
Oracle® Machine Learning for SQL
API Guide

21c
F31932-02
December 2020

Oracle Machine Learning for SQL API Guide, 21c

F31932-02

Copyright © 2005, 2020, Oracle and/or its affiliates.

Primary Author: Sarika Surampudi

Contributors: David McDermid

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Technology Rebrand xxiii

Audience xxiii

Documentation Accessibility xxiii

Conventions xxiii

Part I Introductions

1 Introduction to Oracle Machine Learning for SQL

1.1 About Oracle Machine Learning for SQL 1-1

1.2 Oracle Machine Learning for SQL in the Database Kernel 1-1

1.3 Oracle Machine Learning for SQL in Oracle Exadata 1-2

1.4 About Partitioned Models 1-3

1.5 Interfaces to Oracle Machine Learning for SQL 1-3

1.5.1 PL/SQL API 1-4

1.5.2 SQL Functions 1-4

1.5.3 Oracle Data Miner 1-5

1.5.4 Predictive Analytics 1-6

1.6 Overview of Database Analytics 1-7

2 Oracle Machine Learning Basics

2.1 Machine Learning Functions 2-1

2.1.1 Supervised Machine Learning 2-2

2.1.1.1 Supervised Learning: Testing 2-3

2.1.1.2 Supervised Learning: Scoring 2-3

2.1.2 Unsupervised Machine Learning 2-3

2.1.2.1 Unsupervised Learning: Scoring 2-4

2.2 Algorithms 2-5

2.2.1 Oracle Machine Learning Supervised Algorithms 2-5

2.2.2 Oracle Machine Learning Unsupervised Algorithms 2-6

iii

2.3 Data Preparation 2-7

2.3.1 Oracle Machine Learning for SQL Simplifies Data Preparation 2-7

2.3.2 Case Data 2-8

2.3.2.1 Nested Data 2-8

2.3.3 Text Data 2-9

2.4 In-Database Scoring 2-9

2.4.1 Parallel Execution and Ease of Administration 2-9

2.4.2 SQL Functions for Model Apply and Dynamic Scoring 2-10

Part II Machine Learning Functions

3 Regression

3.1 About Regression 3-1

3.1.1 How Does Regression Work? 3-2

3.1.1.1 Linear Regression 3-2

3.1.1.2 Multivariate Linear Regression 3-3

3.1.1.3 Regression Coefficients 3-3

3.1.1.4 Nonlinear Regression 3-3

3.1.1.5 Multivariate Nonlinear Regression 3-4

3.1.1.6 Confidence Bounds 3-4

3.2 Testing a Regression Model 3-4

3.2.1 Regression Statistics 3-5

3.2.1.1 Root Mean Squared Error 3-5

3.2.1.2 Mean Absolute Error 3-5

3.3 Regression Algorithms 3-6

4 Classification

4.1 About Classification 4-1

4.2 Testing a Classification Model 4-2

4.2.1 Confusion Matrix 4-2

4.2.2 Lift 4-3

4.2.2.1 Lift Statistics 4-4

4.2.3 Receiver Operating Characteristic (ROC) 4-4

4.2.3.1 The ROC Curve 4-5

4.2.3.2 Area Under the Curve 4-5

4.2.3.3 ROC and Model Bias 4-5

4.2.3.4 ROC Statistics 4-5

4.3 Biasing a Classification Model 4-6

4.3.1 Costs 4-6

iv

4.3.1.1 Costs Versus Accuracy 4-6

4.3.1.2 Positive and Negative Classes 4-7

4.3.1.3 Assigning Costs and Benefits 4-7

4.3.2 Priors and Class Weights 4-8

4.4 Classification Algorithms 4-9

5 Clustering

5.1 About Clustering 5-1

5.1.1 How are Clusters Computed? 5-1

5.1.2 Scoring New Data 5-2

5.1.3 Hierarchical Clustering 5-2

5.1.3.1 Rules 5-2

5.1.3.2 Support and Confidence 5-2

5.1.4 Clustering Algorithms 5-2

5.2 Evaluating a Clustering Model 5-4

6 Anomaly Detection

6.1 About Anomaly Detection 6-1

6.1.1 Anomaly Detection as a form of One-Class Classification 6-2

6.1.2 Anomaly Detection for Time Series Data 6-3

6.2 Anomaly Detection Algorithms 6-3

7 Ranking

7.1 About Ranking 7-1

7.2 Ranking Methods 7-1

7.3 Ranking Algorithms 7-2

8 Association

8.1 About Association 8-1

8.1.1 Association Rules 8-1

8.1.2 Market-Basket Analysis 8-1

8.1.3 Association Rules and eCommerce 8-2

8.2 Transactional Data 8-2

8.3 Association Algorithm 8-3

9 Feature Selection

9.1 Finding the Best Attributes 9-1

v

9.2 About Feature Selection and Attribute Importance 9-2

9.2.1 Attribute Importance and Scoring 9-2

9.3 Algorithms for Attribute Importance 9-2

10

Feature Extraction

10.1 About Feature Extraction 10-1

10.1.1 Feature Extraction and Scoring 10-2

10.2 Algorithms for Feature Extraction 10-2

11

Row Importance

11.1 About Row Importance 11-1

11.2 Selecting Important Rows 11-1

11.3 Row Importance Algorithms 11-2

12

Time Series

12.1 About Time Series 12-1

12.2 Choosing a Time Series Model 12-2

12.3 Time Series Statistics 12-2

12.3.1 Conditional Log-Likelihood 12-2

12.3.2 Mean Square Error (MSE) and Other Error Measures 12-3

12.3.3 Irregular Time Series 12-4

12.3.4 Build Apply 12-4

12.4 Time Series Algorithm 12-4

Part III Algorithms

13

Apriori

13.1 About Apriori 13-1

13.2 Association Rules and Frequent Itemsets 13-2

13.2.1 Antecedent and Consequent 13-2

13.2.2 Confidence 13-2

13.3 Data Preparation for Apriori 13-2

13.3.1 Native Transactional Data and Star Schemas 13-2

13.3.2 Items and Collections 13-3

13.3.3 Sparse Data 13-3

13.3.4 Improved Sampling 13-3

13.3.4.1 Sampling Implementation 13-4

vi

13.4 Calculating Association Rules 13-4

13.4.1 Itemsets 13-5

13.4.2 Frequent Itemsets 13-5

13.4.3 Example: Calculating Rules from Frequent Itemsets 13-6

13.4.4 Aggregates 13-8

13.4.5 Example: Calculating Aggregates 13-8

13.4.6 Including and Excluding Rules 13-9

13.4.7 Performance Impact for Aggregates 13-9

13.5 Evaluating Association Rules 13-9

13.5.1 Support 13-9

13.5.2 Minimum Support Count 13-10

13.5.3 Confidence 13-10

13.5.4 Reverse Confidence 13-10

13.5.5 Lift 13-11

14

CUR Matrix Decomposition

14.1 About CUR Matrix Decomposition 14-1

14.2 Singular Vectors 14-1

14.3 Statistical Leverage Score 14-2

14.4 Column (Attribute) Selection and Row Selection 14-3

14.5 CUR Matrix Decomposition Algorithm Configuration 14-3

15

Decision Tree

15.1 About Decision Tree 15-1

15.1.1 Decision Tree Rules 15-1

15.1.1.1 Confidence and Support 15-3

15.1.2 Advantages of Decision Trees 15-3

15.1.3 XML for Decision Tree Models 15-3

15.2 Growing a Decision Tree 15-3

15.2.1 Splitting 15-4

15.2.2 Cost Matrix 15-5

15.2.3 Preventing Over-Fitting 15-5

15.3 Tuning the Decision Tree Algorithm 15-5

15.4 Data Preparation for Decision Tree 15-6

16

Expectation Maximization

16.1 About Expectation Maximization 16-1

16.1.1 Expectation Step and Maximization Step 16-1

16.1.2 Probability Density Estimation 16-1

vii

16.2 Algorithm Enhancements 16-2

16.2.1 Scalability 16-3

16.2.2 High Dimensionality 16-3

16.2.3 Number of Components 16-3

16.2.4 Parameter Initialization 16-3

16.2.5 From Components to Clusters 16-4

16.3 Configuring the Algorithm 16-4

16.4 Data Preparation for Expectation Maximization 16-5

17

Explicit Semantic Analysis

17.1 About Explicit Semantic Analysis 17-1

17.1.1 Scoring with ESA 17-2

17.1.2 Scoring Large ESA Models 17-2

17.2 ESA for Text Analysis 17-3

17.3 Data Preparation for ESA 17-3

17.4 Terminologies in Explicit Semantic Analysis 17-3

18

Exponential Smoothing

18.1 About Exponential Smoothing 18-1

18.1.1 Exponential Smoothing Models 18-2

18.1.2 Simple Exponential Smoothing 18-2

18.1.3 Models with Trend but No Seasonality 18-2

18.1.4 Models with Seasonality but No Trend 18-3

18.1.5 Models with Trend and Seasonality 18-3

18.1.6 Prediction Intervals 18-3

18.2 Data Preparation for Exponential Smoothing Models 18-3

18.2.1 Input Data 18-4

18.2.2 Accumulation 18-4

18.2.3 Missing Value 18-5

18.2.4 Prediction 18-5

18.2.5 Parallellism by Partition 18-6

19

Generalized Linear Model

19.1 About Generalized Linear Model 19-1

19.2 GLM in Oracle Machine Learning for SQL 19-2

19.2.1 Interpretability and Transparency 19-2

19.2.2 Wide Data 19-3

19.2.3 Confidence Bounds 19-3

19.2.4 Ridge Regression 19-3

viii

19.2.4.1 Configuring Ridge Regression 19-4

19.2.4.2 Ridge and Confidence Bounds 19-4

19.2.4.3 Ridge and Data Preparation 19-4

19.3 Scalable Feature Selection 19-5

19.3.1 Feature Selection 19-5

19.3.1.1 Configuring Feature Selection 19-5

19.3.1.2 Feature Selection and Ridge Regression 19-5

19.3.2 Feature Generation 19-5

19.3.2.1 Configuring Feature Generation 19-5

19.4 Tuning and Diagnostics for GLM 19-6

19.4.1 Build Settings 19-6

19.4.2 Diagnostics 19-7

19.4.2.1 Coefficient Statistics 19-7

19.4.2.2 Global Model Statistics 19-7

19.4.2.3 Row Diagnostics 19-7

19.5 GLM Solvers 19-8

19.6 Data Preparation for GLM 19-8

19.6.1 Data Preparation for Linear Regression 19-9

19.6.2 Data Preparation for Logistic Regression 19-9

19.6.3 Missing Values 19-10

19.7 Linear Regression 19-10

19.7.1 Coefficient Statistics for Linear Regression 19-10

19.7.2 Global Model Statistics for Linear Regression 19-11

19.7.3 Row Diagnostics for Linear Regression 19-12

19.8 Logistic Regression 19-12

19.8.1 Reference Class 19-12

19.8.2 Class Weights 19-12

19.8.3 Coefficient Statistics for Logistic Regression 19-12

19.8.4 Global Model Statistics for Logistic Regression 19-13

19.8.5 Row Diagnostics for Logistic Regression 19-13

20

k-Means

20.1 About k-Means 20-1

20.1.1 Oracle Machine Learning for SQL Enhanced k-Means 20-1

20.1.2 Centroid 20-2

20.2 k-Means Algorithm Configuration 20-2

20.3 Data Preparation for k-Means 20-2

ix

21

Minimum Description Length

21.1 About MDL 21-1

21.1.1 Compression and Entropy 21-1

21.1.1.1 Values of a Random Variable: Statistical Distribution 21-2

21.1.1.2 Values of a Random Variable: Significant Predictors 21-2

21.1.1.3 Total Entropy 21-2

21.1.2 Model Size 21-2

21.1.3 Model Selection 21-2

21.1.4 The MDL Metric 21-3

21.2 Data Preparation for MDL 21-3

22

Multivariate State Estimation Technique - Sequential Probability
Ratio Test

22.1 About Multivariate State Estimation Technique - Sequential Probability Ratio
Test 22-1

22.2 Score an MSET-SPRT Model 22-3

23

Naive Bayes

23.1 About Naive Bayes 23-1

23.1.1 Advantages of Naive Bayes 23-3

23.2 Tuning a Naive Bayes Model 23-3

23.3 Data Preparation for Naive Bayes 23-4

24

Neural Network

24.1 About Neural Network 24-1

24.1.1 Neurons and Activation Functions 24-2

24.1.2 Loss or Cost function 24-2

24.1.3 Forward-Backward Propagation 24-2

24.1.4 Optimization Solvers 24-3

24.1.5 Regularization 24-3

24.1.6 Convergence Check 24-3

24.1.7 LBFGS_SCALE_HESSIAN 24-4

24.1.8 NNET_HELDASIDE_MAX_FAIL 24-4

24.2 Data Preparation for Neural Network 24-4

24.3 Neural Network Algorithm Configuration 24-5

24.4 Scoring with Neural Network 24-6

x

25

Non-Negative Matrix Factorization

25.1 About NMF 25-1

25.1.1 Matrix Factorization 25-1

25.1.2 Scoring with NMF 25-2

25.1.3 Text Analysis with NMF 25-2

25.2 Tuning the NMF Algorithm 25-2

25.3 Data Preparation for NMF 25-3

26

O-Cluster

26.1 About O-Cluster 26-1

26.1.1 Partitioning Strategy 26-2

26.1.1.1 Partitioning Numerical Attributes 26-2

26.1.1.2 Partitioning Categorical Attributes 26-2

26.1.2 Active Sampling 26-2

26.1.3 Process Flow 26-3

26.1.4 Scoring 26-3

26.2 Tuning the O-Cluster Algorithm 26-3

26.3 Data Preparation for O-Cluster 26-4

26.3.1 User-Specified Data Preparation for O-Cluster 26-4

27

R Extensibility

27.1 Oracle Machine Learning for SQL with R Extensibility 27-1

27.2 Scoring with R 27-2

27.3 About Algorithm Metadata Registration 27-2

27.3.1 Algorithm Metadata Registration 27-3

28

Random Forest

28.1 About Random Forest 28-1

28.2 Building a Random Forest 28-2

28.3 Scoring with Random Forest 28-2

29

Singular Value Decomposition

29.1 About Singular Value Decomposition 29-1

29.1.1 Matrix Manipulation 29-1

29.1.2 Low Rank Decomposition 29-2

29.1.3 Scalability 29-3

29.2 Configuring the Algorithm 29-3

xi

29.2.1 Model Size 29-3

29.2.2 Performance 29-3

29.2.3 PCA scoring 29-4

29.3 Data Preparation for SVD 29-4

30

Support Vector Machine

30.1 About Support Vector Machine 30-2

30.1.1 Advantages of SVM 30-2

30.1.2 Advantages of SVM in Oracle Machine Learning for SQL 30-2

30.1.2.1 Usability 30-2

30.1.2.2 Scalability 30-3

30.1.3 Kernel-Based Learning 30-3

30.2 Tuning an SVM Model 30-4

30.3 Data Preparation for SVM 30-4

30.3.1 Normalization 30-4

30.3.2 SVM and Automatic Data Preparation 30-5

30.4 SVM Classification 30-5

30.4.1 Class Weights 30-5

30.5 One-Class SVM 30-6

30.6 SVM Regression 30-6

31

XGBoost

31.1 About XGBoost 31-1

31.2 Ranking Methods 31-2

31.3 Scoring with XGBoost 31-3

Part IV Using the Oracle Machine Learning for SQL API

32

Oracle Machine Learning With SQL

32.1 Highlights of the Oracle Machine Learning for SQL API 32-1

32.2 Example: Targeting Likely Candidates for a Sales Promotion 32-2

32.3 Example: Analyzing Preferred Customers 32-3

32.4 Example: Segmenting Customer Data 32-5

32.5 Example : Building an ESA Model with a Wiki Data Set 32-6

xii

33

About the Oracle Machine Learning for SQL API

33.1 About Oracle Machine Learning Models 33-1

33.2 Oracle Machine Learning Data Dictionary Views 33-2

33.2.1 ALL_MINING_MODELS 33-2

33.2.2 ALL_MINING_MODEL_ATTRIBUTES 33-3

33.2.3 ALL_MINING_MODEL_PARTITIONS 33-4

33.2.4 ALL_MINING_MODEL_SETTINGS 33-5

33.2.5 ALL_MINING_MODEL_VIEWS 33-6

33.2.6 ALL_MINING_MODEL_XFORMS 33-7

33.3 Oracle Machine Learning PL/SQL Packages 33-8

33.3.1 DBMS_DATA_MINING 33-8

33.3.2 DBMS_DATA_MINING_TRANSFORM 33-9

33.3.2.1 Transformation Methods in
DBMS_DATA_MINING_TRANSFORM 33-9

33.3.3 DBMS_PREDICTIVE_ANALYTICS 33-10

33.4 Oracle Machine Learning for SQL Scoring Functions 33-10

33.5 Oracle Machine Learning for SQL Statistical Functions 33-12

34

Prepare the Data

34.1 Data Requirements 34-1

34.1.1 Column Data Types 34-2

34.1.2 Data Sets for Classification and Regression 34-2

34.1.3 Scoring Requirements 34-2

34.2 About Attributes 34-3

34.2.1 Data Attributes and Model Attributes 34-3

34.2.2 Target Attribute 34-4

34.2.3 Numericals, Categoricals, and Unstructured Text 34-5

34.2.4 Model Signature 34-5

34.2.5 Scoping of Model Attribute Name 34-6

34.2.6 Model Details 34-6

34.3 Use Nested Data 34-7

34.3.1 Nested Object Types 34-7

34.3.2 Example: Transforming Transactional Data for Machine Learning 34-9

34.4 Use Market Basket Data 34-10

34.4.1 Example: Creating a Nested Column for Market Basket Analysis 34-11

34.5 Use Retail Data for Analysis 34-12

34.5.1 Example: Calculating Aggregates 34-12

34.6 Handle Missing Values 34-13

34.6.1 Examples: Missing Values or Sparse Data? 34-13

34.6.1.1 Sparsity in a Sales Table 34-13

xiii

34.6.1.2 Missing Values in a Table of Customer Data 34-14

34.6.2 Missing Value Treatment in Oracle Machine Learning for SQL 34-14

34.6.3 Changing the Missing Value Treatment 34-15

35

Transform the Data

35.1 About Transformations 35-1

35.2 Prepare the Case Table 35-2

35.2.1 Create Nested Columns 35-2

35.2.2 Convert Column Data Types 35-2

35.2.3 Text Transformation 35-2

35.2.4 About Business and Domain-Sensitive Transformations 35-3

35.3 Automatic Data Preparation 35-3

35.3.1 Binning 35-3

35.3.2 Normalization 35-4

35.3.3 How ADP Transforms the Data 35-4

35.4 Embed Transformations in a Model 35-5

35.4.1 Specify Transformation Instructions for an Attribute 35-5

35.4.1.1 Expression Records 35-6

35.4.1.2 Attribute Specifications 35-7

35.4.2 Build a Transformation List 35-7

35.4.2.1 SET_TRANSFORM 35-8

35.4.2.2 The STACK Interface 35-8

35.4.2.3 GET_MODEL_TRANSFORMATIONS and
GET_TRANSFORM_LIST 35-8

35.4.3 Transformation Lists and Automatic Data Preparation 35-9

35.4.4 Oracle Machine Learning for SQL Transformation Routines 35-9

35.4.4.1 Binning Routines 35-10

35.4.4.2 Normalization Routines 35-10

35.4.4.3 Outlier Treatment 35-11

35.4.4.4 Routines for Outlier Treatment 35-11

35.5 Understand Reverse Transformations 35-12

36

Create a Model

36.1 Before Creating a Model 36-1

36.2 The CREATE_MODEL Procedure 36-2

36.2.1 Choose the Machine Learning Function 36-2

36.2.2 Choose the Algorithm 36-4

36.2.3 Supply Transformations 36-5

36.2.3.1 Creating a Transformation List 36-5

36.2.3.2 Transformation List and Automatic Data Preparation 36-5

xiv

36.2.4 About Partitioned Models 36-6

36.2.4.1 Partitioned Model Build Process 36-6

36.2.4.2 DDL in Partitioned model 36-7

36.2.4.3 Partitioned Model Scoring 36-8

36.3 The CREATE_MODEL2 Procedure 36-8

36.4 Specify Model Settings 36-9

36.4.1 Specify Costs 36-12

36.4.2 Specify Prior Probabilities 36-12

36.4.3 Specify Class Weights 36-13

36.4.4 Model Settings in the Data Dictionary 36-13

36.4.5 Specify Oracle Machine Learning Model Settings for an R Model 36-14

36.4.5.1 ALGO_EXTENSIBLE_LANG 36-15

36.4.5.2 RALG_BUILD_FUNCTION 36-15

36.4.5.3 RALG_DETAILS_FUNCTION 36-17

36.4.5.4 RALG_SCORE_FUNCTION 36-19

36.4.5.5 RALG_WEIGHT_FUNCTION 36-21

36.4.5.6 Registered R Scripts 36-22

36.4.5.7 R Model Demonstration Scripts 36-23

36.5 Model Detail Views 36-23

36.5.1 Model Detail Views for Association Rules 36-24

36.5.2 Model Detail View for Frequent Itemsets 36-29

36.5.3 Model Detail Views for Transactional Itemsets 36-30

36.5.4 Model Detail View for Transactional Rule 36-30

36.5.5 Model Detail Views for Classification Algorithms 36-31

36.5.6 Model Detail Views for Decision Tree 36-32

36.5.7 Model Detail Views for Generalized Linear Model 36-35

36.5.8 Model Detail View for Multivariate State Estimation Technique -
Sequential Probability Ratio Test 36-42

36.5.9 Model Detail Views for Naive Bayes 36-43

36.5.10 Model Detail Views for Neural Network 36-44

36.5.11 Model Detail Views for Random Forest 36-45

36.5.12 Model Detail View for Support Vector Machine 36-46

36.5.13 Model Detail Views for XGBoost 36-47

36.5.14 Model Detail Views for Clustering Algorithms 36-49

36.5.15 Model Detail Views for Expectation Maximization 36-52

36.5.16 Model Detail Views for k-Means 36-55

36.5.17 Model Detail Views for O-Cluster 36-56

36.5.18 Model Detail Views for CUR Matrix Decomposition 36-58

36.5.19 Model Detail Views for Explicit Semantic Analysis 36-59

36.5.20 Model Detail Views for Exponential Smoothing 36-61

36.5.21 Model Detail Views for Non-Negative Matrix Factorization 36-62

xv

36.5.22 Model Detail Views for Singular Value Decomposition 36-64

36.5.23 Model Detail Views for Minimum Description Length 36-67

36.5.24 Model Detail Views for Binning 36-68

36.5.25 Model Detail Views for Global Information 36-68

36.5.26 Model Detail Views for Normalization and Missing Value Handling 36-69

37

Scoring and Deployment

37.1 About Scoring and Deployment 37-1

37.2 Use the Oracle Machine Learning for SQL Functions 37-2

37.2.1 Choose the Predictors 37-3

37.2.2 Single-Record Scoring 37-4

37.3 Prediction Details 37-4

37.3.1 Cluster Details 37-5

37.3.2 Feature Details 37-5

37.3.3 Prediction Details 37-6

37.3.4 GROUPING Hint 37-8

37.4 Real-Time Scoring 37-8

37.5 Dynamic Scoring 37-9

37.6 Cost-Sensitive Decision Making 37-11

37.7 DBMS_DATA_MINING.APPLY 37-12

38

Machine Learning Operations on Unstructured Text

38.1 About Unstructured Text 38-1

38.2 About Machine Learning and Oracle Text 38-1

38.3 Data Preparation for Text Features 38-2

38.4 Create a Model that Includes Machine Learning Operations on Text 38-2

38.5 Create a Text Policy 38-4

38.6 Configure a Text Attribute 38-5

39

Administrative Tasks for Oracle Machine Learning for SQL

39.1 Install and Configure a Database for Oracle Machine Learning for SQL 39-1

39.1.1 About Installation 39-1

39.1.2 Enable or Disable a Database Option 39-2

39.1.3 Database Tuning Considerations for Oracle Machine Learning for SQL 39-2

39.2 Upgrade or Downgrade Oracle Machine Learning for SQL 39-3

39.2.1 Pre-Upgrade Steps 39-3

39.2.2 Upgrade Oracle Machine Learning for SQL 39-3

39.2.2.1 Use Database Upgrade Assistant to Upgrade Oracle Machine
Learning for SQL 39-3

xvi

39.2.2.2 Use Export/Import to Upgrade Machine Learning Models 39-4

39.2.3 Post Upgrade Steps 39-4

39.2.4 Downgrade Oracle Machine Learning for SQL 39-5

39.3 Export and Import Oracle Machine Learning for SQL Models 39-5

39.3.1 About Oracle Data Pump 39-6

39.3.2 Options for Exporting and Importing Oracle Machine Learning for SQL
Models 39-6

39.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL 39-7

39.3.4 Use EXPORT_MODEL and IMPORT_MODEL 39-8

39.3.5 EXPORT and IMPORT Serialized Models 39-10

39.3.6 Import From PMML 39-10

39.4 Control Access to Oracle Machine Learning for SQL Models and Data 39-10

39.4.1 Create an Oracle Machine Learning for SQL User 39-11

39.4.1.1 Grant Privileges for Oracle Machine Learning for SQL 39-12

39.4.2 System Privileges for Oracle Machine Learning for SQL 39-13

39.4.3 Object Privileges for Oracle Machine Learning for SQL Models 39-14

39.5 Audit and Add Comments to Oracle Machine Learning for SQL Models 39-14

39.5.1 Add a Comment to an Oracle Machine Learning for SQL Model 39-15

39.5.2 Audit Oracle Machine Learning for SQL Models 39-15

40

Oracle Machine Learning for SQL Examples

40.1 About the OML4SQL Examples 40-1

40.2 Install the OML4SQL Examples 40-3

40.3 OML4SQL Sample Data 40-4

Part V Oracle Machine Learning for SQL API Reference

41

PL/SQL Packages

41.1 DBMS_DATA_MINING 41-1

41.1.1 Using DBMS_DATA_MINING 41-1

41.1.1.1 DBMS_DATA_MINING Overview 41-2

41.1.1.2 DBMS_DATA_MINING Security Model 41-3

41.1.1.3 DBMS_DATA_MINING — Machine Learning Functions 41-4

41.1.2 DBMS_DATA_MINING — Model Settings 41-5

41.1.2.1 DBMS_DATA_MINING — Algorithm Names 41-6

41.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation 41-7

41.1.2.3 DBMS_DATA_MINING — Machine Learning Function Settings 41-8

41.1.2.4 DBMS_DATA_MINING — Global Settings 41-13

xvii

41.1.2.5 DBMS_DATA_MINING — Algorithm Settings:
ALGO_EXTENSIBLE_LANG 41-16

41.1.2.6 DBMS_DATA_MINING — Algorithm Settings: CUR Matrix
Decomposition 41-18

41.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Decision Tree 41-18

41.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Expectation
Maximization 41-19

41.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic
Analysis 41-23

41.1.2.10 DBMS_DATA_MINING — Algorithm Settings: Exponential
Smoothing 41-23

41.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Generalized
Linear Model 41-27

41.1.2.12 DBMS_DATA_MINING — Algorithm Settings: k-Means 41-29

41.1.2.13 DBMS_DATA_MINING - Algorithm Settings: Multivariate State
Estimation Technique - Sequential Probability Ratio Test 41-31

41.1.2.14 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes 41-32

41.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Neural Network 41-32

41.1.2.16 DBMS_DATA_MINING — Algorithm Settings: Non-Negative
Matrix Factorization 41-35

41.1.2.17 DBMS_DATA_MINING — Algorithm Settings: O-Cluster 41-36

41.1.2.18 DBMS_DATA_MINING — Algorithm Settings: Random Forest 41-37

41.1.2.19 DBMS_DATA_MINING — Algorithm Constants and Settings:
Singular Value Decomposition 41-37

41.1.2.20 DBMS_DATA_MINING — Algorithm Settings: Support Vector
Machine 41-39

41.1.2.21 DBMS_DATA_MINING — Algorithm Settings: XGBoost 41-40

41.1.3 DBMS_DATA_MINING — Solver Settings 41-50

41.1.3.1 DBMS_DATA_MINING - Solver Settings: Adam 41-50

41.1.3.2 DBMS_DATA_MINING — Solver Settings: ADMM 41-51

41.1.3.3 DBMS_DATA_MINING — Solver Settings: LBFGS 41-52

41.1.4 DBMS_DATA_MINING Datatypes 41-52

41.1.4.1 Deprecated Types 41-53

41.1.5 Summary of DBMS_DATA_MINING Subprograms 41-58

41.1.5.1 ADD_COST_MATRIX Procedure 41-60

41.1.5.2 ADD_PARTITION Procedure 41-63

41.1.5.3 ALTER_REVERSE_EXPRESSION Procedure 41-64

41.1.5.4 APPLY Procedure 41-67

41.1.5.5 COMPUTE_CONFUSION_MATRIX Procedure 41-71

41.1.5.6 COMPUTE_CONFUSION_MATRIX_PART Procedure 41-77

41.1.5.7 COMPUTE_LIFT Procedure 41-84

41.1.5.8 COMPUTE_LIFT_PART Procedure 41-89

41.1.5.9 COMPUTE_ROC Procedure 41-94

41.1.5.10 COMPUTE_ROC_PART Procedure 41-98

xviii

41.1.5.11 CREATE_MODEL Procedure 41-103

41.1.5.12 CREATE_MODEL2 Procedure 41-107

41.1.5.13 Create Model Using Registration Information 41-109

41.1.5.14 DROP_ALGORITHM Procedure 41-109

41.1.5.15 DROP_PARTITION Procedure 41-110

41.1.5.16 DROP_MODEL Procedure 41-110

41.1.5.17 EXPORT_MODEL Procedure 41-111

41.1.5.18 EXPORT_SERMODEL Procedure 41-114

41.1.5.19 FETCH_JSON_SCHEMA Procedure 41-115

41.1.5.20 GET_ASSOCIATION_RULES Function 41-116

41.1.5.21 GET_FREQUENT_ITEMSETS Function 41-121

41.1.5.22 GET_MODEL_COST_MATRIX Function 41-123

41.1.5.23 GET_MODEL_DETAILS_AI Function 41-125

41.1.5.24 GET_MODEL_DETAILS_EM Function 41-126

41.1.5.25 GET_MODEL_DETAILS_EM_COMP Function 41-127

41.1.5.26 GET_MODEL_DETAILS_EM_PROJ Function 41-130

41.1.5.27 GET_MODEL_DETAILS_GLM Function 41-131

41.1.5.28 GET_MODEL_DETAILS_GLOBAL Function 41-134

41.1.5.29 GET_MODEL_DETAILS_KM Function 41-136

41.1.5.30 GET_MODEL_DETAILS_NB Function 41-138

41.1.5.31 GET_MODEL_DETAILS_NMF Function 41-140

41.1.5.32 GET_MODEL_DETAILS_OC Function 41-141

41.1.5.33 GET_MODEL_SETTINGS Function 41-143

41.1.5.34 GET_MODEL_SIGNATURE Function 41-144

41.1.5.35 GET_MODEL_DETAILS_SVD Function 41-146

41.1.5.36 GET_MODEL_DETAILS_SVM Function 41-148

41.1.5.37 GET_MODEL_DETAILS_XML Function 41-151

41.1.5.38 GET_MODEL_TRANSFORMATIONS Function 41-153

41.1.5.39 GET_TRANSFORM_LIST Procedure 41-156

41.1.5.40 IMPORT_MODEL Procedure 41-159

41.1.5.41 IMPORT_SERMODEL Procedure 41-163

41.1.5.42 JSON Schema for R Extensible Algorithm 41-164

41.1.5.43 REGISTER_ALGORITHM Procedure 41-169

41.1.5.44 RANK_APPLY Procedure 41-170

41.1.5.45 REMOVE_COST_MATRIX Procedure 41-172

41.1.5.46 RENAME_MODEL Procedure 41-173

41.2 DBMS_DATA_MINING_TRANSFORM 41-175

41.2.1 Using DBMS_DATA_MINING_TRANSFORM 41-175

41.2.1.1 DBMS_DATA_MINING_TRANSFORM Overview 41-175

41.2.1.2 DBMS_DATA_MINING_TRANSFORM Security Model 41-178

41.2.1.3 DBMS_DATA_MINING_TRANSFORM Datatypes 41-179

xix

41.2.1.4 DBMS_DATA_MINING_TRANSFORM Constants 41-180

41.2.2 DBMS_DATA_MINING_TRANSFORM Operational Notes 41-181

41.2.2.1 DBMS_DATA_MINING_TRANSFORM — About Transformation
Lists 41-183

41.2.2.2 DBMS_DATA_MINING_TRANSFORM — About Stacking and
Stack Procedures 41-185

41.2.2.3 DBMS_DATA_MINING_TRANSFORM — Nested Data
Transformations 41-187

41.2.3 Summary of DBMS_DATA_MINING_TRANSFORM Subprograms 41-190

41.2.3.1 CREATE_BIN_CAT Procedure 41-192

41.2.3.2 CREATE_BIN_NUM Procedure 41-194

41.2.3.3 CREATE_CLIP Procedure 41-195

41.2.3.4 CREATE_COL_REM Procedure 41-197

41.2.3.5 CREATE_MISS_CAT Procedure 41-198

41.2.3.6 CREATE_MISS_NUM Procedure 41-200

41.2.3.7 CREATE_NORM_LIN Procedure 41-201

41.2.3.8 DESCRIBE_STACK Procedure 41-203

41.2.3.9 GET_EXPRESSION Function 41-204

41.2.3.10 INSERT_AUTOBIN_NUM_EQWIDTH Procedure 41-205

41.2.3.11 INSERT_BIN_CAT_FREQ Procedure 41-209

41.2.3.12 INSERT_BIN_NUM_EQWIDTH Procedure 41-213

41.2.3.13 INSERT_BIN_NUM_QTILE Procedure 41-217

41.2.3.14 INSERT_BIN_SUPER Procedure 41-219

41.2.3.15 INSERT_CLIP_TRIM_TAIL Procedure 41-223

41.2.3.16 INSERT_CLIP_WINSOR_TAIL Procedure 41-226

41.2.3.17 INSERT_MISS_CAT_MODE Procedure 41-229

41.2.3.18 INSERT_MISS_NUM_MEAN Procedure 41-231

41.2.3.19 INSERT_NORM_LIN_MINMAX Procedure 41-233

41.2.3.20 INSERT_NORM_LIN_SCALE Procedure 41-235

41.2.3.21 INSERT_NORM_LIN_ZSCORE Procedure 41-237

41.2.3.22 SET_EXPRESSION Procedure 41-240

41.2.3.23 SET_TRANSFORM Procedure 41-242

41.2.3.24 STACK_BIN_CAT Procedure 41-243

41.2.3.25 STACK_BIN_NUM Procedure 41-245

41.2.3.26 STACK_CLIP Procedure 41-247

41.2.3.27 STACK_COL_REM Procedure 41-249

41.2.3.28 STACK_MISS_CAT Procedure 41-251

41.2.3.29 STACK_MISS_NUM Procedure 41-253

41.2.3.30 STACK_NORM_LIN Procedure 41-255

41.2.3.31 XFORM_BIN_CAT Procedure 41-257

41.2.3.32 XFORM_BIN_NUM Procedure 41-259

41.2.3.33 XFORM_CLIP Procedure 41-262

xx

41.2.3.34 XFORM_COL_REM Procedure 41-263

41.2.3.35 XFORM_EXPR_NUM Procedure 41-265

41.2.3.36 XFORM_EXPR_STR Procedure 41-267

41.2.3.37 XFORM_MISS_CAT Procedure 41-269

41.2.3.38 XFORM_MISS_NUM Procedure 41-272

41.2.3.39 XFORM_NORM_LIN Procedure 41-273

41.2.3.40 XFORM_STACK Procedure 41-276

41.3 DBMS_PREDICTIVE_ANALYTICS 41-278

41.3.1 Using DBMS_PREDICTIVE_ANALYTICS 41-278

41.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview 41-279

41.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model 41-279

41.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms 41-279

41.3.2.1 EXPLAIN Procedure 41-280

41.3.2.2 PREDICT Procedure 41-282

41.3.2.3 PROFILE Procedure 41-284

42

Data Dictionary Views

42.1 ALL_MINING_MODELS 42-1

42.2 ALL_MINING_MODEL_ATTRIBUTES 42-3

42.3 ALL_MINING_MODEL_PARTITIONS 42-5

42.4 ALL_MINING_MODEL_SETTINGS 42-5

42.5 ALL_MINING_MODEL_VIEWS 42-6

42.6 ALL_MINING_MODEL_XFORMS 42-7

43

SQL Scoring Functions

43.1 CLUSTER_DETAILS 43-2

43.2 CLUSTER_DISTANCE 43-5

43.3 CLUSTER_ID 43-8

43.4 CLUSTER_PROBABILITY 43-11

43.5 CLUSTER_SET 43-13

43.6 FEATURE_COMPARE 43-16

43.7 FEATURE_DETAILS 43-18

43.8 FEATURE_ID 43-21

43.9 FEATURE_SET 43-23

43.10 FEATURE_VALUE 43-26

43.11 ORA_DM_PARTITION_NAME 43-28

43.12 PREDICTION 43-30

43.13 PREDICTION_BOUNDS 43-35

43.14 PREDICTION_COST 43-36

xxi

43.15 PREDICTION_DETAILS 43-41

43.16 PREDICTION_PROBABILITY 43-46

43.17 PREDICTION_SET 43-50

xxii

Preface

This preface contains the following topics:

• Technology Rebrand

• Audience

• Documentation Accessibility

• Conventions

Technology Rebrand
Oracle is rebranding the suite of products and components that support machine
learning with Oracle Database and Big Data. This technology is now known as Oracle
Machine Learning (OML).

The OML application programming interfaces (APIs) for SQL include PL/SQL
packages, SQL functions, and data dictionary views. Using these APIs is described
in publications, previously under the name Oracle Data Mining, that are now named
Oracle Machine Learning for SQL (OML4SQL).

Audience
This guide is intended for application developers and database administrators who are
familiar with SQL programming and Oracle Database administration and who have a
basic understanding of machine learning concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxiv

Part I
Introductions

Part I presents an introduction to Oracle Machine Learning for SQL. The first
chapter is a general, high-level overview for those who are new to machine learning
technology.

Part I contains the following chapters:

• Introduction to Oracle Machine Learning for SQL

• Oracle Machine Learning Basics

1
Introduction to Oracle Machine Learning for
SQL

Introduces Oracle Machine Learning for SQL to perform a variety of machine learning
tasks.

• About Oracle Machine Learning for SQL

• Oracle Machine Learning for SQL in the Database Kernel

• Oracle Machine Learning for SQL with R Extensibility

• Oracle Machine Learning for SQL in Oracle Exadata

• About Partitioned Models

• Interfaces to Oracle Machine Learning for SQL

• Overview of Database Analytics

1.1 About Oracle Machine Learning for SQL
Understand the uses of Oracle Machine Learning for SQL and learn about different
machine learning techniques.

OML4SQL provides a powerful, state-of-the-art machine learning capability within
Oracle Database. You can use OML4SQL to build and deploy predictive and
descriptive machine learning applications, to add intelligent capabilities to existing
applications, and to generate predictive queries for data exploration.

OML4SQL offers a comprehensive set of in-database algorithms for performing
a variety of machine learning tasks, such as classification, regression, anomaly
detection, feature extraction, clustering, and market basket analysis. The algorithms
can work on standard case data, transactional data, star schemas, and text and other
forms of unstructured data. OML4SQL is uniquely suited to the analysis of very large
data sets.

Oracle Machine Learning for SQL is a component of the Oracle Database Enterprise
Edition. Another component is Oracle Machine Learning for R, which integrates R, the
open-source statistical environment, with Oracle Database. Together, OML4SQL and
Oracle Machine Learning for R provide a comprehensive advanced analytics platform
for big data analytics.

1.2 Oracle Machine Learning for SQL in the Database
Kernel

Learn about the implementation of Oracle Machine Learning for SQL (OML4SQL) in
Oracle Database kernel and its advantages.

1-1

OML4SQL is implemented in the Oracle Database kernel. OML4SQL models are
first class database objects. Oracle Machine Learning for SQL processes use built-in
features of Oracle Database to maximize scalability and make efficient use of system
resources.

OML4SQL within Oracle Database offers many advantages:

• No Data Movement: Some OML4SQL products require that the data be exported
from a corporate database and converted to a specialized format. With OML4SQL,
no data movement or conversion is needed. This makes the entire process less
complex, time-consuming, and error-prone, and it allows for the analysis of very
large data sets.

• Security: Your data is protected by the extensive security mechanisms of
Oracle Database. Moreover, specific database privileges are needed for different
OML4SQL activities. Only users with the appropriate privileges can define,
manipulate, or apply OML4SQL model objects.

• Data Preparation and Administration: Most data must be cleansed, filtered,
normalized, sampled, and transformed in various ways before it can be mined.
Up to 80% of the effort in a OML4SQL project is often devoted to data preparation.
OML4SQL can automatically manage key steps in the data preparation process.
Additionally, Oracle Database provides extensive administrative tools for preparing
and managing data.

• Ease of Data Refresh: Machine learning processes within Oracle Database have
ready access to refreshed data. OML4SQL can easily deliver machine learning
results based on current data, thereby maximizing its timeliness and relevance.

• Oracle Database Analytics: Oracle Database offers many features for advanced
analytics and business intelligence. You can easily integrate OML4SQL with other
analytical features of the database, such as statistical analysis and OLAP.

• Oracle Technology Stack: You can take advantage of all aspects of Oracle's
technology stack to integrate OML4SQL within a larger framework for business
intelligence or scientific inquiry.

• Domain Environment: OML4SQL models have to be built, tested, validated,
managed, and deployed in their appropriate application domain environments.
OML4SQL results may need to be post-processed as part of domain specific
computations (for example, calculating estimated risks and response probabilities)
and then stored into permanent repositories or data warehouses. With OML4SQL,
the pre- and post-machine learning activities can all be accomplished within the
same environment.

• Application Programming Interfaces: The PL/SQL API and SQL language
operators provide direct access to OML4SQL functionality in Oracle Database.

Related Topics

• Overview of Database Analytics
An overview of native analytics supported by Oracle Database.

1.3 Oracle Machine Learning for SQL in Oracle Exadata
Understand how complex scoring and algorithmic processing is done using Oracle
Exadata.

Chapter 1
Oracle Machine Learning for SQL in Oracle Exadata

1-2

Scoring refers to the process of applying a OML4SQL model to data to generate
predictions. The scoring process may require significant system resources. Vast
amounts of data may be involved, and algorithmic processing may be very complex.

With OML4SQL, scoring can be off-loaded to intelligent Oracle Exadata Storage
Servers where processing is extremely performant.

Oracle Exadata Storage Servers combine Oracle's smart storage software and
Oracle's industry-standard Sun hardware to deliver the industry's highest database
storage performance. For more information about Oracle Exadata, visit the Oracle
Technology Network.

Related Topics

• http://www.oracle.com/us/products/database/exadata/index.htm

1.4 About Partitioned Models
Introduces partitioned models to organize and represent multiple models.

Oracle Machine Learning for SQL supports building a persistent OML4SQL partitioned
model. A partitioned model organizes and represents multiple models as partitions
in a single model entity, enabling you to easily build and manage models tailored
to independent slices of data. Persistent means that the partitioned model has an
on-disk representation. OML4SQL manages the organization of the partitioned model
and simplifies the process of scoring the partitioned model. You must include the
partition columns as part of the USING clause when scoring. The GROUPING hint is
an optional hint that applies to machine learning scoring functions when scoring
partitioned models.

The partition names, key values, and the structure of the partitioned model are
available in the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

• Oracle Database Reference

• OML4SQL Examples

See Also:

Oracle Database SQL Language Reference on how to use GROUPING hint.

1.5 Interfaces to Oracle Machine Learning for SQL
Introduces supported interfaces for Oracle Machine Learning for SQL.

The programmatic interfaces to Oracle Machine Learning for SQL are PL/SQL for
building and maintaining models and a family of SQL functions for scoring. OML4SQL
also supports a graphical user interface, which is implemented as an extension to
Oracle SQL Developer.

Chapter 1
About Partitioned Models

1-3

unilink:prod_db_exadata
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

Oracle Predictive Analytics, a set of simplified OML4SQL routines, is built on top of
OML4SQL and is implemented as a PL/SQL package.

1.5.1 PL/SQL API
Includes PL/SQL package for Oracle Machine Learning for SQL.

The OML4SQL PL/SQL API is implemented in the DBMS_DATA_MINING PL/SQL
package, which contains routines for building, testing, and maintaining machine
learning models. A batch apply operation is also included in this package.

The following example shows part of a simple PL/SQL script for creating an SVM
classification model called SVMC_SH_Clas_sample. The model build uses weights,
specified in a weights table, and settings, specified in a settings table. The weights
influence the weighting of target classes. The settings override default behavior. The
model uses Automatic Data Preparation (prep_auto_on setting). The model is trained
on the data in mining_data_build_v.

Example 1-1 Creating a Classification Model

----------------------- CREATE AND POPULATE A CLASS WEIGHTS TABLE ------------
CREATE TABLE svmc_sh_sample_class_wt (
 target_value NUMBER,
 class_weight NUMBER);
INSERT INTO svmc_sh_sample_class_wt VALUES (0,0.35);
INSERT INTO svmc_sh_sample_class_wt VALUES (1,0.65);
COMMIT;
----------------------- CREATE AND POPULATE A SETTINGS TABLE ------------------
CREATE TABLE svmc_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));
BEGIN
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.clas_weights_table_name, 'svmc_sh_sample_class_wt');
INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_on);
END;
/
------------------------ CREATE THE MODEL -------------------------------------
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'SVMC_SH_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svmc_sh_sample_settings');
END;
/

1.5.2 SQL Functions
The Oracle Machine Learning for SQL supports SQL functions for performing
prediction, clustering, and feature extraction.

Chapter 1
Interfaces to Oracle Machine Learning for SQL

1-4

The functions score data by applying a OML4SQL model object or by executing an
analytic clause that performs dynamic scoring.

The following example shows a query that applies the classification model
svmc_sh_clas_sample to the data in the view mining_data_apply_v. The query returns
the average age of customers who are likely to use an affinity card. The results are
broken out by gender.

Example 1-2 The PREDICTION Function

SELECT cust_gender,
 COUNT(*) AS cnt,
 ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(svmc_sh_clas_sample USING *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 59 41
M 409 45

Related Topics

• In-Database Scoring
Scoring is the application of a machine learning algorithm to new data. In Oracle
Machine Learning for SQL scoring engine and the data both reside within the
database.

1.5.3 Oracle Data Miner
Oracle Machine Learning for SQL supports a graphical interface called Oracle Data
Miner.

Oracle Data Miner is a graphical interface to OML4SQL. Oracle Data Miner is an
extension to Oracle SQL Developer, which is available for download free of charge on
the Oracle Technology Network.

Oracle Data Miner uses a work flow paradigm to capture, document, and automate the
process of building, evaluating, and applying OML4SQL models. Within a work flow,
you can specify data transformations, build and evaluate multiple models, and score
multiple data sets. You can then save work flows and share them with other users.

Chapter 1
Interfaces to Oracle Machine Learning for SQL

1-5

Figure 1-1 An Oracle Data Miner Workflow

NEW_CUST_INSUR_LTVExplore Data

CUST_INSUR_LTV

Customer

Segments

Cluster

Cleanse Data 5 Response

Models
Likely

Customers

For information about Oracle Data Miner, including installation instructions, visit Oracle
Technology Network.

Related Topics

• Oracle Data Miner

1.5.4 Predictive Analytics
Predictive analytics is a technology that captures Oracle Machine Learning for SQL
processes in simple routines.

Sometimes called "one-click machine learning," predictive analytics simplifies and
automates the machine learning process.

Predictive analytics uses OML4SQL technology, but knowledge of OML4SQL is not
needed to use predictive analytics. You can use predictive analytics by specifying an
operation to perform on your data. You do not need to create or use OML4SQL models
or understand the OML4SQL functions and algorithms summarized in "Oracle Machine
Learning for SQL Basics ".

Oracle Machine Learning for SQL predictive analytics operations are described in the
following table:

Chapter 1
Interfaces to Oracle Machine Learning for SQL

1-6

unilink:dataminer_wf

Table 1-1 Oracle Predictive Analytics Operations

Operation Description

EXPLAIN Explains how individual predictors (columns) affect the variation of values in a
target column

PREDICT For each case (row), predicts the values in a target column

PROFILE Creates a set of rules for cases (rows) that imply the same target value

The Oracle predictive analytics operations are implemented in the
DBMS_PREDICTIVE_ANALYTICS PL/SQL package. They are also available in Oracle Data
Miner.

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

1.6 Overview of Database Analytics
An overview of native analytics supported by Oracle Database.

Oracle Database supports an array of native analytical features. Since all these
features are part of a common server it is possible to combine them efficiently. The
results of analytical processing can be integrated with Oracle Business Intelligence
Suite Enterprise Edition and other BI tools and applications.

The possibilities for combining different analytics are virtually limitless. Example 1-3
shows Oracle Machine Learning for SQL and text processing within a single SQL
query. The query selects all customers who have a high propensity to attrite (>
80% chance), are valuable customers (customer value rating > 90), and have had
a recent conversation with customer services regarding a Checking Plus account.
The propensity to attrite information is computed using a OML4SQL model called
tree_model. The query uses the Oracle Text CONTAINS operator to search call center
notes for references to Checking Plus accounts.

Some of the native analytics supported by Oracle Database are described in the
following table:

Table 1-2 Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Complex
data
transformatio
ns

Data transformation is a key aspect of analytical applications
and ETL (extract, transform, and load). You can use SQL
expressions to implement data transformations, or you can
use the DBMS_DATA_MINING_TRANSFORM package.

DBMS_DATA_MINING_TRANSFORM is a flexible data
transformation package that includes a variety of missing
value and outlier treatments, as well as binning and
normalization capabilities.

Oracle Database PL/SQL Packages
and Types Reference

Chapter 1
Overview of Database Analytics

1-7

Table 1-2 (Cont.) Oracle Database Native Analytics

Analytical
Feature

Description Documented In...

Statistical
functions

Oracle Database provides a long list of SQL statistical
functions with support for: hypothesis testing (such as
t-test, F-test), correlation computation (such as pearson
correlation), cross-tab statistics, and descriptive statistics
(such as median and mode). The DBMS_STAT_FUNCS
package adds distribution fitting procedures and a summary
procedure that returns descriptive statistics for a column.

Oracle Database SQL Language
Reference and Oracle Database
PL/SQL Packages and Types
Reference

Window and
analytic SQL
functions

Oracle Database supports analytic and windowing functions
for computing cumulative, moving, and centered aggregates.
With windowing aggregate functions, you can calculate
moving and cumulative versions of SUM, AVERAGE, COUNT,
MAX, MIN, and many more functions.

Oracle Database Data Warehousing
Guide

Linear
algebra

The UTL_NLA package exposes a subset of the popular
BLAS and LAPACK (Version 3.0) libraries for operations
on vectors and matrices represented as VARRAYs. This
package includes procedures to solve systems of linear
equations, invert matrices, and compute eigenvalues and
eigenvectors.

Oracle Database PL/SQL Packages
and Types Reference

OLAP Oracle OLAP supports multidimensional analysis and can be
used to improve performance of multidimensional queries.
Oracle OLAP provides functionality previously found only in
specialized OLAP databases. Moving beyond drill-downs and
roll-ups, Oracle OLAP also supports time-series analysis,
modeling, and forecasting.

Oracle OLAP User’s Guide

Spatial
analytics

Oracle Spatial provides advanced spatial features to support
high-end GIS and LBS solutions. Oracle Spatial's analysis
and machine learning capabilities include functions for
binning, detection of regional patterns, spatial correlation,
colocation machine learning, and spatial clustering.

Oracle Spatial also includes support for topology and
network data models and analytics. The topology data
model of Oracle Spatial allows one to work with data about
nodes, edges, and faces in a topology. It includes network
analysis functions for computing shortest path, minimum
cost spanning tree, nearest-neighbors analysis, traveling
salesman problem, among others.

Oracle Spatial Developer's Guide

Text Analysis Oracle Text uses standard SQL to index, search, and analyze
text and documents stored in the Oracle database, in
files, and on the web. Oracle Text also supports automatic
classification and clustering of document collections. Many of
the analytical features of Oracle Text are layered on top of
Oracle Machine Learning functionality.

Oracle Text Application Developer's
Guide

Example 1-3 SQL Query Combining Oracle Machine Learning for SQL and
Oracle Text

SELECT A.cust_name, A.contact_info
 FROM customers A
 WHERE PREDICTION_PROBABILITY(tree_model,
 'attrite' USING A.*) > 0.8
 AND A.cust_value > 90

Chapter 1
Overview of Database Analytics

1-8

 AND A.cust_id IN
 (SELECT B.cust_id
 FROM call_center B
 WHERE B.call_date BETWEEN '01-Jan-2005'
 AND '30-Jun-2005'
 AND CONTAINS(B.notes, 'Checking Plus', 1) > 0);

Chapter 1
Overview of Database Analytics

1-9

2
Oracle Machine Learning Basics

Understand the basic concepts of Oracle Machine Learning.

• Machine Learning Functions

• Algorithms

• Data Preparation

• In-Database Scoring

2.1 Machine Learning Functions
Each machine learning function specifies a class of problems that can be modeled
and solved.

A basic understanding of machine learning functions and algorithms is required for
using Oracle Machine Learning.

Machine learning functions fall generally into two categories: supervised and
unsupervised. Notions of supervised and unsupervised learning are derived from the
science of machine learning, which has been called a sub-area of artificial intelligence.

Artificial intelligence refers to the implementation and study of systems that exhibit
autonomous intelligence or behavior of their own. Machine learning deals with
techniques that enable devices to learn from their own performance and modify their
own functioning.

The following illustration provides an idea of how to use Oracle machine learning
functions.

2-1

Figure 2-1 How to Use Machine Learning Functions

Related Topics

• Algorithms
An algorithms is a mathematical procedure for solving a specific kind of problem.
For some machine learning functions, you can choose among several algorithms.

2.1.1 Supervised Machine Learning
Overview of supervised machine learning.

Supervised learning is also known as directed learning. The learning process is
directed by a previously known dependent attribute or target. Directed Oracle Machine
Learning attempts to explain the behavior of the target as a function of a set of
independent attributes or predictors.

Supervised learning generally results in predictive models. This is in contrast to
unsupervised learning where the goal is pattern detection.

The building of a supervised model involves training, a process whereby the software
analyzes many cases where the target value is already known. In the training process,
the model "learns" the logic for making the prediction. For example, a model that seeks
to identify the customers who are likely to respond to a promotion must be trained by
analyzing the characteristics of many customers who are known to have responded or
not responded to a promotion in the past.

Chapter 2
Machine Learning Functions

2-2

2.1.1.1 Supervised Learning: Testing
Learn about testing models in supervised learning.

Separate data sets are required for building (training) and testing some predictive
models. The build data (training data) and test data must have the same column
structure. Typically, one large table or view is split into two data sets: one for building
the model, and the other for testing the model.

The process of applying the model to test data helps to determine whether the model,
built on one chosen sample, is generalizable to other data. In particular, it helps to
avoid the phenomenon of overfitting, which can occur when the logic of the model fits
the build data too well and therefore has little predictive power.

2.1.1.2 Supervised Learning: Scoring
Learn about scoring in supervised learning.

Apply data, also called scoring data, is the actual population to which a model is
applied. For example, you might build a model that identifies the characteristics of
customers who frequently buy a certain product. To obtain a list of customers who
shop at a certain store and are likely to buy a related product, you might apply the
model to the customer data for that store. In this case, the store customer data is the
scoring data.

Most supervised learning can be applied to a population of interest. The principal
supervised machine learning techniques, classification and regression, can both be
used for scoring.

Oracle Machine Learning does not support the scoring operation for attribute
importance, another supervised function. Models of this type are built on a population
of interest to obtain information about that population; they cannot be applied to
separate data. An attribute importance model returns and ranks the attributes that
are most important in predicting a target value.

Oracle Machine Learning supports the supervised machine learning functions
described in the following table:

Table 2-1 Oracle Machine Learning Supervised Functions

Function Description Sample Problem

Attribute Importance Identifies the attributes that are most
important in predicting a target attribute

Given customer response to an affinity card
program, find the most significant predictors

Classification Assigns items to discrete classes and
predicts the class to which an item
belongs

Given demographic data about a set of
customers, predict customer response to an
affinity card program

Regression Approximates and forecasts continuous
values

Given demographic and purchasing data
about a set of customers, predict customers'
age

2.1.2 Unsupervised Machine Learning
Overview of unsupervised machine learning.

Chapter 2
Machine Learning Functions

2-3

Unsupervised learning is non-directed. There is no distinction between dependent and
independent attributes. There is no previously-known result to guide the algorithm in
building the model.

Unsupervised learning can be used for descriptive purposes. It can also be used to
make predictions.

2.1.2.1 Unsupervised Learning: Scoring
Introduces unsupervised learning, supported scoring operations, and unsupervised
machine learning functions.

Although unsupervised machine learning does not specify a target, most unsupervised
learning can be applied to a population of interest. For example, clustering models
use descriptive machine learning techniques, but they can be applied to classify cases
according to their cluster assignments. Anomaly Detection, although unsupervised, is
typically used to predict whether a data point is typical among a set of cases.

Oracle Machine Learning supports the scoring operation for Clustering and Feature
Extraction, both unsupervised machine learning functions. Oracle Machine Learning
does not support the scoring operation for Association Rules, another unsupervised
function. Association models are built on a population of interest to obtain information
about that population; they cannot be applied to separate data. An association model
returns rules that explain how items or events are associated with each other. The
association rules are returned with statistics that can be used to rank them according
to their probability.

OML supports the unsupervised functions described in the following table:

Table 2-2 Oracle Machine Learning Unsupervised Functions

Function Description Sample Problem

Anomaly Detection Identifies items (outliers) that do not
satisfy the characteristics of "normal"
data

Given demographic data about a set
of customers, identify customer purchasing
behavior that is significantly different from the
norm

Association Rules Finds items that tend to co-occur in the
data and specifies the rules that govern
their co-occurrence

Find the items that tend to be purchased
together and specify their relationship

Clustering Finds natural groupings in the data Segment demographic data into clusters and
rank the probability that an individual belongs to
a given cluster

Feature Extraction Creates new attributes (features) using
linear combinations of the original
attributes

Given demographic data about a set of
customers, group the attributes into general
characteristics of the customers

Related Topics

• Machine Learning Functions
Part II provides basic conceptual information about machine learning functions that
the Oracle Machine Learning for SQL supports.

• In-Database Scoring
Scoring is the application of a machine learning algorithm to new data. In Oracle
Machine Learning for SQL scoring engine and the data both reside within the
database.

Chapter 2
Machine Learning Functions

2-4

2.2 Algorithms
An algorithms is a mathematical procedure for solving a specific kind of problem. For
some machine learning functions, you can choose among several algorithms.

Each algorithm produces a specific type of model, with different characteristics. Some
machine learning problems can best be solved by using more than one algorithm in
combination. For example, you might first use a feature extraction model to create an
optimized set of predictors, then a classification model to make a prediction on the
results.

2.2.1 Oracle Machine Learning Supervised Algorithms
Oracle Machine Learning for SQL (OML4SQL) supports the supervised machine
learning algorithms described in the following table.

Table 2-3 Oracle Machine Learning Algorithms for Supervised Functions

Algorithm Function Description

Decision Tree Classification Decision trees extract predictive information in the form of human-
understandable rules. The rules are if-then-else expressions; they
explain the decisions that lead to the prediction.

Explicit Semantic
Analysis

Classification Explicit Semantic Analysis (ESA) is designed to make predictions for text
data. This algorithm can address use cases with hundreds of thousands
of classes. In Oracle Database 12c Release 2, ESA was introduced as
Feature Extraction algorithm.

Exponential
Smoothing

Time Series Exponential Smoothing (ESM) provides forecasts for time series data.
Forecasts are made for each time period within a user-specified forecast
window. ESM provides a total of 14 different time series models,
including all the most popular estimates of trend and seasonal effects.
Choice of model is controlled by user settings. ESM provides confidence
bounds on its forecasts.

Generalized Linear
Model

Classification
and Regression

Generalized Linear Model (GLM) implements logistic regression for
classification of binary targets and linear regression for continuous
targets. GLM classification supports confidence bounds for prediction
probabilities. GLM regression supports confidence bounds for
predictions.

Minimum Description
Length

Attribute
Importance

Minimum Description Length (MDL) is an information theoretic model
selection principle. MDL assumes that the simplest, most compact
representation of data is the best and most probable explanation of the
data.

Naive Bayes Classification Naive Bayes makes predictions using Bayes' Theorem, which derives the
probability of a prediction from the underlying evidence, as observed in
the data.

Neural Network Classification
and Regression

Neural Network in machine learning is an artificial algorithm inspired
from biological neural network and is used to estimate or approximate
functions that depend on a large number of generally unknown inputs.
Neural Network is designed for classification and regression.

Random Forest Classification Random Forest is a powerful machine learning algorithm. The Random
Forest algorithm builds a number of Decision Tree models and predicts
using the ensemble of trees.

Chapter 2
Algorithms

2-5

Table 2-3 (Cont.) Oracle Machine Learning Algorithms for Supervised Functions

Algorithm Function Description

Support Vector
Machine

Classification
and Regression

Distinct versions of the Support Vector Machine (SVM) algorithm use
different kernel functions to handle different types of data sets. Linear
and Gaussian (nonlinear) kernels are supported.

SVM classification attempts to separate the target classes with the
widest possible margin.

SVM regression tries to find a continuous function such that the
maximum number of data points lie within an epsilon-wide tube around it.

XGBoost Classification
and Regression

XGBoost is machine learning algorithm for regression and classification
that makes available the XGBoost open source package. Oracle
Machine Learning for SQL XGBoost prepares training data, invokes
XGBoost, builds and persists a model, and applies the model for
prediction.

2.2.2 Oracle Machine Learning Unsupervised Algorithms
Oracle Machine Learning for SQL (OML4SQL) supports the unsupervised machine
learning algorithms described in the following table.

Table 2-4 Oracle Machine Learning Algorithms for Unsupervised Functions

Algorithm Function Description

Apriori Association Apriori performs market basket analysis by identifying co-occurring
items (frequent itemsets) within a set. Apriori finds rules with support
greater than a specified minimum support and confidence greater
than a specified minimum confidence.

CUR Matrix
Decomposition

Attribute
Importance

CUR Matrix Decomposition is an alternative to Support Vector
Machine (SVM) and Principal Component Analysis (PCA) and an
important tool for exploratory data analysis. This algorithm performs
analytical processing and singles out important columns and rows.

Expectation
Maximization

Clustering Expectation Maximization (EM) is a density estimation algorithm that
performs probabilistic clustering. In density estimation, the goal is to
construct a density function that captures how a given population
is distributed. The density estimate is based on observed data that
represents a sample of the population.

Oracle Machine Learning supports probabilistic clustering and
data frequency estimates and other applications of Expectation
Maximization.

Explicit Semantic
Analysis

Feature Extraction Explicit Semantic Analysis (ESA) uses existing knowledge base as
features. An attribute vector represents each feature or a concept.
ESA creates a reverse index that maps every attribute to the
knowledge base concepts or the concept-attribute association vector
value.

k-Means Clustering k-Means is a distance-based clustering algorithm that partitions the
data into a predetermined number of clusters. Each cluster has a
centroid (center of gravity). Cases (individuals within the population)
that are in a cluster are close to the centroid.

OML4SQL supports an enhanced version of k-Means. It goes beyond
the classical implementation by defining a hierarchical parent-child
relationship of clusters.

Chapter 2
Algorithms

2-6

Table 2-4 (Cont.) Oracle Machine Learning Algorithms for Unsupervised Functions

Algorithm Function Description

Multivariate State
Estimation Technique
- Sequential
Probability Ratio Test

Anomaly Detection The Multivariate State Estimation Technique - Sequential Probability
Ratio Test (MSET-SPRT) algorithm is a nonlinear, nonparametric
anomaly detection machine learning technique designed for
monitoring critical processes. It detects subtle anomalies while also
producing minimal false alarms.

Non-Negative Matrix
Factorization

Feature Extraction Non-Negative Matrix Factorization (NMF) generates new attributes
using linear combinations of the original attributes. The coefficients
of the linear combinations are non-negative. During model apply, an
NMF model maps the original data into the new set of attributes
(features) discovered by the model.

One Class Support
Vector Machine

Anomaly Detection One-class SVM builds a profile of one class. When the model is
applied, it identifies cases that are somehow different from that profile.
This allows for the detection of rare cases that are not necessarily
related to each other.

Orthogonal
Partitioning
Clustering

Clustering Orthogonal Partitioning Clustering (O-Cluster) creates a hierarchical,
grid-based clustering model. The algorithm creates clusters that
define dense areas in the attribute space. A sensitivity parameter
defines the baseline density level.

Singular Value
Decomposition and
Principal Component
Analysis

Feature Extraction Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA) are orthogonal linear transformations that are optimal
at capturing the underlying variance of the data. This property is
extremely useful for reducing the dimensionality of high-dimensional
data and for supporting meaningful data visualization.

In addition to dimensionality reduction, SVD and PCA have a number
of other important applications, such as data de-noising (smoothing),
data compression, matrix inversion, and solving a system of linear
equations.

Related Topics

• Algorithms
Oracle Machine Learning for SQL supports the algorithms listed in Part III. Part III
provides basic conceptual information about the algorithms. There is at least one
algorithm for each of the machine learning functions.

2.3 Data Preparation
Preparing the data is a valuable step in solving machine learning problems.

The quality of a model depends to a large extent on the quality of the data used to
build (train) it. Much of the time spent in any given machine learning project is devoted
to data preparation. The data must be carefully inspected, cleansed, and transformed,
and algorithm-appropriate data preparation methods must be applied.

The process of data preparation is further complicated by the fact that any data to
which a model is applied, whether for testing or for scoring, must undergo the same
transformations as the data used to train the model.

2.3.1 Oracle Machine Learning for SQL Simplifies Data Preparation
Learn about various features of Oracle Machine Learning for SQL for data preparation.

Chapter 2
Data Preparation

2-7

OML4SQL offers several features that significantly simplify the process of data
preparation:

• Embedded data preparation: The transformations used in training the model are
embedded in the model and automatically run whenever the model is applied to
new data. If you specify transformations for the model, you only have to specify
them once.

• Automatic Data Preparation (ADP): Oracle Machine Learning for SQL supports an
automated data preparation mode. When ADP is active, Oracle Machine Learning
for SQL automatically performs the data transformations required by the algorithm.
The transformation instructions are embedded in the model along with any user-
specified transformation instructions.

• Automatic management of missing values and sparse data: Oracle Machine
Learning for SQL uses consistent methodology across machine learning
algorithms to handle sparsity and missing values.

• Transparency: Oracle Machine Learning for SQL provides model details, which are
a view of the attributes that are internal to the model. This insight into the inner
details of the model is possible because of reverse transformations, which map the
transformed attribute values to a form that can be interpreted by a user. Where
possible, attribute values are reversed to the original column values. Reverse
transformations are also applied to the target of a supervised model, thus the
results of scoring are in the same units as the units of the original target.

• Tools for custom data preparation: Oracle Machine Learning for SQL provides
many common transformation routines in the DBMS_DATA_MINING_TRANSFORM
PL/SQL package. You can use these routines, or develop your own routines in
SQL, or both. The SQL language is well suited for implementing transformations in
the database. You can use custom transformation instructions along with ADP or
instead of ADP.

2.3.2 Case Data
Learn the importance of case data in machine learning.

Most machine learning algorithms act on single-record case data, where the
information for each case is stored in a separate row. The data attributes for the cases
are stored in the columns.

When the data is organized in transactions, the data for one case (one transaction) is
stored in many rows. An example of transactional data is market basket data. With the
single exception of Association Rules, which can operate on native transactional data,
Oracle Machine Learning for SQL algorithms require single-record case organization.

2.3.2.1 Nested Data
Learn how nested columns are treated in Oracle Machine Learning for SQL.

OML4SQL supports attributes in nested columns. A transactional table can be cast
as a nested column and included in a table of single-record case data. Similarly, star
schemas can be cast as nested columns. With nested data transformations, Oracle
Machine Learning for SQL can effectively mine data originating from multiple sources
and configurations.

Chapter 2
Data Preparation

2-8

2.3.3 Text Data
Prepare and transform unstructured text data for machine learning.

Oracle Machine Learning for SQL interprets CLOB columns and long VARCHAR2 columns
automatically as unstructured text. Additionally, you can specify columns of short
VARCHAR2, CHAR, BLOB, and BFILE as unstructured text. Unstructured text includes data
items such as web pages, document libraries, Power Point presentations, product
specifications, emails, comment fields in reports, and call center notes.

OML4SQL uses Oracle Text utilities and term weighting strategies to transform
unstructured text for analysis. In text transformation, text terms are extracted and
given numeric values in a text index. The text transformation process is configurable
for the model and for individual attributes. Once transformed, the text can by mined
with a OML4SQL algorithm.

Related Topics

• Preparing the Data

• Transforming the Data

• Mining Unstructured Text

2.4 In-Database Scoring
Scoring is the application of a machine learning algorithm to new data. In Oracle
Machine Learning for SQL scoring engine and the data both reside within the
database.

In traditional machine learning, models are built using specialized software on a
remote system and deployed to another system for scoring. This is a cumbersome,
error-prone process open to security violations and difficulties in data synchronization.

With OML4SQL, scoring is simple and secure. The scoring engine and the data both
reside within the database. Scoring is an extension to the SQL language, so the
results of machine learning can easily be incorporated into applications and reporting
systems.

2.4.1 Parallel Execution and Ease of Administration
All Oracle Machine Learning for SQL scoring routines support parallel execution for
scoring large data sets.

In-database scoring provides performance advantages. All Oracle Machine Learning
for SQL scoring routines support parallel execution, which significantly reduces the
time required for executing complex queries and scoring large data sets.

In-database machine learning minimizes the IT effort needed to support OML4SQL
initiatives. Using standard database techniques, models can easily be refreshed (re-
created) on more recent data and redeployed. The deployment is immediate since
the scoring query remains the same; only the underlying model is replaced in the
database.

Related Topics

• Oracle Database VLDB and Partitioning Guide

Chapter 2
In-Database Scoring

2-9

2.4.2 SQL Functions for Model Apply and Dynamic Scoring
In Oracle Machine Learning for SQL, scoring is performed by SQL language functions.
Understand the different ways of scoring using SQL functions.

The functions perform prediction, clustering, and feature extraction. The functions
can be invoked in two different ways: By applying a machine learning model object
(Example 2-1), or by executing an analytic clause that computes the machine learning
analysis dynamically and applies it to the data (Example 2-2). Dynamic scoring, which
eliminates the need for a model, can supplement, or even replace, the more traditional
methodology described in "The Machine Learning Process".

In Example 2-1, the PREDICTION_PROBABILITY function applies the model
svmc_sh_clas_sample, created in Example 1-1, to score the data in
mining_data_apply_v. The function returns the ten customers in Italy who are most
likely to use an affinity card.

In Example 2-2, the functions PREDICTION and PREDICTION_PROBABILITY use
the analytic syntax (the OVER () clause) to dynamically score the data in
mining_data_apply_v. The query returns the customers who currently do not have
an affinity card with the probability that they are likely to use.

Example 2-1 Applying a Oracle Machine Learning for SQL Model to Score Data

SELECT cust_id FROM
 (SELECT cust_id,
 rank() over (order by PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1
 USING *) DESC, cust_id) rnk
 FROM mining_data_apply_v
 WHERE country_name = 'Italy')
WHERE rnk <= 10
ORDER BY rnk;

 CUST_ID

 101445
 100179
 100662
 100733
 100554
 100081
 100344
 100324
 100185
 101345

Example 2-2 Executing an Analytic Function to Score Data

SELECT cust_id, pred_prob FROM
 (SELECT cust_id, affinity_card,
 PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
 PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER ()
pred_prob
 FROM mining_data_build_v)
WHERE affinity_card = 0
AND pred_card = 1
ORDER BY pred_prob DESC;

 CUST_ID PRED_PROB

Chapter 2
In-Database Scoring

2-10

---------- ---------
 102434 .96
 102365 .96
 102330 .96
 101733 .95
 102615 .94
 102686 .94
 102749 .93
 .
 .
 .
 101656 .51

Related Topics

• Oracle Database SQL Language Reference

• Oracle Machine Learning for SQL User’s Guide

Chapter 2
In-Database Scoring

2-11

Part II
Machine Learning Functions

Part II provides basic conceptual information about machine learning functions that the
Oracle Machine Learning for SQL supports.

Machine learning functions represent a class of problems that can be solved using
OML4SQL algorithms.

Part II contains these chapters:

• Regression

• Classification

• Anomaly Detection

• Ranking

• Clustering

• Association

• Feature Selection

• Feature Extraction

• Row Importance

• Time Series

Note:

The term machine learning function has no relationship to a SQL language
function.

Related Topics

• Algorithms
Oracle Machine Learning for SQL supports the algorithms listed in Part III. Part III
provides basic conceptual information about the algorithms. There is at least one
algorithm for each of the machine learning functions.

• Oracle Database SQL Language Reference

3
Regression

Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

• About Regression

• Testing a Regression Model

• Regression Algorithms

– Generalized Linear Model

– Neural Network

– Support Vector Machine

– XGBoost

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

3.1 About Regression
Regression is an Oracle Machine Learning for SQL function that predicts numeric
values along a continuum.

Profit, sales, mortgage rates, house values, square footage, temperature, or distance
can be predicted using Regression techniques. For example, a regression model can
be used to predict the value of a house based on location, number of rooms, lot size,
and other factors.

A regression task begins with a data set in which the target values are known. For
example, a regression model that predicts house values can be developed based on
observed data for many houses over a period of time. In addition to the value, the
data can track the age of the house, square footage, number of rooms, taxes, school
district, proximity to shopping centers, and so on. House value can be the target, the
other attributes are the predictors, and the data for each house constitutes a case.

In the model build (training) process, a regression algorithm estimates the value of
the target as a function of the predictors for each case in the build data. These
relationships between predictors and target are summarized in a model, which can
then be applied to a different data set in which the target values are unknown.

Regression models are tested by computing various statistics that measure the
difference between the predicted values and the expected values. The historical data
for a regression project is typically divided into two data sets: one for building the
model, the other for testing the model.

3-1

Regression modeling has many applications in trend analysis, business planning,
marketing, financial forecasting, time series prediction, biomedical and drug response
modeling, and environmental modeling.

3.1.1 How Does Regression Work?
Understand regression as a mathematical expression.

You do not need to understand the mathematics used in regression analysis to
develop and use quality regression models for Oracle Machine Learning for SQL.
However, it is helpful to understand a few basic concepts.

Regression analysis seeks to determine the values of parameters for a function that
cause the function to best fit a set of data observations that you provide. The following
equation expresses these relationships in symbols. It shows that regression is the
process of estimating the value of a continuous target (y) as a function (F) of one or
more predictors (x1 , x2 , ..., xn), a set of parameters (θ1 , θ2 , ..., θn), and a measure of
error (e).

y = F(x,θ) + e

The predictors can be understood as independent variables and the target as a
dependent variable. The error, also called the residual, is the difference between the
expected and predicted value of the dependent variable. The regression parameters
are also known as regression coefficients.

The process of training a regression model involves finding the parameter values that
minimize a measure of the error, for example, the sum of squared errors.

There are different families of regression functions and different ways of measuring the
error.

3.1.1.1 Linear Regression
A linear regression technique can be used if the relationship between the predictors
and the target can be approximated with a straight line.

Regression with a single predictor is the easiest to visualize. Simple linear regression
with a single predictor is shown in the following figure:

Chapter 3
About Regression

3-2

Figure 3-1 Linear Regression With a Single Predictor

Y

X

error

error

Linear regression with a single predictor can be expressed with the following equation.

y = θ2x + θ1 + e

The regression parameters in simple linear regression are:

• The slope of the line (2) — the angle between a data point and the regression line

• The y intercept (1) — the point where x crosses the y axis (x = 0)

3.1.1.2 Multivariate Linear Regression
The term multivariate linear regression refers to linear regression with two or more
predictors (x1, x2, …, xn). When multiple predictors are used, the regression line
cannot be visualized in two-dimensional space. However, the line can be computed by
expanding the equation for single-predictor linear regression to include the parameters
for each of the predictors.

y = θ1 + θ2x1 + θ3x2 + θn xn-1 + e

3.1.1.3 Regression Coefficients
In multivariate linear regression, the regression parameters are often referred to as
coefficients. When you build a multivariate linear regression model, the algorithm
computes a coefficient for each of the predictors used by the model. The coefficient
is a measure of the impact of the predictor x on the target y. Numerous statistics are
available for analyzing the regression coefficients to evaluate how well the regression
line fits the data.

3.1.1.4 Nonlinear Regression
Often the relationship between x and y cannot be approximated with a straight line. In
this case, a nonlinear regression technique can be used. Alternatively, the data can be
preprocessed to make the relationship linear.

Chapter 3
About Regression

3-3

Nonlinear regression models define y as a function of x using an equation that is more
complicated than the linear regression equation. In the following figure, x and y have a
nonlinear relationship.

Figure 3-2 Nonlinear Regression With a Single Predictor

Y

X

error

error

3.1.1.5 Multivariate Nonlinear Regression
The term multivariate nonlinear regression refers to nonlinear regression with two
or more predictors (x1, x2, …, xn). When multiple predictors are used, the nonlinear
relationship cannot be visualized in two-dimensional space.

3.1.1.6 Confidence Bounds
A regression model predicts a numeric target value for each case in the scoring data.
In addition to the predictions, some regression algorithms can identify confidence
bounds, which are the upper and lower boundaries of an interval in which the
predicted value is likely to lie.

When a model is built to make predictions with a given confidence, the confidence
interval is produced along with the predictions. For example, a model predicts
the value of a house to be $500,000 with a 95% confidence that the value is
between $475,000 and $525,000.

3.2 Testing a Regression Model
A regression model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Chapter 3
Testing a Regression Model

3-4

Test metrics are used to assess how accurately the model predicts these known
values. If the model performs well and meets the business requirements, it can then
be applied to new data to predict the future.

3.2.1 Regression Statistics
The Root Mean Squared Error and the Mean Absolute Error are commonly used
statistics for evaluating the overall quality of a regression model. Different statistics
may also be available depending on the regression methods used by the algorithm.

3.2.1.1 Root Mean Squared Error
The Root Mean Squared Error (RMSE) is the square root of the average squared
distance of a data point from the fitted line.

This SQL expression calculates the RMSE.

SQRT(AVG((predicted_value - actual_value) * (predicted_value -
actual_value)))

This formula shows the RMSE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.

Figure 3-3 Room Mean Squared Error

RMSE = 1
n

n

j = 1

(y
j - ŷ

j
) 2

3.2.1.2 Mean Absolute Error
The Mean Absolute Error (MAE) is the average of the absolute value of the residuals
(error). The MAE is very similar to the RMSE but is less sensitive to large errors.

This SQL expression calculates the MAE.

AVG(ABS(predicted_value - actual_value))

This formula shows the MAE in mathematical symbols. The large sigma character
represents summation; j represents the current predictor, and n represents the number
of predictors.

Figure 3-4 Mean Absolute Error

MAE = 1
n

n

j = 1

| y
j - ŷ

j
|

Chapter 3
Testing a Regression Model

3-5

3.3 Regression Algorithms
Oracle Machine Learning for SQL supports these algorithms for regression:
Generalized Linear Model (GLM), Neural Network (NN), Support Vector Machine
(SVM), and XGBoost.

GLM and SVM algorithms are particularly suited for analysing data sets that have very
high dimensionality (many attributes), including transactional and unstructured data.

• Generalized Linear Model

GLM is a popular statistical technique for linear modeling. Oracle Machine
Learning for SQL implements GLM for regression and for binary classification.
GLM provides extensive coefficient statistics and model statistics, as well as row
diagnostics. GLM also supports confidence bounds.

• Neural Network

Neural Network is a powerful algorithm that can learn arbitrary nonlinear
regression functions.

• Support Vector Machine

SVM is a powerful, state-of-the-art algorithm for linear and nonlinear regression.
OML4SQL implements SVM for regression, classification, and anomaly detection.
SVM regression supports two kernels: the Gaussian kernel for nonlinear
regression and the linear kernel for linear regression.

Note:

OML4SQL uses the linear kernel SVM as the default regression
algorithm.

• XGBoost

XGBoost is machine learning algorithm for regression and classification that
makes available the XGBoost open source package. Oracle Machine Learning
for SQL XGBoost prepares training data, invokes XGBoost, builds and persists a
model, and applies the model for prediction.

Related Topics

• Generalized Linear Model
Learn how to use Generalized Linear Model (GLM) statistical technique for linear
modeling.

• Neural Network
Learn about the Neural Network algorithms for regression and classification
machine learning functions.

• Support Vector Machine
Learn how to use Support Vector Machine (SVM), a powerful algorithm based on
statistical learning theory.

Chapter 3
Regression Algorithms

3-6

• XGBoost
XGBoost is highly-efficient, scalable machine learning algorithm for regression and
classification that makes available the XGBoost Gradient Boosting open source
package.

Chapter 3
Regression Algorithms

3-7

4
Classification

Learn how to predict a categorical target through classification - the supervised
machine learning function.

• About Classification

• Testing a Classification Model

• Biasing a Classification Model

• Classification Algorithms

– Decision Tree

– Explicit Semantic Analysis

– Generalized Linear Model

– Multivariate State Estimation Technique - Sequential Probability Ratio Test

– Naive Bayes

– Random Forest

– Support Vector Machine

– XGBoost

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

4.1 About Classification
Classification is a machine learning function that assigns items in a collection to target
categories or classes.

The goal of classification is to accurately predict the target class for each case in the
data. For example, a classification model can be used to identify loan applicants as
low, medium, or high credit risks.

A classification task begins with a data set in which the class assignments are known.
For example, a classification model that predicts credit risk can be developed based
on observed data for many loan applicants over a period of time. In addition to the
historical credit rating, the data might track employment history, home ownership or
rental, years of residence, number and type of investments, and so on. Credit rating
is the target, the other attributes are the predictors, and the data for each customer
constitutes a case.

Classification are discrete and do not imply order. Continuous, floating-point values
indicate a numerical, rather than a categorical, target. A predictive model with a
numerical target uses a regression algorithm, not a classification algorithm.

4-1

The simplest type of classification problem is binary classification. In binary
classification, the target attribute has only two possible values: for example, high credit
rating or low credit rating. Multiclass targets have more than two values: for example,
low, medium, high, or unknown credit rating.

In the model build (training) process, a classification algorithm finds relationships
between the values of the predictors and the values of the target. Different
classification algorithms use different techniques for finding relationships. These
relationships are summarized in a model, which can then be applied to a different
data set in which the class assignments are unknown.

Classification models are tested by comparing the predicted values to known target
values in a set of test data. The historical data for a classification project is typically
divided into two data sets: one for building the model; the other for testing the model.

Applying a classification model results in class assignments and probabilities for each
case. For example, a model that classifies customers as low, medium, or high value
also predicts the probability of each classification for each customer.

Classification has many applications in customer segmentation, business modeling,
marketing, credit analysis, and biomedical and drug response modeling.

4.2 Testing a Classification Model
A classification model is tested by applying it to test data with known target values and
comparing the predicted values with the known values.

The test data must be compatible with the data used to build the model and must be
prepared in the same way that the build data was prepared. Typically the build data
and test data come from the same historical data set. A percentage of the records is
used to build the model; the remaining records are used to test the model.

Test metrics are used to assess how accurately the model predicts the known values.
If the model performs well and meets the business requirements, it can then be
applied to new data to predict the future.

4.2.1 Confusion Matrix
A confusion matrix displays the number of correct and incorrect predictions made
by the model compared with the actual classifications in the test data. The matrix is
n-by-n, where n is the number of classes.

The following figure shows a confusion matrix for a binary classification model. The
rows present the number of actual classifications in the test data. The columns present
the number of predicted classifications made by the model.

Chapter 4
Testing a Classification Model

4-2

Figure 4-1 Confusion Matrix for a Binary Classification Model

PREDICTED CLASS

ACTUAL CLASS

affinity_card = 1 affinity_card = 0

72510affinity_card = 0

25516affinity_card = 1

In this example, the model correctly predicted the positive class for affinity_card 516
times and incorrectly predicted it 25 times. The model correctly predicted the negative
class for affinity_card 725 times and incorrectly predicted it 10 times. The following
can be computed from this confusion matrix:

• The model made 1241 correct predictions (516 + 725).

• The model made 35 incorrect predictions (25 + 10).

• There are 1276 total scored cases (516 + 25 + 10 + 725).

• The error rate is 35/1276 = 0.0274.

• The overall accuracy rate is 1241/1276 = 0.9725.

4.2.2 Lift
Lift measures the degree to which the predictions of a classification model are better
than randomly-generated predictions.

Lift applies to binary classification only, and it requires the designation of a positive
class. If the model itself does not have a binary target, you can compute lift by
designating one class as positive and combining all the other classes together as one
negative class.

Numerous statistics can be calculated to support the notion of lift. Basically, lift can
be understood as a ratio of two percentages: the percentage of correct positive
classifications made by the model to the percentage of actual positive classifications
in the test data. For example, if 40% of the customers in a marketing survey have
responded favorably (the positive classification) to a promotional campaign in the past
and the model accurately predicts 75% of them, the lift is obtained by dividing .75
by .40. The resulting lift is 1.875.

Lift is computed against quantiles that each contain the same number of cases. The
data is divided into quantiles after it is scored. It is ranked by probability of the positive
class from highest to lowest, so that the highest concentration of positive predictions is
in the top quantiles. A typical number of quantiles is 10.

Lift is commonly used to measure the performance of response models in marketing
applications. The purpose of a response model is to identify segments of the

Chapter 4
Testing a Classification Model

4-3

population with potentially high concentrations of positive responders to a marketing
campaign. Lift reveals how much of the population must be solicited to obtain the
highest percentage of potential responders.

Related Topics

• Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

4.2.2.1 Lift Statistics
Learn the different Lift statistics that Oracle Machine Learning for SQL can compute.

Oracle Machine Learning for SQL computes the following lift statistics:

• Probability threshold for a quantile n is the minimum probability for the positive
target to be included in this quantile or any preceding quantiles (quantiles n-1,
n-2,..., 1). If a cost matrix is used, a cost threshold is reported instead. The cost
threshold is the maximum cost for the positive target to be included in this quantile
or any of the preceding quantiles.

• Cumulative gain is the ratio of the cumulative number of positive targets to the
total number of positive targets.

• Target density of a quantile is the number of true positive instances in that
quantile divided by the total number of instances in the quantile.

• Cumulative target density for quantile n is the target density computed over the
first n quantiles.

• Quantile lift is the ratio of the target density for the quantile to the target density
over all the test data.

• Cumulative percentage of records for a quantile is the percentage of all cases
represented by the first n quantiles, starting at the end that is most confidently
positive, up to and including the given quantile.

• Cumulative number of targets for quantile n is the number of true positive
instances in the first n quantiles.

• Cumulative number of nontargets is the number of actually negative instances
in the first n quantiles.

• Cumulative lift for a quantile is the ratio of the cumulative target density to the
target density over all the test data.

Related Topics

• Costs

4.2.3 Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

ROC, like Lift, applies to binary classification and requires the designation of a positive
class.

You can use ROC to gain insight into the decision-making ability of the model. How
likely is the model to accurately predict the negative or the positive class?

Chapter 4
Testing a Classification Model

4-4

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for classification. The default
probability threshold for binary classification is 0.5. When the probability of a prediction
is 50% or more, the model predicts that class. When the probability is less than 50%,
the other class is predicted. (In multiclass classification, the predicted class is the one
predicted with the highest probability.)

Related Topics

• Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

4.2.3.1 The ROC Curve
ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on
the X axis. The true positive rate is placed on the Y axis.

The top left corner is the optimal location on an ROC graph, indicating a high true
positive rate and a low false positive rate.

4.2.3.2 Area Under the Curve
The area under the ROC curve (AUC) measures the discriminating ability of a binary
classification model. The larger the AUC, the higher the likelihood that an actual
positive case is assigned, and a higher probability of being positive than an actual
negative case. The AUC measure is especially useful for data sets with unbalanced
target distribution (one target class dominates the other).

4.2.3.3 ROC and Model Bias
The ROC curve for a model represents all the possible combinations of values in its
confusion matrix.

Changes in the probability threshold affect the predictions made by the model. For
instance, if the threshold for predicting the positive class is changed from 0.5 to 0.6,
then fewer positive predictions are made. This affects the distribution of values in the
confusion matrix: the number of true and false positives and true and false negatives
differ.

You can use ROC to find the probability thresholds that yield the highest overall
accuracy or the highest per-class accuracy. For example, if it is important to you to
accurately predict the positive class, but you don't care about prediction errors for the
negative class, then you can lower the threshold for the positive class. This can bias
the model in favor of the positive class.

A cost matrix is a convenient mechanism for changing the probability thresholds for
model scoring.

Related Topics

• Costs

4.2.3.4 ROC Statistics
Oracle Machine Learning for SQL computes the following ROC statistics:

Chapter 4
Testing a Classification Model

4-5

• Probability threshold: The minimum predicted positive class probability resulting
in a positive class prediction. Different threshold values result in different hit rates
and different false alarm rates.

• True negatives: Negative cases in the test data with predicted probabilities strictly
less than the probability threshold (correctly predicted).

• True positives: Positive cases in the test data with predicted probabilities greater
than or equal to the probability threshold (correctly predicted).

• False negatives: Positive cases in the test data with predicted probabilities strictly
less than the probability threshold (incorrectly predicted).

• False positives: Negative cases in the test data with predicted probabilities
greater than or equal to the probability threshold (incorrectly predicted).

• True positive fraction: Hit rate. (true positives/(true positives + false negatives))

• False positive fraction: False alarm rate. (false positives/(false positives + true
negatives))

4.3 Biasing a Classification Model
Costs, prior probabilities, and class weights are methods for biasing classification
models.

4.3.1 Costs
A cost matrix is a mechanism for influencing the decision making of a model. A cost
matrix can cause the model to minimize costly misclassifications. It can also cause the
model to maximize beneficial accurate classifications.

For example, if a model classifies a customer with poor credit as low risk, this error is
costly. A cost matrix can bias the model to avoid this type of error. The cost matrix can
also be used to bias the model in favor of the correct classification of customers who
have the worst credit history.

ROC is a useful metric for evaluating how a model behaves with different probability
thresholds. You can use ROC to help you find optimal costs for a given classifier
given different usage scenarios. You can use this information to create cost matrices to
influence the deployment of the model.

4.3.1.1 Costs Versus Accuracy
Compares Cost matrix and Confusion matrix for costs and accuracy to evaluate model
quality.

Like a confusion matrix, a cost matrix is an n-by-n matrix, where n is the number of
classes. Both confusion matrices and cost matrices include each possible combination
of actual and predicted results based on a given set of test data.

A confusion matrix is used to measure accuracy, the ratio of correct predictions to the
total number of predictions. A cost matrix is used to specify the relative importance
of accuracy for different predictions. In most business applications, it is important to
consider costs in addition to accuracy when evaluating model quality.

Related Topics

• Confusion Matrix

Chapter 4
Biasing a Classification Model

4-6

4.3.1.2 Positive and Negative Classes
Discusses the importance of positive and negative classes in a confusion matrix.

The positive class is the class that you care the most about. Designation of a positive
class is required for computing Lift and ROC.

In the confusion matrix, in the following figure, the value 1 is designated as the
positive class. This means that the creator of the model has determined that it is more
important to accurately predict customers who increase spending with an affinity card
(affinity_card=1) than to accurately predict non-responders (affinity_card=0). If
you give affinity cards to some customers who are not likely to use them, there is
little loss to the company since the cost of the cards is low. However, if you overlook
the customers who are likely to respond, you miss the opportunity to increase your
revenue.

Figure 4-2 Positive and Negative Predictions

PREDICTED CLASS

ACTUAL CLASS

affinity_card = 1 affinity_card = 0

725

(true negative)

10

(false positive)
affinity_card = 0

25

(false negative)

516

(true positive)
affinity_card = 1

The true and false positive rates in this confusion matrix are:

• False positive rate — 10/(10 + 725) =.01

• True positive rate — 516/(516 + 25) =.95

Related Topics

• Lift
Lift measures the degree to which the predictions of a classification model are
better than randomly-generated predictions.

• Receiver Operating Characteristic (ROC)
ROC is a metric for comparing predicted and actual target values in a classification
model.

4.3.1.3 Assigning Costs and Benefits
In a cost matrix, positive numbers (costs) can be used to influence negative outcomes.
Since negative costs are interpreted as benefits, negative numbers (benefits) can be
used to influence positive outcomes.

Chapter 4
Biasing a Classification Model

4-7

Suppose you have calculated that it costs your business $1500 when you do not
give an affinity card to a customer who can increase spending. Using the model with
the confusion matrix shown in Figure 4-2, each false negative (misclassification of
a responder) costs $1500. Misclassifying a non-responder is less expensive to your
business. You estimate that each false positive (misclassification of a non-responder)
only costs $300.

You want to keep these costs in mind when you design a promotion campaign. You
estimate that it costs $10 to include a customer in the promotion. For this reason,
you associate a benefit of $10 with each true negative prediction, because you can
eliminate those customers from your promotion. Each customer that you eliminate
represents a savings of $10. In your cost matrix, you specify this benefit as -10, a
negative cost.

The following figure shows how you would represent these costs and benefits in a cost
matrix:

Figure 4-3 Cost Matrix Representing Costs and Benefits

PREDICTED

ACTUAL

affinity_card = 1 affinity_card = 0

-10300affinity_card = 0

15000affinity_card = 1

With Oracle Machine Learning for SQL you can specify costs to influence the scoring
of any classification model. Decision Tree models can also use a cost matrix to
influence the model build.

4.3.2 Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful
result.

With Bayesian models, you can specify Prior probabilities to offset differences in
distribution between the build data and the real population (scoring data). With other
forms of classification, you are able to specify Class Weights, which have the same
biasing effect as priors.

In many problems, one target value dominates in frequency. For example, the positive
responses for a telephone marketing campaign is 2% or less, and the occurrence of
fraud in credit card transactions is less than 1%. A classification model built on historic
data of this type cannot observe enough of the rare class to be able to distinguish
the characteristics of the two classes; the result can be a model that when applied to

Chapter 4
Biasing a Classification Model

4-8

new data predicts the frequent class for every case. While such a model can be highly
accurate, it is not be very useful. This illustrates that it is not a good idea to rely solely
on accuracy when judging the quality of a classification model.

To correct for unrealistic distributions in the training data, you can specify priors for the
model build process. Other approaches to compensating for data distribution issues
include stratified sampling and anomaly detection.

Related Topics

• Anomaly Detection
Learn how to detect rare cases in the data through anomaly detection - an
unsupervised function.

4.4 Classification Algorithms
Learn the different classification algorithms used in Oracle Machine Learning for SQL.

Oracle Machine Learning for SQL provides the following algorithms for classification:

• Decision Tree

Decision trees automatically generate rules, which are conditional statements that
reveal the logic used to build the tree.

• Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) is designed to make predictions for text data.
This algorithm can address use cases with hundreds of thousands of classes.

• Generalized Linear Model

Generalized Linear Model (GLM) is a popular statistical technique for linear
modeling. OML4SQL implements GLM for binary classification and for regression.
GLM provides extensive coefficient statistics and model statistics, as well as row
diagnostics. GLM also supports confidence bounds.

• Naive Bayes

Naive Bayes uses Bayes' Theorem, a formula that calculates a probability by
counting the frequency of values and combinations of values in the historical data.

• Random Forest

Random Forest is a powerful and popular machine learning algorithm that brings
significant performance and scalability benefits.

• Support Vector Machine

Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm based
on linear and nonlinear regression. OML4SQL implements SVM for binary and
multiclass classification.

• XGBoost
XGBoost is machine learning algorithm for regression and classification that
makes available the XGBoost open source package. Oracle Machine Learning
for SQL XGBoost prepares training data, invokes XGBoost, builds and persists a
model, and applies the model for prediction.

Chapter 4
Classification Algorithms

4-9

Note:

OML4SQL uses Naive Bayes as the default classification algorithm.

Related Topics

• Decision Tree
Oracle Machine Learning for SQL supports Decision Tree as one of the
classification algorithms. This chapter provides an overview of the Decision Tree
algorithm.

• Explicit Semantic Analysis
Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm
for feature extraction function and as a supervised algorithm for classification.

• Generalized Linear Model
Learn how to use Generalized Linear Model (GLM) statistical technique for linear
modeling.

• Multivariate State Estimation Technique - Sequential Probability Ratio Test
The Multivariate State Estimation Technique - Sequential Probability Ratio Test
(MSET-SPRT) algorithm monitors critical processes and detects subtle anomalies.

• Naive Bayes
Learn how to use the Naive Bayes classification algorithm.

• Random Forest
Learn how to use Random Forest as a classification algorithm.

• Support Vector Machine
Learn how to use Support Vector Machine (SVM), a powerful algorithm based on
statistical learning theory.

• XGBoost
XGBoost is highly-efficient, scalable machine learning algorithm for regression and
classification that makes available the XGBoost Gradient Boosting open source
package.

Chapter 4
Classification Algorithms

4-10

5
Clustering

Learn how to discover natural groupings in the data through clustering - the
unsupervised machine learning function.

• About Clustering

• Evaluating a Clustering Model

• Clustering Algorithms

– Expectation Maximization

– k-Means

– O-Cluster

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

5.1 About Clustering
Clustering analysis finds clusters of data objects that are similar to one another.

The members of a cluster are more like each other than they are like members of
other clusters. Different clusters can have members in common. The goal of clustering
analysis is to find high-quality clusters such that the inter-cluster similarity is low and
the intra-cluster similarity is high.

Clustering, like classification, is used to segment the data. Unlike classification,
clustering models segment data into groups that were not previously defined.
Classification models segment data by assigning it to previously-defined classes,
which are specified in a target. Clustering models do not use a target.

Clustering is useful for exploring data. You can use clustering algorithms to find natural
groupings when there are many cases and no obvious groupings.

Clustering can serve as a useful data-preprocessing step to identify homogeneous
groups on which you can build supervised models.

You can also use clustering for anomaly detection. Once you segment the data into
clusters, you find that some cases do not fit well into any clusters. These cases are
anomalies or outliers.

5.1.1 How are Clusters Computed?
There are several different approaches to the computation of clusters. Oracle Machine
Learning for SQL supports the methods listed here.

5-1

• Density-based: This type of clustering finds the underlying distribution of the data
and estimates how areas of high density in the data correspond to peaks in the
distribution. High-density areas are interpreted as clusters. Density-based cluster
estimation is probabilistic.

• Distance-based: This type of clustering uses a distance metric to determine
similarity between data objects. The distance metric measures the distance
between actual cases in the cluster and the prototypical case for the cluster. The
prototypical case is known as the centroid.

• Grid-based: This type of clustering divides the input space into hyper-rectangular
cells and identifies adjacent high-density cells to form clusters.

5.1.2 Scoring New Data
Although clustering is an unsupervised machine learning function, Oracle Machine
Learning for SQL supports the scoring operation for clustering.

New data is scored probabilistically.

5.1.3 Hierarchical Clustering
Oracle Machine Learning for SQL supports clustering algorithms that perform
hierarchical clustering.

The leaf clusters are the final clusters generated by the algorithm. Clusters higher up
in the hierarchy are intermediate clusters.

5.1.3.1 Rules
Rules describe the data in each cluster.

A rule is a conditional statement that captures the logic used to split a parent cluster
into child clusters. A rule describes the conditions for a case to be assigned with some
probability to a cluster.

5.1.3.2 Support and Confidence
Support and confidence are metrics that describe the relationships between
clustering rules and cases.

Support is the percentage of cases for which the rule holds. Confidence is the
probability that a case described by this rule is actually assigned to the cluster.

5.1.4 Clustering Algorithms
Learn different clustering algorithms used in Oracle Machine Learning for SQL.

Oracle Machine Learning for SQL supports these clustering algorithms:

• Expectation Maximization

Expectation Maximization is a probabilistic, density-estimation clustering algorithm.

• k-Means

k-Means is a distance-based clustering algorithm. OML4SQL supports an
enhanced version of k-Means.

Chapter 5
About Clustering

5-2

• Orthogonal Partitioning Clustering (O-Cluster)

O-Cluster is a proprietary, grid-based clustering algorithm.

See Also:

Campos, M.M., Milenova, B.L., "O-Cluster: Scalable Clustering of Large
High Dimensional Data Sets", Oracle Data Mining Technologies, 10 Van
De Graaff Drive, Burlington, MA 01803.

The main characteristics of the two algorithms are compared in the following table.

Table 5-1 Clustering Algorithms Compared

Feature k-Means O-Cluster Expectation Maximization

Clustering methodolgy Distance-based Grid-based Distribution-based

Number of cases Handles data sets of any
size

More appropriate for data sets
that have more than 500 cases.
Handles large tables through
active sampling

Handles data sets of any
size

Number of attributes More appropriate for
data sets with a low
number of attributes

More appropriate for data sets
with a high number of attributes

Appropriate for data sets
with many or few attributes

Number of clusters User-specified Automatically determined Automatically determined

Hierarchical clustering Yes Yes Yes

Probabilistic cluster
assignment

Yes Yes Yes

Note:

OML4SQL uses k-Means as the default clustering algorithm.

Related Topics

• Oracle Machine Learning for SQL

• Expectation Maximization
Learn how to use expectation maximization clustering algorithm.

• k-Means
Oracle Machine Learning for SQL supports enhanced k-Means clustering
algorithm. Learn how to use the algorithm.

• O-Cluster
Learn how to use orthogonal partitioning clustering (O-Cluster), an Oracle-
proprietary clustering algorithm.

Chapter 5
About Clustering

5-3

unilink:datamining_index

5.2 Evaluating a Clustering Model
Since known classes are not used in clustering, the interpretation of clusters can
present difficulties. How do you know if the clusters can reliably be used for business
decision making?

Oracle Machine Learning for SQL clustering models support a high degree of model
transparency. You can evaluate the model by examining information generated by the
clustering algorithm: for example, the centroid of a distance-based cluster. Moreover,
because the clustering process is hierarchical, you can evaluate the rules and other
information related to each cluster's position in the hierarchy.

Chapter 5
Evaluating a Clustering Model

5-4

6
Anomaly Detection

Learn how to detect rare cases in the data through anomaly detection - an
unsupervised function.

• About Anomaly Detection

• Anomaly Detection Algorithms

– Multivariate State Estimation Technique - Sequential Probability Ratio Test

– One-Class SVM

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

See Also:

• Campos, M.M., Milenova, B.L., Yarmus, J.S., "Creation and Deployment
of Data Mining-Based Intrusion Detection Systems in Oracle Database
10g"

• K. C. Gross, V. Bhardwaj and R. Bickford, "Proactive detection of
software aging mechanisms in performance critical computers," 27th
Annual NASA Goddard/IEEE Software Engineering Workshop, 2002.
Proceedings., Greenbelt, MD, USA, 2002, pp. 17-23, doi: 10.1109/
SEW.2002.1199445.

6.1 About Anomaly Detection
The goal of anomaly detection is to identify items, events, or observations that are
unusual within data that is seemingly 'normal'. This data may consist of traditional
enterprise data or Internet of Things (IoT) sensor data.

Anomaly detection is an important tool for detecting, for example, fraud, network
intrusions, enterprise computing service interruptions, sensor time series prognostics,
and other rare events that can have great significance but are hard to find. Anomaly
detection can be used to solve problems like the following:

• A law enforcement agency compiles data about illegal activities, but nothing about
legitimate activities. How can a suspicious activity be flagged?

The law enforcement data is all of one class. There are no counter-examples.

• An insurance agency processes millions of insurance claims, knowing that a very
small number are fraudulent. How can the fraudulent claims be identified?

6-1

The claims data contains very few counter-examples. They are outliers.

• An IT department encounters compute resource performance anomalies. How
can such anomalies be detected along with their source causes, such as resource-
contention issues and complex memory leaks?

The data contains sensor output from thousands of sensors.

• An oil and gas enterprise or utility company requires proactive maintenance of
business-critical assets, such as oil rigs or smart meters, to reduce operations and
maintenance costs, improve up-time of revenue-generating assets, and improve
safety margins for life-critical systems.

6.1.1 Anomaly Detection as a form of One-Class Classification
Learn about anomaly detection as one-class classification in training data.

When applied to traditional data, anomaly detection can be viewed as a form of
one-class classification, because ideally only one class is represented in the training
data. An anomaly detection model predicts whether a data point is typical for a given
distribution or not. An atypical data point can be either an outlier or an example of a
previously unseen class.

Normally, a classification model must be trained on data that includes both examples
and counterexamples for each class so that the model can learn to distinguish
between them. For example, a model that predicts the side effects of a medication
must be trained on data that includes a wide range of responses to the medication.

A one-class classifier develops a profile that generally describes a typical case in
the training data. Deviation from the profile is identified as an anomaly. One-class
classifiers are sometimes referred to as positive security models, because they seek to
identify "good" behaviors and assume that all other behaviors are bad.

In single-class data, all the cases have the same classification. Counterexamples,
instances of another class, are hard to specify or expensive to collect. For instance,
in text document classification, it is easy to classify a document under a given
topic. However, the universe of documents outside of this topic can be very large
and diverse. Thus, it is not feasible to specify other types of documents as
counterexamples. Anomaly detection can be used to find unusual instances of a
particular type of document.

Note:

Solving a one-class classification problem can be difficult. The accuracy
of one-class classifiers cannot usually match the accuracy of standard
classifiers built with meaningful counter examples.

The goal of this type of anomaly detection is to provide some useful
information where no information was previously attainable. However, if there
are enough of the "rare" cases so that stratified sampling produces a training
set with enough counterexamples for a standard classification model, then
the classification may be a better solution.

Chapter 6
About Anomaly Detection

6-2

Related Topics

• About Classification
Classification is a machine learning function that assigns items in a collection to
target categories or classes.

6.1.2 Anomaly Detection for Time Series Data
Learn about anomaly detection in IoT sensor data.

With the growing number of sensors in the internet of things, the ability to identify
anomalous events among potentially thousands of sensors is essential. For example,
in the early detection of anomalies in business-critical enterprise computing servers
and software systems, storage systems, and networks.

Enterprises require high anomaly detection accuracy, which implies lower false-alarm
probabilities, lower missed-alarm probabilities, and lower overhead compute cost. The
ability to distinguish between a real problem and sensor malfunction can significantly
reduce costs in problem solution.

Building a model involves supplying historical, error-free operating data from, for
example, monitored equipment. The resulting model is used to score new sensor data,
also referred to as the monitoring phase, to estimate the expected sensor values.

6.2 Anomaly Detection Algorithms
For anomaly detection, Oracle Machine Learning for SQL has the following algorithms.

• Multivariate state Estimation Technique - Sequential Probability Ratio Test (MSET-
SPRT)

• One-Class Support Vector Machine (SVM)

Anomaly detection is a form of classification. When you create a model using
the MSET-SPRT and One-Class SVM algorithms, specify the classification machine
learning function. These algorithms do not use a target.

Related Topics

• Multivariate State Estimation Technique - Sequential Probability Ratio Test
The Multivariate State Estimation Technique - Sequential Probability Ratio Test
(MSET-SPRT) algorithm monitors critical processes and detects subtle anomalies.

• One-Class SVM
Support Vector Machine (SVM) as a one-class classifier is used for detecting
anomalies.

Chapter 6
Anomaly Detection Algorithms

6-3

7
Ranking

Ranking is a regression machine learning technique.

• About Ranking

• Ranking Methods

• Ranking Algorithms

– XGBoost

7.1 About Ranking
Ranking is a machine learning technique to rank items.

Ranking is useful for many applications in information retrieval such as e-commerce,
social networks, recommendation systems, and so on. For example, a user searches
for an article or an item to buy online. To build a recommendation system, it becomes
important that similar articles or items of relevance appear to the user such that
the user clicks or purchases the item. A simple regression model can predict the
probability of a user to click an article or buy an item. However, it is more practical to
use ranking technique and be able to order or rank the articles or items to maximize
the chances of getting a click or purchase. The prioritization of the articles or the items
influence the decision of the users.

The ranking technique directly ranks items by training a model to predict the ranking of
one item over another item. In the training model, it is possible to have items, ranking
one over the other by having a "score" for each item. Higher ranked items have higher
scores and lower ranked items have lower scores. Using these scores, a model is built
to predict which item ranks higher than the other.

7.2 Ranking Methods
Oracle Machine Learning supports pairwise and listwise ranking methods through
XGBoost.

For a training data set, in a number of sets, each set consists of objects and labels
representing their ranking. A ranking function is constructed by minimizing a certain
loss function on the training data. Using test data, the ranking function is applied to get
a ranked list of objects. Ranking is enabled for XGBoost using the regression function.
OML4SQL supports pairwise and listwise ranking methods through XGBoost.

Pairwise ranking: This approach regards a pair of objects as the learning instance.
The pairs and lists are defined by supplying the same case_id value. Given a pair
of objects, this approach gives an optimal ordering for that pair. Pairwise losses
are defined by the order of the two objects. In OML4SQL, the algorithm uses
LambdaMART to perform pairwise ranking with the goal of minimizing the average
number of inversions in ranking.

7-1

Listwise ranking: This approach takes multiple lists of ranked objects as learning
instance. The items in a list must have the same case_id. The algorithm uses
LambdaMART to perform list-wise ranking.

See Also:

• "Ranking Measures and Loss Functions in Learning to Rank" a research
paper presentation at https://www.researchgate.net/

• Oracle Database PL/SQL Packages and Types Reference for a listing
and explanation of the available model settings for XGBoost.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• XGBoost
XGBoost is highly-efficient, scalable machine learning algorithm for regression and
classification that makes available the XGBoost Gradient Boosting open source
package.

• DBMS_DATA_MINING — Algorithm Settings: XGBoost

7.3 Ranking Algorithms
Ranking falls under the Regression function.

OML4SQL supports XGBoost algorithm for ranking.

Related Topics

• XGBoost
XGBoost is highly-efficient, scalable machine learning algorithm for regression and
classification that makes available the XGBoost Gradient Boosting open source
package.

Chapter 7
Ranking Algorithms

7-2

https://www.researchgate.net/

8
Association

Learn how to discover association rules through association - an unsupervised
machine learning function.

• About Association

• Transactional Data

• Association Algorithm

– Apriori

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

8.1 About Association
Association is a Oracle Machine Learning for SQL function that discovers the
probability of the co-occurrence of items in a collection.

The relationships between co-occurring items are expressed as Association Rules.

8.1.1 Association Rules
Identifies the pattern of association within the data.

The results of an association model are the rules that identify patterns of association
within the data. Oracle Machine Learning for SQL does not support the scoring
operation for association modeling.

Association rules can be applied as follows:

Support: How often do these items occur together in the data?
Confidence: How frequently the consequent occurs in transactions that contain the
antecedent.
Value: How much business value is connected to item associations

8.1.2 Market-Basket Analysis
Association rules are often used to analyze sales transactions. For example, it is noted
that customers who buy cereal at the grocery store often buy milk at the same time.
In fact, association analysis find that 85% of the checkout sessions that include cereal
also include milk. This relationship can be formulated as the following rule:

Cereal implies milk with 85% confidence

8-1

This application of association modeling is called market-basket analysis. It is
valuable for direct marketing, sales promotions, and for discovering business trends.
Market-basket analysis can also be used effectively for store layout, catalog design,
and cross-sell.

8.1.3 Association Rules and eCommerce
Learn about application of association rules in other domains.

Association modeling has important applications in other domains as well. For
example, in e-commerce applications, association rules may be used for Web page
personalization. An association model might find that a user who visits pages A and B
is 70% likely to also visit page C in the same session. Based on this rule, a dynamic
link can be created for users who are likely to be interested in page C. The association
rule is expressed as follows:

A and B imply C with 70% confidence

Related Topics

• Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

8.2 Transactional Data
Learn about transactional data, also known as market-basket data.

Unlike other machine learning functions, association is transaction-based. In
transaction processing, a case includes a collection of items such as the contents
of a market basket at the checkout counter. The collection of items in the transaction
is an attribute of the transaction. Other attributes might be a timestamp or user ID
associated with the transaction.

Transactional data, also known as market-basket data, is said to be in multi-record
case format because a set of records (rows) constitute a case. For example, in the
following figure, case 11 is made up of three rows while cases 12 and 13 are each
made up of four rows.

Figure 8-1 Transactional Data

attribute2

OPER_ID

m5203
m5203
m5203
m5203
m5203
m5203
m5203
q5597
q5597
q5597
q5597

attribute1

ITEM_ID

B
D
E
A
B
C
E
B
C
D
E

case ID

TRANS_ID

11
11
11
12
12
12
12
13
13
13
13

Chapter 8
Transactional Data

8-2

Non transactional data is said to be in a single-record case format because a single
record (row) constitutes a case. In Oracle Machine Learning for SQL, association
models can be built using either transactional or non transactional or two-dimensional
data formats. If the data is non transactional, it is possible to transform to a nested
column to make it transactional before association machine learning activities can be
performed. Transactional format is the usual format but, the association rules model
does accept two-dimensional input format. For non transactional input format, each
distinct combination of the content in all columns other than the case ID column is
treated as a unique item.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

• Data Preparation for Apriori

8.3 Association Algorithm
Oracle Machine Learning for SQL uses the Apriori algorithm to calculate association
rules for items in frequent itemsets.

Related Topics

• Apriori
Learn how to calculate association rules using the Apriori algorithm.

Chapter 8
Association Algorithm

8-3

9
Feature Selection

Learn how to perform feature selection and attribute importance.

Oracle Machine Learning for SQL supports attribute importance as a supervised and
unsurpervised machine learning function .

• Finding the Best Attributes

• About Feature Selection and Attribute Importance

• Algorithms for Attribute Importance

– CUR Matrix Decomposition

– Minimum Description Length

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

9.1 Finding the Best Attributes
Find the best attributes by using preprocessing steps to reduce the effect of noise,
correlation, and high-dimensionality.

Sometimes too much information can reduce the effectiveness of OML4SQL. Some
of the columns of data attributes assembled for building and testing a model in a
supervised learning do not contribute meaningful information to the model. Some
actually detract from the quality and accuracy of the model.

For example, you want to collect a great deal of data about a given population
because you want to predict the likelihood of a certain illness within this group. Some
of this information, perhaps much of it, has little or no effect on susceptibility to the
illness. It is possible that attributes such as the number of cars per household do not
have effect whatsoever.

Irrelevant attributes add noise to the data and can affect model accuracy. Noise
increases the size of the model and the time and system resources needed for model
building and scoring.

Data sets with many attributes can contain groups of attributes that are correlated.
These attributes actually measure the same underlying feature. Their presence
together in the build data can skew the patterns found by algorithm and affect the
accuracy of the model.

Wide data (many attributes) typically results in more processing by machine learning
algorithms. Model attributes are the dimensions of the processing space used by
the algorithm. The higher the dimensionality of the processing space, the higher the
computation cost involved in algorithmic processing.

To minimize the effects of noise, correlation, and high dimensionality, some form
of dimension reduction is often a desirable preprocessing step. Feature selection

9-1

involves identifying those attributes that are most predictive and selecting among
those to provide the algorithm for model building. Informative and representative
samples are best suited in feature selection. Sometimes you can represent the
variables that are important than to represent the linear combination of variables. You
can single-out and measure the "importance" of a column or a row in a data matrix in
an unsupervised manner (a low-rank matrix decomposition).

Feature selection optimization is performed in the Decision Tree algorithm and within
Naive Bayes as an algorithm behavior. The Generalized Linear Model (GLM) algorithm
can be configured to perform feature selection through model setting.

9.2 About Feature Selection and Attribute Importance
Finding the most significant predictors is the goal of some machine learning projects.
For example, a model might seek to find the principal characteristics of clients who
pose a high credit risk.

Oracle Machine Learning for SQL supports the attribute importance machine
learning function, which ranks attributes according to their importance. Attribute
importance does not actually select the features, but ranks them as to their relevance
to predicting the result. It is up to the user to review the ranked features and create a
data set to include the desired features.

Feature selection is useful as a preprocessing step to improve computational efficiency
in predictive modeling.

9.2.1 Attribute Importance and Scoring
The results of attribute importance are the attributes of the build data ranked according
to their influence.

The ranking and the measure of importance can be used in selecting training data for
classification and regression models. Also, used for selecting data for unsupervised
algorithm like CUR matrix decomposition. Oracle Machine Learning for SQL does not
support the scoring operation for attribute importance.

9.3 Algorithms for Attribute Importance
Understand the algorithms used for attribute importance.

Oracle Machine Learning for SQL supports the following algorithms for attribute
importance:

• Minimum Description Length

• CUR Matrix Decomposition

Related Topics

• CUR Matrix Decomposition
Learn how to use CUR decomposition based algorithm for attribute importance.

• Minimum Description Length
Learn how to use Minimum Description Length, the supervised technique for
calculating attribute importance.

Chapter 9
About Feature Selection and Attribute Importance

9-2

10
Feature Extraction

Learn how to perform attribute reduction using feature extraction as an unsupervised
function.

Oracle Machine Learning for SQL supports feature extraction as an unsupervised
machine learning function.

• About Feature Extraction

• Algorithms for Feature Extraction

– Explicit Semantic Analysis

– Non-Negative Matrix Factorization

– Singular Value Decomposition

Related Topics

• Oracle Machine Learning Basics
Understand the basic concepts of Oracle Machine Learning.

10.1 About Feature Extraction
Feature extraction is an dimensionality reduction process. Unlike feature selection,
which selects and retains the most significant attributes, feature extraction actually
transforms the attributes. The transformed attributes, or features, are linear
combinations of the original attributes.

The feature extraction process results in a much smaller and richer set of attributes.
The maximum number of features can be user-specified or determined by the
algorithm. By default, the algorithm determines it.

Models built on extracted features can be of higher quality, because fewer and more
meaningful attributes describe the data.

Feature extraction projects a data set with higher dimensionality onto a smaller
number of dimensions. As such it is useful for data visualization, since a complex
data set can be effectively visualized when it is reduced to two or three dimensions.

Some applications of feature extraction are latent semantic analysis, data
compression, data decomposition and projection, and pattern recognition. Feature
extraction can also be used to enhance the speed and effectiveness of machine
learning algorithms.

Feature extraction can be used to extract the themes of a document collection,
where documents are represented by a set of key words and their frequencies. Each
theme (feature) is represented by a combination of keywords. The documents in the
collection can then be expressed in terms of the discovered themes.

10-1

10.1.1 Feature Extraction and Scoring
Oracle Machine Learning for SQL supports the scoring operation for feature extraction.
As an unsupervised machine learning function, feature extraction does not involve a
target. When applied, a feature extraction model transforms the input into a set of
features.

10.2 Algorithms for Feature Extraction
Understand the algorithms used for feature extraction.

OML4SQL supports these feature extraction algorithms:

• Explicit Semantic Analysis (ESA).

• Non-Negative Matrix Factorization (NMF).

• Singular Value Decomposition (SVD) and Prediction Component Analysis
(PCA).

Note:

OML4SQL uses NMF as the default feature extraction algorithm.

Related Topics

• Explicit Semantic Analysis
Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm
for feature extraction function and as a supervised algorithm for classification.

• Non-Negative Matrix Factorization
Learn how to use Non-Negative Matrix Factorization (NMF), an unsupervised
algorithm, that Oracle Machine Learning for SQL uses for feature extraction.

• Singular Value Decomposition
Learn how to use Singular Value Decomposition, an unsupervised algorithm for
feature extraction.

• PCA scoring
Learn about configuring Singular Value Decomposition (SVD) to perform Principal
Component Analysis (PCA) projections.

Chapter 10
Algorithms for Feature Extraction

10-2

11
Row Importance

Row importance is an unsupervised machine learning technique that can be applied to
data as a preprocessing step prior to model building using other mining functions and
algorithms.

• About Row Importance

• Row Importance Algorithms

– CUR Matrix Decomposition

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: CUR Matrix Decomposition

11.1 About Row Importance
Row importance captures the influence of the rows or cases in a data set.

Row importance technique is used in dimensionality reduction of large data sets.
Row importance identifies the most influential rows of the data matrix. The rows with
high importance are ranked by their importance scores. The "importance" of a row
is determined by high statistical leverage scores. In CUR matrix decomposition, row
importance is often combined with column (attribute) importance. Row importance
can serve as a data preprocessing step prior to model building using regression,
classification, and clustering.

Related Topics

• CUR Matrix Decomposition
Learn how to use CUR decomposition based algorithm for attribute importance.

• Statistical Leverage Score
Leverage scores are statistics that determine which column (or rows) are most
representative with respect to a rank subspace of a matrix. The statistical leverage
scores represent the column (or attribute) and row importance.

• CUR Matrix Decomposition Algorithm Configuration
Learn about configuring the CUR Matrix Decomposition algorithm.

11.2 Selecting Important Rows
The rows with high importance are ranked by their importance scores. The
"importance" of a row is determined by high statistical leverage scores.

Row importance, that is, rows with high leverage scores are reported as names (as
case_id), scores (as importance), and ranks (by importance).

11-1

11.3 Row Importance Algorithms
Oracle Machine Learning for SQL supports CUR matrix decomposition algorithm for
row and column (attribute) importance.

Popular algorithms for dimensionality reduction are Principal Component Analysis
(PCA), Singular Value Decomposition (SVD), and CUR Matrix Decomposition. All
these algorithms apply low-rank matrix decomposition.

In CUR matrix decomposition, the attributes include 2-Dimensional numerical columns,
levels of exploded 2D categorical columns, and attribute name or subname or
value pairs for nested columns. To arrive at row importance or selection, the
algorithm computes singular vectors, calculates leverage scores, and then selects
rows. Row importance is performed when users specify CURS_ROW_IMP_ENABLE for
the CURS_ROW_IMPORTANCE parameter in the settings table and the case_id column is
present. Unless users explicitly specify, row importance is not performed.

Related Topics

• Singular Value Decomposition
Learn how to use Singular Value Decomposition, an unsupervised algorithm for
feature extraction.

• CUR Matrix Decomposition
Learn how to use CUR decomposition based algorithm for attribute importance.

Chapter 11
Row Importance Algorithms

11-2

12
Time Series

Learn about time series as an Oracle Machine Learning for SQL regression function.

• About Time Series

• Choosing a Time Series Model

• Time Series Statistics

• Time Series Algorithm

– Exponential Smoothing

12.1 About Time Series
Time series is a machine learning function that forecasts target value based solely on
a known history of target values. It is a specialized form of regression, known in the
literature as auto-regressive modeling.

The input to time series analysis is a sequence of target values. A case id column
specifies the order of the sequence. The case id can be of type NUMBER or a date
type (date, datetime, timestamp with timezone, or timestamp with local timezone).
Regardless of case id type, the user can request that the model include trend,
seasonal effects or both in its forecast computation. When the case id is a date
type, the user must specify a time interval (for example, month) over which the target
values are to be aggregated, along with an aggregation procedure (for example, sum).
Aggregation is performed by the algorithm prior to constructing the model.

The time series model provide estimates of the target value for each step of a
time window that can include up to 30 steps beyond the historical data. Like other
regression models, time series models compute various statistics that measure the
goodness of fit to historical data.

Forecasting is a critical component of business and governmental decision making.
It has applications at the strategic, tactical and operation level. The following are the
applications of forecasting:

• Projecting return on investment, including growth and the strategic effect of
innovations

• Addressing tactical issues such as projecting costs, inventory requirements and
customer satisfaction

• Setting operational targets and predicting quality and conformance with standards

Related Topics

• Regression
Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

12-1

12.2 Choosing a Time Series Model
Learn how to select a time series model.

Time series data may contain patterns that can affect predictive accuracy. For
example, during a period of economic growth, there may be an upward trend in sales.
Sales may increase in specific seasons (bathing suits in summer). To accommodate
such series, it can be useful to choose a model that incorporates trend, seasonal
effects, or both.

Trend can be difficult to estimate, when you must represent trend by a single constant.
For example, if there is a grow rate of 10%, then after 7 steps, the value doubles.
Local growth rates, appropriate to a few time steps can easily approach such levels,
but thereafter drop. Damped trend models can more accurately represent such data,
by reducing cumulative trend effects. Damped trend models can better represent
variability in trend effects over the historical data. Damped trend models are a good
choice when the data have significant, but variable trend.

Since modeling attempts to reduce error, how error is measured can affect model
predictions. For example, data that exhibit a wide range of values may be better
represented by error as fraction of level. An error of a few hundred feet in the
measurement of the height of a mountain may be equivalent to an error of an inch
or two in the measurement of the height of a child. Errors that are measured relative
to value are called multiplicative errors. Errors that are the same across values are
called additive errors. If there are multiplicative effects in the model, then the error
type is multiplicative. If there are no explicit multiplicative effects, error type is left
to user specification. The type need not be the same across individual effects. For
example, trend can be additive while seasonality is multiplicative. This particular mixed
type effect combination defines the popular Holt-Winters model.

Note:

Multiplicative error is not an appropriate choice for data that contain zeros
or negative values. Thus, when the data contains such values, it is best
not to choose a model with multiplicative effects or to set error type to be
multiplicative.

12.3 Time Series Statistics
Learn to evaluate model quality by applying commonly used statistics.

As with other regression functions, there are commonly used statistics for evaluating
the overall model quality. An expert user can also specify one of these figures of merit
as criterion to optimize by the model build process. Choosing an optimization criterion
is not required because model-specific defaults are available.

12.3.1 Conditional Log-Likelihood
Log-likelihood is a figure of merit often used as an optimization criterion for models
that provide probability estimates for predictions which depend on the values of the
model’s parameters.

Chapter 12
Choosing a Time Series Model

12-2

The model probability estimates for the actual values in the training data then yields
an estimate of the likelihood of the parameter values. Parameter values that yield high
probabilities for the observed target values have high likelihood, and therefore indicate
a good model. The calculation of log-likelihood depends on the form of the model.

Conditional log-likelihood breaks the parameters into two groups. One group is
assumed to be correct and the other is assumed the source of any errors. Conditional
log-likelihood is the log-likelihood of the latter group conditioned on the former group.
For example, Exponential Smoothing (ESM) models make an estimate of the initial
model state. The conditional log-likelihood of an ESM model is conditional on that
initial model state (assumed to be correct). The ESM conditional log-likelihood is as
follows:

where et is the error at time t and k(x(t-1)) is 1 for ESM models with additive errors
and is the estimated level at the previous time step in models with multiplicative error.

12.3.2 Mean Square Error (MSE) and Other Error Measures
Another time series figure of merit, that can also be used as an optimization criterion,
is Mean Square Error (MSE).

The mean square error is computed as:

where the error at time t is the difference between the actual and model one step
ahead forecast value at time t for models with additive error and that difference divided
by the one-step ahead forecast for models with multiplicative error.

Note:

These "forecasts" are for over periods already observed and part of the input
time series.

Since time series models can forecast for each of multiple steps ahead, time series
can measure the error associated with such forecasts. Average Mean Square Error
(AMSE), another figure of merit, does exactly that. For each period in the input time
series, it computes a multi-step forecast, computes the error of those forecasts and
averages the errors. AMSE computes the individual errors exactly as MSE does
taking cognizance of error type (additive or multiplicative). The number of steps, k,
is determined by the user (default 3). The formula is as follows:

Chapter 12
Time Series Statistics

12-3

Other figure of merit relatives of MSE include the Residual Standard Error (RMSE),
which is the square root of MSE, and the Mean Absolute Error (MAE) which is the
average of the absolute value of the errors.

12.3.3 Irregular Time Series
Irregular time series are time series data where the time intervals between observed
values are not equally spaced.

One common practice is for the time intervals between adjacent steps to be equally
spaced. However, it is not always convenient or realistic to force such spacing on time
series. Irregular time series do not make the assumption that time series are equally
spaced, but instead use the case id’s date and time values to compute the intervals
between observed values. Models are constructed directly on the observed values
with their observed spacing. Oracle time series analysis handles irregular time series.

12.3.4 Build Apply
Learn about build and apply operations of time series function.

Many of the Oracle Machine Learning for SQL functions have separate build and apply
operations, because you can construct and potentially apply a model to many different
sets of input data. However, time series input consists of the target value history only.
Thus, there is only one set of appropriate input data. When new data arrive, good
practice dictates that a new model be built. Since the model is only intended to be
used once, the model statistics and forecasts are produced during model build and are
available through the model views.

12.4 Time Series Algorithm
Oracle Machine Learning for SQL uses the Exponential Smoothing algorithm to
forecast from time series data.

Related Topics

• Exponential Smoothing
Learn about the Exponential Smoothing algorithm.

Chapter 12
Time Series Algorithm

12-4

Part III
Algorithms

Oracle Machine Learning for SQL supports the algorithms listed in Part III. Part III
provides basic conceptual information about the algorithms. There is at least one
algorithm for each of the machine learning functions.

Part III contains these chapters:

• Apriori

• CUR Matrix Decomposition

• Decision Tree

• Expectation Maximization

• Explicit Semantic Analysis

• Exponential Smoothing

• Generalized Linear Model

• k-Means

• Minimum Description Length

• Multivariate State Estimation Technique - Sequential Probability Ratio Test

• Naive Bayes

• Neural Network

• Non-Negative Matrix Factorization

• O-Cluster

• R Extensibility

• Random Forest

• Singular Value Decomposition

• Support Vector Machine

• XGBoost

Related Topics

• Machine Learning Functions
Part II provides basic conceptual information about machine learning functions that
the Oracle Machine Learning for SQL supports.

13
Apriori

Learn how to calculate association rules using the Apriori algorithm.

• About Apriori

• Association Rules and Frequent Itemsets

• Data Preparation for Apriori

• Calculating Association Rules

• Evaluating Association Rules

Related Topics

• Association
Learn how to discover association rules through association - an unsupervised
machine learning function.

