
Oracle® Database
Using Oracle Sharding

21c
F32165-01
December 2020

Oracle Database Using Oracle Sharding, 21c

F32165-01

Copyright © 2018, 2020, Oracle and/or its affiliates.

Primary Author: Virginia Beecher

Contributors: Raihan Al-Ekram, Lance Ashdown, Nagesh Battula, David Colello, Mark Dilman, Vidhya
Govindaraju, Belinda Leung, Darshan Maniyani, Joseph Meeks, Janet Stern, Nirav Vyas, Nick Wagner, Jean
Zeng

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Oracle Sharding Overview

What is Sharding 1-2

About Oracle Sharding 1-3

Oracle Sharding as Distributed Partitioning 1-4

Benefits of Oracle Sharding 1-4

Example Applications using Database Sharding 1-5

Flexible Deployment Models 1-6

High Availability in Oracle Sharding 1-7

Sharding Methods 1-7

Client Request Routing 1-8

Query Execution 1-8

High Speed Data Ingest 1-8

Deployment Automation 1-9

Migration Automation 1-9

Lifecycle Management of Shards 1-9

Federated Sharding 1-10

What's New in Oracle Sharding 21c 1-10

Where To Go From Here 1-10

2 Oracle Sharding Architecture and Concepts

Components of the Oracle Sharding Architecture 2-1

Sharded Database and Shards 2-2

Shard Catalog 2-3

Shard Director 2-4

Global Service 2-4

Partitions, Tablespaces, and Chunks 2-4

Tablespace Sets 2-6

Sharding Methods 2-7

System-Managed Sharding 2-7

User-Defined Sharding 2-10

Composite Sharding 2-12

Using Subpartitions with Sharding 2-14

iii

Sharded Database Schema Objects 2-17

Sharded Tables 2-17

Sharded Table Family 2-19

How a Table Family Is Sharded 2-20

Designing Schemas With Multiple Table Families 2-21

Duplicated Tables 2-23

Non-Table Objects Created on All Shards 2-24

Shard-Level High Availability 2-25

About Sharding and Replication 2-25

Using Oracle Data Guard with a Sharded Database 2-26

Using Oracle GoldenGate with a Sharded Database 2-31

Query Processing and the Query Coordinator 2-33

Client Application Request Routing 2-34

Management Interfaces for a Sharded Database 2-35

3 Sharded Database Deployment

Introduction to Sharded Database Deployment 3-2

Planning Your Sharded Database Deployment 3-3

Plan the Sharded Database Configuration 3-4

Provision and Configure Hosts and Operating Systems 3-4

Multi-Shard Query Coordinator Availability and Scalability 3-6

Install the Oracle Database Software 3-6

Install the Shard Director Software 3-7

Create the Shard Catalog Database 3-7

Create the Shard Databases 3-11

Configure the Sharded Database Topology 3-16

Create the Shard Catalog 3-17

Add and Start Shard Directors 3-19

Add Shardspaces If Needed 3-20

Add Shardgoups If Needed 3-21

Verify the Sharding Topology 3-21

Add the Shard CDBs 3-22

Add the Shard PDBs 3-23

Add Host Metadata 3-24

Deploy the Sharding Configuration 3-24

Create and Start Global Database Services 3-26

Verify Shard Status 3-27

Example Sharded Database Deployment 3-28

Example Sharded Database Topology 3-28

Deploy the Example Sharded Database 3-31

iv

Automated Deployment Scripts 3-33

Deploy a Sharded Database With Terraform 3-33

Using Transparent Data Encryption with Oracle Sharding 3-34

Creating a Single Encryption Key on All Shards 3-35

4 Sharded Database Schema Design

Sharded Database Schema Design Considerations 4-2

Choosing Sharding Keys 4-3

Primary Key and Foreign Key Constraints 4-3

Indexes on Sharded Tables 4-4

DDL Execution in a Sharded Database 4-4

Creating Objects Locally and Globally 4-5

DDL Syntax Extensions for Oracle Sharding 4-6

CREATE TABLESPACE SET 4-6

ALTER TABLESPACE SET 4-7

DROP TABLESPACE SET and PURGE TABLESPACE SET 4-7

CREATE TABLE 4-8

ALTER TABLE 4-9

ALTER SESSION 4-10

PL/SQL Procedure Execution in a Sharded Database 4-10

Creating Sharded Database Schema Objects 4-12

Create an All-Shards User 4-13

Creating a Sharded Table Family 4-13

Creating Sharded Tables 4-16

Creating Duplicated Tables 4-18

Updating Duplicated Tables and Synchronizing Their Contents 4-19

Non-Table Objects Created on All Shards 4-20

Schema Creation Examples 4-21

Create a System-Managed Sharded Database Schema 4-21

Create a User-Defined Sharded Database Schema 4-24

Create a Composite Sharded Database Schema 4-27

Monitor DDL Execution and Verify Object Creation 4-30

DDL Execution Failure and Recovery Examples 4-34

Generating Unique Sequence Numbers Across Shards 4-38

5 Using the Sharding Advisor

About Sharding Advisor 5-1

Run Sharding Advisor 5-3

Run Sharding Advisor on a Non-Production System 5-3

v

Review Sharding Advisor Output 5-5

Choose a Sharding Advisor Recommended Configuration 5-5

Sharding Advisor Usage and Options 5-6

Sharding Advisor Output Tables 5-7

SHARDINGADVISOR_CONFIGURATIONS Table 5-8

SHARDINGADVISOR_CONFIGDETAILS Table 5-8

SHARDINGADVISOR_QUERYTYPES Table 5-9

Sharding Advisor Output Review SQL Examples 5-9

Sharding Advisor Security 5-11

6 Migrating to a Sharded Database

Using Oracle Data Pump to Migrate to a Sharded Database 6-1

Migrating a Schema to a Sharded Database 6-1

Migrating the Sample Schema 6-3

Migrating Data to a Sharded Database 6-6

Loading the Sample Schema Data 6-7

Migrating Data Without a Sharding Key 6-10

Using External Tables to Load Data into a Sharded Database 6-11

Loading Data into Duplicated Tables 6-12

Loading Data into Sharded Tables 6-13

7 Query and DML Execution

How Database Requests are Routed to the Shards 7-1

Routing Queries and DMLs Directly to Shards 7-2

Routing Queries and DMLs by Proxy 7-2

Connecting to the Query Coordinator 7-3

Query Coordinator Operation 7-3

Query Processing for Single-Shard Queries 7-4

Query Processing for Multi-Shard Queries 7-4

Specifying Consistency Levels in a Multi-Shard Query 7-5

Supported Query Constructs and Example Query Shapes 7-6

Queries on Sharded Tables Only 7-7

Queries Involving Both Sharded and Duplicated Tables 7-7

Aggregate Functions Supported by Oracle Sharding 7-9

Queries with User-Defined Types 7-9

Execution Plans for Proxy Routing 7-10

Supported DMLs and Examples 7-12

Limitations in Multi-Shard DML Support 7-13

vi

Gathering Optimizer Statistics on Sharded Tables 7-13

8 Developing Applications for the Sharded Database

Direct Routing to a Shard 8-1

JDBC Sharding Data Source 8-2

Sharding APIs Supporting Direct Routing 8-3

Oracle JDBC APIs for Oracle Sharding 8-3

Oracle Call Interface for Oracle Sharding 8-4

Oracle Universal Connection Pool APIs for Oracle Sharding 8-5

Oracle Data Provider for .NET APIs for Oracle Sharding 8-8

Suitability for Sharding of Existing Applications 8-9

9 Sharded Database Administration

Managing the Sharding-Enabled Stack 9-2

Starting Up the Sharding-Enabled Stack 9-2

Shutting Down the Sharding-Enabled Stack 9-2

Managing Oracle Sharding Database Users 9-2

About the GSMUSER Account 9-3

About the GSMROOTUSER Account 9-3

Backing Up and Recovering a Sharded Database 9-4

Prerequisites to Configuring Centralized Backup and Restore 9-6

Configuring Automated Backups 9-7

Enabling and Disabling Automated Backups 9-11

Backup Job Operation 9-11

Monitoring Backup Status 9-12

Viewing an Existing Backup Configuration 9-13

Running On-Demand Backups 9-14

Viewing Backup Job Status 9-14

Listing Backups 9-17

Validating Backups 9-17

Deleting Backups 9-17

Creating and Listing Global Restore Points 9-18

Restoring From Backup 9-19

Monitoring a Sharded Database 9-20

Monitoring a Sharded Database with GDSCTL 9-20

Monitoring a Sharded Database with Enterprise Manager Cloud Control 9-21

Discovering Sharded Database Components 9-23

Querying System Objects Across Shards 9-24

Propagation of Parameter Settings Across Shards 9-26

vii

Modifying a Sharded Database Schema 9-26

Managing Sharded Database Software Versions 9-27

Patching and Upgrading a Sharded Database 9-27

Upgrading Sharded Database Components 9-28

Downgrading a Sharded Database 9-29

Compatibility and Migration from Oracle Database 18c 9-30

Shard Management 9-31

About Adding Shards 9-31

Resharding and Hot Spot Elimination 9-32

Removing a Shard From the Pool 9-34

Adding Standby Shards 9-34

Managing Shards with Oracle Enterprise Manager Cloud Control 9-35

Validating a Shard 9-35

Adding Primary Shards 9-36

Adding Standby Shards 9-37

Deploying Shards 9-37

Managing Shards with GDSCTL 9-38

Validating a Shard 9-38

Adding Shards to a System-Managed SDB 9-40

Replacing a Shard 9-44

Migrating a Non-PDB Shard to a PDB 9-47

Chunk Management 9-48

About Moving Chunks 9-48

Moving Chunks 9-49

About Splitting Chunks 9-50

Splitting Chunks 9-50

Shard Director Management 9-51

Creating a Shard Director 9-51

Editing a Shard Director Configuration 9-52

Removing a Shard Director 9-52

Region Management 9-53

Creating a Region 9-53

Editing a Region Configuration 9-53

Removing a Region 9-54

Shardspace Management 9-54

Creating a Shardspace 9-54

Adding a Shardspace to a Composite Sharded Database 9-55

Shardgroup Management 9-57

Creating a Shardgroup 9-57

Services Management 9-57

viii

Creating a Service 9-58

10

Troubleshooting Oracle Sharding

Oracle Sharding Tracing and Debug Information 10-1

Enabling Tracing for Oracle Sharding 10-1

Where to Find Oracle Sharding Alert Logs and Trace Files 10-2

Common Error Patterns and Resolutions for Sharded Databases 10-3

Issues Starting Remote Scheduler Agent 10-3

Shard Director Fails to Start 10-4

Errors From Shards Created with CREATE SHARD 10-5

Issues Using Create Shard 10-5

Issues Using Deploy Command 10-6

Issues Moving Chunks 10-7

11

Oracle Sharding Solutions

Combine Existing Non-Sharded Databases into a Federated Sharded Database 11-1

Overview 11-1

About Federated Sharding 11-2

Federated Sharding Schema Requirements 11-2

Sharded and Duplicated Tables in a Federated Sharding Configuration 11-2

Limitations to Federated Sharding 11-2

Federated Sharding Security 11-3

Creating and Deploying a Federated Sharding Configuration 11-3

Create the Federated Sharding Configuration 11-4

Retrieve, Inspect, and Apply the DDLs 11-4

Convert Tables to Duplicated Tables 11-6

Prepare the Shards For Multi-Shard Queries 11-6

Federated Sharding Reference 11-7

SYNC SCHEMA Operations 11-7

Troubleshooting Federated Sharding 11-11

Creating Affinity Between Middle-Tier and Shards 11-12

12

Oracle Sharding Reference

Using GDSCTL with Oracle Sharding 12-1

GDSCTL Operation 12-1

Starting GDSCTL 12-2

Running GDSCTL Commands Interactively 12-2

Running GDSCTL Batch Operations 12-2

GDSCTL Help Text 12-2

ix

GDSCTL Connections 12-3

GDSCTL Shard Catalog Connections 12-3

GDSCTL Shard Director Connections 12-3

GDSCTL Commands Used with Oracle Sharding 12-4

SHARDED_TABLE_FAMILIES 12-6

x

Preface

Review the following topics to:

• Discover how you can use this document to learn about Oracle Sharding

• Get accessibility information for this document

• See a list of related documents that may help you design, develop, deploy, and
manage your Oracle Sharding environment

• Learn about typographic conventions used in this document

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document was written with a wide variety of audienaces in mind. System and
application architects can use it to evaluate Oracle Sharding suitability for their
requirements. IT managers can scope out the work needed to implement Oracle
Sharding for proof of concept and production deployments. Database administrators
can find information to help them deploy and maintain a sharded database. Application
developers can learn about any code changes for using Oracle Sharding. Finally,
business analysts can use this document as a guide to figure out costing for an Oracle
Sharding implementation.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
The following publications may be of particular interest to you:

• Oracle Database Install and Upgrade

• Oracle Database Administrator’s Guide

• Oracle Data Guard Concepts and Administration

• Oracle Data Guard Broker

11

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/oracle-database/19/install-and-upgrade.html

• Oracle Database Global Data Services Concepts and Administration Guide

• Oracle Database JDBC Developer’s Guide

• Oracle Universal Connection Pool Developer’s Guide

• Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

• Oracle Call Interface Programmer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, a value in a list of values, or terms defined in the text.

italic Italic type indicates emphasis on a particular word or phrase, or book
titles.

monospace Monospace type indicates

• SQL statements, commands, and code in examples
• SQL statements, configuration parameter names, keywords, and

commands in the text
• URLs, file names, folder or directory names, and paths
• Text that appears on the screen, and text that you enter, when

shown in combination with computer output

monospace italic Monospace italic type indicates placeholder variables for which you
supply the values.

Conventions

12

1
Oracle Sharding Overview

Learn about what Oracle Sharding can do in this high level conceptual discussion.

Oracle Sharding capabilities and benefits are described in the following topics:

• What is Sharding
Hyperscale computing is a computing architecture that can scale up or down
quickly to meet increased demand on the system. This architecture innovation was
originally driven by internet giants that run distributed sites and has been adopted
by large-scale cloud providers.

• About Oracle Sharding
Oracle Sharding is a feature of Oracle Database that lets you automatically
distribute and replicate data across a pool of Oracle databases that share no
hardware or software. Oracle Sharding provides the best features and capabilities
of mature RDBMS and NoSQL databases, as described here.

• Oracle Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such
a configuration is called a shard.

• Benefits of Oracle Sharding
Oracle Sharding provides linear scalability, complete fault isolation, and global
data distribution for the most demanding applications.

• Example Applications using Database Sharding
Oracle Sharding provides benefits for a variety of use cases.

• Flexible Deployment Models
The shared-nothing architecture of Oracle Sharding lets you keep your data on-
premises, in the cloud, or on a hybrid of cloud and on-premises systems. Because
the database shards do not share any resources, the shards can exist anywhere
on a variety of on-premises and cloud systems.

• High Availability in Oracle Sharding
Oracle Sharding is tightly integrated with Oracle Data Guard to provide high
availability and disaster recovery. Replication is automatically configured and
deployed when the sharded database is created.

• Sharding Methods
Because Oracle Sharding is based on table partitioning, all of the sub-partitioning
methods provided by Oracle Database are also supported by Oracle Sharding.
A data sharding method controls the placement of the data on the shards.
Oracle Sharding supports system-managed, user defined, or composite sharding
methods.

• Client Request Routing
Oracle Sharding supports direct, key-based routing from an application to a
shard, routing by proxy with the shard catalog, and routing to middle tiers, such
as application containers, web containers, and so on, which are affinitized with
shards. Oracle Database client drivers and connection pools are sharding aware.

1-1

• Query Execution
No changes to query and DML statements are required to support Oracle
Sharding. Most existing DDL statements will work the same way on a sharded
database with the same syntax and semantics as they do on a non-sharded
Oracle Database.

• High Speed Data Ingest
SQL*Loader enables direct data loading into the database shards for a high speed
data ingest.

• Deployment Automation
Sharded database deployment is highly automated with Terraform, Kubernetes,
and Ansible scripts.

• Migration Automation
The Sharding Advisor tool helps with sharded database schema design for
migration from a non-sharded to sharded database. Oracle Data Pump is sharding
aware and is used to migrate data from a non-sharded Oracle database to a
sharded Oracle database.

• Lifecycle Management of Shards
The Oracle Sharding command-line interface and Oracle Enterprise Manager help
you manage your sharded database.

• Federated Sharding
Unify multiple existing databases into one sharded database architecture.

• What's New in Oracle Sharding 21c
The following are major new features for Oracle Sharding in Oracle Database 21c.

• Where To Go From Here
Planning and deploying a sharded database configuration that best fits your
requirements can be a daunting task. The following roadmap can guide you
through the process, from initial planning to life cycle management of a sharded
database.

What is Sharding
Hyperscale computing is a computing architecture that can scale up or down quickly
to meet increased demand on the system. This architecture innovation was originally
driven by internet giants that run distributed sites and has been adopted by large-scale
cloud providers.

Companies often achieve hyperscale computing using a technology called database
sharding, in which they distribute segments of a data set—a shard—across lots of
databases on lots of different computers.

Sharding uses a shared-nothing architecture in which shards share no hardware or
software. All of the shards together make up a single logical database, called a
sharded database.

From the perspective of the application, a sharded database looks like a single
database: the number of shards, and the distribution of data across those shards,
are completely transparent to database applications. From the perspective of a
database administrator, a sharded database consists of multiple databases that can
be managed collectively.

Chapter 1
What is Sharding

1-2

Figure 1-1 Distribution of a Table Across Database Shards

Sharded Table in Three Databases

Server B Server CServer A

Server

Unsharded Table in

 One Database

About Oracle Sharding
Oracle Sharding is a feature of Oracle Database that lets you automatically distribute
and replicate data across a pool of Oracle databases that share no hardware or
software. Oracle Sharding provides the best features and capabilities of mature
RDBMS and NoSQL databases, as described here.

• SQL language used for object creation, strict data consistency, complex joins,
ACID transaction properties, distributed transactions, relational data store,
security, encryption, robust performance optimizer, backup and recovery, and
patching with Oracle Database

• Oracle innovations and enterprise-level features, including Advanced Security,
Automatic Storage Management (ASM), Advanced Compression, partitioning,
high-performance storage engine, SMP scalability, Oracle RAC, Exadata, in-
memory columnar, online redefinition, JSON document store, and so on

• Sharding-aware Oracle Database tools, such as SQL Developer, Enterprise
Manager Cloud Control, Recovery Manager (RMAN), and Data Pump, for sharded
database application development and management

• Programmatic interfaces, such as Java Database Connectivity (JDBC), Oracle
Call Interface (OCI), Universal Connection Pool (UCP), Oracle Data Provider
for .NET (ODP.NET), and PL/SQL, including extensions for sharded application
development

• Extreme availability with Oracle Data Guard and Active Data Guard.

Note:

Oracle GoldenGate replication support for Oracle Sharding High
Availability is deprecated in Oracle Database 21c, and will be
desupported in Oracle Database 22c.

• Support for multi-model data like relational, text, and JSON

• Existing life-cycle management and operational processes can be kept, leveraging
in-house and world-wide Oracle database administrator skill sets

• Enterprise-level support

• Extreme scalability and availability of NoSQL databases

Chapter 1
About Oracle Sharding

1-3

Oracle Sharding as Distributed Partitioning
Sharding is a database scaling technique based on horizontal partitioning of data
across multiple independent physical databases. Each physical database in such a
configuration is called a shard.

From the perspective of an application, a sharded database in Oracle Sharding looks
like a single database; the number of shards, and the distribution of data across those
shards, are completely transparent to the application.

Even though a sharded database looks like a single database to applications and
application developers, from the perspective of a database administrator, a sharded
database consists of a set of discrete Oracle databases, each of which is a single
shard, that can be managed collectively.

A sharded table is partitioned across all shards of the sharded database. Table
partitions on each shard are not different from partitions that could be used in an
Oracle database that is not sharded.

The following figure shows the difference between partitioning on a single logical
database and partitions distributed across multiple shards.

Figure 1-2 Sharding as Distributed Partitioning

Single Logical Database Multiple Physical Shards

1 2 3

Partitions

4 5

6 7 8 9 10

9 10

11 12

11 12 13 14 15

16 17 18 19 20

Partitions

13 14

15 16

Partitions

17 18

19 20

Partitions

1 2

3 4

Partitions

5 6

7 8

Partitions

Oracle Sharding automatically distributes the partitions across shards when you
execute the CREATE SHARDED TABLE statement, and the distribution of partitions is
transparent to applications. The figure above shows the logical view of a sharded table
and its physical implementation.

Benefits of Oracle Sharding
Oracle Sharding provides linear scalability, complete fault isolation, and global data
distribution for the most demanding applications.

Key benefits of Oracle Sharding include:

Chapter 1
Oracle Sharding as Distributed Partitioning

1-4

• Linear Scalability

The Oracle Sharding shared–nothing architecture eliminates performance
bottlenecks and provides unlimited scalability. Oracle Sharding supports scaling
up to 1000 shards.

• Extreme Availability and Fault Isolation

Single points of failure are eliminated because shards do not share resources
such as software, CPU, memory, or storage devices. The failure or slow-down of
one shard does not affect the performance or availability of other shards.

Shards are protected by Oracle MAA best practice solutions, such as Oracle Data
Guard and Oracle RAC.

An unplanned outage or planned maintenance of a shard impacts only the
availability of the data on that shard, so only the users of that small portion of
the data are affected, for example, during a failover brownout.

• Geographical Distribution of Data

Sharding enables Global Database where a single logical database could be
distributed over multiple geographies. This makes it possible to satisfy data
privacy regulatory requirements (Data Sovereignty) as well as allows to store
particular data close to its consumers (Data Proximity).

Example Applications using Database Sharding
Oracle Sharding provides benefits for a variety of use cases.

Real Time OLTP

Real time OLTP applications have a very high transaction processing throughput, a
large user population, huge amounts of data, and require strict data consistency and
management at scale. Some examples include internet-facing consumer applications,
financial applications such as mobile payments, large scale SaaS applications such
as billing and medical applications. The benefits of using Oracle Sharding for such
applications include:

• Linear scalability of transactions per second, with response time staying constant
as new shards are added to support larger data volume

• Better application SLAs, because planned and unplanned outages on any given
shard does not impact the data stored and available on other shards

• Strict data consistency for transactional applications

• Transactions spanning multiple shards

• Support for complex joins, triggers, and stored procedures

• Simplified managebility at scale

Global Applications

Many enterprise applications are global in nature, where the same application serves
customers in multiple geographic locations. Such applications typically use a single
logical global database which is shared across multiple geographical regions. The
benefits of a shared global database include:

• Strict enforcement of data sovereignty, where data privacy regulations require data
to stay in a certain geographic location, region, country, or even state.

Chapter 1
Example Applications using Database Sharding

1-5

• Reduction of data replication across locations

• Better application SLAs, because planned and unplanned outages in one region
do not impact other regions

Internet of Things and Data Streaming Applications

Typically such applications collect large amounts of data and stream it at a very
high speed. Oracle Sharding has optimized data stream libraries which use Oracle
Database's direct path I/O technology to load data into the sharded database with
extremely high speed. Data load requirements for these applications can be in to 100s
of millions of records per second. Once the data is loaded directly into the database,
it is available for immediate processing with advanced query processing and analytic
capabilities.

