics

• DBA_DV_REALM_AUTH View
The DBA_DV_REALM_AUTH data dictionary view lists database user account or role
authorization (GRANTEE) who can access realm objects.

• DBA_DV_REALM_OBJECT View
The DBA_DV_REALM_OBJECT data dictionary view lists the database schemas, or
subsets of schemas, that are secured by the realms.

• UPDATE_REALM Procedure
The UPDATE_REALM procedure updates a realm.

DBA_DV_REALM_AUTH View
The DBA_DV_REALM_AUTH data dictionary view lists database user account or role
authorization (GRANTEE) who can access realm objects.

For example:

SELECT REALM_NAME, GRANTEE, AUTH_RULE_SET_NAME FROM DBA_DV_REALM_AUTH;

Output similar to the following appears:

REALM_NAME GRANTEE AUTH_RULE_SET_NAME
---------------------------- --------- ---------------------
Performance Statistics Realm SYSADM Check Conf Access

Column Datatype Null Description

REALM_NAME VARCHAR(128) NULL Name of the realm.

COMMON_REALM VARCHAR(3) NULL For a multitenant environment, indicates whether the
realm is local or common. Possible values are:

• YES if the realm is common
• NO if the realm is local

INHERITED_REALM VARCHAR(3) NULL Shows the inheritance status of the realm, when the
COMMON column output is YES. Values are as follows:
• YES means that the realm was defined in

another container that is higher in the hierarchy
of the container tree, and inherited in this
container when the Database Vault policy was
synced during the synchronization process of
applications in an application PDB.

• NO means that the realm is a local object, or
it is common from that container. For example,
in an application root, an application common
realm will have an INHERITED value NO but a
CDB root common command rule will have an
INHERITED value of YES.

GRANTEE VARCHAR(128) NOT NULL User or role name to authorize as owner or
participant.

AUTH_RULE_SET_NAME VARCHAR(128) NULL Rule set to check before authorizing. If the rule set
evaluates to TRUE, then the authorization is allowed.

AUTH_OPTIONS VARCHAR(4000) NULL Type of realm authorization: either Participant or
Owner.

Chapter 24
DBA_DV_REALM_AUTH View

24-29

Column Datatype Null Description

COMMON_AUTH VARCHAR(3) NULL Indicates whether the authorization to the common
realm is local or common. Possible values are:

• YES if the authorization is common
• NO if the authorization is local to this PDB

INHERITED_AUTH VARCHAR(3) NULL Shows the inheritance status of the realm
authorization, when the COMMON_AUTH column
output is YES. Values are as follows:

• YES means that the realm authorization was
defined in another container that is higher in the
hierarchy of the container tree, and inherited in
this container when the Database Vault policy
was applied.

• NO means that the realm authorization is local,
or it is common from that container. For
example, in an application root, an application
common realm will have an INHERITED_AUTH
value NO but a CDB root common command
rule will have an INHERITED_AUTH value of
YES.

Related Topics

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

• DBA_DV_REALM_OBJECT View
The DBA_DV_REALM_OBJECT data dictionary view lists the database schemas, or
subsets of schemas, that are secured by the realms.

DBA_DV_REALM_OBJECT View
The DBA_DV_REALM_OBJECT data dictionary view lists the database schemas, or subsets
of schemas, that are secured by the realms.

See About Realm-Secured Objects for more information.

For example:

SELECT REALM_NAME, OWNER, OBJECT_NAME, COMMON_REALM FROM DBA_DV_REALM_OBJECT;

Output similar to the following appears:

REALM_NAME OWNER OBJECT_NAME COMMON_REALM
---------------------------- -------- ----------- ------------
Performance Statistics Realm OE ORDERS NO

Column Datatype Null Description

REALM_NAME VARCHAR(128) NOT NULL Name of the realm.

Chapter 24
DBA_DV_REALM_OBJECT View

24-30

Column Datatype Null Description

COMMON_REALM VARCHAR(3) NOT NULL Indicates whether this realm is a common realm or
a local realm. Possible values are:

• YES if the realm is common
• NO if the realm is local

INHERITED_REALM VARCHAR(3) NOT NULL Shows the inheritance status of the realm when
the COMMON column output is YES. Values are as
follows:
• YES means that the realm was defined

in another container that is higher in the
hierarchy of the container tree, and inherited
in this container when the Database Vault
policy was synced during the synchronization
process of applications in an application PDB.

• NO means that the realm is a local object, or
it is common from that container. For example,
in an application root, an application common
realm will have an INHERITED value NO but a
CDB root common command rule will have an
INHERITED value of YES.

OWNER VARCHAR(128) NOT NULL Database schema owner who owns the object.

OBJECT_NAME VARCHAR(128) NOT NULL Name of the object the realm protects.

OBJECT_TYPE VARCHAR(32) NOT NULL Type of object the realm protects, such as a
database table, view, index, or role.

Related Topics

• About Realm-Secured Objects
Realm-secured objects define the territory—a set of schema and database objects
and roles—that a realm protects.

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

• DBA_DV_REALM_AUTH View
The DBA_DV_REALM_AUTH data dictionary view lists database user account or role
authorization (GRANTEE) who can access realm objects.

DBA_DV_ROLE View
The DBA_DV_ROLE data dictionary view lists the Oracle Database Vault secure
application roles used in privilege management.

For example:

SELECT ROLE, RULE_NAME FROM DBA_DV_ROLE;

Output similar to the following appears:

ROLE RULE_NAME
------------------ --------------------
Sector2_APP_MGR Check App2 Access
Sector2_APP_DBA Check App2 Access

Chapter 24
DBA_DV_ROLE View

24-31

Column Datatype Null Description

ROLE VARCHAR(128) NOT NULL Name of the secure application role.

RULE_NAME VARCHAR(128) NOT NULL Name of the rule set associated with the secure application
role.

ENABLED VARCHAR(1) NOT NULL Indicates whether the secure application role is enabled.
Possible values are:

• Y (Yes) if the role is enabled
• N (No) if the role is disabled

ID# NUMBER NOT NULL The ID number of the command rule, which is
automatically generated when the command rule is
created

ORACLE_SUPPLIE
D

VARCHAR(3) NOT NULL Indicates whether the command rule is a default (that
is, Oracle-supplied) command rule or a user-created
command rule. Possible values are:

• YES if the command rule is a default command rule
• NO if the command rule is a user-created command

rule

Related Topics

• DBA_DV_PUB_PRIVS View
The DBA_DV_PUB_PRIVS data dictionary view lists data reflected in the Oracle
Database Vault privilege management reports used in Oracle Database Vault
Administrator.

• DBA_DV_USER_PRIVS View
The DBA_DV_USER_PRIVS data dictionary view lists the privileges for a database
user account excluding privileges granted through the PUBLIC role.

• DBA_DV_USER_PRIVS_ALL View
The DBA_DV_USER_PRIVS_ALL data dictionary view lists the privileges for a
database account including privileges granted through PUBLIC.

DBA_DV_RULE View
The DBA_DV_RULE data dictionary view lists the rules that have been defined.

For example:

SELECT NAME, RULE_EXPR FROM DBA_DV_RULE WHERE NAME = 'Maintenance Window';

Output similar to the following appears:

NAME RULE_EXP
------------------- --
Maintenance Window TO_CHAR(SYSDATE,'HH24') BETWEEN '10' AND '12'

To find the rule sets that use specific rules, query the DBA_DV_RULE_SET_RULE view.

Column Datatype Null Description

NAME VARCHAR(128) NOT NULL Name of the rule.

RULE_EXPR VARCHAR(1024) NOT NULL PL/SQL expression for the rule.

Chapter 24
DBA_DV_RULE View

24-32

Column Datatype Null Description

COMMON VARCHAR(3) NOT NULL Indicates whether the rule is local or common. Possible
values are:

• YES if the rule is common
• NO if the rule is local

INHERITED VARCHAR(3) NULL Shows the inheritance status of the rule, when the
COMMON column output is YES. Values are as follows:
• YES means that the rule was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the rule is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

ID# NUMBER NOT NULL The ID number of the rule, which is automatically
generated when the rule is created

ORACLE_SUPPLIED VARCHAR(3) NULL Indicates whether the rule is a default (that is, Oracle-
supplied) rule or a user-created rule. Possible values are:

• YES if the rule is a default rule
• NO if the rule is a user-created rule

Related Topics

• DBA_DV_RULE_SET View
The DBA_DV_RULE_SET data dictionary view lists the rules sets that have been
created.

• DBA_DV_RULE_SET_RULE View
The DBA_DV_RULE_SET_RULE data dictionary view lists rules that are associated
with existing rule sets.

DBA_DV_RULE_SET View
The DBA_DV_RULE_SET data dictionary view lists the rules sets that have been created.

For example:

SELECT RULE_SET_NAME, HANDLER_OPTIONS, HANDLER FROM DBA_DV_RULE_SET
 WHERE RULE_SET_NAME = 'Maintenance Period';

Output similar to the following appears:

RULE_SET_NAME HANDLER_OPTIONS HANDLER
------------------- ---------------- ----------------------
Maintenance Period 1 dbavowner.email_alert

Column Datatype Null Description

RULE_SET_NAME VARCHAR(128) NOT NULL Name of the rule set.

Chapter 24
DBA_DV_RULE_SET View

24-33

Column Datatype Null Description

DESCRIPTION VARCHAR(1024) NULL Description of the rule set.

ENABLED VARCHAR(1) NOT NULL Indicates whether the rule set has been
enabled. Y (Yes) enables the rule set; N (No)
disables it.

EVAL_OPTIONS_MEANING VARCHAR(4000) NULL For rules sets that contain multiple rules,
determines how many rules are evaluated.
Possible values are:

• All True: All rules in the rule set must
evaluate to true for the rule set itself to
evaluate to TRUE.

• Any True: At least one rule in the rule set
must evaluate to true for the rule set itself
to evaluate to TRUE.

AUDIT_OPTIONS NUMBER NOT NULL Indicates when auditing using traditional
auditing is used. Possible values are:

• 0: No auditing
• 1: Audit on failure
• 2: Audit on success
• 3: Audit on both failure and success
Starting with Oracle Database release 21c,
traditional auditing is deprecated.

FAIL_OPTIONS_MEANING VARCHAR(4000) NULL Determines when an audit record is created for
the rule set. Possible values are:

• Do Not Show Error Message.
• Show Error Message

FAIL_MESSAGE VARCHAR(80) NULL Error message for failure that is associated
with the fail code listed in the FAIL_CODE
column.

FAIL_CODE VARCHAR(10) NULL The error message number associated with the
message listed in the FAIL_MESSAGE column.
Possible values are in the ranges of -20000 to
-20999 or 20000 to 20999.

HANDLER_OPTIONS NUMBER NOT NULL Determines how error handling is used.
Possible values are:

• 0: Disables error handling.
• 1: Call handler on rule set failure.
• 2: Call handler on rule set success.

HANDLER VARCHAR(1024) NULL Name of the PL/SQL function or procedure that
defines the custom event handler logic.

IS_STATIC VARCHAR2(5) NULL Indicates how often the rule set is evaluated
during a user session. Possible values are:

• TRUE: The rule set is evaluated once, and
result of the rule set is reused throughout
the user session.

• FALSE (default): The rule set is evaluated
each time it is accessed during the user
session.

Chapter 24
DBA_DV_RULE_SET View

24-34

Column Datatype Null Description

COMMON VARCHAR2(3) NULL Indicates whether the rule set is local or
common. Possible values are:

• YES if the rule set is common
• NO if the rule set is local

INHERITED VARCHAR2(3) NULL Shows the inheritance status of the rule set,
when the COMMON column output is YES. Values
are as follows:
• YES means that the rule set was defined

in another container that is higher in
the hierarchy of the container tree,
and inherited in this container when
the Database Vault policy was synced
during the synchronization process of
applications in an application PDB.

• NO means that the rule set is a local
object, or it is common from that container.
For example, in an application root, an
application common realm will have an
INHERITED value NO but a CDB root
common command rule will have an
INHERITED value of YES.

ID# NUMBER) NOT NULL The ID number of the rule set, which is
automatically generated when the rule set is
created

ORACLE_SUPPLIED VARCHAR2(3) NULL Indicates whether the rule set is a default (that
is, Oracle-supplied) rule set or a user-created
rule set. Possible values are:

• YES if the rule set is a default rule set
• NO if the rule set is a user-created rule set

Related Topics

• DBA_DV_RULE View
The DBA_DV_RULE data dictionary view lists the rules that have been defined.

• DBA_DV_RULE_SET_RULE View
The DBA_DV_RULE_SET_RULE data dictionary view lists rules that are associated
with existing rule sets.

DBA_DV_RULE_SET_RULE View
The DBA_DV_RULE_SET_RULE data dictionary view lists rules that are associated with
existing rule sets.

For example:

SELECT RULE_SET_NAME, RULE_NAME, RULE_EXPR FROM DBA_DV_RULE_SET_RULE
 WHERE RULE_NAME = 'Is Security Officer';

Output similar to the following appears:

RULE_SET_NAME RULE_NAME RULE_EXP
---------------------------- ------------------ ---------------------------------
Can Grant VPD Administration Is Security Owner DBMS_MACUTL.USER_HAS_ROLE_VARCHAR

Chapter 24
DBA_DV_RULE_SET_RULE View

24-35

 ('DV_OWNER',
 dvsys.dv_login_user) = 'Y'

Column Datatype Null Description

RULE_SET_NAME VARCHAR(128) NOT NULL Name of the rule set that contains the rule.

RULE_NAME VARCHAR(128) NOT NULL Name of the rule.

RULE_EXPR VARCHAR(1024) NOT NULL PL/SQL expression that defines the rule listed in the
RULE_NAME column.

ENABLED VARCHAR(1) NOT NULL Indicates whether the rule is enabled or disabled. Y (Yes)
enables the rule set; N (No) disables it.

RULE_ORDER NUMBER NOT NULL The order in which rules are used within the rule set.
Does not apply to this release.

COMMON VARCHAR(3) NOT NULL Indicates whether the rule is local or common. Possible
values are:

• YES if the rule is common
• NO if the rule is local

INHERITED VARCHAR(3) NOT NULL Shows the inheritance status of the rule, when the
COMMON column output is YES. Values are as follows:
• YES means that the rule was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the rule is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

Related Topics

• DBA_DV_RULE View
The DBA_DV_RULE data dictionary view lists the rules that have been defined.

• DBA_DV_RULE_SET View
The DBA_DV_RULE_SET data dictionary view lists the rules sets that have been
created.

DBA_DV_SIMULATION_LOG View
The DBA_DV_SIMULATION_LOG data dictionary view captures simulation log information
for realms and command rules that have had simulation mode enabled.

For example:

SELECT USERNAME, COMMAND
FROM DBA_DV_SIMULATION_LOG, REALM_NAME
WHERE REALM_NAME = 'HR Realm';

Output similar to the following appears:

Chapter 24
DBA_DV_SIMULATION_LOG View

24-36

USERNAME COMMAND
------------- ---
PSMITH SELECT

Column Datatype Null Description

ID NUMBER NOT NULL Simulation log ID

USERNAME VARCHAR2(128) NOT NULL Name of the user whose information is being
tracked

COMMAND VARCHAR2(128) NOT NULL Command rule being tracked

For a listing of existing command rules, query
the DBA_DV_COMMAND_RULE view.

VIOLATION_TYPE VARCHAR2(4000) NULL Type of violation. See Table 24-2 for more
information.

REALM_NAME VARCHAR2(4000) NULL Realm being tracked. Multiple realms are
represented as comma separated names in
the VARCHAR2 field.

For a listing of existing realms, query the
DBA_DV_REALM view.

REALM_TYPE VARCHAR2(9) NULL Type of realm being tracked (for example,
mandatory realms).

OBJECT_OWNER VARCHAR2(128) NULL For command rules, the database schema to
which the command rule applied

OBJECT_NAME VARCHAR2(128) NULL For command rules, the database object that
the command rule protects

OBJECT_TYPE VARCHAR2(129) NULL For command rules, the type of object that is
being protected

RULE_SET_NAME VARCHAR2(4000) NULL Rule set being tracked; it is associated
with a command rule. Multiple rule sets are
represented as comma separated names in
the VARCHAR2 field.

For a listing of existing rule sets, query
the DBA_DV_RULE_SET view, described in
DBA_DV_RULE_SET View

RETURNCODE NUMBER NOT NULL The Oracle Database ORA error that results if
the Database Vault entity was in the enabled
state rather than in simulation state

SQLTEXT VARCHAR2(4000) NULL SQL text that the simulation mode captures

AUTHENTICATION_METHOD VARCHAR2(10) NULL Authentication method used.

CLIENT_IP VARCHAR2(45) NULL The IP address of the machine from which the
client is connected

DB_DOMAIN VARCHAR2(128) NULL The domain of the database as specified in
the DB_DOMAIN initialization parameter

DATABASE_HOSTNAME VARCHAR2(128) NULL The host name of the computer on which the
instance is running

DATABASE_INSTANCE VARCHAR2(5) NULL The instance identification number of the
current instance

DATABASE_IP VARCHAR2(45) NULL The IP address of the computer on which the
instance is running

DATABASE_NAME VARCHAR2(128) NULL The name of the database as specified in the
DB_NAME initialization parameter

Chapter 24
DBA_DV_SIMULATION_LOG View

24-37

Column Datatype Null Description

DOMAIN VARCHAR2(4000) NULL A named collection of physical, configuration,
or implementation-specific factors in the run-
time environment.

ENTERPRISE_IDENTITY VARCHAR2(1024) NULL The enterprise-wide identity for the user.

IDENTIFICATION_TYPE VARCHAR2(14) NULL The way the user schema was created in the
database.

LANG VARCHAR2(10) NULL The ISO abbreviation for the language name,
a shorter form than the existing LANGUAGE
parameter

LANGUAGE VARCHAR2(100) NULL The language and territory your session
currently uses, along with the database
character set.

MACHINE VARCHAR2(64) NULL The host name for the database client
that established the current session. If
you must find out whether the computer
was used for a client or server session,
then you can compare this setting with
the Database_Hostname factor to make the
determination

NETWORK_PROTOCOL VARCHAR2(4) NULL The network protocol being used for
communication, as specified in the
PROTOCOL=protocol portion of the connect
string

PROXY_ENTERPRISE_IDENTITY VARCHAR2(1024) NULL The Oracle Internet Directory DN when the
proxy user is an enterprise user

PROXY_USER VARCHAR2(128) NULL The name of the database user who
opened the current session on behalf of
SESSION_USER

SESSION_USER VARCHAR2(128) NULL The database user name by which the current
user is authenticated. This value remains the
same throughout the session.

DV$_DBLINK_INFO VARCHAR2(128) NULL Returns the source of a database link
session. The string that it returns has this
form:

SOURCE_GLOBAL_NAME=dblink_src_globa
l_name,

DBLINK_NAME=dblink_name,

SOURCE_AUDIT_SESSIONID=dblink_src_a
udit_sessionid

In this specification:

• dblink_src_global_name is the
unique global name of the source
database

• dblink_name is the name of the
database link on the source database

• dblink_src_audit_sessionid source
database that initiated source database
that initiated the connection to the remote
database using dblink_name

Chapter 24
DBA_DV_SIMULATION_LOG View

24-38

Column Datatype Null Description

DV$_MODULE VARCHAR2(64) NULL The application name (module) that was
set through the DBMS_APPLICATION_INFO
PL/SQL package or Oracle Call Interface
(OCI).

DV$_CLIENT_IDENTIFIER VARCHAR2(64) NULL Returns an identifier that is
set by the application through
the DBMS_SESSION.SET_IDENTIFIER
procedure, the OCI attribute
OCI_ATTR_CLIENT_IDENTIFIER, or Oracle
Dynamic Monitoring Service (DMS). Various
Oracle Database components use this
attribute to identify lightweight application
users who authenticate as the same database
user.

FACTOR_CONTEXT VARCHAR2(4000) NULL An XML document that contains all of the
factor identifiers for the current session at the
point when the audit event was triggered

TIMESTAMP TIMESTAMP(6)
WITH TIME ZONE

NULL Time stamp of user action, in UTC
(Coordinated Universal Time) time zone

PL_SQL_STACK CLOB NULL When simulation mode is enabled, indicates
whether the PL/SQL stack has been recorded
for failed operations. TRUE indicates that the
PL/SQL stack has been recorded; FALSE
indicates that the PL/SQL stack has not been
recorded.

VIOLATION_TYPE Code Values

Table 24-2 lists the VIOLATION_TYPE code values for the DBA_DV_SIMULATION_LOG view.

Table 24-2 DBA_DV_SIMULATION_LOG VIOLATION_TYPE Code Values

Code Meaning

1000 Realm violation

1001 Command rule violation

1002 Oracle Data Pump authorization violation

1003 Simulation violation

1004 Oracle Scheduler authorization violation

1005 DDL authorization violation

1006 PARSE_AS_USER violation

Related Topics

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

• DBA_DV_COMMAND_RULE View
The DBA_DV_COMMAND_RULE data dictionary view lists the SQL statements that are
protected by command rules.

Chapter 24
DBA_DV_SIMULATION_LOG View

24-39

• DBA_DV_POLICY View
The DBA_DV_POLICY data dictionary view lists the Oracle Database Vault policies
that were created in the current database instance.

DBA_DV_STATUS or SYS.DBA_DV_STATUS View
The DBA_DV_STATUS (or SYS.DBA_DV_STATUS) data dictionary view shows the status of
Oracle Database Vault being enabled and configured.

For example:

SELECT * FROM DBA_DV_STATUS;

Output similar to the following appears:

NAME STATUS
-------------------- --------------
DV_APP_PROTECTION NOT CONFIGURED
DV_CONFIGURE_STATUS TRUE
DV_ENABLE_STATUS TRUE

Related Views

• CDB_DV_STATUS View

Column Datatype Null Description

NAME VARCHAR2(19) NOT NULL Shows one of the following settings:

• DV_APP_PROTECTION shows whether
Database Vault operations control has been
configured or not configured

• DV_CONFIGURE_STATUS shows whether
Oracle Database Vault has been configured,
that is, with the CONFIGURE_DV procedure.

• DV_ENABLE_STATUS shows whether Oracle
Database Vault has been enabled, that is, with
the DBMS_MACADM.ENABLE_DV procedure.

STATUS VARCHAR2(64) NOT NULL TRUE means that Oracle Database Vault is
configured or enabled; FALSE means that it is
not. For DV_APP_PROTECTION, it shows either
CONFIGURED or NOT CONFIGURED.

DBA_DV_TTS_AUTH View
The DBA_DV_TTS_AUTH data dictionary view lists users who have been granted
authorization through the DBMS_MACADM.AUTHORIZE_TTS_USER procedure to perform
Oracle Data Pump transportable operations.

For example:

SELECT * FROM DBA_DV_TTS_AUTH;

Output similar to the following appears:

GRANTEE TSNAME
-------- --------
DB_MGR HR_TS

Chapter 24
DBA_DV_STATUS or SYS.DBA_DV_STATUS View

24-40

Related Views

• DBA_DV_DATAPUMP_AUTH View

Column Datatype Null Description

GRANTEE VARCHAR(128) NOT NULL Name of the user who has been granted transportable
tablespace authorization

TSNAME VARCHAR(128) NOT NULL Name of the transportable tablespace to which the
GRANTEE user has been granted authorization

Related Topics

• Using Oracle Data Pump with Oracle Database Vault
Database administrators can authorize Oracle Data Pump users to work in a
Database Vault environment.

• DBA_DV_DATAPUMP_AUTH View
The DBA_DV_DATAPUMP_AUTH data dictionary view lists the authorizations for using
Oracle Data Pump in an Oracle Database Vault environment.

DBA_DV_USER_PRIVS View
The DBA_DV_USER_PRIVS data dictionary view lists the privileges for a database user
account excluding privileges granted through the PUBLIC role.

For example:

SELECT USERNAME, ACCESS_TYPE, PRIVILEGE FROM DBA_DV_USER_PRIVS;

Output similar to the following appears:

USERNAME ACCESS_TYPE PRIVILEGE
--------- -------------------- ------------
DVOWNER DV_ADMIN SELECT
SYS SELECT_CATALOG_ROLE SELECT
...

Column Datatype Null Description

USERNAME VARCHAR(128) NOT NULL Name of the database schema account in which privileges
have been defined.

ACCESS_TYPE VARCHAR(128) NULL Role the database user account listed in the USERNAME
column uses to access the database. Oracle Database
Vault accounts have direct access.

PRIVILEGE VARCHAR(40) NOT NULL Privilege granted to the user listed in the USERNAME
column.

OWNER VARCHAR(128) NOT NULL Name of the database user account.

OBJECT_NAME VARCHAR(128) NOT NULL Name of the PL/SQL function or procedure used to define
privileges.

Chapter 24
DBA_DV_USER_PRIVS View

24-41

Related Topics

• DBA_DV_PUB_PRIVS View
The DBA_DV_PUB_PRIVS data dictionary view lists data reflected in the Oracle
Database Vault privilege management reports used in Oracle Database Vault
Administrator.

• DBA_DV_ROLE View
The DBA_DV_ROLE data dictionary view lists the Oracle Database Vault secure
application roles used in privilege management.

• DBA_DV_USER_PRIVS_ALL View
The DBA_DV_USER_PRIVS_ALL data dictionary view lists the privileges for a
database account including privileges granted through PUBLIC.

DBA_DV_USER_PRIVS_ALL View
The DBA_DV_USER_PRIVS_ALL data dictionary view lists the privileges for a database
account including privileges granted through PUBLIC.

For example:

SELECT USERNAME, ACCESS_TYPE, PRIVILEGE FROM DBA_DV_USER_PRIVS;

Output similar to the following appears:

USERNAME ACCESS_TYPE PRIVILEGE
------------------- ------------ -----------------
BEA_DVACCTMGR CONNECT CREATE_SESSION
LEO_DVOWNER DIRECT CREATE PROCEDURE
...

Column Datatype Null Description

USERNAME VARCHAR(128) NULL Name of the database schema account in which
privileges have been defined.

ACCESS_TYPE VARCHAR(128) NULL Role the database user account listed in the USERNAME
column uses to access the database. Oracle Database
Vault accounts have direct access.

PRIVILEGE VARCHAR(40) NULL Privilege granted to the user listed in the USERNAME
column.

OWNER VARCHAR(128) NULL Name of the database user account.

OBJECT_NAME VARCHAR(128) NULL Name of the PL/SQL function or procedure used to
define privileges.

Related Topics

• DBA_DV_PUB_PRIVS View
The DBA_DV_PUB_PRIVS data dictionary view lists data reflected in the Oracle
Database Vault privilege management reports used in Oracle Database Vault
Administrator.

• DBA_DV_ROLE View
The DBA_DV_ROLE data dictionary view lists the Oracle Database Vault secure
application roles used in privilege management.

Chapter 24
DBA_DV_USER_PRIVS_ALL View

24-42

• DBA_DV_USER_PRIVS View
The DBA_DV_USER_PRIVS data dictionary view lists the privileges for a database
user account excluding privileges granted through the PUBLIC role.

DVSYS.DV$CONFIGURATION_AUDIT View
The DVSYS.DV$CONFIGURATION_AUDIT data dictionary view captures
DVSYS.AUDIT_TRAIL$ table audit trail records.

It includes records that are related to successful and failed configuration changes
made to realms, rules, rule sets, factors, and other Oracle Database Vault policy
configuration activities.

For example:

SELECT USERNAME, ACTION_NAME FROM DVSYS.DV$CONFIGURATION_AUDIT
WHERE USERNAME = 'PSMITH';

Output similar to the following appears:

USERNAME ACTION_NAME
---------- ---------------------
PSMITH Realm Creation Audit
PSMITH Rule Set Update Audit

Column Datatype Null Description

ID# NUMBER NOT NULL Numeric identifier for the audit record

OS_USERNAME VARCHAR(255) NULL Operating system login user name of the user whose
actions were audited

USERNAME VARCHAR(128) NULL Name of the database user whose actions were
audited

USERHOST VARCHAR2(128) NULL Client computer name

TERMINAL VARCHAR2(30) NULL Identifier for the user's terminal

TIMESTAMP DATA NULL Date and time of creation of the audit trail entry (in
the local database session time zone)

OWNER VARCHAR2(128) NULL Creator of the object affected by the action,
always DVSYS (because DVSYS is where objects are
created)

OBJ_NAME VARCHAR2(128) NULL Name of the object affected by the action. Expected
values are:

• ROLE$
• REALM$
• CODE$
• FACTOR$

ACTION NUMBER NOT NULL Numeric action type code. The corresponding name
of the action type is in the ACTION_NAME column.
See Table 24-3 for a listing of the possible actions.

ACTION_NAME VARCHAR2(128) NULL Name of the action type corresponding to the
numeric code in the ACTION column. See Table 24-3
for a listing of the possible actions.

ACTION_OBJECT_ID NUMBER NULL The unique identifier of the record in the table
specified under OBJ_NAME

Chapter 24
DVSYS.DV$CONFIGURATION_AUDIT View

24-43

Column Datatype Null Description

ACTION_OBJECT_NAME VARCHAR2(128) NULL The unique name or natural key of the record in the
table specified under OBJ_NAME

ACTION_COMMAND VARCHAR2(4000) NULL The SQL text of the command procedure that was
executed that resulted in the audit event being
triggered

AUDIT_OPTION VARCHAR2(4000) NULL The labels for all (traditional) audit options specified
in the record that resulted in the audit event being
triggered. For example, a factor set operation that is
supposed to audit on get failure and get NULL would
indicate these two options.

Starting with Oracle Database release 21c,
traditional auditing is deprecated.

RULE_SET_ID NUMBER NULL The unique identifier of the rule set that was
executing and caused the audit event to trigger

RULE_SET_NAME VARCHAR2(128) NULL The unique name of the rule set that was executing
and caused the audit event to trigger

RULE_ID NUMBER NULL Not used

RULE_NAME VARCHAR2(128) NULL Not used

FACTOR_CONTEXT VARCHAR2(4000) NULL An XML document that contains all of the factor
identifiers for the current session at the point when
the audit event was triggered

COMMENT_TEXT VARCHAR2(4000) NULL Text comment on the audit trail entry, providing more
information about the statement audited

SESSIONID NUMBER NOT NULL Numeric identifier for each Oracle session

ENTRYID NUMBER NOT NULL Same as the value in the ID# column

STATEMENTID NUMBER NOT NULL Numeric identifier for the statement invoked that
caused the audit event to be generated. This is
empty for most Oracle Database Vault events.

RETURNCODE NUMBER NOT NULL Oracle error code generated by the action. The
error code for a statement or procedure invoked
that caused the audit event to be generated. This
is empty for most Oracle Database Vault events.

EXTENDED_TIMESTAMP TIMESTAMP(6)
WITH TIME ZONE

NULL Time stamp of creation of the audit trail entry (time
stamp of user login for entries) in UTC (Coordinated
Universal Time) time zone

PROXY_SESSIONID NUMBER NULL Proxy session serial number, if an enterprise user
has logged in through the proxy mechanism

GLOBAL_UID VARCHAR2(32) NULL Global user identifier for the user, if the user has
logged in as an enterprise user

INSTANCE_NUMBER NUMBER NULL Instance number as specified by the
INSTANCE_NUMBER initialization parameter

OS_PROCESS VARCHAR2(16) NULL Operating system process identifier of the Oracle
process

CREATED_BY VARCHAR2(128) NULL Database login user name of the user whose actions
were audited

CREATE_DATE DATE NULL Date on which the action occurred, based on the
SYSDATE date

UPDATED_BY VARCHAR2(128) NULL Same as CREATED_BY column value

Chapter 24
DVSYS.DV$CONFIGURATION_AUDIT View

24-44

Column Datatype Null Description

UPDATE_DATE DATE NULL Same as UPDATED_BY column value

GRANTEE VARCHAR2(128) NULL User ID of users who have been granted Database
Vault-protected roles, realm authorization, command-
rule authorization, job scheduler authorization, or
Oracle Data Pump authorizations

ENABLED_STATUS VARCHAR2(1) NULL Indicates whether the configuration was enabled

Table 24-3 describes the possible values for the ACTION column of the
DVSYS.DV$CONFIGURATION_AUDIT view.

Table 24-3 DVSYS.DV$CONFIGURATION_AUDIT View ACTION Values

Action Type Code Action Name

20001 Enable DV enforcement Audit

20002 Disable DV enforcement Audit

20003 Realm Creation Audit

20004 Realm Update Audit

20005 Realm Rename Audit

20006 Realm Deletion Audit

20007 Add Realm Auth Audit

20008 Delete Realm Auth Audit

20009 Update Realm Auth Audit

20010 Add Realm Object Audit

20011 Update Realm Object Audit

20012 Delete Realm Object Audit

20013 Enable Event Audit

20014 Disable Event Audit

20015 Rule Set Creation Audit

20016 Rule Set Update Audit

20017 Rule Set Rename Audit

20018 Rule Set Deletion Audit

20019 Add Rule To Rule Set Audit

20020 Delete Rule From Rule Set Audit

20021 Rule Creation Audit

20022 Rule Update Audit

20023 Rule Rename Audit

20024 Rule Deletion Audit

20025 CommandRule Creation Audit

20026 CommandRule Update Audit

20027 CommandRule Deletion Audit

Chapter 24
DVSYS.DV$CONFIGURATION_AUDIT View

24-45

Table 24-3 (Cont.) DVSYS.DV$CONFIGURATION_AUDIT View ACTION Values

Action Type Code Action Name

20028 Authorize Datapump User Audit

20029 Unauthorize Datapump User Audit

20030 Authorize Job User Audit

20031 Unauthorize Job User Audit

20032 Factor_Type Creation Audit

20033 Factor_Type Deletion Audit

20034 Factor_Type Update Audit

20035 Factor_Type Rename Audit

20036 Factor Creation Audit

20037 G_FACTOR_DELETION_AUDIT_CODE

20038 Factor Update Audit

20039 Factor Rename Audit

20040 Add Factor Link Audit

20041 Delete Factor Link Audit

20042 Add Policy Factor Audit

20043 Delete Policy Factor Audit

20044 Create Identity Audit

20045 Delete Identity Audit

20046 Update Identity Audit

20047 Change Identity Factor Audit

20048 Change Identity Value Audit

20049 Create Identity Map Audit

20050 Delete Identity Map Audit

20051 Create Policy Label Audit

20052 Delete Policy Label Audit

20053 Create Mac Policy Audit

20054 Update Mac Policy Audit

20055 Delete Mac Policy Audit

20056 Create Role Audit

20057 Delete Role Audit

20058 Update Role Audit

20059 Rename Role Audit

20060 Create Domain Identity Audit

20061 Drop Domain Identity Audit

20062 Enable Oradebug Audit

20063 Disable Oradebug Audit

20064 Authorize Proxy User Audit

Chapter 24
DVSYS.DV$CONFIGURATION_AUDIT View

24-46

Table 24-3 (Cont.) DVSYS.DV$CONFIGURATION_AUDIT View ACTION Values

Action Type Code Action Name

20065 Unauthorize Proxy User Audit

20066 Enable DV Dictionary Accounts Audit

20067 Disable DV Dictionary Accounts Audit

20068 Authorize DDL Audit

20069 Unauthorize DDL Audit

20070 Authorize TTS Audit

20071 Unauthorize TTS Audit

20072 Authorize PREPROCESSOR Audit

20073 Unauthorize PREPROCESSOR Audit

20074 Create Policy Audit

20075 Update Policy Description Audit

20076 Update Policy State Audit

20077 Rename Policy Audit

20078 Drop Policy Audit

20079 Add Realm to Policy Audit

20080 Delete Realm From Policy Audit

20081 Add Command Rule to Policy Audit

20082 Delete Command Rule from Policy Audit

20083 Add Policy Owner Audit

20084 Delete Policy Owner Audit

20085 Authorize Maintenance Audit

20086 Unauthorize Maintenance Audit

Related Topics

• AUDSYS.DV$CONFIGURATION_AUDIT View
The AUDSYS.DV$CONFIGURATION_AUDIT view is almost the same as the
DVSYS.DV$CONFIGURATION_AUDIT view except that it captures unified audit trail
Database Vault audit records.

DVSYS.DV$ENFORCEMENT_AUDIT View
The DVSYS.DV$ENFORCEMENT_AUDIT data dictionary view provides information about
enforcement-related audits from the DVSYS.AUDIT_TRAIL$ table.

It captures user violations on command rules, realms, and factors.

For example:

SELECT USERNAME, ACTION_COMMMAND FROM DVSYS.DV$ENFORCEMENT_AUDIT
WHERE OWNER = 'HR';

Output similar to the following appears:

Chapter 24
DVSYS.DV$ENFORCEMENT_AUDIT View

24-47

USERNAME ACTION_COMMMAND
----------- ------------------------------
PSMITH CREATE_REALM

Column Datatype Null Description

ID# NUMBER NOT NULL Numeric identifier for the audit record

OS_USERNAME VARCHAR(255) NULL Operating system login user name of the
user whose actions were audited

USERNAME VARCHAR(128) NULL Name of the database user whose actions
were audited

USERHOST VARCHAR(255) NULL Client computer name

TERMINAL VARCHAR(255) NULL Identifier for the user's terminal

TIMESTAMP DATE NULL Date and time of creation of the audit trail
entry (in the local database session time
zone)

OWNER VARCHAR(128) NULL Creator of the object affected by the action,
always DVSYS (because DVSYS is where
objects are created)

OBJ_NAME VARCHAR(128) NULL Name of the object affected by the action.
Expected values are:

• ROLE$
• REALM$
• CODE$
• FACTOR$

ACTION NUMBER NOT NULL Numeric action type code. The
corresponding name of the action type is in
the ACTION_NAME column. See Table 24-4
for a listing of the possible actions.