• DBMS_DATA_MINING - Model Settings

• Machine Learning Function Settings

• OML4SQL Examples

• OML4R Association Rules Example

• OML4R Code Examples

13.1 About Apriori
Learn how to find associations involving rare events in a large number of items using
Apriori.

An association machine learning problem can be decomposed into the following
subproblems:

• Find all combinations of items in a set of transactions that occur with a specified
minimum frequency. These combinations are called frequent itemsets.

• Calculate rules that express the probable co-occurrence of items within frequent
itemsets.

Apriori calculates the probability of an item being present in a frequent itemset, given
that another item or items is present.

Association rule machine learning is not recommended for finding associations
involving rare events in problem domains with a large number of items. Apriori
discovers patterns with frequencies above the minimum support threshold. Therefore,
to find associations involving rare events, the algorithm must run with very low
minimum support values. However, doing so potentially explodes the number of
enumerated itemsets, especially in cases with a large number of items. This increases
the execution time significantly. Classification or anomaly detection is more suitable for
discovering rare events when the data has a high number of attributes.

13-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

The build process for Apriori supports parallel execution.

Related Topics

• Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from frequent itemsets.

• Oracle Database VLDB and Partitioning Guide

13.2 Association Rules and Frequent Itemsets
The Apriori algorithm calculates rules that express probabilistic relationships between
items in frequent itemsets. For example, a rule derived from frequent itemsets
containing A, B, and C might state that if A and B are included in a transaction, then C
is likely to also be included.

An association rule states that an item or group of items implies the presence of
another item with some probability. Unlike decision tree rules, which predict a target,
association rules express correlation.

13.2.1 Antecedent and Consequent
Defines antecedent and consequent in an Apriori algorithm.

The IF component of an association rule is known as the antecedent. The THEN
component is known as the consequent. The antecedent and the consequent are
disjoint; they have no items in common.

Oracle Machine Learning for SQL supports association rules that have one or more
items in the antecedent and a single item in the consequent.

13.2.2 Confidence
Rules have an associated confidence, which is the conditional probability that the
consequent occurs given the occurrence of the antecedent. You can specify the
minimum confidence for rules.

13.3 Data Preparation for Apriori
Association models are designed to use transactional data. In transactional data, there
is a one-to-many relationship between the case identifier and the values for each case.
Each case ID/value pair is specified in a separate record (row).

13.3.1 Native Transactional Data and Star Schemas
Learn about storage format of transactional data.

Transactional data may be stored in native transactional format, with a non-unique
case ID column and a values column, or it may be stored in some other configuration,
such as a star schema. If the data is not stored in native transactional format, it must
be transformed to a nested column for processing by the Apriori algorithm.

Related Topics

• Transactional Data
Learn about transactional data, also known as market-basket data.

Chapter 13
Association Rules and Frequent Itemsets

13-2

• Oracle Machine Learning for SQL User’s Guide

13.3.2 Items and Collections
In transactional data, a collection of items is associated with each case. The collection
theoretically includes all possible members of the collection. For example, all products
can theoretically be purchased in a single market-basket transaction. However, in
actuality, only a tiny subset of all possible items are present in a given transaction; the
items in the market-basket represent only a small fraction of the items available for
sale in the store.

13.3.3 Sparse Data
Understand how sparse data is used in the Apriori algorithm.

Missing items in a collection indicate sparsity. Missing items may be present with a
null value, or they may be missing.

Nulls in transactional data are assumed to represent values that are known but not
present in the transaction. For example, three items out of hundreds of possible items
might be purchased in a single transaction. The items that were not purchased are
known but not present in the transaction.

Oracle Machine Learning for SQL assumes sparsity in transactional data. The Apriori
algorithm is optimized for processing sparse data.

Note:

Apriori is not affected by Automatic Data Preparation.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

13.3.4 Improved Sampling
Association rules (AR) can use a good sample size with performance guarantee,
based on the work of Riondato and Upfal.

The AR algorithm computes the sample size by the following inputs:

• d-index of the dataset

• Absolute error ε

• Confidence level γ

d-index is defined as the maximum integer d such that the dataset contains at least d
transactions of length d at the minimum. It is the upper bound of Vapnik-Chervonenkis
(VC) dimension. The AR algorithm computes d-index of the dataset by scanning the
length of all transactions in the dataset.

Users specify absolute error ε and confidence level γ parameters. A large d-index,
small AR support, small ε or large γ can cause a large sample size. The sample size
theoretically guarantees that the absolute error of both the support and confidence of

Chapter 13
Data Preparation for Apriori

13-3

the approximated AR (from sampling) is less than ε compared to the exact AR with
probability (or confidence level) at least γ. In this document this sample size is called
AR-specific sample size.

13.3.4.1 Sampling Implementation
The sample size is only computed when users turn on the sampling (ODMS_SAMPLING is
set as ODMS_SAMPLING_ENABLE) and do not specify the sample size (ODMS_SAMPLE_SIZE
is unspecified).

Usage Notes

1. If ODMS_SAMPLING is unspecified or set as ODMS_SAMPLING_DISABLE, the sampling is
not performed for AR and the exact AR is obtained.

2. If ODMS_SAMPLING is set as ODMS_SAMPLING_ENABLE and if ODMS_SAMPLE_SIZE
is specified as positive integer number then the user-specified sample size
(ODMS_SAMPLE_SIZE) is utilized. The sampling is performed in the general data
preparation stage before the AR algorithm. The AR-specific sample size is not
computed. The approximated AR is obtained.

3. If ODMS_SAMPLING is set as ODMS_SAMPLING_ENABLE and ODMS_SAMPLE_SIZE is
not specified, the AR-specified sample size is computed and then sampling is
performed in the AR algorithm. The approximated AR is obtained.

Note:

If the computed AR-specific sample size is larger than or equal to the
total transaction size in the dataset, the sampling is not performed and
the exact AR is obtained.

If users do not have a good idea on the choice of sample size for AR, it is suggested
to leave ODMS_SAMPLE_SIZE unspecified, only specify proper values for sampling
parameters and let AR algorithm compute the suitable AR-specific sample size.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

13.4 Calculating Association Rules
The first step in association analysis is the enumeration of itemsets. An itemset is any
combination of two or more items in a transaction.

Chapter 13
Calculating Association Rules

13-4

13.4.1 Itemsets
Learn about itemsets.

The maximum number of items in an itemset is user-specified. If the maximum is
two, then all the item pairs are counted. If the maximum is greater than two, then all
the item pairs, all the item triples, and all the item combinations up to the specified
maximum are counted.

The following table shows the itemsets derived from the transactions shown in the
following example, assuming that maximum number of items in an itemset is set to 3.

Table 13-1 Itemsets

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (A,E) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)

13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Example 13-1 Sample Transactional Data

TRANS_ID ITEM_ID
--------- -------------------
11 B
11 D
11 E
12 A
12 B
12 C
12 E
13 B
13 C
13 D
13 E

13.4.2 Frequent Itemsets
Learn about frequent itemsets and support.

Association rules are calculated from itemsets. If rules are generated from all possible
itemsets, there can be a very high number of rules and the rules may not be very
meaningful. Also, the model can take a long time to build. Typically it is desirable
to only generate rules from itemsets that are well-represented in the data. Frequent
itemsets are those that occur with a minimum frequency specified by the user.

The minimum frequent itemset support is a user-specified percentage that limits the
number of itemsets used for association rules. An itemset must appear in at least this
percentage of all the transactions if it is to be used as a basis for rules.

The following table shows the itemsets from Table 13-1 that are frequent itemsets with
support > 66%.

Chapter 13
Calculating Association Rules

13-5

Table 13-2 Frequent Itemsets

Frequent Itemset Transactions Support

(B,C) 2 of 3 67%

(B,D) 2 of 3 67%

(B,E) 3 of 3 100%

(C,E) 2 of 3 67%

(D,E) 2 of 3 67%

(B,C,E) 2 of 3 67%

(B,D,E) 2 of 3 67%

Related Topics

• Apriori
Learn how to calculate association rules using the Apriori algorithm.

13.4.3 Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from frequent itemsets.

The following tables show the itemsets and frequent itemsets that were calculated
in "Association". The frequent itemsets are the itemsets that occur with a minimum
support of 67%; at least 2 of the 3 transactions must include the itemset.

Table 13-3 Itemsets

Transaction Itemsets

11 (B,D) (B,E) (D,E) (B,D,E)

12 (A,B) (A,C) (A,E) (B,C) (B,E) (C,E) (A,B,C) (A,B,E) (A,C,E) (B,C,E)

13 (B,C) (B,D) (B,E) (C,D) (C,E) (D,E) (B,C,D) (B,C,E) (B,D,E) (C,D,E)

Table 13-4 Frequent Itemsets with Minimum Support 67%

Itemset Transactions Support

(B,C) 12 and 13 67%

(B,D) 11 and 13 67%

(B,E) 11, 12, and 13 100%

(C,E) 12 and 13 67%

(D,E) 11 and 13 67%

(B,C,E) 12 and 13 67%

(B,D,E) 11 and 13 67%

A rule expresses a conditional probability. Confidence in a rule is calculated by dividing
the probability of the items occurring together by the probability of the occurrence of
the antecedent.

Chapter 13
Calculating Association Rules

13-6

For example, if B (antecedent) is present, what is the chance that C (consequent) is
also present? What is the confidence for the rule "IF B, THEN C"?

As shown in Table 13-3:

• All 3 transactions include B (3/3 or 100%)

• Only 2 transactions include both B and C (2/3 or 67%)

• Therefore, the confidence of the rule "IF B, THEN C" is 67/100 or 67%.

The following table the rules that can be derived from the frequent itemsets in
Table 13-4.

Table 13-5 Frequent Itemsets and Rules

Frequent Itemset Rules prob(antecedent and
consequent) / prob(antecedent)

Confidence

(B,C) (If B then C)
(If C then B)

67/100
67/67

67%
100%

(B,D) (If B then D)
(If D then B)

67/100
67/67

67%
100%

(B,E) (If B then E)
(If E then B)

100/100
100/100

100%
100%

(C,E) (If C then E)
(If E then C)

67/67
67/100

100%
67%

(D,E) (If D then E)
I(f E then D)

67/67
67/100

100%
67%

(B,C,E) (If B and C then
E)
(If B and E then
C)
(If C and E then
B)

67/67
67/100
67/67

100%
67%
100%

(B,D,E) (If B and D then
E)
(If B and E then
D)
(If D and E then
B)

67/67
67/100
67/67

100%
67%
100%

If the minimum confidence is 70%, ten rules are generated for these frequent itemsets.
If the minimum confidence is 60%, sixteen rules are generated.

Tip:

Increase the minimum confidence if you want to decrease the build time for
the model and generate fewer rules.

Chapter 13
Calculating Association Rules

13-7

Related Topics

• Association
Learn how to discover association rules through association - an unsupervised
machine learning function.

13.4.4 Aggregates
Aggregates refer to the quantities associated with each item that the user opts for
association rules model to aggregate.

There can be more than one aggregate. For example, the user can specify the model
to aggregate both profit and quantity.

13.4.5 Example: Calculating Aggregates
This example shows how to calculate aggregates using the customer grocery
purchase and profit data.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 13-6 Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 13
Calculating Association Rules

13-8

13.4.6 Including and Excluding Rules
Explains including rules and excluding rules used in association.

Including rules enables a user to provide a list of items such that at least one item from
the list must appear in the rules that are returned. Excluding rules enables a user to
provide a list of items such that no item from the list can appear in the rules that are
returned.

Note:

Since each association rule includes both antecedent and consequent, a set
of including or excluding rules can be specified for antecedent while another
set of including or excluding rules can be specified for consequent. Including
or excluding rules can also be defined for the association rule.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

13.4.7 Performance Impact for Aggregates
Aggregate function requires more memory usage and longer execution time.

For each item, the user may supply several columns to aggregate. It requires more
memory to buffer the extra data and more time to compute the aggregate values.

13.5 Evaluating Association Rules
Evaluate association rules by using support and confidence.

Minimum support and confidence are used to influence the build of an association
model. Support and confidence are also the primary metrics for evaluating the quality
of the rules generated by the model. Additionally, Oracle Machine Learning for SQL
supports lift for association rules. These statistical measures can be used to rank the
rules and hence the usefulness of the predictions.

13.5.1 Support
The support of a rule indicates how frequently the items in the rule occur together. For
example, cereal and milk might appear together in 40% of the transactions. If so, the
following rules each have a support of 40%:

cereal implies milk
milk implies cereal

Support is the ratio of transactions that include all the items in the antecedent and
consequent to the number of total transactions.

Support can be expressed in probability notation as follows:

Chapter 13
Evaluating Association Rules

13-9

support(A implies B) = P(A, B)

13.5.2 Minimum Support Count
Minimum support count defines minimum threshold in transactions that each rule must
satisfy.

When the number of transactions is unknown, the support percentage threshold
parameter can be tricky to set appropriately. For this reason, support can also be
expressed as a count of transactions, with the greater of the two thresholds being
used to filter out infrequent itemsets. The default is 1 indicating that this criterion is not
applied.

Related Topics

• Association Rules
Identifies the pattern of association within the data.

• Oracle Machine Learning for SQL User’s Guide

• Frequent Itemsets
Learn about frequent itemsets and support.

13.5.3 Confidence
The confidence of a rule indicates the probability of both the antecedent and the
consequent appearing in the same transaction.

Confidence is the conditional probability of the consequent given the antecedent. For
example, cereal appears in 50 transactions; 40 of the 50 might also include milk. The
rule confidence is:

cereal implies milk with 80% confidence

Confidence is the ratio of the rule support to the number of transactions that include
the antecedent.

Confidence can be expressed in probability notation as follows.

confidence (A implies B) = P (B/A), which is equal to P(A, B) / P(A)

Related Topics

• Confidence

• Frequent Itemsets
Learn about frequent itemsets and support.

13.5.4 Reverse Confidence
The reverse confidence of a rule is defined as the number of transactions in which the
rule occurs divided by the number of transactions in which the consequent occurs.

Reverse confidence eliminates rules that occur because the consequent is frequent.
The default is 0.

Related Topics

• Confidence

Chapter 13
Evaluating Association Rules

13-10

• Example: Calculating Rules from Frequent Itemsets
Example to calculating rules from frequent itemsets.

• Oracle Machine Learning for SQL User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

13.5.5 Lift
Both support and confidence must be used to determine if a rule is valid. However,
there are times when both of these measures may be high, and yet still produce a rule
that is not useful. For example:

Convenience store customers who buy orange juice also buy milk with
a 75% confidence.
The combination of milk and orange juice has a support of 30%.

This at first sounds like an excellent rule, and in most cases, it would be. It has
high confidence and high support. However, what if convenience store customers in
general buy milk 90% of the time? In that case, orange juice customers are actually
less likely to buy milk than customers in general.

A third measure is needed to evaluate the quality of the rule. Lift indicates the strength
of a rule over the random co-occurrence of the antecedent and the consequent, given
their individual support. It provides information about the improvement, the increase in
probability of the consequent given the antecedent. Lift is defined as follows.

(Rule Support) /(Support(Antecedent) * Support(Consequent))

This can also be defined as the confidence of the combination of items divided by
the support of the consequent. So in our milk example, assuming that 40% of the
customers buy orange juice, the improvement would be:

30% / (40% * 90%)

which is 0.83 – an improvement of less than 1.

Any rule with an improvement of less than 1 does not indicate a real cross-selling
opportunity, no matter how high its support and confidence, because it actually offers
less ability to predict a purchase than does random chance.

Tip:

Decrease the maximum rule length if you want to decrease the build time for
the model and generate simpler rules.

Tip:

Increase the minimum support if you want to decrease the build time for the
model and generate fewer rules.

Chapter 13
Evaluating Association Rules

13-11

14
CUR Matrix Decomposition

Learn how to use CUR decomposition based algorithm for attribute importance.

• About CUR Matrix Decomposition

• Singular Vectors

• Statistical Leverage Score

• Column (Attribute) Selection and Row Selection

• CUR Matrix Decomposition Algorithm Configuration

Related Topics

• Feature Selection
Learn how to perform feature selection and attribute importance.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: CUR Matrix Decomposition

• OML4SQL Examples

14.1 About CUR Matrix Decomposition
CUR Matrix Decomposition is a low-rank matrix decomposition algorithm that is
explicitly expressed in a small number of actual columns and/or actual rows of data
matrix.

CUR Matrix Decomposition was developed as an alternative to Singular Value
Decomposition (SVD) and Principal Component Analysis (PCA). CUR Matrix
Decomposition selects columns and rows that exhibit high statistical leverage or
large influence from the data matrix. By implementing the CUR Matrix Decomposition
algorithm, a small number of most important attributes and/or rows can be identified
from the original data matrix. Therefore, CUR Matrix Decomposition is an important
tool for exploratory data analysis. CUR Matrix Decomposition can be applied to a
variety of areas and facilitates regression, classification, and clustering.

Related Topics

• Data Preparation for SVD
Oracle Machine Learning for SQL implements Singular Value Decomposition
(SVD) for numerical data and categorical data.

14.2 Singular Vectors
Singular Value Decomposition (SVD) is the first step in CUR Matrix Decomposition.

14-1

SVD returns left and right singular vectors for calculating column and row leverage
scores. Perform SVD on the following matrix:

A ε Rmxn

The matrix is factorized as follows:

A=UΣVT

where U = [u1 u2...um] and V = [v1 v2...vn] are orthogonal matrices.

Σ is a diagonal m × n matrix with non-negative real numbers σ1,...,σρ on the
diagonal, where ρ = min {m,n} and σξ is the ξth singular value of A.

Let uξ and vξ be the ξth left and right singular vector of A, the jth column of A can thus
be approximated by the top k singular vectors and corresponding singular values as:

where vξ
j is the jth coordinate of the ξth right singular vector.

14.3 Statistical Leverage Score
Leverage scores are statistics that determine which column (or rows) are most
representative with respect to a rank subspace of a matrix. The statistical leverage
scores represent the column (or attribute) and row importance.

The normalized statistical leverage scores for all columns are computed from the top k
right singular vectors as follows:

where k is called rank parameter and j = 1,...,n. Given that πj>=0 and

, these scores form a probability distribution over the n columns.

Similarly, the normalized statistical leverage scores for all rows are computed from the
top k left singular vectors as:

Chapter 14
Statistical Leverage Score

14-2

where i = 1,...,m.

14.4 Column (Attribute) Selection and Row Selection
The CUR matrix decomposition in OML4SQL is designed for attribute and/or row
importance. It returns attributes and rows with high importance that are ranked by their
leverage (importance) scores. Column (Attribute) selection and row selection is the
final stage in CUR Matrix Decomposition.

Attribute selection: Selects attributes with high leverage scores and reports their
names, scores (as importance) and ranks (by importance).

Row selection: Selects rows with high leverage scores and reports their names, scores
(as importance) and ranks (by importance).

1. CUR Matrix Decomposition first selects the jth column (or attribute) of A with
probability pj= min {1,cπj} for all j ε {1,...,n}

2. If users enable row selection, select ith row of A with probability p�i = min {1,rπ�i}
for all i ε {1,...,m}

3. Report the name (or ID) and leverage score (as importance) for all selected
attributes (if row importance is disabled) or for all selected attributes and rows
(if row importance is enabled).

c is the approximated (or expected) number of columns that users want to select, and r
is the approximated (or expected) number of rows that users want to select.

To realize column and row selections, you need to calculate the probability to select
each column and row.

Calculate the probability for each column as follows:

pj = min {1,cπj}

Calculate the probability for each row as follows:

p�i = min{1, cπ�i}.

A column or row is selected if the probability is greater than some threshold.

14.5 CUR Matrix Decomposition Algorithm Configuration
Learn about configuring the CUR Matrix Decomposition algorithm.

Example 14-1 Example

In this example you will understand how to build a CUR Matrix Decomposition
algorithm. When the settings table is created and populated with CUR Matrix
Decomposition related settings, insert a row in the settings table to specify the
algorithm.

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
('ALGO_NAME', 'ALGO_CUR_DECOMPOSITION');

Chapter 14
Column (Attribute) Selection and Row Selection

14-3

Build the model as follows:

BEGIN
DBMS_DATA_MINING.CREATE_MODEL(
model_name => 'model-name',
mining_function => dbms_data_mining.attribute_importance,
data_table_name => 'test_table',
case_id_column_name => 'id',
settings_table_name => 'settings_table');
END;
/

Table 14-1 Important Settings

For Settings

Attribute selection CURS_APPROX_ATTR_NUM

Row selection • CURS_ROW_IMPORTANCE
• CURS_APPROX_ROW_NUM

Leverage score and random seed • CURS_SVD_RANK
• CURS_RANDOM_SEED

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Row Selection

To use this feature, insert a row in the settings table to specify that the row importance
is enabled:

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
('CURS_ROW_IMPORTANCE', 'CURS_ROW_IMP_ENABLE');

Note:

The row selection is performed only when users specify that row importance
is enabled and the CASE_ID column is present.

Chapter 14
CUR Matrix Decomposition Algorithm Configuration

14-4

15
Decision Tree

Oracle Machine Learning for SQL supports Decision Tree as one of the classification
algorithms. This chapter provides an overview of the Decision Tree algorithm.

• About Decision Tree

• Growing a Decision Tree

• Tuning the Decision Tree Algorithm

• Data Preparation for Decision Tree

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Decision Tree

• OML4SQL Examples

• OML4R Decision Tree Example

• OML4R Code Examples

15.1 About Decision Tree
Decision tree is a supervised machine learning algorithm used for classifying data.
Decision tree has a tree structure built top-down that has a root node, branches, and
leaf nodes.

In some applications of Oracle Machine Learning for SQL, the reason for predicting
one outcome or another may not be important in evaluating the overall quality of a
model. In others, the ability to explain the reason for a decision can be crucial. You
can use decision tree rules to validate models in such problems. The Decision Tree
algorithm, like Naive Bayes, is based on conditional probabilities. Unlike Naive Bayes,
decision trees generate rules. A rule is a conditional statement that can be understood
by humans and used within a database to identify a set of records.

For example, a Marketing professional requires complete descriptions of customer
segments to launch a successful marketing campaign. The Decision Tree algorithm is
ideal for this type of application.

Use decision tree rules to validate models. If the rules make sense to a subject matter
expert, then this validates the model.

15.1.1 Decision Tree Rules
Introduces decision tree rules.

15-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

Oracle Machine Learning for SQL supports several algorithms that provide rules.
In addition to decision trees, clustering algorithms provide rules that describe the
conditions shared by the members of a cluster, and association rules provide rules that
describe associations between attributes.

Rules provide model transparency, a window on the inner workings of the model.
Rules show the basis for the model's predictions. Oracle Machine Learning for SQL
supports a high level of model transparency. While some algorithms provide rules, all
algorithms provide model details. You can examine model details to determine how
the algorithm handles the attributes internally, including transformations and reverse
transformations. Transparency is discussed in the context of data preparation and in
the context of model building in Oracle Machine Learning for SQL User’s Guide.

The following figure shows a rule generated by a Decision Tree model. This rule
comes from a decision tree that predicts the probability that customers increase
spending if given a loyalty card. A target value of 0 means not likely to increase
spending; 1 means likely to increase spending.

Figure 15-1 Sample Decision Tree Rule

The rule shown in the figure represents the conditional statement:

IF
 (current residence > 3.5 and has college degree and is single)
THEN
 predicted target value = 0

This rule is a full rule. A surrogate rule is a related attribute that can be used at apply
time if the attribute needed for the split is missing.

Related Topics

• Understanding Reverse Transformations

• Model Detail Views for Decision Tree

• Clustering
Learn how to discover natural groupings in the data through clustering - the
unsupervised machine learning function.

• Association
Learn how to discover association rules through association - an unsupervised
machine learning function.

Chapter 15
About Decision Tree

15-2

15.1.1.1 Confidence and Support
Confidence and support are properties of rules. These statistical measures can be
used to rank the rules and hence the predictions.

Support: The number of records in the training data set that satisfy the rule.

Confidence: The likelihood of the predicted outcome, given that the rule has been
satisfied.

For example, consider a list of 1000 customers (1000 cases). Out of all the customers,
100 satisfy a given rule. Of these 100, 75 are likely to increase spending, and 25
are not likely to increase spending. The support of the rule is 100/1000 (10%). The
confidence of the prediction (likely to increase spending) for the cases that satisfy
the rule is 75/100 (75%).

15.1.2 Advantages of Decision Trees
Learn about the advantages of the Decision Tree algorithm.

The Decision Tree algorithm produces accurate and interpretable models with
relatively little user intervention. The algorithm can be used for both binary and
multiclass classification problems.

The algorithm is fast, both at build time and apply time. The build process for Decision
Tree supports parallel execution. (Scoring supports parallel execution irrespective of
the algorithm.)

Decision Tree scoring is especially fast. The tree structure, created in the model build,
is used for a series of simple tests, (typically 2-7). Each test is based on a single
predictor. It is a membership test: either IN or NOT IN a list of values (categorical
predictor); or LESS THAN or EQUAL TO some value (numeric predictor).

Related Topics

• Oracle Database VLDB and Partitioning Guide

15.1.3 XML for Decision Tree Models
Learn about generating XML representation of Decision Tree models.

You can generate XML representing a Decision Tree model; the generated XML
satisfies the definition specified in the Predictive Model Markup Language (PMML)
version 2.1 specification.

Related Topics

• http://www.dmg.org

15.2 Growing a Decision Tree
Predict a target value by a sequence of questions to form or grow a decision tree. A
sample here shows how to grow a decision tree.

A decision tree predicts a target value by asking a sequence of questions. At a given
stage in the sequence, the question that is asked depends upon the answers to the

Chapter 15
Growing a Decision Tree

15-3

unilink:dmg

previous questions. The goal is to ask questions that, taken together, uniquely identify
specific target values. Graphically, this process forms a tree structure.

Figure 15-2 Sample Decision Tree

0: 1120

1: 380

0: 143

1: 31

0: 595

1: 19

0: 738

1: 50

0: 382

1: 330

0: 315

1: 151

0: 67

1: 179

0: 118

1: 119

0: 197

1: 32

Marital status

Education Education

Residence Score = 0;

prob = 8218

Score = 0;

prob = 9690

Score = 1;

prob = 7276

Score = 0;

prob = 8613

Score = 0;

prob = 5988

0

3

874

65

2

1

The figure is a decision tree with nine nodes (and nine corresponding rules). The
target attribute is binary: 1 if the customer increases spending, 0 if the customer does
not increase spending. The first split in the tree is based on the CUST_MARITAL_STATUS
attribute. The root of the tree (node 0) is split into nodes 1 and 3. Married customers
are in node 1; single customers are in node 3.

The rule associated with node 1 is:

Node 1 recordCount=712,0 Count=382, 1 Count=330
CUST_MARITAL_STATUS isIN "Married",surrogate:HOUSEHOLD_SIZE isIn "3""4-5"

Node 1 has 712 records (cases). In all 712 cases, the CUST_MARITAL_STATUS attribute
indicates that the customer is married. Of these, 382 have a target of 0 (not likely to
increase spending), and 330 have a target of 1 (likely to increase spending).

15.2.1 Splitting
The Decision Tree algorithm offers metrics for splitting the cases (records).

During the training process, the Decision Tree algorithm must repeatedly find the most
efficient way to split a set of cases (records) into two child nodes. Oracle Machine
Learning for SQL offers two homogeneity metrics, gini and entropy, for calculating the
splits. The default metric is gini.

Homogeneity metrics asses the quality of alternative split conditions and select the
one that results in the most homogeneous child nodes. Homogeneity is also called

Chapter 15
Growing a Decision Tree

15-4

purity; it refers to the degree to which the resulting child nodes are made up of
cases with the same target value. The objective is to maximize the purity in the child
nodes. For example, if the target can be either yes or no (does or does not increase
spending), the objective is to produce nodes where most of the cases either increase
spending or most of the cases do not increase spending.

15.2.2 Cost Matrix
Learn about a cost matrix for the Decision Tree algorithm.

All classification algorithms, including Decision Tree, support a cost-benefit matrix at
apply time. You can use the same cost matrix for building and scoring a decision tree
model, or you can specify a different cost/benefit matrix for scoring.

Related Topics

• Costs

• Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful
result.

15.2.3 Preventing Over-Fitting
Understand over-fitting in trees and what can you do to resolve over-fitting.

In principle, the Decision Tree algorithm can grow each branch of the tree deeply
enough to perfectly classify the training examples. While this is sometimes a
reasonable strategy, in fact it can lead to difficulties when there is noise in the data, or
when the number of training examples is too small to produce a representative sample
of the true target function. In either of these cases, this simple algorithm can produce
trees that over-fit the training examples. Over-fit is a condition where a model is able
to accurately predict the data used to create the model, but does poorly on new data
presented to it.

To prevent over-fitting, Oracle Machine Learning for SQL supports automatic pruning
and configurable limit conditions that control tree growth. Limit conditions prevent
further splits once the conditions have been satisfied. Pruning removes branches that
have insignificant predictive power.

15.3 Tuning the Decision Tree Algorithm
Fine tune the Decision Tree algorithm with various parameters.

The Decision Tree algorithm is implemented with reasonable defaults for splitting and
termination criteria. However several build settings are available for fine tuning.

You can specify a homogeneity metric for finding the optimal split condition for a tree.
The default metric is gini. The entropy metric is also available.

Settings for controlling the growth of the tree are also available. You can specify the
maximum depth of the tree, the minimum number of cases required in a child node,
the minimum number of cases required in a node in order for a further split to be
possible, the minimum number of cases in a child node, and the minimum number of
cases required in a node in order for a further split to be possible.

Chapter 15
Tuning the Decision Tree Algorithm

15-5

Note:

The term hyperparameter is also interchangeably used for model setting.

The training data attributes are binned as part of the algorithm's data preparation. You
can alter the number of bins used by the binning step. There is a trade-off between the
number of bins used and the time required for the build.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
description of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

15.4 Data Preparation for Decision Tree
Learn how to prepare data for the Decision Tree algorithm.

The Decision Tree algorithm manages its own data preparation internally. It does not
require pretreatment of the data. Decision Tree is not affected by Automatic Data
Preparation (ADP).

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 15
Data Preparation for Decision Tree

15-6

16
Expectation Maximization

Learn how to use expectation maximization clustering algorithm.

• About Expectation Maximization

• Algorithm Enhancements

• Configuring the Algorithm

• Data Preparation for Expectation Maximization

Related Topics

• Clustering Algorithms
Learn different clustering algorithms used in Oracle Machine Learning for SQL.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Expectation Maximization

• OML4SQL Examples

• OML4R Expectation Maximization Example

• OML4R Code Examples

16.1 About Expectation Maximization
Expectation maximization (EM) estimation of mixture models is a popular probability
density estimation technique that is used in a variety of applications.

Oracle Machine Learning for SQL uses EM to implement a distribution-based
clustering algorithm (EM-clustering).

16.1.1 Expectation Step and Maximization Step
The two steps to compute the likelihood of the current model and to maximize the
likelihood defines the algorithm.

Expectation maximization is an iterative method. It starts with an initial parameter
guess. The parameter values are used to compute the likelihood of the current model.
This is the Expectation step. The parameter values are then recomputed to maximize
the likelihood. This is the Maximization step. The new parameter estimates are used
to compute a new expectation and then they are optimized again to maximize the
likelihood. This iterative process continues until model convergence.

16.1.2 Probability Density Estimation
Compute reliable cluster assignment using probability density.

16-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

In density estimation, the goal is to construct a density function that captures how a
given population is distributed. In probability density estimation, the density estimate is
based on observed data that represents a sample of the population. Areas of high data
density in the model correspond to the peaks of the underlying distribution.

Density-based clustering is conceptually different from distance-based clustering
(for example k-Means) where emphasis is placed on minimizing inter-cluster and
maximizing the intra-cluster distances. Due to its probabilistic nature, density-based
clustering can compute reliable probabilities in cluster assignment. It can also handle
missing values automatically.

16.2 Algorithm Enhancements
Expectation Maximization (EM) is enhanced to resolve some challenges in it's
standard form.

Although EM is well established as a distribution-based clustering algorithm, it
presents some challenges in its standard form. The Oracle Machine Learning for
SQL implementation includes significant enhancements, such as scalable processing
of large volumes of data and automatic parameter initialization. The strategies that
OML4SQL uses to address the inherent limitations of EM clustering are described
further.

Note:

The EM abbreviation is used here to refer to EM-clustering.

Limitations of Standard Expectation Maximization:

• Scalability: EM has linear scalability with the number of records and attributes. The
number of iterations to convergence tends to increase with growing data size (both
rows and columns). EM convergence can be slow for complex problems and can
place a significant load on computational resources.

• High dimensionality: EM has limited capacity for modeling high dimensional (wide)
data. The presence of many attributes slows down model convergence, and the
algorithm becomes less able to distinguish between meaningful attributes and
noise. The algorithm is thus compromised in its ability to find correlations.

• Number of components: EM typically requires the user to specify the number of
components. In most cases, this is not information that the user can know in
advance.

• Parameter initialization: The choice of appropriate initial parameter values can
have a significant effect on the quality of the model. Initialization strategies that
have been used for EM have generally been computationally expensive.

• From components to clusters: EM model components are often treated as
clusters. This approach can be misleading since cohesive clusters are often
modeled by multiple components. Clusters that have a complex shape need to
be modeled by multiple components.

Chapter 16
Algorithm Enhancements

16-2

16.2.1 Scalability
Expectation Maximization (EM) in Oracle Machine Learning for SQL, uses database
parallel processing to achieve excellent scalability.

The OML4SQL implementation of Expectation Maximization uses database parallel
processing to achieve excellent scalability. EM computations naturally lend themselves
to row parallel processing, and the partial results are easily aggregated. The parallel
implementation efficiently distributes the computationally intensive work across slave
processes and then combines the partial results to produce the final solution.

Related Topics

• Oracle Database VLDB and Partitioning Guide

16.2.2 High Dimensionality
Process high dimensional data through Expectation Maximization.

The Oracle Machine Learning for SQL implementation of Expectation Maximization
(EM) can efficiently process high-dimensional data with thousands of attributes. This is
achieved through a two-fold process:

• The data space of single-column (not nested) attributes is analyzed for pair-wise
correlations. Only attributes that are significantly correlated with other attributes
are included in the EM mixture model. The algorithm can also be configured to
restrict the dimensionality to the M most correlated attributes.

• High-dimensional (nested) numerical data that measures events of similar type is
projected into a set of low-dimensional features that are modeled by EM. Some
examples of high-dimensional, numerical data are: text, recommendations, gene
expressions, and market basket data.

16.2.3 Number of Components
The number of EM components are automatically determined.

Typical implementations of Expectation Maximization (EM) require the user to specify
the number of model components. This is problematic because users do not generally
know the correct number of components. Choosing too many or too few components
can lead to over-fitting or under-fitting, respectively.

When model search is enabled, the number of EM components is automatically
determined. The algorithm uses a held-aside sample to determine the correct number
of components, except in the cases of very small data sets when Bayesian Information
Criterion (BIC) regularization is used.

16.2.4 Parameter Initialization
Choosing appropriate initial parameter values can have a significant effect on the
quality of the solution.

Expectation maximization (EM) is not guaranteed to converge to the global maximum
of the likelihood function but may instead converge to a local maximum. Therefore
different initial parameter values can lead to different model parameters and different
model quality.

Chapter 16
Algorithm Enhancements

16-3

In the process of model search, the EM model is grown independently. As new
components are added, their parameters are initialized to areas with poor distribution
fit.

16.2.5 From Components to Clusters
Expectation Maximization produces assignment of model components to high-level
clusters.

Expectation Maximization (EM) model components are often treated as clusters.
However, this approach can be misleading. Cohesive clusters are often modeled
by multiple components. The shape of the probability density function used in EM
effectively predetermines the shape of the identified clusters. For example, Gaussian
density functions can identify single peak symmetric clusters. Clusters of more
complex shape need to be modeled by multiple components.

Ideally, high density areas of arbitrary shape must be interpreted as single clusters.
To accomplish this, the Oracle Machine Learning for SQL implementation of EM builds
a component hierarchy that is based on the overlap of the individual components'
distributions. OML4SQL EM uses agglomerative hierarchical clustering. Component
distribution overlap is measured using the Bhattacharyya distance function. Choosing
an appropriate cutoff level in the hierarchy automatically determines the number of
high-level clusters.

The OML4SQL implementation of EM produces an assignment of the model
components to high-level clusters. Statistics like means, variances, modes,
histograms, and rules additionally describe the high-level clusters. The algorithm can
be configured to either produce clustering assignments at the component level or at
the cluster level.

16.3 Configuring the Algorithm
Configure Expectation Maximization (EM).

In Oracle Machine Learning for SQL, EM can effectively model very large data sets
(both rows and columns) without requiring the user to supply initialization parameters
or specify the number of model components. While the algorithm offers reasonable
defaults, it also offers flexibility.

The following list describes some of the configurable aspects of EM:

• Whether or not independent non-nested column attributes are included in the
model. The choice is system-determined by default.

• Whether to use Bernoulli or Gaussian distribution for numerical attributes. By
default, the algorithm chooses the most appropriate distribution, and individual
attributes may use different distributions. When the distribution is user-specified, it
is used for all numerical attributes.

• Whether the convergence criterion is based on a held-aside data set or
on Bayesian Information Criterion (BIC). The convergence criterion is system-
determined by default.

• The percentage improvement in the value of the log likelihood function that is
required to add a new component to the model. The default percentage is 0.001.

• Whether to define clusters as individual components or groups of components.
Clusters are associated to groups of components by default.

Chapter 16
Configuring the Algorithm

16-4

• The maximum number of components in the model. If model search is enabled,
the algorithm determines the number of components based on improvements
in the likelihood function or based on regularization (BIC), up to the specified
maximum.

• Whether the linkage function for the agglomerative clustering step uses the
nearest distance within the branch (single linkage), the average distance within the
branch (average linkage), or the maximum distance within the branch (complete
linkage). By default the algorithm uses single linkage.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• DBMS_DATA_MINING - Global Settings

16.4 Data Preparation for Expectation Maximization
Learn how to prepare data for Expectation Maximization (EM).

If you use Automatic Data Preparation (ADP), you do not need to specify additional
data preparation for Expectation Maximization. ADP normalizes numerical attributes
(in non-nested columns) when they are modeled with Gaussian distributions. ADP
applies a topN binning transformation to categorical attributes.

Missing value treatment is not needed since Oracle Machine Learning for SQL
algorithms handle missing values automatically. The EM algorithm replaces missing
values with the mean in single-column numerical attributes that are modeled with
Gaussian distributions. In other single-column attributes (categoricals and numericals
modeled with Bernoulli distributions), NULLs are not replaced; they are treated as a
distinct value with its own frequency count. In nested columns, missing values are
treated as zeros.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

Chapter 16
Data Preparation for Expectation Maximization

16-5

17
Explicit Semantic Analysis

Learn how to use Explicit Semantic Analysis (ESA) as an unsupervised algorithm for
feature extraction function and as a supervised algorithm for classification.

• About Explicit Semantic Analysis

• Data Preparation for ESA

• Scoring with ESA

• Terminologies in Explicit Semantic Analysis

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• Feature Extraction
Learn how to perform attribute reduction using feature extraction as an
unsupervised function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic Analysis

• OML4SQL Examples

• OML4R Explicit Semantic Analysis Example

• OML4R Code Examples

17.1 About Explicit Semantic Analysis
In Oracle Database 12c Release 2, Explicit Semantic Analysis (ESA) was introduced
as an unsupervised algorithm for feature extraction. Starting from Oracle Database
18c, ESA is enhanced as a supervised algorithm for classification.

As a feature extraction algorithm, ESA does not discover latent features but instead
uses explicit features represented in an existing knowledge base. As a feature
extraction algorithm, ESA is mainly used for calculating semantic similarity of text
documents and for explicit topic modeling. As a classification algorithm, ESA is
primarily used for categorizing text documents. Both the feature extraction and
classification versions of ESA can be applied to numeric and categorical input data
as well.

The input to ESA is a set of attributes vectors. Every attribute vector is associated with
a concept. The concept is a feature in the case of feature extraction or a target class
in the case of classification. For feature extraction, only one attribute vector may be
associated with any feature. For classification, the training set may contain multiple
attribute vectors associated with any given target class. These rows related to one
target class are aggregated into one by the ESA algorithm.

17-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

The output of ESA is a sparse attribute-concept matrix that contains the most
important attribute-concept associations. The strength of the association is captured
by the weight value of each attribute-concept pair. The attribute-concept matrix is
stored as a reverse index that lists the most important concepts for each attribute.

Note:

For feature extraction the ESA algorithm does not project the original feature
space and does not reduce its dimensionality. ESA algorithm filters out
features with limited or uninformative set of attributes.

The scope of classification tasks that ESA handles is different than the classification
algorithms such as Naive Bayes and Support Vector Machine. ESA can perform
large scale classification with the number of distinct classes up to hundreds of
thousands. The large scale classification requires gigantic training data sets with some
classes having significant number of training samples whereas others are sparsely
represented in the training data set.

17.1.1 Scoring with ESA
A typical feature extraction application of Explicit Semantic Analysis (ESA) is to identify
the most relevant features of a given input and score their relevance. Scoring an ESA
model produces data projections in the concept feature space.

If an ESA model is built from an arbitrary collection of documents, then each one
is treated as a feature. You can then identify the most relevant documents in
the collection. The feature extraction functions are: FEATURE_DETAILS, FEATURE_ID,
FEATURE_SET, FEATURE_VALUE, and FEATURE_COMPARE.

A typical classification application of ESA is to predict classes of a given document
and estimate the probabilities of the predictions. As a classification algorithm, ESA
implements the following scoring functions: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_SET, PREDICTION_DETAILS, PREDICTION_COST.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

• Oracle Database SQL Language Reference

17.1.2 Scoring Large ESA Models
Building an Explicit Semantic Analysis (ESA) model on a large collection of text
documents can result in a model with many features or titles.

The model information for scoring is loaded into System Global Area (SGA) as a
shared (shared pool size) library cache object. Different SQL predictive queries can
reference this object. When the model size is large, it is necessary to set the SGA
parameter in the database to a sufficient size that accommodates large objects. If the
SGA is too small, the model may need to be re-loaded every time it is referenced
which is likely to lead to performance degradation.

Chapter 17
About Explicit Semantic Analysis

17-2

17.2 ESA for Text Analysis
Learn how Explicit Semantic Analysis (ESA) can be used for machine learning
operations on text.

Explicit knowledge often exists in text form. Multiple knowledge bases are available
as collections of text documents. These knowledge bases can be generic, for
example, Wikipedia, or domain-specific. Data preparation transforms the text into
vectors that capture attribute-concept associations. ESA is able to quantify semantic
relatedness of documents even if they do not have any words in common. The
function FEATURE_COMPARE can be used to compute semantic relatedness.

Related Topics

• Oracle Database SQL Language Reference

17.3 Data Preparation for ESA
Automatic Data Preparation normalizes input vectors to a unit length for Explicit
Semantic Analysis (ESA).

When there are missing values in columns with simple data types (not nested), ESA
replaces missing categorical values with the mode and missing numerical values with
the mean. When there are missing values in nested columns, ESA interprets them as
sparse. The algorithm replaces sparse numeric data with zeros and sparse categorical
data with zero vectors. The Oracle Machine Learning for SQL data preparation
transforms the input text into a vector of real numbers. These numbers represent the
importance of the respective words in the text.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

17.4 Terminologies in Explicit Semantic Analysis
Discusses the terms associated with Explicit Semantic Analysis (ESA).

Multi-target Classification

The training items in these large scale classifications belong to several classes. The
goal of classification in such case is to detect possible multiple target classes for
one item. This kind of classification is called multi-target classification. The target
column for ESA-based classification is extended. Collections are allowed as target
column values. The collection type for the target in ESA-based classification is
ORA_MINING_VARCHAR2_NT.

Chapter 17
ESA for Text Analysis

17-3

Large-scale classification

Large-scale classification applies to ontologies that contain gigantic numbers of
categories, usually ranging in tens or hundreds of thousands. This large-scale
classification also requires gigantic training datasets which are usually unbalanced,
that is, some classes may have significant number of training samples whereas
others may be sparsely represented in the training dataset. Large-scale classification
normally results in multiple target class assignments for a given test case.

Topic modeling

Topic modelling refers to derivation of the most important topics of a document. Topic
modeling can be explicit or latent. Explicit topic modeling results in the selection of
the most relevant topics from a pre-defined set, for a given document. Explicit topics
have names and can be verbalized. Latent topic modeling identifies a set of latent
topics characteristic for a collection of documents. A subset of these latent topics is
associated with every document under examination. Latent topics do not have verbal
descriptions or meaningful interpretation.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 17
Terminologies in Explicit Semantic Analysis

17-4

18
Exponential Smoothing

Learn about the Exponential Smoothing algorithm.

• About Exponential Smoothing

• Data Preparation for Exponential Smoothing Models

Related Topics

• Time Series
Learn about time series as an Oracle Machine Learning for SQL regression
function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: Exponential Smoothing

• OML4SQL Examples

• OML4R Code Examples

18.1 About Exponential Smoothing
Exponential smoothing is a forecasting method for time-series data. It is a moving
average method where exponentially decreasing weights are assigned to past
observations.

Exponential smoothing methods have been widely used in forecasting for over half a
century. It has applications at the strategic, tactical, and operation level. For example,
at a strategic level, forecasting is used for projecting return on investment, growth and
the effect of innovations. At a tactical level, forecasting is used for projecting costs,
inventory requirements, and customer satisfaction. At an operational level, forecasting
is used for setting targets and predicting quality and conformance with standards.

In its simplest form, exponential smoothing is a moving average method with a
single parameter which models an exponentially decreasing effect of past levels on
future values. With a variety of extensions, exponential smoothing covers a broader
class of models than competitors, such as the Box-Jenkins auto-regressive integrated
moving average (ARIMA) approach. Oracle Machine Learning for SQL implements
exponential smoothing using a state of the art state space method that incorporates a
single source of error (SSOE) assumption which provides theoretical and performance
advantages.

Exponential smoothing is extended to the following:

• A matrix of models that mix and match error type (additive or multiplicative), trend
(additive, multiplicative, or none), and seasonality (additive, multiplicative, or none)

• Models with damped trends.

• Models that directly handle irregular time series and time series with missing
values.

18-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

Note:

For more information, see Ord, J.K., et al, Time Series Forecasting: The
Case for the Single Source of Error State Space Approach, Working Paper,
Department of Econometrics and Business Statistics, Monash University,
VIC 3800, Australia, April 2, 2005.

18.1.1 Exponential Smoothing Models
Exponential Smoothing models are a broad class of forecasting models that are
intuitive, flexible, and extensible.

Members of this class include simple, single parameter models that predict the future
as a linear combination of a previous level and a current shock. Extensions can
include parameters for linear or non-linear trend, trend damping, simple or complex
seasonality, related series, various forms of non-linearity in the forecasting equations,
and handling of irregular time series.

Exponential smoothing assumes that a series extends infinitely into the past, but
that influence of past on future, decays smoothly and exponentially fast. The smooth
rate of decay is expressed by one or more smoothing constants. The smoothing
constants are parameters that the model estimates. The assumption is made
practical for modeling real world data by using an equivalent recursive formulation that
is only expressed in terms of an estimate of the current level based on prior history
and a shock to that estimate dependent on current conditions only.The procedure
requires an estimate for the time period just prior to the first observation, that
encapsulates all prior history. This initial observation is an additional model parameter
whose value is estimated by the modeling procedure.

Components of ESM such as trend and seasonality extensions, can have an additive
or multiplicative form. The simpler additive models assume that shock, trend, and
seasonality are linear effects within the recursive formulation.

18.1.2 Simple Exponential Smoothing
Simple exponential smoothing assumes the data fluctuates around a stationary mean,
with no trend or seasonal pattern.

In a simple Exponential Smoothing model, each forecast (smoothed value) is
computed as the weighted average of the previous observations, where the weights
decrease exponentially depending on the value of smoothing constant α. Values
of the smoothing constant, α, near one, put almost all weight on the most recent
observations. Values of α near zero allows the distant past observations to have a
large influence.

18.1.3 Models with Trend but No Seasonality
The preferred form of additive (linear) trend is sometimes called Holt’s method or
double exponential smoothing.

Models with trend add a smoothing parameter γ and optionally a damping parameter
φ. The damping parameter smoothly dampens the influence of past linear trend on
future estimates of level, often improving accuracy.

Chapter 18
About Exponential Smoothing

18-2

18.1.4 Models with Seasonality but No Trend
When the time series average does not change over time (stationary), but is subject to
seasonal fluctuations, the appropriate model has seasonal parameters but no trend.

Seasonal fluctuations are assumed to balance out over periods of length m, where m
is the number of seasons, For example, m=4 might be used when the input data are
aggregated quarterly. For models with additive errors, the seasonal parameters must
sum to zero. For models with multiplicative errors, the product of seasonal parameters
must be one.

18.1.5 Models with Trend and Seasonality
Holt and Winters introduced both trend and seasonality in an Exponential Smoothing
model.

The original model, also known as Holt-Winters or triple exponential smoothing,
considered an additive trend and multiplicative seasonality. Extensions include models
with various combinations of additive and multiplicative trend, seasonality and error,
with and without trend damping.

18.1.6 Prediction Intervals
To compute prediction intervals, an Exponential Smoothing (ESM) model is divided
into three classes.

The simplest class is the class of linear models, which include, among others, simple
ESM, Holt’s method, and additive Holt-Winters. Class 2 models (multiplicative error,
additive components) make an approximate correction for violations of the Normality
assumption. Class 3 modes use a simple simulation approach to calculate prediction
intervals.

18.2 Data Preparation for Exponential Smoothing Models
Learn about preparing the data for an Exponential Smoothing (ESM) model.

To build an ESM model, you must supply the following :

• Input data

• An aggregation level and method, if the case id is a date type

• Partitioning column, if the data are partitioned

In addition, for a greater control over the build process, the user may optionally specify
model build parameters, all of which have defaults:

• Model

• Error type

• Optimization criterion

• Forecast Window

• Confidence level for forecast bounds

• Missing value handling

Chapter 18
Data Preparation for Exponential Smoothing Models

18-3

• Whether the input series is evenly spaced

Related Topics

• Oracle Machine Learning for SQL User’s Guide

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

18.2.1 Input Data
Time series analysis, requires ordered input data. Hence, each data row must consist
of an [index, value] pair, where the index specifies the ordering.

When the CREATE_MODEL procedure is used to initiate an Exponential Smoothing
(ESM) model build, the CASE_ID_COLUMN_NAME specifies the column used to compute
the indices of the input and the TARGET_COLUMN_NAME specifies the column used to
compute the observed time series values. The time column bears Oracle number, or
Oracle date, timestamp, timestamp with time zone, or timestamp with local time zone.
The input time series are sorted according to the values of CASE_ID (time label). The
case id column cannot contain missing values. The value column can contain missing
values indicated as NULL. ESM also supports partitioned models and in such cases,
the input table contains an extra column specifying the partition. All [index, value] pairs
with the same partition ID form one complete time series. The Exponential Smoothing
algorithm constructs models for each partition independently, although all models use
the same model settings.

Properties of the data can result in a warning message or settings are ignored.
Settings are ignored when If the user specifies a model with either multiplicative
trend, multiplicative seasonality or both and the data contains values Yt<= 0, then the
model type is set to the default. If the series contain fewer values than the number of
user-specified seasons, then the seasonality specifications are ignored with a warning.

18.2.2 Accumulation
For the Exponential Smoothing algorithm, the accumulation procedure is applied when
the column is a date type (date, datetime, timestamp, timestamp with timezone, or
timestamp with local timezone).

The case id can be a NUMBER column whose sort index represents the position of the
value in the time series sequence of values. The case id column can also be a date
type. A date type is accumulated in accordance with a user specified accumulation
window. Regardless of type, the case id is used to transform the column into an
equally spaced time series. No accumulation is applied for a case id of type NUMBER. As

Chapter 18
Data Preparation for Exponential Smoothing Models

18-4

an example, consider a time series about promotion events. The time column contains
the date of each event, and the dates can be unequally spaced. The user must specify
the spacing interval, which is the spacing of the accumulated or transformed equally
spaced time series. In the example, if the user specifies the interval to be month, then
an equally spaced time series with profit for each calendar month is generated from
the original time series. Setting EXSM_INTERVAL is used to specify the spacing interval.
The user must also specify a value for EXSM_ACCUMULATE, for example, EXSM_ACCU_MAX,
in which case the equally spaced monthly series would contain the maximum profit
over all events that month as the observed time series value.

18.2.3 Missing Value
Input time series can contain missing values. A NULL entry in the target column
indicates a missing value. When the time column is of the type datetime,
the accumulation procedure can also introduce missing values. The setting
EXSM_SETMISSING can be used to specify how to handle missing values. The special
value EXSM_MISS_AUTO indicates that, if the series contains missing values it is to be
treated as an irregular time series.

Note:

Missing value handling setting must be compatible with model setting,
otherwise an error is thrown.

18.2.4 Prediction
An Exponential Smoothing (ESM) model can be applied to make predictions by
specifying the prediction window.

Setting EXSM_PREDICTION_STEP can be used to specify the prediction window.
The prediction window is expressed in terms of number of intervals (setting
EXSM_INTERVAL), when the time column is of the type datetime. If the time column
is a number then the prediction window is the number of steps to forecast. Regardless
of whether the time series is regular or irregular, EXSM_PREDICTION_STEP specifies the
prediction window.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Chapter 18
Data Preparation for Exponential Smoothing Models

18-5

18.2.5 Parallellism by Partition
Oracle Machine Learning for SQL supports parallellism by partition.

For example, a user can choose PRODUCT_ID as one partition column and can generate
forecasts for different products in a model build. Although a distinct smoothing
model is built for each partition, all partitions share the same model settings. For
example, if setting EXSM_MODEL is set to EXSM_SIMPLE, all partition models will be simple
Exponential Smoothing models. Time series from different partitions can be distributed
to different processes and processed in parallel. The model for each time series is built
serially.

Chapter 18
Data Preparation for Exponential Smoothing Models

18-6

19
Generalized Linear Model

Learn how to use Generalized Linear Model (GLM) statistical technique for linear
modeling.

Oracle Machine Learning for SQL supports GLM for regression and binary
classification.

• About Generalized Linear Model

• GLM in Oracle Machine Learning for SQL

• Scalable Feature Selection

• Tuning and Diagnostics for GLM

• GLM Solvers

• Data Preparation for GLM

• Linear Regression

• Logistic Regression

Related Topics

• Regression
Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• Feature Selection
Learn how to perform feature selection and attribute importance.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Generalized Linear Models

• OML4SQL Examples

• OML4R Generalized Linear Model Example

• OML4R Code Examples

19.1 About Generalized Linear Model
Learn about Generalized Linear Model (GLM) models include and extend the class of
linear models which address and accommodate some restrictive assumptions of the
linear models.

Linear models make a set of restrictive assumptions, most importantly, that the target
(dependent variable y) is normally distributed conditioned on the value of predictors
with a constant variance regardless of the predicted response value. The advantage
of linear models and their restrictions include computational simplicity, an interpretable

19-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

model form, and the ability to compute certain diagnostic information about the quality
of the fit.

GLM relaxes these restrictions, which are often violated in practice. For example,
binary (yes/no or 0/1) responses do not have same variance across classes.
Furthermore, the sum of terms in a linear model typically can have very large
ranges encompassing very negative and very positive values. For the binary response
example, we would like the response to be a probability in the range [0,1].

GLM accommodates responses that violate the linear model assumptions through two
mechanisms: a link function and a variance function. The link function transforms the
target range to potentially -infinity to +infinity so that the simple form of linear models
can be maintained. The variance function expresses the variance as a function of the
predicted response, thereby accommodating responses with non-constant variances
(such as the binary responses).

Oracle Machine Learning for SQL includes two of the most popular members of the
GLM family of models with their most popular link and variance functions:

• Linear regression with the identity link and variance function equal to the
constant 1 (constant variance over the range of response values).

• Logistic regression with the logit link and binomial variance functions.

Related Topics

• Linear Regression

• Linear Regression

• Logistic Regression

19.2 GLM in Oracle Machine Learning for SQL
Learn how Oracle Machine Learning for SQL implements the Generalized Linear
Model (GLM) algorithm.

GLM is a parametric modeling technique. Parametric models make assumptions about
the distribution of the data. When the assumptions are met, parametric models can be
more efficient than non-parametric models.

The challenge in developing models of this type involves assessing the extent to which
the assumptions are met. For this reason, quality diagnostics are key to developing
quality parametric models.

19.2.1 Interpretability and Transparency
You can interpret and understand key characteristics of Generalized Linear Model
(GLM) model through model details and global details.

You can interpret Oracle Machine Learnings' GLM with ease. Each model build
generates many statistics and diagnostics. Transparency is also a key feature: model
details describe key characteristics of the coefficients, and global details provide high-
level statistics.

Related Topics

• Tuning and Diagnostics for GLM

Chapter 19
GLM in Oracle Machine Learning for SQL

19-2

19.2.2 Wide Data
Generalized Linear Model(GLM) in Oracle Machine Learning for SQL is uniquely
suited for handling wide data. The algorithm can build and score quality models that
use a virtually limitless number of predictors (attributes). The only constraints are
those imposed by system resources.

19.2.3 Confidence Bounds
Predict confidence bounds through the Generalized Linear Model (GLM) algorithm.

GLM have the ability to predict confidence bounds. In addition to predicting a best
estimate and a probability (classification only) for each row, GLM identifies an interval
wherein the prediction (regression) or probability (classification) lies. The width of the
interval depends upon the precision of the model and a user-specified confidence
level.

The confidence level is a measure of how sure the model is that the true value
lies within a confidence interval computed by the model. A popular choice for
confidence level is 95%. For example, a model might predict that an employee's
income is $125K, and that you can be 95% sure that it lies between $90K and $160K.
Oracle Machine Learning for SQL supports 95% confidence by default, but that value
can be configured.

Note:

Confidence bounds are returned with the coefficient statistics. You can also
use the PREDICTION_BOUNDS SQL function to obtain the confidence bounds of
a model prediction.

Related Topics

• Oracle Database SQL Language Reference

19.2.4 Ridge Regression
Understand the use of ridge regression for singularity (exact multicollinearity) in data.

The best regression models are those in which the predictors correlate highly with
the target, but there is very little correlation between the predictors themselves.
Multicollinearity is the term used to describe multivariate regression with correlated
predictors.

Ridge regression is a technique that compensates for multicollinearity. Oracle
Machine Learning for SQL supports ridge regression for both regression and
classification machine learning functions. The algorithm automatically uses ridge if it
detects singularity (exact multicollinearity) in the data.

Information about singularity is returned in the global model details.

Related Topics

• Global Model Statistics for Linear Regression

Chapter 19
GLM in Oracle Machine Learning for SQL

19-3

• Global Model Statistics for Logistic Regression

19.2.4.1 Configuring Ridge Regression
Configure ridge regression through build settings.

You can choose to explicitly enable ridge regression by specifying a build setting for
the model. If you explicitly enable ridge, you can use the system-generated ridge
parameter or you can supply your own. If ridge is used automatically, the ridge
parameter is also calculated automatically.

The configuration choices are summarized as follows:

• Whether or not to override the automatic choice made by the algorithm regarding
ridge regression

• The value of the ridge parameter, used only if you specifically enable ridge
regression.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

19.2.4.2 Ridge and Confidence Bounds
Models built with ridge regression do not support confidence bounds.

Related Topics

• Confidence Bounds
Predict confidence bounds through the Generalized Linear Model (GLM)
algorithm.

19.2.4.3 Ridge and Data Preparation
Learn about preparing data for ridge regression.

When ridge regression is enabled, different data preparation is likely to produce
different results in terms of model coefficients and diagnostics. Oracle recommends
that you enable Automatic Data Preparation for Generalized Linear Model models,
especially when ridge regression is used.

Related Topics

• Data Preparation for GLM
Learn about preparing data for the Generalized Linear Model (GLM) algorithm.

Chapter 19
GLM in Oracle Machine Learning for SQL

19-4

19.3 Scalable Feature Selection
Oracle Machine Learning for SQL supports a highly scalable and automated version of
feature selection and generation for the Generalized Linear Model algorithm.

This scalable and automated capability can enhance the performance of the algorithm
and improve accuracy and interpretability. Feature selection and generation are
available for both linear regression and binary logistic regression.

19.3.1 Feature Selection
Feature selection is the process of choosing the terms to be included in the model.
The fewer terms in the model, the easier it is for human beings to interpret its
meaning. In addition, some columns may not be relevant to the value that the model is
trying to predict. Removing such columns can enhance model accuracy.

19.3.1.1 Configuring Feature Selection
Feature selection is a build setting for Generalized Linear Model models. It is not
enabled by default. When configured for feature selection, the algorithm automatically
determines appropriate default behavior, but the following configuration options are
available:

• The feature selection criteria can be AIC, SBIC, RIC, or α-investing. When the
feature selection criteria is α-investing, feature acceptance can be either strict or
relaxed.

• The maximum number of features can be specified.

• Features can be pruned in the final model. Pruning is based on t-statistics for
linear regression or wald statistics for logistic regression.

19.3.1.2 Feature Selection and Ridge Regression
Feature selection and ridge regression are mutually exclusive. When feature selection
is enabled, the algorithm can not use ridge.

Note:

If you configure the model to use both feature selection and ridge regression,
then you get an error.

19.3.2 Feature Generation
Feature generation is the process of adding transformations of terms into the model.
Feature generation enhances the power of models to fit more complex relationships
between target and predictors.

19.3.2.1 Configuring Feature Generation
Learn about configuring feature generation.

Chapter 19
Scalable Feature Selection

19-5

Feature generation is only possible when feature selection is enabled. Feature
generation is a build setting. By default, feature generation is not enabled.

The feature generation method can be either quadratic or cubic. By default, the
algorithm chooses the appropriate method. You can also explicitly specify the feature
generation method.

The following options for feature selection also affect feature generation:

• Maximum number of features

• Model pruning

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

19.4 Tuning and Diagnostics for GLM
The process of developing a Generalized Linear Model model typically involves a
number of model builds. Each build generates many statistics that you can evaluate to
determine the quality of your model. Depending on these diagnostics, you may want to
try changing the model settings or making other modifications.

19.4.1 Build Settings
Specify the build settings for Generalized Linear Model (GLM).

You can use specify build settings.

Additional build settings are available to:

• Control the use of ridge regression.

• Specify the handling of missing values in the training data.

• Specify the target value to be used as a reference in a logistic regression model.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Ridge Regression
Understand the use of ridge regression for singularity (exact multicollinearity) in
data.

• Data Preparation for GLM
Learn about preparing data for the Generalized Linear Model (GLM) algorithm.

Chapter 19
Tuning and Diagnostics for GLM

19-6

• Logistic Regression

19.4.2 Diagnostics
A Generalized Linear Model model generates many metrics to help you evaluate the
quality of the model.

19.4.2.1 Coefficient Statistics
Learn about coeffficient statistics for linear and logistic regression.

The same set of statistics is returned for both linear and logistic regression, but
statistics that do not apply to the machine learning function are returned as NULL.

Coefficient statistics are returned by the model detail views for a Generalized Linear
Model (GLM) model.

Related Topics

• Coefficient Statistics for Linear Regression

• Coefficient Statistics for Logistic Regression

• Oracle Machine Learning for SQL User’s Guide

19.4.2.2 Global Model Statistics
Learn about high-level statistics describing the model.

Separate high-level statistics describing the model as a whole, are returned for linear
and logistic regression. When ridge regression is enabled, fewer global details are
returned.

Global statistics are returned by the model detail views for a Generalized Linear Model
model.

Related Topics

• Global Model Statistics for Linear Regression

• Global Model Statistics for Logistic Regression

• Ridge Regression
Understand the use of ridge regression for singularity (exact multicollinearity) in
data.

• Oracle Machine Learning for SQL User’s Guide

19.4.2.3 Row Diagnostics
Generate row-statistics by configuring the Generalized Linear Model (GLM) algorithm.

GLM generates per-row statistics if you specify the name of a diagnostics table in the
build setting GLMS_DIAGNOSTICS_TABLE_NAME.

GLM requires a case ID to generate row diagnostics. If you provide the name of a
diagnostic table but the data does not include a case ID column, an exception is
raised.

Chapter 19
Tuning and Diagnostics for GLM

19-7

Related Topics

• Row Diagnostics for Linear Regression

• Row Diagnostics for Logistic Regression

19.5 GLM Solvers
Generalized Linear Model (GLM) algorithm applies different solvers. These solvers
employ different approaches for optimization.

The GLM algorithm supports four different solvers: Cholesky, QR, Stochastic
Gradient Descent (SGD),and Alternating Direction Method of Multipliers (ADMM)
(on top of L-BFGS). The Cholesky and QR solvers employ classical decomposition
approaches. The Cholesky solver is faster compared to the QR solver but less stable
numerically. The QR solver handles better rank deficient problems without the help of
regularization.

The SGD and ADMM (on top of L-BFGS) solvers are best suited for large scale data.
The SGD solver employs the stochastic gradient descent optimization algorithm while
ADMM (on top of L-BFGS) uses the Broyden-Fletcher-Goldfarb-Shanno optimization
algorithm within an Alternating Direction Method of Multipliers framework. The SGD
solver is fast but is sensitive to parameters and requires suitable scaled data to
achieve good convergence. The L-BFGS algorithm solves unconstrained optimization
problems and is more stable and robust than SGD. Also, L-BFGS uses ADMM in
conjunction, which, results in an efficient distributed optimization approach with low
communication cost.

Related Topics

• DBMS_DATA_MINING - Algorithm Settings: Neural Network

• DBMS_DATA_MINING — Algorithm Settings: Generalized Linear Models

• DBMS_DATA_MINING — Algorithm Settings: ADMM

• DBMS_DATA_MINING — Algorithm Settings: LBFGS

19.6 Data Preparation for GLM
Learn about preparing data for the Generalized Linear Model (GLM) algorithm.

Automatic Data Preparation (ADP) implements suitable data transformations for both
linear and logistic regression.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.
Oracle recommends that you use ADP with GLM.

Chapter 19
GLM Solvers

19-8

Related Topics

• Oracle Machine Learning for SQL User’s Guide

19.6.1 Data Preparation for Linear Regression
Learn about Automatic Data Preparation (ADP) for the Generalized Linear Model
(GLM) algorithm.

When ADP is enabled, the algorithm chooses a transformation based on input data
properties and other settings. The transformation can include one or more of the
following for numerical data: subtracting the mean, scaling by the standard deviation,
or performing a correlation transformation (Neter, et. al, 1990). If the correlation
transformation is applied to numeric data, it is also applied to categorical attributes.

Prior to standardization, categorical attributes are exploded into N-1 columns where
N is the attribute cardinality. The most frequent value (mode) is omitted during the
explosion transformation. In the case of highest frequency ties, the attribute values are
sorted alpha-numerically in ascending order, and the first value on the list is omitted
during the explosion. This explosion transformation occurs whether or not ADP is
enabled.

In the case of high cardinality categorical attributes, the described transformations
(explosion followed by standardization) can increase the build data size because the
resulting data representation is dense. To reduce memory, disk space, and processing
requirements, use an alternative approach. Under these circumstances, the VIF
statistic must be used with caution.

Related Topics

• Ridge and Data Preparation
Learn about preparing data for ridge regression.

• Oracle Machine Learning for SQL User’s Guide

See Also:

• Neter, J., Wasserman, W., and Kutner, M.H., "Applied Statistical Models",
Richard D. Irwin, Inc., Burr Ridge, IL, 1990.

19.6.2 Data Preparation for Logistic Regression
Categorical attributes are exploded into N-1 columns where N is the attribute
cardinality. The most frequent value (mode) is omitted during the explosion
transformation. In the case of highest frequency ties, the attribute values are sorted
alpha-numerically in ascending order and the first value on the list is omitted during
the explosion. This explosion transformation occurs whether or not Automatic Data
Preparation (ADP) is enabled.

When ADP is enabled, numerical attributes are scaled by the standard deviation. This
measure of variability is computed as the standard deviation per attribute with respect
to the origin (not the mean) (Marquardt, 1980).

Chapter 19
Data Preparation for GLM

19-9

See Also:

Marquardt, D.W., "A Critique of Some Ridge Regression Methods:
Comment", Journal of the American Statistical Association, Vol. 75, No. 369 ,
1980, pp. 87-91.

19.6.3 Missing Values
When building or applying a model, Oracle Machine Learning for SQL automatically
replaces missing values of numerical attributes with the mean and missing values of
categorical attributes with the mode.

You can configure the Generalized Linear Model algorithm to override the default
treatment of missing values. With the ODMS_MISSING_VALUE_TREATMENT setting, you
can cause the algorithm to delete rows in the training data that have missing values
instead of replacing them with the mean or the mode. However, when the model is
applied, OML4SQL performs the usual mean/mode missing value replacement. As
a result, it is possible that the statistics generated from scoring does not match the
statistics generated from building the model.

If you want to delete rows with missing values in the scoring the model, you must
perform the transformation explicitly. To make build and apply statistics match, you
must remove the rows with NULLs from the scoring data before performing the apply
operation. You can do this by creating a view.

CREATE VIEW viewname AS SELECT * from tablename
 WHERE column_name1 is NOT NULL
 AND column_name2 is NOT NULL
 AND column_name3 is NOT NULL

Note:

In OML4SQL, missing values in nested data indicate sparsity, not values
missing at random.

The value ODMS_MISSING_VALUE_DELETE_ROW is only valid for tables without
nested columns. If this value is used with nested data, an exception is raised.

19.7 Linear Regression
Oracle Machine Learning for SQL supports linear regression as the Generalized
Linear Model regression algorithm. The algorithm assumes no target transformation
and constant variance over the range of target values.

19.7.1 Coefficient Statistics for Linear Regression
Generalized Linear Model regression models generate the following coefficient
statistics:

• Linear coefficient estimate

Chapter 19
Linear Regression

19-10

• Standard error of the coefficient estimate

• t-value of the coefficient estimate

• Probability of the t-value

• Variance Inflation Factor (VIF)

• Standardized estimate of the coefficient

• Lower and upper confidence bounds of the coefficient

19.7.2 Global Model Statistics for Linear Regression
Generalized Linear Model regression models generate the following statistics that
describe the model as a whole:

• Model degrees of freedom

• Model sum of squares

• Model mean square

• Model F statistic

• Model F value probability

• Error degrees of freedom

• Error sum of squares

• Error mean square

• Corrected total degrees of freedom

• Corrected total sum of squares

• Root mean square error

• Dependent mean

• Coefficient of variation

• R-Square

• Adjusted R-Square

• Akaike's information criterion

• Schwarz's Baysian information criterion

• Estimated mean square error of the prediction

• Hocking Sp statistic

• JP statistic (the final prediction error)

• Number of parameters (the number of coefficients, including the intercept)

• Number of rows

• Whether or not the model converged

• Whether or not a covariance matrix was computed

Chapter 19
Linear Regression

19-11

19.7.3 Row Diagnostics for Linear Regression
For linear regression, the diagnostics table has the columns described in the following
table. All the columns are NUMBER, except the CASE_ID column, which preserves the
type from the training data.

Table 19-1 Diagnostics Table for GLM Regression Models

Column Description

CASE_ID Value of the case ID column

TARGET_VALUE Value of the target column

PREDICTED_VALUE Value predicted by the model for the target

HAT Value of the diagonal element of the hat matrix

RESIDUAL Measure of error

STD_ERR_RESIDUAL Standard error of the residual

STUDENTIZED_RESIDUAL Studentized residual

PRED_RES Predicted residual

COOKS_D Cook's D influence statistic

19.8 Logistic Regression
Oracle Machine Learning for SQL supports binary logistic regression as a Generalized
Linear Model classification algorithm. The algorithm uses the logit link function and the
binomial variance function.

19.8.1 Reference Class
You can use the build setting GLMS_REFERENCE_CLASS_NAME to specify the target value
to be used as a reference in a binary logistic regression model. Probabilities are
produced for the other (non-reference) class. By default, the algorithm chooses the
value with the highest prevalence. If there are ties, the attributes are sorted alpha-
numerically in an ascending order.

19.8.2 Class Weights
You can use the build setting CLAS_WEIGHTS_TABLE_NAME to specify the name of a class
weights table. Class weights influence the weighting of target classes during the model
build.

19.8.3 Coefficient Statistics for Logistic Regression
Generalized Linear Model classification models generate the following coefficient
statistics:

• Name of the predictor

• Coefficient estimate

Chapter 19
Logistic Regression

19-12

• Standard error of the coefficient estimate

• Wald chi-square value of the coefficient estimate

• Probability of the Wald chi-square value

• Standardized estimate of the coefficient

• Lower and upper confidence bounds of the coefficient

• Exponentiated coefficient

• Exponentiated coefficient for the upper and lower confidence bounds of the
coefficient

19.8.4 Global Model Statistics for Logistic Regression
Generalized Linear Model classification models generate the following statistics that
describe the model as a whole:

• Akaike's criterion for the fit of the intercept only model

• Akaike's criterion for the fit of the intercept and the covariates (predictors) model

• Schwarz's criterion for the fit of the intercept only model

• Schwarz's criterion for the fit of the intercept and the covariates (predictors) model

• -2 log likelihood of the intercept only model

• -2 log likelihood of the model

• Likelihood ratio degrees of freedom

• Likelihood ratio chi-square probability value

• Pseudo R-square Cox an Snell

• Pseudo R-square Nagelkerke

• Dependent mean

• Percent of correct predictions

• Percent of incorrect predictions

• Percent of ties (probability for two cases is the same)

• Number of parameters (the number of coefficients, including the intercept)

• Number of rows

• Whether or not the model converged

• Whether or not a covariance matrix was computed.

19.8.5 Row Diagnostics for Logistic Regression
For logistic regression, the diagnostics table has the columns described in the
following table. All the columns are NUMBER, except the CASE_ID and TARGET_VALUE
columns, which preserve the type from the training data.

Chapter 19
Logistic Regression

19-13

Table 19-2 Row Diagnostics Table for Logistic Regression

Column Description

CASE_ID Value of the case ID column

TARGET_VALUE Value of the target value

TARGET_VALUE_PROB Probability associated with the target value

HAT Value of the diagonal element of the hat matrix

WORKING_RESIDUAL Residual with respect to the adjusted dependent variable

PEARSON_RESIDUAL The raw residual scaled by the estimated standard deviation of the
target

DEVIANCE_RESIDUAL Contribution to the overall goodness of fit of the model

C Confidence interval displacement diagnostic

CBAR Confidence interval displacement diagnostic

DIFDEV Change in the deviance due to deleting an individual observation

DIFCHISQ Change in the Pearson chi-square

Chapter 19
Logistic Regression

19-14

20
k-Means

Oracle Machine Learning for SQL supports enhanced k-Means clustering algorithm.
Learn how to use the algorithm.

• About k-Means

• k-Means Algorithm Configuration

• Data Preparation for k-Means

Related Topics

• Clustering Algorithms
Learn different clustering algorithms used in Oracle Machine Learning for SQL.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: k-Means

• OML4SQL Examples

• OML4R k-Means Example

• OML4R Code Examples

20.1 About k-Means
The k-Means algorithm is a distance-based clustering algorithm that partitions the data
into a specified number of clusters.

Distance-based algorithms rely on a distance function to measure the similarity
between cases. Cases are assigned to the nearest cluster according to the distance
function used.

20.1.1 Oracle Machine Learning for SQL Enhanced k-Means
Implementation of k-Means in Oracle Machine Learning for SQL.

OML4SQL implements an enhanced version of the k-Means algorithm with the
following features:

• Distance function: The algorithm supports Euclidean and Cosine distance
functions. The default is Euclidean.

• Scalable Parallel Model build: The algorithm uses a very efficient method
of initialization based on Bahmani, Bahman, et al. "Scalable k-means++."
Proceedings of the VLDB Endowment 5.7 (2012): 622-633.

• Cluster properties: For each cluster, the algorithm returns the centroid, a
histogram for each attribute, and a rule describing the hyperbox that encloses
the majority of the data assigned to the cluster. The centroid reports the mode for
categorical attributes and the mean and variance for numerical attributes.

20-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

This approach to k-Means avoids the need for building multiple k-Means models and
provides clustering results that are consistently superior to the traditional k-Means.

20.1.2 Centroid
Defines a centroid in a cluster.

The centroid represents the most typical case in a cluster. For example, in a data set
of customer ages and incomes, the centroid of each cluster would be a customer of
average age and average income in that cluster. The centroid is a prototype. It does
not necessarily describe any given case assigned to the cluster.

The attribute values for the centroid are the mean of the numerical attributes and the
mode of the categorical attributes.

20.2 k-Means Algorithm Configuration
Learn about configuring the k-Means algorithm.

The Oracle Machine Learning for SQL enhanced k-Means algorithm supports several
build-time settings. All the settings have default values. There is no reason to override
the defaults unless you want to influence the behavior of the algorithm in some specific
way.

You can configure k-Means by specifying the following considerations:

• Number of clusters

• Distance Function. The default distance function is Euclidean.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

20.3 Data Preparation for k-Means
Learn about preparing data for k-Means algorithm.

Normalization is typically required by the k-Means algorithm. Automatic Data
Preparation performs normalization for k-Means. If you do not use ADP, you must
normalize numeric attributes before creating or applying the model.

When there are missing values in columns with simple data types (not nested),
k-Means interprets them as missing at random. The algorithm replaces missing
categorical values with the mode and missing numerical values with the mean.

Chapter 20
k-Means Algorithm Configuration

20-2

When there are missing values in nested columns, k-Means interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Preparing the Data

• Transforming the Data

Chapter 20
Data Preparation for k-Means

20-3

21
Minimum Description Length

Learn how to use Minimum Description Length, the supervised technique for
calculating attribute importance.

• About MDL

• Data Preparation for MDL

Related Topics

• Feature Selection
Learn how to perform feature selection and attribute importance.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Automatic Data Preparation

• OML4SQL Examples

• OML4R Code Examples

21.1 About MDL
Minimum Description Length (MDL) is an information theoretic model selection
principle.

Information theoretic model selection principle is an important concept in information
theory (the study of the quantification of information) and in learning theory (the study
of the capacity for generalization based on empirical data).

MDL assumes that the simplest, most compact representation of the data is the best
and most probable explanation of the data. The MDL principle is used to build Oracle
Machine Learning for SQL attribute importance models.

The build process for attribute importance supports parallel execution.

Related Topics

• Oracle Database VLDB and Partitioning Guide

21.1.1 Compression and Entropy
Data compression is the process of encoding information using fewer bits than what
the original representation uses. The MDL Principle is based on the notion that the
shortest description of the data is the most probable. In typical instantiations of this
principle, a model is used to compress the data by reducing the uncertainty (entropy)
as discussed below. The description of the data includes a description of the model
and the data as described by the model.

Entropy is a measure of uncertainty. It quantifies the uncertainty in a random variable
as the information required to specify its value. Information in this sense is defined

21-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

as the number of yes/no questions known as bits (encoded as 0 or 1) that must
be answered for a complete specification. Thus, the information depends upon the
number of values that variable can assume.

For example, if the variable represents the sex of an individual, then the number
of possible values is two: female and male. If the variable represents the salary
of individuals expressed in whole dollar amounts, then the values can be in the
range $0-$10B, or billions of unique values. Clearly it takes more information to specify
an exact salary than to specify an individual's sex.

21.1.1.1 Values of a Random Variable: Statistical Distribution
Information (the number of bits) depends on the statistical distribution of the values
of the variable as well as the number of values of the variable. If we are judicious in
the choice of Yes/No questions, then the amount of information for salary specification
cannot be as much as it first appears. Most people do not have billion dollar salaries.
If most people have salaries in the range $32000-$64000, then most of the time,
it requires only 15 questions to discover their salary, rather than the 30 required, if
every salary from $0-$1000000000 were equally likely. In the former example, if the
persons were known to be pregnant, then their sex is known to be female. There is no
uncertainty, no Yes/No questions need be asked. The entropy is 0.

21.1.1.2 Values of a Random Variable: Significant Predictors
Suppose that for some random variable there is a predictor that when its values are
known reduces the uncertainty of the random variable. For example, knowing whether
a person is pregnant or not, reduces the uncertainty of the random variable sex-of-
individual. This predictor seems like a valuable feature to include in a model. How
about name? Imagine that if you knew the name of the person, you would also know
the person's sex. If so, the name predictor would seemingly reduce the uncertainty
to zero. However, if names are unique, then what was gained? Is the person named
Sally? Is the person named George?... We would have as many Yes/No predictors
in the name model as there are people. Therefore, specifying the name model would
require as many bits as specifying the sex of each person.

21.1.1.3 Total Entropy
For a random variable, X, the total entropy is defined as minus the Probability(X)
multiplied by the log to the base 2 of the Probability(X). This can be shown to be the
variable's most efficient encoding.

21.1.2 Model Size
A Minimum Description Length (MDL) model takes into consideration the size of the
model as well as the reduction in uncertainty due to using the model. Both model size
and entropy are measured in bits. For our purposes, both numeric and categorical
predictors are binned. Thus the size of each single predictor model is the number of
predictor bins. The uncertainty is reduced to the within-bin target distribution.

21.1.3 Model Selection
Minimum Description Length (MDL) considers each attribute as a simple predictive
model of the target class. Model selection refers to the process of comparing and
ranking the single-predictor models.

Chapter 21
About MDL

21-2

MDL uses a communication model for solving the model selection problem. In the
communication model there is a sender, a receiver, and data to be transmitted.

These single predictor models are compared and ranked with respect to the MDL
metric, which is the relative compression in bits. MDL penalizes model complexity to
avoid over-fit. It is a principled approach that takes into account the complexity of the
predictors (as models) to make the comparisons fair.

21.1.4 The MDL Metric
Attribute importance uses a two-part code as the metric for transmitting each unit of
data. The first part (preamble) transmits the model. The parameters of the model are
the target probabilities associated with each value of the prediction.

For a target with j values and a predictor with k values, ni (i= 1,..., k) rows per value,
there are Ci, the combination of j-1 things taken ni-1 at a time possible conditional
probabilities. The size of the preamble in bits can be shown to be Sum(log2(Ci)), where
the sum is taken over k. Computations like this represent the penalties associated with
each single prediction model. The second part of the code transmits the target values
using the model.

It is well known that the most compact encoding of a sequence is the encoding that
best matches the probability of the symbols (target class values). Thus, the model that
assigns the highest probability to the sequence has the smallest target class value
transmission cost. In bits, this is the Sum(log2(pi)), where the pi are the predicted
probabilities for row i associated with the model.

The predictor rank is the position in the list of associated description lengths, smallest
first.

21.2 Data Preparation for MDL
Learn about preparing data for Minimum Description Length (MDL).

Automatic Data Preparation performs supervised binning for MDL. Supervised binning
uses decision trees to create the optimal bin boundaries. Both categorical and
numerical attributes are binned.

MDL handles missing values naturally as missing at random. The algorithm replaces
sparse numerical data with zeros and sparse categorical data with zero vectors.
Missing values in nested columns are interpreted as sparse. Missing values in
columns with simple data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that MDL usually
benefits from binning. However, the discriminating power of an attribute importance
model can be significantly reduced when there are outliers in the data and external
equal-width binning is used. This technique can cause most of the data to concentrate
in a few bins (a single bin in extreme cases). In this case, quantile binning is a better
solution.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Chapter 21
Data Preparation for MDL

21-3

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 21
Data Preparation for MDL

21-4

22
Multivariate State Estimation Technique -
Sequential Probability Ratio Test

The Multivariate State Estimation Technique - Sequential Probability Ratio Test
(MSET-SPRT) algorithm monitors critical processes and detects subtle anomalies.

• About Multivariate State Estimation Technique - Sequential Probability Ratio Test

• Score an MSET-SPRT Model

Related Topics

• Anomaly Detection
Learn how to detect rare cases in the data through anomaly detection - an
unsupervised function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Multivariate State Estimation
Technique - Sequential Probability Ratio Test

• OML4SQL Examples

• OML4R Code Examples

22.1 About Multivariate State Estimation Technique -
Sequential Probability Ratio Test

Multivariate state Estimation Technique - Sequential Probability Ratio Test (MSET-
SPRT) is an algorithm for anomaly detection and statistical testing.

MSET is a nonlinear, nonparametric anomaly detection machine learning technique
that calibrates the expected behavior of a system based on historical data from
the normal operational sequence of monitored signals. It incorporates the learned
behavior of a system into a persistent model that represents the normal estimated
behavior. You can deploy the model to evaluate a subsequent stream of live signal
vectors using OML4SQL scoring functions. To form a hypothesis as to the overall
health of the system, these functions calculate the difference between the estimated
and the actual signal values (residuals) and use SPRT calculations to determine
whether any of the signals have become degraded.

To build a good model, MSET requires sufficient historical data that adequately
captures all normal modes of behavior of the system. Incomplete data results in false
alerts when the system enters a mode of operation that was poorly represented in the
historical data. MSET assumes that the characteristics of the data being monitored
do not change over time. Once deployed, MSET is a stationary model and does not
evolve as it monitors a data stream.

Both MSET and SPRT operate on continuous time-ordered sensor data. If the raw
data stream needs to be pre-processed or sampled, you must do that before you pass
the data to the MSET-SPRT model.

22-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

The ALGO_MSET_SPRT algorithm is designated as a classification machine learning
function. It generates a model in which each data row is labeled as either normal
or anomalous. For anomalous predictions, the prediction details provide a list of the
sensors that show the anomaly and a weight.

When creating an MSET-SPRT model with the DBMS_DATA_MINING.CREATE_MODEL
function, use the case_id argument to provide a unique row identifier for the time-
ordered data that the algorithm requires. The build is then able to sort the training
data and create windows for sampling and variance estimation. If you do not provide a
case_id, then an exception occurs.

MSET-SPRT supports only numeric data. An exception occurs if other column types
are in the build data.

When the number of sensors is very high, MSET-SPRT leverages random projections
to improve the scalability and robustness of the algorithm. Random projections is
a technique that reduces dimensionality while preserving pairwise distances. By
randomly projecting the sensor data, the problem is solved in a distance-preserving,
lower-dimension space. The MSET hypothesis testing approach is applied on the
projected data where each random projection can be viewed as a Monte Carlo
simulation of system health. The overall probability of an anomaly follows a binomial
distribution with the number of projections as the number of trials and the number of
alerting projections as the number of successes.

Note:

An MSET-SPRT model with random projections does not produce prediction
details. When random projections are employed, the nature of the prediction
output changes. The prediction captures the global health of the system and
it is not possible to attribute the cause to individual attributes. Therefore,
PREDICTION_DETAILS returns an empty list.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• DBMS_DATA_MINING - Algorithm Settings: Multivariate State Estimation
Technique - Sequential Probability Ratio Test

Chapter 22
About Multivariate State Estimation Technique - Sequential Probability Ratio Test

22-2

22.2 Score an MSET-SPRT Model
Scoring data with MSET-SPRT models is similar to scoring with classification
algorithms, except that the SPRT methodology relies on ordered data because it
tracks gradual shifts over multiple MSET predictions.

This is different than the typical usage of Oracle Database SQL prediction functions,
which do not keep state information between rows.

The following functions are supported: PREDICTION, PREDICTION_COST,
PREDICTION_DETAILS, PREDICTION_PROBABILITY, and PREDICTION_SET. These
functions have syntax new in Oracle Database 21c for scoring MSET-SPRT models.
That syntax has an ORDER BY clause to order and window the historical data.

The prediction functions return the following information:

• PREDICTION indicates whether the record is flagged as anomalous. It uses the
same automatically generated labels as one-class SVM models: 1 for normal and
0 for anomalous.

• PREDICTION_COST performs an auto-cost analysis or a user-specified cost. A user-
specified cost typically assigns a higher cost to false positives than to false
negatives.

• PREDICTION_DETAILS specify the signals that support the prediction along with a
weight.

• PREDICTION_PROBABILITY conveys a measure of certainty based on the
consolidation logic.

• PREDICTION_SET returns the set of predictions (0, 1) and the corresponding
prediction probabilities for each observation.

Note:

If the values in one or more of the columns specified in the ORDER BY clause
are not unique, or do not represent a true chronology of data sample values,
the SPRT predictions are not guaranteed to be meaningful or consistent
between query executions.

Unlike other classification models, an MSET-SPRT model has no obvious probability
measure associated with the anomalous label for the record as a whole. However,
the consolidation logic can produce a measure of uncertainty in place of probability.
For example, if an alert is raised for 2 anomalies over a window of 5 observations,
a certainty of 0.5 is reported when 2 anomalies are seen within the 5 observation
window. The certainty increases if more than 3 anomalies are seen and decreases if
no anomalies are seen.

The PREDICTION_DETAILS function accommodates output of varying forms and can
convey the required information regarding the individual signals that triggered an
alarm. When random projections are engaged, only the overall PREDICTION and
PREDICTION_PROBABILITY are computed and PREDICTION_DETAILS are not reported.

You must score the historical data in order to tune the SPRT parameters, such as
false alerts and miss rates or consolidation logic, before you deploy the MSET model.

Chapter 22
Score an MSET-SPRT Model

22-3

The SPRT parameters are embedded in the model object to facilitate deployment.
While scoring in the database is needed for parameter tuning and forensic analysis on
historical data, monitoring a stream of sensor data is more easily done outside of the
database in an IoT service or on the edge device itself.

You can build and score an MSET-SPRT model as a partitioned model if the same
columns that you use to build the model are present in the input scoring data set. If
those columns are not present, the query results in an error.

Related Topics

• SQL Scoring Functions

• SQL Scoring Functions

• MSET_SPRT example on GitHub

Chapter 22
Score an MSET-SPRT Model

22-4

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

23
Naive Bayes

Learn how to use the Naive Bayes classification algorithm.

• About Naive Bayes

• Tuning a Naive Bayes Model

• Data Preparation for Naive Bayes

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Naive Bayes

• OML4SQL Examples

• OML4R Naive Bayes Example

• OML4R Code Examples

23.1 About Naive Bayes
Naive Bayes algorithm is based on conditional probabilities. It uses Bayes' theorem,
a formula that calculates a probability by counting the frequency of values and
combinations of values in the historical data.

Bayes' theorem finds the probability of an event occurring given the probability of
another event that has already occurred. If B represents the dependent event and A
represents the prior event, Bayes' theorem can be stated as follows.

Note:

Prob(B given A) = Prob(A and B)/Prob(A)

To calculate the probability of B given A, the algorithm counts the number of cases
where A and B occur together and divides it by the number of cases where A occurs
alone.

Example 23-1 Use Bayes' Theorem to Predict an Increase in Spending

Suppose you want to determine the likelihood that a customer under 21 increases
spending. In this case, the prior condition (A) is "under 21," and the dependent
condition (B) is "increase spending."

23-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

If there are 100 customers in the training data and 25 of them are customers under 21
who have increased spending, then:

Prob(A and B) = 25%

If 75 of the 100 customers are under 21, then:

Prob(A) = 75%

Bayes' theorem predicts that 33% of customers under 21 are likely to increase
spending (25/75).

The cases where both conditions occur together are referred to as pairwise. In
Example 23-1, 25% of all cases are pairwise.

The cases where only the prior event occurs are referred to as singleton. In
Example 23-1, 75% of all cases are singleton.

A visual representation of the conditional relationships used in Bayes' theorem is
shown in the following figure.

Figure 23-1 Conditional Probabilities in Bayes' Theorem

A and B

B

A

P(A) = 3/4

P(B) = 2/4

P(A and B) = P(AB) = 1/4

P(A B) = P(AB) / P(B) = (1/4) / (2/4) = 1/2

P(B A) = P(AB) / P(A) = (1/4) / (3/4) = 1/3

For purposes of illustration, Example 23-1 and Figure 23-1 show a dependent event
based on a single independent event. In reality, the Naive Bayes algorithm must
usually take many independent events into account. In Example 23-1, factors such as
income, education, gender, and store location might be considered in addition to age.

Naive Bayes makes the assumption that each predictor is conditionally independent of
the others. For a given target value, the distribution of each predictor is independent
of the other predictors. In practice, this assumption of independence, even when
violated, does not degrade the model's predictive accuracy significantly, and makes
the difference between a fast, computationally feasible algorithm and an intractable
one.

Sometimes the distribution of a given predictor is clearly not representative of the
larger population. For example, there might be only a few customers under 21 in the
training data, but in fact there are many customers in this age group in the wider
customer base. To compensate for this, you can specify prior probabilities when
training the model.

Chapter 23
About Naive Bayes

23-2

Related Topics

• Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful
result.

23.1.1 Advantages of Naive Bayes
Learn about the advantages of Naive Bayes.

The Naive Bayes algorithm affords fast, highly scalable model building and scoring. It
scales linearly with the number of predictors and rows.

The build process for Naive Bayes supports parallel execution. (Scoring supports
parallel execution irrespective of the algorithm.)

Naive Bayes can be used for both binary and multiclass classification problems.

Related Topics

• Oracle Database VLDB and Partitioning Guide

23.2 Tuning a Naive Bayes Model
Introduces about probability calculation of pairwise occurrences and percentage of
singleton occurrences.

Naive Bayes calculates a probability by dividing the percentage of pairwise
occurrences by the percentage of singleton occurrences. If these percentages are
very small for a given predictor, they probably do not contribute to the effectiveness of
the model. Occurrences below a certain threshold can usually be ignored.

The following build settings are available for adjusting the probability thresholds. You
can specify:

• The minimum percentage of pairwise occurrences required for including a
predictor in the model.

• The minimum percentage of singleton occurrences required for including a
predictor in the model .

The default thresholds work well for most models, so you need not adjust these
settings.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Chapter 23
Tuning a Naive Bayes Model

23-3

23.3 Data Preparation for Naive Bayes
Learn about preparing the data for Naive Bayes.

Automatic Data Preparation (ADP) performs supervised binning for Naive Bayes.
Supervised binning uses decision trees to create the optimal bin boundaries. Both
categorical and numeric attributes are binned.

Naive Bayes handles missing values naturally as missing at random. The algorithm
replaces sparse numerical data with zeros and sparse categorical data with zero
vectors. Missing values in nested columns are interpreted as sparse. Missing values in
columns with simple data types are interpreted as missing at random.

If you choose to manage your own data preparation, keep in mind that Naive Bayes
usually requires binning. Naive Bayes relies on counting techniques to calculate
probabilities. Columns must be binned to reduce the cardinality as appropriate.
Numerical data can be binned into ranges of values (for example, low, medium, and
high), and categorical data can be binned into meta-classes (for example, regions
instead of cities). Equi-width binning is not recommended, since outliers cause most
of the data to concentrate in a few bins, sometimes a single bin. As a result, the
discriminating power of the algorithms is significantly reduced

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 23
Data Preparation for Naive Bayes

23-4

24
Neural Network

Learn about the Neural Network algorithms for regression and classification machine
learning functions.

• About Neural Network

• Data Preparation for Neural Network

• Neural Network Algorithm Configuration

• Scoring with Neural Network

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• Regression
Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: Neural Network

• OML4SQL Examples

• OML4R Neural Network Example

• OML4R Code Examples

24.1 About Neural Network
The Neural Network algorithm in Oracle Machine Learning for SQL is designed for
machine learning functions like classification and regression.

In machine learning, an artificial neural network is an algorithm inspired from biological
neural network and is used to estimate or approximate functions that depend on a
large number of generally unknown inputs. An artificial neural network is composed of
a large number of interconnected neurons which exchange messages between each
other to solve specific problems. They learn by examples and tune the weights of
the connections among the neurons during the learning process. The Neural Network
algorithm is capable of solving a wide variety of tasks such as computer vision, speech
recognition, and various complex business problems.

Related Topics

• Regression
Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

24-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

24.1.1 Neurons and Activation Functions
Neurons are the building blocks of a neural network.

A neuron takes one or more inputs having different weights and has an output which
depends on the inputs. The output is achieved by adding up inputs of each neuron
with weights and feeding the sum into the activation function.

A Sigmoid function is usually the most common choice for activation function but other
non-linear functions, piecewise linear functions or step functions are also used. The
Rectified Linear Units function NNET_ACTIVATIONS_RELU is a commonly used activation
function that addresses the vanishing gradient problem for larger neural networks.

The following are some examples of activation functions:

• Logistic Sigmoid function

• Linear function

• Tanh function

• Arctan function

• Bipolar sigmoid function

• Rectified Linear Units

24.1.2 Loss or Cost function
A loss function or cost function is a function that maps an event or values of one or
more variables onto a real number intuitively representing some "cost" associated with
the event.

An optimization problem seeks to minimize a loss function. The form of loss function is
chosen based on the nature of the problem and mathematical needs.

The following are the different loss functions for different scenarios:

• Binary classification: cross entropy function.

• Multi-class classification: softmax function.

• Regression: squared error function.

24.1.3 Forward-Backward Propagation
Understand forward-backward propagation.

Forward propagation computes the loss function value by weighted summing the
previous layer neuron values and applying activation functions. Backward propagation
calculates the gradient of a loss function with respect to all the weights in the network.
The weights are initialized with a set of random numbers uniformly distributed within
a region specified by user (by setting weights boundaries), or region defined by the
number of nodes in the adjacent layers (data driven). The gradients are fed to an
optimization method which in turn uses them to update the weights, in an attempt to
minimize the loss function.

Chapter 24
About Neural Network

24-2

24.1.4 Optimization Solvers
An optimization solver is a function that searches for the optimal solution of the loss
function to find the extreme value (maximum or minimum) of the loss (cost) function.

Oracle Machine Learning implements Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) together with line search and the Adam solver.

Limited-memory Broyden–Fletcher–Goldfarb–Shanno Solver

L-BFGS is a Quasi-Newton method. This method uses rank-one updates specified
by gradient evaluations to approximate a Hessian matrix. This method only needs
a limited amount of memory. L-BFGS is used to find the descent direction and line
search is used to find the appropriate step size. The number of historical copies kept
in the L-BFGS solver is defined by the LBFGS_HISTORY_DEPTH solver setting. When
the number of iterations is smaller than the history depth, the Hessian computed
by L-BFGS is accurate. When the number of iterations is larger than the history
depth, the Hessian computed by L-BFGS is an approximation. Therefore, the history
depth should not be too small or too large to avoid making the computation too slow.
Typically, the value is between 3 and 10.

Adam Solver

Adam is an extension to stochastic gradient descent that uses mini-batch optimization.
The L-BFGS solver may be a more stable solver whereas the Adam solver can
make progress faster by seeing less data. Adam is computationally efficient, with little
memory requirements, and is well-suited for problems that are large in terms of data or
parameters or both.

24.1.5 Regularization
Understand regularization.

Regularization refers to a process of introducing additional information to solve
an ill-posed problem or to prevent over-fitting. Ill-posed or over-fitting can occur
when a statistical model describes random errors or noise instead of the underlying
relationship. Typical regularization techniques include L1-norm regularization, L2-norm
regularization, and held-aside.

Held-aside is usually used for large training date sets whereas L1-norm regularization
and L2-norm regularization are mostly used for small training date sets.

24.1.6 Convergence Check
This checks if the optimal solution has been reached and if the iterations of the
optimization has come to an end.

In L-BFGS solver, the convergence criteria includes maximum number of iterations,
infinity norm of gradient, and relative error tolerance. For held-aside regularization, the
convergence criteria checks the loss function value of the test data set, as well as the
best model learned so far. The training is terminated when the model becomes worse
for a specific number of iterations (specified by NNET_HELDASIDE_MAX_FAIL), or the loss
function is close to zero, or the relative error on test data is less than the tolerance.

Chapter 24
About Neural Network

24-3

24.1.7 LBFGS_SCALE_HESSIAN
Defines LBFGS_SCALE_HESSIAN.

It specifies how to set the initial approximation of the inverse Hessian at the beginning
of each iteration. If the value is set to be LBFGS_SCALE_HESSIAN_ENABLE, then we
approximate the initial inverse Hessian with Oren-Luenberger scaling. If it is set to
be LBFGS_SCALE_HESSIAN_DISABLE, then we use identity as the approximation of the
inverse Hessian at the beginning of each iteration.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

24.1.8 NNET_HELDASIDE_MAX_FAIL
Defines NNET_HELDASIDE_MAX_FAIL.

Validation data (held-aside) is used to stop training early if the network performance on
the validation data fails to improve or remains the same for NNET_HELDASIDE_MAX_FAIL
epochs in a row.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

24.2 Data Preparation for Neural Network
Learn about preparing data for the Neural Network algorithm.

The algorithm automatically "explodes" categorical data into a set of binary attributes,
one per category value. Oracle Machine Learning for SQL algorithms automatically
handle missing values and therefore, missing value treatment is not necessary.

The algorithm automatically replaces missing categorical values with the mode and
missing numerical values with the mean. The algorithm requires the normalization of
numeric input and it uses z-score normalization. The normalization occurs only for
two-dimensional numeric columns (not nested). Normalization places the values of
numeric attributes on the same scale and prevents attributes with a large original
scale from biasing the solution. Neural Network scales the numeric values in nested
columns by the maximum absolute value seen in the corresponding columns.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 24
Data Preparation for Neural Network

24-4

24.3 Neural Network Algorithm Configuration
Learn about configuring the Neural Network algorithm.

Specify Nodes Per Layer

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
 ('NNET_NODES_PER_LAYER', '2,3');

Specify Activation Functions Per Layer

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
 ('NNET_ACTIVATIONS', '''NNET_ACTIVATIONS_TANH'',
''NNET_ACTIVATIONS_LOG_SIG''');

Example 24-1 Example

In this example you will understand how to build a Neural Network model. When the
settings table is created and populated, insert a row in the settings table to specify the
algorithm.

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
 ('ALGO_NAME', 'ALGO_NEURAL_NETWORK');

Build the model as follows:

BEGIN
DBMS_DATA_MINING.CREATE_MODEL(
model_name => 'model-name',
mining_function => dbms_data_mining.classification/regression,
data_table_name => 'test_table',
case_id_column_name => 'case_id',
target_column_name => 'test_target',
settings_table_name => 'settings_table');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Chapter 24
Neural Network Algorithm Configuration

24-5

24.4 Scoring with Neural Network
Learn to score with a Neural Network algorithm.

Scoring with Neural Network is the same as any other classification
or regression algorithm. The following functions are supported:
PREDICTION, PREDICTION_PROBABILITY, PREDICTION_COST, PREDICTION_SET, and
PREDICTION_DETAILS.

Related Topics

• Oracle Database SQL Language Reference

Chapter 24
Scoring with Neural Network

24-6

25
Non-Negative Matrix Factorization

Learn how to use Non-Negative Matrix Factorization (NMF), an unsupervised
algorithm, that Oracle Machine Learning for SQL uses for feature extraction.

• About NMF

• Tuning the NMF Algorithm

• Data Preparation for NMF

Related Topics

• Feature Extraction
Learn how to perform attribute reduction using feature extraction as an
unsupervised function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: Non-Negative Matrix Factorization

• OML4SQL Examples

• OML4R Non-Negative Matrix Factorization Example

• OML4R Code Examples

See Also:

Paper "Learning the Parts of Objects by Non-Negative Matrix Factorization"
by D. D. Lee and H. S. Seung in Nature (401, pages 788-791, 1999)

25.1 About NMF
Non-Negative Matrix Factorization is useful when there are many attributes and the
attributes are ambiguous or have weak predictability. By combining attributes, NMF
can produce meaningful patterns, topics, or themes. NMF is a feature extraction
algorithm.

Each feature created by NMF is a linear combination of the original attribute set. Each
feature has a set of coefficients, which are a measure of the weight of each attribute
on the feature. There is a separate coefficient for each numerical attribute and for each
distinct value of each categorical attribute. The coefficients are all non-negative.

25.1.1 Matrix Factorization
Non-Negative Matrix Factorization uses techniques from multivariate analysis and
linear algebra. It decomposes the data as a matrix M into the product of two lower

25-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

ranking matrices W and H. The sub-matrix W contains the NMF basis; the sub-matrix
H contains the associated coefficients (weights).

The algorithm iteratively modifies of the values of W and H so that their product
approaches M. The technique preserves much of the structure of the original data and
guarantees that both basis and weights are non-negative. The algorithm terminates
when the approximation error converges or a specified number of iterations is
reached.

The NMF algorithm must be initialized with a seed to indicate the starting point for the
iterations. Because of the high dimensionality of the processing space and the fact that
there is no global minimization algorithm, the appropriate initialization can be critical in
obtaining meaningful results. Oracle Machine Learning for SQL uses a random seed
that initializes the values of W and H based on a uniform distribution. This approach
works well in most cases.

25.1.2 Scoring with NMF
Non-Negative Matrix Factorization (NMF) can be used as a pre-processing step for
dimensionality reduction in classification, regression, clustering, and other machine
learning tasks. Scoring an NMF model produces data projections in the new feature
space. The magnitude of a projection indicates how strongly a record maps to a
feature.

The SQL scoring functions for feature extraction support NMF models. When the
functions are invoked with the analytical syntax, the functions build and apply
a transient NMF model. The feature extraction functions are: FEATURE_DETAILS,
FEATURE_ID, FEATURE_SET, and FEATURE_VALUE.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

25.1.3 Text Analysis with NMF
Learn about text analysis with Non-Negative Matrix Factorization (NMF).

NMF is especially well-suited for analyzing text. In a text document, the same word
can occur in different places with different meanings. For example, "hike" can be
applied to the outdoors or to interest rates. By combining attributes, NMF introduces
context, which is essential for explanatory power:

• "hike" + "mountain" -> "outdoor sports"

• "hike" + "interest" -> "interest rates"

Related Topics

• Oracle Machine Learning for SQL User’s Guide

25.2 Tuning the NMF Algorithm
Learn about configuring parameters for Non-Negative Matrix Factorization (NMF).

Oracle Machine Learning for SQL supports five configurable parameters for NMF.
All of them have default values which are appropriate for most applications of the
algorithm. The NMF settings are:

Chapter 25
Tuning the NMF Algorithm

25-2

• Number of features. By default, the number of features is determined by the
algorithm.

• Convergence tolerance. The default is .05.

• Number of iterations. The default is 50.

• Random seed. The default is -1.

• Non-negative scoring. You can specify whether negative numbers must be allowed
in scoring results. By default they are allowed.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

25.3 Data Preparation for NMF
You can use Automatic Data Preparation (ADP) or supply your transformation like
binning or normalization to prepare the data for Non-Negative Matrix Factorization
(NMF).

ADP normalizes numerical attributes for NMF.

When there are missing values in columns with simple data types (not nested), NMF
interprets them as missing at random. The algorithm replaces missing categorical
values with the mode and missing numerical values with the mean.

When there are missing values in nested columns, NMF interprets them as sparse.
The algorithm replaces sparse numerical data with zeros and sparse categorical data
with zero vectors.

If you choose to manage your own data preparation, keep in mind that outliers
can significantly impact NMF. Use a clipping transformation before binning or
normalizing. NMF typically benefits from normalization. However, outliers with min-max
normalization cause poor matrix factorization. To improve the matrix factorization, you
need to decrease the error tolerance. This in turn leads to longer build times.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 25
Data Preparation for NMF

25-3

26
O-Cluster

Learn how to use orthogonal partitioning clustering (O-Cluster), an Oracle-proprietary
clustering algorithm.

• About O-Cluster

• Tuning the O-Cluster Algorithm

• Data Preparation for O-Cluster

Related Topics

• Clustering Algorithms
Learn different clustering algorithms used in Oracle Machine Learning for SQL.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: O-Cluster

• OML4SQL Examples

• OML4R O-Cluster Example

• OML4R Code Examples

See Also:

Campos, M.M., Milenova, B.L., "Clustering Large Databases with Numeric
and Nominal Values Using Orthogonal Projections", Oracle Data Mining
Technologies, Oracle Corporation.

26.1 About O-Cluster
O-Cluster is a fast, scalable grid-based clustering algorithm well-suited for analysing
large, high-dimensional data sets. The algorithm can produce high quality clusters
without relying on user-defined parameters.

The objective of O-Cluster is to identify areas of high density in the data and separate
the dense areas into clusters. It uses axis-parallel uni-dimensional (orthogonal) data
projections to identify the areas of density. The algorithm looks for splitting points that
result in distinct clusters that do not overlap and are balanced in size.

O-Cluster operates recursively by creating a binary tree hierarchy. The number of
leaf clusters is determined automatically. The algorithm can be configured to limit the
maximum number of clusters.

26-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

26.1.1 Partitioning Strategy
Partitioning strategy refers to the process of discovering areas of density in the
attribute histograms. The process differs for numerical and categorical data. When
both are present in the data, the algorithm performs the searches separately and then
compares the results.

In choosing a partition, the algorithm balances two objectives: finding well separated
clusters, and creating clusters that are balanced in size. The following paragraphs
detail how partitions for numerical and categorical attributes are identified.

26.1.1.1 Partitioning Numerical Attributes
To find the best valid cutting plane, O-Cluster searches the attribute histograms for
bins of low density (valleys) between bins of high density (peaks).

O-Cluster attempts to find a pair of peaks with a valley between them where the
difference between the peak and valley histogram counts is statistically significant.

A sensitivity level parameter specifies the lowest density that may be considered a
peak. Sensitivity is an optional parameter for numeric data. It may be used to filter the
splitting point candidates.

26.1.1.2 Partitioning Categorical Attributes
Categorical values do not have an intrinsic order associated with them. Therefore it is
impossible to apply the notion of histogram peaks and valleys that is used to partition
numerical values. Instead the counts of individual values form a histogram.

Bins with large counts are interpreted as regions with high density. The clustering
objective is to separate these high-density areas and effectively decrease the entropy
(randomness) of the data.

O-Cluster identifies the histogram with highest entropy along the individual projections.
Entropy is measured as the number of bins above sensitivity level. O-Cluster places
the two largest bins into separate partitions, thereby creating a splitting predicate. The
remainder of the bins are assigned randomly to the two resulting partitions.

26.1.2 Active Sampling
The O-Cluster algorithm operates on a data buffer of a limited size. It uses an active
sampling mechanism to handle data sets that do not fit into memory.

After processing an initial random sample, O-Cluster identifies cases that are of no
further interest. Such cases belong to frozen partitions where further splitting is highly
unlikely. These cases are replaced with examples from ambiguous regions where
further information (additional cases) is needed to find good splitting planes and
continue partitioning. A partition is considered ambiguous if a valid split can only be
found at a lower confidence level.

Cases associated with frozen partitions are marked for deletion from the buffer. They
are replaced with cases belonging to ambiguous partitions. The histograms of the
ambiguous partitions are updated and splitting points are reevaluated.

Chapter 26
About O-Cluster

26-2

26.1.3 Process Flow
At a high level, O-Cluster algorithm evaluates, splits the data into new partition, and
searches for cutting planes inside the new partitions.

The O-Cluster algorithm evaluates possible splitting points for all projections in a
partition, selects the best one, and splits the data into two new partitions. The
algorithm proceeds by searching for good cutting planes inside the newly created
partitions. Thus, O-Cluster creates a binary tree structure that divides the input space
into rectangular regions with no overlaps or gaps.

The main processing stages are:

1. Load the buffer. Assign all cases from the initial buffer to a single active root
partition.

2. Compute histograms along the orthogonal uni-dimensional projections for each
active partition.

3. Find the best splitting points for active partitions.

4. Flag ambiguous and frozen partitions.

5. When a valid separator exists, split the active partition into two new active
partitions and start over at step 2.

6. Reload the buffer after all recursive partitioning on the current buffer is completed.
Continue loading the buffer until either the buffer is filled again, or the end of the
data set is reached, or until the number of cases is equal to the data buffer size.

Note:

O-Cluster requires at most one pass through the data

26.1.4 Scoring
The clusters discovered by O-Cluster are used to generate a Bayesian probability
model that can be used to score new data.

The generated probability model is a mixture model where the mixture components
are represented by a product of independent normal distributions for numerical
attributes and multinomial distributions for categorical attributes.

26.2 Tuning the O-Cluster Algorithm
You can configure build-time settings for O-Cluster.

The O-Cluster algorithm supports two build-time settings. Both settings have default
values. There is no reason to override the defaults unless you want to influence the
behavior of the algorithm in some specific way.

You can configure O-Cluster by specifying any of the following:

• Buffer size — Size of the processing buffer.

Chapter 26
Tuning the O-Cluster Algorithm

26-3

• Sensitivity factor — A fraction that specifies the peak density required for
separating a new cluster.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Active Sampling
The O-Cluster algorithm operates on a data buffer of a limited size. It uses an
active sampling mechanism to handle data sets that do not fit into memory.

• Partitioning Strategy

26.3 Data Preparation for O-Cluster
Use Automatic Data Preparation (ADP) to prepare the data for O-Cluster.

ADP bins numerical attributes for O-Cluster. It uses a specialized form of equi-width
binning that computes the number of bins per attribute automatically. Numerical
columns with all nulls or a single value are removed. O-Cluster handles missing values
naturally as missing at random.

Note:

O-Cluster does not support nested columns, sparse data, or unstructured
text.

Related Topics

• Preparing the Data

• Transforming the Data

26.3.1 User-Specified Data Preparation for O-Cluster
You can prepare the data for O-Cluster by considering the points listed here.

Keep the following in mind if you choose to prepare the data for O-Cluster:

• O-Cluster does not necessarily use all the input data when it builds a model. It
reads the data in batches (the default batch size is 50000). It only reads another
batch if it believes, based on statistical tests, that uncovered clusters can still exist.

• Binary attributes must be declared as categorical.

Chapter 26
Data Preparation for O-Cluster

26-4

• Automatic equi-width binning is highly recommended. The bin identifiers are
expected to be positive consecutive integers starting at 1.

• The presence of outliers can significantly impact clustering algorithms. Use a
clipping transformation before binning or normalizing. Outliers with equi-width
binning can prevent O-Cluster from detecting clusters. As a result, the whole
population appears to fall within a single cluster.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 26
Data Preparation for O-Cluster

26-5

27
R Extensibility

Learn how to built analytics model and scored in R with ease. R extensible algorithms
are enhanced to support and register additional algorithms for SQL users and
graphical user interface users.

• Oracle Machine Learning for SQL with R Extensibility

• Scoring with R

• About Algorithm Metadata Registration

Related Topics

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: ALGO_EXTENSIBLE_LANG

• OML4SQL Examples

• OML4R Extensible R Example

• OML4R Code Examples

27.1 Oracle Machine Learning for SQL with R Extensibility
Learn how you can use Oracle Machine Learning for SQL to build, score, and view
machine learning models as well as R models.

The OML4SQL framework is enhanced extending the OML4SQL algorithm set with
algorithms from the open source R ecosystem. Oracle Machine Learning for SQL is
implemented in the Oracle Database kernel. The OML4SQL models are Database
schema objects. With the extensibility enhancement, the OML4SQL framework can
build, score, and view both OML4SQL models and R models.

Registration of R scripts

The R engine on the database server runs the R scripts to build, score, and view
R models. These R scripts must be registered with the database beforehand by a
privileged user with rqAdmin role. You must first install Oracle Machine Learning for R
to register the R scripts.

Functions of Oracle Machine Learning for SQL with R Model

The following functions are supported for an R model:

• OML4SQL DBMS_DATA_MINING package is enhanced to support R model. For
example, CREATE_MODEL and DROP_MODEL.

• MODEL VIEW to get the R model details about a single model and a partitioned
model.

• OML4SQL SQL functions are enhanced to operate with the R model functions. For
example, PREDICTION and CLUSTER_ID.

R model extensibility supports the following OML4SQL functions:

27-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

• Association

• Attribute Importance

• Regression

• Classification

• Clustering

• Feature Extraction

27.2 Scoring with R
Learn how to build and score with an Oracle Machine Learning for R model.

For more information, see Oracle Machine Learning for SQL User’s Guide

27.3 About Algorithm Metadata Registration
Algorithm metadata registration allows for a uniform and consistent approach of
registering new algorithm functions and their settings.

Users have the ability to add new R-based algorithms through the registration process.
The new algorithms appear as available within Oracle Machine Learning for R and
within the appropriate machine learning functions. Based on the registration metadata,
the settings page is dynamically rendered. The advantages are as follows:

• Manage R-based algorithms more easily

• Specify R-based algorithm for model build

• Clean individual properties in JSON structure

• Share R-based algorithm across user

Algorithm metadata registration extends the machine learning model capability of
Oracle Machine Learning for SQL.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• Create Model Using Registration Information

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

Chapter 27
Scoring with R

27-2

27.3.1 Algorithm Metadata Registration
Algorithm metadata registration allows for a uniform and consistent approach of
registering new algorithm functions and their settings.

User have the ability to add new algorithms through the REGISTER_ALGORITHM
procedure registration process. The new algorithms can appear as available within
Oracle Machine Learning for SQL for their appropriate machine learning functions.
Based on the registration metadata, the settings page is dynamically rendered.
Algorithm metadata registration extends the machine learning model capability of
OML4SQL.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• FETCH_JSON_SCHEMA Procedure

• REGISTER_ALGORITHM Procedure

• JSON Schema for R Extensible Algorithm

Chapter 27
About Algorithm Metadata Registration

27-3

28
Random Forest

Learn how to use Random Forest as a classification algorithm.

• About Random Forest

• Building a Random Forest

• Scoring with Random Forest

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Random Forest

• OML4SQL Examples

• OML4R Random Forest Example

• OML4R Code Examples

28.1 About Random Forest
Random Forest is a classification algorithm that builds an ensemble (also called
forest) of trees.

The algorithm builds a number of Decision Tree models and predicts using the
ensemble. An individual decision tree is built by choosing a random sample from the
training data set as the input. At each node of the tree, only a random sample of
predictors is chosen for computing the split point. This introduces variation in the data
used by the different trees in the forest. The parameters RFOR_SAMPLING_RATIO and
RFOR_MTRY are used to specify the sample size and number of predictors chosen at
each node. Users can use ODMS_RANDOM_SEED to set the random seed value before
running the algorithm.

Related Topics

• Decision Tree
Oracle Machine Learning for SQL supports Decision Tree as one of the
classification algorithms. This chapter provides an overview of the Decision Tree
algorithm.

• Splitting
The Decision Tree algorithm offers metrics for splitting the cases (records).

• Data Preparation for Decision Tree
Learn how to prepare data for the Decision Tree algorithm.

28-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

28.2 Building a Random Forest
The Random Forest is built upon existing infrastructure and Application Programming
Interfaces (APIs) of Oracle Machine Learning for SQL.

The model is built by specifying parameters in the existing APIs. The scoring is
performed using the same SQL queries and APIs as the existing classification
algorithms. OML4SQL implements a variant of classical Random Forest algorithm.
This implementation supports big data sets. The implementation of the algorithm
differs in the following ways:

• OML4SQL does not support bagging and instead provides sampling without
replacement

• Users have the ability to specify the depth of the tree. Trees are not built to
maximum depth.

Example 28-1 Example

In this example you will understand how to build a Random Forest model. When the
settings table is created and populated, insert a row in the settings table to specify the
algorithm and the variant.

INSERT INTO SETTINGS_TABLE (setting_name, setting_value) VALUES
('ALGO_NAME', 'ALGO_RANDOM_FOREST');

Build the model as follows:

BEGIN DBMS_DATA_MINING.CREATE_MODEL(
model_name => ‘model-name',
mining_function => dbms_data_mining.classification,
data_table_name => 'test_table',
case_id_column_name => '',
target_column_name => 'test_target',
settings_table_name => 'settings_table');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

28.3 Scoring with Random Forest
Learn to score with the Random Forest algorithm.

Chapter 28
Building a Random Forest

28-2

Scoring with Random Forest is the same as any other classification algorithm.
The following functions are supported: PREDICTION, PREDICTION_PROBABILITY,
PREDICTION_COST, PREDICTION_SET, and PREDICTION_DETAILS.

Related Topics

• Oracle Database SQL Language Reference

Chapter 28
Scoring with Random Forest

28-3

29
Singular Value Decomposition

Learn how to use Singular Value Decomposition, an unsupervised algorithm for feature
extraction.

• About Singular Value Decomposition

• Configuring the Algorithm

• Data Preparation for SVD

Related Topics

• Feature Extraction
Learn how to perform attribute reduction using feature extraction as an
unsupervised function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Constants and Settings: Singular Value
Decomposition

• OML4SQL Examples

• OML4R Singular Value Decomposition Example

• OML4R Code Examples

29.1 About Singular Value Decomposition
SVD and the closely-related PCA are well established feature extraction methods that
have a wide range of applications. Oracle Machine Learning for SQL implements
Singular Value Decomposition (SVD) as a feature extraction algorithm and Principal
Component Analysis (PCA) as a special scoring method for SVD models.

SVD and PCA are orthogonal linear transformations that are optimal at capturing
the underlying variance of the data. This property is very useful for reducing
the dimensionality of high-dimensional data and for supporting meaningful data
visualization.

SVD and PCA have a number of important applications in addition to dimensionality
reduction. These include matrix inversion, data compression, and the imputation of
unknown data values.

29.1.1 Matrix Manipulation
Singular Value Decomposition (SVD) is a factorization method that decomposes a
rectangular matrix X into the product of three matrices: U, S, and V.

29-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

Figure 29-1 Matrix Manipulation

X = USV'

The U matrix consists of a set of 'left' orthonormal bases
The S matrix is a diagonal matrix
The V matrix consists of set of 'right' orthonormal bases

The values in S are called singular values. They are non-negative, and their
magnitudes indicate the importance of the corresponding bases (components). The
singular values reflect the amount of data variance captured by the bases. The first
basis (the one with largest singular value) lies in the direction of the greatest data
variance. The second basis captures the orthogonal direction with the second greatest
variance, and so on.

SVD essentially performs a coordinate rotation that aligns the transformed axes with
the directions of maximum variance in the data. This is a useful procedure under the
assumption that the observed data has a high signal-to-noise ratio and that a large
variance corresponds to interesting data content while a lower variance corresponds to
noise.

SVD makes the assumption that the underlying data is Gaussian distributed and can
be well described in terms of means and covariances.

29.1.2 Low Rank Decomposition
Singular Value Decomposition (SVD) keeps lower-order bases (the ones with the
largest singular values) and ignores higher-order bases (the ones with the smallest
singular values) to capture the most important aspects of the data.

To reduce dimensionality, SVD keeps lower-order bases and ignores higher-order
bases. The rationale behind this strategy is that the low-order bases retain the
characteristics of the data that contribute most to its variance and are likely to capture
the most important aspects of the data.

Given a data set X (nxm), where n is the number of rows and m is the number
of attributes, a low-rank SVD uses only k components (k <= min(m, n)). In typical
implementations of SVD, the value of k requires a visual inspection of the ranked
singular values associated with the individual components. In OML4SQL, SVD
automatically estimates the cutoff point, which corresponds to a significant drop in
the explained variance.

SVD produces two sets of orthonormal bases (U and V). Either of these bases can
be used as a new coordinate system. In OML4SQL, SVD, V is the new coordinate
system, and U represents the projection of X in this coordinate system. The algorithm
computes the projection of new data as follows:

Figure 29-2 Computing Projection of New Data

X = XV
k
S

k

-1
~

Chapter 29
About Singular Value Decomposition

29-2

where X (nxk) is the projected data in the reduced data space, defined by the first k
components, and Vk and Sk define the reduced component set.

29.1.3 Scalability
In Oracle Machine Learning for SQL, Singular Value Decomposition (SVD) can
process data sets with millions of rows and thousands of attributes. Oracle Machine
Learning for SQL automatically recommends an appropriate number of features,
based on the data, for dimensionality reduction.

SVD has linear scalability with the number of rows and cubic scalability with the
number of attributes when a full decomposition is computed. A low-rank decomposition
is typically linear with the number of rows and linear with the number of columns. The
scalability with the reduced rank depends on how the rank compares to the number of
rows and columns. It can be linear when the rank is significantly smaller or cubic when
it is on the same scale.

29.2 Configuring the Algorithm
Several options are available for configuring the Singular Value Decomposition (SVD)
algorithm.

Among several options are: settings to control model size and performance, and
whether to score with SVD projections or Principal Component Analysis (PCA)
projections.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

29.2.1 Model Size
Learn how a model size is decided based on the rows in the build data and algorithm-
specific setting.

The U matrix in Singular Value Decomposition has as many rows as the number of
rows in the build data. To avoid creating a large model, the U matrix persists only when
an algorithm-specific setting is enabled. By default the U matrix does not persist.

29.2.2 Performance
Singular Value Decomposition can use approximate computations to improve
performance.

Chapter 29
Configuring the Algorithm

29-3

Approximation may be appropriate for data sets with many columns. An approximate
low-rank decomposition provides good solutions at a reasonable computational cost.
The quality of the approximation is dependent on the characteristics of the data.

29.2.3 PCA scoring
Learn about configuring Singular Value Decomposition (SVD) to perform Principal
Component Analysis (PCA) projections.

SVD models can be configured to perform PCA projections. PCA is closely related
to SVD. PCA computes a set of orthonormal bases (principal components) that are
ranked by their corresponding explained variance. The main difference between SVD
and PCA is that the PCA projection is not scaled by the singular values. The PCA
projection to the new coordinate system is given by:

Figure 29-3 PCA Projection Calculation

X = XV
k

~

where

X

(nxk) is the projected data in the reduced data space, defined by the first k
components, and Vk defines the reduced component set.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

29.3 Data Preparation for SVD
Oracle Machine Learning for SQL implements Singular Value Decomposition (SVD) for
numerical data and categorical data.

When the build data is scored with SVD, Automatic Data Preparation does nothing.
When the build data is scored with Principal Component Analysis (PCA), Automatic
Data Preparation shifts the numerical data by mean.

Missing value treatment is not needed, because OML4SQL algorithms handle missing
values automatically. SVD replaces numerical missing values with the mean and
categorical missing values with the mode. For sparse data (missing values in nested
columns), SVD replaces missing values with zeros.

Related Topics

• Preparing the Data

• Transforming the Data

Chapter 29
Data Preparation for SVD

29-4

30
Support Vector Machine

Learn how to use Support Vector Machine (SVM), a powerful algorithm based on
statistical learning theory.

Oracle Machine Learning for SQL implements SVM for classification, regression, and
anomaly detection.

• About Support Vector Machine

• Tuning an SVM Model

• Data Preparation for SVM

• SVM Classification

• One-Class SVM

• SVM Regression

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• Regression
Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

• Anomaly Detection
Learn how to detect rare cases in the data through anomaly detection - an
unsupervised function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: Support Vector Machine

• OML4SQL Examples

• OML4R Support Vector Machine Example

• OML4R Code Examples

• Oracle Machine Learning for SQL

See Also:

Milenova, B.L., Yarmus, J.S., Campos, M.M., "Support Vector Machines
in Oracle Database 10g: Removing the Barriers to Widespread Adoption
of Support Vector Machines", Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005.

30-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r
unilink:datamining_index

30.1 About Support Vector Machine
Support Vector Machine (SVM) is a powerful, state-of-the-art algorithm with strong
theoretical foundations based on the Vapnik-Chervonenkis theory.

SVM has strong regularization properties. Regularization refers to the generalization
of the model to new data.

30.1.1 Advantages of SVM
Support Vector Machine (SVM) implements solvers for scalability and handling large
volumes of data.

Oracle Machine Learning for SQL SVM implementation includes two types of solvers,
an Interior Point Method (IPM) solver and a Sub-Gradient Descent (SGD) solver.
The IPM solver provides stable and accurate solutions, however, it may not be able
to handle data of high dimensionality. For high-dimensional and/or large data, for
example, text, ratings, and so on, the SGD solver is a better choice. Both solvers have
highly scalable parallel implementations and can handle large volumes of data.

30.1.2 Advantages of SVM in Oracle Machine Learning for SQL
Describes advantages of using the Support Vector Machine (SVM) algorithm.

Oracle Machine Learning for SQL has its own proprietary implementation of SVM,
which exploits the many benefits of the algorithm while compensating for some of the
limitations inherent in the SVM framework. OML4SQL SVM provides the scalability
and usability that are needed in a production quality OML4SQL system.

30.1.2.1 Usability
Explains usability for Support Vector Machine (SVM) in Oracle Machine Learning for
SQL.

Usability is a major enhancement, because SVM has often been viewed as a tool for
experts. The algorithm typically requires data preparation, tuning, and optimization.
Oracle Machine Learning minimizes these requirements. You do not need to be an
expert to build a quality SVM model in OML4SQL. For example:

• Data preparation is not required in most cases.

• Default tuning parameters are generally adequate.

Related Topics

• Data Preparation for SVM
Support Vector Machine (SVM) uses normalization and missing value treatment
for data preparation.

• Tuning an SVM Model
The Support Vector Machine (SVM) algorithm has built-in mechanisms that
automatically choose appropriate settings based on the data.

Chapter 30
About Support Vector Machine

30-2

30.1.2.2 Scalability
Learn how to scale the data for Support Vector Machine (SVM).

When dealing with very large data sets, sampling is often required. However, sampling
is not required with Oracle Machine Learning for SQL SVM, because the algorithm
itself uses stratified sampling to reduce the size of the training data as needed.

OML4SQL SVM is highly optimized. It builds a model incrementally by optimizing small
working sets toward a global solution. The model is trained until convergence on the
current working set, then the model adapts to the new data. The process continues
iteratively until the convergence conditions are met. The Gaussian kernel uses caching
techniques to manage the working sets.

Related Topics

• Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector
Machine (SVM).

30.1.3 Kernel-Based Learning
Learn about kernal-based functions to transform the input data for Support Vector
Machine (SVM).

SVM is a kernel-based algorithm. A kernel is a function that transforms the input data
to a high-dimensional space where the problem is solved. Kernel functions can be
linear or nonlinear.

Oracle Machine Learning for SQL supports linear and Gaussian (nonlinear) kernels.

In OML4SQL, the linear kernel function reduces to a linear equation on the original
attributes in the training data. A linear kernel works well when there are many
attributes in the training data.

The Gaussian kernel transforms each case in the training data to a point in an
n-dimensional space, where n is the number of cases. The algorithm attempts to
separate the points into subsets with homogeneous target values. The Gaussian
kernel uses nonlinear separators, but within the kernel space it constructs a linear
equation.

Note:

Active Learning is not relevant in Oracle Database 12c Release 2 and later.
A setting similar to Active Learning is ODMS_SAMPLING.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 30
About Support Vector Machine

30-3

30.2 Tuning an SVM Model
The Support Vector Machine (SVM) algorithm has built-in mechanisms that
automatically choose appropriate settings based on the data.