Machine Learning

Many machine learning applications require training and scoring of models in real
time. Model training and scoring for many applications using algorithms like anomaly
detection, and clustering is specific to a given entity (for example, a given user's
financial transaction patterns or specific device metrics at a certain time of the day).
This kind of data can easily be shared by using a sharding key specific to the user
or devices. Additionally, Oracle Database Machine Learning algorithms can be applied
directly in the database obviating the need for a separate data pipeline and machine
learning processing infrastructure.

Big Data Analytics

When you have terabytes of data, sharding means you don't have to warehouse data
to do analytics on it. With up to 1000 shards in capacity, Oracle Sharding can turn
a relational database into a warehouse-sized data store. With Federated Sharding in
Oracle Database 20c, multiple database installations in different locations that run the
same application can be converted into a federated sharded database so that you can
run data analytics without moving the data.

NoSQL Alternative

NoSQL solutions lack major RDBMS features, such as relational schema, SQL,
complex data types, online schema changes, multi-core scalability, security, ACID
properties, CR for single-shard operations, and so on. With Oracle Sharding you get
the nearly limitless scaling and sharding you had with NoSQL and all of the features
and benefits of Oracle Database.

Flexible Deployment Models
The shared-nothing architecture of Oracle Sharding lets you keep your data on-
premises, in the cloud, or on a hybrid of cloud and on-premises systems. Because
the database shards do not share any resources, the shards can exist anywhere on a
variety of on-premises and cloud systems.

You can choose to deploy all of the shards on-premises, have them all in the cloud, or
you can split them up between cloud and on-premises systems to suit your needs.

Shards can be deployed on all database deployment models such as single instance,
Exadata, and Oracle RAC.

Chapter 1
Flexible Deployment Models

1-6

High Availability in Oracle Sharding
Oracle Sharding is tightly integrated with Oracle Data Guard to provide high availability
and disaster recovery. Replication is automatically configured and deployed when the
sharded database is created.

Oracle Data Guard replication maintains one or more synchronized copies (standbys)
of a shard (the primary) for high availability and data protection. Standbys can be
deployed locally or remotely, and when using Oracle Active Data Guard can also
be open for read-only access. Use this option when application needs strict data
consistency and zero data loss.

Oracle GoldenGate is used for fine-grained active-active replication. Though
applications must be able to deal with conflicts and data loss upon potential failover.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Optionally, you can use Oracle RAC for shard-level high availability, complemented by
replication, to maintain shard-level data availability in the event of a cluster outage.
Each shard can be deployed on an Oracle RAC cluster to give it instant protection
from node failure. For example, each shard could be a two node Oracle RAC cluster.

Sharding Methods
Because Oracle Sharding is based on table partitioning, all of the sub-partitioning
methods provided by Oracle Database are also supported by Oracle Sharding. A data
sharding method controls the placement of the data on the shards. Oracle Sharding
supports system-managed, user defined, or composite sharding methods.

• System-managed sharding does not require you to map data to shards. The
data is automatically distributed across shards using partitioning by consistent
hash. The partitioning algorithm uniformly and randomly distributes data across
shards.

• User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

• Composite sharding allows you to use two levels of sharding. First the data is
sharded by range or list and then it is sharded further by consistent hash.

In many use cases, especially for data sovereignty and data proximity
requirements, the composite sharding method offers the best of both system-
managed and user-defined sharding methods, giving you the automation you want
and the control over data placement you need.

Chapter 1
High Availability in Oracle Sharding

1-7

Client Request Routing
Oracle Sharding supports direct, key-based routing from an application to a shard,
routing by proxy with the shard catalog, and routing to middle tiers, such as application
containers, web containers, and so on, which are affinitized with shards. Oracle
Database client drivers and connection pools are sharding aware.

• Key-based routing. Oracle client-side drivers (JDBC, OCI, UCP, ODP.NET) can
recognize sharding keys specified in the connection string for high performance
data dependent routing. A shard routing cache in the connection layer is used to
route database requests directly to the shard where the data resides.

• Routing by proxy. Oracle Sharding supports routing for queries that do not
specify a sharding key, giving any database application the flexibility to run SQL
statements, without specifying the shards on which the query should be executed.
Proxy routing can handle single-shard queries and multi-shard queries.

• Middle-tier routing. In addition to sharding the data tier, you can shard the web
tier and application tier, distributing the shards of those middle tiers to service
a particular set of database shards, creating a pattern known as a swim lane.
A smart router can route client requests based on specific sharding keys to the
appropriate swim lane, which in turn establishes connections on its subset of
shards.

Query Execution
No changes to query and DML statements are required to support Oracle Sharding.
Most existing DDL statements will work the same way on a sharded database with the
same syntax and semantics as they do on a non-sharded Oracle Database.

In the same way that DDL statements can be executed on all shards in a
configuration, so too can certain Oracle-provided PL/SQL procedures.

Oracle Sharding also has its own keywords in the SQL DDL statements, which can
only be run against a sharded database.

High Speed Data Ingest
SQL*Loader enables direct data loading into the database shards for a high speed
data ingest.

SQL*Loader is a bulk loader utility used for moving data from external files into the
Oracle database. Its syntax is similar to that of the DB2 load utility, but comes with
more options. SQL*Loader supports various load formats, selective loading, and multi-
table loads. Other benefits include:

• Streaming capability lets you receive data from a large group of clients without
blocking

• Group records according to Oracle RAC shard affinity using native UCP

• Optimize CPU allocation while decoupling record processing from I/O

• Fastest insert method for the Oracle Database through Direct Path Insert,
bypassing SQL and writing directly in the database files

Chapter 1
Client Request Routing

1-8

Deployment Automation
Sharded database deployment is highly automated with Terraform, Kubernetes, and
Ansible scripts.

The deployment scripts take a simple input file describing your desired deployment
topology, and run from a single host to deploy shards to all of the sharded database
hosts. Pause, resume, and cleanup operations are included in the scripts in case of
errors.

Migration Automation
The Sharding Advisor tool helps with sharded database schema design for migration
from a non-sharded to sharded database. Oracle Data Pump is sharding aware and
is used to migrate data from a non-sharded Oracle database to a sharded Oracle
database.

Sharding Advisor

The Sharding Advisor is a tool provided with Oracle Sharding which can help you
design an optimal sharded database configuration by analyzing your current database
schema and workload, and recommending Oracle Sharding topology configurations
and database schema designs. The Sharding Advisor bases recommendations on
key goals such as parallelism (distributing query execution evenly among shards),
minimizing cross-shard join operations, and minimizing duplicated data.

Oracle Data Pump

You can load data directly into the shards by running Oracle Data Pump on each
shard. This method is very fast because the entire data loading operation can
complete within the period of time needed to load the shard with the maximum subset
of the entire data set.

Lifecycle Management of Shards
The Oracle Sharding command-line interface and Oracle Enterprise Manager help you
manage your sharded database.

Using the tools provided you can:

• Provision new sharded databases with scripts

• Scale out as needed by adding more shards online and take advantage of
automatic rebalancing

• Scale in by moving data and consolidating hardware when loads are low

• Monitor performance statistics using Enterprise Manager

• Back up for disaster recovery using Cloud Backup Service, RMAN, and Zero Data
Loss Recovery Appliance

• Patches and Upgrades automated with oPatchAuto in rolling mode

Chapter 1
Deployment Automation

1-9

Federated Sharding
Unify multiple existing databases into one sharded database architecture.

Global businesses might have multiple instances of same applications deployed
for multiple departments in multiple regions. Federated sharding allows mapping of
databases of such applications in to a single federated database and provides the
following benefits.

• Queries can be seamlessly executed against a single federated database using
multi-shard query coordinator

• Removes the need to replicate data for reporting and analytics purposes

• Tolerance for differences in schema and database versions

What's New in Oracle Sharding 21c
The following are major new features for Oracle Sharding in Oracle Database 21c.

• Sharding Advisor is a tool provided with Oracle Sharding which can help you
design an optimal sharded database configuration by analyzing your current
database schema and workload, and recommending Oracle Sharding topology
configurations and database schema designs. The Sharding Advisor bases
recommendations on key goals such as parallelism (distributing query execution
evenly among shards), minimizing cross-shard join operations, and minimizing
duplicated data.

See Using the Sharding Advisor for information about using Sharding Advisor.

• Federated Sharding lets you unify multiple existing databases into one sharded
database architecture. Oracle Sharding, in a federated sharding configuration,
treats each independent database as a shard, and as such can issue multi-shard
queries on those shards.

See Combine Existing Non-Sharded Databases into a Federated Sharded
Database for information about created a federated sharded database.

• Centralized Backup and Restore provides an automated and centralized
management and monitoring infrastructure for sharded database backup and
restore operations, including logging those operations using Oracle MAA best
practices.

See Backing Up and Recovering a Sharded Database for information about
configuring centralized backup and restore operations.

Where To Go From Here
Planning and deploying a sharded database configuration that best fits your
requirements can be a daunting task. The following roadmap can guide you through
the process, from initial planning to life cycle management of a sharded database.

• Learn about Oracle Sharding components, architecture, and how Oracle Sharding
works in Oracle Sharding Architecture and Concepts

Chapter 1
Federated Sharding

1-10

• Plan your specific sharded database requirements, including both the technical
and operational aspects of your IT systems and business processes, as described
in Planning Your Sharded Database Deployment

• Deploy a sharded database topology configuration, as explained, with examples,
in Sharded Database Deployment

• Design a sharded database schema for balanced distribution of data and
workload across shards in Sharded Database Schema Design

• Develop a high performance, efficient sharded database application using
the concepts and APIs described in Developing Applications for the Sharded
Database

• Migrate your existing database and application to a sharded database, as
explained in Migrating to a Sharded Database

• Manage your sharded database with the procedures described in Sharded
Database Administration

Chapter 1
Where To Go From Here

1-11

2
Oracle Sharding Architecture and
Concepts

• Components of the Oracle Sharding Architecture
The following figure illustrates the major architectural components of Oracle
Sharding, which are described in the topics that follow.

• Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in
tablespaces that reside on different shards.

• Tablespace Sets
Oracle Sharding creates and manages tablespaces as a unit called a TABLESPACE
SET.

• Sharding Methods
The following topics discuss sharding methods supported by Oracle Sharding, how
to choose a method, and how to use subpartitioning.

• Sharded Database Schema Objects
To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on
a single shard. The following topics define and illustrate the schema objects that
form a sharded database to inform your design.

• Shard-Level High Availability
Oracle Sharding is integrated with Oracle Database replication technologies for
high availability and disaster recovery at the shard level.

• Query Processing and the Query Coordinator
The query coordinator is part of the shard catalog. The query coordinator
provides query processing support for the sharded database. With its access to
the sharded database topology metadata in the shard catalog, there are three
general cases in which the query coordinator plays an important part.

• Client Application Request Routing
To route a client application request directly to a shard, you connect to the shard
using the Oracle drivers and provide a sharding key with the request.

• Management Interfaces for a Sharded Database
The GDSCTL command-line utility is used to configure, deploy, monitor, and
manage an Oracle Sharding sharded database. Oracle Enterprise Manager Cloud
Control can also be used for sharded database monitoring and management.

Components of the Oracle Sharding Architecture
The following figure illustrates the major architectural components of Oracle Sharding,
which are described in the topics that follow.

2-1

Figure 2-1 Oracle Sharding Architecture

Connection
Pools

. . .

Sharded
Database

Shard

Shard
Catalog

Shard
Directors

Sharding Key
CustomerID=28459361

• Sharded Database and Shards
A sharded database is a collection of shards.

• Shard Catalog
A shard catalog is an Oracle Database that supports automated shard
deployment, centralized management of a sharded database, and multi-shard
queries.

• Shard Director
Shard directors are network listeners that enable high performance connection
routing based on a sharding key.

• Global Service
A global service is a database service that is use to access data in a sharded
database.

Sharded Database and Shards
A sharded database is a collection of shards.

A sharded database is a single logical Oracle Database that is horizontally partitioned
across a pool of physical Oracle Databases (shards) that share no hardware or
software.

Each shard in the sharded database is an independent Oracle Database instance that
hosts subset of a sharded database's data. Shared storage is not required across the
shards.

Chapter 2
Components of the Oracle Sharding Architecture

2-2

Shards can be hosted anywhere an Oracle database can be hosted. Oracle Sharding
supports all of the deployment choices for a shard that you would expect with a single
instance or clustered Oracle Database, including on-premises, any cloud platform,
Oracle Exadata Database Machine, virtual machines, and so on.

Shards can all be placed in one region or can be placed in different regions. A region
in the context of Oracle Sharding represents a data center or multiple data centers that
are in close network proximity.

Shards are replicated for high availability and disaster recovery with Oracle Data
Guard. For high availability, Data Guard standby shards can be placed in the same
region where the primary shards are placed. For disaster recovery, the standby shards
can be located in another region.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Shard Catalog
A shard catalog is an Oracle Database that supports automated shard deployment,
centralized management of a sharded database, and multi-shard queries.

A shard catalog serves following purposes

• Serves as an administrative server for entire shareded database

• Stores a gold copy of the database schema

• Manages multi-shard queries with a multi-shard query coordinator

• Stores a gold copy of duplicated table data

The shard catalog is a special-purpose Oracle Database that is a persistent store for
sharded database configuration data and plays a key role in centralized management
of a sharded database. All configuration changes, such as adding and removing
shards and global services, are initiated on the shard catalog. All DDLs in a sharded
database are executed by connecting to the shard catalog.

The shard catalog also contains the master copy of all duplicated tables in a sharded
database. The shard catalog uses materialized views to automatically replicate
changes to duplicated tables in all shards. The shard catalog database also acts as a
query coordinator used to process multi-shard queries and queries that do not specify
a sharding key.

Multiple shard catalogs can be deployed for high availability purposes. Using Oracle
Data Guard for shard catalog high availability is a recommended best practice.

At run time, unless the application uses key-based queries, the shard catalog is
required to direct queries to the shards. Sharding key-based transactions continue
to be routed and executed by the sharded database and are unaffected by a catalog
outage.

During the brief period required to complete an automatic failover to a standby
shard catalog, downtime affects the ability to perform maintenance operations, make

Chapter 2
Components of the Oracle Sharding Architecture

2-3

schema changes, update duplicated tables, run multi-shard queries, or perform other
operations like add shard, move chunks, and so on, which induce topology change.

Shard Director
Shard directors are network listeners that enable high performance connection routing
based on a sharding key.

Oracle Database 12c introduced the global service manager to route connections
based on database role, load, replication lag, and locality. In support of Oracle
Sharding, global service managers support routing of connections based on data
location. A global service manager, in the context of Oracle Sharding, is known as a
shard director.

A shard director is a specific implementation of a global service manager that acts as a
regional listener for clients that connect to a sharded database. The director maintains
a current topology map of the sharded database. Based on the sharding key passed
during a connection request, the director routes the connections to the appropriate
shard.

For a typical sharded database, a set of shard directors are installed on dedicated
low-end commodity servers in each region. To achieve high availability and scalability,
deploy multiple shard directors. You can deploy up to 5 shard directors in a given
region.

The following are the key capabilities of shard directors:

• Maintain runtime data about sharded database configuration and availability of
shards

• Measure network latency between its own and other regions

• Act as a regional listener for clients to connect to a sharded database

• Manage global services

• Perform connection load balancing

Global Service
A global service is a database service that is use to access data in a sharded
database.

A global service is an extension to the notion of the traditional database service. All
of the properties of traditional database services are supported for global services. For
sharded databases, additional properties are set for global services — for example,
database role, replication lag tolerance, region affinity between clients and shards,
and so on. For a read-write transactional workload, a single global service is created
to access data from any primary shard in a sharded database. For highly available
shards using Active Data Guard, a separate read-only global service can be created.

Partitions, Tablespaces, and Chunks
Distribution of partitions across shards is achieved by creating partitions in
tablespaces that reside on different shards.

Each partition of a sharded table is stored in a separate tablespace, making the
tablespace the unit of data distribution in an SDB.

Chapter 2
Partitions, Tablespaces, and Chunks

2-4

As described in Sharded Table Family, to minimize the number of multi-shard joins,
corresponding partitions of all tables in a table family are always stored in the same
shard. This is guaranteed when tables in a table family are created in the same set of
distributed tablespaces as shown in the syntax examples where tablespace set ts1 is
used for all tables.

However, it is possible to create different tables from a table family in different
tablespace sets, for example the Customers table in tablespace set ts1 and Orders
in tablespace set ts2. In this case, it must be guaranteed that the tablespace that
stores partition 1 of Customers always resides in the same shard as the tablespace
that stores partition 1 of Orders.

To support this functionality, a set of corresponding partitions from all of the tables
in a table family, called a chunk, is formed. A chunk contains a single partition from
each table of a table family. This guarantees that related data from different sharded
tables can be moved together. In other words, a chunk is the unit of data migration
between shards. In system-managed and composite sharding, the number of chunks
within each shard is specified when the sharded database is created. In user-defined
sharding, the total number of chunks is equal to the number of partitions.

A chunk that contains corresponding partitions from the tables of Cutomers-Orders-
LineItems schema is shown in the following figure.

Figure 2-2 Chunk as a Set of Partitions

Customers_P1 (1-1000000) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Each shard contains multiple chunks as shown in the following figure.

Chapter 2
Partitions, Tablespaces, and Chunks

2-5

Figure 2-3 Contents of a Shard

Customers_P1 (1-1M) Orders_P1 Lineitems_P1
Chunk #1

Sharded
Tables

Customers_P6 (5000001-6M) Orders_P6 Lineitems_P6
Chunk #6

Sharded
Tables

Customers_P11(10000001-11M) Orders_P11 Lineitems_P11
Chunk #11

Sharded
Tables

Stockitems (Duplicated Table)

Shard

In addition to sharded tables, a shard can also contain one or more duplicated tables.
Duplicated tables cannot be stored in tablespaces that are used for sharded tables.

Tablespace Sets
Oracle Sharding creates and manages tablespaces as a unit called a TABLESPACE SET.

System-managed and composite sharding use TABLESPACE SET, while user-defined
sharding uses regular tablespaces.

A tablespace is a logical unit of data distribution in a sharded database. The
distribution of partitions across shards is achieved by automatically creating partitions
in tablespaces that reside on different shards. To minimize the number of multi-shard
joins, the corresponding partitions of related tables are always stored in the same
shard. Each partition of a sharded table is stored in a separate tablespace.

Chapter 2
Tablespace Sets

2-6

The PARTITIONS AUTO clause specifies that the number of partitions should be
automatically determined. This type of hashing provides more flexibility and efficiency
in migrating data between shards, which is important for elastic scalability.

The number of tablespaces created per tablespace set is determined based on the
number of chunks that were defined for the shardspace during deployment.

Note:

Only Oracle Managed Files are supported by tablespace sets.

Individual tablespaces cannot be dropped or altered independently of the
entire tablespace set.

TABLESPACE SET cannot be used with the user-defined sharding method.

Sharding Methods
The following topics discuss sharding methods supported by Oracle Sharding, how to
choose a method, and how to use subpartitioning.

• System-Managed Sharding
System-managed sharding is a sharding method which does not require the user
to specify mapping of data to shards. Data is automatically distributed across
shards using partitioning by consistent hash. The partitioning algorithm evenly and
randomly distributes data across shards.

• User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons,
certain data needs to be stored on a particular shard, and the administrator needs
to have full control over moving data between shards.

• Composite Sharding
The composite sharding method allows you to create multiple shardspaces for
different subsets of data in a table partitioned by consistent hash. A shardspace is
set of shards that store data that corresponds to a range or list of key values.

• Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning
methods provided by Oracle Database are also supported for sharding.

System-Managed Sharding
System-managed sharding is a sharding method which does not require the user to
specify mapping of data to shards. Data is automatically distributed across shards
using partitioning by consistent hash. The partitioning algorithm evenly and randomly
distributes data across shards.

The distribution used in system-managed sharding is intended to eliminate hot
spots and provide uniform performance across shards. Oracle Sharding automatically
maintains the balanced distribution of chunks when shards are added to or removed
from a sharded database.

Chapter 2
Sharding Methods

2-7

Consistent hash is a partitioning strategy commonly used in scalable distributed
systems. It is different from traditional hash partitioning. With traditional hashing, the
bucket number is calculated as HF(key) % N where HF is a hash function and N is the
number of buckets. This approach works fine if N is constant, but requires reshuffling
of all data when N changes.

More advanced algorithms, such as linear hashing, do not require rehashing of the
entire table to add a hash bucket, but they impose restrictions on the number of
buckets, such as the number of buckets can only be a power of 2, and on the order in
which the buckets can be split.

The implementation of consistent hashing used in Oracle Sharding avoids these
limitations by dividing the possible range of values of the hash function (for example.
from 0 to 232) into a set of N adjacent intervals, and assigning each interval to a
chunk , as shown in the figure below. In this example, the sharded database contains
1024 chunks, and each chunk gets assigned a range of 222 hash values. Therefore
partitioning by consistent hash is essentially partitioning by the range of hash values.

Figure 2-4 Ranges of Hash Values Assigned to Chunks

Chunk #1024

429496672964290772992 41943040

...

8388608

...Chunk #2...Chunk #1

Assuming that all of the shards have the same computing power, an equal number
of chunks is assigned to each shard in the sharded database. For example, if 1024
chunks are created in a sharded database that contains 16 shards, each shard will
contain 64 chunks.

In the event of resharding, when shards are added to or removed from a sharded
database, some of the chunks are relocated among the shards to maintain an even
distribution of chunks across the shards. The contents of the chunks does not change
during this process; no rehashing takes place.

When a chunk is split, its range of hash values is divided into two ranges, but nothing
needs to be done for the rest of the chunks. Any chunk can be independently split at
any time.

All of the components of a sharded database that are involved in directing connection
requests to shards maintain a routing table that contains a list of chunks hosted by
each shard and ranges of hash values associated with each chunk. To determine
where to route a particular database request, the routing algorithm applies the hash
function to the provided value of the sharding key, and maps the calculated hash value
to the appropriate chunk, and then to a shard that contains the chunk.

The number of chunks in a sharded database with system-managed sharding can be
specified when the shard catalog is created. If not specified, the default value, 120
chunks per shard, is used. Once a sharded database is deployed, the number of
chunks can only be changed by splitting chunks.

Before creating a sharded table partitioned by consistent hash, a set of tablespaces
(one tablespace per chunk) has to be created to store the table partitions. The

Chapter 2
Sharding Methods

2-8

tablespaces are automatically created by executing the SQL statement, CREATE
TABLESPACE SET.

All of the tablespaces in a tablespace set have the same physical attributes and
can only contain Oracle Managed Files (OMF). In its simplest form, the CREATE
TABLESPACE SET statement has only one parameter, the name of the tablespace set,
for example:

CREATE TABLESPACE SET ts1;

In this case each tablespace in the set contains a single OMF file with default
attributes. To customize tablespace attributes, the USING TEMPLATE clause (shown in
the example below) is added to the statement. The USING TEMPLATE clause specifies
attributes that apply to each tablespace in the set.