ACTION_NAME VARCHAR(128) NULL Name of the action type corresponding to the
numeric code in the ACTION column

ACTION_OBJECT_ID NUMBER NULL The unique identifier of the record in the table
specified under OBJ_NAME

ACTION_OBJECT_NAME VARCHAR(128) NULL The unique name or natural key of the record
in the table specified under OBJ_NAME

ACTION_COMMAND VARCHAR2(4000) NULL The SQL text of the command procedure that
was executed that resulted in the audit event
being triggered

AUDIT_OPTION VARCHAR2(4000) NULL The labels for all (traditional) audit options
specified in the record that resulted in the
audit event being triggered. For example, a
factor set operation that is supposed to audit
on get failure and get NULL would indicate
these two options.

Starting with Oracle Database release 21c,
traditional auditing is deprecated.

RULE_SET_ID NUMBER NULL The unique identifier of the rule set that
was executing and caused the audit event to
trigger

RULE_SET_NAME VARCHAR(128) NULL The unique name of the rule set that was
executing and caused the audit event to
trigger

Chapter 24
DVSYS.DV$ENFORCEMENT_AUDIT View

24-48

Column Datatype Null Description

RULE_ID NUMBER NULL Not used

RULE_NAME VARCHAR2(128) NULL Not used

FACTOR_CONTEXT VARCHAR2(4000) NULL An XML document that contains all of the
factor identifiers for the current session at the
point when the audit event was triggered

COMMENT_TEXT VARCHAR2(4000) NULL Text comment on the audit trail entry,
providing more information about the
statement audited

SESSIONID NUMBER NOT NULL Numeric identifier for each Oracle session

ENTRYID NUMBER NOT NULL Same as the value in the ID# column

STATEMENTID NUMBER NOT NULL Numeric identifier for the statement invoked
that caused the audit event to be generated.
This is empty for most Oracle Database Vault
events.

RETURNCODE NUMBER NOT NULL Oracle error code generated by the action.
The error code for a statement or procedure
invoked that caused the audit event to be
generated. This is empty for most Oracle
Database Vault events.

EXTENDED_TIMESTAMP TIMESTAMP(6)
WITH TIME ZONE

NULL Time stamp of creation of the audit trail entry
(time stamp of user login for entries) in UTC
(Coordinated Universal Time) time zone

PROXY_SESSIONID NUMBER NULL Proxy session serial number, if an enterprise
user has logged in through the proxy
mechanism

GLOBAL_UID VARCHAR2(32) NULL Global user identifier for the user, if the user
has logged in as an enterprise user

INSTANCE_NUMBER NUMBER NULL Instance number as specified by the
INSTANCE_NUMBER initialization parameter

OS_PROCESS VARCHAR2(16) NULL Operating system process identifier of the
Oracle process

CREATED_BY VARCHAR2(128) NULL Database login user name of the user whose
actions were audited

CREATE_DATE DATE NULL Date on which the action occurred, based on
the SYSDATE date

UPDATED_BY VARCHAR2(128) NULL Same as CREATED_BY column value

UPDATE_DATE DATE NULL Same as UPDATED_BY column value

The following table describes the possible values for the ACTION column of the
DVSYS.DV$ENFORCEMENT_AUDIT view.

Table 24-4 DVSYS.DV$ENFORCEMENT_AUDIT View ACTION Values

Action Type Code Action Name

10000 Factor Evaluation Audit

10001 Factor Assignment Audit

Chapter 24
DVSYS.DV$ENFORCEMENT_AUDIT View

24-49

Table 24-4 (Cont.) DVSYS.DV$ENFORCEMENT_AUDIT View ACTION Values

Action Type Code Action Name

10002 Factor Expression Audit

10003 Realm Violation Audit

10004 Realm Authorization Audit

10005 Command Authorization Audit

10006 Secure Role Audit

10007 Session Initialization Audit

10008 Secure Command Authorization Audit

10009 OLS Session Initialization Audit

10010 OLS Attempt to Upgrade Label Audit

10011 Command Failure Audit

Related Topics

• AUDSYS.DV$ENFORCEMENT_AUDIT View
The AUDSYS.DV$ENFORCEMENT_AUDIT view is almost the same as the
DVSYS.DV$ENFORCEMENT_AUDIT view except that it captures unified audit trail
Database Vault audit records.

DVSYS.DV$REALM View
The DVSYS.DV$REALM data dictionary view describes settings that were used to create
Oracle Database Vault realms, such as which audit options have been assigned or
whether the realm is a mandatory realm.

This view also indicates information such as who created and updated the realm, and
when the realm was created and updated.

For example:

SELECT NAME, CREATED_BY, TYPE FROM DVSYS.DV$REALM WHERE NAME LIKE 'Statistics';

Output similar to the following appears:

NAME CREATED_BY TYPE
---------------------------- ---------- -----
Performance Statistics Realm JGODFREY 2

Column Datatype Null Description

ID# NUMBER NOT NULL ID number of the realm

NAME VARCHAR2(128) NOT NULL Name of the realm

DESCRIPTION VARCHAR2(1024) NULL Description of the realm

AUDIT_OPTIONS NUMBER NOT NULL Audit options set for the realm. See
audit_options in the UPDATE_REALM procedure
description. See Related Topics.

Chapter 24
DVSYS.DV$REALM View

24-50

Column Datatype Null Description

REALM_TYPE NUMBER NULL Type of realm: whether it is a regular realm
or a mandatory realm. See realm_type in the
UPDATE_REALM procedure description. See Related
Topics.

COMMON VARCHAR2(3) NULL Indicates whether the realm is local or common.
Possible values are:

• YES if the realm is common
• NO if the realm is local

INHERITED VARCHAR2(3) NULL Shows the inheritance status of the realm, when the
COMMON column output is YES. Values are as follows:
• YES means that the realm was defined in

another container that is higher in the hierarchy
of the container tree, and inherited in this
container when the Database Vault policy was
synced during the synchronization process of
applications in an application PDB.

• NO means that the realm is a local object, or
it is common from that container. For example,
in an application root, an application common
realm will have an INHERITED value NO but a
CDB root common command rule will have an
INHERITED value of YES.

ENABLED VARCHAR2(1) NOT NULL Whether the realm has been enabled. See enabled
in the DBMS_MACADM.UPDATE_REALM procedure
description. See Related Topics.

VERSION NUMBER NULL Version of Oracle Database Vault in which the realm
was created

CREATED_BY VARCHAR2(128) NULL User who created the realm

CREATE_DATE DATE NULL Date on which the realm was created.

UPDATED_BY VARCHAR2(128) NULL User who last updated the realm

UPDATE_DATE DATE NULL Date on which the realm was last updated

Related Topics

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

• UPDATE_REALM Procedure
The UPDATE_REALM procedure updates a realm.

DVSYS.DBA_DV_COMMON_OPERATION_STATUS View
The DVSYS.DBA_DV_COMMON_OPERATION_STATUS data dictionary view displays the status
of the DBMS_MACADM.ALLOW_COMMON_OPERATION procedure setting.

For example:

SELECT * FROM DVSYS.DBA_DV_COMMON_OPERATION_STATUS;

Output similar to the following appears:

Chapter 24
DVSYS.DBA_DV_COMMON_OPERATION_STATUS View

24-51

NAME STATUS
------------------------- ------
DV_ALLOW_COMMON_OPERATION FALSE

Column Datatype Null Description

NAME CHAR(25) NOT NULL Name of this control, that is,
DV_ALLOW_COMMON_OPERATION

STATUS VARCHAR(5) NOT NULL Either of the following:

• TRUE prevents local users from creating Oracle
Database Vault controls on common user
objects. This setting applies to existing local
PDB Database Vault controls that were created
on common user objects, so that they will not be
enforced on common users.

• FALSE enables local users to create Database
Vault controls on common user objects. Existing
local PDB controls that were created on
common user objects will continue to be
enforced.

DVSYS.POLICY_OWNER_COMMAND_RULE View
The DVSYS.POLICY_OWNER_COMMAND_RULE data dictionary view enables
DV_POLICY_OWNER role users to find information about the command rules that are used
by Database Vault policies.

Examples of information that users can find include the command rule name, its
associated rule set, and whether it is enabled. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

For example:

SELECT COMMAND, OBJECT_OWNER, OBJECT_NAME FROM DVSYS.POLICY_OWNER_COMMAND_RULE;

Output similar to the following appears:

COMMAND OBJECT_OWNER OBJECT_NAME
------------- ------------- ------------
SELECT HR EMPLOYEES

Column Datatype Null Description

COMMAND VARCHAR(128) NOT NULL Name of the command rule.

CLAUSE_NAME VARCHAR(100) NOT NULL A clause from either the ALTER SYSTEM or ALTER
SESSION SQL statement, which was used to create the
command rule. For example, you it could list the SET
clause for the ALTER SESSION statement.

The command rule settings for these two statements are
described in the DBMS_MACADM.CREATE_COMMAND_RULE
procedure. See Related Topics.

PARAMETER_NAME VARCHAR(128) NOT NULL A parameter from the ALTER SYSTEM or ALTER SESSION
command rule CLAUSE_NAME setting.

See Related Topics.

Chapter 24
DVSYS.POLICY_OWNER_COMMAND_RULE View

24-52

Column Datatype Null Description

EVENT_NAME VARCHAR(128) NOT NULL An event that the ALTER SYSTEM or ALTER SESSION
command rule defines.

See Related Topics.

COMPONENT_NAME VARCHAR(128) NOT NULL A component of the EVENT_NAME setting for the ALTER
SYSTEM or ALTER SESSION command rule.

See Related Topics.

ACTION_NAME VARCHAR(128) NOT NULL An action of the EVENT_NAME setting for the ALTER
SYSTEM or ALTER SESSION command rule.

See Related Topics.

RULE_SET_NAME VARCHAR(128) NOT NULL Name of the rule set associated with this command rule.

OBJECT_OWNER VARCHAR(128) NOT NULL The owner of the object that the command rule affects.

OBJECT_NAME VARCHAR(128) NOT NULL The name of the database object the command rule
affects (for example, a database table).

ENABLED VARCHAR(1) NOT NULL Y indicates the command rule is enabled; N indicates it is
disabled.

PRIVILEGE_SCOPE NUMBER NOT NULL Obsolete column

ID# NUMBER NOT NULL The ID number of the command rule, which is
automatically generated when the command rule is
created

ORACLE_SUPPLIED VARCHAR(3) NULL Indicates whether the command rule is a default (that
is, Oracle-supplied) command rule or a user-created
command rule. Possible values are:

• YES if the command rule is a default command rule
• NO if the command rule is a user-created command

rule

Related Topics

• CREATE_COMMAND_RULE Procedure
The CREATE_COMMAND_RULE procedure creates both command and local command
rules, which can be added to a rule set.

• DVSYS.POLICY_OWNER_POLICY View
The DVSYS.POLICY_OWNER_POLICY data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information such as the names,
descriptions, and states of existing policies in the current database instance,
including policies created by other policy owners.

DVSYS.POLICY_OWNER_POLICY View
The DVSYS.POLICY_OWNER_POLICY data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information such as the names, descriptions,
and states of existing policies in the current database instance, including policies
created by other policy owners.

The columns of the DVSYS.POLICY_OWNER_POLICY view are the same as those in
DBA_DV_POLICY. Only users who have been granted the DV_POLICY_OWNER role can
query this view.

For example:

Chapter 24
DVSYS.POLICY_OWNER_POLICY View

24-53

SELECT POLICY_NAME, STATE FROM DVSYS.POLICY_OWNER_POLICY
 WHERE STATE != 'ENABLED';

Output similar to the following appears:

POLICY_NAME STATE
---------------------------------- --------
HR.EMPLOYEES_pol ENABLED

Related Topics

• DBA_DV_POLICY View
The DBA_DV_POLICY data dictionary view lists the Oracle Database Vault policies
that were created in the current database instance.

DVSYS.POLICY_OWNER_REALM View
The POLICY_OWNER_REALM data dictionary view enables users who have been granted
the DV_POLICY_OWNER role to find information about the realms that have been
associated with Database Vault policies.

Examples of information that users can find include the realm name, audit options,
type, whether it is inherited, and if it is enabled. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

For example:

SELECT NAME, ENABLED FROM DVSYS.POLICY_OWNER_REALM;

Output similar to the following appears:

NAME ENABLED
-------------------------- --------
HR.EMPLOYEES_realm S

Column Datatype Null Description

NAME VARCHAR(128) NOT NULL Names of the realms that have been associated with
Database Vault policies.

DESCRIPTION VARCHAR(1024) NULL Description of the realm

AUDIT_OPTIONS NUMBER NOT NULL Audit options using traditional auditing set for the realm.
See audit_options in the UPDATE_REALM command
description. See Related Topics for a description of the
possible values.

Starting with Oracle Database release 21c, traditional
auditing is deprecated.

REALM_TYPE NUMBER NULL Type of realm: whether it is a regular realm
or a mandatory realm. See realm_type in the
UPDATE_REALM command description. See Related
Topics.

COMMON_REALM VARCHAR2(3) NULL Indicates whether the realm is local or common. Possible
values are:

• YES if the realm is common
• NO if the realm is local

Chapter 24
DVSYS.POLICY_OWNER_REALM View

24-54

Column Datatype Null Description

INHERITED_REALM VARCHAR2(3) NULL Shows the inheritance status of the realm, when the
COMMON column output is YES. Values are as follows:
• YES means that the realm was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the realm is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

ENABLED VARCHAR2(1) NOT NULL Indicates the enablement status of the realm. Possible
values are:

• Y for yes (enabled)
• N for no (not enabled)
• S for simulation mode

ID# NUMBER NOT NULL The ID number of the realm, which is automatically
generated when the realm is created

ORACLE_SUPPLIED VARCHAR(3) NOT NULL Indicates whether the realm is a default (that is, Oracle-
supplied) realm or a user-created realm. Possible values
are:

• YES if the realm is a default realm
• NO if the realm is a user-created realm

Related Topics

• DVSYS.POLICY_OWNER_REALM_AUTH View
The DVSYS.POLICY_OWNER_REALM_AUTH data dictionary view enables users who
have been granted the DV_POLICY_OWNER role to find information about the
authorization that was granted to realms that have been associated with Database
Vault policies.

• DVSYS.POLICY_OWNER_REALM_OBJECT View
The DVSYS.POLICY_OWNER_REALM_OBJECT data dictionary view enables users to find
information about the objects that have been added to realms that are associated
with Database Vault policies, such as. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

• UPDATE_REALM Procedure
The UPDATE_REALM procedure updates a realm.

DVSYS.POLICY_OWNER_REALM_AUTH View
The DVSYS.POLICY_OWNER_REALM_AUTH data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information about the authorization that
was granted to realms that have been associated with Database Vault policies.

Examples of the information that users can find are the realm name, grantee, and
associated rule set. Only users who have been granted the DV_POLICY_OWNER role can
query this view.

Chapter 24
DVSYS.POLICY_OWNER_REALM_AUTH View

24-55

For example:

SELECT REALM_NAME, INHERITED_REALM FROM DVSYS.POLICY_OWNER_REALM_AUTH;

Output similar to the following appears:

REALM_NAME INHERITED
-------------------------- --------
HR.EMPLOYEES_realm NO

Column Datatype Null Description

REALM_NAME VARCHAR(128) NOT NULL Names of the realms that have been associated with
Database Vault policies. See also Related Topics.

COMMON_REALM VARCHAR2(3) NULL Indicates whether the realm is local or common.

INHERITED_REALM VARCHAR2(3) NULL Shows the inheritance status of the realm, when the
COMMON column output is YES. Values are as follows:
• YES means that the realm was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the realm is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

GRANTEE VARCHAR(128) NOT NULL User or role name to authorize as owner or participant.

AUTH_RULE_SET_N
AME

VARCHAR(128) NULL Rule set to check before authorizing. If the rule set
evaluates to TRUE, then the authorization is allowed.

AUTH_OPTIONS VARCHAR(4000) NULL Type of realm authorization: either Participant or
Owner.

COMMON_AUTH VARCHAR(3) NULL Indicates whether the user who is authorized for this
realm is local or common. Possible values are:

• YES if the user is a common user
• NO if the users is a local user

INHERITED_AUTH VARCHAR(3) NULL Possible values are:

• YES
• NO

Related Topics

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

• DVSYS.POLICY_OWNER_REALM View
The POLICY_OWNER_REALM data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the realms that have
been associated with Database Vault policies.

• DVSYS.POLICY_OWNER_REALM_OBJECT View
The DVSYS.POLICY_OWNER_REALM_OBJECT data dictionary view enables users to find
information about the objects that have been added to realms that are associated

Chapter 24
DVSYS.POLICY_OWNER_REALM_AUTH View

24-56

with Database Vault policies, such as. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

DVSYS.POLICY_OWNER_REALM_OBJECT View
The DVSYS.POLICY_OWNER_REALM_OBJECT data dictionary view enables users to find
information about the objects that have been added to realms that are associated
with Database Vault policies, such as. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

Examples of information that users can find include the realm name, grantee, and
associated rule set.

For example:

SELECT REALM_NAME, OWNER, OBJECT_NAME, OBJECT_TYPE FROM
DVSYS.POLICY_OWNER_REALM_OBJECT;

Output similar to the following appears:

REALM_NAME OWNER OBJECT_NAME OBJECT_TYPE
------------------ ------ ----------- -----------
HR.EMPLOYEES_realm HR EMPLOYEES TABLE

Column Datatype Null Description

REALM_NAME VARCHAR(128) NOT NULL Names of the realms that have been associated with
Database Vault policies. See also Related Topics.

COMMON_REALM VARCHAR2(3) NULL Indicates whether the realm is local or common.

INHERITED_REALM VARCHAR2(3) NULL Shows the inheritance status of the realm, when the
COMMON column output is YES. Values are as follows:
• YES means that the realm was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the realm is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

OWNER VARCHAR(128) NOT NULL Database schema owner who owns the object.

OBJECT_NAME VARCHAR(128) NOT NULL Name of the object the realm protects.

OBJECT_TYPE VARCHAR(32) NOT NULL Type of object the realm protects, such as a database
table, view, index, or role.

Related Topics

• DBA_DV_REALM View
The DBA_DV_REALM data dictionary view lists the realms created in the current
database instance.

Chapter 24
DVSYS.POLICY_OWNER_REALM_OBJECT View

24-57

• DVSYS.POLICY_OWNER_REALM View
The POLICY_OWNER_REALM data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the realms that have
been associated with Database Vault policies.

• DVSYS.POLICY_OWNER_REALM_AUTH View
The DVSYS.POLICY_OWNER_REALM_AUTH data dictionary view enables users who
have been granted the DV_POLICY_OWNER role to find information about the
authorization that was granted to realms that have been associated with Database
Vault policies.

DVSYS.POLICY_OWNER_RULE View
The DVSYS.POLICY_OWNER_RULE data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the rules that have been
associated with rule sets in Database Vault policies, such as the rule name and its
expression. Only users who have been granted the DV_POLICY_OWNER role can query
this view.

For example:

SELECT NAME, RULE_EXPR FROM DVSYS.POLICY_OWNER_RULE WHERE NAME = 'True';

Output similar to the following appears:

NAME RULE_EXPR
---------- --------
True 1=1

Column Datatype Null Description

NAME VARCHAR(128) NOT NULL Name of the rule.

RULE_EXPR VARCHAR(1024) NOT NULL PL/SQL expression for the rule.

COMMON VARCHAR(3) NOT NULL Indicates whether the rule is local or common. Possible
values are:

• YES if the rule is common
• NO if the rule is local

INHERITED VARCHAR(3) NULL Shows the inheritance status of the rule, when the
COMMON column output is YES. Values are as follows:
• YES means that the rule was defined in another

container that is higher in the hierarchy of the
container tree, and inherited in this container when
the Database Vault policy was synced during
the synchronization process of applications in an
application PDB.

• NO means that the rule is a local object, or it
is common from that container. For example, in
an application root, an application common realm
will have an INHERITED value NO but a CDB root
common command rule will have an INHERITED
value of YES.

ID# NUMBER NOT NULL The ID number of the rule, which is automatically
generated when the rule is created

Chapter 24
DVSYS.POLICY_OWNER_RULE View

24-58

Column Datatype Null Description

ORACLE_SUPPLIED VARCHAR(3) NULL Indicates whether the rule is a default (that is, Oracle-
supplied) rule or a user-created rule. Possible values are:

• YES if the rule is a default rule
• NO if the rule is a user-created rule

Related Topics

• DVSYS.POLICY_OWNER_COMMAND_RULE View
The DVSYS.POLICY_OWNER_COMMAND_RULE data dictionary view enables
DV_POLICY_OWNER role users to find information about the command rules that are
used by Database Vault policies.

• DVSYS.POLICY_OWNER_RULE_SET View
The DVSYS.POLICY_OWNER_RULE_SET data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information about the rule sets that
have been associated with Database Vault policies.

DVSYS.POLICY_OWNER_RULE_SET View
The DVSYS.POLICY_OWNER_RULE_SET data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information about the rule sets that
have been associated with Database Vault policies.

Examples of information that users can find include the rule set name, its handler
information, and whether it is enabled. Only users who have been granted the
DV_POLICY_OWNER role can query this view.

For example:

SELECT RULE_SET_NAME, ENABLED FROM DVSYS.POLICY_OWNER_RULE_SET;

Output similar to the following appears:

RULE_SET_NAME ENABLED
-------------- --------
Allow Sessions Y

Column Datatype Null Description

RULE_SET_NAME VARCHAR(128) NOT NULL Name of the rule set.

DESCRIPTION VARCHAR(1024) NULL Description of the rule set.

ENABLED VARCHAR(1) NOT NULL Indicates whether the rule set has been enabled. Y (Yes)
enables the rule set; N (No) disables it.

EVAL_OPTIONS_ME
ANING

VARCHAR(4000) NULL For rules sets that contain multiple rules, determines how
many rules are evaluated. Possible values are:

• All True: All rules in the rule set must evaluate to
true for the rule set itself to evaluate to TRUE.

• Any True: At least one rule in the rule set must
evaluate to true for the rule set itself to evaluate to
TRUE.

Chapter 24
DVSYS.POLICY_OWNER_RULE_SET View

24-59

Column Datatype Null Description

AUDIT_OPTIONS NUMBER NOT NULL Indicates when auditing using traditional auditing is used.
Possible values are:

• 0: No auditing
• 1: Audit on failure
• 2: Audit on success
• 3: Audit on both failure and success
Starting with Oracle Database release 21c, traditional
auditing is deprecated.

FAIL_OPTIONS_ME
ANING

VARCHAR(4000) NULL Determines when an audit record is created for the rule
set. Possible values are:

• Do Not Show Error Message.
• Show Error Message

FAIL_MESSAGE VARCHAR(80) NULL Error message for failure that is associated with the fail
code listed in the FAIL_CODE column.

FAIL_CODE VARCHAR(10) NULL The error message number associated with the message
listed in the FAIL_MESSAGE column. Possible values are
in the ranges of -20000 to -20999 or 20000 to 20999.

HANDLER_OPTIONS NUMBER NOT NULL Determines how error handling is used. Possible values
are:

• 0: Disables error handling.
• 1: Call handler on rule set failure.
• 2: Call handler on rule set success.

HANDLER VARCHAR(1024) NULL Name of the PL/SQL function or procedure that defines
the custom event handler logic.

IS_STATIC VARCHAR2(5) NULL Indicates how often the rule set is evaluated during a user
session. Possible values are:

• TRUE: The rule set is evaluated once, and result of
the rule set is reused throughout the user session.

• FALSE (default): The rule set is evaluated each time it
is accessed during the user session.

ID# NUMBER) NOT NULL The ID number of the rule set, which is automatically
generated when the rule set is created

ORACLE_SUPPLIED VARCHAR2(3) NULL Indicates whether the rule set is a default (that is, Oracle-
supplied) rule set or a user-created rule set. Possible
values are:

• YES if the rule set is a default rule set
• NO if the rule set is a user-created rule set

Related Topics

• DVSYS.POLICY_OWNER_COMMAND_RULE View
The DVSYS.POLICY_OWNER_COMMAND_RULE data dictionary view enables
DV_POLICY_OWNER role users to find information about the command rules that are
used by Database Vault policies.

• DVSYS.POLICY_OWNER_RULE View
The DVSYS.POLICY_OWNER_RULE data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the rules that have
been associated with rule sets in Database Vault policies, such as the rule name

Chapter 24
DVSYS.POLICY_OWNER_RULE_SET View

24-60

and its expression. Only users who have been granted the DV_POLICY_OWNER role
can query this view.

• DVSYS.POLICY_OWNER_RULE_SET View
The DVSYS.POLICY_OWNER_RULE_SET data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information about the rule sets that
have been associated with Database Vault policies.

DVSYS.POLICY_OWNER_RULE_SET_RULE View
The DVSYS.POLICY_OWNER_RULE_SET_RULE data dictionary view enables users who
have been granted the DV_POLICY_OWNER role to find information about the rule sets
that contain rules used in Database Vault policies.

Examples of information that users can find include the rule set name and whether it is
enabled. Only users who have been granted the DV_POLICY_OWNER role can query this
view.

For example:

SELECT ENABLED FROM DVSYS.POLICY_OWNER_RULE_SET_RULE WHERE RULE_SET_NAME = 'Can
Maintain Own Account';

Output similar to the following appears:

ENABLED

Y

Column Datatype Null Description

RULE_SET_NAME VARCHAR(128) NOT NULL Name of the rule set that contains the rule.

RULE_NAME VARCHAR(128) NOT NULL Name of the rule.

RULE_EXPR VARCHAR(1024) NOT NULL PL/SQL expression that defines the rule listed in the
RULE_NAME column.

ENABLED VARCHAR(1) Indicates whether the rule is enabled or disabled. Y (Yes)
enables the rule set; N (No) disables it.

RULE_ORDER NUMBER NOT NULL The order in which rules are used within the rule set.
Does not apply to this release.

Related Topics

• DVSYS.POLICY_OWNER_COMMAND_RULE View
The DVSYS.POLICY_OWNER_COMMAND_RULE data dictionary view enables
DV_POLICY_OWNER role users to find information about the command rules that are
used by Database Vault policies.

• DVSYS.POLICY_OWNER_RULE_SET View
The DVSYS.POLICY_OWNER_RULE_SET data dictionary view enables users who have
been granted the DV_POLICY_OWNER role to find information about the rule sets that
have been associated with Database Vault policies.

• DVSYS.POLICY_OWNER_RULE View
The DVSYS.POLICY_OWNER_RULE data dictionary view enables users who have been
granted the DV_POLICY_OWNER role to find information about the rules that have
been associated with rule sets in Database Vault policies, such as the rule name

Chapter 24
DVSYS.POLICY_OWNER_RULE_SET_RULE View

24-61

and its expression. Only users who have been granted the DV_POLICY_OWNER role
can query this view.

AUDSYS.DV$CONFIGURATION_AUDIT View
The AUDSYS.DV$CONFIGURATION_AUDIT view is almost the same as the
DVSYS.DV$CONFIGURATION_AUDIT view except that it captures unified audit trail
Database Vault audit records.

Related Topics

• DVSYS.DV$CONFIGURATION_AUDIT View
The DVSYS.DV$CONFIGURATION_AUDIT data dictionary view captures
DVSYS.AUDIT_TRAIL$ table audit trail records.

AUDSYS.DV$ENFORCEMENT_AUDIT View
The AUDSYS.DV$ENFORCEMENT_AUDIT view is almost the same as the
DVSYS.DV$ENFORCEMENT_AUDIT view except that it captures unified audit trail Database
Vault audit records.

Related Topics

• DVSYS.DV$ENFORCEMENT_AUDIT View
The DVSYS.DV$ENFORCEMENT_AUDIT data dictionary view provides information about
enforcement-related audits from the DVSYS.AUDIT_TRAIL$ table.

Chapter 24
AUDSYS.DV$CONFIGURATION_AUDIT View

24-62

25
Monitoring Oracle Database Vault

You can monitor Oracle Database Vault by checking for violations to the Database
Vault configurations and by tracking changes to policies.

• About Monitoring Oracle Database Vault
You can use the Database Vault home page in Oracle Enterprise Manager Cloud
Control to monitor a Database Vault-enabled database.

• Monitoring Security Violations and Configuration Changes
A user who has been granted the appropriate role can use Oracle Database Vault
Administrator to monitor security violations and configuration changes.

About Monitoring Oracle Database Vault
You can use the Database Vault home page in Oracle Enterprise Manager Cloud
Control to monitor a Database Vault-enabled database.

This feature displays the top five attempted violations and who the top five attempted
violators are. The attempted violations cover violations to realms and to command
rules. The attempted violators is categorized into users and client hosts. By clicking
the Oracle Database Vault link under Top 5 Attempted Violations, you can find details
such as the type of violation, when it occurred, who the user was, and so on. Similarly,
if you click the user link (for example, SYS) under Top 5 Attempted Violators, you can
find detailed information about each violator, such as the action they performed, the
client host name where the action originated, and when the violation occurred. You can
manually refresh the data, and restrict the data view, such as within the last 24 hours.
This page also shows a table listing all alerts that have been generated.

Before you can view these events, if you have not migrated your database to unified
auditing, then you must ensure that the AUDIT_TRAIL initialization parameter is set
to DB or DB, EXTENDED. If you have migrated your database to use unified auditing,
then you do not need to configure any additional settings. You are ready to check for
security violations.

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

Monitoring Security Violations and Configuration Changes
A user who has been granted the appropriate role can use Oracle Database Vault
Administrator to monitor security violations and configuration changes.

1. Log in to Oracle Database Vault Administrator from Cloud Control as a user
who has been granted the DV_OWNER, DV_ADMIN, or DV_SECANALYST role and the
SELECT ANY DICTIONARY privilege. Logging in to Oracle Database Vault from
Oracle Enterprise Cloud Control explains how to log in.

25-1

2. Select the Home tab.

A page similar to the following appears:

3. To find attempted violations for a specific time, such as the last 7 days, select from
the menu under the Time Series button in the upper right corner.

You also can change the pie chart to a graph by clicking the Time Series button.

4. To find the Configuration Issues Reports, Enforcement Audit Reports,
Configuration Changes Audit Reports, and Simulation Mode Reports, select
the appropriate link under Database Vault reports.

See Oracle Database Vault Reports for detailed information about the Database
Vault reports.

Chapter 25
Monitoring Security Violations and Configuration Changes

25-2

26
Oracle Database Vault Reports

Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

• About the Oracle Database Vault Reports
Oracle Database Vault provides reports that display security-related information
from the database.

• Who Can Run the Oracle Database Vault Reports?
Users must have the DV_OWNER, DV_ADMIN, or DV_SECANALYST role before they can
run the Oracle Database Vault reports.

• Running the Oracle Database Vault Reports
A user who has been granted the appropriate roles can run the Oracle Database
Vault reports from Database Vault Administrator.

• Oracle Database Vault Configuration Issues Reports
The configuration issues reports track the settings for command rules, rule sets,
realms, and other Oracle Database Vault configurations.

• Oracle Database Vault Auditing Reports
If you have unified auditing enabled, then the Oracle Database Vault audit reports
capture the results of unified audit policies.

• Oracle Database Vault General Security Reports
The general security reports track information such as object privileges related to
PUBLIC or privileges granted to a database account or role.

About the Oracle Database Vault Reports
Oracle Database Vault provides reports that display security-related information from
the database.

These reports also show custom Oracle Database Vault audit event information. If you
have unified auditing enabled, then the reports capture the results of your unified audit
policies.

The reports are in two categories:

• Database Vault Reports. These reports allow you to check configuration issues
with realms, command rules, factors, factor identities, rule sets, and secure
application roles. These reports also reveal realm violations, auditing results, and
so on.

• General Security Reports. These reports allow you to check the status of
object privileges, database account system privileges, sensitive objects, privilege
management, powerful database accounts and roles, initialization parameters,
profiles, account passwords, security audits, and other security vulnerability
reports.

26-1

Related Topics

• Oracle Database Vault-Specific Reports in Enterprise Manager Cloud Control
From the Database Vault home page, you can find information about violations.

• Oracle Database Vault Data Dictionary Views
You can find information about the Oracle Database Vault configuration settings by
querying the Database Vault-specific data dictionary views.

Who Can Run the Oracle Database Vault Reports?
Users must have the DV_OWNER, DV_ADMIN, or DV_SECANALYST role before they can run
the Oracle Database Vault reports.

Related Topics

• DV_OWNER Database Vault Owner Role
The DV_OWNER role enables you to manage the Oracle Database Vault roles and its
configuration.

• DV_ADMIN Database Vault Configuration Administrator Role
The DV_ADMIN role controls the Oracle Database Vault PL/SQL packages.

• DV_SECANALYST Database Vault Security Analyst Role
The DV_SECANALYST role enables users to analyze activities.

Running the Oracle Database Vault Reports
A user who has been granted the appropriate roles can run the Oracle Database Vault
reports from Database Vault Administrator.

1. Log in to Oracle Database Vault Administrator from Cloud Control as a user
who has been granted the DV_OWNER, DV_ADMIN, or DV_SECANALYST role and the
SELECT ANY DICTIONARY privilege. Logging in to Oracle Database Vault from
Oracle Enterprise Cloud Control explains how to log in.

2. In the Home page, under Reports, select Database Vault Reports.

3. On the left side, select the category of reports that you want.

• Database Vault Configuration Issues

• Database Vault Enforcement Audit Reports

• Database Vault Configuration Changes

4. In the Reports page, expand the category that contains the report.

For example, to find the Rule Set Configurations Issues report, you must expand
Database Vault Configuration Issues.

5. Select the report (for example, Rule Set Configuration Issues).

The report appears in the right pane.

6. Optionally, use the Search field to filter the report.

For example, you can search for reported incidents that involve a specific rule set.
The Search field contents vary depending on the report.

7. When you finished viewing the report, click the OK button.

Chapter 26
Who Can Run the Oracle Database Vault Reports?

26-2

Oracle Database Vault Configuration Issues Reports
The configuration issues reports track the settings for command rules, rule sets,
realms, and other Oracle Database Vault configurations.

• Command Rule Configuration Issues Report
The Command Rule Configuration Issues Report displays command rules that
have configuration issues.

• Rule Set Configuration Issues Report
The Rule Set Configuration Issues Report displays Oracle Database Vault rule set
configuration issues.

• Realm Authorization Configuration Issues Report
The Realm Authorization Configuration Issues Report displays Oracle Database
Vault realm configuration issues.

• Factor Configuration Issues Report
The Factor Configuration Issues Report displays Oracle Database Vault factors
configuration issues.

• Factor Without Identities Report
The Factor Without Identities Report displays Oracle Database Vault factors that
have no identities configured.

• Identity Configuration Issues Report
The Identity Configuration Issues Report displays Oracle Database Vault factor
identity configuration issues.

• Secure Application Configuration Issues Report
The Secure Application Configuration Issues Report displays Database Vault
secure application role configuration issues.

Command Rule Configuration Issues Report
The Command Rule Configuration Issues Report displays command rules that have
configuration issues.

These issues are as follows:

• Rule set for the command rule is disabled.

• Rule set for the command rule is incomplete.

• Object owner for the command rule does not exist. This can happen when the user
account for the object has been dropped.

Rule Set Configuration Issues Report
The Rule Set Configuration Issues Report displays Oracle Database Vault rule set
configuration issues.

This report tracks when no rules are defined or enabled for a rule set.

Chapter 26
Oracle Database Vault Configuration Issues Reports

26-3

Realm Authorization Configuration Issues Report
The Realm Authorization Configuration Issues Report displays Oracle Database Vault
realm configuration issues.

These issues are as follows:

• Rule set for a realm authorization is disabled.

• Grantee does not exist for a realm authorization.

• Owner does not exist for a realm-secured object. This can happen when the user
account has been dropped.

In most cases, however, these types of issues are caught when you configure the
realm and during validation.

Factor Configuration Issues Report
The Factor Configuration Issues Report displays Oracle Database Vault factors
configuration issues.

These issues are as follows:

• Rule set for factor assignment is disabled.

• Rule set for factor assignment is incomplete.

• Audit options for the factor are invalid.

• No factor retrieval method or constant exists.

• No subfactors (that is, child factors) are linked to a factor identity.

• No subfactors (child factors) are linked to a label factor.

• Oracle Label Security policy does not exist for the factor.

Factor Without Identities Report
The Factor Without Identities Report displays Oracle Database Vault factors that have
no identities configured.

For some factors such as Background_Job_Id, this may not be a real problem, but the
report can help you determine whether your access control configuration is complete
and whether you have accounted for all factor configuration.

Identity Configuration Issues Report
The Identity Configuration Issues Report displays Oracle Database Vault factor identity
configuration issues.

These issues are as follows:

• Label identity for the Oracle Label Security label for this identity has been removed
and no longer exists.

• No map exists for the identity.

Chapter 26
Oracle Database Vault Configuration Issues Reports

26-4

Secure Application Configuration Issues Report
The Secure Application Configuration Issues Report displays Database Vault secure
application role configuration issues.

These issues are as follows:

• The database role does not exist. This can happen when the database role has
been dropped.

• The rule set for role is disabled.

• The rule set for role is incomplete.