You may need to override the system-determined settings for some domains.

Settings pertain to regression, classification, and anomaly detection unless otherwise
specified.

See Also:

Oracle Database PL/SQL Packages and Types Reference for a listing and
explanation of the available model settings.

Note:

The term hyperparameter is also interchangeably used for model setting.

30.3 Data Preparation for SVM
Support Vector Machine (SVM) uses normalization and missing value treatment for
data preparation.

The SVM algorithm operates natively on numeric attributes. SVM uses z-score
normalization on numeric attributes. The normalization occurs only for two-dimensional
numeric columns (not nested). The algorithm automatically "explodes" categorical
data into a set of binary attributes, typically one per category value. For example,
a character column for marital status with values married or single is transformed to
two numeric attributes: married and single. The new attributes can have the value 1
(true) or 0 (false).

When there are missing values in columns with simple data types (not nested), SVM
interprets them as missing at random. The algorithm automatically replaces missing
categorical values with the mode and missing numerical values with the mean.

When there are missing values in the nested columns, SVM interprets them as sparse.
The algorithm automatically replaces sparse numerical data with zeros and sparse
categorical data with zero vectors.

30.3.1 Normalization
Transform data through normalization for Support Vector Machine (SVM).

SVM require the normalization of numeric input. Normalization places the values of
numeric attributes on the same scale and prevents attributes with a large original scale
from biasing the solution. Normalization also minimizes the likelihood of overflows and
underflows.

Chapter 30
Tuning an SVM Model

30-4

30.3.2 SVM and Automatic Data Preparation
You can prepare data by treating and transforming data manually or through Automatic
Data Preparation (ADP) for Support Vector Machine (SVM).

The SVM algorithm automatically handles missing value treatment and the
transformation of categorical data, but normalization and outlier detection must be
handled by ADP or prepared manually. ADP performs min-max normalization for SVM.

Note:

Oracle recommends that you use ADP with SVM. The transformations
performed by ADP are appropriate for most models.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

30.4 SVM Classification
Support Vector Machine (SVM) classification is based on the concept of decision
planes that define decision boundaries.

A decision plane is one that separates between a set of objects having different class
memberships. SVM finds the vectors ("support vectors") that define the separators
giving the widest separation of classes.

SVM classification supports both binary, multiclass, and multitarget classification.
Multitarget alllows multiple class labels to be associated with a single row. The target
type is a collection of type ORA_MINING_VARCHAR2_NT.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

30.4.1 Class Weights
Learn when to implement class weights to a data in Support Vector Machine (SVM).

In SVM classification, weights are a biasing mechanism for specifying the relative
importance of target values (classes).

SVM models are automatically initialized to achieve the best average prediction across
all classes. However, if the training data does not represent a realistic distribution, you
can bias the model to compensate for class values that are under-represented. If you
increase the weight for a class, then the percent of correct predictions for that class
must increase.

Related Topics

• Priors and Class Weights
Learn about Priors and Class Weights in a classification model to produce a useful
result.

Chapter 30
SVM Classification

30-5

30.5 One-Class SVM
Support Vector Machine (SVM) as a one-class classifier is used for detecting
anomalies.

Oracle Machine Learning for SQL uses SVM as the one-class classifier for anomaly
detection. When SVM is used for anomaly detection, it has the classification machine
learning function but no target.

One-class SVM models, when applied, produce a prediction and a probability for each
case in the scoring data. If the prediction is 1, the case is considered typical. If the
prediction is 0, the case is considered anomalous. This behavior reflects the fact that
the model is trained with normal data.

You can specify the percentage of the data that you expect to be anomalous with
the SVMS_OUTLIER_RATE build setting. If you have some knowledge that the number of
"suspicious" cases is a certain percentage of your population, then you can set the
outlier rate to that percentage. The model approximately identifies that many "rare"
cases when applied to the general population.

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING - Algorithm Settings: Support Vector Machine

• OML4SQL Examples

• OML4R SVM Example

• OML4R Code Examples

30.6 SVM Regression
Learn how to use epsilon-insensitivity loss function to solve regression problems in
Support Vector Machine (SVM).

SVM uses an epsilon-insensitive loss function to solve regression problems.

SVM regression tries to find a continuous function such that the maximum number
of data points lie within the epsilon-wide insensitivity tube. Predictions falling within
epsilon distance of the true target value are not interpreted as errors.

The epsilon factor is a regularization setting for SVM regression. It balances the
margin of error with model robustness to achieve the best generalization to new data.

Related Topics

• Tuning an SVM Model
The Support Vector Machine (SVM) algorithm has built-in mechanisms that
automatically choose appropriate settings based on the data.

Chapter 30
One-Class SVM

30-6

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/r/oml4r

31
XGBoost

XGBoost is highly-efficient, scalable machine learning algorithm for regression and
classification that makes available the XGBoost Gradient Boosting open source
package.

• About XGBoost

• Scoring with XGBoost

Related Topics

• Classification
Learn how to predict a categorical target through classification - the supervised
machine learning function.

• Regression
Learn how to predict a continuous numerical target through regression - the
supervised machine learning function.

• Ranking
Ranking is a regression machine learning technique.

• DBMS_DATA_MINING - Model Settings

• DBMS_DATA_MINING — Algorithm Settings: XGBoost

• OML4SQL Examples

31.1 About XGBoost
Oracle Machine Learning for SQL XGBoost prepares training data, invokes XGBoost,
builds and persists a model, and applies the model for prediction.

OML4SQL XGBoost is a scalable gradient tree boosting system that supports both
classification and regression. It makes available the open source gradient boosting
framework.

You can use XGBoost as a stand-alone predictor or incorporate it into real-world
production pipelines for a wide range of problems such as ad click-through rate
prediction, hazard risk prediction, web text classification, and so on.

The OML4SQL XGBoost algorithm takes three types of parameters: general
parameters, booster parameters, and task parameters. You set the parameters
through the model settings table. The algorithm supports most of the settings of the
open source project.

Through XGBoost, OML4SQL supports a number of different classification and
regression specifications, ranking models, and survival models. Binary and multiclass
models are supported under the classification machine learning function while
regression, ranking, count, and survival are supported under the regression machine
learning function.

XGBoost also supports partitioned models and internalizes the data preparation.

31-1

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: XGBoost

• Model Detail Views for XGBoost

• XGBoost: A Scalable Tree Boosting System, by Tianqi Chen and Carlos Guestrin

• XGBoost on GitHub

31.2 Ranking Methods
Oracle Machine Learning supports pairwise and listwise ranking methods through
XGBoost.

For a training data set, in a number of sets, each set consists of objects and labels
representing their ranking. A ranking function is constructed by minimizing a certain
loss function on the training data. Using test data, the ranking function is applied to get
a ranked list of objects. Ranking is enabled for XGBoost using the regression function.
OML4SQL supports pairwise and listwise ranking methods through XGBoost.

Pairwise ranking: This approach regards a pair of objects as the learning instance.
The pairs and lists are defined by supplying the same case_id value. Given a pair
of objects, this approach gives an optimal ordering for that pair. Pairwise losses
are defined by the order of the two objects. In OML4SQL, the algorithm uses
LambdaMART to perform pairwise ranking with the goal of minimizing the average
number of inversions in ranking.

Listwise ranking: This approach takes multiple lists of ranked objects as learning
instance. The items in a list must have the same case_id. The algorithm uses
LambdaMART to perform list-wise ranking.

See Also:

• "Ranking Measures and Loss Functions in Learning to Rank" a research
paper presentation at https://www.researchgate.net/

• Oracle Database PL/SQL Packages and Types Reference for a listing
and explanation of the available model settings for XGBoost.

Note:

The term hyperparameter is also interchangeably used for model setting.

Related Topics

• XGBoost
XGBoost is highly-efficient, scalable machine learning algorithm for regression and
classification that makes available the XGBoost Gradient Boosting open source
package.

• DBMS_DATA_MINING — Algorithm Settings: XGBoost

Chapter 31
Ranking Methods

31-2

https://arxiv.org/abs/1603.02754
https://github.com/dmlc/xgboost
https://www.researchgate.net/

31.3 Scoring with XGBoost
Learn how to score with XGBoost.

The SQL scoring functions supported for a classification XGBoost model are
PREDICTION, PREDICTION_COST, PREDICTION_DETAILS, PREDICTION_PROBABILITY, and
PREDICTION_SET.

The scoring functions supported for a regression XGBoost model are PREDICTION and
PREDICTION_DETAILS.

The prediction functions return the following information:

• PREDICTION returns the predicted value.

• PREDICTION_COST returns a measure of cost for a given prediction as an Oracle
NUMBER. (classification only)

• PREDICTION_DETAILS returns the SHAP (SHapley Additive exPlanation)
contributions.

• PREDICTION_PROBABILITY returns the probability for a given prediction.
(classification only)

• PREDICTION_SET returns the prediction and the corresponding prediction probability
for each observation. (classification only)

See Also:

https://github.com/oracle/oracle-db-examples/tree/master/machine-
learning/sql/20c GitHub repository for an example of XGBoost.

Related Topics

• SQL Scoring Functions

Chapter 31
Scoring with XGBoost

31-3

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

Part IV
Using the Oracle Machine Learning for
SQL API

Learn how to use Oracle Machine Learning for SQL application programming
interface.

• Oracle Machine Learning With SQL

• About the Oracle Machine Learning for SQL API

• Prepare the Data

• Transform the Data

• Create a Model

• Scoring and Deployment

• Machine Learning Operations on Unstructured Text

• Administrative Tasks for Oracle Machine Learning for SQL

• Oracle Machine Learning for SQL Examples

32
Oracle Machine Learning With SQL

Learn how to solve business problems using the Oracle Machine Learning for SQL
application programming interface (API).

• Highlights of the Oracle Machine Learning for SQL API

• Example: Targeting Likely Candidates for a Sales Promotion

• Example: Analyzing Preferred Customers

• Example: Segmenting Customer Data

• Example : Building an ESA Model with a Wiki Data Set

32.1 Highlights of the Oracle Machine Learning for SQL API
Learn about the advantages of OML4SQL application programming interface (API).

Machine learning is a valuable technology in many application domains. It has become
increasingly indispensable in the private sector as a tool for optimizing operations and
maintaining a competitive edge. Machine learning also has critical applications in the
public sector and in scientific research. However, the complexities of machine learning
application development and the complexities inherent in managing and securing large
stores of data can limit the adoption of machine learning technology.

OML4SQL is uniquely suited to addressing these challenges. The machine learning
engine is implemented in the database kernel, and the robust administrative features
of Oracle Database are available for managing and securing the data. While
supporting a full range of machine learning algorithms and procedures, the API also
has features that simplify the development of machine learning applications.

The OML4SQL API consists of extensions to Oracle SQL, the native language of the
database. The API offers the following advantages:

• Scoring in the context of SQL queries. Scoring can be performed dynamically or
by applying machine learning models.

• Automatic Data Preparation (ADP) and embedded transformations.

• Model transparency. Algorithm-specific queries return details about the attributes
that were used to create the model.

• Scoring transparency. Details about the prediction, clustering, or feature extraction
operation can be returned with the score.

• Simple routines for predictive analytics.

• A workflow-based graphical user interface (GUI) within Oracle SQL Developer.
You can download SQL Developer free of charge from the following site:

Oracle Data Miner

32-1

Note:

The examples in this publication are taken from the OML4SQL examples
that are available on GitHub. For information on the examples, see Oracle
Machine Learning for SQL Examples.

Related Topics

• Oracle Machine Learning for SQL Concepts

32.2 Example: Targeting Likely Candidates for a Sales
Promotion

This example targets customers in Brazil for a special promotion that offers coupons
and an affinity card.

The query uses data on marital status, education, and income to predict the customers
who are most likely to take advantage of the incentives. The query applies a Decision
Tree model called dt_sh_clas_sample to score the customer data. The model is
created by the oml4sql-classification-decision-tree.sql example.

Example 32-1 Predict Best Candidates for an Affinity Card

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100404
 100607
 101113

The same query, but with a bias to favor false positives over false negatives, is shown
here.

SELECT cust_id
 FROM mining_data_apply_v
 WHERE
 PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, cust_income_level) = 1
 AND country_name IN 'Brazil';

 CUST_ID

 100139
 100163
 100275
 100404
 100607
 101113
 101170
 101463

Chapter 32
Example: Targeting Likely Candidates for a Sales Promotion

32-2

The COST MODEL keywords cause the cost matrix associated with the model to be used
in making the prediction. The cost matrix, stored in a table called dt_sh_sample_costs,
specifies that a false negative is eight times more costly than a false positive.
Overlooking a likely candidate for the promotion is far more costly than including an
unlikely candidate.

SELECT * FROM dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 8
 1 1 0

32.3 Example: Analyzing Preferred Customers
The examples in this section reveal information about customers who use affinity cards
or are likely to use affinity cards.

Example 32-2 Find Demographic Information About Preferred Customers

This query returns the gender, age, and length of residence of typical affinity card
holders. The anomaly detection model, SVMO_SH_Clas_sample, returns 1 for typical
cases and 0 for anomalies. The demographics are predicted for typical customers
only; outliers are not included in the sample. The model is created by the oml4sql-
singular-value-decomposition.sql example.

SELECT cust_gender, round(avg(age)) age,
 round(avg(yrs_residence)) yrs_residence,
 count(*) cnt
FROM mining_data_one_class_v
WHERE PREDICTION(SVMO_SH_Clas_sample using *) = 1
GROUP BY cust_gender
ORDER BY cust_gender;

CUST_GENDER AGE YRS_RESIDENCE CNT
------------ ---------- ------------- ----------
F 40 4 36
M 45 5 304

Example 32-3 Dynamically Identify Customers Who Resemble Preferred
Customers

This query identifies customers who do not currently have an affinity card, but
who share many of the characteristics of affinity card holders. The PREDICTION and
PREDICTION_PROBABILITY functions use an OVER clause instead of a predefined model
to classify the customers. The predictions and probabilities are computed dynamically.

SELECT cust_id, pred_prob
 FROM
 (SELECT cust_id, affinity_card,
 PREDICTION(FOR TO_CHAR(affinity_card) USING *) OVER () pred_card,
 PREDICTION_PROBABILITY(FOR TO_CHAR(affinity_card),1 USING *) OVER ()
pred_prob
 FROM mining_data_build_v)
 WHERE affinity_card = 0
 AND pred_card = 1
 ORDER BY pred_prob DESC;

Chapter 32
Example: Analyzing Preferred Customers

32-3

 CUST_ID PRED_PROB
---------- ---------
 102434 .96
 102365 .96
 102330 .96
 101733 .95
 102615 .94
 102686 .94
 102749 .93
.
.
.
.
 102580 .52
 102269 .52
 102533 .51
 101604 .51
 101656 .51

226 rows selected.

Example 32-4 Predict the Likelihood that a New Customer Becomes a
Preferred Customer

This query computes the probability of a first-time customer becoming a preferred
customer (an affinity card holder). This query can be run in real time at the point of
sale.

The new customer is a 44-year-old American executive who has a bachelors degree
and earns more than $300,000/year. He is married, lives in a household of 3, and
has lived in the same residence for the past 6 years. The probability of this customer
becoming a typical affinity card holder is only 5.8%.

SELECT PREDICTION_PROBABILITY(SVMO_SH_Clas_sample, 1 USING
 44 AS age,
 6 AS yrs_residence,
 'Bach.' AS education,
 'Married' AS cust_marital_status,
 'Exec.' AS occupation,
 'United States of America' AS country_name,
 'M' AS cust_gender,
 'L: 300,000 and above' AS cust_income_level,
 '3' AS houshold_size
) prob_typical
FROM DUAL;

PROB_TYPICAL

 5.8

Example 32-5 Use Predictive Analytics to Find Top Predictors

The DBMS_PREDICTIVE_ANALYTICS PL/SQL package contains routines that perform
simple machine learning operations without a predefined model. In this example, the
EXPLAIN routine computes the top predictors for affinity card ownership. The results
show that household size, marital status, and age are the top three predictors.

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_test_v',

Chapter 32
Example: Analyzing Preferred Customers

32-4

 explain_column_name => 'affinity_card',
 result_table_name => 'cust_explain_result');
END;
/

SELECT * FROM cust_explain_result
 WHERE rank < 4;

ATTRIBUTE_NAME ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK
------------------------ -------------------- ----------------- ----------
HOUSEHOLD_SIZE .209628541 1
CUST_MARITAL_STATUS .199794636 2
AGE .111683067 3

32.4 Example: Segmenting Customer Data
The examples in this section use an Expectation Maximization clustering model to
segment the customer data based on common characteristics.

Example 32-6 Compute Customer Segments

This query computes natural groupings of customers and returns the number of
customers in each group. The em_sh_clus_sample model is created by the oml4sql-
singular-value-decomposition.sql example.

SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Example 32-7 Find the Customers Who Are Most Likely To Be in the Largest
Segment

The query in Example 32-6 shows that segment 9 has the most members. The
following query lists the five customers who are most likely to be in segment 9.

SELECT cust_id
FROM (SELECT cust_id, RANK() over (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id,
 ROUND(CLUSTER_PROBABILITY(em_sh_clus_sample, 9 USING *),3) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 5
ORDER BY rnk_clus2;

 CUST_ID

 100002

Chapter 32
Example: Segmenting Customer Data

32-5

 100012
 100016
 100019
 100021

Example 32-8 Find Key Characteristics of the Most Representative Customer in the Largest
Cluster

The query in Example 32-7 lists customer 100002 first in the list of likely customers for
segment 9. The following query returns the five characteristics that are most significant
in determining the assignment of customer 100002 to segments with probability > 20%
(only segment 9 for this customer).

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 using T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
 ORDER BY 2 desc;

CLUSTER_ID PROB DET
---------- -------
--
 9 1.0000 <Details algorithm="Expectation Maximization" cluster="9">
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="1" rank="1"/>
 <Attribute name="EDUCATION" actualValue="Bach." weight="0" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight="0" rank="3"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="0"
rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight="0" rank="5"/>
 </Details>

32.5 Example : Building an ESA Model with a Wiki Data Set
The examples shows FEATURE_COMPARE function with Explicit Semantic Analysis (ESA)
model, which compares a similar set of texts and then a dissimilar set of texts.

The example shows an ESA model built against a 2005 Wiki data set rendering over
200,000 features. The documents are analyzed as text and the document titles are
given as the feature IDs.

Similar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour
golfers from South Africa' text AND USING 'Nick Price won the 2002
Mastercard Colonial Open' text) similarity FROM DUAL;

SIMILARITY

 .258

The output metric shows distance calculation. Therefore, smaller number represent
more similar texts. So, 1 minus the distance in the queries result in similarity.

Chapter 32
Example : Building an ESA Model with a Wiki Data Set

32-6

Dissimilar Texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA
tour golfers from South Africa' text AND USING 'John Elway played
quarterback for the Denver Broncos' text) similarity FROM DUAL;

SIMILARITY

 .007

Chapter 32
Example : Building an ESA Model with a Wiki Data Set

32-7

33
About the Oracle Machine Learning for
SQL API

Overview of the OML4SQL application programming interface (API) components.

• About Oracle Machine Learning Models

• Oracle Machine Learning Data Dictionary Views

• Oracle Machine Learning PL/SQL Packages

• Oracle Machine Learning for SQL Scoring Functions

• Oracle Machine Learning for SQL Statistical Functions

33.1 About Oracle Machine Learning Models
Machine learning models are database schema objects that perform machine learning
functions.

As with all schema objects, access to machine learning models is controlled by
database privileges. Models can be exported and imported. They support comments
and they can be tracked in the Oracle Database auditing system.

Machine learning models are created by the CREATE_MODEL procedure in the
DBMS_DATA_MINING PL/SQL package. Models are created for a specific machine
learning function, and they use a specific algorithm to perform that function. Machine
learning function is a term that refers to a class of machine learning problems to
be solved. Examples of machine learning functions are: regression, classification,
attribute importance, clustering, anomaly detection, and feature selection. OML4SQL
supports one or more algorithms for each machine learning function.

Along with the machine learning function, in the CREATE_MODEL procedure you can
specify a settings table to specify an algorithm and other characteristics of a model.
Some settings are general, some are specific to a machine learning function, and
some are specific to an algorithm.

Note:

Most types of machine learning models can be used to score data. However,
it is possible to score data without applying a model. Dynamic scoring and
predictive analytics return scoring results without a user-supplied model.
They create and apply transient models that are not visible to you.

Related Topics

• Dynamic Scoring
You can perform dynamic scoring if, for some reason, you do not want to apply a
predefined model.

33-1

• DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

• Create a Model
Explains how to create Oracle Machine Learning for SQL models and to query
model details.

• Administrative Tasks for Oracle Machine Learning for SQL
Explains how to perform administrative tasks related to Oracle Machine Learning
for SQL.

33.2 Oracle Machine Learning Data Dictionary Views
Lists Oracle Machine Learning data dictionary views.

The data dictionary views for Oracle Machine Learning are listed in the following table.
A database administrator (DBA) and USER versions of the views are also available.

Table 33-1 Data Dictionary Views for Oracle Machine Learning

View Name Description

ALL_MINING_MODELS Provides information about all accessible machine
learning models

ALL_MINING_MODEL_ATTRIBUTES Provides information about the attributes of all
accessible machine learning models

ALL_MINING_MODEL_PARTITIONS Provides information about the partitions of all
accessible partitioned machine learning models

ALL_MINING_MODEL_SETTINGS Provides information about the configuration
settings for all accessible machine learning
models

ALL_MINING_MODEL_VIEWS Provides information about the model views for all
accessible machine learning models

ALL_MINING_MODEL_XFORMS Provides the user-specified transformations
embedded in all accessible machine learning
models.

33.2.1 ALL_MINING_MODELS
Describes an example of ALL_MINING_MODELS and shows a sample query.

The following example describes ALL_MINING_MODELS and shows a sample query.

Example 33-1 ALL_MINING_MODELS

 describe ALL_MINING_MODELS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE

Chapter 33
Oracle Machine Learning Data Dictionary Views

33-2

 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 PARTITIONED VARCHAR2(3)
 COMMENTS VARCHAR2(4000)

The following query returns the models accessible to you that use the Support Vector
Machine algorithm.

SELECT mining_function, model_name
 FROM all_mining_models
 WHERE algorithm = 'SUPPORT_VECTOR_MACHINES'
 ORDER BY mining_function, model_name;

MINING_FUNCTION MODEL_NAME
------------------------- --------------------
CLASSIFICATION PART2_CLAS_SAMPLE
CLASSIFICATION PART_CLAS_SAMPLE
CLASSIFICATION SVMC_SH_CLAS_SAMPLE
CLASSIFICATION SVMO_SH_CLAS_SAMPLE
CLASSIFICATION T_SVM_CLAS_SAMPLE
REGRESSION SVMR_SH_REGR_SAMPLE

The models are created by the following examples:

• PART2_CLAS_SAMPLE by oml4sql-partitioned-models-svm.sql

• PART_CLAS_SAMPLE by oml4sql-partitioned-models-svm.sql

• SVMC_SH_CLAS_SAMPLE by oml4sql-classification-svm.sql

• SVMO_SH_CLAS_SAMPLE by oml4sql-anomaly-detection-1csvm.sql

• T_SVM_CLAS_SAMPLE by oml4sql-classification-text-analysis-svm.sql

• SVMR_SH_REGR_SAMPLE by oml4sql-regression-svm.sql

33.2.2 ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample query.

The following example describes ALL_MINING_MODEL_ATTRIBUTES and shows a sample
query. Attributes are the predictors or conditions that are used to create models and
score data.

Example 33-2 ALL_MINING_MODEL_ATTRIBUTES

describe ALL_MINING_MODEL_ATTRIBUTES
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_TYPE VARCHAR2(11)
 DATA_TYPE VARCHAR2(106)
 DATA_LENGTH NUMBER
 DATA_PRECISION NUMBER
 DATA_SCALE NUMBER
 USAGE_TYPE VARCHAR2(8)
 TARGET VARCHAR2(3)
 ATTRIBUTE_SPEC VARCHAR2(4000)

Chapter 33
Oracle Machine Learning Data Dictionary Views

33-3

The following query returns the attributes of an SVM classification model named
T_SVM_CLAS_SAMPLE. The model has both categorical and numerical attributes
and includes one attribute that is unstructured text. The model is created by the
oml4sql-classification-text-analysis-svm.sql example

SELECT attribute_name, attribute_type, target
 FROM all_mining_model_attributes
 WHERE model_name = 'T_SVM_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME ATTRIBUTE_TYPE TAR
------------------------- -------------------- ---
AFFINITY_CARD CATEGORICAL YES
AGE NUMERICAL NO
BOOKKEEPING_APPLICATION NUMERICAL NO
BULK_PACK_DISKETTES NUMERICAL NO
COMMENTS TEXT NO
COUNTRY_NAME CATEGORICAL NO
CUST_GENDER CATEGORICAL NO
CUST_INCOME_LEVEL CATEGORICAL NO
CUST_MARITAL_STATUS CATEGORICAL NO
EDUCATION CATEGORICAL NO
FLAT_PANEL_MONITOR NUMERICAL NO
HOME_THEATER_PACKAGE NUMERICAL NO
HOUSEHOLD_SIZE CATEGORICAL NO
OCCUPATION CATEGORICAL NO
OS_DOC_SET_KANJI NUMERICAL NO
PRINTER_SUPPLIES NUMERICAL NO
YRS_RESIDENCE NUMERICAL NO
Y_BOX_GAMES NUMERICAL NO

33.2.3 ALL_MINING_MODEL_PARTITIONS
Describes an example of ALL_MINING_MODEL_PARTITIONS and shows a sample query.

The following example describes ALL_MINING_MODEL_PARTITIONS and shows a sample
query.

Example 33-3 ALL_MINING_MODEL_PARTITIONS

describe ALL_MINING_MODEL_PARTITIONS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 PARTITION_NAME VARCHAR2(128)
 POSITION NUMBER
 COLUMN_NAME NOT NULL VARCHAR2(128)
 COLUMN_VALUE VARCHAR2(4000)

The following query returns the partition names and partition key values for two
partitioned models. Model PART2_CLAS_SAMPLE has a two column partition key
with system-generated partition names. The models are created by the oml4sql-
partitioned-models-svm.sql example.

SELECT model_name, partition_name, position, column_name, column_value
 FROM all_mining_model_partitions
 ORDER BY model_name, partition_name, position;

Chapter 33
Oracle Machine Learning Data Dictionary Views

33-4

MODEL_NAME PARTITION_ POSITION COLUMN_NAME
COLUMN_VALUE
-------------------- ---------- -------- --------------------

PART2_CLAS_SAMPLE DM$$_P0 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P0 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P1 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P1 2 CUST_INCOME_LEVEL
LOW
PART2_CLAS_SAMPLE DM$$_P2 1 CUST_GENDER
F
PART2_CLAS_SAMPLE DM$$_P2 2 CUST_INCOME_LEVEL
MEDIUM
PART2_CLAS_SAMPLE DM$$_P3 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P3 2 CUST_INCOME_LEVEL
HIGH
PART2_CLAS_SAMPLE DM$$_P4 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P4 2 CUST_INCOME_LEVEL
LOW
PART2_CLAS_SAMPLE DM$$_P5 1 CUST_GENDER
M
PART2_CLAS_SAMPLE DM$$_P5 2 CUST_INCOME_LEVEL
MEDIUM
PART_CLAS_SAMPLE F 1 CUST_GENDER
F
PART_CLAS_SAMPLE M 1 CUST_GENDER
M
PART_CLAS_SAMPLE U 1 CUST_GENDER U

33.2.4 ALL_MINING_MODEL_SETTINGS
Describes an example of ALL_MINING_MODEL_SETTINGS and shows a sample query.

The following example describes ALL_MINING_MODEL_SETTINGS and shows a sample
query. Settings influence model behavior. Settings may be specific to an algorithm or
to a machine learning function, or they may be general.

Example 33-4 ALL_MINING_MODEL_SETTINGS

 describe ALL_MINING_MODEL_SETTINGS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

The following query returns the settings for a model named SVD_SH_SAMPLE. The
model uses the Singular Value Decomposition algorithm for feature extraction. The
model is created by the oml4sql-singular-value-decomposition.sql example.

Chapter 33
Oracle Machine Learning Data Dictionary Views

33-5

SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY setting_name;

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ------------------------------ -------
ALGO_NAME ALGO_SINGULAR_VALUE_DECOMP INPUT
ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO DEFAULT
ODMS_SAMPLING ODMS_SAMPLING_DISABLE DEFAULT
PREP_AUTO OFF INPUT
SVDS_SCORING_MODE SVDS_SCORING_SVD DEFAULT
SVDS_U_MATRIX_OUTPUT SVDS_U_MATRIX_ENABLE INPUT

33.2.5 ALL_MINING_MODEL_VIEWS
Describes an example of ALL_MINING_MODEL_VIEWS and shows a sample query.

The following example describes ALL_MINING_MODEL_VIEWS and shows a sample
query. Model views provide details on the models.

Example 33-5 ALL_MINING_MODEL_VIEWS

describe ALL_MINING_MODEL_VIEWS
 Name Null? Type
 --- --------

 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 VIEW_NAME NOT NULL VARCHAR2(128)
 VIEW_TYPE VARCHAR2(128)

The following query returns the model views for the SVD_SH_SAMPLE model. The
model uses the Singular Value Decomposition algorithm for feature extraction. The
model is created by the oml4sql-singular-value-decomposition.sql example.

SELECT view_name, view_type
 FROM all_mining_model_views
 WHERE model_name = 'SVD_SH_SAMPLE'
 ORDER BY view_name;

VIEW_NAME
VIEW_TYPE

--
DM$VESVD_SH_SAMPLE Singular Value Decomposition S
Matrix
DM$VGSVD_SH_SAMPLE Global Name-Value
Pairs
DM$VNSVD_SH_SAMPLE Normalization and Missing Value
Handling
DM$VSSVD_SH_SAMPLE Computed
Settings
DM$VUSVD_SH_SAMPLE Singular Value Decomposition U
Matrix
DM$VVSVD_SH_SAMPLE Singular Value Decomposition V

Chapter 33
Oracle Machine Learning Data Dictionary Views

33-6

Matrix
DM$VWSVD_SH_SAMPLE Model Build Alerts

33.2.6 ALL_MINING_MODEL_XFORMS
Describes an example of ALL_MINING_MODEL_XFORMS and provides a sample query.

The following example describes ALL_MINING_MODEL_XFORMS and provides a sample
query.

Example 33-6 ALL_MINING_MODEL_XFORMS

describe ALL_MINING_MODEL_XFORMS
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(128)
 MODEL_NAME NOT NULL VARCHAR2(128)
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_SPEC VARCHAR2(4000)
 EXPRESSION CLOB
 REVERSE VARCHAR2(3)

The following query returns the embedded transformations for a model
PART2_CLAS_SAMPLE The model is created by the oml4sql-partitioned-models-
svm.sql example.

SELECT attribute_name, expression
 FROM all_mining_model_xforms
 WHERE model_name = 'PART2_CLAS_SAMPLE'
 ORDER BY attribute_name;

ATTRIBUTE_NAME

EXPRESSION

--

CUST_INCOME_LEVEL

CASE CUST_INCOME_LEVEL WHEN 'A: Below 30,000' THEN
'LOW'
 WHEN 'L: 300,000 and above' THEN
'HIGH'
 ELSE 'MEDIUM' END

Chapter 33
Oracle Machine Learning Data Dictionary Views

33-7

33.3 Oracle Machine Learning PL/SQL Packages
The PL/SQL interface to Oracle Machine Learning for SQL is implemented in three
packages.

The following table displays the PL/SQL packages for Oracle Machine Learning. In
Oracle Database releases prior to Release 21c, Oracle Machine Learning was named
Oracle Data Mining.

Table 33-2 Oracle Machine Learning PL/SQL Packages

Package Name Description

DBMS_DATA_MINING Routines for creating and managing machine learning
models

DBMS_DATA_MINING_TRANSFORM Routines for transforming the data for machine learning

DBMS_PREDICTIVE_ANALYTICS Routines that perform predictive analytics

Related Topics

• DBMS_DATA_MINING

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

33.3.1 DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

The DBMS_DATA_MINING package contains routines for creating machine learning
models, for performing operations on the models, and for querying them. The package
includes routines for:

• Creating, dropping, and performing other DDL operations on machine learning
models

• Obtaining detailed information about model attributes, rules, and other information
internal to the model (model details)

• Computing test metrics for classification models

• Specifying costs for classification models

• Exporting and importing models

• Building models using Oracle Machine Learning native algorithms as well as
algorithms written in R

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 33
Oracle Machine Learning PL/SQL Packages

33-8

33.3.2 DBMS_DATA_MINING_TRANSFORM
Understand the routines of DBMS_DATA_MINING_TRANSFORM package.

The DBMS_DATA_MINING_TRANSFORM package contains routines that perform data
transformations such as binning, normalization, and outlier treatment. The package
includes routines for:

• Specifying transformations in a format that can be embedded in a machine
learning model.

• Specifying transformations as relational views (external to machine learning model
objects).

• Specifying distinct properties for columns in the build data. For example, you
can specify that the column must be interpreted as unstructured text, or that the
column must be excluded from Automatic Data Preparation.

Related Topics

• Transform the Data
Understand how to transform data for building a model or for scoring.

• Oracle Database PL/SQL Packages and Types Reference

33.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM
Summarizes the methods for transforming data in DBMS_DATA_MINING_TRANSFORM
package.

Table 33-3 DBMS_DATA_MINING_TRANSFORM Transformation Methods

Transformation Method Description

XFORM interface CREATE, INSERT, and XFORM routines specify transformations in
external views

STACK interface CREATE, INSERT, and XFORM routines specify transformations for
embedding in a model

SET_TRANSFORM Specifies transformations for embedding in a model

The statements in the following example create a Support Vector Machine (SVM)
classification model called T_SVM_Clas_sample with an embedded transformation
that causes the comments attribute to be treated as unstructured text data.
The T_SVM_CLAS_SAMPLE model is created by oml4sql-classification-text-
analysis-svm.sql example.

Example 33-7 Sample Embedded Transformation

DECLARE
 xformlist dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 xformlist, 'comments', null, 'comments', null, 'TEXT');
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'T_SVM_Clas_sample',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_build_text',

Chapter 33
Oracle Machine Learning PL/SQL Packages

33-9

 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 't_svmc_sample_settings',
 xform_list => xformlist);
END;
/

33.3.3 DBMS_PREDICTIVE_ANALYTICS
Understand the routines of DBMS_PREDICTIVE_ANALYTICS package.

The DBMS_PREDICTIVE_ANALYTICS package contains routines that perform an
automated form of machine learning known as predictive analytics. With predictive
analytics, you do not need to be aware of model building or scoring.
All machine learning activities are handled internally by the procedure. The
DBMS_PREDICTIVE_ANALYTICS package includes these routines:

• EXPLAIN ranks attributes in order of influence in explaining a target column.

• PREDICT predicts the value of a target column based on values in the input data.

• PROFILE generates rules that describe the cases from the input data.

The EXPLAIN statement in the following example lists attributes in the view
mining_data_build_v in order of their importance in predicting affinity_card.

Example 33-8 Sample EXPLAIN Statement

BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'mining_data_build_v',
 explain_column_name => 'affinity_card',
 result_table_name => 'explain_results');
END;
/

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

33.4 Oracle Machine Learning for SQL Scoring Functions
Understand the different OML4SQL scoring functions.

Use these OML4SQL functions to score data. The functions can apply a machine
learning model schema object to the data, or they can dynamically mine the data by
executing an analytic clause. SQL functions are available for all OML4SQL algorithms
that support the scoring operation. All OML4SQL functions, as listed in the following
table can operate on an R machine learning model with the corresponding OML4SQL
function. However, the functions are not limited to the ones listed here.

Table 33-4 OML4SQL Functions

Function Description

CLUSTER_ID Returns the ID of the predicted
cluster

Chapter 33
Oracle Machine Learning for SQL Scoring Functions

33-10

Table 33-4 (Cont.) OML4SQL Functions

Function Description

CLUSTER_DETAILS Returns detailed information
about the predicted cluster

CLUSTER_DISTANCE Returns the distance from
the centroid of the predicted
cluster

CLUSTER_PROBABILITY Returns the probability of a
case belonging to a given
cluster

CLUSTER_SET Returns a list of all possible
clusters to which a given
case belongs along with
the associated probability of
inclusion

FEATURE_COMPARE Compares two similar and
dissimilar set of texts from two
different documents or keyword
phrases or a combination of
both

FEATURE_ID Returns the ID of the feature
with the highest coefficient
value

FEATURE_DETAILS Returns detailed information
about the predicted feature

FEATURE_SET Returns a list of objects
containing all possible features
along with the associated
coefficients

FEATURE_VALUE Returns the value of the
predicted feature

ORA_DM_PARTITION_NAME Returns the partition names for
a partitioned model

PREDICTION Returns the best prediction for
the target

PREDICTION_BOUNDS (GLM only) Returns the
upper and lower bounds
of the interval wherein
the predicted values (linear
regression) or probabilities
(logistic regression) lie.

PREDICTION_COST Returns a measure of the cost
of incorrect predictions

PREDICTION_DETAILS Returns detailed information
about the prediction

PREDICTION_PROBABILITY Returns the probability of the
prediction

PREDICTION_SET Returns the results of a
classification model, including
the predictions and associated
probabilities for each case

Chapter 33
Oracle Machine Learning for SQL Scoring Functions

33-11

The following example shows a query that returns the results of the CLUSTER_ID
function. The query applies the model em_sh_clus_sample, which finds groups of
customers that share certain characteristics. The query returns the identifiers of the
clusters and the number of customers in each cluster. The em_sh_clus_sample model
is created by the oml4sql-singular-value-decomposition.sql example.

Example 33-9 CLUSTER_ID Function

-- -List the clusters into which the customers in this
-- -data set have been grouped.
--
SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
ORDER BY cnt DESC;

SQL> -- List the clusters into which the customers in this
SQL> -- data set have been grouped.
SQL> --
SQL> SELECT CLUSTER_ID(em_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 2 FROM mining_data_apply_v
 3 GROUP BY CLUSTER_ID(em_sh_clus_sample USING *)
 4 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 9 311
 3 294
 7 215
 12 201
 17 123
 16 114
 14 86
 19 64
 15 56
 18 36

Related Topics

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Machine Learning for
SQL.

• Oracle Database SQL Language Reference

33.5 Oracle Machine Learning for SQL Statistical Functions
Understand various SQL statistical functions available in Oracle Database.

A variety of scalable statistical functions are accessible through SQL in Oracle
Database. These statistical functions are implemented as SQL functions. The SQL
statistical functions can be used to compute standard univariate statistics such as
MEAN, MAX, MIN, MEDIAN, MODE, and standard deviation on the data. Users can also
perform various other statistical functions such as t-test, f-test, aggregate functions,
analytic functions, or ANOVA. The functions listed in the following table are available
from SQL.

Chapter 33
Oracle Machine Learning for SQL Statistical Functions

33-12

Table 33-5 SQL Statistical Functions Supported by OML4SQL

Function Description

APPROX_COUNT Returns approximate count of an expression

APPROX_SUM Returns approximate sum of an expression

APPROX_RANK Returns approximate value in a group of
values

CORR Retuns the coefficient of correlation of a set of
number pairs

CORR_S Calculates the Spearman's rho correlation
coefficient

CORR_K Calculates the Kendall's tau-b correlation
coefficient

COVAR_POP Returns the population covariance of a set of
number pairs

COVAR_SAMP Returns the sample covariance of a set of
number pairs.

LAG LAG is an analytic function. It provides access
to more than one row of a table at the same
time without a self join.

LEAD LEAD is an analytic function. It provides access
to more than one row of a table at the same
time without a self join.

STATS_BINOMIAL_TEST STATS_BINOMIAL_TEST is an exact probability
test used for dichotomous variables, where
only two possible values exist.

STATS_CROSSTAB STATS_CROSSTAB is a method used to analyze
two nominal variables.

STATS_F_TEST STATS_F_TEST tests whether two variances
are significantly different.

STATS_KS_TEST STATS_KS_TEST is a Kolmogorov-Smirnov
function that compares two samples to test
whether they are from the same population
or from populations that have the same
distribution.

STATS_MODE Takes as its argument a set of values and
returns the value that occurs with the greatest
frequency

STATS_MW_TEST A Mann Whitney test compares two
independent samples to test the null
hypothesis that two populations have the same
distribution function against the alternative
hypothesis that the two distribution functions
are different.

STATS_ONE_WAY_ANOVA Tests differences in means (for groups
or variables) for statistical significance by
comparing two different estimates of variance

STATS_T_TEST_* The t-test measures the significance of a
difference of means

STATS_T_TEST_ONE A one-sample t-test

STATS_T_TEST_PAIRED A two-sample, paired t-test (also known as a
crossed t-test)

Chapter 33
Oracle Machine Learning for SQL Statistical Functions

33-13

Table 33-5 (Cont.) SQL Statistical Functions Supported by OML4SQL

Function Description

STATS_T_TEST_INDEP A t-test of two independent groups with the
same variance (pooled variances)

STATS_T_TEST_INDEPU A t-test of two independent groups with
unequal variance (unpooled variances)

STDDEV returns the sample standard deviation of a set
of numbers

STDDEV_POP Computes the population standard deviation
and returns the square root of the population
variance

STDDEV_SAMP Computes the cumulative sample standard
deviation and returns the square root of the
sample variance

SUM Returns the sum of values

DBMS_STAT_FUNCS PL/SQL package is also available for users.

Related Topics

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Machine Learning for
SQL.

• Oracle Database SQL Language Reference

• Oracle Machine Learning for R User’s Guide

• Oracle Database PL/SQL Packages and Types Reference

Chapter 33
Oracle Machine Learning for SQL Statistical Functions

33-14

34
Prepare the Data

Learn how to access and treat the data that can be used to build a model.

• Data Requirements

• About Attributes

• Use Nested Data

• Use Market Basket Data

• Use Retail Data for Analysis

• Handle Missing Values

34.1 Data Requirements
Understand how data is stored and viewed for Oracle Machine Learning.

Machine learning activities require data that is defined within a single table or view.
The information for each record must be stored in a separate row. The data records
are commonly called cases. Each case can optionally be identified by a unique case
ID. The table or view itself can be referred to as a case table.

The CUSTOMERS table in the SH schema is an example of a table that could be used
for machine learning. All the information for each customer is contained in a single
row. The case ID is the CUST_ID column. The rows listed in the following example are
selected from SH.CUSTOMERS.

Note:

Oracle Machine Learning requires single-record case data for all types of
models except association models, which can be built on native transactional
data.

Example 34-1 Sample Case Table

SQL> select cust_id, cust_gender, cust_year_of_birth,
 cust_main_phone_number from sh.customers where cust_id < 11;

CUST_ID CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MAIN_PHONE_NUMBER
------- ----------- ---- ------------- -------------------------
1 M 1946 127-379-8954
2 F 1957 680-327-1419
3 M 1939 115-509-3391
4 M 1934 577-104-2792
5 M 1969 563-667-7731
6 F 1925 682-732-7260
7 F 1986 648-272-6181
8 F 1964 234-693-8728

34-1

9 F 1936 697-702-2618
10 F 1947 601-207-4099

Related Topics

• Use Market Basket Data
Understand the use of association and Apriori for market basket analysis.

34.1.1 Column Data Types
Understand the different types of column data in a case table.

The columns of the case table hold the attributes that describe each case.
In Example 34-1, the attributes are: CUST_GENDER, CUST_YEAR_OF_BIRTH, and
CUST_MAIN_PHONE_NUMBER. The attributes are the predictors in a supervised model or
the descriptors in an unsupervised model. The case ID, CUST_ID, can be viewed as a
special attribute; it is not a predictor or a descriptor.

OML4SQL supports standard Oracle data types as well as the following collection
types:

DM_NESTED_CATEGORICALS

DM_NESTED_NUMERICALS

DM_NESTED_BINARY_DOUBLES

DM_NESTED_BINARY_FLOATS

Related Topics

• Use Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Machine Learning Operations on Unstructured Text
Explains how to use Oracle Machine Learning for SQL to operate on unstructured
text.

• Oracle Database SQL Language Reference

34.1.2 Data Sets for Classification and Regression
Understand how data sets are used for training and testing the model.

You need two case tables to build and validate classification and regression models.
One set of rows is used for training the model, another set of rows is used for testing
the model. It is often convenient to derive the build data and test data from the same
data set. For example, you could randomly select 60% of the rows for training the
model; the remaining 40% could be used for testing the model.

Models that implement other machine learning functions, such as attribute importance,
clustering, association, or feature extraction, do not use separate test data.

34.1.3 Scoring Requirements
Learn how scoring is done in Oracle Machine Learning for SQL.

Most machine learning models can be applied to separate data in a process known
as scoring. Oracle Machine Learning for SQL supports the scoring operation for
classification, regression, anomaly detection, clustering, and feature extraction.

Chapter 34
Data Requirements

34-2

The scoring process matches column names in the scoring data with the names
of the columns that were used to build the model. The scoring process does not
require all the columns to be present in the scoring data. If the data types do not
match, OML4SQL attempts to perform type coercion. For example, if a column called
PRODUCT_RATING is VARCHAR2 in the training data but NUMBER in the scoring data,
OML4SQL effectively applies a TO_CHAR() function to convert it.

The column in the test or scoring data must undergo the same transformations as the
corresponding column in the build data. For example, if the AGE column in the build
data was transformed from numbers to the values CHILD, ADULT, and SENIOR, then
the AGE column in the scoring data must undergo the same transformation so that the
model can properly evaluate it.

Note:

OML4SQL can embed user-specified transformation instructions in the
model and reapply them whenever the model is applied. When the
transformation instructions are embedded in the model, you do not need
to specify them for the test or scoring data sets.

OML4SQL also supports Automatic Data Preparation (ADP). When ADP
is enabled, the transformations required by the algorithm are performed
automatically and embedded in the model along with any user-specified
transformations.

See Also:

Transforming the Data for more information on automatic and embedded
data transformations

34.2 About Attributes
Attributes are the items of data that are used in machine learning.

In predictive models, attributes are the predictors that affect a given outcome. In
descriptive models, attributes are the items of information being analyzed for natural
groupings or associations. For example, a table of employee data that contains
attributes such as job title, date of hire, salary, age, gender, and so on.

34.2.1 Data Attributes and Model Attributes
Data attributes are columns in the data set used to build, test, or score a model.
Model attributes are the data representations used internally by the model.

Data attributes and model attributes can be the same. For example, a column called
SIZE, with values S, M, and L, are attributes used by an algorithm to build a model.
Internally, the model attribute SIZE is most likely be the same as the data attribute from
which it was derived.

Chapter 34
About Attributes

34-3

On the other hand, a nested column SALES_PROD, containing the sales figures for a
group of products, does not correspond to a model attribute. The data attribute can
be SALES_PROD, but each product with its corresponding sales figure (each row in the
nested column) is a model attribute.

Transformations also cause a discrepancy between data attributes and model
attributes. For example, a transformation can apply a calculation to two data attributes
and store the result in a new attribute. The new attribute is a model attribute that has
no corresponding data attribute. Other transformations such as binning, normalization,
and outlier treatment, cause the model's representation of an attribute to be different
from the data attribute in the case table.

Related Topics

• Use Nested Data
A join between the tables for one-to-many relationship is represented through
nested columns.

• Transform the Data
Understand how to transform data for building a model or for scoring.

See Also:

34.2.2 Target Attribute
Understand what a target means in machine learning and understand the different
target data types.

The target of a supervised model is a special kind of attribute. The target column
in the training data contains the historical values used to train the model. The target
column in the test data contains the historical values to which the predictions are
compared. The act of scoring produces a prediction for the target.

Clustering, feature extraction, association, and anomaly detection models do not use a
target.

Nested columns and columns of unstructured data (such as BFILE, CLOB, or BLOB)
cannot be used as targets.

Table 34-1 Target Data Types

Machine Learning
Function

Target Data Types

Classification VARCHAR2, CHAR

NUMBER, FLOAT

BINARY_DOUBLE, BINARY_FLOAT, ORA_MINING_VARCHAR2_NT

Regression NUMBER, FLOAT

BINARY_DOUBLE, BINARY_FLOAT

You can query the *_MINING_MODEL_ATTRIBUTES view to find the target for a given
model.

Chapter 34
About Attributes

34-4

Related Topics

• ALL_MINING_MODEL_ATTRIBUTES
Describes an example of ALL_MINING_MODEL_ATTRIBUTES and shows a sample
query.

• Oracle Database PL/SQL Packages and Types Reference

34.2.3 Numericals, Categoricals, and Unstructured Text
Explains numeric, categorical, and unstructured text attributes.

Model attributes are numerical, categorical, or unstructured (text). Data attributes,
which are columns in a case table, have Oracle data types, as described in "Column
Data Types".

Numerical attributes can theoretically have an infinite number of values. The values
have an implicit order, and the differences between them are also ordered. Oracle
Machine Learning for SQL interprets NUMBER, FLOAT, BINARY_DOUBLE, BINARY_FLOAT,
DM_NESTED_NUMERICALS, DM_NESTED_BINARY_DOUBLES, and DM_NESTED_BINARY_FLOATS
as numerical.

Categorical attributes have values that identify a finite number of discrete categories
or classes. There is no implicit order associated with the values. Some categoricals
are binary: they have only two possible values, such as yes or no, or male or female.
Other categoricals are multi-class: they have more than two values, such as small,
medium, and large.

OML4SQL interprets CHAR and VARCHAR2 as categorical by default, however these
columns may also be identified as columns of unstructured data (text). OML4SQL
interprets columns of DM_NESTED_CATEGORICALS as categorical. Columns of CLOB, BLOB,
and BFILE always contain unstructured data.

The target of a classification model is categorical. (If the target of a classification
model is numeric, it is interpreted as categorical.) The target of a regression model
is numerical. The target of an attribute importance model is either categorical or
numerical.

Related Topics

• Column Data Types
Understand the different types of column data in a case table.

• Machine Learning Operations on Unstructured Text
Explains how to use Oracle Machine Learning for SQL to operate on unstructured
text.

34.2.4 Model Signature
Learn about model signature and the data types that are considered in the build data.

The model signature is the set of data attributes that are used to build a model.
Some or all of the attributes in the signature must be present for scoring. The model
accounts for any missing columns on a best-effort basis. If columns with the same
names but different data types are present, the model attempts to convert the data
type. If extra, unused columns are present, they are disregarded.

The model signature does not necessarily include all the columns in the build data.
Algorithm-specific criteria can cause the model to ignore certain columns. Other

Chapter 34
About Attributes

34-5

columns can be eliminated by transformations. Only the data attributes actually used
to build the model are included in the signature.

The target and case ID columns are not included in the signature.

34.2.5 Scoping of Model Attribute Name
Learn about model attribute name.

The model attribute name consists of two parts: a column name, and a subcolumn
name.

column_name[.subcolumn_name]

The column_name component is the name of the data attribute. It is present in all model
attribute names. Nested attributes and text attributes also have a subcolumn_name
component as shown in the following example.

Example 34-2 Model Attributes Derived from a Nested Column

The nested column SALESPROD has three rows.

SALESPROD(ATTRIBUTE_NAME, VALUE)

((PROD1, 300),
 (PROD2, 245),
 (PROD3, 679))

The name of the data attribute is SALESPROD. Its associated model attributes are:

SALESPROD.PROD1
SALESPROD.PROD2
SALESPROD.PROD3

34.2.6 Model Details
Model details reveal information about model attributes and their treatment by the
algorithm. Oracle recommends that users leverage the model detail views for the
respective algorithm.

Transformation and reverse transformation expressions are associated with model
attributes. Transformations are applied to the data attributes before the algorithmic
processing that creates the model. Reverse transformations are applied to the model
attributes after the model has been built, so that the model details are expressed in the
form of the original data attributes, or as close to it as possible.

Reverse transformations support model transparency. They provide a view of the data
that the algorithm is working with internally but in a format that is meaningful to a user.

Deprecated GET_MODEL_DETAILS

There is a separate GET_MODEL_DETAILS routine for each algorithm. Starting from
Oracle Database 12c Release 2, the GET_MODEL_DETAILS are deprecated. Oracle
recommends to use Model Detail Views for the respective algorithms.

Related Topics

• Model Detail Views
Model detail views provide information about models.

Chapter 34
About Attributes

34-6

34.3 Use Nested Data
A join between the tables for one-to-many relationship is represented through nested
columns.

Oracle Machine Learning for SQL requires a case table in single-record case format,
with each record in a separate row. What if some or all of your data is in multi-record
case format, with each record in several rows? What if you want one attribute to
represent a series or collection of values, such as a student's test scores or the
products purchased by a customer?

This kind of one-to-many relationship is usually implemented as a join between tables.
For example, you can join your customer table to a sales table and thus associate a
list of products purchased with each customer.

OML4SQL supports dimensioned data through nested columns. To include
dimensioned data in your case table, create a view and cast the joined data to one
of the machine learning nested table types. Each row in the nested column consists
of an attribute name/value pair. OML4SQL internally processes each nested row as a
separate attribute.

Note:

O-Cluster is the only algorithm that does not support nested data.

Related Topics

• Example: Creating a Nested Column for Market Basket Analysis
The example shows how to define a nested column for market basket analysis.

34.3.1 Nested Object Types
Nested tables are object data types that can be used in place of other data types.

Oracle Database supports user-defined data types that make it possible to model
real-world entities as objects in the database. Collection types are object data types
for modeling multi-valued attributes. Nested tables are collection types. Nested tables
can be used anywhere that other data types can be used.

OML4SQL supports the following nested object types:

DM_NESTED_BINARY_DOUBLES

DM_NESTED_BINARY_FLOATS

DM_NESTED_NUMERICALS

DM_NESTED_CATEGORICALS

Descriptions of the nested types are provided in this example.

Example 34-3 OML4SQL Nested Data Types

describe dm_nested_binary_double
 Name Null? Type
 --- -------- ----------------------------

Chapter 34
Use Nested Data

34-7

 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_doubles
 DM_NESTED_BINARY_DOUBLES TABLE OF SYS.DM_NESTED_BINARY_DOUBLE
 Name Null? Type
 -- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_DOUBLE

describe dm_nested_binary_float
 Name Null? Type
 --- -------- ---------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_binary_floats
 DM_NESTED_BINARY_FLOATS TABLE OF SYS.DM_NESTED_BINARY_FLOAT
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE BINARY_FLOAT

describe dm_nested_numerical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF SYS.DM_NESTED_NUMERICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE NUMBER

describe dm_nested_categorical
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF SYS.DM_NESTED_CATEGORICAL
 Name Null? Type
 --- -------- ----------------------------
 ATTRIBUTE_NAME VARCHAR2(4000)
 VALUE VARCHAR2(4000)

Related Topics

• Oracle Database Object-Relational Developer's Guide

Chapter 34
Use Nested Data

34-8

34.3.2 Example: Transforming Transactional Data for Machine
Learning

In this example, a comparison is shown for sale of products in four regions with data
before transformation and then after transformation.

Example 34-4 shows data from a view of a sales table. It includes sales for three of
the many products sold in four regions. This data is not suitable for machine learning
at the product level because sales for each case (product), is stored in several rows.

Example 34-5 shows how this data can be transformed for machine learning.
The case ID column is PRODUCT. SALES_PER_REGION, a nested column of type
DM_NESTED_NUMERICALS, is a data attribute. This table is suitable for machine learning
at the product case level, because the information for each case is stored in a single
row.

Oracle Machine Learning for SQL treats each nested row as a separate model
attribute, as shown in Example 34-6.

Note:

The presentation in this example is conceptual only. The data is not actually
pivoted before being processed.

Example 34-4 Product Sales per Region in Multi-Record Case Format

PRODUCT REGION SALES
------- -------- ----------
Prod1 NE 556432
Prod2 NE 670155
Prod3 NE 3111
.
.
Prod1 NW 90887
Prod2 NW 100999
Prod3 NW 750437
.
.
Prod1 SE 82153
Prod2 SE 57322
Prod3 SE 28938
.
.
Prod1 SW 3297551
Prod2 SW 4972019
Prod3 SW 884923
.
.

Example 34-5 Product Sales per Region in Single-Record Case Format

PRODUCT SALES_PER_REGION
 (ATTRIBUTE_NAME, VALUE)
------ --------------------------

Chapter 34
Use Nested Data

34-9

Prod1 ('NE' , 556432)
 ('NW' , 90887)
 ('SE' , 82153)
 ('SW' , 3297551)
Prod2 ('NE' , 670155)
 ('NW' , 100999)
 ('SE' , 57322)
 ('SW' , 4972019)
Prod3 ('NE' , 3111)
 ('NW' , 750437)
 ('SE' , 28938)
 ('SW' , 884923)
.
.

Example 34-6 Model Attributes Derived From SALES_PER_REGION

PRODUCT SALES_PER_REGION.NE SALES_PER_REGION.NW SALES_PER_REGION.SE
SALES_PER_REGION.SW
------- ------------------ ------------------- ------------------ -------------------
Prod1 556432 90887 82153 3297551
Prod2 670155 100999 57322 4972019
Prod3 3111 750437 28938 884923
.
.

34.4 Use Market Basket Data
Understand the use of association and Apriori for market basket analysis.

Market basket data identifies the items sold in a set of baskets or transactions. Oracle
Machine Learning for SQL provides the association machine learning function for
market basket analysis.

Association models use the Apriori algorithm to generate association rules that
describe how items tend to be purchased in groups. For example, an association rule
can assert that people who buy peanut butter are 80% likely to also buy jelly.

Market basket data is usually transactional. In transactional data, a case is a
transaction and the data for a transaction is stored in multiple rows. OML4SQL
association models can be built on transactional data or on single-record case data.
The ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME settings specify
whether the data for association rules is in transactional format.

Note:

Association models are the only type of model that can be built on native
transactional data. For all other types of models, OML4SQL requires that the
data be presented in single-record case format.

The Apriori algorithm assumes that the data is transactional and that it has many
missing values. Apriori interprets all missing values as sparse data, and it has its own
native mechanisms for handling sparse data.

Chapter 34
Use Market Basket Data

34-10

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
on the ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME
settings.

34.4.1 Example: Creating a Nested Column for Market Basket
Analysis

The example shows how to define a nested column for market basket analysis.

Association models can be built on native transactional data or on nested data. The
following example shows how to define a nested column for market basket analysis.

The following SQL statement transforms this data to a column of type
DM_NESTED_NUMERICALS in a view called SALES_TRANS_CUST_NESTED. This view can be
used as a case table for machine learning.

CREATE VIEW sales_trans_cust_nested AS
 SELECT trans_id,
 CAST(COLLECT(DM_NESTED_NUMERICAL(
 prod_name, 1))
 AS DM_NESTED_NUMERICALS) custprods
 FROM sales_trans_cust
 GROUP BY trans_id;

This query returns two rows from the transformed data.

SELECT * FROM sales_trans_cust_nested
 WHERE trans_id < 101000
 AND trans_id > 100997;

TRANS_ID CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- --
100998 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('O/S Documentation Set - English', 1)
100999 DM_NESTED_NUMERICALS
 (DM_NESTED_NUMERICAL('CD-RW, High Speed Pack of 5', 1),
 DM_NESTED_NUMERICAL('External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL('SIMM- 16MB PCMCIAII card', 1))

Example 34-7 Convert to a Nested Column

The view SALES_TRANS_CUST provides a list of transaction IDs to identify each market
basket and a list of the products in each basket.

describe sales_trans_cust
 Name Null? Type
 --- -------- ----------------
 TRANS_ID NOT NULL NUMBER
 PROD_NAME NOT NULL VARCHAR2(50)
 QUANTITY NUMBER

Chapter 34
Use Market Basket Data

34-11

Related Topics

• Handle Missing Values
Understand sparse data and missing values.

34.5 Use Retail Data for Analysis
Retail analysis often makes use of association rules and association models.

The association rules are enhanced to calculate aggregates along with rules or
itemsets.

Related Topics

• Oracle Machine Learning for SQL Concepts

34.5.1 Example: Calculating Aggregates
This example shows how to calculate aggregates using the customer grocery
purchase and profit data.

Calculating Aggregates for Grocery Store Data

Assume a grocery store has the following data:

Table 34-2 Grocery Store Data

Customer Item A Item B Item C Item D

Customer 1 Buys
(Profit $5.00)

Buys
(Profit $3.20)

Buys
(Profit $12.00)

NA

Customer 2 Buys
(Profit $4.00)

NA Buys
(Profit $4.20)

NA

Customer 3 Buys
(Profit $3.00)

Buys
(Profit $10.00)

Buys
(Profit $14.00)

Buys
(Profit $8.00)

Customer 4 Buys
(Profit $2.00)

NA NA Buys
(Profit $1.00)

The basket of each customer can be viewed as a transaction. The manager of the
store is interested in not only the existence of certain association rules, but also in the
aggregated profit if such rules exist.

In this example, one of the association rules can be (A, B)=>C for customer 1 and
customer 3. Together with this rule, the store manager may want to know the following:

• The total profit of item A appearing in this rule

• The total profit of item B appearing in this rule

• The total profit for consequent C appearing in this rule

• The total profit of all items appearing in the rule

For this rule, the profit for item A is $5.00 + $3.00 = $8.00, for item B the profit is $3.20
+ $10.00 = $13.20, for consequent C, the profit is $12.00 + $14.00 = $26.00, for the
antecedent itemset (A, B) is $8.00 + $13.20 = $21.20. For the whole rule, the profit
is $21.20 + $26.00 = $47.40.

Chapter 34
Use Retail Data for Analysis

34-12

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

34.6 Handle Missing Values
Understand sparse data and missing values.

Oracle Machine Learning for SQL distinguishes between sparse data and data that
contains random missing values. The latter means that some attribute values are
unknown. Sparse data, on the other hand, contains values that are assumed to be
known, although they are not represented in the data.

A typical example of sparse data is market basket data. Out of hundreds or thousands
of available items, only a few are present in an individual case (the basket or
transaction). All the item values are known, but they are not all included in the basket.
Present values have a quantity, while the items that are not represented are sparse
(with a known quantity of zero).

OML4SQL interprets missing data as follows:

• Missing at random: Missing values in columns with a simple data type (not nested)
are assumed to be missing at random.

• Sparse: Missing values in nested columns indicate sparsity.

34.6.1 Examples: Missing Values or Sparse Data?
Example to show sparse and missing data.

The examples in this section illustrate how Oracle Machine Learning for SQL identifies
data as either sparse or missing at random.

34.6.1.1 Sparsity in a Sales Table
Understand how Oracle Machine Learning for SQL interprets missing data in nested
column.

A sales table contains point-of-sale data for a group of products that are sold in
several stores to different customers over a period of time. A particular customer buys
only a few of the products. The products that the customer does not buy do not appear
as rows in the sales table.

If you were to figure out the amount of money a customer has spent for each product,
the unpurchased products have an inferred amount of zero. The value is not random
or unknown; it is zero, even though no row appears in the table.

Note that the sales data is dimensioned (by product, stores, customers, and time) and
are often represented as nested data for machine learning.

Since missing values in a nested column always indicate sparsity, you must ensure
that this interpretation is appropriate for the data that you want to mine. For example,
when trying to mine a multi-record case data set containing movie ratings from users
of a large movie database, the missing ratings are unknown (missing at random), but
Oracle Machine Learning for SQL treats the data as sparse and infer a rating of zero
for the missing value.

Chapter 34
Handle Missing Values

34-13

34.6.1.2 Missing Values in a Table of Customer Data
When the data is not available for some attributes, those missing values are
considered to be missing at random.

A table of customer data contains demographic data about customers. The case ID
column is the customer ID. The attributes are age, education, profession, gender,
house-hold size, and so on. Not all the data is available for each customer. Any
missing values are considered to be missing at random. For example, if the age
of customer 1 and the profession of customer 2 are not present in the data, that
information is unknown. It does not indicate sparsity.

Note that the customer data is not dimensioned. There is a one-to-one mapping
between the case and each of its attributes. None of the attributes are nested.

34.6.2 Missing Value Treatment in Oracle Machine Learning for SQL
Summarizes the treatment of missing values in OML4SQL.

Missing value treatment depends on the algorithm and on the nature of the data
(categorical or numerical, sparse or missing at random). Missing value treatment is
summarized in the following table.

Note:

OML4SQL performs the same missing value treatment whether or not you
are using Automatic Data Preparation (ADP).

Table 34-3 Missing Value Treatment by Algorithm

Missing Data EM, GLM, NMF, k-Means,
SVD, SVM

DT, MDL, NB, OC Apriori

NUMERICAL
missing at
random

The algorithm replaces missing
numerical values with the
mean.

For Expectation Maximization
(EM), the replacement only
occurs in columns that
are modeled with Gaussian
distributions.

The algorithm handles
missing values
naturally as missing at
random.

The algorithm
interprets all
missing data as
sparse.

Chapter 34
Handle Missing Values

34-14

Table 34-3 (Cont.) Missing Value Treatment by Algorithm

Missing Data EM, GLM, NMF, k-Means,
SVD, SVM

DT, MDL, NB, OC Apriori

CATEGORICAL
missing at
random

Generalized Linear Model
(GLM), Non-Negative Matrix
Factorization (NMF), k-Means,
and Support Vector Machine
(SVM) replaces missing
categorical values with the
mode.

Singular Value Decomposition
(SVD) does not support
categorical data.

EM does not replace missing
categorical values. EM treats
NULLs as a distinct value with
its own frequency count.

The algorithm handles
missing values
naturally as missing
random.

The algorithm
interprets all
missing data as
sparse.

NUMERICAL
sparse

The algorithm replaces sparse
numerical data with zeros.

O-Cluster does
not support nested
data and therefore
does not support
sparse data. Decision
Tree (DT), Minimum
Description Length
(MDL), and Naive
Bayes (NB) replace
sparse numerical data
with zeros.

The algorithm
handles sparse
data.

CATEGORICAL
sparse

All algorithms except SVD
replace sparse categorical
data with zero vectors. SVD
does not support categorical
data.

O-Cluster does not
support nested data
and therefore does
not support sparse
data. DT, MDL, and
NB replace sparse
categorical data with
the special value
DM$SPARSE.

The algorithm
handles sparse
data.

34.6.3 Changing the Missing Value Treatment
Transform the missing data as sparse or missing at random.

If you want Oracle Machine Learning for SQL to treat missing data as sparse instead
of missing at random or missing at random instead of sparse, transform it before
building the model.

If you want missing values to be treated as sparse, but OML4SQL interprets them as
missing at random, you can use a SQL function like NVL to replace the nulls with a
value such as "NA". OML4SQL does not perform missing value treatment when there
is a specified value.

If you want missing nested attributes to be treated as missing at random, you can
transform the nested rows into physical attributes in separate columns — as long as
the case table stays within the 1000 column limitation imposed by the Database. Fill in

Chapter 34
Handle Missing Values

34-15

all of the possible attribute names, and specify them as null. Alternatively, insert rows
in the nested column for all the items that are not present and assign a value such as
the mean or mode to each one.

Related Topics

• Oracle Database SQL Language Reference

Chapter 34
Handle Missing Values

34-16

35
Transform the Data

Understand how to transform data for building a model or for scoring.

• About Transformations

• Prepare the Case Table

• Automatic Data Preparation

• Embed Transformations in a Model

• Understand Reverse Transformations

35.1 About Transformations
Understand how you can transform data by using Automatic Data Preparation (ADP)
and embedded data transformation.

A transformation is a SQL expression that modifies the data in one or more columns.
Data must typically undergo certain transformations before it can be used to build
a model. Many Oracle Machine Learning algorithms have specific transformation
requirements. Before data can be scored, it must be transformed in the same way
that the training data was transformed.

Oracle Machine Learning for SQL supports ADP, which automatically implements the
transformations required by the algorithm. The transformations are embedded in the
model and automatically run whenever the model is applied.

If additional transformations are required, you can specify them as SQL expressions
and supply them as input when you create the model. These transformations are
embedded in the model as they are with ADP.

With automatic and embedded data transformation, most of the work of data
preparation is handled for you. You can create a model and score multiple data sets in
a few steps:

1. Identify the columns to include in the case table.

2. Create nested columns if you want to include transactional data.

3. Write SQL expressions for any transformations not handled by ADP.

4. Create the model, supplying the SQL expressions (if specified) and identifying any
columns that contain text data.

5. Ensure that some or all of the columns in the scoring data have the same name
and type as the columns used to train the model.

Related Topics

• Scoring Requirements
Learn how scoring is done in Oracle Machine Learning for SQL.

35-1

35.2 Prepare the Case Table
The first step in preparing data for machine learning is the creation of a case table.

If all the data resides in a single table and all the information for each case (record) is
included in a single row (single-record case), this process is already taken care of. If
the data resides in several tables, creating the data source involves the creation of a
view. For the sake of simplicity, the term "case table" is used here to refer to either a
table or a view.

Related Topics

• Prepare the Data
Learn how to access and treat the data that can be used to build a model.

35.2.1 Create Nested Columns
In transactional data, the information for each case is contained in multiple rows.
When the data source includes transactional data (multi-record case), the transactions
must be aggregated to the case level in nested columns.

An example is sales data in a star schema when machine learning at the product level.
Sales is stored in many rows for a single product (the case) because the product is
sold in many stores to many customers over a period of time.

See Also:

Using Nested Data for information about converting transactional data to
nested columns

35.2.2 Convert Column Data Types
You must convert the data type of a column if its type causes Oracle Machine Learning
for SQL to interpret it incorrectly.

For example, zip codes identify different postal zones; they do not imply order. If the
zip codes are stored in a numeric column, they are interpreted as a numeric attribute.
You must convert the data type so that the column data can be used as a categorical
attribute by the model. You can do this using the TO_CHAR function to convert the digits
1-9 and the LPAD function to retain the leading 0, if there is one.

LPAD(TO_CHAR(ZIPCODE),5,'0')

35.2.3 Text Transformation
Learn text processing using Oracle Machine Learning for SQL.

You can use OML4SQL to process text. Columns of text in the case table can be
processed once they have undergone the proper transformation.

Chapter 35
Prepare the Case Table

35-2

The text column must be in a table, not a view. The transformation process uses
several features of Oracle Text; it treats the text in each row of the table as a separate
document. Each document is transformed to a set of text tokens known as terms,
which have a numeric value and a text label. The text column is transformed to a
nested column of DM_NESTED_NUMERICALS.

35.2.4 About Business and Domain-Sensitive Transformations
Understand why you need to transform data according to business problems.

Some transformations are dictated by the definition of the business problem. For
example, you want to build a model to predict high-revenue customers. Since your
revenue data for current customers is in dollars you need to define what "high-
revenue" means. Using some formula that you have developed from past experience,
you can recode the revenue attribute into ranges Low, Medium, and High before
building the model.

Another common business transformation is the conversion of date information into
elapsed time. For example, date of birth can be converted to age.

Domain knowledge can be very important in deciding how to prepare the data. For
example, some algorithms produce unreliable results if the data contains values that
fall far outside of the normal range. In some cases, these values represent errors or
abnormalities. In others, they provide meaningful information.

Related Topics

• Outlier Treatment
Understand what you must do to treat outliers.

35.3 Automatic Data Preparation
Most algorithms require some form of data transformation. During the model
build process, Oracle Machine Learning for SQL can automatically perform the
transformations required by the algorithm.

You can choose to supplement the automatic transformations with additional
transformations of your own, or you can choose to manage all the transformations
yourself.

In calculating automatic transformations, OML4SQL uses heuristics that address the
common requirements of a given algorithm. This process results in reasonable model
quality in most cases.

Binning and normalization are transformations that are commonly needed by machine
learning algorithms.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

35.3.1 Binning
Learn to bin data to improve resource utilization.

Chapter 35
Automatic Data Preparation

35-3

Binning, also called discretization, is a technique for reducing the cardinality of
continuous and discrete data. Binning groups related values together in bins to reduce
the number of distinct values.

Binning can improve resource utilization and model build response time dramatically
without significant loss in model quality. Binning can improve model quality by
strengthening the relationship between attributes.

Supervised binning is a form of intelligent binning in which important characteristics
of the data are used to determine the bin boundaries. In supervised binning, the bin
boundaries are identified by a single-predictor decision tree that takes into account the
joint distribution with the target. Supervised binning can be used for both numerical
and categorical attributes.

35.3.2 Normalization
Learn about normalization.

Normalization is the most common technique for reducing the range of numerical data.
Most normalization methods map the range of a single variable to another range (often
0,1).

35.3.3 How ADP Transforms the Data
The following table shows how ADP prepares the data for each algorithm.

Table 35-1 Oracle Machine Learning Algorithms With ADP

Algorithm Machine Learning
Function

Treatment by ADP

Apriori Association rules ADP has no effect on association rules.

Decision
Tree

Classification ADP has no effect on Decision Tree. Data preparation is handled by the
algorithm.

Expectation
Maximizatio
n

Clustering Single-column (not nested) numerical columns that are modeled with
Gaussian distributions are normalized. ADP has no effect on the other
types of columns.

GLM Classification and
regression

Numerical attributes are normalized.

k-Means Clustering Numerical attributes are normalized.

MDL Attribute importance All attributes are binned with supervised binning.

MSET-SPRT Classification (for
anomaly detection)

Z-score normalization is performed.

Naive Bayes Classification All attributes are binned with supervised binning.

NMF Feature extraction Numerical attributes are normalized.

O-Cluster Clustering Numerical attributes are binned with a specialized form of equi-width
binning, which computes the number of bins per attribute automatically.
Numerical columns with all nulls or a single value are removed.

SVD Feature extraction Numerical attributes are normalized.

SVM Classification, anomaly
detection, and regression

Numerical attributes are normalized.

Chapter 35
Automatic Data Preparation

35-4

See Also:

• Oracle Database PL/SQL Packages and Types Reference

• Part III, Algorithms, in Oracle Machine Learning for SQL Concepts for
more information about algorithm-specific data preparation

35.4 Embed Transformations in a Model
You can specify your own transformations and embed them in a model by
creating a transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL or
DBMS_DATA_MINING.CREATE_MODEL2.

An example of how you can use xform_list to embed your transformations is shown
here with CREATE_MODEL procedure.

PROCEDURE create_model(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

35.4.1 Specify Transformation Instructions for an Attribute
You can pass transformation instructions for an attribute by defining a transformation
list.

A transformation list is defined as a table of transformation records. Each record
(transform_rec) specifies the transformation instructions for an attribute.

TYPE transform_rec IS RECORD (
 attribute_name VARCHAR2(30),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

The fields in a transformation record are described in this table.

Table 35-2 Fields in a Transformation Record for an Attribute

Field Description

attribute_name and
attribute_subname

These fields identify the attribute, as described in "Scoping of Model
Attribute Name"

Chapter 35
Embed Transformations in a Model

35-5

Table 35-2 (Cont.) Fields in a Transformation Record for an Attribute

Field Description

expression A SQL expression for transforming the attribute. For example, this
expression transforms the age attribute into two categories: child and
adult:[0,19) for 'child' and [19,) for adult

CASE WHEN age < 19 THEN 'child' ELSE 'adult'

Expression and reverse expressions are stored in expression_rec
objects. See "Expression Records" for details.

reverse_expression A SQL expression for reversing the transformation. For example, this
expression reverses the transformation of the age attribute:

DECODE(age,'child','(-Inf,19)','[19,Inf)')

attribute_spec Specifies special treatment for the attribute. The attribute_spec
field can be null or it can have one or more of these values:

• FORCE_IN — For GLM, forces the inclusion of the attribute in
the model build when the ftr_selection_enable setting is
enabled. (ftr_selection_enable is disabled by default.) If the
model is not using GLM, this value has no effect. FORCE_IN
cannot be specified for nested attributes or text.

• NOPREP — When ADP is on, prevents automatic transformation
of the attribute. If ADP is not on, this value has no effect. You
can specify NOPREP for a nested attribute, but not for an individual
subname (row) in the nested attribute.

• TEXT — Indicates that the attribute contains unstructured text.
ADP has no effect on this setting. TEXT may optionally include
subsettings POLICY_NAME, TOKEN_TYPE, and MAX_FEATURES.

See Example 35-1 and Example 35-2.

Related Topics

• Scoping of Model Attribute Name
Learn about model attribute name.

• Expression Records
Example of a transformation record.

35.4.1.1 Expression Records
Example of a transformation record.

The transformation expressions in a transformation record are expression_rec
objects.

TYPE expression_rec IS RECORD (
 lstmt DBMS_SQL.VARCHAR2A,
 lb BINARY_INTEGER DEFAULT 1,
 ub BINARY_INTEGER DEFAULT 0);

TYPE varchar2a IS TABLE OF VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

The lstmt field stores a VARCHAR2A, which allows transformation expressions to
be very long, as they can be broken up across multiple rows of VARCHAR2.

Chapter 35
Embed Transformations in a Model

35-6

Use the DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION procedure to create an
expression_rec.

35.4.1.2 Attribute Specifications
Learn how to define the characteristics specific to an attribute through attribute
specification.

The attribute specification in a transformation record defines characteristics that are
specific to this attribute. If not null, the attribute specification can include values
FORCE_IN, NOPREP, or TEXT, as described in Table 35-2.

Example 35-1 An Attribute Specification with Multiple Keywords

If more than one attribute specification keyword is applicable, you can provide them
in a comma-delimited list. The following expression is the specification for an attribute
in a GLM model. Assuming that the ftr_selection_enable setting is enabled, this
expression forces the attribute to be included in the model. If ADP is on, automatic
transformation of the attribute is not performed.

"FORCE_IN,NOPREP"

Example 35-2 A Text Attribute Specification

For text attributes, you can optionally specify subsettings POLICY_NAME, TOKEN_TYPE,
and MAX_FEATURES. The subsettings provide configuration information that is specific to
text transformation. In this example, the transformation instructions for the text content
are defined in a text policy named my_policy with token type is THEME. The maximum
number of extracted features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Configure a Text Attribute
Provide transformation instructions for text attribute or unstructured text by
explicitly identifying the column datatypes.

35.4.2 Build a Transformation List
You can build transformation list by SET_TRANSFORM, STACK, and GET_* methods. These
methods are listed here.

A transformation list is a collection of transformation records. When a new
transformation record is added, it is appended to the top of the transformation list.
You can use any of the following methods to build a transformation list:

• The SET_TRANFORM procedure in DBMS_DATA_MINING_TRANSFORM

• The STACK interface in DBMS_DATA_MINING_TRANSFORM

• The GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST functions in
DBMS_DATA_MINING

Chapter 35
Embed Transformations in a Model

35-7

35.4.2.1 SET_TRANSFORM
Shows a SET_TRASFORM procedure.

The SET_TRANSFORM procedure adds a single transformation record to a transformation
list.

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,
 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

SQL expressions that you specify with SET_TRANSFORM must fit within a VARCHAR2. To
specify a longer expression, you can use the SET_EXPRESSION procedure, which builds
an expression by appending rows to a VARCHAR2 array.

35.4.2.2 The STACK Interface
Understand the role of STACK interface.

The STACK interface creates transformation records from a table of transformation
instructions and adds them to a transformation list.

The STACK interface specifies that all or some of the attributes of a given type must
be transformed in the same way. For example, STACK_BIN_CAT appends binning
instructions for categorical attributes to a transformation list. The STACK interface
consists of three steps:

1. A CREATE procedure creates a transformation definition table. For example,
CREATE_BIN_CAT creates a table to hold categorical binning instructions. The table
has columns for storing the name of the attribute, the value of the attribute, and
the bin assignment for the value.

2. An INSERT procedure computes the bin boundaries for one or more attributes
and populates the definition table. For example, INSERT_BIN_CAT_FREQ performs
frequency-based binning on some or all of the categorical attributes in the data
source and populates a table created by CREATE_BIN_CAT.

3. A STACK procedure creates transformation records from the information in the
definition table and appends the transformation records to a transformation list.
For example, STACK_BIN_CAT creates transformation records for the information
stored in a categorical binning definition table and appends the transformation
records to a transformation list.

35.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST
Use the functions to create a new transformation list.

These two functions can be used to create a new transformation list from the
transformations embedded in an existing model.

The GET_MODEL_TRANSFORMATIONS function returns a list of embedded transformations.

Chapter 35
Embed Transformations in a Model

35-8

DBMS_DATA_MINING.GET_MODEL_TRANSFORMATIONS (
 model_name IN VARCHAR2)
RETURN DM_TRANSFORMS PIPELINED;

GET_MODEL_TRANSFORMATIONS returns a table of dm_transform objects. Each
dm_transform has these fields

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

The components of a transformation list are transform_rec, not dm_transform.
The fields of a transform_rec are described in Table 35-2. You can call
GET_MODEL_TRANSFORMATIONS to convert a list of dm_transform objects to
transform_rec objects and append each transform_rec to a transformation list.

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

See Also:

"DBMS_DATA_MINING_TRANSFORM Operational Notes",
"SET_TRANSFORM Procedure", "CREATE_MODEL Procedure", and
"GET_MODEL_TRANSFORMATIONS Function" in Oracle Database
PL/SQL Packages and Types Reference

35.4.3 Transformation Lists and Automatic Data Preparation
You can use Automatic Data Preparation (ADP) and transformation lists to customize
the data transformation.

If you enable ADP and you specify a transformation list, the transformation list is
embedded with the automatic, system-generated transformations. The transformation
list is processed before the automatic transformations.

If you enable ADP and do not specify a transformation list, only the automatic
transformations are embedded in the model.

If ADP is disabled (the default) and you specify a transformation list, your custom
transformations are embedded in the model. No automatic transformations are
performed.

If ADP is disabled (the default) and you do not specify a transformation list, no
transformations is embedded in the model. You have to transform the training, test,
and scoring data sets yourself if necessary. You must take care to apply the same
transformations to each data set.

35.4.4 Oracle Machine Learning for SQL Transformation Routines
Learn about transformation routines.

OML4SQL provides routines that implement various transformation techniques in the
DBMS_DATA_MINING_TRANSFORM package.

Chapter 35
Embed Transformations in a Model

35-9

Related Topics

• Oracle Database SQL Language Reference

35.4.4.1 Binning Routines
Explains binning techniques in OML4SQL.

A number of factors go into deciding a binning strategy. Having fewer values typically
leads to a more compact model and one that builds faster, but it can also lead to some
loss in accuracy.

Model quality can improve significantly with well-chosen bin boundaries. For example,
an appropriate way to bin ages is to separate them into groups of interest, such as
children 0-13, teenagers 13-19, youth 19-24, working adults 24-35, and so on.

The following table lists the binning techniques provided by OML4SQL:

Table 35-3 Binning Methods in DBMS_DATA_MINING_TRANSFORM

Binning Method Description

Top-N Most Frequent Items You can use this technique to bin categorical attributes. You
specify the number of bins. The value that occurs most
frequently is labeled as the first bin, the value that appears with
the next frequency is labeled as the second bin, and so on. All
remaining values are in an additional bin.

Supervised Binning Supervised binning is a form of intelligent binning, where bin
boundaries are derived from important characteristics of the
data. Supervised binning builds a single-predictor decision tree
to find the interesting bin boundaries with respect to a target. It
can be used for numerical or categorical attributes.

Equi-Width Binning You can use equi-width binning for numerical attributes. The
range of values is computed by subtracting the minimum value
from the maximum value, then the range of values is divided
into equal intervals. You can specify the number of bins or it can
be calculated automatically. Equi-width binning must usually be
used with outlier treatment.

Quantile Binning Quantile binning is a numerical binning technique. Quantiles
are computed using the SQL analytic function NTILE. The bin
boundaries are based on the minimum values for each quantile.
Bins with equal left and right boundaries are collapsed, possibly
resulting in fewer bins than requested.

Related Topics

• Routines for Outlier Treatment
Understand the transformations used for outlier treatment.

35.4.4.2 Normalization Routines
Learn about normalization routines in Oracle Machine Learning for SQL.

Most normalization methods map the range of a single attribute to another range,
typically 0 to 1 or -1 to +1.

Normalization is very sensitive to outliers. Without outlier treatment, most values are
mapped to a tiny range, resulting in a significant loss of information.

Chapter 35
Embed Transformations in a Model

35-10

Table 35-4 Normalization Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Min-Max Normalization This technique computes the normalization of an attribute using
the minimum and maximum values. The shift is the minimum
value, and the scale is the difference between the maximum and
minimum values.

Scale Normalization This normalization technique also uses the minimum and
maximum values. For scale normalization, shift = 0, and scale
= max{abs(max), abs(min)}.

Z-Score Normalization This technique computes the normalization of an attribute using
the mean and the standard deviation. Shift is the mean, and
scale is the standard deviation.

Related Topics

• Routines for Outlier Treatment
Understand the transformations used for outlier treatment.

35.4.4.3 Outlier Treatment
Understand what you must do to treat outliers.

A value is considered an outlier if it deviates significantly from most other values in
the column. The presence of outliers can have a skewing effect on the data and can
interfere with the effectiveness of transformations such as normalization or binning.

Outlier treatment methods such as trimming or clipping can be implemented to
minimize the effect of outliers.

Outliers represent problematic data, for example, a bad reading due to the abnormal
condition of an instrument. However, in some cases, especially in the business arena,
outliers are perfectly valid. For example, in census data, the earnings for some of the
richest individuals can vary significantly from the general population. Do not treat this
information as an outlier, since it is an important part of the data. You need domain
knowledge to determine outlier handling.

35.4.4.4 Routines for Outlier Treatment
Understand the transformations used for outlier treatment.

Outliers are extreme values, typically several standard deviations from the mean. To
minimize the effect of outliers, you can Winsorize or trim the data.

Winsorizing involves setting the tail values of an attribute to some specified value.
For example, for a 90% Winsorization, the bottom 5% of values are set equal to the
minimum value in the 5th percentile, while the upper 5% of values are set equal to the
maximum value in the 95th percentile.

Trimming sets the tail values to NULL. The algorithm treats them as missing values.

Outliers affect the different algorithms in different ways. In general, outliers cause
distortion with equi-width binning and min-max normalization.

Chapter 35
Embed Transformations in a Model

35-11

Table 35-5 Outlier Treatment Methods in DBMS_DATA_MINING_TRANSFORM

Transformation Description

Trimming This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with nulls.

Windsorizing This technique trims the outliers in numeric columns by sorting
the non-null values, computing the tail values based on some
fraction, and replacing the tail values with some specified value.

35.5 Understand Reverse Transformations
Understand why you need reverse transformations.

Reverse transformations ensure that information returned by the model is expressed in
a format that is similar to or the same as the format of the data that was used to train
the model. Internal transformation are reversed in the model details and in the results
of scoring.

Some of the attributes used by the model correspond to columns in the build data.
However, because of logic specific to the algorithm, nested data, and transformations,
some attributes do not correspond to columns.

For example, a nested column in the training data is not interpreted as an attribute by
the model. During the model build,OML4SQL explodes nested columns, and each row
(an attribute name/value pair) becomes an attribute.

Some algorithms, for example Support Vector Machine (SVM) and Generalized Linear
Model (GLM), only operate on numeric attributes. Any non-numeric column in the build
data is exploded into binary attributes, one for each distinct value in the column (SVM).
GLM does not generate a new attribute for the most frequent value in the original
column. These binary attributes are set to one only if the column value for the case is
equal to the value associated with the binary attribute.

Algorithms that generate coefficients present challenges in interpreting the results.
Examples are SVM and Non-Negative Matrix Factorization (NMF). These algorithms
produce coefficients that are used in combination with the transformed attributes. The
coefficients are relevant to the data on the transformed scale, not the original data
scale.

For all these reasons, the attributes listed in the model details do not resemble the
columns of data used to train the model. However, attributes that undergo embedded
transformations, whether initiated by Automatic Data Preparation (ADP) or by a user-
specified transformation list, appear in the model details in their pre-transformed
state, as close as possible to the original column values. Although the attributes are
transformed when they are used by the model, they are visible in the model details in a
form that can be interpreted by a user.

Related Topics

• ALTER_REVERSE_EXPRESSION Procedure

• GET_MODEL_TRANSFORMATIONS Function

• Model Detail Views
Model detail views provide information about models.

Chapter 35
Understand Reverse Transformations

35-12

36
Create a Model

Explains how to create Oracle Machine Learning for SQL models and to query model
details.

• Before Creating a Model

• The CREATE_MODEL Procedure

• The CREATE_MODEL2 Procedure

• Specify Model Settings

• Model Detail Views

36.1 Before Creating a Model
Explains the preparation steps before creating a model.

Models are database schema objects that perform machine learning. The
DBMS_DATA_MINING PL/SQL package is the API for creating, configuring, evaluating,
and querying machine learning models (model details).

Before you create a model, you must decide what you want the model to do. You
must identify the training data and determine if transformations are required. You
can specify model settings to influence the behavior of the model behavior. The
preparation steps are summarized in the following table.

Table 36-1 Preparation for Creating an Oracle Machine Learning for SQL Model

Preparation Step Description

Choose the machine learning function See Choose the Machine Learning Function

Choose the algorithm See Choosing the Algorithm

Identify the build (training) data See Preparing the Data

For classification models, identify the test data See Data Sets for Classification and Regression

Determine your data transformation strategy See Transforming the Data

Create and populate a settings tables (if needed) See Specifying Model Settings

Related Topics

• About Oracle Machine Learning Models
Machine learning models are database schema objects that perform machine
learning functions.

• DBMS_DATA_MINING
Understand the routines of DBMS_DATA_MINING package.

36-1

36.2 The CREATE_MODEL Procedure
Shows the settings in the CREATE_MODEL procedure.

The CREATE_MODEL procedure in the DBMS_DATA_MINING package uses the specified
data to create a machine learning model with the specified name and machine
learning function. The model can be created with configuration settings and user-
specified transformations.

PROCEDURE CREATE_MODEL(
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

36.2.1 Choose the Machine Learning Function
Describes providing an Oracle Machine Learning for SQL machine learning function
for the CREATE_MODEL procedure.

An OML4SQL machine learning function specifies a class of problems that can
be modeled and solved. You specify a machine learning with the mining_function
argument of the CREATE_MODEL procedure.

OML4SQL machine learning functions implement either supervised or unsupervised
learning. Supervised learning uses a set of independent attributes to predict the
value of a dependent attribute or target. Unsupervised learning does not distinguish
between dependent and independent attributes. Supervised functions are predictive.
Unsupervised functions are descriptive.

Note:

In OML4SQL terminology, a function is a general type of problem to
be solved by a given approach to machine learning. In SQL language
terminology, a function is an operation that returns a result.

In OML4SQL documentation, the term function, or machine learning
function refers to an OML4SQL machine learning function; the term SQL
function or SQL machine learning function refers to a SQL function for
scoring (applying machine learning models).

You can specify any of the values in the following table for the mining_function
parameter to the CREATE_MODEL procedure.

Chapter 36
The CREATE_MODEL Procedure

36-2

Table 36-2 Oracle Machine Learning mining_function Values

mining_function Value Description

ASSOCIATION Association is a descriptive machine learning function. An
association model identifies relationships and the probability of
their occurrence within a data set (association rules).

Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute importance is a predictive machine learning function.
An attribute importance model identifies the relative importance
of attributes in predicting a given outcome.

Attribute importance models use the Minimum Description
Length algorithm and CUR Matrix Decomposition.

CLASSIFICATION Classification is a predictive machine learning function. A
classification model uses historical data to predict a categorical
target.

Classification models can use Naive Bayes, Neural Network,
Decision Tree, logistic regression, Random Forest, Support
Vector Machine, Explicit Semantic Analysis, or XGBoost. The
default is Naive Bayes.

You can also specify the classification machine learning function
for anomaly detection for a One-Class SVM model and a
Multivariate State Estimation Technique - Sequential Probability
Ratio Test model.

CLUSTERING Clustering is a descriptive machine learning function. A
clustering model identifies natural groupings within a data set.

Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

FEATURE_EXTRACTION Feature extraction is a descriptive machine learning function. A
feature extraction model creates a set of optimized attributes.

Feature extraction models can use Non-Negative Matrix
Factorization, Singular Value Decomposition (which can also
be used for Principal Component Analysis) or Explicit Semantic
Analysis. The default is Non-Negative Matrix Factorization.

REGRESSION Regression is a predictive machine learning function. A
regression model uses historical data to predict a numerical
target.

Regression models can use Support Vector Machine, GLM
regression, or XGBoost. The default is Support Vector Machine.

TIME_SERIES Time series is a predictive machine learning function. A time
series model forecasts the future values of a time-ordered series
of historical numeric data over a user-specified time window.
Time series models use the Exponential Smoothing algorithm.
The default is Exponential Smoothing.

Related Topics

• Oracle Machine Learning for SQL Concepts

Chapter 36
The CREATE_MODEL Procedure

36-3

36.2.2 Choose the Algorithm
Learn about providing the algorithm settings for a model.

The ALGO_NAME setting specifies the algorithm for a model. If you use the default
algorithm for the machine learning function, or if there is only one algorithm available
for the machine learning function, then you do not need to specify the ALGO_NAME
setting.

Table 36-3 Oracle Machine Learning Algorithms

ALGO_NAME Value Algorithm Default? Machine Learning Model
Function

ALGO_AI_MDL Minimum Description Length — Attribute importance

ALGO_APRIORI_ASSOCIATION_RU
LES

Apriori — Association

ALGO_CUR_DECOMPOSITION CUR Matrix Decomposition — Attribute importance

ALGO_DECISION_TREE Decision Tree — Classification

ALGO_EXPECTATION_MAXIMIZATI
ON

Expectation Maximization — Clustering

ALGO_EXPLICIT_SEMANTIC_ANAL
YS

Explicit Semantic Analysis — Feature extraction and
classification

ALGO_EXPONENTIAL_SMOOTHING Exponential Smoothing — Time series

ALGO_EXTENSIBLE_LANG Language used for an extensible
algorithm

— All machine learning
functions are supported

ALGO_GENERALIZED_LINEAR_MOD
EL

Generalized Linear Model — Classification and
regression

ALGO_KMEANS k-Means yes Clustering

ALGO_MSET_SPRT Multivariate State Estimation
Technique - Sequential Probability
Ratio Test

— Anomaly detection
(classification with no target)

ALGO_NAIVE_BAYES Naive Bayes yes Classification

ALGO_NEURAL_NETWORK Neural Network — Classification

ALGO_NONNEGATIVE_MATRIX_FAC
TOR

Non-Negative Matrix Factorization yes Feature extraction

ALGO_O_CLUSTER O-Cluster — Clustering

ALGO_RANDOM_FOREST Random Forest — Classification

ALGO_SINGULAR_VALUE_DECOMP Singular Value Decomposition (can
also be used for Principal
Component Analysis)

— Feature extraction

ALGO_SUPPORT_VECTOR_MACHINE
S

Support Vector Machine yes Default regression algorithm;
regression, classification,
and anomaly detection
(classification with no target)

ALGO_XGBOOST XGBoost — Classification and
regression

Chapter 36
The CREATE_MODEL Procedure

36-4

Related Topics

• Specify Model Settings
Understand how to configure machine learning models at build time.

• Oracle Machine Learning for SQL Concepts

36.2.3 Supply Transformations
Understand the role of xform_list parameter in transformations.

You can optionally specify transformations for the build data in the xform_list
parameter to CREATE_MODEL. The transformation instructions are embedded in the
model and reapplied whenever the model is applied to new data.

36.2.3.1 Creating a Transformation List
Understand why you use different ways of creating a transformation list.

The following are the ways to create a transformation list:

• The STACK interface in DBMS_DATA_MINING_TRANSFORM.

The STACK interface offers a set of pre-defined transformations that you can apply
to an attribute or to a group of attributes. For example, you can specify supervised
binning for all categorical attributes.

• The SET_TRANSFORM procedure in DBMS_DATA_MINING_TRANSFORM.

The SET_TRANSFORM procedure applies a specified SQL expression to a specified
attribute. For example, the following statement appends a transformation
instruction for country_id to a list of transformations called my_xforms. The
transformation instruction divides country_id by 10 before algorithmic processing
begins. The reverse transformation multiplies country_id by 10.

 dbms_data_mining_transform.SET_TRANSFORM (my_xforms,
 'country_id', NULL, 'country_id/10', 'country_id*10');

The reverse transformation is applied in the model details. If country_id is the
target of a supervised model, the reverse transformation is also applied to the
scored target.

36.2.3.2 Transformation List and Automatic Data Preparation
You can provide transformation list and Automatic Data Preparation (ADP) to
customize the data transformation.

The transformation list argument to CREATE_MODEL interacts with the PREP_AUTO setting,
which controls ADP:

• When ADP is on and you specify a transformation list, your transformations
are applied with the automatic transformations and embedded in the model.
The transformations that you specify are processed before the automatic
transformations.

• When ADP is off and you specify a transformation list, your transformations are
applied and embedded in the model, but no system-generated transformations are
performed.

Chapter 36
The CREATE_MODEL Procedure

36-5

• When ADP is on and you do not specify a transformation list, the system-
generated transformations are applied and embedded in the model.

• When ADP is off and you do not specify a transformation list, no transformations
are embedded in the model; you must separately prepare the data sets you use
for building, testing, and scoring the model.

Related Topics

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by
creating a transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL
or DBMS_DATA_MINING.CREATE_MODEL2.

• Oracle Database PL/SQL Packages and Types Reference

36.2.4 About Partitioned Models
Introduces partitioned models to organize and represent multiple models.

Oracle Machine Learning for SQL supports building a persistent OML4SQL partitioned
model. A partitioned model organizes and represents multiple models as partitions
in a single model entity, enabling you to easily build and manage models tailored
to independent slices of data. Persistent means that the partitioned model has an
on-disk representation. OML4SQL manages the organization of the partitioned model
and simplifies the process of scoring the partitioned model. You must include the
partition columns as part of the USING clause when scoring. The GROUPING hint is
an optional hint that applies to machine learning scoring functions when scoring
partitioned models.

The partition names, key values, and the structure of the partitioned model are
available in the ALL_MINING_MODEL_PARTITIONS view.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

• Oracle Database Reference

• OML4SQL Examples

See Also:

Oracle Database SQL Language Reference on how to use GROUPING hint.

36.2.4.1 Partitioned Model Build Process
To build a partitioned model, Oracle Machine Learning for SQL requires a partitioning
key specified in a settings table.

The partitioning key is a comma-separated list of one or more columns (up to 16)
from the input data set. The partitioning key horizontally slices the input data based
on discrete values of the partitioning key. That is, partitioning is performed as list
values as opposed to range partitioning against a continuous value. The partitioning
key supports only columns of the data type NUMBER and VARCHAR2.

Chapter 36
The CREATE_MODEL Procedure

36-6

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

During the build process the input data set is partitioned based on the distinct values
of the specified key. Each data slice (unique key value) results in its own model
partition. The resultant model partition is not separate and is not visible to you as
a standalone model. The default value of the maximum number of partitions for
partitioned models is 1000 partitions. You can also set a different maximum partitions
value. If the number of partitions in the input data set exceeds the defined maximum,
OML4SQL throws an exception.

The partitioned model organizes features common to all partitions and the partition
specific features. The common features consist of the following metadata:

• The model name

• The machine learning function

• The machine learning algorithm

• A super set of all machine learning model attributes referenced by all partitions
(signature)

• A common set of user-defined column transformations

• Any user-specified or default build settings that are interpreted as global; for
example, the Auto Data Preparation (ADP) setting

36.2.4.2 DDL in Partitioned model
Learn about maintenance of partitioned models thorough DDL operations.

Partitioned models are maintained through the following DDL operations:

• Drop model or drop partition

• Add partition

36.2.4.2.1 Drop Model or Drop Partition
Oracle Machine Learning for SQL supports dropping a single model partition for a
given partition name.

If only a single partition remains, you cannot explicitly drop that partition. Instead,
you must either add additional partitions prior to dropping the partition or you may
choose to drop the model itself. When dropping a partitioned model, all partitions
are dropped in a single atomic operation. From a performance perspective, Oracle
recommends DROP_PARTITION followed by an ADD_PARTITION instead of leveraging the
REPLACE option due to the efficient behavior of the DROP_PARTITION option.

36.2.4.2.2 Add Partition
Oracle Machine Learning for SQL supports adding a single partition or multiple
partitions to an existing partitioned model.

The addition occurs based on the input data set and the name of the existing
partitioned model. The operation takes the input data set and the existing partitioned
model as parameters. The partition keys are extracted from the input data set and the
model partitions are built against the input data set. These partitions are added to the
partitioned model. In the case where partition keys for new partitions conflict with the
existing partitions in the model, you can select from the following three approaches to
resolve the conflicts:

Chapter 36
The CREATE_MODEL Procedure

36-7

• ERROR: Terminates the ADD operation without adding any partitions.

• REPLACE: Replaces the existing partition for which the conflicting keys are found.

• IGNORE: Eliminates the rows having the conflicting keys.

If the input data set contains multiple keys, then the operation creates multiple
partitions. If the total number of partitions in the model increases to more than the
user-defined maximum specified when the model was created, then you get an error.
The default threshold value for the number of partitions is 1000.

36.2.4.3 Partitioned Model Scoring
Learn about scoring a partitioned model.

The scoring of the partitioned model is the same as that of the non-partitioned model.
The syntax of the machine learning function remains the same but is extended to
provide an optional hint to you. The optional hint can impact the performance of a
query which involves scoring a partitioned model.

For scoring a partitioned model, the signature columns used during the build for the
partitioning key must be present in the scoring data set. These columns are combined
to form a unique partition key. The unique key is then mapped to a specific underlying
model partition, and the identified model partition is used to score that row.

The partitioned objects that are necessary for scoring are loaded on demand during
the query execution and are aged out depending on the System Global Area (SGA)
memory.

Related Topics

• Oracle Database SQL Language Reference

36.3 The CREATE_MODEL2 Procedure
Shows the settings in the CREATE_MODEL2 procedure.

The CREATE_MODEL2 procedure in the DBMS_DATA_MINING package is an alternate
procedure to the CREATE_MODEL procedure. In the CREATE_MODEL procedure, the input
is a table or a view and if such an object is not already present, the user must
create it. By using the CREATE_MODEL2 procedure, the user does not need to create
such transient database objects. The model can use configuration settings and user-
specified transformations.

DBMS_DATA_MINING.CREATE_MODEL2 (
model_name IN VARCHAR2,
mining_function IN VARCHAR2,
data_query IN CLOB,
set_list IN SETTING_LIST,
case_id_column_name IN VARCHAR2 DEFAULT NULL,
target_column_name IN VARCHAR2 DEFAULT NULL,
xform_list IN TRANSFORM_LIST DEFAULT NULL);

data_query is a query which provides training data for building the model. The rest of
the parameters are covered in the CREATE.MODEL procedure.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 36
The CREATE_MODEL2 Procedure

36-8

36.4 Specify Model Settings
Understand how to configure machine learning models at build time.

Numerous configuration settings are available for configuring machine learning models
at build time. To specify settings, create a settings table with the columns shown in the
following table and pass the table to CREATE_MODEL.

You can use CREATE_MODEL2 procedure where you can directly pass the model settings
to a variable that can be used in the procedure. The variable can be declared with
DBMS_DATA_MINING.SETTING_LIST procedure.

Table 36-4 Settings Table Required Columns

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(4000)

Example 36-1 creates a settings table for a Support Vector Machine (SVM)
classification model. Since SVM is not the default classifier, the ALGO_NAME setting
is used to specify the algorithm. Setting the SVMS_KERNEL_FUNCTION to SVMS_LINEAR
causes the model to be built with a linear kernel. If you do not specify the kernel
function, the algorithm chooses the kernel based on the number of attributes in the
data.

Example 36-2 creates a model with the model settings that are stored in a variable
from SETTING_LIST.

Some settings apply generally to the model, others are specific to an algorithm. Model
settings are referenced in Table 36-5 and Table 36-6.

Table 36-5 General Model Settings

Settings Description

Machine learning function
settings

See "Machine Learning Function Settings" in Oracle Database PL/SQL Packages
and Types Reference

Algorithm names See "Algorithm Names" in Oracle Database PL/SQL Packages and Types
Reference

Global model characteristics See "Global Settings" in Oracle Database PL/SQL Packages and Types Reference

Automatic Data Preparation See "Automatic Data Preparation" in Oracle Database PL/SQL Packages and
Types Reference

Table 36-6 Algorithm-Specific Model Settings

Algorithm Description

CUR Matrix Decomposition See "DBMS_DATA_MINING —Algorithm Settings: CUR Matrix Decomposition"in
Oracle Database PL/SQL Packages and Types Reference

Decision Tree See "DBMS_DATA_MINING —Algorithm Settings: Decision Tree" in Oracle
Database PL/SQL Packages and Types Reference

Chapter 36
Specify Model Settings

36-9

Table 36-6 (Cont.) Algorithm-Specific Model Settings

Algorithm Description

Expectation Maximization See "DBMS_DATA_MINING —Algorithm Settings: Expectation Maximization" in
Oracle Database PL/SQL Packages and Types Reference

Explicit Semantic Analysis See “DBMS_DATA_MINING —Algorithm Settings: Explicit Semantic Analysis” in
Oracle Database PL/SQL Packages and Types Reference

Exponential Smoothing See "DBMS_DATA_MINING —Algorithm Settings: Exponential Smoothing Models"
in Oracle Database PL/SQL Packages and Types Reference

Generalized Linear Model See "DBMS_DATA_MINING —Algorithm Settings: Generalized Linear Models" in
Oracle Database PL/SQL Packages and Types Reference

k-Means See "DBMS_DATA_MINING —Algorithm Settings: k-Means" in Oracle Database
PL/SQL Packages and Types Reference

Multivariate State Estimation
Technique - Sequential
Probability Ratio Test

See "DBMS_DATA_MINING - Algorithm Settings: Multivariate State Estimation
Technique - Sequential Probability Ratio Test"

in Oracle Database PL/SQL Packages and Types Reference

Naive Bayes See "Algorithm Settings: Naive Bayes" in Oracle Database PL/SQL Packages and
Types Reference

Neural Network See "DBMS_DATA_MINING —Algorithm Settings: Neural Network" in Oracle
Database PL/SQL Packages and Types Reference

Non-Negative Matrix
Factorization

See "DBMS_DATA_MINING —Algorithm Settings: Non-Negative Matrix
Factorization" in Oracle Database PL/SQL Packages and Types Reference

O-Cluster See "Algorithm Settings: O-Cluster" in Oracle Database PL/SQL Packages and
Types Reference

Random Forest See "DBMS_DATA_MINING — Algorithm Settings: Random Forest" in Oracle
Database PL/SQL Packages and Types Reference

Singular Value Decomposition See "DBMS_DATA_MINING —Algorithm Settings: Singular Value Decomposition"
in Oracle Database PL/SQL Packages and Types Reference

Support Vector Machine See "DBMS_DATA_MINING —Algorithm Settings: Support Vector Machine" in
Oracle Database PL/SQL Packages and Types Reference

XGBoost "DBMS_DATA_MINING — Algorithm Settings: XGBoost" in Oracle Database
PL/SQL Packages and Types Reference

Chapter 36
Specify Model Settings

36-10

Note:

Some XGBoost objectives apply only to classification function models
and other objectives apply only to regression function models. If
you specify an incompatible objective value, an error is raised.
In the DBMS_DATA_MINING.CREATE_MODEL procedure, if you specify
DBMS_DATA_MINING.CLASSIFICATION as the function, then the only objective
values that you can use are the binary and multi values. The one exception
is binary: logitraw, which produces a continuous value and applies only
to a regression model. If you specify DBMS_DATA_MINING.REGRESSION as the
function, then you can specify binary: logitraw or any of the count, rank,
reg, and survival values as the objective.

The values for the XGBoost objective setting are listed in the Settings
for Learning Tasks table in DBMS_DATA_MINING — Algorithm Settings:
XGBoost.

Example 36-1 Creating a Settings Table for an SVM Classification Model

CREATE TABLE svmc_sh_sample_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));

BEGIN
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
 COMMIT;
END;
/

Example 36-2 Specify Model Settings for a GLM Regression Model Using
CREATE_MODEL2 procedure

DECLARE
 v_setlist DBMS_DATA_MINING.SETTING_LIST;
BEGIN
 v_setlist('PREP_AUTO') := 'ON';
 v_setlist('ALGO_NAME') := 'ALGO_GENERALIZED_LINEAR_MODEL';
 v_setlist('GLMS_DIAGNOSTICS_TABLE_NAME') := 'GLMR_DIAG';
 v_setlist('GLMS_FTR_SELECTION') := 'GLMS_FTR_SELECTION_ENABLE';
 v_setlist('GLMS_FTR_GENERATION') := 'GLMS_FTR_GENERATION_ENABLE';

 DBMS_DATA_MINING.CREATE_MODEL2(
 MODEL_NAME => 'GLM_REGR',
 MINING_FUNCTION => 'REGRESSION',
 DATA_QUERY => 'select * from TRAINING_DATA',
 SET_LIST => v_setlist,
 CASE_ID_COLUMN_NAME => 'HID',
 TARGET_COLUMN_NAME => 'MEDV');
END;

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 36
Specify Model Settings

36-11

36.4.1 Specify Costs
Specify a cost matrix table to build a Decision Tree model.

The CLAS_COST_TABLE_NAME setting specifies the name of a cost matrix table to be
used in building a Decision Tree model. A cost matrix biases a classification model to
minimize costly misclassifications. The cost matrix table must have the columns shown
in the following table:

Table 36-7 Cost Matrix Table Required Columns

Column Name Data Type

actual_target_value valid target data type

predicted_target_value valid target data type

cost NUMBER

Decision Tree is the only algorithm that supports a cost matrix at build time. However,
you can create a cost matrix and associate it with any classification model for scoring.

If you want to use costs for scoring, create a table with the columns shown in
Table 36-7, and use the DBMS_DATA_MINING.ADD_COST_MATRIX procedure to add the
cost matrix table to the model. You can also specify a cost matrix inline when invoking
a PREDICTION function. Table 34-1 has details for valid target data types.

Related Topics

• Oracle Machine Learning for SQL Concepts

36.4.2 Specify Prior Probabilities
Prior probabilities can be used to offset differences in distribution between the build
data and the actual population.

The CLAS_PRIORS_TABLE_NAME setting specifies the name of a table of prior
probabilities to be used in building a Naive Bayes model. The priors table must have
the columns shown in the following table.

Table 36-8 Priors Table Required Columns

Column Name Data Type

target_value valid target data type

prior_probability NUMBER

Related Topics

• Target Attribute
Understand what a target means in machine learning and understand the different
target data types.

• Oracle Machine Learning for SQL Concepts

Chapter 36
Specify Model Settings

36-12

36.4.3 Specify Class Weights
Specify class weights table settings in logistic regression or Support Vector Machine
(SVM) classification to favor higher weighted classes.

The CLAS_WEIGHTS_TABLE_NAME setting specifies the name of a table of class weights
to be used to bias a logistic regression (Generalized Linear Model classification) or
SVM classification model to favor higher weighted classes. The weights table must
have the columns shown in the following table.

Table 36-9 Class Weights Table Required Columns

Column Name Data Type

target_value Valid target data type

class_weight NUMBER

Related Topics

• Target Attribute
Understand what a target means in machine learning and understand the different
target data types.

• Oracle Machine Learning for SQL Concepts

36.4.4 Model Settings in the Data Dictionary
Explains about ALL/USER/DBA_MINING_MODEL_SETTINGS in data dictionary view.

Information about Oracle Machine Learning model settings can be obtained from the
data dictionary view ALL/USER/DBA_MINING_MODEL_SETTINGS. When used with the ALL
prefix, this view returns information about the settings for the models accessible to the
current user. When used with the USER prefix, it returns information about the settings
for the models in the user's schema. The DBA prefix is only available for DBAs.

The columns of ALL_MINING_MODEL_SETTINGS are described as follows and explained
in the following table.

SQL> describe all_mining_model_settings
 Name Null? Type
 --- -------- ----------------------------
 OWNER NOT NULL VARCHAR2(30)
 MODEL_NAME NOT NULL VARCHAR2(30)
 SETTING_NAME NOT NULL VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)
 SETTING_TYPE VARCHAR2(7)

Table 36-10 ALL_MINING_MODEL_SETTINGS

Column Description

owner Owner of the machine learning model.

model_name Name of the machine learning model.

setting_name Name of the setting.

Chapter 36
Specify Model Settings

36-13

Table 36-10 (Cont.) ALL_MINING_MODEL_SETTINGS

Column Description

setting_value Value of the setting.

setting_type INPUT if the value is specified by a user. DEFAULT if the value is system-
generated.

The following query lists the settings for the Support Vector Machine
(SVM) classification model SVMC_SH_CLAS_SAMPLE. The ALGO_NAME,
CLAS_WEIGHTS_TABLE_NAME, and SVMS_KERNEL_FUNCTION settings are user-specified.
These settings have been specified in a settings table for the model. The
SVMC_SH_CLAS_SAMPLE model is created by the oml4sql-classification-
svm.sql example.

Example 36-3 ALL_MINING_MODEL_SETTINGS

SQL> COLUMN setting_value FORMAT A35
SQL> SELECT setting_name, setting_value, setting_type
 FROM all_mining_model_settings
 WHERE model_name in 'SVMC_SH_CLAS_SAMPLE';

SETTING_NAME SETTING_VALUE SETTING
------------------------------ ----------------------------------- -------
SVMS_ACTIVE_LEARNING SVMS_AL_ENABLE DEFAULT
PREP_AUTO OFF DEFAULT
SVMS_COMPLEXITY_FACTOR 0.244212 DEFAULT
SVMS_KERNEL_FUNCTION SVMS_LINEAR INPUT
CLAS_WEIGHTS_TABLE_NAME svmc_sh_sample_class_wt INPUT
SVMS_CONV_TOLERANCE .001 DEFAULT
ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

36.4.5 Specify Oracle Machine Learning Model Settings for an R
Model

The machine learning model settings for an R language model determine the
characteristics of the model and are specified in the model settings table.

You can build a machine learning model in the R language by specifying R as the
value of the ALGO_EXTENSIBLE_LANG setting in the model settings table. You can create
a model by combining in the settings table generic settings that do not require an
algorithm, such as ODMS_PARTITION_COLUMNS and ODMS_SAMPLING. You can also specify
the following settings, which are exclusive to an R machine learning model.

• ALGO_EXTENSIBLE_LANG

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FORMAT

• RALG_DETAILS_FUNCTION

Chapter 36
Specify Model Settings

36-14

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

36.4.5.1 ALGO_EXTENSIBLE_LANG
Use the ALGO_EXTENSIBLE_LANG setting to specify the language for the Oracle Machine
Learning for SQL extensible algorithm framework.

Currently, R is the only valid value for the ALGO_EXTENSIBLE_LANG setting. When you
set the value for ALGO_EXTENSIBLE_LANG to R, the machine learning models are built
using the R language. You can use the following settings in the settings table to
specify the characteristics of the R model.

• RALG_BUILD_FUNCTION

• RALG_BUILD_PARAMETER

• RALG_DETAILS_FUNCTION

• RALG_DETAILS_FORMAT

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

36.4.5.2 RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION setting to specify the name of an existing registered R
script for building an Oracle Machine Learning for SQL model using the R language.

You must specify both the RALG_BUILD_FUNCTION and ALGO_EXTENSIBLE_LANG settings
in the model settings table. The R script defines an R function that has as the first
input argument an R data.frame object for training data. The function returns an
Oracle Machine Learning model object. The first data argument is mandatory. The
RALG_BUILD_FUNCTION can accept additional model build parameters.

Note:

The valid inputs for input parameters are numeric and string scalar data
types.

Chapter 36
Specify Model Settings

36-15

Example 36-4 Example of RALG_BUILD_FUNCTION

This example shows how to specify the name of the R script MY_LM_BUILD_SCRIPT that
is used to build the model.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_function,'MY_LM_BUILD_SCRIPT');
End;
/

The R script MY_LM_BUILD_SCRIPT defines an R function that builds the LM model.
You must register the script MY_LM_BUILD_SCRIPT in the Oracle Machine Learning for
R script repository which uses the existing OML4R security restrictions. You can use
the OML4R sys.rqScriptCreate procedure to register the script. OML4R requires the
RQADMIN role to register R scripts.

For example:

Begin
sys.rqScriptCreate('MY_LM_BUILD_SCRIPT', 'function(data, formula,
model.frame) {lm(formula = formula, data=data, model =
as.logical(model.frame)}');
End;
/

For Clustering and Feature Extraction machine learning function model builds, the R
attributes dm$nclus and dm$nfeat must be set on the return R model to indicate the
number of clusters and features respectively.

The R script MY_KM_BUILD_SCRIPT defines an R function that builds the k-Means model
for clustering. The R attribute dm$nclus is set with the number of clusters for the
returned clustering model.

'function(dat) {dat.scaled <- scale(dat)
 set.seed(6543); mod <- list()
 fit <- kmeans(dat.scaled, centers = 3L)
 mod[[1L]] <- fit
 mod[[2L]] <- attr(dat.scaled, "scaled:center")
 mod[[3L]] <- attr(dat.scaled, "scaled:scale")
 attr(mod, "dm$nclus") <- nrow(fit$centers)
 mod}'

The R script MY_PCA_BUILD_SCRIPT defines an R function that builds the PCA model.
The R attribute dm$nfeat is set with the number of features for the returned feature
extraction model.

'function(dat) {
 mod <- prcomp(dat, retx = FALSE)
 attr(mod, "dm$nfeat") <- ncol(mod$rotation)
 mod}'

Chapter 36
Specify Model Settings

36-16

Related Topics

• RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string
scalar values in SQL SELECT query statement format.

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

36.4.5.2.1 RALG_BUILD_PARAMETER
The RALG_BUILD_FUNCTION input parameter specifies a list of numeric and string scalar
values in SQL SELECT query statement format.

Example 36-5 Example of RALG_BUILD_PARAMETER

The RALG_BUILD_FUNCTION input parameters must be a list of numeric and string scalar
values. The input parameters are optional.

The syntax of the parameter is:

'SELECT value parameter name ...FROM dual'

This example shows how to specify a formula for the input argument 'formula'
and a numeric value of zero for input argument 'model.frame' using the
RALG_BUILD_PARAMETER. These input arguments must match with the function
signature of the R script used in the RALG_BUILD_FUNCTION parameter.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_build_parameter, 'select ''AGE ~ .'' as
"formula", 0 as "model.frame" from dual');
End;
/

Related Topics

• RALG_BUILD_FUNCTION
Use the RALG_BUILD_FUNCTION setting to specify the name of an existing registered
R script for building an Oracle Machine Learning for SQL model using the R
language.

36.4.5.3 RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in the R
data.frame.

Use the RALG_DETAILS_FUNCTION to specify an existing registered R script that
generates model information. The script defines an R function that contains the first
input argument for the R model object. The output of the R function must be a
data.frame. The columns of the data.frame are defined by the RALG_DETAILS_FORMAT
setting, and may contain only numeric or string scalar types.

Chapter 36
Specify Model Settings

36-17

Example 36-6 Example of RALG_DETAILS_FUNCTION

This example shows how to specify the name of the R script MY_LM_DETAILS_SCRIPT in
the model settings table. This script defines the R function that is used to provide the
model information.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_function, 'MY_LM_DETAILS_SCRIPT');
End;
/

In the Oracle Machine Learning for R script repository, the script
MY_LM_DETAILS_SCRIPT is registered as:

 'function(mod) data.frame(name=names(mod$coefficients),
 coef=mod$coefficients)'

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

• RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT setting to specify the names and column types in
the model view.

36.4.5.3.1 RALG_DETAILS_FORMAT
Use the RALG_DETAILS_FORMAT setting to specify the names and column types in the
model view.

The value of the setting is a string that contains a SELECT statement to specify a list
of numeric and string scalar data types for the name and type of the model view
columns.

When the RALG_DETAILS_FORMAT and RALG_DETAILS_FUNCTION settings are both
specified, a model view by the name DM$VD <model_name> is created along with an
R model in the current schema. The first column of the model view is PARTITION_NAME.
It has the value NULL for non-partitioned models. The other columns of the model view
are defined by RALG_DETAILS_FORMAT setting.

Example 36-7 Example of RALG_DETAILS_FORMAT

This example shows how to specify the name and type of the columns for the
generated model view. The model view contains the varchar2 column attr_name and
the number column coef_value after the first column partition_name.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_details_format, 'select cast(''a'' as
varchar2(20)) as attr_name, 0 as coef_value from dual');
End;
/

Chapter 36
Specify Model Settings

36-18

Related Topics

• RALG_DETAILS_FUNCTION
The RALG_DETAILS_FUNCTION specifies the R model metadata that is returned in
the R data.frame.

36.4.5.4 RALG_SCORE_FUNCTION
Use the RALG_SCORE_FUNCTION setting to specify an existing registered R script for R
algorithm machine learning model to use for scoring data.

The specified R script defines an R function. The first input argument defines the
model object. The second input argument defines the R data.frame that is used for
scoring data.

Example 36-8 Example of RALG_SCORE_FUNCTION

This example shows how the R function takes the Linear Model model and scores the
data in the data.frame. The function argument object is the LM model. The argument
newdata is a data.frame containing the data to score.

function(object, newdata) {res <- predict.lm(object, newdata =
newdata, se.fit = TRUE); data.frame(fit=res$fit, se=res$se.fit,
df=summary(object)$df[1L])}

The output of the R function must be a data.frame. Each row represents the
prediction for the corresponding scoring data from the input data.frame. The columns
of the data.frame are specific to machine learning functions, such as:

Regression: A single numeric column for the predicted target value, with two optional
columns containing the standard error of the model fit, and the degrees of freedom
number. The optional columns are needed for the SQL function PREDICTION_BOUNDS to
work.

Example 36-9 Example of RALG_SCORE_FUNCTION for Regression

This example shows how to specify the name of the R script MY_LM_PREDICT_SCRIPT
that is used to score the model in the model settings table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LM_PREDICT_SCRIPT');
End;
/

In the Oracle Machine Learning for R script repository, the script
MY_LM_PREDICT_SCRIPT is registered as:

function(object, newdata) {data.frame(pre = predict(object, newdata =
newdata))}

Classification: Each column represents the predicted probability of one target class.
The column name is the target class name.

Chapter 36
Specify Model Settings

36-19

Example 36-10 Example of RALG_SCORE_FUNCTION for Classification

This example shows how to specify the name of the R script
MY_LOGITGLM_PREDICT_SCRIPT that is used to score the logit Classification model in
the model settings table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_LOGITGLM_PREDICT_SCRIPT');
End;
/

In the OML4R script repository, MY_LOGITGLM_PREDICT_SCRIPT is registered as follows.
It is a logit Classification with two target classes, "0" and "1".

'function(object, newdata) {
 pred <- predict(object, newdata = newdata, type="response");
 res <- data.frame(1-pred, pred);
 names(res) <- c("0", "1");
 res}'

Clustering: Each column represents the predicted probability of one cluster. The
columns are arranged in order of cluster ID. Each cluster is assigned a cluster ID, and
they are consecutive values starting from 1. To support CLUSTER_DISTANCE in the R
model, the output of R score function returns an extra column containing the value of
the distance to each cluster in order of cluster ID after the columns for the predicted
probability.

Example 36-11 Example of RALG_SCORE_FUNCTION for Clustering

This example shows how to specify the name of the R script
MY_CLUSTER_PREDICT_SCRIPT that is used to score the model in the model settings
table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_CLUSTER_PREDICT_SCRIPT');
End;
/

In the OML4R script repository, the script MY_CLUSTER_PREDICT_SCRIPT is registered
as:

'function(object, dat){
 mod <- object[[1L]]; ce <- object[[2L]]; sc <- object[[3L]];
 newdata = scale(dat, center = ce, scale = sc);
 centers <- mod$centers;
 ss <- sapply(as.data.frame(t(centers)),
 function(v) rowSums(scale(newdata, center=v, scale=FALSE)^2));
 if (!is.matrix(ss)) ss <- matrix(ss, ncol=length(ss));
 disp <- -1 / (2* mod$tot.withinss/length(mod$cluster));
 distr <- exp(disp*ss);

Chapter 36
Specify Model Settings

36-20

 prob <- distr / rowSums(distr);
 as.data.frame(cbind(prob, sqrt(ss)))}'

Feature Extraction: Each column represents the coefficient value of one feature. The
columns are arranged in order of feature ID. Each feature is assigned a feature ID,
which are consecutive values starting from 1.

Example 36-12 Example of RALG_SCORE_FUNCTION for Feature Extraction

This example shows how to specify the name of the R script
MY_FEATURE_EXTRACTION_SCRIPT that is used to score the model in the model settings
table model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_score_function, 'MY_FEATURE_EXTRACTION_SCRIPT');
End;
/

In the OML4R script repository, the script MY_FEATURE_EXTRACTION_SCRIPT is
registered as:

 'function(object, dat) { as.data.frame(predict(object, dat)) }'

The function fetches the centers of the features from the R model, and computes
the feature coefficient based on the distance of the score data to the corresponding
feature center.

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

36.4.5.5 RALG_WEIGHT_FUNCTION
Use the RALG_WEIGHT_FUNCTION setting to specify the name of an existing registered
R script that computes the weight or contribution for each attribute in scoring. The
specified R script is used in the SQL function PREDICTION_DETAILS to evaluate
attribute contribution.

The specified R script defines an R function containing the first input argument for a
model object, and the second input argument of an R data.frame for scoring data.
When the machine learning function is Classification, Clustering, or Feature Extraction,
the target class name, cluster ID, or feature ID is passed by the third input argument
to compute the weight for that particular class, cluster, or feature. The script returns
a data.frame containing the contributing weight for each attribute in a row. Each row
corresponds to that input scoring data.frame.

Chapter 36
Specify Model Settings

36-21

Example 36-13 Example of RALG_WEIGHT_FUNCTION

This example specifies the name of the R script MY_PREDICT_WEIGHT_SCRIPT
that computes the weight or contribution of R model attributes in the
model_setting_table.

Begin
insert into model_setting_table values
(dbms_data_mining.ralg_weight_function, 'MY_PREDICT_WEIGHT_SCRIPT');
End;
/

In the Oracle Machine Learning for R script repository, the script
MY_PREDICT_WEIGHT_SCRIPT for Regression is registered as:

'function(mod, data) { coef(mod)[-1L]*data }'

In the OML4R script repository, the script MY_PREDICT_WEIGHT_SCRIPT for logit
Classification is registered as:

'function(mod, dat, clas) {
 v <- predict(mod, newdata=dat, type = "response");
 v0 <- data.frame(v, 1-v); names(v0) <- c("0", "1");
 res <- data.frame(lapply(seq_along(dat),
 function(x, dat) {
 if(is.numeric(dat[[x]])) dat[,x] <- as.numeric(0)
 else dat[,x] <- as.factor(NA);
 vv <- predict(mod, newdata = dat, type = "response");
 vv = data.frame(vv, 1-vv); names(vv) <- c("0", "1");
 v0[[clas]] / vv[[clas]]}, dat = dat));
 names(res) <- names(dat);
 res}'

Related Topics

• Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle
Machine Learning for R script repository.

36.4.5.6 Registered R Scripts
The RALG_*_FUNCTION settings must specify R scripts that exist in the Oracle Machine
Learning for R script repository.

You can register the R scripts using the OML4R SQL procedure sys.rqScriptCreate.
To register a scripts, you must have the RQADMIN role.

The RALG_*_FUNCTION settings include the following functions:

• RALG_BUILD_FUNCTION

• RALG_DETAILS_FUNCTION

• RALG_SCORE_FUNCTION

• RALG_WEIGHT_FUNCTION

Chapter 36
Specify Model Settings

36-22

Note:

The R scripts must exist in the OML4R script repository for an R model to
function.

After an R model is built, the name of the specified R script become a model setting.
These R script must exist in the OML4R script repository for an R model to remain
functional.

You can manage the R memory that is used to build, score, and view the R models
through OML4R as well.

36.4.5.7 R Model Demonstration Scripts
You can access R model demonstration scripts under rdbms/demo

dmraidemo.sql dmrglmdemo.sql dmrpcademo.sql
dmrardemo.sql dmrkmdemo.sql dmrrfdemo.sql
dmrdtdemo.sql dmrnndemo.sql

36.5 Model Detail Views
Model detail views provide information about models.

The following are the model views, grouped by model function:

Association:

• Model Detail Views for Association Rules

• Model Detail View for Frequent Itemsets

• Model Detail Views for Transactional Itemsets

• Model Detail View for Transactional Rule

Classification, Regression, and Anomaly Detection:

• Model Detail Views for Classification Algorithms

• Model Detail Views for CUR Matrix Decomposition

• Model Detail Views for Decision Tree

• Model Detail Views for Generalized Linear Model

• Model Detail View for Multivariate State Estimation Technique - Sequential
Probability Ratio Test

• Model Detail Views for Naive Bayes

• Model Detail Views for Neural Network

• Model Detail Views for Random Forest

• Model Detail View for Support Vector Machine

• Model Detail Views for XGBoost

Clustering:

Chapter 36
Model Detail Views

36-23

• Model Detail Views for Clustering Algorithms

• Model Detail Views for Expectation Maximization

• Model Detail Views for k-Means

• Model Detail Views for O-Cluster

Feature Extraction:

• Model Detail Views for Explicit Semantic Analysis

• Model Detail Views for Non-Negative Matrix Factorization

• Model Detail Views for Singular Value Decomposition

Feature Selection:

• Model Detail Views for Minimum Description Length

Data Preparation and Other:

• Model Detail Views for Binning

• Model Detail Views for Global Information

• Model Detail Views for Normalization and Missing Value Handling

Time Series:

Model Detail Views for Exponential Smoothing

36.5.1 Model Detail Views for Association Rules
The model detail view DM$VRmodel_name contains the generated rules for association
models.

Depending on the settings of the model, this rule view has different sets of columns.
Settings ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME determine
how each item is defined. If ODMS_ITEM_ID_COLUMN_NAME is set, the input format
is called transactional input, otherwise, the input format is called 2-Dimensional
input. With transactional input, if setting ODMS_ITEM_VALUE_COLUMN_NAME is not set,
each item is defined by ITEM_NAME, otherwise, each item is defined by ITEM_NAME
and ITEM_VALUE. With 2-Dimensional input, each item is defined by ITEM_NAME,
ITEM_SUBNAME and ITEM_VALUE. Setting ASSO_AGGREGATES specifies the columns to
aggregate, which is displayed in the view.