CREATE TABLESPACE SET ts1
USING TEMPLATE
(
 DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE
)
;

After a tablespace set has been created, a table partitioned by consistent hash can
be created with partitions stored in the tablespaces that belong to the set. The CREATE
TABLE statement might look as follows:

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

PARTITIONS AUTO in this statement means that the number of partitions is
automatically set to the number of tablespaces in the tablespace set ts1 (which
is equal to the number of chunks) and each partition will be stored in a separate
tablespace.

Each tablespace in a tablespace set belongs to a distinct chunk. In the other words,
a chunk can contain only one tablespace from a given tablespace set. However, the
same tablespace set can be used for multiple tables that belong to the same table
family. In this case, each tablespace in the set will store multiple partitions, one from
each table.

Chapter 2
Sharding Methods

2-9

Alternatively, each table in a table family can be stored in a separate tablespace set.
In this case, a chunk contains multiple tablespaces, one from each tablespace set with
each tablespace storing a single partition.

The following figure illustrates the relationship between partitions, tablespaces, and
shards for a use case with a single sharded table. In this case, each chunk contains a
single tablespace, and each tablespace stores a single partition.

Figure 2-5 System-Managed Sharding

Shard 1 Shard 2 Shard 3 Shard 4

P_1

tbs_1-1

P_120

tbs1-120

P_121

tbs1_121

P_240

tbs1-240

P_241

tbs1-241
.
.
.

.

.

.

.

.

.

.

.

.

P_360

tbs1-360

P_361

tbs1-361

P_480

tbs1-480

Tablespace Set tbs1

Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG
command and cannot be changed later.

User-Defined Sharding
User-defined sharding lets you explicitly specify the mapping of data to individual
shards. It is used when, because of performance, regulatory, or other reasons, certain
data needs to be stored on a particular shard, and the administrator needs to have full
control over moving data between shards.

For a user-defined sharded database, two replication schemes are supported: Oracle
Data Guard or Oracle Active Data Guard. User-defined sharding is not supported
where Oracle GoldenGate is used as the replication method.

Another advantage of user-defined sharding is that, in case of planned or unplanned
outage of a shard, the user knows exactly what data is not available. The
disadvantage of user-defined sharding is the need for the database administrator to
monitor and maintain balanced distribution of data and workload across shards.

With user-defined sharding, a sharded table can be partitioned by range or list. The
CREATE TABLE syntax for a sharded table is not very different from the syntax for a
regular table, except for the requirement that each partition should be stored in a
separate tablespace.

 CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER

Chapter 2
Sharding Methods

2-10

, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

There is no tablespace set for user-defined sharding. Each tablespace has to be
created individually and explicitly associated with a shardspace. A shardspace is set of
shards that store data that corresponds to a range or list of key values.

In user-defined sharding, a shardspace consists of a shard or a set of fully replicated
shards. For simplicity, assume that each shardspace consists of a single shard.

The following statements can be used to create the tablespaces for the accounts table
in the example above.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

Before executing the CREATE TABLESPACE statements, the shardspaces must be
created and populated with shards. For example, you can use the following GDSCTL
commands:

ADD SHARDSPACE -SHARDSPACE east
ADD SHARDSPACE -SHARDSPACE central
ADD SHARDSPACE -SHARDSPACE west
ADD SHARD –CONNECT shard-1 –SHARDSPACE west;
ADD SHARD –CONNECT shard-2 –SHARDSPACE central;
ADD SHARD –CONNECT shard-3 –SHARDSPACE east;

The following figure shows the mapping of partitions to tablespaces, and tablespaces
to shards, for the accounts table in the previous examples.

Chapter 2
Sharding Methods

2-11

Figure 2-6 User-Defined Sharding

Shard 1 Shard 2 Shard 3

P_NorthWest

Tablespace tbs1

P_SouthWest

Tablespace tbs2

P_NorthCentral

Tablespace tbs3

P_SouthCentral

Shardspace Central

Tablespace tbs4

P_NorthEast

Tablespace tbs5

P_SouthEast

Tablespace tbs6

Shardspace EastShardspace West

As with system-managed sharding, tablespaces created for user-defined sharding are
assigned to chunks. However, no chunk migration is automatically started when a
shard is added to the sharded database. You must run the GDSCTL MOVE CHUNK
command for each chunk that needs to be migrated.

The total number of chunks is defined by the number of partitions specified in the
sharded table. The number of chunks for a given shardspsace is the number of
partitions assigned to it. The ALTER TABLE ADD, DROP, SPLIT, and MERGE PARTITION
commands on the sharded table increases or decrease the number of chunks.

The GDSCTL SPLIT CHUNK command, which is used to split a chunk in the middle
of the hash range for system-managed sharding, is not supported for user-defined
sharding. You must use the ALTER TABLE SPLIT PARTITION statement to split a chunk.

Note:

The sharding method is specified in the GDSCTL CREATE SHARDCATALOG
command and cannot be changed later.

Composite Sharding
The composite sharding method allows you to create multiple shardspaces for different
subsets of data in a table partitioned by consistent hash. A shardspace is set of shards
that store data that corresponds to a range or list of key values.

System-managed sharding uses partitioning by consistent hash to randomly distribute
data across shards. This provides better load balancing compared to user-defined
sharding that uses partitioning by range or list. However, system-managed sharding
does not give the user any control on assignment of data to shards.

When sharding by consistent hash on a primary key, there is often a requirement
to differentiate subsets of data within an SDB in order to store them in different
geographic locations, allocate to them different hardware resources, or configure high
availability and disaster recovery differently. Usually this differentiation is done based
on the value of another (non-primary) column, for example, customer location or a
class of service.

Chapter 2
Sharding Methods

2-12

Composite sharding is a combination of user-defined and system-managed sharding
which, when required, provides benefits of both methods. With composite sharding,
data is first partitioned by list or range across multiple shardspaces, and then further
partitioned by consistent hash across multiple shards in each shardspace. The two
levels of sharding make it possible to automatically maintain balanced distribution of
data across shards in each shardspace, and, at the same time, partition data across
shardspaces.

For example, suppose you want to allocate three shards hosted on faster servers to
“gold” customers and four shards hosted on slower machines to “silver” customers.
Within each set of shards, customers have to be distributed using partitioning by
consistent hash on customer ID.

Figure 2-7 Composite Sharding

Tablespace

Set tbs1

SHARD1

P_1

tbs1-1

P_120

tbs1-120

.

.

.

SHARD2

P_121

tbs1-121

P_240

tbs1-240

.

.

.

SHARD3

P_241

tbs1-241

P_360

tbs1-360

.

.

.

Shardspace for GOLD customers - shspace1

SHARD4

P_1

tbs2-1

P_120

tbs2-120

.

.

.

SHARD5

P_121

tbs2-121

P_240

tbs1-240

.

.

.

SHARD6

P_241

tbs2-241

P_360

tbs2-360

.

.

.

SHARD7

P_361

tbs2-361

P_480

tbs2-480

.

.

.

Shardspace for SILVER customers - shspace2

Tablespace

Set tbs2

Two shardspaces need to be created for such a configuration. For example, you can
use the following GDSCTL commands.

ADD SHARDSPACE –SHARDSPACE shspace1;
ADD SHARDSPACE –SHARDSPACE shspace2;

ADD SHARD –CONNECT shard1 –SHARDSPACE shspace1;
ADD SHARD –CONNECT shard2 –SHARDSPACE shspace1;
ADD SHARD –CONNECT shard3 –SHARDSPACE shspace1;

ADD SHARD –CONNECT shard4 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard5 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard6 –SHARDSPACE shspace2;
ADD SHARD –CONNECT shard7 –SHARDSPACE shspace2;

Chapter 2
Sharding Methods

2-13

With composite sharding, as with the other sharding methods, tablespaces are used
to specify the mapping of partitions to shards. To place subsets of data in a sharded
table into different shardspaces, a separate tablespace set must be created in each
shardspace as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

To store user-defined subsets of data in different tablespaces, Oracle Sharding
provides syntax to group partitions into sets and associate each set of partitions with
a tablespace set. Support for partition sets can be considered a logical equivalent of
a higher level of partitioning which is implemented on top of partitioning by consistent
hash.

The statement in the following example partitions a sharded table into two partition
sets: gold and silver, based on class of service. Each partition set is stored in a
separate tablespace. Then data in each partition set is further partitioned by consistent
hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Note:

In Oracle Database 12c Release 2 only a single partition set from a table can
be stored in a shardspace.
The sharding method is specified in the GDSCTL CREATE SHARDCATALOG
command and cannot be changed later.

Using Subpartitions with Sharding
Because Oracle Sharding is based on table partitioning, all of the subpartitioning
methods provided by Oracle Database are also supported for sharding.

Subpartitioning splits each partition into smaller parts and may be beneficial for
efficient parallel execution within a shard, especially in the case of sharding by range
or list when the number of partitions per shard may be small.

Chapter 2
Sharding Methods

2-14

From a manageability perspective, subpartitioning makes it possible to support the
tiered storage approach by putting subpartitions into separate tablespaces and moving
them between storage tiers. Migration of subpartitions between storage tiers can be
done without sacrificing the scalability and availability benefits of sharding and the
ability to perform partition pruning and partition-wise joins on a primary key.

The following example shows system-managed sharding by consistent hash combined
with subpartitioning by range.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
TABLESPACE SET ts1
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/
YYYY')),
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/
YYYY')),
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/
YYYY')),
 SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
;

The following figure offers a graphical view of the table created by this statement.

Figure 2-8 Subpartitions Stored in the Tablespace of the Parent Partition

Shard 1 Shard 2 Shard 3

Partition 1

Sub-Partitions

Partition 2

Sub-Partitions

Partition 3

Sub-Partitions

Partition 4

Sub-Partitions

Partition 5

Sub-Partitions

Partition 6

Sub-Partitions

tbs1-1

tbs1-2

tbs1-3

tbs1-4

tbs1-5

tbs1-6

2 3 41 2 3 41 2 3 41

2 3 41 2 3 41 2 3 41

Tablespace

Set tbs1

In this example each subpartition is stored in the parent partition’s tablespace.
Because subpartitioning is done by date, it makes more sense to store subpartitions

Chapter 2
Sharding Methods

2-15

in separate tablespaces to provide the ability to archive older data or move it to a
read-only storage. The appropriate syntax is shown here.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, signup_date)
)
PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE(signup_date)
SUBPARTITION TEMPLATE
(SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/
YYYY'))
 TABLESPACE SET ts1,
 SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/
YYYY'))
 TABLESPACE SET ts2,
 SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/
YYYY'))
 TABLESPACE SET ts3,
 SUBPARTITION future VALUES LESS THAN (MAXVALUE)
 TABLESPACE SET ts4
)
PARTITIONS AUTO
;

Note that in the case of a database that is not sharded, when tablespaces are
specified in the subpartition template it means that subpartition N from every
partition is stored in the same tablespace. This is different in case of sharding
when subpartitions that belong to the different partitions must be stored in separate
tablespaces so that they can be moved in the event of resharding.

Subpartitioning can be used with composite sharding, too. In this case data in a table
is organized in three levels: partition sets, partitions, and subpartitions. Examples of
the three levels of data organization are shown below.

Specifying subpartition templates per partitionset is not supported to ensure that
there is uniformity in the number and bounds of subpartitions across partitionsets.
If you need to specify tablespaces for subpartitions per partitionset, you can use the
SUBPARTITIONS STORE IN clause.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3) NOT NULL
, signup_date DATE NOT NULL
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class, signup_date)
)
PARTITIONSET BY LIST (class)

Chapter 2
Sharding Methods

2-16

PARTITION BY CONSISTENT HASH (cust_id)
SUBPARTITION BY RANGE (signup_date)
 SUBPARTITION TEMPLATE /* applies to both SHARDSPACEs */
 (SUBPARTITION per1 VALUES LESS THAN (TO_DATE('01/01/2000','DD/MM/
YYYY'))
 , SUBPARTITION per2 VALUES LESS THAN (TO_DATE('01/01/2010','DD/MM/
YYYY'))
 , SUBPARTITION per3 VALUES LESS THAN (TO_DATE('01/01/2020','DD/MM/
YYYY'))
 , SUBPARTITION future VALUES LESS THAN (MAXVALUE)
)
PARTITIONS AUTO
(
 PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1
 subpartitions store in(tbs1)
, PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2
 subpartitions store in(tbs2)
)
;

Sharded Database Schema Objects
To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on a
single shard. The following topics define and illustrate the schema objects that form a
sharded database to inform your design.

• Sharded Tables
A database table is split up across the shards, so that each shard contains the
table with the same columns, but a different subset of rows. A table split up in this
manner is called a sharded table.

• Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way. Often
there is a parent-child relationship between database tables with a referential
constraint in a child table (foreign key) referring to the primary key of the parent
table.

• Duplicated Tables
In Oracle Sharding a table with the same contents in each shard is called a
duplicated table.

• Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles,
views, indexes, synonyms, functions, procedures, and packages, and non-schema
database objects, such as tablespaces, tablespace sets, directories, and contexts,
can be created on all shards.

Sharded Tables
A database table is split up across the shards, so that each shard contains the table
with the same columns, but a different subset of rows. A table split up in this manner is
called a sharded table.

The following figure shows how a set of large tables (referred to as a table family),
shown in the one database on the left, can be horizontally partitioned across the three

Chapter 2
Sharded Database Schema Objects

2-17

shards shown on the right, so that each shard contains a subset of the data, indicated
with red, yellow, and blue rows.

Figure 2-9 Horizontal Partitioning of a Table Across Shards

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Partitions are distributed across shards at the tablespace level, based on a sharding
key. Examples of keys include customer ID, account number, and country ID. The
following data types are supported for the sharding key.

• NUMBER

• INTEGER

• SMALLINT

• RAW

• (N)VARCHAR

• (N)VARCHAR2

• (N)CHAR

• DATE

• TIMESTAMP

Each partition of a sharded table resides in a separate tablespace, and each
tablespace is associated with a specific shard. Depending on the sharding method,
the association can be established automatically or defined by the administrator.

Chapter 2
Sharded Database Schema Objects

2-18

Even though the partitions of a sharded table reside in multiple shards, to the
application, the table looks and behaves exactly the same as a partitioned table in
a single database. SQL statements issued by an application never have to refer to
shards or depend on the number of shards and their configuration.

The familiar SQL syntax for table partitioning specifies how rows should be partitioned
across shards. For example, the following SQL statement creates a sharded table,
horizontally partitioning the table across shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
TABLESPACE SET ts1
;

The sharded table is partitioned by consistent hash, a special type of hash partitioning
commonly used in scalable distributed systems. This technique automatically spreads
tablespaces across shards to provide an even distribution of data and workload.

Note:

Global indexes on sharded tables are not supported, but local indexes are
supported.

Sharded Table Family
A sharded table family is a set of tables that are sharded in the same way. Often there
is a parent-child relationship between database tables with a referential constraint in a
child table (foreign key) referring to the primary key of the parent table.

Multiple tables linked by such relationships typically form a tree-like structure where
every child has a single parent. A set of such tables is referred to as a table family. A
table in a table family that has no parent is called the root table. There can be only one
root table in a table family.

• How a Table Family Is Sharded
Sharding a table family is illustrated here with the Customers–Orders–LineItems
schema.

• Designing Schemas With Multiple Table Families
A sharded database schema can have multiple table families, where all of the data
from different table families reside in the same chunks, which contain partitions
from different table families sharing the same hash key range.

Chapter 2
Sharded Database Schema Objects

2-19

How a Table Family Is Sharded
Sharding a table family is illustrated here with the Customers–Orders–LineItems
schema.

Before sharding, the tables in the schema may look as shown in the examples below.
The three tables have a parent-child relationship, with Customers as the root table.

Customers Table (Root) Before Sharding

CustNo Name Address Location Class
--------- ---------- -------------- --------- ------
123 Brown 100 Main St us3 Gold
456 Jones 300 Pine Ave us1 Silver
999 Smith 453 Cherry St us2 Bronze

Orders Table Before Sharding

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4002 456 09-MAR-2013
4003 456 05-APR-2013
4004 123 27-MAY-2013
4005 999 01-SEP-2013

LineItems Table Before Sharding

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40021 4002 456 05683022 1
40022 4002 456 45423509 3
40022 4003 456 80345330 16
40041 4004 123 45423509 1
40042 4004 123 68584904 2
40051 4005 999 80345330 12

The tables can be sharded by the customer number, CustNo, in the Customers table,
which is the root. The shard containing data pertaining to customer 123 is shown in the
following example tables.

Customers Table Shard With Customer 123 Data

CustNo Name Address Location Class
--------- ---------- -------------- ---------- ------
123 Brown 100 Main St us3 Gold

Orders Table Shard With Customer 123 Data

OrderNo CustNo OrderDate
--------- -------- -----------
4001 123 14-FEB-2013
4004 123 27-MAY-2013

LineItems Table Shard With Customer 123 Data

Chapter 2
Sharded Database Schema Objects

2-20

LineNo OrderNo CustNo StockNo Quantity
------ ------- ------ ------- --------
40011 4001 123 05683022 1
40012 4001 123 45423609 4
40013 4001 123 68584904 1
40041 4004 123 45423509 1
40042 4004 123 68584904 2

Designing Schemas With Multiple Table Families
A sharded database schema can have multiple table families, where all of the data
from different table families reside in the same chunks, which contain partitions from
different table families sharing the same hash key range.

Note:

Multiple table families are supported in system-managed sharded databases
only. Composite and user-defined sharded databases only support one table
family.

To create a new table family, create a root sharded table and specify tablespace sets
that are not used by existing tablespace families. Each table family is identified by its
root table. Tables in the different table families should not be related to each other.

Each table family should have its own sharding key definition, while the same
restriction on having the same sharding key columns in child tables still holds true
within each table family. This means that all tables from different table families are
sharded the same way with consistent hash into the same number of chunks, with
each chunk containing data from all the table families.

Design your table families such that queries bwterrn different table-families are
minimal and only carried out on the sharding coordinator, as many such joins will
have an effect on performance

The following example shows you how to create multiple table families using
the PARENT clause with a system-managed sharding methodology (PARTITION BY
CONSISTENT HASH).

CREATE SHARDED TABLE Customers <=== Table Family #1
(CustId NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustId NUMBER

Chapter 2
Sharded Database Schema Objects

2-21

, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustId NUMBER
, StockNo NUMBER
, Quantity NUMBER
)
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustId)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Products <=== Table Family #2
(ProdId NUMBER NOT NULL,
 CONSTRAINT pk_products PRIMARY KEY (ProdId)
)
PARTITION BY CONSISTENT HASH (ProdId)
PARTITIONS AUTO
TABLESPACE SET ts_2
;

Note:

ORA-3850 is thrown if you attempt to use a tablespace set for a table family,
but that tablespace set is already in use by an existing table family.

Joins across table families may not be efficient, and if you have many such
joins, or if they are performance-critical, you should use duplicated tables
instead of multiple table families.

Associating Global Services With Multiple Table Families

Each table family should be associated with a different global service. Applications
from different table families each have their own connection pool and service, and use
their own sharding key for routing to the correct shard.

When you create the first root table (that is, the first table family) all of the existing
global services are automatically associated with it. You can use the GDSCTL MODIFY

Chapter 2
Sharded Database Schema Objects

2-22

SERVICE command to change the services associated with a table family after more
table families are created, as shown in this example.

GDSCTL> MODIFY SERVICE –GDSPOOL shdpool –TABLE_FAMILY sales.customer
-SERVICE sales

Duplicated Tables
In Oracle Sharding a table with the same contents in each shard is called a duplicated
table.

For many applications, the number of database requests handled by a single shard
can be maximized by duplicating read-only or read-mostly tables across all shards.
This strategy is a good choice for relatively small tables that are not updated
frequently, and that are often accessed together with sharded tables.

A sharded database includes both sharded tables that are horizontally partitioned
across shards, and duplicated tables that are replicated to all shards. Duplicated
tables contain reference information, for example, a Stock Items table that is common
to each shard. The combination of sharded and duplicated tables enables all
transactions associated with a sharding key to be processed by a single shard. This
technique enables linear scalability and fault isolation.

As an example of the need for a duplicated table, consider the table family that
is described in Sharded Table Family. The database schema might also include a
Products table which contains data that is shared by all the customers in the shards
that were created for this table family, and it cannot be sharded by the customer
number. To prevent multi-shard queries during order processing, the entire table must
be duplicated on all shards.

The difference between sharded tables (Customers, Orders, and LineItems) and a
duplicated table (Products) is shown in the following figure.

Chapter 2
Sharded Database Schema Objects

2-23

Figure 2-10 Sharded Tables and a Duplicated Table in a Sharded Database

Line Items

Customer Order

123 4001

999 4003

123 4001

456 4004

999 4003

999

Line

40011

40012

40013

40014

40015

400164003

Orders

OrderCustomer

4001123

4002456

4003999

4004456

4005456

Customers

Customer Name

123 Mary

456 John

999 Peter

Sharded by Customer

Duplicated

Products

SKU Product

100 Coll

101 Piston

102 Belt

Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema database
objects, such as tablespaces, tablespace sets, directories, and contexts, can be
created on all shards.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLICATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in
this release. These objects can be created by connecting to individual shards.

• Cluster

• Control file

• Database link

• Disk group

• Edition

• Flashback archive

• Materialized zone map

Chapter 2
Sharded Database Schema Objects

2-24

• Outline

• Pfile

• Profile

• Restore point

• Rollback segment

• Summary

Materialized views and view logs are supported starting in Oracle Database 18c, with
the following restrictions:

• Materialized views created on sharded tables remain empty on the catalog
database, while the corresponding materialized views on shards contain data from
each of the individual shards.

• Only the REFRESH COMPLETE ON DEMAND USING TRUSTED CONSTRAINTS option is
supported for materialized views on sharded tables.

Shard-Level High Availability
Oracle Sharding is integrated with Oracle Database replication technologies for high
availability and disaster recovery at the shard level.

The following topics describe how to use Oracle’s replication technologies to make
your sharded databases highly available:

• About Sharding and Replication
Oracle Sharding is tightly integrated with Oracle Data Guard and Oracle
GoldenGate for Oracle replication and disaster recovery.

• Using Oracle Data Guard with a Sharded Database
Oracle Data Guard replication maintains one or more synchronized copies
(standbys) of a shard (the primary) for high availability and data protection.
Standbys may be deployed locally or remotely, and when using Oracle Active Data
Guard can also be open for read-only access.

• Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained active-active replication where all
shards are writable, and each shard can be partially replicated to other shards
within a shardgroup.

About Sharding and Replication
Oracle Sharding is tightly integrated with Oracle Data Guard and Oracle GoldenGate
for Oracle replication and disaster recovery.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Chapter 2
Shard-Level High Availability

2-25

Replication provides high availability, disaster recovery, and additional scalability for
reads. A unit of replication can be a shard, a part of a shard, or a group of shards.

Replication topology in a sharded database is declaratively specified using GDSCTL
command syntax. You can choose one of two technologies—Oracle Data Guard or
Oracle GoldenGate—to replicate your data. Oracle Sharding automatically deploys the
specified replication topology and enables data replication.