Oracle Database Vault Auditing Reports
If you have unified auditing enabled, then the Oracle Database Vault audit reports
capture the results of unified audit policies.

• Realm Audit Report
The Realm Audit Report shows audit records generated by the realm protection
and realm authorization operations.

• Command Rule Audit Report
The Command Rule Audit Report shows audit records generated by command
rule processing operations.

• Factor Audit Report
The Factor Audit Report shows factors that failed to evaluate or were set to create
audit records under various conditions.

• Label Security Integration Audit Report
The Label Security Integration Audit Report shows audit records the session
initialization operation generates and the session label assignment operation of
label security.

• Core Database Vault Audit Trail Report
The Core Database Vault Audit Trail Report shows audit records that the core
access security session initialization operation generates.

• Secure Application Role Audit Report
The Secure Application Role Audit Report shows the audit records that the Oracle
Database Vault secure application role-enabling operation generates.

Realm Audit Report
The Realm Audit Report shows audit records generated by the realm protection and
realm authorization operations.

You can manage realm authorizations by using rule sets, and then audit the rule set
processing results. A realm violation occurs when the database account, performing
an action on a realm-protected object, is not authorized to perform that action. Oracle
Database Vault audits the violation even if you do not specify any rule sets attached
to the realm. When you configure a realm, you can set it to audit instances of realm
violations. You can use this information to investigate attempts to break security.

Chapter 26
Oracle Database Vault Auditing Reports

26-5

Command Rule Audit Report
The Command Rule Audit Report shows audit records generated by command rule
processing operations.

When you configure a command rule, you can set it to audit the rule set processing
results.

Factor Audit Report
The Factor Audit Report shows factors that failed to evaluate or were set to create
audit records under various conditions.

This report also shows failed attempts to set factors.

You can audit instances where a factor identity cannot be resolved and assigned (such
as No data found or Too many rows). A factor can have an associated rule set that
assigns an identity to the factor at run time. When you configure a factor, you can set it
to audit the rule set processing results.

Label Security Integration Audit Report
The Label Security Integration Audit Report shows audit records the session
initialization operation generates and the session label assignment operation of label
security.

You can audit instances where the label security session fails to initialize, and where
the label security component prevents a session from setting a label that exceeds the
maximum session label.

Core Database Vault Audit Trail Report
The Core Database Vault Audit Trail Report shows audit records that the core access
security session initialization operation generates.

You can audit instances where the access security session fails to initialize. It displays
the following data:

Data A-R Data R-U

Account Rule Set

Command Timestamp

Instance Number Rule Set

Object Name User Host

Return Code -

Secure Application Role Audit Report
The Secure Application Role Audit Report shows the audit records that the Oracle
Database Vault secure application role-enabling operation generates.

Chapter 26
Oracle Database Vault Auditing Reports

26-6

Related Topics

• Configuring Secure Application Roles for Oracle Database Vault
Secure application roles enable you to control how much access users have to an
application.

Oracle Database Vault General Security Reports
The general security reports track information such as object privileges related to
PUBLIC or privileges granted to a database account or role.

• Object Privilege Reports
The object privilege reports track privileges affected by PUBLIC, direct object
privileges, and object dependencies.

• Database Account System Privileges Reports
The database account system privileges reports track activities such as direct,
indirect, hierarchical, and ANY system privileges.

• Sensitive Objects Reports
The sensitive objects reports track activities such as grants on the EXECUTE
privilege on SYS schema objects and access to sensitive objects.

• Privilege Management - Summary Reports
The privilege management summary reports track privilege distribution by
grantees, owners, and privileges.

• Powerful Database Accounts and Roles Reports
The powerful database accounts and roles reports track information about users
who have been granted power privileges, such as the WITH ADMIN privilege.

• Initialization Parameters and Profiles Reports
The initialization parameters and profiles reports track database parameters,
resource profiles, and system limits.

• Database Account Password Reports
The database account password reports track default passwords and account
statuses of database accounts.

• Security Audit Report: Core Database Audit Report
The Core Database Audit Report lists database audit trail records..

• Other Security Vulnerability Reports
Other security vulnerability reports track vulnerabilities that arise with activities
such as Java policy grants ir operating system directory objects.

Object Privilege Reports
The object privilege reports track privileges affected by PUBLIC, direct object privileges,
and object dependencies.

• Object Access By PUBLIC Report
The Object Access By PUBLIC Report lists all objects whose access has been
granted to PUBLIC.

• Object Access Not By PUBLIC Report
The Object Access Not By PUBLIC Report describes the object access used by
the database accounts on the Report Parameters page.

Chapter 26
Oracle Database Vault General Security Reports

26-7

• Direct Object Privileges Report
The Direct Object Privileges Report shows the direct object privileges granted to
nonsystem database accounts.

• Object Dependencies Report
The Object Dependencies Report describes dependencies in the database
between procedures, packages, functions, package bodies, and triggers.

Object Access By PUBLIC Report
The Object Access By PUBLIC Report lists all objects whose access has been granted
to PUBLIC.

This report details all the object access the database accounts that you specify on the
Report Parameters page, through object grants to PUBLIC. On the Reports Parameters
page, you can filter the results based on the privilege, the object owner, or the object
name.

Note:

This report can be quite large if you choose the defaults.

Object Access Not By PUBLIC Report
The Object Access Not By PUBLIC Report describes the object access used by the
database accounts on the Report Parameters page.

It checks the grants to the account directly or through a role, but excluding the grants
to PUBLIC.

On the Reports Parameters page, you can filter the results based on the privilege, the
object owner or the object name.

Note:

This report can be quite large if you choose the defaults.

Direct Object Privileges Report
The Direct Object Privileges Report shows the direct object privileges granted to
nonsystem database accounts.

The following database accounts are excluded from the report:

Accounts C-O Accounts P-W

CTXSYS PUBLIC

DMSYS SYS

DVSYS SYSMAN

Chapter 26
Oracle Database Vault General Security Reports

26-8

Accounts C-O Accounts P-W

LBACSYS SYSTEM

MDSYS WKSYS

ORDSYS WMSYS

Object Dependencies Report
The Object Dependencies Report describes dependencies in the database between
procedures, packages, functions, package bodies, and triggers.

The report includes dependencies on views created without any database links.

This report can help you develop a security policy using the principle of least privilege
for existing applications. If a database object, such as a UTL_FILE package, has
privileges granted to PUBLIC or some other global role, then you can use the Object
Dependencies Report to determine an account that may depend on the object and
to determine how the account uses the object. To run the report, enter the database
account you are inspecting for dependency and the object it may be dependent on, in
the Report Parameters page.

The Report Results page shows the dependent object and object type and the source
object name and type. This report shows where the potentially sensitive object is being
used. By looking at several accounts, you might be able to see patterns that can
help you develop restricted roles. These restricted roles can replace PUBLIC grants on
widely used sensitive objects.

Database Account System Privileges Reports
The database account system privileges reports track activities such as direct, indirect,
hierarchical, and ANY system privileges.

• Direct System Privileges By Database Account Report
The Direct System Privileges By Database Account Report lists system privileges
directly granted to the database account selected on the Report Parameters page.

• Direct and Indirect System Privileges By Database Account Report
The Direct and Indirect System Privileges By Database Account Report displays
system privileges for the database account selected on the Report Parameters
page.

• Hierarchical System Privileges by Database Account Report
The Hierarchical System Privileges by Database Account Report shows a
hierarchical breakdown of role-based system privileges and direct system
privileges.

• ANY System Privileges for Database Accounts Report
The ANY System Privileges for Database Accounts Report shows ANY system
privileges granted to the specified database account or role.

• System Privileges By Privilege Report
The System Privileges By Privilege Report lists database accounts and roles that
have the system privilege selected on the Report Parameters page.

Chapter 26
Oracle Database Vault General Security Reports

26-9

Direct System Privileges By Database Account Report
The Direct System Privileges By Database Account Report lists system privileges
directly granted to the database account selected on the Report Parameters page.

This report also shows whether a privilege has been granted the WITH ADMIN option.

Direct and Indirect System Privileges By Database Account Report
The Direct and Indirect System Privileges By Database Account Report displays
system privileges for the database account selected on the Report Parameters page.

The system privileges may have been granted directly or granted through a database
role that has the WITH ADMIN status.

Hierarchical System Privileges by Database Account Report
The Hierarchical System Privileges by Database Account Report shows a hierarchical
breakdown of role-based system privileges and direct system privileges.

These privileges are granted to the database account specified on the Report
Parameters page.

ANY System Privileges for Database Accounts Report
The ANY System Privileges for Database Accounts Report shows ANY system
privileges granted to the specified database account or role.

ANY system privileges are very powerful and should be judiciously assigned to
accounts and roles.

System Privileges By Privilege Report
The System Privileges By Privilege Report lists database accounts and roles that have
the system privilege selected on the Report Parameters page.

Another way to control privileges is to create privilege analysis policies to analyze
privilege use.

Sensitive Objects Reports
The sensitive objects reports track activities such as grants on the EXECUTE privilege
on SYS schema objects and access to sensitive objects.

• Execute Privileges to Strong SYS Packages Report
The Execute Privileges to Strong SYS Packages Report shows database accounts
and roles with the EXECUTE privilege on powerful system packages.

• Access to Sensitive Objects Report
The Access to Sensitive Objects Report shows database accounts and roles that
have object privileges on system tables or views that have sensitive information.

• Public Execute Privilege To SYS PL/SQL Procedures Report
The Public Execute Privilege to SYS PL/SQL Procedures Report shows database
accounts and roles that have EXECUTE privileges on that SYS owns.

Chapter 26
Oracle Database Vault General Security Reports

26-10

• Accounts with SYSDBA/SYSOPER Privilege Report
The Accounts with SYSDBA/SYSOPER Privilege Report displays database
accounts that have SYS-privileged connection privileges.

Execute Privileges to Strong SYS Packages Report
The Execute Privileges to Strong SYS Packages Report shows database accounts
and roles with the EXECUTE privilege on powerful system packages.

For example, these types of packages can be used to access operating system
resources.

The following system PL/SQL packages are included:

Packages D-D Packages D-U

DBMS_ALERT DBMS_RANDOM

DBMS_BACKUP_RESTORE DBMS_REPAIR

DBMS_CAPTURE_ADM DBMS_REPCAT

DBMS_CRYPTO DBMS_REPCAT_ADMIN

DBMS_DDL DBMS_RESOURCE_MANAGER

DBMS_DISTRIBUTED_TRUST_ADMIN DBMS_RESOURCE_MANAGER_PRIVS

DBMS_FGA DBMS_RLS

DBMS_JOB DBMS_SESSION

DBMS_LDAP DEBUG_EXTPROC

DBMS_LOB UTL_FILE

DBMS_LOGMNR UTL_HTTP

DBMS_LOGMNR_D UTL_SMTP

DBMS_ORACLE_TRACE_AGENT UTL_TCP

DBMS_PIPE -

Access to Sensitive Objects Report
The Access to Sensitive Objects Report shows database accounts and roles that have
object privileges on system tables or views that have sensitive information.

This report includes the following system tables and views:

Tables/Views A-O Tables/Views P-S

ALL_SOURCE PROFILE$

ALL_USERS PROXY_ROLE_DATA$

APPROLE$ PROXY_ROLE_INFO$

AUD$ ROLE_ROLE_PRIVS

AUDIT_TRAIL$ SOURCE$

DBA_ROLE_PRIVS STATS$SQLTEXT

DBA_ROLES STATS$SQL_SUMMARY

DBA_TAB_PRIVS SYSTEM_PRIVILEGE_MAP

Chapter 26
Oracle Database Vault General Security Reports

26-11

Tables/Views A-O Tables/Views P-S

DBMS_BACKUP_RESTORE TABLE_PRIVILEGE_MAP

DEFROLE$ TRIGGER$

FGA_LOG$ USER$

LINK$ USER_HISTORY$

OBJ$ USER_TAB_PRIVS

OBJAUTH$ SYSTEM_PRIVILEGE_MAP

OBJPRIV$ -

Public Execute Privilege To SYS PL/SQL Procedures Report
The Public Execute Privilege to SYS PL/SQL Procedures Report shows database
accounts and roles that have EXECUTE privileges on that SYS owns.

This report can be used to determine which privileges can be revoked from PUBLIC,
or from other accounts and roles. This reduces vulnerabilities as part of an overall
security policy implementation using the principle of least privilege.

Accounts with SYSDBA/SYSOPER Privilege Report
The Accounts with SYSDBA/SYSOPER Privilege Report displays database accounts
that have SYS-privileged connection privileges.

This report also shows whether the accounts use an external password. However,
note that this report does not include operating system users who can become SYSDBA.

Privilege Management - Summary Reports
The privilege management summary reports track privilege distribution by grantees,
owners, and privileges.

• Privileges Distribution By Grantee Report
The Privileges Distribution By Grantee Report displays the count of privileges
granted to a database account or role.

• Privileges Distribution By Grantee, Owner Report
The Privileges Distribution By Grantee, Owner Report displays a count of
privileges based on the grantee and the owner of the object.

• Privileges Distribution By Grantee, Owner, Privilege Report
The Privileges Distribution By Grantee, Owner, Privilege Report displays a count
of privileges based on the privilege, the grantee, and the object owner.

See Also:

DBA_DV_PUB_PRIVS View to find the values on which the counts listed in
these reports are based

Chapter 26
Oracle Database Vault General Security Reports

26-12

Privileges Distribution By Grantee Report
The Privileges Distribution By Grantee Report displays the count of privileges granted
to a database account or role.

This report provides insight into accounts and roles that may have powerful privileges.

Privileges Distribution By Grantee, Owner Report
The Privileges Distribution By Grantee, Owner Report displays a count of privileges
based on the grantee and the owner of the object.

This report provides insight into accounts or roles that may have powerful privileges.
You can use this report if you suspect potential intruders or insider threats are looking
for accounts that have powerful privileges as accounts to attack or compromise. If
intruders can compromise the account (for example, by guessing the password), they
can get more privileges than they already have.

Privileges Distribution By Grantee, Owner, Privilege Report
The Privileges Distribution By Grantee, Owner, Privilege Report displays a count of
privileges based on the privilege, the grantee, and the object owner.

This report provides insight into the accounts or roles that may have powerful
privileges.

Powerful Database Accounts and Roles Reports
The powerful database accounts and roles reports track information about users who
have been granted power privileges, such as the WITH ADMIN privilege.

• WITH ADMIN Privilege Grants Report
The WITH ADMIN Privileges Grants Report shows all database accounts and
roles that have been granted privileges with the WITH ADMIN clause.

• Accounts With DBA Roles Report
The Accounts With DBA Roles Report shows all database accounts that have the
DBA role granted to them.

• Security Policy Exemption Report
The Security Policy Exemption Report shows database (but not Oracle Database
Vault) accounts and roles that have the EXEMPT ACCESS POLICY system privilege.

• BECOME USER Report
The BECOME USER Report shows database accounts roles that have the BECOME
USER system privilege.

• ALTER SYSTEM or ALTER SESSION Report
The ALTER SYSTEM or ALTER SESSION Report shows database accounts and
roles that have the ALTER SYSTEM or ALTER SESSION privilege.

• Password History Access Report
The Password History Access Report shows database accounts that have access
to the USER_HISTORY$ table.

Chapter 26
Oracle Database Vault General Security Reports

26-13

• WITH GRANT Privileges Report
The WITH GRANT Privileges Report shows database accounts that are granted
privileges with the WITH GRANT clause.

• Roles/Accounts That Have a Given Role Report
This report displays the database accounts and roles to which a role has been
granted.

• Database Accounts With Catalog Roles Report
The Database Accounts With Catalog Roles Report displays all database
accounts and roles that have the catalog-related roles granted to them.

• AUDIT Privileges Report
The AUDIT Privileges Report displays all database accounts and roles that have
the AUDIT ANY or AUDIT SYSTEM privilege.

• OS Security Vulnerability Privileges Report
The OS Security Vulnerability Privileges Report lists database accounts and roles
that have privileges to export sensitive information to the operating system.

WITH ADMIN Privilege Grants Report
The WITH ADMIN Privileges Grants Report shows all database accounts and roles
that have been granted privileges with the WITH ADMIN clause.

This privilege can be misused to give another account more system privileges than
required.

Accounts With DBA Roles Report
The Accounts With DBA Roles Report shows all database accounts that have the DBA
role granted to them.

The DBA role is a privileged role that can be misused. It is often granted to a database
account to save time and to avoid having to determine the least number of privileges
an account really needs. This report can help you to start applying a policy using the
principle of least privilege to an existing database.

See Also:

Oracle Database Vault Security Guidelines for guidelines on deciding who
should have privileged roles

Security Policy Exemption Report
The Security Policy Exemption Report shows database (but not Oracle Database
Vault) accounts and roles that have the EXEMPT ACCESS POLICY system privilege.

Accounts that have this privilege can bypass all Virtual Private Database (VPD) policy
filters and any Oracle Label Security policies that use Oracle Virtual Private Database
indirectly. This is a powerful system privilege that should be granted only if absolutely
necessary, as it presents a target to gain access to sensitive information in tables that
are protected by Oracle Virtual Private Database or Oracle Label Security. You can

Chapter 26
Oracle Database Vault General Security Reports

26-14

use the auditing policies described in Auditing Oracle Database Vault, to audit the use
of this privilege.

BECOME USER Report
The BECOME USER Report shows database accounts roles that have the BECOME
USER system privilege.

The BECOME USER privilege is a very powerful system privilege: it enables the
IMP_FULL_DATABASE and EXP_FULL_DATABASE roles for use with Oracle Data Pump.
Accounts that possess this privilege can be misused to get sensitive information or to
compromise an application.

ALTER SYSTEM or ALTER SESSION Report
The ALTER SYSTEM or ALTER SESSION Report shows database accounts and roles
that have the ALTER SYSTEM or ALTER SESSION privilege.

Oracle recommends that you restrict these privileges only to those accounts and roles
that truly need them (for example, the SYS account and the DV_ADMIN role). The ALTER
SYSTEM statement can be used to change the security-related database initialization
parameters that are set to recommended values as part of the Oracle Database Vault
security strengthening service. Both the ALTER SYSTEM and ALTER SESSION statements
can be used to dump database trace files, potentially containing sensitive configuration
information, to the operating system.

See Also:

ALTER SYSTEM and ALTER SESSION Privilege Security Considerations for
guidelines on using the ALTER SYSTEM and ALTER SESSION privileges

Password History Access Report
The Password History Access Report shows database accounts that have access to
the USER_HISTORY$ table.

This table stores hashed passwords that were previously used by each account.

Access to this table can make guessing the existing password for an account easier
for someone hacking the database.

WITH GRANT Privileges Report
The WITH GRANT Privileges Report shows database accounts that are granted
privileges with the WITH GRANT clause.

Remember that WITH GRANT is used for object-level privileges: An account that has
been granted privileges using the WITH GRANT option can be misused to grant object
privileges to another account.

Chapter 26
Oracle Database Vault General Security Reports

26-15

Roles/Accounts That Have a Given Role Report
This report displays the database accounts and roles to which a role has been
granted.

This report is provided for dependency analysis.

Database Accounts With Catalog Roles Report
The Database Accounts With Catalog Roles Report displays all database accounts
and roles that have the catalog-related roles granted to them.

These roles are as follows:

• DELETE_CATALOG_ROLE

• EXECUTE_CATALOG_ROLE

• RECOVERY_CATALOG_OWNER

• SELECT_CATALOG_ROLE

These catalog-based roles have a very large number of powerful privileges. They
should be granted with caution, much like the DBA role, which uses them.

AUDIT Privileges Report
The AUDIT Privileges Report displays all database accounts and roles that have the
AUDIT ANY or AUDIT SYSTEM privilege.

This privilege can be used to disable auditing, which could be used to eliminate the
audit trail record of a intruder who has compromised the system. The accounts that
have this privilege could be targets for intruders.

OS Security Vulnerability Privileges Report
The OS Security Vulnerability Privileges Report lists database accounts and roles that
have privileges to export sensitive information to the operating system.

This report can reveal important vulnerabilities related to the operating system.

Initialization Parameters and Profiles Reports
The initialization parameters and profiles reports track database parameters, resource
profiles, and system limits.

• Security Related Database Parameters Report
The Security Related Database Parameters Report lists database parameters that
can cause security vulnerabilities if they not set correctly.

• Resource Profiles Report
The Resource Profiles Report lists resource profiles that may be allowing unlimited
resource consumption.

• System Resource Limits Report
The System Resource Limits Report provides insight into the current system
resource usage by the database.

Chapter 26
Oracle Database Vault General Security Reports

26-16

Security Related Database Parameters Report
The Security Related Database Parameters Report lists database parameters that can
cause security vulnerabilities if they not set correctly.

This report can be used to compare the recommended settings with the current state
of the database parameter values.

Resource Profiles Report
The Resource Profiles Report lists resource profiles that may be allowing unlimited
resource consumption.

Examples of resource profiles are CPU_PER_SESSION and IDLE_TIME. You should
review the profiles that might need a cap on the potential resource usage.

System Resource Limits Report
The System Resource Limits Report provides insight into the current system resource
usage by the database.

This report helps determine whether any of these resources are approaching their
limits under the existing application load. Resources that show large increases over a
short period may point to a denial-of-service (DoS) attack. You might want to reduce
the upper limit for the resource to prevent the condition in the future.

Database Account Password Reports
The database account password reports track default passwords and account statuses
of database accounts.

• Database Account Default Password Report
The Database Account Default Password Report lists the database accounts that
have default passwords.

• Database Account Status Report
The Database Account Status Report lists existing database accounts.

Database Account Default Password Report
The Database Account Default Password Report lists the database accounts that have
default passwords.

Default passwords are provided during the Oracle Database installation.

You should change the passwords for accounts included in this report to nondefault,
complex passwords to help secure the database.

Database Account Status Report
The Database Account Status Report lists existing database accounts.

This report shows the account status for each account, which helps you identify
accounts that must be locked. Lock and expiry dates provide information that helps
determine whether the account was locked as a result of password aging. If a special

Chapter 26
Oracle Database Vault General Security Reports

26-17

password and resource secure profile is used, then you can identify accounts that are
not using them. Accounts not using organizationally defined default tablespaces also
can be identified, and the temporary tablespace for accounts can be determined. This
report also identifies accounts that use external passwords.

Security Audit Report: Core Database Audit Report
The Core Database Audit Report lists database audit trail records..

This report applies to a non-unified auditing environment.

The Core Database Audit Report returns audit records for the audit policy defined in
Auditing Oracle Database Vault, and any auditing records that are generated for audit
statements you have defined.

This report only displays audit records that are captured if the database initialization
parameter AUDIT_TRAIL has been set to DB (with unified auditing disabled).

See Also:

Oracle Database Reference for more information about the AUDIT_TRAIL
parameter

Other Security Vulnerability Reports
Other security vulnerability reports track vulnerabilities that arise with activities such as
Java policy grants ir operating system directory objects.

• Java Policy Grants Report
The Java Policy Grants Report shows the Java policy permissions stored in the
database.

• OS Directory Objects Report
The OS Directory Objects Report shows directory objects in the database, their
privileges, and whether they are available to PUBLIC.

• Objects Dependent on Dynamic SQL Report
The Objects Dependent on Dynamic SQL Report lists objects that use dynamic
SQL.

• Unwrapped PL/SQL Package Bodies Report
The Unwrapped PL/SQL Package Bodies Report lists PL/SQL package
procedures that are not wrapped.

• Username/Password Tables Report
The Username/Password Tables Report identifies application tables in the
database that store user names and password strings.

• Tablespace Quotas Report
The Tablespace Quotas Report lists database accounts that have quotas on one
or more tablespaces.

• Non-Owner Object Trigger Report
The Non-Owner Object Trigger Report lists non-owner triggers.

Chapter 26
Oracle Database Vault General Security Reports

26-18

Java Policy Grants Report
The Java Policy Grants Report shows the Java policy permissions stored in the
database.

This report helps reveal violations to the principle of least privilege. Look for GRANT,
READ, or WRITE privileges to PUBLIC or other accounts and roles that do not necessarily
need the privilege. It is advisable to disable Java loading privileges from PUBLIC, if
Java is not required in the database.

Note:

Oracle JVM, the Java virtual machine option provided with Oracle Database
Vault, must be installed before you can run the Java Policy Grants Report.

OS Directory Objects Report
The OS Directory Objects Report shows directory objects in the database, their
privileges, and whether they are available to PUBLIC.

Directory objects should exist only for secured operating system (OS) directories, and
access to them within the database should be protected. You should never use the
root operating system directory on any storage device (for example, /), because it
allows remote database sessions to look at all files on the device.

Objects Dependent on Dynamic SQL Report
The Objects Dependent on Dynamic SQL Report lists objects that use dynamic SQL.

Potential intruders have a greater chance of using this channel if parameter checking
or bind variables are not used. The report helps by narrowing the scope of where to
look for problems by pointing out who is using dynamic SQL. Such objects can be a
target for a SQL injection attack and must be secured to avoid this type of attack. After
determining the objects that use dynamic SQL, do the following:

• Check the privileges that client applications (for example, a Web application) have
over the object.

• Check the access granted for the object to PUBLIC or a wider account base.

• Validate parameters.

• Use bind variables where possible.

Unwrapped PL/SQL Package Bodies Report
The Unwrapped PL/SQL Package Bodies Report lists PL/SQL package procedures
that are not wrapped.

Oracle provides a wrap utility that obfuscates code to the point where it cannot be read
in the data dictionary or from the data dictionary views. This helps reduce the ability of
an intruder to circumvent data protection by eliminating the ability to read source code
that manipulates data.

Chapter 26
Oracle Database Vault General Security Reports

26-19

Username/Password Tables Report
The Username/Password Tables Report identifies application tables in the database
that store user names and password strings.

You should examine these tables to determine if the information is encrypted. (Search
for column names such as %USER%NAME% or %PASSWORD%.) If it is not, modify the code
and applications using these tables to protect them from being visible to database
sessions.

Tablespace Quotas Report
The Tablespace Quotas Report lists database accounts that have quotas on one or
more tablespaces.

These tablespaces can become potential targets for denial-of-service (DoS) attacks.

Non-Owner Object Trigger Report
The Non-Owner Object Trigger Report lists non-owner triggers.

These are triggers that are owned by a database account that is different from the
account that owns the database object on which the trigger acts.

If the trigger is not part of a trusted database application, then it can steal sensitive
data, possibly from tables protected through Oracle Label Security or Virtual Private
Database (VPD), and place it into an unprotected table for subsequent viewing or
export.

Chapter 26
Oracle Database Vault General Security Reports

26-20

A
Auditing Oracle Database Vault

You can audit activities in Oracle Database Vault, such as changes to policy
configurations.

• About Auditing in Oracle Database Vault
All activities in Oracle Database Vault can be audited, including Database Vault
administrator activities.

• Protection of the Unified Audit Trail in an Oracle Database Vault Environment
By default, AUDSYS schema, which contains the unified audit trail, is not protected
by a realm.

• Oracle Database Vault Specific Audit Events
Oracle Database Vault traditional (non-unified) audit events track activities such as
whether an action attempted on a realm was successful.

• Archiving and Purging the Oracle Database Vault Audit Trail
If you have not migrated to unified auditing, you should periodically archive and
purge the Oracle Database Vault audit trail.

• Oracle Database Audit Settings Created for Oracle Database Vault
When you install Oracle Database Vault, it creates several AUDIT settings in the
database.

About Auditing in Oracle Database Vault
All activities in Oracle Database Vault can be audited, including Database Vault
administrator activities.

There are two ways that you audit Oracle Database Vault: unified auditing or the
Oracle Database Vault traditional, non-unified auditing tools.

Auditing Oracle Database Vault Using Unified Auditing

Unified auditing is the recommended way to audit Oracle Database Vault because
in addition to the advantages that unified auditing provides, non-unified auditing is
deprecated starting with Oracle Database release 21c.

Unified auditing enables you to create custom policies that capture more fine-tuned
data than you can capture with traditional Oracle Database Vault auditing. For
example, you can create unified auditing policies that capture Database Vault-specific
events from Oracle products that are integrated with Database Vault, such as Oracle
Data Pump or Oracle Label Security. In addition to this functionality, unified auditing
provides the following two predefined policies that are designed for common Database
Vault auditing needs:

• ORA_DV_AUDPOL audits Oracle Database Vault DVSYS and LBACSYS schema objects.

• ORA_DV_AUDPOL2 audits the Oracle Database Vault default realms and command
rules.

A-1

When you migrate to unified auditing, then the auditing features in the Database
Vault APIs (the audit_options parameter) are no longer effective. You should archive
and purge these audit records. From then on, you can manage Database Vault audit
policies through the unified audit policy PL/SQL statements. Oracle recommends that
you migrate to full unified auditing.

To learn how to create unified audit policies, see Oracle Database Security Guide.

Auditing Oracle Database Vault Using Traditional, Non-Unified Auditing

Traditional, non-unified auditing uses the Oracle Database Vault APIs to collect audit
records and write these audit records to the Oracle Database Vault data dictionary
views and reports. This type of auditing is deprecated starting with Oracle Database
release 21c.

You can audit individual policies that you create for realms, rule sets, and factors.
The audit indicates if the user's action succeeded (that is, the policy enabled the user
to accomplish a task) or if the user's action failed (the policy was violated). These
actions are written to audit logs, whose contents you can find either by querying the
appropriate data dictionary views, or running the Oracle Database Vault reports.

All configuration changes made to Database Vault are mandatorily audited, including
actions of unprivileged users who attempt to modify Database Vault policies.

When you install a new database and configure it to use Oracle Database Vault, then
by default it uses a mixed-mode environment, that is, a mixture of unified auditing
and pre-migrated auditing. If you have upgraded from previous release, then Database
Vault uses the auditing that was available from that release.

Before you migrate to a full unified auditing environment, you can create audit policies
as follows:

• Using the Database Vault APIs: That is, you use the DBMS_MACADM PL/SQL
package or the Database Vault pages in Enterprise Manager. In this case, the
audit records are written to the Database Vault audit trail, which is stored in the
DVSYS.AUDIT_TRAIL$ table. You can query the DVSYS.DV$CONFIGURATION_AUDIT
and DVSYS.DV$ENFORCEMENT_AUDIT views for these audit records.

• Using the unified audit policy SQL statements: These statements are the
CREATE AUDIT POLICY, ALTER AUDIT POLICY, DROP AUDIT POLICY, AUDIT, and
NO AUDIT statements. They are written to the unified audit trail, which is
captured by the UNIFIED_AUDIT_TRAIL, AUDSYS.DV$CONFIGURATION_AUDIT, and
AUDSYS.DV$ENFORCEMENT_AUDIT data dictionary views. Oracle Database provides
a default unified auditing policy, ORA_DV_AUDPOL, that audits all actions that are
performed on the Oracle Database Vault DVSYS and DVF schema objects and the
Oracle Label Security LBACSYS schema objects.

Related Topics

• Archiving and Purging the Oracle Database Vault Audit Trail
If you have not migrated to unified auditing, you should periodically archive and
purge the Oracle Database Vault audit trail.

• Oracle Database Security Guide

Appendix A
About Auditing in Oracle Database Vault

A-2

Protection of the Unified Audit Trail in an Oracle Database
Vault Environment

By default, AUDSYS schema, which contains the unified audit trail, is not protected by a
realm.

To better protect the unified audit trail, Oracle recommends that you do the following:

• Create a regular (not mandatory) realm around the AUDSYS schema so that
only authorized users (that is, users who have been granted the AUDIT_ADMIN
and AUDIT_VIEWER roles) can query the unified audit trail views and use the
DBMS_AUDIT_MGMT PL/SQL package to manage the audit trail. This realm will
prevent highly privileged users, including SYS, from performing these actions until
they are added to that realm's authorization list.

• Create a command rule for the CREATE AUDIT POLICY, ALTER AUDIT POLICY, and
DROP AUDIT POLICY SQL statements so that only authorized users can execute
these statements.

Related Topics

• Creating a Realm
The first step in enabling realm protection is to create the realm itself, and then
add realm-secured objects, roles, and authorizations.

• Creating a Command Rule
You can create a different types of command rules using different command rule
APIs.

Oracle Database Vault Specific Audit Events
Oracle Database Vault traditional (non-unified) audit events track activities such as
whether an action attempted on a realm was successful.

• Oracle Database Vault Policy Audit Events
Oracle Database Vault uses audit events to track configuration activities, using
traditional, non-unified auditing.

• Oracle Database Vault Audit Trail Record Format
If you do not use unified auditing, then Oracle Database Vault writes audit records
to the DVSYS.AUDIT_TRAIL$ table.

Oracle Database Vault Policy Audit Events
Oracle Database Vault uses audit events to track configuration activities, using
traditional, non-unified auditing.

These activities are as follows:

• Realm Audit. You can audit both successful and failed actions, based on the
auditing option that you set when you created the realm. The exception to this is
actions performed by the schema owner.

• Rule Set Audit. Audits the rule set processing results. You can audit both
successful and failed processing. Realm authorizations can be managed using

Appendix A
Protection of the Unified Audit Trail in an Oracle Database Vault Environment

A-3

rule sets. You can audit the rule set processing results. Factor assignments and
secure application roles audits can be managed using a rule set.

• Factor Audit. You can audit both successful and failed factor processing. For
failed factor processing, you can audit on all or any of the following events:
Retrieval Error, Retrieval Null, Validation Error, Validation False, Trust Level Null,
or Trust Level Less Than Zero.

• Oracle Label Security Session Initialization Failed. Audits instances where the
Oracle Label Security session fails to initialize.

• Oracle Label Security Attempt to Upgrade Session Label Failed. Audits
instances where the Oracle Label Security component prevents a session from
setting a label that exceeds the maximum session label.

Related Topics

• Creating a Factor
In general, to create a factor, you first create the factor itself, and then you edit the
factor to include its identity.

• About Realm Authorization
Realm authorizations establish the set of database accounts and roles that
manage or access objects protected in realms.

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

Oracle Database Vault Audit Trail Record Format
If you do not use unified auditing, then Oracle Database Vault writes audit records to
the DVSYS.AUDIT_TRAIL$ table.

These audit records are not part of the Oracle Database audit trail, and how auditing
is enabled in the database has no effect how Oracle Database Vault collects its audit
data in the DVSYS.AUDIT_TRAIL$ table. In fact, even if auditing has been disabled in
Oracle Database, then the Oracle Database Vault audit functionality continues to write
to the DVSYS.AUDIT_TRAIL$ table.

Users who have been granted the DV_OWNER, DV_ADMIN, DV_SECANALYST or DV_MONITOR
role can directly query the DVYS.AUDIT_TRAIL$ table.

Table A-1 describes the format of the audit trail, which you must understand if you plan
to create custom reports that use the DVSYS.AUDIT_TRAIL$ table.

Table A-1 Oracle Database Vault Audit Trail Format

Column Datatype Null Description

ID# NUMBER NOT NULL Numeric identifier for the audit record

OS_USERNAME VARCHAR2(255) NULL Operating system login user name of the user
whose actions were audited

USERNAME VARCHAR2(30) NULL Name of the database user whose actions were
audited

USERHOST VARCHAR2(128) NULL Client computer name

TERMINAL VARCHAR2(255) NULL Identifier for the user's terminal

Appendix A
Oracle Database Vault Specific Audit Events

A-4

Table A-1 (Cont.) Oracle Database Vault Audit Trail Format

Column Datatype Null Description

TIMESTAMP DATE NULL Date and time of creation of the audit trail entry
(in the local database session time zone)

OWNER VARCHAR2(30) NULL Creator of the object affected by the action,
always DVSYS (because DVSYS is where objects
are created)

OBJ_NAME VARCHAR2(128) NULL Name of the object affected by the action.
Expected values are:

• ROLE$
• REALM$
• CODE$
• FACTOR$

ACTION NUMBER NOT NULL Numeric action type code. The corresponding
name of the action type is in the ACTION_NAME
column. See Table 24-3 for a list of the expected
ACTION and ACTION_NAME values.

ACTION_NAME VARCHAR2(128) NULL Name of the action type corresponding to the
numeric code in the ACTION column

ACTION_OBJECT_ID NUMBER NULL The unique identifier of the record in the table
specified under OBJ_NAME. For realms, this field
contains a list of comma-separated values of all
realm IDs that have the Audit on Failure audit
option.

ACTION_OBJECT_NAME VARCHAR2(128) NULL The unique name or natural key of the record in
the table specified under OBJ_NAME. For realms,
this field contains a list of comma-separated
values of all realm names that have the Audit on
Failure audit option.

ACTION_COMMAND VARCHAR2(4000) NULL The SQL text of the command procedure that
was executed that resulted in the audit event
being triggered

AUDIT_OPTION VARCHAR2(4000) NULL The labels for all audit options specified in the
record that resulted in the audit event being
triggered. For example, a factor set operation that
is supposed to audit on get failure and get NULL
would indicate these two options.

RULE_SET_ID NUMBER NULL The unique identifier of the rule set that was
executing and caused the audit event to trigger

RULE_SET_NAME VARCHAR2(30) NULL The unique name of the rule set that was
executing and caused the audit event to trigger

RULE_ID NUMBER NULL Not used

RULE_NAME VARCHAR2(30) NULL Not used

FACTOR_CONTEXT VARCHAR2(4000) NULL An XML document that contains all of the factor
identifiers for the current session at the point
when the audit event was triggered

COMMENT_TEXT VARCHAR2(4000) NULL Text comment on the audit trail entry, providing
more information about the statement audited

SESSIONID NUMBER NOT NULL Numeric identifier for each Oracle session

Appendix A
Oracle Database Vault Specific Audit Events

A-5

Table A-1 (Cont.) Oracle Database Vault Audit Trail Format

Column Datatype Null Description

ENTRYID NUMBER NOT NULL Same as the value in the ID# column

STATEMENTID NUMBER NOT NULL Numeric identifier for the statement invoked that
caused the audit event to be generated. This is
empty for most Oracle Database Vault events.