Note:

Setting ASSO_AGGREGATES is not allowed for 2-dimensional input.

The following shows the views with different settings.

Transactional Input Without ASSO_AGGREGATES Setting

When you sett ITEM_NAME (ODMS_ITEM_ID_COLUMN_NAME) and do not set ITEM_VALUE
(ODMS_ITEM_VALUE_COLUMN_NAME), the view contains the following. The consequent

Chapter 36
Model Detail Views

36-24

item is defined with only the name field. If you also set ITEM_VALUE, the view has
the additional column CONSEQUENT_VALUE that specifies the value field.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Table 36-11 Rule View Columns for Transactional Inputs

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details.

RULE_ID The identifier of the rule.

RULE_SUPPORT The number of transactions that satisfy the rule.

RULE_CONFIDENCE The likelihood of a transaction satisfying the rule.

RULE_LIFT The degree of improvement in the prediction over random chance when the
rule is satisfied.

RULE_REVCONFIDENCE The number of transactions in which the rule occurs divided by the number of
transactions in which the consequent occurs.

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the antecedent to the total
number of transactions.

NUMBER_OF_ITEMS The total number of attributes referenced in the antecedent and consequent of
the rule.

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the consequent to the total
number of transactions.

CONSEQUENT_NAME The name of the consequent.

CONSEQUENT_VALUE The value of the consequent. This column is present when Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical or
categorical.

Chapter 36
Model Detail Views

36-25

Table 36-11 (Cont.) Rule View Columns for Transactional Inputs

Column Name Description

ANTECEDENT The antecedent is described as an itemset. At the itemset level, it specifies
the number of aggregates, and if not zero, the names of the columns to be
aggregated (as well as the mapping to ASSO_AGG*). The itemset contains >=
1 items.

• When ODMS_ITEM_VALUE_COLUMN_NAME is not set, each item is defined
by item_name. As an example, if the antecedent contains one item B,
then it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>B</item_name></
item></itemset>

As another example, if the antecedent contains two items, A and C, then
it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</item_name></
item><item><item_name>C</item_name></item></itemset>

• When setting ODMS_ITEM_VALUE_COLUMN_NAME is set, each item is
defined by item_name and item_value. As an example, if the
antecedent contains two items, (name A, value 1) and (name C, value
1), then it is represented as follows:

<itemset NUMAGGR="0"><item><item_name>A</
item_name><item_value>1</item_value></
item><item><item_name>C</item_name><item_value>1</
item_value></item></itemset>

Transactional Input With ASSO_AGGREGATES Setting

Similar to the view without an aggregates setting, there are three cases:

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is not set.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical, the view has a
CONSEQUENT_VALUE column.

• Rule view when ODMS_ITEM_ID_COLUMN_NAME is set and Item_value
(ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as categorical, the view has a
CONSEQUENT_VALUE column.

For the example that produces the following rules, see “Example: Calculating
Aggregates” in Oracle Machine Learning for SQL Concepts.

The view reports two sets of aggregates results:

1. ANT_RULE_PROFIT refers to the total profit for the antecedent itemset with respect
to the rule, the profit for each individual item of the antecedent itemset is shown
in the ANTECEDENT(XMLtype) column, CON_RULE_PROFIT refers to the total profit for
the consequent item with respect to the rule.

Chapter 36
Model Detail Views

36-26

In the example, for rule (A, B) => C, the rule itemset (A, B, C) occurs in the
transactions of customer 1 and customer 3. The ANT_RULE_PROFIT is $21.20,
The ANTECEDENT is shown as follow, which tells that item A has profit 5.00 +
3.00 = $8.00 and item B has profit 3.20 + 10.00 = $13.20, which sum up to
ANT_RULE_PROFIT.

<itemset NUMAGGR="1" ASSO_AGG0="profit"><item><item_name>A</
item_name><ASSO_AGG0>8.0E+000</ASSO_AGG0></item><item><item_name>B</
item_name><ASSO_AGG0>1.32E+001</ASSO_AGG0></item></itemset>
The CON_RULE_PROFIT is 12.00 + 14.00 = $26.00

2. ANT_PROFIT refers to the total profit for the antecedent itemset, while CON_PROFIT
refers to the total profit for the consequent item. The difference between
CON_PROFIT and CON_RULE_PROFIT (the same applies to ANT_PROFIT and
ANT_RULE_PROFIT) is that CON_PROFIT counts all profit for the consequent item
across all transactions where the consequent occurs, while CON_RULE_PROFIT only
counts across transactions where the rule itemset occurs.

For example, item C occurs in transactions for customer 1, 2 and 3, CON_PROFIT
is 12.00 + 4.20 + 14.00 = $30.20, while CON_RULE_PROFIT only counts transactions
for customer 1 and 3 where the rule itemset (A, B, C) occurs.

Similarly, ANT_PROFIT counts all transactions where itemset (A, B) occurs, while
ANT_RULE_PROFIT counts only transactions where the rule itemset (A, B, C) occurs.
In this example, by coincidence, both count transactions for customer 1 and 3, and
have the same value.

Example 36-14 Examples

The following example shows the view when setting ASSO_AGGREGATES specifies
column profit and column sales to be aggregated. In this example, ITEM_VALUE column
is not specified.

Name Type
 --- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE
 ANT_RULE_PROFIT BINARY_DOUBLE
 CON_RULE_PROFIT BINARY_DOUBLE
 ANT_PROFIT BINARY_DOUBLE
 CON_PROFIT BINARY_DOUBLE
 ANT_RULE_SALES BINARY_DOUBLE
 CON_RULE_SALES BINARY_DOUBLE
 ANT_SALES BINARY_DOUBLE
 CON_SALES BINARY_DOUBLE

Chapter 36
Model Detail Views

36-27

The rule view has a CONSEQUENT_VALUE column when ODMS_ITEM_ID_COLUMN_NAME is
set and Item_value (ODMS_ITEM_VALUE_COLUMN_NAME) is set with TYPE as numerical or
categorical.

2-Dimensional Inputs

In Oracle Machine Learning for SQL, association models can be built using either
transactional or two-dimensional data formats. For two-dimensional input, each item
is defined by three fields: NAME, VALUE and SUBNAME. The NAME field is the name of
the column. The VALUE field is the content of the column. The SUBNAME field is used
when the input data table contains a nested table. In that case, SUBNAME is the name
of the nested table's column. See, Example: Creating a Nested Column for Market
Basket Analysis. In this example, there is a nested column. The CONSEQUENT_SUBNAME
is the ATTRIBUTE_NAME part of the nested column. That is, 'O/S Documentation Set -
English' and CONSEQUENT_VALUE is the value part of the nested column, which is, 1.

The view uses three columns for the consequent. The rule view has the following
columns:

Name Type
 ----------------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 RULE_ID NUMBER
 RULE_SUPPORT NUMBER
 RULE_CONFIDENCE NUMBER
 RULE_LIFT NUMBER
 RULE_REVCONFIDENCE NUMBER
 ANTECEDENT_SUPPORT NUMBER
 NUMBER_OF_ITEMS NUMBER
 CONSEQUENT_SUPPORT NUMBER
 CONSEQUENT_NAME VARCHAR2(4000)
 CONSEQUENT_SUBNAME VARCHAR2(4000)
 CONSEQUENT_VALUE VARCHAR2(4000)
 ANTECEDENT SYS.XMLTYPE

Note:

All of the types for three columns for the consequent are VARCHAR2.
ASSO_AGGREGATES is not applicable for 2-Dimensional input format.

The following table displays rule view columns for 2-Dimensional input with the
descriptions of only the fields that are specific to 2-D inputs.

Table 36-12 Rule View for 2-Dimensional Input

Column Name Description

CONSEQUENT_SUBNAME For two-dimensional inputs, CONSEQUENT_SUBNAME is used for
nested column in the input data table.

CONSEQUENT_VALUE The value of the consequent when setting Item_value is set with
TYPE as numerical or categorical.

Chapter 36
Model Detail Views

36-28

Table 36-12 (Cont.) Rule View for 2-Dimensional Input

Column Name Description

ANTECEDENT The antecedent is described as an itemset. The itemset
contains >= 1 items. Each item is defined using ITEM_NAME,
ITEM_SUBNAME, and ITEM_VALUE:

As an example, assuming that this is not a nested table input, and
the antecedent contains one item: (name ADDR, value MA). The
antecedent (XMLtype) is as follows:

<itemset NUMAGGR="0"><item><item_name>ADDR</
item_name><item_subname></item_subna
me><item_value>MA</item_value></item></itemset>

For 2-Dimensional input with nested table, the subname field is
filled.

Global Detail for Association Rules

A single global detail is produced by an association model. The following table
describes a global detail returned for association model.

Table 36-13 Global Detail for an Association Model

Name Description

ITEMSET_COUNT The number of itemsets generated.

MAX_SUPPORT The maximum support.

NUM_ROWS The total number of rows used in the build.

RULE_COUNT The number of association rules in the model generated.

TRANSACTION_COUNT The number of the transactions in the input data.

36.5.2 Model Detail View for Frequent Itemsets
The model detail view contains information about frequent itemsets.

The frequent itemsets view DM$VImodel_name has the following columns:

Name Type
------------- ------------------
PARTITION_NAME VARCHAR2 (128)
ITEMSET_ID NUMBER
SUPPORT NUMBER
NUMBER_OF_ITEMS NUMBER
 ITEMSET SYS.XMLTYPE

Chapter 36
Model Detail Views

36-29

Table 36-14 Frequent Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEMSET Frequent itemset

The structure of the SYS.XMLTYPE column itemset is the
same as the corresponding Antecedent column of the
rule view.

36.5.3 Model Detail Views for Transactional Itemsets
The model detail view contains information about the transactional itemsets.

For the very common case of transactional data without aggregates,
DM$VTmodel_name view provides the itemsets information in transactional format. This
view can help improve performance for some queries as compared to the view with the
XML column. The transactional itemsets view has the following columns:

Name Type
----------------- -----------------
PARTITION_NAME VARCHAR2(128)
ITEMSET_ID NUMBER
ITEM_ID NUMBER
SUPPORT NUMBER
NUMBER_OF_ITEMS NUMBER
ITEM_NAME VARCHAR2(4000)

Table 36-15 Transactional Itemsets View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ITEMSET_ID Itemset identifier

ITEM_ID Item identifier

SUPPORT Support of the itemset

NUMBER_OF_ITEMS Number of items in the itemset

ITEM_NAME The name of the item

36.5.4 Model Detail View for Transactional Rule
The model detail view for transactional rules contains information about transactional
rules and transactional itemsets.

Transactional data without aggregates also has a transactional rule view
DM$VAmodel_name. This view can improve performance for some queries as

Chapter 36
Model Detail Views

36-30

compared to the view with the XML column. The transactional rule view has the
following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
RULE_ID NUMBER
ANTECEDENT_PREDICATE VARCHAR2(4000)
CONSEQUENT_PREDICATE VARCHAR2(4000)
RULE_SUPPORT NUMBER
RULE_CONFIDENCE NUMBER
RULE_LIFT NUMBER
RULE_REVCONFIDENCE NUMBER
RULE_ITEMSET_ID NUMBER
ANTECEDENT_SUPPORT NUMBER
CONSEQUENT_SUPPORT NUMBER
NUMBER_OF_ITEMS NUMBER

Table 36-16 Transactional Rule View

Column Name Description

PARTITION_NAME A partition in a partitioned model

RULE_ID Rule identifier

ANTECEDENT_PREDICATE Name of the Antecedent item.

CONSEQUENT_PREDICATE Name of the Consequent item

RULE_SUPPORT Support of the rule

RULE_CONFIDENCE The likelihood a transaction satisfies the rule when it
contains the Antecedent.

RULE_LIFT The degree of improvement in the prediction over random
chance when the rule is satisfied

RULE_REVCONFIDENCE The number of transactions in which the rule occurs
divided by the number of transactions in which the
consequent occurs

RULE_ITEMSET_ID Itemset identifier

ANTECEDENT_SUPPORT The ratio of the number of transactions that satisfy the
antecedent to the total number of transactions

CONSEQUENT_SUPPORT The ratio of the number of transactions that satisfy the
consequent to the total number of transactions

NUMBER_OF_ITEMS Number of items in the rule

36.5.5 Model Detail Views for Classification Algorithms
Model detail views for classification algorithms are the target map view and scoring
cost view, which are applicable to all classification algorithms.

The target map view DM$VTmodel_name describes the target distribution for
classification models. The view has the following columns:

Name Type
--- ----------------------------

Chapter 36
Model Detail Views

36-31

PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
TARGET_COUNT NUMBER
TARGET_WEIGHT NUMBER

Table 36-17 Target Map View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

TARGET_COUNT Number of rows for a given TARGET_VALUE

TARGET_WEIGHT Weight for a given TARGET_VALUE

The scoring cost view DM$VCmodel_name describes the scoring cost matrix for
classification models. The view has the following columns:

Name Type

PARTITION_NAME VARCHAR2(128)
ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
COST NUMBER

Table 36-18 Scoring Cost View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE A valid target value

PREDICTED_TARGET_VALUE Predicted target value

COST Associated cost for the actual and predicted target value
pair

36.5.6 Model Detail Views for Decision Tree
The model detail views for Decision Tree are the split information view, node statistics
view, node description view, and the cost matrix view.

The split information view DM$VPmodel_name describes the decision tree hierarchy
and the split information for each level in the decision tree. The view has the following
columns:

Name Type
---------------------------------- ---------------------------
PARTITION_NAME VARCHAR2(128)
PARENT NUMBER
SPLIT_TYPE VARCHAR2
NODE NUMBER
ATTRIBUTE_NAME VARCHAR2(128)

Chapter 36
Model Detail Views

36-32

ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2
VALUE SYS.XMLTYPE

Table 36-19 Split Information View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

PARENT Node ID of the parent

SPLIT_TYPE The main or surrogate split

NODE The node ID

ATTRIBUTE_NAME The attribute used as the splitting criterion at the parent
node to produce this node.

ATTRIBUTE_SUBNAME Split attribute subname. The value is null for non-nested
columns.

OPERATOR Split operator

VALUE Value used as the splitting criterion. This is an XML
element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The node statistics view DM$VImodel_name describes the statistics associated with
individual tree nodes. The statistics include a target histogram for the data in the node.
The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
NODE NUMBER
NODE_SUPPORT NUMBER
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
TARGET_VALUE NUMBER/VARCHAR2
TARGET_SUPPORT NUMBER

Table 36-20 Node Statistics View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to the
node

PREDICTED_TARGET_VALUE Predicted Target value

TARGET_VALUE A target value seen in the training data

TARGET_SUPPORT The number of records that belong to the node and have
the value specified in the TARGET_VALUE column

Chapter 36
Model Detail Views

36-33

Higher level node descriptions are in the DM$VOmodel_name view. The
DM$VOmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
NODE NUMBER
NODE_SUPPORT NUMBER
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
PARENT NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2
VALUE SYS.XMLTYPE

Table 36-21 Node Description View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

NODE The node ID

NODE_SUPPORT Number of records in the training set that belong to the
node

PREDICTED_TARGET_VALUE Predicted Target value

PARENT The ID of the parent

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator
taking the following values:

IN, = , <>, < , >, <=, and >=

VALUE Value used as the description criterion. This is an XML
element described using the <Element> tag.

For example, <Element>Windy</
Element><Element>Hot</Element>.

The DM$VMmodel_name view describes the cost matrix used by the Decision Tree
build. The DM$VMmodel_name view has the following columns:

Name Type

PARTITION_NAME VARCHAR2(128)
ACTUAL_TARGET_VALUE NUMBER/VARCHAR2
PREDICTED_TARGET_VALUE NUMBER/VARCHAR2
COST NUMBER

Chapter 36
Model Detail Views

36-34

Table 36-22 Cost Matrix View

Parameter Description

PARTITION_NAME Partition name in a partitioned model

ACTUAL_TARGET_VALUE Valid target value

PREDICTED_TARGET_VALUE Predicted Target value

COST Associated cost for the actual and predicted target value
pair

The following table describes the global view for a Decision Tree model.

Table 36-23 Decision Tree Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

36.5.7 Model Detail Views for Generalized Linear Model
Model detail views for Generalized Linear Model (GLM) contain details and row
diagnostics for linear and logistic regression models.

The model details view DM$VDmodel_name describes the final model information for
both linear regression models and logistic regression models.

For linear regression, the view DM$VDmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
FEATURE_EXPRESSION VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE
STD_ERROR BINARY_DOUBLE
TEST_STATISTIC BINARY_DOUBLE
P_VALUE BINARY_DOUBLE
VIF BINARY_DOUBLE
STD_COEFFICIENT BINARY_DOUBLE
LOWER_COEFF_LIMIT BINARY_DOUBLE
UPPER_COEFF_LIMIT BINARY_DOUBLE

For logistic regression, the view DM$VDmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)

Chapter 36
Model Detail Views

36-35

ATTRIBUTE_VALUE VARCHAR2(4000)
FEATURE_EXPRESSION VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE
STD_ERROR BINARY_DOUBLE
TEST_STATISTIC BINARY_DOUBLE
P_VALUE BINARY_DOUBLE
STD_COEFFICIENT BINARY_DOUBLE
LOWER_COEFF_LIMIT BINARY_DOUBLE
UPPER_COEFF_LIMIT BINARY_DOUBLE
EXP_COEFFICIENT BINARY_DOUBLE
EXP_LOWER_COEFF_LIMIT BINARY_DOUBLE
EXP_UPPER_COEFF_LIMIT BINARY_DOUBLE

Table 36-24 Model View for Linear and Logistic Regression Models

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_VALUE Valid target value

ATTRIBUTE_NAME The attribute name when there is no subname, or first part of the
attribute name when there is a subname. ATTRIBUTE_NAME is the
name of a column in the source table or view. If the column is a
non-nested, numeric column, then ATTRIBUTE_NAME is the name of
the machine learning attribute. For the intercept, ATTRIBUTE_NAME is
null. Intercepts are equivalent to the bias term in SVM models.

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested columns.

When the nested column is numeric, the machine learning
attribute is identified by the combination ATTRIBUTE_NAME
- ATTRIBUTE_SUBNAME. If the column is not nested,
ATTRIBUTE_SUBNAME is null. If the attribute is an intercept, both the
ATTRIBUTE_NAME and the ATTRIBUTE_SUBNAME are null.

ATTRIBUTE_VALUE A unique value that can be assumed by a
categorical column or nested categorical column. For
categorical columns, a machine learning attribute is
identified by a unique ATTRIBUTE_NAME.ATTRIBUTE_VALUE
pair. For nested categorical columns, a machine
learning attribute is identified by the combination:
ATTRIBUTE_NAME.ATTRIBUTE_SUBNAME.ATTRIBUTE_VALUE. For
numerical attributes, ATTRIBUTE_VALUE is null.

Chapter 36
Model Detail Views

36-36

Table 36-24 (Cont.) Model View for Linear and Logistic Regression Models

Column Name Description

FEATURE_EXPRESSION The feature name constructed by the algorithm when
feature selection is enabled. If feature selection is not
enabled, the feature name is the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in a nested
column). For categorical attributes, the algorithm constructs a feature
name that has the following form:

fully-qualified_attribute_name.attribute_value

When feature generation is enabled, a term in the model can
be a single machine learning attribute or the product of up to 3
machine learning attributes. Component machine learning attributes
can be repeated within a single term. If feature generation is
not enabled or, if feature generation is enabled, but no multiple
component terms are discovered by the CREATE model process, then
FEATURE_EXPRESSION is null.

Note:

In 12c Release 2, the algorithm does
not subtract the mean from numerical
components.

COEFFICIENT The estimated coefficient.

STD_ERROR Standard error of the coefficient estimate.

TEST_STATISTIC For linear regression, the t-value of the coefficient estimate.

For logistic regression, the Wald chi-square value of the coefficient
estimate.

P_VALUE Probability of the TEST_STATISTIC under the (NULL) hypothesis
that the term in the model is not statistically significant. A low
probability indicates that the term is significant, while a high
probability indicates that the term can be better discarded. Used to
analyze the significance of specific attributes in the model.

VIF Variance Inflation Factor. The value is zero for the intercept. For
logistic regression, VIF is null.

STD_COEFFICIENT Standardized estimate of the coefficient.

LOWER_COEFF_LIMIT Lower confidence bound of the coefficient.

UPPER_COEFF_LIMIT Upper confidence bound of the coefficient.

EXP_COEFFICIENT Exponentiated coefficient for logistic regression. For linear
regression, EXP_COEFFICIENT is null.

EXP_LOWER_COEFF_LIMIT Exponentiated coefficient for lower confidence bound of
the coefficient for logistic regression. For linear regression,
EXP_LOWER_COEFF_LIMIT is null.

EXP_UPPER_COEFF_LIMIT Exponentiated coefficient for upper confidence bound of
the coefficient for logistic regression. For linear regression,
EXP_UPPER_COEFF_LIMIT is null.

Chapter 36
Model Detail Views

36-37

The row diagnostic view DM$VAmodel_name describes row level information for both
linear regression models and logistic regression models. For linear regression, the
view DM$VAmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
TARGET_VALUE BINARY_DOUBLE
PREDICTED_TARGET_VALUE BINARY_DOUBLE
Hat BINARY_DOUBLE
RESIDUAL BINARY_DOUBLE
STD_ERR_RESIDUAL BINARY_DOUBLE
STUDENTIZED_RESIDUAL BINARY_DOUBLE
PRED_RES BINARY_DOUBLE
COOKS_D BINARY_DOUBLE

Table 36-25 Row Diagnostic View for Linear Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

PREDICTED_TARGET_VALUE The model predicted target value for the row

HAT The diagonal element of the n*n (n=number of rows) that the Hat
matrix identifies with a specific input row. The model predictions
for the input data are the product of the Hat matrix and vector of
input target values. The diagonal elements (Hat values) represent
the influence of the ith row on the ith fitted value. Large Hat values
are indicators that the ith row is a point of high leverage, a potential
outlier.

RESIDUAL The difference between the predicted and actual target value for a
specific input row.

STD_ERR_RESIDUAL The standard error residual, sometimes called the Studentized
residual, re-scales the residual to have constant variance across all
input rows in an effort to make the input row residuals comparable.
The process multiplies the residual by square root of the row weight
divided by the product of the model mean square error and 1 minus
the Hat value.

STUDENTIZED_RESIDUAL Studentized deletion residual adjusts the standard error residual for
the influence of the current row.

PRED_RES The predictive residual is the weighted square of the deletion
residuals, computed as the row weight multiplied by the square of
the residual divided by 1 minus the Hat value.

COOKS_D Cook's distance is a measure of the combined impact of the ith case
on all of the estimated regression coefficients.

Chapter 36
Model Detail Views

36-38

For logistic regression, the view DM$VAmodel_name has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
TARGET_VALUE NUMBER/VARCHAR2
TARGET_VALUE_PROB BINARY_DOUBLE
Hat BINARY_DOUBLE
WORKING_RESIDUAL BINARY_DOUBLE
PEARSON_RESIDUAL BINARY_DOUBLE
DEVIANCE_RESIDUAL BINARY_DOUBLE
C BINARY_DOUBLE
CBAR BINARY_DOUBLE
DIFDEV BINARY_DOUBLE
DIFCHISQ BINARY_DOUBLE

Table 36-26 Row Diagnostic View for Logistic Regression

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Name of the case identifier

TARGET_VALUE The actual target value as taken from the input row

TARGET_VALUE_PROB Model estimate of the probability of the predicted target value.

Hat The Hat value concept from linear regression is extended to logistic
regression by multiplying the linear regression Hat value by the
variance function for logistic regression, the predicted probability
multiplied by 1 minus the predicted probability.

WORKING_RESIDUAL The working residual is the residual of the working response. The
working response is the response on the linearized scale. For logistic
regression it has the form: the ith row residual divided by the variance
of the ith row prediction. The variance of the prediction is the
predicted probability multiplied by 1 minus the predicted probability.

WORKING_RESIDUAL is the difference between the working response
and the linear predictor at convergence.

PEARSON_RESIDUAL The Pearson residual is a re-scaled version of the working residual,
accounting for the weight. For logistic regression, the Pearson
residual multiplies the residual by a factor that is computed as square
root of the weight divided by the variance of the predicted probability
for the ith row.

RESIDUAL is 1 minus the predicted probability of the actual target
value for the row.

DEVIANCE_RESIDUAL The DEVIANCE_RESIDUAL is the contribution to the model deviance
of the ith observation. For logistic regression it has the form the
square root of 2 times the log(1 + e^eta) - eta for the non-
reference class and -square root of 2 time the log (1 + eta) for
the reference class, where eta is the linear prediction (the prediction
as if the model were a linear regression).

Chapter 36
Model Detail Views

36-39

Table 36-26 (Cont.) Row Diagnostic View for Logistic Regression

Column Name Description

C Measures the overall change in the fitted logits due to the deletion
of the ith observation for all points including the one deleted (the ith

point). It is computed as the square of the Pearson residual multiplied
by the Hat value divided by the square of 1 minus the Hat value.

Confidence interval displacement diagnostics that provides scalar
measure of the influence of individual observations.

CBAR C and CBAR are extensions of Cooks’ distance for logistic regression.
CBAR measures the overall change in the fitted logits due to the
deletion of the ith observation for all points excluding the one deleted
(the ith point). It is computed as the square of the Pearson residual
multiplied by the Hat value divided by (1 minus the Hat value)
Confidence interval displacement diagnostic which measures the
influence of deleting an individual observation.

DIFDEV A statistic that measures the change in deviance that occurs when an
observation is deleted from the input. It is computed as the square of
the deviance residual plus CBAR.

DIFCHISQ A statistic that measures the change in the Pearson chi-square
statistic that occurs when an observation is deleted from the input.
It is computed as CBAR divided by the Hat value.

Global Details for GLM: Linear Regression

The following table describes global details for a linear regression model.

Table 36-27 Global Details for Linear Regression

Name Description

ADJUSTED_R_SQUARE Adjusted R-Square

AIC Akaike's information criterion

COEFF_VAR Coefficient of variation

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
• YES
• NO

CORRECTED_TOTAL_DF Corrected total degrees of freedom

CORRECTED_TOT_SS Corrected total sum of squares

DEPENDENT_MEAN Dependent mean

ERROR_DF Error degrees of freedom

ERROR_MEAN_SQUARE Error mean square

ERROR_SUM_SQUARES Error sum of squares

F_VALUE Model F value statistic

GMSEP Estimated mean square error of the prediction, assuming
multivariate normality

HOCKING_SP Hocking Sp statistic

Chapter 36
Model Detail Views

36-40

Table 36-27 (Cont.) Global Details for Linear Regression

Name Description

ITERATIONS Tracks the number of SGD iterations. Applicable only when
the solver is SGD.

J_P JP statistic (the final prediction error)

MODEL_DF Model degrees of freedom

MODEL_F_P_VALUE Model F value probability

MODEL_MEAN_SQUARE Model mean square error

MODEL_SUM_SQUARES Model sum of square errors

NUM_PARAMS Number of parameters (the number of coefficients, including
the intercept)

NUM_ROWS Number of rows

R_SQ R-Square

RANK_DEFICIENCY The number of predictors excluded from the model due to
multi-collinearity

ROOT_MEAN_SQ Root mean square error

SBIC Schwarz's Bayesian information criterion

Global Details for GLM: Logistic Regression

The following table returns global details for a logistic regression model.

Table 36-28 Global Details for Logistic Regression

Name Description

AIC_INTERCEPT Akaike's criterion for the fit of the baseline, intercept-only,
model

AIC_MODEL Akaike's criterion for the fit of the intercept and the
covariates (predictors) mode

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The following are the possible values:
• YES
• NO

DEPENDENT_MEAN Dependent mean

ITERATIONS Tracks the number of SGD iterations (number of IRLS
iterations). Applicable only when the solver is SGD.

LR_DF Likelihood ratio degrees of freedom

LR_CHI_SQ Likelihood ratio chi-square value

LR_CHI_SQ_P_VALUE Likelihood ratio chi-square probability value

NEG2_LL_INTERCEPT -2 log likelihood of the baseline, intercept-only, model

NEG2_LL_MODEL -2 log likelihood of the model

NUM_PARAMS Number of parameters (the number of coefficients, including
the intercept)

NUM_ROWS Number of rows

Chapter 36
Model Detail Views

36-41

Table 36-28 (Cont.) Global Details for Logistic Regression

Name Description

PCT_CORRECT Percent of correct predictions

PCT_INCORRECT Percent of incorrectly predicted rows

PCT_TIED Percent of cases where the estimated probabilities are equal
for both target classes

PSEUDO_R_SQ_CS Pseudo R-square Cox and Snell

PSEUDO_R_SQ_N Pseudo R-square Nagelkerke

RANK_DEFICIENCY The number of predictors excluded from the model due to
multi-collinearity

SC_INTERCEPT Schwarz's Criterion for the fit of the baseline, intercept-only,
model

SC_MODEL Schwarz's Criterion for the fit of the intercept and the
covariates (predictors) model

Note:

• When ridge regression is enabled, fewer global details are returned.
For information about ridge, see Oracle Machine Learning for SQL
Concepts.

• When the value is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

• Model Detail Views for Global Information
Model detail views for global information contain information about global
statistics, alerts, and computed settings.

36.5.8 Model Detail View for Multivariate State Estimation Technique -
Sequential Probability Ratio Test

The model detail view for Multivariate State Estimation Technique - Sequential
Probability Ratio Test contains information about an MSET-SPRT model.

The following table lists the name-value pair for an MSET-SPRT model that appears
in the DM$VGmodel_name view of global statistics. This statistic is included when due to
memory constraints MSET-SPRT cannot use the MSET_MEMORY_VECTORS value set by
the user.

Chapter 36
Model Detail Views

36-42

Table 36-29 MSET-SPRT Information in the Model Global View

Name Description

NUM_MVEC The number of memory vectors used by the model.

36.5.9 Model Detail Views for Naive Bayes
The model detail views for Naive Bayes are the prior view and result view.

The prior view DM$VPmodel_name describes the priors of the targets for a Naive Bayes
model. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
PRIOR_PROBABILITY BINARY_DOUBLE
COUNT NUMBER

Table 36-30 Prior View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

PRIOR_PROBABILITY Prior probability for a given TARGET_VALUE

COUNT Number of rows for a given TARGET_VALUE

The Naive Bayes result view DM$VVmodel_view describes the conditional probabilities
of the Naive Bayes model. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
CONDITIONAL_PROBABILITY BINARY_DOUBLE
COUNT NUMBER

Table 36-31 Result View for Naive Bayes

Column Name Description

PARTITION_NAME The name of a feature in the model

Chapter 36
Model Detail Views

36-43

Table 36-31 (Cont.) Result View for Naive Bayes

Column Name Description

TARGET_NAME Name of the target column

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Machine learning attribute value for the
column ATTRIBUTE_NAME or the nested column
ATTRIBUTE_SUBNAME (if any).

CONDITIONAL_PROBABILITY Conditional probability of a machine learning attribute for
a given target

COUNT Number of rows for a given machine learning attribute
and a given target

The following table describes the global view for a Naive Bayes model.

Table 36-32 Naive Bayes Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

36.5.10 Model Detail Views for Neural Network
Model detail views for Neural Network contain information about the weights of the
neurons: input layer and hidden layers.

A Neural Network model has the following views:

Weights: DM$VAmodel_name

The view DM$VAmodel_name has the following columns:

Name
Type
---------------------- -----------------------
PARTITION_NAME VARCHAR2(128)
LAYER NUMBER
IDX_FROM NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
IDX_TO NUMBER
TARGET_VALUE NUMBER/VARCHAR2
WEIGHT BINARY_DOUBLE

Chapter 36
Model Detail Views

36-44

Table 36-33 Weights View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

LAYER Layer ID, 0 as an input layer

IDX_FROM Node index that the weight connects from (attribute id for
input layer)

ATTRIBUTE_NAME Attribute name (only for the input layer)

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

ATTRIBUTE_VALUE Categorical attribute value

IDX_TO Node index that the weights connects to

TARGET_VALUE Target value. The value is null for regression.

WEIGHT Value of the weight

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 36-34 Neural Networks Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following are the
possible values:

• YES
• NO

ITERATIONS Number of iterations

LOSS_VALUE Loss function value (if it is with
NNET_REGULARIZER_HELDASIDE regularization, it is the
loss function value on test data)

NUM_ROWS Number of rows in the model (or partitioned model)

36.5.11 Model Detail Views for Random Forest
Model detail views for Random Forest contain variable importance measures and
statistics.

A Random Forest model has the following statistics views:

• Variable importance statistics DM$VAmodel_name

• Random Forest statistics in the model global view DM$VGmodel_name

One of the important outputs from a Random Forest model build is a ranking of
attributes based on their relative importance. This is measured using Mean Decrease
Gini. The view DM$VAmodel_name has the following columns:

Name Type

Chapter 36
Model Detail Views

36-45

------------------------ ---------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(128)
ATTRIBUTE_IMPORTANCE BINARY_DOUBLE

Table 36-35 Variable Importance Model View

Column Name Description

PARTITION_NAME Partition name. The value is null for models which are not
partitioned.

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE Measure of importance for an attribute in the forest
(mean Decrease Gini value)

The view DM$VGmodel_name is a pre-existing view. The following name-value pairs are
added to the view.

Table 36-36 Random Forest Statistics Information In Model Global View

Name Description

AVG_DEPTH Average depth of the trees in the forest

AVG_NODECOUNT Average number of nodes per tree

MAX_DEPTH Maximum depth of the trees in the forest

MAX_NODECOUNT Maximum number of nodes per tree

MIN_DEPTH Minimum depth of the trees in the forest

MIN_NODECOUNT Minimum number of nodes per tree

NUM_ROWS The total number of rows used in the build

36.5.12 Model Detail View for Support Vector Machine
Model detail views for Support Vector Machine (SVM) contain linear coefficients and
support vector statistics.

The linear coefficient view DM$VLmodel_name describes the coefficients of a linear
SVM algorithm. The target_value field in the view is present only for classification and
has the type of the target. Regression models do not have a target_value field.

The reversed_coefficient field shows the value of the coefficient after reversing the
automatic data preparation transformations. If data preparation is disabled, then
coefficient and reversed_coefficient have the same value. The view has the following
columns:

Name Type

PARTITION_NAME VARCHAR2(128)

Chapter 36
Model Detail Views

36-46

TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE
REVERSED_COEFFICIENT BINARY_DOUBLE

Table 36-37 Linear Coefficient View for Support Vector Machine

Column Name Description

PARTITION_NAME Partition name in a partitioned model

TARGET_VALUE Target value, numerical or categorical

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Value of a categorical attribute

COEFFICIENT Projection coefficient value

REVERSED_COEFFICIENT Coefficient transformed on the original scale

The following table describes the SVM statistics global view.

Table 36-38 Support Vector Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance:
• YES
• NO

ITERATIONS Number of iterations performed during build

NUM_ROWS Number of rows used for the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm. This
applies to one-class linear models only.

36.5.13 Model Detail Views for XGBoost
The model detail views for XGBoost contain information about an XGBoost model.

The DM$VImodel_name view reports the feature importance values for each attribute of
each partition of the model.

The view has the following columns for tree models (gbtree and dart boosters).

Name Type
----------------- --------------
PNAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
GAIN BINARY_DOUBLE

Chapter 36
Model Detail Views

36-47

COVER BINARY_DOUBLE
FREQUENCY BINARY_DOUBLE

Table 36-39 Feature Importance View for a Tree Model

Column Name Description

PNAME The name of a partition in a partitioned model.

ATTRIBUTE_NAME The column name.

ATTRIBUTE_SUBNAME The nested column subname; the value is null for non-nested columns.

ATTRIBUTE_VALUE The value of a categorical attribute.

GAIN The fractional contribution of each feature to the model based on the
total gain of a feature’s splits; a higher percentage means a more
important predictive feature.

COVER The number of observations related to the feature.

FREQUENCY A percentage representing the relative number of times a feature has
been used in trees.

For a linear model (gblinear) booster, the feature importance is the absolute
magnitude of linear coefficients.

The view has the following columns for linear models.

Name Type
----------------- --------------
PNAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
WEIGHT BINARY_DOUBLE
CLASS BINARY_DOUBLE

Table 36-40 Feature Importance View for a Linear Model

Column Name Description

PNAME The name of a partition in a partitioned model.

ATTRIBUTE_NAME The column name.

ATTRIBUTE_SUBNAME The nested column subname; the value is null for non-
nested columns.

ATTRIBUTE_VALUE The value of a categorical attribute.

WEIGHT The linear coefficient of the feature.

CLASS The class label for a multiclass model.

The DM$VGmodel_name view reports global statistics for an XGBoost model. The
statistics include an evaluation of the training data set done by the evaluation metric
you specified with the learning task eval_metric setting, or by the default eval_metric
if you didn't specify one. The view contains only the result of the last training iteration.
When you specify more than one eval_metric, the view contains multiple rows, one
for each eval_metric.

Chapter 36
Model Detail Views

36-48

36.5.14 Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms: Expectation
Maximization (EM), k-Means (KM), and orthogonal partitioning clustering (O-Cluster,
OC).

All clustering algorithms share the following views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Histogram statistics DM$VHmodel_name

• Rule statistics DM$VRmodel_name

The cluster description view DM$VDmodel_name describes cluster level information
about a clustering model. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
RECORD_COUNT NUMBER
PARENT NUMBER
TREE_LEVEL NUMBER
LEFT_CHILD_ID NUMBER
RIGHT_CHILD_ID NUMBER

Table 36-41 Cluster Description View for Clustering Algorithm

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

RECORD_COUNT Specifies the number of records

PARENT The ID of the parent

TREE_LEVEL Specifies the number of splits from the root

LEFT_CHILD_ID The ID of the child cluster on the left side of the split

RIGHT_CHILD_ID The ID of the child cluster on the right side of the split

The attribute view DM$VAmodel_name describes attribute level information about a
clustering model. The values of the mean, variance, and mode for a particular cluster
can be obtained from this view. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2

Chapter 36
Model Detail Views

36-49

ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
MEAN BINARY_DOUBLE
VARIANCE BINARY_DOUBLE
MODE_VALUE VARCHAR2(4000)

Table 36-42 Attribute View for Clustering Algorithms

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

MEAN The field returns the average value of a numeric attribute

VARIANCE The variance of a numeric attribute

MODE_VALUE The mode is the most frequent value of a categorical
attribute

The histogram view DM$VHmodel_name describes histogram level information about a
clustering model. The bin information as well as bin counts can be obtained from this
view. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
BIN_ID NUMBER
LOWER_BIN_BOUNDARY BINARY_DOUBLE
UPPER_BIN_BOUNDARY BINARY_DOUBLE
ATTRIBUTE_VALUE VARCHAR2(4000)
COUNT NUMBER

Table 36-43 Histogram View for Clustering Algorithms

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID

LOWER_BIN_BOUNDARY Numeric lower bin boundary

Chapter 36
Model Detail Views

36-50

Table 36-43 (Cont.) Histogram View for Clustering Algorithms

Column Name Description

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical attribute value

COUNT Histogram count

The rule view DM$VRmodel_name describes the rule level information about a
clustering model. The information is provided at attribute predicate level. The view
has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
CLUSTER_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2(2)
NUMERIC_VALUE NUMBER
ATTRIBUTE_VALUE VARCHAR2(4000)
SUPPORT NUMBER
CONFIDENCE BINARY_DOUBLE
RULE_SUPPORT NUMBER
RULE_CONFIDENCE BINARY_DOUBLE

Table 36-44 Rule View for Clustering Algorithms

Column Name Description

PARTITION_NAME A partition in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

OPERATOR Attribute predicate operator - a conditional operator
taking the following values: IN, = , <>, < , >, <=, and
>=

NUMERIC_VALUE Numeric lower bin boundary

ATTRIBUTE_VALUE Categorical attribute value

SUPPORT Attribute predicate support

CONFIDENCE Attribute predicate confidence

RULE_SUPPORT Rule level support

RULE_CONFIDENCE Rule level confidence

Chapter 36
Model Detail Views

36-51

36.5.15 Model Detail Views for Expectation Maximization
Model detail views for Expectation Maximization (EM) contain additional information
about an EM model.

The following views contain information that is not in the clustering views for an
EM model. For the clustering views, refer to "Model Detail Views for Clustering
Algorithms".

The component view DM$VOmodel_name describes the EM components. The
component view contains information about their prior probabilities and what cluster
they map to. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
COMPONENT_ID NUMBER
CLUSTER_ID NUMBER
PRIOR_PROBABILITY BINARY_DOUBLE

Table 36-45 Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

CLUSTER_ID The ID of a cluster in the model

PRIOR_PROBABILITY Component prior probability

The mean and variance component view DM$VMmodel_name provides information
about the mean and variance parameters for the attributes by Gaussian distribution
models. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
COMPONENT_ID NUMBER
ATTRIBUTE_NAME VARCHAR2(4000)
MEAN BINARY_DOUBLE
VARIANCE BINARY_DOUBLE

The frequency component view DM$VFmodel_name provides information about the
parameters of the multi-valued Bernoulli distributions used by the EM model. The view
has the following columns:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 COMPONENT_ID NUMBER
 ATTRIBUTE_NAME VARCHAR2(4000)

Chapter 36
Model Detail Views

36-52

 ATTRIBUTE_VALUE VARCHAR2(4000)
 FREQUENCY BINARY_DOUBLE

Table 36-46 Frequency Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

COMPONENT_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

ATTRIBUTE_VALUE Categorical attribute value

FREQUENCY The frequency of the multivalued Bernoulli distribution
for the attribute/value combination specified by
ATTRIBUTE_NAME and ATTRIBUTE_VALUE.

For 2-Dimensional columns, EM provides an attribute ranking similar to that of attribute
importance. This ranking is based on a rank-weighted average over Kullback–Leibler
divergence computed for pairs of columns. This unsupervised attribute importance is
shown in the DM$VImodel_name view and has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
ATTRIBUTE_RANK NUMBER

Table 36-47 2–Dimensional Attribute Ranking for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK An attribute rank based on the importance value

The pairwise Kullback–Leibler divergence is reported in the DM$VBmodel_name
view. This metric evaluates how much the observed joint distribution of two attributes
diverges from the expected distribution under the assumption of independence. That
is, the higher the value, the more dependent the two attributes are. The dependency
value is scaled based on the size of the grid used for each pairwise computation. That
ensures that all values fall within the [0; 1] range and are comparable. The view has
the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME_1 VARCHAR2(128)
ATTRIBUTE_NAME_2 VARCHAR2(128)
DEPENDENCY BINARY_DOUBLE

Chapter 36
Model Detail Views

36-53

Table 36-48 Kullback-Leibler Divergence for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME_1 Name of an attribute 1

ATTRIBUTE_NAME_2 Name of an attribute 2

DEPENDENCY Scaled pairwise Kullback-Leibler divergence

The projection table DM$VPmodel_name shows the coefficients used by random
projections to map nested columns to a lower dimensional space. The view has rows
only when nested or text data is present in the build data. The view has the following
columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_NAME VARCHAR2(4000)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT NUMBER

Table 36-49 Projection table for Expectation Maximization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_NAME Name of feature

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT Projection coefficient. The representation is sparse; only
the non-zero coefficients are returned.

Global Details for Expectation Maximization

The following table describes global details for EM.

Table 36-50 Global Details for Expectation Maximization

Name Description

CONVERGED Indicates whether the model build process has converged to
specified tolerance. The possible values are:

• YES
• NO

LOGLIKELIHOOD Loglikelihood on the build data

Chapter 36
Model Detail Views

36-54

Table 36-50 (Cont.) Global Details for Expectation Maximization

Name Description

NUM_COMPONENTS Number of components produced by the model

NUM_CLUSTERS Number of clusters produced by the model

NUM_ROWS Number of rows used in the build

RANDOM_SEED The random seed value used for the model build

REMOVED_COMPONENTS The number of empty components excluded from the model

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms:
Expectation Maximization (EM), k-Means (KM), and orthogonal partitioning
clustering (O-Cluster, OC).

36.5.16 Model Detail Views for k-Means
Model detail views for k-Means (KM) contain clustering and scoring information.

The following views contain information that is not in the clustering views for a k-
Means model. For the clustering views, refer to "Model Detail Views for Clustering
Algorithms". For k-Means, the cluster description view DM$VDmodel_name has an
additional column:

Name Type
---------------------------------- ----------------------------
DISPERSION BINARY_DOUBLE

Table 36-51 Cluster Description for k-Means

Column Name Description

DISPERSION A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard
statistical model.

The scoring view DM$VCmodel_name describes the centroid of each leaf clusters:

Name Type
 ---------------------------------- ----------------------------
 PARTITION_NAME VARCHAR2(128)
 CLUSTER_ID NUMBER
 CLUSTER_NAME NUMBER/VARCHAR2
 ATTRIBUTE_NAME VARCHAR2(128)
 ATTRIBUTE_SUBNAME VARCHAR2(4000)
 ATTRIBUTE_VALUE VARCHAR2(4000)
 VALUE BINARY_DOUBLE

Chapter 36
Model Detail Views

36-55

Table 36-52 Scoring View for k-Means

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID The ID of a cluster in the model

CLUSTER_NAME Specifies the label of the cluster

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

VALUE Specifies the centroid value

The following table describes global view for k-Means.

Table 36-53 k–Means Statistics Information In Model Global View

Name Description

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following
are the possible values:

• YES
• NO

NUM_ROWS Number of rows used in the build

REMOVED_ROWS_ZERO_NORM Number of rows removed due to 0 norm. This
applies only to models using cosine distance.

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms:
Expectation Maximization (EM), k-Means (KM), and orthogonal partitioning
clustering (O-Cluster, OC).

36.5.17 Model Detail Views for O-Cluster
Model detail views for O-Cluster (OC) contain information about OC models.

The following views contain information that is not in the clustering views for
an O-Cluster model. For the clustering views, refer to "Model Detail Views for
Clustering Algorithms". The OC algorithm uses the same descriptive statistics views
as Expectation Maximization (EM) and k-Means (KM). The following are the statistics
views:

• Cluster description DM$VDmodel_name

• Attribute statistics DM$VAmodel_name

• Rule statistics DM$VRmodel_name

• Histogram statistics DM$VHmodel_name

Chapter 36
Model Detail Views

36-56

The cluster description view DM$VDmodel_name describes the O-Cluster components.
The cluster description view has additional fields that specify the split predicate. The
view has the following columns:

Name Type
---------------------------------- ----------------------------
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
OPERATOR VARCHAR2(2)
VALUE SYS.XMLTYPE

Table 36-54 Description View

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

OPERATOR Split operator

VALUE List of split values

The structure of the SYS.XMLTYPE is as follows:

<Element>splitval1</Element>

The OC algorithm uses a histogram view DM$VHmodel_name with different columns
than EM and KM. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITON_NAME VARCHAR2(128)
CLUSTER_ID NUMBER
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
BIN_ID NUMBER
LABEL VARCHAR2(4000)
COUNT NUMBER

Table 36-55 Histogram Component View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CLUSTER_ID Unique identifier of a component

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-nested
columns.

BIN_ID Unique identifier

LABEL Bin label

Chapter 36
Model Detail Views

36-57

Table 36-55 (Cont.) Histogram Component View

Column Name Description

COUNT Bin histogram count

The following table describes the global view for O-Cluster.

Table 36-56 O-Cluster Statistics Information In Model Global View

Name Description

NUM_ROWS The total number of rows used in the build

Related Topics

• Model Detail Views for Clustering Algorithms
Oracle Machine Learning for SQL supports these clustering algorithms:
Expectation Maximization (EM), k-Means (KM), and orthogonal partitioning
clustering (O-Cluster, OC).

36.5.18 Model Detail Views for CUR Matrix Decomposition
Model detail views for CUR Matrix Decomposition contain information about the scores
and ranks of attributes and rows.

CUR Matrix Decomposition models have the following views:

Attribute importance and rank: DM$VCmodel_name

Row importance and rank: DM$VRmodel_name

Global statistics: DM$VG

The attribute importance and rank view DM$VCmodel_name has the following columns:

Name Type
----------------- -----------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
ATTRIBUTE_IMPORTANCE NUMBER
ATTRIBUTE_RANK NUMBER

Table 36-57 Attribute Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Attribute name

ATTRIBUTE_SUBNAME Attribute subname. The value is null for non-nested
columns.

Chapter 36
Model Detail Views

36-58

Table 36-57 (Cont.) Attribute Importance and Rank View

Column Name Description

ATTRIBUTE_VALUE Value of the attribute

ATTRIBUTE_IMPORTANCE Attribute leverage score

ATTRIBUTE_RANK Attribute rank based on leverage score

The view DM$VRmodel_name exposes the leverage scores and ranks of all selected
rows through a view. This view is created when users decide to perform row
importance and the CASE_ID column is present. The view has the following columns:

Name Type
--------------------- ------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID Original cid data types,
 including NUMBER, VARCHAR2,
 DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
ROW_IMPORTANCE NUMBER
ROW_RANK NUMBER

Table 36-58 Row Importance and Rank View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Case ID. The supported case ID types are the same as
that supported for GLM, SVD, and ESA algorithms.

ROW_IMPORTANCE Row leverage score

ROW_RANK Row rank based on leverage score

The following table describes global statistics for CUR Matrix Decomposition.

Table 36-59 CUR Matrix Decomposition Statistics Information In Model Global
View.

Name Description

NUM_COMPONENTS Number of SVD components (SVD rank)

NUM_ROWS Number of rows used in the model build

36.5.19 Model Detail Views for Explicit Semantic Analysis
Model detail views for Explicit Semantic Analysis (ESA) contain information about
attribute statistics and features.

ESA algorithm has the following views:

Chapter 36
Model Detail Views

36-59

• Explicit Semantic Analysis Matrix DM$VAmodel_name: This view has different
columns for feature extraction and classification. For feature extraction, this view
contains model attribute coefficients per feature. For classification, this view
contains model attribute coefficients per target class.

• Explicit Semantic Analysis Features DM$VFmodel_name: This view is applicable
only for feature extraction.

The view DM$VAmodel_name has the following columns for feature extraction:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 36-60 Explicit Semantic Analysis Matrix for Feature Extraction

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the training
data

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with respect to
the feature

The DM$VAmodel_name view comprises attribute coefficients for all target classes.

The view DM$VAmodel_name has the following columns for classification:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
TARGET_VALUE NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 36-61 Explicit Semantic Analysis Matrix for Classification

Column Name Description

PARTITION_NAME Partition name in a partitioned model

Chapter 36
Model Detail Views

36-60

Table 36-61 (Cont.) Explicit Semantic Analysis Matrix for Classification

Column Name Description

TARGET_VALUE Value of the target

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for
non-nested columns.

ATTRIBUTE_VALUE Categorical attribute value

COEFFICIENT A measure of the weight of the attribute with
respect to the feature

The view DM$VFmodel_name has a unique row for every feature in one view. This
feature is helpful if the model was pre-built and the source training data are not
available. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE

Table 36-62 Explicit Semantic Analysis Features for Explicit Semantic Analysis

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID Unique identifier of a feature as it appears in the training
data

The following table describes the global view for ESA.

Table 36-63 Explicit Semantic Analysis Statistics Information In Model Global
View

Name Description

NUM_ROWS The total number of input rows

REMOVED_ROWS_BY_FILTERS Number of rows removed by filters

36.5.20 Model Detail Views for Exponential Smoothing
Model detail views for Exponential Smoothing (ESM) contain information about the
model output and global information.

An ESM model has the following views:

• Model output: DM$VPmodel_name

• Model global information: DM$VGmodel_name

Chapter 36
Model Detail Views

36-61

Model output: This view contains the result of an ESM model. The output has a set
of records such as partition, CASE_ID, value, prediction, lower, upper, and so on and
ordered by partition and CASE_ID (time). Each partition has a separate smoothing
model. For a given partition, for each time (CASE_ID) point that the input time series
covers, the value is the observed or accumulated value at the time point, and the
prediction is the one-step-ahead forecast at that time point. For each time point (future
prediction) beyond the range of input time series, the value is NULL, and the prediction
is the model forecast for that time point. Lower and upper are the lower bound and
upper bound of the user specified confidence interval for the prediction.

Model global Information: This view contains the global information of the model
along with the estimated smoothing constants, the estimated initial state, and global
diagnostic measures.

Depending on the type of model, the global diagnostics include some or all of the
following for Exponential Smoothing.

Table 36-64 Exponential Smoothing Model Statistics Information In Model
Global View

Name Description

–2 LOG-LIKELIHOOD Negative log-likelihood of model

ALPHA Smoothing constant

AIC Akaike information criterion

AICC Corrected Akaike information criterion

AMSE Average mean square error over user-
specified time window

BETA Trend smoothing constant

BIC Bayesian information criterion

GAMMA Seasonal smoothing constant

INITIAL LEVEL Model estimate of value one time interval prior
to start of observed series

INITIAL SEASON i Model estimate of seasonal effect for season
i one time interval prior to start of observed
series

INITIAL TREND Model estimate of trend one time interval prior
to start of observed series

MAE Model mean absolute error

MSE Model mean square error

PHI Damping parameter

STD Model standard error

SIGMA Model standard deviation of residuals

36.5.21 Model Detail Views for Non-Negative Matrix Factorization
Model detail views for Non-Negative Matrix Factorization (NMF) contain information
about the encoding H matrix and H inverse matrix.

The NMF algorithm has two matrix content views:

Chapter 36
Model Detail Views

36-62

• Encoding (H) matrix DM$VEmodel_name

• H inverse matrix DM$VImodel_name

The view DM$VEmodel_name describes the encoding (H) matrix of an NMF model.
The FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following columns.

Name Type
------------------- --------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 36-65 Encoding H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its contribution to
the feature

The view DM$VImodel_view describes the inverse H matrix of an NMF model. The
FEATURE_NAME column type may be either NUMBER or VARCHAR2. The view has the
following schema:

Name Type
----------------- ------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
COEFFICIENT BINARY_DOUBLE

Table 36-66 Inverse H Matrix View for Non-Negative Matrix Factorization

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

Chapter 36
Model Detail Views

36-63

Table 36-66 (Cont.) Inverse H Matrix View for Non-Negative Matrix Factorization

Column Name Description

FEATURE_NAME The name of a feature in the model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Specifies the value of attribute

COEFFICIENT The attribute encoding that represents its contribution to
the feature

The following table describes the global statistics for NMF.

Table 36-67 Non-Negative Matrix Factorization Statistics Information In Model
Global View

Name Description

CONV_ERROR Convergence error

CONVERGED Indicates whether the model build process has
converged to specified tolerance. The following
are the possible values:
• YES
• NO

ITERATIONS Number of iterations performed during build

NUM_ROWS Number of rows used in the build input data
set

SAMPLE_SIZE Number of rows used by the build

36.5.22 Model Detail Views for Singular Value Decomposition
Model detail views for Singular Value Decomposition (SVD) contain information about
the S matrix, right-singular vectors, and left-singular vectors.

The DM$VEmodel_name view leverages the fact that each singular value in the
SVD model has a corresponding principal component in the associated Principal
Components Analysis (PCA) model to relate a common set of information for both
classes of models. For an SVD model, it describes the content of the S matrix. When
PCA scoring is selected as a build setting, the variance and percentage cumulative
variance for the corresponding principal components are shown as well. The view has
the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
VALUE BINARY_DOUBLE

Chapter 36
Model Detail Views

36-64

VARIANCE BINARY_DOUBLE
PCT_CUM_VARIANCE BINARY_DOUBLE

Table 36-68 S Matrix View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

VARIANCE The variance explained by a component. This
column is only present for SVD models with
setting dbms_data_mining.svds_scoring_mode set
to dbms_data_mining.svds_scoring_pca

This column is non-null only if the build data
is centered, either manually or because of the
following setting:dbms_data_mining.prep_auto is set
to dbms_data_mining.prep_auto_on.

PCT_CUM_VARIANCE The percent cumulative variance explained by the
components thus far. The components are ranked by the
explained variance in descending order.

This column is only present for SVD models with
setting dbms_data_mining.svds_scoring_mode set
to dbms_data_mining.svds_scoring_pca

This column is non-null only if the build data
is centered, either manually or because of the
following setting:dbms_data_mining.prep_auto is set
to dbms_data_mining.prep_auto_on.

The SVD DM$VVmodel_view describes the right-singular vectors of an SVD model. For
a PCA model it describes the principal components (eigenvectors). The view has the
following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_VALUE VARCHAR2(4000)
VALUE BINARY_DOUBLE

Table 36-69 Right-singular Vectors of Singular Value Decomposition

Column Name Description

PARTITION_NAME Partition name in a partitioned model

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

Chapter 36
Model Detail Views

36-65

Table 36-69 (Cont.) Right-singular Vectors of Singular Value Decomposition

Column Name Description

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_VALUE Categorical attribute value. For numerical attributes,
ATTRIBUTE_VALUE is null.

VALUE The matrix entry value

The view DM$VUmodel_name describes the left-singular vectors of an SVD model. For
a PCA model, it describes the projection of the data in the principal components. This
view does not exist unless the settings dbms_data_mining.svds_u_matrix_output is
set to dbms_data_mining.svds_u_matrix_enable. The view has the following columns:

Name Type
---------------------------------- ----------------------------
PARTITION_NAME VARCHAR2(128)
CASE_ID NUMBER/VARHCAR2, DATE, TIMESTAMP,
 TIMESTAMP WITH TIME ZONE,
 TIMESTAMP WITH LOCAL TIME ZONE
FEATURE_ID NUMBER
FEATURE_NAME NUMBER/VARCHAR2
VALUE BINARY_DOUBLE

Table 36-70 Left-singular Vectors of Singular Value Decomposition or
Projection Data in Principal Components

Column Name Description

PARTITION_NAME Partition name in a partitioned model

CASE_ID Unique identifier of the row in the build data described by
the U matrix projection.

FEATURE_ID The ID of a feature in the model

FEATURE_NAME The name of a feature in the model

VALUE The matrix entry value

Global Details for Singular Value Decomposition

The following table describes the global details for an SVD model.

Table 36-71 Global Details for Singular Value Decomposition

Name Description

NUM_COMPONENTS Number of features (components) produced by the model

NUM_ROWS The total number of rows used in the build

Chapter 36
Model Detail Views

36-66

Table 36-71 (Cont.) Global Details for Singular Value Decomposition

Name Description

SUGGESTED_CUTOFF Suggested cutoff that indicates how many of the top computed
features capture most of the variance in the model. Using only
the features below this cutoff would be a reasonable strategy for
dimensionality reduction.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

36.5.23 Model Detail Views for Minimum Description Length
Model detail views for Minimum Description :Length (MDL) (for calculating attribute
importance) contain information about attribute importance models.

The attribute importance view DM$VAmodel_name describes the attribute importance
as well as the attribute importance rank. The view has the following columns:

Name Type
--- ----------------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
ATTRIBUTE_IMPORTANCE_VALUE BINARY_DOUBLE
ATTRIBUTE_RANK NUMBER

Table 36-72 Attribute Importance View for Minimum Description Length

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

ATTRIBUTE_IMPORTANCE_VALUE Importance value

ATTRIBUTE_RANK Rank based on importance

The following table describes the global view for MDL.

Table 36-73 Minimum Description Length Statistics Information In Model
Global View

Name Description

NUM_ROWS The total number of rows used in the build

Chapter 36
Model Detail Views

36-67

36.5.24 Model Detail Views for Binning
The binning view DM$VB describes the bin boundaries used in automatic data
preparation.

The view has the following columns:

Name Type
-------------------- --------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
BIN_ID NUMBER
LOWER_BIN_BOUNDARY BINARY_DOUBLE
UPPER_BIN_BOUNDARY BINARY_DOUBLE
ATTRIBUTE_VALUE VARCHAR2(4000)

Table 36-74 Model Details View for Binning

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ATTRIBUTE_NAME Specifies the attribute name

ATTRIBUTE_SUBNAME Specifies the attribute subname

BIN_ID Bin ID (or bin identifier)

LOWER_BIN_BOUNDARY Numeric lower bin boundary

UPPER_BIN_BOUNDARY Numeric upper bin boundary

ATTRIBUTE_VALUE Categorical value

36.5.25 Model Detail Views for Global Information
Model detail views for global information contain information about global statistics,
alerts, and computed settings.

The global statistics view DM$VGmodel_name describes global statistics related to the
model build. Examples include the number of rows used in the build, the convergence
status, and the model quality metrics. The view has the following columns:

Name Type
------------------- --------------------
PARTITION_NAME VARCHAR2(128)
NAME VARCHAR2(30)
NUMERIC_VALUE NUMBER
STRING_VALUE VARCHAR2(4000)

Table 36-75 Global Statistics View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

Chapter 36
Model Detail Views

36-68

Table 36-75 (Cont.) Global Statistics View

Column Name Description

NAME Name of the statistic

NUMERIC_VALUE Numeric value of the statistic

STRING_VALUE Categorical value of the statistic

The alert view DM$VWmodel_name lists alerts issued during the model build. The view
has the following columns:

Name Type
------------------- ----------------------
PARTITION_NAME VARCHAR2(128)
ERROR_NUMBER BINARY_DOUBLE
ERROR_TEXT VARCHAR2(4000)

Table 36-76 Alert View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

ERROR_NUMBER Error number (valid when event is Error)

ERROR_TEXT Error message

The computed settings view DM$VSmodel_name lists the algorithm computed settings.
The view has the following columns:

Name Type
----------------- --------------------
PARTITION_NAME VARCHAR2(128)
SETTING_NAME VARCHAR2(30)
SETTING_VALUE VARCHAR2(4000)

Table 36-77 Computed Settings View

Column Name Description

PARTITION_NAME Partition name in a partitioned model

SETTING_NAME Name of the setting

SETTING_VALUE Value of the setting

36.5.26 Model Detail Views for Normalization and Missing Value
Handling

The Normalization and Missing Value Handling view DM$VN describes the normalization
parameters used in Automatic Data Preparation (ADP) and the missing value

Chapter 36
Model Detail Views

36-69

replacement when a NULL value is encountered. Missing value replacement applies
only to the twodimensional columns and does not apply to the nested columns.

The view has the following columns:

Name Type
---------------------- -----------------------
PARTITION_NAME VARCHAR2(128)
ATTRIBUTE_NAME VARCHAR2(128)
ATTRIBUTE_SUBNAME VARCHAR2(4000)
NUMERIC_MISSING_VALUE BINARY_DOUBLE
CATEGORICAL_MISSING_VALUE VARCHAR2(4000)
NORMALIZATION_SHIFT BINARY_DOUBLE
NORMALIZATION_SCALE BINARY_DOUBLE

Table 36-78 Normalization and Missing Value Handling View

Column Name Description

PARTITION_NAME A partition in a partitioned model

ATTRIBUTE_NAME Column name

ATTRIBUTE_SUBNAME Nested column subname. The value is null for non-
nested columns.

NUMERIC_MISSING_VALUE Numeric missing value replacement

CATEGORICAL_MISSING_VALUE Categorical missing value replacement

NORMALIZATION_SHIFT Normalization shift value

NORMALIZATION_SCALE Normalization scale value

Chapter 36
Model Detail Views

36-70

37
Scoring and Deployment

Explains the scoring and deployment features of Oracle Machine Learning for SQL.

• About Scoring and Deployment

• Use the Oracle Machine Learning for SQL Functions

• Prediction Details

• Real-Time Scoring

• Dynamic Scoring

• Cost-Sensitive Decision Making

• DBMS_DATA_MINING.Apply

37.1 About Scoring and Deployment
Scoring is the application of models to new data. In Oracle Machine Learning for SQL,
scoring is performed by SQL language functions.

Predictive functions perform classification, regression, or anomaly detection.
Clustering functions assign rows to clusters. Feature extraction functions transform
the input data to a set of higher order predictors. A scoring procedure is also available
in the DBMS_DATA_MINING PL/SQL package.

Deployment refers to the use of models in a target environment. Once the models
have been built, the challenges come in deploying them to obtain the best results, and
in maintaining them within a production environment. Deployment can be any of the
following:

• Scoring data either for batch or real-time results. Scores can include predictions,
probabilities, rules, and other statistics.

• Extracting model details to produce reports. For example: clustering rules,
decision tree rules, or attribute rankings from an Attribute Importance model.

• Extending the business intelligence infrastructure of a data warehouse by
incorporating machine learning results in applications or operational systems.

• Moving a model from the database where it was built to the database where it
used for scoring (export/import)

OML4SQL supports all of these deployment scenarios.

37-1

Note:

OML4SQL scoring operations support parallel execution. When parallel
execution is enabled, multiple CPU and I/O resources are applied to the
execution of a single database operation.

Parallel execution offers significant performance improvements, especially
for operations that involve complex queries and large databases typically
associated with decision support systems (DSS) and data warehouses.

Related Topics

• Oracle Database VLDB and Partitioning Guide

• Oracle Machine Learning for SQL Concepts

• Export and Import Oracle Machine Learning for SQL Models
You can export machine learning models to flat files to back up work in progress
or to move models to a different instance of Oracle Database Enterprise Edition
(such as from a development database to a test database).

37.2 Use the Oracle Machine Learning for SQL Functions
Some of the benefits of using SQL functions for Oracle Machine Learning for SQL are
listed.

The OML4SQL functions provide the following benefits:

• Models can be easily deployed within the context of existing SQL applications.

• Scoring operations take advantage of existing query execution functionality. This
provides performance benefits.

• Scoring results are pipelined, enabling the rows to be processed without requiring
materialization.

The machine learning functions produce a score for each row in the selection. The
functions can apply a machine learning model schema object to compute the score,
or they can score dynamically without a pre-defined model, as described in "Dynamic
Scoring".

Related Topics

• Dynamic Scoring
You can perform dynamic scoring if, for some reason, you do not want to apply a
predefined model.

• Scoring Requirements
Learn how scoring is done in Oracle Machine Learning for SQL.

• Oracle Machine Learning for SQL Scoring Functions
Understand the different OML4SQL scoring functions.

• Oracle Database SQL Language Reference

Chapter 37
Use the Oracle Machine Learning for SQL Functions

37-2

37.2.1 Choose the Predictors
You can select different attributes as predictors in a PREDICTION function through a
USING clause.

The OML4SQL functions support a USING clause that specifies which attributes to use
for scoring. You can specify some or all of the attributes in the selection and you can
specify expressions. The following examples all use the PREDICTION function to find
the customers who are likely to use an affinity card, but each example uses a different
set of predictors.

The query in Example 37-1 uses all the predictors.

The query in Example 37-2 uses only gender, marital status, occupation, and income
as predictors.

The query in Example 37-3 uses three attributes and an expression as predictors. The
prediction is based on gender, marital status, occupation, and the assumption that all
customers are in the highest income bracket.

Example 37-1 Using All Predictors

The dt_sh_clas_sample model is created by the oml4sql-classification-decision-
tree.sql example.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING *) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 213 43

Example 37-2 Using Some Predictors

 SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender,cust_marital_status,
 occupation, cust_income_level) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

Example 37-3 Using Some Predictors and an Expression

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample USING
 cust_gender, cust_marital_status, occupation,
 'L: 300,000 and above' AS cust_income_level) = 1
 GROUP BY cust_gender

Chapter 37
Use the Oracle Machine Learning for SQL Functions

37-3

 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 30 38
M 186 43

37.2.2 Single-Record Scoring
Learn how a score of 0 and 1 is used in predicting customers who are likely to use
affinity card.

The Oracle Machine Learning for SQL functions can produce a score for a single
record, as shown in Example 37-4 and Example 37-5.

Example 37-4 returns a prediction for customer 102001 by applying the classification
model NB_SH_Clas_sample. The resulting score is 0, meaning that this customer is
unlikely to use an affinity card. The NB_SH_Clas_Sample model is created by the
oml4sql-classification-naive-bayes.sql example.

Example 37-5 returns a prediction for 'Affinity card is great' as the comments
attribute by applying the text machine learning model T_SVM_Clas_sample. The
resulting score is 1, meaning that this customer is likely to use an affinity card.
The T_SVM_Clas_sample model is created by the oml4sql-classification-text-
analysis-svm.sql example.

Example 37-4 Scoring a Single Customer or a Single Text Expression

SELECT PREDICTION (NB_SH_Clas_Sample USING *)
 FROM sh.customers where cust_id = 102001;

PREDICTION(NB_SH_CLAS_SAMPLEUSING*)

 0

Example 37-5 Scoring a Single Text Expression

SELECT
 PREDICTION(T_SVM_Clas_sample USING 'Affinity card is great' AS comments)
FROM DUAL;

PREDICTION(T_SVM_CLAS_SAMPLEUSING'AFFINITYCARDISGREAT'ASCOMMENTS)

 1

37.3 Prediction Details
Prediction details are XML strings that provide information about the score.

Details are available for all types of scoring: clustering, feature extraction,
classification, regression, and anomaly detection. Details are available whether
scoring is dynamic or the result of model apply.

The details functions, CLUSTER_DETAILS, FEATURE_DETAILS, and PREDICTION_DETAILS
return the actual value of attributes used for scoring and the relative importance of
the attributes in determining the score. By default, the functions return the five most
important attributes in descending order of importance.

Chapter 37
Prediction Details

37-4

37.3.1 Cluster Details
Shows an example of the CLUSTER_DETAILS function.

For the most likely cluster assignments of customer 100955 (probability of assignment
> 20%), the query in the following example produces the five attributes that have
the most impact for each of the likely clusters. The clustering functions apply an
Expectation Maximization model named em_sh_clus_sample to the data selected from
mining_data_apply_v. The "5" specified in CLUSTER_DETAILS is not required, because
five attributes are returned by default. The em_sh_clus_sample model is created by
the oml4sql-singular-value-decomposition.sql example.

Example 37-6 Cluster Details

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
 FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
 ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION"actualValue="1" weight="-.003"
 rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

37.3.2 Feature Details
Shows an example of the FEATURE_DETAILS function.

The query in the following example returns the three attributes that have the
greatest impact on the top Principal Components Analysis (PCA) projection
for customer 101501. The FEATURE_DETAILS function applies a Singular Value
Decomposition (SVD) model named svd_sh_sample to the data selected from the
svd_sh_sample_build_num table. The table and model are created by the oml4sql-
singular-value-decomposition.sql example.

Example 37-7 Feature Details

SELECT FEATURE_DETAILS(svd_sh_sample, 1, 3 USING *) proj1det
 FROM svd_sh_sample_build_num

Chapter 37
Prediction Details

37-5

 WHERE CUST_ID = 101501;

PROJ1DET
--
<Details algorithm="Singular Value Decomposition" feature="1">
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".352" rank="1"/>
<Attribute name="Y_BOX_GAMES" actualValue="0" weight=".249" rank="2"/>
<Attribute name="AGE" actualValue="41" weight=".063" rank="3"/>
</Details>

37.3.3 Prediction Details
Shows an examples of PREDICTION_DETAILS function.

The query in the following example returns the attributes that are most important in
predicting the age of customer 100010. The prediction functions apply a Generalized
Linear Model regression model named GLMR_SH_Regr_sample to the data selected
from mining_data_apply_v. The GLMR_SH_Regr_sample model is created by the
oml4sql-regression-glm.sql example.

Example 37-8 Prediction Details for Regression

SELECT cust_id,
 PREDICTION(GLMR_SH_Regr_sample USING *) pr,
 PREDICTION_DETAILS(GLMR_SH_Regr_sample USING *) pd
 FROM mining_data_apply_v
 WHERE CUST_ID = 100010;

CUST_ID PR PD
------- ----- -----------
 100010 25.45 <Details algorithm="Generalized Linear Model">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".025" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".019" rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".01" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.004" rank="5"/>
 </Details>

The query in the following example returns the customers who work in Tech
Support and are likely to use an affinity card (with more than 85% probability).
The prediction functions apply an Support Vector Machine (SVM) classification
model named svmc_sh_clas_sample. to the data selected from mining_data_apply_v.
The query includes the prediction details, which show that education is the most
important predictor. The svmc_sh_clas_sample model is created by the oml4sql-
classification-svm.sql example.

Example 37-9 Prediction Details for Classification

SELECT cust_id, PREDICTION_DETAILS(svmc_sh_clas_sample, 1 USING *) PD
 FROM mining_data_apply_v
 WHERE PREDICTION_PROBABILITY(svmc_sh_clas_sample, 1 USING *) > 0.85
 AND occupation = 'TechSup'
 ORDER BY cust_id;

CUST_ID PD
------- ---
 100029 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".199" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="I: 170\,000 - 189\,999" weight=".044"
 rank="2"/>

Chapter 37
Prediction Details

37-6

 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".028" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".024" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".022" rank="5"/>
 </Details>

 100378 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".21" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="B: 30\,000 - 49\,999" weight=".047"
 rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".043" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".03" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".023" rank="5"/>
 </Details>

 100508 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".19" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".046"
 rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".031" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".026" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".024" rank="5"/>
 </Details>

 100980 <Details algorithm="Support Vector Machines" class="1">
 <Attribute name="EDUCATION" actualValue="Assoc-A" weight=".19" rank="1"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".038" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".026" rank="3"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".022" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".02" rank="5"/>
 </Details>

The query in the following example returns the two customers that differ the most from
the rest of the customers. The prediction functions apply an anomaly detection model
named SVMO_SH_Clas_sample to the data selected from mining_data_apply_v.
anomaly detection uses a one-class SVM classifier. The model is created by the
oml4sql-singular-value-decomposition.sql example.

Example 37-10 Prediction Details for Anomaly Detection

SELECT cust_id, pd FROM
 (SELECT cust_id,
 PREDICTION_DETAILS(SVMO_SH_Clas_sample, 0 USING *) pd,
 RANK() OVER (ORDER BY prediction_probability(
 SVMO_SH_Clas_sample, 0 USING *) DESC, cust_id) rnk
 FROM mining_data_one_class_v)
 WHERE rnk <= 2
 ORDER BY rnk;

 CUST_ID PD
---------- ---
 102366 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United Kingdom" weight=".078" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Divorc." weight=".027" rank="2"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".01" rank="3"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="9+" weight=".009" rank="4"/>
 <Attribute name="AGE" actualValue="28" weight=".006" rank="5"/>
 </Details>

 101790 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada" weight=".068" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5" weight=".018" rank="2"/>

Chapter 37
Prediction Details

37-7

 <Attribute name="EDUCATION" actualValue="7th-8th" weight=".015" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".013" rank="4"/>
 <Attribute name="AGE" actualValue="38" weight=".001" rank="5"/>
 </Details>

37.3.4 GROUPING Hint
OML4SQL functions include PREDICTION*, CLUSTER*, FEATURE*, and ORA_DM_*. The
GROUPING hint is an optional hint that applies to machine learning scoring functions
when scoring partitioned models.

This hint results in partitioning the input data set into distinct data slices so that
each partition is scored in its entirety before advancing to the next partition. However,
parallelism by partition is still available. Data slices are determined by the partitioning
key columns used when the model was built. This method can be used with any
machine learning function against a partitioned model. The hint may yield a query
performance gain when scoring large data that is associated with many partitions but
may negatively impact performance when scoring large data with few partitions on
large systems. Typically, there is no performance gain if you use the hint for single row
queries.

Enhanced PREDICTION Function Command Format

<prediction function> ::=
 PREDICTION <left paren> /*+ GROUPING */ <prediction model>
 [<comma> <class value> [<comma> <top N>]]
 USING <machine learning attribute list> <right paren>

The syntax for only the PREDICTION function is given but it is applicable
to any machine learning function in which PREDICTION, CLUSTERING, and
FEATURE_EXTRACTION scoring functions occur.

Example 37-11 Example

SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input
table>;

Related Topics

• Oracle Database SQL Language Reference

37.4 Real-Time Scoring
You can perform real-time scoring by executing a SQL query. An example shows
a real-time query using PREDICTION_PROBABILITY function. Based on the result, a
customer representative can offer a value card to the customer.

Oracle Machine Learning for SQL functions enable prediction, clustering, and feature
extraction analysis to be easily integrated into live production and operational systems.
Because machine learning results are returned within SQL queries, machine learning
can occur in real time.

With real-time scoring, point-of-sales database transactions can be mined. Predictions
and rule sets can be generated to help front-line workers make better analytical

Chapter 37
Real-Time Scoring

37-8

decisions. Real-time scoring enables fraud detection, identification of potential
liabilities, and recognition of better marketing and selling opportunities.

The query in the following example uses a Decision Tree model named
dt_sh_clas_sample to predict the probability that customer 101488 uses an affinity
card. A customer representative can retrieve this information in real time when talking
to this customer on the phone. Based on the query result, the representative can offer
an extra-value card, since there is a 73% chance that the customer uses a card. The
model is created by the oml4sql-classification-decision-tree.sql example.

Example 37-12 Real-Time Query with Prediction Probability

SELECT PREDICTION_PROBABILITY(dt_sh_clas_sample, 1 USING *) cust_card_prob
 FROM mining_data_apply_v
 WHERE cust_id = 101488;

CUST_CARD_PROB

 .72764

37.5 Dynamic Scoring
You can perform dynamic scoring if, for some reason, you do not want to apply a
predefined model.

The Oracle Machine Learning for SQL functions operate in two modes: by applying a
predefined model, or by executing an analytic clause. If you supply an analytic clause
instead of a model name, the function builds one or more transient models and uses
them to score the data.

The ability to score data dynamically without a predefined model extends the
application of basic embedded machine learning techniques into environments where
models are not available. Dynamic scoring, however, has limitations. The transient
models created during dynamic scoring are not available for inspection or fine tuning.
Applications that require model inspection, the correlation of scoring results with the
model, special algorithm settings, or multiple scoring queries that use the same model,
require a predefined model.

The following example shows a dynamic scoring query. The example identifies the
rows in the input data that contain unusual customer age values.

Example 37-13 Dynamic Prediction

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- ---------- -------- --
 100910 80 40.6686505 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0"
 weight=".059" rank="2"/>

Chapter 37
Dynamic Scoring

37-9

 <Attribute name="AFFINITY_CARD" actualValue="0"
 weight=".059" rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".059" rank="5"/>
 </Details>

 101285 79 42.1753571 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.0396722 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.3252491 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1"
 weight=".059" rank="4"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.3862214 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

Chapter 37
Dynamic Scoring

37-10

37.6 Cost-Sensitive Decision Making
Costs are user-specified numbers that bias classification. The algorithm uses positive
numbers to penalize more expensive outcomes over less expensive outcomes. Higher
numbers indicate higher costs.

The algorithm uses negative numbers to favor more beneficial outcomes over less
beneficial outcomes. Lower negative numbers indicate higher benefits.

All classification algorithms can use costs for scoring. You can specify the costs in a
cost matrix table, or you can specify the costs inline when scoring. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The PREDICTION, PREDICTION_SET, and PREDICTION_COST functions support costs.

Only the Decision Tree algorithm can use costs to bias the model build. If you want
to create a Decision Tree model with costs, create a cost matrix table and provide its
name in the CLAS_COST_TABLE_NAME setting for the model. If you specify costs when
building the model, the cost matrix used to create the model is used when scoring. If
you want to use a different cost matrix table for scoring, first remove the existing cost
matrix table then add the new one.

A sample cost matrix table is shown in the following table. The cost matrix specifies
costs for a binary target. The matrix indicates that the algorithm must treat a
misclassified 0 as twice as costly as a misclassified 1.

Table 37-1 Sample Cost Matrix

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST

0 0 0

0 1 2

1 0 1

1 1 0

Example 37-14 Sample Queries With Costs

The table nbmodel_costs contains the cost matrix described in Table 37-1.

SELECT * from nbmodel_costs;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 2
 1 0 1
 1 1 0

The following statement associates the cost matrix with a Naive Bayes model called
nbmodel.

BEGIN
 dbms_data_mining.add_cost_matrix('nbmodel', 'nbmodel_costs');
END;
/

Chapter 37
Cost-Sensitive Decision Making

37-11

The following query takes the cost matrix into account when scoring
mining_data_apply_v. The output is restricted to those rows where a prediction of
1 is less costly then a prediction of 0.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 25 38
M 208 43

You can specify costs inline when you invoke the scoring function. If you specify costs
inline and the model also has an associated cost matrix, only the inline costs are used.
The same query is shown below with different costs specified inline. Instead of the "2"
shown in the cost matrix table (Table 37-1), "10" is specified in the inline costs.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 COST (0,1) values ((0, 10),
 (1, 0))
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 74 39
M 581 43

The same query based on probability instead of costs is shown below.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION (nbmodel
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 73 39
M 577 44

Related Topics

• Example 32-1

37.7 DBMS_DATA_MINING.APPLY
The APPLY procedure in DBMS_DATA_MINING is a batch apply operation that writes the
results of scoring directly to a table.

The columns in the table are machine learning function-dependent.

Chapter 37
DBMS_DATA_MINING.APPLY

37-12

Scoring with APPLY generates the same results as scoring with the SQL scoring
functions. Classification produces a prediction and a probability for each case;
clustering produces a cluster ID and a probability for each case, and so on. The
difference lies in the way that scoring results are captured and the mechanisms that
can be used for retrieving them.

APPLY creates an output table with the columns shown in the following table:

Table 37-2 APPLY Output Table

Machine Learning Function Output Columns

classification CASE_ID

PREDICTION

PROBABILITY

regression CASE_ID

PREDICTION

anomaly detection CASE_ID

PREDICTION

PROBABILITY

clustering CASE_ID

CLUSTER_ID

PROBABILITY

feature extraction CASE_ID

FEATURE_ID

MATCH_QUALITY

Since APPLY output is stored separately from the scoring data, it must be joined to the
scoring data to support queries that include the scored rows. Thus any model that is
used with APPLY must have a case ID.

A case ID is not required for models that is applied with SQL scoring functions.
Likewise, storage and joins are not required, since scoring results are generated and
consumed in real time within a SQL query.

The following example illustrates anomaly detection with APPLY. The query of
the APPLY output table returns the ten first customers in the table. Each has
a a probability for being typical (1) and a probability for being anomalous (0).
The SVMO_SH_Clas_sample model is created by the oml4sql-singular-value-
decomposition.sql example.

Example 37-15 Anomaly Detection with DBMS_DATA_MINING.APPLY

EXEC dbms_data_mining.apply
 ('SVMO_SH_Clas_sample','svmo_sh_sample_prepared',
 'cust_id', 'one_class_output');

SELECT * from one_class_output where rownum < 11;

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
 101798 1 .567389309
 101798 0 .432610691
 102276 1 .564922469

Chapter 37
DBMS_DATA_MINING.APPLY

37-13

 102276 0 .435077531
 102404 1 .51213544
 102404 0 .48786456
 101891 1 .563474346
 101891 0 .436525654
 102815 0 .500663683
 102815 1 .499336317

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Chapter 37
DBMS_DATA_MINING.APPLY

37-14

38
Machine Learning Operations on
Unstructured Text

Explains how to use Oracle Machine Learning for SQL to operate on unstructured text.

• About Unstructured Text

• About Machine Learning and Oracle Text

• Data Preparation for Text Features

• Create a Model that Includes Machine Learning Operations on Text

• Create a Text Policy

• Configure a Text Attribute

38.1 About Unstructured Text
Unstructured text may contain important information that is critical to the success of a
business.

Machine learning algorithms act on data that is numerical or categorical. Numerical
data is ordered. It is stored in columns that have a numeric data type, such as NUMBER
or FLOAT. Categorical data is identified by category or classification. It is stored in
columns that have a character data type, such as VARCHAR2 or CHAR.

Unstructured text data is neither numerical nor categorical. Unstructured text includes
items such as web pages, document libraries, Power Point presentations, product
specifications, emails, comment fields in reports, and call center notes. It has been
said that unstructured text accounts for more than three quarters of all enterprise data.
Extracting meaningful information from unstructured text can be critical to the success
of a business.

38.2 About Machine Learning and Oracle Text
Understand machine learning operations on text and Oracle Text.

Machine learning operations on text is the process of applying machine learning
techniques to text terms, also called text features or tokens. Text terms are words or
groups of words that have been extracted from text documents and assigned numeric
weights. Text terms are the fundamental unit of text that can be manipulated and
analyzed.

Oracle Text is an Oracle Database technology that provides term extraction, word
and theme searching, and other utilities for querying text. When columns of text are
present in the training data, Oracle Machine Learning for SQL uses Oracle Text utilities
and term weighting strategies to transform the text for machine learning operations.
OML4SQL passes configuration information supplied by you to Oracle Text and uses
the results in the model creation process.

38-1

Related Topics

• Oracle Text Application Developer's Guide

38.3 Data Preparation for Text Features
The model details view for text features is DM$VXmodel_name.

The text feature view DM$VXmodel_name describes the extracted text features if there
are text attributes present. The view has the following schema:

Name Type
 -------------- ---------------------
 PARTITION_NAME VARCHAR2(128)
 COLUMN_NAME VARCHAR2(128)
 TOKEN VARCHAR2(4000)
 DOCUMENT_FREQUENCY NUMBER

Table 38-1 Text Feature View for Extracted Text Features

Column Name Description

PARTITION_NAME A partition in a partitioned model to retrieve details

COLUMN_NAME Name of the identifier column

TOKEN Text token which is usually a word or stemmed word

DOCUMENT_FREQUENCY A measure of token frequency in the entire training set

38.4 Create a Model that Includes Machine Learning
Operations on Text

Learn how to create a model that includes machine learning operations on text.

Oracle Machine Learning for SQL supports unstructured text within columns of
VARCHAR2, CHAR, CLOB, BLOB, and BFILE, as described in the following table:

Table 38-2 Column Data Types That May Contain Unstructured Text

Data Type Description

BFILE and
BLOB

Oracle Machine Learning for SQL interprets BLOB and BFILE as text only if you
identify the columns as text when you create the model. If you do not identify the
columns as text, then CREATE_MODEL returns an error.

CLOB OML4SQL interprets CLOB as text.

CHAR OML4SQL interprets CHAR as categorical by default. You can identify columns of
CHAR as text when you create the model.

VARCHAR2 OML4SQL interprets VARCHAR2 with data length > 4000 as text.

OML4SQL interprets VARCHAR2 with data length <= 4000 as categorical by
default. You can identify these columns as text when you create the model.

Chapter 38
Data Preparation for Text Features

38-2

Note:

Text is not supported in nested columns or as a target in supervised machine
learning.

The settings described in the following table control the term extraction process for
text attributes in a model. Instructions for specifying model settings are in "Specifying
Model Settings".

Table 38-3 Model Settings for Text

Setting Name Data Type Setting Value Description

ODMS_TEXT_POLICY_NAM
E

VARCHAR2(40
00)

Name of an Oracle Text
policy object created with
CTX_DDL.CREATE_POLICY

Affects how individual tokens are
extracted from unstructured text.

ODMS_TEXT_MAX_FEATUR
ES

INTEGER 1 <= value <= 100000 Maximum number of features to use
from the document set (across all
documents of each text column) passed
to CREATE_MODEL.

Default is 3000.

A model can include one or more text attributes. A model with text attributes can also
include categorical and numerical attributes.

To create a model that includes text attributes:

1. Create an Oracle Text policy object.

2. Specify the model configuration settings that are described in "Table 38-3".

3. Specify which columns must be treated as text and, optionally, provide text
transformation instructions for individual attributes.

4. Pass the model settings and text transformation instructions to
DBMS_DATA_MINING.CREATE_MODEL.

Note:

All algorithms except O-Cluster can support columns of unstructured
text.

The use of unstructured text is not recommended for association rules
(Apriori).

Related Topics

• Specify Model Settings
Understand how to configure machine learning models at build time.

• Create a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can
provide a text policy to govern a model, an attribute, or both the model and
individual attributes.

Chapter 38
Create a Model that Includes Machine Learning Operations on Text

38-3

• Configure a Text Attribute
Provide transformation instructions for text attribute or unstructured text by
explicitly identifying the column datatypes.

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by
creating a transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL
or DBMS_DATA_MINING.CREATE_MODEL2.

38.5 Create a Text Policy
An Oracle Text policy specifies how text content must be interpreted. You can provide
a text policy to govern a model, an attribute, or both the model and individual
attributes.

If a model-specific policy is present and one or more attributes have their own policies,
Oracle Machine Learning for SQL uses the attribute policies for the specified attributes
and the model-specific policy for the other attributes.

The CTX_DDL.CREATE_POLICY procedure creates a text policy.

CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 filter IN VARCHAR2 DEFAULT NULL,
 section_group IN VARCHAR2 DEFAULT NULL,
 lexer IN VARCHAR2 DEFAULT NULL,
 stoplist IN VARCHAR2 DEFAULT NULL,
 wordlist IN VARCHAR2 DEFAULT NULL);

The parameters of CTX_DDL.CREATE_POLICY are described in the following table.

Table 38-4 CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

policy_name Name of the new policy object. Oracle Text policies and text indexes share
the same namespace.

filter Specifies how the documents must be converted to plain text for indexing.
Examples are: CHARSET_FILTER for character sets and NULL_FILTER for
plain text, HTML and XML.

For filter values, see "Filter Types" in Oracle Text Reference.

section_group Identifies sections within the documents. For example,
HTML_SECTION_GROUP defines sections in HTML documents.

For section_group values, see "Section Group Types" in Oracle Text
Reference.

Note: You can specify any section group that is supported by CONTEXT
indexes.

lexer Identifies the language that is being indexed. For example, BASIC_LEXER is
the lexer for extracting terms from text in languages that use white space
delimited words (such as English and most western European languages).

For lexer values, see "Lexer Types" in Oracle Text Reference.

stoplist Specifies words and themes to exclude from term extraction. For example,
the word "the" is typically in the stoplist for English language documents.

The system-supplied stoplist is used by default.

See "Stoplists" in Oracle Text Reference.

Chapter 38
Create a Text Policy

38-4

Table 38-4 (Cont.) CTX_DDL.CREATE_POLICY Procedure Parameters

Parameter Name Description

wordlist Specifies how stems and fuzzy queries must be expanded. A stem
defines a root form of a word so that different grammatical forms have a
single representation. A fuzzy query includes common misspellings in the
representation of a word.

See "BASIC_WORDLIST" in Oracle Text Reference.

Related Topics

• Oracle Text Reference

38.6 Configure a Text Attribute
Provide transformation instructions for text attribute or unstructured text by explicitly
identifying the column datatypes.

As shown in Table 38-2, you can identify columns of CHAR,shorter VARCHAR2 (<=4000),
BFILE, and BLOB as text attributes. If CHAR and shorter VARCHAR2 columns are
not explicitly identified as unstructured text, then CREATE_MODEL processes them as
categorical attributes. If BFILE and BLOB columns are not explicitly identified as
unstructured text, then CREATE_MODEL returns an error.

To identify a column as a text attribute, supply the keyword TEXT in an
Attribute specification. The attribute specification is a field (attribute_spec) in
a transformation record (transform_rec). Transformation records are components
of transformation lists (xform_list) that can be passed to CREATE_MODELor
CREATE_MODEL2.

Note:

An attribute specification can also include information that is not related to
text. Instructions for constructing an attribute specification are in "Embedding
Transformations in a Model".

You can provide transformation instructions for any text attribute by qualifying the TEXT
keyword in the attribute specification with the subsettings described in the following
table.

Table 38-5 Attribute-Specific Text Transformation Instructions

Subsetting
Name

Description Example

BIGRAM A sequence of two adjacent elements from
a string of tokens, which are typically letters,
syllables, or words.

Here, NORMAL tokens are mixed with their
bigrams.

(TOKEN_TYPE:BIGRAM)

Chapter 38
Configure a Text Attribute

38-5

Table 38-5 (Cont.) Attribute-Specific Text Transformation Instructions

Subsetting
Name

Description Example

POLICY_NAME Name of an Oracle Text policy object created
with CTX_DDL.CREATE_POLICY

(POLICY_NAME:my_polic
y)

STEM_BIGRAM Here, STEM tokens are extracted first and then
stem bigrams are formed.

(TOKEN_TYPE:STEM_BIGR
AM)

SYNONYM Oracle Machine Learning for SQL supports
synonyms. The following is an optional
parameter:

<thesaurus> where <thesaurus> is the
name of the thesaurus defining synonyms. If
SYNONYM is used without this parameter, then
the default thesaurus is used.

(TOKEN_TYPE:SYNONYM)

(TOKEN_TYPE:SYNONYM[N
AMES])

TOKEN_TYPE The following values are supported:

NORMAL (the default)
STEM
THEME

See "Token Types in an Attribute Specification"

(TOKEN_TYPE:THEME)

MAX_FEATURES Maximum number of features to use from the
attribute.

(MAX_FEATURES:3000)

Note:

The TEXT keyword is only required for CLOB and longer VARCHAR2 (>4000)
when you specify transformation instructions. The TEXT keyword is always
required for CHAR, shorter VARCHAR2, BFILE, and BLOB — whether or not you
specify transformation instructions.

Tip:

You can view attribute specifications in the data dictionary view
ALL_MINING_MODEL_ATTRIBUTES, as shown in Oracle Database Reference.

Token Types in an Attribute Specification

When stems or themes are specified as the token type, the lexer preference for the
text policy must support these types of tokens.

The following example adds themes and English stems to BASIC_LEXER.

BEGIN
 CTX_DDL.CREATE_PREFERENCE('my_lexer', 'BASIC_LEXER');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_stems', 'ENGLISH');
 CTX_DDL.SET_ATTRIBUTE('my_lexer', 'index_themes', 'YES');
END;

Chapter 38
Configure a Text Attribute

38-6

Example 38-1 A Sample Attribute Specification for Text

This expression specifies that text transformation for the attribute must use the text
policy named my_policy. The token type is THEME, and the maximum number of
features is 3000.

"TEXT(POLICY_NAME:my_policy)(TOKEN_TYPE:THEME)(MAX_FEATURES:3000)"

Related Topics

• Embed Transformations in a Model
You can specify your own transformations and embed them in a model by
creating a transformation list and passing it to DBMS_DATA_MINING.CREATE_MODEL
or DBMS_DATA_MINING.CREATE_MODEL2.

• Specify Transformation Instructions for an Attribute
You can pass transformation instructions for an attribute by defining a
transformation list.

• Oracle Database PL/SQL Packages and Types Reference

• ALL_MINING_MODEL_ATTRIBUTES

Chapter 38
Configure a Text Attribute

38-7

39
Administrative Tasks for Oracle Machine
Learning for SQL

Explains how to perform administrative tasks related to Oracle Machine Learning for
SQL.

• Install and Configure a Database for Oracle Machine Learning for SQL

• Upgrade or Downgrade Oracle Machine Learning for SQL

• Export and Import Oracle Machine Learning for SQL Models

• Control Access to Oracle Machine Learning for SQL Models and Data

• Audit and Add Comments to Oracle Machine Learning for SQL Models

39.1 Install and Configure a Database for Oracle Machine
Learning for SQL

You can install and configure a database for Oracle Machine Learning for SQL by
following the listed steps.

• About Installation

• Enabling or Disabling a Database Option

• Database Tuning Considerations for Oracle Machine Learning for SQL

39.1.1 About Installation
Oracle Machine Learning for SQL is a component of the Oracle Database Enterprise
Edition.

To install Oracle Database, follow the installation instructions for your platform. Choose
a Data Warehousing configuration during the installation.

Oracle Data Miner, the graphical user interface to Oracle Machine Learning for SQL,
is an extension to Oracle SQL Developer. Instructions for downloading SQL Developer
and installing the Data Miner repository are available on the Oracle Technology
Network.

To perform machine learning activities, you must be able to log on to the Oracle
database, and your user ID must have the database privileges described in Grant
Privileges for Oracle Machine Learning for SQL.

Related Topics

• Oracle Data Miner

39-1

unilink:dataminer_wf

See Also:

Install and Upgrade page of the Oracle Database online documentation
library for your platform-specific installation instructions: Oracle Database
21c Release

39.1.2 Enable or Disable a Database Option
You can enable or disable the Oracle Advanced Analytics option after the installation.
The Oracle Advanced Analytics option is enabled by default during the installation of
Oracle Database Enterprise Edition.

After installation, you can use the command-line utility chopt to enable or disable a
database option. For instructions, see "Enabling and Disabling Database Options After
Installation" in the installation guide for your platform.

Related Topics

• Oracle Database Installation Guide for Linux

• Oracle Database Installation Guide for Microsoft Windows

39.1.3 Database Tuning Considerations for Oracle Machine Learning
for SQL

Standard administrative practices can be followed to manage workload on the system
when machine learning activities are running.

DBAs managing production databases that support Oracle Machine Learning for
SQL must follow standard administrative practices as described in Oracle Database
Administrator’s Guide.

Building machine learning models and batch scoring of machine learning models tend
to put a DSS-like workload on the system. Single-row scoring tends to put an OLTP-
like workload on the system.

Database memory management can have a major impact on machine learning. The
correct sizing of Program Global Area (PGA) memory is very important for model
building, complex queries, and batch scoring. From a machine learning perspective,
the System Global Area (SGA) is generally less of a concern. However, the SGA
must be sized to accommodate real-time scoring, which loads models into the shared
cursor in the SGA. In most cases, you can configure the database to manage
memory automatically. To do so, specify the total maximum memory size in the tuning
parameter MEMORY_TARGET. With automatic memory management, Oracle Database
dynamically exchanges memory between the SGA and the instance PGA as needed
to meet processing demands.

Most machine learning algorithms can take advantage of parallel execution when it
is enabled in the database. Parameters in INIT.ORA control the behavior of parallel
execution.

Related Topics

• Oracle Database Administrator’s Guide

Chapter 39
Install and Configure a Database for Oracle Machine Learning for SQL

39-2

• Scoring and Deployment
Explains the scoring and deployment features of Oracle Machine Learning for
SQL.

• Oracle Database Administrator’s Guide

• Part I Database Performance Fundamentals

• Tuning Database Memory

• Oracle Database VLDB and Partitioning Guide

39.2 Upgrade or Downgrade Oracle Machine Learning for
SQL

Upgrade and downgrade Oracle Machine Learning for SQL by following the steps
listed.

• Pre-Upgrade Steps

• Upgrade Oracle Machine Learning for SQL

• Post Upgrade Steps

• Downgrade Oracle Machine Learning for SQL

39.2.1 Pre-Upgrade Steps
Pre-upgrade considerations.

Before upgrading, you must drop any machine learning models and machine learning
activities that were created inOracle Data Miner.

39.2.2 Upgrade Oracle Machine Learning for SQL
You can upgrade your database by using the Database Upgrade Assistant (DBUA) or
you can perform a manual upgrade using export/import utilities.

All models and machine learning metadata are fully integrated with the Oracle
Database upgrade process whether you are upgrading from 19c or from earlier
releases.

Upgraded models continue to work as they did in prior releases. Both upgraded
models and new models that you create in the upgraded environment can make use of
the new machine learning functionality introduced in the new release.

Related Topics

• Pre-Upgrade Steps
Pre-upgrade considerations.

• Oracle Database Upgrade Guide

39.2.2.1 Use Database Upgrade Assistant to Upgrade Oracle Machine
Learning for SQL

Oracle Database Upgrade Assistant provides a graphical user interface that guides
you interactively through the upgrade process.

Chapter 39
Upgrade or Downgrade Oracle Machine Learning for SQL

39-3

On Windows platforms, follow these steps to start the Upgrade Assistant:

1. Go to the Windows Start menu and choose the Oracle home directory.

2. Choose the Configuration and Migration Tools menu.

3. Launch the Upgrade Assistant.

On Linux platforms, run the DBUA utility to upgrade Oracle Database.

Related Topics

• Oracle Database Upgrade Guide

39.2.2.2 Use Export/Import to Upgrade Machine Learning Models
Use Export and Import functions of the Oracle Database to export the previously
created models and import the models in an instance of Oracle Database version.

If required, you can use a less automated approach to upgrading machine learning
models. You can export the models created in a previous version of Oracle Database
and import them into an instance of the Oracle Database version.

39.2.2.2.1 Export/Import Oracle Machine Learning for SQL Models
Export and import Oracle Machine Learning for SQL models.

To export models from an instance of a previous release of Oracle Database to a
dump file, follow the instructions in Export and Import Oracle Machine Learning for
SQL Models.

To import the dump file into the Oracle Database database:

%ORACLE_HOME\bin\impdp system\<password>
 dumpfile=<dumpfile_name>
 directory=<directory_name>
 logfile=<logfile_name>
SQL>CONNECT / as sysdba;
SQL>EXECUTE dmp_sys.upgrade_models();
SQL>ALTER SYSTEM flush shared_pool;
SQL>ALTER SYSTEM flush buffer_cache;
SQL>EXIT;

ALTER SYSTEM Statement

You can flush the Database Smart Flash Cache by issuing an ALTER SYSTEM FLUSH
FLASH_CACHE statement. Flushing the Database Smart Flash Cache can be useful if
you need to measure the performance of rewritten queries or a suite of queries from
identical starting points.

39.2.3 Post Upgrade Steps
Perform steps to view the upgraded database.

After upgrading the database, check the DBA_MINING_MODELS view in the upgraded
database. The newly upgraded machine learning models must be listed in this view.

After you have verified the upgrade and confirmed that there is no need to downgrade,
you must set the initialization parameter COMPATIBLE to 21.0.0. In Oracle Database

Chapter 39
Upgrade or Downgrade Oracle Machine Learning for SQL

39-4

21c, when the COMPATIBLE initialization parameter is not set in your parameter file, the
COMPATIBLE parameter value defaults to 21.0.0.

Note:

The CREATE MINING MODEL privilege must be granted to Oracle Machine
Learning for SQL user accounts that are used to create machine learning
models.

Related Topics

• Create an Oracle Machine Learning for SQL User
An OML4SQL user is a database user account that has privileges for performing
machine learning activities.

• Control Access to Oracle Machine Learning for SQL Models and Data
You can create a Oracle Machine Learning for SQL user and grant necessary
privileges by following the steps listed.

39.2.4 Downgrade Oracle Machine Learning for SQL
Before downgrading the Oracle database back to the previous version, ensure that no
models are present.

Use the DBMS_DATA_MINING.DROP_MODEL routine to drop the models before
downgrading. If you do not do this, the database downgrade process terminates.

Issue the following SQL statement in SYS to verify the downgrade:

SQL>SELECT o.name FROM sys.model$ m, sys.obj$ o
 WHERE m.obj#=o.obj# AND m.version=2;

39.3 Export and Import Oracle Machine Learning for SQL
Models

You can export machine learning models to flat files to back up work in progress or to
move models to a different instance of Oracle Database Enterprise Edition (such as
from a development database to a test database).

All methods for exporting and importing models are based on Oracle Data Pump
technology.

The DBMS_DATA_MINING package includes the EXPORT_MODEL and IMPORT_MODEL
procedures for exporting and importing individual machine learning models.
EXPORT_MODEL and IMPORT_MODEL use the export and import facilities of Oracle Data
Pump.

• About Oracle Data Pump

• Options for Exporting and Importing Oracle Machine Learning for SQL Models

• Directory Objects for EXPORT_MODEL and IMPORT_MODEL

• Use EXPORT_MODEL and IMPORT_MODEL

Chapter 39
Export and Import Oracle Machine Learning for SQL Models

39-5

• EXPORT and IMPORT Serialized Models

• Import From PMML

Related Topics

• EXPORT_MODEL

• IMPORT_MODEL

39.3.1 About Oracle Data Pump
Learn to use Oracle Data Pump export utility.

Oracle Data Pump consists of two command-line clients and two PL/SQL packages.
The command-line clients, expdp and impdp, provide an easy-to-use interface to the
Data Pump export and import utilities. You can use expdp and impdp to export and
import entire schemas or databases.

The Data Pump export utility writes the schema objects, including the tables and
metadata that constitute machine learning models, to a dump file set. The Data Pump
import utility retrieves the schema objects, including the model tables and metadata,
from the dump file set and restores them in the target database.

expdp and impdp cannot be used to export/import individual machine learning models.

See Also:

Oracle Database Utilities for information about Oracle Data Pump and the
expdp and impdp utilities

39.3.2 Options for Exporting and Importing Oracle Machine Learning
for SQL Models

Lists options for exporting and importing machine learning models.

Options for exporting and importing machine learning models are described in the
following table.

Table 39-1 Export and Import Options for Oracle Machine Learning for SQL

Task Description

Export or import
a full database

(DBA only) Use expdp to export a full database and impdp to import a full database. All
machine learning models in the database are included.

Export or import
a schema

Use expdp to export a schema and impdp to import a schema. All machine learning models in
the schema are included.

Chapter 39
Export and Import Oracle Machine Learning for SQL Models

39-6

Table 39-1 (Cont.) Export and Import Options for Oracle Machine Learning for SQL

Task Description

Export or import
individual models
within a database

Use DBMS_DATA_MINING.EXPORT_MODEL to export individual models and
DBMS_DATA_MINING.IMPORT_MODEL to import individual models. These procedures can export
and import a single machine learning model, all machine learning models, or machine learning
models that match specific criteria.

By default, IMPORT_MODEL imports models back into the schema from which they were
exported. You can specify the schema_remap parameter to import models into a different
schema. You can specify tablespace_remap with schema_remap to import models into a
schema that uses a different tablespace.

You may need special privileges in the database to import models into a different schema.
These privileges are granted by the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles,
which are only available to privileged users (such as SYS or a user with the DBA role). You do
not need these roles to export or import models within your own schema.

To import models, you must have the same database privileges as the user who created the
dump file set. Otherwise, a DBA with full system privileges must import the models.

Export or import
individual models
to or from a
remote database

Use a database link to export individual models to a remote database or import individual
models from a remote database. A database link is a schema object in one database that
enables access to objects in a different database. The link must be created before you run
EXPORT_MODEL or IMPORT_MODEL.

To create a private database link, you must have the CREATE DATABASE LINK system
privilege. To create a public database link, you must have the CREATE PUBLIC DATABASE
LINK system privilege. Also, you must have the CREATE SESSION system privilege on the
remote Oracle Database. Oracle Net must be installed on both the local and remote Oracle
Databases.

Related Topics

• IMPORT_MODEL Procedure

• EXPORT_MODEL Procedure

• Oracle Database SQL Language Reference

39.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
Learn how to use directory objects to identify the location of the dump file set.

EXPORT_MODEL and IMPORT_MODEL use a directory object to identify the location of the
dump file set. A directory object is a logical name in the database for a physical
directory on the host computer.

To export machine learning models, you must have write access to the directory object
and to the file system directory that it represents. To import machine learning models,
you must have read access to the directory object and to the file system directory.
Also, the database itself must have access to file system directory. You must have the
CREATE ANY DIRECTORY privilege to create directory objects.

The following SQL command creates a directory object named oml_user_dir. The
file system directory that it represents must already exist and have shared read/write
access rights granted by the operating system.

CREATE OR REPLACE DIRECTORY oml_user_dir AS '/dm_path/dm_mining';

Chapter 39
Export and Import Oracle Machine Learning for SQL Models

39-7

The following SQL command gives user oml_user both read and write access to
oml_user_dir.

GRANT READ,WRITE ON DIRECTORY oml_user_dir TO oml_user;

Related Topics

• Oracle Database SQL Language Reference

39.3.4 Use EXPORT_MODEL and IMPORT_MODEL
The examples illustrate various export and import scenarios with EXPORT_MODEL and
IMPORT_MODEL.

The examples use the directory object dmdir shown in Example 39-1 and two
schemas, dm1 and dm2. Both schemas have machine learning privileges. dm1 has two
models. dm2 has one model.

The EM_SH_CLUS_SAMPLE model is created by the oml4sql-clustering-expectation-
maximization.sql example. The DT_SH_CLAS_SAMPLE model is created by
the oml4sql-classification-decision-tree.sql example. The SVD_SH_SAMPLE
model is created by the oml4sql-singular-value-decomposition.sql example,

SELECT owner, model_name, mining_function, algorithm FROM all_mining_models;

OWNER MODEL_NAME MINING_FUNCTION ALGORITHM
---------- -------------------- -------------------- --------------------------
DM1 EM_SH_CLUS_SAMPLE CLUSTERING EXPECTATION_MAXIMIZATION
DM1 DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE
DM2 SVD_SH_SAMPLE FEATURE_EXTRACTION SINGULAR_VALUE_DECOMP

Example 39-1 Creating the Directory Object

-- connect as system user
CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oml_user/expimp';
GRANT READ,WRITE ON DIRECTORY dmdir TO dm1;
GRANT READ,WRITE ON DIRECTORY dmdir TO dm2;
SELECT * FROM all_directories WHERE directory_name IN 'DMDIR';

OWNER DIRECTORY_NAME DIRECTORY_PATH
---------- -------------------------- --
SYS DMDIR /scratch/oml_user/expimp

Example 39-2 Exporting All Models From DM1

-- connect as dm1
BEGIN
 dbms_data_mining.export_model (
 filename => 'all_dm1',
 directory => 'dmdir');
END;
/

A log file and a dump file are created in /scratch/oml_user/expimp, the physical
directory associated with dmdir. The name of the log file is dm1_exp_11.log. The name
of the dump file is all_dm101.dmp.

Chapter 39
Export and Import Oracle Machine Learning for SQL Models

39-8

Example 39-3 Importing the Models Back Into DM1

The models that were exported in Example 39-2 still exist in dm1. Since an import does
not overwrite models with the same name, you must drop the models before importing
them back into the same schema.

BEGIN
 dbms_data_mining.drop_model('EM_SH_CLUS_SAMPLE');
 dbms_data_mining.drop_model('DT_SH_CLAS_SAMPLE');
 dbms_data_mining.import_model(
 filename => 'all_dm101.dmp',
 directory => 'DMDIR');
END;
/
SELECT model_name FROM user_mining_models;

MODEL_NAME

DT_SH_CLAS_SAMPLE
EM_SH_CLUS_SAMPLE

Example 39-4 Importing Models Into a Different Schema

In this example, the models that were exported from dm1 in Example 39-2 are imported
into dm2. The dm1 schema uses the example tablespace; the dm2 schema uses the
sysaux tablespace.

-- CONNECT as sysdba
BEGIN
 dbms_data_mining.import_model (
 filename => 'all_d101.dmp',
 directory => 'DMDIR',
 schema_remap => 'DM1:DM2',
 tablespace_remap => 'EXAMPLE:SYSAUX');
END;
/
-- CONNECT as dm2
SELECT model_name from user_mining_models;

MODEL_NAME
--
SVD_SH_SAMPLE
EM_SH_CLUS_SAMPLE
DT_SH_CLAS_SAMPLE

Example 39-5 Exporting Specific Models

You can export a single model, a list of models, or a group of models that share certain
characteristics.

-- Export the model named dt_sh_clas_sample
EXECUTE dbms_data_mining.export_model (
 filename => 'one_model',
 directory =>'DMDIR',
 model_filter => 'name in (''DT_SH_CLAS_SAMPLE'')');
-- one_model01.dmp and dm1_exp_37.log are created in /scratch/oml_user/expimp

-- Export Decision Tree models
EXECUTE dbms_data_mining.export_model(
 filename => 'algo_models',
 directory => 'DMDIR',

Chapter 39
Export and Import Oracle Machine Learning for SQL Models

39-9

 model_filter => 'ALGORITHM_NAME IN (''DECISION_TREE'')');
-- algo_model01.dmp and dm1_exp_410.log are created in /scratch/oml_user/expimp

-- Export clustering models
EXECUTE dbms_data_mining.export_model(
 filename =>'func_models',
 directory => 'DMDIR',
 model_filter => 'FUNCTION_NAME = ''CLUSTERING''');
-- func_model01.dmp and dm1_exp_513.log are created in /scratch/oml_user/expimp

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

39.3.5 EXPORT and IMPORT Serialized Models
From Oracle Database Release 18c onwards, EXPORT_SERMODEL and IMPORT_SERMODEL
procedures are available to export and import serialized models.

The serialized format allows the models to be moved to another platform (outside the
database) for scoring. The model is exported in a BLOB that can be saved in a BFILE.
The import routine takes the serialized content in the BLOB and the name of the model
to be created with the content.

Related Topics

• EXPORT_SERMODEL Procedure

• IMPORT_SERMODEL Procedure

39.3.6 Import From PMML
You can import regression models represented in Predictive Model Markup Language
(PMML).

PMML is an XML-based standard specified by the Data Mining Group (http://
www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Machine Learning for SQL supports
the core features of PMML 3.1 for regression models.

You can import regression models represented in PMML. The models must be of type
RegressionModel, either linear regression or binary logistic regression.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

39.4 Control Access to Oracle Machine Learning for SQL
Models and Data

You can create a Oracle Machine Learning for SQL user and grant necessary
privileges by following the steps listed.

• Create an Oracle Machine Learning for SQL User

• System Privileges for Oracle Machine Learning for SQL

• Object Privileges for Oracle Machine Learning for SQL Models

Chapter 39
Control Access to Oracle Machine Learning for SQL Models and Data

39-10

39.4.1 Create an Oracle Machine Learning for SQL User
An OML4SQL user is a database user account that has privileges for performing
machine learning activities.

Example 39-6 shows how to create a database user. Example 39-7 shows how to
assign machine learning privileges to the user.

Note:

To create a user for the OML4SQL examples, you must run two configuration
scripts as described in Oracle Machine Learning for SQL Examples.

Example 39-6 Creating a Database User in SQL*Plus

1. Log in to SQL*Plus with system privileges.

 Enter user-name: sys as sysdba
 Enter password: password

2. To create a user named oml_user, type these commands. Specify a password of
your choosing.

CREATE USER oml_user IDENTIFIED BY password
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;
Commit;

The USERS and TEMP tablespaces are included in Oracle Database. USERS is used
mostly by demo users; it is appropriate for running the examples described in
Oracle Machine Learning for SQL Examples. TEMP is the temporary tablespace
that is shared by most database users.

Note:

Tablespaces for OML4SQL users must be assigned according to
standard DBA practices, depending on system load and system
resources.

3. To log in as oml_user, enter the following.

CONNECT oml_user
Enter password: password

See Also:

Oracle Database SQL Language Reference for the complete syntax of the
CREATE USER statement

Chapter 39
Control Access to Oracle Machine Learning for SQL Models and Data

39-11

39.4.1.1 Grant Privileges for Oracle Machine Learning for SQL
The CREATE MINING MODEL is a privilege that you must have to create and perform
operations on your model. Some other machine learning privileges can be assigned by
issuing GRANT statements.

You must have the CREATE MINING MODEL privilege to create models in your own
schema. You can perform any operation on models that you own. This includes
applying the model, adding a cost matrix, renaming the model, and dropping the
model.

The GRANT statements in the following example assign a set of basic machine learning
privileges to the oml_user account. Some of these privileges are not required for all
machine learning activities, however it is prudent to grant them all as a group.

Additional system and object privileges are required for enabling or restricting specific
machine learning activities.

The following table lists the system privileges required for running the OML4SQL
examples.

Table 39-2 System Privileges Granted by dmshgrants.sql to the OML4SQL User

Privilege Allows the OML4SQL User To

CREATE SESSION Log in to a database session

CREATE TABLE Create tables, such as the settings tables for CREATE_MODEL

CREATE VIEW Create views, such as the views of tables in the SH schema

CREATE MINING MODEL Create OML4SQL models

EXECUTE ON
ctxsys.ctx_ddl

Execute procedures in the ctxsys.ctx_ddl PL/SQL
package; required for text mining

Example 39-7 Privileges Required for Machine Learning

This example grants the required privileges to the user oml_user.

GRANT CREATE SESSION TO oml_user;
GRANT CREATE TABLE TO oml_user;
GRANT CREATE VIEW TO oml_user;
GRANT CREATE MINING MODEL TO oml_user;
GRANT EXECUTE ON CTXSYS.CTX_DDL TO oml_user;

READ or SELECT privileges are required for data that is not in your schema. For
example, the following statement grants SELECT access to the sh.customers table.

GRANT SELECT ON sh.customers TO oml_user;

Chapter 39
Control Access to Oracle Machine Learning for SQL Models and Data

39-12

39.4.2 System Privileges for Oracle Machine Learning for SQL
A system privilege confers the right to perform a particular action in the database or to
perform an action on a type of schema objects. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.

.
You can perform specific operations on machine learning models in other schemas if
you have the appropriate system privileges. For example, CREATE ANY MINING MODEL
enables you to create models in other schemas. SELECT ANY MINING MODEL enables
you to apply models that reside in other schemas. You can add comments to models if
you have the COMMENT ANY MINING MODEL privilege.

To grant a system privilege, you must either have been granted the system privilege
with the ADMIN OPTION or have been granted the GRANT ANY PRIVILEGE system
privilege.

The system privileges listed in the following table control operations on machine
learning models.

Table 39-3 System Privileges for Oracle Machine Learning for SQL

System Privilege Allows you to....

CREATE MINING MODEL Create machine learning models in your own schema.

CREATE ANY MINING MODEL Create machine learning models in any schema.

ALTER ANY MINING MODEL Change the name or cost matrix of any machine learning
model in any schema.

DROP ANY MINING MODEL Drop any machine learning model in any schema.

SELECT ANY MINING MODEL Apply a machine learning model in any schema, also view
model details in any schema.

COMMENT ANY MINING MODEL Add a comment to any machine learning model in any
schema.

AUDIT_ADMIN role Generate an audit trail for any machine learning model
in any schema. (See Oracle Database Security Guide for
details.)

Example 39-8 Grant System Privileges for Oracle Machine Learning for SQL

The following statements allow oml_user to score data and view model details in any
schema as long as SELECT access has been granted to the data. However, oml_user
can only create models in the oml_user schema.

GRANT CREATE MINING MODEL TO oml_user;
GRANT SELECT ANY MINING MODEL TO oml_user;

The following statement revokes the privilege of scoring or viewing model details
in other schemas. When this statement is run, oml_user can only perform machine
learning activities in the oml_user schema.

REVOKE SELECT ANY MINING MODEL FROM oml_user;

Chapter 39
Control Access to Oracle Machine Learning for SQL Models and Data

39-13

Related Topics

• Add a Comment to an Oracle Machine Learning for SQL Model
You can add a comment to an OML4SQL model object using SQL COMMENT
statement.

• Oracle Database Security Guide

39.4.3 Object Privileges for Oracle Machine Learning for SQL Models
Learn about machine learning object privileges.

An object privilege confers the right to perform a particular action on a specific schema
object. For example, the privilege to delete rows from the SH.PRODUCTS table is an
example of an object privilege.

You automatically have all object privileges for schema objects in your own schema.
You can grant object privilege on objects in your own schema to other users or roles.

The object privileges listed in the following table control operations on specific
machine learning models.

Table 39-4 Object Privileges for Oracle Machine Learning for SQL Models

Object Privilege Allows you to....

ALTER MINING MODEL Change the name or cost matrix of the specified machine learning
model object.

SELECT MINING
MODEL

Apply the specified machine learning model object and view its model
details.

Example 39-9 Grant Object Privileges on Oracle Machine Learning for SQL
Models

The following statements allow oml_user to apply the model testmodel to the sales
table, specifying different cost matrixes with each apply. The user oml_user can also
rename the model testmodel. The testmodel model and sales table are in the sh
schema, not in the oml_user schema.

GRANT SELECT ON MINING MODEL sh.testmodel TO oml_user;
GRANT ALTER ON MINING MODEL sh.testmodel TO oml_user;
GRANT SELECT ON sh.sales TO oml_user;

The following statement prevents oml_user from renaming or changing the cost matrix
of testmodel. However, oml_user can still apply testmodel to the sales table.

REVOKE ALTER ON MINING MODEL sh.testmodel FROM oml_user;

39.5 Audit and Add Comments to Oracle Machine Learning
for SQL Models

Perform audit of Oracle Machine Learning for SQL model objects through SQL
statements.

OML4SQL model objects support SQL COMMENT and AUDIT statements.

Chapter 39
Audit and Add Comments to Oracle Machine Learning for SQL Models

39-14

39.5.1 Add a Comment to an Oracle Machine Learning for SQL Model
You can add a comment to an OML4SQL model object using SQL COMMENT statement.

Comments can be used to associate descriptive information with a database object.
You can associate a comment with a machine learning model using a SQL COMMENT
statement.

COMMENT ON MINING MODEL schema_name.model_name IS string;

Note:

To add a comment to a model in another schema, you must have the
COMMENT ANY MINING MODEL system privilege.

To drop a comment, set it to the empty '' string.

The following statement adds a comment to the model DT_SH_CLAS_SAMPLE in your
own schema.

COMMENT ON MINING MODEL dt_sh_clas_sample IS
 'Decision Tree model predicts promotion response';

You can view the comment by querying the catalog view USER_MINING_MODELS.

SELECT model_name, mining_function, algorithm, comments FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM COMMENTS
----------------- ---------------- -------------- ---
DT_SH_CLAS_SAMPLE CLASSIFICATION DECISION_TREE Decision Tree model predicts promotion
response

To drop this comment from the database, issue the following statement:

COMMENT ON MINING MODEL dt_sh_clas_sample '';

See Also:

• Table 39-3

• Oracle Database SQL Language Reference for details about SQL
COMMENT statements

39.5.2 Audit Oracle Machine Learning for SQL Models
Use Oracle Database auditing system to audit models to track operations on machine
learning models.

The Oracle Database auditing system is a powerful, highly configurable tool for
tracking operations on schema objects in a production environment. The auditing
system can be used to track operations on machine learning models.

Chapter 39
Audit and Add Comments to Oracle Machine Learning for SQL Models

39-15

Note:

To audit machine learning models, you must have the AUDIT_ADMIN role.

Unified auditing is documented in Oracle Database Security Guide. However, the full
unified auditing system is not enabled by default. Instructions for migrating to unified
auditing are provided in Oracle Database Upgrade Guide.

See Also:

• "Auditing Oracle Machine Learning for SQL Events" in Oracle Database
Security Guide for details about auditing machine learning models

• "Monitoring Database Activity with Auditing" in Oracle Database Security
Guide for a comprehensive discussion of unified auditing in Oracle
Database

• "About the Unified Auditing Migration Process for Oracle Database"
in Oracle Database Upgrade Guide for information about migrating to
unified auditing

• Oracle Database Upgrade Guide

Chapter 39
Audit and Add Comments to Oracle Machine Learning for SQL Models

39-16

40
Oracle Machine Learning for SQL
Examples

Describes the OML4SQL examples.

• About the OML4SQL Examples

• Install the OML4SQL Examples

• OML4SQL Sample Data

40.1 About the OML4SQL Examples
The OML4SQL examples illustrate typical approaches to data preparation, algorithm
selection, algorithm tuning, testing, and scoring.

You can learn a great deal about the OML4SQL application programming interface
from the OML4SQL examples. The examples are simple. They include extensive inline
comments to help you understand the code. They delete all temporary objects on exit
so that you can run the examples repeatedly without setup or cleanup.

The OML4SQL examples are available on GitHub at https://github.com/oracle/oracle-
db-examples/tree/master/machine-learning/sql/20c.

The OML4SQL examples create a set of machine learning models in the
user's schema. The following table lists the file name of the example and the
mining_function value and algorithm the example uses.

Table 40-1 Models Created by Examples

File Name MINING_FUNCTION Algorithm

oml4sql-association-
rules.sql

ASSOCIATION ALGO_APRIORI_ASSOCIATION_RULES

oml4sql-feature-extraction-
cur.sql

ATTRIBUTE_IMPORTANCE ALGO_CUR_DECOMPOSITION

oml4sql-classification-
decision-tree.sql

CLASSIFICATION ALGO_DECISION_TREE

oml4sql-cross-validation-
decision-tree.sql

CLASSIFICATION ALGO_DECISION_TREE

oml4sql-classification-
glm.sql

CLASSIFICATION ALGO_GENERALIZED_LINEAR_MODEL

oml4sql-time-series-mset.sql CLASSIFICATION ALGO_MSET_SPRT

oml4sql-classification-
naive-bayes.sql

CLASSIFICATION ALGO_NAIVE_BAYES

oml4sql-classification-
neural-networks.sql

CLASSIFICATION ALGO_NEURAL_NETWORK

40-1

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

Table 40-1 (Cont.) Models Created by Examples

File Name MINING_FUNCTION Algorithm

oml4sql-classification-
random-forest.sql

CLASSIFICATION ALGO_RANDOM_FOREST

oml4sql-anomaly-
detection-1csvm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-
svm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-text-
analysis-svm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-partitioned-models-
svm.sql

CLASSIFICATION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-
regression-xgboost.sql

CLASSIFICATION ALGO_XGBOOST

oml4sql-clustering-
expectation-maximization.sql

CLUSTERING ALGO_EXPECTATION_MAXIMIZATION

oml4sql-clustering-
kmeans.sql

CLUSTERING ALGO_KMEANS

oml4sql-clustering-kmeans-
star-schema.sql

CLUSTERING ALGO_KMEANS

oml4sql-clustering-o-
cluster.sql

CLUSTERING ALGO_O_CLUSTER

oml4sql-feature-extraction-
text-analysis-esa.sql

FEATURE_EXTRACTION ALGO_EXPLICIT_SEMANTIC_ANALYS

oml4sql-feature-extraction-
nmf.sql

FEATURE_EXTRACTION ALGO_NONNEGATIVE_MATRIX_FACTOR

oml4sql-feature-extraction-
text-analysis-nmf.sql

FEATURE_EXTRACTION ALGO_NONNEGATIVE_MATRIX_FACTOR

oml4sql-singular-value-
decomposition.sql

FEATURE_EXTRACTION ALGO_SINGULAR_VALUE_DECOMP

oml4sql-regression-glm.sql REGRESSION ALGO_GENERALIZED_LINEAR_MODEL

oml4sql-regression-neural-
networks.sql

REGRESSION ALGO_NEURAL_NETWORK

oml4sql-regression-random-
forest.sql

REGRESSION ALGO_RANDOM_FOREST

oml4sql-regression-svm.sql REGRESSION ALGO_SUPPORT_VECTOR_MACHINES

oml4sql-classification-
regression-xgboost.sql

REGRESSION ALGO_XGBOOST

oml4sql-time-series-
exponential-smoothing.sql

TIME_SERIES ALGO_EXPONENTIAL_SMOOTHING

Another example is oml4sql-attribute-importance.sql, which uses the
DBMS_PREDICTIVE_ANALYTICS.EXPLAIN procedure to find the importance of attributes
that independently impact the target attribute.

Another set of examples demonstrates the use of the ALGO_EXTENSIBLE_LANG
algorithm to register R language functions and create R models. The following table
lists the R Extensibility examples. It shows the file name of the example and the
MINING_FUNCTION value and R function used.

Chapter 40
About the OML4SQL Examples

40-2

File Name MINING_FUNCTION R Function

oml4sql-rextensible-
algorithm-registration.sql

CLASSIFICATION glm

oml4sql-rextensible-
association-rules.sql

ASSOCIATION apriori

oml4sql-rextensible-
attribute-importance-via-
rf.sql

REGRESSION randomForest

oml4sql-rextensible-glm.sql REGRESSION glm

oml4sql-rextensible-
kmeans.sql

CLUSTERING kmeans

oml4sql-rextensible-
principal-components.sql

FEATURE_EXTRACTION prcomp

oml4sql-rextensible-
regression-tree.sql

REGRESSION rpart

oml4sql-regression-r-neural-
networks.sql

REGRESSION nnet

40.2 Install the OML4SQL Examples
Learn how to install OML4SQL examples.

The OML4SQL examples require:

• Oracle Database (on-premises, Oracle Database Cloud Service, or Oracle
Autonomous Database)

• Oracle Database sample schemas

• A user account with the privileges described in Grant Privileges for Oracle
Machine Learning for SQL.

• Execution of dmshgrants.sql by a system administrator

• Execution of dmsh.sql by the OML4SQL user

Follow these steps to install the OML4SQL examples:

1. Install or obtain access to an Oracle Database 21c instance. To install the
database, see the installation instructions for your platform at Oracle Database
21c.

2. Ensure that the sample schemas are installed in the database. See Oracle
Database Sample Schemas for details about the sample schemas.

3. Download the example code files from GitHub at https://github.com/oracle/oracle-
db-examples/tree/master/machine-learning/sql/20c. Place the files in a directory to
which you have access on the Oracle Database server.

4. Verify that your user account has the required privileges described in Grant
Privileges for Oracle Machine Learning for SQL.

5. Ask your system administrator to run the dmshgrants.sql script, or run it yourself
if you have administrative privileges. The script grants the privileges that are
required for running the examples. These include SELECT access to tables in the SH

Chapter 40
Install the OML4SQL Examples

40-3

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

schema as described in OML4SQL Sample Data and the system privileges listed
in the following table.

Pass the name of the OML4SQL user to dmshgrants.

SQL> CONNECT sys / as sysdba
Enter password: sys_password
Connected.
SQL> @<location_of_examples>/dmshgrants oml_user

6. Connect to the database and run the dmsh.sql script. This script creates views of
the sample data in the schema of the OML4SQL user.

SQL> CONNECT oml_user
Enter password: oml_user_password
Connected.
SQL> @<location_of_examples>/dmsh

Related Topics

• Oracle Database Sample Schemas

• Oracle Database Examples Installation Guide

40.3 OML4SQL Sample Data
The data used by the OML4SQL examples is based on these tables in the SH schema.

Those tables are:

SH.CUSTOMERS
SH.SALES
SH.PRODUCTS
SH.SUPPLEMENTARY_DEMOGRAPHICS
SH.COUNTRIES

The dmshgrants script grants SELECT access to the tables in the SH schema. The
dmsh.sql script creates views of the SH tables in the schema of the OML4SQL user.
The views are described in the following table.

Table 40-2 Views Created by dmsh.sql

View Name Description

MINING_DATA Joins and filters data

MINING_DATA_BUILD_V Data for building models

MINING_DATA_TEST_V Data for testing models

MINING_DATA_APPLY_V Data to be scored

MINING_BUILD_TEXT Data for building models that include text

MINING_TEST_TEXT Data for testing models that include text

MINING_APPLY_TEXT Data, including text columns, to be scored

MINING_DATA_ONE_CLASS_
V

Data for anomaly detection

The association rules example creates its own transactional data.

Chapter 40
OML4SQL Sample Data

40-4

Part V
Oracle Machine Learning for SQL API
Reference

Learn about Oracle Machine Learning for SQL PL/SQL packages, data dictionary
views, and machine learning SQL scoring functions.

• PL/SQL Packages

• Data Dictionary Views

• SQL Scoring Functions

41
PL/SQL Packages

Learn how to create, evaluate, and query machine learning models through Oracle
Machine Learning for SQL PL/SQL packages.