The availability of a sharded database is not affected by an outage or slowdown of one
or more shards. Replication is used to provide individual shard-level high availability
(Oracle Active Data Guard or Oracle GoldenGate). Replication is automatically
configured and deployed when the sharded database is created. Optionally, you can
use Oracle RAC for shard-level high availability, complemented by replication, to
maintain shard-level data availability in the event of a cluster outage. Oracle Sharding
automatically fails over database connections from a shard to its replica in the event of
an unplanned outage.

Using Oracle Data Guard with a Sharded Database
Oracle Data Guard replication maintains one or more synchronized copies (standbys)
of a shard (the primary) for high availability and data protection. Standbys may be
deployed locally or remotely, and when using Oracle Active Data Guard can also be
open for read-only access.

Oracle Data Guard can be used as the replication technology for sharded databases
using the system-managed, user-defined, or composite method of sharding.

Using Oracle Data Guard with a System-Managed Sharded Database

In system-managed and composite sharding, the logical unit of replication is a group
of shards called a shardgroup. In system-managed sharding, a shardgroup contains all
of the data stored in the sharded database. The data is sharded by consistent hash
across shards that make up the shardgroup. Shards that belong to a shardgroup are
usually located in the same data center. An entire shardgroup can be fully replicated to
one or more shardgroups in the same or different data centers.

The following figure illustrates how Data Guard replication is used with system-
managed sharding. In the example in the figure there is a primary shardgroup,
Shardgroup 1, and two standby shardgroups, Shardgroup 2 and Shardgroup 3.
Shardgroup 1 consists of Data Guard primary databases (shards 1-3). Shardgroup
2 consists of local standby databases (shards 4-6) which are located in the same
datacenter and configured for synchronous replication. And Shardgroup 3 consists
of remote standbys (shards 7-9) located in a different datacenter and configured for
asynchronous replication. Oracle Active Data Guard is enabled in this configuration, so
each standby is open read-only.

Chapter 2
Shard-Level High Availability

2-26

Figure 2-11 System-Managed Sharding with Data Guard Replication

Datacenter 1

Datacenter 2

Shardgroup 1

Shardgroup 2

Shardgroup 3

1 2

5

3

4 6

7 8 9

The concept of shardgroup as a logical unit of replication hides from the user the
implementation details of replication. With Data Guard, replication is done at the shard
(database) level. The sharded database in the figure above consists of three sets
of replicated shards: {1, 4, 7}, {2, 5, 8} and {3, 6, 9}. Each set of replicated shards
is managed as a Data Guard Broker configuration with fast-start failover (FSFO)
enabled.

To deploy replication, specify the properties of the shardgroups (region, role, and so
on) and add shards to them. Oracle Sharding automatically configures Data Guard
and starts an FSFO observer for each set of replicated shards. It also provides load
balancing of the read-only workload, role based global services and replication lag,
and locality based routing.

Run the following GDSCTL commands to deploy the example configuration shown in
the figure above.

CREATE SHARDCATALOG –database host00:1521:shardcat –region dc1,dc2

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:shardcat –region
dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:shardcat –region
dc2
START GSM -gsm gsm1
START GSM -gsm gsm2

ADD SHARDGROUP -shardgroup shardgroup1 -region dc1 -deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup2 -region dc1 -deploy_as
active_standby
ADD SHARDGROUP -shardgroup shardgroup3 -region dc2 -deploy_as
active_standby

Chapter 2
Shard-Level High Availability

2-27

CREATE SHARD -shardgroup shardgroup1 -destination host01 -credential
oracle_cred
CREATE SHARD -shardgroup shardgroup1 -destination host02 -credential
oracle_cred
CREATE SHARD -shardgroup shardgroup1 -destination host03 -credential
oracle_cred
...
CREATE SHARD -shardgroup shardgroup3 -destination host09 -credential
oracle_cred

DEPLOY

Using Oracle Data Guard with a User-Defined Sharded Database

With user-defined sharding the logical (and physical) unit of replication is a shard.
Shards are not combined into shardgroups. Each shard and its replicas make
up a shardspace which corresponds to a single Data Guard Broker configuration.
Replication can be configured individually for each shardspace. Shardspaces can
have different numbers of standbys which can be located in different data centers. An
example of user-defined sharding with Data Guard replication is shown in the following
figure.

Figure 2-12 User-Defined Sharding with Data Guard Replication

Datacenter 1

Datacenter 3

Datacenter 2

Shardspace A Shardspace B Shardspace C

1 2 3

4 5

6 7

8 9 10

Chapter 2
Shard-Level High Availability

2-28

Run the following GDSCTL commands to deploy the example user-defined sharded
database with Data Guard replication shown in the figure above.

CREATE SHARDCATALOG -sharding user –database host00:1521:cat –region
dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b
ADD SHARDSPACE -shardspace shardspace_c

CREATE SHARD -shardspace shardspace_a –region dc1 -deploy_as primary
-destination
host01 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_a –region dc1 -deploy_as standby
-destination
host04 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_a –region dc2 -deploy_as standby
-destination
host06 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_a –region dc3 -deploy_as standby
-destination
host08 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rsp

CREATE SHARD -shardspace shardspace_b –region dc1 -deploy_as primary
-destination
host08 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rs
...

CREATE SHARD -shardspace shardspace_c –region dc3 -deploy_as standby
-destination
host10 -credential oracle_cred -netparamfile /home/oracle/
netca_dbhome.rsp

DEPLOY

Using Oracle Data Guard with a Composite Sharded Database

In composite sharding, similar to user-defined sharding, a sharded database consists
of multiple shardspaces. However, each shardspace, instead of replicated shards,
contains replicated shardgroups.

Chapter 2
Shard-Level High Availability

2-29

Figure 2-13 Composite Sharding with Data Guard Replication

Shardgroup
A1

Shardgroup
B1

Shardgroup
A2

Shardgroup
B2

Shardgroup
B3

Shardgroup
A3

Shardspace A Shardspace B

Datacenter
1

Datacenter
2

Datacenter
3

Run the following GDSCTL commands to deploy the example configuration shown in
the previous figure.

CREATE SHARDCATALOG -sharding composite –database host00:1521:cat –
region dc1,dc2,dc3

ADD GSM -gsm gsm1 -listener 1571 –catalog host00:1521:cat –region dc1
ADD GSM -gsm gsm2 -listener 1571 –catalog host00:1521:cat –region dc2
ADD GSM -gsm gsm3 -listener 1571 –catalog host00:1521:cat –region dc3
START GSM -gsm gsm1
START GSM -gsm gsm2
START GSM -gsm gsm3

ADD SHARDSPACE -shardspace shardspace_a
ADD SHARDSPACE -shardspace shardspace_b

ADD SHARDGROUP -shardgroup shardgroup_a1 –shardspace shardspace_a -
region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_a2 –shardspace shardspace_a -
region dc1

Chapter 2
Shard-Level High Availability

2-30

-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_a3 –shardspace shardspace_a -
region dc3
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b1 –shardspace shardspace_b -
region dc1
-deploy_as primary
ADD SHARDGROUP -shardgroup shardgroup_b2 –shardspace shardspace_b -
region dc1
-deploy_as active_standby
ADD SHARDGROUP -shardgroup shardgroup_b3 –shardspace shardspace_b -
region dc2
-deploy_as active_standby

CREATE SHARD -shardgroup shardgroup_a1 -destination host01 –credential
orcl_cred
...

CREATE SHARD -shardgroup shardgroup_b3 -destination host09 -credential
orcl_cred

DEPLOY

Using Oracle GoldenGate with a Sharded Database
Oracle GoldenGate is used for fine-grained active-active replication where all shards
are writable, and each shard can be partially replicated to other shards within a
shardgroup.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Note:

Oracle Database 21c supports only multitenant architecture (CDB). Oracle
GoldenGate versions 12.3-19.1 only support Oracle Sharding with single-
instance Oracle databases (release 11g through 19c.)

In Oracle GoldenGate, replication is handled at the chunk level. For example, in
Shardgroup 1 in the following figure, half of the data stored in each shard is replicated
to one shard, and the other half to another shard. If any shard becomes unavailable,
its workload is split between two other shards in the shardgroup. The multiple failover
destinations mitigate the impact of a shard failure because there is no single shard that
has to handle all of the workload from the failed shard.

Chapter 2
Shard-Level High Availability

2-31

Figure 2-14 System-Managed Sharding with Golden Gate Replication

Datacenter 1

Datacenter 2

Shardgroup 1

2 31

4

Shardgroup 2

5

With Oracle GoldenGate replication, a shardgroup can contain multiple replicas
of each row in a sharded table; therefore, high availability is provided within a
shardgroup, and there is no need to have a local replica of the shardgroup, as there
is in the case of Data Guard replication. The number of times each row is replicated
within a shardgroup is called its replication factor and is a configurable parameter.

To provide disaster recovery, a shardgroup can be replicated to one or more data
centers. Each replica of a shardgroup can have a different number of shards,
replication factor, database versions, and hardware platforms. However, all shardgroup
replicas must have the same number of chunks, because replication is done at the
chunk level.

Shardgroup 2 in the figure above contains the same data as Shardgroup 1, but
resides in a different data center. Shards in both data centers are writable. The default
replication factor, 2, is used for both shardgroups.

Note that because Shardgroup 2 contains only two shards and the replication factor
is 2, the shards are fully replicated, and each of them contains all of the data stored
in the sharded database. This means that any query routed to these shards can be
executed without going across shards. There is only one failover destination in this
shardgroup; if a shard goes down, the load on the other shard doubles.

Oracle Sharding is designed to minimize the number of conflicting updates performed
to the same row on different shards. This is achieved designating a master chunk for
each range of hash values and routing most of requests for the corresponding data to
this chunk.

Sometimes it is impossible to avoid update conflicts because of state transitions,
such as a chunk move or split, or a shard going up or down. The user may also

Chapter 2
Shard-Level High Availability

2-32

intentionally allow conflicts in order to minimize transaction latency. For such cases
Oracle GoldenGate provides automatic conflict detection and resolution which handles
all kinds of conflicts including insert-delete conflicts.

Note:

Oracle GoldenGate does not support the user defined sharding method.

For system-managed sharding with Oracle GoldenGate, a shard must have
at least two chunks.

Oracle GoldenGate does not support PDBs as shards.

See Also:

Working with Oracle GoldenGate Sharding in the Fusion Middleware
Using the Oracle GoldenGate Microservices Architecture guide for more
information about using Oracle GoldenGate with Oracle Sharding.

Query Processing and the Query Coordinator
The query coordinator is part of the shard catalog. The query coordinator provides
query processing support for the sharded database. With its access to the sharded
database topology metadata in the shard catalog, there are three general cases in
which the query coordinator plays an important part.

1. Single Shard Queries with No Sharding Key

If a sharding key is not passed from the application, the query coordinator figures
out which shard contains the data required by the query and sends the query there
for execution.

2. Multi-Shard Queries

The query coordinator can also assist with queries that need data from more
than one shard, called multi-shard queries, for example SELECT COUNT(*) FROM
Customer.

3. Aggregate Queries

The query coordinator handles aggregate queries typically used in reporting, such
as aggregates on sales data.

In every case, the query coordinator’s SQL compiler identifies the relevant shards
automatically and coordinates the query execution across all of the participating
shards.

In a single-shard query scenario, the entire query is executed on the single
participating shard, and the query coordinator just passes processed rows back to
the client.

Chapter 2
Query Processing and the Query Coordinator

2-33

For a multi-shard query the SQL compiler analyzes and rewrites the query into query
fragments that are sent and executed by the participating shards. The queries are
rewritten so that most of the query processing is done on the participating shards and
then aggregated by the coordinator.

The query coordinator uses Oracle Database's parallel query engine to optimize and
push multi-shard queries in parallel to the shards. Each shard executes the query
on the subset of data that it has. Then the results are returned back to the query
coordinator, which sends them back to the client.

In essence, the shards act as compute nodes for the queries executed by the
query coordinator. Because the computation is pushed to the data, there is reduced
movement of data between shards and the coordinator. This arrangement also
enables the effective use of resources by offloading processing from the query
coordinator on to the shards as much as possible.

Specifying Consistency Levels

You can specify different consistency levels for multi-shard queries. For example, you
might want some queries to avoid the cost of SCN synchronization across shards,
and these shards could be globally distributed. Another use case is when you use
standbys for replication and slightly stale data is acceptable for multi-shard queries,
as the results could be fetched from the primary and its standbys. A multi-shard
query must maintain global read consistency (CR) by issuing the query at the highest
common SCN across all the shards.

High Availability and Performance

It is highly recommended that the query coordinator be protected with Oracle Data
Guard in Maximum Availability protection mode (zero data loss failover) with fast-start
failover enabled. The query coordinator may optionally be Oracle RAC-enabled for
additional availability and scalability. To improve the scalability and availability of multi-
shard query workloads, Oracle Active Data Guard standby shard catalog databases in
read-only mode can act as multi-shard query coordinators.

In aggregation use cases and SQL execution without a sharding key, you will
experience a reduced level of performance compared with direct, key-based, routing.

Client Application Request Routing
To route a client application request directly to a shard, you connect to the shard using
the Oracle drivers and provide a sharding key with the request.

About Sharding Keys

All database requests that require high performance and fault isolation must only
access data associated with a single value of the sharding key. The application must
provide the sharding key when establishing a database connection. If this is the case,
the request is routed directly to the appropriate shard.

Multiple requests can be executed in the same session as long as they all are related
to the same sharding key. Such transactions typically access 10s or 100s of rows.
Examples of single-shard transactions include order entry, lookup and update of a
customer’s billing record, and lookup and update of a subscriber’s documents.

Database requests that must access data associated with multiple values of the
sharding key, or for which the value of the sharding key is unknown, must be executed

Chapter 2
Client Application Request Routing

2-34

from the query coordinator which orchestrates parallel execution of the query across
multiple shards.

About Oracle Connection Drivers

At run time, connection pools act as shard directors by routing database requests
across pooled connections. Oracle Database supports connection-pooling in data
access drivers such as OCI, JDBC, and ODP.NET. These drivers can recognize
sharding keys specified as part of a connection request. Similarly, the Oracle Universal
Connection Pool (UCP) for JDBC clients can recognize sharding keys specified in
a connection URL. Oracle UCP also enables non-Oracle application clients such as
Apache Tomcat and WebSphere to work with Oracle Sharding.

Oracle clients use UCP cache routing information to directly route a database
request to the appropriate shard, based on the sharding keys provided by the
application. Such data-dependent routing of database requests eliminates an extra
network hop, decreasing the transactional latency for high volume applications.

Routing information is cached during an initial connection to a shard, which is
established using a shard director. Subsequent database requests for sharding keys
within the cached range are routed directly to the shard, bypassing the shard director.

Like UCP, a shard director can process a sharding key specified in a connect string
and cache routing information. However, UCP routes database requests using an
already established connection, while a shard director routes connection requests to a
shard. The routing cache automatically refreshes when a shard becomes unavailable
or changes occur to the sharding topology. For high-performance, data-dependent
routing, Oracle recommends using a connection pool when accessing data in the
sharded database.

Separate connection pools must be used for direct routing and routing requests
through the query coordinator. For direct routing, separate global services must be
created for read-write and read-only workloads. This is true only if Data Guard
replication is used. For proxy routing, use the GDS$CATALOG service on the shard
catalog database.

Management Interfaces for a Sharded Database
The GDSCTL command-line utility is used to configure, deploy, monitor, and manage
an Oracle Sharding sharded database. Oracle Enterprise Manager Cloud Control can
also be used for sharded database monitoring and management.

Like SQL*Plus, GDSCTL is a command-line utility with which you can control all stages
of a sharded database's life cycle. You can run GDSCTL remotely from a different server
or laptop to configure and deploy a sharded database topology, and then montior and
manage your sharded database.

GDSCTL provides a simple declarative way of specifying the configuration of a sharded
database and automating its deployment. Only a few GDSCTL commands are
required to create a sharded database.

You can also use Cloud Control for sharded database monitoring and life cycle
management if you prefer a graphical user interface. With Cloud Control you can
monitor availability and performance, and you can make changes to a sharding
configuration, such as add and deploy shards, services, shard directors, and other
sharding components.

Chapter 2
Management Interfaces for a Sharded Database

2-35

3
Sharded Database Deployment

Create and configure a sharded database, beginning with host provisioning, and
continuing through software configuration, database setup, sharding metadata
creation, and schema creation. This process is known as deployment.

The following topics explain the concepts and tasks to deploy a sharded database:

• Introduction to Sharded Database Deployment
Oracle Sharding provides the capability to automatically deploy the sharded
database, which includes both the shards and the replicas.

• Planning Your Sharded Database Deployment
Many decisions need to be made when planning your sharded database
deployment including the sharded database topology, replication method, and the
sharding methodology.

• Install the Oracle Database Software
Install Oracle Database on each system that will host the shard catalog, a
database shard, or their replicas.

• Install the Shard Director Software
Install the global service manager software on each system that you want to host a
shard director.

• Create the Shard Catalog Database
Use the following information and guidelines to create the shard catalog database.

• Create the Shard Databases
The databases that will be used as shards should be created on their respective
hosts.

• Configure the Sharded Database Topology
After the databases for the shard catalog and all of the shards are configured,
along with corresponding TNS listeners, you can add the sharding metadata to
the shard catalog database using GDSCTL. The sharding metadata describes the
topology used for the sharded database.

• Deploy the Sharding Configuration
When the sharded database topology has been fully configured with GDSCTL
commands, run the GDSCTL DEPLOY command to deploy the sharded database
configuration.

• Create and Start Global Database Services
After the shards are successfully deployed, and the correct status has been
confirmed, create and start global database services on the shards to service
incoming connection requests from your application.

• Verify Shard Status
Once you complete the DEPLOY step in your sharding configuration deployment,
verify the detailed status of a shard

• Example Sharded Database Deployment
This example explains how to deploy a typical system-managed sharded database
with multiple replicas, using Oracle Data Guard for high availability.

3-1

• Automated Deployment Scripts
Tooling for Oracle Sharding includes Terraform, Kubernetes, and Ansible scripts to
automate and further simplify the sharded database deployment operations.

• Using Transparent Data Encryption with Oracle Sharding
Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of
the shards must share and use the same encryption key for the encrypted
tablespaces.

Introduction to Sharded Database Deployment
Oracle Sharding provides the capability to automatically deploy the sharded database,
which includes both the shards and the replicas.

The sharded database administrator defines the topology (regions, shard hosts,
replication technology) and invokes the DEPLOY command with a declarative
specification using the GDSCTL command-line interface.

Before You Begin

Note that there are many different configurations and topologies that can be used
for a sharded database. Your particular sharded database may employ a variety of
Oracle software components such as Oracle Data Guard and Oracle Real Application
Clusters (Oracle RAC) along with different sharding methodologies including system-
managed, composite, and user-defined sharding.

Depending on your application’s particular architecture and system requirements,
you may have several choices from which to choose when designing your
system. Familiarize yourself with Oracle Sharding Architecture and Concepts before
proceeding with deployment.

Sharded Database Deployment Roadmap

At a high level, the deployment steps are:

1. Set up the components.

• Provision and configure the hosts that will be needed for the sharding
configuration and topology selected (see Provision and Configure Hosts and
Operating Systems).

• Install Oracle Database software on the selected catalog and shard nodes
(see Install the Oracle Database Software).

• Install global service manager (GSM) software on the shard director nodes
(see Install the Shard Director Software).

2. Create databases needed to store the sharding metadata and the application data.

• Create a database that will become the shard catalog along with any desired
replicas for disaster recovery (DR) and high availability (HA) (see Create the
Shard Catalog Database).

• Create databases that will become the shards in the configuration including
any standby databases needed for DR and HA (see Create the Shard
Databases).

3. Specify the sharding topology using some or all the following commands from the
GDSCTL command line utility, among others (see Configure the Sharded Database
Topology).

Chapter 3
Introduction to Sharded Database Deployment

3-2

• CREATE SHARDCATALOG

• ADD GSM

• START GSM

• ADD SHARDGROUP

• ADD SHARD

• ADD INVITEDNODE

4. Run DEPLOY to deploy the sharding topology configuration (see Deploy the
Sharding Configuration).

5. Add the global services needed to access any shard in the sharded database (see
Create and Start Global Database Services).

6. Verify the status of each shard (see Verify Shard Status).

When the sharded database configuration deployment is complete and successful,
you can create the sharded schema objects needed for your application. See Sharded
Database Schema Objects.

The topics that follow describe each of the deployment tasks in more detail along
with specific requirements for various components in the system. These topics can
act as a reference for the set up and configuration of each particular step in the
process. However, by themselves, they will not produce a fully functional sharding
configuration since they do not implement a complete sharding scenario, but only
provide the requirements for each step.

Example Sharded Database Deployment walks you through a specific deployment
scenario of a representative reference configurations. This section provides examples
of every command needed to produce a fully functional sharded databases once all
the steps are completed.

Planning Your Sharded Database Deployment
Many decisions need to be made when planning your sharded database deployment
including the sharded database topology, replication method, and the sharding
methodology.

There are many different configurations and topologies that can be used for a sharded
database. Your particular sharded database may employ a variety of Oracle software
components such as Oracle Data Guard and Oracle Real Application Clusters
(Oracle RAC) along with different sharding methodologies including system-managed,
composite, and user-defined sharding.

Depending on which sharding method you choose (system, composite, or user-
defined sharding), you can further refine your topology planning with decisions about
considerations such as the number of chunks, shardgroups or shardspaces, regions,
standbys, and open as opposed to mounted databases, and so on.

See Oracle Sharding Architecture and Concepts for information pertaining to these
topology options.

• Plan the Sharded Database Configuration
To plan your Oracle Sharding configuration you need an understanding of the
objects that make up a sharded database configuration, so that you can best
configure and deploy them to meet your requirements.

Chapter 3
Planning Your Sharded Database Deployment

3-3

• Provision and Configure Hosts and Operating Systems
Before you install any software, review these hardware, network, and operating
system requirements for Oracle Sharding.

• Multi-Shard Query Coordinator Availability and Scalability
The multi-shard query coordinator, a component of the shard catalog, can be kept
highly available and scaled to meet its workload with these recommendations.

Plan the Sharded Database Configuration
To plan your Oracle Sharding configuration you need an understanding of the objects
that make up a sharded database configuration, so that you can best configure and
deploy them to meet your requirements.

The sharded database configuration consists of the sharding method, replication (high
availability) technology, the default number of chunks to be present in the sharded
database, the location and number of shard directors, the numbers of shardgroups,
shardspaces, regions, and shards in the sharded database, and the global services
that will be used to connect to the sharded database.

Oracle Database Global Data Services Architecture

Because the Oracle Sharding feature is built on the Oracle Database Global Data
Services feature, to plan your Oracle Sharding topology you might benefit from an
understanding of the Global Data Services architecture. See Introduction to Global
Data Services for conceptual information about Global Data Services.

Provision and Configure Hosts and Operating Systems
Before you install any software, review these hardware, network, and operating
system requirements for Oracle Sharding.

• Oracle Database Enterprise Edition is required when running an Oracle
Sharded Database.