RETURNCODE NUMBER NOT NULL Oracle error code generated by the action. The
error code for a statement or procedure invoked
that caused the audit event to be generated. This
is empty for most Oracle Database Vault events.

EXTENDED_TIMESTAMP TIMESTAMP(6)
WITH TIME ZONE

NULL Time stamp of creation of the audit trail entry
(time stamp of user login for entries) in UTC
(Coordinated Universal Time) time zone

PROXY_SESSIONID NUMBER NULL Proxy session serial number, if an enterprise user
has logged in through the proxy mechanism

GLOBAL_UID VARCHAR2(32) NULL Global user identifier for the user, if the user has
logged in as an enterprise user

INSTANCE_NUMBER NUMBER NULL Instance number as specified by the
INSTANCE_NUMBER initialization parameter

OS_PROCESS VARCHAR2(16) NULL Operating system process identifier of the Oracle
process

CREATED_BY VARCHAR2(30) NULL Database login user name of the user whose
actions were audited

CREATE_DATE DATE NULL Date on which the action occurred, based on the
SYSDATE date

UPDATED_BY VARCHAR2(30) NULL Same as CREATED_BY column value

UPDATE_DATE DATE NULL Same as UPDATED_BY column value

Archiving and Purging the Oracle Database Vault Audit Trail
If you have not migrated to unified auditing, you should periodically archive and purge
the Oracle Database Vault audit trail.

• About Archiving and Purging the Oracle Database Vault Audit Trail
In a traditional, non-unified auditing environment, you can archive the Oracle
Database Vault audit trail by exporting the DVSYS.AUDIT_TRAIL$ table to a dump
file.

• Archiving the Oracle Database Vault Audit Trail
You can use SQL*Plus and Oracle Data Pump to archive the Oracle Database
Vault audit trail from the root or a PDB.

• Purging the Oracle Database Vault Audit Trail
You can purge the (traditional, non-unified auditing) Oracle Database Vault audit
trail from the root or a PDB.

Appendix A
Archiving and Purging the Oracle Database Vault Audit Trail

A-6

About Archiving and Purging the Oracle Database Vault Audit Trail
In a traditional, non-unified auditing environment, you can archive the Oracle Database
Vault audit trail by exporting the DVSYS.AUDIT_TRAIL$ table to a dump file.

You should periodically archive and then purge the audit trail to prevent it from growing
too large.

If you choose to migrate to unified auditing, then use this procedure to archive and
purge the Database Vault audit trail records after you complete the migration. When
unified auditing begins to collect records, then the new records will be available
for viewing from the UNIFIED_AUDIT_TRAIL, AUDSYS.DV$CONFIGURATION_AUDIT, and
AUDSYS.DV$ENFORCEMENT_AUDIT data dictionary views.

Archiving the Oracle Database Vault Audit Trail
You can use SQL*Plus and Oracle Data Pump to archive the Oracle Database Vault
audit trail from the root or a PDB.

Use this procedure to archive the traditional, non-unified audit trail in Oracle Database
Vault.

1. As user SYS with the SYSDBA administrative privilege, log in to the root or to the
PDB.

For example, to log in to the root:

sqlplus sys as sysdba
Enter password: password

Then, to connect to a PDB:

CONNECT sys@pdb_name as sysdba
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Ensure that the user who will perform archiving has the appropriate privileges.

For example:

GRANT CREATE ANY DIRECTORY, EXP_FULL_DATABASE, UNLIMITED TABLESPACE TO
psmith;

3. Connect as a user who has been granted the DV_OWNER or DV_AUDIT_CLEANUP role.

For example, from the root:

CONNECT c##sec_admin_owen
Enter password: password

In a PDB:

CONNECT ebrown@pdb_name
Enter password: password

4. Ensure that the user who will perform archiving has the appropriate privileges.

GRANT CREATE ANY DIRECTORY, EXP_FULL_DATABASE, UNLIMITED TABLESPACE TO
user_name;

Appendix A
Archiving and Purging the Oracle Database Vault Audit Trail

A-7

5. Connect to the root or the PDB as a user who has been granted the DV_OWNER or
DV_AUDIT_CLEANUP role.

6. Archive the Oracle Database Vault audit trail into a new table in an appropriate
schema.

For example:

CREATE TABLE psmith.dv_audit_trail nologging \
AS SELECT * FROM DVSYS.AUDIT_TRAIL$;

7. If the schema is already protected by a realm, then ensure that you or the user
performing the export operation has been granted the appropriate authorization to
use Oracle Data Pump in a Database Vault environment.

For example, to authorize user psmith to perform Data Pump operations on his
own schema:

EXEC DBMS_MACADM.AUTHORIZE_DATAPUMP_USER('PSMITH', 'PSMITH');

8. Connect to the root or the PDB as the Data Pump user.

9. Create a directory for the Database Vault audit trail.

CREATE DIRECTORY dv_audit_dir AS 'dv_audit_trail_directory';

10. Exit SQL*Plus.

EXIT

11. Using Data Pump, export the Database Vault audit trail into the directory object
that you just created.

expdp psmith directory=dv_audit_dir tables=psmith.dv_audit_trail \
dumpfile=dv_audit.dmp log=dv_audit_exp.log

12. Connect to the root or the PDB as a user who has been granted the DV_OWNER role.

13. If you have not done so, then create a realm around the schema that now contains
the Database Vault audit trail.

a. Create the realm. For example:

BEGIN
 DBMS_MACADM.CREATE_REALM(
 realm_name => 'DV Audit Trail Realm',
 description => 'Realm to protect the DV audit trail',
 enabled => DBMS_MACUTL.G_YES,
 audit_options => DBMS_MACUTL.G_REALM_AUDIT_ON,
 realm_type => 1);
END;
/

b. Add the schema that contains to audit trail to this realm. For example:

BEGIN
 DBMS_MACADM.ADD_OBJECT_TO_REALM(
 realm_name => 'DV Audit Trail Realm',
 object_owner => 'psmith',
 object_name => '%',
 object_type => '%');
END;
/

c. Authorize a trusted user for this realm.

Appendix A
Archiving and Purging the Oracle Database Vault Audit Trail

A-8

BEGIN
 DBMS_MACADM.ADD_AUTH_TO_REALM(
 realm_name => 'DV Audit Trail Realm',
 grantee => 'PSMITH',
 auth_options => DBMS_MACUTL.G_REALM_AUTH_OWNER);
END;
/

Related Topics

• Using Oracle Data Pump with Oracle Database Vault
Database administrators can authorize Oracle Data Pump users to work in a
Database Vault environment.

• Oracle Database SQL Language Reference

• Oracle Database Utilities

Purging the Oracle Database Vault Audit Trail
You can purge the (traditional, non-unified auditing) Oracle Database Vault audit trail
from the root or a PDB.

1. As user who has been granted the DV_OWNER role or the DV_AUDIT_CLEANUP role,
log in to the root or to the PDB.

For example, to log in to the root:

sqlplus c##sec_admin_owen
Enter password: password

To log in to a PDB:

sqlplus ebrown@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

Note that the DV_OWNER and DV_AUDIT_CLEANUP roles do not allow their grantees to
truncate the DVSYS.AUDIT_TRAIL$ system table.

You can query the DBA_ROLE_PRIVS data dictionary view to find the roles that have
been granted to a user.

2. Purge the Database Vault audit trail.

DELETE FROM DVSYS.AUDIT_TRAIL$;

Related Topics

• DV_AUDIT_CLEANUP Audit Trail Cleanup Role
The DV_AUDIT_CLEANUP role is used for purge operations.

Oracle Database Audit Settings Created for Oracle
Database Vault

When you install Oracle Database Vault, it creates several AUDIT settings in the
database.

Appendix A
Oracle Database Audit Settings Created for Oracle Database Vault

A-9

In a traditional, non-unified auditing environment, in order for these audit settings to
take place, auditing must be enabled in this database. You can check if auditing is
enabled by using the SHOW PARAMETER command to find the value of the AUDIT_TRAIL
initialization parameter. By default, auditing is enabled in Oracle Database.

Table A-2 lists the AUDIT settings that Oracle Database Vault adds to the database.

Table A-2 Audit Policy Settings Oracle Database Vault Adds to Oracle Database

Audit Setting Type Audited Statements (BY ACCESS and on Success or Failure
Unless Otherwise Noted)

User Audit Settings for DVSYS/DVF

User Audit Settings for LBACSYS

ADMINISTER DATABASE TRIGGER

ALTER object

AUDIT SYSTEM

BECOME USER

CLUSTER

COMMENT

CONTEXT

CREATE object

DATABASE LINK

DEBUG

DIRECTORY

DROP object

EXECUTE LIBRARY (WHENEVER NOT SUCCESSFUL)

EXECUTE PROCEDURE (WHENEVER NOT SUCCESSFUL)

EXEMPT ACCESS POLICY

EXPORT FULL DATABASE

GRANT object

IMPORT FULL DATABASE

INDEX

MANAGE SCHEDULER

MANAGE TABLESPACE

MATERIALIZED VIEW (audits both accessing and creating materialized
views)

SELECT SEQUENCE (WHENEVER NOT SUCCESSFUL)

SELECT TABLE (WHENEVER NOT SUCCESSFUL)

Object Audit Settings for DVF AUDIT PACKAGE/PROCEDURE/FUNCTION/SEQUENCE/TABLE

COMMENT TABLE/VIEW

DELETE TABLE/VIEW

EXECUTE PACKAGE/PROCEDURE/FUNCTION (WHENEVER NOT
SUCCESSFUL)

GRANT PACKAGE/PROCEDURE/FUNCTION/SEQUENCE/TABLE

RENAME PACKAGE/PROCEDURE/FUNCTION/SEQUENCE/VIEW/TABLE

SELECT SEQUENCE/TABLE/VIEW (WHENEVER NOT SUCCESSFUL)

Appendix A
Oracle Database Audit Settings Created for Oracle Database Vault

A-10

Table A-2 (Cont.) Audit Policy Settings Oracle Database Vault Adds to Oracle Database

Audit Setting Type Audited Statements (BY ACCESS and on Success or Failure
Unless Otherwise Noted)

Object Audit Settings for DVSYS

Object Audit Settings for LBACSYS

AUDIT PACKAGE/PROCEDURE/FUNCTION/SEQUENCE/TABLE

COMMENT TABLE/VIEW

DELETE TABLE/VIEW

EXECUTE PACKAGE/PROCEDURE/FUNCTION (WHENEVER NOT
SUCCESSFUL)

GRANT PACKAGE/PROCEDURE/FUNCTION/SEQUENCE/TABLE

INSERT TABLE/VIEW

RENAME PACKAGE/PROCEDURE/FUNCTION/SEQUENCE/VIEW/TABLE

SELECT SEQUENCE/TABLE/VIEW (WHENEVER NOT SUCCESSFUL)

UPDATE TABLE/VIEW

Related Topics

• Oracle Database Vault Schemas
The Oracle Database Vault schemas, DVSYS and DVF, support the administration
and run-time processing of Oracle Database Vault.

Appendix A
Oracle Database Audit Settings Created for Oracle Database Vault

A-11

B
Disabling and Enabling
Oracle Database Vault

Periodically you must disable and then re-enable Oracle Database Vault, for activities
such as installing Oracle Database optional products or features.

• When You Must Disable Oracle Database Vault
You may need to disable Oracle Database Vault to perform upgrade tasks or
correct erroneous configurations.

• Step 1: Disable Oracle Database Vault
Be aware that after you disable Oracle Database Vault, Oracle Label Security,
which is required to run Database Vault, is still enabled.

• Step 2: Perform the Required Tasks
At this stage, Oracle Database Vault is disabled and you can perform the required
tasks.

• Step 3: Enable Oracle Database Vault
You can enable Oracle Database Vault and Oracle Label Security from SQL*Plus
from either the root or a PDB.

When You Must Disable Oracle Database Vault
You may need to disable Oracle Database Vault to perform upgrade tasks or correct
erroneous configurations.

You can reenable Oracle Database Vault after you complete the corrective tasks.

The following situations require you to disable Oracle Database Vault:

• You must install any of the Oracle Database optional products or features, such as
Oracle Spatial, by using Database Configuration Assistant (DBCA).

• If you did not configure backup DV_OWNER and DV_ACCTMGR accounts when you
registered Oracle Database Vault, and these accounts are inadvertently locked
or their passwords forgotten. Note that if your site only has one DV_OWNER
user and this user has lost his or her password, you will be unable to disable
Oracle Database Vault. However, if your site's only DV_ACCTMGR user has lost the
password, you can disable Database Vault. As a best practice, you should grant
the DV_OWNER and DV_ACCTMGR roles to new or existing user accounts, and use the
Database Vault Owner and Account Manager accounts that you created when you
registered Database Vault as back-up accounts.

• If you want to register Oracle Internet Directory (OID) using Oracle Database
Configuration Assistant (DBCA).

• If Oracle Database Vault is enabled and you are upgrading an entire CDB, then
use one of the following methods:

– CDB upgrade method 1: Temporarily grant the DV_PATCH_ADMIN to user
SYS commonly by logging into the root container as a common user with

B-1

the DV_OWNER role, and then issuing the GRANT DV_PATCH_ADMIN TO SYS
CONTAINER=ALL statement. Oracle Database Vault controls will be in the same
state as it was before the upgrade. When the upgrade is complete, log into
the root container as the DV_OWNER user and revoke the DV_PATCH_ADMIN role
from SYS by issuing the REVOKE DV_PATCH_ADMIN FROM SYS CONTAINER=ALL
statement.

– CDB upgrade method 2: Log into each container as a user who has the
DV_OWNER role and then execute the DBMS_MACADM.DISABLE_DV procedure. You
must first disable the PDBs (in any order) and then after that, disable the root
container last. If you are upgrading only one PDB, then you can disable Oracle
Database Vault in that PDB only. After you have completed the upgrade,
you can enable Oracle Database Vault by logging into each container as
the DV_OWNER user and then executing the DVSYS.DBMS_MACADM.ENABLE_DV
procedure. The order of enabling Oracle Database Vault must be the root
container first and PDBs afterward. You can enable the PDBs in any order, but
the root container must be enabled first.

Note:

Be aware that if you disable Oracle Database Vault, the privileges that were
revoked from existing users and roles during the Oracle Database Vault
configuration remain in effect.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

• Privileges That Are Revoked from Existing Users and Roles
The Oracle Database Vault configuration revokes privileges from several Oracle
Database-supplied users and roles, for better separation of duty.

Step 1: Disable Oracle Database Vault
Be aware that after you disable Oracle Database Vault, Oracle Label Security, which is
required to run Database Vault, is still enabled.

1. As a user who has been granted the DV_OWNER role, log in to the root or to the PDB
in which you want to disable Oracle Database Vault.

For example, to log in to the root:

sqlplus c##sec_admin_owen
Enter password: password

To log in to a PDB:

sqlplus sec_admin_owen@pdb_name
Enter password: password

Appendix B
Step 1: Disable Oracle Database Vault

B-2

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. If necessary, verify the enablement status of Oracle Database Vault.

3. Disable Oracle Database Vault.

EXEC DBMS_MACADM.DISABLE_DV;

4. Restart the CDB or close and then reopen the PDB.

To restart the CDB from the root:

CONNECT SYS@pdb_name AS SYSOPER
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

To close and reopen the PDB:

CONNECT sec_admin_owen@pdb_name
Enter password: password

SQL> ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
SQL> ALTER PLUGGABLE DATABASE pdb_name OPEN;

\

5. For Oracle RAC installations, repeat these steps for each node on which the
database is installed.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

Step 2: Perform the Required Tasks
At this stage, Oracle Database Vault is disabled and you can perform the required
tasks.

You can perform the following types of activities:

• Use the Oracle Database Vault PL/SQL packages and functions. For example,
to correct a login or CONNECT rule set error, use the DBMS_MACADM PL/SQL package
or the Oracle Database Vault pages in Enterprise Manager Cloud Control. Note
that a CONNECT command rule cannot prevent a user who has the DV_OWNER
or DV_ADMIN role from connecting to the database. This enables a Database
Vault administrator to correct a misconfigured protection without having to disable
Database Vault.

• Use the SYSTEM or SYS accounts to perform tasks such as creating or
changing passwords, or locking and unlocking accounts. In addition to
modifying standard database and administrative user accounts, you can modify
passwords and the lock status of any of the Oracle Database Vault-specific
accounts, such as users who have been granted the DV_ADMIN or DV_ACCTMGR
roles.

Appendix B
Step 2: Perform the Required Tasks

B-3

• Perform the installation or other tasks that require security protections to be
disabled.

Step 3: Enable Oracle Database Vault
You can enable Oracle Database Vault and Oracle Label Security from SQL*Plus from
either the root or a PDB.

1. As a user who has been granted the DV_OWNER role, log in to the root or to the PDB
in which you want to enable Oracle Database Vault.

For example, to log in to the root:

sqlplus c##sec_admin_owen
Enter password: password

To log in to a PDB:

sqlplus sec_admin_owen@pdb_name
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. If necessary, verify the enablement status of Oracle Database Vault.

3. Enable Database Vault.

EXEC DBMS_MACADM.ENABLE_DV (strict_mode => 'n');
 -- For regular mode
EXEC DBMS_MACADM.ENABLE_DV (strict_mode => 'y');
 -- For strict mode

4. Check if Oracle Label Security is enabled.

SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Oracle Label Security';

Oracle Label security must be enabled before you can use Database Vault. If it is
not enabled, then this query returns FALSE.

5. If Oracle Label Security is not enabled, then enable it.

EXEC LBACSYS.CONFIGURE_OLS;
EXEC LBACSYS.OLS_ENFORCEMENT.ENABLE_OLS;

6. Restart the CDB or close and then reopen the PDB.

To restart the CDB from the root:

CONNECT SYS@pdb_name AS SYSOPER
Enter password: password

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

To close and reopen the PDB:

CONNECT sec_admin_owen@pdb_name
Enter password: password

SQL> ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
SQL> ALTER PLUGGABLE DATABASE pdb_name OPEN;

Appendix B
Step 3: Enable Oracle Database Vault

B-4

7. For Oracle RAC installations, repeat these steps for each node on which the
database is installed.

Related Topics

• Verifying That Database Vault Is Configured and Enabled
The DBA_DV_STATUS, CDB_DV_STATUS, and DBA_OLS_STATUS data dictionary views
verify if Oracle Database is configured and enabled.

Appendix B
Step 3: Enable Oracle Database Vault

B-5

C
Postinstallation Oracle Database Vault
Procedures

After you register Oracle Database Vault, you can perform specialized tasks, such as
configuring it on Oracle Real Application Clusters (Oracle RAC) nodes.

• Configuring Oracle Database Vault on Oracle RAC Nodes
After you configure Oracle Database Vault for an Oracle Real Application Clusters
(Oracle RAC) instance, you must configure each Oracle RAC node.

• Adding Languages to Oracle Database Vault
By default, Oracle Database Vault loads only the English language tables.

• Uninstalling Oracle Database Vault
You can uninstall Oracle Database Vault from an Oracle Database installation, for
PDBs (but not the root) and Oracle RAC installations.

• Reinstalling Oracle Database Vault
You can reinstall Oracle Database Vault by manually installing it, and then
afterward, registering it.

Related Topics

• Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB
You can convert a standalone Oracle Database database from release 12c
through 19c to a PDB, and then plug this PDB into a CDB.

Configuring Oracle Database Vault on Oracle RAC Nodes
After you configure Oracle Database Vault for an Oracle Real Application Clusters
(Oracle RAC) instance, you must configure each Oracle RAC node.

The following procedure assumes that you have a separate Oracle home for each
node.

1. Log into the PDB as user SYS with the SYSDBA administrative privilege.

sqlplus sys@pdb_name as sysdba
Enter password: password

To find the available PDBs, query the PDB_NAME column of the DBA_PDBS data
dictionary view. To check the current container, run the show con_name command.

2. Run the following ALTER SYSTEM statements on each Oracle RAC node:

ALTER SYSTEM SET AUDIT_SYS_OPERATIONS=TRUE SCOPE=SPFILE; -- For non-unified
auditing environments
ALTER SYSTEM SET OS_ROLES=FALSE SCOPE=SPFILE;
ALTER SYSTEM SET RECYCLEBIN='OFF' SCOPE=SPFILE;
ALTER SYSTEM SET REMOTE_LOGIN_PASSWORDFILE='EXCLUSIVE' SCOPE=SPFILE;
ALTER SYSTEM SET SQL92_SECURITY=TRUE SCOPE=SPFILE;

3. Close and then reopen the PDB.

C-1

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

Adding Languages to Oracle Database Vault
By default, Oracle Database Vault loads only the English language tables.

You can add more languages by running the DBMS_MACADM.ADD_NLS_DATA procedure
for each new language that you want to add. You can add more than one language to
Database Vault, to either a specific PDB or to the root for all PDBs.

1. Log into the root or the PDB as a user who has been granted the DV_OWNER or
DV_ADMIN role.

2. Run the following procedure:

EXEC DBMS_MACADM.ADD_NLS_DATA('language');

You can specify the language setting using any case. For example:

EXEC DBMS_MACADM.ADD_NLS_DATA('french');

EXEC DBMS_MACADM.ADD_NLS_DATA('JAPANESE');

Replace language with one of the following supported languages:

• ENGLISH

• GERMAN

• SPANISH

• FRENCH

• ITALIAN

• JAPANESE

• KOREAN

• BRAZILIAN PORTUGUESE

• SIMPLIFIED CHINESE

• TRADITIONAL CHINESE

Uninstalling Oracle Database Vault
You can uninstall Oracle Database Vault from an Oracle Database installation, for
PDBs (but not the root) and Oracle RAC installations.

The uninstallation process does not affect the initialization parameter settings, even
those settings that were modified during the installation process, nor does it affect
Oracle Label Security.

1. Log into the PDB as user SYS with the SYSDBA administrative privilege.

For example:

sqlplus psmith@pdb_name
Enter password: password

Appendix C
Adding Languages to Oracle Database Vault

C-2

2. Connect to the PDB as a user who has been granted the DV_OWNER or DV_ADMIN
role.

For example:

CONNECT leo_dvowner@pdb_name
Enter password: password

3. Run the following procedure to disable Oracle Database Vault:

EXEC DBMS_MACADM.DISABLE_DV;

4. Close and reopen the PDB, or for Oracle RAC, restart the database.

As a user who has the ALTER PLUGGABLE DATABASE privilege:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

For Oracle RAC installations, shut down and then restart each database instance
as follows:

$ srvctl stop database -db db_name
$ srvctl start database -db db_name

5. Run the dvremov.sql script to remove Oracle Database Vault.

For example:

$ORACLE_HOME/rdbms/admin/dvremov.sql

6. If necessary, in SQL*Plus, as user SYS with the SYSDBA administrative privilege,
manually revoke the EXECUTE privilege on the DBMS_RLS PL/SQL package from any
users who have been granted the DV_OWNER role.

When you configure Oracle Database Vault, one of the privileges that
DV_OWNERusers are granted is this privilege. However, when you remove Oracle
Database Vault, DV_OWNER users still have this privilege. Optionally, you can revoke
it.

REVOKE EXECUTE ON DBMS_RLS FROM dbv_owner_backup;

Afterward, you can double-check that Oracle Database Vault is truly deinstalled by
logging in to SQL*Plus and entering the following statement:

SELECT * FROM V$OPTION WHERE PARAMETER = 'Oracle Database Vault';

If Oracle Database Vault is deinstalled, the following output appears:

PARAMETER VALUE
----------------------------- -----------------------
Oracle Database Vault FALSE

Reinstalling Oracle Database Vault
You can reinstall Oracle Database Vault by manually installing it, and then afterward,
registering it.

Related Topics

• Manually Installing Oracle Database Vault
Under certain conditions, you must manually install Oracle Database Vault.

Appendix C
Reinstalling Oracle Database Vault

C-3

• Registering Oracle Database Vault
You can register Oracle Database Vault based on several scenarios.

Appendix C
Reinstalling Oracle Database Vault

C-4

D
Oracle Database Vault Security Guidelines

As with all Oracle Database products, you should follow security guidelines to better
secure your Oracle Database Vault installation.

• Separation of Duty Guidelines
Oracle Database Vault is designed to easily implement separation of duty
guidelines.

• Managing Oracle Database Administrative Accounts
Oracle provides guidelines for managing security for administrative accounts such
as SYSTEM or users who have the SYSDBA administrative privilege.

• Accounts and Roles Trusted by Oracle Database Vault
Oracle Database Vault restricts access to application data from many privileged
users and roles in the database.

• Accounts and Roles That Should be Limited to Trusted Individuals
You should limit powerful accounts and roles only to trusted individuals.

• Guidelines for Using Oracle Database Vault in a Production Environment
You should follow special guidelines when you run Oracle Database Vault in a
production environment.

• Secure Configuration Guidelines
You should be aware of security considerations for special PL/SQL packages,
privileges, and the recycle bin.

Separation of Duty Guidelines
Oracle Database Vault is designed to easily implement separation of duty guidelines.

• How Oracle Database Vault Handles Separation of Duty
Separation of duty is restricting each user's privileges only to the tasks he or she is
responsible for, and no more.

• Separation of Tasks in an Oracle Database Vault Environment
Oracle Database Vault defines the several main responsibilities.

• Separation of Duty Matrix for Oracle Database Vault
Before applying separation of duty, you must understand who performs basic
administration tasks in your environment and what these administration tasks are.

• Identification and Documentation of the Tasks of Database Users
You should document the areas of the tasks that your organization needs.

How Oracle Database Vault Handles Separation of Duty
Separation of duty is restricting each user's privileges only to the tasks he or she is
responsible for, and no more.

D-1

You should assign specific categories of privileges to specific users, rather than
granting many privileges to one user. Simply put, separation of duty creates
accountability for each task that your organization requires.

Separation of duty has taken on increased importance over the past 10 years. For
many organizations, separation of duty is a new concept that continues to evolve.
Database consolidation, regulatory compliance, and outsourcing are just a few of
the drivers for increased separation of duty. Oracle Database Vault separation of
duty strengthens security by separating security-related administration from day-to-day
DBA operations. You can tailor your Database Vault separation of duty implementation
to easily adapt to current and future business requirements. Small organizations, in
particular, need flexibility as they attempt to increase their security profile with limited
resources.

Separation of Tasks in an Oracle Database Vault Environment
Oracle Database Vault defines the several main responsibilities.

These responsibilities are as follows:

• Account management. Account management entails creating, modifying, and
dropping user accounts. The DV_ACCTMGR role provides these privileges. A primary
day-to-day DV_ACCTMGR user and a backup DV_ACCTMGR user are created during
the Oracle Database Vault registration process. As a safety measure, you keep
and maintain the backup account in case the primary DV_ACCTMGR account owner
forgets his or her password or leaves the company.

• Security administration. Security administration covers basic security tasks such
as creating realms and command rules, setting security policies for database
users' access, and authorizing database users for jobs they are allowed to
perform. Security administrators also run security audit reports. The DV_OWNER and
DV_ADMIN roles provide these privileges. A primary day-to-day DV_OWNER user and
a backup DV_OWNER user are created during the Oracle Database Vault registration
process.

Important:

As a safety measure, you should keep and maintain the backup user
account in case the primary DV_OWNER account owner forgets his or her
password or leaves the company. It is also important that you do not lose
access to all of the user accounts that have been granted the DV_OWNER
role. There is no way to recover the DV_OWNER role if you lose access
(such as with a lost password or a staff departure) to any account that
has the DV_OWNER role. If you lose access to the DV_OWNER role, then you
cannot modify any Database Vault controls or disable Database Vault.
To remedy this problem, you can recover the database to the last known
point where the database had possession of the Database Vault owner
account.

Optionally, you can consolidate the account management and security
administrative responsibilities.

• Database management. Database management refers to managing the database
system but not accessing business data. It includes the following operations:

Appendix D
Separation of Duty Guidelines

D-2

– Backup operations require a predefined time to perform the backup using
predefined tools.

– Tuning and monitoring operations require ongoing performance monitoring
and analysis.

– Patching operations require temporary access only during the time the
patching takes place

Oracle strongly recommends that you review database management accounts
within the context of separation of duty. Different database administrators may
have different responsibilities that require different privileges and roles. Similarly,
more experienced database administrators may have more roles and privileges.
Instead of granting users the default DBA role to users, consider tailoring database
administrative roles for specific positions and for seniority in your organization.
It is important to use only named accounts for day-to-day activities. Accounts
such as SYS and accounts that use the SYSDBA administrative privilege should be
managed with Privileged Account Management (PAM) systems and checked out
(and audited) when they are used. You should also manage the backup Oracle
Database Vault owner and account management accounts with a PAM system.
Within the operating system, you should make the root and oracle accounts
available only through a checkout system, because of the powerful privileges that
these accounts have.

You should have separate accounts for database account management, database
security administration, and additional named accounts for backup operations.
Auditors check for separate database accounts for different responsibilities and being
able to track the actions of each account. Less important is the number of users
assigned to specific tasks. Remember that Oracle Database Vault audit events are
protected and that the Database Vault reports show all attempted violations.

Related Topics

• Oracle Database Vault Roles
Oracle Database Vault provides default roles that are based on specific user tasks
and adhere to separation of duty concepts.

• Database Accounts Used by Oracle Database Vault
Oracle Database Vault provides accounts that provide access to system and
object privileges, and Oracle Label Security.

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

Separation of Duty Matrix for Oracle Database Vault
Before applying separation of duty, you must understand who performs basic
administration tasks in your environment and what these administration tasks are.

Even if a single database administrator is responsible for managing both new
database account provisioning and application patching, it is important to document
and plan for each of these tasks. Using separate administration accounts for these
types of tasks provides increased accountability and reduces associated risks if and
when a single account is compromised by a malicious user. In midsize to large
organizations, database administrators typically must perform common administration
tasks but they do not need access to business data managed by the application.
Creating a matrix for your separation of duty can help you plan your Database
Vault deployment. As needed, you can include additional tasks and associated users

Appendix D
Separation of Duty Guidelines

D-3

to this list. This information should become part of the overall enterprise security
documentation for your organization.

Table D-1 shows an example of a separation of duty matrix.

Table D-1 Example Separation of Duty Matrix

User,
Process or
Application

Account
Creation

Database Administration Security
Administrator

SYSDBA Backup Tuning Patching Monitoring

JSMITH Yes No No No No No No

SHARDY No No No No No No Yes

PKESTNER No No Yes No No No No

RTYLER No No No No Yes No No

SANDERSON No No No Yes No Yes No

SYSTEM No No No No Yes, for EBS
patching

No No

RMAN No Yes Yes No No No No

In some cases, system management tasks may require temporary access to data
through specific tools and programs. When this happens, build provisions for this
temporary or emergency access into the Oracle Database Vault rules and rule sets.

Identification and Documentation of the Tasks of Database Users
You should document the areas of the tasks that your organization needs.

These areas are as follows:

• The responsibilities of each administrative user

• The kind of access users need. For example, application owners should have data
access and developers need access to development instances only.

• Who must manage the system without accessing business data (for example,
users who perform backup, patching, tuning, and monitoring operations)

• The duties of each category of tasks (for example, the files that must be backed
up, the applications that require patching, what exactly is monitored). Include the
alternate user accounts for each of these tasks.

• The databases and applications that must be protected. This includes Oracle
applications, partner applications, and custom applications.

• Who must be authorized to access business data, including the following:

– Application owners through middle tier processes

– Business users through an application interface

• Emergency "what if" scenarios, such as how to handle a security breach

• Reporting in a production environment, which should include the following:

– Who runs the reports

– Which reports must be run

– The frequency with which each report is run

Appendix D
Separation of Duty Guidelines

D-4

– The users who must receive a copy of each report

• In addition to a separation of duty matrix, the creation of the following matrices:

– An Oracle Database Vault-specific matrix, which can cover the names and
tasks of users who have been granted Database Vault roles

– An application protection matrix, which can cover the applications to be
protected and the types of protections you have put in place.

Table D-2 shows an example of protections Oracle created for PeopleSoft
Applications. SYSADM, PSFTDBA, SYSTEM, and DBA have all been authorized for the
appropriate rule sets.

Table D-2 Example Application Protection Maxtrix

Protection
Type

SYSADM PSFTDBA SYSTEM DBA

PeopleSoft
Realm

Owner Owner No Access No Access

SELECT
Command Rule

Not Restricted Limit PSFTDB
Rule Set

No Access No Access

CONNECT
Command Rule

PeopleSoftAcces
s Rule Set

Not Restricted Not Restricted Not Restricted

DROP
TABLESPACE
Command Rule

Disabled Rule
Set

Disabled Rule
Set

Disabled Rule
Set

Disabled Rule
Set

Managing Oracle Database Administrative Accounts
Oracle provides guidelines for managing security for administrative accounts such as
SYSTEM or users who have the SYSDBA administrative privilege.

• SYSTEM User Account for General Administrative Uses
Ideally, the SYSTEM account should only be available as a backup that is checked
out and audited while being used.

• SYSTEM Schema for Application Tables
If you have application tables in the SYSTEM schema, then you should add the
SYSTEM account to your realm authorizations for these tables.

• Limitation of the SYSDBA Administrative Privilege
Limit the SYSDBA administrative privilege to users who must connect using this
privilege when absolutely necessary and for applications that still require SYSDBA
access.

• Root and Operating System Access to Oracle Database Vault
For better security, you should carefully monitor root and operating system access
to Oracle Database Vault.

SYSTEM User Account for General Administrative Uses
Ideally, the SYSTEM account should only be available as a backup that is checked out
and audited while being used.

Appendix D
Managing Oracle Database Administrative Accounts

D-5

Only named accounts should be used for normal database administration tasks - not
shared accounts. Doing so increases accountability for administrative actions in the
database.

SYSTEM Schema for Application Tables
If you have application tables in the SYSTEM schema, then you should add the SYSTEM
account to your realm authorizations for these tables.

This enables these applications to continue to work normally.

You can place restrictions on the SYSTEM account to increase or fine-tune security for
these applications. For example, you can create a Database Vault rule set to restrict
the SYSTEM user's access to specific IP addresses.

Limitation of the SYSDBA Administrative Privilege
Limit the SYSDBA administrative privilege to users who must connect using this privilege
when absolutely necessary and for applications that still require SYSDBA access.

For example, mandatory patching processes require SYSDBA access.

For all other cases, create named database accounts to perform daily database
administration. Members of the OSDBA user group are also given the SYSDBA
administrative privilege. The database SYS account and accounts with SYSDBA privilege
along with the operating system root and oracle accounts should be managed in a
Privileged Account Management (PAM) system and checked out only when required.

Related Topics

• Management of SYSDBA Access
You should avoid using the SYS account and the SYSDBA privilege for normal
database maintenance tasks.

Root and Operating System Access to Oracle Database Vault
For better security, you should carefully monitor root and operating system access to
Oracle Database Vault.

Oracle Database Vault prevents highly privileged database users from accessing
sensitive data. In addition, if you are using Oracle Database itself, then you can use
Transparent Data Encryption to prevent the most highly privileged operating system
users from accessing sensitive data. Transparent data encryption enables you to
encrypt tablespaces and table columns. This prevents operating system users from
browsing through the operating system database files and finding sensitive data. As
a best practice, always carefully review and restrict direct access to the operating
system.

You should have personalized accounts access the operating system. These
personalized accounts should, in the Linux or UNIX environments, login using sudo
to the oracle software owner when needed. With sudo, you can control which specific
command each personalized user can execute. Be sure to prevent the use of the make,
relink, gdb, or other commands that could potentially harm the database, for these
users. However, if an administrative user must install a patch or perform some other
emergency operation, you can enable the make and relink commands for a limited
time, and audit their actions during this period.

Appendix D
Managing Oracle Database Administrative Accounts

D-6

Related Topics

• Oracle Database Advanced Security Guide

Accounts and Roles Trusted by Oracle Database Vault
Oracle Database Vault restricts access to application data from many privileged users
and roles in the database.

However, in some cases, Oracle Database Vaults trusts certain roles and privileges.

Table D-3 lists the trusted roles and privileges that are created when you install Oracle
Database Vault.

Table D-3 Trusted Oracle Database Vault Roles and Privileges

Role or Privilege Status Description

DV_ACCTMGR role Open Role created during registration and used for creating
new database accounts. As a safety measure, maintain a
backup user who has the DV_ACCTMGR role and manage
this account using a Privileged Account Management
(PAM) system.

Users who have the DV_OWNER role cannot alter this
user.

Loss of all accounts with the DV_ACCTMGR role (such as
due to lost passwords or people leaving the organization)
is not recoverable. Ensure that a backup DV_ACCTMGR
account is created for this purpose.

DV_OWNER role Open Role created during registration and used for managing
realms, factors and command rules. This user can add
himself or herself to realm authorizations. As a safety
measure, maintain a backup user who has the DV_OWNER
role and manage this account using a Privileged Account
Management (PAM) system.

Users who have the DV_OWNER role cannot alter this
user.