• DBMS_DATA_MINING

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

41.1 DBMS_DATA_MINING
The DBMS_DATA_MINING package is the application programming interface for creating,
evaluating, and querying Oracle Machine Learning for SQL models.

In Oracle Database Release 21c, Oracle Data Mining has been rebranded to Oracle
Machine Learning for SQL (OML4SQL). The PL/SQL package name, however, has not
changed and remains DBMS_DATA_MINING.

This chapter contains the following topics:

• Overview

• Security Model

• Mining Functions

• Model Settings

• Solver Settings

• Datatypes

• Summary of DBMS_DATA_MINING Subprograms

See Also:

• Oracle Machine Learning for SQL Concepts

• Oracle Machine Learning for SQL User’s Guide

• DBMS_DATA_MINING_TRANSFORM

• DBMS_PREDICTIVE_ANALYTICS

41.1.1 Using DBMS_DATA_MINING
This section contains topics that relate to using the DBMS_DATA_MINING package.

• Overview

• Security Model

41-1

• Mining Functions

• Model Settings

• Datatypes

41.1.1.1 DBMS_DATA_MINING Overview
Oracle Machine Learning for SQL supports both supervised and unsupervised
machine learning. Supervised machine learning predicts a target value based on
historical data. Unsupervised machine learning discovers natural groupings and
does not use a target. You can use OML4SQL procedures on structured data and
unstructured text.

Supervised machine learning functions include:

• Classification

• Regression

• Feature Selection (Attribute Importance)

Unsupervised machine learning functions include:

• Clustering

• Association

• Feature Extraction

• Anomaly Detection

The steps you use to build and apply a machine learning model depend on the
machine learning function and the algorithm being used. The algorithms supported by
Oracle Machine Learning for SQL are listed in Table 41-1.

Table 41-1 OML4SQL Algorithms

Algorithm Abbreviation Function

Apriori AR Association

CUR Matrix Decomposition CUR Attribute importance

Decision Tree DT Classification

Expectation Maximization EM Clustering

Explicit Semantic Analysis ESA Feature extraction, classification

Exponential Smoothing ESM Time series

Generalized Linear Model GLM Classification, regression

k-Means KM Clustering

Minimum Descriptor Length MDL Attribute importance

Multivariate State Estimation
Technique - Sequential Probability
Ratio Test,

MSET-SPRT Anomaly detection, classification

Naive Bayes NB Classification

Neural Networks NN Classification, regression

Non-Negative Matrix Factorization NMF Feature extraction

Orthogonal Partitioning Clustering O-Cluster Clustering

Chapter 41
DBMS_DATA_MINING

41-2

Table 41-1 (Cont.) OML4SQL Algorithms

Algorithm Abbreviation Function

Random Forest RF Classification

Singular Value Decomposition and
Principal Component Analysis

SVD and
PCA

Feature extraction

Support Vector Machine SVM Classification, regression, anomaly
detection

XGBoost XGBoost Classification, regression

OML4SQL supports more than one algorithm for the classification, regression,
clustering, and feature extraction machine learning functions. Each of these machine
learning functions has a default algorithm, as shown in Table 41-2.

Table 41-2 OML4SQL Default Algorithms

Mining Function Default Algorithm

Classification Naive Bayes

Clustering k-Means

Feature Extraction Non-Negative Matrix Factorization

Feature Selection Minimum Descriptor Length

Regression Support Vector Machine

Time Series Exponential Smoothing

41.1.1.2 DBMS_DATA_MINING Security Model
The DBMS_DATA_MINING package is owned by user SYS and is installed as part of
database installation. Execution privilege on the package is granted to public. The
routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBMS_DATA_MINING package exposes APIs that are leveraged by the Oracle
Machine Learning for SQL. Users who wish to create machine learning models in
their own schema require the CREATE MINING MODEL system privilege. Users who wish
to create machine learning models in other schemas require the CREATE ANY MINING
MODEL system privilege.

Users have full control over managing models that exist within their own schema.
Additional system privileges necessary for managing machine learning models in other
schemas include ALTER ANY MINING MODEL, DROP ANY MINING MODEL, SELECT ANY
MINING MODEL, COMMENT ANY MINING MODEL, and AUDIT ANY.

Individual object privileges on machine learning models, ALTER MINING MODEL and
SELET MINING MODEL, can be used to selectively grant privileges on a model to a
different user.

Chapter 41
DBMS_DATA_MINING

41-3

See Also:

Oracle Data Mining User's Guide for more information about the security
features of OML4SQL

41.1.1.3 DBMS_DATA_MINING — Machine Learning Functions
A machine learning function refers to the methods for solving a given class of
machine learning problems.

The machine learning function must be specified when a model is created. You
specify a machine learning function with the mining_function parameter of the
CREATE_MODEL Procedure or the CREATE_MODEL2 Procedure.

Table 41-3 Machine Learning Functions

Value Description

ASSOCIATION Association is a descriptive machine learning function. An
association model identifies relationships and the probability of
their occurrence within a data set.

Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute importance is a predictive machine learning function,
also known as feature selection. An attribute importance model
identifies the relative importance of an attribute in predicting a
given outcome.

Attribute importance models can use Minimum Description Length
(MDL) or CUR Matrix Decomposition. MDL is the default.

CLASSIFICATION Classification is a predictive machine learning function. A
classification model uses historical data to predict a categorical
target.

Classification models can use: Decision Tree, logistic regression,
Multivariate State Estimation Technique - Sequential Probability
Ratio Test, Naive Bayes, Support Vector Machine (SVM), or
XGBoost. The default is Naive Bayes.

The classification function can also be used for anomaly
detection. For anomaly detection, you can use the Multivariate
State Estimation Technique - Sequential Probability Ratio Test
algorithm or the SVM algorithm with a null target (One-Class
SVM).

CLUSTERING Clustering is a descriptive machine learning function. A clustering
model identifies natural groupings within a data set.

Clustering models can use k-Means, O-Cluster, or Expectation
Maximization. The default is k-Means.

FEATURE_EXTRACTION Feature extraction is a descriptive machine learning function. A
feature extraction model creates an optimized data set on which
to base a model.

Feature extraction models can use Explicit Semantic Analysis,
Non-Negative Matrix Factorization, Singular Value Decomposition,
or Principal Component Analysis. Non-Negative Matrix
Factorization is the default.

Chapter 41
DBMS_DATA_MINING

41-4

Table 41-3 (Cont.) Machine Learning Functions

Value Description

REGRESSION Regression is a predictive machine learning function. A
regression model uses historical data to predict a numerical
target.

Regression models can use linear regression, Support Vector
Machine, or XGBoost. The default is Support Vector Machine.

TIME_SERIES Time series is a predictive machine learning function. A time
series model forecasts the future values of a time-ordered series
of historical numeric data over a user-specified time window. Time
series models use the Exponential Smoothing algorithm.

See Also:

Oracle Machine Learning for SQL Concepts for more information about
mining functions

41.1.2 DBMS_DATA_MINING — Model Settings
Oracle Machine Learning for SQL uses settings to specify the algorithm and other
characteristics of a model. Some settings are general, some are specific to a machine
learning function, and some are specific to an algorithm.

All settings have default values. If you want to override one or more of the settings
for a model, then you must create a settings table. The settings table must have the
column names and data types shown in the following table.

Table 41-4 Required Columns in the Model Settings Table

Column Name Data Type

SETTING_NAME VARCHAR2(30)

SETTING_VALUE VARCHAR2(4000)

The information you provide in the settings table is used by the model at build time.
The name of the settings table is an optional argument to the CREATE_MODEL
Procedure.

You can find the settings used by a model by querying the data dictionary view
ALL_MINING_MODEL_SETTINGS. This view lists the model settings used by the machine
learning models to which you have access. All the setting values are included in the
view, whether default or user-specified.

Chapter 41
DBMS_DATA_MINING

41-5

See Also:

• ALL_MINING_MODEL_SETTINGS in Oracle Database Reference

• Oracle Machine Learning for SQL User’s Guide for information about
specifying model settings

41.1.2.1 DBMS_DATA_MINING — Algorithm Names
The ALGO_NAME setting specifies the model algorithm.

The values for the ALGO_NAME setting are listed in the following table.

Table 41-5 Algorithm Names

ALGO_NAME Value Description Machine Learning Function

ALGO_AI_MDL Minimum Description Length Attribute importance

ALGO_APRIORI_ASSOCIATION_RULE
S

Apriori Association rules

ALGO_CUR_DECOMPOSITION CUR Matrix Decomposition Attribute importance

ALGO_DECISION_TREE Decision Tree Classification

ALGO_EXPECTATION_MAXIMIZATION Expectation Maximization Clustering

ALGO_EXPLICIT_SEMANTIC_ANALYS Explicit Semantic Analysis Feature extraction

Classification

ALGO_EXPONENTIAL_SMOOTHING Exponential Smoothing Time series

ALGO_EXTENSIBLE_LANG Language used for extensible
algorithm

All mining functions supported

ALGO_GENERALIZED_LINEAR_MODEL Generalized Linear Model Classification, regression; also feature
selection and generation

ALGO_KMEANS Enhanced k-Means Clustering

ALGO_MSET_SPRT Multivariate State Estimation
Technique - Sequential
Probability Ratio Test

Classification

ALGO_NAIVE_BAYES Naive Bayes Classification

ALGO_NEURAL_NETWORK Neural Network Classification

ALGO_NONNEGATIVE_MATRIX_FACTO
R

Non-Negative Matrix
Factorization

Feature extraction

ALGO_O_CLUSTER O-Cluster Clustering

ALGO_RANDOM_FOREST Random Forest Classification

ALGO_SINGULAR_VALUE_DECOMP Singular Value Decomposition Feature extraction

ALGO_SUPPORT_VECTOR_MACHINES Support Vector Machine Classification and regression

ALGO_XGBOOST XGBoost Classification and regression

Chapter 41
DBMS_DATA_MINING

41-6

See Also:

Oracle Machine Learning for SQL Concepts for information about algorithms

41.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation
Oracle Machine Learning for SQL supports fully Automatic Data Preparation
(ADP), user-directed general data preparation, and user-specified embedded data
preparation. The PREP_* settings enable the user to request fully automated or
user-directed general data preparation. By default, fully Automatic Data Preparation
(PREP_AUTO_ON) is enabled.

When you enable ADP, the model uses heuristics to transform the build data according
to the requirements of the algorithm. Instead of fully ADP, the user can request that
the data be shifted and/or scaled with the PREP_SCALE* and PREP_SHIFT* settings. The
transformation instructions are stored with the model and reused whenever the model
is applied. The model settings can be viewed in USER_MINING_MODEL_SETTINGS.

You can choose to supplement Automatic Data Preparations by specifying additional
transformations in the xform_list parameter when you build the model. See
"CREATE_MODEL Procedure" and "CREATE_MODEL2 Procedure".

If you do not use ADP and do not specify transformations in the xform_list parameter
to CREATE_MODEL, you must implement your own transformations separately in the
build, test, and scoring data. You must take special care to implement the exact same
transformations in each data set.

If you do not use ADP, but you do specify transformations in the xform_list parameter
to CREATE_MODEL, OML4SQL embeds the transformation definitions in the model and
prepares the test and scoring data to match the build data.

The values for the PREP_* setting are described in the following table.

Table 41-6 PREP_* Setting

Setting Name Setting Value Description

PREP_AUTO • PREP_AUTO_ON
• PREP_AUTO_OFF

This setting enables fully automated data
preparation.
The default is PREP_AUTO_ON.

Chapter 41
DBMS_DATA_MINING

41-7

Table 41-6 (Cont.) PREP_* Setting

Setting Name Setting Value Description

PREP_SCALE_2DNU
M

• PREP_SCALE_STDDEV
• PREP_SCALE_RANGE

This setting enables scaling data preparation
for two-dimensional numeric columns.
PREP_AUTO must be OFF for this setting to
take effect. The following are the possible
values:

• PREP_SCALE_STDDEV: A request to
divide the column values by the
standard deviation of the column
and is often provided together with
PREP_SHIFT_MEAN to yield z-score
normalization.

• PREP_SCALE_RANGE: A request to
divide the column values by the range
of values and is often provided together
with PREP_SHIFT_MIN to yield a range
of [0,1].

PREP_SCALE_NNUM PREP_SCALE_MAXABS This setting enables scaling data preparation
for nested numeric columns. PREP_AUTO
must be OFF for this setting to take effect. If
specified, then the valid value for this setting
is PREP_SCALE_MAXABS, which yields data
in the range of [-1,1].

PREP_SHIFT_2DNU
M

• PREP_SHIFT_MEAN
• PREP_SHIFT_MIN

This setting enables centering data
preparation for two-dimensional numeric
columns. PREP_AUTO must be OFF for this
setting to take effect. The following are the
possible values:
• PREP_SHIFT_MEAN: Results in

subtracting the average of the column
from each value.

• PREP_SHIFT_MIN: Results in
subtracting the minimum of the column
from each value.

.

See Also:

Oracle Machine Learning for SQL User’s Guide for information about data
transformations

41.1.2.3 DBMS_DATA_MINING — Machine Learning Function Settings
The settings described in this table apply to a machine learning function.

Chapter 41
DBMS_DATA_MINING

41-8

Table 41-7 Machine Learning Function Settings

Machine
Learning
Function

Setting Name Setting Value Description

Association ASSO_MAX_RULE_LENGTH TO_CHAR(2<
=
numeric_exp
r <=20)

Maximum rule length for association rules.

Default is 4.

Association ASSO_MIN_CONFIDENCE TO_CHAR(0<
=
numeric_exp
r <=1)

Minimum confidence for association rules.

Default is 0.1.

Association ASSO_MIN_SUPPORT TO_CHAR(0<
=
numeric_exp
r <=1)

Minimum support for association rules

Default is 0.1.

Association ASSO_MIN_SUPPORT_INT a positive
integer

Minimum absolute support that each rule must
satisfy. The value must be an integer.

The default is 1.

Association ASSO_MIN_REV_CONFIDEN
CE

TO_CHAR(0<
=
numeric_exp
r <=1)

Sets the Minimum Reverse Confidence that each
rule should satisfy.

The Reverse Confidence of a rule is defined
as the number of transactions in which the rule
occurs divided by the number of transactions in
which the consequent occurs.

The value is real number between 0 and 1.

The default is 0.

Association ASSO_IN_RULES NULL Sets Including Rules applied for each association
rule: it specifies the list of items that at least one
of them must appear in each reported association
rule, either as antecedent or as consequent. It is
a comma separated string containing the list of
including items.

If not set, the default behavior is, the filtering is
not applied.

Association ASSO_EX_RULES NULL Sets Excluding Rules applied for each association
rule: it specifies the list of items that none of them
can appear in each reported association rules. It
is a comma separated string containing the list of
excluded items. No rule can contain any item in
the list.

The default is NULL.

Association ASSO_ANT_IN_RULES NULL Sets Including Rules for the antecedent: it
specifies the list of items that at least one of
them must appear in the antecedent part of
each reported association rule. It is a comma
separated string containing the list of including
items. The antecedent part of each rule must
contain at least one item in the list.

The default is NULL.

Chapter 41
DBMS_DATA_MINING

41-9

Table 41-7 (Cont.) Machine Learning Function Settings

Machine
Learning
Function

Setting Name Setting Value Description

Association ASSO_ANT_EX_RULES NULL Sets Excluding Rules for the antecedent: it
specifies the list of items that none of them can
appear in the antecedent part of each reported
association rule. It is a comma separated string
containing the list of excluded items. No rule can
contain any item in the list in its antecedent part.

The default is NULL.

Association ASSO_CONS_IN_RULES NULL Sets Including Rules for the consequent: it
specifies the list of items that at least one of
them must appear in the consequent part of
each reported association rule. It is a comma
separated string containing the list of including
items. The consequent of each rule must be an
item in the list.

The default is NULL.

Association ASSO_CONS_EX_RULES NULL Sets Excluding Rules for the consequent: it
specifies the list of items that none of them can
appear in the consequent part of each reported
association rule. It is a comma separated string
containing the list of excluded items. No rule can
have any item in the list as its consequent.

The excluding rule can be used to reduce the
data that must be stored, but the user may be
required to build an extra model for executing
different including or Excluding Rules.

The default is NULL.

Association ASSO_AGGREGATES NULL Specifies the columns to be aggregated. It is a
comma separated string containing the names
of the columns for aggregation. The number of
columns in the list must be <= 10.

You can set ASSO_AGGREGATES if
ODMS_ITEM_ID_COLUMN_NAME is set
indicating transactional input data. See
DBMS_DATA_MINING - Global Settings. The
data table must have valid column names
such as ITEM_ID and CASE_ID which are
derived from ODMS_ITEM_ID_COLUMN_NAME and
case_id_column_name respectively.

ITEM_VALUE is not a mandatory value.

The default is NULL.

For each item, the user may supply several
columns to aggregate. It requires more memory
to buffer the extra data. Also, the performance
impact can be seen because of the larger input
data set and more operation.

Chapter 41
DBMS_DATA_MINING

41-10

Table 41-7 (Cont.) Machine Learning Function Settings

Machine
Learning
Function

Setting Name Setting Value Description

Association ASSO_ABS_ERROR 0<ASSO_ABS_
ERROR�MAX(AS
SO_MIN_SUPP
ORT,
ASSO_MIN_CO
NFIDENCE).

Specifies the absolute error for the association
rules sampling.

A smaller value of ASSO_ABS_ERROR obtains a
larger sample size which gives accurate results
but takes longer computational time. "Set a
reasonable value for ASSO_ABS_ERROR, such as
its default value, to avoid large sample size. The
default value is 0.5 * MAX(ASSO_MIN_SUPPORT,
ASSO_MIN_CONFIDENCE).

Association ASSO_CONF_LEVEL 0�
ASSO_CONF_L
EVEL � 1

Specifies the confidence level for an association
rules sample.

A larger value of ASSO_CONF_LEVEL obtains a
larger sample size. Any value between 0.9 and 1
is suitable. The default value is 0.95.

Classification CLAS_COST_TABLE_NAME table_name (Decision tree only) Name of a table that stores a
cost matrix to be used by the algorithm in building
the model. The cost matrix specifies the costs
associated with misclassifications.

Only decision tree models can use a cost matrix
at build time. All classification algorithms can use
a cost matrix at apply time.

The cost matrix table is user-created. See
"ADD_COST_MATRIX Procedure" for the column
requirements.

See Oracle Machine Learning for SQL Concepts
for information about costs.

Classification CLAS_PRIORS_TABLE_NAM
E

table_name (Naive Bayes) Name of a table that stores prior
probabilities to offset differences in distribution
between the build data and the scoring data.

The priors table is user-created. See Oracle
Machine Learning for SQL User’s Guide for
the column requirements. See Oracle Machine
Learning for SQL Concepts for additional
information about priors.

Classification CLAS_WEIGHTS_TABLE_NA
ME

table_name (GLM and SVM only) Name of a table that stores
weighting information for individual target values
in SVM classification and GLM logistic regression
models. The weights are used by the algorithm
to bias the model in favor of higher weighted
classes.

The class weights table is user-created. See
Oracle Machine Learning for SQL User’s Guide
for the column requirements. See Oracle Machine
Learning for SQL Concepts for additional
information about class weights.

Chapter 41
DBMS_DATA_MINING

41-11

Table 41-7 (Cont.) Machine Learning Function Settings

Machine
Learning
Function

Setting Name Setting Value Description

Classification CLAS_WEIGHTS_BALANCED ON

OFF

This setting indicates that the algorithm must
create a model that balances the target
distribution. This setting is most relevant in
the presence of rare targets, as balancing the
distribution may enable better average accuracy
(average of per-class accuracy) instead of overall
accuracy (which favors the dominant class). The
default value is OFF.

Clustering CLUS_NUM_CLUSTERS TO_CHAR(nu
meric_expr
>=1)

The maximum number of leaf clusters generated
by a clustering algorithm. The algorithm may
return fewer clusters, depending on the data.

Enhanced k-Means usually produces the
exact number of clusters specified by
CLUS_NUM_CLUSTERS, unless there are fewer
distinct data points.

Expectation maximization (EM) may return
fewer clusters than the number specified by
CLUS_NUM_CLUSTERS depending on the data.
The number of clusters returned by EM cannot
be greater than the number of components, which
is governed by algorithm-specific settings. (See
Expectation Maximization Settings for Learning
table) Depending on these settings, there may
be fewer clusters than components. If component
clustering is disabled, the number of clusters
equals the number of components.

For EM, the default value of
CLUS_NUM_CLUSTERS is system-determined. For
k-Means and O-Cluster, the default is 10.

Feature
extraction

FEAT_NUM_FEATURES TO_CHAR(nu
meric_expr
>=1)

The number of features to be extracted by a
feature extraction model.

The default is estimated from the data by the
algorithm. If the matrix rank is smaller than this
number, fewer features will be returned.

For CUR Matrix Decomposition, the
FEAT_NUM_FEATURES value is the same as the
CURS_SVD_RANK value.

See Also:

Oracle Machine Learning for SQL Concepts for information about machine
learning functions

Chapter 41
DBMS_DATA_MINING

41-12

41.1.2.4 DBMS_DATA_MINING — Global Settings
The configuration settings in this table are applicable to any type of model, but are
currently only implemented for specific algorithms.

Table 41-8 Global Settings

Setting Name Setting Value Description

ODMS_ITEM_ID_COLUMN_NAM
E

column_name (Association rules only) Name of a column that
contains the items in a transaction. When this setting
is specified, the algorithm expects the data to be
presented in a native transactional format, consisting
of two columns:

• Case ID, either categorical or numeric
• Item ID, either categorical or numeric
A typical example of transactional data is market
basket data, wherein a case represents a basket
that may contain many items. Each item is stored in
a separate row, and many rows may be needed to
represent a case. The case ID values do not uniquely
identify each row. Transactional data is also called
multi-record case data.

Association rules function is normally used with
transactional data, but it can also be applied to single-
record case data (similar to other algorithms).

For more information about single-record and multi-
record case data, see Oracle SQL Developer Data
Modeler User's Guide.

ODMS_ITEM_VALUE_COLUMN_
NAME

column_name (Association rules only) Name of a column that
contains a value associated with each item in a
transaction. This setting is only used when a value
has been specified for ODMS_ITEM_ID_COLUMN_NAME
indicating that the data is presented in native
transactional format.

If ASSO_AGGREGATES is used, then the build data
must include the following three columns and the
columns specified in the AGGREGATES setting.

• Case ID, either categorical or numeric
• Item ID, either categorical or numeric, specified

by ODMS_ITEM_ID_COLUMN_NAME
• Item value, either categorical or numeric,

specified by ODMS_ITEM_VALUE_COLUMN_NAME
If ASSO_AGGREGATES, Case ID, and Item ID column
are present, then the Item Value column may or may
not appear.
The Item Value column may specify information such
as the number of items (for example, three apples) or
the type of the item (for example, macintosh apples).

For details on ASSO_AGGREGATES, see
DBMS_DATA_MINING - Mining Function Settings.

Chapter 41
DBMS_DATA_MINING

41-13

Table 41-8 (Cont.) Global Settings

Setting Name Setting Value Description

ODMS_MISSING_VALUE_TREA
TMENT

ODMS_MISSING_VALUE_M
EAN_MODE

ODMS_MISSING_VALUE_D
ELETE_ROW

ODMS_MISSING_VALUE_A
UTO

Indicates how to treat missing values in the training
data. This setting does not affect the scoring data.
The default value is ODMS_MISSING_VALUE_AUTO.

ODMS_MISSING_VALUE_MEAN_MODE replaces missing
values with the mean (numeric attributes) or the mode
(categorical attributes) both at build time and apply
time where appropriate. ODMS_MISSING_VALUE_AUTO
performs different strategies for different algorithms.

When ODMS_MISSING_VALUE_TREATMENT is set to
ODMS_MISSING_VALUE_DELETE_ROW, the rows in the
training data that contain missing values are deleted.
However, if you want to replicate this missing value
treatment in the scoring data, then you must perform
the transformation explicitly.

The value ODMS_MISSING_VALUE_DELETE_ROW
applies to all algorithms.

ODMS_ROW_WEIGHT_COLUMN_
NAME

column_name (GLM only) Name of a column in the training data that
contains a weighting factor for the rows. The column
data type must be NUMBER.

Row weights can be used as a compact
representation of repeated rows, as in the design
of experiments where a specific configuration is
repeated several times. Row weights can also
be used to emphasize certain rows during model
construction. For example, to bias the model towards
rows that are more recent and away from potentially
obsolete data.

ODMS_TEXT_POLICY_NAME The name of an Oracle
Text POLICY created
using
CTX_DDL.CREATE_POLIC
Y.

Affects how individual tokens are extracted from
unstructured text.

For details about CTX_DDL.CREATE_POLICY, see
Oracle Text Reference.

ODMS_TEXT_MAX_FEATURES 1 <= value The maximum number of distinct features, across all
text attributes, to use from a document set passed
to CREATE_MODEL. The default is 3000. ESA has the
default value of 300000.

ODMS_TEXT_MIN_DOCUMENTS Non-negative value This is a text processing setting the controls how in
how many documents a token needs to appear to be
used as a feature.

The default is 1. ESA has a default of 3.

ODMS_PARTITION_COLUMNS Comma separated list
of machine learning
attributes

This setting indicates a request to build a partitioned
model. The setting value is a comma-separated
list of the machine learning attributes to be used
to determine the in-list partition key values. These
machine learning attributes are taken from the input
columns unless an XFORM_LIST parameter is passed
to CREATE_MODEL. If the XFORM_LIST parameter is
passed to CREATE_MODEL, then the machine learning
attributes are taken from the attributes produced by
these transformations.

Chapter 41
DBMS_DATA_MINING

41-14

Table 41-8 (Cont.) Global Settings

Setting Name Setting Value Description

ODMS_MAX_PARTITIONS 1 <= 1000000 New setting that indicates the maximum number of
partitions allowed for the model. Default is 1000.

ODMS_SAMPLING ODMS_SAMPLING_ENABLE

ODMS_SAMPLING_DISABL
E

This setting allows the user to request a
sampling of the build data. The default is
ODMS_SAMPLING_DISABLE.

ODMS_SAMPLE_SIZE 0 < Value This setting determines how many rows will be
sampled (approximately). It can be set only if
ODMS_SAMPLING is enabled. The default value is the
system determined.

ODMS_PARTITION_BUILD_TY
PE

ODMS_PARTITION_BUILD
_INTRA

ODMS_PARTITION_BUILD
_INTER

ODMS_PARTITION_BUILD
_HYBRID

This setting controls the parallel build of partitioned
models.

ODMS_PARTITION_BUILD_INTRA — Each partition is
built in parallel using all slaves.

ODMS_PARTITION_BUILD_INTER — Each partition is
built entirely in a single slave, but multiple partitions
may be built at the same time since multiple slaves
are active.

ODMS_PARTITION_BUILD_HYBRID — It is a
combination of the other two types and is
recommended for most situations to adapt to dynamic
environments.

The default mode is
ODMS_PARTITION_BUILD_HYBRID

ODMS_TABLESPACE_NAME - This setting controls the storage specifications.

If the user explicitly sets this to the name of a
tablespace (for which they have sufficient quota), then
the specified tablespace storage creates the resulting
model content. If the user does not provide this
setting, then the default tablespace of the user creates
the resulting model content.

ODMS_RANDOM_SEED The value must be a non-
negative integer

The hash function with a random number seed
generates a random number with uniform distribution.
Users can control the random number seed by this
setting. The default is 0.

This setting is used by Random Forest, Neural
Network, and CUR Matrix Decomposition.

ODMS_DETAILS • ODMS_ENABLE
• ODMS_DISABLE

This setting reduces the space that is used while
creating a model, especially a partitioned model. The
default value is ODMS_ENABLE.

When the setting is ODMS_ENABLE, it creates model
tables and views when the model is created. You
can query the model with SQL. When the setting
is ODMS_DISABLE, model views are not created and
tables relevant to model details are not created either.

The reduction in space depends on the model.
Reduction on the order of 10x can be achieved.

Chapter 41
DBMS_DATA_MINING

41-15

See Also:

Oracle Machine Learning for SQL Concepts for information about GLM

Oracle Machine Learning for SQL Concepts for information about association
rules

Oracle Machine Learning for SQL User’s Guide for information about
machine learning unstructured text

41.1.2.5 DBMS_DATA_MINING — Algorithm Settings:
ALGO_EXTENSIBLE_LANG

The settings listed in the following table configure the behavior of the machine learning
model with an extensible algorithm. The model is built in the R language.

The RALG_*_FUNCTION specifies the R script that is used to build, score, and view
an R model and must be registered in the Oracle Machine Learning for R script
repository. The R scripts are registered through OML4R with special privileges. When
ALGO_EXTENSIBLE_LANG is set to R in the MINING_MODEL_SETTING table, the machine
learning model is built in the R language. After the R model is built, the names of the
R scripts are recorded in the MINING_MODEL_SETTING table in the SYS schema. The
scripts must exist in the script repository for the R model to function. The amount of
R memory used to build, score, and view the R model through these R scripts can be
controlled by OML4R.

All algorithm-independent DBMS_DATA_MINING subprograms can operate on an R model
for machine learning functions such as association, attribute importance, classification,
clustering, feature extraction, and regression.

The supported DBMS_DATA_MINING subprograms include, but are not limited, to the
following:

• ADD_COST_MATRIX Procedure

• COMPUTE_CONFUSION_MATRIX Procedure

• COMPUTE_LIFT Procedure

• COMPUTE_ROC Procedure

• CREATE_MODEL Procedure

• DROP_MODEL Procedure

• EXPORT_MODEL Procedure

• GET_MODEL_COST_MATRIX Function

• IMPORT_MODEL Procedure

• REMOVE_COST_MATRIX Procedure

• RENAME_MODEL Procedure

Chapter 41
DBMS_DATA_MINING

41-16

Table 41-9 ALGO_EXTENSIBLE_LANG Settings

Setting Name Setting Value Description

RALG_BUILD_FUNCTION R_BUILD_FUNCTION_SCRIPT_
NAME

Specifies the name of an existing registered
R script for the R algorithm machine learning
model build function. The R script defines
an R function for the first input argument
for training data and returns an R model
object. For clustering and feature extraction
machine learning function model build, the
R attributes dm$nclus and dm$nfeat
must be set on the R model to indicate the
number of clusters and features respectively.
The RALG_BUILD_FUNCTION must be set
along with ALGO_EXTENSIBLE_LANG in the
model_setting_table.

RALG_BUILD_PARAMETER SELECT value
param_name, ...FROM
DUAL

Specifies a list of numeric and string scalar for
optional input parameters of the model build
function.

RALG_SCORE_FUNCTION R_SCORE_FUNCTION_SCRIPT_
NAME

Specifies the name of an existing registered
R script to score data. The script returns
a data.frame containing the corresponding
prediction results. The setting is used to score
data for machine learning functions such
as regression, classification, clustering, and
feature extraction. This setting does not apply
to the association and the attribute importance
functions.

RALG_WEIGHT_FUNCTION R_WEIGHT_FUNCTION_SCRIPT
_NAME

Specifies the name of an existing registered
R script for the R algorithm that computes
the weight (contribution) for each attribute in
scoring. The script returns a data.frame
containing the contributing weight for each
attribute in a row. This function setting is
needed for the PREDICTION_DETAILS SQL
function.

RALG_DETAILS_FUNCTION R_DETAILS_FUNCTION_SCRIP
T_NAME

Specifies the name of an existing registered
R script for the R algorithm that produces the
model information. This setting is required to
generate a model view.

RALG_DETAILS_FORMAT SELECT type_value
column_name, ... FROM DUAL

Specifies the SELECT query for the list of
numeric and string scalars for the output
column type and the column name of the
generated model view. This setting is required
to generate a model view.

See Also:

Oracle Machine Learning for SQL User’s Guide

Chapter 41
DBMS_DATA_MINING

41-17

41.1.2.6 DBMS_DATA_MINING — Algorithm Settings: CUR Matrix
Decomposition

The following settings affects the behavior of the CUR Matrix Decomposition algorithm.

Table 41-10 CUR Matrix Decomposition Settings

Setting Name Setting Value Description

CURS_APPROX_ATTR_N
UM

The value must be a
positive integer

Defines the approximate number of attributes to be selected.

The default value is the number of attributes.

CURS_ROW_IMPORTANC
E

CURS_ROW_IMP_ENAB
LE

CURS_ROW_IMP_DISA
BLE

Defines the flag indicating whether or not to perform row
selection.

The default value is CURS_ROW_IMP_DISABLE.

CURS_APPROX_ROW_NU
M

The value must be a
positive integer

Defines the approximate number of rows to be selected. This
parameter is only used when users decide to perform row
selection (CURS_ROW_IMP_ENABLE).

The default value is the total number of rows.

CURS_SVD_RANK The value must be a
positive integer

Defines the rank parameter used in the column/row leverage
score calculation.

If users do not provide an input value, the value is determined by
the system.

See Also:

Oracle Machine Learning for SQL Concepts

41.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Decision Tree
These settings configure the behavior of the Decision Tree algorithm. Note that the
Decision Tree settings are also used to configure the behavior of Random Forest as it
constructs each individual decision tree.

Table 41-11 Decision Tree Settings

Setting Name Setting Value Description

TREE_IMPURITY_METRIC TREE_IMPURITY_ENTROPY

TREE_IMPURITY_GINI

Tree impurity metric for Decision Tree.

Tree algorithms seek the best test question for splitting
data at each node. The best splitter and split values
are those that result in the largest increase in target
value homogeneity (purity) for the entities in the
node. Purity is by a metric. Decision trees can
use either Gini (TREE_IMPURITY_GINI) or entropy
(TREE_IMPURITY_ENTROPY) as the purity metric. By
default, the algorithm uses TREE_IMPURITY_GINI.

Chapter 41
DBMS_DATA_MINING

41-18

Table 41-11 (Cont.) Decision Tree Settings

Setting Name Setting Value Description

TREE_TERM_MAX_DEPTH For Decision Tree:

2<= a number <=20

For Random Forest:

2<= a number <=100

Criteria for splits: maximum tree depth (the maximum
number of nodes between the root and any leaf node,
including the leaf node).

For Decision Tree, the default is 7.

For Random Forest, the default is 16.

TREE_TERM_MINPCT_NODE 0<= a number<=10 The minimum number of training rows in a node
expressed as a percentage of the rows in the training
data.

Default is 0.05, indicating 0.05%.

TREE_TERM_MINPCT_SPLI
T

0 < a number <=20 The minimum number of rows required to consider
splitting a node expressed as a percentage of the
training rows.

Default is 0.1, indicating 0.1%.

TREE_TERM_MINREC_NODE a number>=0 The minimum number of rows in a node.

Default is 10.

TREE_TERM_MINREC_SPLI
T

a number > 1 Criteria for splits: minimum number of records in
a parent node expressed as a value. No split is
attempted if the number of records is below this value.

Default is 20.

CLAS_MAX_SUP_BINS For Decision Tree:

2 <= a number
<=2147483647

For Random Forest:

2 <= a number <=254

This parameter specifies the maximum number of bins
for each attribute.

The default value is 32.

See, DBMS_DATA_MINING — Automatic Data
Preparation

See Also:

Oracle Machine Learning for SQL Concepts for information about Decision
Tree

41.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Expectation
Maximization

These algorithm settings configure the behavior of the Expectation Maximization
algorithm.

• Table 41-12

• Table 41-13

• Table 41-14

• Table 41-15

Chapter 41
DBMS_DATA_MINING

41-19

See Also:

Oracle Data Mining Concepts for information about Expectation Maximization

Table 41-12 Expectation Maximization Settings for Data Preparation and Analysis

Setting Name Setting Value Description

EMCS_ATTRIBUTE_FILTER EMCS_ATTR_FILTER_ENA
BLE

EMCS_ATTR_FILTER_DIS
ABLE

Whether or not to include uncorrelated attributes in the
model. When EMCS_ATTRIBUTE_FILTER is enabled,
uncorrelated attributes are not included.

Note:

This setting applies only
to attributes that are not
nested.

Default is system-determined.

EMCS_MAX_NUM_ATTR_2D TO_CHAR(numeric_expr
>=1)

Maximum number of correlated attributes to include in
the model.

Note: This setting applies only to attributes that are not
nested (2D).

Default is 50.

EMCS_NUM_DISTRIBUTION EMCS_NUM_DISTR_BERNO
ULLI

EMCS_NUM_DISTR_GAUSS
IAN

EMCS_NUM_DISTR_SYSTE
M

The distribution for modeling numeric attributes.
Applies to the input table or view as a whole and does
not allow per-attribute specifications.

The options include Bernoulli, Gaussian, or system-
determined distribution. When Bernoulli or Gaussian
distribution is chosen, all numeric attributes are
modeled using the same type of distribution. When the
distribution is system-determined, individual attributes
may use different distributions (either Bernoulli or
Gaussian), depending on the data.

Default is EMCS_NUM_DISTR_SYSTEM.

EMCS_NUM_EQUIWIDTH_BIN
S

TO_CHAR(1
<numeric_expr <=255)

Number of equi-width bins that will be used for
gathering cluster statistics for numeric columns.

Default is 11.

EMCS_NUM_PROJECTIONS TO_CHAR(numeric_expr
>=1)

Specifies the number of projections that will be used
for each nested column. If a column has fewer distinct
attributes than the specified number of projections, the
data will not be projected. The setting applies to all
nested columns.

Default is 50.

EMCS_NUM_QUANTILE_BINS TO_CHAR(1
<numeric_expr <=255)

Specifies the number of quantile bins that will be
used for modeling numeric columns with multivalued
Bernoulli distributions.

Default is system-determined.

Chapter 41
DBMS_DATA_MINING

41-20

Table 41-12 (Cont.) Expectation Maximization Settings for Data Preparation and Analysis

Setting Name Setting Value Description

EMCS_NUM_TOPN_BINS TO_CHAR(1
<numeric_expr <=255)

Specifies the number of top-N bins that will be used
for modeling categorical columns with multivalued
Bernoulli distributions.

Default is system-determined.

Table 41-13 Expectation Maximization Settings for Learning

Setting Name Setting Value Description

EMCS_CONVERGENCE_CRITE
RION

EMCS_CONV_CRIT_HELDAS
IDE

EMCS_CONV_CRIT_BIC

The convergence criterion for EM. The convergence
criterion may be based on a held-aside data set, or it
may be Bayesian Information Criterion.

Default is system determined.

EMCS_LOGLIKE_IMPROVEME
NT

TO_CHAR(0 <
numeric_expr < 1)

When the convergence criterion is based on a held-
aside data set (EMCS_CONVERGENCE_CRITERION =
EMCS_CONV_CRIT_HELDASIDE), this setting specifies
the percentage improvement in the value of the log
likelihood function that is required for adding a new
component to the model.

Default value is 0.001.

EMCS_NUM_COMPONENTS TO_CHAR(numeric_expr
>=1)

Maximum number of components in the model. If
model search is enabled, the algorithm automatically
determines the number of components based on
improvements in the likelihood function or based on
regularization, up to the specified maximum.

The number of components must be greater than or
equal to the number of clusters.

Default is 20.

EMCS_NUM_ITERATIONS TO_CHAR(numeric_expr
>=1)

Specifies the maximum number of iterations in the EM
algorithm.

Default is 100.

EMCS_MODEL_SEARCH EMCS_MODEL_SEARCH_ENA
BLE

EMCS_MODEL_SEARCH_DIS
ABLE (default).

This setting enables model search in EM where
different model sizes are explored and a best size is
selected.

The default is EMCS_MODEL_SEARCH_DISABLE.

EMCS_REMOVE_COMPONENTS EMCS_REMOVE_COMPS_ENA
BLE (default)

EMCS_REMOVE_COMPS_DIS
ABLE

This setting allows the EM algorithm to remove a small
component from the solution.

The default is EMCS_REMOVE_COMPS_ENABLE.

EMCS_RANDOM_SEED Non-negative integer This setting controls the seed of the random generator
used in EM. The default is 0.

Chapter 41
DBMS_DATA_MINING

41-21

Table 41-14 Expectation Maximization Settings for Component Clustering

Setting Name Setting Value Description

EMCS_CLUSTER_COMPONENTS EMCS__CLUSTER_COMP_
ENABLE

EMCS_CLUSTER_COMP_D
ISABLE

Enables or disables the grouping of EM components
into high-level clusters. When disabled, the
components themselves are treated as clusters.

When component clustering is enabled, model scoring
through the SQL CLUSTER function will produce
assignments to the higher level clusters. When
clustering is disabled, the CLUSTER function will
produce assignments to the original components.

Default is EMCS_CLUSTER_COMP_ENABLE.

EMCS_CLUSTER_THRESH TO_CHAR(numeric_ex
pr >=1)

Dissimilarity threshold that controls the clustering of
EM components. When the dissimilarity measure is
less than the threshold, the components are combined
into a single cluster.

A lower threshold may produce more clusters that are
more compact. A higher threshold may produce fewer
clusters that are more spread out.

Default is 2.

EMCS_LINKAGE_FUNCTION EMCS_LINKAGE_SINGLE

EMCS_LINKAGE_AVERAG
E

EMCS_LINKAGE_COMPLE
TE

Allows the specification of a linkage function for the
agglomerative clustering step.

EMCS_LINKAGE_SINGLE uses the nearest distance
within the branch. The clusters tend to be larger and
have arbitrary shapes.

EMCS_LINKAGE_AVERAGE uses the average distance
within the branch. There is less chaining effect and the
clusters are more compact.

EMCS_LINKAGE_COMPLETE uses the maximum
distance within the branch. The clusters are smaller
and require strong component overlap.

Default is EMCS_LINKAGE_SINGLE.

Table 41-15 Expectation Maximization Settings for Cluster Statistics

Setting Name Setting Value Description

EMCS_CLUSTER_STATISTICS EMCS_CLUS_STATS_EN
ABLE

EMCS_CLUS_STATS_DI
SABLE

Enables or disables the gathering of descriptive
statistics for clusters (centroids, histograms, and
rules). When statistics are disabled, model size is
reduced, and GET_MODEL_DETAILS_EM only returns
taxonomy (hierarchy) and cluster counts.

Default is EMCS_CLUS_STATS_ENABLE.

EMCS_MIN_PCT_ATTR_SUPPORT TO_CHAR(0 <
numeric_expr < 1)

Minimum support required for including an attribute
in the cluster rule. The support is the percentage of
the data rows assigned to a cluster that must have
non-null values for the attribute.

Default is 0.1.

Chapter 41
DBMS_DATA_MINING

41-22

41.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic
Analysis

Explicit Semantic Analysis (ESA) is a useful technique for extracting meaningful and
interpretable features.

The settings listed in the following table configure the ESA values.

Table 41-16 Explicit Semantic Analysis Settings

Setting Name Setting Value Description

ESAS_VALUE_THRESHOLD Non-negative number This setting thresholds a small value for
attribute weights in the transformed build
data. The default is 1e-8.

ESAS_MIN_ITEMS Text input 100

Non-text input is 0

This setting determines the minimum
number of non-zero entries that need to be
present in an input row. The default is 100
for text input and 0 for non-text input.

ESAS_TOPN_FEATURES A positive integer This setting controls the maximum number
of features per attribute. The default is
1000.

See Also:

Oracle Machine Learning for SQL Concepts for information about ESA.

41.1.2.10 DBMS_DATA_MINING — Algorithm Settings: Exponential Smoothing
Exponential Smoothing (ESM) is a useful technique for extracting meaningful and
interpretable features.

The settings listed in the following table configure Exponential Smoothing values.

Chapter 41
DBMS_DATA_MINING

41-23

Table 41-17 Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_MODEL It can take value
in set {EXSM_SIMPLE,
EXSM_SIMPLE_MULT,
EXSM_HOLT,
EXSM_HOLT_DMP,
EXSM_MUL_TRND,
EXSM_MULTRD_DMP,
EXSM_SEAS_ADD,
EXSM_SEAS_MUL,
EXSM_HW, EXSM_HW_DMP,
EXSM_HW_ADDSEA,
EXSM_DHW_ADDSEA,
EXSM_HWMT,
EXSM_HWMT_DMP}

This setting specifies the model.

EXSM_SIMPLE: Simple exponential
smoothing model is applied.

EXSM_SIMPLE_MULT: Simple exponential
smoothing model with multiplicative error is
applied.

EXSM_HOLT: Holt linear exponential
smoothing model is applied.

EXSM_HOLT_DMP: Holt linear exponential
smoothing model with damped trend is
applied.

EXSM_MUL_TRND: Exponential smoothing
model with multiplicative trend is applied.

EXSM_MULTRD_DMP: Exponential smoothing
model with multiplicative damped trend is
applied.

EXSM_SEAS_ADD: Exponential smoothing
with additive seasonality, but no trend, is
applied.

EXSM_SEAS_MUL: Exponential smoothing
with multiplicative seasonality, but no trend,
is applied.

EXSM_HW: Holt-Winters triple exponential
smoothing model, additive trend,
multiplicative seasonality is applied.

EXSM_HW_DMP: Holt-Winters multiplicative
exponential smoothing model with damped
trend, additive trend, multiplicative
seasonality is applied.

EXSM_HW_ADDSEA: Holt-Winters additive
exponential smoothing model, additive
trend, additive seasonality is applied.

EXSM_DHW_ADDSEA: Holt-Winters additive
exponential smoothing model with damped
trend, additive trend, additive seasonality is
applied.

EXSM_HWMT: Holt-Winters multiplicative
exponential smoothing model with
multiplicative trend, multiplicative trend,
multiplicative seasonality is applied.

EXSM_HWMT_DMP: Holt-Winters multiplicative
exponential smoothing model with damped
multiplicative trend, multiplicative trend,
multiplicative seasonality is applied.

The default value is EXSM_SIMPLE.

Chapter 41
DBMS_DATA_MINING

41-24

Table 41-17 (Cont.) Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_SEASONALITY positive integer > 1 This setting specifies a positive integer
value as the length of seasonal cycle. The
value it takes must be larger than 1. For
example, setting value 4 means that every
group of four observations forms a seasonal
cycle.

This setting is only applicable and must
be provided for models with seasonality,
otherwise the model throws an error.

When EXSM_INTERVAL is not set, this
setting applies to the original input time
series. When EXSM_INTERVAL is set, this
setting applies to the accumulated time
series.

EXSM_INTERVAL It can take value in set
{EXSM_INTERVAL_YEAR,
EXSM_INTERVAL_QTR,
EXSM_INTERVAL_MONTH,EX
SM_INTERVAL_WEEK,
EXSM_INTERVAL_DAY,
EXSM_INTERVAL_HOUR,
EXSM_INTERVAL_MIN,EXSM_I
NTERVAL_SEC}

This setting only applies and must be
provided when the time column (case_id
column) has datetime type. It specifies the
spacing interval of the accumulated equally
spaced time series.

If the time column of input table is of
datetime type and setting EXSM_INTERVAL
is not provided, then the model throws an
error.

If the time column of input table is of oracle
number type and setting EXSM_INTERVAL is
provided, then the model throws an error.

EXSM_ACCUMULATE It can take value in
set {EXSM_ACCU_TOTAL,
EXSM_ACCU_STD,
EXSM_ACCU_MAX,
EXSM_ACCU_MIN,
EXSM_ACCU_AVG,
EXSM_ACCU_MEDIAN,
EXSM_ACCU_COUNT}.

This setting only applies and must be
provided when the time column has
datetime type. It specifies how to generate
the value of the accumulated time series
from the input time series.

Chapter 41
DBMS_DATA_MINING

41-25

Table 41-17 (Cont.) Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_SETMISSING It can also specify
an option taking value
in set {EXSM_MISS_MIN,
EXSM_MISS_MAX,
EXSM_MISS_AVG,
EXSM_MISS_MEDIAN,
EXSM_MISS_LAST,
EXSM_MISS_FIRST,
EXSM_MISS_PREV,
EXSM_MISS_NEXT,
EXSM_MISS_AUTO}.

This setting specifies how to handle missing
values, which may come from input data
and/or the accumulation process of input
time series. It can specify either a number
or an option. If a number is specified, all the
missing values are set to that number.

EXSM_MISS_MIN: Replaces missing value
with minimum of the accumulated time
series.

EXSM_MISS_MAX: Replaces missing value
with maximum of the accumulated time
series.

EXSM_MISS_AVG: Replaces missing value
with average of the accumulated time
series.

EXSM_MISS_MEDIAN: Replaces missing
value with median of the accumulated time
series. \

EXSM_MISS_LAST: Replaces missing value
with last non-missing value of the
accumulated time series.

EXSM_MISS_FIRST: Replaces missing
value with first non-missing value of the
accumulated time series.

EXSM_MISS_PREV: Replaces missing value
with the previous non-missing value of the
accumulated time series.

EXSM_MISS_NEXT: Replaces missing value
with the next non-missing value of the
accumulated time series.

EXSM_MISS_AUTO: EXSM model treats the
input data as an irregular (non-uniformly
spaced) time series.

If this setting is not provided,
EXSM_MISS_AUTO is the default value. In
such a case, the model treats the input
time series as irregular time series, viewing
missing values as gaps.

EXSM_PREDICTION_STEP It must be set to a number
between 1-30.

This setting is used to specify how many
steps ahead the predictions are to be made.

If it is not set, the default value is 1: the
model gives one-step-ahead prediction. A
value greater than 30 results in an error.

EXSM_CONFIDENCE_LEVEL It must be a number between 0
and 1, exclusive.

This setting is used to specify the desired
confidence level for prediction.

The lower and upper bounds of the
specified confidence interval is reported. If
not specified, the default confidence level is
95%.

Chapter 41
DBMS_DATA_MINING

41-26

Table 41-17 (Cont.) Exponential Smoothing Settings

Setting Name Setting Value Description

EXSM_OPT_CRITERION It takes value in
set {EXSM_OPT_CRIT_LIKE,
XSM_OPT_CRIT_MSE,
EXSM_OPT_CRIT_AMSE,
EXSM_OPT_CRIT_SIG,
EXSM_OPT_CRIT_MAE}.

This setting is used to specify the desired
optimization criterion.

EXSM_NMSE positive integer This setting specifies the length of the
window used in computing the error metric
average mean square error (AMSE).

See Also:

Oracle Machine Learning for SQL Concepts for information about ESM.

41.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Generalized Linear
Model

The settings listed in the following table configure the behavior of the Generalized
Linear Model algorithm.

Table 41-18 DBMS_DATA_MINING GLM Settings

Setting Name Setting Value Description

GLMS_CONF_LEVEL TO_CHAR(0<
numeric_expr <1)

The confidence level for coefficient confidence
intervals.

The default confidence level is 0.95.

GLMS_FTR_GEN_METHOD GLMS_FTR_GEN_QUADRATI
C

GLMS_FTR_GEN_CUBIC

Whether feature generation is quadratic or cubic.

When feature generation is enabled, the algorithm
automatically chooses the most appropriate feature
generation method based on the data.

GLMS_FTR_GENERATION GLMS_FTR_GENERATION_E
NABLE

GLMS_FTR_GENERATION_D
ISABLE

Whether or not feature generation is enabled for GLM.
By default, feature generation is not enabled.

Note: Feature generation can only be enabled when
feature selection is also enabled.

GLMS_FTR_SEL_CRIT GLMS_FTR_SEL_AIC

GLMS_FTR_SEL_SBIC

GLMS_FTR_SEL_RIC

GLMS_FTR_SEL_ALPHA_IN
V

Feature selection penalty criterion for adding a feature
to the model.

When feature selection is enabled, the algorithm
automatically chooses the penalty criterion based on
the data.

GLMS_FTR_SELECTION GLMS_FTR_SELECTION_EN
ABLE

GLMS_FTR_SELECTION_DI
SABLE

Whether or not feature selection is enabled for GLM.

By default, feature selection is not enabled.

Chapter 41
DBMS_DATA_MINING

41-27

Table 41-18 (Cont.) DBMS_DATA_MINING GLM Settings

Setting Name Setting Value Description

GLMS_MAX_FEATURES TO_CHAR(0 <
numeric_expr <= 2000)

When feature selection is enabled, this setting
specifies the maximum number of features that can be
selected for the final model.

By default, the algorithm limits the number of features
to ensure sufficient memory.

GLMS_PRUNE_MODEL GLMS_PRUNE_MODEL_ENAB
LE

GLMS_PRUNE_MODEL_DISA
BLE

Prune enable or disable for features in the final
model. Pruning is based on T-Test statistics for
linear regression, or Wald Test statistics for logistic
regression. Features are pruned in a loop until all
features are statistically significant with respect to the
full data.

When feature selection is enabled, the algorithm
automatically performs pruning based on the data.

GLMS_REFERENCE_CLASS_N
AME

target_value The target value used as the reference class in
a binary logistic regression model. Probabilities are
produced for the other class.

By default, the algorithm chooses the value with the
highest prevalence (the most cases) for the reference
class.

GLMS_RIDGE_REGRESSION GLMS_RIDGE_REG_ENABLE

GLMS_RIDGE_REG_DISABL
E

Enable or disable ridge regression. Ridge applies to
both regression and classification machine learning
functions.

When ridge is enabled, prediction bounds are not
produced by the PREDICTION_BOUNDS SQL function.

Note: Ridge may only be enabled when feature
selection is not specified, or has been explicitly
disabled. If ridge regression and feature selection are
both explicitly enabled, then an exception is raised.

GLMS_RIDGE_VALUE TO_CHAR (numeric_expr
> 0)

The value of the ridge parameter. This setting is only
used when the algorithm is configured to use ridge
regression.

If ridge regression is enabled internally by the
algorithm, then the ridge parameter is determined by
the algorithm.

GLMS_ROW_DIAGNOSTICS GLMS_ROW_DIAG_ENABLE

GLMS_ROW_DIAG_DISABLE
(default).

Enable or disable row diagnostics.

GLMS_CONV_TOLERANCE The range is (0, 1) non-
inclusive.

Convergence Tolerance setting of the GLM algorithm

The default value is system-determined.

GLMS_NUM_ITERATIONS Positive integer Maximum number of iterations for the GLM algorithm.
The default value is system-determined.

GLMS_BATCH_ROWS 0 or Positive integer Number of rows in a batch used by the SGD solver.
The value of this parameter sets the size of the batch
for the SGD solver. An input of 0 triggers a data driven
batch size estimate.

The default is 2000

Chapter 41
DBMS_DATA_MINING

41-28

Table 41-18 (Cont.) DBMS_DATA_MINING GLM Settings

Setting Name Setting Value Description

GLMS_SOLVER GLMS_SOLVER_SGD
(StochasticGradient
Descent)

GLMS_SOLVER_CHOL
(Cholesky)

GLMS_SOLVER_QR

GLMS_SOLVER_LBFGS_ADM
M

This setting allows the user to choose the
GLM solver. The solver cannot be selected if
GLMS_FTR_SELECTION setting is enabled. The default
value is system determined.

GLMS_SPARSE_SOLVER GLMS_SPARSE_SOLVER_EN
ABLE

GLMS_SPARSE_SOLVER_DI
SABLE (default).

This setting allows the user to use sparse
solver if it is available. The default value is
GLMS_SPARSE_SOLVER_DISABLE.

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: Neural Network
The settings listed in the following table configure the behavior of the Neural
Network algorithm.

• DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Model (GLM) use these settings.

• DBMS_DATA_MINING — Solver Settings: ADMM
The settings listed in the following table configure the behavior of Alternating
Direction Method of Multipliers (ADMM). The Generalized Linear Model (GLM)
algorithm uses these settings.

• Oracle Machine Learning for SQL Concepts

See Also:

Oracle Machine Learning for SQL Concepts for information about GLM.

41.1.2.12 DBMS_DATA_MINING — Algorithm Settings: k-Means
The settings listed in the following table configure the behavior of the k-Means
algorithm.

Chapter 41
DBMS_DATA_MINING

41-29

Table 41-19 k-Means Settings

Setting Name Setting Value Description

KMNS_CONV_TOLERANCE TO_CHAR(0<numeric_expr<1) Minimum Convergence Tolerance for k-Means. The
algorithm iterates until the minimum Convergence
Tolerance is satisfied or until the maximum number
of iterations, specified in KMNS_ITERATIONS, is
reached.

Decreasing the Convergence Tolerance produces a
more accurate solution but may result in longer run
times.

The default Convergence Tolerance is 0.001.

KMNS_DISTANCE KMNS_COSINE

KMNS_EUCLIDEAN

Distance function for k-Means.

The default distance function is KMNS_EUCLIDEAN.

KMNS_ITERATIONS TO_CHAR(positive_numeric_e
xpr)

Maximum number of iterations for k-Means.
The algorithm iterates until either the maximum
number of iterations is reached or the
minimum Convergence Tolerance, specified in
KMNS_CONV_TOLERANCE, is satisfied.

The default number of iterations is 20.

KMNS_MIN_PCT_ATTR_SU
PPORT

TO_CHAR(0<=numeric_expr<=1
)

Minimum percentage of attribute values that must
be non-null in order for the attribute to be included
in the rule description for the cluster.

If the data is sparse or includes many missing
values, a minimum support that is too high can
cause very short rules or even empty rules.

The default minimum support is 0.1.

KMNS_NUM_BINS TO_CHAR(numeric_expr>0) Number of bins in the attribute histogram produced
by k-means. The bin boundaries for each attribute
are computed globally on the entire training data
set. The binning method is equi-width. All attributes
have the same number of bins with the exception
of attributes with a single value that have only one
bin.

The default number of histogram bins is 11.

KMNS_SPLIT_CRITERION KMNS_SIZE

KMNS_VARIANCE

Split criterion for k-means. The split criterion
controls the initialization of new k-Means clusters.
The algorithm builds a binary tree and adds one
new cluster at a time.

When the split criterion is based on size, the new
cluster is placed in the area where the largest
current cluster is located. When the split criterion
is based on the variance, the new cluster is placed
in the area of the most spread-out cluster.

The default split criterion is the KMNS_VARIANCE.

KMNS_RANDOM_SEED Non-negative integer This setting controls the seed of the random
generator used during the k-Means initialization. It
must be a non-negative integer value.

The default is 0.

Chapter 41
DBMS_DATA_MINING

41-30

Table 41-19 (Cont.) k-Means Settings

Setting Name Setting Value Description

KMNS_DETAILS KMNS_DETAILS_NONE

KMNS_DETAILS_HIERARCHY

KMNS_DETAILS_ALL

This setting determines the level of cluster detail
that are computed during the build.

KMNS_DETAILS_NONE: No cluster details are
computed. Only the scoring information is
persisted.

KMNS_DETAILS_HIERARCHY: Cluster hierarchy and
cluster record counts are computed. This is the
default value.

KMNS_DETAILS_ALL: Cluster hierarchy, record
counts, descriptive statistics (means, variances,
modes, histograms, and rules) are computed.

See Also:

Oracle Machine Learning for SQL Concepts for information about k-Means

41.1.2.13 DBMS_DATA_MINING - Algorithm Settings: Multivariate State
Estimation Technique - Sequential Probability Ratio Test

Settings that configure the training calibration behavior of the Multivariate State
Estimation Technique - Sequential Probability Ratio Test algorithm.

Table 41-20 MSET-SPRT Settings

Setting Name Setting Value Description

MSET_ADB_HEIGHT A positive double Estimates the band within which signal
values normally oscillate.

The default value is 0.05.

MSET_ALERT_COUNT A positive integer The number of the last n signals (the
alert window) that should have passed
the threshold to raise an alert. The alert
count should be lower or equal to the alert
window.

The default value is 5.

MSET_ALERT_WINDOW A positive integer greater than or
equal to MSET_ALERT_COUNT

The number of signals to consider in the
SPRT hypothesis consolidation logic.

The default value is 5.

MSET_ALPHA_PROB A positive double between 0 and 1 False Alarm Probability FAP (false
positive).

The default is 0.01.

MSET_BETA_PROB A positive double between 0 and 1 Missed Alarm Probability MAP (false
negative).

The default is 0.10.

Chapter 41
DBMS_DATA_MINING

41-31

Table 41-20 (Cont.) MSET-SPRT Settings

Setting Name Setting Value Description

MSET_HELDASIDE A positive integer The approximate number of data rows
used for MSET model calibration.

You can use ODMS_RANDOM_SEED to
change the held-aside sample.

The default value is 10000.

MSET_MEMORY_VECTORS A positive integer The default value is data driven.

MSET_PROJECTION_THRESHOLD A positive integer >0, <=10000 Specifies whether to use random
projections. When the number of sensors
exceeds the setting value, random
projections are used. To turn off random
projections, set the threshold to a value
that is equal to or greater than the number
of sensors.

The default value is 500.

MSET_STD_TOLERANCE A positive integer The tolerance in standard deviations used
in the SPRT calculation.

The default value is 3.

41.1.2.14 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes
The settings listed in the following table configure the behavior of the Naive Bayes
algorithm.

Table 41-21 Naive Bayes Settings

Setting Name Setting Value Description

NABS_PAIRWISE_THRESHO
LD

TO_CHAR(0<=
numeric_expr <=1)

Value of pairwise threshold for NB algorithm

Default is 0.

NABS_SINGLETON_THRESH
OLD

TO_CHAR(0<=
numeric_expr <=1)

Value of singleton threshold for NB algorithm

Default value is 0.

See Also:

Oracle Machine Learning for SQL Concepts for information about Naive
Bayes

41.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Neural Network
The settings listed in the following table configure the behavior of the Neural Network
algorithm.

Chapter 41
DBMS_DATA_MINING

41-32

Table 41-22 DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_SOLVER One of the following strings:

• NNET_SOLVER_ADAM
• NNET_SOLVER_LBFGS

Specifies the method of optimization.

The default value is NNET_SOLVER_LBFGS.

NNET_ACTIVATIONS One or more of the
following strings:

• NNET_ACTIVATIONS_A
RCTAN

• NNET_ACTIVATIONS_B
IPOLAR_SIG

• NNET_ACTIVATIONS_L
INEAR

• NNET_ACTIVATIONS_L
OG_SIG

• NNET_ACTIVATIONS_R
ELU

• NNET_ACTIVATIONS_T
ANH

Specifies the activation functions for the hidden layers.
You can specify a single activation function, which
is then applied to each hidden layer, or you can
specify an activation function for each layer individually.
Different layers can have different activation functions.

To apply a different activation function to one or
more of the layers, you must specify an activation
function for each layer. The number of activation
functions you specify must be consistent with the
NNET_HIDDEN_LAYERS and NNET_NODES_PER_LAYER
values.

For example, if you have three hidden layers, you could
specify the use of the same activation function for all
three layers with the following settings value:

('NNET_ACTIVATIONS',
'NNET_ACTIVATIONS_TANH')

The following settings value specifies a different
activation function for each layer:

('NNET_ACTIVATIONS',
'''NNET_ACTIVATIONS_TANH'',
''NNET_ACTIVATIONS_LOG_SIG'',
''NNET_ACTIVATIONS_ARCTAN''')

Note:

You specify the different
activation functions as
strings within a single
string. All quotes are
single and two single
quotes are used to
escape a single quote
in SQL statements and
PL/SQL blocks.

The default value is NNET_ACTIVATIONS_LOG_SIG.

NNET_HELDASIDE_MAX_FAI
L

A positive integer With NNET_REGULARIZER_HELDASIDE, the training
process is stopped early if the network performance
on the validation data fails to improve or remains the
same for NNET_HELDASIDE_MAX_FAIL epochs in a
row.

The default value is 6.

Chapter 41
DBMS_DATA_MINING

41-33

Table 41-22 (Cont.) DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_HELDASIDE_RATIO 0 <= numeric_expr <=1 Define the held ratio for the held-aside method.

The default value is 0.25.

NNET_HIDDEN_LAYERS A positive integer Defines the topology by the number of hidden layers.

The default value is 1.

NNET_ITERATIONS A positive integer Specifies the maximum number of iterations in the
Neural Network algorithm.

For the DMSSET_NN_SOLVER_LBFGS solver, the default
value is 200.

For the DMSSET_NN_SOLVER_ADAM solver, the default
value is 10000.

NNET_NODES_PER_LAYER A positive integer or a list of
positive integers

Defines the topology by the number of nodes per layer.
Different layers can have different numbers of nodes.

To specify the same number of nodes for each layer,
you can provide a single value, which is then applied to
each layer.

To specify a different number of nodes for one or
more layers, provide a list of comma-separated positive
integers, one for each layer. For example, '10,
20, 5' for three layers. The setting values must be
consistent with the NNET_HIDDEN_LAYERS value.

The default number of nodes per layer is the number of
attributes or 50 (if the number of attributes > 50).

NNET_REG_LAMBDA TO_CHAR(numeric_expr
>=0)

Defines the L2 regularization parameter
lambda. This can not be set together with
NNET_REGULARIZER_HELDASIDE.

The default value is 1.

NNET_REGULARIZER One of the following strings:

• NNET_REGULARIZER_H
ELDASIDE

• NNET_REGULARIZER_L
2

• NNET_REGULARIZER_N
ONE

Regularization setting for Neural Network algorithm. If
the total number of training rows is greater than 50000,
the default is NNET_REGULARIZER_HELDASIDE. If the
total number of training rows is less than or equal to
50000, the default is NNET_REGULARIZER_NONE.

NNET_TOLERANCE TO_CHAR(0<
numeric_expr <1)

Defines the convergence tolerance setting of the
Neural Network algorithm.

The default value is 0.000001.

Chapter 41
DBMS_DATA_MINING

41-34

Table 41-22 (Cont.) DBMS_DATA_MINING Neural Network Settings

Setting Name Setting Value Description

NNET_WEIGHT_LOWER_BOUN
D

A real number The setting specifies the lower bound of
the region where weights are randomly
initialized. NNET_WEIGHT_LOWER_BOUND and
NNET_WEIGHT_UPPER_BOUND must be set together.
Setting one and not setting the other raises an error.
NNET_WEIGHT_LOWER_BOUND must not be greater
than NNET_WEIGHT_UPPER_BOUND. The default value
is –sqrt(6/(l_nodes+r_nodes)). The value of
l_nodes for:
• input layer dense attributes is (1+number of

dense attributes)
• input layer sparse attributes is number of

sparse attributes
• each hidden layer is (1+number of nodes in

that hidden layer)

The value of r_nodes is the number of nodes in the
layer that the weight is connecting to.

NNET_WEIGHT_UPPER_BOUN
D

A real number This setting specifies the upper bound of the
region where weights are initialized. It should be
set in pairs with NNET_WEIGHT_LOWER_BOUND and
its value must not be smaller than the value
of NNET_WEIGHT_LOWER_BOUND. If not specified,
the values of NNET_WEIGHT_LOWER_BOUND and
NNET_WEIGHT_UPPER_BOUND are system determined.

The default value is sqrt(6/(l_nodes+r_nodes)).
See NNET_WEIGHT_LOWER_BOUND.

Related Topics

• DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Model (GLM) use these settings.

See Also:

Oracle Machine Learning for SQL Concepts for information about Neural
Network.

41.1.2.16 DBMS_DATA_MINING — Algorithm Settings: Non-Negative Matrix
Factorization

The settings listed in the following table configure the behavior of the Non-negative
Matrix Factorization algorithm.

You can query the data dictionary view *_MINING_MODEL_SETTINGS (using the ALL,
USER, or DBA prefix) to find the setting values for a model. See Oracle Database
Reference for information about *_MINING_MODEL_SETTINGS.

Chapter 41
DBMS_DATA_MINING

41-35

Table 41-23 NMF Settings

Setting Name Setting Value Description

NMFS_CONV_TOLERANCE TO_CHAR(0< numeric_expr
<=0.5)

Convergence tolerance for NMF
algorithm

Default is 0.05

NMFS_NONNEGATIVE_SCORING NMFS_NONNEG_SCORING_ENABLE

NMFS_NONNEG_SCORING_DISABLE

Whether negative numbers
should be allowed in
scoring results. When set
to NMFS_NONNEG_SCORING_ENABLE,
negative feature values will be
replaced with zeros. When set to
NMFS_NONNEG_SCORING_DISABLE,
negative feature values will be
allowed.

Default is
NMFS_NONNEG_SCORING_ENABLE

NMFS_NUM_ITERATIONS TO_CHAR(1 <= numeric_expr
<=500)

Number of iterations for NMF
algorithm

Default is 50

NMFS_RANDOM_SEED TO_CHAR(numeric_expr) Random seed for NMF algorithm.

Default is –1.

See Also:

Oracle Machine Learning for SQL Concepts for information about NMF

41.1.2.17 DBMS_DATA_MINING — Algorithm Settings: O-Cluster
The settings in the table configure the behavior of the O-Cluster algorithm.

Table 41-24 O-CLuster Settings

Setting Name Setting Value Description

OCLT_SENSITIVITY TO_CHAR(0
<=numeric_expr <=1)

A fraction that specifies the peak density required for
separating a new cluster. The fraction is related to the global
uniform density.

Default is 0.5.

See Also:

Oracle Machine Learning for SQL Concepts for information about O-Cluster

Chapter 41
DBMS_DATA_MINING

41-36

41.1.2.18 DBMS_DATA_MINING — Algorithm Settings: Random Forest
These settings configure the behavior of the Random Forest algorithm. Random
Forest makes use of the Decision Tree settings to configure the construction of
individual trees.

Table 41-25 Random Forest Settings

Setting Name Setting Value Description

RFOR_MTRY a number >= 0 Size of the random subset of columns to be
considered when choosing a split at a node. For each
node, the size of the pool remains the same, but the
specific candidate columns change. The default is half
of the columns in the model signature. The special
value 0 indicates that the candidate pool includes all
columns.

RFOR_NUM_TREES 1<= a number <=65535 Number of trees in the forest

Default is 20.

RFOR_SAMPLING_RATIO 0< a fraction<=1 Fraction of the training data to be randomly sampled
for use in the construction of an individual tree. The
default is half of the number of rows in the training
data.

Related Topics

• DBMS_DATA_MINING — Algorithm Settings: Decision Tree
These settings configure the behavior of the Decision Tree algorithm. Note that the
Decision Tree settings are also used to configure the behavior of Random Forest
as it constructs each individual decision tree.

See Also:

Oracle Machine Learning for SQL Concepts for information about Random
Forest

41.1.2.19 DBMS_DATA_MINING — Algorithm Constants and Settings: Singular
Value Decomposition

The following constant affects the behavior of the Singular Value Decomposition
algorithm.

Table 41-26 Singular Value Decomposition Constant

Constant Name Constant Value Description

SVDS_MAX_NUM_FEATURES 2500 The maximum number of features supported by SVD.

The following settings configure the behavior of the Singular Value Decomposition
algorithm.

Chapter 41
DBMS_DATA_MINING

41-37

Table 41-27 Singular Value Decomposition Settings

Setting Name Setting Value Description

SVDS_U_MATRIX_OUTP
UT

SVDS_U_MATRIX_ENA
BLE

SVDS_U_MATRIX_DIS
ABLE

Indicates whether or not to persist the U Matrix produced by SVD.

The U matrix in SVD has as many rows as the number of rows
in the build data. To avoid creating a large model, the U matrix is
persisted only when SVDS_U_MATRIX_OUTPUT is enabled.

When SVDS_U_MATRIX_OUTPUT is enabled, the build data must
include a case ID. If no case ID is present and the U matrix is
requested, then an exception is raised.

Default is SVDS_U_MATRIX_DISABLE.

SVDS_SCORING_MODE SVDS_SCORING_SVD

SVDS_SCORING_PCA

Whether to use SVD or PCA scoring for the model.

When the build data is scored with SVD, the projections will be
the same as the U matrix. When the build data is scored with
PCA, the projections will be the product of the U and S matrices.

Default is SVDS_SCORING_SVD.

SVDS_SOLVER SVDS_SOLVER_TSSVD

SVDS_SOLVER_TSEIG
EN

SVDS_SOLVER_SSVD

SVDS_SOLVER_STEIG
EN

This setting indicates the solver to be used for computing SVD
of the data. In the case of PCA, the solver setting indicates
the type of SVD solver used to compute the PCA for the data.
When this setting is not specified the solver type selection is data
driven. If the number of attributes is greater than 3240, then the
default wide solver is used. Otherwise, the default narrow solver
is selected.

The following are the group of solvers:

• Narrow data solvers: for matrices with up to 11500 attributes
(TSEIGEN) or up to 8100 attributes (TSSVD).

• Wide data solvers: for matrices up to 1 million attributes.
For narrow data solvers:

• Tall-Skinny SVD uses QR computation TSVD
(SVDS_SOLVER_TSSVD)

• Tall-Skinny SVD uses eigenvalue computation, TSEIGEN
(SVDS_SOLVER_TSEIGEN), is the default solver for narrow
data.

For wide data solvers:

• Stochastic SVD uses QR computation SSVD
(SVDS_SOLVER_SSVD), is the default solver for wide data
solvers.

• Stochastic SVD uses eigenvalue computations, STEIGEN
(SVDS_SOLVER_STEIGEN).

SVDS_TOLERANCE Range [0, 1] This setting is used to prune features. Define the minimum value
the eigenvalue of a feature as a share of the first eigenvalue to
not to prune. Default value is data driven.

SVDS_RANDOM_SEED Range [0 -
4,294,967,296]

The random seed value is used for initializing the sampling matrix
used by the Stochastic SVD solver. The default is 0. The SVD
Solver must be set to SSVD or STEIGEN.

SVDS_OVER_SAMPLING Range [1, 5000]. This setting is configures the number of columns in the sampling
matrix used by the Stochastic SVD solver. The number of
columns in this matrix is equal to the requested number of
features plus the oversampling setting. The SVD Solver must be
set to SSVD or STEIGEN.

Chapter 41
DBMS_DATA_MINING

41-38

Table 41-27 (Cont.) Singular Value Decomposition Settings

Setting Name Setting Value Description

SVDS_POWER_ITERATI
ONS

Range [0, 20]. The power iteration setting improves the accuracy of the SSVD
solver. The default is 2. The SVD Solver must be set to SSVD or
STEIGEN.

See Also:

Oracle Machine Learning for SQL Concepts

41.1.2.20 DBMS_DATA_MINING — Algorithm Settings: Support Vector
Machine

The settings listed in the following table configure the behavior of the Support Vector
Machine algorithm.

Table 41-28 SVM Settings

Setting Name Setting Value Description

SVMS_COMPLEXITY_FACTO
R

TO_CHAR(numeric_ex
pr >0)

Regularization setting that balances the complexity of
the model against model robustness to achieve good
generalization on new data. SVM uses a data-driven
approach to finding the complexity factor.

Value of complexity factor for SVM algorithm (both
classification and regression).

Default value estimated from the data by the algorithm.

SVMS_CONV_TOLERANCE TO_CHAR(numeric_ex
pr >0)

Convergence tolerance for SVM algorithm.

Default is 0.0001.

SVMS_EPSILON TO_CHAR(numeric_ex
pr >0)

Regularization setting for regression, similar to complexity
factor. Epsilon specifies the allowable residuals, or noise, in
the data.

Value of epsilon factor for SVM regression.

Default is 0.1.

SVMS_KERNEL_FUNCTION SVMS_GAUSSIAN

SVMS_LINEAR

Kernel for Support Vector Machine. Linear or Gaussian.

The default value is SVMS_LINEAR.

SVMS_OUTLIER_RATE TO_CHAR(0<
numeric_expr <1)

The desired rate of outliers in the training data. Valid for
One-Class SVM models only (anomaly detection).

Default is 0.01.

SVMS_STD_DEV TO_CHAR(numeric_ex
pr >0)

Controls the spread of the Gaussian kernel function. SVM
uses a data-driven approach to find a standard deviation
value that is on the same scale as distances between typical
cases.

Value of standard deviation for SVM algorithm.

This is applicable only for Gaussian kernel.

Default value estimated from the data by the algorithm.

Chapter 41
DBMS_DATA_MINING

41-39

Table 41-28 (Cont.) SVM Settings

Setting Name Setting Value Description

SVMS_NUM_ITERATIONS Positive integer This setting sets an upper limit on the number of SVM
iterations. The default is system determined because it
depends on the SVM solver.

SVMS_NUM_PIVOTS Range [1; 10000] This setting sets an upper limit on the number of pivots used
in the Incomplete Cholesky decomposition. It can be set only
for non-linear kernels. The default value is 200.

SVMS_BATCH_ROWS Positive integer This setting applies to SVM models with linear kernel. This
setting sets the size of the batch for the SGD solver. An input
of 0 triggers a data driven batch size estimate. The default is
20000.

SVMS_REGULARIZER SVMS_REGULARIZER_L
1

SVMS_REGULARIZER_L
2

This setting controls the type of regularization that the SGD
SVM solver uses. The setting can be used only for linear
SVM models. The default is system determined because it
depends on the potential model size.

SVMS_SOLVER SVMS_SOLVER_SGD
(Sub-Gradient
Descend)

SVMS_SOLVER_IPM
(Interior Point Method)

This setting allows the user to choose the SVM solver. The
SGD solver cannot be selected if the kernel is non-linear. The
default value is system determined.

See Also:

Oracle Machine Learning for SQL Concepts for information about SVM

41.1.2.21 DBMS_DATA_MINING — Algorithm Settings: XGBoost
Settings that configure the behavior of the XGBoost gradient boosting algorithm.

The XGBoost settings are case sensitive. Enter the settings as they appear in the
settings table. These settings match the XGBoost settings available in open source.

Table 41-29 General Settings

Setting Name Setting Value Description

booster A string that is one of the following:

dart

gblinear

gbtree

The booster to use:

• dart
• gblinear
• gbtree
The dart and gbtree boosters
use tree-based models whereas
gblinear uses linear functions.

The default value is gbtree.

num_round A non-negative integer. The number of rounds for boosting.

The default value is 10.

Chapter 41
DBMS_DATA_MINING

41-40

Table 41-30 Settings for Tree Boosting

Setting Name Setting Value Description

alpha A non-negative number L1 regularization term on weights.
Increasing this value makes the model more
conservative.

The default value is 0.

colsample_bylevel A number in the range (0, 1] Subsample ratio of columns for each split, in
each level. Subsampling occurs each time
a new split is made. This parameter has no
effect when tree_method is set to hist.

The default value is 1.

colsample_bynode A number in the range (0, 1] The subsample ratio of columns for each
node (split). Subsampling occurs once
every time a new split is evaluated. Columns
are subsampled from the set of columns
chosen for the current level.

The default value is 1.

colsample_bytree A number in the range (0, 1] Subsample ratio of columns when
constructing each tree. Subsampling occurs
once in every boosting iteration.

The default value is 1.

eta A number in the range [0, 1] Step-size shrinkage used in the update
step to prevent overfitting. After each
boosting step, eta shrinks the feature
weights to make the boosting process more
conservative.

The default value is 0.3.

gamma A number in the range [0, ∞] Minimum loss reduction required to make
a further partition on a leaf node of the
tree. The larger gamma value is, the more
conservative the algorithm is.

The default value is 0.

grow_policy A string; one of the following:

• depthwise
• lossguide

Controls the way new nodes are added to
the tree:

• depthwise splits at nodes closest to
the root

• lossguide splits at nodes with the
highest loss change

Valid only if tree_method is set to hist.

The default value is depthwise.

lambda A non-negative number L2 regularization term on weights.

The default value is 1.

max_bin A non-negative integer Maximum number of discrete bins to bucket
continuous features. Increasing this number
improves the optimality of splits at the cost
of higher computation time.

This parameter is valid only when
tree_method is set to hist.

The default value is 256.

Chapter 41
DBMS_DATA_MINING

41-41

Table 41-30 (Cont.) Settings for Tree Boosting

Setting Name Setting Value Description

max_delta_step A number in the range [0, ∞] Maximum delta step allowed for each leaf
output.

Setting this to a positive value can help
make the update step more conservative.
Usually this parameter is not needed, but it
might help in logistic regression when the
class is extremely imbalanced. Setting it to
value from 1 to 10 might help control the
update.

The default value is 0, which means there is
no constraint.

max_depth An integer in the range [0, ∞] Maximum depth of a tree. Increasing this
value makes the model more complex and
more likely to overfit.

Setting this to 0 indicates no limit.

Note:

You must set a
max_depth
limit when the
grow_policy
setting is
depthwise.

The default value is 6.

max_leaves A non-negative number Maximum number of nodes to add.

Use this setting only when grow_policy is
set to lossguide.

The default value is 0.

min_child_weight A number in the range [0, ∞] Minimum sum of instance weight (hessian)
needed in a child. If the tree partition
step results in a leaf node with a
sum of instance weight less than
min_child_weight, then the building
process stops partitioning. In a linear
regression task, this corresponds to the
minimum number of instances needed in
each node. The larger min_child_weight
is, the more conservative the algorithm is.

The default value is 1.

num_parallel_tree A non-negative integer Number of parallel trees constructed during
each iteration. Use this option to support a
boosted random forest.

The default value is 1.

Chapter 41
DBMS_DATA_MINING

41-42

Table 41-30 (Cont.) Settings for Tree Boosting

Setting Name Setting Value Description

scale_pos_weight A non-negative number Controls the balance of positive and
negative weights, which is useful for
unbalanced classes. A typical value
to consider: sum(negative cases) /
sum(positive cases).

The default value is 1.

sketch_eps A number in the range (0, 1] Increases enumeration accuracy. Valid only
for the approximate greedy tree method.

Compared to directly selecting the number
of bins, this setting comes with a theoretical
guarantee with sketch accuracy. You usually
do not need to change this setting, but you
might consider setting a lower number for
more accurate enumeration.

The default value is 0.03.

subsample A number in the range (0, 1] Subsample ratio of the training instances. A
setting of 0.5 means that XGBoost randomly
samples half of the training data prior to
growing trees, which prevents overfitting.
Subsampling occurs once in every boosting
iteration.

The default value is 1.

tree_method A string that is one of the
following:

• approx
• auto
• exact
• hist

Tree construction algorithm used in
XGBoost:

• approx: Approximate greedy algorithm
using sketching and histogram.

• auto: Use a heuristic to choose the
faster algorithm:
– For a small to medium sized

data set, uses the exact greedy
algorithm.

– For a very large data set, uses the
approximate greedy algorithm.

• exact: Exact greedy algorithm.
• hist: Fast histogram optimized

approximate greedy algorithm; uses
some performance improvements such
as bins caching.

The default value is auto.

Chapter 41
DBMS_DATA_MINING

41-43

Table 41-30 (Cont.) Settings for Tree Boosting

Setting Name Setting Value Description

updater A comma-separated string; one or
more of the following:

• grow_colmaker
• grow_histmaker
• grow_local_histmaker
• grow_skmaker
• grow_quantile_histmake

r
• prune
• sync

Defines the sequence of tree updaters
to run, which provides a modular way to
construct and to modify the trees. This
is an advanced parameter that is usually
set automatically, depending on some other
parameters. However, you can also explicitly
specify a settting.

The setting values are:

• grow_colmaker: Non-distributed
column-based construction of trees.

• grow_histmaker: Distributed tree
construction with row-based data
splitting based on a global proposal of
histogram counting.

• grow_local_histmaker: Based on
local histogram counting.

• grow_skmaker: Uses the approximate
sketching algorithm.

• grow_quantile_histmaker: Grow
tree using quantized histogram.

• prune: Prunes the splits where loss <
min_split_loss (or gamma).

• sync: Synchronizes trees in all
distributed nodes.

Table 41-31 Settings for the Dart Booster

Setting Name Setting Value Description

one_drop A number that is 0 or
1

When set to 1, at least one tree is always dropped during
the dropout. When set to 0, at least one tree is not always
dropped during the dropout.

The default value is 0.

normalize_type A string; either:

• forest
• tree

Type of normalization algorithm:

• forest: New trees have the same weight as the sum of
the dropped trees (forest):
– The weight of new trees is 1 / (1 +

learning_rate)
– Dropped trees are scaled by a factor of 1 / (l +

learning_rate)
• tree: New trees have the same weight as dropped trees:

– The weight of new trees is 1 / (k +
learning_rate)

– Dropped trees are scaled by a factor of k / (k +
learning_rate)

The default value is tree.

rate_drop A number in the
range [0.0, 1.0]

Dropout rate (a fraction of the previous trees to drop during
the dropout).

The default value is 0.0.

Chapter 41
DBMS_DATA_MINING

41-44

Table 41-31 (Cont.) Settings for the Dart Booster

Setting Name Setting Value Description

sample_type A string; either:

• uniform
• weighted

Type of sampling algorithm:

• uniform: Dropped trees are selected uniformly
• weighted: Dropped trees are selected in proportion to

weight
The default value is uniform.

skip_drop A number in the
range [0.0, 1.0]

Probability of skipping the dropout procedure during a
boosting iteration. If a dropout is skipped, new trees are added
in the same manner as gbtree.

A non-zero skip_drop has higher priority than rate_drop or
one_drop.

The default value is 0.0.

Table 41-32 Settings for the Linear Booster

Setting Name Setting Value Description

alpha A non-negative number L1 regularization term on weights, normalized to the
number of training examples. Increasing this value
makes the model more conservative.

The default value is 0.

feature_selector A string that is one of the
following:

• cyclic
• greedy
• random
• shuffle
• thrifty

Feature selection and ordering method:

• cyclic: Deterministic selection by cycling
through the features one at a time.

• greedy: Selects the coordinate with the
greatest gradient magnitude. This method:
– Has O(num_feature^2) complexity
– Is fully deterministic
– Allows restricting the selection to the

top_k features per group with the
largest magnitude of univariate weight
change, by setting the top_k parameter;
doing so reduces the complexity to
O(num_feature*top_k).

• random: A random (with replacement)
coordinate selector.

• shuffle: Similar to cyclic but with random
feature shuffling prior to each update.

• thrifty: Thrifty, approximately-greedy feature
selector. Prior to cyclic updates, reorders
features in descending magnitude of their
univariate weight changes. This operation
is multithreaded and is a linear complexity
approximation of the quadratic greedy
selection. Restricts the selection per group to
the top_k features with the largest magnitude
of univariate weight change.

The default value is cyclic.

Chapter 41
DBMS_DATA_MINING

41-45

Table 41-32 (Cont.) Settings for the Linear Booster

Setting Name Setting Value Description

lambda A non-negative number L2 regularization term on weights, normalized to the
number of training examples. Increasing this value
makes the model more conservative.

The default value is 0.

top_k A non-negative integer Number of top features to select for the greedy or
thrifty feature selector. The value of 0 uses all of
the features.

The default value is 0.

updater A string that is one of the
following:

• coord_descent
• shotgun

Algorithm to fit the linear model:

• coord_descent: Ordinary coordinate descent
algorithm; multithreaded but still produces a
deterministic solution.

• shotgun: Parallel coordinate descent algorithm
based on the shotgun algorithm; uses
"hogwild" parallelism and therefore produces a
nondeterministic solution on each run.

The default value is shotgun.

Table 41-33 Settings for Tweedie Regression

Setting Name Setting Value Description

tweedie_variance_power A number in the range (1, 2) Controls the variance of the
Tweedie distribution var(y) ~
E(y)^tweedie_variance_power.

A setting closer to 1 shifts towards a
Poisson distribution.

A setting closer to 2 shifts towards a
gamma distribution.

The default value is 1.5.

Some XGBoost objectives apply only to classification function models and other
objectives apply only to regression function models. If you specify an incompatible
objective value, an error is raised. In the DBMS_DATA_MINING.CREATE_MODEL
procedure, if you specify DBMS_DATA_MINING.CLASSIFICATION as the function, then the
only objective values that you can use are the binary and multi values. The one
exception is binary: logitraw, which produces a continuous value and applies only
to a regression model. If you specify DBMS_DATA_MINING.REGRESSION as the function,
then you can specify binary: logitraw or any of the count, rank, reg, and survival
values as the objective.

Chapter 41
DBMS_DATA_MINING

41-46

Table 41-34 Settings for Learning Tasks

Setting Name Setting Value Description

objective For a classification model,
a string that is one of the
following:

• binary:hinge
• binary:logistic
• multi:softmax
• multi:softprob
For a regression model, a
string that is one of the
following:

• binary:logitraw
• count:poisson
• rank:map
• rank:ndcg
• rank:pairwise
• reg:gamma
• reg:logistic
• reg:tweedie
• survival:cox
• reg:squarederror
• reg:squaredlogerror

Settings for a Classification model:
• binary:hinge: Hinge loss for binary

classification. This setting makes predictions of
0 or 1, rather than producing probabilities.

• binary:logistic: Logistic regression for binary
classification. The output is the probability.

• multi:softmax: Performs multiclass
classification using the softmax
objective; you must also set
num_class(number_of_classes).

• multi:softprob: : Same as softmax, except
the output is a vector of ndata * nclass,
which can be further reshaped to an ndata *
nclass matrix. The result contains the predicted
probability of each data point belonging to each
class.

The default objective value for classification is
multi:softprob.

Settings for a Regression model:
• binary:logitraw: Logistic regression for binary

classification; the output is the score before
logistic transformation.

• count:poisson: Poisson regression for count
data; the output is the mean of the Poisson
distribution. The max_delta_step value is set to
0.7 by default in Poisson regression to safeguard
optimization.

• rank:map: Using LambdaMART, performs list-
wise ranking in which the Mean Average
Precision (MAP) is maximized.

• rank:ndcg: Using LambdaMART, performs list-
wise ranking in which the Normalized Discounted
Cumulative Gain (NDCG) is maximized.

• rank:pairwise: Performs ranking by minimizing
the pairwise loss.

• reg:gamma: Gamma regression with log-link; the
output is the mean of the gamma distribution.
This setting might be useful for any outcome that
might be gamma-distributed, such as modeling
insurance claims severity.

• reg:logistic: Logistic regression.
• reg:tweedie: Tweedie regression with log-link.

This setting might be useful for any outcome that
might be Tweedie-distributed, such as modeling
total loss in insurance.

• survival:cox: Cox regression for right-
censored survival time data (negative values
are considered right-censored). Predictions are
returned on the hazard ratio scale (that is,
as HR = exp(marginal_prediction) in the
proportional hazard function h(t) = h0(t) *
HR).

Chapter 41
DBMS_DATA_MINING

41-47

Table 41-34 (Cont.) Settings for Learning Tasks

Setting Name Setting Value Description

• reg:squarederror: Regression with squared
loss.

• reg:squaredlogerror: Regression with
squared log loss. All input labels must be greater
than -1.

The default objective value for regression is
reg:squarederror.

base_score A number Initial prediction score of all instances, global bias.

For a sufficient number of iterations, changing this
value does not have much effect.

The default value is 0.5.

Chapter 41
DBMS_DATA_MINING

41-48

Table 41-34 (Cont.) Settings for Learning Tasks

Setting Name Setting Value Description

eval_metric A comma-separated string;
one or more of the following:

• auc
• aucpr
• cox-nloglik
• error
• error@t
• gamma-deviance
• gamma-nloglik
• logloss
• mae
• map
• map@n
• merror
• mlogloss
• ndcg
• ndcg@n
• poisson-nloglik
• rmse
• tweedie-nloglik@rho
• ndcg-
• map-
• rmsle

Evaluation metrics for validation data. You can specify
one or more of these evaluation metrics:

• auc: Area under the curve.
• aucpr: Area under the PR curve.
• cox-nloglik: Negative partial log-likelihood for

Cox proportional hazards regression.
• error: Binary classification error rate, calculated

as the number of wrong cases divided by the
number of all cases. For the predictions, the
evaluation regards the instances with a prediction
value larger than 0.5 as positive instances, and
the others as negative instances.

• error@t: You can specify a binary classification
threshold value other than 0.5 by specifying a
numerical value t; for example, error@0.8.

• gamma-deviance: Residual deviance for gamma
regression.

• gamma-nloglik: Negative log-likelihood for
gamma regression.

• logloss: Negative log-likelihood.
• mae: Mean absolute error.
• map: Mean average precision.
• map@n: Assigns the integer n as the cut-off value

for the top positions in the lists for evaluation.
• merror: Multiclass classification error rate

calculated as the number of wrong cases divided
by the number of all cases; the objective must be
multi:softprob or multi:softmax.

• mlogloss: Multiclass logloss; the objective
must be multi:softprob or multi:softmax.

• ndcg: Normalized Discounted Cumulative Gain.
• ndcg@n: Assigns the integer n as the cut-off

value for the top positions in the lists for
evaluation.

• poisson-nloglik: Negative log-likelihood for
Poisson regression

• rmse: Root Mean Square Error.
• tweedie-nloglik@rho: Negative log-likelihood

for Tweedie regression (at a specified value rho
of the tweedie_variance_power parameter);
rho must be a number in the range (1, 2); for
example, tweedie-nloglik@1.8.

• ndcg- and map-: In XGBoost, NDCG and
MAP will evaluate the score of a list without
any positive samples as 1. By adding “-” in
the evaluation metric XGBoost will evaluate
these score as 0 to be consistent under some
conditions.

• rmsle: It is root mean square log error. This
is the default metric of reg:squaredlogerror
objective. This metric reduces errors generated

Chapter 41
DBMS_DATA_MINING

41-49

Table 41-34 (Cont.) Settings for Learning Tasks

Setting Name Setting Value Description

by outliers in dataset. But because log function
is employed, rmsle might output nan when
prediction value is less than -1.

A default metric is assigned according to the
objective:

• error for classification
• mean average precision for ranking
• rmse for regression

seed A non-negative integer Random number seed.

The default value is 0.

See Also:

https://github.com/oracle/oracle-db-examples/tree/master/machine-
learning/sql/20c GitHub repository for an example of XGBoost.

41.1.3 DBMS_DATA_MINING — Solver Settings
Oracle Machine Learning for SQL algorithms can use different solvers. Solver settings
can be provided at build time in the settings table.

Related Topics

• DBMS_DATA_MINING - Solver Settings: Adam
These settings configure the behavior of the Adaptive Moment Estimation (Adam)
solver.

• DBMS_DATA_MINING — Solver Settings: ADMM
The settings listed in the following table configure the behavior of Alternating
Direction Method of Multipliers (ADMM). The Generalized Linear Model (GLM)
algorithm uses these settings.

• DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Model (GLM) use these settings.

41.1.3.1 DBMS_DATA_MINING - Solver Settings: Adam
These settings configure the behavior of the Adaptive Moment Estimation (Adam)
solver.

Neural Network models use these settings.

Chapter 41
DBMS_DATA_MINING

41-50

https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c
https://github.com/oracle/oracle-db-examples/tree/master/machine-learning/sql/20c

Table 41-35 DBMS_DATA_MINING Adam Settings

Setting Name Setting Value Description

ADAM_ALPHA A non-negative double
precision floating point number
in the interval (0; 1]

The learning rate for Adam.

The default value is 0.001.

ADAM_BATCH_ROWS A positive integer The number of rows per batch.

The default value is 10000.

ADAM_BETA1 A positive double precision
floating point number in the
interval [0; 1)

The exponential decay rate for
the 1st moment estimates.

The default value is 0.9.

ADAM_BETA2 A positive double precision
floating point number in the
interval [0; 1)

The exponential decay rate for
the 2nd moment estimates.

The default value is 0.99.

ADAM_GRADIENT_TOLERANCE A positive double precision
floating point number

The gradient infinity norm
tolerance for Adam.

The default value is 1E-9.

41.1.3.2 DBMS_DATA_MINING — Solver Settings: ADMM
The settings listed in the following table configure the behavior of Alternating Direction
Method of Multipliers (ADMM). The Generalized Linear Model (GLM) algorithm uses
these settings.

Table 41-36 DBMS_DATA_MINING ADMM Settings

Settings Name Setting Value Description

ADMM_CONSENSUS A positive integer It is a ADMM’s consensus parameter.
The value must be a positive number.
The default value is 0.1.

ADMM_ITERATIONS A positive integer The number of ADMM iterations. The
value must be a positive integer. The
default value is 50.

ADMM_TOLERANCE A positive integer It is a tolerance parameter. The value
must be a positive number. The
default value is 0.0001

Related Topics

• Oracle Machine Learning for SQL Concepts

See Also:

Oracle Machine Learning for SQL Concepts for information about neural
network

Chapter 41
DBMS_DATA_MINING

41-51

41.1.3.3 DBMS_DATA_MINING — Solver Settings: LBFGS
The settings listed in the following table configure the behavior of L-BFGS. Neural
Network and Generalized Linear Model (GLM) use these settings.

Table 41-37 DBMS_DATA_MINING L-BFGS Settings

Setting Name Setting Value Description

LBFGS_GRADIENT_TOLERANCE TO_CHAR (numeric_expr >0) Defines gradient infinity norm
tolerance for L-BFGS. Default value
is 1E-9.

LBFGS_HISTORY_DEPTH The value must be a positive integer. Defines the number of historical
copies kept in L-BFGS solver.

The default value is 20.

LBFGS_SCALE_HESSIAN LBFGS_SCALE_HESSIAN_ENABLE

LBFGS_SCALE_HESSIAN_DISABLE

Defines whether to scale Hessian in
L-BFGS or not.

Default value is
LBFGS_SCALE_HESSIAN_ENABLE.

See Also:

Oracle Machine Learning for SQL Concepts for information about neural
network

41.1.4 DBMS_DATA_MINING Datatypes
The DBMS_DATA_MINING package defines object data types for processing transactional
data. The package also defines a type for user-specified transformations. These
types are called DM_NESTED_n, where n identifies the Oracle data type of the nested
attributes.

The Oracle Machine Learning for SQL object data types are described in the following
table:

Table 41-38 DBMS_DATA_MINING Summary of Data Types

Datatype Description

DM_NESTED_BINARY_DOUBLE The name and value of a numerical attribute of type
BINARY_DOUBLE.

DM_NESTED_BINARY_DOUBLES A collection of DM_NESTED_BINARY_DOUBLE.

DM_NESTED_BINARY_FLOAT The name and value of a numerical attribute of type
BINARY_FLOAT.

DM_NESTED_BINARY_FLOATS A collection of DM_NESTED_BINARY_FLOAT.

DM_NESTED_CATEGORICAL The name and value of a categorical attribute of type CHAR,
VARCHAR, or VARCHAR2.

DM_NESTED_CATEGORICALS A collection of DM_NESTED_CATEGORICAL.

Chapter 41
DBMS_DATA_MINING

41-52

Table 41-38 (Cont.) DBMS_DATA_MINING Summary of Data Types

Datatype Description

DM_NESTED_NUMERICAL The name and value of a numerical attribute of type NUMBER
or FLOAT.

DM_NESTED_NUMERICALS A collection of DM_NESTED_NUMERICAL.

ORA_MINING_VARCHAR2_NT A table of VARCHAR2(4000).

TRANSFORM_LIST A list of user-specified transformations for a model.
Accepted as a parameter by the CREATE_MODEL
Procedure.

This collection type is defined in the
DBMS_DATA_MINING_TRANSFORM package.

For more information about processing nested data, see Oracle Machine Learning for
SQL User’s Guide.

Note:

Starting from Oracle Database 12c Release 2, *GET_MODEL_DETAILS are
deprecated and are replaced with Model Detail Views. See Oracle Machine
Learning for SQL User’s Guide.

41.1.4.1 Deprecated Types
This topic contains tables listing deprecated types.

The DBMS_DATA_MINING package defines object datatypes for storing information about
model attributes. Most of these types are returned by the table functions GET_n, where
n identifies the type of information to return. These functions take a model name as
input and return the requested information as a collection of rows.

For a list of the GET functions, see "Summary of DBMS_DATA_MINING Subprograms".

All the table functions use pipelining, which causes each row of output to be
materialized as it is read from model storage, without waiting for the generation of
the complete table object. For more information on pipelined, parallel table functions,
consult the Oracle Database PL/SQL Language Reference.

Table 41-39 DBMS_DATA_MINING Summary of Deprecated Datatypes

Datatype Description

DM_CENTROID The centroid of a cluster.

DM_CENTROIDS A collection of DM_CENTROID. A member of DM_CLUSTER.

DM_CHILD A child node of a cluster.

DM_CHILDREN A collection of DM_CHILD. A member of DM_CLUSTER.

Chapter 41
DBMS_DATA_MINING

41-53

Table 41-39 (Cont.) DBMS_DATA_MINING Summary of Deprecated Datatypes

Datatype Description

DM_CLUSTER A cluster. A cluster includes DM_PREDICATES,
DM_CHILDREN, DM_CENTROIDS, and DM_HISTOGRAMS. It
also includes a DM_RULE.

See also, DM_CLUSTER Fields.

DM_CLUSTERS A collection of DM_CLUSTER. Returned
by GET_MODEL_DETAILS_KM Function,
GET_MODEL_DETAILS_OC Function, and
GET_MODEL_DETAILS_EM Function.

See also, DM_CLUSTER Fields.

DM_CONDITIONAL The conditional probability of an attribute in a Naive Bayes
model.

DM_CONDITIONALS A collection of DM_CONDITIONAL. Returned by
GET_MODEL_DETAILS_NB Function.

DM_COST_ELEMENT The actual and predicted values in a cost matrix.

DM_COST_MATRIX A collection of DM_COST_ELEMENT. Returned by
GET_MODEL_COST_MATRIX Function.

DM_EM_COMPONENT A component of an Expectation Maximization model.

DM_EM_COMPONENT_SET A collection of DM_EM_COMPONENT. Returned by
GET_MODEL_DETAILS_EM_COMP Function.

DM_EM_PROJECTION A projection of an Expectation Maximization model.

DM_EM_PROJECTION_SET A collection of DM_EM_PROJECTION. Returned by
GET_MODEL_DETAILS_EM_PROJ Function.

DM_GLM_COEFF The coefficient and associated statistics of an attribute in a
Generalized Linear Model.

DM_GLM_COEFF_SET A collection of DM_GLM_COEFF. Returned by
GET_MODEL_DETAILS_GLM Function.

DM_HISTOGRAM_BIN A histogram associated with a cluster.

DM_HISTOGRAMS A collection of DM_HISTOGRAM_BIN. A member of
DM_CLUSTER.

See also, DM_CLUSTER Fields.

DM_ITEM An item in an association rule.

DM_ITEMS A collection of DM_ITEM.

DM_ITEMSET A collection of DM_ITEMS.

DM_ITEMSETS A collection of DM_ITEMSET. Returned by
GET_FREQUENT_ITEMSETS Function.

DM_MODEL_GLOBAL_DETAIL High-level statistics about a model.

DM_MODEL_GLOBAL_DETAILS A collection of DM_MODEL_GLOBAL_DETAIL. Returned by
GET_MODEL_DETAILS_GLOBAL Function.

DM_NB_DETAIL Information about an attribute in a Naive Bayes model.

DM_NB_DETAILS A collection of DM_DB_DETAIL. Returned by
GET_MODEL_DETAILS_NB Function.

DM_NMF_ATTRIBUTE An attribute in a feature of a Non-Negative Matrix
Factorization model.

Chapter 41
DBMS_DATA_MINING

41-54

Table 41-39 (Cont.) DBMS_DATA_MINING Summary of Deprecated Datatypes

Datatype Description

DM_NMF_ATTRIBUTE_SET A collection of DM_NMF_ATTRIBUTE. A member of
DM_NMF_FEATURE.

DM_NMF_FEATURE A feature in a Non-Negative Matrix Factorization model.

DM_NMF_FEATURE_SET A collection of DM_NMF_FEATURE. Returned by
GET_MODEL_DETAILS_NMF Function.

DM_PREDICATE Antecedent and consequent in a rule.

DM_PREDICATES A collection of DM_PREDICATE. A member
of DM_RULE and DM_CLUSTER. Predicates
are returned by GET_ASSOCIATION_RULES
Function, GET_MODEL_DETAILS_EM Function,
GET_MODEL_DETAILS_KM Function, and
GET_MODEL_DETAILS_OC Function.

See also, DM_CLUSTER Fields.

DM_RANKED_ATTRIBUTE An attribute ranked by its importance in an Attribute
Importance model.

DM_RANKED_ATTRIBUTES A collection of DM_RANKED_ATTRIBUTE. Returned by
GET_MODEL_DETAILS_AI Function.

DM_RULE A rule that defines a conditional relationship.

The rule can be one of the association rules returned
by GET_ASSOCIATION_RULES Function, or it can be
a rule associated with a cluster in the collection of
clusters returned by GET_MODEL_DETAILS_KM Function
and GET_MODEL_DETAILS_OC Function.

See also, DM_CLUSTER Fields.

DM_RULES A collection of DM_RULE. Returned by
GET_ASSOCIATION_RULES Function.

See also, DM_CLUSTER Fields.

DM_SVD_MATRIX A factorized matrix S, V, or U returned by a Singular Value
Decomposition model.

DM_SVD_MATRIX_SET A collection of DM_SVD_MATRIX. Returned by
GET_MODEL_DETAILS_SVD Function.

DM_SVM_ATTRIBUTE The name, value, and coefficient of an attribute in a Support
Vector Machine model.

DM_SVM_ATTRIBUTE_SET A collection of DM_SVM_ATTRIBUTE. Returned by
GET_MODEL_DETAILS_SVM Function. Also a member of
DM_SVM_LINEAR_COEFF.

DM_SVM_LINEAR_COEFF The linear coefficient of each attribute in a Support Vector
Machine model.

DM_SVM_LINEAR_COEFF_SET A collection of DM_SVM_LINEAR_COEFF. Returned by
GET_MODEL_DETAILS_SVM Function for an SVM model
built using the linear kernel.

DM_TRANSFORM The transformation and reverse transformation expressions
for an attribute.

DM_TRANSFORMS A collection of DM_TRANSFORM. Returned by
GET_MODEL_TRANSFORMATIONS Function.

Chapter 41
DBMS_DATA_MINING

41-55

Return Values for Clustering Algorithms

The table contains description of DM_CLUSTER return value columns, nested table
columns, and rows.

Table 41-40 DM_CLUSTER Return Values for Clustering Algorithms

Return Value Description

DM_CLUSTERS A set of rows of type DM_CLUSTER. The rows have the following columns:

(id NUMBER,
 cluster_id VARCHAR2(4000),
 record_count NUMBER,
 parent NUMBER,
 tree_level NUMBER,
 dispersion NUMBER,
 split_predicate DM_PREDICATES,
 child DM_CHILDREN,
 centroid DM_CENTROIDS,
 histogram DM_HISTOGRAMS,
 rule DM_RULE)

DM_PREDICATE The antecedent and consequent columns each return nested tables
of type DM_PREDICATES. The rows, of type DM_PREDICATE, have the
following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

DM_CLUSTER Fields

The following table describes DM_CLUSTER fields.

Table 41-41 DM_CLUSTER Fields

Column Name Description

id Cluster identifier

cluster_id The ID of a cluster in the model

record_count Specifies the number of records

parent Parent ID

tree_level Specifies the number of splits from the root

dispersion A measure used to quantify whether a set of observed
occurrences are dispersed compared to a standard
statistical model.

Chapter 41
DBMS_DATA_MINING

41-56

Table 41-41 (Cont.) DM_CLUSTER Fields

Column Name Description

split_predicate The split_predicate column of DM_CLUSTER returns a
nested table of type DM_PREDICATES. Each row, of type
DM_PREDICATE, has the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2) /
=,<>,<,>,<=,>=/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Note: The Expectation Maximization algorithm uses all the
fields except dispersion and split_predicate.

child The child column of DM_CLUSTER returns a nested table
of type DM_CHILDREN. The rows, of type DM_CHILD, have a
single column of type NUMBER, which contains the identifiers
of each child.

centroid The centroid column of DM_CLUSTER returns a nested
table of type DM_CENTROIDS. The rows, of type
DM_CENTROID, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 mean NUMBER,
 mode_value VARCHAR2(4000),
 variance NUMBER)

histogram The histogram column of DM_CLUSTER returns a
nested table of type DM_HISTOGRAMS. The rows, of type
DM_HISTOGRAM_BIN, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 bin_id NUMBER,
 lower_bound NUMBER,
 upper_bound NUMBER,
 label VARCHAR2(4000),
 count NUMBER)

rule The rule column of DM_CLUSTER returns a single row of
type DM_RULE. The columns are:

 (rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

Chapter 41
DBMS_DATA_MINING

41-57

Usage Notes

• The table function pipes out rows of type DM_CLUSTER. For information on Oracle
Machine Learning for SQL data types and piped output from table functions, see
"Data Types".

• For descriptions of predicates (DM_PREDICATE) and rules (DM_RULE), see
GET_ASSOCIATION_RULES Function.

41.1.5 Summary of DBMS_DATA_MINING Subprograms
This table summarizes the subprograms included in the DBMS_DATA_MINING package.

The GET_* interfaces are replaced by model views. Oracle recommends that users
leverage model detail views instead. For more information, refer to Model Detail Views
in Oracle Machine Learning for SQL User’s Guide and Static Data Dictionary Views:
ALL_ALL_TABLES to ALL_OUTLINES in Oracle Database Reference.

Table 41-42 DBMS_DATA_MINING Package Subprograms

Subprogram Purpose

ADD_COST_MATRIX Procedure Adds a cost matrix to a classification model

ADD_PARTITION Procedure Adds single or multiple partitions in an existing partition
model

ALTER_REVERSE_EXPRESSION
Procedure

Changes the reverse transformation expression to an
expression that you specify

APPLY Procedure Applies a model to a data set (scores the data)

COMPUTE_CONFUSION_MATRIX
Procedure

Computes the confusion matrix for a classification model

COMPUTE_CONFUSION_MATRIX
_PART Procedure

Computes the evaluation matrix for partitioned models

COMPUTE_LIFT Procedure Computes lift for a classification model

COMPUTE_LIFT_PART Procedure Computers lift for partitioned models

COMPUTE_ROC Procedure Computes Receiver Operating Characteristic (ROC) for a
classification model

COMPUTE_ROC_PART Procedure Computes Receiver Operating Characteristic (ROC) for a
partitioned model

CREATE_MODEL Procedure Creates a model

CREATE_MODEL2 Procedure Creates a model without extra persistent stages

Create Model Using Registration
Information

Fetches setting information from JSON object

DROP_ALGORITHM Procedure Drops the registered algorithm information.

DROP_PARTITION Procedure Drops a single partition

DROP_MODEL Procedure Drops a model

EXPORT_MODEL Procedure Exports a model to a dump file

EXPORT_SERMODEL Procedure Exports a model in a serialized format

FETCH_JSON_SCHEMA Procedure Fetches and reads JSON schema from
all_mining_algorithms view

Chapter 41
DBMS_DATA_MINING

41-58

Table 41-42 (Cont.) DBMS_DATA_MINING Package Subprograms

Subprogram Purpose

GET_MODEL_COST_MATRIX
Function

Returns the cost matrix for a model

IMPORT_MODEL Procedure Imports a model into a user schema

IMPORT_SERMODEL Procedure Imports a serialized model back into the database

JSON Schema for R Extensible
Algorithm

Displays flexibility in creating JSON schema for R
Extensible

REGISTER_ALGORITHM
Procedure

Registers a new algorithm

RANK_APPLY Procedure Ranks the predictions from the APPLY results for a
classification model

REMOVE_COST_MATRIX
Procedure

Removes a cost matrix from a model

RENAME_MODEL Procedure Renames a model

Deprecated GET_MODEL_DETAILS

Starting from Oracle Database 12c Release 2, the following GET_MODEL_DETAILS are
deprecated:

Table 41-43 Deprecated GET_MODEL_DETAILS Functions

Subprogram Purpose

GET_ASSOCIATION_RULES Function Returns the rules from an association model

GET_FREQUENT_ITEMSETS Function Returns the frequent itemsets for an
association model

GET_MODEL_DETAILS_AI Function Returns details about an attribute importance
model

GET_MODEL_DETAILS_EM Function Returns details about an Expectation
Maximization model

GET_MODEL_DETAILS_EM_COMP Function Returns details about the parameters of an
Expectation Maximization model

GET_MODEL_DETAILS_EM_PROJ Function Returns details about the projects of an
Expectation Maximization model

GET_MODEL_DETAILS_GLM Function Returns details about a Generalized Linear
Model model

GET_MODEL_DETAILS_GLOBAL Function Returns high-level statistics about a model

GET_MODEL_DETAILS_KM Function Returns details about a k-Means model

GET_MODEL_DETAILS_NB Function Returns details about a Naive Bayes model

GET_MODEL_DETAILS_NMF Function Returns details about a Non-Negative Matrix
Factorization model

GET_MODEL_DETAILS_OC Function Returns details about an O-Cluster model

Chapter 41
DBMS_DATA_MINING

41-59

Table 41-43 (Cont.) Deprecated GET_MODEL_DETAILS Functions

Subprogram Purpose

GET_MODEL_SETTINGS Function Returns the settings used to build the given
model

This function is replaced with USER/ALL/
DBA_MINING_MODEL_SETTINGS

GET_MODEL_SIGNATURE Function Returns the list of columns from the build input
table

This function is replaced with USER/ALL/
DBA_MINING_MODEL_ATTRIBUTES

GET_MODEL_DETAILS_SVD Function Returns details about a Singular Value
Decomposition model

GET_MODEL_DETAILS_SVM Function Returns details about a Support Vector
Machine model with a linear kernel

GET_MODEL_TRANSFORMATIONS
Function

Returns the transformations embedded in a
model

This function is replaced with USER/ALL/
DBA_MINING_MODEL_XFORMS

GET_MODEL_DETAILS_XML Function Returns details about a Decision Tree model

GET_TRANSFORM_LIST Procedure Converts between two different transformation
specification formats

Related Topics

• Oracle Machine Learning for SQL User’s Guide

• Oracle Database Reference

41.1.5.1 ADD_COST_MATRIX Procedure
The ADD_COST_MATRIX procedure associates a cost matrix table with a classification
model. The cost matrix biases the model by assigning costs or benefits to specific
model outcomes.

The cost matrix is stored with the model and taken into account when the model is
scored.

You can also specify a cost matrix inline when you invoke an Oracle Machine Learning
for SQL function for scoring. To view the scoring matrix for a model, query the DM$VC
prefixed model view. Refer to Model Detail View for Classification Algorithm.

To obtain the default scoring matrix for a model, query the DM$VC prefixed model
view. To remove the default scoring matrix from a model, use the REMOVE_COST_MATRIX
procedure. See REMOVE_COST_MATRIX Procedure.

Chapter 41
DBMS_DATA_MINING

41-60

See Also:

• "Biasing a Classification Model" in Oracle Machine Learning for SQL
Concepts for more information about costs

• Oracle Database SQL Language Reference for syntax of inline cost
matrix

• Specifying Costs in Oracle Machine Learning for SQL User’s Guide

Syntax

DBMS_DATA_MINING.ADD_COST_MATRIX (
 model_name IN VARCHAR2,
 cost_matrix_table_name IN VARCHAR2,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);
 partition_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-44 ADD_COST_MATRIX Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is assumed.

cost_matrix_table_nam
e

Name of the cost matrix table (described in Table 41-45).

cost_matrix_schema_na
me

Schema of the cost matrix table. If no schema is specified, then
the current schema is used.

partition_name Name of the partition in a partitioned model

Usage Notes

1. If the model is not in your schema, then ADD_COST_MATRIX requires the ALTER
ANY MINING MODEL system privilege or the ALTER object privilege for the machine
learning model.

2. The cost matrix table must have the columns shown in Table 41-45.

Table 41-45 Required Columns in a Cost Matrix Table

Column Name Data Type

ACTUAL_TARGET_VALUE Valid target data type

PREDICTED_TARGET_VALUE Valid target data type

COST NUMBER,FLOAT, BINARY_DOUBLE, or BINARY_FLOAT

Chapter 41
DBMS_DATA_MINING

41-61

See Also:

Oracle Machine Learning for SQL User’s Guide for valid target data
types

3. The types of the actual and predicted target values must be the same as the type
of the model target. For example, if the target of the model is BINARY_DOUBLE,
then the actual and predicted values must be BINARY_DOUBLE. If the actual and
predicted values are CHAR or VARCHAR, then ADD_COST_MATRIX treats them as
VARCHAR2 internally.

If the types do not match, or if the actual or predicted value is not a valid target
value, then the ADD_COST_MATRIX procedure raises an error.

Note:

If a reverse transformation is associated with the target, then the actual
and predicted values must be consistent with the target after the reverse
transformation has been applied.

See “Reverse Transformations and Model Transparency”
under the “About Transformation Lists” section in
DBMS_DATA_MINING_TRANSFORM Operational Notes for more
information.

4. Since a benefit can be viewed as a negative cost, you can specify a benefit for
a given outcome by providing a negative number in the costs column of the cost
matrix table.

5. All classification algorithms can use a cost matrix for scoring. The Decision
Tree algorithm can also use a cost matrix at build time. If you want to build a
Decision Tree model with a cost matrix, specify the cost matrix table name in the
CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 41-7.

The cost matrix used to create a Decision Tree model becomes the default
scoring matrix for the model. If you want to specify different costs for scoring,
use the REMOVE_COST_MATRIX procedure to remove the cost matrix and the
ADD_COST_MATRIX procedure to add a new one.

6. Scoring on a partitioned model is partition-specific. Scoring cost matrices can
be added to or removed from an individual partition in a partitioned model. If
PARTITION_NAME is NOT NULL, then the model must be a partitioned model. The
COST_MATRIX is added to that partition of the partitioned model.

If the PARTITION_NAME is NULL, but the model is a partitioned model, then the
COST_MATRIX table is added to every partition in the model.

Example

This example creates a cost matrix table called COSTS_NB and adds it to a Naive
Bayes model called NB_SH_CLAS_SAMPLE. The model has a binary target: 1 means
that the customer responds to a promotion; 0 means that the customer does not
respond. The cost matrix assigns a cost of .25 to misclassifications of customers who
do not respond and a cost of .75 to misclassifications of customers who do respond.

Chapter 41
DBMS_DATA_MINING

41-62

This means that it is three times more costly to misclassify responders than it is to
misclassify non-responders.

CREATE TABLE costs_nb (
 actual_target_value NUMBER,
 predicted_target_value NUMBER,
 cost NUMBER);
INSERT INTO costs_nb values (0, 0, 0);
INSERT INTO costs_nb values (0, 1, .25);
INSERT INTO costs_nb values (1, 0, .75);
INSERT INTO costs_nb values (1, 1, 0);
COMMIT;

EXEC dbms_data_mining.add_cost_matrix('nb_sh_clas_sample', 'costs_nb');

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(nb_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

C CNT AVG_AGE
- ---------- ----------
F 72 39
M 555 44

41.1.5.2 ADD_PARTITION Procedure
ADD_PARTITION procedure supports a single or multiple partition addition to an existing
partitioned model.

The ADD_PARTITION procedure derives build settings and user-defined expressions
from the existing model. The target column must exist in the input data query when
adding partitions to a supervised model.

Syntax

DBMS_DATA_MINING.ADD_PARTITION (
 model_name IN VARCHAR2,
 data_query IN CLOB,
 add_options IN VARCHAR2 DEFAULT ERROR);

Parameters

Table 41-46 ADD_PARTITION Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do not
specify a schema, then your own schema is used.

data_query An arbitrary SQL statement that provides data to the model build. The user must
have privilege to evaluate this query.

Chapter 41
DBMS_DATA_MINING

41-63

Table 41-46 (Cont.) ADD_PARTITION Procedure Parameters

Parameter Description

add_options Allows users to control the conditional behavior of ADD for cases where rows in
the input dataset conflict with existing partitions in the model. The following are
the possible values:

• REPLACE: Replaces the existing partition for which the conflicting keys are
found.

• ERROR: Terminates the ADD operation without adding any partitions.
• IGNORE: Eliminates the rows having the conflicting keys.

Note:

For better performance, Oracle recommends using
DROP_PARTITION followed by the ADD_PARTITION
instead of using the REPLACE option.

41.1.5.3 ALTER_REVERSE_EXPRESSION Procedure
This procedure replaces a reverse transformation expression with an expression that
you specify. If the attribute does not have a reverse expression, the procedure creates
one from the specified expression.

You can also use this procedure to customize the output of clustering, feature
extraction, and anomaly detection models.

Syntax

DBMS_DATA_MINING.ALTER_REVERSE_EXPRESSION (
 model_name VARCHAR2,
 expression CLOB,
 attribute_name VARCHAR2 DEFAULT NULL,
 attribute_subname VARCHAR2 DEFAULT NULL);

Parameters

Table 41-47 ALTER_REVERSE_EXPRESSION Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, your own schema is used.

expression An expression to replace the reverse transformation associated with
the attribute.

attribute_name Name of the attribute. Specify NULL if you wish to apply expression
to a cluster, feature, or One-Class SVM prediction.

attribute_subname Name of the nested attribute if attribute_name is a nested column,
otherwise NULL.

Chapter 41
DBMS_DATA_MINING

41-64

Usage Notes

1. For purposes of model transparency, Oracle Machine Learning for SQL provides
reverse transformations for transformations that are embedded in a model.
Reverse transformations are applied to the attributes returned in model detail
views and to the scored target of predictive models.

See Also:

• “About Transformation Lists” under
DBMS_DATA_MINING_TRANSFORM Operational Notes

• Model Detail Views in Oracle Machine Learning for SQL User’s
Guide

2. If you alter the reverse transformation for the target of a model that has a cost
matrix, you must specify a transformation expression that has the same type as
the actual and predicted values in the cost matrix. Also, the reverse transformation
that you specify must result in values that are present in the cost matrix.

See Also:

"ADD_COST_MATRIX Procedure" and Oracle Machine Learning for
SQL Concepts for information about cost matrixes.

3. To prevent reverse transformation of an attribute, you can specify NULL for
expression.

4. The reverse transformation expression can contain a reference to a PL/SQL
function that returns a valid Oracle data type. For example, you could define a
function like the following for a categorical attribute named blood_pressure that
has values 'Low', 'Medium' and 'High'.

CREATE OR REPLACE FUNCTION numx(c char) RETURN NUMBER IS
 BEGIN
 CASE c WHEN ''Low'' THEN RETURN 1;
 WHEN ''Medium'' THEN RETURN 2;
 WHEN ''High'' THEN RETURN 3;
 ELSE RETURN null;
 END CASE;
 END numx;

Then you could invoke ALTER_REVERSE_EXPRESION for blood_pressure as follows.

EXEC dbms_data_mining.alter_reverse_expression(
 '<model_name>', 'NUMX(blood_pressure)', 'blood_pressure');

5. You can use ALTER_REVERSE_EXPRESSION to label clusters produced by clustering
models and features produced by feature extraction.

You can use ALTER_REVERSE_EXPRESSION to replace the zeros and ones returned
by anomaly-detection models. By default, anomaly-detection models label
anomalous records with 0 and all other records with 1.

Chapter 41
DBMS_DATA_MINING

41-65

See Also:

Oracle Machine Learning for SQL Concepts for information about
anomaly detection

Examples

1. In this example, the target (affinity_card) of the model CLASS_MODEL is
manipulated internally as yes or no instead of 1 or 0 but returned as 1s and 0s
when scored. The ALTER_REVERSE_EXPRESSION procedure causes the target values
to be returned as TRUE or FALSE.

DECLARE
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(v_xlst,
 'affinity_card', NULL,
 'decode(affinity_card, 1, ''yes'', ''no'')',
 'decode(affinity_card, ''yes'', 1, 0)');
 dbms_data_mining.CREATE_MODEL(
 model_name => 'CLASS_MODEL',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => NULL,
 data_schema_name => 'oml_user',
 settings_schema_name => NULL,
 xform_list => v_xlst);
 END;
/
SELECT cust_income_level, occupation,
 PREDICTION(CLASS_MODEL USING *) predict_response
 FROM mining_data_test WHERE age = 60 AND cust_gender IN 'M'
 ORDER BY cust_income_level;

CUST_INCOME_LEVEL OCCUPATION PREDICT_RESPONSE
------------------------------ --------------------- --------------------
A: Below 30,000 Transp. 1
E: 90,000 - 109,999 Transp. 1
E: 90,000 - 109,999 Sales 1
G: 130,000 - 149,999 Handler 0
G: 130,000 - 149,999 Crafts 0
H: 150,000 - 169,999 Prof. 1
J: 190,000 - 249,999 Prof. 1
J: 190,000 - 249,999 Sales 1

BEGIN
 dbms_data_mining.ALTER_REVERSE_EXPRESSION (
 model_name => 'CLASS_MODEL',
 expression => 'decode(affinity_card, ''yes'', ''TRUE'',
''FALSE'')',
 attribute_name => 'affinity_card');
END;
/
column predict_response on
column predict_response format a20
SELECT cust_income_level, occupation,

Chapter 41
DBMS_DATA_MINING

41-66

 PREDICTION(CLASS_MODEL USING *) predict_response
 FROM mining_data_test WHERE age = 60 AND cust_gender IN 'M'
 ORDER BY cust_income_level;

CUST_INCOME_LEVEL OCCUPATION PREDICT_RESPONSE
------------------------------ --------------------- --------------------
A: Below 30,000 Transp. TRUE
E: 90,000 - 109,999 Transp. TRUE
E: 90,000 - 109,999 Sales TRUE
G: 130,000 - 149,999 Handler FALSE
G: 130,000 - 149,999 Crafts FALSE
H: 150,000 - 169,999 Prof. TRUE
J: 190,000 - 249,999 Prof. TRUE
J: 190,000 - 249,999 Sales TRUE

2. This example specifies labels for the clusters that result from the sh_clus model.
The labels consist of the word "Cluster" and the internal numeric identifier for the
cluster.

BEGIN
 dbms_data_mining.ALTER_REVERSE_EXPRESSION('sh_clus', '''Cluster ''||
value');
END;
/

SELECT cust_id, cluster_id(sh_clus using *) cluster_id
 FROM sh_aprep_num
 WHERE cust_id < 100011
 ORDER by cust_id;

CUST_ID CLUSTER_ID
------- --
 100001 Cluster 18
 100002 Cluster 14
 100003 Cluster 14
 100004 Cluster 18
 100005 Cluster 19
 100006 Cluster 7
 100007 Cluster 18
 100008 Cluster 14
 100009 Cluster 8
 100010 Cluster 8

41.1.5.4 APPLY Procedure
The APPLY procedure applies a machine learning model to the data of interest, and
generates the results in a table. The APPLY procedure is also referred to as scoring.

For predictive machine learning functions, the APPLY procedure generates predictions
in a target column. For descriptive machine learning functions such as Clustering, the
APPLY process assigns each case to a cluster with a probability.

In Oracle Machine Learning for SQL, the APPLY procedure is not applicable to
Association models and Attribute Importance models.

Chapter 41
DBMS_DATA_MINING

41-67

Note:

Scoring can also be performed directly in SQL using the OML4SQL
functions. See

• Oracle Machine Learning for SQL Functions in Oracle Database SQL
Language Reference

• Scoring and Deployment in Oracle Machine Learning for SQL User’s
Guide

Syntax

DBMS_DATA_MINING.APPLY (
 model_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-48 APPLY Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

data_table_name Name of table or view containing the data to be scored

case_id_column_name Name of the case identifier column

result_table_name Name of the table in which to store apply results

data_schema_name Name of the schema containing the data to be scored

Usage Notes

1. The data provided for APPLY must undergo the same preprocessing as the data
used to create and test the model. When you use Automatic Data Preparation, the
preprocessing required by the algorithm is handled for you by the model: both at
build time and apply time. (See "Automatic Data Preparation".)

2. APPLY creates a table in the user's schema to hold the results. The columns are
algorithm-specific.

The columns in the results table are listed in Table 41-49 through Table 41-53. The
case ID column name in the results table will match the case ID column name
provided by you. The type of the incoming case ID column is also preserved in
APPLY output.

Chapter 41
DBMS_DATA_MINING

41-68

Note:

Make sure that the case ID column does not have the same name as
one of the columns that will be created by APPLY. For example, when
applying a Classification model, the case ID in the scoring data must not
be PREDICTION or PROBABILITY (See Table 41-49).

3. The data type for the PREDICTION, CLUSTER_ID, and FEATURE_ID output columns
is influenced by any reverse expression that is embedded in the model by the
user. If the user does not provide a reverse expression that alters the scored value
type, then the types will conform to the descriptions in the following tables. See
"ALTER_REVERSE_EXPRESSION Procedure".

4. If the model is partitioned, the result_table_name can contain results from
different partitions depending on the data from the input data table. An additional
column called PARTITION_NAME is added to the result table indicating the partition
name that is associated with each row.

For a non-partitioned model, the behavior does not change.

Classification

The results table for Classification has the columns described in Table 41-49. If the
target of the model is categorical, the PREDICTION column will have a VARCHAR2 data
type. If the target has a binary type, the PREDICTION column will have the binary type of
the target.

Table 41-49 APPLY Results Table for Classification

Column Name Data type

Case ID column name Type of the case ID

PREDICTION Type of the target

PROBABILITY BINARY_DOUBLE

Anomaly Detection

The results table for Anomaly Detection has the columns described in Table 41-50.

Table 41-50 APPLY Results Table for Anomaly Detection

Column Name Data Type

Case ID column name Type of the case ID

PREDICTION NUMBER

PROBABILITY BINARY_DOUBLE

Regression

The results table for Regression has the columns described in APPLY Procedure.

Chapter 41
DBMS_DATA_MINING

41-69

Table 41-51 APPLY Results Table for Regression

Column Name Data Type

Case ID column name Type of the case ID

PREDICTION Type of the target

Clustering

Clustering is an unsupervised machine learning function, and hence there are no
targets. The results of an APPLY procedure contain simply the cluster identifier
corresponding to a case, and the associated probability. The results table has the
columns described in Table 41-52.

Table 41-52 APPLY Results Table for Clustering

Column Name Data Type

Case ID column name Type of the case ID

CLUSTER_ID NUMBER

PROBABILITY BINARY_DOUBLE

Feature Extraction

Feature Extraction is also an unsupervised machine learning function, hence there are
no targets. The results of an APPLY procedure will contain simply the feature identifier
corresponding to a case, and the associated match quality. The results table has the
columns described in Table 41-53.

Table 41-53 APPLY Results Table for Feature Extraction

Column Name Data Type

Case ID column name Type of the case ID

FEATURE_ID NUMBER

MATCH_QUALITY BINARY_DOUBLE

Examples

This example applies the GLM Regression model GLMR_SH_REGR_SAMPLE to the
data in the MINING_DATA_APPLY_V view. The APPLY results are output of the table
REGRESSION_APPLY_RESULT.