• Hardware and operating system requirements for shards are the same as those
for Oracle Database. See your Oracle Database installation documentation for
these requirements.

• Hardware and operating system requirements for the shard catalog and shard
directors are the same as those for the Global Data Services catalog and
global service manager. See Oracle Database Global Data Services Concepts
and Administration Guide for these requirements.

• Network requirements are Low Latency GigE.

• Port communication requirements are as follows.

– Each and every shard must be able to reach each and every shard director's
listener and ONS ports. The shard director listener ports and the ONS ports
must also be opened to the application/client tier, all of the shards, the shard
catalog, and all other shard directors.

The default listener port of the shard director is 1522, and the default ONS
ports on most platforms are 6123 for the local ONS and 6234 for remote ONS.

– Each and every shard must be able to reach the TNS Listener port (default
1521) of the shard catalog (both primary and standbys).

Chapter 3
Planning Your Sharded Database Deployment

3-4

https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/shard&id=GSMUG-GUID-B7010949-4EAE-4AB1-A136-D5A4CD2AE688
https://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/19/shard&id=GSMUG-GUID-B7010949-4EAE-4AB1-A136-D5A4CD2AE688

– The TNS Listener port of each shard must be opened to all shard directors
and the shard catalog.

– All of the port numbers listed above are modifiable during the deployment
configuration. However, the port numbers to be used must be known before
setting up the host software.

• Host name resolution must be successful between all of the shard catalog,
shards, and shard director hosts. Operating system commands such as ‘ping’
must succeed from a given host to any other host when specifying any host names
provided during sharded database configuration commands.

Number and Sizing of Host Systems

Depending on your specific configuration, the hosts that are needed may include the
following:

• Shard catalog host. The shard catalog host runs the Oracle Database that serves
as the shard catalog. This database contains a small amount of sharding topology
metadata and any duplicated tables that are created for your application. In
addition, the shard catalog acts as a multi-shard query coordinator for cross-shard
queries and services connections for applications that have not been written to be
sharding-aware. In general, the transaction workload and size of this database are
not particularly large.

• Shard catalog database standbys (replicas). At least one more host to contain
a replica or standby of the primary shard catalog database is recommended. This
host is necessary in case of a failure of the primary catalog host. In addition, while
acting as a standby database, this host can also be configured to be a query
coordinator for cross-shard queries.

• Shard director host. The shard director (global service manager) software can
reside on a separate host, or it can be co-located on the same host as the shard
catalog. This component of the sharding system is comprised of a network listener
and several background processes used to monitor and configure a sharded
configuration. If it is co-located on the same host as the catalog database, the
shard director must be installed in a separate Oracle Home from the catalog
database, because the installation package is different than the one used for
Oracle Database.

• Multiple shard directors. For high-availability purposes, it is recommended
that you have more than one shard director running in a sharded system. Any
additional shard directors can run on their own hosts or on the hosts running the
standby shard catalog databases.

• Shards. In addition to the above hosts, each shard that is configured in the system
should also run on its own separate host. The hosts and their configurations
chosen for this task should be sized in the same way as a typical Oracle Database
host depending on how much load is put on each particular shard.

• Shard standbys (replicas). Again, for high-availability and disaster recovery
purposes, use Oracle Data Guard and replicas created for all sharded data.
Additional hosts will be needed to run these replica or standby databases.

Chapter 3
Planning Your Sharded Database Deployment

3-5

Note:

Oracle GoldenGate replication support for Oracle Sharding High
Availability is deprecated in Oracle Database 21c, and will be
desupported in Oracle Database 22c.

When the number of hosts and capacity requirements for each host have been
determined, provision your hardware resources as appropriate for your environment
using whatever methodologies you choose.

Before installing any software, you must confirm that the hosts can communicate with
each other though the ports as described above. Because a sharding configuration is
inherently a distributed system, it is crucial that this connectivity between and among
all of the hosts is confirmed before moving on to the next steps in the deployment
process. Failure to set up port access correctly will lead to failures in subsequent
commands.

Multi-Shard Query Coordinator Availability and Scalability
The multi-shard query coordinator, a component of the shard catalog, can be kept
highly available and scaled to meet its workload with these recommendations.

The availability of the multi-shard coordinator impacts proxy-routing based workloads,
so it is highly recommended that the coordinator be protected with Data Guard
in Maximum Availability protection mode (zero data loss failover) with fast-start
failover enabled. The coordinator may optionally be Oracle RAC-enabled for additional
availability and scalability.

To improve the scalability and availability of multi-shard query workloads, Oracle
Active Data Guard standby shard catalog databases in read-only mode can act as
multi-shard query coordinators. For each active replica of the catalog database, a
special coordinator service, GDS$COORDINATOR.cloud_name (where cloud_name is the
value specified for the configname parameter in the GDSCTL CREATE SHARDCATALOG
command, and is oradbcloud by default) is running and registered on all shard
directors.

Clients can connect to this service on any of the replicas and perform multi-shard
queries, allowing shard directors to distribute the multi-shard query workload with
respect to runtime load balancing and decrease the load on in the primary shard
catalog, which is the central component of the Oracle Sharding framework.

Additionally, if the database’s region is set, and the client specifies the region in the
connection string, a shard director routes a connection with respect to regional affinity.

Availability of the multi-shard query coordinator has zero impact on workloads using
direct routing.

Install the Oracle Database Software
Install Oracle Database on each system that will host the shard catalog, a database
shard, or their replicas.

Aside from the requirement that the shard catalog and all of the shards in an Oracle
Sharding configuration require Oracle Database Enterprise Edition, there are no other

Chapter 3
Install the Oracle Database Software

3-6

special installation considerations needed for sharding as long as the installation is
successful and all post-install scripts have been run successfully.

See your platform’s installation guide at https://docs.oracle.com/en/database/oracle/
oracle-database/ for information about configuring operating system users.

Install the Shard Director Software
Install the global service manager software on each system that you want to host a
shard director.

Note that this software installation is distinct from an Oracle Database installation. If
you choose to co-locate the shard director software on the same host as the shard
catalog database, it must be installed in a separate Oracle Home.

See Oracle Database Global Data Services Concepts and Administration Guide for
information about installing the global service manager software.

Create the Shard Catalog Database
Use the following information and guidelines to create the shard catalog database.

The shard catalog database contains a small amount of sharding topology metadata
and also contains all the duplicated tables that will be created for use by your sharded
application. The shard catalog database also acts as a query coordinator to run cross-
shard queries that select and aggregate data from more than one shard.

From a sharding perspective, the way in which you create or provision the catalog
database is irrelevant. The database can be created with the Database Configuration
Assistant (DBCA), manually using SQL*Plus, or provisioned from cloud infrastructure
tools.

As long as you have a running Oracle Database Enterprise Edition instance on the
shard catalog host with the following characteristics, it can used as the shard catalog.

• Create a pluggable database (PDB) for use as the shard catalog database. Using
the root container (CDB$ROOT) of a container database (CDB) as the shard catalog
database is not supported.

• Your shard catalog database must use a server parameter file (SPFILE). This is
required because the sharding infrastructure uses internal database parameters
to store configuration metadata, and that data needs to persist across database
startup and shutdown operations.

$ sqlplus / as sysdba

SQL> show parameter spfile

NAME TYPE VALUE
-------- --------- ------------------------------------
spfile string /u01/app/oracle/dbs/spfilecat.ora

• The database character set and national character set must be the same, because
it is used for all of the shard databases. This means that the character set chosen
must contain all possible characters that will be inserted into the shard catalog or
any of the shards.

Chapter 3
Install the Shard Director Software

3-7

https://docs.oracle.com/en/database/oracle/oracle-database/
https://docs.oracle.com/en/database/oracle/oracle-database/

This requirement arises from the fact that Oracle Data Pump is used internally to
move transportable tablespaces from one shard to another during sharding MOVE
CHUNK commands. A requirement of that mechanism is that character sets must
match on the source and destination.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> select * from nls_database_parameters
 2 where parameter like '%CHARACTERSET';

PARAMETER VALUE
-- --------------------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8DEC

• Because the shard catalog database can run multi-shard queries which connect
to shards over database links, the OPEN_LINKS and OPEN_LINKS_PER_INSTANCE
database initialization parameter values must be greater than or equal to the
number of shards that will be part of the sharded database configuration.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter open_links

NAME TYPE VALUE
------------------------------------ ----------- ------------
open_links integer 20
open_links_per_instance integer 20

• Set the DB_FILES database initialization parameter greater than or equal to the
total number of chunks and/or tablespaces in the system.

Each data chunk in a sharding configuration is implemented as a tablespace
partition and resides in its own operating system data file. As a result, the
DB_FILES database initialization parameter must be greater than or equal to
the total number of chunks (as specified on the CREATE SHARDCATALOG or ADD
SHARDSPACE commands) and/or tablespaces in the system.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter db_files

NAME TYPE VALUE
------------------------------------ ----------- ------------
db_files integer 1024

• To support Oracle Managed Files, which is used by the sharding chunk
management infrastructure, the DB_CREATE_FILE_DEST database parameter must
be set to a valid value.

This location is used during chunk movement operations (for example MOVE CHUNK
or automatic rebalancing) to store the transportable tablespaces holding the chunk

Chapter 3
Create the Shard Catalog Database

3-8

data. In addition, files described in Oracle Database Administrator’s Guide, "Using
Oracle Managed Files," are also stored in this location as is customary for any
Oracle database using Oracle Managed Files.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> show parameter db_create_file_dest

NAME TYPE VALUE
--------------------- --------- -----------------------------
db_create_file_dest string /u01/app/oracle/oradata

• An Oracle-provided user account named GSMCATUSER must be unlocked and
assigned a password inside the PDB designated for the shard catalog. This
account is used by the shard director processes to connect to the shard catalog
database and perform administrative tasks in response to sharding commands.

Note that GSMCATUSER is a common user in the container database. As a result,
its password is the same for CDB$ROOT and all PDBs in the CDB. If multiple
PDBs in a single CDB are to be used as catalog databases for different sharding
configurations, they will all share the same GSMCATUSER password which can
be a security concern. To avoid this potential security concern, configure a
separate CDB to host each shard catalog. Each CDB should contain only a single
shard catalog PDB so that no other PDBs in the CDB can share the common
GSMCATUSER password. In this way, multiple shard catalogs can be configured
across several CDBs, each having different GSMCATUSER passwords.

The password you specify is used later during sharding topology creation in any
ADD GSM commands that are issued. It never needs to be specified again because
the shard director stores it securely in an Oracle Wallet and decrypts it only when
necessary.

The MODIFY GSM command can be used to update the stored password if it is later
changed on the shard catalog database.

$ sqlplus / as sysdba

SQL> alter user gsmcatuser account unlock;

User altered.

SQL> alter user gsmcatuser identified by gsmcatuser_password;

User altered.

SQL> alter session set container=catalog_pdb_name;
SQL> alter user gsmcatuser account unlock;

User altered.

• A shard catalog administrator account must be created, assigned a password, and
granted privileges inside the PDB designated as the shard catalog.

This account is the administrator account for the sharding metadata in the shard
catalog database. It is used to access the shard catalog using the GDSCTL utility

Chapter 3
Create the Shard Catalog Database

3-9

when an administrator needs to makes changes to the sharded database topology
or perform other administrative tasks.

GDSCTL connects as this user to the shard catalog database when GDSCTL
commands are run. The user name and password specified are used later in the
CREATE SHARDCATALOG command. As with the GSMCATUSER account above, the user
name and password are stored securely in an Oracle Wallet for later use. The
stored credentials can be updated by issuing an explicit CONNECT command from
GDSCTL to reset the values in the wallet.

$ sqlplus / as sysdba

SQL> alter session set container=catalog_pdb_name;
SQL> create user mysdbadmin identified by mysdbadmin_password;

User created.

SQL> grant gsmadmin_role to mysdbadmin;

Grant succeeded.

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521)
that can service incoming connection requests for the shard catalog PDB.

The TNS Listener can be created and configured in whatever way you wish.
Depending on how the database was created, it may be necessary to explicitly
create a database service that can allow for direct connection requests to the PDB
without the need to use ALTER SESSION SET CONTAINER.

To validate that the listener is configured correctly, do the following using your
newly created mysdbadmin account above and an appropriate connect string.
Running LSNRCTL SERVICES lists all services currently available using the listener.

$ sqlplus mysdbadmin/mysdbadmin_password@catalog_connect_string

SQL> show con_name

CON_NAME

catalog_pdb_name

Once you confirm connectivity, make note of the catalog_connect_string above.
It is used later in the configuration process in the GDSCTL CREATE SHARDCATALOG
command. Typically, it will be of the form host:port/service_name (for example,
cathost.example.com:1521/catalog_pdb.example.com).

After all of the above requirements have been met, the newly created database can
now be the target of a GDSCTL CREATE SHARDCATALOG command.

For high availability and disaster recovery purposes, it is highly recommended that
you also create one or more standby shard catalog databases. From a sharding
perspective, as long as the above requirements are also met on the standby
databases, and all changes to the primary shard catalog database are consistently
applied to the standbys, there are no further sharding-specific configuration steps
required.

Chapter 3
Create the Shard Catalog Database

3-10

Create the Shard Databases
The databases that will be used as shards should be created on their respective hosts.

As with the shard catalog database, the way in which you create or provision the
shard databases is irrelevant from a sharding perspective. The database can be
created with the Database Configuration Assistant (DBCA), manually using SQL*Plus,
or provisioned from cloud infrastructure tools.

As long as you have a running Oracle Database Enterprise Edition instance on each
shard host, with the following characteristics, it can be used as a shard.

• An Oracle-provided user account named GSMROOTUSER must be unlocked and
assigned a password inside CDB$ROOT of the database designated for a shard.
In addition, this user must be granted the SYSDG and SYSBACKUP system privileges.

The GSMROOTUSER account is used by GDSCTL and the shard director processes
to connect to the shard database to perform administrative tasks in response to
sharding commands. The password specified is used by GDSCTL during sharding
topology creation in any ADD CDB commands that are issued. It is also be used by
the shard director during the DEPLOY command to configure Oracle Data Guard (as
necessary) on the shard databases. It never needs to be specified again by the
user, because GDSCTL and the shard director store it securely in an Oracle Wallet
and decrypt it only when necessary. The MODIFY CDB command can be used to
update the stored password if it is later changed on the shard database.

$ sqlplus / as sysdba

SQL> alter user gsmrootuser account unlock;

User altered.

SQL> alter user gsmrootuser identified by gsmrootuser_password;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmrootuser;

Grant succeeded.

• Create a pluggable database (PDB) for use as the shard database. Using the root
container (CDB$ROOT) of a container database (CDB) as a shard is not supported.

• Your shard database must use a server parameter file (SPFILE). The SPFILE is
required because the sharding infrastructure uses internal database parameters to
store configuration metadata, and that data must persist through database startup
and shutdown operations.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter spfile

NAME TYPE VALUE

Chapter 3
Create the Shard Databases

3-11

-------- --------- ------------------------------------
spfile string /u01/app/oracle/dbs/spfileshard.ora

• The database character set and national character set of the shard database must
be the same as that used for the shard catalog database and all other shard
databases. This means that the character set you choose must contain all possible
characters that will be inserted into the shard catalog or any of the shards.

This requirement arises from the fact that Oracle Data Pump is used internally to
move transportable tablespaces from one shard to another during sharding MOVE
CHUNK commands. A requirement of that mechanism is that character sets must
match on the source and destination.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select * from nls_database_parameters
 2 where parameter like '%CHARACTERSET';

PARAMETER VALUE
-- --------------------
NLS_NCHAR_CHARACTERSET AL16UTF16
NLS_CHARACTERSET WE8DEC

• The COMPATIBLE initialization parameter must be set to at least 12.2.0.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter compatible

NAME TYPE VALUE
---------------------- ----------- -----------------
compatible string 20.0.0

• Enable Flashback Database if your sharded database will use standby shard
databases.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select flashback_on from v$database;

FLASHBACK_ON

YES

• FORCE LOGGING mode must be enabled if your shard database will use standby
shard databases.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> select force_logging from v$database;

Chapter 3
Create the Shard Databases

3-12

FORCE_LOGGING

YES

• Set the DB_FILES database initialization parameter greater than or equal to the
total number of chunks and/or tablespaces in the system.

Each data chunk in a sharding configuration is implemented as a tablespace
partition and resides in its own operating system datafile. As a result, the DB_FILES
database initialization parameter must be greater than or equal to the total
number of chunks (as specified in the CREATE SHARDCATALOG or ADD SHARDSPACE
commands) and/or tablespaces in the system.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_files

NAME TYPE VALUE
------------------------------------ ----------- ------------
db_files integer 1024

• To support Oracle Managed Files, used by the sharding chunk management
infrastructure, the DB_CREATE_FILE_DEST database parameter must be set to a
valid value.

This location is used during chunk movement operations (for example MOVE CHUNK
or automatic rebalancing) to store the transportable tablespaces holding the chunk
data. In addition, files described in Oracle Database Administrator’s Guide, "Using
Oracle Managed Files," are also stored in this location as is customary for any
Oracle database using Oracle Managed Files.

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_create_file_dest

NAME TYPE VALUE
--------------------- --------- -----------------------------
db_create_file_dest string /u01/app/oracle/oradata

• A directory object named DATA_PUMP_DIR must be created and accessible in the
PDB from the GSMADMIN_INTERNAL account.

GSMADMIN_INTERNAL is an Oracle-supplied account that owns all of the sharding
metadata tables and PL/SQL packages. It should remain locked and is never used
to login interactively. It’s only purpose is to own and control access to the sharding
metadata and PL/SQL.

$ sqlplus / as sysdba

SQL> create or replace directory DATA_PUMP_DIR as ‘/u01/app/oracle/
oradata’;

Directory created.

Chapter 3
Create the Shard Databases

3-13

SQL> alter session set container=shard_pdb_name;
SQL> grant read, write on directory DATA_PUMP_DIR to
gsmadmin_internal;

Grant succeeded.

• To support file movement from shard to shard, the DB_FILE_NAME_CONVERT
database parameter must be set to a valid value. This location is used when
standby databases are in use, as is typical with non-sharded databases, and the
location can also be used during chunk movement operations. For regular file
system locations, it is recommended that this parameter end with a trailing slash
(/).

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> show parameter db_file_name_convert

NAME TYPE VALUE
---------------------- --------- -----------------------------
db_file_name_convert string /dbs/SHARD1/, /dbs/SHARD1S/

• An Oracle-provided user account named GSMUSER must be unlocked and assigned
a password inside the PDB designated as the shard database. In addition, this
user must be granted the SYSDG and SYSBACKUP system privileges.

Note that GSMUSER is a common user in the container database. As a result, its
password is the same for CDB$ROOT and all PDBs in the CDB, which can be a
security concern. To avoid this, host only one shard PDB per CDB, and do not
unlock the GSMUSER account in any other PDBs.

This account is used by the shard director processes to connect to the shard
database and perform administrative tasks in response to sharding commands.
The password specified is used later during sharding topology creation in any
ADD SHARD commands that are issued. The password never needs to be specified
again because the shard director stores it securely in an Oracle Wallet and only
decrypts it when necessary. You can update the stored password using the MODIFY
SHARD command if the password is later changed on the shard database.

$ sqlplus / as sysdba

SQL> alter user gsmuser account unlock;

User altered.

SQL> alter user gsmuser identified by gsmuser_password;

User altered.

SQL> alter session set container=shard_pdb_name;
SQL> alter user gsmuser account unlock;

User altered.

SQL> grant SYSDG, SYSBACKUP to gsmuser;

Chapter 3
Create the Shard Databases

3-14

Grant succeeded.

• Set up and run an Oracle Net TNS Listener at your chosen port (default is 1521)
that can service incoming connection requests for the shard PDB.

The TNS Listener can be created and configured in whatever way you wish.
Depending on how the database was created, it may be necessary to explicitly
create a database service that can allow for direct connection requests to the PDB
without the need to use ALTER SESSION SET CONTAINER.

To validate that the listener is configured correctly, run the following command
using your newly unlocked GSMUSER account and an appropriate connect string.
Running LSNRCTL SERVICES lists all services currently available using the listener.

$ sqlplus gsmuser/gsmuser_password@shard_connect_string

SQL> show con_name

CON_NAME

shard_pdb_name

Once you confirm connectivity, make note of the shard_connect_string above. It
is used later in the configuration process in the GDSCTL ADD SHARD command.
Typically, the connect string is in the form host:port/service_name (for example,
shardhost.example.com:1521/shard_pdb.example.com).

Validate the Shard Database

To validate that all of the above requirements have been met, you can run an Oracle-
supplied procedure, validateShard, that inspects the shard database and reports
any issues encountered. This procedure is read-only and makes no changes to the
database configuration.

The validateShard procedure can and should be run against primary, mounted
(unopened) standby, and Active Data Guard standby databases that are part of the
sharded database configuration. You can run validateShard multiple times and at any
time during the sharded database life cycle, including after upgrades and patching.

To run the validateShard package, do the following:

$ sqlplus / as sysdba

SQL> alter session set container=shard_pdb_name;
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

This procedure will produce output similar to the following:

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is SHARD1.
INFO: Database unique name is shard1.
INFO: Database ID is 4183411430.
INFO: Database open mode is READ WRITE.

Chapter 3
Create the Shard Databases

3-15

INFO: Database in archivelog mode.
INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the
character set of the catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is a multitenant container database.
INFO: Current container is SHARD1_PDB1.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_recovery_file_dest set to: '/u01/app/oracle/dbs'
INFO: db_files=1000. Must be greater than the number of chunks and/or
tablespaces to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/SHARD1/, /dbs/SHARD1S/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '/u01/app/oracle/dbs/
9830571348DFEBA8E0537517C40AF64B'.

All output lines marked INFO are for informational purposes and should be validated as
correct for your configuration.

All output lines marked ERROR must be fixed before moving on to the next deployment
steps. These issues will cause errors for certain sharding operations if they are not
resolved.

All output lines marked WARNING may or may not be applicable for your configuration.
For example, if standby databases will not be used for this particular deployment,
then any warnings related to standby databases or recovery can be ignored. This
is especially true for non-production, proof-of-concept, or application development
deployments. Review all warnings and resolve as necessary.

Once all of the above steps have been completed, the newly created database can
now be the target of a GDSCTL ADD SHARD command.

For high availability and disaster recovery purposes, it is highly recommended that
you also create one or more standby shard databases. From a sharding perspective,
as long as the above requirements are also met on the standby databases, and all
changes to the primary shard database are applied to the standbys, the standby
database only needs to be added to the sharding configuration with an ADD SHARD
command.

Configure the Sharded Database Topology
After the databases for the shard catalog and all of the shards are configured, along
with corresponding TNS listeners, you can add the sharding metadata to the shard
catalog database using GDSCTL. The sharding metadata describes the topology used
for the sharded database.

The sharded database topology consists of the sharding method, replication (high
availability) technology, the default number of chunks to be present in the sharded
database, the location and number of shard directors, the numbers of shardgroups,

Chapter 3
Configure the Sharded Database Topology

3-16

shardspaces, regions, and shards in the sharded database, and the global services
that will be used to connect to the sharded database.