Loss of all accounts with the DV_OWNER role (such as
due to lost passwords or people leaving the organization)
is not recoverable. Ensure that a backup DV_OWNER
account is created for this purpose.

SYSDBA privilege Enabled Privilege created during Oracle Database installation.
Required by some Oracle features.

SYSOPER privilege Enabled Privilege created during Oracle Database installation.
Database startup and shutdown. Granted to SYS only by
default.

Related Topics

• Backup Oracle Database Vault Accounts
As a best practice, you should maintain backup accounts for the DV_OWNER and
DV_ACCTMGR roles.

• Management of SYSDBA Access
You should avoid using the SYS account and the SYSDBA privilege for normal
database maintenance tasks.

Appendix D
Accounts and Roles Trusted by Oracle Database Vault

D-7

• Management of SYSOPER Access
By default, Oracle Database limits SYSOPER access to operating system users in
the OSOPER group and to the user SYS.

Accounts and Roles That Should be Limited to Trusted
Individuals

You should limit powerful accounts and roles only to trusted individuals.

• Management of Users with Root Access to the Operating System
Users who have root user access have full control over the system.

• Management of the Oracle Software Owner
Users who have access to a system as the Oracle software owner have control
over the Oracle software.

• Management of SYSDBA Access
You should avoid using the SYS account and the SYSDBA privilege for normal
database maintenance tasks.

• Management of SYSOPER Access
By default, Oracle Database limits SYSOPER access to operating system users in
the OSOPER group and to the user SYS.

Management of Users with Root Access to the Operating System
Users who have root user access have full control over the system.

Activities that these users can perform include the following:

• Reading unencrypted files

• Moving and deleting any files

• Starting or stopping any program on the system

• Logging in as any user, including the user who owns the Oracle Database
installation

Oracle Database Vault does not provide protection against the operating system root
access. Manage the root and oracle accounts in a Privileged Account Management
(PAM) system. Only check these accounts out when they are required for certain
tasks. Enhance audit levels when highly privileged operating system accounts are
being used, up to an including keystroke capture and video capture.

Management of the Oracle Software Owner
Users who have access to a system as the Oracle software owner have control over
the Oracle software.

Activities these users can perform include the following:

• Reading unencrypted database files

• Moving and deleting database files

• Starting or stopping Oracle programs in the system

Appendix D
Accounts and Roles That Should be Limited to Trusted Individuals

D-8

Oracle Database Vault does not provide protection against the operating system
access of the Oracle software owner. Manage the Oracle software owner account
in a Privileged Account Management (PAM) system. Only check this account out when
it is required for certain tasks. Enhance audit levels when highly privileged operating
system accounts are being used, up to an including keystroke capture and video
capture.

Management of SYSDBA Access
You should avoid using the SYS account and the SYSDBA privilege for normal database
maintenance tasks.

Instead, use named accounts that have the required system privileges or a specific
administrative privilege such as SYSBACKUP, SYSDG, or SYSKM. However, there are cases
where the SYSDBA privilege is required to perform a patch, upgrade of the database or
troubleshoot issues (for example, connecting to a down database).

Because users with the SYSDBA privilege could have access to sensitive application
data either directly or indirectly (for example, through diagnostics, database upgrades,
and patching), use of the SYSDBA privilege and accounts must be highly restricted.
The list of highly privileged accounts include SYS and user accounts with the SYSDBA
privilege in the database, and the root and oracle accounts in the operating system.
Access to highly privileged accounts in the database and the operating system should
be on an exception basis and require the user to go through a process to unlock
access to these accounts and privileges. Oracle recommends that you manage these
accounts with a Privileged Account Management (PAM) system. Only check these
accounts out when they are required for certain tasks. Enhance audit levels when
highly privileged operating system accounts (root and oracle) and database accounts
(SYS account and SYSDBA administrative privilege) are being used, up to an including
keystroke capture and video capture. When these highly privileged accounts access
the database, audit the SYS account to monitor their activities. Oracle recommends
that you use the ENABLE_DV_PATCH_ADMIN_AUDIT procedure during patching operations
when the DV_PATCH_ADMIN role is granted to SYS (or to users who have the with SYSDBA
administrative privilege).

Related Topics

• ENABLE_DV_PATCH_ADMIN_AUDIT Procedure
The ENABLE_DV_PATCH_ADMIN_AUDIT procedure enables realm, command rule, and
rule set auditing of the actions by users who have the DV_PATCH_ADMIN role.

Management of SYSOPER Access
By default, Oracle Database limits SYSOPER access to operating system users in the
OSOPER group and to the user SYS.

This prevents SYSOPER from modifying the Oracle data dictionary directly. The SYSOPER
privilege has limited privileges within the database, but individuals with this role can
start and shut down the Oracle database. Only grant the SYSOPER privilege to trusted
individuals.

Appendix D
Accounts and Roles That Should be Limited to Trusted Individuals

D-9

Guidelines for Using Oracle Database Vault in a Production
Environment

You should follow special guidelines when you run Oracle Database Vault in a
production environment.

These guidelines are as follows:

• Run a full test of your applications to ensure that the Database Vault policies you
have created are working as expected

• Monitor the performance of your applications, and if necessary, tune your rule
expressions

• Assign responsibilities to the appropriate production support and security groups,
as follows:

– Assign security responsibilities to the database security administrator.

– Assign account management to the database account manager.

– Assign resource management tasks to database administrators.

• Back up your Database Vault API scripts to a secure server.

Secure Configuration Guidelines
You should be aware of security considerations for special PL/SQL packages,
privileges, and the recycle bin.

• General Secure Configuration Guidelines
General secure configuration guidelines involved patches and revoke operations.

• UTL_FILE and DBMS_FILE_TRANSFER Package Security Considerations
You should carefully restrict access to the UTL_FILE and DBMS_FILE_TRANSFER
PL/SQL packages.

• CREATE ANY JOB Privilege Security Considerations
The CREATE ANY JOB privilege has been revoked from the DBA and the
SCHEDULER_ADMIN roles.

• CREATE EXTERNAL JOB Privilege Security Considerations
The CREATE EXTERNAL JOB privilege was introduced in Oracle Database 10g
release 2 (10.2).

• LogMiner Package Security Considerations
The role EXECUTE_CATALOG_ROLE no longer has the EXECUTE privilege granted by
default on the several LogMiner packages.

• ALTER SYSTEM and ALTER SESSION Privilege Security Considerations
You should be aware of ways to secure the powerful ALTER SYSTEM and ALTER
SESSION system privileges.

General Secure Configuration Guidelines
General secure configuration guidelines involved patches and revoke operations.

Appendix D
Guidelines for Using Oracle Database Vault in a Production Environment

D-10

• Installing patches and new applications might re-grant some of the privileges that
Oracle recommends that you revoke in this section. Check these privileges after
you install patches and new applications to verify that they are still revoked.

• When you revoke EXECUTE privileges on packages, ensure that you grant EXECUTE
on the packages to the owner, check the package dependencies, and recompile
any invalid packages after the revoke.

To find users who have access to the package, log into the database instance as a
named database administrator and issue the following query.

SELECT * FROM DBA_TAB_PRIVS WHERE TABLE_NAME = package_name;

package_name is the name of the package you are looking for.

To find the users, packages, procedures, and functions that are dependent on the
package, issue this query:

SELECT OWNER, NAME, TYPE FROM ALL_DEPENDENCIES
WHERE REFERENCED_NAME = package_name;

Note that these two queries do not identify references to packages made through
dynamic SQL.

UTL_FILE and DBMS_FILE_TRANSFER Package Security
Considerations

You should carefully restrict access to the UTL_FILE and DBMS_FILE_TRANSFER PL/SQL
packages.

• About Security Considerations for the UTL_FILE and DBMS_FILE_TRANSFER
Packages
The UTL_FILE package is owned by SYS and granted to PUBLIC.

• Securing Access to the DBMS_FILE_TRANFER Package
You can secure access to the DBMS_FILE_TRANSFER PL/SQLpackage in a variety of
ways.

• Example: Creating a Command Rule to Deny Access to CREATE DATABASE
LINK
The DBMS_MACADM.CREATE_COMMAND_RULE enables you to create command rules to
deny access to the CREATE DATABASE LINK SQL statement.

• Example: Creating a Command Rule to Enable Access to CREATE DATABASE
LINK
The DBMS_MACADM.UPDATE_COMMAND_RULE procedure can be used to modify an
existing command rule.

• Example: Command Rules to Disable and Enable Access to CREATE
DIRECTORY

About Security Considerations for the UTL_FILE and DBMS_FILE_TRANSFER
Packages

The UTL_FILE package is owned by SYS and granted to PUBLIC.

However, a user must have access to the directory object to manipulate the files in that
operating system directory.

Appendix D
Secure Configuration Guidelines

D-11

The DBMS_FILE_TRANSFER package is owned by SYS and granted to the
EXECUTE_CATALOG_ROLE. Users with EXECUTE access on this package can move files
from one location to another on the same file system. They also can move files
between database instances, including databases on remote systems.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Securing Access to the DBMS_FILE_TRANFER Package
You can secure access to the DBMS_FILE_TRANSFER PL/SQLpackage in a variety of
ways.

• Use any of the following methods to secure the DBMS_FILE_TRANSFER PL/
SQLpackage:

– Revoke the EXECUTE privilege from the DBMS_FILE_TRANSFER package and
grant the EXECUTE privilege only to trusted users who need it.

– Create command rules to control the CREATE DATABASE LINK and CREATE
DIRECTORY SQL statements. See Creating a Command Rule for information on
creating command rules by using Oracle Database Vault Administrator.

– Create Oracle Database Vault command rules to limit and enable access to
the CREATE DATABASE LINK and CREATE DIRECTORY statements, which are
used to establish connections to remote databases.

See Also:

The following sections for examples of command rules that you can create to
protect use of the CREATE DATABASE LINK statement:

• Example: Creating a Command Rule to Deny Access to CREATE
DATABASE LINK

• Example: Creating a Command Rule to Enable Access to CREATE
DATABASE LINK

• Example: Command Rules to Disable and Enable Access to CREATE
DIRECTORY

Example: Creating a Command Rule to Deny Access to CREATE DATABASE
LINK

The DBMS_MACADM.CREATE_COMMAND_RULE enables you to create command rules to
deny access to the CREATE DATABASE LINK SQL statement.

Example D-1 shows how to create a command rule to deny access to the CREATE
DATABASE LINK privilege.

Example D-1 Creating a Command Rule to Deny Access to CREATE
DATABASE LINK

BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE (

Appendix D
Secure Configuration Guidelines

D-12

 command => 'CREATE DATABASE LINK',
 rule_set_name => 'Disabled',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES);
 END;
 /
COMMIT;

Example: Creating a Command Rule to Enable Access to CREATE DATABASE
LINK

The DBMS_MACADM.UPDATE_COMMAND_RULE procedure can be used to modify an existing
command rule.

Example D-2 shows how to create a command rule that enables access to the CREATE
DATABASE LINK privilege.

When a valid user must use the CREATE DATABASE LINK statement, the Oracle
Database Vault owner can reenable it from Oracle Database Vault Administrator or
issue the following commands in SQL*Plus.

Example D-2 Creating a Command Rule to Enable Access to CREATE
DATABASE LINK

BEGIN
 DBMS_MACADM.UPDATE_COMMAND_RULE (
 command => 'CREATE DATABASE LINK',
 rule_set_name => 'Enabled',
 object_owner => '%',
 object_name => '%',
 enabled => DBMS_MACUTL.G_YES);
 END;
 /
COMMIT;

Example: Command Rules to Disable and Enable Access to CREATE
DIRECTORY

Example D-3 shows command rules that disable and enable access to CREATE
DIRECTORY.

Example D-3 Command Rules to Disable and Enable Access to CREATE
DIRECTORY

-- Disable access to CREATE DIRECTORY
BEGIN
 DBMS_MACADM.CREATE_COMMAND_RULE (
 command => 'CREATE DIRECTORY',
 rule_set_name => 'Disabled',
 object_owner => '%',
 object_name => '%',
 enabled => dbms_macutl.g_yes);
 END;
 /
COMMIT;

-- Enable access to CREATE DIRECTORY

Appendix D
Secure Configuration Guidelines

D-13

BEGIN
 dbms_macadm.update_command_rule (
 command => 'CREATE DIRECTORY',
 rule_set_name => 'Enabled',
 object_owner => '%',
 object_name => '%',
 enabled => dbms_macutl.g_yes);
 END;
 /
COMMIT;

CREATE ANY JOB Privilege Security Considerations
The CREATE ANY JOB privilege has been revoked from the DBA and the
SCHEDULER_ADMIN roles.

Ensure that this change does not affect your applications.

Related Topics

• Using Oracle Scheduler with Oracle Database Vault
Users who are responsible for scheduling database jobs must have Oracle
Database Vault-specific authorization.

CREATE EXTERNAL JOB Privilege Security Considerations
The CREATE EXTERNAL JOB privilege was introduced in Oracle Database 10g release 2
(10.2).

This privilege is required for database users who want to execute jobs that run on the
operating system outside the database. By default, the CREATE EXTERNAL JOB privilege
is granted to all users who have been granted the CREATE JOB privilege. For greater
security, revoke this privilege from users who do not need it and then grant it only to
those users who do need it.

LogMiner Package Security Considerations
The role EXECUTE_CATALOG_ROLE no longer has the EXECUTE privilege granted by
default on the several LogMiner packages.

These packages are as follows:

• DBMS_LOGMNR

• DBMS_LOGMNR_D

• DBMS_LOGMNR_LOGREP_DICT

• DBMS_LOGMNR_SESSION

You should ensure that this change does not affect your applications.

ALTER SYSTEM and ALTER SESSION Privilege Security
Considerations

You should be aware of ways to secure the powerful ALTER SYSTEM and ALTER
SESSION system privileges.

Appendix D
Secure Configuration Guidelines

D-14

• About ALTER SYSTEM and ALTER SESSION Privilege Security Considerations
Be aware that trace and debug commands have the potential to show Oracle
database memory information.

• Example: Adding Rules to the Existing ALTER SYSTEM Command Rule
You can create a rule that prevents users with the ALTER SYSTEM privilege from
issuing ALTER SYSTEM statements.

About ALTER SYSTEM and ALTER SESSION Privilege Security
Considerations

Be aware that trace and debug commands have the potential to show Oracle database
memory information.

Oracle Database Vault does not protect against these commands. To help secure
the Oracle database memory information, Oracle recommends that you strictly control
access to the ALTER SYSTEM and ALTER SESSION privileges. These privileges can be
granted by the user SYS when connected as SYSDBA and by any user granted the DBA
role.

Oracle also recommends that you add rules to the existing command rule for ALTER
SYSTEM statement. You can use Oracle Database Vault Administrator to create a rule
and add it to a rule set. You should grant the ALTER SESSION privilege only to trusted
users. (For example, the ALTER SESSION statement can enable tracing.)

Example: Adding Rules to the Existing ALTER SYSTEM Command Rule
You can create a rule that prevents users with the ALTER SYSTEM privilege from issuing
ALTER SYSTEM statements.

Example D-4 shows how to create a rule that prevents users with ALTER SYSTEM
privilege from issuing the ALTER SYSTEM DUMP statement. Log into the database
instance as the Oracle Database Vault Owner when you create this command rule.

Alternatively, you can use Oracle Database Vault Administrator to create and add this
rule to the rule set. See Creating a Rule to Add to a Rule Set for more information.

Example D-4 Adding Rules to the Existing ALTER SYSTEM Command Rule

CONNECT bea_dvacctmgr
Enter password: password

BEGIN
 DBMS_MACADM.CREATE_RULE('NO_SYSTEM_DUMP',
 '(INSTR(UPPER(DV_SQL_TEXT),''DUMP'') = 0)');
 END;
/
EXEC DBMS_MACADM.ADD_RULE_TO_RULE_SET
 ('Allow Fine Grained Control of System Parameters','NO_SYSTEM_DUMP');

COMMIT;

Appendix D
Secure Configuration Guidelines

D-15

E
Troubleshooting Oracle Database Vault

You can troubleshoot Oracle Database Vault by using tools such as trace files or
checking certain Oracle Database Vault reports.

• Using Trace Files to Diagnose Oracle Database Vault Events
Trace files, which the database generates, capture important information to help
you debug errors.

• General Diagnostic Tips
Oracle provides general tips for diagnosing problems in realms, factors, and rule
sets.

• Configuration Problems with Oracle Database Vault Components
Oracle Database Vault provides reports to check configuration problems with
realms, command rules, factors, rule sets, or secure application roles.

• Resetting Oracle Database Vault Account Passwords
Backup accounts can help you reset lost passwords for users who have been
granted the DV_OWNER and DV_ACCTMGR roles.

Using Trace Files to Diagnose Oracle Database Vault
Events

Trace files, which the database generates, capture important information to help you
debug errors.

• About Using Trace Files to Diagnose Oracle Database Vault Events
You can monitor the Oracle Database Vault database instance for server and
background process events by enabling and checking the database instance trace
files.

• Types of Oracle Database Vault Trace Events That You Can and Cannot Track
You can use trace files to track a variety of Oracle Database Vault activities.

• Levels of Oracle Database Vault Trace Events
You can use the several levels for Oracle Database Vault trace events.

• Performance Effect of Enabling Oracle Database Vault Trace Files
Be careful about enabling trace files.

• Enabling Oracle Database Vault Trace Events
You can use the ALTER SESSION or ALTER SYSTEM SQL statements to enable
Oracle Database Vault trace events.

• Finding Oracle Database Vault Trace File Data
The Linux grep command and the ADR Command Interpreter (ADRCI) command-
line utility can find Oracle Database Vault trace file data.

• Example: Low Level Oracle Database Vault Realm Violations in a Trace File
You can use trace file data to track low level realm violations.

E-1

• Example: High Level Trace Enabled for Oracle Database Vault Authorization
You can track Oracle Database Vault authorizations in a trace file with high level
trace enabled.

• Example: Highest Level Traces on Violations on Realm-Protected Objects
You can track high level violations using trace files.

• Disabling Oracle Database Vault Trace Events
You can disable tracing for Oracle Database Vault events.

About Using Trace Files to Diagnose Oracle Database Vault Events
You can monitor the Oracle Database Vault database instance for server and
background process events by enabling and checking the database instance trace
files.

Trace files reveal the Oracle Database Vault policy authorization success and failures.
They are useful for providing information to help resolve bug and other issues that may
occur.

To set tracing for Oracle Database Vault, you must have the DV_ADMIN role. To perform
the configuration, you use either of the ALTER SESSION SET EVENTS or ALTER SYSTEM
SET EVENTS SQL statements.

Related Topics

• Oracle Database Administrator’s Guide

Types of Oracle Database Vault Trace Events That You Can and
Cannot Track

You can use trace files to track a variety of Oracle Database Vault activities.

Table E-1 describes these activities.

Table E-1 Contents of Oracle Database Vault Trace Files

Database Vault Feature Description

Realm authorizations The trace file tracks cases of realm authorization with a rule set
and realm authorization to a role.

Rule set evaluations The trace file includes information about a rule set evaluation
from a realm authorization, for a command rule, the CONNECT
command rule, and from a factor.

Oracle Data Pump
authorization

The trace file includes Database Vault Data Pump authorization
results and other user, object, and SQL text information.

Oracle Scheduler job
authorization

The trace file includes the Database Vault Oracle Scheduler job
authorization results, job name, job owner, current statement,
and so on.

Object privilege bypass The trace file tracks both direct grants and grants through a
role. This type of trace is useful for cases where mandatory
realms are not enabled, which enables users who have an object
privilege to access realm protected objects.

Factor loading The trace file tracks the expression and value for each factor
loaded.

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-2

Table E-1 (Cont.) Contents of Oracle Database Vault Trace Files

Database Vault Feature Description

Others Object owner bypassed realm protection and other Database
Vault failed and succeeded operations

Related Topics

• Example: Low Level Oracle Database Vault Realm Violations in a Trace File
You can use trace file data to track low level realm violations.

Levels of Oracle Database Vault Trace Events
You can use the several levels for Oracle Database Vault trace events.

These levels are as follows:

• Low prints the information for all failed Oracle Database Vault authorizations to a
trace file. This type of trace file includes failed realm authorizations, failed factor
loading, failed rule set evaluating, and so on. It has a low impact on Oracle
Database performance.

• High prints trace records that include both successful and failed authorizations.
Because this type of tracing tracks all the authorizations, the overhead is larger
than that of the low level tracing. In addition, the trace files are usually larger.

• Highest prints the PL/SQL stack and function call stack to a trace file, as well as
what is traced at level high (as described in Table E-1). It has the highest impact
on Oracle Database performance.

Performance Effect of Enabling Oracle Database Vault Trace Files
Be careful about enabling trace files.

Doing so can increase the overhead of the database instance operation, which could
decrease performance.

Enabling Oracle Database Vault Trace Events
You can use the ALTER SESSION or ALTER SYSTEM SQL statements to enable Oracle
Database Vault trace events.

• Enabling Trace Events for the Current Database Session
You can use the ALTER SESSION SET EVENTS SQL statement to enable trace
events for the current database session.

• Enabling Trace Events for All Database Sessions
You can use the ALTER SYSTEM SET EVENTS SQL statement to enable Database
Vault trace events for all database sessions.

• Enabling Trace Events in a Multitenant Environment
Trace events affect both the current user session and all database sessions.

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-3

Enabling Trace Events for the Current Database Session
You can use the ALTER SESSION SET EVENTS SQL statement to enable trace events for
the current database session.

1. Log into the database instance as a user who has been granted the DV_ADMIN role
and the ALTER SESSION system privilege.

For example:

sqlplus leo_dvowner
Enter password: password
Connected.

2. Enter the ALTER SESSION SET EVENTS SQL statement to set the level of the Oracle
Database Vault trace events to low, high, or highest.

• To turn on tracing for failed operations that have a low impact, enter one of the
following statements:

ALTER SESSION SET EVENTS 'TRACE[DV] DISK=LOW';

ALTER SESSION SET EVENTS '47998 TRACE NAME CONTEXT FOREVER, LEVEL 1';

• To turn on tracing for both failed and successful operations that have a high
impact, enter one of the following statements:

ALTER SESSION SET EVENTS 'TRACE[DV] DISK=HIGH';

ALTER SESSION SET EVENTS '47998 TRACE NAME CONTEXT FOREVER, LEVEL 3';

• To turn on tracing for both failed and successful operations with a function
and PL/SQL call stack that has the highest impact, enter one of the following
statements:

ALTER SESSION SET EVENTS 'TRACE[DV] DISK=HIGHEST';

ALTER SESSION SET EVENTS '47998 TRACE NAME CONTEXT FOREVER, LEVEL 4';

Related Topics

• Levels of Oracle Database Vault Trace Events
You can use the several levels for Oracle Database Vault trace events.

Enabling Trace Events for All Database Sessions
You can use the ALTER SYSTEM SET EVENTS SQL statement to enable Database Vault
trace events for all database sessions.

1. Log into the database instance as a user who has been granted the DV_ADMIN role
and the ALTER SYSTEM system privilege.

For example:

sqlplus leo_dvowner
Enter password: password
Connected.

2. Enter the ALTER SYSTEM SET EVENTS SQL statement to set the level of the Oracle
Database Vault trace events to low, high, or highest.

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-4

• To turn on tracing for failed operations that have a low impact, enter one of the
following statements:

ALTER SYSTEM SET EVENTS 'TRACE[DV] DISK=LOW';

ALTER SYSTEM SET EVENTS '47998 TRACE NAME CONTEXT FOREVER, LEVEL 1';

• To turn on tracing for both failed and successful operations that have a high
impact, enter one of the following statements:

ALTER SYSTEM SET EVENTS 'TRACE[DV] DISK=HIGH';

ALTER SYSTEM SET EVENTS '47998 TRACE NAME CONTEXT FOREVER, LEVEL 3';

• To turn on tracing for both failed and successful operations with a function
and PL/SQL call stack that has the highest impact, enter one of the following
statements:

ALTER SYSTEM SET EVENTS 'TRACE[DV] DISK=HIGHEST';

ALTER SYSTEM SET EVENTS '47998 TRACE NAME CONTEXT FOREVER, LEVEL 4';

3. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

Another way that you can enable trace events for all database sessions is to add the
following line to the init.ora file, and then restart the database:

event="47998 trace name context forever, level [trace_level]"

Replace trace_level with one of the following values:

• 1 for the lowest level of tracing

• 3 for the high level

• 4 for the highest level

For example:

event="47998 trace name context forever, level [1]"

Related Topics

• Enabling Trace Events for the Current Database Session
You can use the ALTER SESSION SET EVENTS SQL statement to enable trace
events for the current database session.

Enabling Trace Events in a Multitenant Environment
Trace events affect both the current user session and all database sessions.

• Trace events for the current user session: Running the ALTER SESSION SET
EVENTS SQL statement from either the root or a pluggable database (PDB) enables
tracing for the current user session. If you switch from one PDB to another
PDB (by using the ALTER SESSION SET CONTAINER statement), then tracing is
still enabled for the new PDB. You cannot enable tracing for a single PDB; the
tracing applies to all PDBs and the root. Remember that you must have the ALTER
SESSION SET CONTAINER system privilege to move from one PDB to another.

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-5

• Trace events for all database sessions: Running the ALTER SYSTEM SET EVENTS
statement from either the root or a specific PDB enables tracing for all PDBs in the
container database.

Finding Oracle Database Vault Trace File Data
The Linux grep command and the ADR Command Interpreter (ADRCI) command-line
utility can find Oracle Database Vault trace file data.

• Finding the Database Vault Trace File Directory Location
You can find the full directory location of trace files by querying the V$DIAG_INFO
dynamic view.

• Using the Linux grep Command to Search Trace Files for Strings
To query or process the trace files, you can use the Linux grep command to
search for strings.

• Using the ADR Command Interpreter (ADRCI) Utility to Query Trace Files
You can query trace files by using the ADR Command Interpreter (ADRCI)
command-line utility.

Finding the Database Vault Trace File Directory Location
You can find the full directory location of trace files by querying the V$DIAG_INFO
dynamic view.

• Query the V$DIAG_INFO dynamic view as follows:

SELECT VALUE FROM V$DIAG_INFO WHERE NAME = 'Default Trace File';

Output similar to the following appears:

VALUE
--
/u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl/trace/orcl_ora_7174.trc

Using the Linux grep Command to Search Trace Files for Strings
To query or process the trace files, you can use the Linux grep command to search for
strings.

• For example, to find the trace files that show realm authorization failures, enter the
following command:

grep 'Result=Realm Authorization Failed' *.trc

Using the ADR Command Interpreter (ADRCI) Utility to Query Trace Files
You can query trace files by using the ADR Command Interpreter (ADRCI) command-
line utility.

• To use the ADRCI utility to find trace file information, use the SHOW command.

For example, to use ADRCI to find the trace files, enter the SHOW TRACEFILE
command:

adrci --To start ACRCI from the command line
adrci> show tracefile

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-6

diag/rdbms/orcl/orcl/trace/orcl_m002_14551.trc
diag/rdbms/orcl/orcl/trace/orcl_tmon_13450.trc
diag/rdbms/orcl/orcl/trace/orcl_vktm_963.trc
diag/rdbms/orcl/orcl/trace/alert_orcl.log
...

To find the number of all trace incidents:

adrci> show incident

ADR Home = /u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl:

234 rows fetched

The following ADRCI command returns a list of all trace files whose name contains
the word ora:

adrci> show tracefile %ora%

/u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl/trace/
orcl_ora_18841.trc
/u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl/trace/
orcl_ora_12017.trc
/u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl/trace/
orcl_ora_19372.trc
/u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl/trace/
orcl_ora_12221.trc
/u01/app/oracle/product/12.1.0/log/diag/rdbms/orcl/orcl/trace/
orcl_ora_1600.trc
...

The following ADRCI command searches for trace files that contain the phrase
Realm Authorization Failed:

adrci> show trace %trc -xp "[payload like '%Realm Authorization Failed%']"

Related Topics

• Oracle Database Utilities

• Oracle Database Administrator’s Guide

Example: Low Level Oracle Database Vault Realm Violations in a
Trace File

You can use trace file data to track low level realm violations.

Example E-1 shows an example of tracking low lever real violations.

Example E-1 Low Level Oracle Database Vault Realm Violations in a Trace File

*** 2010-02-05 18:35:31.438
*** SESSION ID:(34.559) 2010-02-05 18:35:31.438
*** CLIENT ID:() 2010-02-05 18:35:31.438
*** SERVICE NAME:(SYS$USERS) 2010-02-05 18:35:31.438
*** MODULE NAME:(SQL*Plus) 2010-02-05 18:35:31.438
*** ACTION NAME:() 2010-02-05 18:35:31.438

Result=Realm Authorization Failed
 Realm_Name=realm 3 Required_Auth_Level=0
 Current_User=116

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-7

 Object_Owner=U1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=INSERT INTO U1.T1 VALUES(30)

Result=Realm Authorization Failed
 Realm_Name=realm 3 Required_Auth_Level=0
 Current_User=116
 Object_Owner=U1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=DELETE FROM U1.T1

Result=Realm Authorization Failed
 Realm_Name=realm 3 Required_Auth_Level=0
 Current_User=116
 Object_Owner=U1 Object_Name=T3 Object_Type=TABLE
 SQL_Text=CREATE TABLE U1.T3(C INT)

*** 2010-02-05 18:35:34.465

Result=Realm Authorization Failed
 Realm_Name=realm 3 Required_Auth_Level=0
 Current_User=116
 Object_Owner=U1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=INSERT INTO U1.T1 VALUES(30)

Result=Realm Authorization Failed
 Realm_Name=realm 3 Required_Auth_Level=0
 Current_User=116
 Object_Owner=U1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=DELETE FROM U1.T1

Example: High Level Trace Enabled for Oracle Database Vault
Authorization

You can track Oracle Database Vault authorizations in a trace file with high level trace
enabled.

Example E-2 shows an example of this type of trace file.

Example E-2 High Level Trace Enabled for Oracle Database Vault Authorization

Result= Realm Authorization Passed
 Reason=Current user is the object owner
 Current_User=70 Command=SELECT
 Object_Owner=LBACSYS Object_Name=LBAC$AUDIT Object_Type=TABLE

Result= Realm Authorization Passed
 Reason=Current user is the object owner
 Current_User=70 Command=SELECT
 Object_Owner=LBACSYS Object_Name=LBAC$AUDIT Object_Type=TABLE

Result= Realm Authorization Passed
 Reason=Current user is the object owner
 Current_User=70 Command=SELECT
 Object_Owner=LBACSYS Object_Name=LBAC$POL Object_Type=TABLE

Result= Realm Authorization Passed
 Reason=Current user is the object owner
 Current_User=70 Command=SELECT
 Object_Owner=LBACSYS Object_Name=LBAC$USER_LOGON Object_Type=VIEW

……

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-8

Result= Realm Authorization Passed
 Reason=Current user is the object owner
 Current_User=70 Command=SELECT
 Object_Owner=LBACSYS Object_Name=LBAC$POL Object_Type=TABLE

Result=Set Factor Value
 Factor_Name=Sensitive_Treatments Factor_Expression=/SURGERY/
PSYCHOLOGICAL

Result=Set Factor Value
 Factor_Name=Database_Instance
Factor_Expression=UPPER(SYS_CONTEXT('USERENV','INSTANCE')) Factor_Value=1

Result=Set Factor Value
 Factor_Name=Client_IP
Factor_Expression=UPPER(SYS_CONTEXT('USERENV','IP_ADDRESS')) Factor_Value=

Result=Set Factor Value
 Factor_Name=Authentication_Method
Factor_Expression=UPPER(SYS_CONTEXT('USERENV','AUTHENTICATION_METHOD'))
Factor_Value=PASSWORD
……

*** ACTION NAME:() 2010-02-05 18:47:19.540

Result=Rule Set Evaluation Failed
 Command=SELECT RuleSet_ID=2 RuleSet_Name=Disabled
 Current_User=SYSTEM
 Object_Owner=U1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=SELECT * FROM U1.T1

Result=Rule Set Evaluation Succeeded
 Command=SELECT RuleSet_ID=1 RuleSet_Name=Enabled
 Current_User=SYSTEM
 Object_Owner=U1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=SELECT * FROM U1.T1

Example: Highest Level Traces on Violations on Realm-Protected
Objects

You can track high level violations using trace files.

Example E-3 shows how highest level violations that involve Oracle Scheduler jobs
authorization can appear in a trace file when trace is enabled at the highest level.

Example E-3 Highest Level Traces on Violations on Realm-Protected Objects

------ Call Stack Trace ------
kzvdvechk<-kzvdveqau<-kksfbc<-opiexe<-kpoal8<-opiodr<-ttcpip<-opitsk<-opiino<-
opiodr<-opidrv<-sou2o<-opimai_real<-ssthrdmain<-main<-__libc_start_main<-_start

Result=Object Privilege check passed
 Current_User=INVOKER2 Used_Role=1
 Object_Owner=SYSTEM Object_Name=PRODUCT_PRIVS Object_Type=VIEW
 SQL_Text=SELECT CHAR_VALUE FROM SYSTEM.PRODUCT_PRIVS WHERE
(UPPER('SQL*PLUS') LIKE UPPER(PRODUCT)) AND ((USER LIKE USERID) OR (USERID
= 'PUBLIC')) AND (UPPER(ATTRIBUTE) = 'ROLES')
*** MODULE NAME:(SQL*Plus) 2010-02-05 18:57:53.973
*** ACTION NAME:() 2010-02-05 18:57:53.973

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-9

----- Current SQL Statement for this session (sql_id=2sr63rjm45yfh) -----
UPDATE INVOKER1.T1 SET A = 20
----- PL/SQL Stack -----
----- PL/SQL Call Stack -----
 object line object
 handle number name
0x26a00e34 1 anonymous block
0x2495b000 185 package body SYS.DBMS_ISCHED
0x24958fb8 486 package body SYS.DBMS_SCHEDULER
0x247bbb34 1 anonymous block

------ Call Stack Trace ------
kzvdvechk<-kzvdveqau<-kksfbc<-opiexe<-opipls<-opiodr<-__PGOSF151_rpidrus<-
skgmstack<-rpidru<-rpiswu2<-rpidrv<-psddr0<-psdnal<-pevm_EXECC<-pfrinstr_EXECC<-
pfrrun_no_tool<-pfrrun<-plsql_run<-peicnt<-kkxexe<-opiexe<-kpoal8<-opiodr<-
kpoodr<-upirtrc<-kpurcsc<-kpuexec
<-OCIStmtExecute<-jslvec_execcb<-jslvswu<-jslve_execute0<-jskaJobRun<-
jsiRunJob<-jsaRunJob<-spefcmpa<-spefmccallstd<-pextproc<-__PGOSF495_peftrusted<-
__PGOSF522_psdexsp<-rpiswu2<-psdextp<-pefccal<-pefcal<-pevm_FCAL<-pfrinstr_FCAL<-
pfrrun_no_tool<-pfrrun<-plsql_run
<-peicnt<-kkxexe<-opiexe<-kpoal8<-opiodr<-ttcpip<-opitsk<-opiino<-opiodr<-
opidrv<-sou2o<-opimai_real<-ssthrdmain<-main<-__libc_start_main<-_start

Result=Realm Authorization Succeeded
 Realm_Name=jobowner realm Used_Auth_Level=0
 Current_User=119
 Object_Owner=INVOKER1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=UPDATE INVOKER1.T1 SET A = 20

Result=Scheduler Job Authorization Succeeded
 Current_User=JOBOWNER Logon_User=INVOKER2
 Job_Owner=JOBOWNER Job_Name=DMLJOB1
 Object_Owner=INVOKER1 Object_Name=T1 Object_Type=TABLE
 SQL_Text=UPDATE INVOKER1.T1 SET A = 20

Disabling Oracle Database Vault Trace Events
You can disable tracing for Oracle Database Vault events.

• Disabling Trace Events for the Current Database Session
You can use the ALTER SESSION SET EVENTS SQL statement to disable Database
Vault tracing for the current database session.

• Disabling Trace Events for All Database Sessions
You can use the ALTER SYSTEM SET EVENTS SQL statement to disable Database
Vault tracing for all database sessions.

• Disabling Trace Events in a Multitenant Environment
Disabling trace events affects both the current user session and all databaes
sessions.

Disabling Trace Events for the Current Database Session
You can use the ALTER SESSION SET EVENTS SQL statement to disable Database Vault
tracing for the current database session.

1. Log into the database instance as a user who has been granted the DV_ADMIN role
and the ALTER SESSION system privilege.

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-10

For example:

sqlplus leo_dvowner
Enter password: password
Connected.

2. Enter both of the following SQL statements to disable tracing:

ALTER SESSION SET EVENTS 'TRACE[DV] OFF';
ALTER SESSION SET EVENTS '47998 trace name context off';

Disabling Trace Events for All Database Sessions
You can use the ALTER SYSTEM SET EVENTS SQL statement to disable Database Vault
tracing for all database sessions.

1. Log into the database instance as a user who has been granted the DV_ADMIN role
and the ALTER SYSTEM system privilege.

For example:

sqlplus leo_dvowner
Enter password: password
Connected.

2. Enter the following ALTER SYSTEM SET EVENTS SQL statements.

ALTER SYSTEM SET EVENTS 'TRACE[DV] OFF';
ALTER SYSTEM SET EVENTS '47998 trace name context off';

3. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

Another way that you can disable trace events for all database sessions is to add the
following line to the init.ora file, and then restart the database:

event="47998 trace name context off"

Ensure that the init.ora file does not have any conflicting 47998 lines, such as
event="47998 trace name context forever, level [1]".