SQL> BEGIN
 DBMS_DATA_MINING.APPLY (
 model_name => 'glmr_sh_regr_sample',
 data_table_name => 'mining_data_apply_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'regression_apply_result');
 END;
 /

SQL> SELECT * FROM regression_apply_result WHERE cust_id > 101485;

Chapter 41
DBMS_DATA_MINING

41-70

 CUST_ID PREDICTION
---------- ----------
 101486 22.8048824
 101487 25.0261101
 101488 48.6146619
 101489 51.82595
 101490 22.6220714
 101491 61.3856816
 101492 24.1400748
 101493 58.034631
 101494 45.7253149
 101495 26.9763318
 101496 48.1433425
 101497 32.0573434
 101498 49.8965531
 101499 56.270656
 101500 21.1153047

41.1.5.5 COMPUTE_CONFUSION_MATRIX Procedure
This procedure computes a confusion matrix, stores it in a table in the user's schema,
and returns the model accuracy.

A confusion matrix is a test metric for classification models. It compares the predictions
generated by the model with the actual target values in a set of test data. The
confusion matrix lists the number of times each class was correctly predicted and
the number of times it was predicted to be one of the other classes.

COMPUTE_CONFUSION_MATRIX accepts three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Machine Learning for SQL Concepts for more details about confusion
matrixes and other test metrics for classification

"COMPUTE_LIFT Procedure"

"COMPUTE_ROC Procedure"

Chapter 41
DBMS_DATA_MINING

41-71

Syntax

DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 confusion_matrix_table_name IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Parameters

Table 41-54 COMPUTE_CONFUSION_MATRIX Procedure Parameters

Parameter Description

accuracy Output parameter containing the overall percentage
accuracy of the predictions.

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the test
data.

case_id_column_name Case ID column in the apply results table. Must match
the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the known
target values from the test data.

confusion_matrix_table_name Table containing the confusion matrix. The table will be
created by the procedure in the user's schema.

The columns in the confusion matrix table are
described in the Usage Notes.

score_column_name Column containing the predictions in the apply results
table.

The default column name is PREDICTION, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, the class with the lowest cost
is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.

The default column name is 'PROBABILITY', which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.

Chapter 41
DBMS_DATA_MINING

41-72

Table 41-54 (Cont.) COMPUTE_CONFUSION_MATRIX Procedure Parameters

Parameter Description

cost_matrix_table_name (Optional) Table that defines the costs associated with
misclassifications. If a cost matrix table is provided
and the score_criterion_type parameter is set to
'COSTS', the costs in this table will be used as the
scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

apply_result_schema_name Schema of the apply results table.

If null, the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.

If null, the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.

If null, the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
'PROBABILITY'. To use costs as the scoring criterion,
specify 'COST'.

If score_criterion_type is set to 'COST' but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_CONFUSION_MATRIX may be
generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY
procedure, or some other mechanism. As long as you pass the appropriate data,
the procedure can compute the confusion matrix.

• Instead of passing a cost matrix to COMPUTE_CONFUSION_MATRIX, you can use a
scoring cost matrix associated with the model. A scoring cost matrix can be
embedded in the model or it can be defined dynamically when the model is
applied. To use a scoring cost matrix, invoke the SQL PREDICTION_COST function to
populate the score criterion column.

• The predictions that you pass to COMPUTE_CONFUSION_MATRIX are in a table or view
specified in apply_result_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 41-55.

Chapter 41
DBMS_DATA_MINING

41-73

Table 41-55 Columns in a Cost Matrix

Column Name Data Type

actual_target_value Type of the target column in the build data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost BINARY_DOUBLE

See Also:

Oracle Machine Learning for SQL User’s Guide for valid target data
types

Oracle Machine Learning for SQL Concepts for more information about
cost matrixes

• The confusion matrix created by COMPUTE_CONFUSION_MATRIX has the columns
described in Table 41-56.

Table 41-56 Columns in a Confusion Matrix

Column Name Data Type

actual_target_value Type of the target column in the build data

predicted_target_va
lue

Type of the predicted target in the test data. The type of
the predicted target is the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

value BINARY_DOUBLE

See Also:

Oracle Machine Learning for SQL Concepts for more information about
confusion matrixes

Examples

These examples use the Naive Bayes model nb_sh_clas_sample.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample USING *) prediction,

Chapter 41
DBMS_DATA_MINING

41-74

 PREDICTION_PROBABILITY(nb_sh_clas_sample USING *) probability
 FROM mining_data_test_v;

Using probabilities as the scoring criterion, you can compute the confusion matrix as
follows.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' ||
ROUND(v_accuracy,4));
 END;
 /

The confusion matrix and model accuracy are shown as follows.

 **** MODEL ACCURACY ****: .7847

SQL>SELECT * from nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 60
 0 0 891
 1 1 286
 0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

The confusion matrix in the previous example shows a high rate of false positives. For
263 cases, the model predicted 1 when the actual value was 0. You could use a cost
matrix to minimize this type of error.

The cost matrix table nb_cost_matrix specifies that a false positive is 3 times more
costly than a false negative.

SQL> SELECT * from nb_cost_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 .75
 1 0 .25
 1 1 0

This statement shows how to generate the predictions using APPLY.

BEGIN
 DBMS_DATA_MINING.APPLY(
 model_name => 'nb_sh_clas_sample',

Chapter 41
DBMS_DATA_MINING

41-75

 data_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'nb_apply_results');
 END;
/

This statement computes the confusion matrix using the cost matrix table. The score
criterion column is named 'PROBABILITY', which is the name generated by APPLY.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 cost_matrix_table_name => 'nb_cost_matrix',
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
 END;
 /

The resulting confusion matrix shows a decrease in false positives (212 instead of
263).

**** MODEL ACCURACY ****: .798

SQL> SELECT * FROM nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

Compute a Confusion Matrix Based on Embedded Costs

You can use the ADD_COST_MATRIX procedure to embed a cost matrix in a model. The
embedded costs can be used instead of probabilities for scoring. This statement adds
the previously-defined cost matrix to the model.

BEGIN DBMS_DATA_MINING.ADD_COST_MATRIX ('nb_sh_clas_sample',
'nb_cost_matrix');END;/

The following statement applies the model to the test data using the embedded costs
and stores the results in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample COST MODEL USING *) prediction,
 PREDICTION_COST(nb_sh_clas_sample COST MODEL USING *) cost
 FROM mining_data_test_v;

Chapter 41
DBMS_DATA_MINING

41-76

You can compute the confusion matrix using the embedded costs.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'COST',
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 END;
 /

The results are:

**** MODEL ACCURACY ****: .798

SQL> SELECT * FROM nb_confusion_matrix;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

41.1.5.6 COMPUTE_CONFUSION_MATRIX_PART Procedure
The COMPUTE_CONFUSION_MATRIX_PART procedure computes a confusion matrix, stores
it in a table in the user's schema, and returns the model accuracy.

COMPUTE_CONFUSION_MATRIX_PART provides support to computation of evaluation
metrics per-partition for partitioned models. For non-partitioned models, refer to
COMPUTE_CONFUSION_MATRIX Procedure.

A confusion matrix is a test metric for classification models. It compares the predictions
generated by the model with the actual target values in a set of test data. The
confusion matrix lists the number of times each class was correctly predicted and
the number of times it was predicted to be one of the other classes.

COMPUTE_CONFUSION_MATRIX_PART accepts three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs

• The known target values in the test data. The information is passed in two
columns:

Chapter 41
DBMS_DATA_MINING

41-77

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Machine Learning for SQL Concepts for more details about confusion
matrixes and other test metrics for classification

"COMPUTE_LIFT_PART Procedure"

"COMPUTE_ROC_PART Procedure"

Syntax

DBMS_DATA_MINING.compute_confusion_matrix_part(
 accuracy OUT DM_NESTED_NUMERICALS,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 confusion_matrix_table_name IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 score_partition_column_name IN VARCHAR2 DEFAULT 'PARTITION_NAME',
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-57 COMPUTE_CONFUSION_MATRIX_PART Procedure Parameters

Parameter Description

accuracy Output parameter containing the overall percentage
accuracy of the predictions

The output argument is changed from NUMBER to
DM_NESTED_NUMERICALS

apply_result_table_name Table containing the predictions

target_table_name Table containing the known target values from the test
data

case_id_column_name Case ID column in the apply results table. Must match
the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the known
target values from the test data.

Chapter 41
DBMS_DATA_MINING

41-78

Table 41-57 (Cont.) COMPUTE_CONFUSION_MATRIX_PART Procedure
Parameters

Parameter Description

confusion_matrix_table_name Table containing the confusion matrix. The table will be
created by the procedure in the user's schema.

The columns in the confusion matrix table are
described in the Usage Notes.

score_column_name Column containing the predictions in the apply results
table.

The default column name is PREDICTION, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, then the class with the lowest
cost is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.

The default column name is PROBABILITY, which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.

score_partition_column_name (Optional) Parameter indicating the column which
contains the name of the partition. This column slices
the input test results such that each partition has
independent evaluation matrices computed.

cost_matrix_table_name (Optional) Table that defines the costs associated with
misclassifications. If a cost matrix table is provided
and the score_criterion_type parameter is set to
COSTS, the costs in this table will be used as the
scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

apply_result_schema_name Schema of the apply results table.

If null, then the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.

If null, then the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.

If null, then the user's schema is assumed.

Chapter 41
DBMS_DATA_MINING

41-79

Table 41-57 (Cont.) COMPUTE_CONFUSION_MATRIX_PART Procedure
Parameters

Parameter Description

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
PROBABILITY. To use costs as the scoring criterion,
specify COST.

If score_criterion_type is set to COST but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_CONFUSION_MATRIX_PART may
be generated using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY
procedure, or some other mechanism. As long as you pass the appropriate data,
the procedure can compute the confusion matrix.

• Instead of passing a cost matrix to COMPUTE_CONFUSION_MATRIX_PART, you can
use a scoring cost matrix associated with the model. A scoring cost matrix can
be embedded in the model or it can be defined dynamically when the model is
applied. To use a scoring cost matrix, invoke the SQL PREDICTION_COST function to
populate the score criterion column.

• The predictions that you pass to COMPUTE_CONFUSION_MATRIX_PART are in a table
or view specified in apply_result_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 41-55.

Table 41-58 Columns in a Cost Matrix

Column Name Data Type

actual_target_value Type of the target column in the test data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost BINARY_DOUBLE

Chapter 41
DBMS_DATA_MINING

41-80

See Also:

Oracle Machine Learning for SQL User’s Guide for valid target data
types

Oracle Machine Learning for SQL Concepts for more information about
cost matrixes

• The confusion matrix created by COMPUTE_CONFUSION_MATRIX_PART has the
columns described in Table 41-56.

Table 41-59 Columns in a Confusion Matrix Part

Column Name Data Type

actual_target_value Type of the target column in the test data

predicted_target_va
lue

Type of the predicted target in the test data. The type of
the predicted target is the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

value BINARY_DOUBLE

See Also:

Oracle Machine Learning for SQL Concepts for more information about
confusion matrixes

Examples

These examples use the Naive Bayes model nb_sh_clas_sample.

Compute a Confusion Matrix Based on Probabilities

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample USING *) prediction,
 PREDICTION_PROBABILITY(nb_sh_clas_sample USING *) probability
 FROM mining_data_test_v;

Using probabilities as the scoring criterion, you can compute the confusion matrix as
follows.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX_PART (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',

Chapter 41
DBMS_DATA_MINING

41-81

 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY'
 score_partition_column_name => 'PARTITION_NAME'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' ||
ROUND(v_accuracy,4));
 END;
 /

The confusion matrix and model accuracy are shown as follows.

 **** MODEL ACCURACY ****: .7847

SELECT * FROM NB_CONFUSION_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 60
 0 0 891
 1 1 286
 0 1 263

Compute a Confusion Matrix Based on a Cost Matrix Table

The confusion matrix in the previous example shows a high rate of false positives. For
263 cases, the model predicted 1 when the actual value was 0. You could use a cost
matrix to minimize this type of error.

The cost matrix table nb_cost_matrix specifies that a false positive is 3 times more
costly than a false negative.

 SELECT * from NB_COST_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 .75
 1 0 .25
 1 1 0

This statement shows how to generate the predictions using APPLY.

BEGIN
 DBMS_DATA_MINING.APPLY(
 model_name => 'nb_sh_clas_sample',
 data_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 result_table_name => 'nb_apply_results');
 END;
/

This statement computes the confusion matrix using the cost matrix table. The score
criterion column is named 'PROBABILITY', which is the name generated by APPLY.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX_PART (
 accuracy => v_accuracy,

Chapter 41
DBMS_DATA_MINING

41-82

 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 score_partition_column_name => 'PARTITION_NAME'
 cost_matrix_table_name => 'nb_cost_matrix',
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 DBMS_OUTPUT.PUT_LINE('**** MODEL ACCURACY ****: ' || ROUND(v_accuracy,4));
 END;
 /

The resulting confusion matrix shows a decrease in false positives (212 instead of
263).

**** MODEL ACCURACY ****: .798

 SELECT * FROM NB_CONFUSION_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

Compute a Confusion Matrix Based on Embedded Costs

You can use the ADD_COST_MATRIX procedure to embed a cost matrix in a model. The
embedded costs can be used instead of probabilities for scoring. This statement adds
the previously-defined cost matrix to the model.

BEGIN
DBMS_DATA_MINING.ADD_COST_MATRIX ('nb_sh_clas_sample', 'nb_cost_matrix');
END;/

The following statement applies the model to the test data using the embedded costs
and stores the results in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id,
 PREDICTION(nb_sh_clas_sample COST MODEL USING *) prediction,
 PREDICTION_COST(nb_sh_clas_sample COST MODEL USING *) cost
 FROM mining_data_test_v;

You can compute the confusion matrix using the embedded costs.

DECLARE
 v_accuracy NUMBER;
 BEGIN
 DBMS_DATA_MINING.COMPUTE_CONFUSION_MATRIX_PART (
 accuracy => v_accuracy,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 confusion_matrix_table_name => 'nb_confusion_matrix',

Chapter 41
DBMS_DATA_MINING

41-83

 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'COST',
 score_partition_column_name => 'PARTITION_NAME'
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'COST');
 END;
 /

The results are:

**** MODEL ACCURACY ****: .798

 SELECT * FROM NB_CONFUSION_MATRIX;
ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE VALUE
------------------- ---------------------- ----------
 1 0 91
 0 0 942
 1 1 255
 0 1 212

41.1.5.7 COMPUTE_LIFT Procedure
This procedure computes lift and stores the results in a table in the user's schema.

Lift is a test metric for binary classification models. To compute lift, one of the
target values must be designated as the positive class. COMPUTE_LIFT compares the
predictions generated by the model with the actual target values in a set of test data.
Lift measures the degree to which the model's predictions of the positive class are an
improvement over random chance.

Lift is computed on scoring results that have been ranked by probability (or cost)
and divided into quantiles. Each quantile includes the scores for the same number of
cases.

COMPUTE_LIFT calculates quantile-based and cumulative statistics. The number of
quantiles and the positive class are user-specified. Additionally, COMPUTE_LIFT accepts
three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs associated
with the predictions

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

Chapter 41
DBMS_DATA_MINING

41-84

See Also:

Oracle Machine Learning for SQL Concepts for more details about lift and
test metrics for classification

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_ROC Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 lift_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 num_quantiles IN NUMBER DEFAULT 10,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL
 score_criterion_type IN VARCHAR2 DEFAULT 'PROBABILITY');

Parameters

Table 41-60 COMPUTE_LIFT Procedure Parameters

Parameter Description

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the test
data.

case_id_column_name Case ID column in the apply results table. Must match
the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the known
target values from the test data.

lift_table_name Table containing the lift statistics. The table will be
created by the procedure in the user's schema.

The columns in the lift table are described in the Usage
Notes.

positive_target_value The positive class. This should be the class of interest,
for which you want to calculate lift.

If the target column is a NUMBER, you can use the
TO_CHAR() operator to provide the value as a string.

score_column_name Column containing the predictions in the apply results
table.

The default column name is 'PREDICTION', which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

Chapter 41
DBMS_DATA_MINING

41-85

Table 41-60 (Cont.) COMPUTE_LIFT Procedure Parameters

Parameter Description

score_criterion_column_name Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, the class with the lowest cost
is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.

The default column name is 'PROBABILITY', which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.

num_quantiles Number of quantiles to be used in calculating lift. The
default is 10.

cost_matrix_table_name (Optional) Table that defines the costs associated with
misclassifications. If a cost matrix table is provided
and the score_criterion_type parameter is set to
'COST', the costs will be used as the scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

apply_result_schema_name Schema of the apply results table.

If null, the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.

If null, the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided.

If null, the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
'PROBABILITY'. To use costs as the scoring criterion,
specify 'COST'.

If score_criterion_type is set to 'COST' but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_LIFT may be generated using
SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some
other mechanism. As long as you pass the appropriate data, the procedure can
compute the lift.

• Instead of passing a cost matrix to COMPUTE_LIFT, you can use a scoring cost
matrix associated with the model. A scoring cost matrix can be embedded in

Chapter 41
DBMS_DATA_MINING

41-86

the model or it can be defined dynamically when the model is applied. To use
a scoring cost matrix, invoke the SQL PREDICTION_COST function to populate the
score criterion column.

• The predictions that you pass to COMPUTE_LIFT are in a table or view specified in
apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 41-61.

Table 41-61 Columns in a Cost Matrix

Column Name Data Type

actual_target_value Type of the target column in the build data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost NUMBER

See Also:

Oracle Machine Learning for SQL Concepts for more information about
cost matrixes

• The table created by COMPUTE_LIFT has the columns described in Table 41-62

Table 41-62 Columns in a Lift Table

Column Name Data Type

quantile_number NUMBER

probability_threshold NUMBER

gain_cumulative NUMBER

quantile_total_count NUMBER

quantile_target_count NUMBER

percent_records_cumulative NUMBER

lift_cumulative NUMBER

target_density_cumulative NUMBER

targets_cumulative NUMBER

non_targets_cumulative NUMBER

lift_quantile NUMBER

target_density NUMBER

Chapter 41
DBMS_DATA_MINING

41-87

See Also:

Oracle Machine Learning for SQL Concepts for details about the
information in the lift table

• When a cost matrix is passed to COMPUTE_LIFT, the cost threshold is returned in
the probability_threshold column of the lift table.

Examples

This example uses the Naive Bayes model nb_sh_clas_sample.

The example illustrates lift based on probabilities. For examples that show
computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using probabilities as the scoring criterion, you can compute lift as follows.

BEGIN
 DBMS_DATA_MINING.COMPUTE_LIFT (
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 lift_table_name => 'nb_lift',
 positive_target_value => to_char(1),
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 num_quantiles => 10,
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');
 END;
 /

This query displays some of the statistics from the resulting lift table.

SQL>SELECT quantile_number, probability_threshold, gain_cumulative,
 quantile_total_count
 FROM nb_lift;

QUANTILE_NUMBER PROBABILITY_THRESHOLD GAIN_CUMULATIVE QUANTILE_TOTAL_COUNT
--------------- --------------------- --------------- --------------------
 1 .989335775 .15034965 55
 2 .980534911 .26048951 55
 3 .968506098 .374125874 55
 4 .958975196 .493006993 55
 5 .946705997 .587412587 55
 6 .927454174 .66958042 55
 7 .904403627 .748251748 55

Chapter 41
DBMS_DATA_MINING

41-88

 8 .836482525 .839160839 55
 10 .500184953 1 54

41.1.5.8 COMPUTE_LIFT_PART Procedure
The COMPUTE_LIFT_PART procedure computes lift and stores the results in a table in
the user's schema. This procedure provides support to the computation of evaluation
metrics per-partition for partitioned models.

Lift is a test metric for binary classification models. To compute lift, one of the target
values must be designated as the positive class. COMPUTE_LIFT_PART compares the
predictions generated by the model with the actual target values in a set of test data.
Lift measures the degree to which the model's predictions of the positive class are an
improvement over random chance.

Lift is computed on scoring results that have been ranked by probability (or cost)
and divided into quantiles. Each quantile includes the scores for the same number of
cases.

COMPUTE_LIFT_PART calculates quantile-based and cumulative statistics. The number
of quantiles and the positive class are user-specified. Additionally, COMPUTE_LIFT_PART
accepts three input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing either probabilities or costs associated
with the predictions

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

• (Optional) A cost matrix table with predefined columns. See the Usage Notes for
the column requirements.

See Also:

Oracle Machine Learning for SQL Concepts for more details about Lift and
test metrics for classification

"COMPUTE_LIFT Procedure"

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_CONFUSION_MATRIX_PART Procedure"

"COMPUTE_ROC Procedure"

"COMPUTE_ROC_PART Procedure"

Chapter 41
DBMS_DATA_MINING

41-89

Syntax

DBMS_DATA_MINING.COMPUTE_LIFT_PART (
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 lift_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 score_partition_column_name IN VARCHAR2 DEFAULT 'PARTITION_NAME',
 num_quantiles IN NUMBER DEFAULT 10,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL,
 score_criterion_type IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-63 COMPUTE_LIFT_PART Procedure Parameters

Parameter Description

apply_result_table_name Table containing the predictions

target_table_name Table containing the known target values from the test
data

case_id_column_name Case ID column in the apply results table. Must match
the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the known
target values from the test data.

lift_table_name Table containing the Lift statistics. The table will be
created by the procedure in the user's schema.

The columns in the Lift table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of interest,
for which you want to calculate Lift.

If the target column is a NUMBER, then you can use the
TO_CHAR() operator to provide the value as a string.

score_column_name Column containing the predictions in the apply results
table.

The default column name is PREDICTION, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

Chapter 41
DBMS_DATA_MINING

41-90

Table 41-63 (Cont.) COMPUTE_LIFT_PART Procedure Parameters

Parameter Description

score_criterion_column_name Column containing the scoring criterion in the apply
results table. Contains either the probabilities or the
costs that determine the predictions.

By default, scoring is based on probability; the class
with the highest probability is predicted for each case. If
scoring is based on cost, then the class with the lowest
cost is predicted.

The score_criterion_type parameter indicates
whether probabilities or costs will be used for scoring.

The default column name is PROBABILITY, which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

See the Usage Notes for additional information.

score_partition_column_name Optional parameter indicating the column containing
the name of the partition. This column slices the input
test results such that each partition has independent
evaluation matrices computed.

num_quantiles Number of quantiles to be used in calculating Lift. The
default is 10.

cost_matrix_table_name (Optional) Table that defines the costs associated with
misclassifications. If a cost matrix table is provided and
the score_criterion_type parameter is set to COST,
then the costs will be used as the scoring criteria.

The columns in a cost matrix table are described in the
Usage Notes.

apply_result_schema_name Schema of the apply results table

If null, then the user's schema is assumed.

target_schema_name Schema of the table containing the known targets

If null, then the user's schema is assumed.

cost_matrix_schema_name Schema of the cost matrix table, if one is provided

If null, then the user's schema is assumed.

score_criterion_type Whether to use probabilities or costs as
the scoring criterion. Probabilities or costs
are passed in the column identified in the
score_criterion_column_name parameter.

The default value of score_criterion_type is
PROBABILITY. To use costs as the scoring criterion,
specify COST.

If score_criterion_type is set to COST but no cost
matrix is provided and if there is a scoring cost matrix
associated with the model, then the associated costs
are used for scoring.

See the Usage Notes and the Examples.

Usage Notes

• The predictive information you pass to COMPUTE_LIFT_PART may be generated
using SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or

Chapter 41
DBMS_DATA_MINING

41-91

some other mechanism. As long as you pass the appropriate data, the procedure
can compute the Lift.

• Instead of passing a cost matrix to COMPUTE_LIFT_PART, you can use a scoring
cost matrix associated with the model. A scoring cost matrix can be embedded
in the model or it can be defined dynamically when the model is applied. To use
a scoring cost matrix, invoke the SQL PREDICTION_COST function to populate the
score criterion column.

• The predictions that you pass to COMPUTE_LIFT_PART are in a table or view
specified in apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• A cost matrix must have the columns described in Table 41-61.

Table 41-64 Columns in a Cost Matrix

Column Name Data Type

actual_target_value Type of the target column in the test data

predicted_target_va
lue

Type of the predicted target in the test data. The type of the
predicted target must be the same as the type of the actual
target unless the predicted target has an associated reverse
transformation.

cost NUMBER

See Also:

Oracle Machine Learning for SQL Concepts for more information about
cost matrixes

• The table created by COMPUTE_LIFT_PART has the columns described in
Table 41-62

Table 41-65 Columns in a COMPUTE_LIFT_PART Table

Column Name Data Type

quantile_number NUMBER

probability_threshold NUMBER

gain_cumulative NUMBER

quantile_total_count NUMBER

quantile_target_count NUMBER

percent_records_cumulative NUMBER

lift_cumulative NUMBER

target_density_cumulative NUMBER

targets_cumulative NUMBER

Chapter 41
DBMS_DATA_MINING

41-92

Table 41-65 (Cont.) Columns in a COMPUTE_LIFT_PART Table

Column Name Data Type

non_targets_cumulative NUMBER

lift_quantile NUMBER

target_density NUMBER

See Also:

Oracle Machine Learning for SQL Concepts for details about the
information in the Lift table

• When a cost matrix is passed to COMPUTE_LIFT_PART, the cost threshold is
returned in the probability_threshold column of the Lift table.

Examples

This example uses the Naive Bayes model nb_sh_clas_sample.

The example illustrates Lift based on probabilities. For examples that show
computation based on costs, see "COMPUTE_CONFUSION_MATRIX Procedure".

For a partitioned model example, see "COMPUTE_CONFUSION_MATRIX_PART
Procedure".

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using probabilities as the scoring criterion, you can compute Lift as follows.

BEGIN
 DBMS_DATA_MINING.COMPUTE_LIFT_PART (
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 lift_table_name => 'nb_lift',
 positive_target_value => to_char(1),
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY',
 score_partition_column_name => 'PARTITITON_NAME',
 num_quantiles => 10,
 cost_matrix_table_name => null,
 apply_result_schema_name => null,
 target_schema_name => null,
 cost_matrix_schema_name => null,
 score_criterion_type => 'PROBABILITY');

Chapter 41
DBMS_DATA_MINING

41-93

END;
/

This query displays some of the statistics from the resulting Lift table.

SELECT quantile_number, probability_threshold, gain_cumulative,
 quantile_total_count
 FROM nb_lift;

QUANTILE_NUMBER PROBABILITY_THRESHOLD GAIN_CUMULATIVE QUANTILE_TOTAL_COUNT
--------------- --------------------- --------------- --------------------
 1 .989335775 .15034965 55
 2 .980534911 .26048951 55
 3 .968506098 .374125874 55
 4 .958975196 .493006993 55
 5 .946705997 .587412587 55
 6 .927454174 .66958042 55
 7 .904403627 .748251748 55
 8 .836482525 .839160839 55
 10 .500184953 1 54

41.1.5.9 COMPUTE_ROC Procedure
This procedure computes the receiver operating characteristic (ROC), stores the
results in a table in the user's schema, and returns a measure of the model accuracy.

ROC is a test metric for binary classification models. To compute ROC, one of the
target values must be designated as the positive class. COMPUTE_ROC compares the
predictions generated by the model with the actual target values in a set of test data.

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for predictions. In binary
classification, the default probability threshold is 0.5. The value predicted for each
case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an X-Y axis. The false positive rate is placed on
the X axis. The true positive rate is placed on the Y axis. A false positive is a positive
prediction for a case that is negative in the test data. A true positive is a positive
prediction for a case that is positive in the test data.

COMPUTE_ROC accepts two input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing probabilities

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

Chapter 41
DBMS_DATA_MINING

41-94

See Also:

Oracle Machine Learning for SQL Concepts for more details about ROC and
test metrics for classification

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_LIFT Procedure"

Syntax

DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve OUT NUMBER,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 roc_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-66 COMPUTE_ROC Procedure Parameters

Parameter Description

roc_area_under_the_curve Output parameter containing the area under the ROC
curve (AUC). The AUC measures the likelihood that an
actual positive will be predicted as positive.

The greater the AUC, the greater the flexibility of the
model in accommodating trade-offs between positive
and negative class predictions. AUC can be especially
important when one target class is rarer or more
important to identify than another.

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the test
data.

case_id_column_name Case ID column in the apply results table. Must match
the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the known
target values from the test data.

roc_table_name Table containing the ROC output. The table will be
created by the procedure in the user's schema.

The columns in the ROC table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of interest,
for which you want to calculate ROC.

If the target column is a NUMBER, you can use the
TO_CHAR() operator to provide the value as a string.

Chapter 41
DBMS_DATA_MINING

41-95

Table 41-66 (Cont.) COMPUTE_ROC Procedure Parameters

Parameter Description

score_column_name Column containing the predictions in the apply results
table.

The default column name is 'PREDICTION', which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the apply
results table. Contains the probabilities that determine
the predictions.

The default column name is 'PROBABILITY', which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

apply_result_schema_name Schema of the apply results table.

If null, the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.

If null, the user's schema is assumed.

Usage Notes

• The predictive information you pass to COMPUTE_ROC may be generated using SQL
PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some other
mechanism. As long as you pass the appropriate data, the procedure can compute
the receiver operating characteristic.

• The predictions that you pass to COMPUTE_ROC are in a table or view specified in
apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• The table created by COMPUTE_ROC has the columns shown in Table 41-67.

Table 41-67 COMPUTE_ROC Output

Column Datatype

probability BINARY_DOUBLE

true_positives NUMBER

false_negatives NUMBER

false_positives NUMBER

true_negatives NUMBER

true_positive_fraction NUMBER

false_positive_fraction NUMBER

Chapter 41
DBMS_DATA_MINING

41-96

See Also:

Oracle Machine Learning for SQL Concepts for details about the output
of COMPUTE_ROC

• ROC is typically used to determine the most desirable probability threshold. This
can be done by examining the true positive fraction and the false positive fraction.
The true positive fraction is the percentage of all positive cases in the test
data that were correctly predicted as positive. The false positive fraction is the
percentage of all negative cases in the test data that were incorrectly predicted as
positive.

Given a probability threshold, the following statement returns the positive
predictions in an apply result table ordered by probability.

SELECT case_id_column_name
 FROM apply_result_table_name
 WHERE probability > probability_threshold
 ORDER BY probability DESC;

• There are two approaches to identifying the most desirable probability threshold.
Which approach you use depends on whether or not you know the relative cost of
positive versus negative class prediction errors.

If the costs are known, you can apply the relative costs to the ROC table to
compute the minimum cost probability threshold. Suppose the relative cost ratio is:
Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query
like this.

WITH cost AS (
 SELECT probability_threshold, 20 * false_negatives + false_positives
cost
 FROM ROC_table
 GROUP BY probability_threshold),
 minCost AS (
 SELECT min(cost) minCost
 FROM cost)
 SELECT max(probability_threshold)probability_threshold
 FROM cost, minCost
 WHERE cost = minCost;

If relative costs are not well known, you can simply scan the values in the
ROC table (in sorted order) and make a determination about which of the
displayed trade-offs (misclassified positives versus misclassified negatives) is
most desirable.

SELECT * FROM ROC_table
 ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_clas_sample.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

Chapter 41
DBMS_DATA_MINING

41-97

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC
as follows.

DECLARE
 v_area_under_curve NUMBER;
BEGIN
 DBMS_DATA_MINING.COMPUTE_ROC (
 roc_area_under_curve => v_area_under_curve,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'mining_data_test_v',
 roc_table_name => 'nb_roc',
 positive_target_value => '1',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY');
 DBMS_OUTPUT.PUT_LINE('**** AREA UNDER ROC CURVE ****: ' ||
 ROUND(v_area_under_curve,4));
END;
/

The resulting AUC and a selection of columns from the ROC table are shown as
follows.

**** AREA UNDER ROC CURVE ****: .8212

 SELECT PROBABILITY, TRUE_POSITIVE_FRACTION, FALSE_POSITIVE_FRACTION
 FROM NB_ROC;

PROBABILITY TRUE_POSITIVE_FRACTION FALSE_POSITIVE_FRACTION
----------- ---------------------- -----------------------
 .00000 1 1
 .50018 .826589595 .227902946
 .53851 .823699422 .221837088
 .54991 .820809249 .217504333
 .55628 .815028902 .215771231
 .55628 .817919075 .215771231
 .57563 .800578035 .214904679
 .57563 .812138728 .214904679
 . . .
 . . .
 . . .

41.1.5.10 COMPUTE_ROC_PART Procedure
The COMPUTE_ROC_PART procedure computes Receiver Operating Characteristic (ROC),
stores the results in a table in the user's schema, and returns a measure of the
model accuracy. This procedure provides support to computation of evaluation metrics
per-partition for partitioned models.

ROC is a test metric for binary classification models. To compute ROC, one of the
target values must be designated as the positive class. COMPUTE_ROC_PART compares

Chapter 41
DBMS_DATA_MINING

41-98

the predictions generated by the model with the actual target values in a set of test
data.

ROC measures the impact of changes in the probability threshold. The probability
threshold is the decision point used by the model for predictions. In binary
classification, the default probability threshold is 0.5. The value predicted for each
case is the one with a probability greater than 50%.

ROC can be plotted as a curve on an x-y axis. The false positive rate is placed on
the x-axis. The true positive rate is placed on the y-axis. A false positive is a positive
prediction for a case that is negative in the test data. A true positive is a positive
prediction for a case that is positive in the test data.

COMPUTE_ROC_PART accepts two input streams:

• The predictions generated on the test data. The information is passed in three
columns:

– Case ID column

– Prediction column

– Scoring criterion column containing probabilities

• The known target values in the test data. The information is passed in two
columns:

– Case ID column

– Target column containing the known target values

See Also:

Oracle Machine Learning for SQL Concepts for more details about ROC and
test metrics for Classification

"COMPUTE_ROC Procedure"

"COMPUTE_CONFUSION_MATRIX Procedure"

"COMPUTE_LIFT_PART Procedure"

"COMPUTE_LIFT Procedure"

Syntax

DBMS_DATA_MINING.compute_roc_part(
 roc_area_under_curve OUT DM_NESTED_NUMERICALS,
 apply_result_table_name IN VARCHAR2,
 target_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 roc_table_name IN VARCHAR2,
 positive_target_value IN VARCHAR2,
 score_column_name IN VARCHAR2 DEFAULT 'PREDICTION',
 score_criterion_column_name IN VARCHAR2 DEFAULT 'PROBABILITY',
 score_partition_column_name IN VARCHAR2 DEFAULT 'PARTITION_NAME',
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 target_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING

41-99

Parameters

Table 41-68 COMPUTE_ROC_PART Procedure Parameters

Parameter Description

roc_area_under_the_curve Output parameter containing the area under the ROC
curve (AUC). The AUC measures the likelihood that an
actual positive will be predicted as positive.

The greater the AUC, the greater the flexibility of the
model in accommodating trade-offs between positive
and negative class predictions. AUC can be especially
important when one target class is rarer or more
important to identify than another.

The output argument is changed from NUMBER to
DM_NESTED_NUMERICALS.

apply_result_table_name Table containing the predictions.

target_table_name Table containing the known target values from the test
data.

case_id_column_name Case ID column in the apply results table. Must match
the case identifier in the targets table.

target_column_name Target column in the targets table. Contains the known
target values from the test data.

roc_table_name Table containing the ROC output. The table will be
created by the procedure in the user's schema.

The columns in the ROC table are described in the
Usage Notes.

positive_target_value The positive class. This should be the class of interest,
for which you want to calculate ROC.

If the target column is a NUMBER, then you can use the
TO_CHAR() operator to provide the value as a string.

score_column_name Column containing the predictions in the apply results
table.

The default column name is PREDICTION, which is the
default name created by the APPLY procedure (See
"APPLY Procedure").

score_criterion_column_name Column containing the scoring criterion in the apply
results table. Contains the probabilities that determine
the predictions.

The default column name is PROBABILITY, which is
the default name created by the APPLY procedure (See
"APPLY Procedure").

score_partition_column_name Optional parameter indicating the column which
contains the name of the partition. This column slices
the input test results such that each partition has
independent evaluation matrices computed.

apply_result_schema_name Schema of the apply results table.

If null, then the user's schema is assumed.

target_schema_name Schema of the table containing the known targets.

If null, then the user's schema is assumed.

Chapter 41
DBMS_DATA_MINING

41-100

Usage Notes

• The predictive information you pass to COMPUTE_ROC_PART may be generated using
SQL PREDICTION functions, the DBMS_DATA_MINING.APPLY procedure, or some
other mechanism. As long as you pass the appropriate data, the procedure can
compute the receiver operating characteristic.

• The predictions that you pass to COMPUTE_ROC_PART are in a table or view specified
in apply_results_table_name.

CREATE TABLE apply_result_table_name AS (
 case_id_column_name VARCHAR2,
 score_column_name VARCHAR2,
 score_criterion_column_name VARCHAR2);

• The COMPUTE_ROC_PART table has the following columns:

Table 41-69 COMPUTE_ROC_PART Output

Column Data Type

probability BINARY_DOUBLE

true_positives NUMBER

false_negatives NUMBER

false_positives NUMBER

true_negatives NUMBER

true_positive_fraction NUMBER

false_positive_fraction NUMBER

See Also:

Oracle Machine Learning for SQL Concepts for details about the output
of COMPUTE_ROC_PART

• ROC is typically used to determine the most desirable probability threshold. This
can be done by examining the true positive fraction and the false positive fraction.
The true positive fraction is the percentage of all positive cases in the test
data that were correctly predicted as positive. The false positive fraction is the
percentage of all negative cases in the test data that were incorrectly predicted as
positive.

Given a probability threshold, the following statement returns the positive
predictions in an apply result table ordered by probability.

SELECT case_id_column_name
 FROM apply_result_table_name
 WHERE probability > probability_threshold
 ORDER BY probability DESC;

• There are two approaches to identify the most desirable probability threshold. The
approach you use depends on whether you know the relative cost of positive
versus negative class prediction errors.

Chapter 41
DBMS_DATA_MINING

41-101

If the costs are known, then you can apply the relative costs to the ROC table to
compute the minimum cost probability threshold. Suppose the relative cost ratio is:
Positive Class Error Cost / Negative Class Error Cost = 20. Then execute a query
as follows:

WITH cost AS (
 SELECT probability_threshold, 20 * false_negatives + false_positives
cost
 FROM ROC_table
 GROUP BY probability_threshold),
 minCost AS (
 SELECT min(cost) minCost
 FROM cost)
 SELECT max(probability_threshold)probability_threshold
 FROM cost, minCost
 WHERE cost = minCost;

If relative costs are not well known, then you can simply scan the values in
the ROC table (in sorted order) and make a determination about which of the
displayed trade-offs (misclassified positives versus misclassified negatives) is
most desirable.

SELECT * FROM ROC_table
 ORDER BY probability_threshold;

Examples

This example uses the Naive Bayes model nb_sh_clas_sample.

The following statement applies the model to the test data and stores the predictions
and probabilities in a table.

CREATE TABLE nb_apply_results AS
 SELECT cust_id, t.prediction, t.probability
 FROM mining_data_test_v, TABLE(PREDICTION_SET(nb_sh_clas_sample USING *)) t;

Using the predictions and the target values from the test data, you can compute ROC
as follows.

DECLARE
 v_area_under_curve NUMBER;
BEGIN
 DBMS_DATA_MINING.COMPUTE_ROC_PART (
 roc_area_under_curve => v_area_under_curve,
 apply_result_table_name => 'nb_apply_results',
 target_table_name => 'mining_data_test_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 roc_table_name => 'nb_roc',
 positive_target_value => '1',
 score_column_name => 'PREDICTION',
 score_criterion_column_name => 'PROBABILITY');
 score_partition_column_name => 'PARTITION_NAME'
 DBMS_OUTPUT.PUT_LINE('**** AREA UNDER ROC CURVE ****: ' ||
 ROUND(v_area_under_curve,4));
END;
/

Chapter 41
DBMS_DATA_MINING

41-102

The resulting AUC and a selection of columns from the ROC table are shown as
follows.

**** AREA UNDER ROC CURVE ****: .8212

 SELECT PROBABILITY, TRUE_POSITIVE_FRACTION, FALSE_POSITIVE_FRACTION
 FROM NB_ROC;

PROBABILITY TRUE_POSITIVE_FRACTION FALSE_POSITIVE_FRACTION
----------- ---------------------- -----------------------
 .00000 1 1
 .50018 .826589595 .227902946
 .53851 .823699422 .221837088
 .54991 .820809249 .217504333
 .55628 .815028902 .215771231
 .55628 .817919075 .215771231
 .57563 .800578035 .214904679
 .57563 .812138728 .214904679
 . . .
 . . .
 . . .

41.1.5.11 CREATE_MODEL Procedure
This procedure creates an Oracle Machine Learning for SQL model with a given
machine learning function.

Syntax

DBMS_DATA_MINING.CREATE_MODEL (
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 settings_table_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 settings_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

Parameters

Table 41-70 CREATE_MODEL Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

See the Usage Notes for model naming restrictions.

mining_function The machine learning function. Values are listed in Table 41-3.

data_table_name Table or view containing the build data

case_id_column_name Case identifier column in the build data.

target_column_name For supervised models, the target column in the build data. NULL
for unsupervised models.

Chapter 41
DBMS_DATA_MINING

41-103

Table 41-70 (Cont.) CREATE_MODEL Procedure Parameters

Parameter Description

settings_table_name Table containing build settings for the model. NULL if there is no
settings table (only default settings are used).

data_schema_name Schema hosting the build data. If NULL, then the user's schema is
assumed.

settings_schema_name Schema hosting the settings table. If NULLthen the user's schema
is assumed.

xform_list A list of transformations to be used in addition to or instead
of automatic transformations, depending on the value of the
PREP_AUTO setting. (See "Automatic Data Preparation".)

The datatype of xform_list is TRANSFORM_LIST, which consists
of records of type TRANSFORM_REC. Each TRANSFORM_REC
specifies the transformation information for a single attribute.

TYPE
 TRANFORM_REC IS RECORD (
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 expression EXPRESSION_REC,
 reverse_expression EXPRESSION_REC,
 attribute_spec VARCHAR2(4000));

The expression field stores a SQL expression for transforming
the attribute. The reverse_expression field stores a SQL
expression for reversing the transformation in model details
and, if the attribute is a target, in the results of scoring.
The SQL expressions are manipulated by routines in the
DBMS_DATA_MINING_TRANSFORM package:

• SET_EXPRESSION Procedure
• GET_EXPRESSION Function
• SET_TRANSFORM Procedure
The attribute_spec field identifies individualized treatment for
the attribute. See the Usage Notes for details.

See Table 41-122for details about the TRANSFORM_REC type.

Usage Notes

1. You can use the attribute_spec field of the xform_list argument to identify an
attribute as unstructured text or to disable Automatic Data Preparation for the
attribute. The attribute_spec can have the following values:

• TEXT: Indicates that the attribute contains unstructured text. The TEXT value
may optionally be followed by POLICY_NAME, TOKEN_TYPE, MAX_FEATURES, and
MIN_DOCUMENTS parameters.

TOKEN_TYPE has the following possible values: NORMAL, STEM, THEME, SYNONYM,
BIGRAM, STEM_BIGRAM. SYNONYM may be optionally followed by a thesaurus
name in square brackets.

MAX_FEATURES specifies the maximum number of tokens extracted from the
text.

Chapter 41
DBMS_DATA_MINING

41-104

MIN_DOCUMENTS specifies the minimal number of documents in which every
selected token shall occur. (For information about creating a text policy, see
CTX_DDL.CREATE_POLICY in Oracle Text Reference).

Oracle Machine Learning for SQL can process columns of VARCHAR2/CHAR,
CLOB, BLOB, and BFILE as text. If the column is VARCHAR2 or CHAR and you do
not specify TEXT, then OML4SQL processes the column as categorical data.
If the column is CLOB, then OML4SQL processes it as text by default (You do
not need to specify it as TEXT. However, you do need to provide an Oracle Text
Policy in the settings). If the column is BLOB or BFILE, then you must specify it
as TEXT, otherwise CREATE_MODEL returns an error.

If you specify TEXT for a nested column or for an attribute in a nested column,
then CREATE_MODEL returns an error.

• NOPREP: Disables ADP for the attribute. When ADP is OFF, the NOPREP value is
ignored.

You can specify NOPREP for a nested column, but not for an attribute in a
nested column. If you specify NOPREP for an attribute in a nested column when
ADP is on, then CREATE_MODEL will return an error.

2. You can obtain information about a model by querying the Data Dictionary views.

ALL/USER/DBA_MINING_MODELS
ALL/USER/DBA_MINING_MODEL_ATTRIBUTES
ALL/USER/DBA_MINING_MODEL_SETTINGS
ALL/USER/DBA_MINING_MODEL_VIEWS
ALL/USER/DBA_MINING_MODEL_PARTITIONS
ALL/USER/DBA_MINING_MODEL_XFORMS

You can obtain information about model attributes by querying the model details
through model views. Refer to Oracle Machine Learning for SQL User’s Guide.

3. The naming rules for models are more restrictive than the naming rules for most
database schema objects. A model name must satisfy the following additional
requirements:

• It must be 123 or fewer characters long.

• It must be a nonquoted identifier. Oracle requires that nonquoted identifiers
contain only alphanumeric characters, the underscore (_), dollar sign ($),
and pound sign (#); the initial character must be alphabetic. Oracle strongly
discourages the use of the dollar sign and pound sign in nonquoted literals.

Naming requirements for schema objects are fully documented in Oracle
Database SQL Language Reference.

4. To build a partitioned model, you must provide additional settings.

The setting for partitioning columns are as follows:

INSERT INTO settings_table VALUES (‘ODMS_PARTITION_COLUMNS’,
‘GENDER, AGE’);

To set user-defined partition number for a model, the setting is as follows:

INSERT INTO settings_table VALUES ('ODMS_MAX_PARTITIONS’, '10’);

The default value for maximum number of partitions is 1000.

Chapter 41
DBMS_DATA_MINING

41-105

5. By passing an xform_list to CREATE_MODEL, you can specify a list of
transformations to be performed on the input data. If the PREP_AUTO setting is
ON, the transformations are used in addition to the automatic transformations.
If the PREP_AUTO setting is OFF, the specified transformations are the only
ones implemented by the model. In both cases, transformation definitions are
embedded in the model and executed automatically whenever the model is
applied. See "Automatic Data Preparation". Other transforms that can be specified
with xform_list include FORCE_IN. Refer to Oracle Machine Learning for SQL
User’s Guide.

Examples

The first example builds a classification model using the Support Vector Machine
algorithm.

-- Create the settings table
CREATE TABLE svm_model_settings (
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

-- Populate the settings table
-- Specify SVM. By default, Naive Bayes is used for classification.
-- Specify ADP. By default, ADP is not used.
BEGIN
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
 INSERT INTO svm_model_settings (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 COMMIT;
END;
/
-- Create the model using the specified settings
BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'svm_model_settings');
END;
/

You can display the model settings with the following query:

SELECT * FROM user_mining_model_settings
 WHERE model_name IN 'SVM_MODEL';

MODEL_NAME SETTING_NAME SETTING_VALUE SETTING
------------- ---------------------- ----------------------------- -------
SVM_MODEL ALGO_NAME ALGO_SUPPORT_VECTOR_MACHINES INPUT

SVM_MODEL SVMS_STD_DEV 3.004524 DEFAULT
SVM_MODEL PREP_AUTO ON INPUT
SVM_MODEL SVMS_COMPLEXITY_FACTOR 1.887389 DEFAULT
SVM_MODEL SVMS_KERNEL_FUNCTION SVMS_LINEAR DEFAULT
SVM_MODEL SVMS_CONV_TOLERANCE .001 DEFAULT

Chapter 41
DBMS_DATA_MINING

41-106

The following is an example of querying a model view instead of the older
GEL_MODEL_DETAILS_SVM routine.

SELECT target_value, attribute_name, attribute_value, coefficient
FROM DM$VLSVM_MODEL;

The second example creates an anomaly detection model. Anomaly detection uses
SVM classification without a target. This example uses the same settings table created
for the SVM classification model in the first example.

BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'anomaly_detect_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'cust_id',
 target_column_name => null,
 settings_table_name => 'svm_model_settings');
END;
/

This query shows that the models created in these examples are the only ones in your
schema.

SELECT model_name, mining_function, algorithm FROM user_mining_models;

MODEL_NAME MINING_FUNCTION ALGORITHM
---------------------- -------------------- ------------------------------
SVM_MODEL CLASSIFICATION SUPPORT_VECTOR_MACHINES
ANOMALY_DETECT_MODEL CLASSIFICATION SUPPORT_VECTOR_MACHINES

This query shows that only the SVM classification model has a target.

SELECT model_name, attribute_name, attribute_type, target
 FROM user_mining_model_attributes
 WHERE target = 'YES';

MODEL_NAME ATTRIBUTE_NAME ATTRIBUTE_TYPE TARGET
------------------ --------------- ----------------- ------
SVM_MODEL AFFINITY_CARD CATEGORICAL YES

41.1.5.12 CREATE_MODEL2 Procedure
The CREATE_MODEL2 procedure is an alternate procedure to the CREATE_MODEL
procedure, which enables creating a model without extra persistence stages. In the
CREATE_MODEL procedure, the input is a table or a view and if such an object is not
already present, the user must create it. By using the CREATE_MODEL2 procedure, the
user does not need to create such transient database objects.

Syntax

DBMS_DATA_MINING.CREATE_MODEL2 (
 model_name IN VARCHAR2,
 mining_function IN VARCHAR2,
 data_query IN CLOB,
 set_list IN SETTING_LIST,
 case_id_column_name IN VARCHAR2 DEFAULT NULL,
 target_column_name IN VARCHAR2 DEFAULT NULL,
 xform_list IN TRANSFORM_LIST DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING

41-107

Parameters

Table 41-71 CREATE_MODEL2 Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then the current schema is used.

See the Usage Notes, CREATE_MODEL Procedure for model
naming restrictions.

mining_function The machine learning function. Values are listed in
DBMS_DATA_MINING — Machine Learning Function Settings.

data_query A query which provides training data for building the model.

set_list Specifies the SETTING_LIST

SETTING_LIST is a table of CLOB index by VARCHAR2(30);
Where the index is the setting name and the CLOB is the setting
value for that name.

case_id_column_name Case identifier column in the build data.

target_column_name For supervised models, the target column in the build data. NULL
for unsupervised models.

xform_list Refer to CREATE_MODEL Procedure.

Usage Notes

Refer to CREATE_MODEL Procedure for Usage Notes.

Examples

The following example uses the Support Vector Machine algorithm.

declare
 v_setlst DBMS_DATA_MINING.SETTING_LIST;

BEGIN
 v_setlst(dbms_data_mining.algo_name) :=
dbms_data_mining.algo_support_vector_machines;
 v_setlst(dbms_data_mining.prep_auto) := dbms_data_mining.prep_auto_on;

DBMS_DATA_MINING.CREATE_MODEL2(
 model_name => 'svm_model',
 mining_function => dbms_data_mining.classification,
 data_query => 'select * from mining_data_build_v',
 data_table_name => 'mining_data_build_v',
 case_id_column_name=> 'cust_id',
 target_column_name => 'affinity_card',
 set_list => v_setlst,
 case_id_column_name=> 'cust_id',
 target_column_name => 'affinity_card');
END;
/

Chapter 41
DBMS_DATA_MINING

41-108

41.1.5.13 Create Model Using Registration Information
Create model function fetches the setting information from JSON object.

Usage Notes

If an algorithm is registered, user can create model using the registered algorithm
name. Since all R scripts and default setting values are already registered, providing
the value through the setting table is not necessary. This makes the use of this
algorithm easier.

Examples

The first example builds a Classification model using the GLM algorithm.

CREATE TABLE GLM_RDEMO_SETTINGS_CL (

 setting_name VARCHAR2(30),
 setting_value VARCHAR2(4000));
 BEGIN
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 ('ALGO_EXTENSIBLE_LANG', 'R');
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 (dbms_data_mining.ralg_registration_algo_name, 't1');
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 (dbms_data_mining.odms_formula,
 'AGE + EDUCATION + HOUSEHOLD_SIZE + OCCUPATION');
 INSERT INTO GLM_RDEMO_SETTINGS_CL VALUES
 ('RALG_PARAMETER_FAMILY', 'binomial(logit)');
 END;
 /
 BEGIN
 DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'GLM_RDEMO_CLASSIFICATION',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data_build_v',
 case_id_column_name => 'CUST_ID',
 target_column_name => 'AFFINITY_CARD',
 settings_table_name => 'GLM_RDEMO_SETTINGS_CL');
 END;
 /

41.1.5.14 DROP_ALGORITHM Procedure
This function is used to drop the registered algorithm information.

Syntax

DBMS_DATA_MINING.DROP_ALGORITHM (algorithm_name IN VARCHAR2(30),
 cascade IN BOOLEAN default FALSE)

Chapter 41
DBMS_DATA_MINING

41-109

Parameters

Table 41-72 DROP_ALGORITHM Procedure Parameters

Parameter Description

algorithm_n
ame

Name of the algorithm.

cascade If the cascade option is TRUE, all the models with this algorithms are forced to
drop. There after, the algorithm is dropped. The default value is FALSE.

Usage Note

• To drop a machine learning model, you must be the owner or you must have
the RQADMIN privilege. See Oracle Machine Learning for SQL User’s Guide for
information about privileges for machine learning.

• Make sure a model is not built on the algorithm, then drop the algorithm from the
system table.

• If you try to drop an algorithm with a model built on it, then an error is displayed.

41.1.5.15 DROP_PARTITION Procedure

Syntax

DBMS_DATA_MINING.DROP_PARTITION (
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2);

Parameters

Table 41-73 DROP_PARTITION Procedure Parameters

Parameters Description

model_name Name of the machine learning model in the form
[schema_name.]model_name. If you do not specify a schema, then your
own schema is used.

partition_name Name of the partition that must be dropped.

41.1.5.16 DROP_MODEL Procedure
This procedure deletes the specified machine learning model.

Syntax

DBMS_DATA_MINING.DROP_MODEL (model_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Chapter 41
DBMS_DATA_MINING

41-110

Parameters

Table 41-74 DROP_MODEL Procedure Parameters

Parameter Description

model_name Name of the machine learning model in the form
[schema_name.]model_name. If you do not specify a schema, then your own
schema is used.

force Forces the machine learning model to be dropped even if it is invalid. A
machine learning model may be invalid if a serious system error interrupted
the model build process.

Usage Note

To drop a machine learning model, you must be the owner or you must have the DROP
ANY MINING MODEL privilege. See Oracle Data Mining User's Guide for information
about privileges for Oracle Machine Learning for SQL.

Example

You can use the following command to delete a valid machine learning model named
nb_sh_clas_sample that exists in your schema.

BEGIN
 DBMS_DATA_MINING.DROP_MODEL(model_name => 'nb_sh_clas_sample');
END;
/

41.1.5.17 EXPORT_MODEL Procedure
This procedure exports the specified machine learning models to a dump file set.

To import the models from the dump file set, use the IMPORT_MODEL Procedure.
EXPORT_MODEL and IMPORT_MODEL use Oracle Data Pump technology.

When Oracle Data Pump is used to export/import an entire schema or database,
the machine learning models in the schema or database are included. However,
EXPORT_MODEL and IMPORT_MODEL are the only utilities that support the export/import
of individual models.

See Also:

Oracle Database Utilities for information about Oracle Data Pump

Oracle Machine Learning for SQL User’s Guide for more information about
exporting and importing machine learning models

Syntax

DBMS_DATA_MINING.EXPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,

Chapter 41
DBMS_DATA_MINING

41-111

 filesize IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,
 remote_link IN VARCHAR2 DEFAULT NULL,
 jobname IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-75 EXPORT_MODEL Procedure Parameters

Parameter Description

filename Name of the dump file set to which the models should be exported. The
name must be unique within the schema.

The dump file set can contain one or more files. The number of files in a
dump file set is determined by the size of the models being exported (both
metadata and data) and a specified or estimated maximum file size. You
can specify the file size in the filesize parameter, or you can use the
operation parameter to cause Oracle Data Pump to estimate the file size. If
the size of the models to export is greater than the maximum file size, one or
more additional files are created.

When the export operation completes successfully, the name of the dump file
set is automatically expanded to filename01.dmp, even if there is only one
file in the dump set. If there are additional files, they are named sequentially
as filename02.dmp, filename03.dmp, and so forth.

directory Name of a pre-defined directory object that specifies where the dump file set
should be created.

The exporting user must have read/write privileges on the directory object
and on the file system directory that it identifies.

See Oracle Database SQL Language Reference for information about
directory objects.

model_filter Optional parameter that specifies which model or models to export. If you
do not specify a value for model_filter, all models in the schema are
exported. You can also specify NULL (the default) or 'ALL' to export all
models.

You can export individual models by name and groups of models based
on machine learning function or algorithm. For instance, you could export
all regression models or all Naive Bayes models. Examples are provided in
Table 41-76.

filesize Optional parameter that specifies the maximum size of a file in the dump
file set. The size may be specified in bytes, kilobytes (K), megabytes (M), or
gigabytes (G). The default size is 50 MB.

If the size of the models to export is larger than filesize, one or more
additional files are created within the dump set. See the description of the
filename parameter for more information.

operation Optional parameter that specifies whether or not to estimate the size of the
files in the dump set. By default the size is not estimated and the value of the
filesize parameter determines the size of the files.

You can specify either of the following values for operation:

• 'EXPORT' — Export all or the specified models. (Default)
• 'ESTIMATE' — Estimate the size of the exporting models.

Chapter 41
DBMS_DATA_MINING

41-112

Table 41-75 (Cont.) EXPORT_MODEL Procedure Parameters

Parameter Description

remote_link Optional parameter that specifies the name of a database link to a remote
system. The default value is NULL. A database link is a schema object in a
local database that enables access to objects in a remote database. When
you specify a value for remote_link, you can export the models in the
remote database. The EXP_FULL_DATABASE role is required for exporting the
remote models. The EXP_FULL_DATABASE privilege, the CREATE DATABASE
LINK privilege, and other privileges may also be required.

jobname Optional parameter that specifies the name of the export job. By default,
the name has the form username_exp_nnnn, where nnnn is a number. For
example, a job name in the SCOTT schema might be SCOTT_exp_134.

If you specify a job name, it must be unique within the schema. The
maximum length of the job name is 30 characters.

A log file for the export job, named jobname.log, is created in the same
directory as the dump file set.

Usage Notes

The model_filter parameter specifies which models to export. You can list the
models by name, or you can specify all models that have the same machine learning
function or algorithm. You can query the USER_MINING_MODELS view to list the models in
your schema.

SQL> describe user_mining_models
 Name Null? Type
 --- -------- ----------------------------
 MODEL_NAME NOT NULL VARCHAR2(30)
 MINING_FUNCTION VARCHAR2(30)
 ALGORITHM VARCHAR2(30)
 CREATION_DATE NOT NULL DATE
 BUILD_DURATION NUMBER
 MODEL_SIZE NUMBER
 COMMENTS VARCHAR2(4000)

Examples of model filters are provided in Table 41-76.

Table 41-76 Sample Values for the Model Filter Parameter

Sample Value Meaning

'mymodel' Export the model named mymodel

'name= ''mymodel''' Export the model named mymodel

'name IN (''mymodel2'',''mymodel3'')' Export the models named mymodel2 and
mymodel3

'ALGORITHM_NAME = ''NAIVE_BAYES''' Export all Naive Bayes models. See
Table 41-5 for a list of algorithm names.

'FUNCTION_NAME =''CLASSIFICATION''' Export all classification models. See
Table 41-3 for a list of machine learning
functions.

Chapter 41
DBMS_DATA_MINING

41-113

Examples

1. The following statement exports all the models in the oml_user3 schema to a
dump file set called models_out in the directory $ORACLE_HOME/rdbms/log. This
directory is mapped to a directory object called DATA_PUMP_DIR. The oml_user3
user has read/write access to the directory and to the directory object.

SQL>execute dbms_data_mining.export_model ('models_out', 'DATA_PUMP_DIR');

You can exit SQL*Plus and list the resulting dump file and log file.

SQL>EXIT
>cd $ORACLE_HOME/rdbms/log
>ls
>oml_user3_exp_1027.log models_out01.dmp

2. The following example uses the same directory object and is executed by
the same user. This example exports the models called NMF_SH_SAMPLE and
SVMR_SH_REGR_SAMPLE to a different dump file set in the same directory.

SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL ('models2_out', 'DATA_PUMP_DIR',
 'name in (''NMF_SH_SAMPLE'', ''SVMR_SH_REGR_SAMPLE'')');
SQL>EXIT
>cd $ORACLE_HOME/rdbms/log
>ls
>oml_user3_exp_1027.log models_out01.dmp
 oml_user3_exp_924.log models2_out01.dmp

3. The following examples show how to export models with specific algorithm and
machine learning function names.

SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL('algo.dmp','DM_DUMP',
 'ALGORITHM_NAME IN (''O_CLUSTER'',''GENERALIZED_LINEAR_MODEL'',
 ''SUPPORT_VECTOR_MACHINES'',''NAIVE_BAYES'')');

SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL('func.dmp', 'DM_DUMP',
 'FUNCTION_NAME IN (CLASSIFICATION,CLUSTERING,FEATURE_EXTRACTION)');

41.1.5.18 EXPORT_SERMODEL Procedure
This procedure exports the model in a serialized format so that they can be moved to
another platform for scoring.

When exporting a model in serialized format, the user must pass in an empty BLOB
locator and specify the model name to be exported. If the model is partitioned, the
user can optionally select an individual partition to export, otherwise all partitions are
exported. The returned BLOB contains the content that can be deployed.

Syntax

DBMS_DATA_MINING.EXPORT_SERMODEL (
 model_data IN OUT NOCOPY BLOB,
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING

41-114

Parameters

Table 41-77 EXPORT_SERMODEL Procedure Parameters

Parameter Description

model_data Provides serialized model data.

model_name Name of the machine learning model in the form
[schema_name.]model_name. If you do not specify a schema, then your own
schema is used.

partition_na
me

Name of the partition that must be exported.

Examples

The following statement exports all of the models in a serialized format.

DECLARE
 v_blob blob;
BEGIN
 dbms_lob.createtemporary(v_blob, FALSE);
 dbms_data_mining.export_sermodel(v_blob, 'MY_MODEL');
-- save v_blob somewhere (e.g., bfile, etc.)
 dbms_lob.freetemporary(v_blob);
END;
/

See Also:

Oracle Machine Learning for SQL User’s Guide for more information about
exporting and importing machine learning models

41.1.5.19 FETCH_JSON_SCHEMA Procedure
User can fetch and read JSON schema from the ALL_MINING_ALGORITHMS view. This
function returns the pre-registered JSON schema for R extensible algorithms.

Syntax

DBMS_DATA_MINING.FETCH_JSON_SCHEMA RETURN CLOB;

Parameters

Table 41-78 FETCH_JSON_SCHEMA Procedure Parameters

Parameter Description

RETURN This function returns the pre-registered JSON schema for R extensibility.

The default value is CLOB.

Chapter 41
DBMS_DATA_MINING

41-115

Usage Note

If a user wants to register a new algorithm using the algorithm registration function,
they must fetch and follow the pre-registered JSON schema using this function, when
they create the required JSON object metadata, and then pass it to the registration
function.

41.1.5.20 GET_ASSOCIATION_RULES Function
The GET_ASSOCIATION_RULES function returns the rules produced by an association
model. Starting from Oracle Database 12c Release 2, this function is deprecated. Use
model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

You can specify filtering criteria to GET_ASSOCIATION_RULES to return a subset of the
rules. Filtering criteria can improve the performance of the table function. If the number
of rules is large, then the greatest performance improvement will result from specifying
the topn parameter.

Syntax

DBMS_DATA_MINING.get_association_rules(
 model_name IN VARCHAR2,
 topn IN NUMBER DEFAULT NULL,
 rule_id IN INTEGER DEFAULT NULL,
 min_confidence IN NUMBER DEFAULT NULL,
 min_support IN NUMBER DEFAULT NULL,
 max_rule_length IN INTEGER DEFAULT NULL,
 min_rule_length IN INTEGER DEFAULT NULL,
 sort_order IN ORA_MINING_VARCHAR2_NT DEFAULT NULL,
 antecedent_items IN DM_ITEMS DEFAULT NULL,
 consequent_items IN DM_ITEMS DEFAULT NULL,
 min_lift IN NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_Rules PIPELINED;

Parameters

Table 41-79 GET_ASSOCIATION_RULES Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do
not specify a schema, then your own schema is used.

This is the only required parameter of GET_ASSOCIATION_RULES. All
other parameters specify optional filters on the rules to return.

topn Returns the n top rules ordered by confidence and then support, both
descending. If you specify a sort order, then the top n rules are derived
after the sort is performed.

If topn is specified and no maximum or minimum rule length is
specified, then the only columns allowed in the sort order are
RULE_CONFIDENCE and RULE_SUPPORT. If topn is specified and a
maximum or minimum rule length is specified, then RULE_CONFIDENCE,
RULE_SUPPORT, and NUMBER_OF_ITEMS are allowed in the sort order.

Chapter 41
DBMS_DATA_MINING

41-116

Table 41-79 (Cont.) GET_ASSOCIATION_RULES Function Parameters

Parameter Description

rule_id Identifier of the rule to return. If you specify a value for rule_id, do not
specify values for the other filtering parameters.

min_confidence Returns the rules with confidence greater than or equal to this number.

min_support Returns the rules with support greater than or equal to this number.

max_rule_length Returns the rules with a length less than or equal to this number.

Rule length refers to the number of items in the rule (See
NUMBER_OF_ITEMS in Table 41-80). For example, in the rule A=>B (if
A, then B), the number of items is 2.

If max_rule_length is specified, then the NUMBER_OF_ITEMS column
is permitted in the sort order.

min_rule_length Returns the rules with a length greater than or equal to this number. See
max_rule_length for a description of rule length.

If min_rule_length is specified, then the NUMBER_OF_ITEMS column
is permitted in the sort order.

sort_order Sorts the rules by the values in one or more of the returned columns.
Specify one or more column names, each followed by ASC for ascending
order or DESC for descending order. (See Table 41-80 for the column
names.)

For example, to sort the result set in descending order first by the
NUMBER_OF_ITEMS column, then by the RULE_CONFIDENCE column,
you must specify:

ORA_MINING_VARCHAR2_NT('NUMBER_OF_ITEMS DESC',
'RULE_CONFIDENCE DESC')

If you specify topn, the results will vary depending on the sort order.

By default, the results are sorted by Confidence in descending order,
then by Support in descending order.

antecedent_items Returns the rules with these items in the antecedent.

consequent_items Returns the rules with this item in the consequent.

min_lift Returns the rules with lift greater than or equal to this number.

partition_name Specifies a partition in a partitioned model.

Return Values

The object type returned by GET_ASSOCIATION_RULES is described in Table 41-80. For
descriptions of each field, see the Usage Notes.

Chapter 41
DBMS_DATA_MINING

41-117

Table 41-80 GET_ASSOCIATION RULES Function Return Values

Return Value Description

DM_RULES A set of rows of type DM_RULE. The rows have the following columns:

(rule_id INTEGER,
 antecedent DM_PREDICATES,
 consequent DM_PREDICATES,
 rule_support NUMBER,
 rule_confidence NUMBER,
 rule_lift NUMBER,
 antecedent_support NUMBER,
 consequent_support NUMBER,
 number_of_items INTEGER)

DM_PREDICATE
S

The antecedent and consequent columns each return nested tables of
type DM_PREDICATES. The rows, of type DM_PREDICATE, have the following
columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 conditional_operator CHAR(2)/*=,<>,<,>,<=,>=*/,
 attribute_num_value NUMBER,
 attribute_str_value VARCHAR2(4000),
 attribute_support NUMBER,
 attribute_confidence NUMBER)

Usage Notes

1. This table function pipes out rows of type DM_RULES. For information on machine
learning data types and piped output from table functions, see "Datatypes".

2. The columns returned by GET_ASSOCIATION_RULES are described as follows:

Column in
DM_RULES

Description

rule_id Unique identifier of the rule

Chapter 41
DBMS_DATA_MINING

41-118

Column in
DM_RULES

Description

antecedent The independent condition in the rule. When this condition exists,
the dependent condition in the consequent also exists.

The condition is a combination of attribute values called a
predicate (DM_PREDICATE). The predicate specifies a condition
for each attribute. The condition may specify equality (=),
inequality (<>), greater than (>), less than (<), greater than or
equal to (>=), or less than or equal to (<=) a given value.

Support and Confidence for each attribute condition in the
antecedent is returned in the predicate. Support is the number
of transactions that satisfy the antecedent. Confidence is the
likelihood that a transaction will satisfy the antecedent.

Note: The occurrence of the attribute as a DM_PREDICATE
indicates the presence of the item in the transaction. The actual
value for attribute_num_value or attribute_str_value
is meaningless. For example, the following predicate indicates
that 'Mouse Pad' is present in the transaction even though the
attribute value is NULL.

DM_PREDICATE('PROD_NAME',
 'Mouse Pad', '= ', NULL, NULL, NULL,
NULL))

consequent The dependent condition in the rule. This condition exists when
the antecedent exists.

The consequent, like the antecedent, is a predicate
(DM_PREDICATE).

Support and confidence for each attribute condition in the
consequent is returned in the predicate. Support is the number
of transactions that satisfy the consequent. Confidence is the
likelihood that a transaction will satisfy the consequent.

rule_support The number of transactions that satisfy the rule.

rule_confidence The likelihood of a transaction satisfying the rule.

rule_lift The degree of improvement in the prediction over random chance
when the rule is satisfied.

antecedent_support The ratio of the number of transactions that satisfy the antecedent
to the total number of transactions.

consequent_support The ratio of the number of transactions that satisfy the
consequent to the total number of transactions.

number_of_items The total number of attributes referenced in the antecedent and
consequent of the rule.

Examples

The following example demonstrates an association model build followed by several
invocations of the GET_ASSOCIATION_RULES table function:

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS
SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence

Chapter 41
DBMS_DATA_MINING

41-119

UPDATE market_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

-- build an AR model
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',
 target_column_name => NULL,
 settings_table_name => 'market_settings');
END;
/
-- View the (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('market_model'));

In the previous example, you view all rules. To view just the top 20 rules, use the
following statement.

-- View the top 20 (unformatted) rules
SELECT rule_id, antecedent, consequent, rule_support,
 rule_confidence
 FROM TABLE(DBMS_DATA_MINING.GET_ASSOCIATION_RULES('market_model', 20));

The following query uses the association model AR_SH_SAMPLE.

SELECT * FROM TABLE (
 DBMS_DATA_MINING.GET_ASSOCIATION_RULES (
 'AR_SH_SAMPLE', 10, NULL, 0.5, 0.01, 2, 1,
 ORA_MINING_VARCHAR2_NT (
 'NUMBER_OF_ITEMS DESC', 'RULE_CONFIDENCE DESC', 'RULE_SUPPORT DESC'),
 DM_ITEMS(DM_ITEM('CUSTPRODS', 'Mouse Pad', 1, NULL),
 DM_ITEM('CUSTPRODS', 'Standard Mouse', 1, NULL)),
 DM_ITEMS(DM_ITEM('CUSTPRODS', 'Extension Cable', 1, NULL))));

The query returns three rules, shown as follows:

13 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Mouse Pad', '= ', 1, NULL, NULL, NULL),
 DM_PREDICATE('CUSTPRODS', 'Standard Mouse', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .15532 .84393 2.7075 .18404 .3117 2

11 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Standard Mouse', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .18085 .56291 1.8059 .32128 .3117 1

9 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Mouse Pad', '= ', 1, NULL, NULL, NULL))
 DM_PREDICATES(
 DM_PREDICATE('CUSTPRODS', 'Extension Cable', '= ', 1, NULL, NULL, NULL))
 .17766 .55116 1.7682 .32234 .3117 1

Chapter 41
DBMS_DATA_MINING

41-120

See Also:

Table 41-80 for the DM_RULE column data types.

41.1.5.21 GET_FREQUENT_ITEMSETS Function
The GET_FREQUENT_ITEMSETS function returns a set of rows that represent the frequent
itemsets from an association model. Starting from Oracle Database 12c Release 2,
this function is deprecated. Use model detail views instead..

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

For a detailed description of frequent itemsets, consult Oracle Machine Learning for
SQL Concepts.

Syntax

DBMS_DATA_MINING.get_frequent_itemsets(
 model_name IN VARCHAR2,
 topn IN NUMBER DEFAULT NULL,
 max_itemset_length IN NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_ItemSets PIPELINED;

Parameters

Table 41-81 GET_FREQUENT_ITEMSETS Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.

topn When not NULL, return the top n rows ordered by support in
descending order

max_itemset_length Maximum length of an item set.

partition_name Specifies a partition in a partitioned model.

Note:

The partition_name columns
applies only when the model is
partitioned.

Chapter 41
DBMS_DATA_MINING

41-121

Return Values

Table 41-82 GET_FREQUENT_ITEMSETS Function Return Values

Return Value Description

DM_ITEMSETS A set of rows of type DM_ITEMSET. The rows have the following columns:

(partition_name VARCHAR2(128)
itemsets_id NUMBER,
items DM_ITEMS,
support NUMBER,
number_of_items NUMBER)

Note:

The partition_name columns applies only
when the model is partitioned.

The items column returns a nested table of type DM_ITEMS. The rows have
type DM_ITEM:

(attribute_name VARCHAR2(4000),
attribute_subname VARCHAR2(4000),
attribute_num_value NUMBER,
attribute_str_value VARCHAR2(4000))

Usage Notes

This table function pipes out rows of type DM_ITEMSETS. For information on machine
learning data types and piped output from table functions, see "Data Types".

Examples

The following example demonstrates an association model build followed by an
invocation of GET_FREQUENT_ITEMSETS table function from Oracle SQL.

-- prepare a settings table to override default settings
CREATE TABLE market_settings AS

 SELECT *

 FROM TABLE(DBMS_DATA_MINING.GET_DEFAULT_SETTINGS)
 WHERE setting_name LIKE 'ASSO_%';
BEGIN
-- update the value of the minimum confidence
UPDATE market_settings
 SET setting_value = TO_CHAR(0.081)
 WHERE setting_name = DBMS_DATA_MINING.asso_min_confidence;

/* build a AR model */
DBMS_DATA_MINING.CREATE_MODEL(
 model_name => 'market_model',
 function => DBMS_DATA_MINING.ASSOCIATION,
 data_table_name => 'market_build',
 case_id_column_name => 'item_id',

Chapter 41
DBMS_DATA_MINING

41-122

 target_column_name => NULL,
 settings_table_name => 'market_settings');
END;
/

-- View the (unformatted) Itemsets from SQL*Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model'));

In the example above, you view all itemsets. To view just the top 20 itemsets, use the
following statement:

-- View the top 20 (unformatted) Itemsets from SQL*Plus
SELECT itemset_id, items, support, number_of_items
 FROM TABLE(DBMS_DATA_MINING.GET_FREQUENT_ITEMSETS('market_model', 20));

41.1.5.22 GET_MODEL_COST_MATRIX Function
The GET_* interfaces are replaced by model views, and Oracle recommends that users
leverage the views instead.

The GET_MODEL_COST_MATRIX function is replaced by the DM$VC prefixed view,
Scoring Cost Matrix. The cost matrix used when building a Decision Tree is made
available by the DM$VM prefixed view, Decision Tree build cost matrix.

Refer to Model Detail View for Classification Algorithm.

The GET_MODEL_COST_MATRIX function returns the rows of a cost matrix associated with
the specified model.

By default, this function returns the scoring cost matrix that was added to the
model with the ADD_COST_MATRIX procedure. If you wish to obtain the cost matrix
used to create a model, specify cost_matrix_type_create as the matrix_type. See
Table 41-83.

See also ADD_COST_MATRIX Procedure.

Syntax

DBMS_DATA_MINING.GET_MODEL_COST_MATRIX (
 model_name IN VARCHAR2,
 matrix_type IN VARCHAR2 DEFAULT cost_matrix_type_score)
 partition_name IN VARCHAR2 DEFAULT NULL);
RETURN DM_COST_MATRIX PIPELINED;

Parameters

Table 41-83 GET_MODEL_COST_MATRIX Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

matrix_type The type of cost matrix.

COST_MATRIX_TYPE_SCORE — cost matrix used for scoring.
(Default.)

COST_MATRIX_TYPE_CREATE — cost matrix used to create the
model (Decision Tree only).

Chapter 41
DBMS_DATA_MINING

41-123

Table 41-83 (Cont.) GET_MODEL_COST_MATRIX Function Parameters

Parameter Description

partition_name Name of the partition in a partitioned model

Return Values

Table 41-84 GET_MODEL_COST_MATRIX Function Return Values

Return Value Description

DM_COST_MATRIX A set of rows of type DM_COST_ELEMENT. The rows have the
following columns:

actual VARCHAR2(4000), NUMBER,
predicted VARCHAR2(4000), cost
NUMBER)

Usage Notes

Only Decision Tree models can be built with a cost matrix. If you want to build a
Decision Tree model with a cost matrix, specify the cost matrix table name in the
CLAS_COST_TABLE_NAME setting in the settings table for the model. See Table 41-7.

The cost matrix used to create a Decision Tree model becomes the default scoring
matrix for the model. If you want to specify different costs for scoring, you can use the
REMOVE_COST_MATRIX procedure to remove the cost matrix and the ADD_COST_MATRIX
procedure to add a new one.

The GET_MODEL_COST_MATRIX may return either the build or scoring cost matrix defined
for a model or model partition.

If you do not specify a partitioned model name, then an error is displayed.

Example

This example returns the scoring cost matrix associated with the Naive Bayes model
NB_SH_CLAS_SAMPLE.

column actual format a10
column predicted format a10
SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

ACTUAL PREDICTED COST
---------- ---------- -----
0 0 .00
1 0 .75
0 1 .25
1 1 .00

Chapter 41
DBMS_DATA_MINING

41-124

41.1.5.23 GET_MODEL_DETAILS_AI Function
The GET_MODEL_DETAILS_AI function returns a set of rows that provide the details of
an attribute importance model. Starting from Oracle Database 12c Release 2, this
function is deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_ai(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN dm_ranked_attributes pipelined;

Parameters

Table 41-85 GET_MODEL_DETAILS_AI Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 41-86 GET_MODEL_DETAILS_AI Function Return Values

Return Value Description

DM_RANKED_ATTRIBUTES A set of rows of type DM_RANKED_ATTRIBUTE. The rows have the
following columns:

(attribute_name VARCHAR2(4000,
 attribute_subname VARCHAR2(4000),
 importance_value NUMBER,
 rank NUMBER(38))

Examples

The following example returns model details for the attribute importance model
AI_SH_sample, which was created by the sample program dmaidemo.sql.

SELECT attribute_name, importance_value, rank
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_AI('AI_SH_sample'))
 ORDER BY RANK;

ATTRIBUTE_NAME IMPORTANCE_VALUE RANK
-- ---------------- ----------
HOUSEHOLD_SIZE .151685183 1
CUST_MARITAL_STATUS .145294546 2
YRS_RESIDENCE .07838928 3
AGE .075027496 4
Y_BOX_GAMES .063039952 5
EDUCATION .059605314 6

Chapter 41
DBMS_DATA_MINING

41-125

HOME_THEATER_PACKAGE .056458722 7
OCCUPATION .054652937 8
CUST_GENDER .035264741 9
BOOKKEEPING_APPLICATION .019204751 10
PRINTER_SUPPLIES 0 11
OS_DOC_SET_KANJI -.00050013 12
FLAT_PANEL_MONITOR -.00509564 13
BULK_PACK_DISKETTES -.00540822 14
COUNTRY_NAME -.01201116 15
CUST_INCOME_LEVEL -.03951311 16

41.1.5.24 GET_MODEL_DETAILS_EM Function
The GET_MODEL_DETAILS_EM function returns a set of rows that provide statistics about
the clusters produced by an expectation maximization model. Starting from Oracle
Database 12c Release 2, this function is deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

By default, the EM algorithm groups components into high-level clusters, and
GET_MODEL_DETAILS_EM returns only the high-level clusters with their hierarchies.
Alternatively, you can configure EM model to disable the grouping of components
into high-level clusters. In this case, GET_MODEL_DETAILS_EM returns the components
themselves as clusters with their hierarchies. See Table 41-12.

Syntax

DBMS_DATA_MINING.get_model_details_em(
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 attribute_subname VARCHAR2 DEFAULT NULL,
 topn_attributes NUMBER DEFAULT NULL,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN dm_clusters PIPELINED;

Parameters

Table 41-87 GET_MODEL_DETAILS_EM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

cluster_id The ID of a cluster in the model. When a valid cluster ID is
specified, only the details of this cluster are returned. Otherwise,
the details for all clusters are returned.

attribute The name of an attribute. When a valid attribute name is specified,
only the details of this attribute are returned. Otherwise, the details
for all attributes are returned

centroid This parameter accepts the following values:

• 1: Details about centroids are returned (default)
• 0: Details about centroids are not returned

Chapter 41
DBMS_DATA_MINING

41-126

Table 41-87 (Cont.) GET_MODEL_DETAILS_EM Function Parameters

Parameter Description

histogram This parameter accepts the following values:

• 1: Details about histograms are returned (default)
• 0: Details about histograms are not returned

rules This parameter accepts the following values:

• 2: Details about rules are returned (default)
• 1: Rule summaries are returned
• 0: No information about rules is returned

attribute_subname The name of a nested attribute. The full name of a nested attribute
has the form:

attribute_name.attribute_subname

where attribute_name is the name of the column and
attribute_subname is the name of the nested attribute in that
column. If the attribute is not nested, then attribute_subname is
null.

topn_attributes Restricts the number of attributes returned in the centroid,
histogram, and rules objects. Only the n attributes with the highest
confidence values in the rules are returned.

If the number of attributes included in the rules is less than
topn, then, up to n additional attributes in alphabetical order are
returned.

If both the attribute and topn_attributes parameters are
specified, then topn_attributes is ignored.

partition_name Specifies a partition in a partitioned model.

Usage Notes

1. For information on Oracle Machine Learning for SQL data types and return values
for Clustering algorithms piped output from table functions, see "Data Types".

2. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

3. When cluster statistics are disabled (EMCS_CLUSTER_STATISTICS is set to
EMCS_CLUS_STATS_DISABLE), GET_MODEL_DETAILS_EM does not return centroids,
histograms, or rules. Only taxonomy (hierarchy) and cluster counts are returned.

4. When the partition_name is NULL for a partitioned model, an exception is thrown.
When the value is not null, it must contain the desired partition name.

41.1.5.25 GET_MODEL_DETAILS_EM_COMP Function
he GET_MODEL_DETAILS_EM_COMP table function returns a set of rows that provide
details about the parameters of an expectation maximization model. Starting from
Oracle Database 12c Release 2, this function is deprecated. Use model detail views
instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

Chapter 41
DBMS_DATA_MINING

41-127

Syntax

DBMS_DATA_MINING.get_model_details_em_comp(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_EM_COMPONENT_SET PIPELINED;

Parameters

Table 41-88 GET_MODEL_DETAILS_EM_COMP Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model to retrieve details for.

Return Values

Table 41-89 GET_MODEL_DETAILS_EM_COMP Function Return Values

Return Value Description

DM_EM_COMPONENT_SET A set of rows of type DM_EM_COMPONENT. The rows have
the following columns:

(info_type VARCHAR2(30),
 component_id NUMBER,
 cluster_id NUMBER,
 attribute_name VARCHAR2(4000),
 covariate_name VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 value NUMBER)

Usage Notes

1. This table function pipes out rows of type DM_EM_COMPONENT. For information
on Oracle Machine Learning for SQL data types and piped output from table
functions, see "Data Types".

The columns in each row returned by GET_MODEL_DETAILS_EM_COMP are described
as follows:

Column in
DM_EM_COMPONENT

Description

info_type The type of information in the row. The following
information types are supported:

• cluster
• prior
• mean
• covariance
• frequency

component_id Unique identifier of a component

Chapter 41
DBMS_DATA_MINING

41-128

Column in
DM_EM_COMPONENT

Description

cluster_id Unique identifier of the high-level leaf cluster for each
component

attribute_name Name of an original attribute or a derived feature
ID. The derived feature ID is used in models
built on data with nested columns. The derived
feature definitions can be obtained from the
GET_MODEL_DETAILS_EM_PROJ Function.

covariate_name Name of an original attribute or a derived feature ID
used in variance/covariance definition

attribute_value Categorical value or bin interval for binned numerical
attributes

value Encodes different information depending on the value
of info_type, as follows:

• cluster — The value field is NULL
• prior — The value field returns the component

prior
• mean — The value field returns the mean of the

attribute specified in attribute_name
• covariance — The value field returns the

covariance of the attributes specified in
attribute_name and covariate_name. Using
the same attribute in attribute_name and
covariate_name, returns the variance.

• frequency— The value field returns the
multivalued Bernoulli frequency parameter for
the attribute/value combination specified by
attribute_name and attribute_value

See Usage Note 2 for details.

2. The following table shows which fields are used for each info_type. The blank
cells represent NULLs.

info_type component_
id

cluster_i
d

attribute
_name

covariate_
name

attribute_v
alue

value

cluster X X

prior X X X

mean X X X X

covariance X X X X X

frequency X X X X X

3. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

4. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Chapter 41
DBMS_DATA_MINING

41-129

41.1.5.26 GET_MODEL_DETAILS_EM_PROJ Function
The GET_MODEL_DETAILS_EM_PROJ function returns a set of rows that provide statistics
about the projections produced by an expectation maximization model. Starting from
Oracle Database 12c Release 2, this function is deprecated. Use model detail views
instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_em_proj(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_EM_PROJECTION_SET PIPELINED;

Parameters

Table 41-90 GET_MODEL_DETAILS_EM_PROJ Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 41-91 GET_MODEL_DETAILS_EM_PROJ Function Return Values

Return Value Description

DM_EM_PROJECTION_SET A set of rows of type DM_EM_PROJECTION. The rows have the
following columns:

(feature_name VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

See Usage Notes for details.

Usage Notes

1. This table function pipes out rows of type DM_EM_PROJECTION. For information
on machine learning data types and piped output from table functions, see
"Datatypes".

The columns in each row returned by GET_MODEL_DETAILS_EM_PROJ are described
as follows:

Chapter 41
DBMS_DATA_MINING

41-130

Column in DM_EM_PROJECTION Description

feature_name Name of a derived feature. The feature
maps to the attribute_name returned by the
GET_MODEL_DETAILS_EM Function.

attribute_name Name of a column in the build data

attribute_subname Subname in a nested column

attribute_value Categorical value

coefficient Projection coefficient. The representation is sparse;
only the non-zero coefficients are returned.

2. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes.
When returned directly with the model details, the coefficients may not provide
meaningful information.

3. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.27 GET_MODEL_DETAILS_GLM Function
The GET_MODEL_DETAILS_GLM function returns the coefficient statistics for a generalized
linear model. Starting from Oracle Database 12c Release 2, this function is
deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

The same set of statistics is returned for both linear and logistic regression, but
statistics that do not apply to the machine learning function are returned as NULL.
For more details, see the Usage Notes.

Syntax

DBMS_DATA_MINING.get_model_details_glm(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_GLM_Coeff_Set PIPELINED;

Parameters

Table 41-92 GET_MODEL_DETAILS_GLM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

Chapter 41
DBMS_DATA_MINING

41-131

Return Values

Table 41-93 GET_MODEL_DETAILS_GLM Return Values

Return Value Description

DM_GLM_COEFF_SET A set of rows of type DM_GLM_COEFF. The rows have the
following columns:

(class VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 feature_expression VARCHAR2(4000),
 coefficient NUMBER,
 std_error NUMBER,
 test_statistic NUMBER,
 p_value NUMBER,
 VIF NUMBER,
 std_coefficient NUMBER,
 lower_coeff_limit NUMBER,
 upper_coeff_limit NUMBER,
 exp_coefficient BINARY_DOUBLE,
 exp_lower_coeff_limit BINARY_DOUBLE,
 exp_upper_coeff_limit BINARY_DOUBLE)

GET_MODEL_DETAILS_GLM returns a row of statistics for each attribute and one extra row
for the intercept, which is identified by a null value in the attribute name. Each row has
the DM_GLM_COEFF data type. The statistics are described in Table 41-94.

Table 41-94 DM_GLM_COEFF Data Type Description

Column Description

class The non-reference target class for logistic regression. The model
is built to predict the probability of this class.

The other class (the reference class) is specified in the model
setting GLMS_REFERENCE_CLASS_NAME. See Table 41-18.

For Linear Regression, class is null.

attribute_name The attribute name when there is no subname, or first part
of the attribute name when there is a subname. The value of
attribute_name is also the name of the column in the case
table that is the source for this attribute.

For the intercept, attribute_name is null. Intercepts are
equivalent to the bias term in SVM models.

attribute_subname The name of an attribute in a nested table. The full name of a
nested attribute has the form:

attribute_name.attribute_subname

where attribute_name is the name of the nested column in
the case table that is the source for this attribute.

If the attribute is not nested, then attribute_subname is null. If
the attribute is an intercept, then both the attribute_name and
the attribute_subname are null.

Chapter 41
DBMS_DATA_MINING

41-132

Table 41-94 (Cont.) DM_GLM_COEFF Data Type Description

Column Description

attribute_value The value of the attribute (categorical attribute only).

For numeric attributes, attribute_value is null.

feature_expression The feature name constructed by the algorithm when
feature generation is enabled and higher-order features
are found. If feature selection is not enabled, then the
feature name is simply the fully-qualified attribute name
(attribute_name.attribute_subname if the attribute is in a
nested column).

For categorical attributes, the algorithm constructs a feature
name that has the following form:

fully-qualified_attribute_name.attribute_value

For numeric attributes, the algorithm constructs a name for the
higher-order feature by taking the product of the resulting values:

(attrib1)*(attrib2))*......

where attrib1 and attrib2 are fully-qualified attribute names.

coefficient The linear coefficient estimate.

std_error Standard error of the coefficient estimate.

test_statistic For linear regression, the t-value of the coefficient estimate.

For logistic regression, the Wald chi-square value of the
coefficient estimate.

p-value Probability of the test_statistic. Used to analyze the
significance of specific attributes in the model.

VIF Variance Inflation Factor. The value is zero for the intercept. For
logistic regression, VIF is null. VIF is not computed if the solver
is Cholesky.

std_coefficient Standardized estimate of the coefficient.

lower_coeff_limit Lower confidence bound of the coefficient.

upper_coeff_limit Upper confidence bound of the coefficient.

exp_coefficient Exponentiated coefficient for logistic regression. For linear
regression, exp_coefficient is null.

exp_lower_coeff_limit Exponentiated coefficient for lower confidence bound of
the coefficient for logistic regression. For linear regression,
exp_lower_coeff_limit is null.

exp_upper_coeff_limit Exponentiated coefficient for upper confidence bound of
the coefficient for logistic regression. For linear regression,
exp_lower_coeff_limit is null.

Usage Notes

Not all statistics are necessarily returned for each coefficient. Statistics will be null if:

• They do not apply to the machine learning function. For example,
exp_coefficient does not apply to linear regression.

• They cannot be computed from a theoretical standpoint. For information on ridge
regression, see Table 41-18.

Chapter 41
DBMS_DATA_MINING

41-133

• They cannot be computed because of limitations in system resources.

• Their values would be infinity.

• When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns some of the model details for the GLM regression
model GLMR_SH_Regr_sample.

SET line 120
SET pages 99
column attribute_name format a30
column attribute_subname format a20
column attribute_value format a20
col coefficient format 990.9999
col std_error format 990.9999
SQL> SELECT * FROM
(SELECT attribute_name, attribute_value, coefficient, std_error
 FROM DM$VDGLMR_SH_REGR_SAMPLE order by 1,2)
WHERE rownum < 11;

ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT STD_ERROR
------------------------------ -------------------- ----------- ---------
AFFINITY_CARD -0.5797 0.5283
BOOKKEEPING_APPLICATION -0.4689 3.8872
BULK_PACK_DISKETTES -0.9819 2.5430
COUNTRY_NAME Argentina -1.2020 1.1876
COUNTRY_NAME Australia -0.0071 5.1146
COUNTRY_NAME Brazil 5.2931 1.9233
COUNTRY_NAME Canada 4.0191 2.4108
COUNTRY_NAME China 0.8706 3.5889
COUNTRY_NAME Denmark -2.9822 3.1803
COUNTRY_NAME France -1.1044 7.1811

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.28 GET_MODEL_DETAILS_GLOBAL Function
The GET_MODEL_DETAILS_GLOBAL function returns statistics about the model as a
whole. Starting from Oracle Database 12c Release 2, this function is deprecated. Use
model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

Global details are available for Generalized Linear Models, Association Rules,
Singular Value Decomposition, and Expectation Maximization. There are new Global
model views which show global information for all algorithms. Oracle recommends that
users leverage the views instead. Refer to Model Details View Global.

Syntax

DBMS_DATA_MINING.get_model_details_global(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_model_global_details PIPELINED;

Chapter 41
DBMS_DATA_MINING

41-134

Parameters

Table 41-95 GET_MODEL_DETAILS_GLOBAL Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 41-96 GET_MODEL_DETAILS_GLOBAL Function Return Values

Return Value Description

DM_MODEL_GLOBAL_DETAILS A collection of rows of type DM_MODEL_GLOBAL_DETAIL.
The rows have the following columns:

(global_detail_name VARCHAR2(30),
 global_detail_value NUMBER)

Examples

The following example returns the global model details for the GLM regression model
GLMR_SH_Regr_sample.

SELECT *
 FROM TABLE(dbms_data_mining.get_model_details_global(
 'GLMR_SH_Regr_sample'))
ORDER BY global_detail_name;
GLOBAL_DETAIL_NAME GLOBAL_DETAIL_VALUE
------------------------------ -------------------
ADJUSTED_R_SQUARE .731412557
AIC 5931.814
COEFF_VAR 18.1711243
CORRECTED_TOTAL_DF 1499
CORRECTED_TOT_SS 278740.504
DEPENDENT_MEAN 38.892
ERROR_DF 1433
ERROR_MEAN_SQUARE 49.9440956
ERROR_SUM_SQUARES 71569.8891
F_VALUE 62.8492452
GMSEP 52.280819
HOCKING_SP .034877162
J_P 52.1749319
MODEL_CONVERGED 1
MODEL_DF 66
MODEL_F_P_VALUE 0
MODEL_MEAN_SQUARE 3138.94871
MODEL_SUM_SQUARES 207170.615
NUM_PARAMS 67
NUM_ROWS 1500
ROOT_MEAN_SQ 7.06711367
R_SQ .743238288
SBIC 6287.79977
VALID_COVARIANCE_MATRIX 1

Chapter 41
DBMS_DATA_MINING

41-135

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.29 GET_MODEL_DETAILS_KM Function
The GET_MODEL_DETAILS_KM function returns a set of rows that provide the details of a
k-means clustering model. Starting from Oracle Database 12c Release 2, this function
is deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

You can provide input to GET_MODEL_DETAILS_KM to request specific information about
the model, thus improving the performance of the query. If you do not specify filtering
parameters, then GET_MODEL_DETAILS_KM returns all the information about the model.

Syntax

DBMS_DATA_MINING.get_model_details_km(
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 attribute_subname VARCHAR2 DEFAULT NULL,
 topn_attributes NUMBER DEFAULT NULL,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN dm_clusters PIPELINED;

Parameters

Table 41-97 GET_MODEL_DETAILS_KM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do
not specify a schema, then your own schema is used.

cluster_id The ID of a cluster in the model. When a valid cluster ID is specified,
only the details of this cluster are returned. Otherwise the details for all
clusters are returned.

attribute The name of an attribute. When a valid attribute name is specified, only
the details of this attribute are returned. Otherwise, the details for all
attributes are returned

centroid This parameter accepts the following values:

• 1: Details about centroids are returned (default)
• 0: Details about centroids are not returned

histogram This parameter accepts the following values:

• 1: Details about histograms are returned (default)
• 0: Details about histograms are not returned

rules This parameter accepts the following values:

• 2: Details about rules are returned (default)
• 1: Rule summaries are returned
• 0: No information about rules is returned

Chapter 41
DBMS_DATA_MINING

41-136

Table 41-97 (Cont.) GET_MODEL_DETAILS_KM Function Parameters

Parameter Description

attribute_subnam
e

The name of a nested attribute. The full name of a nested attribute has
the form:

attribute_name.attribute_subname

where attribute_name is the name of the column and
attribute_subname is the name of the nested attribute in that
column.

If the attribute is not nested, attribute_subname is null.

topn_attributes Restricts the number of attributes returned in the centroid, histogram,
and rules objects. Only the n attributes with the highest confidence
values in the rules are returned.

If the number of attributes included in the rules is less than topn, then
up to n additional attributes in alphabetical order are returned.

If both the attribute and topn_attributes parameters are
specified, then topn_attributes is ignored.

partition_name Specifies a partition in a partitioned model.

Usage Notes

1. The table function pipes out rows of type DM_CLUSTERS. For information on
machine learning data types and Return Value for Clustering Algorithms piped
output from table functions, see "Data Types".

2. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the k-means clustering model
KM_SH_Clus_sample.

SELECT T.id clu_id,
 T.record_count rec_cnt,
 T.parent parent,
 T.tree_level tree_level,
 T.dispersion dispersion
 FROM (SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_KM(
 'KM_SH_Clus_sample'))
 ORDER BY id) T
 WHERE ROWNUM < 6;

 CLU_ID REC_CNT PARENT TREE_LEVEL DISPERSION
---------- ---------- ---------- ---------- ----------
 1 1500 1 5.9152211
 2 638 1 2 3.98458982
 3 862 1 2 5.83732097
 4 376 3 3 5.05192137
 5 486 3 3 5.42901522

Related Topics

• Oracle Machine Learning for SQL User’s Guide

Chapter 41
DBMS_DATA_MINING

41-137

41.1.5.30 GET_MODEL_DETAILS_NB Function
The GET_MODEL_DETAILS_NB function returns a set of rows that provide the details of
a naive Bayes model. Starting from Oracle Database 12c Release 2, this function is
deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_nb(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_NB_Details PIPELINED;

Parameters

Table 41-98 GET_MODEL_DETAILS_NB Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 41-99 GET_MODEL_DETAILS_NB Function Return Values

Return Value Description

DM_NB_DETAILS A set of rows of type DM_NB_DETAIL. The rows have the following
columns:

(target_attribute_name VARCHAR2(30),
 target_attribute_str_value VARCHAR2(4000),
 target_attribute_num_value NUMBER,
 prior_probability NUMBER,
 conditionals DM_CONDITIONALS)

The conditionals column of DM_NB_DETAIL returns a nested table of
type DM_CONDITIONALS. The rows, of type DM_CONDITIONAL, have the
following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_str_value VARCHAR2(4000),
 attribute_num_value NUMBER,
 conditional_probability NUMBER)

Usage Notes

• The table function pipes out rows of type DM_NB_DETAILS. For information on
machine learning data types and piped output from table functions, see "Data
Types".

Chapter 41
DBMS_DATA_MINING

41-138

• When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following query is from the sample program dmnbdemo.sql. It returns model details
about the model NB_SH_Clas_sample. For information about the sample programs, see
Oracle Machine Learning for SQL User’s Guide.

The query creates labels from the bin boundary tables that were used to bin the
training data. It replaces the attribute values with the labels. For numeric bins, the
labels are (lower_boundary,upper_boundary]; for categorical bins, the label matches
the value it represents. (This method of categorical label representation will only work
for cases where one value corresponds to one bin.) The target was not binned.

WITH
 bin_label_view AS (
 SELECT col, bin, (DECODE(bin,'1','[','(') || lv || ',' || val || ']') label
 FROM (SELECT col,
 bin,
 LAST_VALUE(val) OVER (
 PARTITION BY col ORDER BY val
 ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) lv,
 val
 FROM nb_sh_sample_num)
 UNION ALL
 SELECT col, bin, val label
 FROM nb_sh_sample_cat
),
 model_details AS (
 SELECT T.target_attribute_name tname,

NVL(TO_CHAR(T.target_attribute_num_value,T.target_attribute_str_value)) tval,
 C.attribute_name pname,
 NVL(L.label, NVL(C.attribute_str_value, C.attribute_num_value)) pval,
 T.prior_probability priorp,
 C.conditional_probability condp
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NB('NB_SH_Clas_sample')) T,
 TABLE(T.conditionals) C,
 bin_label_view L
 WHERE C.attribute_name = L.col (+) AND
 (NVL(C.attribute_str_value,C.attribute_num_value) = L.bin(+))
 ORDER BY 1,2,3,4,5,6
)
 SELECT tname, tval, pname, pval, priorp, condp
 FROM model_details
 WHERE ROWNUM < 11;

TNAME TVAL PNAME PVAL PRIORP CONDP
-------------- ---- ------------------------- ------------- ------- -------
AFFINITY_CARD 0 AGE (24,30] .6500 .1714
AFFINITY_CARD 0 AGE (30,35] .6500 .1509
AFFINITY_CARD 0 AGE (35,40] .6500 .1125
AFFINITY_CARD 0 AGE (40,46] .6500 .1134
AFFINITY_CARD 0 AGE (46,53] .6500 .1071
AFFINITY_CARD 0 AGE (53,90] .6500 .1312
AFFINITY_CARD 0 AGE [17,24] .6500 .2134
AFFINITY_CARD 0 BOOKKEEPING_APPLICATION 0 .6500 .1500
AFFINITY_CARD 0 BOOKKEEPING_APPLICATION 1 .6500 .8500
AFFINITY_CARD 0 BULK_PACK_DISKETTES 0 .6500 .3670

Chapter 41
DBMS_DATA_MINING

41-139

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.31 GET_MODEL_DETAILS_NMF Function
The GET_MODEL_DETAILS_NMF function returns a set of rows that provide the details of
a non-negative matrix factorization model. Starting from Oracle Database 12c Release
2, this function is deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

Syntax

DBMS_DATA_MINING.get_model_details_nmf(
 model_name IN VARCHAR2,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN DM_NMF_Feature_Set PIPELINED;

Parameters

Table 41-100 GET_MODEL_DETAILS_NMF Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do
not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 41-101 GET_MODEL_DETAILS_NMF Function Return Values

Return Value Description

DM_NMF_FEATURE_SE
T

A set of rows of DM_NMF_FEATURE. The rows have the following
columns:

(feature_id NUMBER,
 mapped_feature_id VARCHAR2(4000),
 attribute_set DM_NMF_ATTRIBUTE_SET)

The attribute_set column of DM_NMF_FEATURE returns a
nested table of type DM_NMF_ATTRIBUTE_SET. The rows, of type
DM_NMF_ATTRIBUTE, have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

Usage Notes

• The table function pipes out rows of type DM_NMF_FEATURE_SET. For information
on machine learning data types and piped output from table functions, see "Data
Types".

Chapter 41
DBMS_DATA_MINING

41-140

• When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the feature extraction model
NMF_SH_Sample.

SELECT * FROM (
SELECT F.feature_id,
 A.attribute_name,
 A.attribute_value,
 A.coefficient
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('NMF_SH_Sample')) F,
 TABLE(F.attribute_set) A
ORDER BY feature_id,attribute_name,attribute_value
) WHERE ROWNUM < 11;

FEATURE_ID ATTRIBUTE_NAME ATTRIBUTE_VALUE COEFFICIENT
--------- ----------------------- ---------------- -------------------
 1 AFFINITY_CARD .051208078859308
 1 AGE .0390513260041573
 1 BOOKKEEPING_APPLICATION .0512734004239326
 1 BULK_PACK_DISKETTES .232471260895683
 1 COUNTRY_NAME Argentina .00766817464479959
 1 COUNTRY_NAME Australia .000157637881096675
 1 COUNTRY_NAME Brazil .0031409632415604
 1 COUNTRY_NAME Canada .00144213099311427
 1 COUNTRY_NAME China .000102279310968754
 1 COUNTRY_NAME Denmark .000242424084307513

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.32 GET_MODEL_DETAILS_OC Function
The GET_MODEL_DETAILS_OC function returns a set of rows that provide the details
of an O-cluster clustering model. The rows are an enumeration of the clustering
patterns generated during the creation of the model. Starting from Oracle Database
12c Release 2, this function is deprecated. Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

You can provide input to GET_MODEL_DETAILS_OC to request specific information about
the model, thus improving the performance of the query. If you do not specify filtering
parameters, then GET_MODEL_DETAILS_OC returns all the information about the model.

Syntax

DBMS_DATA_MINING.get_model_details_oc(
 model_name VARCHAR2,
 cluster_id NUMBER DEFAULT NULL,
 attribute VARCHAR2 DEFAULT NULL,
 centroid NUMBER DEFAULT 1,
 histogram NUMBER DEFAULT 1,
 rules NUMBER DEFAULT 2,
 topn_attributes NUMBER DEFAULT NULL,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN dm_clusters PIPELINED;

Chapter 41
DBMS_DATA_MINING

41-141

Parameters

Table 41-102 GET_MODEL_DETAILS_OC Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

cluster_id The ID of a cluster in the model. When a valid cluster ID is
specified, only the details of this cluster are returned. Otherwise
the details for all clusters are returned.

attribute The name of an attribute. When a valid attribute name is specified,
only the details of this attribute are returned. Otherwise, the details
for all attributes are returned

centroid This parameter accepts the following values:

• 1: Details about centroids are returned (default)
• 0: Details about centroids are not returned

histogram This parameter accepts the following values:

• 1: Details about histograms are returned (default)
• 0: Details about histograms are not returned

rules This parameter accepts the following values:

• 2: Details about rules are returned (default)
• 1: Rule summaries are returned
• 0: No information about rules is returned

topn_attributes Restricts the number of attributes returned in the centroid,
histogram, and rules objects. Only the n attributes with the highest
confidence values in the rules are returned.

If the number of attributes included in the rules is less than
topn, then up to n additional attributes in alphabetical order are
returned.

If both the attribute and topn_attributes parameters are
specified, then topn_attributes is ignored.

partition_name Specifies a partition in a partitioned model.

Usage Notes

1. For information about machine learning data types and return values for clustering
algorithms piped output from table functions, see "Data Types".

2. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the clustering model
OC_SH_Clus_sample.

For each cluster in this example, the split predicate indicates the attribute and the
condition used to assign records to the cluster's children during model build. It
provides an important piece of information on how the population within a cluster can
be divided up into two smaller clusters.

SELECT clu_id, attribute_name, op, s_value
 FROM (SELECT a.id clu_id, sp.attribute_name, sp.conditional_operator op,

Chapter 41
DBMS_DATA_MINING

41-142

 sp.attribute_str_value s_value
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_OC(
 'OC_SH_Clus_sample')) a,
 TABLE(a.split_predicate) sp
 ORDER BY a.id, op, s_value)
 WHERE ROWNUM < 11;

 CLU_ID ATTRIBUTE_NAME OP S_VALUE
----------- -------------------- ---------------------------------
 1 OCCUPATION IN ?
 1 OCCUPATION IN Armed-F
 1 OCCUPATION IN Cleric.
 1 OCCUPATION IN Crafts
 2 OCCUPATION IN ?
 2 OCCUPATION IN Armed-F
 2 OCCUPATION IN Cleric.
 3 OCCUPATION IN Exec.
 3 OCCUPATION IN Farming
 3 OCCUPATION IN Handler

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.33 GET_MODEL_SETTINGS Function
The GET_MODEL_SETTINGS function returns the settings used to build the given model.
Starting from Oracle Database 12c Release 2, this function is deprecated. See
"Static Data Dictionary Views: ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database
Reference.

Syntax

FUNCTION get_model_settings(model_name IN VARCHAR2)
 RETURN DM_Model_Settings PIPELINED;

Parameters

Table 41-103 GET_MODEL_SETTINGS Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

Chapter 41
DBMS_DATA_MINING

41-143

Return Values

Table 41-104 GET_MODEL_SETTINGS Function Return Values

Return Value Description

DM_MODEL_SETTINGS A set of rows of type DM_MODEL_SETTINGS. The rows have the
following columns:

DM_MODEL_SETTINGS TABLE OF SYS.DM_MODEL_SETTING
 Name Type
 ---------------------- --------------------
 SETTING_NAME VARCHAR2(30)
 SETTING_VALUE VARCHAR2(4000)

Usage Notes

1. This table function pipes out rows of type DM_MODEL_SETTINGS. For information
on machine learning data types and piped output from table functions, see
"DBMS_DATA_MINING Datatypes".

2. The setting names/values include both those specified by the user and any
defaults assigned by the build process.

Examples

The following example returns model model settings for an example naive Bayes
model.

SETTING_NAME SETTING_VALUE
------------------------------ ------------------------------
ALGO_NAME ALGO_NAIVE_BAYES
PREP_AUTO ON
ODMS_MAX_PARTITIONS 1000
NABS_SINGLETON_THRESHOLD 0
CLAS_WEIGHTS_BALANCED OFF
NABS_PAIRWISE_THRESHOLD 0
ODMS_PARTITION_COLUMNS GENDER,Y_BOX_GAMES
ODMS_MISSING_VALUE_TREATMENT ODMS_MISSING_VALUE_AUTO
ODMS_SAMPLING ODMS_SAMPLING_DISABLE

9 rows selected.

Related Topics

• Oracle Database Reference

41.1.5.34 GET_MODEL_SIGNATURE Function
The GET_MODEL_SIGNATURE function returns the list of columns from the build input
table that were used by the build process to train the model. Starting from Oracle
Database 12c Release 2, this function is deprecated. See "Static Data Dictionary
Views: ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database Reference.

Chapter 41
DBMS_DATA_MINING

41-144

Syntax

FUNCTION get_model_signature (model_name IN VARCHAR2)
RETURN DM_Model_Signature PIPELINED;

Parameters

Table 41-105 GET_MODEL_SIGNATURE Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, then your own schema is used.

Return Values

Table 41-106 GET_MODEL_SIGNATURE Function Return Values

Return Value Description

DM_MODEL_SIGNATURE A set of rows of type DM_MODEL_SIGNATURE. The rows have the
following columns:

 DM_MODEL_SIGNATURE TABLE OF
SYS.DM_MODEL_SIGNATURE_ATTRIBUTE
 Name Type
 ------------------ -------------------
 ATTRIBUTE_NAME VARCHAR2(130)
 ATTRIBUTE_TYPE VARCHAR2(106)

Usage Notes

1. This table function pipes out rows of type DM_MODEL_SIGNATURE. For information
on machine learning data types and piped output from table functions, see
"DBMS_DATA_MINING Datatypes".

2. The signature names or types include only those attributes used by the build
process.

Examples

The following example returns model settings for an example naive Bayes model.

ATTRIBUTE_NAME ATTRIBUTE_TYPE
------------------------------ ------------------
AGE NUMBER
ANNUAL_INCOME NUMBER
AVERAGE___ITEMS_PURCHASED NUMBER
BOOKKEEPING_APPLICATION NUMBER
BULK_PACK_DISKETTES NUMBER
BULK_PURCH_AVE_AMT NUMBER
DISABLE_COOKIES NUMBER
EDUCATION VARCHAR2
FLAT_PANEL_MONITOR NUMBER
GENDER VARCHAR2
HOME_THEATER_PACKAGE NUMBER
HOUSEHOLD_SIZE VARCHAR2
MAILING_LIST NUMBER

Chapter 41
DBMS_DATA_MINING

41-145

MARITAL_STATUS VARCHAR2
NO_DIFFERENT_KIND_ITEMS NUMBER
OCCUPATION VARCHAR2
OS_DOC_SET_KANJI NUMBER
PETS NUMBER
PRINTER_SUPPLIES NUMBER
PROMO_RESPOND NUMBER
SHIPPING_ADDRESS_COUNTRY VARCHAR2
SR_CITIZEN NUMBER
TOP_REASON_FOR_SHOPPING VARCHAR2
WKS_SINCE_LAST_PURCH NUMBER
WORKCLASS VARCHAR2
YRS_RESIDENCE NUMBER
Y_BOX_GAMES NUMBER

27 rows selected.

Related Topics

• Oracle Database Reference

41.1.5.35 GET_MODEL_DETAILS_SVD Function
The GET_MODEL_DETAILS_SVD function returns a set of rows that provide the details of
a singular value decomposition model. Oracle recommends to use model details view
settings. Starting from Oracle Database 12c Release 2, this function is deprecated.
Use model detail views instead.

Refer to Model Details View for Singular Value Decomposition.

Syntax

DBMS_DATA_MINING.get_model_details_svd(
 model_name IN VARCHAR2,
 matrix_type IN VARCHAR2 DEFAULT NULL,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN DM_SVD_MATRIX_Set PIPELINED;

Parameters

Table 41-107 GET_MODEL_DETAILS_SVD Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do
not specify a schema, then your own schema is used.

matrix_type Specifies which of the three SVD matrix types to return. Values are: U,
S, V, and NULL. When matrix_type is null (default), all matrices are
returned.

The U matrix is only computed when the SVDS_U_MATRIX_OUTPUT
setting is enabled. It is not computed by default. If the model does not
contain U matrices and you set matrix_type to U, an empty set of rows
is returned. See Table 41-27.

partition_name A partition in a partitioned model.

Chapter 41
DBMS_DATA_MINING

41-146

Return Values

Table 41-108 GET_MODEL_DETAILS_SVD Function Return Values

Return Value Description

DM_SVD_MATRIX_SET A set of rows of type DM_SVD_MATRIX. The rows have the
following columns:

(matrix_type CHAR(1),
 feature_id NUMBER,
 mapped_feature_id VARCHAR2(4000),
 attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 case_id VARCHAR2(4000),
 value NUMBER,
 variance NUMBER,
 pct_cum_variance NUMBER)

See Usage Notes for details.

Usage Notes

1. This table function pipes out rows of type DM_SVD_MATRIX. For information on
machine learning data types and piped output from table functions, see "Data
Types".

The columns in each row returned by GET_MODEL_DETAILS_SVD are described as
follows:

Column in
DM_SVD_MATRIX_SET

Description

matrix_type The type of matrix. Possible values are S, V, and U.
This field is never null.

feature_id The feature that the matrix entry refers to.

mapped_feature_id A descriptive name for the feature.

attribute_name Column name in the V matrix component bases. This
field is null for the S and U matrices.

attribute_subname Subname in the V matrix component bases. This is
relevant only in the case of a nested column. This
field is null for the S and U matrices.

case_id Unique identifier of the row in the build data
described by the U matrix projection. This field is null
for the S and V matrices.

value The matrix entry value.

variance The variance explained by a component. It is non-null
only for S matrix entries. This column is non-null only
for S matrix entries and for SVD models with setting
dbms_data_mining.svds_scoring_mode set to
dbms_data_mining.svds_scoring_pca and the
build data is centered, either manually or because
the setting dbms_data_mining.prep_auto is set to
dbms_data_mining.prep_auto_on.

Chapter 41
DBMS_DATA_MINING

41-147

Column in
DM_SVD_MATRIX_SET

Description

pct_cum_variance The percent cumulative variance explained by the
components thus far. The components are ranked by
the explained variance in descending order.

This column is non-null only for S matrix
entries and for SVD models with setting
dbms_data_mining.svds_scoring_mode set to
dbms_data_mining.svds_scoring_pca and the
build data is centered, either manually or because
the setting dbms_data_mining.prep_auto is set to
dbms_data_mining.prep_auto_on.

2. The output of GET_MODEL_DETAILS is in sparse format. Zero values are not
returned. Only the diagonal elements of the S matrix, the non-zero coefficients
in the V matrix bases, and the non-zero U matrix projections are returned.

There is one exception: If the data row does not produce non-zero U Matrix
projections, the case ID for that row is returned with NULL for the feature_id and
value. This is done to avoid losing any records from the original data.

3. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

4. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the preferred partition name.

Related Topics

• Oracle Machine Learning for SQL User’s Guide

41.1.5.36 GET_MODEL_DETAILS_SVM Function
The GET_MODEL_DETAILS_SVM function returns a set of rows that provide the details of
a linear support vector machines (SVM) model. If invoked for nonlinear SVM, it returns
ORA-40215. Starting from Oracle Database 12c Release 2, this function is deprecated.
Use model detail views instead.

See Model Detail Views in Oracle Machine Learning for SQL User’s Guide.

In linear SVM models, only nonzero coefficients are stored. This reduces storage and
speeds up model loading. As a result, if an attribute is missing in the coefficient list
returned by GET_MODEL_DETAILS_SVM, then the coefficient of this attribute should be
interpreted as zero.

Syntax

DBMS_DATA_MINING.get_model_details_svm(
 model_name VARCHAR2,
 reverse_coef NUMBER DEFAULT 0,
 partition_name VARCHAR2 DEFAULT NULL)
 RETURN DM_SVM_Linear_Coeff_Set PIPELINED;

Chapter 41
DBMS_DATA_MINING

41-148

Parameters

Table 41-109 GET_MODEL_DETAILS_SVM Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you do
not specify a schema, then your own schema is used.

reverse_coef Whether or not GET_MODEL_DETAILS_SVM should transform the attribute
coefficients using the original attribute transformations.

When reverse_coef is set to 0 (default), GET_MODEL_DETAILS_SVM
returns the coefficients directly from the model without applying
transformations.

When reverse_coef is set to 1, GET_MODEL_DETAILS_SVM transforms
the coefficients and bias by applying the normalization shifts and scales
that were generated using automatic data preparation.

See Usage Note 4.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 41-110 GET_MODEL_DETAILS_SVM Function Return Values

Return Value Description

DM_SVM_LINEAR_COEFF
_SET

A set of rows of type DM_SVM_LINEAR_COEFF. The rows have the
following columns:

(class VARCHAR2(4000),
 attribute_set DM_SVM_ATTRIBUTE_SET)

The attribute_set column returns a nested table of type
DM_SVM_ATTRIBUTE_SET. The rows, of type DM_SVM_ATTRIBUTE,
have the following columns:

 (attribute_name VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 attribute_value VARCHAR2(4000),
 coefficient NUMBER)

See Usage Notes.

Usage Notes

1. This table function pipes out rows of type DM_SVM_LINEAR_COEFF. For information
on machine learning data types and piped output from table functions, see "Data
Types".

2. The class column of DM_SVM_LINEAR_COEFF contains classification target values.
For SVM Regression models, class is null. For each classification target value,
a set of coefficients is returned. For binary classification, one-class classification,
and regression models, only a single set of coefficients is returned.

3. The attribute_value column in DM_SVM_ATTRIBUTE_SET is used for categorical
attributes.

Chapter 41
DBMS_DATA_MINING

41-149

4. GET_MODEL_DETAILS functions preserve model transparency by automatically
reversing the transformations applied during the build process. Thus the attributes
returned in the model details are the original attributes (or a close approximation of
the original attributes) used to build the model.

The coefficients are related to the transformed, not the original, attributes.
When returned directly with the model details, the coefficients may not provide
meaningful information. If you want GET_MODEL_DETAILS_SVM to transform the
coefficients such that they relate to the original attributes, set the reverse_coef
parameter to 1.

5. When the value is NULL for a partitioned model, an exception is thrown. When the
value is not null, it must contain the desired partition name.

Examples

The following example returns model details for the SVM classification model
SVMC_SH_Clas_sample, which was created by the sample program dmsvcdem.sql. For
information about the sample programs, see Oracle Machine Learning for SQL User’s
Guide.

WITH
 mod_dtls AS (
 SELECT *
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM('SVMC_SH_Clas_sample'))
),
 model_details AS (
 SELECT D.class, A.attribute_name, A.attribute_value, A.coefficient
 FROM mod_dtls D,
 TABLE(D.attribute_set) A
 ORDER BY D.class, ABS(A.coefficient) DESC
)
 SELECT class, attribute_name aname, attribute_value aval, coefficient coeff
 FROM model_details
 WHERE ROWNUM < 11;

CLASS ANAME AVAL COEFF
---------- ------------------------- ------------------------- -----
1 -2.85
1 BOOKKEEPING_APPLICATION 1.11
1 OCCUPATION Other -.94
1 HOUSEHOLD_SIZE 4-5 .88
1 CUST_MARITAL_STATUS Married .82
1 YRS_RESIDENCE .76
1 HOUSEHOLD_SIZE 6-8 -.74
1 OCCUPATION Exec. .71
1 EDUCATION 11th -.71
1 EDUCATION Masters .63

Related Topics

• Oracle Machine Learning for SQL User’s Guide

Chapter 41
DBMS_DATA_MINING

41-150

41.1.5.37 GET_MODEL_DETAILS_XML Function
This function returns an XML object that provides the details of a decision tree model.
Starting from Oracle Database 12c Release 2, this function is deprecated. Use model
detail views instead.

See Model Detail Views for Decision Tree in Oracle Machine Learning for SQL User’s
Guide.

Syntax

DBMS_DATA_MINING.get_model_details_xml(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN XMLType;

Parameters

Table 41-111 GET_MODEL_DETAILS_XML Function Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If you
do not specify a schema, then your own schema is used.

partition_name Specifies a partition in a partitioned model.

Return Values

Table 41-112 GET_MODEL_DETAILS_XML Function Return Value

Return Value Description

XMLTYPE The XML definition for the decision tree model. See "XMLTYPE" for
details.

The XML definition conforms to the Data Mining Group Predictive
Model Markup Language (PMML) version 2.1 specification. The
specification is available at http://www.dmg.org.

If a nested attribute is used as a splitter, the attribute will appear
in the XML document as field="'<column_name>'.<subname>", as
opposed to the non-nested attributes which appear in the document
as field="<column_name>".

Note:

The column names are surrounded by
single quotes and a period separates
the column_name from the subname.

The rest of the document style remains unchanged.

Usage Notes

Special characters that cannot be displayed by Oracle XML are converted to '#'.

Chapter 41
DBMS_DATA_MINING

41-151

http://www.dmg.org

Examples

The following statements in SQL*Plus return the details of the decision tree model
dt_sh_clas_sample.

Note: The """ characters you will see in the XML output are a result of SQL*Plus
behavior. To display the XML in proper format, cut and past it into a file and open the
file in a browser.

column dt_details format a320
SELECT
 dbms_data_mining.get_model_details_xml('dt_sh_clas_sample')
 AS DT_DETAILS
FROM dual;

DT_DETAILS
--
<PMML version="2.1">
 <Header copyright="Copyright (c) 2004, Oracle Corporation. All rights
 reserved."/>
 <DataDictionary numberOfFields="9">
 <DataField name="AFFINITY_CARD" optype="categorical"/>
 <DataField name="AGE" optype="continuous"/>
 <DataField name="BOOKKEEPING_APPLICATION" optype="continuous"/>
 <DataField name="CUST_MARITAL_STATUS" optype="categorical"/>
 <DataField name="EDUCATION" optype="categorical"/>
 <DataField name="HOUSEHOLD_SIZE" optype="categorical"/>
 <DataField name="OCCUPATION" optype="categorical"/>
 <DataField name="YRS_RESIDENCE" optype="continuous"/>
 <DataField name="Y_BOX_GAMES" optype="continuous"/>
 </DataDictionary>
 <TreeModel modelName="DT_SH_CLAS_SAMPLE" functionName="classification"
 splitCharacteristic="binarySplit">
 <Extension name="buildSettings">
 <Setting name="TREE_IMPURITY_METRIC" value="TREE_IMPURITY_GINI"/>
 <Setting name="TREE_TERM_MAX_DEPTH" value="7"/>
 <Setting name="TREE_TERM_MINPCT_NODE" value=".05"/>
 <Setting name="TREE_TERM_MINPCT_SPLIT" value=".1"/>
 <Setting name="TREE_TERM_MINREC_NODE" value="10"/>
 <Setting name="TREE_TERM_MINREC_SPLIT" value="20"/>
 <costMatrix>
 <costElement>
 <actualValue>0</actualValue>
 <predictedValue>0</predictedValue>
 <cost>0</cost>
 </costElement>
 <costElement>
 <actualValue>0</actualValue>
 <predictedValue>1</predictedValue>
 <cost>1</cost>
 </costElement>
 <costElement>
 <actualValue>1</actualValue>
 <predictedValue>0</predictedValue>
 <cost>8</cost>
 </costElement>
 <costElement>
 <actualValue>1</actualValue>
 <predictedValue>1</predictedValue>

Chapter 41
DBMS_DATA_MINING

41-152

 <cost>0</cost>
 </costElement>
 </costMatrix>
 </Extension>
 <MiningSchema>
 .
 .
 .
 .
 .
 .
 </Node>
 </Node>
 </TreeModel>
</PMML>

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

41.1.5.38 GET_MODEL_TRANSFORMATIONS Function
This function returns the transformation expressions embedded in the specified model.
Starting from Oracle Database 12c Release 2, this function is deprecated. See
"Static Data Dictionary Views: ALL_ALL_TABLES to ALL_OUTLINES" in Oracle Database
Reference.

All GET_* interfaces are replaced by model views, and Oracle recommends
that users reference the model views to retrieve the relevant information. The
GET_MODEL_TRANSFORMATIONS function is replaced by the following:

• USER(/DBA/ALL)_MINING_MODEL_XFORMS: provides the user-embedded
transformations

• DM$VX prefixed model view: provides text feature extraction information

• D$VN prefixed mode view: provides normalization and missing value information

• DM$VB: provides binning information

Chapter 41
DBMS_DATA_MINING

41-153

See Also:

“About Transformation Lists” in DBMS_DATA_MINING_TRANSFORM
Operational Notes

"GET_TRANSFORM_LIST Procedure"

"CREATE_MODEL Procedure"

"ALL_MINING_MODEL_XFORMS" in Oracle Database Reference

"DBA_MINING_MODEL_XFORMS" in Oracle Database Reference

"USER_MINING_MODEL_XFORMS" in Oracle Database Reference

Model Details View for Binning

Normalization and Missing Value Handling

Data Preparation for Text Features

Syntax

DBMS_DATA_MINING.get_model_transformations(
 model_name IN VARCHAR2,
 partition_name IN VARCHAR2 DEFAULT NULL)
 RETURN DM_Transforms PIPELINED;

Parameters

Table 41-113 GET_MODEL_TRANSFORMATIONS Function Parameters

Parameter Description

model_name Indicates the name of the model in the form
[schema_name.]model_name. If you do not specify a schema, then your
own schema is used.

partition_name Specifies a partition in a partitioned model

Return Values

Table 41-114 GET_MODEL_TRANSFORMATIONS Function Return Value

Return Value Description

DM_TRANSFORMS The transformation expressions embedded in model_name.

The DM_TRANSFORMS type is a table of DM_TRANSFORM objects. Each
DM_TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

Chapter 41
DBMS_DATA_MINING

41-154

Usage Notes

When Automatic Data Preparation (ADP) is enabled, both automatic and user-defined
transformations may be associated with an attribute. In this case, the user-defined
transformations are evaluated before the automatic transformations.

When invoked for a partitioned model, the partition_name parameter must be
specified.

Examples

In this example, several columns in the SH.CUSTOMERS table are used to create a naive
Bayes model. A transformation expression is specified for one of the columns. The
model does not use ADP.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_income_level,cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER

CREATE TABLE settings_nb(
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));
BEGIN
 INSERT INTO settings_nb (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 INSERT INTO settings_nb (setting_name, setting_value) VALUES
 (dbms_data_mining.prep_auto, dbms_data_mining.prep_auto_off);
 COMMIT;
END;
/
DECLARE
 mining_data_xforms dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (
 xform_list => mining_data_xforms,
 attribute_name => 'cust_year_of_birth',
 attribute_subname => null,
 expression => 'cust_year_of_birth + 10',
 reverse_expression => 'cust_year_of_birth - 10');
 dbms_data_mining.CREATE_MODEL (
 model_name => 'new_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'settings_nb',
 data_schema_name => nulL,
 settings_schema_name => null,
 xform_list => mining_data_xforms);
 END;
 /
SELECT attribute_name, TO_CHAR(expression), TO_CHAR(reverse_expression)

Chapter 41
DBMS_DATA_MINING

41-155

 FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('new_model'));

ATTRIBUTE_NAME TO_CHAR(EXPRESSION) TO_CHAR(REVERSE_EXPRESSION)
------------------ ------------------------ -----------------------------
CUST_YEAR_OF_BIRTH cust_year_of_birth + 10 cust_year_of_birth - 10

Related Topics

• Oracle Database Reference

41.1.5.39 GET_TRANSFORM_LIST Procedure
This procedure converts transformation expressions specified as DM_TRANSFORMS
to a transformation list (TRANSFORM_LIST) that can be used in creating a model.
DM_TRANSFORMS is returned by the GET_MODEL_TRANSFORMATIONS function.

You can also use routines in the DBMS_DATA_MINING_TRANSFORM package to construct a
transformation list.

See Also:

“About Transformation Lists” in DBMS_DATA_MINING_TRANSFORM

"GET_MODEL_TRANSFORMATIONS Function"

"CREATE_MODEL Procedure"

Syntax

DBMS_DATA_MINING.GET_TRANSFORM_LIST (
 xform_list OUT NOCOPY TRANSFORM_LIST,
 model_xforms IN DM_TRANSFORMS);

Parameters

Table 41-115 GET_TRANSFORM_LIST Procedure Parameters

Parameter Description

xform_list A list of transformation specifications that can be embedded in a model.
Accepted as a parameter to the CREATE_MODEL Procedure.

The TRANSFORM_LIST type is a table of TRANSFORM_REC objects. Each
TRANSFORM_REC has these fields:

attribute_name VARCHAR2(30)
attribute_subname VARCHAR2(4000)
expression EXPRESSION_REC
reverse_expression EXPRESSION_REC
attribute_spec VARCHAR2(4000)

For details about the TRANSFORM_LIST collection type, see Table 41-122.

Chapter 41
DBMS_DATA_MINING

41-156

Table 41-115 (Cont.) GET_TRANSFORM_LIST Procedure Parameters

Parameter Description

model_xforms A list of embedded transformation expressions returned by the
GET_MODEL_TRANSFORMATIONS Function for a specific model.

The DM_TRANSFORMS type is a table of DM_TRANSFORM objects. Each
DM_TRANSFORM has these fields:

attribute_name VARCHAR2(4000)
attribute_subname VARCHAR2(4000)
expression CLOB
reverse_expression CLOB

Examples

In this example, a model mod1 is trained using several columns in the SH.CUSTOMERS
table. The model uses ADP, which automatically bins one of the columns.