Keep the Global Data Services Control Utility (GDSCTL) Command Reference in
the Oracle Database Global Data Services Concepts and Administration Guide on
hand for information about usage and options for the GDSCTL commands used in the
configuration procedures.

Follow the procedures listed below, in order, to complete your sharded database
topology configuration.

Run the commands from a shard director host, because the GDSCTL command line
interface is installed there as part of the shard director (global service manager)
installation.

• Create the Shard Catalog
Use the GDSCTL CREATE SHARDCATALOG command to create metadata describing
the sharded database topology in the shard catalog database.

• Add and Start Shard Directors
Add to the configuration the shard directors, which will monitor the sharding
system and run background tasks in response to GDSCTL commands and other
events, and start them.

• Add Shardspaces If Needed
If you are using composite or user-defined sharding, and you need to add more
shardspaces to complete your desired sharding topology, use the ADD SHARDSPACE
command to add additional shardspaces.

• Add Shardgoups If Needed
If your sharded database topology uses the system-managed or composite
sharding method, you can add any necessary additional shardgroups for your
application.

• Verify the Sharding Topology
Before adding information about your shard databases to the catalog, verify that
your sharding topology is correct before proceeding by using the various GDSCTL
CONFIG commands.

• Add the Shard CDBs
Add the CDBs containing the shard PDBs to the sharding configuration with the
ADD CDB command.

• Add the Shard PDBs
Use the ADD SHARD command to add the shard PDB information to the shard
catalog, then verify it with the CONFIG SHARD command.

• Add Host Metadata
Add all of the host names and IP addresses of your shard hosts to the shard
catalog.

Create the Shard Catalog
Use the GDSCTL CREATE SHARDCATALOG command to create metadata describing the
sharded database topology in the shard catalog database.

Note that once you run CREATE SHARDCATALOG, and the rest of the sharding metadata
has been created, there are several metadata properties that cannot be modified
without recreating the entire sharded database from scratch. These include the

Chapter 3
Configure the Sharded Database Topology

3-17

sharding method (system-managed, composite, user-defined), replication technology
(Oracle Data Guard, Oracle GoldenGate), default number of chunks in the database,
and others. Make sure that you consult the GDSCTL reference documentation for the
complete list of possible command options and their defaults.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Consult the GDSCTL documentation or run GDSCTL HELP CREATE SHARDCATALOG for
more details about the command usage.

Shard Catalog Connect String

When you run the CREATE SHARDCATALOG command, GDSCTL connects to the shard
catalog database with the user name and connect string specified.

If your shard catalog database has an associated standby database
for high availability or disaster recovery purposes, the connection string,
catalog_connect_string in the examples that follow, should specify all primary and
standby databases. If you don't include the standby databases in the connect string,
then the shard director processes will not be able to connect to the standby if the
primary shard catalog is unavailable.

Note that catalog_connect_string should specify the PDB for the shard catalog
database, not the CDB$ROOT.

The following is a simple tnsnames.ora entry.

CATALOG_CONNECT_STRING=
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = tcp)(HOST = primary_catalog)(PORT = 1521))
 (ADDRESS = (PROTOCOL = tcp)(HOST = standby_catalog)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = catpdb.example.com)
)
)

• Run CREATE SHARDCATALOG with the settings appropriate for your planned sharding
topology.

System-Managed Sharding Method

In the following example, the sharded database metadata is created for a system-
managed sharding configuration with two regions named region1 and region2.

Chapter 3
Configure the Sharded Database Topology

3-18

Because system-managed is the default sharding method, it does not need to be
specified with the -sharding parameter.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -repl DG -region
region1,region2

Note also that if -shardspace is not specified, a default shardspace named
shardspaceora is created. If -region is not specified, the default region named
regionora is created. If the single default region is created along with the default
shardspace, then a default shardgroup named shardspaceora_regionora is
also created in the shardspace.

Composite Sharding Method

The following example shows you how to create shard catalog metadata for a
composite sharded database with Data Guard replication in MaxAvailability
protection mode, 60 chunks per shardspace, and two shardspaces.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding composite -chunks
60
 -protectmode maxavailability -shardspace shardspace1,shardspace2

User-Defined Sharding Method

The next example shows you how to create shard catalog metadata for a user-
defined sharded database with Data Guard replication.

GDSCTL> create shardcatalog -database catalog_connect_string
 -user mysdbadmin/mysdbadmin_password -sharding user
 -protectmode maxperformance

Future Connections to the Shard Catalog

GDSCTL stores the credentials for the shard catalog administrator in a wallet on the
local host. However, for subsequent GDSCTL sessions on other hosts, it may be
necessary to explicitly connect to the shard catalog in order to perform administrative
tasks by running the GDSCTL CONNECT command, as shown here.

GDSCTL> connect mysdbadmin/mysdbadmin_password@catalog_connect_string

Add and Start Shard Directors
Add to the configuration the shard directors, which will monitor the sharding system
and run background tasks in response to GDSCTL commands and other events, and
start them.

The following commands must be run on the host where the shard director processes
are to run. This can be the shard catalog host or a dedicated host for the shard
director processes.

Chapter 3
Configure the Sharded Database Topology

3-19

1. Add and start a shard director (GSM), as shown in the following example.

GDSCTL> connect mysdbadmin/
mysdbadmin_password@catalog_connect_string
GDSCTL> add gsm -gsm sharddirector1 -catalog catalog_connect_string
-pwd gsmcatuser_password
GDSCTL> start gsm -gsm sharddirector1

The value for the -gsm parameter is the name that you will be using to reference
this shard director in later GDSCTL commands. The values for the -catalog and
-pwd parameters should be the same used when you created the shard catalog
database.

Use the -listener, -localons, and -remoteons parameters as described in the
GDSCTL reference to override the default port numbers of 1522, 6123, and 6234,
respectively. Always confirm that the port numbers to be used, whether default
or user-specified, are available on the host and do not conflict with other running
software or Oracle listeners.

2. Repeat the ADD GSM and START GSM commands for any additional shard directors
on each shard director host.

Replace the shard director name (that is, sharddirector1 in the example) with
an appropriate value for each shard director.

If more than one shard director is used, then multiple regions must have been
created for them in the CREATE SHARDCATALOG command, or you can add them
later by running ADD REGION.

Specify a region for each shard director with the -region parameter on each ADD
GSM command, as shown here.

GDSCTL> add gsm -gsm sharddirector2 -catalog catalog_connect_string
-pwd gsmcatuser_password -region dc2

For later GDSCTL sessions, you might need to explicitly specify the shard director to
be administered. If an error message is shown referencing the default GSMORA shard
director, run GDSCTL SET GSM before continuing, as shown here.

GDSCTL> set gsm -gsm sharddirector1

Add Shardspaces If Needed
If you are using composite or user-defined sharding, and you need to add more
shardspaces to complete your desired sharding topology, use the ADD SHARDSPACE
command to add additional shardspaces.

• Run ADD SHARDSPACE as shown here.

GDSCTL> add shardspace -shardspace shardspace2

By default, the ADD SHARDSPACE command inherits the -chunks and -protectmode
values that you used in the CREATE SHARDCATALOG command. You can specify, on a
per-shardspace basis,the number of chunks and the Data Guard protection mode
by using the -chunks and -protectmode parameters with ADD SHARDSPACE.

Chapter 3
Configure the Sharded Database Topology

3-20

Add Shardgoups If Needed
If your sharded database topology uses the system-managed or composite sharding
method, you can add any necessary additional shardgroups for your application.

Each shardspace must contain at least one primary shardgroup and may contain any
number or type of standby shardgroups. Shardgroups are not used in the user-defined
sharding method.

• Run ADD SHARDGROUP to add shardgroups to the configuration.

GDSCTL> add shardgroup -shardgroup shardgroup_primary -shardspace
shardspace1
 -deploy_as primary -region region1
GDSCTL> add shardgroup -shardgroup shardgroup_standby -shardspace
shardspace1
 -deploy_as active_standby -region region2

Note that when you run ADD SHARDGROUP you can specify one of three types of
shardgroups: primary, standby (mounted, not open), and active_standby (open,
available for queries) using the -deploy_as parameter (the default is standby).

Any shards subsequently added to the shardgroup must be opened in the mode
corresponding to the -deploy_as setting for the shardgroup. For example, read-
write for primary shardgroups, mounted for standby shardgroups, or read-only with
apply for active standby shardgroups.

After shards are deployed, their current mode is monitored by the shard directors
and communicated to the shard catalog such that it is possible and expected that
shards of different open modes may be in the same shardgroup, depending upon
subsequent switchover or failover operations.

Verify the Sharding Topology
Before adding information about your shard databases to the catalog, verify that your
sharding topology is correct before proceeding by using the various GDSCTL CONFIG
commands.

Once shards are added and deployed, it is no longer possible to change much of the
shard catalog metadata, so validating your configuration is an important task at this
point.

• Run GDSCTL CONFIG to view overall configuration information.

GDSCTL> config

Regions

region1
region2

GSMs

sharddirector1

Chapter 3
Configure the Sharded Database Topology

3-21

sharddirector2

Sharded Database

orasdb

Databases

Shard Groups

shardgroup_primary
shardgroup_standby

Shard spaces

shardspaceora

Services

GDSCTL pending requests

Command Object Status
------- ------ ------

Global properties

Name: oradbcloud
Master GSM: sharddirector1
DDL sequence #: 0

You can use the various GDSCTL CONFIG commands to display more information
about shardspaces, shardgroups, and other shard catalog objects. For a complete
list of GDSCTL CONFIG command variants, see the GDSCTL reference documentation
or run GDSCTL HELP.

Add the Shard CDBs
Add the CDBs containing the shard PDBs to the sharding configuration with the ADD
CDB command.

1. Run the ADD CDB command as shown here.

GDSCTL> add cdb -connect cdb_connect_string -pwd
gsmrootuser_password

This command causes GDSCTL to connect to GSMROOTUSER/
gsmrootuser_password@cdb_connect_string as SYSDG to validate settings and
to retrieve the DB_UNIQUE_NAME of the CDB, which will become the CDB name in
the shard catalog.

2. Repeat the ADD CDB command for all of the CDBs that contain a shard PDB in the
configuration.

Chapter 3
Configure the Sharded Database Topology

3-22

3. When all of the CDBs are added, run GDSCTL CONFIG CDB to display a list of CDBs
in the catalog.

GDSCTL> config cdb

Add the Shard PDBs
Use the ADD SHARD command to add the shard PDB information to the shard catalog,
then verify it with the CONFIG SHARD command.

1. Run ADD SHARD with the usage appropriate to your sharding method, as shown in
the following examples.

For system-managed or composite sharding, run ADD SHARD with the parameters
shown here.

GDSCTL> add shard -connect shard_connect_string -pwd
gsmuser_password
-shardgroup shardgroup_name -cdb cdb_name

For user-defined sharding, the command usage is slightly different.

GDSCTL> add shard -connect shard_connect_string -pwd
gsmuser_password
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

The -cdb parameter specifies the name of the CDB in which the shard PDB
exists, -shardgroup or -shardspace specifies the location of the shard in your
sharding topology, and -deploy_as specifies the open mode (primary, standby,
active_standby) of the shard.

When you run ADD SHARD, GDSCTL connects to GSMUSER/
gsmuser_password@shard_connect_string as SYSDG to validate the
settings on the shard, re-runs dbms_gsm_fix.validateShard to check
for errors, and constructs the shard name using the convention
db_unique_name_of_CDB_PDB_name (for example cdb1_pdb1).

Finally, the metadata that describes the shard is added to the shard catalog.

2. Run GDSCTL CONFIG SHARD to view the shard metadata on the shard catalog.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
--------- ------------------- ------ ----- ------

cdb1_pdb1 shardgroup_primary U none region1 -
cdb2_pdb1 shardgroup_standby U none region2 -
cdb3_pdb2 shardgroup_primary U none region1 -
cdb4_pdb2 shardgroup_standby U none region2 -

Note that the value for Status is U for “undeployed”, and State and Availability are
none and - until the DEPLOY command is successfully run.

Chapter 3
Configure the Sharded Database Topology

3-23

Add Host Metadata
Add all of the host names and IP addresses of your shard hosts to the shard catalog.

As part of the deployment process, the shard director contacts the shards and
directs them to register with the shard director’s TNS listener process. This listener
process only accepts incoming registration requests from trusted sources and will
reject registration requests from unknown hosts.

If your shard hosts have multiple host names or network interfaces assigned to them, it
is possible that the incoming registration request to the shard director may come from
a host that was not automatically added during ADD SHARD. In this case, the registration
request is rejected and the shard will not deploy correctly. The visible symptom of
this problem will be that CONFIG SHARD shows PENDING for the shard’s Availability after
DEPLOY has completed.

To avoid this issue, use the GDSCTL ADD INVITEDNODE command to manually add all
host names and IP addresses of your shard hosts to the shard catalog metadata.

1. View a list of trusted hosts.

By default, the ADD SHARD command adds the default host name of the shard host
to the shard catalog metadata, so that any registration requests from that host
to the shard director will be accepted. You can view the list of trusted hosts by
running the GDSCTL CONFIG VNCR command.

GDSCTL> config vncr

2. Ping from all of the hosts in the configuration to verify successful host name
resolution.

Any hosts listed in the CONFIG VNCR output must be reachable by name from all
of the other hosts in the topology. Use the ping command from the shard, shard
catalog, and shard director hosts to verify that hostname resolution succeeds for
all of the host names listed.

To resolve any issues, use operating system commands or settings to ensure that
all of the host names can be resolved.

3. Run the REMOVE INVITEDNODE command to manually remove any host names that
are not necessary and cannot be resolved from all of the hosts.

4. Run the ADD INVITEDNODE command to manually add all host names and IP
addresses of your shard hosts to the shard catalog metadata.

GDSCTL> add invitednode 127.0.0.1

Deploy the Sharding Configuration
When the sharded database topology has been fully configured with GDSCTL
commands, run the GDSCTL DEPLOY command to deploy the sharded database
configuration.

Chapter 3
Deploy the Sharding Configuration

3-24

When you run the GDSCTL DEPLOY command the output looks like the following.

GDSCTL> deploy
deploy: examining configuration...
deploy: requesting Data Guard configuration on shards via GSM
deploy: shards configured successfully
The operation completed successfully

What Happens During Deployment

As you can see, when you run DEPLOY several things happen.

• GDSCTL calls a PL/SQL procedure on the shard catalog that examines the
sharded database topology configuration to determine if there are any undeployed
shards present that are able to be deployed.

• For shards that need to be deployed, the shard catalog sends requests to the
shard director to update database parameters on the shards, populate topology
metadata on the shard, and direct the shard to register with the shard director.

• If Oracle Data Guard replication is in use, and standby databases are present to
deploy, then the shard director calls PL/SQL APIs on the primary shards to create
a Data Guard configuration, or to validate an existing configuration on the primary
and standby sets. Fast Start Failover functionality is enabled on all of the shards
and, in addition, the shard director starts a Data Guard observer process on its
host to monitor the Data Guard configuration.

• If new shards are being added to an existing sharded database that already
contains deployed shards (called an incremental deployment), then any DDL
statements that have been run previously are run on the new shards to ensure
that the application schemas are identical across all of the shards.

• Finally, in the case of an incremental deployment on a sharded database using
system-managed or composite sharding methods, automatic chunk movement is
scheduled in the background, which is intended to balance the number of chunks
distributed among the shards now in the configuration. This process can be
monitored using the GDSCTL CONFIG CHUNKS command after the DEPLOY command
returns control to GDSCTL.

What Does a Successful Deployment Look Like?

Following a successful deployment, the output from CONFIG SHARD should look similar
to the following, if Data Guard active standby shards are in use.

GDSCTL> config shard
Name Shard Group Status State Region Availability
--------- ------------------- ------- -------- ------- ------------
cdb1_pdb1 shardgroup_primary Ok Deployed region1 ONLINE
cdb2_pdb1 shardgroup_standby Ok Deployed region2 READ ONLY
cdb3_pdb2 shardgroup_primary Ok Deployed region1 ONLINE
cdb4_pdb2 shardgroup_standby Ok Deployed region2 READ ONLY

Chapter 3
Deploy the Sharding Configuration

3-25

If mounted, non-open standbys are in use, the output will be similar to the following,
because the shard director is unable to log in to check the status of a mounted
database.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
--------- ------------------ ------------- -------- -------

cdb1_pdb1 shardgroup_primary Ok Deployed region1 ONLINE
cdb2_pdb1 shardgroup_standby Uninitialized Deployed region2 -
cdb3_pdb2 shardgroup_primary Ok Deployed region1 ONLINE
cdb4_pdb2 shardgroup_standby Uninitialized Deployed region2 -

What To Do If Something Is Not Right

If any shards are showing an availability of PENDING, confirm that all steps related to
ADD INVITEDNODE and CONFIG VNCR from the topology configuration were completed.
If not, complete them now and run GDSCTL SYNC DATABASE -database shard_name to
complete shard deployment.

Create and Start Global Database Services
After the shards are successfully deployed, and the correct status has been confirmed,
create and start global database services on the shards to service incoming
connection requests from your application.

As an example, the commands in the following examples create read-write services on
the primary shards in the configuration and read-only services on the standby shards.
These service names can then be used in connect strings from your application to
appropriately route requests to the correct shards.

Example 3-1 Add and start a global service that runs on all of the primary
shards

The following commands create and start a global service named oltp_rw_srvc that
a client can use to connect to the sharded database. The oltp_rw_srvc service runs
read/write transactions on the primary shards.

GDSCTL> add service -service oltp_rw_srvc -role primary
GDSCTL> start service -service oltp_rw_srvc

Example 3-2 Add and start a global service for the read-only workload to run
on the standby shards

The oltp_ro_srvc global service is created and started to run read-only workloads
on the standby shards. This assumes that the standby shards are Oracle Active
Data Guard standby shards which are open for read-only access. Mounted, non-open
standbys cannot service read-only connections, and exist for disaster recovery and
high availability purposes only.

GDSCTL> add service -service oltp_ro_srvc -role physical_standby
GDSCTL> start service -service oltp_ro_srvc

Chapter 3
Create and Start Global Database Services

3-26

Example 3-3 Verify the status of the global services

GDSCTL> config service

Name Network name Pool Started Preferred
all
---- ------------ ---- -------

oltp_rw_srvc oltp_rw_srvc.orasdb.oracdbcloud orasdb Yes Yes
oltp_ro_srvc oltp_ro_srvc.orasdb.oracdbcloud orasdb Yes Yes

GDSCTL> status service
Service "oltp_rw_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity:
ANYWHERE
 Instance "orasdb%1", name: "cdb1_pdb1", db: "cdb1_pdb1", region:
"region1", status: ready.
 Instance "orasdb%21", name: "cdb3_pdb2", db: "cdb3_pdb2", region:
"region1", status: ready.
Service "oltp_ro_srvc.orasdb.oradbcloud" has 2 instance(s). Affinity:
ANYWHERE
 Instance "orasdb%11", name: "cdb2_pdb1", db: "cdb2_pdb1", region:
"region2", status: ready.
 Instance "orasdb%31", name: "cdb4_pdb2", db: "cdb4_pdb2", region:
"region2", status: ready.

Verify Shard Status
Once you complete the DEPLOY step in your sharding configuration deployment,
verify the detailed status of a shard

• Run GDSCTL CONFIG SHARD to see the detailed status of each shard.

GDSCTL> config shard -shard cdb1_pdb1
Name: cdb1_pdb1
Shard Group: shardgroup_primary
Status: Ok
State: Deployed
Region: region1
Connection string:shard_connect_string
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 20.0.0.0
Failed DDL:
DDL Error: ---
Management error:
Failed DDL id:
Availability: ONLINE
Rack:

Supported services

Chapter 3
Verify Shard Status

3-27

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

Example Sharded Database Deployment
This example explains how to deploy a typical system-managed sharded database
with multiple replicas, using Oracle Data Guard for high availability.

To deploy a system-managed sharded database you create shardgroups and shards,
create and configure the databases to be used as shards, execute the DEPLOY
command, and create role-based global services.

You are not required to map data to shards in system-managed sharding, because
the data is automatically distributed across shards using partitioning by consistent
hash. The partitioning algorithm evenly and randomly distributes data across shards.
For more conceptual information about the system-managed sharded Database, see
System-Managed Sharding.

• Example Sharded Database Topology
Consider the following system-managed sharded database configuration, where
shardgroup sg1 contains the primary shards, while shardgroups sg2 and sg3
contain standby replicas.

• Deploy the Example Sharded Database
Do the following steps to deploy the example system-managed sharded database
with multiple replicas, using Oracle Data Guard for high availability.

Example Sharded Database Topology
Consider the following system-managed sharded database configuration, where
shardgroup sg1 contains the primary shards, while shardgroups sg2 and sg3 contain
standby replicas.

In addition, let’s assume that the replicas in shardgroup sg2 are Oracle Active Data
Guard standbys (that is, databases open for read-only access), while the replicas in
shardgroup sg3 are mounted databases that have not been opened.

Chapter 3
Example Sharded Database Deployment

3-28

Key

Redo Apply

Backup

Data Center 2 Region = dc2

gsmhost2

shardgroup
sg3

shardhost7

cdb7

pdb1

cathost2

catpdb2

catcdb2

shardhost8

cdb8

pdb2

shardhost9

cdb9

pdb3

Data Center 1 Region = dc1

gsmhost1

gsmhost1b

shardgroup
sg1

shardhost1

cdb1

pdb1

cathost

catpdb

catcdb

cathost1

catpdb1

catcdb1

shardhost2

cdb2

pdb2

shardhost3

cdb3

pdb3

shardgroup
sg2

shardhost4

cdb4

pdb1

shardhost5

cdb5

pdb2

shardhost6

cdb6

pdb3

1522

1521 1521

1521 1521

1521

1521

1521

gsmhost2b

1521

1521

1521

1522

1521 1521

gsm1

gsm2bgsm1b

gsm2

Chapter 3
Example Sharded Database Deployment

3-29

Table 3-1 Example System-Managed Topology Host Names

Topology Object Description

Shard Catalog Database Every sharded database topology requires
a shard catalog. In our example, the shard
catalog database has 2 standbys, one in each
data center.

Primary

• Data center = 1
• Host name = cathost
• DB_UNIQUE_NAME = catcdb
• PDB name = catpdb
• Connect service name = catpdb
Active Standby

• Data center = 1
• Host name = cathost1
Standby

• Data center = 2
• Host name = cathost2

Regions Because there are two datacenters involved in
this configuration, there are two corresponding
regions created in the shard catalog database.

Data center 1

• Region name = dc1
Data center 2

• Region name = dc2

Shard Directors (global service managers) Each region requires a shard director running
on a host within that data center.

Data center 1

• Shard director host name = gsmhost1
• Shard director name = gsm1
Data center 2

• Shard director hast name = gsmhost2
• Shard director name = gsm2

Shardgroups Data center 1

• sg1
• sg2
Data center 2

• sg3

Shards • Host names = shardhost1, …, shardhost9
• DB_UNIQUE_NAME = cdb1, …, cdb9
• PDB names = pdb1, pdb2, pdb3

PDB names on standby replicas are
the same as the PDB names on their
corresponding primaries

Chapter 3
Example Sharded Database Deployment

3-30

Deploy the Example Sharded Database
Do the following steps to deploy the example system-managed sharded database with
multiple replicas, using Oracle Data Guard for high availability.