Disabling Trace Events in a Multitenant Environment
Disabling trace events affects both the current user session and all databaes sessions.

• Trace events for the current user session: Running the ALTER SESSION SET
EVENTS SQL statement from either the root or a PDB disables tracing for the
current user session. If you switch from one PDB to another PDB (by using the
ALTER SESSION SET CONTAINER statement), then tracing is still disabled for the
new PDB. You cannot disable tracing for a single PDB; the tracing applies to
all PDBs and the root. Remember that you must have the ALTER SESSION SET
CONTAINER system privilege to move from one PDB to another.

• Trace events for all database sessions: Running the ALTER SYSTEM SET EVENTS
statement from either the root or a specific PDB disables tracing for all PDBs in the
CDB.

Appendix E
Using Trace Files to Diagnose Oracle Database Vault Events

E-11

General Diagnostic Tips
Oracle provides general tips for diagnosing problems in realms, factors, and rule sets.

These guidelines are as follows:

• For realm protections, verify that a user has the underlying system or object
privileges (granted directly or through a role) that might affect the command.

• If a realm authorization is not working, verify that the account roles are set
correctly.

• For PL/SQL expressions used in factors and rule sets, grant the EXECUTE privilege
on the PL/SQL package functions used in these expressions directly to the
account and determine if the results appear to be correct.

• Use the auditing reports to diagnose problems in general.

Related Topics

• Oracle Database Vault Reports
Oracle Database Vault provides reports that track activities, such as the Database
Vault configuration settings.

Configuration Problems with Oracle Database Vault
Components

Oracle Database Vault provides reports to check configuration problems with realms,
command rules, factors, rule sets, or secure application roles.

See the following sections for more information:

• Command Rule Configuration Issues Report

• Factor Configuration Issues Report

• Factor Without Identities Report

• Identity Configuration Issues Report

• Realm Authorization Configuration Issues Report

• Rule Set Configuration Issues Report

• Secure Application Configuration Issues Report

To run these reports, see Running the Oracle Database Vault Reports.

Resetting Oracle Database Vault Account Passwords
Backup accounts can help you reset lost passwords for users who have been granted
the DV_OWNER and DV_ACCTMGR roles.

• Resetting the DV_OWNER User Password
You can use the DV_OWNER backup account to reset the DV_OWNER user password.

• Resetting the DV_ACCTMGR User Password
You can use the DV_ACCTMGR backup account to reset the DV_ACCTMGR user
password.

Appendix E
General Diagnostic Tips

E-12

Resetting the DV_OWNER User Password
You can use the DV_OWNER backup account to reset the DV_OWNER user password.

To reset the DV_OWNER user password, you must temporarily revoke the DV_OWNER role
from this user, reset the password, and then re-grant the role back to the user.

1. Log in to the database instance as the backup user for the DV_OWNER user account.

For example:

sqlplus dbv_owner_backup
Enter password: password

2. Revoke the DV_OWNER role from the DV_OWNER user who has lost the password.

For example:

REVOKE DV_OWNER FROM sec_admin_owen;

3. Connect as a user who has been granted the DV_ACCTMGR role.

For example:

CONNECT accts_admin_ace
Enter password: password

4. Reset the password for the DV_OWNER user.

ALTER USER sec_admin_owen IDENTIFIED BY password;

Replace password with a password that is secure.

5. Connect as the backup DV_OWNER user.

CONNECT dbv_owner_backup
Enter password: password

6. Grant the DV_OWNER role back to the DV_OWNER user.

GRANT DV_OWNER TO sec_admin_owen WITH ADMIN OPTION;

Note:

Ensure that the backup DV_OWNER account is safely stored in case it is
needed again.

Related Topics

• Oracle Database Security Guide

Resetting the DV_ACCTMGR User Password
You can use the DV_ACCTMGR backup account to reset the DV_ACCTMGR user password.

To reset the DV_ACCTMGR user password, you can use the backup DV_ACCTMGR account
to reset this user’s password.

1. Log in to the database instance as the backup user for the DV_ACCTMGR user
account.

Appendix E
Resetting Oracle Database Vault Account Passwords

E-13

For example:

sqlplus dbv_acctmgr_backup
Enter password: password

2. Reset the password for the DV_ACCTMGR user.

For example:

ALTER USER accts_admin_ace IDENTIFIED BY password;

Replace password with a password that is secure.

Note:

Ensure that the backup DV_ACCTMGR account is safely stored in case it is
needed again.

Related Topics

• Oracle Database Security Guide

Appendix E
Resetting Oracle Database Vault Account Passwords

E-14

Index

A
access control policy

reports
Core Database Vault Audit Report, 26-6

Access to Sensitive Objects Report, 26-11
accounts

See database accounts
Accounts With DBA Roles Report, 26-14
Accounts with SYSDBA/SYSOPER Privilege

Report, 26-12
ad hoc tools

preventing use of, 7-24
administrators

DBA operations in Oracle Database Vault,
12-1

ADRCI utility
Database Vault, E-6

alerts
Enterprise Manager Cloud Control, 12-4

ALTER ROLE statement
monitoring, 25-1

ALTER SESSION command rules, 6-5, 16-17
about, 6-5

ALTER SESSION event command rules
creating, 16-11
updating, 16-23

ALTER SESSION privilege
enabling trace files, E-3
reports, ALTER SYSTEM or ALTER

SESSION Report, 26-15
ALTER SESSION statement

guidelines on managing privileges, D-15
ALTER SYSTEM command rules

deleting system event command rules, 16-18
ALTER SYSTEM event command rules

creating, 16-13
updating, 16-24

ALTER SYSTEM or ALTER SESSION Report,
26-15

ALTER SYSTEM privilege
reports, ALTER SYSTEM or ALTER

SESSION Report, 26-15
ALTER SYSTEM statement

guidelines on managing privileges, D-15

ALTER USER statement
monitoring, 25-1

ANY System Privileges for Database Accounts
Report, 26-10

audit policy change
monitoring, 25-1

AUDIT privilege, 26-16
AUDIT Privileges Report, 26-16
AUDIT_SYS_OPERATIONS initialization

parameter, 2-1
AUDIT_TRAIL$ system table

affected by AUDIT_TRAIL initialization
parameter, A-4

archiving, A-7
format, A-4
purging, A-9

auditing
about, A-1
archiving Database Vault audit trail, A-7

about, A-7
Core Database Audit Report, 26-18
DBMS_MACUTL fields, 20-1
Oracle Database audit settings, A-9
purging Database Vault audit trail, A-9

about, A-7
realms

DBMS_MACUTL fields, 20-1
options, 4-8

reports, 26-5
rule sets

DBMS_MACUTL fields, 20-1
options, 5-4

secure application roles
audit records, 8-11

auditing policies
about, A-1
audit events

about, A-3
custom events

audit trail, A-4
events that are tracked, A-3
monitoring changes to, 25-1

AUDSYS.DV$CONFIGURATION_AUDIT view,
24-62

Index-1

AUDSYS.DV$ENFORCEMENT_AUDIT view,
24-62

authentication
Authentication_Method default factor, 7-2
command rules, 6-2
method, finding with

DVF.F$AUTHENTICATION_METHOD,
17-30

realm procedures, 14-2
authorizations

Oracle Data Pump activities, 12-6
realms, 4-14
scheduling database jobs, 12-14

AUTHORIZE_MAINTENANCE_USER
procedure, 21-9

B
backup accounts, 13-25
BECOME USER Report, 26-15
BECOME USER system privilege

about, 26-15
break-glass accounts

See backup accounts
break-glass protocol, 12-23

C
catalog-based roles, 26-16
CDB_DV_STATUS view, 24-5
CDBs, 1-10

Database Vault operations control, 12-23
functionality in Oracle Database Vault, 1-10
preventing local users from blocking

operations, 12-27
realms, 4-4

authorizations, 4-14
rule sets, 5-2

CDBS
PDB access by infrastructure DBAs, 12-23

client identifiers
function to return, 17-33

clients
finding IP address with DVF.F$CLIENT_IP,

17-30
code groups

retrieving value with DBMS_MACUTL
functions, 20-7

Command Rule Audit Report, 26-6
Command Rule Configuration Issues Report,

26-3
command rules, 6-2, 6-8, 6-9

about, 6-2
creating, 6-9
data dictionary view, 6-17

command rules (continued)
data masking, 12-32
default command rules, 6-7
deleting, 6-12
editing, 6-9
functions

DBMS_MACUTL (utility), 20-1
guidelines, 6-16
how command rules work, 6-13
modifying, 6-11
objects

name, 6-9
owner, 6-9

performance effect, 6-17
procedures

DBMS_MACADM (configuration), 16-1
process flow, 6-13
propagating configuration to other databases,

12-2
reports, 6-17
rule sets

selecting, 6-9
used with, 6-2

simulation mode, 10-1
troubleshooting

with auditing report, 26-6
tutorial, 6-13
views, 6-17, 24-8
with PDBs, 6-3

See also rule sets
common objects, preventing local users from

blocking operations
about, 12-27

common objects, preventing local users from
blocking operations of

procedure for, 12-27
common objects, restricting local user access to

DBMS_MACADM.ALLOW_COMMON_OPERATION
procedure, 21-5

finding status of, 24-51
compliance

Oracle Database Vault addressing, 1-6
computer name

finding with DVF.F$MACHINE, 17-37
Machine default factor, 7-2

configuration
monitoring changes, 25-1
views

AUDSYS.DV$CONFIGURATION_AUDIT,
24-62

DVSYS.DV$CONFIGURATION_AUDIT,
24-43

DVSYS.DV$ENFORCEMENT_AUDIT,
24-47

Index

Index-2

CONFIGURE_DV procedure
about, 21-28
registering Database Vault with, 3-5, 3-8

CONNECT command rules
about, 6-4
example, 6-4

CONNECT events, controlling with command
rules, 6-2

core database
troubleshooting with Core Database Vault

Audit Report, 26-6
Core Database Audit Report, 26-18
Core Database Vault Audit Trail Report, 26-6
CPU_PER_SESSION resource profile, 26-17
CREATE ANY JOB privilege, D-14
CREATE ANY JOB statement

guidelines on managing privileges, D-14
CREATE EXTERNAL JOB privilege, D-14
CREATE JOB privilege, D-14
CREATE JOB statement

guidelines on managing privileges, D-14
CREATE ROLE statement

monitoring, 25-1
CREATE USER statement

monitoring, 25-1
CTXSYS schema realm protection, 4-7

D
data definition language (DDL)

statement
controlling with command rules, 6-2

Data Definition Language (DDL) statements
Database Vault authorization

DBA_DV_DDL_AUTH view, 24-12
granting, 21-8
revoking, 21-22

Data Dictionary realm
data masking, 12-31

data manipulation language (DML)
statement

checking with
DBMS_MACUTL.CHECK_DVSYS_DML_ALLOWED
function, 20-7

controlling with command rules, 6-2
data masking

about, 12-30
adding users to realms for, 12-31
creating command rule for, 12-32
errors that can appear, 12-30

data Oracle Database Vault recognizes
See factors

Database Account Default Password Report,
26-17

Database Account Status Report, 26-17

database accounts, 4-7
backup DV_OWNER and DV_ACCTMGR,

13-25
configuring Database Vault accounts as

enterprise users, 11-3
counting privileges of, 26-13
DBSNMP

changing password, 12-5
granted DV_MONITOR role, 13-16

DVSYS, 13-23
LBACSYS, 13-23
monitoring, 25-1
reports

Accounts With DBA Roles Report, 26-14
ALTER SYSTEM or ALTER SESSION

Report, 26-15
ANY System Privileges for Database

Accounts Report, 26-10
AUDIT Privileges Report, 26-16
BECOME USER Report, 26-15
Database Account Default Password

Report, 26-17
Database Account Status Report, 26-17
Database Accounts With Catalog Roles

Report, 26-16
Direct and Indirect System Privileges By

Database Account Report, 26-10
Direct Object Privileges Report, 26-8
Direct System Privileges By Database

Account Report, 26-10
Hierarchical System Privileges by

Database Account Report, 26-10
Object Access By PUBLIC Report, 26-8
Object Access Not By PUBLIC Report,

26-8
OS Security Vulnerability Privileges,

26-16
Password History Access Report, 26-15
Privileges Distribution By Grantee

Report, 26-13
Privileges Distribution By Grantee,

Owner Report, 26-13
Privileges Distribution By Grantee,

Owner, Privilege Report, 26-13
Roles/Accounts That Have a Given Role

Report, 26-16
Security Policy Exemption Report, 26-14
WITH ADMIN Privilege Grants Report,

26-14
WITH GRANT Privileges Report, 26-15

solution for lockouts, B-1
suggested, 13-24

Database Accounts With Catalog Roles Report,
26-16

database administrative operations, 12-1

Index

Index-3

database domains, Database_Domain default
factor, 7-2

database links
function to return information about, 17-34

database objects, 13-1, 24-30
Oracle Database Vault, 13-1
reports

Object Dependencies Report, 26-9
See also objects

database options, installing, B-1
database roles

about, 13-4
counting privileges of, 26-13
default Oracle Database Vault, 13-4
DV_ACCTMGR

about, 13-10
DV_ADMIN, 13-12
DV_AUDIT_CLEANUP, 13-13
DV_DATAPUMP_NETWORK_LINK, 13-14
DV_GOLDENGATE_ADMIN, 13-15
DV_GOLDENGATE_REDO_ACCESS, 13-15
DV_MONITOR, 13-16
DV_OWNER, 13-17
DV_PATCH_ADMIN, 13-19
DV_POLICY_OWNER, 13-20
DV_SECANALYST, 13-21
DV_XSTREAM_ADMIN, 13-22
enabled, determining with

ROLE_IS_ENABLED, 17-27
granting Database Vault roles to users, 13-9
monitoring, 25-1
Oracle Database Vault, default, 13-4
reports

Accounts With DBA Roles Report, 26-14
ALTER SYSTEM or ALTER SESSION

Report, 26-15
AUDIT Privileges Report, 26-16
BECOME USER Report, 26-15
Database Accounts With Catalog Roles

Report, 26-16
OS Security Vulnerability Privileges,

26-16
Privileges Distribution By Grantee

Report, 26-13
Roles/Accounts That Have a Given Role

Report, 26-16
Security Policy Exemption Report, 26-14
WITH ADMIN Privilege Grants Report,

26-14
separation of duty enforcement, 2-3

database sessions, 7-9
controlling with Allow Sessions default rule

set, 5-3
factor evaluation, 7-20

database sessions (continued)
session user name, Proxy_User default

factor, 7-2
Database Vault, 1-2

MACADM procedure for deleting operations
exception, 21-14

See also Oracle Database Vault
Database Vault Account Management realm, 4-6
Database Vault command rule protections, 6-2
Database Vault operations control

adding users and packages to exception list,
how works, 12-23

adding users and packages to exception list,
procedure, 12-25

deleting users and packages from exception
list, 12-26

disabling, 12-26
enabling, 12-24
MACADM procedure enabling operations

control, 21-17
MACADM procedure for adding operations

exception, 21-3
MACADM procedure for disabling operations

control, 21-15
Database Vault realm protection, 4-2
Database Vault realm protections, 4-2
databases

defined with factors, 7-1
domain, Domain default factor, 7-2
event monitoring, E-2
grouped schemas

See realms, 4-2
host names, Database_Hostname default

factor, 7-2
instance, retrieving information with

functions, 17-1
instances

Database_Instance default factor, 7-2
names, finding with

DVF.F$DATABASE_INSTANCE,
17-32

number, finding with
DV_INSTANCE_NUM, 15-15

IP addresses
Database_IP default factor, 7-2
retrieving with DVF.F$DATABASE_IP,

17-32
monitoring events, E-2
names

Database_Name default factor, 7-2
retrieving with DV_DATABASE_NAME,

15-15
retrieving with

DVF.F$DATABASE_NAME,
17-32

Index

Index-4

databases (continued)
parameters

Security Related Database Parameters
Report, 26-17

roles that do not exist, 26-5
schema creation, finding with

DVF.F$IDENTIFICATION_TYPE,
17-35

schema creation, Identification_Type default
factor, 7-2

user name, Session_User default factor, 7-2
DBA role

impact of Oracle Database Vault installation,
2-3

DBA_DV_APP_EXCEPTION view, 24-6
DBA_DV_CODE view, 24-7
DBA_DV_COMMAND_RULE view, 6-17, 24-8
DBA_DV_DATAPUMP_AUTH view, 24-10
DBA_DV_DBCAPTURE_AUTH view, 24-11
DBA_DV_DBREPLAY_AUTH view, 24-11
DBA_DV_DDL_AUTH view, 24-12
DBA_DV_DICTIONARY_ACCTS view, 24-12
DBA_DV_FACTOR view, 24-13
DBA_DV_FACTOR_LINK, 24-16
DBA_DV_FACTOR_LINK view, 24-16
DBA_DV_FACTOR_TYPE view, 24-15
DBA_DV_IDENTITY view, 24-16
DBA_DV_IDENTITY_MAP view, 24-17
DBA_DV_JOB_AUTH view, 24-18
DBA_DV_MAC_POLICY view, 24-18
DBA_DV_MAC_POLICY_FACTOR view, 24-19
DBA_DV_MAINTENANCE_AUTH view, 24-20
DBA_DV_ORADEBUG view, 24-20
DBA_DV_PATCH_ADMIN_AUDIT view, 24-21
DBA_DV_POLICY view, 24-21
DBA_DV_POLICY_LABEL view, 24-22
DBA_DV_POLICY_OBJECT view, 24-23
DBA_DV_POLICY_OWNER view, 24-25
DBA_DV_PREPROCESSOR_AUTH view, 24-25
DBA_DV_PROXY_AUTH view, 24-26
DBA_DV_PUB_PRIVS view, 24-26
DBA_DV_REALM view, 24-27
DBA_DV_REALM_AUTH view, 24-29
DBA_DV_REALM_OBJECT view, 24-30
DBA_DV_ROLE view, 24-31
DBA_DV_RULE view, 24-32
DBA_DV_RULE_SET view, 24-33
DBA_DV_RULE_SET_RULE view, 24-35
DBA_DV_SIMULATION_LOG view, 24-36
DBA_DV_STATUS view, 24-40
DBA_DV_TTS_AUTH view, 24-40
DBA_DV_USER_PRIVS view, 24-41
DBA_DV_USER_PRIVS_ALL view, 24-42

DBA_USERS_WITH_DEFPWD data dictionary
view

access to in Oracle Database Vault, 2-3
DBMS_FILE_TRANSFER package, guidelines

on managing, D-11
DBMS_MACADM package

about, 23-1
command rule procedures, listed, 16-1
factor procedures, listed, 17-1
Oracle Label Security policy procedures,

listed, 19-1
realm procedures, listed, 14-1
rule set procedures, listed, 15-1
secure application role procedures, listed,

18-1
DBMS_MACADM PL/SQL package contents,

23-1
DBMS_MACADM.ADD_APP_EXCEPTION

procedure, 21-3
DBMS_MACADM.ADD_AUTH_TO_REALM

procedure, 14-2
DBMS_MACADM.ADD_CMD_RULE_TO_POLIC

Y procedure, 22-2, 22-7
DBMS_MACADM.ADD_FACTOR_LINK

procedure, 17-3
DBMS_MACADM.ADD_NLS_DATA

procedure, C-2
DBMS_MACADM.ADD_NLS_DATA procedure,

21-4
DBMS_MACADM.ADD_OBJECT_TO_REALM

procedure, 14-4
DBMS_MACADM.ADD_OWNER_TO_POLICY

procedure, 22-4
DBMS_MACADM.ADD_POLICY_FACTOR

procedure, 17-4
DBMS_MACADM.ADD_REALM_TO_POLICY

procedure, 22-4
DBMS_MACADM.ADD_RULE_TO_RULE_SET

procedure, 15-2
DBMS_MACADM.ALLOW_COMMON_OPERATI

ON procedure, 21-5
DBMS_MACADM.AUTHORIZE_DATAPUMP_US

ER procedure, 21-6, 21-20
DBMS_MACADM.AUTHORIZE_DBCAPTURE

procedure, 21-7
DBMS_MACADM.AUTHORIZE_DBREPLAY

procedure, 21-8
DBMS_MACADM.AUTHORIZE_DDL procedure,

21-8
DBMS_MACADM.AUTHORIZE_DIAGNOSTIC_

ADMIN procedure, 21-9
DBMS_MACADM.AUTHORIZE_PREPROCESS

OR procedure, 21-10
DBMS_MACADM.AUTHORIZE_PROXY_USER

procedure, 21-11

Index

Index-5

DBMS_MACADM.AUTHORIZE_SCHEDULER_
USER procedure, 21-12

DBMS_MACADM.AUTHORIZE_TTS_USER
procedure, 21-13

DBMS_MACADM.CHANGE_IDENTITY_FACTO
R procedure, 17-4

DBMS_MACADM.CHANGE_IDENTITY_VALUE
procedure, 17-5

DBMS_MACADM.CREATE_COMMAND_RULE
procedure, 16-2

DBMS_MACADM.CREATE_CONNECT_COMM
AND_RULE procedure, 16-9

DBMS_MACADM.CREATE_DOMAIN_IDENTITY
procedure, 17-6

DBMS_MACADM.CREATE_FACTOR procedure,
17-7

DBMS_MACADM.CREATE_FACTOR_TYPE
procedure, 17-9

DBMS_MACADM.CREATE_IDENTITY
procedure, 17-10

DBMS_MACADM.CREATE_IDENTITY_MAP
procedure, 17-11

DBMS_MACADM.CREATE_MAC_POLICY
procedure, 19-1

DBMS_MACADM.CREATE_POLICY procedure,
22-5

DBMS_MACADM.CREATE_POLICY_LABEL
procedure, 19-3

DBMS_MACADM.CREATE_REALM procedure,
14-5

DBMS_MACADM.CREATE_ROLE procedure,
18-2

DBMS_MACADM.CREATE_RULE procedure,
15-3

DBMS_MACADM.CREATE_RULE_SET
procedure, 15-5

DBMS_MACADM.CREATE_SESSION_EVENT_
CMD_RULE procedure, 16-11

DBMS_MACADM.CREATE_SYSTEM_EVENT_
CMD_RULE procedure, 16-13

DBMS_MACADM.DELETE_APP_EXCEPTION
procedure, 21-14

DBMS_MACADM.DELETE_AUTH_FROM_REA
LM procedure, 14-7

DBMS_MACADM.DELETE_COMMAND_RULE
procedure, 16-14

DBMS_MACADM.DELETE_CONNECT_COMM
AND_RULE procedure, 16-16

DBMS_MACADM.DELETE_FACTOR procedure,
17-12

DBMS_MACADM.DELETE_FACTOR_LINK
procedure, 17-12

DBMS_MACADM.DELETE_FACTOR_TYPE
procedure, 17-13

DBMS_MACADM.DELETE_IDENTITY
procedure, 17-13

DBMS_MACADM.DELETE_IDENTITY_MAP
procedure, 17-14

DBMS_MACADM.DELETE_MAC_POLICY_CAS
CADE procedure, 19-4

DBMS_MACADM.DELETE_OBJECT_FROM_R
EALM procedure, 14-8

DBMS_MACADM.DELETE_OWNER_FROM_P
OLICY procedure, 22-8

DBMS_MACADM.DELETE_POLICY_FACTOR
procedure, 19-4

DBMS_MACADM.DELETE_POLICY_LABEL
procedure, 19-5

DBMS_MACADM.DELETE_REALM procedure,
14-9

DBMS_MACADM.DELETE_REALM_CASCADE
procedure, 14-10

DBMS_MACADM.DELETE_REALM_FROM_PO
LICY procedure, 22-9

DBMS_MACADM.DELETE_ROLE procedure,
18-2

DBMS_MACADM.DELETE_RULE procedure,
15-8

DBMS_MACADM.DELETE_RULE_FROM_RUL
E_SET procedure, 15-8

DBMS_MACADM.DELETE_RULE_SET
procedure, 15-9

DBMS_MACADM.DELETE_SESSION_EVENT_
CMD_RULE procedure, 16-17

DBMS_MACADM.DELETE_SYSTEM_EVENT_C
MD_RULE procedure, 16-18

DBMS_MACADM.DISABLE_APP_PROTECTIO
N procedure, 21-15

DBMS_MACADM.DISABLE_DV procedure,
21-15

DBMS_MACADM.DISABLE_DV_DICTIONARY_
ACCTS procedure, 21-16

DBMS_MACADM.DISABLE_DV_PATCH_ADMIN
_AUDIT procedure, 21-16

DBMS_MACADM.DISABLE_ORADEBUG
procedure, 21-17

DBMS_MACADM.DROP_DOMAIN_IDENTITY
procedure, 17-15

DBMS_MACADM.DROP_POLICY procedure,
22-10

DBMS_MACADM.ENABLE_DV procedure
about, 21-18
registering Database Vault with, 3-3, 3-5, 3-8

DBMS_MACADM.ENABLE_DV_DICTIONARY_
ACCTS procedure, 21-19

DBMS_MACADM.ENABLE_ORADEBUG
procedure, 21-20

DBMS_MACADM.ENSABLE_DV_PATCH_ADMI
N_AUDIT procedure, 21-19

Index

Index-6

DBMS_MACADM.GET_INSTANCE_INFO
function, 17-16

DBMS_MACADM.GET_SESSION_INFO
function, 17-16

DBMS_MACADM.RENAME_FACTOR
procedure, 17-17

DBMS_MACADM.RENAME_FACTOR_TYPE
procedure, 17-18

DBMS_MACADM.RENAME_POLICY procedure,
22-10

DBMS_MACADM.RENAME_REALM procedure,
14-10

DBMS_MACADM.RENAME_ROLE procedure,
18-3

DBMS_MACADM.RENAME_RULE procedure,
15-9

DBMS_MACADM.RENAME_RULE_SET
procedure, 15-10

DBMS_MACADM.UNAUTHORIZE_DBCAPTUR
E procedure, 21-21

DBMS_MACADM.UNAUTHORIZE_DBREPLAY
procedure, 21-22

DBMS_MACADM.UNAUTHORIZE_DDL
procedure, 21-22

DBMS_MACADM.UNAUTHORIZE_DIAGNOSTI
C_ADMIN procedure, 21-23

DBMS_MACADM.UNAUTHORIZE_PREPROCE
SSOR procedure, 21-25

DBMS_MACADM.UNAUTHORIZE_PROXY_US
ER procedure, 21-25

DBMS_MACADM.UNAUTHORIZE_SCHEDULE
R_USER procedure, 21-26

DBMS_MACADM.UNAUTHORIZE_TTS_USER
procedure, 21-27

DBMS_MACADM.UPDATE_COMMAND_RULE
procedure, 16-19

DBMS_MACADM.UPDATE_CONNECT_COMM
AND_RULE procedure, 16-21

DBMS_MACADM.UPDATE_FACTOR procedure,
17-18

DBMS_MACADM.UPDATE_FACTOR_TYPE
procedure, 17-21

DBMS_MACADM.UPDATE_IDENTITY
procedure, 17-21

DBMS_MACADM.UPDATE_MAC_POLICY
procedure, 19-6

DBMS_MACADM.UPDATE_POLICY_DESCRIP
TION procedure, 22-11

DBMS_MACADM.UPDATE_POLICY_STATE
procedure, 22-11

DBMS_MACADM.UPDATE_REALM procedure,
14-11

DBMS_MACADM.UPDATE_REALM_AUTH
procedure, 14-13

DBMS_MACADM.UPDATE_ROLE procedure,
18-4

DBMS_MACADM.UPDATE_RULE procedure,
15-11

DBMS_MACADM.UPDATE_RULE_SET
procedure, 15-11

DBMS_MACADM.UPDATE_SESSION_EVENT_
CMD_RULE procedure, 16-23

DBMS_MACADM.UPDATE_SYSTEM_EVENT_
CMD_RULE procedure, 16-24

DBMS_MACSEC_ROLES package
about, 18-4
functions, listed, 18-4

DBMS_MACSEC_ROLES.CAN_SET_ROLE
function, 18-5

DBMS_MACSEC_ROLES.SET_ROLE
procedure, 18-5

DBMS_MACUTL package
about, 20-1
constants (fields)

examples, 20-5
listed, 20-1

procedures and functions, listed, 20-7
DBMS_MACUTL PL/SQL package contents,

23-7
DBMS_MACUTL.CHECK_DVSYS_DML_ALLO

WED procedure, 20-8
DBMS_MACUTL.GET_CODE_VALUE function,

20-9
DBMS_MACUTL.GET_DAY function, 20-11
DBMS_MACUTL.GET_HOUR function, 20-11
DBMS_MACUTL.GET_MINUTE function, 20-10
DBMS_MACUTL.GET_MONTH function, 20-12
DBMS_MACUTL.GET_SECOND function, 20-9
DBMS_MACUTL.GET_YEAR function, 20-13
DBMS_MACUTL.IS_ALPHA function, 20-13
DBMS_MACUTL.IS_DIGIT function, 20-14
DBMS_MACUTL.IS_DVSYS_OWNER function,

20-15
DBMS_MACUTL.IS_OLS_INSTALLED function,

20-15
DBMS_MACUTL.IS_OLS_INSTALLED_VARCHA

R function, 20-16
DBMS_MACUTL.ROLE_GRANTED_ENABLED_

VARCHAR function, 20-16
DBMS_MACUTL.USER_HAS_OBJECT_PRIVIL

EGE function, 20-18
DBMS_MACUTL.USER_HAS_ROLE function,

20-19
DBMS_MACUTL.USER_HAS_ROLE_VARCHAR

function, 20-20
DBMS_MACUTL.USER_HAS_SYSTEM_PRIVIL

EGE function, 20-20
DBSNMP schema realm protection, 4-7

Index

Index-7

DBSNMP user account
changing password, 12-5
granted DV_MONITOR role, 13-16

deinstallation, B-1
DELETE_CATALOG_ROLE role, 26-16
deleting event command rules, 16-17
Denial of Service (DoS) attacks

reports
System Resource Limits Report, 26-17
Tablespace Quotas Report, 26-20

diagnostic view and table queries
MACADM procedure for authorization, 21-9
MACADM procedure for revoking

authorization, 21-23
Direct and Indirect System Privileges By

Database Account Report, 26-10
Direct Object Privileges Report, 26-8
direct system privileges, 26-10
Direct System Privileges By Database Account

Report, 26-10
disabling system features with Disabled default

rule set, 5-3
domains

defined with factors, 7-1
finding database domain with

DVF.F$DATABASE_DOMAIN, 17-31
finding with DVF.F$DOMAIN, 17-33

DROP ROLE statement
monitoring, 25-1

DROP USER statement
monitoring, 25-1

dual key connection, dual key security
See two-person integrity (TPI)

DV_ACCTMGR role, E-13
about, 13-10
backup account, 13-25
Database Vault disabled, 13-10
GRANT and REVOKE operations affected

by, 13-10
privileges associated with, 13-10
realm protection, 4-6
system privileges of, 13-5

DV_ADMIN role
about, 13-12
changing password for user granted

DV_ADMIN, 13-12
Database Vault disabled, 13-12, 13-17
GRANT and REVOKE operations affected

by, 13-12
privileges associated with, 13-12

DV_AUDIT_CLEANUP role
about, 13-13
Database Vault disabled, 13-13, 13-16, 13-21
GRANT and REVOKE operations affected

by, 13-13

DV_AUDIT_CLEANUP role (continued)
privileges associated with, 13-13
system privileges of, 13-5

DV_DATAPUMP_NETWORK_LINK role
about, 13-14
Database Vault disabled, 13-14
GRANT and REVOKE operations affected

by, 13-14
privileges associated with, 13-14

DV_GOLDENDATE_REDO role
privileges associated with, 13-15

DV_GOLDENDGATE_ADMIN role
Database Vault disabled, 13-15

DV_GOLDENGATE_ADMIN role, 13-15
GRANT and REVOKE operations affected

by, 13-15
privileges associated with, 13-15

DV_GOLDENGATE_REDO_ACCESS role,
13-15

Database Vault disabled, 13-15
GRANT and REVOKE operations affected

by, 13-15
DV_MONITOR role

about, 13-16
Database Vault disabled, 13-16
GRANT and REVOKE operations affected

by, 13-16
privileges associated with, 13-16
system privileges of, 13-5

DV_OWNER role, E-13
about, 13-17
backup account, 13-25
changing password for user granted

DV_OWNER, 13-17
Database Vault disabled, 13-17
GRANT and REVOKE operations affected

by, 13-17
privileges associated with, 13-17
system privileges of, 13-5

DV_PATCH_ADMIN role, 13-19
Database Vault disabled, 13-19
GRANT and REVOKE operations affected

by, 13-19
privileges associated with, 13-19
SYS user, 12-36

DV_POLICY_OWNER role
about, 13-20
GRANT and REVOKE operations affected

by, 13-20
privileges associated with, 13-20
system privileges of, 13-5

DV_SECANALYST role
about, 13-21
Database Vault disabled, 13-21

Index

Index-8

DV_SECANALYST role (continued)
GRANT and REVOKE operations affected

by, 13-21
privileges associated with, 13-21
system privileges of, 13-5

DV_XSTREAM_ADMIN role, 13-22
Database Vault disabled, 13-22
GRANT and REVOKE operations affected

by, 13-22
privileges associated with, 13-22

DVF account
auditing policy, A-9
database accounts, 13-23

DVF PL/SQL interface contents, 23-8
DVF schema, 17-27

about, 13-2
auditing policy, A-9
DBA_DV_DICTIONARY_ACCTS view, 24-12
PDBs, 13-2
protecting, 21-16
realm protection, 4-6

DVSYS account, 13-23
DVSYS schema

about, 13-1
auditing policy, A-9
CDBs, 1-10
DBA_DV_DICTIONARY_ACCTS view, 24-12
DV_OWNER role, 13-17
DV_POLICY_OWNER role, 13-20
PDBs, 13-1, 13-4
protecting, 21-16
realm protection, 4-6

DVSYS.DBA_DV_COMMON_OPERATION_STA
TUS view, 24-51

DVSYS.DBA_DV_FACTOR_LINK view, 24-16
DVSYS.DV$CONFIGURATION_AUDIT view,

24-43
DVSYS.DV$ENFORCEMENT_AUDIT view,

24-47
DVSYS.DV$REALM view, 24-50
DVSYS.POLICY_OWNER_POLICY view, 24-53
DVSYS.POLICY_OWNER_REALM view, 24-54
DVSYS.POLICY_OWNER_REALM_AUTH view,

24-55
DVSYS.POLICY_OWNER_REALM_OBJECT

view, 24-57
DVSYS.POLICY_OWNER_RULE view, 24-58
DVSYS.POLICY_OWNER_RULE_SET view,

24-59
DVSYS.POLICY_OWNER_RULE_SET_RULE

view, 24-61

E
ENABLE_APP_PROTECTION procedure, 21-17

enabling system features with Enabled default
rule set, 5-3

encrypted information, 26-20
enterprise identities, Enterprise_Identity default

factor, 7-2
Enterprise Manager

See Oracle Enterprise Manager
enterprise user security

configuring Database Vault accounts for, 11-3
event handler

rule sets, 5-4
example, 6-5
examples, 7-23

DBMS_MACUTL constants, 20-5
realms, 4-19
separation of duty matrix, D-3
trace files, E-7–E-9

See also tutorials
Execute Privileges to Strong SYS Packages

Report, 26-11
EXECUTE_CATALOG_ROLE role, 26-16

impact of Oracle Database Vault installation,
2-3

EXEMPT ACCESS POLICY system privilege,
26-14

exporting data
See Oracle Data Pump

F
Factor Audit Report, 26-6
Factor Configuration Issues Report, 26-4
factor identities

modifying, 7-16
Factor Without Identities Report, 26-4
factors, 7-1

about, 7-1
assignment

disabled rule set, 26-4
incomplete rule set, 26-4

assignment operation, 26-6
audit events, custom, A-3
child factors

Factor Configuration Issues Report, 26-4
mapping, 7-13

creating, 7-5
data dictionary views, 7-31
DBA_DV_FACTOR view, 24-13
DBA_DV_SIMULATION_LOG view, 24-36
DBMS_MACUTL constants, example of, 20-6
default factors, 7-2
deleting, 7-18
domain, finding with DVF.F$DOMAIN, 17-33
evaluation operation, 26-6
factor-identity pair mapping, 7-14

Index

Index-9

factors (continued)
functionality, 7-19
functions

DBMS_MACUTL (utility), 20-1
DBMS_MACUTL constants (fields), 20-1

guidelines, 7-29
identifying using child factors, 7-13
identities

about, 7-9
adding to factor, 7-9
configuring, 7-12
creating, 7-12
data dictionary views, 7-31
database session, 7-9
deleting, 7-17
enterprise-wide users, 17-33
how factor identities work, 7-9
mapping, about, 7-13
mapping, procedure, 7-14
reports, 7-31
setting dynamically, 17-23
trust levels, 7-9, 7-12
with Oracle Label Security, 7-9

identity maps, deleting, 7-15
initialization, command rules, 6-2
invalid audit options, 26-4
label, 26-4
modifying, 7-17
Oracle Virtual Private Database, attaching

factors to, 11-6
performance effect, 7-30
procedures

DBMS_MACADM (configuration), 17-1
process flow, 7-19
reports, 7-31
retrieving, 7-22
retrieving with GET_FACTOR, 17-24
setting, 7-23
setting with SET_FACTOR, 17-23
troubleshooting

auditing report, 26-6
configuration problems, E-12
tips, E-12

values (identities), 7-1
views

DBA_DV_FACTOR_LINK, 24-16
DBA_DV_FACTOR_TYPE, 24-15
DBA_DV_IDENTITY, 24-16
DBA_DV_IDENTITY_MAP, 24-17
DBA_DV_MAC_POLICY_FACTOR,