A second model mod2 is trained on the same data without ADP, but it uses a
transformation list that was obtained from mod1. As a result, both mod1 and mod2 have
the same embedded transformation expression.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_income_level, cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER

CREATE TABLE setmod1(setting_name VARCHAR2(30),setting_value VARCHAR2(30));
BEGIN
 INSERT INTO setmod1 VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 INSERT INTO setmod1 VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_on);
 dbms_data_mining.CREATE_MODEL (
 model_name => 'mod1',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'setmod1');
 COMMIT;
END;
/
CREATE TABLE setmod2(setting_name VARCHAR2(30),setting_value VARCHAR2(30));
BEGIN
 INSERT INTO setmod2
 VALUES (dbms_data_mining.algo_name, dbms_data_mining.algo_naive_bayes);
 COMMIT;
END;
/
DECLARE
 v_xform_list dbms_data_mining_transform.TRANSFORM_LIST;

Chapter 41
DBMS_DATA_MINING

41-157

 dmxf DM_TRANSFORMS;
BEGIN
 EXECUTE IMMEDIATE
 'SELECT dm_transform(attribute_name, attribute_subname,expression, reverse_expression)
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS (''mod1''))'
 BULK COLLECT INTO dmxf;
 dbms_data_mining.GET_TRANSFORM_LIST (
 xform_list => v_xform_list,
 model_xforms => dmxf);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'mod2',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_income_level',
 settings_table_name => 'setmod2',
 xform_list => v_xform_list);
END;
/

-- Transformation expression embedded in mod1
SELECT TO_CHAR(expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod1'));

TO_CHAR(EXPRESSION)
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1915 THEN 0 WHEN "CUST_YEAR_OF_BIRTH"<=1915 THEN 0
WHEN "CUST_YEAR_OF_BIRTH"<=1920.5 THEN 1 WHEN "CUST_YEAR_OF_BIRTH"<=1924.5 THEN 2
.
.
.
.5 THEN 29 WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN 30 END

-- Transformation expression embedded in mod2
SELECT TO_CHAR(expression) FROM TABLE (dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod2'));

TO_CHAR(EXPRESSION)
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1915 THEN 0 WHEN "CUST_YEAR_OF_BIRTH"<=1915 THEN 0
WHEN "CUST_YEAR_OF_BIRTH"<=1920.5 THEN 1 WHEN "CUST_YEAR_OF_BIRTH"<=1924.5 THEN 2
.
.
.
.5 THEN 29 WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN 30 END

-- Reverse transformation expression embedded in mod1
SELECT TO_CHAR(reverse_expression)FROM TABLE
(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod1'));

TO_CHAR(REVERSE_EXPRESSION)
--
DECODE("CUST_YEAR_OF_BIRTH",0,'(; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,'(1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,'(1928.5; 1932.5]',5,'(1932.5; 1936.5]',6
.
.
.
8,'(1987.5; 1988.5]',29,'(1988.5; 1989.5]',30,'(1989.5;)',NULL,'NULL')

-- Reverse transformation expression embedded in mod2
SELECT TO_CHAR(reverse_expression) FROM TABLE
(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('mod2'));

Chapter 41
DBMS_DATA_MINING

41-158

TO_CHAR(REVERSE_EXPRESSION)
--
DECODE("CUST_YEAR_OF_BIRTH",0,'(; 1915), [1915; 1915]',1,'(1915; 1920.5]',2,'(1
920.5; 1924.5]',3,'(1924.5; 1928.5]',4,'(1928.5; 1932.5]',5,'(1932.5; 1936.5]',6
.
.
.
8,'(1987.5; 1988.5]',29,'(1988.5; 1989.5]',30,'(1989.5;)',NULL,'NULL')

41.1.5.40 IMPORT_MODEL Procedure
This procedure imports one or more machine learning models. The procedure is
overloaded. You can call it to import machine learning models from a dump file set, or
you can call it to import a single machine learning model from a PMML document.

Import from a dump file set

You can import machine learning models from a dump file set that was created by
the EXPORT_MODEL Procedure. IMPORT_MODEL and EXPORT_MODEL use Oracle Data
Pump technology to export to and import from a dump file set.

When Oracle Data Pump is used directly to export/import an entire schema or
database, the machine learning models in the schema or database are included.
EXPORT_MODEL and IMPORT_MODEL export/import machine learning models only.

Import from PMML

You can import a machine learning model represented in Predictive Model Markup
Language (PMML). The model must be of type RegressionModel, either linear
regression or binary logistic regression.

PMML is an XML-based standard specified by the Data Mining Group (http://
www.dmg.org). Applications that are PMML-compliant can deploy PMML-compliant
models that were created by any vendor. Oracle Machine Learning for SQL supports
the core features of PMML 3.1 for regression models.

See Also:

Oracle Machine Learning for SQL User’s Guide for more information about
exporting and importing machine learning models

Oracle Database Utilities for information about Oracle Data Pump

http://www.dmg.org/faq.html for more information about PMML

Syntax

Imports a machine learning model from a dump file set:

DBMS_DATA_MINING.IMPORT_MODEL (
 filename IN VARCHAR2,
 directory IN VARCHAR2,
 model_filter IN VARCHAR2 DEFAULT NULL,
 operation IN VARCHAR2 DEFAULT NULL,
 remote_link IN VARCHAR2 DEFAULT NULL,

Chapter 41
DBMS_DATA_MINING

41-159

http://www.dmg.org
http://www.dmg.org
http://www.dmg.org/faq.html

 jobname IN VARCHAR2 DEFAULT NULL,
 schema_remap IN VARCHAR2 DEFAULT NULL,
 tablespace_remap IN VARCHAR2 DEFAULT NULL);

Imports a machine learning model from a PMML document:

DBMS_DATA_MINING.IMPORT_MODEL (
 model_name IN VARCHAR2,
 pmmldoc IN XMLTYPE
 strict_check IN BOOLEAN DEFAULT FALSE);

Parameters

Table 41-116 IMPORT_MODEL Procedure Parameters

Parameter Description

filename Name of the dump file set from which the models should be imported. The
dump file set must have been created by the EXPORT_MODEL procedure or
the expdp export utility of Oracle Data Pump.

The dump file set can contain one or more files. (Refer to
"EXPORT_MODEL Procedure" for details.) If the dump file set contains
multiple files, you can specify 'filename%U' instead of listing them.
For example, if your dump file set contains 3 files, archive01.dmp,
archive02.dmp, and archive03.dmp, you can import them by
specifying 'archive%U'.

directory Name of a pre-defined directory object that specifies where the dump file
set is located. Both the exporting and the importing user must have read/
write access to the directory object and to the file system directory that it
identifies.

Note: The target database must have also have read/write access to the
file system directory.

model_filter Optional parameter that specifies one or more models to import. If you
do not specify a value for model_filter, all models in the dump file set
are imported. You can also specify NULL (the default) or 'ALL' to import all
models.

The value of model_filter can be one or more model names. The
following are valid filters.

'mymodel1'
'name IN (''mymodel2'',''mymodel3'')'

The first causes IMPORT_MODEL to import a single model named
mymodel1. The second causes IMPORT_MODEL to import two models,
mymodel2 and mymodel3.

operation Optional parameter that specifies whether to import the models or the SQL
statements that create the models. By default, the models are imported.

You can specify either of the following values for operation:

• 'IMPORT' — Import the models (Default)
• 'SQL_FILE'— Write the SQL DDL for creating the models to a text

file. The text file is named job_name.sql and is located in the dump
set directory.

Chapter 41
DBMS_DATA_MINING

41-160

Table 41-116 (Cont.) IMPORT_MODEL Procedure Parameters

Parameter Description

remote_link Optional parameter that specifies the name of a database link to a remote
system. The default value is NULL. A database link is a schema object in
a local database that enables access to objects in a remote database.
When you specify a value for remote_link, you can import models
into the local database from the remote database. The import is fileless;
no dump file is involved. The IMP_FULL_DATABASE role is required for
importing the remote models. The EXP_FULL_DATABASE privilege, the
CREATE DATABASE LINK privilege, and other privileges may also be
required. (See Example 2.)

jobname Optional parameter that specifies the name of the import job. By default,
the name has the form username_imp_nnnn, where nnnn is a number.
For example, a job name in the SCOTT schema might be SCOTT_imp_134.

If you specify a job name, it must be unique within the schema. The
maximum length of the job name is 30 characters.

A log file for the import job, named jobname.log, is created in the same
directory as the dump file set.

schema_remap Optional parameter for importing into a different schema. By default,
models are exported and imported within the same schema.

If the dump file set belongs to a different schema, you must specify a
schema mapping in the form export_user:import_user. For example,
you would specify 'SCOTT:MARY' to import a model exported by SCOTT
into the MARY schema.

Note: In some cases, you may need to have the IMP_FULL_DATABASE
privilege or the SYS role to import a model from a different schema.

tablespace_rem
ap

Optional parameter for importing into a different tablespace. By default,
models are exported and imported within the same tablespace.

If the dump file set belongs to a different tablespace,
you must specify a tablespace mapping in the form
export_tablespace:import_tablespace. For example, you would
specify 'TBLSPC01:TBLSPC02' to import a model that was exported from
tablespace TBLSPC01 into tablespace TBLSPC02.

Note: In some cases, you may need to have the IMP_FULL_DATABASE
privilege or the SYS role to import a model from a different tablespace.

model_name Name for the new model that will be created in the database as a result of
an import from PMML The name must be unique within the user's schema.

pmmldoc The PMML document representing the model to be imported. The PMML
document has an XMLTYPE object type. See "XMLTYPE" for details.

strict_check Whether or not an error occurs when the PMML document contains
sections that are not part of core PMML (for example, Output or Targets).
OML4SQL supports only core PMML; any non-core features may affect
the scoring representation.

If the PMML does not strictly conform to core PMML and strict_check
is set to TRUE, then IMPORT_MODEL returns an error. If strict_check is
FALSE (the default), then the error is suppressed. The model may be
imported and scored.

Chapter 41
DBMS_DATA_MINING

41-161

Examples

1. This example shows a model being exported and imported within the schema
oml_user2. Then the same model is imported into the oml_user3 schema. The
oml_user3 user has the IMP_FULL_DATABASE privilege. The oml_user2 user has
been assigned the USER2 tablespace; oml_user3 has been assigned the USER3
tablespace.

SQL> connect oml_user2
Enter password: oml_user2_password
Connected.
SQL> select model_name from user_mining_models;

MODEL_NAME

NMF_SH_SAMPLE
SVMO_SH_CLAS_SAMPLE
SVMR_SH_REGR_SAMPLE

-- export the model called NMF_SH_SAMPLE to a dump file in same schema
SQL>EXECUTE DBMS_DATA_MINING.EXPORT_MODEL (
 filename =>'NMF_SH_SAMPLE_out',
 directory =>'DATA_PUMP_DIR',
 model_filter => 'name = ''NMF_SH_SAMPLE''');

-- import the model back into the same schema
SQL>EXECUTE DBMS_DATA_MINING.IMPORT_MODEL (
 filename => 'NMF_SH_SAMPLE_out01.dmp',
 directory => 'DATA_PUMP_DIR',
 model_filter => 'name = ''NMF_SH_SAMPLE''');

-- connect as different user
-- import same model into that schema
SQL> connect oml_user3
Enter password: oml_user3_password
Connected.
SQL>EXECUTE DBMS_DATA_MINING.IMPORT_MODEL (
 filename => 'NMF_SH_SAMPLE_out01.dmp',
 directory => 'DATA_PUMP_DIR',
 model_filter => 'name = ''NMF_SH_SAMPLE''',
 operation =>'IMPORT',
 remote_link => NULL,
 jobname => 'nmf_imp_job',
 schema_remap => 'oml_user2:oml_user3',
 tablespace_remap => 'USER2:USER3');

The following example shows user MARY importing all models from a dump file,
model_exp_001.dmp, which was created by user SCOTT. User MARY has been
assigned a tablespace named USER2; user SCOTT was assigned the tablespace
USERS when the models were exported into the dump file model_exp_001.dmp.The
dump file is located in the file system directory mapped to a directory object called
DM_DUMP. If user MARY does not have IMP_FULL_DATABASE privileges, IMPORT_MODEL
will raise an error.

-- import all models
DECLARE
 file_name VARCHAR2(40);
BEGIN
 file_name := 'model_exp_001.dmp';

Chapter 41
DBMS_DATA_MINING

41-162

 DBMS_DATA_MINING.IMPORT_MODEL(
 filename=> 'file_name',
 directory=>'DM_DUMP',
 schema_remap=>'SCOTT:MARY',
 tablespace_remap=>'USERS:USER2');
 DBMS_OUTPUT.PUT_LINE(
 'DBMS_DATA_MINING.IMPORT_MODEL of all models from SCOTT done!');
END;
/

2. This example shows how the user xuser could import the model oml_user.r1mod
from a remote database. The SQL*Net connection alias for the remote database
is R1DB. The user xuser is assigned the SYSAUX tablespace; the user oml_user is
assigned the TBS_1 tablespace.

CONNECT / AS SYSDBA;
GRANT CREATE DATABASE LINK TO xuser;
GRANT imp_full_database TO xuser;
CONNECT xuser/xuserpassword
CREATE DATABASE LINK oml_user_link
 CONNECT TO oml_user IDENTIFIED BY oml_userpassword USING 'R1DB';
EXEC dbms_data_mining.import_model (
 NULL,
 'oml_user_DIR',
 'R1MOD',
 remote_link => 'oml_user_LINK', schema_remap => 'oml_user:XUSER',
 tablespace_remap => 'TBS_1:SYSAUX');
SELECT name FROM dm_user_models;

NAME

R1MOD

3. This example shows how a PMML document called SamplePMML1.xml could be
imported from a location referenced by directory object PMMLDIR into the schema of
the current user. The imported model will be called PMMLMODEL1.

BEGIN
 dbms_data_mining.import_model ('PMMLMODEL1',
 XMLType (bfilename ('PMMLDIR', 'SamplePMML1.xml'),
 nls_charset_id ('AL32UTF8')
));
END;

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

41.1.5.41 IMPORT_SERMODEL Procedure
This procedure imports the serialized format of the model back into a database.

The import routine takes the serialized content in the BLOB and the name of the model
to be created with the content. This import does not create model views or tables that
are needed for querying model details. The import procedure only provides the ability
to score the model.

Chapter 41
DBMS_DATA_MINING

41-163

Syntax

DBMS_DATA_MINING.IMPORT_SERMODEL (
 model_data IN BLOB,
 model_name IN VARCHAR2,);

Parameters

Table 41-117 IMPORT_SERMODEL Procedure Parameters

Parameter Description

model_data Provides model data in BLOB format.

model_name Name of the machine learning model in the form
[schema_name.]model_name. If you do not specify a schema, then your own
schema is used.

Examples

The following statement imports the serialized format of the models.

declare
 v_blob blob;
BEGIN
 dbms_lob.createtemporary(v_blob, FALSE);
-- fill in v_blob from somewhere (e.g., bfile, etc.)
 dbms_data_mining.import_sermodel(v_blob, 'MY_MODEL');
 dbms_lob.freetemporary(v_blob);
END;
/

Related Topics

• EXPORT_SERMODEL Procedure
This procedure exports the model in a serialized format so that they can be moved
to another platform for scoring.

See Also:

Oracle Machine Learning for SQL User’s Guide for more information about
exporting and importing machine learning models

41.1.5.42 JSON Schema for R Extensible Algorithm
Provides some flexibility when creating a new JSON object following the JSON
schema.

Usage Note

Some flexibility when creating a new JSON object is as follows:

Chapter 41
DBMS_DATA_MINING

41-164

• Partial registration is allowed. For example, the detail function can be missing.

• Different orders are allowed. For example, the detail function can be written before
the build function or after it.

Example 41-1 JSON Schema

JSON schema 1.1 for R extensible algorithm:

{
 "type": "object",
 "properties": {
 "algo_name_display": { "type" : "object",
 "properties" : {
 "language" : { "type" :
"string",

"enum" : ["English", "Spanish", "French"],

"default" : "English"},
 "name" : { "type" :
"string"}}
 },

 "function_language": {"type": "string" },
 "mining_function": {
 "type" : "array",
 "items" : [
 { "type" : "object",
 "properties" : {
 "mining_function_name" : { "type" :
"string"},
 "build_function": {
 "type": "object",
 "properties": {
 "function_body": { "type":
"CLOB" }
 }
 },

 "detail_function": {
 "type" : "array",
 "items" : [
 {"type": "object",
 "properties": {
 "function_body": { "type": "CLOB" },
 "view_columns": { "type" : "array",

"items" : {

 "type" : "object",

 "properties" : {

 "name" : { "type" : "string"},

Chapter 41
DBMS_DATA_MINING

41-165

 "type" : { "type" : "string",

 "enum" : ["VARCHAR2",

 "NUMBER",

 "DATE",

 "BOOLEAN"]

 }

 }
 }
 }
 }
]
 },

 "score_function": {
 "type": "object",
 "properties": {
 "function_body": { "type": "CLOB" }
 }
 },
 "weight_function": {
 "type": "object",
 "properties": {
 "function_body": { "type": "CLOB" },
 }
 }
 }
 }]
 },

 "algo_setting": {
 "type" : "array",
 "items" : [
 { "type" : "object",
 "properties" : {
 "name" : { "type" : "string"},
 "name_display": { "type" : "object",
 "properties" :
{
 "language" :
{ "type" : "string",

 "enum" : ["English", "Spanish", "French"],

 "default" : "English"},
 "name" :
{ "type" : "string"}}
 },
 "type" : { "type" : "string",
 "enum" : ["string",

Chapter 41
DBMS_DATA_MINING

41-166

"integer", "number", "boolean"]},

 "optional": {"type" : "BOOLEAN",
 "default" : "FALSE"},

 "value" : { "type" : "string"},

 "min_value" : { "type": "object",
 "properties": {

"min_value": {"type": "number"},

"inclusive": { "type": "boolean",

 "default" : TRUE},
 }
 },
 "max_value" : {"type": "object",
 "properties": {
 "max_value":
{"type": "number"},
 "inclusive":
{ "type": "boolean",

 "default" : TRUE},
 }
 },

 "categorical choices" : { "type": "array",

"items": {

"type": "string"
 }
 },

 "description_display": { "type" : "object",

"properties" : {

"language" : { "type" : "string",

 "enum" : ["English", "Spanish", "French"],

 "default" : "English"},

"name" : { "type" : "string"}}
 }
 }
 }
]
 }
 }
}

Chapter 41
DBMS_DATA_MINING

41-167

Example 41-2 JSON object example

The following is an JSON object example that must be passed to the registration
procedure:

{ "algo_name_display" : {"English", "t1"},
 "function_language" : "R",
 "mining_function" : {
 "mining_function_name" : "CLASSIFICATION",
 "build_function" : {"function_body":
"function(dat, formula, family)
{

set.seed(1234);
 mod <- glm(formula = formula,
data=dat,
 family=
eval(parse(text=family)));
mod}"},
 "score_function" : { "function_body": "function(mod, dat) {
 res <- predict(mod,
newdata = dat,
type=''response
 '');
 res2=data.frame(1-res,
res); res2}"}}
 },
 "algo_setting" : [{"name" :
"dbms_data_mining.odms_m

issing_value_treatment",
 "name_display" : {"English",
"dbms_data_mining.odms_missing_value
_treatment"},
 "type" : "string",
 "optional" : "TRUE",
 "value" :
"dbms_data_mining.odms_missing_value_mean_mode",
 "categorical choices" :
["dbms_data_mining.odms_missing_value_mean_mode",

 "dbms_data_mining.odms_missing_value_auto",

 "dbms_data_mining.odms_missing_value_delete_row"],
 "description" : {"English",

"how to treat missing values"}
 },

{"name" : "RALG_PARAMETER_FAMILY",
 "name_display" : {"English",
"RALG_PARAMETER_FAMILY"},
 "type" : "string",

Chapter 41
DBMS_DATA_MINING

41-168

 "optional" : "TRUE",
 "value" : "",
 "description" : {"English", "R family
parameter in build function"}
 }
],
 }

41.1.5.43 REGISTER_ALGORITHM Procedure
Use this function to register a new algorithm by providing the algorithm name, machine
learning function, and all other algorithm metadata.

Syntax

 DBMS_DATA_MINING.REGISTER_ALGORITHM (
 algorithm_name IN VARCHAR2,
 algorithm_metadata IN CLOB,
 algorithm_description IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-118 REGISTER_ALGORITHM Procedure Parameters

Parameter Description

algorithm_name Name of the algorithm.

algorithm_metadata Metadata of the algorithm.

algorithm_description Description of the algorithm.

Usage Notes

The registration procedure performs the following:

• Checks whether algorithm_metadata has correct JSON syntax.

• Checks whether the input JSON object follows the predefined JSON schema.

• Checks whether current user has RQADMIN privilege.

• Checks duplicate algorithms so that the same algorithm is not registered twice.

• Checks for missing entries. For example, algorithm name, algorithm type,
metadata, and build function.

Register Algorithms After the JSON Object Is Created

SQL users can register new algorithms by creating a JSON object following the JSON
schema and passing it to the REGISTER_ALGORITHM procedure.

BEGIN
 DBMS_DATA_MINING.register_algorithm(
 algorithm_name => 't1',
 algorithm_metadata =>
 '{"function_language" : "R",
 "mining_function" :
 { "mining_function_name" : "CLASSIFICATION",

Chapter 41
DBMS_DATA_MINING

41-169

 "build_function" : {"function_body": "function(dat, formula,
family) { set.seed(1234);
 mod <- glm(formula = formula,
data=dat,

family=eval(parse(text=family)));
mod}"},
 "score_function" : {"function_body": "function(mod, dat) {
 res <- predict(mod,
newdata = dat, type=''response'');
 res2=data.frame(1-res,
res); res2}"}}
 }',
 algorithm_description => 't1');
END;
/

41.1.5.44 RANK_APPLY Procedure
This procedure ranks the results of an APPLY operation based on a top-N specification
for predictive and descriptive model results.

For classification models, you can provide a cost matrix as input, and obtain the
ranked results with costs applied to the predictions.

Syntax

DBMS_DATA_MINING.RANK_APPLY (
 apply_result_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 score_column_name IN VARCHAR2,
 score_criterion_column_name IN VARCHAR2,
 ranked_apply_table_name IN VARCHAR2,
 top_N IN NUMBER (38) DEFAULT 1,
 cost_matrix_table_name IN VARCHAR2 DEFAULT NULL,
 apply_result_schema_name IN VARCHAR2 DEFAULT NULL,
 cost_matrix_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-119 RANK_APPLY Procedure Parameters

Parameter Description

apply_result_table_na
me

Name of the table or view containing the results of an APPLY
operation on the test data set (see Usage Notes)

case_id_column_name Name of the case identifier column. This must be the same as
the one used for generating APPLY results.

score_column_name Name of the prediction column in the apply results table

score_criterion_colum
n_name

Name of the probability column in the apply results table

ranked_apply_result_t
ab_name

Name of the table containing the ranked apply results

Chapter 41
DBMS_DATA_MINING

41-170

Table 41-119 (Cont.) RANK_APPLY Procedure Parameters

Parameter Description

top_N Top N predictions to be considered from the APPLY results for
precision recall computation

cost_matrix_table_nam
e

Name of the cost matrix table

apply_result_schema_n
ame

Name of the schema hosting the APPLY results table

cost_matrix_schema_na
me

Name of the schema hosting the cost matrix table

Usage Notes

You can use RANK_APPLY to generate ranked apply results, based on a top-N filter and
also with application of cost for predictions, if the model was built with costs.

The behavior of RANK_APPLY is similar to that of APPLY with respect to other DDL-like
operations such as CREATE_MODEL, DROP_MODEL, and RENAME_MODEL. The procedure
does not depend on the model; the only input of relevance is the apply results
generated in a fixed schema table from APPLY.

The main intended use of RANK_APPLY is for the generation of the final APPLY results
against the scoring data in a production setting. You can apply the model against test
data using APPLY, compute various test metrics against various cost matrix tables, and
use the candidate cost matrix for RANK_APPLY.

The schema for the apply results from each of the supported algorithms is listed in
subsequent sections. The case_id column will be the same case identifier column as
that of the apply results.

Classification Models — NB and SVM

For numerical targets, the ranked results table will have the definition as shown:

(case_id VARCHAR2/NUMBER,
prediction NUMBER,
probability NUMBER,
cost NUMBER,
rank INTEGER)

For categorical targets, the ranked results table will have the following definition:

(case_id VARCHAR2/NUMBER,
prediction VARCHAR2,
probability NUMBER,
cost NUMBER,
rank INTEGER)

Clustering Using k-Means or O-Cluster

Clustering is an unsupervised machine learning function, and hence there are no
targets. The results of an APPLY operation contains simply the cluster identifier
corresponding to a case, and the associated probability. Cost matrix is not considered
here. The ranked results table will have the definition as shown, and contains the
cluster ids ranked by top-N.

Chapter 41
DBMS_DATA_MINING

41-171

(case_id VARCHAR2/NUMBER,
cluster_id NUMBER,
probability NUMBER,
rank INTEGER)

Feature Extraction using NMF

Feature extraction is also an unsupervised machine learning function, and hence
there are no targets. The results of an APPLY operation contains simply the feature
identifier corresponding to a case, and the associated match quality. Cost matrix is
not considered here. The ranked results table will have the definition as shown, and
contains the feature ids ranked by top-N.

(case_id VARCHAR2/NUMBER,
feature_id NUMBER,
match_quality NUMBER,
rank INTEGER)

Examples

BEGIN
/* build a model with name census_model.
 * (See example under CREATE_MODEL)
 */

/* if training data was pre-processed in any manner,
 * perform the same pre-processing steps on apply
 * data also.
 * (See examples in the section on DBMS_DATA_MINING_TRANSFORM)
 */

/* apply the model to data to be scored */
DBMS_DATA_MINING.RANK_APPLY(
 apply_result_table_name => 'census_apply_result',
 case_id_column_name => 'person_id',
 score_column_name => 'prediction',
 score_criterion_column_name => 'probability
 ranked_apply_result_tab_name => 'census_ranked_apply_result',
 top_N => 3,
 cost_matrix_table_name => 'census_cost_matrix');
END;
/

-- View Ranked Apply Results
SELECT *
 FROM census_ranked_apply_result;

41.1.5.45 REMOVE_COST_MATRIX Procedure
The REMOVE_COST_MATRIX procedure removes the default scoring matrix from a
classification model.

See Also:

• "ADD_COST_MATRIX Procedure"

• "REMOVE_COST_MATRIX Procedure"

Chapter 41
DBMS_DATA_MINING

41-172

Syntax

DBMS_DATA_MINING.REMOVE_COST_MATRIX (
 model_name IN VARCHAR2);

Parameters

Table 41-120 Remove_Cost_Matrix Procedure Parameters

Parameter Description

model_name Name of the model in the form [schema_name.]model_name. If
you do not specify a schema, your own schema is used.

Usage Notes

If the model is not in your schema, then REMOVE_COST_MATRIX requires the ALTER ANY
MINING MODEL system privilege or the ALTER object privilege for the machine learning
model.

Example

The naive Bayes model NB_SH_CLAS_SAMPLE has an associated cost matrix that can be
used for scoring the model.

SQL>SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

ACTUAL PREDICTED COST
---------- ---------- ----------
0 0 0
1 0 .75
0 1 .25
1 1 0

You can remove the cost matrix with REMOVE_COST_MATRIX.

SQL>EXECUTE dbms_data_mining.remove_cost_matrix('nb_sh_clas_sample');

SQL>SELECT *
 FROM TABLE(dbms_data_mining.get_model_cost_matrix('nb_sh_clas_sample'))
 ORDER BY predicted, actual;

no rows selected

41.1.5.46 RENAME_MODEL Procedure
This procedure changes the name of the machine learning model indicated by
model_name to the name that you specify as new_model_name.

If a model with new_model_name already exists, then the procedure optionally
renames new_model_name to versioned_model_name before renaming model_name
to new_model_name.

The model name is in the form [schema_name.]model_name. If you do not specify a
schema, your own schema is used. For machine learning model naming restrictions,
see the Usage Notes for "CREATE_MODEL Procedure".

Chapter 41
DBMS_DATA_MINING

41-173

Syntax

DBMS_DATA_MINING.RENAME_MODEL (
 model_name IN VARCHAR2,
 new_model_name IN VARCHAR2,
 versioned_model_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-121 RENAME_MODEL Procedure Parameters

Parameter Description

model_name Model to be renamed.

new_model_name New name for the model model_name.

versioned_model_name New name for the model new_model_name if it already exists.

Usage Notes

If you attempt to rename a model while it is being applied, then the model will be
renamed but the apply operation will return indeterminate results.

Examples

1. This example changes the name of model census_model to census_model_2012.

BEGIN
 DBMS_DATA_MINING.RENAME_MODEL(
 model_name => 'census_model',
 new_model_name => 'census_model_2012');
END;
/

2. In this example, there are two classification models in the user's schema:
clas_mod, the working model, and clas_mod_tst, a test model. The RENAME_MODEL
procedure preserves clas_mod as clas_mod_old and makes the test model the
new working model.

SELECT model_name FROM user_mining_models;
MODEL_NAME

CLAS_MOD
CLAS_MOD_TST

BEGIN
 DBMS_DATA_MINING.RENAME_MODEL(
 model_name => 'clas_mod_tst',
 new_model_name => 'clas_mod',
 versioned_model_name => 'clas_mod_old');
END;
/

SELECT model_name FROM user_mining_models;
MODEL_NAME

CLAS_MOD
CLAS_MOD_OLD

Chapter 41
DBMS_DATA_MINING

41-174

41.2 DBMS_DATA_MINING_TRANSFORM
DBMS_DATA_MINING_TRANSFORM implements a set of transformations that are commonly
used in machine learning.

This chapter contains the following topics:

• Overview

• Operational Notes

• Security Model

• Datatypes

• Constants

• Summary of DBMS_DATA_MINING_TRANSFORM Subprograms

See Also:

• DBMS_DATA_MINING

• Oracle Machine Learning for SQL User’s Guide

41.2.1 Using DBMS_DATA_MINING_TRANSFORM
This section contains topics that relate to using the DBMS_DATA_MINING_TRANSFORM
package.

• Overview

• Operational Notes

• Security Model

• Datatypes

• Constants

41.2.1.1 DBMS_DATA_MINING_TRANSFORM Overview
A transformation is a SQL expression that modifies the data in one or more columns.

Data must typically undergo certain transformations before it can be used to
build a machine learning model. Many machine learning algorithms have specific
transformation requirements.

Data that will be scored must be transformed in the same way as the data that was
used to create (train) the model.

External or Embedded Transformations

DBMS_DATA_MINING_TRANSFORM offers two approaches to implementing transformations.
For a given model, you can either:

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-175

• Create a list of transformation expressions and pass it to the CREATE_MODEL
Procedure

or

• Create a view that implements the transformations and pass the name of the view
to the CREATE_MODEL Procedure

If you create a transformation list and pass it to CREATE_MODEL, the transformation
expressions are embedded in the model and automatically implemented whenever the
model is applied.

If you create a view, the transformation expressions are external to the model. You will
need to re-create the transformations whenever you apply the model.

Note:

Embedded transformations significantly enhance the model's usability while
simplifying the process of model management.

Automatic Transformations

Oracle Machine Learning for SQL supports an Automatic Data Preparation
(ADP) mode. When ADP is enabled, most algorithm-specific transformations are
automatically embedded. Any additional transformations must be explicitly provided
in an embedded transformation list or in a view.

If ADP is enabled and you create a model with a transformation list, both
sets of transformations are embedded. The model will execute the user-specified
transformations from the transformation list before executing the automatic
transformations specified by ADP.

Within a transformation list, you can selectively disable ADP for individual attributes.

See Also:

"Automatic Data Preparation" in DBMS_DATA_MINING

Oracle Machine Learning for SQL User’s Guide for a more information about
ADP

"DBMS_DATA_MINING_TRANSFORM-About Transformation Lists"

Transformations in DBMS_DATA_MINING_TRANSFORM

The transformations supported by DBMS_DATA_MINING_TRANSFORM are summarized in
this section.

Binning

Binning refers to the mapping of continuous or discrete values to discrete values of
reduced cardinality.

• Supervised Binning (Categorical and Numerical)

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-176

Binning is based on intrinsic relationships in the data as determined by a decision
tree model.

See "INSERT_BIN_SUPER Procedure".

• Top-N Frequency Categorical Binning

Binning is based on the number of cases in each category.

See "INSERT_BIN_CAT_FREQ Procedure"

• Equi-Width Numerical Binning

Binning is based on equal-range partitions.

See "INSERT_BIN_NUM_EQWIDTH Procedure".

• Quantile Numerical Binning

Binning is based on quantiles computed using the SQL NTILE function.

See "INSERT_BIN_NUM_QTILE Procedure".

Linear Normalization

Normalization is the process of scaling continuous values down to a specific range,
often between zero and one. Normalization transforms each numerical value by
subtracting a number (the shift) and dividing the result by another number (the scale).

x_new = (x_old-shift)/scale

• Min-Max Normalization

Normalization is based on the minimum and maximum with the following shift and
scale:

shift = min
scale = max-min

See "INSERT_NORM_LIN_MINMAX Procedure".

• Scale Normalization

Normalization is based on the minimum and maximum with the following shift and
scale:

shift = 0
scale = max{abs(max), abs(min)}

See "INSERT_NORM_LIN_SCALE Procedure".

• Z-Score Normalization

Normalization is based on the mean and standard deviation with the following shift
and scale:

shift = mean
scale = standard_deviation

See "INSERT_NORM_LIN_ZSCORE Procedure".

Outlier Treatment

An outlier is a numerical value that is located far from the rest of the data. Outliers can
artificially skew the results of machine learning.

• Winsorizing

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-177

Outliers are replaced with the nearest value that is not an outlier.

See "INSERT_CLIP_WINSOR_TAIL Procedure"

• Trimming

Outliers are set to NULL.

See "INSERT_CLIP_TRIM_TAIL Procedure".

Missing Value Treatment

Missing data may indicate sparsity or it may indicate that some values are missing
at random. DBMS_DATA_MINING_TRANSFORM supports the following transformations for
minimizing the effects of missing values:

• Missing numerical values are replaced with the mean.

See "INSERT_MISS_NUM_MEAN Procedure".

• Missing categorical values are replaced with the mode.

See "INSERT_MISS_CAT_MODE Procedure".

Note:

Oracle Machine Learning for SQL also has default mechanisms for handling
missing data. See Oracle Machine Learning for SQL User’s Guide for details.

41.2.1.2 DBMS_DATA_MINING_TRANSFORM Security Model
The DBMS_DATA_MINING_TRANSFORM package is owned by user SYS and is installed as
part of database installation. Execution privilege on the package is granted to public.
The routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBMS_DATA_MINING_TRANSFORM.INSERT_* procedures have a data_table_name
parameter that enables the user to provide the input data for transformation purposes.
The value of data_table_name can be the name of a physical table or a view. The
data_table_name parameter can also accept an inline query.

Note:

Because an inline query can be used to specify the data for transformation,
Oracle strongly recommends that the calling routine perform any necessary
SQL injection checks on the input string.

See Also:

"Operational Notes" for a description of the
DBMS_DATA_MINING_TRANSFORM.INSERT_* procedures

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-178

41.2.1.3 DBMS_DATA_MINING_TRANSFORM Datatypes
DBMS_DATA_MINING_TRANSFORM defines the datatypes described in the following table.

Table 41-122 Datatypes in DBMS_DATA_MINING_TRANSFORM

List Type List Elements Description

COLUMN_
LIST

VARRAY(1000) OF varchar2(32) COLUMN_LIST stores quoted and non-quoted identifiers
for column names.

COLUMN_LIST is the datatype of the exclude_list
parameter in the INSERT procedures. See
"INSERT_AUTOBIN_NUM_EQWIDTH Procedure" for
an example.

See Oracle Database PL/SQL Language Reference for
information about populating VARRAY structures.

DESCRIBE_
LIST

DBMS_SQL.DESC_TAB2

TYPE desc_tab2 IS TABLE OF desc_rec2
INDEX BY BINARY_INTEGER

TYPE desc_rec2 IS RECORD (
col_type
BINARY_INTEGER := 0,
col_max_len
BINARY_INTEGER := 0,
col_name
VARCHAR2(32767):= '',
col_name_len
BINARY_INTEGER := 0,
col_schema_name
VARCHAR2(32) := '',
col_schema_name_len
BINARY_INTEGER := 0,
col_precision
BINARY_INTEGER := 0,
col_scale
BINARY_INTEGER := 0,
col_charsetid
BINARY_INTEGER := 0,
col_charsetform
BINARY_INTEGER := 0,
col_null_ok BOOLEAN := TRUE);

DESCRIBE_LIST describes the columns of the data
table after the transformation list has been applied. A
DESCRIBE_LIST is returned by the DESCRIBE_STACK
Procedure.

The DESC_TAB2 and DESC_REC2 types are defined
in the DBMS_SQL package. See "DESC_REC2 Record
Type".

The col_type field of DESC_REC2 identifies the
datatype of the column. The datatype is expressed as
a numeric constant that represents a built-in datatype.
For example, a 1 indicates a variable length character
string. The codes for Oracle built-in datatypes are listed
in Oracle Database SQL Language Reference. The
codes for the Oracle Machine Learning for SQL nested
types are described in "Constants".

The col_name field of DESC_REC2 identifies the column
name. It may be populated with a column name, an
alias, or an expression. If the column name is a SELECT
expression, it may be very long. If the expression is
longer than 30 bytes, it cannot be used in a view unless
it is given an alias.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-179

Table 41-122 (Cont.) Datatypes in DBMS_DATA_MINING_TRANSFORM

List Type List Elements Description

TRANSFORM
_
LIST

TABLE OF transform_rec

TYPE transform_rec IS RECORD (
attribute_name VARCHAR2(30),
attribute_subname VARCHAR2(4000),
expression EXPRESSION_REC,
reverse_expression EXPRESSION_REC,
attribute_spec VARCHAR2(4000));

TYPE expression_rec IS RECORD (
lstmt DBMS_SQL.VARCHAR2A,
lb BINARY_INTEGER DEFAULT 1,
ub BINARY_INTEGER DEFAULT
0);

TYPE varchar2a IS TABLE OF
VARCHAR2(32767)
INDEX BY BINARY_INTEGER;

TRANSFORM_LIST is a list of transformations that can be
embedded in a model. A TRANSFORM_LIST is accepted
as an argument by the CREATE_MODEL Procedure.

Each element in a TRANSFORM_LIST is a
TRANSFORM_REC that specifies how to transform a
single attribute. The attribute_name is a column
name. The attribute_subname is the nested
attribute name if the column is nested, otherwise
attribute_subname is null.

The expression field holds a SQL expression for
transforming the attribute. See "About Transformation
Lists" for an explanation of reverse expressions.

The attribute_spec field can be used to cause the
attribute to be handled in a specific way during the
model build. See Table 41-154 for details.

The expressions in a TRANSFORM_REC have type
EXPRESSION_REC. The lstmt field stores a
VARCHAR2A, which is a table of VARCHAR2(32767). The
VARCHAR2A datatype allows transformation expressions
to be very long, as they can be broken up across
multiple rows of VARCHAR2. The VARCHAR2A type is
defined in the DBMS_SQL package. See "VARCHAR2A
Table Type".

The ub (upper bound) and lb (lower bound) fields
indicate how many rows there are in the VARCHAR2A
table. If ub < lb (default) the EXPRESSION_REC is
empty; if lb=ub=1 there is one row; if lb=1 and ub=2
there are 2 rows, and so on.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

41.2.1.4 DBMS_DATA_MINING_TRANSFORM Constants
DBMS_DATA_MINING_TRANSFORM defines the constants described in the following table.

Table 41-123 Constants in DBMS_DATA_MINING_TRANSFORM

Constant Value Description

NEST_NUM_COL_TYPE 100001 Indicates that an attribute in the transformation list comes
from a row in a column of DM_NESTED_NUMERICALS.

Nested numerical attributes are defined as follows:

attribute_name VARCHAR2(4000)
value NUMBER

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-180

Table 41-123 (Cont.) Constants in DBMS_DATA_MINING_TRANSFORM

Constant Value Description

NEST_CAT_COL_TYPE 100002 Indicates that an attribute in the transformation list comes
from a row in a column of DM_NESTED_CATEGORICALS.

Nested categorical attributes are defined as follows:

attribute_name VARCHAR2(4000)
value VARCHAR2(4000)

NEST_BD_COL_TYPE 100003 Indicates that an attribute in the transformation list comes
from a row in a column of DM_NESTED_BINARY_DOUBLES.

Nested binary double attributes are defined as follows:

attribute_name VARCHAR2(4000)
value BINARY_DOUBLE

NEST_BF_COL_TYPE 100004 Indicates that an attribute in the transformation list comes
from a row in a column of DM_NESTED_BINARY_FLOATS.

attribute_name VARCHAR2(4000)
value BINARY_FLOAT

See Also:

Oracle Machine Learning for SQL User’s Guide for information about nested
data in Oracle Machine Learning for SQL

41.2.2 DBMS_DATA_MINING_TRANSFORM Operational Notes
The DBMS_DATA_MINING_TRANSFORM package offers a flexible framework for specifying
data transformations. If you choose to embed transformations in the model (the
preferred method), you create a transformation list object and pass it to the
CREATE_MODEL Procedure. If you choose to transform the data without embedding,
you create a view.

When specified in a transformation list, the transformation expressions are executed
by the model. When specified in a view, the transformation expressions are executed
by the view.

Transformation Definitions

Transformation definitions are used to generate the SQL expressions that transform
the data. For example, the transformation definitions for normalizing a numeric column
are the shift and scale values for that data.

With the DBMS_DATA_MINING_TRANSFORM package, you can call procedures to compute
the transformation definitions, or you can compute them yourself, or you can do both.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-181

Transformation Definition Tables

DBMS_DATA_MINING_TRANSFORM provides INSERT procedures that compute
transformation definitions and insert them in transformation definition tables. You can
modify the values in the transformation definition tables or populate them yourself.

XFORM routines use populated definition tables to transform data in external views.
STACK routines use populated definition tables to build transformation lists.

To specify transformations based on definition tables, follow these steps:

1. Use CREATE routines to create transformation definition tables.

The tables have columns to hold the transformation definitions for a given type
of transformation. For example, the CREATE_BIN_NUM Procedure creates a
definition table that has a column for storing data values and another column for
storing the associated bin identifiers.

2. Use INSERT routines to compute and insert transformation definitions in the tables.

Each INSERT routine uses a specific technique for computing the transformation
definitions. For example, the INSERT_BIN_NUM_EQWIDTH Procedure computes
bin boundaries by identifying the minimum and maximum values then setting the
bin boundaries at equal intervals.

3. Use STACK or XFORM routines to generate transformation expressions based on the
information in the definition tables:

• Use STACK routines to add the transformation expressions to a transformation
list. Pass the transformation list to the CREATE_MODEL Procedure. The
transformation expressions will be assembled into one long SQL query and
embedded in the model.

• Use XFORM routines to execute the transformation expressions within a view.
The transformations will be external to the model and will need to be re-
created whenever the model is applied to new data.

Transformations Without Definition Tables

STACK routines are not the only method for adding transformation expressions to a
transformation list. You can also build a transformation list without using definition
tables.

To specify transformations without using definition tables, follow these steps:

1. Write a SQL expression for transforming an attribute.

2. Write a SQL expression for reversing the transformation.
(See "Reverse Transformations and Model Transparency" in
"DBMS_DATA_MINING_TRANSFORM-About Transformation Lists".)

3. Determine whether or not to disable ADP for the attribute. By default ADP
is enabled for the attribute if it is specified for the model. (See "Disabling
Automatic Data Preparation" in "DBMS_DATA_MINING_TRANSFORM - About
Transformation Lists".)

4. Specify the SQL expressions and ADP instructions in a call to the
SET_TRANSFORM Procedure, which adds the information to a transformation
list.

5. Repeat steps 1 through 4 for each attribute that you wish to transform.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-182

6. Pass the transformation list to the CREATE_MODEL Procedure. The
transformation expressions will be assembled into one long SQL query and
embedded in the model.

Note:

SQL expressions that you specify with SET_TRANSFORM must fit within
a VARCHAR2. To specify a longer expression, you can use the
SET_EXPRESSION Procedure. With SET_EXPRESSION, you can build an
expression by appending rows to a VARCHAR2 array.

About Stacking

Transformation lists are built by stacking transformation records. Transformation lists
are evaluated from bottom to top. Each transformation expression depends on the
result of the transformation expression below it in the stack.

Related Topics

• CREATE_MODEL Procedure
This procedure creates an Oracle Machine Learning for SQL model with a given
machine learning function.

• DBMS_DATA_MINING_TRANSFORM — About Transformation Lists
The elements of a transformation list are transformation records. Each
transformation record provides all the information needed by the model for
managing the transformation of a single attribute.

• DBMS_DATA_MINING_TRANSFORM — About Stacking and Stack Procedures
Transformation lists are built by stacking transformation records. Transformation
lists are evaluated from bottom to top. Each transformation expression depends on
the result of the transformation expression below it in the stack.

• DBMS_DATA_MINING_TRANSFORM — Nested Data Transformations
The CREATE routines create transformation definition tables that include two
columns, col and att, for identifying attributes.

41.2.2.1 DBMS_DATA_MINING_TRANSFORM — About Transformation Lists
The elements of a transformation list are transformation records. Each
transformation record provides all the information needed by the model for managing
the transformation of a single attribute.

Each transformation record includes the following fields:

• attribute_name — Name of the column of data to be transformed

• attribute_subname — Name of the nested attribute if attribute_name is a nested
column, otherwise NULL

• expression — SQL expression for transforming the attribute

• reverse_expression — SQL expression for reversing the transformation

• attribute_spec — Identifies special treatment for the attribute during the model
build. See Table 41-154 for details.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-183

See Also:

• Table 41-122 for details about the TRANSFORM_LIST and TRANSFORM_REC
object types

• SET_TRANSFORM Procedure

• CREATE_MODEL Procedure

Reverse Transformations and Model Transparency

An algorithm manipulates transformed attributes to train and score a model. The
transformed attributes, however, may not be meaningful to an end user. For example,
if attribute x has been transformed into bins 1 — 4, the bin names 1, 2 , 3, and 4 are
manipulated by the algorithm, but a user is probably not interested in the model details
about bins 1 — 4 or in predicting the numbers 1 — 4.

To return original attribute values in model details and predictions, you can provide a
reverse expression in the transformation record for the attribute. For example, if you
specify the transformation expression 'log(10, y)' for attribute y, you could specify
the reverse transformation expression 'power(10, y)'.

Reverse transformations enable model transparency. They make internal processing
transparent to the user.

Note:

STACK procedures automatically reverse normalization transformations, but
they do not provide a mechanism for reversing binning, clipping, or missing
value transformations.

You can use the DBMS_DATA_MINING.ALTER_REVERSE_EXPRESSION procedure
to specify or update reverse transformations expressions for an existing
model.

See Also:

Table 41-122

"ALTER_REVERSE_EXPRESSION Procedure"

"Summary of DBMS_DATA_MINING Subprograms" for links to the model
details functions

Disabling Automatic Data Preparation

ADP is controlled by a model-specific setting (PREP_AUTO). The PREP_AUTO setting
affects all model attributes unless you disable it for individual attributes.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-184

If ADP is enabled and you set attribute_spec to NOPREP, only the transformations that
you specify for that attribute will be evaluated. If ADP is enabled and you do not set
attribute_spec to NOPREP, the automatic transformations will be evaluated after the
transformations that you specify for the attribute.

If ADP is not enabled for the model, the attribute_spec field of the transformation
record is ignored.

See Also:

"Automatic Data Preparation" for information about the PREP_AUTO setting

Adding Transformation Records to a Transformation List

A transformation list is a stack of transformation records. When a new transformation
record is added, it is appended to the top of the stack. (See "About Stacking" for
details.)

When you use SET_TRANSFORM to add a transformation record to a transformation list,
you can specify values for all the fields in the transformation record.

When you use STACK procedures to add transformation records to a transformation
list, only the transformation expression field is populated. For normalization
transformations, the reverse transformation expression field is also populated.

You can use both STACK procedures and SET_TRANSFORM to build one transformation
list. Each STACK procedure call adds transformation records for all the attributes
in a specified transformation definition table. Each SET_TRANSFORM call adds a
transformation record for a single attribute.

41.2.2.2 DBMS_DATA_MINING_TRANSFORM — About Stacking and Stack
Procedures

Transformation lists are built by stacking transformation records. Transformation lists
are evaluated from bottom to top. Each transformation expression depends on the
result of the transformation expression below it in the stack.

Stack Procedures

STACK procedures create transformation records from the information in transformation
definition tables. For example STACK_BIN_NUM builds a transformation record for each
attribute specified in a definition table for numeric binning. STACK procedures stack the
transformation records as follows:

• If an attribute is specified in the definition table but not in the transformation
list, the STACK procedure creates a transformation record, computes the reverse
transformation (if possible), inserts the transformation and reverse transformation
in the transformation record, and appends the transformation record to the top of
the transformation list.

• If an attribute is specified in the transformation list but not in the definition table,
the STACK procedure takes no action.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-185

• If an attribute is specified in the definition table and in the transformation list, the
STACK procedure stacks the transformation expression from the definition table on
top of the transformation expression in the transformation record and updates the
reverse transformation. See Table 41-122and Example 41-6.

Example 41-3 Stacking a Clipping Transformation

This example shows how STACK_CLIP Procedure would add transformation records
to a transformation list. Note that the clipping transformations are not reversed in
COL1 and COL2 after stacking (as described in "Reverse Transformations and Model
Transparency" in "DBMS_DATA_MINING_TRANSFORM-About Transformation Lists").

Refer to:

• CREATE_CLIP Procedure — Creates the definition table

• INSERT_CLIP_TRIM_TAIL Procedure — Inserts definitions in the table

• INSERT_CLIP_WINSOR_TAIL Procedure — Inserts definitions in the table

• Table 41-122 — Describes the structure of the transformation list (TRANSFORM_LIST
object)

Assume a clipping definition table populated as follows.

col att lcut lval rcut rval

COL1 null -1.5 -1.5 4.5 4.5

COL2 null 0 0 1 1

Assume the following transformation list before stacking.

transformation record #1:

 attribute_name = COL1
 attribute_subname = null
 expression = log(10, COL1)
 reverse_expression = power(10, COL1)

transformation record #2:

 attribute_name = COL3
 attribute_subname = null
 expression = ln(COL3)
 reverse_expression = exp(COL3)

After stacking, the transformation list is as follows.

transformation record #1:

 attribute_name = COL1
 attribute_subname = null
 expression = CASE WHEN log(10, COL1) < -1.5 THEN -1.5
 WHEN log(10, COL1) > 4.5 THEN 4.5
 ELSE log(10, COL1)
 END;
 reverse_expression = power(10, COL1)

transformation record #2:

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-186

 attribute_name = COL3
 attribute_subname = null
 expression = ln(COL3)
 reverse_expression = exp(COL3)

transformation record #3:

 attribute_name = COL2
 attribute_subname = null
 expression = CASE WHEN COL2 < 0 THEN 0
 WHEN COL2 > 1 THEN 1
 ELSE COL2
 END;
 reverse_expression = null

41.2.2.3 DBMS_DATA_MINING_TRANSFORM — Nested Data
Transformations

The CREATE routines create transformation definition tables that include two columns,
col and att, for identifying attributes.

The column col holds the name of a column in the data table. If the data column is
not nested, then att is null, and the name of the attribute is col. If the data column is
nested, then att holds the name of the nested attribute, and the name of the attribute
is col.att. The INSERT and XFORM routines ignore the att column in the definition
tables. Neither the INSERT nor the XFORM routines support nested data.

Only the STACK procedures and SET_TRANSFORM support nested data. Nested data
transformations are always embedded in the model.

Nested columns in Oracle Machine Learning for SQL can have the following types:

DM_NESTED_NUMERICALS
DM_NESTED_CATEGORICALS
DM_NESTED_BINARY_DOUBLES
DM_NESTED_BINARY_FLOATS

See Also:

"Constants"

Oracle Machine Learning for SQL User’s Guide for details about nested
attributes in Oracle Machine Learning for SQL

Specifying Nested Attributes in a Transformation Record

A transformation record (TRANSFORM_REC) includes two fields, attribute_name and
attribute_subname, for identifying the attribute. The field attribute_name holds
the name of a column in the data table. If the data column is not nested, then
attribute_subname is null, and the name of the attribute is attribute_name. If
the data column is nested, then attribute_subname holds the name of the nested
attribute, and the name of the attribute is attribute_name.attribute_subname.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-187

Transforming Individual Nested Attributes

You can specify different transformations for different attributes in a nested column,
and you can specify a default transformation for all the remaining attributes in the
column. To specify a default nested transformation, specify null in the attribute_name
field and the name of the nested column in the attribute_subname field as shown in
Example 41-4. Note that the keyword VALUE is used to represent the value of a nested
attribute in a transformation expression.

Example 41-4 Transforming a Nested Column

The following statement transforms two of the nested attributes in COL_N1. Attribute
ATTR1 is transformed with normalization; Attribute ATTR2 is set to null, which causes
attribute removal transformation (ATTR2 is not used in training the model). All the
remaining attributes in COL_N1 are divided by 10.

DECLARE
 stk dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(
 stk,'COL_N1', 'ATTR1', '(VALUE - (-1.5))/20', 'VALUE *20 + (-1.5)');
 dbms_data_mining_transform.SET_TRANSFORM(
 stk,'COL_N1', 'ATTR2', NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 stk, NULL, 'COL_N1', 'VALUE/10', 'VALUE*10');
END;
/

The following SQL is generated from this statement.

CAST(MULTISET(SELECT DM_NESTED_NUMERICAL(
 "ATTRIBUTE_NAME",
 DECODE("ATTRIBUTE_NAME",
 'ATTR1', ("VALUE" - (-1.5))/20,
 "VALUE"/10))
 FROM TABLE("COL_N1")
 WHERE "ATTRIBUTE_NAME" IS NOT IN ('ATTR2'))
 AS DM_NESTED_NUMERICALS)

If transformations are not specified for COL_N1.ATTR1 and COL_N1.ATTR2, then the
default transformation is used for all the attributes in COL_N1, and the resulting SQL
does not include a DECODE.

 CAST(MULTISET(SELECT DM_NESTED_NUMERICAL(
 "ATTRIBUTE_NAME",
 "VALUE"/10)
 FROM TABLE("COL_N1"))
 AS DM_NESTED_NUMERICALS)

Since DECODE is limited to 256 arguments, multiple DECODE functions are nested to
support an arbitrary number of individual nested attribute specifications.

Adding a Nested Column

You can specify a transformation that adds a nested column to the data, as shown in
Example 41-5.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-188

Example 41-5 Adding a Nested Column to a Transformation List

DECLARE
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.SET_TRANSFORM(v_xlst,
 'YOB_CREDLIM', NULL,
 'dm_nested_numericals(
 dm_nested_numerical(
 ''CUST_YEAR_OF_BIRTH'', cust_year_of_birth),
 dm_nested_numerical(
 ''CUST_CREDIT_LIMIT'', cust_credit_limit))',
 NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 v_xlst, 'CUST_YEAR_OF_BIRTH', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM(
 v_xlst, 'CUST_CREDIT_LIMIT', NULL, NULL, NULL);
 dbms_data_mining_transform.XFORM_STACK(
 v_xlst, 'mining_data', 'mining_data_v');
END;
/

set long 2000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_V';

TEXT

SELECT "CUST_ID","CUST_POSTAL_CODE",dm_nested_numericals(
 dm_nested_numerical(
 'CUST_YEAR_OF_BIRTH', cust_year_of_birth),
 dm_nested_numerical(
 'CUST_CREDIT_LIMIT', cust_credit_limit)) "YOB_CREDLIM" FROM
mining_data

SELECT * FROM mining_data_v WHERE cust_id = 104500;

CUST_ID CUST_POSTAL_CODE YOB_CREDLIM(ATTRIBUTE_NAME, VALUE)
------- ----------------

 104500 68524 DM_NESTED_NUMERICALS(DM_NESTED_NUMERICAL(
 'CUST_YEAR_OF_BIRTH', 1962),
 DM_NESTED_NUMERICAL('CUST_CREDIT_LIMIT', 15000))

Stacking Nested Transformations

Example 41-6 shows how the STACK_NORM_LIN Procedure would add
transformation records for nested column COL_N to a transformation list.

Refer to:

• CREATE_NORM_LIN Procedure — Creates the definition table

• INSERT_NORM_LIN_MINMAX Procedure — Inserts definitions in the table

• INSERT_NORM_LIN_SCALE Procedure — Inserts definitions in the table

• INSERT_NORM_LIN_ZSCORE Procedure — Inserts definitions in the table

• Table 41-122 — Describes the structure of the transformation list

Example 41-6 Stacking a Nested Normalization Transformation

Assume a linear normalization definition table populated as follows.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-189

col att shift scale

COL_N ATT2 0 20

null COL_N 0 10

Assume the following transformation list before stacking.

transformation record #1:

 attribute_name = COL_N
 attribute_subname = ATT1
 expression = log(10, VALUE)
 reverse_expression = power(10, VALUE)

transformation record #2:

 attribute_name = null
 attribute_subname = COL_N
 expression = ln(VALUE)
 reverse_expression = exp(VALUE)

After stacking, the transformation list is as follows.

transformation record #1:

 attribute_name = COL_N
 attribute_subname = ATT1
 expression = (log(10, VALUE) - 0)/10
 reverse_expression = power(10, VALUE*10 + 0)

transformation record #2:

 attribute_name = NULL
 attribute_subname = COL_N
 expression = (ln(VALUE)- 0)/10
 reverse_expression = exp(VALUE *10 + 0)

transformation record #3:

 attribute_name = COL_N
 attribute_subname = ATT2
 expression = (ln(VALUE) - 0)/20
 reverse_expression = exp(VALUE * 20 + 0)

41.2.3 Summary of DBMS_DATA_MINING_TRANSFORM
Subprograms

This table lists the DBMS_DATA_MINING_TRANSFORM subprograms in alphabetical order
and briefly describes them.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-190

Table 41-124 DBMS_DATA_MINING_TRANSFORM Package Subprograms

Subprogram Purpose

CREATE_BIN_CAT Procedure Creates a transformation definition table for categorical
binning

CREATE_BIN_NUM Procedure Creates a transformation definition table for numerical
binning

CREATE_CLIP Procedure Creates a transformation definition table for clipping

CREATE_COL_REM Procedure Creates a transformation definition table for column removal

CREATE_MISS_CAT Procedure Creates a transformation definition table for categorical
missing value treatment

CREATE_MISS_NUM Procedure Creates a transformation definition table for numerical
missing values treatment

CREATE_NORM_LIN Procedure Creates a transformation definition table for linear
normalization

DESCRIBE_STACK Procedure Describes the transformation list

GET_EXPRESSION Function Returns a VARCHAR2 chunk from a transformation
expression

INSERT_AUTOBIN_NUM_EQWI
DTH Procedure

Inserts numeric automatic equi-width binning definitions in a
transformation definition table

INSERT_BIN_CAT_FREQ
Procedure

Inserts categorical frequency-based binning definitions in a
transformation definition table

INSERT_BIN_NUM_EQWIDTH
Procedure

Inserts numeric equi-width binning definitions in a
transformation definition table

INSERT_BIN_NUM_QTILE
Procedure

Inserts numeric quantile binning expressions in a
transformation definition table

INSERT_BIN_SUPER Procedure Inserts supervised binning definitions in numerical and
categorical transformation definition tables

INSERT_CLIP_TRIM_TAIL
Procedure

Inserts numerical trimming definitions in a transformation
definition table

INSERT_CLIP_WINSOR_TAIL
Procedure

Inserts numerical winsorizing definitions in a transformation
definition table

INSERT_MISS_CAT_MODE
Procedure

Inserts categorical missing value treatment definitions in a
transformation definition table

INSERT_MISS_NUM_MEAN
Procedure

Inserts numerical missing value treatment definitions in a
transformation definition table

INSERT_NORM_LIN_MINMAX
Procedure

Inserts linear min-max normalization definitions in a
transformation definition table

INSERT_NORM_LIN_SCALE
Procedure

Inserts linear scale normalization definitions in a
transformation definition table

INSERT_NORM_LIN_ZSCORE
Procedure

Inserts linear zscore normalization definitions in a
transformation definition table

SET_EXPRESSION Procedure Adds a VARCHAR2 chunk to an expression

SET_TRANSFORM Procedure Adds a transformation record to a transformation list

STACK_BIN_CAT Procedure Adds a categorical binning expression to a transformation
list

STACK_BIN_NUM Procedure Adds a numerical binning expression to a transformation list

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-191

Table 41-124 (Cont.) DBMS_DATA_MINING_TRANSFORM Package
Subprograms

Subprogram Purpose

STACK_CLIP Procedure Adds a clipping expression to a transformation list

STACK_COL_REM Procedure Adds a column removal expression to a transformation list

STACK_MISS_CAT Procedure Adds a categorical missing value treatment expression to a
transformation list

STACK_MISS_NUM Procedure Adds a numerical missing value treatment expression to a
transformation list

STACK_NORM_LIN Procedure Adds a linear normalization expression to a transformation
list

XFORM_BIN_CAT Procedure Creates a view of the data table with categorical binning
transformations

XFORM_BIN_NUM Procedure Creates a view of the data table with numerical binning
transformations

XFORM_CLIP Procedure Creates a view of the data table with clipping
transformations

XFORM_COL_REM Procedure Creates a view of the data table with column removal
transformations

XFORM_EXPR_NUM Procedure Creates a view of the data table with the specified numeric
transformations

XFORM_EXPR_STR Procedure Creates a view of the data table with the specified
categorical transformations

XFORM_MISS_CAT Procedure Creates a view of the data table with categorical missing
value treatment

XFORM_MISS_NUM Procedure Creates a view of the data table with numerical missing
value treatment

XFORM_NORM_LIN Procedure Creates a view of the data table with linear normalization
transformations

XFORM_STACK Procedure Creates a view of the transformation list

41.2.3.1 CREATE_BIN_CAT Procedure
This procedure creates a transformation definition table for categorical binning.

The columns are described in the following table.

Table 41-125 Columns in a Transformation Definition Table for Categorical
Binning

Name Datatype Description

col VARCHAR2(30) Name of a column of categorical data.

If the column is not nested, the column name is also the attribute
name. For information about attribute names, see Oracle Machine
Learning for SQL User’s Guide.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-192

Table 41-125 (Cont.) Columns in a Transformation Definition Table for
Categorical Binning

Name Datatype Description

att VARCHAR2(4000) The attribute subname if col is a nested column.

If col is nested, the attribute name is col.att. If col is not
nested, att is null.

val VARCHAR2(4000) Values of the attribute

bin VARCHAR2(4000) Bin assignments for the values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-126 CREATE_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table to be created

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about categorical
data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_BIN_CAT_FREQ Procedure — frequency-based binning

• INSERT_BIN_SUPER Procedure — supervised binning

See Also:

"Binning" in DBMS_DATA_MINING_TRANSFORM Overview

"Operational Notes"

Examples

The following statement creates a table called bin_cat_xtbl in the current schema.
The table has columns that can be populated with bin assignments for categorical
attributes.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-193

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_CAT('bin_cat_xtbl');
END;
/
DESCRIBE bin_cat_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL VARCHAR2(4000)
 BIN VARCHAR2(4000)

41.2.3.2 CREATE_BIN_NUM Procedure
This procedure creates a transformation definition table for numerical binning.

The columns are described in the following table.

Table 41-127 Columns in a Transformation Definition Table for Numerical
Binning

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.

If the column is not nested, the column name is also the attribute
name. For information about attribute names, see Oracle Machine
Learning for SQL User’s Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column.

If col is nested, the attribute name is col.att. If col is not
nested, att is null.

val NUMBER Values of the attribute

bin VARCHAR2(4000) Bin assignments for the values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM (
 bin_table_name IN VARCHAR2,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-128 CREATE_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table to be created

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-194

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_AUTOBIN_NUM_EQWIDTH Procedure — automatic equi-width
binning

• INSERT_BIN_NUM_EQWIDTH Procedure — user-specified equi-width
binning

• INSERT_BIN_NUM_QTILE Procedure — quantile binning

• INSERT_BIN_SUPER Procedure — supervised binning

See Also:

"Binning" in DBMS_DATA_MINING_TRANSFORM Overview

"Operational Notes"

Examples

The following statement creates a table called bin_num_xtbl in the current schema.
The table has columns that can be populated with bin assignments for numerical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM('bin_num_xtbl');
END;
/

DESCRIBE bin_num_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL NUMBER
 BIN VARCHAR2(4000)

41.2.3.3 CREATE_CLIP Procedure
This procedure creates a transformation definition table for clipping or winsorizing to
minimize the effect of outliers.

The columns are described in the following table.

Table 41-129 Columns in a Transformation Definition Table for Clipping or
Winsorizing

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.

If the column is not nested, the column name is also the
attribute name. For information about attribute names, see Oracle
Machine Learning for SQL User’s Guide.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-195

Table 41-129 (Cont.) Columns in a Transformation Definition Table for Clipping
or Winsorizing

Name Datatype Description

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_NUMERICALS. If col is nested, the attribute name
is col.att.

If col is not nested, att is null.

lcut NUMBER The lowest typical value for the attribute.

If the attribute values were plotted on an xy axis, lcut would be
the left-most boundary of the range of values considered typical
for this attribute.

Any values to the left of lcut are outliers.

lval NUMBER Value assigned to an outlier to the left of lcut

rcut NUMBER The highest typical value for the attribute

If the attribute values were plotted on an xy axis, rcut would be
the right-most boundary of the range of values considered typical
for this attribute.

Any values to the right of rcut are outliers.

rval NUMBER Value assigned to an outlier to the right of rcut

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP (
 clip_table_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-130 CREATE_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table to be created

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_CLIP_TRIM_TAIL Procedure — replaces outliers with nulls

• INSERT_CLIP_WINSOR_TAIL Procedure — replaces outliers with an average
value

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-196

See Also:

"Outlier Treatment" in DBMS_DATA_MINING_TRANSFORM Overview

"Operational Notes"

Examples

The following statement creates a table called clip_xtbl in the current schema.
The table has columns that can be populated with clipping instructions for numerical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_CLIP('clip_xtbl');
END;
/

DESCRIBE clip_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

41.2.3.4 CREATE_COL_REM Procedure
This procedure creates a transformation definition table for removing columns from the
data table.

The columns are described in the following table.

Table 41-131 Columns in a Transformation Definition Table for Column
Removal

Name Datatype Description

col VARCHAR2(30) Name of a column of data.

If the column is not nested, the column name is also the attribute
name. For information about attribute names, see Oracle Machine
Learning for SQL User’s Guide.

att VARCHAR2(4000) The attribute subname if col is nested (DM_NESTED_NUMERICALS
or DM_NESTED_CATEGORICALS). If col is nested, the attribute
name is col.att.

If col is not nested, att is null.

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM (
 rem_table_name VARCHAR2,
 rem_schema_name VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-197

Parameters

Table 41-132 CREATE_COL_REM Procedure Parameters

Parameter Description

rem_table_name Name of the transformation definition table to be created

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

2. See "Operational Notes".

Examples

The following statement creates a table called rem_att_xtbl in the current schema.
The table has columns that can be populated with the names of attributes to exclude
from the data to be mined.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM ('rem_att_xtbl');
END;
 /
DESCRIBE rem_att_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)

41.2.3.5 CREATE_MISS_CAT Procedure
This procedure creates a transformation definition table for replacing categorical
missing values.

The columns are described in the following table.

Table 41-133 Columns in a Transformation Definition Table for Categorical
Missing Value Treatment

Name Datatype Description

col VARCHAR2(30) Name of a column of categorical data.

If the column is not nested, the column name is also the attribute
name. For information about attribute names, see Oracle Machine
Learning for SQL User’s Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_CATEGORICALS. If col is nested, the attribute name
is col.att.

If col is not nested, att is null.

val VARCHAR2(4000) Replacement for missing values in the attribute

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-198

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT (
 miss_table_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-134 CREATE_MISS_CAT Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table to be created

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about categorical
data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the INSERT_MISS_CAT_MODE Procedure to populate the
transformation definition table.

See Also:

"Missing Value Treatment" in DBMS_DATA_MINING_TRANSFORM
Overview

"Operational Notes"

Examples

The following statement creates a table called miss_cat_xtbl in the current schema.
The table has columns that can be populated with values for missing data in
categorical attributes.

BEGIN

 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT('miss_cat_xtbl');
END;
/

DESCRIBE miss_cat_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL VARCHAR2(4000)

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-199

41.2.3.6 CREATE_MISS_NUM Procedure
This procedure creates a transformation definition table for replacing numerical
missing values.

The columns are described in Table 41-135.

Table 41-135 Columns in a Transformation Definition Table for Numerical
Missing Value Treatment

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.

If the column is not nested, the column name is also the attribute
name. For information about attribute names, see Oracle Machine
Learning for SQL User’s Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_NUMERICALS. If col is nested, the attribute name is
col.att.

If col is not nested, att is null.

val NUMBER Replacement for missing values in the attribute

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM (
 miss_table_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-136 CREATE_MISS_NUM Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table to be created

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the INSERT_MISS_NUM_MEAN Procedure to populate the
transformation definition table.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-200

See Also:

"Missing Value Treatment" in DBMS_DATA_MINING_TRANSFORM
Overview

"Operational Notes"

Example

The following statement creates a table called miss_num_xtbl in the current schema.
The table has columns that can be populated with values for missing data in numerical
attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM('miss_num_xtbl');
END;
/

DESCRIBE miss_num_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 VAL NUMBER

41.2.3.7 CREATE_NORM_LIN Procedure
This procedure creates a transformation definition table for linear normalization.

The columns are described in Table 41-137.

Table 41-137 Columns in a Transformation Definition Table for Linear
Normalization

Name Datatype Description

col VARCHAR2(30) Name of a column of numerical data.

If the column is not nested, the column name is also the
attribute name. For information about attribute names, see
Oracle Machine Learning for SQL User’s Guide.

att VARCHAR2(4000) The attribute subname if col is a nested column of
DM_NESTED_NUMERICALS. If col is nested, the attribute name
is col.att.

If col is not nested, att is null.

shift NUMBER A constant to subtract from the attribute values

scale NUMBER A constant by which to divide the shifted values

Syntax

DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN (
 norm_table_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-201

Parameters

Table 41-138 CREATE_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table to be created

norm_schema_name Schema of norm_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. See "Nested Data Transformations" for information about transformation definition
tables and nested data.

3. You can use the following procedures to populate the transformation definition
table:

• INSERT_NORM_LIN_MINMAX Procedure — Uses linear min-max
normalization

• INSERT_NORM_LIN_SCALE Procedure — Uses linear scale normalization

• INSERT_NORM_LIN_ZSCORE Procedure — Uses linear zscore
normalization

See Also:

"Linear Normalization" in DBMS_DATA_MINING_TRANSFORM
Overview

"Operational Notes"

Examples

The following statement creates a table called norm_xtbl in the current schema. The
table has columns that can be populated with shift and scale values for normalizing
numerical attributes.

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_NORM_LIN('norm_xtbl');
END;
/

DESCRIBE norm_xtbl
 Name Null? Type
 --- -------- ----------------------------
 COL VARCHAR2(30)
 ATT VARCHAR2(4000)
 SHIFT NUMBER
 SCALE NUMBER

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-202

41.2.3.8 DESCRIBE_STACK Procedure
This procedure describes the columns of the data table after a list of transformations
has been applied.

Only the columns that are specified in the transformation list are transformed. The
remaining columns in the data table are included in the output without changes.

To create a view of the data table after the transformations have been applied, use the
XFORM_STACK Procedure.

Syntax

DBMS_DATA_MINING_TRANSFORM.DESCRIBE_STACK (
 xform_list IN TRANSFORM_LIST,
 data_table_name IN VARCHAR2,
 describe_list OUT DESCRIBE_LIST,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-139 DESCRIBE_STACK Procedure Parameters

Parameter Description

xform_list A list of transformations. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

data_table_name Name of the table containing the data to be transformed

describe_list Descriptions of the columns in the data table after the transformations
specified in xform_list have been applied. See Table 41-122 for a
description of the DESCRIBE_LIST object type.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes" for information about transformation lists and embedded
transformations.

Examples

This example shows the column name and datatype, the column name length, and the
column maximum length for the view oml_user.cust_info after the transformation
list has been applied. All the transformations are user-specified. The results of
DESCRIBE_STACK do not include one of the columns in the original table, because the
SET_TRANSFORM procedure sets that column to NULL.

CREATE OR REPLACE VIEW cust_info AS
 SELECT a.cust_id, c.country_id, c.cust_year_of_birth,
 CAST(COLLECT(DM_Nested_Numerical(
 b.prod_name, 1))
 AS DM_Nested_Numericals) custprods
 FROM sh.sales a, sh.products b, sh.customers c
 WHERE a.prod_id = b.prod_id AND
 a.cust_id=c.cust_id and
 a.cust_id between 100001 AND 105000

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-203

 GROUP BY a.cust_id, country_id, cust_year_of_birth;

describe cust_info
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 COUNTRY_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUSTPRODS SYS.DM_NESTED_NUMERICALS

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
 cust_cols dbms_data_mining_transform.DESCRIBE_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'cust_year_of_birth', NULL, NULL, NULL);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.DESCRIBE_STACK(
 xform_list => cust_stack,
 data_table_name => 'cust_info',
 describe_list => cust_cols);
 dbms_output.put_line('====');
 for i in 1..cust_cols.COUNT loop
 dbms_output.put_line('COLUMN_NAME: '||cust_cols(i).col_name);
 dbms_output.put_line('COLUMN_TYPE: '||cust_cols(i).col_type);
 dbms_output.put_line('COLUMN_NAME_LEN: '||cust_cols(i).col_name_len);
 dbms_output.put_line('COLUMN_MAX_LEN: '||cust_cols(i).col_max_len);
 dbms_output.put_line('====');
 END loop;
END;
/
====
COLUMN_NAME: CUST_ID
COLUMN_TYPE: 2
COLUMN_NAME_LEN: 7
COLUMN_MAX_LEN: 22
====
COLUMN_NAME: COUNTRY_ID
COLUMN_TYPE: 2
COLUMN_NAME_LEN: 10
COLUMN_MAX_LEN: 22
====
COLUMN_NAME: CUSTPRODS
COLUMN_TYPE: 100001
COLUMN_NAME_LEN: 9
COLUMN_MAX_LEN: 40
====

41.2.3.9 GET_EXPRESSION Function
This function returns a row from a VARCHAR2 array that stores a transformation
expression. The array is built by calls to the SET_EXPRESSION Procedure.

The array can be used for specifying SQL expressions that are too long to be used
with the SET_TRANSFORM Procedure.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-204

Syntax

DBMS_DATA_MINING_TRANSFORM.GET_EXPRESSION (
 expression IN EXPRESSION_REC,
 chunk_num IN PLS_INTEGER DEFAULT NULL);
 RETURN VARCHAR2;

Parameters

Table 41-140 GET_EXPRESSION Function Parameters

Parameter Description

expression An expression record (EXPRESSION_REC) that specifies a transformation
expression or a reverse transformation expression for an attribute. Each
expression record includes a VARCHAR2 array and index fields for specifying
upper and lower boundaries within the array.

There are two EXPRESSION_REC fields within a transformation record
(TRANSFORM_REC): one for the transformation expression; the other for the
reverse transformation expression.

See Table 41-122 for a description of the EXPRESSION_REC type.

chunk A VARCHAR2 chunk (row) to be appended to expression.

Usage Notes

1. Chunk numbering starts with one. For chunks outside of the range, the return
value is null. When a chunk number is null the whole expression is returned as a
string. If the expression is too big, a VALUE_ERROR is raised.

2. See "About Transformation Lists".

3. See "Operational Notes".

Examples

See the example for the SET_EXPRESSION Procedure.

Related Topics

• SET_EXPRESSION Procedure
This procedure appends a row to a VARCHAR2 array that stores a SQL expression.

• SET_TRANSFORM Procedure
This procedure appends the transformation instructions for an attribute to a
transformation list.

41.2.3.10 INSERT_AUTOBIN_NUM_EQWIDTH Procedure
This procedure performs numerical binning and inserts the transformation definitions in
a transformation definition table. The procedure identifies the minimum and maximum
values and computes the bin boundaries at equal intervals.

INSERT_AUTOBIN_NUM_EQWIDTH computes the number of bins separately for each
column. If you want to use equi-width binning with the same number of bins for each
column, use the INSERT_BIN_NUM_EQWIDTH Procedure.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-205

INSERT_AUTOBIN_NUM_EQWIDTH bins all the NUMBER and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_AUTOBIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 3,
 max_bin_num IN PLS_INTEGER DEFAULT 100,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 sample_size IN PLS_INTEGER DEFAULT 50000,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 rem_table_name IN VARCHAR2 DEFAULT NULL,
 rem_schema_name IN VARCHAR2 DEFAULT NULL));

Parameters

Table 41-141 INSERT_AUTOBIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical binning. You
can use the CREATE_BIN_NUM Procedure to create the definition
table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_AUTOBIN_NUM_EQWIDTH.

data_table_name Name of the table containing the data to be transformed

bin_num Minimum number of bins. If bin_num is 0 or NULL, it is ignored.

The default value of bin_num is 3.

max_bin_num Maximum number of bins. If max_bin_num is 0 or NULL, it is ignored.

The default value of max_bin_num is 100.

exclude_list List of numerical columns to be excluded from the binning process. If
you do not specify exclude_list, all numerical columns in the data
source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num Specifies how to round the number in the VAL column of the
transformation definition table.

When round_num is positive, it specifies the most significant digits to
retain. When round_num is negative, it specifies the least significant
digits to remove. In both cases, the result is rounded to the specified
number of digits. See the Usage Notes for an example.

The default value of round_num is 6.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-206

Table 41-141 (Cont.) INSERT_AUTOBIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

sample_size Size of the data sample. If sample_size is less than the total number
of non-NULL values in the column, then sample_size is used instead
of the SQL COUNT function in computing the number of bins. If
sample_size is 0 or NULL, it is ignored. See the Usage Notes.

The default value of sample_size is 50,000.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

rem_table_name Name of a transformation definition table for column removal. The table
must have the columns described in "CREATE_COL_REM Procedure".

INSERT_AUTOBIN_NUM_EQWIDTH ignores columns with all nulls or only
one unique value. If you specify a value for rem_table_name, these
columns are removed from the mining data. If you do not specify a
value for rem_table_name, these unbinned columns remain in the
data.

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. INSERT_AUTOBIN_NUM_EQWIDTH computes the number of bins for a column based
on the number of non-null values (COUNT), the maximum (MAX), the minimum (MIN),
the standard deviation (STDDEV), and the constant C=3.49/0.9:

N=floor(power(COUNT,1/3)*(max-min)/(c*dev))

If the sample_size parameter is specified, it is used instead of COUNT.

See Oracle Machine Learning for SQL User’s Guide for information about the
COUNT, MAX, MIN, STDDEV, FLOOR, and POWER functions.

3. INSERT_AUTOBIN_NUM_EQWIDTH uses absolute values to compute the number of
bins. The sign of the parameters bin_num, max_bin_num, and sample_size has no
effect on the result.

4. In computing the number of bins, INSERT_AUTOBIN_NUM_EQWIDTH evaluates the
following criteria in the following order:

a. The minimum number of bins (bin_num)

b. The maximum number of bins (max_bin_num)

c. The maximum number of bins for integer columns, calculated as the number
of distinct values in the range max-min+1.

5. The round_num parameter controls the rounding of column values in the
transformation definition table, as follows:

For a value of 308.162:
when round_num = 1 result is 300

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-207

when round_num = 2 result is 310
when round_num = 3 result is 308
when round_num = 0 result is 308.162
when round_num = -1 result is 308.16
when round_num = -2 result is 308.2

Examples

In this example, INSERT_AUTOBIN_NUM_EQWIDTH computes the bin boundaries for
the cust_year_of_birth column in sh.customers and inserts the transformations
in a transformation definition table. The STACK_BIN_NUM Procedure creates a
transformation list from the contents of the definition table. The CREATE_MODEL
Procedure embeds the transformation list in a new model called nb_model.

The transformation and reverse transformation expressions embedded in nb_model
are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ----------------------------- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_AUTOBIN_NUM_EQWIDTH (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 3,
 max_bin_num => 5,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 4
column val off
SELECT col, val, bin FROM bin_tbl
 ORDER BY val ASC;

COL VAL BIN
------------------------- ---- -----
CUST_YEAR_OF_BIRTH 1913
CUST_YEAR_OF_BIRTH 1928 1
CUST_YEAR_OF_BIRTH 1944 2
CUST_YEAR_OF_BIRTH 1959 3
CUST_YEAR_OF_BIRTH 1975 4
CUST_YEAR_OF_BIRTH 1990 5

DECLARE
 year_birth_xform dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => year_birth_xform);
 dbms_data_mining.CREATE_MODEL(

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-208

 model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_postal_code',
 settings_table_name => null,
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => year_birth_xform);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

ATTRIBUTE_NAME

CUST_YEAR_OF_BIRTH

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

EXPRESSION
--
CASE WHEN "CUST_YEAR_OF_BIRTH"<1913 THEN NULL WHEN "CUST_YEAR_OF_BIRTH"<=1928.4
 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1943.8 THEN '2' WHEN "CUST_YEAR_OF_BIRTH"
<=1959.2 THEN '3' WHEN "CUST_YEAR_OF_BIRTH"<=1974.6 THEN '4' WHEN
"CUST_YEAR_OF_BIRTH" <=1990 THEN '5' END

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

REVERSE_EXPRESSION
--
DECODE("CUST_YEAR_OF_BIRTH",'5','(1974.6; 1990]','1','[1913; 1928.4]','2','(1928
.4; 1943.8]','3','(1943.8; 1959.2]','4','(1959.2; 1974.6]',NULL,'(; 1913), (199
0;), NULL')

41.2.3.11 INSERT_BIN_CAT_FREQ Procedure
This procedure performs categorical binning and inserts the transformation definitions
in a transformation definition table. The procedure computes the bin boundaries based
on frequency.

INSERT_BIN_CAT_FREQ bins all the CHAR and VARCHAR2 columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_CAT_FREQ (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 9,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 default_num IN PLS_INTEGER DEFAULT 2,
 bin_support IN NUMBER DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-209

Parameters

Table 41-142 INSERT_BIN_CAT_FREQ Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for categorical binning. You
can use the CREATE_BIN_CAT Procedure to create the definition
table.The following columns are required:

COL VARCHAR2(30)
VAL VARCHAR2(4000)
BIN VARCHAR2(4000)

CREATE_BIN_CAT creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_BIN_CAT_FREQ.

data_table_name Name of the table containing the data to be transformed

bin_num The number of bins to fill using frequency-based binning The total
number of bins will be bin_num+1. The additional bin is the default
bin. Classes that are not assigned to a frequency-based bin will be
assigned to the default bin.

The default binning order is from highest to lowest: the most frequently
occurring class is assigned to the first bin, the second most frequently
occurring class is assigned to the second bin, and so on.You can
reverse the binning order by specifying a negative number for bin_num.
The negative sign causes the binning order to be from lowest to
highest.

If the total number of distinct values (classes) in the column is less than
bin_num, then a separate bin will be created for each value and the
default bin will be empty.

If you specify NULL or 0 for bin_num, no binning is performed.

The default value of bin_num is 9.

exclude_list List of categorical columns to be excluded from the binning process. If
you do not specify exclude_list, all categorical columns in the data
source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

default_num The number of class occurrences (rows of the same class) required for
assignment to the default bin

By default, default_num is the minimum number of occurrences
required for assignment to the default bin. For example, if
default_num is 3 and a given class occurs only once, it will not
be assigned to the default bin. You can change the occurrence
requirement from minimum to maximum by specifying a negative
number for default_num. For example, if default_num is -3 and a
given class occurs only once, it will be assigned to the default bin, but a
class that occurs four or more times will not be included.

If you specify NULL or 0 for default_bin, there are no requirements
for assignment to the default bin.

The default value of default_num is 2.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-210

Table 41-142 (Cont.) INSERT_BIN_CAT_FREQ Procedure Parameters

Parameter Description

bin_support The number of class occurrences (rows of the same class) required for
assignment to a frequency-based bin. bin_support is expressed as a
fraction of the total number of rows.

By default, bin_support is the minimum percentage required for
assignment to a frequency-based bin. For example, if there are twenty
rows of data and you specify.2 for bin_support, then there must
be four or more occurrences of a class (.2*20) in order for it to be
assigned to a frequency-based bin. You can change bin_support
from a minimum percentage to a maximum percentage by specifying
a negative number for bin_support. For example, if there are twenty
rows of data and you specify -.2 for bin_support, then there must be
four or less occurrences of a class in order for it to be assigned to a
frequency-based bin.

Classes that occur less than a positive bin_support or more than a
negative bin_support will be assigned to the default bin.

If you specify NULL or 0 for bin_support, then there is no support
requirement for frequency-based binning.

The default value of bin_support is NULL.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about categorical
data.

2. If values occur with the same frequency, INSERT_BIN_CAT_FREQ assigns them in
descending order when binning is from most to least frequent, or in ascending
order when binning is from least to most frequent.

Examples

1. In this example, INSERT_BIN_CAT_FREQ computes the bin boundaries for the
cust_postal_code and cust_city columns in sh.customers and inserts the
transformations in a transformation definition table. The STACK_BIN_CAT
Procedure creates a transformation list from the contents of the definition table,
and the CREATE_MODEL Procedure embeds the transformation list in a new
model called nb_model.

The transformation and reverse transformation expressions embedded in
nb_model are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ------------------------------------- -------- -----------------------------
 CUST_ID NOT NULL NUMBER

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-211

 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_tbl_1');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_tbl_1',
 data_table_name => 'mining_data',
 bin_num => 4);
END;
/

column col format a18
column val format a15
column bin format a10
SELECT col, val, bin
 FROM bin_tbl_1
 ORDER BY col ASC, bin ASC;

COL VAL BIN
------------------ --------------- ----------
CUST_CITY Los Angeles 1
CUST_CITY Greenwich 2
CUST_CITY Killarney 3
CUST_CITY Montara 4
CUST_CITY 5
CUST_POSTAL_CODE 38082 1
CUST_POSTAL_CODE 63736 2
CUST_POSTAL_CODE 55787 3
CUST_POSTAL_CODE 78558 4
CUST_POSTAL_CODE 5

DECLARE
 city_xform dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_tbl_1',
 xform_list => city_xform);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'cust_city',
 settings_table_name => null,
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => city_xform);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

ATTRIBUTE_NAME

CUST_CITY
CUST_POSTAL_CODE

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-212

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

EXPRESSION

DECODE("CUST_CITY",'Greenwich','2','Killarney','3','Los Angeles','1',
'Montara','4',NULL,NULL,'5')
DECODE("CUST_POSTAL_CODE",'38082','1','55787','3','63736','2','78558','4',NULL,NULL,'5')

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('nb_model'));

REVERSE_EXPRESSION

DECODE("CUST_CITY",'2','''Greenwich''','3','''Killarney''','1',
'''Los Angeles''','4','''Montara''',NULL,'NULL','5','DEFAULT')
DECODE("CUST_POSTAL_CODE",'1','''38082''','3','''55787''','2','''63736''',
'4','''78558''',NULL,'NULL','5','DEFAULT')

2. The binning order in example 1 is from most frequent to least frequent. The
following example shows reverse order binning (least frequent to most frequent).
The binning order is reversed by setting bin_num to -4 instead of 4.

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_tbl_reverse');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_tbl_reverse',
 data_table_name => 'mining_data',
 bin_num => -4);
 END;
 /

column col format a20
SELECT col, val, bin
 FROM bin_tbl_reverse
 ORDER BY col ASC, bin ASC;

COL VAL BIN
-------------------- --------------- ----------
CUST_CITY Tokyo 1
CUST_CITY Sliedrecht 2
CUST_CITY Haarlem 3
CUST_CITY Diemen 4
CUST_CITY 5
CUST_POSTAL_CODE 49358 1
CUST_POSTAL_CODE 80563 2
CUST_POSTAL_CODE 74903 3
CUST_POSTAL_CODE 71349 4
CUST_POSTAL_CODE 5

41.2.3.12 INSERT_BIN_NUM_EQWIDTH Procedure
This procedure performs numerical binning and inserts the transformation definitions in
a transformation definition table. The procedure identifies the minimum and maximum
values and computes the bin boundaries at equal intervals.

INSERT_BIN_NUM_EQWIDTH computes a specified number of bins (n) and assigns (max-
min)/n values to each bin. The number of bins is the same for each column. If you

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-213

want to use equi-width binning, but you want the number of bins to be calculated on a
per-column basis, use the INSERT_AUTOBIN_NUM_EQWIDTH Procedure.

INSERT_BIN_NUM_EQWIDTH bins all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-143 INSERT_BIN_NUM_EQWIDTH Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical binning. You
can use the CREATE_BIN_NUM Procedure to create the definition
table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_BIN_NUM_EQWIDTH.

data_table_name Name of the table containing the data to be transformed

bin_num Number of bins. No binning occurs if bin_num is 0 or NULL.

The default number of bins is 10.

exclude_list List of numerical columns to be excluded from the binning process. If
you do not specify exclude_list, all numerical columns in the data
source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num Specifies how to round the number in the VAL column of the
transformation definition table.

When round_num is positive, it specifies the most significant digits to
retain. When round_num is negative, it specifies the least significant
digits to remove. In both cases, the result is rounded to the specified
number of digits. See the Usage Notes for an example.

The default value of round_num is 6.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-214

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. The round_num parameter controls the rounding of column values in the
transformation definition table, as follows:

For a value of 308.162:
when round_num = 1 result is 300
when round_num = 2 result is 310
when round_num = 3 result is 308
when round_num = 0 result is 308.162
when round_num = -1 result is 308.16
when round_num = -2 result is 308.2

3. INSERT_BIN_NUM_EQWIDTH ignores columns with all NULL values or only one unique
value.

Examples

In this example, INSERT_BIN_NUM_EQWIDTH computes the bin boundaries for the
affinity_card column in mining_data_build and inserts the transformations in
a transformation definition table. The STACK_BIN_NUM Procedure creates a
transformation list from the contents of the definition table. The CREATE_MODEL
Procedure embeds the transformation list in a new model called glm_model.

The transformation and reverse transformation expressions embedded in glm_model
are returned by the GET_MODEL_TRANSFORMATIONS Function.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_income_level, cust_gender, affinity_card
 FROM mining_data_build;

DESCRIBE mining_data
 Name Null? Type
 ------------------------- -------- -----------------
 CUST_ID NOT NULL NUMBER
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_GENDER VARCHAR2(1)
 AFFINITY_CARD NUMBER(10)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_BIN_NUM_EQWIDTH (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 4,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 10
column val off
column col format a20
column bin format a10
SELECT col, val, bin FROM bin_tbl
 ORDER BY val ASC;

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-215

COL VAL BIN
-------------------- ---------- ----------
AFFINITY_CARD 0
AFFINITY_CARD .25 1
AFFINITY_CARD .5 2
AFFINITY_CARD .75 3
AFFINITY_CARD 1 4

CREATE TABLE glmsettings(
 setting_name VARCHAR2(30),
 setting_value VARCHAR2(30));

BEGIN
 INSERT INTO glmsettings (setting_name, setting_value) VALUES
 (dbms_data_mining.algo_name,
dbms_data_mining.algo_generalized_linear_model);
 COMMIT;
END;
/

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => xforms,
 literal_flag => TRUE);
 dbms_data_mining.CREATE_MODEL(
 model_name => 'glm_model',
 mining_function => dbms_data_mining.regression,
 data_table_name => 'mining_data',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 settings_table_name => 'glmsettings',
 data_schema_name => null,
 settings_schema_name => null,
 xform_list => xforms);
END;
/

SELECT attribute_name
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

ATTRIBUTE_NAME

AFFINITY_CARD

SELECT expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

EXPRESSION
--
CASE WHEN "AFFINITY_CARD"<0 THEN NULL WHEN "AFFINITY_CARD"<=.25 THEN 1 WHEN
"AFFINITY_CARD"<=.5 THEN 2 WHEN "AFFINITY_CARD"<=.75 THEN 3 WHEN
"AFFINITY_CARD"<=1 THEN 4 END

SELECT reverse_expression
 FROM TABLE(dbms_data_mining.GET_MODEL_TRANSFORMATIONS('glm_model'));

REVERSE_EXPRESSION

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-216

--
DECODE("AFFINITY_CARD",4,'(.75; 1]',1,'[0; .25]',2,'(.25; .5]',3,'(.5; .75]',
NULL,'(; 0), (1;), NULL')

41.2.3.13 INSERT_BIN_NUM_QTILE Procedure
This procedure performs numerical binning and inserts the transformation definitions in
a transformation definition table. The procedure calls the SQL NTILE function to order
the data and divide it equally into the specified number of bins (quantiles).

INSERT_BIN_NUM_QTILE bins all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_NUM_QTILE (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 bin_num IN PLS_INTEGER DEFAULT 10,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-144 INSERT_BIN_NUM_QTILE Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical binning. You
can use the CREATE_BIN_NUM Procedure to create the definition
table. The following columns are required:

COL VARCHAR2(30)
VAL NUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_BIN_NUM_QTILE.

data_table_name Name of the table containing the data to be transformed

bin_num Number of bins. No binning occurs if bin_num is 0 or NULL.

The default number of bins is 10.

exclude_list List of numerical columns to be excluded from the binning process. If
you do not specify exclude_list, all numerical columns in the data
source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-217

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. After dividing the data into quantiles, the NTILE function distributes any remainder
values one for each quantile, starting with the first. See Oracle Database SQL
Language Reference for details.

3. Columns with all NULL values are ignored by INSERT_BIN_NUM_QTILE.

Examples

In this example, INSERT_BIN_NUM_QTILE computes the bin boundaries for the
cust_year_of_birth and cust_credit_limit columns in sh.customers and inserts
the transformations in a transformation definition table. The STACK_BIN_NUM
Procedure creates a transformation list from the contents of the definition table.

The SQL expression that computes the transformation is shown in STACK_VIEW. The
view is for display purposes only; it cannot be used to embed the transformations in a
model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 --------------------------------------- -------- -----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_tbl');
 dbms_data_mining_transform.INSERT_BIN_NUM_QTILE (
 bin_table_name => 'bin_tbl',
 data_table_name => 'mining_data',
 bin_num => 3,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/

set numwidth 8
column val off
column col format a20
column bin format a10
SELECT col, val, bin
 FROM bin_tbl
 ORDER BY col ASC, val ASC;

COL VAL BIN
-------------------- -------- ----------
CUST_CREDIT_LIMIT 1500
CUST_CREDIT_LIMIT 3000 1
CUST_CREDIT_LIMIT 9000 2
CUST_CREDIT_LIMIT 15000 3
CUST_YEAR_OF_BIRTH 1913

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-218

CUST_YEAR_OF_BIRTH 1949 1
CUST_YEAR_OF_BIRTH 1965 2
CUST_YEAR_OF_BIRTH 1990 3

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'stack_view');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name in 'STACK_VIEW';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH"<1913 THEN NULL WHEN "CUST_YEAR_O
F_BIRTH"<=1949 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1965 THEN '2' WHEN "CUST_YEAR
_OF_BIRTH"<=1990 THEN '3' END "CUST_YEAR_OF_BIRTH",CASE WHEN "CUST_CREDIT_LIMIT"
<1500 THEN NULL WHEN "CUST_CREDIT_LIMIT"<=3000 THEN '1' WHEN "CUST_CREDIT_LIMIT"
<=9000 THEN '2' WHEN "CUST_CREDIT_LIMIT"<=15000 THEN '3' END "CUST_CREDIT_LIMIT"
,"CUST_CITY" FROM mining_data

41.2.3.14 INSERT_BIN_SUPER Procedure
This procedure performs numerical and categorical binning and inserts the
transformation definitions in transformation definition tables. The procedure computes
bin boundaries based on intrinsic relationships between predictors and a target.

INSERT_BIN_SUPER uses an intelligent binning technique known as supervised
binning. It builds a single-predictor decision tree and derives the bin boundaries from
splits within the tree.

INSERT_BIN_SUPER bins all the VARCHAR2, CHAR, NUMBER, and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_SUPER (
 num_table_name IN VARCHAR2,
 cat_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 max_bin_num IN PLS_INTEGER DEFAULT 1000,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 num_schema_name IN VARCHAR2 DEFAULT NULL,
 cat_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 rem_table_name IN VARCHAR2 DEFAULT NULL,
 rem_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-219

Parameters

Table 41-145 INSERT_BIN_SUPER Procedure Parameters

Parameter Description

num_table_name Name of the transformation definition table for numerical binning. You
can use the CREATE_BIN_NUM Procedure to create the definition
table. The following columns are required:

COL VARCHAR2(30)
VAL VNUMBER
BIN VARCHAR2(4000)

CREATE_BIN_NUM creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_BIN_SUPER.

cat_table_name Name of the transformation definition table for categorical binning.
You can use the CREATE_BIN_CAT Procedure to create the
definition table. The following columns are required:

COL VARCHAR2(30)
VAL VARCHAR2(4000)
BIN VARCHAR2(4000)

CREATE_BIN_CAT creates an additional column, ATT, which is
used for specifying nested attributes. This column is not used by
INSERT_BIN_SUPER.

data_table_name Name of the table containing the data to be transformed

target_column_name Name of a column to be used as the target for the decision tree
models

max_bin_num The maximum number of bins. The default is 1000.

exclude_list List of columns to be excluded from the binning process. If you do
not specify exclude_list, all numerical and categorical columns in
the data source are binned.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

num_schema_name Schema of num_table_name. If no schema is specified, the current
schema is used.

cat_schema_name Schema of cat_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

rem_table_name Name of a column removal definition table. The table must have
the columns described in "CREATE_COL_REM Procedure". You can
use CREATE_COL_REM to create the table. See Usage Notes.

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-220

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
and categorical data.

2. Columns that have no significant splits are not binned. You can remove the
unbinned columns from the mining data by specifying a column removal definition
table. If you do not specify a column removal definition table, the unbinned
columns remain in the mining data.

3. See Oracle Machine Learning for SQL Concepts to learn more about decision
trees in Oracle Machine Learning for SQL

Examples

In this example, INSERT_BIN_SUPER computes the bin boundaries for predictors of
cust_credit_limit and inserts the transformations in transformation definition tables.
One predictor is numerical, the other is categorical. (INSERT_BIN_SUPER determines
that the cust_postal_code column is not a significant predictor.) STACK procedures
create transformation lists from the contents of the definition tables.

The SQL expressions that compute the transformations are shown in the views
MINING_DATA_STACK_NUM and MINING_DATA_STACK_CAT. The views are for display
purposes only; they cannot be used to embed the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_marital_status,
 cust_postal_code, cust_credit_limit
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 -------------------------------- -------- ------------------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_MARITAL_STATUS VARCHAR2(20)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM(
 bin_table_name => 'bin_num_tbl');
 dbms_data_mining_transform.CREATE_BIN_CAT(
 bin_table_name => 'bin_cat_tbl');
 dbms_data_mining_transform.CREATE_COL_REM(
 rem_table_name => 'rem_tbl');
END;
/

BEGIN
 COMMIT;
 dbms_data_mining_transform.INSERT_BIN_SUPER (
 num_table_name => 'bin_num_tbl',
 cat_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 target_column_name => 'cust_credit_limit',
 max_bin_num => 4,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 num_schema_name => 'oml_user',
 cat_schema_name => 'oml_user',

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-221

 data_schema_name => 'oml_user',
 rem_table_name => 'rem_tbl',
 rem_schema_name => 'oml_user');
 COMMIT;
END;
/

set numwidth 8
column val off
SELECT col, val, bin FROM bin_num_tbl
 ORDER BY bin ASC;

COL VAL BIN
-------------------- -------- ----------
CUST_YEAR_OF_BIRTH 1923.5 1
CUST_YEAR_OF_BIRTH 1923.5 1
CUST_YEAR_OF_BIRTH 1945.5 2
CUST_YEAR_OF_BIRTH 1980.5 3
CUST_YEAR_OF_BIRTH 4

column val on
column val format a20
SELECT col, val, bin FROM bin_cat_tbl
 ORDER BY bin ASC;

COL VAL BIN
-------------------- -------------------- ----------
CUST_MARITAL_STATUS married 1
CUST_MARITAL_STATUS single 2
CUST_MARITAL_STATUS Mar-AF 3
CUST_MARITAL_STATUS Mabsent 3
CUST_MARITAL_STATUS Divorc. 3
CUST_MARITAL_STATUS Married 3
CUST_MARITAL_STATUS Widowed 3
CUST_MARITAL_STATUS NeverM 3
CUST_MARITAL_STATUS Separ. 3
CUST_MARITAL_STATUS divorced 4
CUST_MARITAL_STATUS widow 4

SELECT col from rem_tbl;

COL

CUST_POSTAL_CODE

DECLARE
 xforms_num dbms_data_mining_transform.TRANSFORM_LIST;
 xforms_cat dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.STACK_BIN_NUM (
 bin_table_name => 'bin_num_tbl',
 xform_list => xforms_num);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms_num,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_num');
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_cat_tbl',
 xform_list => xforms_cat);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms_cat,

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-222

 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_cat');
 END;
 /

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK_NUM';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH"<1923.5 THEN '1' WHEN "CUST_YEAR_
OF_BIRTH"<=1923.5 THEN '1' WHEN "CUST_YEAR_OF_BIRTH"<=1945.5 THEN '2' WHEN "CUST
_YEAR_OF_BIRTH"<=1980.5 THEN '3' WHEN "CUST_YEAR_OF_BIRTH" IS NOT NULL THEN '4'
END "CUST_YEAR_OF_BIRTH","CUST_MARITAL_STATUS","CUST_POSTAL_CODE","CUST_CREDIT_L
IMIT" FROM mining_data

SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK_CAT';

TEXT
--
SELECT "CUST_ID","CUST_YEAR_OF_BIRTH",DECODE("CUST_MARITAL_STATUS",'Divorc.','3'
,'Mabsent','3','Mar-AF','3','Married','3','NeverM','3','Separ.','3','Widowed','3
','divorced','4','married','1','single','2','widow','4') "CUST_MARITAL_STATUS","
CUST_POSTAL_CODE","CUST_CREDIT_LIMIT" FROM mining_data

41.2.3.15 INSERT_CLIP_TRIM_TAIL Procedure
This procedure replaces numeric outliers with nulls and inserts the transformation
definitions in a transformation definition table.

INSERT_CLIP_TRIM_TAIL computes the boundaries of the data based on a specified
percentage. It removes the values that fall outside the boundaries (tail values) from
the data. If you wish to replace the tail values instead of removing them, use the
INSERT_CLIP_WINSOR_TAIL Procedure.

INSERT_CLIP_TRIM_TAIL clips all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_TRIM_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-223

Parameters

Table 41-146 INSERT_CLIP_TRIM_TAIL Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for numerical clipping. You
can use the CREATE_CLIP Procedure to create the definition table.
The following columns are required:

 COL VARCHAR2(30)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_CLIP creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_CLIP_TRIM_TAIL.

data_table_name Name of the table containing the data to be transformed

tail_frac The percentage of non-null values to be designated as outliers at each
end of the data. For example, if tail_frac is .01, then 1% of the data
at the low end and 1% of the data at the high end will be treated as
outliers.

If tail_frac is greater than or equal to .5, no clipping occurs.

The default value of tail_frac is 0.025.

exclude_list List of numerical columns to be excluded from the clipping process. If
you do not specify exclude_list, all numerical columns in the data
are clipped.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

clip_schema_name Schema of clip_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. The DBMS_DATA_MINING_TRANSFORM package provides two clipping procedures:
INSERT_CLIP_TRIM_TAIL and INSERT_CLIP_WINSOR_TAIL. Both procedures
compute the boundaries as follows:

• Count the number of non-null values, n, and sort them in ascending order

• Calculate the number of outliers, t, as n*tail_frac

• Define the lower boundary lcut as the value at position 1+floor(t)

• Define the upper boundary rcut as the value at position n-floor(t)

(The SQL FLOOR function returns the largest integer less than or equal to t.)

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-224

• All values that are <= lcut or => rcut are designated as outliers.

INSERT_CLIP_TRIM_TAIL replaces the outliers with nulls, effectively removing them
from the data.

INSERT_CLIP_WINSOR_TAIL assigns lcut to the low outliers and rcut to the high
outliers.

Examples

In this example, INSERT_CLIP_TRIM_TAIL trims 10% of the data in two columns (5%
from the high end and 5% from the low end) and inserts the transformations in a
transformation definition table. The STACK_CLIP Procedure creates a transformation
list from the contents of the definition table.

The SQL expression that computes the trimming is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ------------------------------- -------- -------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_CLIP(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.INSERT_CLIP_TRIM_TAIL(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

SELECT col, lcut, lval, rcut, rval
 FROM clip_tbl
 ORDER BY col ASC;

COL LCUT LVAL RCUT RVAL
-------------------- -------- -------- -------- --------
CUST_CREDIT_LIMIT 1500 11000
CUST_YEAR_OF_BIRTH 1934 1982

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-225

 END;
 /

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH" < 1934 THEN NULL WHEN "CUST_YEAR
_OF_BIRTH" > 1982 THEN NULL ELSE "CUST_YEAR_OF_BIRTH" END "CUST_YEAR_OF_BIRTH",C
ASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN NULL WHEN "CUST_CREDIT_LIMIT" > 11000 T
HEN NULL ELSE "CUST_CREDIT_LIMIT" END "CUST_CREDIT_LIMIT","CUST_CITY" FROM minin
g_data

41.2.3.16 INSERT_CLIP_WINSOR_TAIL Procedure
This procedure replaces numeric outliers with the upper or lower boundary values. It
inserts the transformation definitions in a transformation definition table.

INSERT_CLIP_WINSOR_TAIL computes the boundaries of the data based on a specified
percentage. It replaces the values that fall outside the boundaries (tail values)
with the related boundary value. If you wish to set tail values to null, use the
INSERT_CLIP_TRIM_TAIL Procedure.

INSERT_CLIP_WINSOR_TAIL clips all the NUMBER and FLOAT columns in the data source
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_CLIP_WINSOR_TAIL (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 tail_frac IN NUMBER DEFAULT 0.025,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-147 INSERT_CLIP_WINSOR_TAIL Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for numerical clipping. You
can use the CREATE_CLIP Procedure to create the definition table.
The following columns are required:

 COL VARCHAR2(30)
 LCUT NUMBER
 LVAL NUMBER
 RCUT NUMBER
 RVAL NUMBER

CREATE_CLIP creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_CLIP_WINSOR_TAIL.

data_table_name Name of the table containing the data to be transformed

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-226

Table 41-147 (Cont.) INSERT_CLIP_WINSOR_TAIL Procedure Parameters

Parameter Description

tail_frac The percentage of non-null values to be designated as outliers at each
end of the data. For example, if tail_frac is .01, then 1% of the data
at the low end and 1% of the data at the high end will be treated as
outliers.

If tail_frac is greater than or equal to .5, no clipping occurs.

The default value of tail_frac is 0.025.

exclude_list List of numerical columns to be excluded from the clipping process. If
you do not specify exclude_list, all numerical columns in the data
are clipped.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

clip_schema_name Schema of clip_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. The DBMS_DATA_MINING_TRANSFORM package provides two clipping procedures:
INSERT_CLIP_WINSOR_TAIL and INSERT_CLIP_TRIM_TAIL. Both procedures
compute the boundaries as follows:

• Count the number of non-null values, n, and sort them in ascending order

• Calculate the number of outliers, t, as n*tail_frac

• Define the lower boundary lcut as the value at position 1+floor(t)

• Define the upper boundary rcut as the value at position n-floor(t)

(The SQL FLOOR function returns the largest integer less than or equal to t.)

• All values that are <= lcut or => rcut are designated as outliers.

INSERT_CLIP_WINSOR_TAIL assigns lcut to the low outliers and rcut to the high
outliers.

INSERT_CLIP_TRIM_TAIL replaces the outliers with nulls, effectively removing them
from the data.

Examples

In this example, INSERT_CLIP_WINSOR_TAIL winsorizes 10% of the data in two columns
(5% from the high end, and 5% from the low end) and inserts the transformations in a
transformation definition table. The STACK_CLIP Procedure creates a transformation
list from the contents of the definition table.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-227

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit, cust_city
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -- -------- -------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.CREATE_CLIP(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.INSERT_CLIP_WINSOR_TAIL(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

SELECT col, lcut, lval, rcut, rval FROM clip_tbl
 ORDER BY col ASC;
COL LCUT LVAL RCUT RVAL
------------------------------ -------- -------- -------- --------
CUST_CREDIT_LIMIT 1500 1500 11000 11000
CUST_YEAR_OF_BIRTH 1934 1934 1982 1982

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => xforms);
dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SQL> SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",CASE WHEN "CUST_YEAR_OF_BIRTH" < 1934 THEN 1934 WHEN "CUST_YEAR
_OF_BIRTH" > 1982 THEN 1982 ELSE "CUST_YEAR_OF_BIRTH" END "CUST_YEAR_OF_BIRTH",C
ASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN 1500 WHEN "CUST_CREDIT_LIMIT" > 11000 T
HEN 11000 ELSE "CUST_CREDIT_LIMIT" END "CUST_CREDIT_LIMIT","CUST_CITY" FROM mini
ng_data

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-228

41.2.3.17 INSERT_MISS_CAT_MODE Procedure
This procedure replaces missing categorical values with the value that occurs most
frequently in the column (the mode). It inserts the transformation definitions in a
transformation definition table.

INSERT_MISS_CAT_MODE replaces missing values in all VARCHAR2 and CHAR columns in
the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_CAT_MODE (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-148 INSERT_MISS_CAT_MODE Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for categorical missing value
treatment. You can use the CREATE_MISS_CAT Procedure to create
the definition table. The following columns are required:

 COL VARCHAR2(30)
 VAL VARCHAR2(4000)

CREATE_MISS_CAT creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_MISS_CAT_MODE.

data_table_name Name of the table containing the data to be transformed

exclude_list List of categorical columns to be excluded from missing value
treatment. If you do not specify exclude_list, all categorical columns
are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about categorical
data.

2. If you wish to replace categorical missing values with a value other than the mode,
you can edit the transformation definition table.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-229

See Also:

Oracle Machine Learning for SQL User’s Guide for information about
default missing value treatment in Oracle Machine Learning for SQL

Example

In this example, INSERT_MISS_CAT_MODE computes missing value treatment for
cust_city and inserts the transformation in a transformation definition table. The
STACK_MISS_CAT Procedure creates a transformation list from the contents of the
definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_city
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------- -------- ----------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.create_miss_cat(
 miss_table_name => 'missc_tbl');
 dbms_data_mining_transform.insert_miss_cat_mode(
 miss_table_name => 'missc_tbl',
 data_table_name => 'mining_data');
END;
/

SELECT stats_mode(cust_city) FROM mining_data;

STATS_MODE(CUST_CITY)

Los Angeles

SELECT col, val
 from missc_tbl;

COL VAL
------------------------------ ------------------------------
CUST_CITY Los Angeles

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_MISS_CAT (
 miss_table_name => 'missc_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-230

 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_YEAR_OF_BIRTH",NVL("CUST_CITY",'Los Angeles') "CUST_CITY"
 FROM mining_data

41.2.3.18 INSERT_MISS_NUM_MEAN Procedure
This procedure replaces missing numerical values with the average (the mean) and
inserts the transformation definitions in a transformation definition table.

INSERT_MISS_NUM_MEAN replaces missing values in all NUMBER and FLOAT columns in
the data source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_NUM_MEAN (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-149 INSERT_MISS_NUM_MEAN Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for numerical missing value
treatment. You can use the CREATE_MISS_NUM Procedure to create
the definition table.

The following columns are required by INSERT_MISS_NUM_MEAN:

 COL VARCHAR2(30)
 VAL NUMBER

CREATE_MISS_NUM creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_MISS_NUM_MEAN.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from missing value treatment.
If you do not specify exclude_list, all numerical columns are
transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for the mean.

The default number is 6.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-231

Table 41-149 (Cont.) INSERT_MISS_NUM_MEAN Procedure Parameters

Parameter Description

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

1. See Oracle Machine Learning for SQL User’s Guide for details about numerical
data.

2. If you wish to replace numerical missing values with a value other than the mean,
you can edit the transformation definition table.

See Also:

Oracle Machine Learning for SQL User’s Guide for information about
default missing value treatment in Oracle Machine Learning for SQL

Example

In this example, INSERT_MISS_NUM_MEAN computes missing value treatment for
cust_year_of_birth and inserts the transformation in a transformation definition table.
The STACK_MISS_NUM Procedure creates a transformation list from the contents of
the definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_city
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 -- -------- -------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CITY NOT NULL VARCHAR2(30)

BEGIN
 dbms_data_mining_transform.create_miss_num(
 miss_table_name => 'missn_tbl');
 dbms_data_mining_transform.insert_miss_num_mean(
 miss_table_name => 'missn_tbl',
 data_table_name => 'mining_data',
 exclude_list => DBMS_DATA_MINING_TRANSFORM.COLUMN_LIST('cust_id'));
END;
/

set numwidth 4
column val off

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-232

SELECT col, val
 FROM missn_tbl;

COL VAL
-------------------- ----
CUST_YEAR_OF_BIRTH 1957

SELECT avg(cust_year_of_birth) FROM mining_data;

AVG(CUST_YEAR_OF_BIRTH)

 1957

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_MISS_NUM (
 miss_table_name => 'missn_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID",NVL("CUST_YEAR_OF_BIRTH",1957.4) "CUST_YEAR_OF_BIRTH","CUST_CIT
Y" FROM mining_data

41.2.3.19 INSERT_NORM_LIN_MINMAX Procedure
This procedure performs linear normalization and inserts the transformation definitions
in a transformation definition table.

INSERT_NORM_LIN_MINMAX computes the minimum and maximum values from the data
and sets the value of shift and scale as follows:

shift = min
scale = max - min

Normalization is computed as:

x_new = (x_old - shift)/scale

INSERT_NORM_LIN_MINMAX rounds the value of scale to a specified number of
significant digits before storing it in the transformation definition table.

INSERT_NORM_LIN_MINMAX normalizes all the NUMBER and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_MINMAX (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-233

 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-150 INSERT_NORM_LIN_MINMAX Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear normalization. You
can use the CREATE_NORM_LIN Procedure to create the definition
table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_NORM_LIN_MINMAX.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from normalization. If you do
not specify exclude_list, all numerical columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for the minimum and maximum.
The default number is 6.

norm_schema_name Schema of norm_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See Oracle Machine Learning for SQL User’s Guide for details about numerical data.

Examples

In this example, INSERT_NORM_LIN_MINMAX normalizes the cust_year_of_birth
column and inserts the transformation in a transformation definition table. The
STACK_NORM_LIN Procedure creates a transformation list from the contents of the
definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

describe mining_data
 Name Null? Type
 ------------------------------------ -------- ----------------

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-234

 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
------------------------------ ---------- ----------
CUST_YEAR_OF_BIRTH 1910 77

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-1910)/77 "CUST_YEAR_OF_BIRT
H" FROM mining_data

41.2.3.20 INSERT_NORM_LIN_SCALE Procedure
This procedure performs linear normalization and inserts the transformation definitions
in a transformation definition table.

INSERT_NORM_LIN_SCALE computes the minimum and maximum values from the data
and sets the value of shift and scale as follows:

shift = 0
scale = max(abs(max), abs(min))

Normalization is computed as:

x_new = (x_old)/scale

INSERT_NORM_LIN_SCALE rounds the value of scale to a specified number of significant
digits before storing it in the transformation definition table.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-235

INSERT_NORM_LIN_SCALE normalizes all the NUMBER and FLOAT columns in the data
source unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_SCALE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-151 INSERT_NORM_LIN_SCALE Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear normalization. You
can use the CREATE_NORM_LIN Procedure to create the definition
table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may be
used for specifying nested attributes. This column is not used by
INSERT_NORM_LIN_SCALE.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from normalization. If you do
not specify exclude_list, all numerical columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for scale. The default number is
6.

norm_schema_name Schema of norm_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See Oracle Machine Learning for SQL User’s Guide for details about numerical data.

Examples

In this example, INSERT_NORM_LIN_SCALE normalizes the cust_year_of_birth
column and inserts the transformation in a transformation definition table. The
STACK_NORM_LIN Procedure creates a transformation list from the contents of the
definition table.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-236

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ---------------------------------- -------- ------------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_SCALE(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
 END;
 /

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
-------------------- ----- -----
CUST_YEAR_OF_BIRTH 0 1990

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-0)/1990 "CUST_YEAR_OF_BIRTH
" FROM mining_data

41.2.3.21 INSERT_NORM_LIN_ZSCORE Procedure
This procedure performs linear normalization and inserts the transformation definitions
in a transformation definition table.

INSERT_NORM_LIN_ZSCORE computes the mean and the standard deviation from the
data and sets the value of shift and scale as follows:

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-237

shift = mean
scale = stddev

Normalization is computed as:

x_new = (x_old - shift)/scale

INSERT_NORM_LIN_ZSCORE rounds the value of scale to a specified number of
significant digits before storing it in the transformation definition table.

INSERT_NORM_LIN_ZSCORE normalizes all the NUMBER and FLOAT columns in the data
unless you specify a list of columns to ignore.

Syntax

DBMS_DATA_MINING_TRANSFORM.INSERT_NORM_LIN_ZSCORE (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 round_num IN PLS_INTEGER DEFAULT 6,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-152 INSERT_NORM_LIN_ZSCORE Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear normalization.
You can use the CREATE_NORM_LIN Procedure to create the
definition table. The following columns are required:

 COL VARCHAR2(30)
 SHIFT NUMBER
 SCALE NUMBER

CREATE_NORM_LIN creates an additional column, ATT, which may
be used for specifying nested attributes. This column is not used by
INSERT_NORM_LIN_ZSCORE.

data_table_name Name of the table containing the data to be transformed

exclude_list List of numerical columns to be excluded from normalization. If you do
not specify exclude_list, all numerical columns are transformed.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

round_num The number of significant digits to use for scale. The default number
is 6.

norm_schema_name Schema of norm_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See Oracle Machine Learning for SQL User’s Guide for details about numerical data.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-238

Examples

In this example, INSERT_NORM_LIN_ZSCORE normalizes the cust_year_of_birth
column and inserts the transformation in a transformation definition table. The
STACK_NORM_LIN Procedure creates a transformation list from the contents of the
definition table.

The SQL expression that computes the transformation is shown in the view
MINING_DATA_STACK. The view is for display purposes only; it cannot be used to embed
the transformations in a model.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_gender, cust_year_of_birth
 FROM sh.customers;

DESCRIBE mining_data
 Name Null? Type
 ----------------------------------- -------- --------------------
 CUST_ID NOT NULL NUMBER
 CUST_GENDER NOT NULL CHAR(1)
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'norm_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_ZSCORE(
 norm_table_name => 'norm_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM norm_tbl;

COL SHIFT SCALE
-------------------- ----- -----
CUST_YEAR_OF_BIRTH 1960 15

DECLARE
 xforms dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_NORM_LIN (
 norm_table_name => 'norm_tbl',
 xform_list => xforms);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => xforms,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack');
END;
/

set long 3000
SQL> SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_STACK';

TEXT
--
SELECT "CUST_ID","CUST_GENDER",("CUST_YEAR_OF_BIRTH"-1960)/15 "CUST_YEAR_OF_BIRT
H" FROM mining_data

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-239

41.2.3.22 SET_EXPRESSION Procedure
This procedure appends a row to a VARCHAR2 array that stores a SQL expression.

The array can be used for specifying a transformation expression that is too long to be
used with the SET_TRANSFORM Procedure.

The GET_EXPRESSION Function returns a row in the array.

When you use SET_EXPRESSION to build a transformation expression, you must build a
corresponding reverse transformation expression, create a transformation record, and
add the transformation record to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.SET_EXPRESSION (
 expression IN OUT NOCOPY EXPRESSION_REC,
 chunk VARCHAR2 DEFAULT NULL);

Parameters

Table 41-153 SET_EXPRESSION Procedure Parameters

Parameter Description

expression An expression record (EXPRESSION_REC) that specifies a transformation
expression or a reverse transformation expression for an attribute. Each
expression record includes a VARCHAR2 array and index fields for specifying
upper and lower boundaries within the array.

There are two EXPRESSION_REC fields within a transformation record
(TRANSFORM_REC): one for the transformation expression; the other for the
reverse transformation expression.

See Table 41-122 for a description of the EXPRESSION_REC type.

chunk A VARCHAR2 chunk (row) to be appended to expression.

Notes

1. You can pass NULL in the chunk argument to SET_EXPRESSION to clear the previous
chunk. The default value of chunk is NULL.

2. See "About Transformation Lists".

3. See "Operational Notes".

Examples

In this example, two calls to SET_EXPRESSION construct a transformation expression
and two calls construct the reverse transformation.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-240

Note:

This example is for illustration purposes only. It shows how SET_EXPRESSION
appends the text provided in chunk to the text that already exists in
expression. The SET_EXPRESSION procedure is meant for constructing very
long transformation expressions that cannot be specified in a VARCHAR2
argument to SET_TRANSFORM.

Similarly while transformation lists are intended for embedding in a model,
the transformation list v_xlst is shown in an external view for illustration
purposes.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_postal_code, cust_credit_limit
 FROM sh.customers;

DECLARE
 v_expr dbms_data_mining_transform.EXPRESSION_REC;
 v_rexp dbms_data_mining_transform.EXPRESSION_REC;
 v_xrec dbms_data_mining_transform.TRANSFORM_REC;
 v_xlst dbms_data_mining_transform.TRANSFORM_LIST :=
 dbms_data_mining_transform.TRANSFORM_LIST(NULL);
BEGIN
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_expr,
 CHUNK => '("CUST_YEAR_OF_BIRTH"-1910)');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_expr,
 CHUNK => '/77');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_rexp,
 CHUNK => '"CUST_YEAR_OF_BIRTH"*77');
 dbms_data_mining_transform.SET_EXPRESSION(
 EXPRESSION => v_rexp,
 CHUNK => '+1910');

 v_xrec := null;
 v_xrec.attribute_name := 'CUST_YEAR_OF_BIRTH';
 v_xrec.expression := v_expr;
 v_xrec.reverse_expression := v_rexp;
 v_xlst.TRIM;
 v_xlst.extend(1);
 v_xlst(1) := v_xrec;

 dbms_data_mining_transform.XFORM_STACK (
 xform_list => v_xlst,
 data_table_name => 'mining_data',
 xform_view_name => 'v_xlst_view');

 dbms_output.put_line('====');
 FOR i IN 1..v_xlst.count LOOP
 dbms_output.put_line('ATTR: '||v_xlst(i).attribute_name);
 dbms_output.put_line('SUBN: '||v_xlst(i).attribute_subname);
 FOR j IN v_xlst(i).expression.lb..v_xlst(i).expression.ub LOOP
 dbms_output.put_line('EXPR: '||v_xlst(i).expression.lstmt(j));
 END LOOP;
 FOR j IN v_xlst(i).reverse_expression.lb..

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-241

 v_xlst(i).reverse_expression.ub LOOP
 dbms_output.put_line('REXP: '||v_xlst(i).reverse_expression.lstmt(j));
 END LOOP;
 dbms_output.put_line('====');
 END LOOP;
 END;
/
====
ATTR: CUST_YEAR_OF_BIRTH
SUBN:
EXPR: ("CUST_YEAR_OF_BIRTH"-1910)
EXPR: /77
REXP: "CUST_YEAR_OF_BIRTH"*77
REXP: +1910
====

41.2.3.23 SET_TRANSFORM Procedure
This procedure appends the transformation instructions for an attribute to a
transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.SET_TRANSFORM (
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 attribute_name VARCHAR2,
 attribute_subname VARCHAR2,
 expression VARCHAR2,
 reverse_expression VARCHAR2,
 attribute_spec VARCHAR2 DEFAULT NULL);

Parameters

Table 41-154 SET_TRANSFORM Procedure Parameters

Parameter Description

xform_list A transformation list. See Table 41-122for a description of the
TRANSFORM_LIST object type.

attribute_name Name of the attribute to be transformed

attribute_subname Name of the nested attribute if attribute_name is a nested
column, otherwise NULL.

expression A SQL expression that specifies the transformation of the attribute.

reverse_expression A SQL expression that reverses the transformation for readability in
model details and in the target of a supervised model (if the attribute
is a target)

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-242

Table 41-154 (Cont.) SET_TRANSFORM Procedure Parameters

Parameter Description

attribute_spec One or more keywords that identify special treatment for the attribute
during model build. Values are:

• NOPREP — When ADP is on, prevents automatic transformation
of the attribute. If ADP is not on, this value has no effect.

• TEXT — Causes the attribute to be treated as unstructured text
data

• FORCE_IN — Forces the inclusion of the attribute in the
model build. Applies only to GLM models with feature selection
enabled (ftr_selection_enable = yes). Feature selection is
disabled by default.

If the model is not using GLM with feature selection, this value
has no effect.

See "Specifying Transformation Instructions for an Attribute"
in Oracle Machine Learning for SQL User’s Guidefor more
information about attribute_spec.

Usage Notes

1. See the following relevant sections in "Operational Notes":

• About Transformation Lists

• Nested Data Transformations

2. As shown in the following example, you can eliminate an attribute by specifying
a null transformation expression and reverse expression. You can also use
the STACK interface to remove a column (CREATE_COL_REM Procedure and
STACK_COL_REM Procedure).

41.2.3.24 STACK_BIN_CAT Procedure
This procedure adds categorical binning transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_BIN_CAT (
 bin_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-243

Parameters

Table 41-155 STACK_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for categorical binning. You
can use the CREATE_BIN_CAT Procedure to create the definition table.
The table must be populated with transformation definitions before you
call STACK_BIN_CAT. To populate the table, you can use one of the
INSERT procedures for categorical binning or you can write your own
SQL.

See Table 41-125

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

literal_flag Indicates whether the values in the bin column in the transformation
definition table are valid SQL literals. When literal_flag is FALSE
(the default), the bin identifiers will be transformed to SQL literals by
surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that should
have a numeric datatype, as is the case for an O-Cluster model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how a binning transformation for the categorical column
cust_postal_code could be added to a stack called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE or REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 AND 100100;

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-244

BEGIN
 dbms_data_mining_transform.CREATE_BIN_CAT ('bin_cat_tbl');
 dbms_data_mining_transform.INSERT_BIN_CAT_FREQ (
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 bin_num => 3);
 END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_cat_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
 END;
/
-- Before transformation
column cust_postal_code format a16
SELECT * from mining_data
 WHERE cust_id BETWEEN 100050 AND 100053
 ORDER BY cust_id;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- ---------------- -----------------
 100050 76486 1500
 100051 73216 9000
 100052 69499 5000
 100053 45704 7000

-- After transformation
SELECT * FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100053
 ORDER BY cust_id;

 CUST_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
---------- ---------------- -----------------
 100050 4 1500
 100051 1 9000
 100052 4 5000
 100053 4 7000

41.2.3.25 STACK_BIN_NUM Procedure
This procedure adds numerical binning transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_BIN_NUM (
 bin_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-245

Parameters

Table 41-156 STACK_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical binning. You
can use the CREATE_BIN_NUM Procedure to create the definition
table. The table must be populated with transformation definitions
before you call STACK_BIN_NUM. To populate the table, you can use
one of the INSERT procedures for numerical binning or you can write
your own SQL.

See Table 41-127.

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

literal_flag Indicates whether the values in the bin column in the transformation
definition table are valid SQL literals. When literal_flag is FALSE
(the default), the bin identifiers will be transformed to SQL literals by
surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how a binning transformation for the numerical column
cust_credit_limit could be added to a stack called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-246

 WHERE cust_id BETWEEN 100050 and 100100;
BEGIN
 dbms_data_mining_transform.create_bin_num ('bin_num_tbl');
 dbms_data_mining_transform.insert_bin_num_qtile (
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 bin_num => 5,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_BIN_CAT (
 bin_table_name => 'bin_num_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT cust_id, cust_postal_code, ROUND(cust_credit_limit) FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100055
 ORDER BY cust_id;
CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ----------------- -------------------------
100050 76486 1500
100051 73216 9000
100052 69499 5000
100053 45704 7000
100055 74673 11000
100055 74673 11000

-- After transformation
SELECT cust_id, cust_postal_code, ROUND(cust_credit_limit)
 FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100055
 ORDER BY cust_id;
CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMITT)
------- ---------------- -------------------------
100050 76486
100051 73216 2
100052 69499 1
100053 45704
100054 88021 3
100055 74673 3

41.2.3.26 STACK_CLIP Procedure
This procedure adds clipping transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_CLIP (
 clip_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 clip_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-247

Parameters

Table 41-157 STACK_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for clipping.You can
use the CREATE_CLIP Procedure to create the definition table.
The table must be populated with transformation definitions
before you call STACK_CLIP. To populate the table, you can use
one of the INSERT procedures for clipping or you can write your
own SQL.

See Table 41-129

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

clip_schema_name Schema of clip_table_name. If no schema is specified, the
current schema is used.

Usage Notes

See DBMS_DATA_MINING_TRANSFORM Operational Notes. The following sections
are especially relevant:

• “About Transformation Lists”

• “About Stacking”

• “Nested Data Transformations”

Examples

This example shows how a clipping transformation for the numerical column
cust_credit_limit could be added to a stack called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_postal_code, cust_credit_limit
 FROM sh.customers
 WHERE cust_id BETWEEN 100050 AND 100100;
BEGIN
 dbms_data_mining_transform.create_clip ('clip_tbl');
 dbms_data_mining_transform.insert_clip_winsor_tail (
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.25,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-248

END;
/
DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.STACK_CLIP (
 clip_table_name => 'clip_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT cust_id, cust_postal_code, round(cust_credit_limit)
 FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100054
 ORDER BY cust_id;

CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ---------------- ------------------------
100050 76486 1500
100051 73216 9000
100052 69499 5000
100053 45704 7000
100054 88021 11000

-- After transformation
SELECT cust_id, cust_postal_code, round(cust_credit_limit)
 FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100054
 ORDER BY cust_id;

CUST_ID CUST_POSTAL_CODE ROUND(CUST_CREDIT_LIMIT)
------- ---------------- ------------------------
100050 76486 5000
100051 73216 9000
100052 69499 5000
100053 45704 7000
100054 88021 11000

41.2.3.27 STACK_COL_REM Procedure
This procedure adds column removal transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_COL_REM (
 rem_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 rem_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-249

Parameters

Table 41-158 STACK_COL_REM Procedure Parameters

Parameter Description

rem_table_name Name of the transformation definition table for column removal. You can
use the CREATE_COL_REM Procedure to create the definition table.
See Table 41-131.