1. Provision and configure the following hosts: cathost, cathost1, cathost2, gsmhost1,
gsmhost2, and hosts shardhost1 through shardhost9.

See Provision and Configure Hosts and Operating Systems for details.

2. Install the Oracle Database software on the following hosts: cathost, cathost1,
cathost2, and shardhost1 through shardhost9.

See Install the Oracle Database Software for details.

3. Install the shard director software on hosts gsmhost1 and gsmhost2.

See Install the Shard Director Software for details.

4. Create the shard catalog database and start an Oracle TNS Listener on cathost.

Additionally, create standby replicas of the catalog on cathost1 and cathost2, and
verify that changes made to the primary catalog are applied on these standbys.

See Create the Shard Catalog Database for details.

5. Create the 3 primary databases that will contain the sharded data on hosts
shardhost1, shardhost2 and shardhost3.

Create the corresponding replicas, located and named as listed here.

• shardhost1 (cdb1/pdb1) replicas on shardhost4 (cdb4) and shardhost7 (cdb7)

• shardhost2 (cdb2/pdb2) replicas on shardhost5 (cdb5) and shardhost8 (cdb8)

• shardhost3 (cdb3/pdb3) replicas on shardhost6 (cdb6) and shardhost9 (cdb9)

The db_unique_name of the 9 container databases (CDB) should be cdb1 through
cdb9, in which the PDB names should be pdb1, pdb2 and pdb3 on the three
primaries and their replicas.

The service names for the CDBs should be cdb1 through cdb9, which the service
names for the PDB shards are pdb1, pdb2, and pdb3.

See Create the Shard Databases for details.

6. Assuming that all port numbers are the defaults, to configure the sharded
database topology, issue the following GDSCTL commands, replacing domains and
passwords with the appropriate values.

a. On host gsmhost1, run the following commands in GDSCTL.

create shardcatalog -database cathost.example.com:1521/
catpdb.example.com -user mydbsadmin/mydbsadmin_password -region
dc1,dc2

add gsm -gsm gsm1 -region dc1 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm1

See Create the Shard Catalog and Add and Start Shard Directors for details.

Chapter 3
Example Sharded Database Deployment

3-31

b. On host gsmhost2, run the following commands in GDSCTL.

connect mydbsadmin/mydbsadmin_password@cathost.example.com:1521/
catpdb.example.com
add gsm -gsm gsm2 -region dc2 -catalog cathost.example.com:1521/
catpdb.example.com -pwd gsmcatuser_password
start gsm -gsm gsm2

See Add and Start Shard Directors for details.

c. Back on host gsmhost1, run the following from GDSCTL to complete the
sharded database setup.

add shardgroup -shardgroup sg1 -deploy_as primary -region dc1
add shardgroup -shardgroup sg2 -deploy_as active_standby -region
dc1
add shardgroup -shardgroup sg3 -deploy_as standby -region dc2
add cdb -connect shardhost1.example.com:1521/cdb1.example.com -
pwd gsmrootuser_password
add cdb -connect shardhost2.example.com:1521/cdb2.example.com -
pwd gsmrootuser_password

Repeat the ADD CDB command for shardhost3 through shardhost9 and cdb3
through cdb9, then run the following commands.

add shard -connect shardhost1.example.com:1521/pdb1.example.com
-pwd gsmuser_password -shardgroup sg1 -cdb cdb1
add shard -connect shardhost2.example.com:1521/pdb2.example.com
-pwd gsmuser_password -shardgroup sg1 -cdb cdb2
add shard -connect shardhost3.example.com:1521/pdb3.example.com
-pwd gsmuser_password -shardgroup sg1 -cdb cdb3
add shard -connect shardhost4.example.com:1521/pdb1.example.com
-pwd gsmuser_password -shardgroup sg2 -cdb cdb4
add shard -connect shardhost5.example.com:1521/pdb2.example.com
-pwd gsmuser_password -shardgroup sg2 -cdb cdb5
add shard -connect shardhost6.example.com:1521/pdb3.example.com
-pwd gsmuser_password -shardgroup sg2 -cdb cdb6
add shard -connect shardhost7.example.com:1521/pdb1.example.com
-pwd gsmuser_password -shardgroup sg3 -cdb cdb7
add shard -connect shardhost8.example.com:1521/pdb2.example.com
-pwd gsmuser_password -shardgroup sg3 -cdb cdb8
add shard -connect shardhost9.example.com:1521/pdb3.example.com
-pwd gsmuser_password -shardgroup sg3 -cdb cdb9

See Add Shardgoups If Needed, Add the Shard CDBs, and Add the Shard
PDBs for details.

d. Use the CONFIG VNCR and ADD INVITEDNODE commands to validate that all of
the VNCR entries are valid and sufficient for a successful deployment.

See Add Host Metadata for details.

e. Run DEPLOY from GDSCTL to complete the configuration of the sharded
database.

Chapter 3
Example Sharded Database Deployment

3-32

See Deploy the Sharding Configuration for details.

f. Add and start services for read-write and read-only access to the sharded
database.

add service -service oltp_rw_srvc -role primary
start service -service oltp_rw_srvc
add service -service oltp_ro_srvc -role physical_standby
start service -service oltp_ro_srvc

See Create and Start Global Database Services for details.

7. You can use the GDSCL CONFIG, CONFIG SHARD, and CONFIG SERVICE commands to
validate that all of the shards and services are online and running.

See Verify Shard Status for details.

Automated Deployment Scripts
Tooling for Oracle Sharding includes Terraform, Kubernetes, and Ansible scripts to
automate and further simplify the sharded database deployment operations.

• Deploy a Sharded Database With Terraform
Tooling for Oracle Sharding includes Terraform modules and scripts to automate
your sharded database deployment on both Oracle Cloud Infrastructure and on-
premises systems.

Deploy a Sharded Database With Terraform
Tooling for Oracle Sharding includes Terraform modules and scripts to automate your
sharded database deployment on both Oracle Cloud Infrastructure and on-premises
systems.

The Terraform modules and scripts create and configure a complete sharded database
infrastructure, including shard directors, shard catalogs, and shards. The scripts also
provide the option to deploy standby shards and shard catalogs using Oracle Data
Guard for replication to provide high availability and disaster recovery of the sharded
data.

As part of the set-up process, you install the Terraform binary, download the Oracle
Sharding shard director installation package, and for on-premises deployments, you
download the Oracle Database installation files.

Find the instructions and downloads for Terraform-based sharded database
deployment for your target systems at the following locations.

• Oracle Cloud Infrastructure https://github.com/oracle/db-sharding/tree/master/
deployment-with-terraform/sdb-terraform-oci.

• On-Premises https://github.com/oracle/db-sharding/tree/master/deployment-with-
terraform/sdb-terraform-onprem

Chapter 3
Automated Deployment Scripts

3-33

https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-oci
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem
https://github.com/oracle/db-sharding/tree/master/deployment-with-terraform/sdb-terraform-onprem

Using Transparent Data Encryption with Oracle Sharding
Oracle Sharding supports Transparent Data Encryption (TDE), but in order to
successfully move chunks in a sharded database with TDE enabled, all of the shards
must share and use the same encryption key for the encrypted tablespaces.

A sharded database consists of multiple independent databases and a catalog
database. For TDE to work properly, especially when data is moved between shards,
certain restrictions apply. In order for chunk movement between shards to work when
data is encrypted, you must ensure that all of the shards use the same encryption key.

There are two ways to accomplish this:

• Create and export an encryption key from the shard catalog, and then import and
activate the key on all of the shards individually.

• Store the wallet in a shared location and have the shard catalog and all of the
shards use the same wallet.

The following TDE statements are automatically propagated to shards when executed
on the shard catalog with shard DDL enabled:

• alter system set encryption wallet open/close identified by password

• alter system set encryption key

• administer key management set keystore [open|close] identified by password

• administer key management set key identified by password

• administer key management use key identified by password

• administer key management create key store identified by password

Limitations

The following limitations apply to using TDE with Oracle Sharding.

• For MOVE CHUNK to work, all shard database hosts must be on the same platform.

• MOVE CHUNK cannot use compression during data transfer, which may impact
performance.

• Only encryption on the tablespace level is supported. Encryption on specific
columns is not supported.

• Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded
database configuration, you must create a master encryption key on the shard
catalog, then use wallet export, followed by wallet import onto the shards, and
activate the keys.

See Also:

Oracle Database Advanced Security Guide for more information about TDE

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-34

Creating a Single Encryption Key on All Shards
To propagate a single encryption key to all of the databases in the sharded database
configuration, you must create a master encryption key on the shard catalog, then use
wallet export, followed by wallet import onto the shards, and activate the keys.

Note:

This procedure assumes that the keystore password and wallet directory
path are the same for the shard catalog and all of the shards. If you require
different passwords and directory paths, all of the commands should be
issued individually on each shard and the shard catalog with shard DDL
disabled using the shard’s own password and path.

These steps should be done before any data encryption is performed.

1. Create an encryption key on the shard catalog.

With shard DDL enabled, issue the following statements.

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE wallet_directory_path
IDENTIFIED BY
 keystore_password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;

The keystore_password should be the same if you prefer to issue wallet open and
close commands centrally from the catalog.

Note:

The wallet directory path should match the
ENCRYPTION_WALLET_LOCATION in the corresponding sqlnet.ora.

ENCRYPTION_WALLET_LOCATION parameter is being deprecated. You
are advised to use the WALLET_ROOT static initialization and
TDE_CONFIGURATION dynamic initialization parameter instead.

With shard DDL disabled, issue the following statement.

ADMINISTER KEY MANAGEMENT SET KEY IDENTIFIED BY keystore_password
WITH BACKUP;

An encryption key is created and activated in the shard catalog database’s wallet.

If you issue this statement with DDL enabled, it will also create encryption keys
in each of the shards’ wallets, which are different keys from that of the catalog.

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-35

In order for data movement to work, you cannot use different encryption keys on
each shard.

2. Get the master key ID from the shard catalog keystore.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

3. With shard DDL disabled, export the catalog wallet containing the encryption key.

ADMINISTER KEY MANAGEMENT EXPORT ENCRYPTION KEYS WITH SECRET
secret_phrase TO
 wallet_export_file IDENTIFIED BY keystore_password;

4. Physically copy the wallet file to each of the shard hosts, into their corresponding
wallet export file location, or put the wallet file on a shared disk to which all of the
shards have access.

5. With shard DDL disabled, log on to each shard and import the wallet containing
the key.

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;
ADMINISTER KEY MANAGEMENT IMPORT ENCRYPTION KEYS WITH SECRET
secret_phrase FROM
 wallet_export_file IDENTIFIED BY keystore_password WITH BACKUP;

6. Restart the shard databases.

7. Activate the key on all of the shards.

On the catalog with shard DDL enabled

ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY
keystore_password;
ADMINISTER KEY MANAGEMENT USE KEY master_key_id IDENTIFIED BY
keystore_password
 WITH BACKUP;

All of the shards and the shard catalog database now have the same encryption key
activated and ready to use for data encryption. On the shard catalog, you can issue
TDE DDLs (with shard DDL enabled) such as:

• Create encrypted tablespaces and tablespace sets.

• Create sharded tables using encrypted tablespaces.

• Create sharded tables containing encrypted columns (with limitations).

Validate that the key IDs on all of the shards match the ID on the shard catalog.

SELECT KEY_ID FROM V$ENCRYPTION_KEYS
WHERE ACTIVATION_TIME =
 (SELECT MAX(ACTIVATION_TIME) FROM V$ENCRYPTION_KEYS
 WHERE ACTIVATING_DBID = (SELECT DBID FROM V$DATABASE));

Chapter 3
Using Transparent Data Encryption with Oracle Sharding

3-36

4
Sharded Database Schema Design

To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on a
single shard.

• Sharded Database Schema Design Considerations
Design of the database schema has a big impact on the performance and
scalability of a sharded database. An improperly designed schema can lead to
unbalanced distribution of data and workload across shards and large percentage
of multi-shard operations.

• Choosing Sharding Keys
Sharded table partitions are distributed across shards at the tablespace level,
based on a sharding key. Examples of keys include customer ID, account number,
and country ID.

• Indexes on Sharded Tables
Only local indexes can be created on sharded tables. Unique local indexes on
sharded tables must contain the sharding key.

• DDL Execution in a Sharded Database
To create a schema in a sharded database, you must issue DDL commands on
the shard catalog database, which validates the DDLs and executes them locally
before they are executed on the shards.

• PL/SQL Procedure Execution in a Sharded Database
In the same way that DDL statements can be run on all shards in a sharded
database configuration, so too can certain Oracle-provided PL/SQL procedures.

• Creating Sharded Database Schema Objects
The following topics show you how to create the schema objects in your sharded
database. Refer back to the Sharded Database Schema Objects section in
chapter 2 for conceptual information about these objects.

• Schema Creation Examples
The following examples show the steps you would take to create a schema for
a sharded database using the system-managed, user-defined, and composite
sharding methods.

• Monitor DDL Execution and Verify Object Creation
You can monitor DDL execution using GDSCTL and SQL, to verify that the DDLs
are propagated to all of the shards.

• DDL Execution Failure and Recovery Examples
The following examples demonstrate the steps to issue a DDL, monitor its
execution status, and what to do when errors are encountered.

• Generating Unique Sequence Numbers Across Shards
You can generate globally unique sequence numbers across shards for non-
primary key columns, and it is handled by the sharded database.

4-1

Sharded Database Schema Design Considerations
Design of the database schema has a big impact on the performance and scalability
of a sharded database. An improperly designed schema can lead to unbalanced
distribution of data and workload across shards and large percentage of multi-shard
operations.

The data model should be a hierarchical tree structure with a single root table. Oracle
Sharding supports any number of levels within the hierarchy.

To obtain the benefits of sharding, the schema of a sharded database should be
designed in a way that maximizes the number of database requests executed on a
single shard.

A sharded database schema consists of a sharded table family and duplicated tables
with the following characteristics.

Sharded table family

• A set of tables which are equi-partitioned by the sharding key.

– Related data is always stored and moved together.

– Joins and integrity constraint checks are done within a shard.

• The sharding method and key are based on the application's requirements.

• The sharding key must be included in the primary key.

Duplicated tables

• Non-sharded tables which are replicated to all shards.

• Usually contain common reference data.

• Can be read and updated on each shard.

Planning a Sharded Database Schema Design

Once the sharded database is populated with data, it is impossible to change many
attributes of the schema, such as whether a table is sharded or duplicated, sharding
key, and so on. Therefore, the following points should be carefully considered before
deploying a sharded database.

• Which tables should be sharded?

• Which tables should be duplicated?

• Which sharded table should be the root table?

• What method should be used to link other tables to the root table?

• Which sharding method should be used?

• Which sharding key should be used?

• Which super sharding key should be used (if the sharding method is composite)?

Chapter 4
Sharded Database Schema Design Considerations

4-2

Choosing Sharding Keys
Sharded table partitions are distributed across shards at the tablespace level, based
on a sharding key. Examples of keys include customer ID, account number, and
country ID.

Sharding keys must adhere to the following characteristics.

• The sharding key should be very stable; its value should almost never change.

• The sharding key must be present in all of the sharded tables. This allows the
creation of a family of equi-partitioned tables based on the sharding key.

• Joins between tables in a table family should be performed using the sharding key.

Sharding Keys for System-Managed Sharded Databases

For the system-managed sharding method, the sharding key must be based on a
column that has high cardinality; the number of unique values in this column must be
much bigger than the number of shards.

Customer ID, for example, is a good candidate for the sharding key, while a United
States state name is not.

Sharding Keys for Composite Sharded Databases

Composite sharding enables two levels of sharding - one by list or range and another
by consistent hash. This is accomplished by the application providing two keys: a
super sharding key and a sharding key.

Sharding Key Type Support

The following data types are supported for the sharding key.

• NUMBER

• INTEGER

• SMALLINT

• RAW

• (N)VARCHAR

• (N)VARCHAR2

• (N)CHAR

• DATE

• TIMESTAMP

• Primary Key and Foreign Key Constraints
In a sharding environment, the primary key constraints and foreign key constraints
are controlled by the following rules.

Primary Key and Foreign Key Constraints
In a sharding environment, the primary key constraints and foreign key constraints are
controlled by the following rules.

Chapter 4
Choosing Sharding Keys

4-3

• For primary keys, there are unique constraints and unique indexes on sharded
tables; the column list must contain the sharding key columns. In earlier Oracle
releases the restriction was that the sharding key must be a prefix of such
columns, but this rule is now more relaxed.

• Foreign keys from one sharded table to another sharded table also must contain
the sharding key. This is automatically enforced because a foreign key refers to
either the primary key or unique columns of the referenced table.

• Foreign keys on sharded tables must be within the same table family. This is
required because different table families have different sharding key columns.

• Foreign keys in sharded tables referencing local tables are not allowed.

• Foreign keys in sharded tables referencing duplicated tables are not allowed.

• Foreign keys in duplicated table referencing sharded tables are not allowed.

Indexes on Sharded Tables
Only local indexes can be created on sharded tables. Unique local indexes on sharded
tables must contain the sharding key.

Global indexes on sharded tables are not allowed because they can compromise the
performance of online chunk movement.

The following example creates a local index named id1 for the id column of the
account table.

CREATE INDEX id1 ON account (id) LOCAL;

The following example creates a local unique index named id2 for the id and state
columns of the account table.

CREATE UNIQUE INDEX id2 ON account (id, state) LOCAL;

DDL Execution in a Sharded Database
To create a schema in a sharded database, you must issue DDL commands on the
shard catalog database, which validates the DDLs and executes them locally before
they are executed on the shards.

The shard catalog database contains local copies of all of the objects that exist in the
sharded database, and serves as the master copy of the sharded database schema.
If the shard catalog validation and execution of DDLs are successful, the DDLs are
automatically propagated to all of the shards and applied in the order in which they
were issued on the shard catalog.

If a shard is down or not accessible during DDL propagation, the shard catalog keeps
track of DDLs that could not be applied to the shard, and then applies them when the
shard is back up.

When a new shard is added to a sharded database, all of the DDLs that have been
executed in the sharded database are applied in the same order to the shard before it
becomes accessible to clients.

There are two ways you can issue DDLs in a sharded database.

Chapter 4
Indexes on Sharded Tables

4-4

• Use the GDSCTL SQL command.

When you issue a DDL with the GDSCTL SQL command, as shown in the following
example, GDSCTL waits until all of the shards have finished executing the DDL and
returns the status of the execution.

GDSCTL> sql “create tablespace set tbsset”

• Connect to the shard catalog database using SQL*Plus using the
GDS$CATALOG.sdbname service.

When you issue a DDL command on the shard catalog database, it returns the
status when it finishes executing locally, but the propagation of the DDL to all of
the shards happens in the background asynchronously.

SQL> create tablespace set tbsset;

For information about DDL syntax extensions for Oracle Sharding, see DDL Syntax
Extensions for Oracle Sharding.

• Creating Objects Locally and Globally
Objects created using GDSCTL creates global, sharded database objects;
however, you can create local or global objects by connecting to the shard catalog
with SQL*Plus.

• DDL Syntax Extensions for Oracle Sharding
Oracle Sharding includes SQL DDL statements with syntax that can only be run
against a sharded database.

Creating Objects Locally and Globally
Objects created using GDSCTL creates global, sharded database objects; however,
you can create local or global objects by connecting to the shard catalog with
SQL*Plus.

When a DDL to create an object is issued using the GDSCTL sql command, the
object is created on all of the shards. A master copy of the object is also created in
the shard catalog database. An object that exists on all shards, and the shard catalog
database, is called a sharded database object.

When connecting to the shard catalog using SQL*Plus, two types of objects
can be created: sharded database objects and local objects. Local objects are
traditional objects that exist only in the shard catalog. Local objects can be used for
administrative purposes, or they can be used by multi-shard queries originated from
the shard catalog database, to generate and store a report, for example.

Sharded objects cannot have any dependency on local objects. For example, you
cannot create an all-shard view on a local table.

The type of object (sharded database or local) that is created in a SQL*Plus session
depends on whether the SHARD DDL mode is enabled in the session. This mode is
enabled by default on the shard catalog database for the all-shards user, which is a
user that exists on all of the shards and the shard catalog database. All of the objects
created while SHARD DDL is enabled in a session are sharded database objects.

Chapter 4
DDL Execution in a Sharded Database

4-5

To enable SHARD DDL in the session, the all-shards user must run

ALTER SESSION ENABLE SHARD DDL

All of the objects created while SHARD DDL is disabled are local objects. To create a
local object, the all-shards user must first run

ALTER SESSION DISABLE SHARD DDL

See ALTER SESSION for more information about the SHARD DDL session parameter.

DDL Syntax Extensions for Oracle Sharding
Oracle Sharding includes SQL DDL statements with syntax that can only be run
against a sharded database.

Changes to query and DML statements are not required to support Oracle Sharding,
and the changes to the DDL statements are very limited. Most existing DDL
statements will work the same way on a sharded database, with the same syntax
and semantics, as they do on a non-sharded database.

• CREATE TABLESPACE SET
This statement creates a tablespace set that can be used as a logical storage unit
for one or more sharded tables and indexes. A tablespace set consists of multiple
Oracle tablespaces distributed across shards in a shardspace.

• ALTER TABLESPACE SET
This statement alters a tablespace set that can be used as a logical storage unit
for one or more sharded tables and indexes.

• DROP TABLESPACE SET and PURGE TABLESPACE SET
These statements drop or purge a tablespace set, which can be used as a logical
storage unit for one or more sharded tables and indexes.

• CREATE TABLE
The CREATE TABLE statement has been extended to create sharded and duplicated
tables, and specify a table family.

• ALTER TABLE
The ALTER TABLE statement is extended to modify sharded and duplicated tables.

• ALTER SESSION
The ALTER SESSION statement is extended to support sharded databases.

CREATE TABLESPACE SET
This statement creates a tablespace set that can be used as a logical storage unit for
one or more sharded tables and indexes. A tablespace set consists of multiple Oracle
tablespaces distributed across shards in a shardspace.

The CREATE TABLESPACE SET statement is intended specifically for Oracle Sharding. Its
syntax is similar to CREATE TABLESPACE.

CREATE TABLESPACE SET tablespace_set
 [IN SHARDSPACE shardspace]
 [USING TEMPLATE (

Chapter 4
DDL Execution in a Sharded Database

4-6

 { MINIMUM EXTENT size_clause
 | BLOCKSIZE integer [K]
 | logging_clause
 | FORCE LOGGING
 | ENCRYPTION tablespace_encryption_spec
 | DEFAULT [table_compression] storage_clause
 | { ONLINE | OFFLINE }
 | extent_management_clause
 | segment_management_clause
 | flashback_mode_clause
 }...
)];

Note that in system-managed sharding there is only one default shardspace in the
sharded database. The number of tablespaces in a tablespace set is determined
automatically and is equal to the number of chunks in the corresponding shardspace.