24-19
ways to assign, 7-9

FLASHBACK TABLE SQL statement, 4-2

functions
command rules

DBMS_MACUTL (utility), 20-1
DVSYS schema enabling, 17-22
factors

DBMS_MACUTL (utility), 20-1
Oracle Label Security policy

DBMS_MACADM (configuration), 19-1
realms

DBMS_MACUTL (utility), 20-1
rule sets

DBMS_MACADM (configuration), 15-1
DBMS_MACUTL (utility), 20-1
PL/SQL functions for inspecting SQL,

15-13
secure application roles

DBMS_MACADM (configuration), 18-1
DBMS_MACSEC_ROLES

(configuration), 18-4
DBMS_MACUTL (utility), 20-1

G
general security reports, 26-7
GRANT statement

monitoring, 25-1
guidelines

ALTER SESSION privilege, D-15
ALTER SYSTEM privilege, D-15
backup DV_OWNER and DV_ACCTMGR

accounts, 13-25
command rules, 6-16
CREATE ANY JOB privilege, D-14
CREATE EXTERNAL JOB privilege, D-14
CREATE JOB privilege, D-14
DBMS_FILE_TRANSFER package, D-11
factors, 7-29
general security, D-1
LogMiner packages, D-14
operating system access, D-6
Oracle software owner, D-8
performance effect, 7-30
realms, 4-20
root access, D-6
root user access, D-8
rule sets, 5-22
secure application roles, 8-2
SYSDBA access, D-9
SYSDBA privilege, limiting, D-6
SYSOPER access, D-9
SYSTEM schema and application tables, D-6
SYSTEM user account, D-5
trusted accounts and roles, D-7
using Database Vault in a production

environment, D-10

Index

Index-10

guidelines (continued)
UTL_FILE package, D-11

H
hackers

See security attacks
Hierarchical System Privileges by Database

Account Report, 26-10
host names

finding with
DVF.F$DATABASE_HOSTNAME,
17-31

I
identities

See factors, identities
Identity Configuration Issues Report, 26-4
IDLE_TIME resource profile, 26-17
IMP_FULL_DATABASE role

impact of Oracle Database Vault installation,
2-3

importing data
See Oracle Data Pump

incomplete rule set, 26-4
role enablement, 26-5

Information Lifecycle Management, 4-2
authorizations, about, 12-17
granting users authorization for, 12-17
revoking authorization from users, 12-18

initialization parameters
Allow System Parameters default rule set,

5-3
modified after installation, 2-1
modified by Oracle Database Vault, 2-1
reports, 26-16

insider threats
See intruders

installations
Database Vault and Label Security in a

multitenant environment, 3-10
security considerations, D-10

intruders, 26-13, 26-19
compromising privileged accounts, 1-7

See also security attacks
IP addresses

Client_IP default factor, 7-2
defined with factors, 7-1

J
Java Policy Grants Report, 26-19
jobs, scheduling

See Oracle Scheduler

L
Label Security Integration Audit Report, 26-6
labels, 7-11

about, 7-11
See also Oracle Label Security

languages
adding to Oracle Database Vault, C-2
finding with DVF.F$LANG, 17-36
finding with DVF.F$LANGUAGE, 17-36
name

Lang default factor, 7-2
Language default factor, 7-2

LBACSYS account, 13-23
about, 13-23
auditing policy, A-9

See also Oracle Label Security
LBACSYS schema

auditing policy, A-9
realm protection, 4-6

locked out accounts, solution for, B-1
log files

Database Vault log files, A-4
logging on

reports, Core Database Audit Report, 26-18
LogMiner packages

guidelines, D-14

M
managing user accounts and profiles

Can Maintain Accounts/Profiles default rule
set, 5-3

managing user accounts and profiles on own
account, Can Maintain Own Accounts
default rule set, 5-3

mandatory realms
about, 4-3

mapping identities, 7-14
MDDATA schema realm protection, 4-7
MDSYS schema realm protection, 4-7
modules

function to return information about, 17-34
monitoring

activities, 25-1
multitenant container databases

See CDBs
My Oracle Support,

about, xxiv

N
naming conventions

realms, 4-8
rule sets, 5-4

Index

Index-11

naming conventions (continued)
rules, 5-9

network protocol
finding with

DVF.F$NETWORK_PROTOCOL,
17-37

network protocol, Network_Protocol default
factor, 7-2

NOAUDIT statement
monitoring, 25-1

Non-Owner Object Trigger Report, 26-20
nonsystem database accounts, 26-8

O
Object Access By PUBLIC Report, 26-8
Object Access Not By PUBLIC Report, 26-8
Object Dependencies Report, 26-9
object owners

nonexistent, 26-3
reports

Command Rule Configuration Issues
Report, 26-3

object privilege reports, 26-7
object types

supported for Database Vault realm
protection, 4-5

objects, 13-1, 24-30
command rule objects

name, 6-9
owner, 6-9
processing, 6-13

dynamic SQL use, 26-19
mandatory realms, 4-3
monitoring, 25-1
object names

finding with DV_DICT_OBJ_NAME,
15-16

object owners
finding with DV_DICT_OBJ_OWNER,

15-16
realms

object name, 4-8
object owner, 4-8
object type, 4-8
procedures for registering, 14-4

reports
Access to Sensitive Objects Report,

26-11
Accounts with SYSDBA/SYSOPER

Privilege Report, 26-12
Direct Object Privileges Report, 26-8
Execute Privileges to Strong SYS

Packages Report, 26-11
Non-Owner Object Trigger Report, 26-20

objects (continued)
reports (continued)
Object Access By PUBLIC Report, 26-8
Object Access Not By PUBLIC Report,

26-8
Object Dependencies Report, 26-9
Objects Dependent on Dynamic SQL

Report, 26-19
OS Directory Objects Report, 26-19
privilege, 26-7
Public Execute Privilege To SYS PL/SQL

Procedures Report, 26-12
sensitive, 26-10
System Privileges By Privilege Report,

26-10
restricting user access to using mandatory

realms, 4-3
types

finding with DV_DICT_OBJ_TYPE, 15-16
views, DBA_DV_REALM_OBJECT, 24-30

See also database objects
Objects Dependent on Dynamic SQL Report,

26-19
OEM

See Oracle Enterprise Manager (OEM)
OEM_MONITOR schema realm protection, 4-7
OLS

See Oracle Label Security
operating system access

guideline for using with Database Vault, D-6
operating systems

reports
OS Directory Objects Report, 26-19
OS Security Vulnerability Privileges

Report, 26-16
vulnerabilities, 26-16

ORA_DV_AUDPOL predefined unified audit
policy, A-1

ORA_DV_AUDPOL2 predefined unified audit
policy, A-1

ORA-00942 error, 8-9
ORA-01301 error, 12-30
ORA-06512 error, 20-8
ORA-47305 error, 8-9
ORA-47400 error, 12-30
ORA-47401 error, 4-18, 12-30
ORA-47408 error, 12-30
ORA-47409 error, 12-30
ORA-47500 error, 21-28
ORA-47503 error, 3-5, 3-8
ORA-47920 error, 20-8
Oracle Data Guard

how auditing is affected after intergration with
Database Vault, 11-17

integrating Database Vault with, 11-15

Index

Index-12

Oracle Data Pump, 12-6
archiving the Oracle Database Vault audit trail

with, A-7
authorizing transportable tablespace operations

for Database Vault, 12-11
DBA_DV_DATAPUMP_AUTH view, 24-10
DBA_DV_TTS_AUTH view, 24-40
DBMS_MACADM.AUTHORIZE_TTS_USER,

21-13
DBMS_MACADM.UNAUTHORIZE_TTS_USER,

21-27
granting authorization to use with Database

Vault, 12-7
guidelines before performing an export or

import, 12-13
levels of authorization required

Oracle Data Pump only, 12-7
transportable tablespaces, 12-10

MACADM procedure for authorization, 21-6
realm protection, 4-7
revoking standard authorization, 12-8
revoking transportable tablespace authorization,

12-12
using with Oracle Database Vault, 12-6

Oracle Database Replay
authorizations, about, 12-18
Database Vault authorization

granting for workload captures, 21-7
granting for workload replays, 21-8
revoking for workload captures, 21-21
revoking for workload replays, 21-22

granting users authorization for workload
capture operations, 12-19

granting users authorization for workload
replay operations, 12-19

revoking workload capture authorization from
users, 12-20

revoking workload replay authorization from
users, 12-21

Oracle Database Vault, 1-2
about, 1-2
components, 1-4
disabling

procedures for, B-1
reasons for, B-1

enabling
procedures for, B-1

integrating with other Oracle products, 11-1
Oracle Database installation, affect on, 2-1
post-installation procedures, C-1
privileges to use, 1-3
registering

using DBCA, 3-1
reinstalling, C-3

Oracle Database Vault (continued)
roles

system privileges of, 13-5
uninstalling, C-2

Oracle Database Vault accounts
created during registration, 13-23

Oracle Database Vault Administrator (DVA)
logging on from Oracle Enterprise Manager

Cloud Control, 3-12
Oracle Database Vault Administrator pages, 1-6
Oracle Database Vault operations control

about, 12-23
Oracle Database Vault policies, 9-1

about, 9-1
creating, 9-4
data dictionary views, 9-7
default, 9-3
deleting, 9-7
in multitenant environment, 9-3
modifying, 9-6

Oracle Database Vault realm, 4-6
Oracle Database Vault registration

about, 3-1
common user to manage CDB root, 3-3
common users to manage specific PDBs, 3-5
local users to manage specific PDBs, 3-8
verifying configuration and enablement, 3-11

Oracle Default Component Protection Realm, 4-8
Oracle Default Schema Protection Realm, 4-7
Oracle Enterprise Manager, 4-7

DBSNMP account
changing password, 12-5
granted DV_MONITOR role, 13-16

using Oracle Database Vault with, 12-2
Oracle Enterprise Manager Cloud Control

monitoring Database Vault for attempted
violations, 13-16

propagating Database Vault configurations to
other databases, 12-2

starting Oracle Database Vault from, 3-12
Oracle Enterprise Manager realm, 4-7
Oracle Enterprise User Security, integrating with

Oracle Database Vault, 11-1
Oracle Flashback Technology, 4-2, 6-2
Oracle GoldenGate

Database Vault role used for
DV_GOLDENGATE_ADMIN, 13-15
DV_GOLDENGATE_REDO_ACCESS,

13-15
in an Oracle Database Vault environment,

12-29
Oracle Internet Directory Distinguished Name,

Proxy_Enterprise_Identity default factor,
7-2

Index

Index-13

Oracle Internet Directory, registering with DBCA,
11-18

Oracle Label Security, 7-11, 13-23
using OLS_LABEL_DOMINATES function in

rule expressions, 15-3
Oracle Label Security (OLS), 13-23

audit events, custom, A-3
checking if installed using DBMS_MACUTL

functions, 20-7
data dictionary views, 11-15
functions

DBMS_MACUTL (utility), 20-1
how Database Vault integrates with, 11-6
initialization, command rules, 6-2
integration with Oracle Database Vault

example, 11-11
Label Security Integration Audit Report,

26-6
procedure, 11-8
requirements, 11-7

labels
about, 7-11
determining with GET_FACTOR_LABEL,

17-24
invalid label identities, 26-4

policies
accounts that bypass, 26-14
monitoring policy changes, 25-1
nonexistent, 26-4

procedures
DBMS_MACADM (configuration), 19-1

reports, 11-15
views

DBA_DV_MAC_POLICY, 24-18
DBA_DV_MAC_POLICY_FACTOR,

24-19
DBA_DV_POLICY_LABEL, 24-22
See also LBACSYS account

Oracle MetaLink
See My Oracle Support

Oracle OLAP realm protection, 4-7
Oracle Real Application Clusters

configuring Database Vault on RAC nodes,
C-1

multiple factor identities, 7-9
uninstalling Oracle Database Vault from, C-2

Oracle Recovery Manager (RMAN)
in an Oracle Database Vault environment,

12-28
Oracle Scheduler, 12-14

DBA_DV_JOB_AUTH view, 24-18
granting Oracle Database Vault

authorization, 12-15
realm protection, 4-7

Oracle Scheduler (continued)
revoking Oracle Database Vault

authorization, 12-16
SCHEDULER_ADMIN role, impact of Oracle

Database Vault installation, 2-3
using with Oracle Database Vault, 12-14

Oracle software owner, guidelines on managing,
D-8

Oracle Spatial realm protection, 4-7
Oracle System Privilege and Role Management

Realm, 4-7
Oracle Text realm protection, 4-7
Oracle Virtual Private Database (VPD), 5-3

accounts that bypass, 26-14
factors, attaching to, 11-6
GRANT EXECUTE privileges with Grant

VPD Administration default rule set,
5-3

using Database Vault factors with Oracle
Label Security, 11-11

ORADEBUG utility
about, 12-35
DBA_DV_ORADEBUG view, 24-20
PL/SQL procedure for disabling in Database

Vault, 21-17
PL/SQL procedure for enabling in Database

Vault, 21-20
using with Database Vault, 12-35

OS Directory Objects Report, 26-19
OS Security Vulnerability Privileges Report,

26-16
OS_ROLES initialization parameter, 2-1
OUTlN schema realm protection, 4-8

P
parameters

modified after installation, 2-1
reports

Security Related Database Parameters
Report, 26-17

Password History Access Report, 26-15
passwords

forgotten, solution for, B-1
reports, 26-17

Database Account Default Password
Report, 26-17

Password History Access Report, 26-15
Username/Password Tables Report,

26-20
resetting for DV_ACCTMGR user, E-13
resetting for DV_OWNER user, E-13

patch operations in Database Vault environment,
12-36

Index

Index-14

patches
auditing DV_PATCH_ADMIN user, 13-19
DBMS_MACADM.DISABLE_DV_PATCH_ADMIN_AUDIT

procedure, 21-16
DBMS_MACADM.ENSABLE_DV_PATCH_ADMIN_AUDIT

procedure, 21-19
DV_PATCH_ADMIN requirement for, 13-19
security consideration, D-10
two-person integrity used for, 5-17

PDBs, 1-10
command rules in, 6-3
disabling tracing

all database sessions, E-11
current database session, E-11

DVF schema, 13-2
DVSYS schema, 13-1, 13-4
enabling tracing

all database sessions, E-5
current database session, E-4

plugging Database Vault-enabled PDB to
CDB, 12-33

performance effect
command rules, 6-17
realms, 4-22
reports

Resource Profiles Report, 26-17
System Resource Limits Report, 26-17

rule sets, 5-23
secure application roles, 8-10
static evaluation for rule sets, 5-23

performance tools
Automatic Workload Repository (AWR)

command rules, 6-17
factors, 7-30

Oracle Enterprise Manager
performance tools, 4-22

performance tools
Cloud Control, realms, 4-22

Oracle Enterprise
Manager

realms, 4-22
realms, 4-22
rule sets, 5-23
secure application roles, 8-10

Oracle Enterprise Manager
command rules, 6-17
factors, 7-30

performance tools
Oracle Enterprise

Manager
Cloud
Control

command
rules,
6-17

performance tools (continued)
Oracle Enterprise Manager (continued)
rule sets, 5-23
secure application roles, 8-10

Oracle Enterprise Manager Cloud Control
factors, 7-30
rule sets, 5-23
secure application roles, 8-10

TKPROF utility
command rules, 6-17
factors, 7-30
realms, 4-22
rule sets, 5-23
secure application roles, 8-10

PL/SQL
packages

unwrapped bodies, 26-19
Unwrapped PL/SQL Package Bodies

Report, 26-19
PL/SQL factor functions, 17-27
pluggable databases

See PDBs
policies

See Oracle Database Vault policies
policy changes, monitoring, 25-1
POLICY_OWNER_COMMAND_RULE view,

24-52
post-installation procedures, C-1
preprocessor programs

about executing in Database Vault
environment, 12-21

authorizing users in Database Vault
environment, 12-22

Database Vault authorization
granting, 21-10
revoking, 21-25

revoking authorization from Database Vault
users, 12-22

privileges
checking with

DBMS_MACUTL.USER_HAS_OBJECT_PRIVILEGE
function, 20-7

existing users and roles, Database Vault affect on, 2-3
least privilege principle

violations to, 26-19
monitoring

GRANT statement, 25-1
REVOKE statement, 25-1

Oracle Database Vault restricting, 2-2
prevented from existing users and roles, 2-4
reports

Accounts With DBA Roles Report, 26-14
ALTER SYSTEM or ALTER SESSION Report, 26-15
ANY System Privileges for Database Accounts Report,

26-10

Index

Index-15

privileges (continued)
reports (continued)
AUDIT Privileges Report, 26-16
Database Accounts With Catalog Roles Report, 26-16
Direct and Indirect System Privileges By Database

Account Report, 26-10
Direct System Privileges By Database Account Report,

26-10
Hierarchical System Privileges By Database Account

Report, 26-10
listed, 26-12
OS Directory Objects Report, 26-19
Privileges Distribution By Grantee Report, 26-13
Privileges Distribution By Grantee, Owner Report, 26-13
Privileges Distribution By Grantee, Owner, Privilege

Report, 26-13
WITH GRANT Privileges Report, 26-15

restricting access using mandatory realms, 4-3
roles

checking with
DBMS_MACUTL.USER_HAS_ROLE_VARCHAR
function, 20-7

system
checking with

DBMS_MACUTL.USER_HAS_SYSTEM_PRIVILEGE
function, 20-7

views
DBA_DV_PUB_PRIVS, 24-26
DBA_DV_USER_PRIVS, 24-41
DBA_DV_USER_PRIVS_ALL, 24-42

Privileges Distribution By Grantee Report, 26-13
Privileges Distribution By Grantee, Owner

Report, 26-13
Privileges Distribution By Grantee, Owner,

Privilege Report, 26-13
privileges using external password, 26-12
problems, diagnosing, E-2
procedures

command rules
.DBMS_MACADM (configuration), 16-1

factors
DBMS_MACADM (configuration), 17-1

realms
DBMS_MACADM (configuration), 14-1

production environments
guidelines for securing, D-10

profiles, 26-16
proxy user authorization

Database Vault authorization
DBA_DV_PROXY_AUTH view, 24-26
granting, 21-11
revoking, 21-25

proxy users
function to return name of, 17-38

PUBLIC access to realms, 4-15

Public Execute Privilege To SYS PL/SQL
Procedures Report, 26-12

PUBLIC user account
impact of Oracle Database Vault installation,

2-3

Q
quotas

tablespace, 26-20

R
Realm Audit Report, 26-5
Realm Authorization Configuration Issues

Report, 26-4
realm authorizations:multitenant environment,

4-14
realms, 4-8

about, 4-2
adding roles to as grantees, 4-20
audit events, custom, A-3
authentication-related procedures, 14-2
authorization

enabling access to realm-protected
objects, 4-19

how realm authorizations work, 4-17
process flow, 4-17
troubleshooting, E-12

authorizations
grantee, 4-8
rule set, 4-8

authorizations in multitenant environment,
4-14

creating, 4-8
creating names, 4-8
data dictionary views, 4-22
data masking, 12-31
Database Vault Account Management realm,

4-6
DBMS_MACUTL constants, example of, 20-5
default realms

listed, 4-5
deleting, 4-12
effect on other Oracle Database Vault

components, 4-20
enabling access to realm-protected objects,

4-19
example, 4-19
functions

DBMS_MACUTL (utility), 20-1
DBMS_MACUTL constants (fields), 20-1

guidelines, 4-20
how realms work, 4-15
mandatory realms, 4-3

Index

Index-16

realms (continued)
modifying, 4-11
multitenant environment

about, 4-4
naming conventions, 4-8
object types, supported, 4-5
object-related procedures, 14-4
Oracle Database Vault realm, 4-6
Oracle Default Component Protection Realm,

4-8
Oracle Default Schema Protection Realm,

4-7
Oracle Enterprise Manager realm, 4-7
Oracle System Privilege and Role

Management Realm, 4-7
performance effect, 4-22
procedures

DBMS_MACADM (configuration), 14-1
process flow, 4-15
propagating configuration to other databases,

12-2
protection after object is dropped, 4-20
PUBLIC access, 4-15
realm authorizations

about, 4-14
realm secured objects

object name, 4-8
object owner, 4-8
object type, 4-8

realm-secured objects, 4-13
reports, 4-22
secured object, 26-4
simulation mode, 10-1
territory a realm protects, 4-13
troubleshooting, E-12
tutorial, 3-14
views

DBA_DV_CODE, 24-7
DBA_DV_MAINTENANCE_AUTH, 24-20
DBA_DV_POLICY, 24-21
DBA_DV_POLICY_OBJECT, 24-23
DBA_DV_POLICY_OWNER, 24-25
DBA_DV_REALM, 24-27
DBA_DV_REALM_OBJECT, 24-30
DBS_DV_REALM_AUTH, 24-29
DVSYS.POLICY_OWNER_COMMAND_RULE,

24-52
DVSYS.POLICY_OWNER_POLICY, 24-53
DVSYS.POLICY_OWNER_REALM, 24-54
DVSYS.POLICY_OWNER_REALM_AUTH,

24-55
DVSYS.POLICY_OWNER_REALM_OBJECT,

24-57
DVSYS.POLICY_OWNER_RULE, 24-58
DVSYS.POLICY_OWNER_RULE_SET, 24-59

realms (continued)
views (continued)
DVSYS.POLICY_OWNER_RULE_SET_RULE,

24-61
See also rule sets

recovering lost password, E-13
RECOVERY_CATALOG_OWNER role, 26-16
RECYCLEBIN initialization parameter

default setting in Oracle Database Vault, 2-1
registering Oracle Database Vault, 3-1
registration

multitenant, about, 3-2
reinstalling Oracle Database Vault, C-3
REMOTE_LOGIN_PASSWORDFILE initialization

parameter, 2-1
reports

about, 26-1
Access to Sensitive Objects Report, 26-11
Accounts With DBA Roles Report, 26-14
Accounts with SYSDBA/SYSOPER Privilege

Report, 26-12
ALTER SYSTEM or ALTER SESSION

Report, 26-15
ANY System Privileges for Database

Accounts Report, 26-10
AUDIT Privileges Report, 26-16
auditing, 26-5
BECOME USER Report, 26-15
categories of, 26-1
Command Rule Audit Report, 26-6
Command Rule Configuration Issues Report,

26-3
Core Database Audit Report, 26-18
Core Database Vault Audit Trail Report, 26-6
Database Account Default Password Report,

26-17
Database Account Status Report, 26-17
Database Accounts With Catalog Roles

Report, 26-16
Direct and Indirect System Privileges By

Database Account Report, 26-10
Direct Object Privileges Report, 26-8
Direct System Privileges By Database

Account Report, 26-10
Enterprise Manager Cloud Control, 12-4
Execute Privileges to Strong SYS Packages

Report, 26-11
Factor Audit Report, 26-6
Factor Configuration Issues Report, 26-4
Factor Without Identities, 26-4
general security, 26-7
Hierarchical System Privileges by Database

Account Report, 26-10
Identity Configuration Issues Report, 26-4
Java Policy Grants Report, 26-19

Index

Index-17

reports (continued)
Label Security Integration Audit Report, 26-6
Non-Owner Object Trigger Report, 26-20
Object Access By PUBLIC Report, 26-8
Object Access Not By PUBLIC Report, 26-8
Object Dependencies Report, 26-9
Objects Dependent on Dynamic SQL Report,

26-19
OS Directory Objects Report, 26-19
OS Security Vulnerability Privileges, 26-16
Password History Access Report, 26-15
permissions for running, 26-2
privilege management, 26-12
Privileges Distribution By Grantee Report,

26-13
Privileges Distribution By Grantee, Owner

Report, 26-13
Privileges Distribution By Grantee, Owner,

Privilege Report, 26-13
Public Execute Privilege To SYS PL/SQL

Procedures Report, 26-12
Realm Audit Report, 26-5
Realm Authorization Configuration Issues

Report, 26-4
Resource Profiles Report, 26-17
Roles/Accounts That Have a Given Role

Report, 26-16
Rule Set Configuration Issues Report, 26-3
running, 26-2
Secure Application Configuration Issues

Report, 26-5
Secure Application Role Audit Report, 26-6
Security Policy Exemption Report, 26-14
Security Related Database Parameters,

26-17
security vulnerability, 26-18
System Privileges By Privilege Report, 26-10
System Resource Limits Report, 26-17
Tablespace Quotas Report, 26-20
Unwrapped PL/SQL Package Bodies Report,

26-19
Username /Password Tables Report, 26-20
WITH ADMIN Privileges Grants Report,

26-14
WITH GRANT Privileges Report, 26-15

Resource Profiles Report, 26-17
resources

reports
Resource Profiles Report, 26-17
System Resource Limits Report, 26-17

REVOKE statement
monitoring, 25-1

roles, 8-1
adding to realms as grantees, 4-20
catalog-based, 26-16

roles (continued)
Database Vault default roles, 13-4
privileges, checking with

DBMS_MACUTL.USER_HAS_ROLE_VARCHAR
function, 20-7

role enablement in incomplete rule set, 26-5
role-based system privileges, 26-10

See also secure application roles
Roles/Accounts That Have a Given Role Report,

26-16
root access

guideline for using with Database Vault, D-6
guidelines on managing, D-8

Rule Set Configuration Issues Report, 26-3
rule sets, 4-8, 5-1, 5-7, 6-2, 6-9

about, 5-1
adding existing rules, 5-11
audit options, 5-4
auditing

intruders
using rule sets, 5-4

command rules
disabled, 26-3
selecting for, 6-9
used with, 6-2

creating, 5-4
rules in, 5-9

creating names, 5-4
data dictionary views, 5-23
DBMS_MACUTL constants, example of, 20-6
default rule sets, 5-3
default rules, 5-8
default, no longer supported, 5-2
deleting, 5-14

rules from, 5-12
disabled for

factor assignment, 26-4
realm authorization, 26-4

evaluation of rules, 5-7
event handlers, 5-4
events firing, finding with DV_SYSEVENT,

15-14
fail code, 5-4
fail message, 5-4
functions

DBMS_MACADM (configuration), 15-1
DBMS_MACUTL (utility), 20-1
DBMS_MACUTL constants (fields), 20-1
PL/SQL functions for rule sets, 15-13

guidelines, 5-22
how rule sets work, 5-15
incomplete, 26-3
modifying, 5-13
multitenant environment

about, 5-2

Index

Index-18

rule sets (continued)
naming conventions, 5-4
nested rules, 5-15
performance effect, 5-23
procedures

DBMS_MACADM (configuration), 15-1
process flow, 5-15
propagating configuration to other databases,

12-2
reports, 5-23
rule sets, 4-8, 5-1, 5-7, 6-2, 6-9

evaluation options, 5-4
rules that exclude one user, 5-16
security attacks, 26-19

tracking
with rule set auditing, 5-4

static evaluation, 5-22
troubleshooting, E-12
views

DBA_DV_RULE, 24-32
DBA_DV_RULE_SET, 24-33
DBA_DV_RULE_SET_RULE, 24-35
See also command rules, factors, realms,
rules, secure application roles

rules, 5-7
about, 5-7
creating, 5-9
creating names, 5-9
data dictionary views, 5-23
default, 5-8
default, no longer supported, 5-2
deleting, 5-12
deleting from rule set, 5-12
existing rules, adding to rule set, 5-11
modifying, 5-12
naming conventions, 5-9
nested within a rule set, 5-15
removing from rule set, 5-12
reports, 5-23
troubleshooting, E-12
views

DBA_DV_RULE, 24-32
DBA_DV_RULE_SET_RULE, 24-35
See also rule sets

rules sets
audit event, custom, A-3

S
SCHEDULER_ADMIN role

impact of Oracle Database Vault installation,
2-3

scheduling database jobs
CREATE EXTERNAL JOB privilege security

consideration, D-14

scheduling jobs
See Oracle Scheduler

schemas
DVF, 13-2
DVSYS, 13-1

Secure Application Configuration Issues Report,
26-5

secure application role, 8-1
Secure Application Role Audit Report, 26-6
secure application roles, 8-1

audit event, custom, A-3
creating, 8-2
data dictionary view, 8-11
DBMS_MACSEC_ROLES.SET_ROLE

function, 8-2
deleting, 8-5
enabling Oracle Database roles to work with

Oracle Database Vault, 8-4
functionality, 8-6
functions

DBMS_MACADM (configuration), 18-1
DBMS_MACSEC_ROLES

(configuration), 18-4
DBMS_MACSEC_ROLES package, 18-4
DBMS_MACUTL (utility), 20-1
DBMS_MACUTL constants (fields), 20-1

guidelines on managing, 8-2
modifying, 8-4
performance effect, 8-10
procedure

DBMS_MACADM (configuration), 18-1
procedures and functions

DBMS_MACUTL (utility), 20-7
propagating configuration to other databases,

12-2
reports, 8-11

Rule Set Configuration Issues Report,
26-3

troubleshooting, E-12
troubleshooting with auditing report, 26-6
tutorial, 8-7
views

DBA_DV_ROLE, 24-31
See also roles, rule sets

security attacks, 26-19
Denial of Service (DoS) attacks

finding system resource limits, 26-17
Denial of Service attacks

finding tablespace quotas, 26-20
eliminating audit trail, 26-16
monitoring security violations, 25-1
Oracle Database Vault addressing

compromised privileged user
accounts, 1-7

Index

Index-19

security attacks (continued)
reports

AUDIT Privileges Report, 26-16
Objects Dependent on Dynamic SQL

Report, 26-19
Privileges Distribution By Grantee,

Owner Report, 26-13
Unwrapped PL/SQL Package Bodies

Report, 26-19
SQL injection attacks, 26-19

security policies, Oracle Database Vault
addressing, 1-8

Security Policy Exemption Report, 26-14
Security Related Database Parameters Report,

26-17
security violations

monitoring attempts, 25-1
security vulnerabilities

how Database Vault addresses, 1-8
operating systems, 26-16
reports, 26-18

Security Related Database Parameters
Report, 26-17

root operating system directory, 26-19
SELECT_CATALOG_ROLE role, 26-16
sensitive objects reports, 26-10
separation of duty concept

about, D-1
command rules, 6-7
database accounts, suggested, 13-24
database roles, 2-3
documenting tasks, D-4
example matrix, D-3
how Oracle Database Vault addresses, 2-3
realms, 1-8
restricting privileges, 2-2
roles, 13-4
tasks in Oracle Database Vault environment,

D-2
session event command rule

updating, 16-23
session event command rules

creating for events, 16-11
deleting, 16-17

sessions
audit events, custom, A-3
DBMS_MACUTL fields, 20-1
finding session user with

DVF.F$SESSION_USER, 17-38
retrieving information with functions, 17-1

simulation mode
about, 10-1
use cases, 10-2

simulation mode, realms
considerations, 10-4

simulation mode, realms (continued)
use cases

adding authorized users to a realm, 10-7
adding new objects to a realm, 10-7
all in simulation mode, 10-5
new realms introduced to existing

realms, 10-6
removing authorized users from a realm,

10-8
removing objects from a realm, 10-7
testing new changes to an existing

command rule, 10-8
testing new factors with realms, 10-8

SQL injection attacks, detecting with Object
Dependent on Dynamic SQL Report,
26-19

SQL statements
default command rules that protect, 6-7

SQL statements protected by, 6-8
SQL text, finding with DV_SQL_TEXT, 15-17
SQL92_SECURITY initialization parameter, 2-1
subfactors

See child factors under factors topic
SYS user account

adding to realm authorization, 4-20
protecting unified audit trail from, A-3

SYS user, patch operations, 12-36
SYSDBA access

guidelines on managing, D-9
SYSDBA privilege

limiting, importance of, D-6
SYSOPER access

guidelines on managing, D-9
system event command rule

updating, 16-24
system event command rules

creating, 16-13
deleting, 16-18

system features
disabling with Disabled rule set, 5-3
enabling with Enabled rule set, 5-3

system privileges
checking with

DBMS_MACUTL.USER_HAS_SYSTEM_PRIVILEGE
function, 20-7

Oracle Database Vault roles, 13-5
reports

System Privileges By Privileges Report, 26-10
System Privileges By Privilege Report, 26-10
System Resource Limits Report, 26-17
system root access, guideline on managing, D-8
SYSTEM schema

application tables in, D-6
realm protection, 4-8

Index

Index-20

SYSTEM user account
guidelines for using with Database Vault, D-5

T
tablespace quotas, 26-20
Tablespace Quotas Report, 26-20
time data

DBMS_MACUTL functions, 20-7
trace files

about, E-2
trace files, Oracle Database Vault

about, E-2
activities that can be traced, E-2
ADRCI utility, E-6
directory location for trace files, E-6
disabling for all sessions, E-11
disabling for current session, E-10
enabling for all sessions, E-4
enabling for current session, E-4
examples

high level authorization, E-8
highest level on realm violations, E-9
low level realm violations, E-7

finding trace file directory, E-6
levels of trace events, E-3
performance effect, E-3
querying

ADRCI utility, E-6
Linux grep command, E-6

traisimulationning mode
tutorial, 10-9

Transparent Data Encryption, used with Oracle
Database Vault, 11-5

transportable tablespaces
authorizing for Oracle Data Pump operations in

Database Vault, 12-11
DBA_DV_TTS_AUTH view, 24-40
DBMS_MACADM.AUTHORIZE_TTS_USER

procedure, 21-13
DBMS_MACADM.UNAUTHORIZE_TTS_USER

procedure, 21-27
triggers

different from object owner account, 26-20
reports, Non-Owner Object Trigger Report,

26-20
troubleshooting

access security sessions, 26-6
auditing reports, using, 26-5
factors, E-12
general diagnostic tips, E-12
locked out accounts, B-1
passwords, forgotten, B-1
realms, E-12
rule sets, E-12

troubleshooting (continued)
rules, E-12
secure application roles, 26-6

trust levels
about, 7-11
determining for identities with

GET_TRUST_LEVEL_FOR_IDENTITY,
17-26

determining with GET_TRUST_LEVEL, 17-25
factor identity, 7-11
factors, 7-12
for factor and identity requested, 17-26
identities, 7-9
of current session identity, 17-25

trusted users
accounts and roles that should be limited,

D-8
default for Oracle Database Vault, D-7

tutorials, 7-23
access, granting with secure application

roles, 8-7
ad hoc tool access, preventing, 7-24
configuring two-person integrity (TPI), 5-17
Database Vault factors with Virtual Private

Database and Oracle Label Security,
11-11

Oracle Label Security integration with Oracle
Database Vault, 11-11

restricting user activities with command rules,
6-13

schema, protecting with a realm, 3-14
simulation mode, 10-9

See also examples
two-man rule security

See two-person integrity (TPI)
two-person integrity (TPI), 5-17

about, 5-17
configuring with a rule set, 5-17

U
UNAUTHORIZE_MAINTENANCE_USER

procedure, 21-23
unified audit trail

how it works with Database Vault, A-1
protecting with a realm, A-3

unified auditing
in Oracle Database Vault, A-1
predefined audit policies, A-1

uninstalling Oracle Database Vault, C-2
Unwrapped PL/SQL Package Bodies Report,

26-19
user authorization

Database Vault authorization for ILM
granting, 21-9

Index

Index-21

user authorization (continued)
Database Vault authorization for ILM (continued)
revoking, 21-23

Database Vault authorization for Information
Lifecycle Management

granting, 21-9
revoking, 21-23

user names
reports, Username/Password Tables Report,

26-20
USER_HISTORY$ table, 26-15
Username/Password Tables Report, 26-20
users

enterprise identities, finding with
DVF.F$PROXY_ENTERPRISE_IDENTITY,
17-38

enterprise-wide identities, finding with
DVF.F$ENTERPRISE_IDENTITY, 17-35

finding session user with DVF.F$SESSION_USER,
17-38

login user name, finding with DV_LOGIN_USER,
15-14

utility functions
See .DBMS_MACUTL package

UTL_FILE object, 26-9
UTL_FILE package, guidelines on managing,

D-11

V
views, 24-5

AUDSYS.DV$CONFIGURATION_AUDIT, 24-62
AUDSYS.DV$ENFORCEMENT_AUDIT, 24-62
CDB_DV_STATUS, 24-5
DBA_DV_APP_EXCEPTION, 24-6
DBA_DV_CODE, 24-7
DBA_DV_COMMAND_RULE, 24-8
DBA_DV_DATAPUMP_AUTH, 24-10
DBA_DV_DBCAPTURE_AUTH, 24-11
DBA_DV_DBREPLAY_AUTH, 24-11
DBA_DV_DDL_AUTH, 24-12
DBA_DV_DICTIONARY_ACCTS, 24-12
DBA_DV_FACTOR, 24-13
DBA_DV_FACTOR_TYPE, 24-15
DBA_DV_IDENTITY, 24-16
DBA_DV_IDENTITY_MAP, 24-17
DBA_DV_JOB_AUTH, 24-18
DBA_DV_MAINTENANCE_AUTH, 24-20
DBA_DV_ORADEBUG, 24-20

views (continued)
DBA_DV_PATCH_ADMIN_AUDIT, 24-21
DBA_DV_POLICY, 24-21
DBA_DV_POLICY_LABEL, 24-22
DBA_DV_POLICY_OBJECT, 24-23
DBA_DV_POLICY_OWNER, 24-25
DBA_DV_PREPROCESSOR_AUTH, 24-25
DBA_DV_PROXY_AUTH, 24-26
DBA_DV_PUB_PRIVS, 24-26
DBA_DV_REALM, 24-27
DBA_DV_REALM_AUTH, 24-29
DBA_DV_REALM_OBJECT, 24-30
DBA_DV_ROLE, 24-31
DBA_DV_RULE_SET, 24-33
DBA_DV_RULE_SET_RULE, 24-35
DBA_DV_SIMULATION_LOG, 24-36
DBA_DV_STATUS, 24-40
DBA_DV_TTS_AUTH, 24-40
DBA_DV_USER_PRIVS, 24-41
DBA_DV_USER_PRIVS_ALL, 24-42
DVSYS.DBA_DV_COMMON_OPERATION_STATUS,