The table must be populated with column names before you
call STACK_COL_REM. The INSERT_BIN_SUPER Procedure and the
INSERT_AUTOBIN_NUM_EQWIDTH Procedure can optionally be used
to populate the table. You can also use SQL INSERT statements.

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

rem_schema_name Schema of rem_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the column cust_credit_limit could be removed in a
transformation list called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_postal_code, cust_credit_limit
 FROM sh.customers;

BEGIN
 dbms_data_mining_transform.create_col_rem ('rem_tbl');
END;
/

INSERT into rem_tbl VALUES (upper('cust_postal_code'), null);

DECLARE

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-250

 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_col_rem (
 rem_table_name => 'rem_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/

SELECT * FROM mining_data
 WHERE cust_id BETWEEN 100050 AND 100051
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- ---------------- -----------------
100050 52773 76486 1500
100051 52790 73216 9000

SELECT * FROM mining_data_stack_view
 WHERE cust_id BETWEEN 100050 AND 100051
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_CREDIT_LIMIT
------- ---------- -----------------
100050 52773 1500
100051 52790 9000

41.2.3.28 STACK_MISS_CAT Procedure
This procedure adds categorical missing value transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_MISS_CAT (
 miss_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-159 STACK_MISS_CAT Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for categorical missing value
treatment. You can use the CREATE_MISS_CAT Procedure to create
the definition table. The table must be populated with transformation
definitions before you call STACK_MISS_CAT. To populate the table, you
can use the INSERT_MISS_CAT_MODE Procedure or you can write
your own SQL.

See Table 41-133.

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-251

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the missing values in the column cust_marital_status
could be replaced with the mode in a transformation list called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_marital_status
 FROM sh.customers
 where cust_id BETWEEN 1 AND 10;

BEGIN
 dbms_data_mining_transform.create_miss_cat ('miss_cat_tbl');
 dbms_data_mining_transform.insert_miss_cat_mode ('miss_cat_tbl',
'mining_data');
END;
/

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_miss_cat (
 miss_table_name => 'miss_cat_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
SELECT * FROM mining_data
 ORDER BY cust_id;

CUST_ID COUNTRY_ID CUST_MARITAL_STATUS
------- ---------- --------------------
 1 52789
 2 52778
 3 52770
 4 52770

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-252

 5 52789
 6 52769 single
 7 52790 single
 8 52790 married
 9 52770 divorced
 10 52790 widow

SELECT * FROM mining_data_stack_view
 ORDER By cust_id;

CUST_ID COUNTRY_ID CUST_MARITAL_STATUS
------- ----------- --------------------
 1 52789 single
 2 52778 single
 3 52770 single
 4 52770 single
 5 52789 single
 6 52769 single
 7 52790 single
 8 52790 married
 9 52770 divorced
 10 52790 widow

41.2.3.29 STACK_MISS_NUM Procedure
This procedure adds numeric missing value transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_MISS_NUM (
 miss_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 miss_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-160 STACK_MISS_NUM Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for numerical missing value
treatment. You can use the CREATE_MISS_NUM Procedure to create
the definition table. The table must be populated with transformation
definitions before you call STACK_MISS_NUM. To populate the table, you
can use the INSERT_MISS_NUM_MEAN Procedure or you can write
your own SQL.

See Table 41-135.

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-253

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the missing values in the column cust_credit_limit could
be replaced with the mean in a transformation list called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

describe mining_data
 Name Null? Type
 --- -------- -----
 CUST_ID NOT NULL NUMBER
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.create_miss_num ('miss_num_tbl');
 dbms_data_mining_transform.insert_miss_num_mean
('miss_num_tbl','mining_data');
END;
/
SELECT * FROM miss_num_tbl;

COL ATT VAL
-------------------- ----- ------
CUST_ID 5.5
CUST_CREDIT_LIMIT 185.71

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
 BEGIN
 dbms_data_mining_transform.STACK_MISS_NUM (
 miss_table_name => 'miss_num_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
-- Before transformation
SELECT * FROM mining_data
 ORDER BY cust_id;
CUST_ID CUST_CREDIT_LIMIT
------- -----------------
 1 100
 2
 3 200

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-254

 4
 5 150
 6 400
 7 150
 8
 9 100
 10 200

-- After transformation
SELECT * FROM mining_data_stack_view
 ORDER BY cust_id;
CUST_ID CUST_CREDIT_LIMIT
------- -----------------
 1 100
 2 185.71
 3 200
 4 185.71
 5 150
 6 400
 7 150
 8 185.71
 9 100
 10 200

41.2.3.30 STACK_NORM_LIN Procedure
This procedure adds linear normalization transformations to a transformation list.

Syntax

DBMS_DATA_MINING_TRANSFORM.STACK_NORM_LIN (
 norm_table_name IN VARCHAR2,
 xform_list IN OUT NOCOPY TRANSFORM_LIST,
 norm_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-161 STACK_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear normalization. You
can use the CREATE_NORM_LIN Procedure to create the definition
table. The table must be populated with transformation definitions
before you call STACK_NORM_LIN.To populate the table, you can use
one of the INSERT procedures for normalization or you can write your
own SQL.

See Table 41-137.

xform_list A transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

norm_schema_name Schema of norm_table_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-255

• "About Stacking"

• "Nested Data Transformations"

Examples

This example shows how the column cust_credit_limit could be normalized in a
transformation list called mining_data_stack.

Note:

This example invokes the XFORM_STACK Procedure to show how the
data is transformed by the stack. XFORM_STACK simply generates an external
view of the transformed data. The actual purpose of the STACK procedures
is to assemble a list of transformations for embedding in a model. The
transformations are passed to CREATE_MODEL in the xform_list parameter.
See INSERT_BIN_NUM_EQWIDTH Procedure for an example.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, country_id, cust_postal_code, cust_credit_limit
 FROM sh.customers;
BEGIN
 dbms_data_mining_transform.create_norm_lin ('norm_lin_tbl');
 dbms_data_mining_transform.insert_norm_lin_minmax (
 norm_table_name => 'norm_lin_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id',
 'country_id'));
END;
/
SELECT * FROM norm_lin_tbl;
COL ATT SHIFT SCALE
-------------------- ----- ------ ------
CUST_CREDIT_LIMIT 1500 13500

DECLARE
 MINING_DATA_STACK dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.stack_norm_lin (
 norm_table_name => 'norm_lin_tbl',
 xform_list => mining_data_stack);
 dbms_data_mining_transform.XFORM_STACK (
 xform_list => mining_data_stack,
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_stack_view');
END;
/
SELECT * FROM mining_data
 WHERE cust_id between 1 and 10
 ORDER BY cust_id;
CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- -------------------- -----------------
 1 52789 30828 9000
 2 52778 86319 10000
 3 52770 88666 1500
 4 52770 87551 1500
 5 52789 59200 1500

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-256

 6 52769 77287 1500
 7 52790 38763 1500
 8 52790 58488 3000
 9 52770 63033 3000
 10 52790 52602 3000

SELECT * FROM mining_data_stack_view
 WHERE cust_id between 1 and 10
 ORDER BY cust_id;
CUST_ID COUNTRY_ID CUST_POSTAL_CODE CUST_CREDIT_LIMIT
------- ---------- -------------------- -----------------
 1 52789 30828 .55556
 2 52778 86319 .62963
 3 52770 88666 0
 4 52770 87551 0
 5 52789 59200 0
 6 52769 77287 0
 7 52790 38763 0
 8 52790 58488 .11111
 9 52770 63033 .11111
 10 52790 52602 .11111

41.2.3.31 XFORM_BIN_CAT Procedure
This procedure creates a view that implements the categorical binning transformations
specified in a definition table. Only the columns that are specified in the definition table
are transformed; the remaining columns from the data table are present in the view,
but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_CAT (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-162 XFORM_BIN_CAT Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for categorical binning. You
can use the CREATE_BIN_CAT Procedure to create the definition
table. The table must be populated with transformation definitions
before you call XFORM_BIN_CAT. To populate the table, you can use
one of the INSERT procedures for categorical binning or you can write
your own SQL.

See Table 41-125.

data_table_name Name of the table containing the data to be transformed.

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
bin_table_name.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-257

Table 41-162 (Cont.) XFORM_BIN_CAT Procedure Parameters

Parameter Description

literal_flag Indicates whether the values in the bin column in the transformation
definition table are valid SQL literals. When literal_flag is FALSE
(the default), the bin identifiers will be transformed to SQL literals by
surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that bins the cust_postal_code column. The data source
consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 -------------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

SELECT * FROM mining_data WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
--------- --------------------

 104066 69776
7000
 104067 52602
9000
 104068 55787
11000
 104069 55977
5000

BEGIN
 dbms_data_mining_transform.create_bin_cat(
 bin_table_name => 'bin_cat_tbl');
 dbms_data_mining_transform.insert_bin_cat_freq(
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 bin_num => 10);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-258

 dbms_data_mining_transform.xform_bin_cat(
 bin_table_name => 'bin_cat_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'bin_cat_view');
END;
/

SELECT * FROM bin_cat_view WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
---------- --------------------

 104066 6
7000
 104067 11
9000
 104068 3
11000
 104069 11
5000

SELECT text FROM user_views WHERE view_name IN 'BIN_CAT_VIEW';

TEXT

--

SELECT
"CUST_ID",DECODE("CUST_POSTAL_CODE",'38082','1','45704','9','48346','5','

55787','3','63736','2','67843','7','69776','6','72860','10','78558','4','80841',

'8',NULL,NULL,'11') "CUST_POSTAL_CODE","CUST_CREDIT_LIMIT" FROM
mining_data

41.2.3.32 XFORM_BIN_NUM Procedure
This procedure creates a view that implements the numerical binning transformations
specified in a definition table. Only the columns that are specified in the definition table
are transformed; the remaining columns from the data table are present in the view,
but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_BIN_NUM (
 bin_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 literal_flag IN BOOLEAN DEFAULT FALSE,
 bin_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-259

Parameters

Table 41-163 XFORM_BIN_NUM Procedure Parameters

Parameter Description

bin_table_name Name of the transformation definition table for numerical binning. You
can use the CREATE_BIN_NUM Procedure to create the definition
table. The table must be populated with transformation definitions
before you call XFORM_BIN_NUM. To populate the table, you can use
one of the INSERT procedures for numerical binning or you can write
your own SQL.

See "Table 41-127".

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
bin_table_name.

literal_flag Indicates whether the values in the bin column in the transformation
definition table are valid SQL literals. When literal_flag is FALSE
(the default), the bin identifiers will be transformed to SQL literals by
surrounding them with single quotes.

Set literal_flag to TRUE if the bin identifiers are numbers that
should have a numeric datatype, as is the case for an O-Cluster
model.

See "INSERT_BIN_NUM_EQWIDTH Procedure" for an example.

bin_schema_name Schema of bin_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that bins the cust_credit_limit column. The data
source consists of three columns from sh.customer.

describe mining_data
 Name Null? Type
 -------------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

column cust_credit_limit off
SELECT * FROM mining_data WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
--------- ------------------

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-260

 104066 69776
7000
 104067 52602
9000
 104068 55787
11000
 104069 55977
5000

BEGIN
 dbms_data_mining_transform.create_bin_num(
 bin_table_name => 'bin_num_tbl');
 dbms_data_mining_transform.insert_autobin_num_eqwidth(
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 bin_num => 5,
 max_bin_num => 10,
 exclude_list =>
dbms_data_mining_transform.COLUMN_LIST('cust_id'));
 dbms_data_mining_transform.xform_bin_num(
 bin_table_name => 'bin_num_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'mining_data_view');
END;
/
describe mining_data_view
 Name Null? Type
 ------------------------------------ -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT VARCHAR2(2)

col cust_credit_limit on
col cust_credit_limit format a25
SELECT * FROM mining_data_view WHERE cust_id between 104066 and 104069;

 CUST_ID CUST_POSTAL_CODE
CUST_CREDIT_LIMIT
---------- --------------------

 104066 69776
5
 104067 52602
6
 104068 55787
8
 104069 55977
3

set long 2000
SELECT text FROM user_views WHERE view_name IN 'MINING_DATA_VIEW';

TEXT

--

SELECT "CUST_ID","CUST_POSTAL_CODE",CASE WHEN "CUST_CREDIT_LIMIT"<1500 THEN
NULL
 WHEN "CUST_CREDIT_LIMIT"<=2850 THEN '1' WHEN "CUST_CREDIT_LIMIT"<=4200 THEN
'2'
 WHEN "CUST_CREDIT_LIMIT"<=5550 THEN '3' WHEN "CUST_CREDIT_LIMIT"<=6900 THEN

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-261

'4'
 WHEN "CUST_CREDIT_LIMIT"<=8250 THEN '5' WHEN "CUST_CREDIT_LIMIT"<=9600 THEN
'6'
 WHEN "CUST_CREDIT_LIMIT"<=10950 THEN '7' WHEN "CUST_CREDIT_LIMIT"<=12300 THEN
'
8' WHEN "CUST_CREDIT_LIMIT"<=13650 THEN '9' WHEN "CUST_CREDIT_LIMIT"<=15000
THEN
 '10' END "CUST_CREDIT_LIMIT" FROM
mining_data

41.2.3.33 XFORM_CLIP Procedure
This procedure creates a view that implements the clipping transformations specified
in a definition table. Only the columns that are specified in the definition table are
transformed; the remaining columns from the data table are present in the view, but
they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_CLIP (
 clip_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 clip_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2,DEFAULT NULL,
 xform_schema_name IN VARCHAR2,DEFAULT NULL);

Parameters

Table 41-164 XFORM_CLIP Procedure Parameters

Parameter Description

clip_table_name Name of the transformation definition table for clipping. You can use
the CREATE_CLIP Procedure to create the definition table. The table
must be populated with transformation definitions before you call
XFORM_CLIP. To populate the table, you can use one of the INSERT
procedures for clipping you can write your own SQL.

See Table 41-129.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
clip_table_name.

clip_schema_name Schema of clip_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the current
schema is used.

Examples

This example creates a view that clips the cust_credit_limit column. The data
source consists of three columns from sh.customer.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-262

describe mining_data
 Name Null? Type
 ------------------------------ -------- -------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

BEGIN
 dbms_data_mining_transform.create_clip(
 clip_table_name => 'clip_tbl');
 dbms_data_mining_transform.insert_clip_trim_tail(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 tail_frac => 0.05,
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'));
 dbms_data_mining_transform.xform_clip(
 clip_table_name => 'clip_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'clip_view');
END;
/
describe clip_view
 Name Null? Type
 ----------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CREDIT_LIMIT NUMBER

SELECT MIN(cust_credit_limit), MAX(cust_credit_limit) FROM mining_data;

MIN(CUST_CREDIT_LIMIT) MAX(CUST_CREDIT_LIMIT)
---------------------- ----------------------
 1500 15000

SELECT MIN(cust_credit_limit), MAX(cust_credit_limit) FROM clip_view;

MIN(CUST_CREDIT_LIMIT) MAX(CUST_CREDIT_LIMIT)
---------------------- ----------------------
 1500 11000

set long 2000
SELECT text FROM user_views WHERE view_name IN 'CLIP_VIEW';

TEXT
--
SELECT "CUST_ID","CUST_POSTAL_CODE",CASE WHEN "CUST_CREDIT_LIMIT" < 1500 THEN NU
LL WHEN "CUST_CREDIT_LIMIT" > 11000 THEN NULL ELSE "CUST_CREDIT_LIMIT" END "CUST
_CREDIT_LIMIT" FROM mining_data

41.2.3.34 XFORM_COL_REM Procedure
This procedure creates a view that implements the column removal transformations
specified in a definition table. Only the columns that are specified in the definition table
are removed; the remaining columns from the data table are present in the view.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_COL_REM (
 rem_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-263

 xform_view_name IN VARCHAR2,
 rem_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-165 XFORM_COL_REM Procedure Parameters

Parameter Description

rem_table_name Name of the transformation definition table for column removal.
You can use the CREATE_COL_REM Procedure to create the
definition table. See Table 41-131.

The table must be populated with column names before you call
XFORM_COL_REM. The INSERT_BIN_SUPER Procedure and the
INSERT_AUTOBIN_NUM_EQWIDTH Procedure can optionally
be used to populate the table. You can also use SQL INSERT
statements.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents the
columns in data_table_name that are not specified in
rem_table_name.

rem_schema_name Schema of rem_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that includes all but one column from the table customers
in the current schema.

describe customers
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_COL_REM ('colrem_xtbl');
END;
 /
INSERT INTO colrem_xtbl VALUES('CUST_MARITAL_STATUS', null);

NOTE: This currently doesn't work. See bug 9310319

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-264

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_COL_REM (
 rem_table_name => 'colrem_xtbl',
 data_table_name => 'customers',
 xform_view_name => 'colrem_view');
END;
/
describe colrem_view

 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

41.2.3.35 XFORM_EXPR_NUM Procedure
This procedure creates a view that implements the specified numeric transformations.
Only the columns that you specify are transformed; the remaining columns from the
data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_NUM (
 expr_pattern IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 include_list IN COLUMN_LIST DEFAULT NULL,
 col_pattern IN VARCHAR2 DEFAULT ':col',
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-166 XFORM_EXPR_NUM Procedure Parameters

Parameter Description

expr_pattern A numeric transformation expression

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
expr_pattern and col_pattern.

exclude_list List of numerical columns to exclude. If NULL, no numerical
columns are excluded.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-265

Table 41-166 (Cont.) XFORM_EXPR_NUM Procedure Parameters

Parameter Description

include_list List of numeric columns to include. If NULL, all numeric columns
are included.

The format of include_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

col_pattern The value within expr_pattern that will be replaced with a
column name. The value of col_pattern is case-sensitive.

The default value of col_pattern is ':col'

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

1. The XFORM_EXPR_NUM procedure constructs numeric transformation expressions
from the specified expression pattern (expr_pattern) by replacing every
occurrence of the specified column pattern (col_pattern) with an actual column
name.

XFORM_EXPR_NUM uses the SQL REPLACE function to construct the transformation
expressions.

REPLACE (expr_pattern,col_pattern,'"column_name"') || '"column_name"'

If there is a column match, then the replacement is made in the transformation
expression; if there is not a match, then the column is used without transformation.

See:

Oracle Database SQL Language Reference for information about the
REPLACE function

2. Because of the include and exclude list parameters, the XFORM_EXPR_NUM and
XFORM_EXPR_STR procedures allow you to easily specify individual columns for
transformation within large data sets. The other XFORM_* procedures support an
exclude list only. In these procedures, you must enumerate every column that you
do not want to transform.

3. See "Operational Notes"

Examples

This example creates a view that transforms the datatype of numeric columns.

describe customers
 Name Null? Type
 ----------------------------------- -------- ------------------------

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-266

 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_NUM(
 expr_pattern => 'to_char(:col)',
 data_table_name => 'customers',
 xform_view_name => 'cust_nonum_view',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 include_list => null,
 col_pattern => ':col');
END;
/
describe cust_nonum_view
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE VARCHAR2(40)
 YRS_RESIDENCE VARCHAR2(40)

41.2.3.36 XFORM_EXPR_STR Procedure
This procedure creates a view that implements the specified categorical
transformations. Only the columns that you specify are transformed; the remaining
columns from the data table are present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_STR (
 expr_pattern IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 exclude_list IN COLUMN_LIST DEFAULT NULL,
 include_list IN COLUMN_LIST DEFAULT NULL,
 col_pattern IN VARCHAR2 DEFAULT ':col',
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-167 XFORM_EXPR_STR Procedure Parameters

Parameter Description

expr_pattern A character transformation expression

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
expr_pattern and col_pattern.

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-267

Table 41-167 (Cont.) XFORM_EXPR_STR Procedure Parameters

Parameter Description

exclude_list List of categorical columns to exclude. If NULL, no categorical
columns are excluded.

The format of exclude_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

include_list List of character columns to include. If NULL, all character columns
are included.

The format of include_list is:

dbms_data_mining_transform.COLUMN_LIST('col1','col2',
 ...'coln')

col_pattern The value within expr_pattern that will be replaced with a column
name. The value of col_pattern is case-sensitive.

The default value of col_pattern is ':col'

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

1. The XFORM_EXPR_STR procedure constructs character transformation expressions
from the specified expression pattern (expr_pattern) by replacing every
occurrence of the specified column pattern (col_pattern) with an actual column
name.

XFORM_EXPR_STR uses the SQL REPLACE function to construct the transformation
expressions.

REPLACE (expr_pattern,col_pattern,'"column_name"') || '"column_name"'

If there is a column match, then the replacement is made in the transformation
expression; if there is not a match, then the column is used without transformation.

See:

Oracle Database SQL Language Reference for information about the
REPLACE function

2. Because of the include and exclude list parameters, the XFORM_EXPR_STR and
XFORM_EXPR_NUM procedures allow you to easily specify individual columns for
transformation within large data sets. The other XFORM_* procedures support an
exclude list only. In these procedures, you must enumerate every column that you
do not want to transform.

3. See "Operational Notes"

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-268

Examples

This example creates a view that transforms character columns to upper case.

describe customers
 Name Null? Type
 ----------------------------------- -------- ------------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

SELECT cust_id, cust_marital_status, occupation FROM customers
 WHERE cust_id > 102995
 ORDER BY cust_id desc;

CUST_ID CUST_MARITAL_STATUS OCCUPATION
------- -------------------- ---------------------
 103000 Divorc. Cleric.
 102999 Married Cleric.
 102998 Married Exec.
 102997 Married Exec.
 102996 NeverM Other

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_EXPR_STR(
 expr_pattern => 'upper(:col)',
 data_table_name => 'customers',
 xform_view_name => 'cust_upcase_view');
END;
/
describe cust_upcase_view
 Name Null? Type
 ----------------------------- -------- --------------------
 CUST_ID NOT NULL NUMBER
 CUST_MARITAL_STATUS VARCHAR2(20)
 OCCUPATION VARCHAR2(21)
 AGE NUMBER
 YRS_RESIDENCE NUMBER

SELECT cust_id, cust_marital_status, occupation FROM cust_upcase_view
 WHERE cust_id > 102995
 ORDER BY cust_id desc;

CUST_ID CUST_MARITAL_STATUS OCCUPATION
------- -------------------- ---------------------
 103000 DIVORC. CLERIC.
 102999 MARRIED CLERIC.
 102998 MARRIED EXEC.
 102997 MARRIED EXEC.
 102996 NEVERM OTHER

41.2.3.37 XFORM_MISS_CAT Procedure
This procedure creates a view that implements the categorical missing value treatment
transformations specified in a definition table. Only the columns that are specified in

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-269

the definition table are transformed; the remaining columns from the data table are
present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_CAT (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL;

Parameters

Table 41-168 XFORM_MISS_CAT Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for categorical missing
value treatment. You can use the CREATE_MISS_CAT Procedure
to create the definition table. The table must be populated with
transformation definitions before you call XFORM_MISS_CAT. To
populate the table, you can use the INSERT_MISS_CAT_MODE
Procedure or you can write your own SQL.

See Table 41-133.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
miss_table_name.

miss_schema_name Schema of miss_table_name. If no schema is specified, the current
schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that replaces missing categorical values with the mode.

SELECT * FROM geog;

REG_ID REGION
------ ------------------------------
 1 NE
 2 SW
 3 SE
 4 SW
 5
 6 NE
 7 NW
 8 NW

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-270

 9
 10
 11 SE
 12 SE
 13 NW
 14 SE
 15 SE

SELECT STATS_MODE(region) FROM geog;

STATS_MODE(REGION)

SE

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_CAT('misscat_xtbl');
 DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_CAT_MODE (
 miss_table_name => 'misscat_xtbl',
 data_table_name => 'geog');
END;
/

SELECT col, val FROM misscat_xtbl;

COL VAL
---------- ----------
REGION SE

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_CAT (
 miss_table_name => 'misscat_xtbl',
 data_table_name => 'geog',
 xform_view_name => 'geogxf_view');
END;
/

SELECT * FROM geogxf_view;

REG_ID REGION
------ ------------------------------
 1 NE
 2 SW
 3 SE
 4 SW
 5 SE
 6 NE
 7 NW
 8 NW
 9 SE
 10 SE
 11 SE
 12 SE
 13 NW
 14 SE
 15 SE

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-271

41.2.3.38 XFORM_MISS_NUM Procedure
This procedure creates a view that implements the numerical missing value treatment
transformations specified in a definition table. Only the columns that are specified in
the definition table are transformed; the remaining columns from the data table are
present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_NUM (
 miss_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 miss_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL;

Parameters

Table 41-169 XFORM_MISS_NUM Procedure Parameters

Parameter Description

miss_table_name Name of the transformation definition table for numerical missing
value treatment. You can use the CREATE_MISS_NUM Procedure
to create the definition table. The table must be populated with
transformation definitions before you call XFORM_MISS_NUM. To
populate the table, you can use the INSERT_MISS_NUM_MEAN
Procedure or you can write your own SQL.

See Table 41-135.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
miss_table_name.

miss_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that replaces missing numerical values with the mean.

SELECT * FROM items;

ITEM_ID QTY
---------- ------
aa 200
bb 200

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-272

cc 250
dd
ee
ff 100
gg 250
hh 200
ii
jj 200

SELECT AVG(qty) FROM items;

AVG(QTY)

 200

BEGIN
 DBMS_DATA_MINING_TRANSFORM.CREATE_MISS_NUM('missnum_xtbl');
 DBMS_DATA_MINING_TRANSFORM.INSERT_MISS_NUM_MEAN (
 miss_table_name => 'missnum_xtbl',
 data_table_name => 'items');
END;
/

SELECT col, val FROM missnum_xtbl;

COL VAL
---------- ------
QTY 200

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_MISS_NUM (
 miss_table_name => 'missnum_xtbl',
 data_table_name => 'items',
 xform_view_name => 'items_view');
END;
/

SELECT * FROM items_view;

ITEM_ID QTY
---------- ------
aa 200
bb 200
cc 250
dd 200
ee 200
ff 100
gg 250
hh 200
ii 200
jj 200

41.2.3.39 XFORM_NORM_LIN Procedure
This procedure creates a view that implements the linear normalization
transformations specified in a definition table. Only the columns that are specified

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-273

in the definition table are transformed; the remaining columns from the data table are
present in the view, but they are not changed.

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name IN VARCHAR2,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 norm_schema_name IN VARCHAR2 DEFAULT NULL,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-170 XFORM_NORM_LIN Procedure Parameters

Parameter Description

norm_table_name Name of the transformation definition table for linear normalization.
You can use the CREATE_NORM_LIN Procedure to create the
definition table. The table must be populated with transformation
definitions before you call XFORM_NORM_LIN. To populate the table,
you can use one of the INSERT procedures for normalization or you
can write your own SQL.

See Table 41-133.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view presents columns
in data_table_name with the transformations specified in
miss_table_name.

norm_schema_name Schema of miss_table_name. If no schema is specified, the
current schema is used.

data_schema_name Schema of data_table_name. If no schema is specified, the
current schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the
current schema is used.

Usage Notes

See "Operational Notes".

Examples

This example creates a view that normalizes the cust_year_of_birth and
cust_credit_limit columns. The data source consists of three columns from
sh.customer.

CREATE OR REPLACE VIEW mining_data AS
 SELECT cust_id, cust_year_of_birth, cust_credit_limit
 FROM sh.customers;

describe mining_data
 Name Null? Type
 -------------------------------------- -------- --------------------------
 CUST_ID NOT NULL NUMBER
 CUST_YEAR_OF_BIRTH NOT NULL NUMBER(4)
 CUST_CREDIT_LIMIT NUMBER

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-274

SELECT * FROM mining_data WHERE cust_id > 104495
 ORDER BY cust_year_of_birth;

 CUST_ID CUST_YEAR_OF_BIRTH CUST_CREDIT_LIMIT
-------- ------------------ -----------------
 104496 1947 3000
 104498 1954 10000
 104500 1962 15000
 104499 1970 3000
 104497 1976 3000

BEGIN
 dbms_data_mining_transform.CREATE_NORM_LIN(
 norm_table_name => 'normx_tbl');
 dbms_data_mining_transform.INSERT_NORM_LIN_MINMAX(
 norm_table_name => 'normx_tbl',
 data_table_name => 'mining_data',
 exclude_list => dbms_data_mining_transform.COLUMN_LIST('cust_id'),
 round_num => 3);
END;
/

SELECT col, shift, scale FROM normx_tbl;

COL SHIFT SCALE
------------------------------ -------- --------
CUST_YEAR_OF_BIRTH 1910 77
CUST_CREDIT_LIMIT 1500 13500

BEGIN
 DBMS_DATA_MINING_TRANSFORM.XFORM_NORM_LIN (
 norm_table_name => 'normx_tbl',
 data_table_name => 'mining_data',
 xform_view_name => 'norm_view');
END;
/

SELECT * FROM norm_view WHERE cust_id > 104495
 ORDER BY cust_year_of_birth;

 CUST_ID CUST_YEAR_OF_BIRTH CUST_CREDIT_LIMIT
-------- ------------------ -----------------
 104496 .4805195 .1111111
 104498 .5714286 .6296296
 104500 .6753247 1
 104499 .7792208 .1111111
 104497 .8571429 .1111111

set long 2000
SQL> SELECT text FROM user_views WHERE view_name IN 'NORM_VIEW';

TEXT

SELECT "CUST_ID",("CUST_YEAR_OF_BIRTH"-1910)/77 "CUST_YEAR_OF_BIRTH",("CUST
_CREDIT_LIMIT"-1500)/13500 "CUST_CREDIT_LIMIT" FROM mining_data

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-275

41.2.3.40 XFORM_STACK Procedure
This procedure creates a view that implements the transformations specified by the
stack. Only the columns and nested attributes that are specified in the stack are
transformed. Any remaining columns and nested attributes from the data table appear
in the view without changes.

To create a list of objects that describe the transformed columns, use the
DESCRIBE_STACK Procedure.

See Also:

"Overview"

Oracle Machine Learning for SQL User’s Guide for more information about
machine learning attributes

Syntax

DBMS_DATA_MINING_TRANSFORM.XFORM_STACK (
 xform_list IN TRANSFORM_list,
 data_table_name IN VARCHAR2,
 xform_view_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL,
 xform_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-171 XFORM_STACK Procedure Parameters

Parameter Description

xform_list The transformation list. See Table 41-122 for a description of the
TRANSFORM_LIST object type.

data_table_name Name of the table containing the data to be transformed

xform_view_name Name of the view to be created. The view applies the transformations
in xform_list to data_table_name.

data_schema_name Schema of data_table_name. If no schema is specified, the current
schema is used.

xform_schema_name Schema of xform_view_name. If no schema is specified, the current
schema is used.

Usage Notes

See "Operational Notes". The following sections are especially relevant:

• "About Transformation Lists"

• "About Stacking"

• "Nested Data Transformations"

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-276

Examples

This example applies a transformation list to the view oml_user.cust_info and
shows how the data is transformed. The CREATE statement for cust_info is shown
in "DESCRIBE_STACK Procedure".

BEGIN
 dbms_data_mining_transform.CREATE_BIN_NUM ('birth_yr_bins');
 dbms_data_mining_transform.INSERT_BIN_NUM_QTILE (
 bin_table_name => 'birth_yr_bins',
 data_table_name => 'cust_info',
 bin_num => 6,
 exclude_list => dbms_data_mining_transform.column_list(
 'cust_id','country_id'));
END;
/
SELECT * FROM birth_yr_bins;

COL ATT VAL BIN
-------------------- ----- ------ ----------
CUST_YEAR_OF_BIRTH 1922
CUST_YEAR_OF_BIRTH 1951 1
CUST_YEAR_OF_BIRTH 1959 2
CUST_YEAR_OF_BIRTH 1966 3
CUST_YEAR_OF_BIRTH 1973 4
CUST_YEAR_OF_BIRTH 1979 5
CUST_YEAR_OF_BIRTH 1986 6

DECLARE
 cust_stack dbms_data_mining_transform.TRANSFORM_LIST;
BEGIN
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'country_id', NULL, 'country_id/10', 'country_id*10');
 dbms_data_mining_transform.STACK_BIN_NUM ('birth_yr_bins',
 cust_stack);
 dbms_data_mining_transform.SET_TRANSFORM (cust_stack,
 'custprods', 'Mouse Pad', 'value*100', 'value/100');
 dbms_data_mining_transform.XFORM_STACK(
 xform_list => cust_stack,
 data_table_name => 'cust_info',
 xform_view_name => 'cust_xform_view');
 END;
/

-- Two rows of data without transformations
SELECT * from cust_info WHERE cust_id BETWEEN 100010 AND 100011;

CUST_ID COUNTRY_ID CUST_YEAR_OF_BIRTH CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- ------------------ ---
 100010 52790 1975 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1))
 100011 52775 1972 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 'External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL(
 'Mouse Pad', 1),
 DM_NESTED_NUMERICAL(

Chapter 41
DBMS_DATA_MINING_TRANSFORM

41-277

 'SIMM- 16MB PCMCIAII card', 1),
 DM_NESTED_NUMERICAL(
 'Keyboard Wrist Rest', 1),
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'O/S Documentation Set - English', 1))

-- Same two rows of data with transformations
SELECT * FROM cust_xform_view WHERE cust_id BETWEEN 100010 AND 100011;

CUST_ID COUNTRY_ID C CUSTPRODS(ATTRIBUTE_NAME, VALUE)
------- ---------- - --
 100010 5279 5 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1))
 100011 5277.5 4 DM_NESTED_NUMERICALS(
 DM_NESTED_NUMERICAL(
 'External 8X CD-ROM', 1),
 DM_NESTED_NUMERICAL(
 'Mouse Pad', 100),
 DM_NESTED_NUMERICAL(
 'SIMM- 16MB PCMCIAII card', 1),
 DM_NESTED_NUMERICAL(
 'Keyboard Wrist Rest', 1),
 DM_NESTED_NUMERICAL(
 '18" Flat Panel Graphics Monitor', 1),
 DM_NESTED_NUMERICAL(
 'O/S Documentation Set - English', 1))

41.3 DBMS_PREDICTIVE_ANALYTICS
Machine learning can discover useful information buried in vast amounts of data.
However, both the programming interfaces and the machine learning expertise
required to obtain these results are too complex for use by the wide audiences that
can obtain benefits from using Oracle Machine Learning for SQL.

The DBMS_PREDICTIVE_ANALYTICS package addresses both of these complexities by
automating the entire machine learning process from data preprocessing through
model building to scoring new data. This package provides an important tool that
makes machine learning possible for a broad audience of users, in particular, business
analysts.

This chapter contains the following topics:

• Overview

• Security Model

• Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms

41.3.1 Using DBMS_PREDICTIVE_ANALYTICS
This section contains topics that relate to using the DBMS_PREDICTIVE_ANALYTICS
package.

• Overview

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-278

• Security Model

41.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview
DBMS_PREDICTIVE_ANALYTICS automates parts of the machine learning process.

Machine learning, according to a commonly used process model, requires the
following steps:

1. Understand the business problem.

2. Understand the data.

3. Prepare the data for mining.

4. Create models using the prepared data.

5. Evaluate the models.

6. Deploy and use the model to score new data.

DBMS_PREDICTIVE_ANALYTICS automates parts of step 3 — 5 of this process.

Predictive analytics procedures analyze and prepare the input data, create and test
machine learning models using the input data, and then use the input data for scoring.
The results of scoring are returned to the user. The models and supporting objects are
not preserved after the operation completes.

41.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model
The DBMS_PREDICTIVE_ANALYTICS package is owned by user SYS and is installed as
part of database installation. Execution privilege on the package is granted to public.
The routines in the package are run with invokers' rights (run with the privileges of the
current user).

The DBMS_PREDICTIVE_ANALYTICS package exposes APIs which are leveraged by the
Oracle Machine Learning for SQL option. Users who wish to invoke procedures in this
package require the CREATE MINING MODEL system privilege (as well as the CREATE
TABLE and CREATE VIEW system privilege).

41.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
This table lists and briefly describes the DBMS_PREDICTIVE_ANALYTICS package
subprograms.

Table 41-172 DBMS_PREDICTIVE_ANALYTICS Package Subprograms

Subprogram Purpose

EXPLAIN Procedure Ranks attributes in order of influence in explaining a target
column.

PREDICT Procedure Predicts the value of a target column based on values in the
input data.

PROFILE Procedure Generates rules that identify the records that have the same
target value.

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-279

41.3.2.1 EXPLAIN Procedure
The EXPLAIN procedure identifies the attributes that are important in explaining the
variation in values of a target column.

The input data must contain some records where the target value is known (not NULL).
These records are used by the procedure to train a model that calculates the attribute
importance.

Note:

EXPLAIN supports DATE and TIMESTAMP datatypes in addition to the numeric,
character, and nested datatypes supported by Oracle Machine Learning for
SQL models.

Data requirements for Oracle Machine Learning for SQL are described in
Oracle Machine Learning for SQL User’s Guide

The EXPLAIN procedure creates a result table that lists the attributes in order of their
explanatory power. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.EXPLAIN (
 data_table_name IN VARCHAR2,
 explain_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-173 EXPLAIN Procedure Parameters

Parameter Description

data_table_name Name of input table or view

explain_column_name Name of the column to be explained

result_table_name Name of the table where results are saved

data_schema_name Name of the schema where the input table or view resides and
where the result table is created. Default: the current schema.

Usage Notes

The EXPLAIN procedure creates a result table with the columns described in
Table 41-174.

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-280

Table 41-174 EXPLAIN Procedure Result Table

Column Name Datatype Description

ATTRIBUTE_NAME VARCHAR2(30) Name of a column in the input data; all columns except the explained
column are listed in the result table.

EXPLANATORY_VALUE NUMBER Value indicating how useful the column is for determining the value
of the explained column. Higher values indicate greater explanatory
power. Value can range from 0 to 1.

An individual column's explanatory value is independent of other
columns in the input table. The values are based on how strong each
individual column correlates with the explained column. The value is
affected by the number of records in the input table, and the relations
of the values of the column to the values of the explain column.

An explanatory power value of 0 implies there is no useful correlation
between the column's values and the explain column's values. An
explanatory power of 1 implies perfect correlation; such columns
should be eliminated from consideration for PREDICT. In practice, an
explanatory power equal to 1 is rarely returned.

RANK NUMBER Ranking of explanatory power. Rows with equal values for
explanatory_value have the same rank. Rank values are not
skipped in the event of ties.

Example

The following example performs an EXPLAIN operation on the
SUPPLEMENTARY_DEMOGRAPHICS table of Sales History.

--Perform EXPLAIN operation
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
 data_table_name => 'supplementary_demographics',
 explain_column_name => 'home_theater_package',
 result_table_name => 'demographics_explain_result');
END;
/
--Display results
SELECT * FROM demographics_explain_result;

ATTRIBUTE_NAME EXPLANATORY_VALUE RANK
-- ----------------- ----------
Y_BOX_GAMES .524311073 1
YRS_RESIDENCE .495987246 2
HOUSEHOLD_SIZE .146208506 3
AFFINITY_CARD .0598227 4
EDUCATION .018462703 5
OCCUPATION .009721543 6
FLAT_PANEL_MONITOR .00013733 7
PRINTER_SUPPLIES 0 8
OS_DOC_SET_KANJI 0 8
BULK_PACK_DISKETTES 0 8
BOOKKEEPING_APPLICATION 0 8
COMMENTS 0 8
CUST_ID 0 8

The results show that Y_BOX_GAMES, YRS_RESIDENCE, and HOUSEHOLD_SIZE are the best
predictors of HOME_THEATER_PACKAGE.

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-281

41.3.2.2 PREDICT Procedure
The PREDICT procedure predicts the values of a target column.

The input data must contain some records where the target value is known (not NULL).
These records are used by the procedure to train and test a model that makes the
predictions.

Note:

PREDICT supports DATE and TIMESTAMP datatypes in addition to the numeric,
character, and nested datatypes supported by Oracle Machine Learning for
SQL models.

Data requirements for OML4SQL are described in Oracle Machine Learning
for SQL User’s Guide

The PREDICT procedure creates a result table that contains a predicted target value for
every record. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.PREDICT (
 accuracy OUT NUMBER,
 data_table_name IN VARCHAR2,
 case_id_column_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-175 PREDICT Procedure Parameters

Parameter Description

accuracy Output parameter that returns the predictive confidence, a
measure of the accuracy of the predicted values. The predictive
confidence for a categorical target is the most common target
value; the predictive confidence for a numerical target is the
mean.

data_table_name Name of the input table or view.

case_id_column_name Name of the column that uniquely identifies each case (record)
in the input data.

target_column_name Name of the column to predict.

result_table_name Name of the table where results will be saved.

data_schema_name Name of the schema where the input table or view resides and
where the result table is created. Default: the current schema.

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-282

Usage Notes

The PREDICT procedure creates a result table with the columns described in
Table 41-176.

Table 41-176 PREDICT Procedure Result Table

Column Name Datatype Description

Case ID column name VARCHAR2 or
NUMBER

The name of the case ID column in the input data.

PREDICTION VARCHAR2 or
NUMBER

The predicted value of the target column for the given
case.

PROBABILITY NUMBER For classification (categorical target), the probability
of the prediction. For regression problems (numerical
target), this column contains NULL.

Note:

Make sure that the name of the case ID column is not 'PREDICTION' or
'PROBABILITY'.

Predictions are returned for all cases whether or not they contained target values in
the input.

Predicted values for known cases may be interesting in some situations. For example,
you could perform deviation analysis to compare predicted values and actual values.

Example

The following example performs a PREDICT operation and displays the first 10
predictions. The results show an accuracy of 79% in predicting whether each customer
has an affinity card.

--Perform PREDICT operation
DECLARE
 v_accuracy NUMBER(10,9);
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.PREDICT(
 accuracy => v_accuracy,
 data_table_name => 'supplementary_demographics',
 case_id_column_name => 'cust_id',
 target_column_name => 'affinity_card',
 result_table_name => 'pa_demographics_predict_result');
 DBMS_OUTPUT.PUT_LINE('Accuracy = ' || v_accuracy);
END;
/

Accuracy = .788696903

--Display results
SELECT * FROM pa_demographics_predict_result WHERE rownum < 10;

 CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-283

 101501 1 .834069848
 101502 0 .991269965
 101503 0 .99978311
 101504 1 .971643388
 101505 1 .541754127
 101506 0 .803719133
 101507 0 .999999303
 101508 0 .999999987
 101509 0 .999953074

41.3.2.3 PROFILE Procedure
The PROFILE procedure generates rules that describe the cases (records) from the
input data.

For example, if a target column CHURN has values 'Yes' and 'No', PROFILE generates
a set of rules describing the expected outcomes. Each profile includes a rule, record
count, and a score distribution.

The input data must contain some cases where the target value is known (not NULL).
These cases are used by the procedure to build a model that calculates the rules.

Note:

PROFILE does not support nested types or dates.

Data requirements for Oracle Machine Learning for SQL are described in
Oracle Machine Learning for SQL User’s Guide

The PROFILE procedure creates a result table that specifies rules (profiles) and their
corresponding target values. The result table is described in the Usage Notes.

Syntax

DBMS_PREDICTIVE_ANALYTICS.PROFILE (
 data_table_name IN VARCHAR2,
 target_column_name IN VARCHAR2,
 result_table_name IN VARCHAR2,
 data_schema_name IN VARCHAR2 DEFAULT NULL);

Parameters

Table 41-177 PROFILE Procedure Parameters

Parameter Description

data_table_name Name of the table containing the data to be analyzed.

target_column_name Name of the target column.

result_table_name Name of the table where the results will be saved.

data_schema_name Name of the schema where the input table or view resides
and where the result table is created. Default: the current
schema.

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-284

Usage Notes

The PROFILE procedure creates a result table with the columns described in
Table 41-178.

Table 41-178 PROFILE Procedure Result Table

Column Name Datatype Description

PROFILE_ID NUMBER A unique identifier for this profile (rule).

RECORD_COUNT NUMBER The number of records described by the profile.

DESCRIPTION SYS.XMLTYPE The profile rule. See "XML Schema for Profile Rules".

XML Schema for Profile Rules

The DESCRIPTION column of the result table contains XML that conforms to the
following XSD:

<xs:element name="SimpleRule">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="PREDICATE"/>
 <xs:element ref="ScoreDistribution" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="optional"/>
 <xs:attribute name="score" type="xs:string" use="required"/>
 <xs:attribute name="recordCount" type="NUMBER" use="optional"/>
 </xs:complexType>
</xs:element>

Example

This example generates a rule describing customers who are likely to use an affinity
card (target value is 1) and a set of rules describing customers who are not likely to
use an affinity card (target value is 0). The rules are based on only two predictors:
education and occupation.

SET serveroutput ON
SET trimspool ON
SET pages 10000
SET long 10000
SET pagesize 10000
SET linesize 150
CREATE VIEW cust_edu_occ_view AS
 SELECT cust_id, education, occupation, affinity_card
 FROM sh.supplementary_demographics;
BEGIN
 DBMS_PREDICTIVE_ANALYTICS.PROFILE(
 DATA_TABLE_NAME => 'cust_edu_occ_view',
 TARGET_COLUMN_NAME => 'affinity_card',
 RESULT_TABLE_NAME => 'profile_result');
END;
/

This example generates eight rules in the result table profile_result. Seven of the
rules suggest a target value of 0; one rule suggests a target value of 1. The score
attribute on a rule identifies the target value.

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-285

This SELECT statement returns all the rules in the result table.

SELECT a.profile_id, a.record_count, a.description.getstringval()
 FROM profile_result a;

This SELECT statement returns the rules for a target value of 0.

SELECT *
 FROM profile_result t
 WHERE extractvalue(t.description, '/SimpleRule/@score') = 0;

The eight rules generated by this example are displayed as follows.

<SimpleRule id="1" score="0" recordCount="443">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"< Bach." "Assoc-V" "HS-grad"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="297" />
 <ScoreDistribution value="1" recordCount="146" />
</SimpleRule>

<SimpleRule id="2" score="0" recordCount="18">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "Presch."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="18" />
</SimpleRule>

<SimpleRule id="3" score="0" recordCount="458">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="248" />
 <ScoreDistribution value="1" recordCount="210" />
</SimpleRule>

<SimpleRule id="4" score="1" recordCount="276">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
 </Array>

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-286

 </SimpleSetPredicate>
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="1" recordCount="183" />
 <ScoreDistribution value="0" recordCount="93" />
</SimpleRule>

<SimpleRule id="5" score="0" recordCount="307">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Crafts" "Sales" "TechSup" "Transp."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="184" />
 <ScoreDistribution value="1" recordCount="123" />
</SimpleRule>

<SimpleRule id="6" score="0" recordCount="243">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"?" "Cleric." "Farming" "Handler" "House-s" "Machine" "Other"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="197" />
 <ScoreDistribution value="1" recordCount="46" />
</SimpleRule>

<SimpleRule id="7" score="0" recordCount="2158">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
 <Array type="string">
 "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
 "Presch."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"?" "Cleric." "Crafts" "Farming" "Machine" "Sales" "TechSup" "
Transp."
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
 <ScoreDistribution value="0" recordCount="1819"/>
 <ScoreDistribution value="1" recordCount="339"/>
</SimpleRule>

<SimpleRule id="8" score="0" recordCount="597">
 <CompoundPredicate booleanOperator="and">
 <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-287

 <Array type="string">
 "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
 "Presch."
 </Array>
 </SimpleSetPredicate>
 <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
 <Array type="string">"Handler" "House-s" "Other"
 </Array>
 </SimpleSetPredicate>
 </CompoundPredicate>
<ScoreDistribution value="0" recordCount="572"/>
<ScoreDistribution value="1" recordCount="25"/>
</SimpleRule>

Chapter 41
DBMS_PREDICTIVE_ANALYTICS

41-288

42
Data Dictionary Views

The information in the data dictionary tables can be viewed through data dictionary
views. The Oracle Machine Learning for SQL related dictionary views are listed in this
chapter.

• ALL_MINING_MODELS

• ALL_MINING_MODEL_ATTRIBUTES

• ALL_MINING_MODEL_PARTITIONS

• ALL_MINING_MODEL_SETTINGS

• ALL_MINING_MODEL_VIEWS

• ALL_MINING_MODEL_XFORMS

42.1 ALL_MINING_MODELS
ALL_MINING_MODELS describes the machine learning models accessible to the current
user.

Mining models are schema objects created by Oracle Machine Learning for SQL.

Related Views

• DBA_MINING_MODELS describes all machine learning models in the database.

• USER_MINING_MODELS describes the machine learning models owned by the current
user. This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the machine learning model

MODEL_NAME VARCHAR2(128) NOT NULL Name of the machine learning model

MINING_FUNCTION VARCHAR2(30) NOT NULL Function of the mining model. The function
identifies the class of problems that can be solved
by this model. The machine learning function is
specified when the model is built:

• CLASSIFICATION

• REGRESSION

• CLUSTERING

• FEATURE_EXTRACTION

• ASSOCIATION_RULES

• ATTRIBUTE_IMPORTANCE

42-1

Column Datatype NULL Description

ALGORITHM VARCHAR2(30) NOT NULL Algorithm used by the model. Each machine
learning function has a default algorithm. The
default can be overridden with a model setting
(see *_MINING_MODEL_SETTINGS):

• CUR_DECOMPOSITION

• NAIVE_BAYES

• DECISION_TREE

• EXPLICIT_SEMANTIC_ANALYS

• EXPONENTIAL_ SMOOTHING

• SUPPORT_VECTOR_MACHINES

• KMEANS

• O_CLUSTER

• NONNEGATIVE_MATRIX_FACTOR

• NEURAL_NETWORK

• GENERALIZED_LINEAR_MODEL

• APRIORI_ASSOCIATION_RULES

• MINIMUM_DESCRIPTION_LENGTH

• EXPECTATION_MAXIMIZATION

• RANDOM_FOREST

• SINGULAR_VALUE_DECOMP

• R_EXTENSIBLE

ALGORITHM_TYPE VARCHAR2(10) NOT NULL Algorithm type of the model

CREATION_DATE DATE NOT NULL Date that the model was created

BUILD_DURATION NUMBER NOT NULL Time (in seconds) of the model build process

MODEL_SIZE NUMBER NOT NULL Size of the model (in megabytes)

PARTITIONED VARCHAR2(3) NOT NULL Indicates whether the model is partitioned or not.
Possible values:

• YES: The model is partitioned.
• NO: The model is not partitioned

COMMENTS VARCHAR2(4000) NOT NULL Comment applied to the model with a SQL
COMMENT statement

Related Topics

• DBA_MINING_MODEL

• USER_MINING_MODELS

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
machine learning model schema objects

• Oracle Machine Learning for SQL Concepts for an introduction to Oracle
Machine Learning for SQL

Chapter 42
ALL_MINING_MODELS

42-2

42.2 ALL_MINING_MODEL_ATTRIBUTES
ALL_MINING_MODEL_ATTRIBUTES describes the attributes of the machine learning
models accessible to the current user.

Only the attributes in the model signature are included in this view. The attributes in
the model signature correspond to the columns in the training data that were used to
build the model.

Machine learning models are schema objects created by Oracle Machine Learning for
SQL.

Related Views

• DBA_MINING_MODEL_ATTRIBUTES describes the attributes of all machine learning
models in the database.

• USER_MINING_MODEL_ATTRIBUTES describes the attributes of the machine learning
models owned by the current user. This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the machine learning model

MODEL_NAME VARCHAR2(128) NOT NULL Name of the machine learning model

ATTRIBUTE_NAME VARCHAR2(128) NOT NULL Name of the attribute

ATTRIBUTE_TYPE VARCHAR2(11) – Logical type of the attribute. The type is identified
during the model build or apply process:

• NUMERICAL: Numeric data
• CATEGORICAL: Character data
• TEXT: Unstructured text data
• PARTITION: The input signature column is

used for the partitioning key
• MIXED: The input signature column takes on

more than one attribute type.

This is due to user-defined embedded
transformations that allow an input column
to be transformed into multiple independent
mining attributes, including mining attributes
of different types.

DATA_TYPE VARCHAR2(106) – Data type of the attribute

DATA_LENGTH NUMBER – Length of the data type

DATA_PRECISION NUMBER – Precision of a fixed point number. Precision, which
is the total number of significant decimal digits, is
represented as p in the data type NUMBER(p,s).

DATA_SCALE NUMBER – Scale of a fixed point number. Scale, which is
the number of digits from the decimal to the least
significant digit, is represented as s in the data
type NUMBER(p,s).

Chapter 42
ALL_MINING_MODEL_ATTRIBUTES

42-3

Column Datatype NULL Description

USAGE_TYPE VARCHAR2(8) – Indicates whether the attribute was used
to construct the model (ACTIVE) or not
(INACTIVE). Some attributes may be eliminated
by transformations or algorithmic processing. The
*_MINING_MODEL_ATTRIBUTES view only lists the
attributes used by the model, therefore the value
of this column is always ACTIVE.

TARGET VARCHAR2(3) – Indicates whether the attribute is the target of
a predictive model (YES) or not (NO). The target
describes the result that is produced when the
model is applied.

ATTRIBUTE_SPEC VARCHAR2(4000) – One or more keywords that identify special
treatment for the attribute during model build.
Values are:

• FORCE_IN: (GLM only) When feature selection
is enabled, forces the inclusion of the attribute
in the model build. Feature selection is
disabled by default. If the model is not using
GLM with feature selection enabled, this value
is ignored.

• NOPREP: When ADP is on, prevents automatic
transformation of the attribute. If ADP is OFF,
this value is ignored.

• TEXT: Causes the attribute to be
treated as unstructured text data. The
TEXT value supports three subsettings:
POLICY_NAME, MAX_FEATURES, TOKEN_TYPE, and
MIN_DOCUMENTS. Subsettings are specified
as name:value pairs within parentheses.
For example: (POLICY_NAME:mypolicy)
(MAX_FEATURES:2000)(TOKEN_TYPE:THEME).
See Oracle Machine Learning for SQL User’s
Guide for details.

• NULL: The ATTRIBUTE_SPEC for this attribute is
NULL.

ATTRIBUTE_SPEC is a parameter to the PL/SQL
procedure
DBMS_DATA_MINING_TRANSFORM.SET_TRANSFOR
M. See Oracle Database PL/SQL Packages
and Types Reference for details.

Related Topics

• DBA_MINING_MODEL_ATTRIBUTES

• USER_MINING_MODEL_ATTRIBUTES

See Also:

Oracle Machine Learning for SQL User’s Guide

Chapter 42
ALL_MINING_MODEL_ATTRIBUTES

42-4

42.3 ALL_MINING_MODEL_PARTITIONS
ALL_MINING_MODEL_PARTITIONS describes all the model partitions accessible to the
user.

Related Views

• DBA_MINING_MODEL_PARTITIONS describes all the model partitions accessible to the
system.

• USER_MINING_MODEL_PARTITIONS describes the user's own model partitions. This
view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Name of the model owner

MODEL_NAME VARCHAR2(128) NOT NULL Name of the model

PARTITION_NAME VARCHAR2(128) – Name of the model partition

POSITION NUMBER – Column position number for partitioning column.
Column position represents the position of the
column in a multi-column partitioning key, or 1 for
a unary column partitioning key.

COLUMN_NAME VARCHAR2(128) NOT NULL Name of the column used for partitioning

COLUMN_VALUE VARCHAR2(4000) – Value of the column for this partition

Related Topics

• DBA_MINING_MODEL_PARTITIONS

• USER_MINING_MODEL_PARTITIONS

42.4 ALL_MINING_MODEL_SETTINGS
ALL_MINING_MODEL_SETTINGS describes the settings of the machine learning models
accessible to the current user.

Machine learning models are schema objects created by Oracle Machine Learning for
SQL.

Related Views

• DBA_MINING_MODEL_SETTINGS describes the settings of all machine learning
models in the database.

• USER_MINING_MODEL_SETTINGS describes the settings of the machine learning
models owned by the current user. This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the machine learning model

MODEL_NAME VARCHAR2(128) NOT NULL Name of the machine learning model

SETTING_NAME VARCHAR2(30) NOT NULL Name of the setting

Chapter 42
ALL_MINING_MODEL_PARTITIONS

42-5

Column Datatype NULL Description

SETTING_VALUE VARCHAR2(4000) – Value of the setting

SETTING_TYPE VARCHAR2(7) – Indicates whether the default value (DEFAULT) or a
user-specified value (INPUT) is used by the model

Related Topics

• DBA_MINING_MODEL_SETTINGS

• USER_MINING_MODEL_SETTINGS

See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of
model settings

42.5 ALL_MINING_MODEL_VIEWS
ALL_MINING_MODEL_VIEWS provides a description of all the model views accessible to
the user.

Related Views

• DBA_MINING_MODEL_VIEWS provides a description of all the model views in the
database.

• USER_MINING_MODEL_VIEWS provides a description of the user's own model views.
This view does not display the OWNER column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Owner of the model view

MODEL_NAME VARCHAR2(128) NOT NULL Name of the model to which model views belongs

VIEW_NAME VARCHAR2(128) NOT NULL Name of the model view

VIEW_TYPE VARCHAR2(128) – Type of the model view

Related Topics

• DBA_MINING_MODEL_VIEWS

• USER_MINING_MODEL_VIEWS

See Also:

"USER_MINING_MODEL_VIEWS" in Oracle Machine Learning for SQL
User’s Guide

Chapter 42
ALL_MINING_MODEL_VIEWS

42-6

42.6 ALL_MINING_MODEL_XFORMS
ALL_MINING_MODEL_XFORMS describes the user-specified transformations embedded in
all models accessible to the user.

Related Views

• DBA_MINING_MODEL_XFORMS describes the user-specified transformations
embedded in all models accessible in the system.

• USER_MINING_MODEL_XFORMS describes the user-specified transformations
embedded with the user's own models. This view does not display the OWNER
column.

Column Datatype NULL Description

OWNER VARCHAR2(128) NOT NULL Name of the model owner

MODEL_NAME VARCHAR2(128) NOT NULL Name of the model

ATTRIBUTE_NAME VARCHAR2(128) Name of the attribute used in the transformation

ATTRIBUTE_SUBNAME VARCHAR2(4000) Subname of the attribute used in the
transformation

ATTRIBUTE_SPEC VARCHAR2(4000) Attribute specification provided to model training

EXPRESSION CLOB Transformation expression provided to model
training

REVERSE VARCHAR2(3) Indicates whether the specified transformation
is a reverse transformation (YES) or a forward
expression (NO)

Related Topics

• DBA_MINING_MODEL_XFORMS

• USER_MINING_MODEL_XFORMS

Chapter 42
ALL_MINING_MODEL_XFORMS

42-7

43
SQL Scoring Functions

Oracle Machine Learning for SQL functions are single-row functions that use
OML4SQL to score data. The functions can apply a mining model schema object to
the data, or they can dynamically mine the data by executing an analytic clause.

Note:

For a description of the syntax diagrams for these functions, see How to
Read Syntax Diagrams in Oracle Database SQL Language Reference

• CLUSTER_DETAILS

• CLUSTER_DISTANCE

• CLUSTER_ID

• CLUSTER_PROBABILITY

• CLUSTER_SET

• FEATURE_COMPARE

• FEATURE_DETAILS

• FEATURE_ID

• FEATURE_SET

• FEATURE_VALUE

• ORA_DM_PARTITION_NAME

• PREDICTION

• PREDICTION_BOUNDS

• PREDICTION_COST

• PREDICTION_DETAILS

• PREDICTION_PROBABILITY

• PREDICTION_SET

43-1

43.1 CLUSTER_DETAILS
Syntax

cluster_details::=

CLUSTER_DETAILS (

schema .

model

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

cluster_details_analytic::=

CLUSTER_DETAILS (INTO n

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 43
CLUSTER_DETAILS

43-2

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_DETAILS returns cluster details for each row in the selection. The return value
is an XML string that describes the attributes of the highest probability cluster or the
specified cluster_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence
the cluster assignment (the score). If you do not specify topN, the function returns the
5 most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses
its positive or negative impact on cluster assignment. A positive weight indicates an
increased likelihood of assignment. A negative weight indicates a decreased likelihood
of assignment.

By default, CLUSTER_DETAILS returns the attributes with the highest positive weights
(DESC). If you specify ASC, the attributes with the highest negative weights are returned.
If you specify ABS, the attributes with the greatest weights, whether negative or
positive, are returned. The results are ordered by absolute value from highest to
lowest. Attributes with a zero weight are not included in the output.

Syntax Choice

CLUSTER_DETAILS can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_DETAILS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

Chapter 43
CLUSTER_DETAILS

43-3

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the attributes that have the greatest impact (more that 20%
probability) on cluster assignment for customer ID 100955. The query invokes
the CLUSTER_DETAILS and CLUSTER_SET functions, which apply the clustering model
em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- -----

 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1"
weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

Chapter 43
CLUSTER_DETAILS

43-4

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score
without a predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
weight=".291"
 rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".009"
 rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

43.2 CLUSTER_DISTANCE
Syntax

cluster_distance::=

CLUSTER_DISTANCE (

schema .

model

, cluster_id

mining_attribute_clause)

Chapter 43
CLUSTER_DISTANCE

43-5

Analytic Syntax

cluster_distance_analytic::=

CLUSTER_DISTANCE (INTO n

, cluster_id

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_DISTANCE returns a cluster distance for each row in the selection. The cluster
distance is the distance between the row and the centroid of the highest probability
cluster or the specified cluster_id. The distance is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_DISTANCE can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

Chapter 43
CLUSTER_DISTANCE

43-6

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_DISTANCE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, this data is also
used for building the transient models. The mining_attribute_clause behaves as
described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example finds the 10 rows that are most anomalous as measured by their
distance from their nearest cluster centroid.

SELECT cust_id
 FROM (
 SELECT cust_id,
 rank() over
 (order by CLUSTER_DISTANCE(km_sh_clus_sample USING *) desc) rnk
 FROM mining_data_apply_v)
 WHERE rnk <= 11
 ORDER BY rnk;

 CUST_ID

 100579
 100050
 100329
 100962
 101251
 100179
 100382

Chapter 43
CLUSTER_DISTANCE

43-7

 100713
 100629
 100787
 101478

43.3 CLUSTER_ID
Syntax

cluster_id::=

CLUSTER_ID (

schema .

model mining_attribute_clause)

Analytic Syntax

cluster_id_analytic::=

CLUSTER_ID (INTO n mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Chapter 43
CLUSTER_ID

43-8

Purpose

CLUSTER_ID returns the identifier of the highest probability cluster for each row in the
selection. The cluster identifier is returned as an Oracle NUMBER.

Syntax Choice

CLUSTER_ID can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_ID function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the clusters into which the customers in
mining_data_apply_v have been grouped.

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v

Chapter 43
CLUSTER_ID

43-9

 GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)
 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 2 580
 10 216
 6 186
 8 115
 19 110
 12 101
 18 81
 16 39
 17 38
 14 34

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score
without a predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
 weight=".291" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".009" rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

Chapter 43
CLUSTER_ID

43-10

43.4 CLUSTER_PROBABILITY
Syntax

cluster_probability::=

CLUSTER_PROBABILITY (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_prob_analytic::=

CLUSTER_PROBABILITY (INTO n

, cluster_id

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Chapter 43
CLUSTER_PROBABILITY

43-11

Purpose

CLUSTER_PROBABILITY returns a probability for each row in the selection. The
probability refers to the highest probability cluster or to the specified cluster_id. The
cluster probability is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_PROBABILITY can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_PROBABILITY function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the ten most representative customers, based on
likelihood, of cluster 2.

Chapter 43
CLUSTER_PROBABILITY

43-12

SELECT cust_id
 FROM (SELECT cust_id, rank() OVER (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id, CLUSTER_PROBABILITY(km_sh_clus_sample, 2 USING *) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 10
ORDER BY rnk_clus2;

 CUST_ID

 100256
 100988
 100889
 101086
 101215
 100390
 100985
 101026
 100601
 100672

43.5 CLUSTER_SET
Syntax

cluster_set::=

CLUSTER_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Analytic Syntax

cluster_set_analytic::=

CLUSTER_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 43
CLUSTER_SET

43-13

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_SET returns a set of cluster ID and probability pairs for each row in the
selection. The return value is a varray of objects with field names CLUSTER_ID
and PROBABILITY. The cluster identifier is an Oracle NUMBER; the probability is
BINARY_DOUBLE.

topN and cutoff

You can specify topN and cutoff to limit the number of clusters returned by the
function. By default, both topN and cutoff are null and all clusters are returned.

• topN is the N most probable clusters. If multiple clusters share the Nth probability,
then the function chooses one of them.

• cutoff is a probability threshold. Only clusters with probability greater than or
equal to cutoff are returned. To filter by cutoff only, specify NULL for topN.

To return up to the N most probable clusters that are greater than or equal to cutoff,
specify both topN and cutoff.

Syntax Choice

CLUSTER_SET can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of clusters to
compute, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the CLUSTER_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are

Chapter 43
CLUSTER_SET

43-14

also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the attributes that have the greatest impact (more that 20%
probability) on cluster assignment for customer ID 100955. The query invokes
the CLUSTER_DETAILS and CLUSTER_SET functions, which apply the clustering model
em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1"
weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

Chapter 43
CLUSTER_SET

43-15

43.6 FEATURE_COMPARE
Syntax

feature_compare::=

FEATURE_COMPARE (

schema .

model mining_attribute_clause AND mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

The FEATURE_COMPARE function uses a feature extraction model to compare two
different documents, including short ones such as keyword phrases or two attribute
lists, for similarity or dissimilarity. The FEATURE_COMPARE function can be used with
Feature Extraction algorithms such as Singular Value Decomposition (SVD), Principal
Component Analysis PCA), Non-negative Matrix Factorization (NMF), and Explicit
Semantic Analysis (ESA). This function is applicable not only to documents, but also to
numeric and categorical data.

The input to the FEATURE_COMPARE function is a single feature model built using the
Feature Extraction algorithms of Oracle Machine Learning for SQL, such as NMF,
SVD, and ESA. The double USING clause provides a mechanism to compare two
different documents or constant keyword phrases, or any combination of the two, for
similarity or dissimilarity using the extracted features in the model.

The syntax of the FEATURE_COMPARE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. See mining_attribute_clause.

Chapter 43
FEATURE_COMPARE

43-16

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring

• Oracle Machine Learning for SQL Concepts for information about
clustering

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Examples

An ESA model is built against a 2005 Wiki data set rendering over 200,000 features.
The documents are mined as text and the document titles are considered as the
Feature IDs.

The examples show the FEATURE_COMPARE function with the ESA algorithm, which
compares a similar set of texts and then a dissimilar set of texts.

Similar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from
South Africa' text AND USING 'Nick Price won the 2002 Mastercard Colonial Open' text)
similarity FROM DUAL;

SIMILARITY

 .258

The output metric shows the results of a distance calculation. Therefore, a smaller
number represents more similar texts. So 1 minus the distance in the queries
represents a document similarity metric.

Dissimilar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from
South Africa' text AND USING 'John Elway played quarterback for the Denver Broncos'
text) similarity FROM DUAL;

SIMILARITY

 .007

Chapter 43
FEATURE_COMPARE

43-17

43.7 FEATURE_DETAILS
Syntax

feature_details::=

FEATURE_DETAILS (

schema .

model

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

feature_details_analytic::=

FEATURE_DETAILS (INTO n

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 43
FEATURE_DETAILS

43-18

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_DETAILS returns feature details for each row in the selection. The return value
is an XML string that describes the attributes of the highest value feature or the
specified feature_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence
the feature value. If you do not specify topN, the function returns the 5 most influential
attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its
positive or negative impact on the value of the feature. A positive weight indicates a
higher feature value. A negative weight indicates a lower feature value.

By default, FEATURE_DETAILS returns the attributes with the highest positive weight
(DESC). If you specify ASC, the attributes with the highest negative weight are returned.
If you specify ABS, the attributes with the greatest weight, whether negative or positive,
are returned. The results are ordered by absolute value from highest to lowest.
Attributes with a zero weight are not included in the output.

Syntax Choice

FEATURE_DETAILS can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_DETAILS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

Chapter 43
FEATURE_DETAILS

43-19

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example uses the feature extraction model nmf_sh_sample to score the data.
The query returns the three features that best represent customer 100002 and the
attributes that most affect those features.

SELECT S.feature_id fid, value val,
 FEATURE_DETAILS(nmf_sh_sample, S.feature_id, 5 using T.*) det
 FROM
 (SELECT v.*, FEATURE_SET(nmf_sh_sample, 3 USING *) fset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.fset) S
ORDER BY 2 DESC;

 FID VAL DET
---- ------ --
 5 3.492 <Details algorithm="Non-Negative Matrix Factorization" feature="5">
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".077" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".062" rank="2"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".001" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="0" rank="5"/>
 </Details>
 3 1.928 <Details algorithm="Non-Negative Matrix Factorization" feature="3">
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".239" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".051" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".02" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".006" rank="4"/>
 <Attribute name="AGE" actualValue="41" weight=".004" rank="5"/>
 </Details>
 8 .816 <Details algorithm="Non-Negative Matrix Factorization" feature="8">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".211" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".143" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".137" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".044" rank="4"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".032" rank="5"/>
 </Details>

Chapter 43
FEATURE_DETAILS

43-20

Analytic Example

This example dynamically maps customer attributes into six features and returns the
feature mapping for customer 100001.

SELECT feature_id, value
 FROM (
 SELECT cust_id, feature_set(INTO 6 USING *) OVER () fset
 FROM mining_data_apply_v),
 TABLE (fset)
 WHERE cust_id = 100001
 ORDER BY feature_id;

FEATURE_ID VALUE
---------- --------
 1 2.670
 2 .000
 3 1.792
 4 .000
 5 .000
 6 3.379

43.8 FEATURE_ID
Syntax

feature_id::=

FEATURE_ID (

schema .

model mining_attribute_clause)

Analytic Syntax

feature_id_analytic::=

FEATURE_ID (INTO n mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 43
FEATURE_ID

43-21

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_ID returns the identifier of the highest value feature for each row in the
selection. The feature identifier is returned as an Oracle NUMBER.

Syntax Choice

FEATURE_ID can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_ID function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Chapter 43
FEATURE_ID

43-22

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the features and corresponding count of customers in a data set.

SELECT FEATURE_ID(nmf_sh_sample USING *) AS feat, COUNT(*) AS cnt
 FROM nmf_sh_sample_apply_prepared
 GROUP BY FEATURE_ID(nmf_sh_sample USING *)
 ORDER BY cnt DESC, feat DESC;

 FEAT CNT
---------- ----------
 7 1443
 2 49
 3 6
 6 1
 1 1

43.9 FEATURE_SET
Syntax

feature_set::=

FEATURE_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Analytic Syntax

feature_set_analytic::=

FEATURE_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 43
FEATURE_SET

43-23

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_SET returns a set of feature ID and feature value pairs for each row in the
selection. The return value is a varray of objects with field names FEATURE_ID and
VALUE. The data type of both fields is NUMBER.

topN and cutoff

You can specify topN and cutoff to limit the number of features returned by the
function. By default, both topN and cutoff are null and all features are returned.

• topN is the N highest value features. If multiple features have the Nth value, then
the function chooses one of them.

• cutoff is a value threshold. Only features that are greater than or equal to cutoff
are returned. To filter by cutoff only, specify NULL for topN.

To return up to N features that are greater than or equal to cutoff, specify both topN
and cutoff.

Syntax Choice

FEATURE_SET can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

Chapter 43
FEATURE_SET

43-24

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the top features corresponding to a given customer record and
determines the top attributes for each feature (based on coefficient > 0.25).

WITH
feat_tab AS (
SELECT F.feature_id fid,
 A.attribute_name attr,
 TO_CHAR(A.attribute_value) val,
 A.coefficient coeff
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('nmf_sh_sample')) F,
 TABLE(F.attribute_set) A
 WHERE A.coefficient > 0.25
),
feat AS (
SELECT fid,
 CAST(COLLECT(Featattr(attr, val, coeff))
 AS Featattrs) f_attrs
 FROM feat_tab
GROUP BY fid
),
cust_10_features AS (

Chapter 43
FEATURE_SET

43-25

SELECT T.cust_id, S.feature_id, S.value
 FROM (SELECT cust_id, FEATURE_SET(nmf_sh_sample, 10 USING *) pset
 FROM nmf_sh_sample_apply_prepared
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
)
SELECT A.value, A.feature_id fid,
 B.attr, B.val, B.coeff
 FROM cust_10_features A,
 (SELECT T.fid, F.*
 FROM feat T,
 TABLE(T.f_attrs) F) B
 WHERE A.feature_id = B.fid
ORDER BY A.value DESC, A.feature_id ASC, coeff DESC, attr ASC, val ASC;

 VALUE FID ATTR VAL COEFF
-------- ---- ------------------------- ------------------------ -------
 6.8409 7 YRS_RESIDENCE 1.3879
 6.8409 7 BOOKKEEPING_APPLICATION .4388
 6.8409 7 CUST_GENDER M .2956
 6.8409 7 COUNTRY_NAME United States of America .2848
 6.4975 3 YRS_RESIDENCE 1.2668
 6.4975 3 BOOKKEEPING_APPLICATION .3465
 6.4975 3 COUNTRY_NAME United States of America .2927
 6.4886 2 YRS_RESIDENCE 1.3285
 6.4886 2 CUST_GENDER M .2819
 6.4886 2 PRINTER_SUPPLIES .2704
 6.3953 4 YRS_RESIDENCE 1.2931
 5.9640 6 YRS_RESIDENCE 1.1585
 5.9640 6 HOME_THEATER_PACKAGE .2576
 5.2424 5 YRS_RESIDENCE 1.0067
 2.4714 8 YRS_RESIDENCE .3297
 2.3559 1 YRS_RESIDENCE .2768
 2.3559 1 FLAT_PANEL_MONITOR .2593

43.10 FEATURE_VALUE
Syntax

feature_value::=

FEATURE_VALUE (

schema .

model

, feature_id

mining_attribute_clause)

Analytic Syntax

feature_value_analytic::=

FEATURE_VALUE (INTO n

, feature_id

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 43
FEATURE_VALUE

43-26

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

FEATURE_VALUE returns a feature value for each row in the selection. The value refers
to the highest value feature or to the specified feature_id. The feature value is
returned as BINARY_DOUBLE.

Syntax Choice

FEATURE_VALUE can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a
pre-defined model. Include INTO n, where n is the number of features to
extract, and mining_analytic_clause, which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_VALUE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, this data is also

Chapter 43
FEATURE_VALUE

43-27

used for building the transient models. The mining_attribute_clause behaves as
described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the customers that correspond to feature 3, ordered by
match quality.

SELECT *
 FROM (SELECT cust_id, FEATURE_VALUE(nmf_sh_sample, 3 USING *) match_quality
 FROM nmf_sh_sample_apply_prepared
 ORDER BY match_quality DESC)
 WHERE ROWNUM < 11;

 CUST_ID MATCH_QUALITY
---------- -------------
 100210 19.4101627
 100962 15.2482251
 101151 14.5685197
 101499 14.4186292
 100363 14.4037396
 100372 14.3335148
 100982 14.1716545
 101039 14.1079914
 100759 14.0913761
 100953 14.0799737

43.11 ORA_DM_PARTITION_NAME
Syntax

ORA_DM_PARTITION_NAME (

schema .

model mining_attribute_clause)

Chapter 43
ORA_DM_PARTITION_NAME

43-28

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

ORA_DM_PARTITION_NAME is a single row function that works along with other existing
functions. This function returns the name of the partition associated with the input row.
When ORA_DM_PARTITION_NAME is used on a non-partitioned model, the result is NULL.

The syntax of the ORA_DM_PARTITION_NAME function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. See mining_attribute_clause.

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring

• Oracle Machine Learning for SQL Concepts for information about
clustering

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

SELECT prediction(mymodel using *) pred, ora_dm_partition_name(mymodel
USING *) pname FROM customers;

Chapter 43
ORA_DM_PARTITION_NAME

43-29

43.12 PREDICTION
Syntax

prediction::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

prediction_ordered::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_analytic::=

PREDICTION (
OF ANOMALY

FOR expr

cost_matrix_clause

mining_attribute_clause)

OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

Chapter 43
PREDICTION

43-30

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" in Oracle Database SQL Language Reference
for information on the syntax, semantics, and restrictions of
query_partition_clause and order_by_clause

Purpose

PREDICTION returns a prediction for each row in the selection. The data type of
the returned prediction depends on whether the function performs Regression,
Classification, or Anomaly Detection.

• Regression: Returns the expected target value for each row. The data type of the
return value is the data type of the target.

• Classification: Returns the most probable target class (or lowest cost target
class, if costs are specified) for each row. The data type of the return value is
the data type of the target.

• Anomaly Detection: Returns 1 or 0 for each row. Typical rows are classified as 1.
Rows that differ significantly from the rest of the data are classified as 0.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications.
You can specify a cost_matrix_clause for classification or anomaly detection. Costs
are not relevant for regression. The cost_matrix_clause behaves as described for
"PREDICTION_COST".

Syntax Choice

PREDICTION can score data by applying a mining model object to the data, or it can
dynamically score the data by executing an analytic clause that builds and applies one
or more transient mining models. Choose Syntax or Analytic Syntax:

Chapter 43
PREDICTION

43-31

• Syntax: Use the prediction syntax to score the data with a pre-defined model.
Supply the name of a model that performs Classification, Regression, or Anomaly
Detection.

Use the prediction_ordered syntax for a model that requires ordered data,
such as an MSET-SPRT model. The prediction_ordered syntax requires an
order_by_clause clause.

Restrictions on the prediction_ordered syntax are that you cannot use it in the
WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_ordered syntax.

For details about the order_by_clause, see "Analytic Functions" in Oracle
Database SQL Language Reference.

• Analytic Syntax: Use the prediction_analytic syntax to score the data without
a pre-defined model. The analytic syntax uses the mining_analytic_clause,
which specifies whether the data should be partitioned for multiple model
builds. The mining_analytic_clause supports a query_partition_clause and
an order_by_clause. (See the analytic_clause in "Analytic Functions" in Oracle
Database SQL Language Reference.)

– For Regression, specify FOR expr, where expr is an expression that identifies a
target column that has a numeric data type.

– For Classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For Anomaly Detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring.

• If you specify USING *, then all the relevant attributes present in the input row are
used.

• If you invoke the function with the analytic syntax, then the
mining_attribute_clause is used both for building the transient models and for
scoring.

• If you invoke the function with a pre-defined model, then the
mining_attribute_clause should include all or some of the attributes that were
used to create the model. The following conditions apply:

– If the mining_attribute_clause includes an attribute with the same name but
a different data type from the one that was used to create the model, then the
data type is converted to the type expected by the model.

– If you specify more attributes for scoring than were used to create the model,
then the extra attributes are silently ignored.

– If you specify fewer attributes for scoring than were used to create the model,
then scoring is performed on a best-effort basis.

Chapter 43
PREDICTION

43-32

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of PREDICTION when it is a character value

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

In this example, the model dt_sh_clas_sample predicts the gender and age of
customers who are most likely to use an affinity card (target = 1). The PREDICTION
function takes into account the cost matrix associated with the model and uses marital
status, education, and household size as predictors.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

CUST_GENDER CNT AVG_AGE
------------ ---------- ----------
F 170 38
M 685 42

The cost matrix associated with the model dt_sh_clas_sample is stored in the table
dt_sh_sample_costs. The cost matrix specifies that the misclassification of 1 is 8
times more costly than the misclassification of 0.

SQL> select * from dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ------------
 0 0 .000000000
 0 1 1.000000000
 1 0 8.000000000
 1 1 .000000000

Analytic Example

In this example, dynamic regression is used to predict the age of customers who are
likely to use an affinity card. The query returns the 3 customers whose predicted age is

Chapter 43
PREDICTION

43-33

most different from the actual. The query includes information about the predictors that
have the greatest influence on the prediction.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) desc) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 3;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- -------- -------- --------
--
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

Chapter 43
PREDICTION

43-34

43.13 PREDICTION_BOUNDS
Syntax

PREDICTION_BOUNDS

(

schema .

model

, confidence_level

, class_value

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

PREDICTION_BOUNDS applies a Generalized Linear Model (GLM) to predict a class or a
value for each row in the selection. The function returns the upper and lower bounds of
each prediction in a varray of objects with fields UPPER and LOWER.

GLM can perform either regression or binary classification:

• The bounds for regression refer to the predicted target value. The data type of
UPPER and LOWER is the data type of the target.

• The bounds for binary classification refer to the probability of either the predicted
target class or the specified class_value. The data type of UPPER and LOWER is
BINARY_DOUBLE.

If the model was built using ridge regression, or if the covariance matrix is found to be
singular during the build, then PREDICTION_BOUNDS returns NULL for both bounds.

confidence_level is a number in the range (0,1). The default value is 0.95. You can
specify class_value while leaving confidence_level at its default by specifying NULL
for confidence_level.

The syntax of the PREDICTION_BOUNDS function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. This clause behaves as described for the PREDICTION function. (Note that the
reference to analytic syntax does not apply.) See "mining_attribute_clause".

Chapter 43
PREDICTION_BOUNDS

43-35

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring

• Oracle Machine Learning for SQL Concepts for information about
Generalized Linear Models

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example returns the distribution of customers whose ages are predicted
with 98% confidence to be greater than 24 and less than 46.

SELECT count(cust_id) cust_count, cust_marital_status
 FROM (SELECT cust_id, cust_marital_status
 FROM mining_data_apply_v
 WHERE PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).LOWER > 24 AND
 PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).UPPER < 46)
 GROUP BY cust_marital_status;

 CUST_COUNT CUST_MARITAL_STATUS
-------------- --------------------
 46 NeverM
 7 Mabsent
 5 Separ.
 35 Divorc.
 72 Married

43.14 PREDICTION_COST
Syntax

prediction_cost::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause mining_attribute_clause)

Chapter 43
PREDICTION_COST

43-36

prediction_cost_ordered::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause

mining_attribute_clause) OVER (order_by_clause

,

)

Analytic Syntax

prediction_cost_analytic::=

PREDICTION_COST (
OF ANOMALY

FOR expr

, class

cost_matrix_clause

mining_attribute_clause) OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 43
PREDICTION_COST

43-37

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of the mining_analytic_clause

Purpose

PREDICTION_COST returns a cost for each row in the selection. The cost refers to the
lowest cost class or to the specified class. The cost is returned as a BINARY_DOUBLE.

PREDICTION_COST can perform classification or anomaly detection. For classification,
the returned cost refers to a predicted target class. For anomaly detection, the
returned cost refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

You can use PREDICTION_COST in conjunction with the PREDICTION function to obtain
the prediction and the cost of the prediction.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications.
For example, false positives might be considered more costly than false negatives.
Costs are specified in a cost matrix that can be associated with the model or defined
inline in a VALUES clause. All classification algorithms can use costs to influence
scoring.

Decision Tree is the only algorithm that can use costs to influence the model build. The
cost matrix used to build a Decision Tree model is also the default scoring cost matrix
for the model.

The following cost matrix table specifies that the misclassification of 1 is five times
more costly than the misclassification of 0.

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 5
 1 1 0

In cost_matrix_clause:

• COST MODEL indicates that scoring should be performed by taking into account the
scoring cost matrix associated with the model. If the cost matrix does not exist,
then the function returns an error.

• COST MODEL AUTO indicates that the existence of a cost matrix is unknown. If a
cost matrix exists, then the function uses it to return the lowest cost prediction.
Otherwise the function returns the highest probability prediction.

• The VALUES clause specifies an inline cost matrix for class_value. For example,
you could specify that the misclassification of 1 is five times more costly than the
misclassification of 0 as follows:

 PREDICTION (nb_model COST (0,1) VALUES ((0, 1),(1, 5)) USING *)

If a model that has a scoring cost matrix is invoked with an inline cost matrix, then
the inline costs are used.

Chapter 43
PREDICTION_COST

43-38

See Also:

Oracle Machine Learning for SQL User’s Guide for more information
about cost-sensitive prediction.

Syntax Choice

PREDICTION_COST can score data by applying a mining model object to the data, or it
can dynamically mine the data by executing an analytic clause that builds and applies
one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_cost syntax to score the data with a pre-defined
model. Supply the name of a model that performs classification or anomaly
detection.

Use the prediction_cost_ordered syntax for a model that requires ordered data,
such as an MSET-SPRT model. The prediction_cost_ordered syntax requires
an order_by_clause clause.

Restrictions on the prediction_cost_ordered syntax are that you cannot use it in
the WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_cost_ordered syntax.

For details about the order_by_clause, see "Analytic Functions" in Oracle
Database SQL Language Reference.

• Analytic Syntax: Use the prediction_cost_analytic syntax to score
the data without a pre-defined model. The analytic syntax uses the
mining_analytic_clause, which specifies whether the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See the analytic_clause in
"Analytic Functions" in Oracle Database SQL Language Reference.)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_COST function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

Chapter 43
PREDICTION_COST

43-39

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
classification with costs

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example predicts the ten customers in Italy who would respond to the least
expensive sales campaign (offering an affinity card).

SELECT cust_id
FROM (SELECT cust_id,rank()
 OVER (ORDER BY PREDICTION_COST(DT_SH_Clas_sample, 1 COST MODEL USING *)
 ASC, cust_id) rnk
 FROM mining_data_apply_v
 WHERE country_name = 'Italy')
 WHERE rnk <= 10
 ORDER BY rnk;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

Chapter 43
PREDICTION_COST

43-40

43.15 PREDICTION_DETAILS
Syntax

prediction_details::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

prediction_details_ordered::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_details_analytic::=

PREDICTION_DETAILS (
OF ANOMALY

FOR expr

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

Chapter 43
PREDICTION_DETAILS

43-41

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

PREDICTION_DETAILS returns prediction details for each row in the selection. The return
value is an XML string that describes the attributes of the prediction.

For regression, the returned details refer to the predicted target value. For
classification and anomaly detection, the returned details refer to the highest
probability class or the specified class_value.

topN

If you specify a value for topN, the function returns the N attributes that have the most
influence on the prediction (the score). If you do not specify topN, the function returns
the 5 most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses
its positive or negative impact on the prediction. For regression, a positive weight
indicates a higher value prediction; a negative weight indicates a lower value
prediction. For classification and anomaly detection, a positive weight indicates a
higher probability prediction; a negative weight indicates a lower probability prediction.

By default, PREDICTION_DETAILS returns the attributes with the highest positive weight
(DESC). If you specify ASC, the attributes with the highest negative weight are returned.
If you specify ABS, the attributes with the greatest weight, whether negative or positive,
are returned. The results are ordered by absolute value from highest to lowest.
Attributes with a zero weight are not included in the output.

Chapter 43
PREDICTION_DETAILS

43-42

Syntax Choice

PREDICTION_DETAILS can score the data by applying a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds
and applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_details syntax to score the data with a pre-defined
model. Supply the name of a model that performs classification, regression, or
anomaly detection.

Use the prediction_details_ordered syntax for a model that requires ordered
data, such as an MSET-SPRT model. The prediction_details_ordered syntax
requires an order_by_clause clause.

Restrictions on the prediction_details_ordered syntax are that you cannot use
it in the WHERE clause of a query. Also, you cannot use a query_partition_clause
or a windowing_clause with the prediction_details_ordered syntax.

Note:

When random projections are engaged for an MSET-SPRT model., only
the overall PREDICTION and PREDICTION_PROBABILITY are computed and
PREDICTION_DETAILS are not reported.

For details about the order_by_clause, see "Analytic Functions" in Oracle
Database SQL Language Reference.

• Analytic Syntax: Use the prediction_details_analytic syntax to score the data
without a pre-defined model. The analytic syntax uses mining_analytic_clause,
which specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For regression, specify FOR expr, where expr is an expression that identifies a
target column that has a numeric data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_DETAILS function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

Chapter 43
PREDICTION_DETAILS

43-43

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example uses the model svmr_sh_regr_sample to score the data. The query
returns the three attributes that have the greatest influence on predicting a higher
value for customer age.

SELECT PREDICTION_DETAILS(svmr_sh_regr_sample, null, 3 USING *) prediction_details
 FROM mining_data_apply_v
 WHERE cust_id = 100001;

PREDICTION_DETAILS

<Details algorithm="Support Vector Machines">
<Attribute name="CUST_MARITAL_STATUS" actualValue="Widowed" weight=".361" rank="1"/>
<Attribute name="CUST_GENDER" actualValue="F" weight=".14" rank="2"/>
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".135" rank="3"/>
</Details>

Analytic Syntax

This example dynamically identifies customers whose age is not typical for the data.
The query returns the attributes that predict or detract from a typical age.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det
 FROM (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk
 FROM (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- --- -------- -------- --
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>

Chapter 43
PREDICTION_DETAILS

43-44

 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach."
weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.33 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.39 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of

Chapter 43
PREDICTION_DETAILS

43-45

 America" weight=".059" rank="5"/>
 </Details>

43.16 PREDICTION_PROBABILITY
Syntax

prediction_probability::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

prediction_probability_ordered::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_prob_analytic::=

PREDICTION_PROBABILITY (
OF ANOMALY

FOR expr

, class

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 43
PREDICTION_PROBABILITY

43-46

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

PREDICTION_PROBABILITY returns a probability for each row in the selection. The
probability refers to the highest probability class or to the specified class. The data
type of the returned probability is BINARY_DOUBLE.

PREDICTION_PROBABILITY can perform classification or anomaly detection. For
classification, the returned probability refers to a predicted target class. For anomaly
detection, the returned probability refers to a classification of 1 (for typical rows) or 0
(for anomalous rows).

You can use PREDICTION_PROBABILITY in conjunction with the PREDICTION function to
obtain the prediction and the probability of the prediction.

Syntax Choice

PREDICTION_PROBABILITY can score the data by applying a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds
and applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_probability syntax to score the data with a pre-
defined model. Supply the name of a model that performs classification or
anomaly detection.

Use the prediction_probability_ordered syntax for a model that
requires ordered data, such as an MSET-SPRT model. The
prediction_probability_ordered syntax requires an order_by_clause clause.

Restrictions on the prediction_probability_ordered syntax are that
you cannot use it in the WHERE clause of a query. Also, you
cannot use a query_partition_clause or a windowing_clause with the
prediction_probability_ordered syntax.

For details about the order_by_clause, see "Analytic Functions" in Oracle
Database SQL Language Reference.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-
defined model. The analytic syntax uses mining_analytic_clause, which
specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

Chapter 43
PREDICTION_PROBABILITY

43-47

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_PROBABILITY function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

The following example returns the 10 customers living in Italy who are most likely to
use an affinity card.

SELECT cust_id FROM (
 SELECT cust_id
 FROM mining_data_apply_v
 WHERE country_name = 'Italy'
 ORDER BY PREDICTION_PROBABILITY(DT_SH_Clas_sample, 1 USING *)
 DESC, cust_id)
 WHERE rownum < 11;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

Chapter 43
PREDICTION_PROBABILITY

43-48

Analytic Example

This example identifies rows that are most atypical in the data in
mining_data_one_class_v. Each type of marital status is considered separately so
that the most anomalous rows per marital status group are returned.

The query returns three attributes that have the most influence on the determination
of anomalous rows. The PARTITION BY clause causes separate models to be built and
applied for each marital status. Because there is only one record with status Mabsent,
no model is created for that partition (and no details are provided).

SELECT cust_id, cust_marital_status, rank_anom, anom_det FROM
 (SELECT cust_id, cust_marital_status, anom_det,
 rank() OVER (PARTITION BY CUST_MARITAL_STATUS
 ORDER BY ANOM_PROB DESC,cust_id) rank_anom FROM
 (SELECT cust_id, cust_marital_status,
 PREDICTION_PROBABILITY(OF ANOMALY, 0 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_prob,
 PREDICTION_DETAILS(OF ANOMALY, 0, 3 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_det
 FROM mining_data_one_class_v
))
 WHERE rank_anom < 3 order by 2, 3;

CUST_ID CUST_MARITAL_STATUS RANK_ANOM ANOM_DET
------- ------------------- ----------

102366 Divorc. 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United
Kingdom"
 weight=".069" rank="1"/>
 <Attribute name="AGE" actualValue="28" weight=".013"
 rank="2"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".006" rank="3"/>
 </Details>

101817 Divorc. 2 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="YRS_RESIDENCE" actualValue="8"
 weight=".018" rank="1"/>
 <Attribute name="EDUCATION" actualValue="PhD"
weight=".007"
 rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="K:
 250\,000 - 299\,999" weight=".006" rank="3"/>
 </Details>

101713 Mabsent 1

101790 Married 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada"
 weight=".063" rank="1"/>
 <Attribute name="EDUCATION" actualValue="7th-8th"
 weight=".011" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5"
 weight=".011" rank="3"/>
 </Details>
. . .

Chapter 43
PREDICTION_PROBABILITY

43-49

43.17 PREDICTION_SET
Syntax

prediction_set::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause)

prediction_set_ordered::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER (order_by_clause

,

)

Analytic Syntax

prediction_set_analytic::=

PREDICTION_SET (
OF ANOMALY

FOR expr

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

Chapter 43
PREDICTION_SET

43-50

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::-

query_partition_clause order_by_clause

See Also:

"Analytic Functions" for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

PREDICTION_SET returns a set of predictions with either probabilities or costs for
each row in the selection. The return value is a varray of objects with field names
PREDICTION_ID and PROBABILITY or COST. The prediction identifier is an Oracle NUMBER;
the probability and cost fields are BINARY_DOUBLE.

PREDICTION_SET can perform classification or anomaly detection. For classification, the
return value refers to a predicted target class. For anomaly detection, the return value
refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

bestN and cutoff

You can specify bestN and cutoff to limit the number of predictions returned by the
function. By default, both bestN and cutoff are null and all predictions are returned.

• bestN is the N predictions that are either the most probable or the least costly. If
multiple predictions share the Nth probability or cost, then the function chooses
one of them.

• cutoff is a value threshold. Only predictions with probability greater than or equal
to cutoff, or with cost less than or equal to cutoff, are returned. To filter by
cutoff only, specify NULL for bestN. If the function uses a cost_matrix_clause
with COST MODEL AUTO, then cutoff is ignored.

You can specify bestN with cutoff to return up to the N most probable predictions that
are greater than or equal to cutoff. If costs are used, specify bestN with cutoff to
return up to the N least costly predictions that are less than or equal to cutoff.

Chapter 43
PREDICTION_SET

43-51

cost_matrix_clause

You can specify cost_matrix_clause as a biasing factor for minimizing the most
harmful kinds of misclassifications. cost_matrix_clause behaves as described for
"PREDICTION_COST ".

Syntax Choice

PREDICTION_SET can score the data by applying a mining model object to the data, or it
can dynamically mine the data by executing an analytic clause that builds and applies
one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_set syntax to score the data with a pre-defined
model. Supply the name of a model that performs classification or anomaly
detection.

Use the prediction_set_ordered syntax for a model that requires ordered data,
such as an MSET-SPRT model. The prediction_set_ordered syntax requires an
order_by_clause clause.

Restrictions on the prediction_set_ordered syntax are that you cannot use it in
the WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_set_ordered syntax.

For details about the order_by_clause, see "Analytic Functions" in Oracle
Database SQL Language Reference.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-
defined model. The analytic syntax uses mining_analytic_clause, which
specifies if the data should be partitioned for multiple model builds.
The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

Chapter 43
PREDICTION_SET

43-52

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL examples. For more information about the examples, see Appendix A in
Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the probability and cost that customers with ID less than 100006 will
use an affinity card. This example has a binary target, but such a query is also useful
for multiclass classification such as low, medium, and high.

SELECT T.cust_id, S.prediction, S.probability, S.cost
 FROM (SELECT cust_id,
 PREDICTION_SET(dt_sh_clas_sample COST MODEL USING *) pset
 FROM mining_data_apply_v
 WHERE cust_id < 100006) T,
 TABLE(T.pset) S
ORDER BY cust_id, S.prediction;

 CUST_ID PREDICTION PROBABILITY COST
---------- ---------- ------------ ------------
 100001 0 .966183575 .270531401
 100001 1 .033816425 .966183575
 100002 0 .740384615 2.076923077
 100002 1 .259615385 .740384615
 100003 0 .909090909 .727272727
 100003 1 .090909091 .909090909
 100004 0 .909090909 .727272727
 100004 1 .090909091 .909090909
 100005 0 .272357724 5.821138211
 100005 1 .727642276 .272357724

Chapter 43
PREDICTION_SET

43-53

	Contents
	Preface
	Technology Rebrand
	Audience
	Documentation Accessibility
	Conventions

	Part I Introductions
	1 Introduction to Oracle Machine Learning for SQL
	1.1 About Oracle Machine Learning for SQL
	1.2 Oracle Machine Learning for SQL in the Database Kernel
	1.3 Oracle Machine Learning for SQL in Oracle Exadata
	1.4 About Partitioned Models
	1.5 Interfaces to Oracle Machine Learning for SQL
	1.5.1 PL/SQL API
	1.5.2 SQL Functions
	1.5.3 Oracle Data Miner
	1.5.4 Predictive Analytics

	1.6 Overview of Database Analytics

	2 Oracle Machine Learning Basics
	2.1 Machine Learning Functions
	2.1.1 Supervised Machine Learning
	2.1.1.1 Supervised Learning: Testing
	2.1.1.2 Supervised Learning: Scoring

	2.1.2 Unsupervised Machine Learning
	2.1.2.1 Unsupervised Learning: Scoring

	2.2 Algorithms
	2.2.1 Oracle Machine Learning Supervised Algorithms
	2.2.2 Oracle Machine Learning Unsupervised Algorithms

	2.3 Data Preparation
	2.3.1 Oracle Machine Learning for SQL Simplifies Data Preparation
	2.3.2 Case Data
	2.3.2.1 Nested Data

	2.3.3 Text Data

	2.4 In-Database Scoring
	2.4.1 Parallel Execution and Ease of Administration
	2.4.2 SQL Functions for Model Apply and Dynamic Scoring

	Part II Machine Learning Functions
	3 Regression
	3.1 About Regression
	3.1.1 How Does Regression Work?
	3.1.1.1 Linear Regression
	3.1.1.2 Multivariate Linear Regression
	3.1.1.3 Regression Coefficients
	3.1.1.4 Nonlinear Regression
	3.1.1.5 Multivariate Nonlinear Regression
	3.1.1.6 Confidence Bounds

	3.2 Testing a Regression Model
	3.2.1 Regression Statistics
	3.2.1.1 Root Mean Squared Error
	3.2.1.2 Mean Absolute Error

	3.3 Regression Algorithms

	4 Classification
	4.1 About Classification
	4.2 Testing a Classification Model
	4.2.1 Confusion Matrix
	4.2.2 Lift
	4.2.2.1 Lift Statistics

	4.2.3 Receiver Operating Characteristic (ROC)
	4.2.3.1 The ROC Curve
	4.2.3.2 Area Under the Curve
	4.2.3.3 ROC and Model Bias
	4.2.3.4 ROC Statistics

	4.3 Biasing a Classification Model
	4.3.1 Costs
	4.3.1.1 Costs Versus Accuracy
	4.3.1.2 Positive and Negative Classes
	4.3.1.3 Assigning Costs and Benefits

	4.3.2 Priors and Class Weights

	4.4 Classification Algorithms

	5 Clustering
	5.1 About Clustering
	5.1.1 How are Clusters Computed?
	5.1.2 Scoring New Data
	5.1.3 Hierarchical Clustering
	5.1.3.1 Rules
	5.1.3.2 Support and Confidence

	5.1.4 Clustering Algorithms

	5.2 Evaluating a Clustering Model

	6 Anomaly Detection
	6.1 About Anomaly Detection
	6.1.1 Anomaly Detection as a form of One-Class Classification
	6.1.2 Anomaly Detection for Time Series Data

	6.2 Anomaly Detection Algorithms

	7 Ranking
	7.1 About Ranking
	7.2 Ranking Methods
	7.3 Ranking Algorithms

	8 Association
	8.1 About Association
	8.1.1 Association Rules
	8.1.2 Market-Basket Analysis
	8.1.3 Association Rules and eCommerce

	8.2 Transactional Data
	8.3 Association Algorithm

	9 Feature Selection
	9.1 Finding the Best Attributes
	9.2 About Feature Selection and Attribute Importance
	9.2.1 Attribute Importance and Scoring

	9.3 Algorithms for Attribute Importance

	10 Feature Extraction
	10.1 About Feature Extraction
	10.1.1 Feature Extraction and Scoring

	10.2 Algorithms for Feature Extraction

	11 Row Importance
	11.1 About Row Importance
	11.2 Selecting Important Rows
	11.3 Row Importance Algorithms

	12 Time Series
	12.1 About Time Series
	12.2 Choosing a Time Series Model
	12.3 Time Series Statistics
	12.3.1 Conditional Log-Likelihood
	12.3.2 Mean Square Error (MSE) and Other Error Measures
	12.3.3 Irregular Time Series
	12.3.4 Build Apply

	12.4 Time Series Algorithm

	Part III Algorithms
	13 Apriori
	13.1 About Apriori
	13.2 Association Rules and Frequent Itemsets
	13.2.1 Antecedent and Consequent
	13.2.2 Confidence

	13.3 Data Preparation for Apriori
	13.3.1 Native Transactional Data and Star Schemas
	13.3.2 Items and Collections
	13.3.3 Sparse Data
	13.3.4 Improved Sampling
	13.3.4.1 Sampling Implementation

	13.4 Calculating Association Rules
	13.4.1 Itemsets
	13.4.2 Frequent Itemsets
	13.4.3 Example: Calculating Rules from Frequent Itemsets
	13.4.4 Aggregates
	13.4.5 Example: Calculating Aggregates
	13.4.6 Including and Excluding Rules
	13.4.7 Performance Impact for Aggregates

	13.5 Evaluating Association Rules
	13.5.1 Support
	13.5.2 Minimum Support Count
	13.5.3 Confidence
	13.5.4 Reverse Confidence
	13.5.5 Lift

	14 CUR Matrix Decomposition
	14.1 About CUR Matrix Decomposition
	14.2 Singular Vectors
	14.3 Statistical Leverage Score
	14.4 Column (Attribute) Selection and Row Selection
	14.5 CUR Matrix Decomposition Algorithm Configuration

	15 Decision Tree
	15.1 About Decision Tree
	15.1.1 Decision Tree Rules
	15.1.1.1 Confidence and Support

	15.1.2 Advantages of Decision Trees
	15.1.3 XML for Decision Tree Models

	15.2 Growing a Decision Tree
	15.2.1 Splitting
	15.2.2 Cost Matrix
	15.2.3 Preventing Over-Fitting

	15.3 Tuning the Decision Tree Algorithm
	15.4 Data Preparation for Decision Tree

	16 Expectation Maximization
	16.1 About Expectation Maximization
	16.1.1 Expectation Step and Maximization Step
	16.1.2 Probability Density Estimation

	16.2 Algorithm Enhancements
	16.2.1 Scalability
	16.2.2 High Dimensionality
	16.2.3 Number of Components
	16.2.4 Parameter Initialization
	16.2.5 From Components to Clusters

	16.3 Configuring the Algorithm
	16.4 Data Preparation for Expectation Maximization

	17 Explicit Semantic Analysis
	17.1 About Explicit Semantic Analysis
	17.1.1 Scoring with ESA
	17.1.2 Scoring Large ESA Models

	17.2 ESA for Text Analysis
	17.3 Data Preparation for ESA
	17.4 Terminologies in Explicit Semantic Analysis

	18 Exponential Smoothing
	18.1 About Exponential Smoothing
	18.1.1 Exponential Smoothing Models
	18.1.2 Simple Exponential Smoothing
	18.1.3 Models with Trend but No Seasonality
	18.1.4 Models with Seasonality but No Trend
	18.1.5 Models with Trend and Seasonality
	18.1.6 Prediction Intervals

	18.2 Data Preparation for Exponential Smoothing Models
	18.2.1 Input Data
	18.2.2 Accumulation
	18.2.3 Missing Value
	18.2.4 Prediction
	18.2.5 Parallellism by Partition

	19 Generalized Linear Model
	19.1 About Generalized Linear Model
	19.2 GLM in Oracle Machine Learning for SQL
	19.2.1 Interpretability and Transparency
	19.2.2 Wide Data
	19.2.3 Confidence Bounds
	19.2.4 Ridge Regression
	19.2.4.1 Configuring Ridge Regression
	19.2.4.2 Ridge and Confidence Bounds
	19.2.4.3 Ridge and Data Preparation

	19.3 Scalable Feature Selection
	19.3.1 Feature Selection
	19.3.1.1 Configuring Feature Selection
	19.3.1.2 Feature Selection and Ridge Regression

	19.3.2 Feature Generation
	19.3.2.1 Configuring Feature Generation

	19.4 Tuning and Diagnostics for GLM
	19.4.1 Build Settings
	19.4.2 Diagnostics
	19.4.2.1 Coefficient Statistics
	19.4.2.2 Global Model Statistics
	19.4.2.3 Row Diagnostics

	19.5 GLM Solvers
	19.6 Data Preparation for GLM
	19.6.1 Data Preparation for Linear Regression
	19.6.2 Data Preparation for Logistic Regression
	19.6.3 Missing Values

	19.7 Linear Regression
	19.7.1 Coefficient Statistics for Linear Regression
	19.7.2 Global Model Statistics for Linear Regression
	19.7.3 Row Diagnostics for Linear Regression

	19.8 Logistic Regression
	19.8.1 Reference Class
	19.8.2 Class Weights
	19.8.3 Coefficient Statistics for Logistic Regression
	19.8.4 Global Model Statistics for Logistic Regression
	19.8.5 Row Diagnostics for Logistic Regression

	20 k-Means
	20.1 About k-Means
	20.1.1 Oracle Machine Learning for SQL Enhanced k-Means
	20.1.2 Centroid

	20.2 k-Means Algorithm Configuration
	20.3 Data Preparation for k-Means

	21 Minimum Description Length
	21.1 About MDL
	21.1.1 Compression and Entropy
	21.1.1.1 Values of a Random Variable: Statistical Distribution
	21.1.1.2 Values of a Random Variable: Significant Predictors
	21.1.1.3 Total Entropy

	21.1.2 Model Size
	21.1.3 Model Selection
	21.1.4 The MDL Metric

	21.2 Data Preparation for MDL

	22 Multivariate State Estimation Technique - Sequential Probability Ratio Test
	22.1 About Multivariate State Estimation Technique - Sequential Probability Ratio Test
	22.2 Score an MSET-SPRT Model

	23 Naive Bayes
	23.1 About Naive Bayes
	23.1.1 Advantages of Naive Bayes

	23.2 Tuning a Naive Bayes Model
	23.3 Data Preparation for Naive Bayes

	24 Neural Network
	24.1 About Neural Network
	24.1.1 Neurons and Activation Functions
	24.1.2 Loss or Cost function
	24.1.3 Forward-Backward Propagation
	24.1.4 Optimization Solvers
	24.1.5 Regularization
	24.1.6 Convergence Check
	24.1.7 LBFGS_SCALE_HESSIAN
	24.1.8 NNET_HELDASIDE_MAX_FAIL

	24.2 Data Preparation for Neural Network
	24.3 Neural Network Algorithm Configuration
	24.4 Scoring with Neural Network

	25 Non-Negative Matrix Factorization
	25.1 About NMF
	25.1.1 Matrix Factorization
	25.1.2 Scoring with NMF
	25.1.3 Text Analysis with NMF

	25.2 Tuning the NMF Algorithm
	25.3 Data Preparation for NMF

	26 O-Cluster
	26.1 About O-Cluster
	26.1.1 Partitioning Strategy
	26.1.1.1 Partitioning Numerical Attributes
	26.1.1.2 Partitioning Categorical Attributes

	26.1.2 Active Sampling
	26.1.3 Process Flow
	26.1.4 Scoring

	26.2 Tuning the O-Cluster Algorithm
	26.3 Data Preparation for O-Cluster
	26.3.1 User-Specified Data Preparation for O-Cluster

	27 R Extensibility
	27.1 Oracle Machine Learning for SQL with R Extensibility
	27.2 Scoring with R
	27.3 About Algorithm Metadata Registration
	27.3.1 Algorithm Metadata Registration

	28 Random Forest
	28.1 About Random Forest
	28.2 Building a Random Forest
	28.3 Scoring with Random Forest

	29 Singular Value Decomposition
	29.1 About Singular Value Decomposition
	29.1.1 Matrix Manipulation
	29.1.2 Low Rank Decomposition
	29.1.3 Scalability

	29.2 Configuring the Algorithm
	29.2.1 Model Size
	29.2.2 Performance
	29.2.3 PCA scoring

	29.3 Data Preparation for SVD

	30 Support Vector Machine
	30.1 About Support Vector Machine
	30.1.1 Advantages of SVM
	30.1.2 Advantages of SVM in Oracle Machine Learning for SQL
	30.1.2.1 Usability
	30.1.2.2 Scalability

	30.1.3 Kernel-Based Learning

	30.2 Tuning an SVM Model
	30.3 Data Preparation for SVM
	30.3.1 Normalization
	30.3.2 SVM and Automatic Data Preparation

	30.4 SVM Classification
	30.4.1 Class Weights

	30.5 One-Class SVM
	30.6 SVM Regression

	31 XGBoost
	31.1 About XGBoost
	31.2 Ranking Methods
	31.3 Scoring with XGBoost

	Part IV Using the Oracle Machine Learning for SQL API
	32 Oracle Machine Learning With SQL
	32.1 Highlights of the Oracle Machine Learning for SQL API
	32.2 Example: Targeting Likely Candidates for a Sales Promotion
	32.3 Example: Analyzing Preferred Customers
	32.4 Example: Segmenting Customer Data
	32.5 Example : Building an ESA Model with a Wiki Data Set

	33 About the Oracle Machine Learning for SQL API
	33.1 About Oracle Machine Learning Models
	33.2 Oracle Machine Learning Data Dictionary Views
	33.2.1 ALL_MINING_MODELS
	33.2.2 ALL_MINING_MODEL_ATTRIBUTES
	33.2.3 ALL_MINING_MODEL_PARTITIONS
	33.2.4 ALL_MINING_MODEL_SETTINGS
	33.2.5 ALL_MINING_MODEL_VIEWS
	33.2.6 ALL_MINING_MODEL_XFORMS

	33.3 Oracle Machine Learning PL/SQL Packages
	33.3.1 DBMS_DATA_MINING
	33.3.2 DBMS_DATA_MINING_TRANSFORM
	33.3.2.1 Transformation Methods in DBMS_DATA_MINING_TRANSFORM

	33.3.3 DBMS_PREDICTIVE_ANALYTICS

	33.4 Oracle Machine Learning for SQL Scoring Functions
	33.5 Oracle Machine Learning for SQL Statistical Functions

	34 Prepare the Data
	34.1 Data Requirements
	34.1.1 Column Data Types
	34.1.2 Data Sets for Classification and Regression
	34.1.3 Scoring Requirements

	34.2 About Attributes
	34.2.1 Data Attributes and Model Attributes
	34.2.2 Target Attribute
	34.2.3 Numericals, Categoricals, and Unstructured Text
	34.2.4 Model Signature
	34.2.5 Scoping of Model Attribute Name
	34.2.6 Model Details

	34.3 Use Nested Data
	34.3.1 Nested Object Types
	34.3.2 Example: Transforming Transactional Data for Machine Learning

	34.4 Use Market Basket Data
	34.4.1 Example: Creating a Nested Column for Market Basket Analysis

	34.5 Use Retail Data for Analysis
	34.5.1 Example: Calculating Aggregates

	34.6 Handle Missing Values
	34.6.1 Examples: Missing Values or Sparse Data?
	34.6.1.1 Sparsity in a Sales Table
	34.6.1.2 Missing Values in a Table of Customer Data

	34.6.2 Missing Value Treatment in Oracle Machine Learning for SQL
	34.6.3 Changing the Missing Value Treatment

	35 Transform the Data
	35.1 About Transformations
	35.2 Prepare the Case Table
	35.2.1 Create Nested Columns
	35.2.2 Convert Column Data Types
	35.2.3 Text Transformation
	35.2.4 About Business and Domain-Sensitive Transformations

	35.3 Automatic Data Preparation
	35.3.1 Binning
	35.3.2 Normalization
	35.3.3 How ADP Transforms the Data

	35.4 Embed Transformations in a Model
	35.4.1 Specify Transformation Instructions for an Attribute
	35.4.1.1 Expression Records
	35.4.1.2 Attribute Specifications

	35.4.2 Build a Transformation List
	35.4.2.1 SET_TRANSFORM
	35.4.2.2 The STACK Interface
	35.4.2.3 GET_MODEL_TRANSFORMATIONS and GET_TRANSFORM_LIST

	35.4.3 Transformation Lists and Automatic Data Preparation
	35.4.4 Oracle Machine Learning for SQL Transformation Routines
	35.4.4.1 Binning Routines
	35.4.4.2 Normalization Routines
	35.4.4.3 Outlier Treatment
	35.4.4.4 Routines for Outlier Treatment

	35.5 Understand Reverse Transformations

	36 Create a Model
	36.1 Before Creating a Model
	36.2 The CREATE_MODEL Procedure
	36.2.1 Choose the Machine Learning Function
	36.2.2 Choose the Algorithm
	36.2.3 Supply Transformations
	36.2.3.1 Creating a Transformation List
	36.2.3.2 Transformation List and Automatic Data Preparation

	36.2.4 About Partitioned Models
	36.2.4.1 Partitioned Model Build Process
	36.2.4.2 DDL in Partitioned model
	36.2.4.2.1 Drop Model or Drop Partition
	36.2.4.2.2 Add Partition

	36.2.4.3 Partitioned Model Scoring

	36.3 The CREATE_MODEL2 Procedure
	36.4 Specify Model Settings
	36.4.1 Specify Costs
	36.4.2 Specify Prior Probabilities
	36.4.3 Specify Class Weights
	36.4.4 Model Settings in the Data Dictionary
	36.4.5 Specify Oracle Machine Learning Model Settings for an R Model
	36.4.5.1 ALGO_EXTENSIBLE_LANG
	36.4.5.2 RALG_BUILD_FUNCTION
	36.4.5.2.1 RALG_BUILD_PARAMETER

	36.4.5.3 RALG_DETAILS_FUNCTION
	36.4.5.3.1 RALG_DETAILS_FORMAT

	36.4.5.4 RALG_SCORE_FUNCTION
	36.4.5.5 RALG_WEIGHT_FUNCTION
	36.4.5.6 Registered R Scripts
	36.4.5.7 R Model Demonstration Scripts

	36.5 Model Detail Views
	36.5.1 Model Detail Views for Association Rules
	36.5.2 Model Detail View for Frequent Itemsets
	36.5.3 Model Detail Views for Transactional Itemsets
	36.5.4 Model Detail View for Transactional Rule
	36.5.5 Model Detail Views for Classification Algorithms
	36.5.6 Model Detail Views for Decision Tree
	36.5.7 Model Detail Views for Generalized Linear Model
	36.5.8 Model Detail View for Multivariate State Estimation Technique - Sequential Probability Ratio Test
	36.5.9 Model Detail Views for Naive Bayes
	36.5.10 Model Detail Views for Neural Network
	36.5.11 Model Detail Views for Random Forest
	36.5.12 Model Detail View for Support Vector Machine
	36.5.13 Model Detail Views for XGBoost
	36.5.14 Model Detail Views for Clustering Algorithms
	36.5.15 Model Detail Views for Expectation Maximization
	36.5.16 Model Detail Views for k-Means
	36.5.17 Model Detail Views for O-Cluster
	36.5.18 Model Detail Views for CUR Matrix Decomposition
	36.5.19 Model Detail Views for Explicit Semantic Analysis
	36.5.20 Model Detail Views for Exponential Smoothing
	36.5.21 Model Detail Views for Non-Negative Matrix Factorization
	36.5.22 Model Detail Views for Singular Value Decomposition
	36.5.23 Model Detail Views for Minimum Description Length
	36.5.24 Model Detail Views for Binning
	36.5.25 Model Detail Views for Global Information
	36.5.26 Model Detail Views for Normalization and Missing Value Handling

	37 Scoring and Deployment
	37.1 About Scoring and Deployment
	37.2 Use the Oracle Machine Learning for SQL Functions
	37.2.1 Choose the Predictors
	37.2.2 Single-Record Scoring

	37.3 Prediction Details
	37.3.1 Cluster Details
	37.3.2 Feature Details
	37.3.3 Prediction Details
	37.3.4 GROUPING Hint

	37.4 Real-Time Scoring
	37.5 Dynamic Scoring
	37.6 Cost-Sensitive Decision Making
	37.7 DBMS_DATA_MINING.APPLY

	38 Machine Learning Operations on Unstructured Text
	38.1 About Unstructured Text
	38.2 About Machine Learning and Oracle Text
	38.3 Data Preparation for Text Features
	38.4 Create a Model that Includes Machine Learning Operations on Text
	38.5 Create a Text Policy
	38.6 Configure a Text Attribute

	39 Administrative Tasks for Oracle Machine Learning for SQL
	39.1 Install and Configure a Database for Oracle Machine Learning for SQL
	39.1.1 About Installation
	39.1.2 Enable or Disable a Database Option
	39.1.3 Database Tuning Considerations for Oracle Machine Learning for SQL

	39.2 Upgrade or Downgrade Oracle Machine Learning for SQL
	39.2.1 Pre-Upgrade Steps
	39.2.2 Upgrade Oracle Machine Learning for SQL
	39.2.2.1 Use Database Upgrade Assistant to Upgrade Oracle Machine Learning for SQL
	39.2.2.2 Use Export/Import to Upgrade Machine Learning Models
	39.2.2.2.1 Export/Import Oracle Machine Learning for SQL Models

	39.2.3 Post Upgrade Steps
	39.2.4 Downgrade Oracle Machine Learning for SQL

	39.3 Export and Import Oracle Machine Learning for SQL Models
	39.3.1 About Oracle Data Pump
	39.3.2 Options for Exporting and Importing Oracle Machine Learning for SQL Models
	39.3.3 Directory Objects for EXPORT_MODEL and IMPORT_MODEL
	39.3.4 Use EXPORT_MODEL and IMPORT_MODEL
	39.3.5 EXPORT and IMPORT Serialized Models
	39.3.6 Import From PMML

	39.4 Control Access to Oracle Machine Learning for SQL Models and Data
	39.4.1 Create an Oracle Machine Learning for SQL User
	39.4.1.1 Grant Privileges for Oracle Machine Learning for SQL

	39.4.2 System Privileges for Oracle Machine Learning for SQL
	39.4.3 Object Privileges for Oracle Machine Learning for SQL Models

	39.5 Audit and Add Comments to Oracle Machine Learning for SQL Models
	39.5.1 Add a Comment to an Oracle Machine Learning for SQL Model
	39.5.2 Audit Oracle Machine Learning for SQL Models

	40 Oracle Machine Learning for SQL Examples
	40.1 About the OML4SQL Examples
	40.2 Install the OML4SQL Examples
	40.3 OML4SQL Sample Data

	Part V Oracle Machine Learning for SQL API Reference
	41 PL/SQL Packages
	41.1 DBMS_DATA_MINING
	41.1.1 Using DBMS_DATA_MINING
	41.1.1.1 DBMS_DATA_MINING Overview
	41.1.1.2 DBMS_DATA_MINING Security Model
	41.1.1.3 DBMS_DATA_MINING — Machine Learning Functions

	41.1.2 DBMS_DATA_MINING — Model Settings
	41.1.2.1 DBMS_DATA_MINING — Algorithm Names
	41.1.2.2 DBMS_DATA_MINING — Automatic Data Preparation
	41.1.2.3 DBMS_DATA_MINING — Machine Learning Function Settings
	41.1.2.4 DBMS_DATA_MINING — Global Settings
	41.1.2.5 DBMS_DATA_MINING — Algorithm Settings: ALGO_EXTENSIBLE_LANG
	41.1.2.6 DBMS_DATA_MINING — Algorithm Settings: CUR Matrix Decomposition
	41.1.2.7 DBMS_DATA_MINING — Algorithm Settings: Decision Tree
	41.1.2.8 DBMS_DATA_MINING — Algorithm Settings: Expectation Maximization
	41.1.2.9 DBMS_DATA_MINING — Algorithm Settings: Explicit Semantic Analysis
	41.1.2.10 DBMS_DATA_MINING — Algorithm Settings: Exponential Smoothing
	41.1.2.11 DBMS_DATA_MINING — Algorithm Settings: Generalized Linear Model
	41.1.2.12 DBMS_DATA_MINING — Algorithm Settings: k-Means
	41.1.2.13 DBMS_DATA_MINING - Algorithm Settings: Multivariate State Estimation Technique - Sequential Probability Ratio Test
	41.1.2.14 DBMS_DATA_MINING — Algorithm Settings: Naive Bayes
	41.1.2.15 DBMS_DATA_MINING — Algorithm Settings: Neural Network
	41.1.2.16 DBMS_DATA_MINING — Algorithm Settings: Non-Negative Matrix Factorization
	41.1.2.17 DBMS_DATA_MINING — Algorithm Settings: O-Cluster
	41.1.2.18 DBMS_DATA_MINING — Algorithm Settings: Random Forest
	41.1.2.19 DBMS_DATA_MINING — Algorithm Constants and Settings: Singular Value Decomposition
	41.1.2.20 DBMS_DATA_MINING — Algorithm Settings: Support Vector Machine
	41.1.2.21 DBMS_DATA_MINING — Algorithm Settings: XGBoost

	41.1.3 DBMS_DATA_MINING — Solver Settings
	41.1.3.1 DBMS_DATA_MINING - Solver Settings: Adam
	41.1.3.2 DBMS_DATA_MINING — Solver Settings: ADMM
	41.1.3.3 DBMS_DATA_MINING — Solver Settings: LBFGS

	41.1.4 DBMS_DATA_MINING Datatypes
	41.1.4.1 Deprecated Types

	41.1.5 Summary of DBMS_DATA_MINING Subprograms
	41.1.5.1 ADD_COST_MATRIX Procedure
	41.1.5.2 ADD_PARTITION Procedure
	41.1.5.3 ALTER_REVERSE_EXPRESSION Procedure
	41.1.5.4 APPLY Procedure
	41.1.5.5 COMPUTE_CONFUSION_MATRIX Procedure
	41.1.5.6 COMPUTE_CONFUSION_MATRIX_PART Procedure
	41.1.5.7 COMPUTE_LIFT Procedure
	41.1.5.8 COMPUTE_LIFT_PART Procedure
	41.1.5.9 COMPUTE_ROC Procedure
	41.1.5.10 COMPUTE_ROC_PART Procedure
	41.1.5.11 CREATE_MODEL Procedure
	41.1.5.12 CREATE_MODEL2 Procedure
	41.1.5.13 Create Model Using Registration Information
	41.1.5.14 DROP_ALGORITHM Procedure
	41.1.5.15 DROP_PARTITION Procedure
	41.1.5.16 DROP_MODEL Procedure
	41.1.5.17 EXPORT_MODEL Procedure
	41.1.5.18 EXPORT_SERMODEL Procedure
	41.1.5.19 FETCH_JSON_SCHEMA Procedure
	41.1.5.20 GET_ASSOCIATION_RULES Function
	41.1.5.21 GET_FREQUENT_ITEMSETS Function
	41.1.5.22 GET_MODEL_COST_MATRIX Function
	41.1.5.23 GET_MODEL_DETAILS_AI Function
	41.1.5.24 GET_MODEL_DETAILS_EM Function
	41.1.5.25 GET_MODEL_DETAILS_EM_COMP Function
	41.1.5.26 GET_MODEL_DETAILS_EM_PROJ Function
	41.1.5.27 GET_MODEL_DETAILS_GLM Function
	41.1.5.28 GET_MODEL_DETAILS_GLOBAL Function
	41.1.5.29 GET_MODEL_DETAILS_KM Function
	41.1.5.30 GET_MODEL_DETAILS_NB Function
	41.1.5.31 GET_MODEL_DETAILS_NMF Function
	41.1.5.32 GET_MODEL_DETAILS_OC Function
	41.1.5.33 GET_MODEL_SETTINGS Function
	41.1.5.34 GET_MODEL_SIGNATURE Function
	41.1.5.35 GET_MODEL_DETAILS_SVD Function
	41.1.5.36 GET_MODEL_DETAILS_SVM Function
	41.1.5.37 GET_MODEL_DETAILS_XML Function
	41.1.5.38 GET_MODEL_TRANSFORMATIONS Function
	41.1.5.39 GET_TRANSFORM_LIST Procedure
	41.1.5.40 IMPORT_MODEL Procedure
	41.1.5.41 IMPORT_SERMODEL Procedure
	41.1.5.42 JSON Schema for R Extensible Algorithm
	41.1.5.43 REGISTER_ALGORITHM Procedure
	41.1.5.44 RANK_APPLY Procedure
	41.1.5.45 REMOVE_COST_MATRIX Procedure
	41.1.5.46 RENAME_MODEL Procedure

	41.2 DBMS_DATA_MINING_TRANSFORM
	41.2.1 Using DBMS_DATA_MINING_TRANSFORM
	41.2.1.1 DBMS_DATA_MINING_TRANSFORM Overview
	41.2.1.2 DBMS_DATA_MINING_TRANSFORM Security Model
	41.2.1.3 DBMS_DATA_MINING_TRANSFORM Datatypes
	41.2.1.4 DBMS_DATA_MINING_TRANSFORM Constants

	41.2.2 DBMS_DATA_MINING_TRANSFORM Operational Notes
	41.2.2.1 DBMS_DATA_MINING_TRANSFORM — About Transformation Lists
	41.2.2.2 DBMS_DATA_MINING_TRANSFORM — About Stacking and Stack Procedures
	41.2.2.3 DBMS_DATA_MINING_TRANSFORM — Nested Data Transformations

	41.2.3 Summary of DBMS_DATA_MINING_TRANSFORM Subprograms
	41.2.3.1 CREATE_BIN_CAT Procedure
	41.2.3.2 CREATE_BIN_NUM Procedure
	41.2.3.3 CREATE_CLIP Procedure
	41.2.3.4 CREATE_COL_REM Procedure
	41.2.3.5 CREATE_MISS_CAT Procedure
	41.2.3.6 CREATE_MISS_NUM Procedure
	41.2.3.7 CREATE_NORM_LIN Procedure
	41.2.3.8 DESCRIBE_STACK Procedure
	41.2.3.9 GET_EXPRESSION Function
	41.2.3.10 INSERT_AUTOBIN_NUM_EQWIDTH Procedure
	41.2.3.11 INSERT_BIN_CAT_FREQ Procedure
	41.2.3.12 INSERT_BIN_NUM_EQWIDTH Procedure
	41.2.3.13 INSERT_BIN_NUM_QTILE Procedure
	41.2.3.14 INSERT_BIN_SUPER Procedure
	41.2.3.15 INSERT_CLIP_TRIM_TAIL Procedure
	41.2.3.16 INSERT_CLIP_WINSOR_TAIL Procedure
	41.2.3.17 INSERT_MISS_CAT_MODE Procedure
	41.2.3.18 INSERT_MISS_NUM_MEAN Procedure
	41.2.3.19 INSERT_NORM_LIN_MINMAX Procedure
	41.2.3.20 INSERT_NORM_LIN_SCALE Procedure
	41.2.3.21 INSERT_NORM_LIN_ZSCORE Procedure
	41.2.3.22 SET_EXPRESSION Procedure
	41.2.3.23 SET_TRANSFORM Procedure
	41.2.3.24 STACK_BIN_CAT Procedure
	41.2.3.25 STACK_BIN_NUM Procedure
	41.2.3.26 STACK_CLIP Procedure
	41.2.3.27 STACK_COL_REM Procedure
	41.2.3.28 STACK_MISS_CAT Procedure
	41.2.3.29 STACK_MISS_NUM Procedure
	41.2.3.30 STACK_NORM_LIN Procedure
	41.2.3.31 XFORM_BIN_CAT Procedure
	41.2.3.32 XFORM_BIN_NUM Procedure
	41.2.3.33 XFORM_CLIP Procedure
	41.2.3.34 XFORM_COL_REM Procedure
	41.2.3.35 XFORM_EXPR_NUM Procedure
	41.2.3.36 XFORM_EXPR_STR Procedure
	41.2.3.37 XFORM_MISS_CAT Procedure
	41.2.3.38 XFORM_MISS_NUM Procedure
	41.2.3.39 XFORM_NORM_LIN Procedure
	41.2.3.40 XFORM_STACK Procedure

	41.3 DBMS_PREDICTIVE_ANALYTICS
	41.3.1 Using DBMS_PREDICTIVE_ANALYTICS
	41.3.1.1 DBMS_PREDICTIVE_ANALYTICS Overview
	41.3.1.2 DBMS_PREDICTIVE_ANALYTICS Security Model

	41.3.2 Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
	41.3.2.1 EXPLAIN Procedure
	41.3.2.2 PREDICT Procedure
	41.3.2.3 PROFILE Procedure

	42 Data Dictionary Views
	42.1 ALL_MINING_MODELS
	42.2 ALL_MINING_MODEL_ATTRIBUTES
	42.3 ALL_MINING_MODEL_PARTITIONS
	42.4 ALL_MINING_MODEL_SETTINGS
	42.5 ALL_MINING_MODEL_VIEWS
	42.6 ALL_MINING_MODEL_XFORMS

	43 SQL Scoring Functions
	43.1 CLUSTER_DETAILS
	43.2 CLUSTER_DISTANCE
	43.3 CLUSTER_ID
	43.4 CLUSTER_PROBABILITY
	43.5 CLUSTER_SET
	43.6 FEATURE_COMPARE
	43.7 FEATURE_DETAILS
	43.8 FEATURE_ID
	43.9 FEATURE_SET
	43.10 FEATURE_VALUE
	43.11 ORA_DM_PARTITION_NAME
	43.12 PREDICTION
	43.13 PREDICTION_BOUNDS
	43.14 PREDICTION_COST
	43.15 PREDICTION_DETAILS
	43.16 PREDICTION_PROBABILITY
	43.17 PREDICTION_SET