24-51
DVSYS.DV$CONFIGURATION_AUDIT, 24-43
DVSYS.DV$ENFORCEMENT_AUDIT, 24-47
DVSYS.DV$REALM, 24-50
DVSYS.POLICY_OWNER_COMMAND_RULE, 24-52
DVSYS.POLICY_OWNER_POLICY, 24-53
DVSYS.POLICY_OWNER_REALM, 24-54
DVSYS.POLICY_OWNER_REALM_AUTH, 24-55
DVSYS.POLICY_OWNER_REALM_OBJECT, 24-57
DVSYS.POLICY_OWNER_RULE, 24-58
DVSYS.POLICY_OWNER_RULE_SET, 24-59
DVSYS.POLICY_OWNER_RULE_SET_RULE, 24-61

See also names beginning with DVSYS.DBA_DV
VPD

See Oracle Virtual Private Database (VPD)

W
WITH ADMIN Privileges Grants Report, 26-14
WITH ADMIN status, 26-10
WITH GRANT clause, 26-15
WITH GRANT Privileges Report, 26-15

X
XStream

Database Vault role used for, 13-22
in an Oracle Database Vault environment,

12-28

Index

Index-22

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Vault Administrator's Guide
	Changes in Oracle Database Vault 21c
	ADMINISTER KEY MANAGEMENT Statement Now Supported by Oracle Database Vault Command Rules
	DBA_DV_SIMULATION_LOG View Columns REALM_NAME and RULE_SET_NAME Now VARCHAR2 Data Type
	Ability to Prevent Local Oracle Database Vault Policies from Blocking Common Operations
	Uninstalling and Installing Oracle Label Security and Oracle Database Vault Now Supported
	No Need to Disable Oracle Database Vault Before Upgrades

	1 Introduction to Oracle Database Vault
	What Is Oracle Database Vault?
	About Oracle Database Vault
	Controls for Privileged Accounts
	Controls for Database Configuration
	Enterprise Applications Protection Policies

	What Privileges Do You Need to Use Oracle Database Vault?
	Components of Oracle Database Vault
	Oracle Database Vault Access Control Components
	Oracle Database Vault DVSYS and DVF Schemas
	Oracle Database Vault PL/SQL Interfaces and Packages
	Oracle Database Vault Reporting and Monitoring Tools
	Oracle Enterprise Manager Cloud Control Database Vault Administrator Pages

	How Oracle Database Vault Addresses Compliance Regulations
	How Oracle Database Vault Protects Privileged User Accounts
	How Oracle Database Vault Allows for Flexible Security Policies
	How Oracle Database Vault Addresses Database Consolidation Concerns
	How Oracle Database Vault Works in a Multitenant Environment

	2 What to Expect After You Enable Oracle Database Vault
	Initialization and Password Parameter Settings That Change
	How Oracle Database Vault Restricts User Authorizations
	New Database Roles to Enforce Separation of Duties
	Privileges That Are Revoked from Existing Users and Roles
	Privileges That Are Prevented for Existing Users and Roles
	Modified AUDIT Statement Settings for a Non-Unified Audit Environment

	3 Getting Started with Oracle Database Vault
	About Registering Oracle Database Vault with an Oracle Database
	Registering Oracle Database Vault
	About Registering Database Vault
	Registering Database Vault in the CDB Root
	Registering Database Vault Common Users to Manage Specific PDBs
	Registering Database Vault Local Users to Manage Specific PDBs
	Manually Installing Oracle Database Vault

	Verifying That Database Vault Is Configured and Enabled
	Logging in to Oracle Database Vault from Oracle Enterprise Cloud Control
	Quick Start Tutorial: Securing a Schema from DBA Access
	About This Tutorial
	Step 1: Log On as SYSTEM to Access the HR Schema
	Step 2: Create a Realm
	Step 3: Create the SEBASTIAN User Account
	Step 4: Have User SEBASTIAN Test the Realm
	Step 5: Create an Authorization for the Realm
	Step 6: Test the Realm
	Step 8: Remove the Components for This Tutorial

	4 Configuring Realms
	What Are Realms?
	About Realms
	Mandatory Realms to Restrict User Access to Objects within a Realm
	Realms in a Multitenant Environment
	Object Types That Realms Can Protect

	Default Realms
	Oracle Database Vault Realm
	Database Vault Account Management Realm
	Oracle Enterprise Manager Realm
	Oracle Default Schema Protection Realm
	Oracle System Privilege and Role Management Realm
	Oracle Default Component Protection Realm

	Creating a Realm
	Modifying a Realm
	Deleting a Realm
	About Realm-Secured Objects
	About Realm Authorization
	Realm Authorizations in a Multitenant Environment
	How Realms Work
	How Authorizations Work in a Realm
	About Authorizations in a Realm
	Examples of Realm Authorizations
	Example: Unauthorized User Trying to Create a Table
	Example: Unauthorized User Trying to Use the DELETE ANY TABLE Privilege
	Example: Authorized User Performing DELETE Operation

	Access to Objects That Are Protected by a Realm
	Example of How Realms Work
	How Realms Affect Other Oracle Database Vault Components
	Guidelines for Designing Realms
	How Realms Affect Performance
	Realm Related Reports and Data Dictionary Views

	5 Configuring Rule Sets
	What Are Rule Sets?
	Rule Sets and Rules in a Multitenant Environment
	Default Rules and Rule Sets from Releases Earlier Than Release 12.2
	Default Rule Sets
	Creating a Rule Set
	Creating a Rule to Add to a Rule Set
	About Creating Rules
	Default Rules
	Creating a New Rule
	Adding Existing Rules to a Rule Set
	Modifying a Rule Set
	Removing a Rule from a Rule Set

	Modifying a Rule Set
	Deleting a Rule Set
	How Rule Sets Work
	How Oracle Database Vault Evaluates Rules
	Nested Rules within a Rule Set
	Creating Rules to Apply to Everyone Except One User

	Tutorial: Configuring Two-Person Integrity, or Dual Key Security
	About This Tutorial
	Step 1: Create Users for This Tutorial
	Step 2: Create a Function to Check if User patch_boss Is Logged In
	Step 3: Create Rules, a Rule Set, and a Command Rule to Control User Access
	Step 4: Test the Users' Access
	Step 5: Remove the Components for This Tutorial

	Guidelines for Designing Rule Sets
	How Rule Sets Affect Performance
	Rule Set and Rule Related Reports and Data Dictionary Views

	6 Configuring Command Rules
	What Are Command Rules?
	About Command Rules
	Command Rules in a Multitenant Environment
	Types of Command Rules
	CONNECT Command Rule
	ALTER SESSION and ALTER SYSTEM Command Rules

	Default Command Rules
	SQL Statements That Can Be Protected by Command Rules
	Creating a Command Rule
	Modifying a Command Rule
	Deleting a Command Rule
	How Command Rules Work
	Tutorial: Using a Command Rule to Control Table Creations by a User
	Step 1: Create a Table
	Step 2: Create a Command Rule
	Step 3: Test the Command Rule
	Step 4: Remove the Components for this Tutorial

	Guidelines for Designing Command Rules
	How Command Rules Affect Performance
	Command Rule Related Reports and Data Dictionary View

	7 Configuring Factors
	What Are Factors?
	Default Factors
	Creating a Factor
	Adding an Identity to a Factor
	About Factor Identities
	How Factor Identities Work
	About Trust Levels
	About Label Identities
	Creating and Configuring a Factor Identity
	Using Identity Mapping to Configure an Identity to Use Other Factors
	About Identity Mapping
	Mapping an Identity to a Factor
	Deleting an Identity Map

	Modifying a Factor Identity
	Deleting a Factor Identity

	Modifying a Factor
	Deleting a Factor
	How Factors Work
	How Factors Are Processed When a Session Is Established
	How Retrieval Methods Work
	How Factors Are Retrieved
	How Factors Are Set
	How Factor Auditing Works

	Tutorial: Preventing Ad Hoc Tool Access to the Database
	About This Tutorial
	Step 1: Enable the HR and OE User Accounts
	Step 2: Create the Factor
	Step 3: Create the Rule Set and Rules
	Step 4: Create the CONNECT Command Rule
	Step 5: Test the Ad Hoc Tool Access Restriction
	Step 6: Remove the Components for This Tutorial

	Guidelines for Designing Factors
	How Factors Affect Performance
	Factor Related Reports and Data Dictionary Views

	8 Configuring Secure Application Roles for Oracle Database Vault
	What Are Secure Application Roles in Oracle Database Vault?
	Security for Oracle Database Vault Secure Application Roles
	Creating an Oracle Database Vault Secure Application Role
	Enabling Oracle Database Secure Application Roles to Work with Oracle Database Vault
	Modifying a Secure Application Role
	Deleting an Oracle Database Vault Secure Application Role
	How Oracle Database Vault Secure Application Roles Work
	Tutorial: Granting Access with Database Vault Secure Application Roles
	About This Tutorial
	Step 1: Create Users for This Tutorial
	Step 2: Enable the OE User Account
	Step 3: Create the Rule Set and Its Rules
	Step 4: Create the Database Vault Secure Application Role
	Step 5: Grant the SELECT Privilege to the Secure Application Role
	Step 6: Test the Database Vault Secure Application Role
	Step 7: Remove the Components for This Tutorial

	How Secure Application Roles Affect Performance
	Secure Application Role Related Reports and Data Dictionary View

	9 Configuring Oracle Database Vault Policies
	What Are Database Vault Policies?
	About Oracle Database Vault Policies
	Oracle Database Vault Policies in a Multitenant Environment

	Default Oracle Database Vault Policies
	Creating an Oracle Database Policy
	Modifying an Oracle Database Vault Policy
	Deleting an Oracle Database Vault Policy
	Related Data Dictionary Views

	10 Using Simulation Mode for Logging Realm and Command Rule Activities
	About Simulation Mode
	Simulation Mode Use Cases
	Logging Realms in Simulation Mode
	Considerations When Logging Realms in Simulation Mode
	Use Case: All New Realms in Simulation Mode
	Use Case: New Realms Introduced to Existing Realms
	Use Case: Testing the Addition of New Objects in a Realm
	Use Case: Testing the Removal of Objects from a Realm
	Use Case: Testing the Addition of an Authorized User to a Realm
	Use Case: Testing the Removal of an Authorized User from a Realm
	Use Case: Testing New Factors with Realms
	Use Case: Testing Changes to an Existing Command Rule

	Tutorial: Tracking Violations to a Realm Using Simulation Mode
	About This Tutorial
	Step 1: Create Users for This Tutorial
	Step 2: Create a Realm and an Oracle Database Vault Policy
	Step 3: Test the Realm and Policy
	Step 4: Query the DBA_DV_SIMULATION_LOG View for Violations
	Step 5: Enable and Re-test the Realm
	Step 6: Remove the Components for This Tutorial

	11 Integrating Oracle Database Vault with Other Oracle Products
	Integrating Oracle Database Vault with Enterprise User Security
	About Integrating Oracle Database Vault with Enterprise User Security
	Configuring an Enterprise User Authorization
	Configuring Oracle Database Vault Accounts as Enterprise User Accounts

	Integrating Oracle Database Vault with Transparent Data Encryption
	Attaching Factors to an Oracle Virtual Private Database
	Integrating Oracle Database Vault with Oracle Label Security
	How Oracle Database Vault Is Integrated with Oracle Label Security
	Requirements for Using Oracle Database Vault with Oracle Label Security
	Using Oracle Database Vault Factors with Oracle Label Security Policies
	About Using Oracle Database Vault Factors with Oracle Label Security Policies
	Configuring Factors to Work with an Oracle Label Security Policy

	Tutorial: Integrating Oracle Database Vault with Oracle Label Security
	About This Tutorial
	Step 1: Create Users for This Tutorial
	Step 2: Create the Oracle Label Security Policy
	Step 3: Create Oracle Database Vault Rules to Control the OLS Authorization
	Step 4: Update the ALTER SYSTEM Command Rule to Use the Rule Set
	Step 5: Test the Authorizations
	Step 6: Remove the Components for This Tutorial

	Related Reports and Data Dictionary Views

	Integrating Oracle Database Vault with Oracle Data Guard
	Step 1: Configure the Primary Database
	Step 2: Configure the Standby Database
	How Auditing Works After an Oracle Database Vault-Oracle Active Data Guard Integration

	Registering Oracle Internet Directory Using Oracle Database Configuration Asssitant

	12 DBA Operations in an Oracle Database Vault Environment
	Using Oracle Database Vault with Oracle Enterprise Manager
	Propagating Oracle Database Vault Configurations to Other Databases
	Enterprise Manager Cloud Control Alerts for Oracle Database Vault Policies
	Oracle Database Vault-Specific Reports in Enterprise Manager Cloud Control
	Changing the DBSNMP Account Password in a Database Vault Environment

	Using Oracle Data Pump with Oracle Database Vault
	About Using Oracle Data Pump with Oracle Database Vault
	Authorizing Users or Roles for Data Pump Regular Export and Import Operations
	About Authorizing Users or Roles for Oracle Data Pump Regular Operations
	Levels of Database Vault Authorization for Oracle Data Pump Regular Operations
	Authorizing Users or Roles for Oracle Data Pump Regular Operations in Database Vault
	Revoking Oracle Data Pump Authorization from Users or Roles

	Authorizing Users or Roles for Data Pump Transportable Export and Import Operations
	About Authorizing Users for Oracle Data Pump Transportable Operations
	Levels of Database Vault Authorization for Data Pump Transportable Operations
	Authorizing Users or Roles for Data Pump Transportable Operations in Database Vault
	Revoking Transportable Tablespace Authorization from Users or Roles

	Guidelines for Exporting or Importing Data in a Database Vault Environment

	Using Oracle Scheduler with Oracle Database Vault
	About Using Oracle Scheduler with Oracle Database Vault
	Granting a Job Scheduling Administrator Authorization for Database Vault
	Revoking Authorization from Job Scheduling Administrators

	Using Information Lifecycle Management with Oracle Database Vault
	About Using Information Lifecycle Management with Oracle Database Vault
	Authorizing Users for ILM Operations in Database Vault
	Revoking Information Lifecycle Management Authorization from Users

	Using Oracle Database Replay with Oracle Database Vault
	About Using Database Replay with Oracle Database Vault
	Authorizing Users for Database Replay Operations
	Authorizing Users for Workload Capture Operations
	Authorizing Users for Workload Replay Operations

	Revoking Database Replay Authorization from Users
	Revoking Workload Capture Privileges
	Revoking Workload Replay Privileges

	Executing Preprocessor Programs with Oracle Database Vault
	About Executing Preprocessor Programs with Oracle Database Vault
	Authorizing Users to Execute Preprocessor Programs
	Revoking Execute Preprocessor Authorization from Users

	Using Database Vault Operations Control to Restrict Multitenant Common User Access to Local PDB Data
	About Using Database Vault Operations Control
	How the Addition of Common Users and Packages to an Exception List Works
	Enabling Database Vault Operations Control
	Adding Common Users and Packages to an Exception List
	Deleting Common Users and Packages from an Exception List
	Disabling Database Vault Operations Control

	Preventing Multitenant Local Users from Blocking Common Operations
	About Preventing Multitenant Local Users from Blocking Common Operations
	Preventing Local Users from Blocking Common Operations

	Oracle Recovery Manager and Oracle Database Vault
	Privileges for Using XStream with Oracle Database Vault
	Privileges for Using Oracle GoldenGate in with Oracle Database Vault
	Using Data Masking in an Oracle Database Vault Environment
	About Data Masking in an Oracle Database Vault Enabled Database
	Adding Data Masking Users to the Data Dictionary Realm Authorizations
	Giving Users Access to Tables or Schemas That They Want to Mask
	Creating a Command Rule to Control Data Masking Privileges

	Converting a Standalone Oracle Database to a PDB and Plugging It into a CDB
	Using the ORADEBUG Utility with Oracle Database Vault
	Performing Patch Operations in an Oracle Database Vault Environment

	13 Oracle Database Vault Schemas, Roles, and Accounts
	Oracle Database Vault Schemas
	DVSYS Schema
	DVF Schema

	Oracle Database Vault Roles
	About Oracle Database Vault Roles
	Privileges of Oracle Database Vault Roles
	Granting Oracle Database Vault Roles to Users
	DV_ACCTMGR Database Vault Account Manager Role
	DV_ADMIN Database Vault Configuration Administrator Role
	DV_AUDIT_CLEANUP Audit Trail Cleanup Role
	DV_DATAPUMP_NETWORK_LINK Data Pump Network Link Role
	DV_GOLDENGATE_ADMIN GoldenGate Administrative Role
	DV_GOLDENGATE_REDO_ACCESS GoldenGate Redo Log Role
	DV_MONITOR Database Vault Monitoring Role
	DV_OWNER Database Vault Owner Role
	DV_PATCH_ADMIN Database Vault Database Patch Role
	DV_POLICY_OWNER Database Vault Owner Role
	DV_SECANALYST Database Vault Security Analyst Role
	DV_XSTREAM_ADMIN XStream Administrative Role

	Oracle Database Vault Accounts Created During Registration
	About Oracle Database Vault Accounts Created During Registration
	Database Accounts Used by Oracle Database Vault
	Model Oracle Database Vault Database Accounts

	Backup Oracle Database Vault Accounts

	14 Oracle Database Vault Realm APIs
	ADD_AUTH_TO_REALM Procedure
	ADD_OBJECT_TO_REALM Procedure
	CREATE_REALM Procedure
	DELETE_AUTH_FROM_REALM Procedure
	DELETE_OBJECT_FROM_REALM Procedure
	DELETE_REALM Procedure
	DELETE_REALM_CASCADE Procedure
	RENAME_REALM Procedure
	UPDATE_REALM Procedure
	UPDATE_REALM_AUTH Procedure

	15 Oracle Database Vault Rule Set APIs
	DBMS_MACADM Rule Set Procedures
	ADD_RULE_TO_RULE_SET Procedure
	CREATE_RULE Procedure
	CREATE_RULE_SET Procedure
	DELETE_RULE Procedure
	DELETE_RULE_FROM_RULE_SET Procedure
	DELETE_RULE_SET Procedure
	RENAME_RULE Procedure
	RENAME_RULE_SET Procedure
	UPDATE_RULE Procedure
	UPDATE_RULE_SET Procedure

	Oracle Database Vault PL/SQL Rule Set Functions
	DV_SYSEVENT Function
	DV_LOGIN_USER Function
	DV_INSTANCE_NUM Function
	DV_DATABASE_NAME Function
	DV_DICT_OBJ_TYPE Function
	DV_DICT_OBJ_OWNER Function
	DV_DICT_OBJ_NAME Function
	DV_SQL_TEXT Function

	16 Oracle Database Vault Command Rule APIs
	CREATE_COMMAND_RULE Procedure
	CREATE_CONNECT_COMMAND_RULE Procedure
	CREATE_SESSION_EVENT_CMD_RULE Procedure
	CREATE_SYSTEM_EVENT_CMD_RULE Procedure
	DELETE_COMMAND_RULE Procedure
	DELETE_CONNECT_COMMAND_RULE Procedure
	DELETE_SESSION_EVENT_CMD_RULE Procedure
	DELETE_SYSTEM_EVENT_CMD_RULE Procedure
	UPDATE_COMMAND_RULE Procedure
	UPDATE_CONNECT_COMMAND_RULE Procedure
	UPDATE_SESSION_EVENT_CMD_RULE Procedure
	UPDATE_SYSTEM_EVENT_CMD_RULE Procedure

	17 Oracle Database Vault Factor APIs
	DBMS_MACADM Factor Procedures and Functions
	ADD_FACTOR_LINK Procedure
	ADD_POLICY_FACTOR Procedure
	CHANGE_IDENTITY_FACTOR Procedure
	CHANGE_IDENTITY_VALUE Procedure
	CREATE_DOMAIN_IDENTITY Procedure
	CREATE_FACTOR Procedure
	CREATE_FACTOR_TYPE Procedure
	CREATE_IDENTITY Procedure
	CREATE_IDENTITY_MAP Procedure
	DELETE_FACTOR Procedure
	DELETE_FACTOR_LINK Procedure
	DELETE_FACTOR_TYPE Procedure
	DELETE_IDENTITY Procedure
	DELETE_IDENTITY_MAP Procedure
	DROP_DOMAIN_IDENTITY Procedure
	GET_SESSION_INFO Function
	GET_INSTANCE_INFO Function
	RENAME_FACTOR Procedure
	RENAME_FACTOR_TYPE Procedure
	UPDATE_FACTOR Procedure
	UPDATE_FACTOR_TYPE Procedure
	UPDATE_IDENTITY Procedure

	Oracle Database Vault Run-Time PL/SQL Procedures and Functions
	About Oracle Database Vault Run-Tine PL/SQL Procedures and Functions
	SET_FACTOR Procedure
	GET_FACTOR Function
	GET_FACTOR_LABEL Function
	GET_TRUST_LEVEL Function
	GET_TRUST_LEVEL_FOR_IDENTITY Function
	ROLE_IS_ENABLED Function

	Oracle Database Vault DVF PL/SQL Factor Functions
	About Oracle Database Vault DVF PL/SQL Factor Functions
	F$AUTHENTICATION_METHOD Function
	F$CLIENT_IP Function
	F$DATABASE_DOMAIN Function
	F$DATABASE_HOSTNAME Function
	F$DATABASE_INSTANCE Function
	F$DATABASE_IP Function
	F$DATABASE_NAME Function
	F$DOMAIN Function
	FDVCLIENT_IDENTIFIER Function
	FDVDBLINK_INFO Function
	FDVMODULE Function
	F$ENTERPRISE_IDENTITY Function
	F$IDENTIFICATION_TYPE Function
	F$LANG Function
	F$LANGUAGE Function
	F$MACHINE Function
	F$NETWORK_PROTOCOL Function
	F$PROXY_ENTERPRISE_IDENTITY Function
	F$PROXY_USER Function
	F$SESSION_USER Function

	18 Oracle Database Vault Secure Application Role APIs
	DBMS_MACADM Secure Application Role Procedures
	CREATE_ROLE Procedure
	DELETE_ROLE Procedure
	RENAME_ROLE Procedure
	UPDATE_ROLE Procedure

	DBMS_MACSEC_ROLES Secure Application Role Procedure and Function
	CAN_SET_ROLE Function
	SET_ROLE Procedure

	19 Oracle Database Vault Oracle Label Security APIs
	CREATE_MAC_POLICY Procedure
	CREATE_POLICY_LABEL Procedure
	DELETE_MAC_POLICY_CASCADE Procedure
	DELETE_POLICY_FACTOR Procedure
	DELETE_POLICY_LABEL Procedure
	UPDATE_MAC_POLICY Procedure

	20 Oracle Database Vault Utility APIs
	DBMS_MACUTL Constants
	DBMS_MACUTL Listing of Constants
	Example: Creating a Realm Using DBMS_MACUTL Constants
	Example: Creating a Rule Set Using DBMS_MACUTL Constants
	Example: Creating a Factor Using DBMS_MACUTL Constants

	DBMS_MACUTL Package Procedures and Functions
	CHECK_DVSYS_DML_ALLOWED Procedure
	GET_CODE_VALUE Function
	GET_SECOND Function
	GET_MINUTE Function
	GET_HOUR Function
	GET_DAY Function
	GET_MONTH Function
	GET_YEAR Function
	IS_ALPHA Function
	IS_DIGIT Function
	IS_DVSYS_OWNER Function
	IS_OLS_INSTALLED Function
	IS_OLS_INSTALLED_VARCHAR Function
	ROLE_GRANTED_ENABLED_VARCHAR Function
	USER_HAS_OBJECT_PRIVILEGE Function
	USER_HAS_ROLE Function
	USER_HAS_ROLE_VARCHAR Function
	USER_HAS_SYSTEM_PRIVILEGE Function

	21 Oracle Database Vault General Administrative APIs
	DBMS_MACADM General System Maintenance Procedures
	ADD_APP_EXCEPTION Procedure
	ADD_NLS_DATA Procedure
	ALLOW_COMMON_OPERATION Procedure
	AUTHORIZE_DATAPUMP_USER Procedure
	AUTHORIZE_DBCAPTURE Procedure
	AUTHORIZE_DBREPLAY Procedure
	AUTHORIZE_DDL Procedure
	AUTHORIZE_DIAGNOSTIC_ADMIN Procedure
	AUTHORIZE_MAINTENANCE_USER Procedure
	AUTHORIZE_PREPROCESSOR Procedure
	AUTHORIZE_PROXY_USER Procedure
	AUTHORIZE_SCHEDULER_USER Procedure
	AUTHORIZE_TTS_USER Procedure
	DELETE_APP_EXCEPTION Procedure
	DISABLE_APP_PROTECTION Procedure
	DISABLE_DV Procedure
	DISABLE_DV_DICTIONARY_ACCTS Procedure
	DISABLE_DV_PATCH_ADMIN_AUDIT Procedure
	DISABLE_ORADEBUG Procedure
	ENABLE_APP_PROTECTION Procedure
	ENABLE_DV Procedure
	ENABLE_DV_DICTIONARY_ACCTS Procedure
	ENABLE_DV_PATCH_ADMIN_AUDIT Procedure
	ENABLE_ORADEBUG Procedure
	UNAUTHORIZE_DATAPUMP_USER Procedure
	UNAUTHORIZE_DBCAPTURE Procedure
	UNAUTHORIZE_DBREPLAY Procedure
	UNAUTHORIZE_DDL Procedure
	UNAUTHORIZE_DIAGNOSTIC_ADMIN Procedure
	UNAUTHORIZE_MAINTENANCE_USER Procedure
	UNAUTHORIZE_PREPROCESSOR Procedure
	UNAUTHORIZE_PROXY_USER Procedure
	UNAUTHORIZE_SCHEDULER_USER Procedure
	UNAUTHORIZE_TTS_USER Procedure

	CONFIGURE_DV General System Maintenance Procedure

	22 Oracle Database Vault Policy APIs
	ADD_CMD_RULE_TO_POLICY Procedure
	ADD_OWNER_TO_POLICY Procedure
	ADD_REALM_TO_POLICY Procedure
	CREATE_POLICY Procedure
	DELETE_CMD_RULE_FROM_POLICY Procedure
	DELETE_OWNER_FROM_POLICY Procedure
	DELETE_REALM_FROM_POLICY Procedure
	DROP_POLICY Procedure
	RENAME_POLICY Procedure
	UPDATE_POLICY_DESCRIPTION Procedure
	UPDATE_POLICY_STATE Procedure

	23 Oracle Database Vault API Reference
	DBMS_MACADM PL/SQL Package Contents
	DBMS_MACSEC_ROLES PL/SQL Package Contents
	DBMS_MACUTL PL/SQL Package Contents
	CONFIGURE_DV PL/SQL Procedure
	DVF PL/SQL Interface Contents

	24 Oracle Database Vault Data Dictionary Views
	About the Oracle Database Vault Data Dictionary Views
	CDB_DV_STATUS View
	DBA_DV_APP_EXCEPTION View
	DBA_DV_CODE View
	DBA_DV_COMMAND_RULE View
	DBA_DV_DATAPUMP_AUTH View
	DBA_DV_DBCAPTURE_AUTH View
	DBA_DV_DBREPLAY View
	DBA_DV_DDL_AUTH View
	DBA_DV_DICTIONARY_ACCTS View
	DBA_DV_FACTOR View
	DBA_DV_FACTOR_TYPE View
	DBA_DV_FACTOR_LINK View
	DBA_DV_IDENTITY View
	DBA_DV_IDENTITY_MAP View
	DBA_DV_JOB_AUTH View
	DBA_DV_MAC_POLICY View
	DBA_DV_MAC_POLICY_FACTOR View
	DBA_DV_MAINTENANCE_AUTH View
	DBA_DV_ORADEBUG View
	DBA_DV_PATCH_ADMIN_AUDIT View
	DBA_DV_POLICY View
	DBA_DV_POLICY_LABEL View
	DBA_DV_POLICY_OBJECT View
	DBA_DV_POLICY_OWNER View
	DBA_DV_PREPROCESSOR_AUTH View
	DBA_DV_PROXY_AUTH View
	DBA_DV_PUB_PRIVS View
	DBA_DV_REALM View
	DBA_DV_REALM_AUTH View
	DBA_DV_REALM_OBJECT View
	DBA_DV_ROLE View
	DBA_DV_RULE View
	DBA_DV_RULE_SET View
	DBA_DV_RULE_SET_RULE View
	DBA_DV_SIMULATION_LOG View
	DBA_DV_STATUS or SYS.DBA_DV_STATUS View
	DBA_DV_TTS_AUTH View
	DBA_DV_USER_PRIVS View
	DBA_DV_USER_PRIVS_ALL View
	DVSYS.DV$CONFIGURATION_AUDIT View
	DVSYS.DV$ENFORCEMENT_AUDIT View
	DVSYS.DV$REALM View
	DVSYS.DBA_DV_COMMON_OPERATION_STATUS View
	DVSYS.POLICY_OWNER_COMMAND_RULE View
	DVSYS.POLICY_OWNER_POLICY View
	DVSYS.POLICY_OWNER_REALM View
	DVSYS.POLICY_OWNER_REALM_AUTH View
	DVSYS.POLICY_OWNER_REALM_OBJECT View
	DVSYS.POLICY_OWNER_RULE View
	DVSYS.POLICY_OWNER_RULE_SET View
	DVSYS.POLICY_OWNER_RULE_SET_RULE View
	AUDSYS.DV$CONFIGURATION_AUDIT View
	AUDSYS.DV$ENFORCEMENT_AUDIT View

	25 Monitoring Oracle Database Vault
	About Monitoring Oracle Database Vault
	Monitoring Security Violations and Configuration Changes

	26 Oracle Database Vault Reports
	About the Oracle Database Vault Reports
	Who Can Run the Oracle Database Vault Reports?
	Running the Oracle Database Vault Reports
	Oracle Database Vault Configuration Issues Reports
	Command Rule Configuration Issues Report
	Rule Set Configuration Issues Report
	Realm Authorization Configuration Issues Report
	Factor Configuration Issues Report
	Factor Without Identities Report
	Identity Configuration Issues Report
	Secure Application Configuration Issues Report

	Oracle Database Vault Auditing Reports
	Realm Audit Report
	Command Rule Audit Report
	Factor Audit Report
	Label Security Integration Audit Report
	Core Database Vault Audit Trail Report
	Secure Application Role Audit Report

	Oracle Database Vault General Security Reports
	Object Privilege Reports
	Object Access By PUBLIC Report
	Object Access Not By PUBLIC Report
	Direct Object Privileges Report
	Object Dependencies Report

	Database Account System Privileges Reports
	Direct System Privileges By Database Account Report
	Direct and Indirect System Privileges By Database Account Report
	Hierarchical System Privileges by Database Account Report
	ANY System Privileges for Database Accounts Report
	System Privileges By Privilege Report

	Sensitive Objects Reports
	Execute Privileges to Strong SYS Packages Report
	Access to Sensitive Objects Report
	Public Execute Privilege To SYS PL/SQL Procedures Report
	Accounts with SYSDBA/SYSOPER Privilege Report

	Privilege Management - Summary Reports
	Privileges Distribution By Grantee Report
	Privileges Distribution By Grantee, Owner Report
	Privileges Distribution By Grantee, Owner, Privilege Report

	Powerful Database Accounts and Roles Reports
	WITH ADMIN Privilege Grants Report
	Accounts With DBA Roles Report
	Security Policy Exemption Report
	BECOME USER Report
	ALTER SYSTEM or ALTER SESSION Report
	Password History Access Report
	WITH GRANT Privileges Report
	Roles/Accounts That Have a Given Role Report
	Database Accounts With Catalog Roles Report
	AUDIT Privileges Report
	OS Security Vulnerability Privileges Report

	Initialization Parameters and Profiles Reports
	Security Related Database Parameters Report
	Resource Profiles Report
	System Resource Limits Report

	Database Account Password Reports
	Database Account Default Password Report
	Database Account Status Report

	Security Audit Report: Core Database Audit Report
	Other Security Vulnerability Reports
	Java Policy Grants Report
	OS Directory Objects Report
	Objects Dependent on Dynamic SQL Report
	Unwrapped PL/SQL Package Bodies Report
	Username/Password Tables Report
	Tablespace Quotas Report
	Non-Owner Object Trigger Report

	A Auditing Oracle Database Vault
	About Auditing in Oracle Database Vault
	Protection of the Unified Audit Trail in an Oracle Database Vault Environment
	Oracle Database Vault Specific Audit Events
	Oracle Database Vault Policy Audit Events
	Oracle Database Vault Audit Trail Record Format

	Archiving and Purging the Oracle Database Vault Audit Trail
	About Archiving and Purging the Oracle Database Vault Audit Trail
	Archiving the Oracle Database Vault Audit Trail
	Purging the Oracle Database Vault Audit Trail

	Oracle Database Audit Settings Created for Oracle Database Vault

	B Disabling and Enabling Oracle Database Vault
	When You Must Disable Oracle Database Vault
	Step 1: Disable Oracle Database Vault
	Step 2: Perform the Required Tasks
	Step 3: Enable Oracle Database Vault

	C Postinstallation Oracle Database Vault Procedures
	Configuring Oracle Database Vault on Oracle RAC Nodes
	Adding Languages to Oracle Database Vault
	Uninstalling Oracle Database Vault
	Reinstalling Oracle Database Vault

	D Oracle Database Vault Security Guidelines
	Separation of Duty Guidelines
	How Oracle Database Vault Handles Separation of Duty
	Separation of Tasks in an Oracle Database Vault Environment
	Separation of Duty Matrix for Oracle Database Vault
	Identification and Documentation of the Tasks of Database Users

	Managing Oracle Database Administrative Accounts
	SYSTEM User Account for General Administrative Uses
	SYSTEM Schema for Application Tables
	Limitation of the SYSDBA Administrative Privilege
	Root and Operating System Access to Oracle Database Vault

	Accounts and Roles Trusted by Oracle Database Vault
	Accounts and Roles That Should be Limited to Trusted Individuals
	Management of Users with Root Access to the Operating System
	Management of the Oracle Software Owner
	Management of SYSDBA Access
	Management of SYSOPER Access

	Guidelines for Using Oracle Database Vault in a Production Environment
	Secure Configuration Guidelines
	General Secure Configuration Guidelines
	UTL_FILE and DBMS_FILE_TRANSFER Package Security Considerations
	About Security Considerations for the UTL_FILE and DBMS_FILE_TRANSFER Packages
	Securing Access to the DBMS_FILE_TRANFER Package
	Example: Creating a Command Rule to Deny Access to CREATE DATABASE LINK
	Example: Creating a Command Rule to Enable Access to CREATE DATABASE LINK
	Example: Command Rules to Disable and Enable Access to CREATE DIRECTORY

	CREATE ANY JOB Privilege Security Considerations
	CREATE EXTERNAL JOB Privilege Security Considerations
	LogMiner Package Security Considerations
	ALTER SYSTEM and ALTER SESSION Privilege Security Considerations
	About ALTER SYSTEM and ALTER SESSION Privilege Security Considerations
	Example: Adding Rules to the Existing ALTER SYSTEM Command Rule

	E Troubleshooting Oracle Database Vault
	Using Trace Files to Diagnose Oracle Database Vault Events
	About Using Trace Files to Diagnose Oracle Database Vault Events
	Types of Oracle Database Vault Trace Events That You Can and Cannot Track
	Levels of Oracle Database Vault Trace Events
	Performance Effect of Enabling Oracle Database Vault Trace Files
	Enabling Oracle Database Vault Trace Events
	Enabling Trace Events for the Current Database Session
	Enabling Trace Events for All Database Sessions
	Enabling Trace Events in a Multitenant Environment

	Finding Oracle Database Vault Trace File Data
	Finding the Database Vault Trace File Directory Location
	Using the Linux grep Command to Search Trace Files for Strings
	Using the ADR Command Interpreter (ADRCI) Utility to Query Trace Files

	Example: Low Level Oracle Database Vault Realm Violations in a Trace File
	Example: High Level Trace Enabled for Oracle Database Vault Authorization
	Example: Highest Level Traces on Violations on Realm-Protected Objects
	Disabling Oracle Database Vault Trace Events
	Disabling Trace Events for the Current Database Session
	Disabling Trace Events for All Database Sessions
	Disabling Trace Events in a Multitenant Environment

	General Diagnostic Tips
	Configuration Problems with Oracle Database Vault Components
	Resetting Oracle Database Vault Account Passwords
	Resetting the DV_OWNER User Password
	Resetting the DV_ACCTMGR User Password

	Index