All tablespaces in a tablespace set are bigfile tablespaces and have the same
properties. The properties are specified in the USING TEMPLATE clause and they
describe the properties of one single tablespace in the tablespace set. This clause
is the same as permanent_tablespace_clause for a typical tablespace, with the
exception that a data file name cannot be specified in the datafile_tempfile_spec
clause. The data file name for each tablespace in a tablespace set is generated
automatically.

Note that a tablespace set can only consist of permanent tablespaces, there is no
system, undo, or temporary tablespace set. Also, note that in the example below
the total data file size of the tablespace set is 100mxN (where N is the number of
tablespaces in the tablespace set).

Example

CREATE TABLESPACE SET TSP_SET_1 IN SHARDSPACE sgr1
USING TEMPLATE
(DATAFILE SIZE 100m
 EXTEND MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

ALTER TABLESPACE SET
This statement alters a tablespace set that can be used as a logical storage unit for
one or more sharded tables and indexes.

The SHARDSPACE property of a tablespace set cannot be modified. All other attributes of
a tablespace set can be altered just as for a regular permanent tablespace. Because
tablespaces in a tablespace set are bigfile, the ADD DATAFILE and DROP DATAFILE
clauses are not supported.

DROP TABLESPACE SET and PURGE TABLESPACE SET
These statements drop or purge a tablespace set, which can be used as a logical
storage unit for one or more sharded tables and indexes.

Chapter 4
DDL Execution in a Sharded Database

4-7

The syntax and semantics for these statements are similar to DROP and PURGE
TABLESPACE statements.

CREATE TABLE
The CREATE TABLE statement has been extended to create sharded and duplicated
tables, and specify a table family.

Syntax

CREATE [{ GLOBAL TEMPORARY | SHARDED | DUPLICATED}]
 TABLE [schema.] table
 { relational_table | object_table | XMLType_table }
 [PARENT [schema.] table] ;

The following parts of the CREATE TABLE statement are intended to support Oracle
Sharding:

• The SHARDED and DUPLICATED keywords indicate that the table content is either
partitioned across shards or duplicated on all shards respectively. The DUPLICATED
keyword is the only syntax change to create duplicated tables. All other changes
described below apply only to sharded tables.

• The PARENT clause links a sharded table to the root table of its table family.

• In system and composite sharding, to create a sharded table, TABLESPACE SET is
used instead of TABLESPACE. All clauses that contain TABLESPACE are extended to
contain TABLESPACE SET.

• Three clauses: consistent_hash_partitions,
consistent_hash_with_subpartitions, and partition_set_clause in the
table_partitioning_clauses.

table_partitioning_clauses ::=
{range_partitions
| hash_partitions
| list_partitions
| composite_range_partitions
| composite_hash_partitions
| composite_list_partitions
| reference_partitioning
| system_partitioning
| consistent_hash_partitions
| consistent_hash_with_subpartitions
| partition_set_clause
}

Example

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE

Chapter 4
DDL Execution in a Sharded Database

4-8

,
CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET ts2,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET ts1)
;

Limitations

Limitations for sharded tables in the current release:

• There is no default tablespace set for sharded tables.

• A temporary table cannot be sharded or duplicated.

• Index-organized sharded tables are not supported.

• A sharded table cannot contain a nested table column or an identity column.

• A primary key constraint defined on a sharded table must contain the sharding
column(s). A foreign key constraint on a column of a sharded table referencing a
duplicated table column is not supported.

• System partitioning and interval range partitioning are not supported for sharded
tables. Specification of individual hash partitions is not supported for partitioning by
consistent hash.

• A column in a sharded table used in PARTITION BY or PARTITIONSET BY clauses
cannot be a virtual column.

Duplicated tables in the current release are not supported with the following:

• System and reference partitioned tables

• LONG, abstract (MDSYS data types are supported), REF data types

• Maximum number of columns without primary key is 999

• The nologging and inmemory options

• XMLType column in a duplicated table cannot be used in non-ASSM tablespace

ALTER TABLE
The ALTER TABLE statement is extended to modify sharded and duplicated tables.

There are limitations on using ALTER TABLE with a sharded database.

The following options are not supported for a sharded table in a system-managed or
composite sharded database:

• Rename

• Add foreign key constraint

• All operations on individual partitions and subpartitions

• All partition-related operations on the shard, except TRUNCATE partition, UNUSABLE
LOCAL INDEXES, and REBUILD UNUSABLE LOCAL INDEXES

The following are not supported for duplicated tables:

Chapter 4
DDL Execution in a Sharded Database

4-9

• Data types: long, abstract (MDSYS datatypes are supported), REF

• Column options: vector encode, invisible column, nested tables

• Object types

• Clustered table

• External table

• ILM policy

• PARENT clause

• Flashback table operation

• System and Reference partitioning

• Enable NOLOGGING option

• Drop duplicated table materialized view log

• Drop duplicated table materialized views on shards

• Alter materialized views (of duplicated tables) on shards

ALTER SESSION
The ALTER SESSION statement is extended to support sharded databases.

The session-level SHARD DDL parameter sets the scope for DDLs issued against the
shard catalog database.

ALTER SESSION { ENABLE | DISABLE } SHARD DDL;

When SHARD DDL is enabled, all DDLs issued in the session are executed on the shard
catalog and all shards. When SHARD DDL is disabled, a DDL is executed only against
the shard catalog database. SHARD DDL is enabled by default for a sharded database
user (the user that exists on all shards and the catalog). To create a sharded database
user, the SHARD DDL parameter must be enabled before running CREATE USER.

PL/SQL Procedure Execution in a Sharded Database
In the same way that DDL statements can be run on all shards in a sharded database
configuration, so too can certain Oracle-provided PL/SQL procedures.

These specific procedure calls behave as if they were sharded DDL statements, in that
they are propagated to all shards, tracked by the catalog, and run whenever a new
shard is added to a configuration.

All of the following procedures can act as if they were a sharded DDL statement.

• Any procedure in the DBMS_FGA package

• Any procedure in the DBMS_RLS package

• The following procedures from the DBMS_STATS package:

– GATHER_INDEX_STATS

– GATHER_TABLE_STATS

– GATHER_SCHEMA_STATS

Chapter 4
PL/SQL Procedure Execution in a Sharded Database

4-10

– GATHER_DATABASE_STATS

– GATHER_SYSTEM_STATS

• The following procedures from the DBMS_GOLDENGATE_ADM package:

– ADD_AUTO_CDR

– ADD_AUTO_CDR_COLUMN_GROUP

– ADD_AUTO_CDR_DELTA_RES

– ALTER_AUTO_CDR

– ALTER_AUTO_CDR_COLUMN_GROUP

– PURGE_TOMBSTONES

– REMOVE_AUTO_CDR

– REMOVE_AUTO_CDR_COLUMN_GROUP

– REMOVE_AUTO_CDR_DELTA_RES

Note:

Oracle GoldenGate replication support for Oracle Sharding High
Availability is deprecated in Oracle Database 21c, and will be
desupported in Oracle Database 22c.

To run one of the procedures in the same way as sharded DDL statements, do the
following steps.

1. Connect to the shard catalog database using SQL*Plus as a database user with
the gsm_pooladmin_role.

2. Enable sharding DDL using ALTER SESSION ENABLE SHARD DDL.

3. Run the target procedure using a sharding-specific PL/SQL procedure named
SYS.EXEC_SHARD_PLSQL.

This procedure takes a single CLOB argument, which is a character string
specifying a fully qualified procedure name and its arguments. Note that running
the target procedure without using EXEC_SHARD_PLSQL causes the procedure to
only be run on the shard catalog, and it is not propagated to all of the shards.
Running the procedure without specifying the fully qualified name (for example,
SYS.DBMS_RLS.ADD_POLICY) will result in an error.

For example, to run DBMS_RLS.ADD_POLICY on all shards, do the following from
SQL*Plus after enabling SHARD DLL.

exec
sys.exec_shard_plsql('sys.dbms_rls.add_policy(object_schema
 =>
 ''testuser1'',

 object_name => ''DEPARTMENTS'',

 policy_name => ''dept_vpd_pol'',

 function_schema => ''testuser1'',

Chapter 4
PL/SQL Procedure Execution in a Sharded Database

4-11

 policy_function => ''authorized_emps'',

 statement_types => ''INSERT, UPDATE, DELETE, SELECT, INDEX'',

 update_check => TRUE)'

) ;

Take careful note of the need for double single-quotes inside the target procedure
call specification, because the call specification itself is a string parameter to
EXEC_SHARD_PLSQL.

If the target procedure executes correctly on the shard catalog database, it is queued
for processing on all of the currently deployed shards. Any error in the target
procedure execution on the shard catalog is returned to the SQL*Plus session. Errors
during execution on the shards can be tracked in the same way they are for DDLs.

Creating Sharded Database Schema Objects
The following topics show you how to create the schema objects in your sharded
database. Refer back to the Sharded Database Schema Objects section in chapter 2
for conceptual information about these objects.

• Create an All-Shards User
Local users that only exist in the shard catalog database do not have the privileges
to create schema objects in the sharded database. The first step of creating the
sharded database schema is to create an all-shards user.

• Creating a Sharded Table Family
Create a sharded table family with the SQL CREATE TABLE statement. You can
specify parent-child relationships between tables using reference partitioning or
equi-partitioning.

• Creating Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable
pieces among multiple databases, called shards.

• Creating Duplicated Tables
The number of database requests handled by a single shard can be maximized
by duplicating read-only or read-mostly tables across all shards. This strategy is a
good choice for relatively small tables that are not updated frequently, and that are
often accessed together with sharded tables.

• Updating Duplicated Tables and Synchronizing Their Contents
Oracle Sharding synchronizes the contents of duplicated tables using Materialized
View Replication.

• Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles,
views, indexes, synonyms, functions, procedures, and packages, and non-schema
database objects, such as tablespaces, tablespace sets, directories, and contexts,
can be created on all shards.

Chapter 4
Creating Sharded Database Schema Objects

4-12

Create an All-Shards User
Local users that only exist in the shard catalog database do not have the privileges to
create schema objects in the sharded database. The first step of creating the sharded
database schema is to create an all-shards user.

Create an all-shards user by connecting to the shard catalog database as SYSDBA,
enabling SHARD DDL, and executing the CREATE USER command. When the all-shards
user connects to the shard catalog database, the SHARD DDL mode is enabled by
default.

Note:

Local users can create non-schema sharded database objects, such as
tablespaces, directories, and contexts, if they enable SHARD DDL mode;
however, they cannot create schema objects, such as tables, views, indexes,
functions, procedures, and so on.

Sharded objects cannot have any dependency on local objects. For example,
you cannot create an all-shard view on a local table.

Creating a Sharded Table Family
Create a sharded table family with the SQL CREATE TABLE statement. You can
specify parent-child relationships between tables using reference partitioning or equi-
partitioning.

Use Reference Partitioning to Specify Parent-Child Relationships Between
Tables

The recommended way to create a sharded table family is to specify parent-child
relationships between tables using reference partitioning.

Partitioning by reference simplifies the syntax since the partitioning scheme is only
specified for the root table. Also, partition management operations that are performed
on the root table are automatically propagated to its descendents. For example, when
adding a partition to the root table, a new partition is created on all its descendents.

The appropriate CREATE TABLE statements for Customers–Orders–LineItems schema
using a system-managed sharding methodology are shown below. The first statement
creates the root table of the table family, Customers.

CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Chapter 4
Creating Sharded Database Schema Objects

4-13

The following two statements create the Orders and LineItems tables, which are a
child and grandchild of the Customers table.

CREATE SHARDED TABLE Orders
(OrderNo NUMBER NOT NULL
, CustNo NUMBER NOT NULL
, OrderDate DATE
, CONSTRAINT OrderPK PRIMARY KEY (CustNo, OrderNo)
, CONSTRAINT CustFK FOREIGN KEY (CustNo) REFERENCES Customers(CustNo)
)
PARTITION BY REFERENCE (CustFK)
;

CREATE SHARDED TABLE LineItems
(CustNo NUMBER NOT NULL
, LineNo NUMBER(2) NOT NULL
, OrderNo NUMBER(5) NOT NULL
, StockNo NUMBER(4)
, Quantity NUMBER(2)
, CONSTRAINT LinePK PRIMARY KEY (CustNo, OrderNo, LineNo)
, CONSTRAINT LineFK FOREIGN KEY (CustNo, OrderNo) REFERENCES
Orders(CustNo, OrderNo)
)
PARTITION BY REFERENCE (LineFK)
;

In the example statements above, corresponding partitions of all tables in the family
are stored in the same tablespace set, TS1. However, it is possible to specify separate
tablespace sets for each table.

Note that in the example statements above, the partitioning column CustNo used as
the sharding key is present in all three tables. This is despite the fact that reference
partitioning, in general, allows a child table to be equi-partitioned with the parent table
without having to duplicate the key columns in the child table. The reason for this is
that reference partitioning requires a primary key in a parent table because the primary
key must be specified in the foreign key constraint of a child table used to link the
child to its parent. However, a primary key on a sharded table must be the same as,
or contain, the sharding key. This makes it possible to enforce global uniqueness of
a primary key without coordination with other shards, a critical requirement for linear
scalability.

To summarize, the use of reference-partitioned tables in a sharded database requires
adhering to the following rules:

• A primary key on a sharded table must either be the same as the sharding key,
or contain the sharding key. This is required to enforce global uniqueness of a
primary key without coordination with other shards.

• Reference partitioning requires a primary key in a parent table, because the
primary key must be specified in the foreign key constraint of a child table to
link the child to its parent. It is also possible to have a foreign key constraint when
the parent table has just UNIQUE constraint, but no PRIMARY KEY. The sharding key
must also be NOT NULL.

Chapter 4
Creating Sharded Database Schema Objects

4-14

For example, to link the LineItems (child) table to the Orders (parent) table, you
need a primary key in the Orders table. The second rule implies that the primary
key in the Orders table contains the CustNo value. (This is an existing partitioning
rule not specific to Oracle Sharding.)

Use Equi-Partitioning to Specify Parent-Child Relationships Between Tables

In some cases it is impossible or undesirable to create primary and foreign key
constraints that are required for reference partitioning. For such cases, specifying
parent-child relationships in a table family requires that all tables are explicitly equi-
partitioned. Each child table is created with the PARENT clause in CREATE SHARDED
TABLE that contains the name of its parent. An example of the syntax is shown below.

 CREATE SHARDED TABLE Customers
(CustNo NUMBER NOT NULL
, Name VARCHAR2(50)
, Address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders
(OrderNo NUMBER
, CustNo NUMBER NOT NULL
, OrderDate DATE
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE LineItems
(LineNo NUMBER
, OrderNo NUMBER
, CustNo NUMBER NOT NULL
, StockNo NUMBER
, Quantity NUMBER
)
PARENT Customers
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Because the partitioning scheme is fully specified in all of the CREATE SHARDED TABLE
statements, any table can be independently subpartitioned. This is not permitted with
reference partitioning where subpartitions can only be specified for the root table and
the subpartitioning scheme is the same for all tables in a table family.

Chapter 4
Creating Sharded Database Schema Objects

4-15

Note that this method only supports two-level table families, that is, all children must
have the same parent and grandchildren cannot exist. This is not a limitation as long
as the partitioning column from the parent table exists in all of the child tables.

See Also:

Oracle Database VLDB and Partitioning Guide for information about
reference partitioning

Creating Sharded Tables
A sharded table is a table that is partitioned into smaller and more manageable pieces
among multiple databases, called shards.

Creating Sharded Tables in a System-Managed Sharded Database

In a system-managed sharded database, data is automatically distributed across the
shards using partitioning by consistent hash.

Before creating a sharded table, create a tablespace set with CREATE TABLESPACE SET
to store the table partitions.

CREATE TABLESPACE SET ts1;

If you need to customize the tablespace attributes, add the USING TEMPLATE clause to
CREATE TABLESPACE SET as shown in this example.

CREATE TABLESPACE SET ts1
USING TEMPLATE
(DATAFILE SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE
)
;

You create a sharded table with CREATE SHARDED TABLE, horizontally partitioning the
table across the shards based on the sharding key cust_id.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, region VARCHAR2(20)
, class VARCHAR2(3)
, signup DATE
CONSTRAINT cust_pk PRIMARY KEY(cust_id)
)
PARTITION BY CONSISTENT HASH (cust_id)
PARTITIONS AUTO

Chapter 4
Creating Sharded Database Schema Objects

4-16

TABLESPACE SET ts1
;

A system-managed sharded table is partitioned by consistent hash, by specifying
PARTITION BY CONSISTENT HASH (primary_key_column).

The PARTITIONS AUTO clause specifies that the number of partitions is automatically
set to the number of tablespaces in the tablespace set ts1, and each partition is stored
in a separate tablespace.

Creating Sharded Tables in a User-Defined Sharded Database

In a user-defined sharded database, you explicitly map data to individual shards. A
sharded table in a user-defined sharded database can be partitioned by range or list.

You do not create tablespace sets for user-defined sharded tables; however, you
must create each tablespace individually and explicitly associate it with a shardspace
deployed in the sharded database configuration, as shown here.

CREATE TABLESPACE tbs1 IN SHARDSPACE west;
CREATE TABLESPACE tbs2 IN SHARDSPACE west;

CREATE TABLESPACE tbs3 IN SHARDSPACE central;
CREATE TABLESPACE tbs4 IN SHARDSPACE central;

CREATE TABLESPACE tbs5 IN SHARDSPACE east;
CREATE TABLESPACE tbs6 IN SHARDSPACE east;

When you create the sharded table, you define the partitions with the ranges or lists of
data to be stored in each tablespace, as shown in the following example.

CREATE SHARDED TABLE accounts
(id NUMBER
, account_number NUMBER
, customer_id NUMBER
, branch_id NUMBER
, state VARCHAR(2) NOT NULL
, status VARCHAR2(1)
)
PARTITION BY LIST (state)
(PARTITION p_northwest VALUES ('OR', 'WA') TABLESPACE ts1
, PARTITION p_southwest VALUES ('AZ', 'UT', 'NM') TABLESPACE ts2
, PARTITION p_northcentral VALUES ('SD', 'WI') TABLESPACE ts3
, PARTITION p_southcentral VALUES ('OK', 'TX') TABLESPACE ts4
, PARTITION p_northeast VALUES ('NY', 'VM', 'NJ') TABLESPACE ts5
, PARTITION p_southeast VALUES ('FL', 'GA') TABLESPACE ts6
)
;

Creating Sharded Tables in a Composite Sharded Database

The sharded database using the composite sharding method allows you to partition
subsets of data that correspond to a range or list of key values in a table partitioned by
consistent hash.

Chapter 4
Creating Sharded Database Schema Objects

4-17

With composite sharding, as with the other sharding methods, tablespaces are used to
specify the mapping of partitions to shards. To partition subsets of data in a sharded
table, a separate tablespace set must be created for each shardspace deployed in the
sharded database configuration as shown in the following example.

CREATE TABLESPACE SET tbs1 IN SHARDSPACE shspace1;
CREATE TABLESPACE SET tbs2 IN SHARDSPACE shspace2;

The statement in the following example partitions a sharded table into two partition
sets: gold and silver, based on class of service. Each partition set is stored in a
separate tablespace. Then data in each partition set is further partitioned by consistent
hash on customer ID.

CREATE SHARDED TABLE customers
(cust_id NUMBER NOT NULL
, name VARCHAR2(50)
, address VARCHAR2(250)
, location_id VARCHAR2(20)
, class VARCHAR2(3)
, signup_date DATE
, CONSTRAINT cust_pk PRIMARY KEY(cust_id, class)
)
PARTITIONSET BY LIST (class)
 PARTITION BY CONSISTENT HASH (cust_id)
 PARTITIONS AUTO
(PARTITIONSET gold VALUES (‘gld’) TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES (‘slv’) TABLESPACE SET tbs2)
;

Creating Duplicated Tables
The number of database requests handled by a single shard can be maximized by
duplicating read-only or read-mostly tables across all shards. This strategy is a good
choice for relatively small tables that are not updated frequently, and that are often
accessed together with sharded tables.

There are some limitations on duplicated tables. The following are not supported for
duplicated tables.

• NOLOGGING

• ALTER TABLE ADD/DROP CONSTRAINT for primary key only

• ALTER TABLE ADD/DROP PRIMARY KEY

• ALTER TABLE RENAME COLUMN

• PARTITION BY REFERENCE

• PARTITION BY SYSTEM

• CLUSTERED TABLE

• Non-final UDT or NESTED TABLE

• LONG DATATYPE

• COLUMN VECTOR ENCODE

Chapter 4
Creating Sharded Database Schema Objects

4-18

• INVISIBLE COLUMN

• Column encryption

• Information Lifecycle Management (ILM) policy

• CTAS Parallel

• Foreign key constraints between duplicated tables and sharded tables are
generally not allowed with the exception that in user-defined sharding, you
can create DISABLE NOVALIDATE foreign key constraints between sharded and
duplicated tables.

The Products duplicated table can be created using the following statement.

CREATE DUPLICATED TABLE Products
(StockNo NUMBER PRIMARY KEY
, Description VARCHAR2(20)
, Price NUMBER(6,2))
;

Updating Duplicated Tables and Synchronizing Their Contents
Oracle Sharding synchronizes the contents of duplicated tables using Materialized
View Replication.

A duplicated table on each shard is represented by a materialized view. The
master table for the materialized views is located in the shard catalog. The CREATE
DUPLICATED TABLE statement automatically creates the master table, materialized
views, and other objects required for materialized view replication.

You can connect to any shard and update a duplicated table directly on the shard. The
update is first propagated over a database link from the shard to the master table on
the shard catalog. Then the update is asynchronously propagated to all other shards
as a result of a materialized view refresh.

The materialized views on all of the shards can be refreshed with one of the two
options:

• Automatic refresh at a configurable frequency per table

• On-demand refresh by running a stored procedure

For automatic refresh, to get better refresh performance, you can also use a stored
procedure interface to create materialized view refresh groups.

Chapter 4
Creating Sharded Database Schema Objects

4-19

Note:

A race condition is possible when a transaction run on a shard tries to update
a row which was deleted on the shard catalog. In this case, an error is
returned and the transaction on the shard is rolled back.

The following use cases are not supported when updating duplicated tables
on a shard.

• Updating a LOB or a data type not supported by database links

• Updating or deleting of a row inserted by the same transaction

Non-Table Objects Created on All Shards
In addition to duplicated tables, other schema objects, such as users, roles, views,
indexes, synonyms, functions, procedures, and packages, and non-schema database
objects, such as tablespaces, tablespace sets, directories, and contexts, can be
created on all shards.

Unlike tables, which require an extra keyword in the CREATE statement—SHARDED or
DUPLICATED—other objects are created on all shards using existing syntax. The only
requirement is that the SHARD DDL session property must be enabled.

Note that automatic creation on all shards of the following objects is not supported in
this release. These objects can be created by connecting to individual shards.

• Cluster

• Control file

• Database link

• Disk group

• Edition

• Flashback archive

• Materialized zone map

• Outline

• Pfile

• Profile

• Restore point

• Rollback segment

• Summary

Materialized views and view logs are supported starting in Oracle Database 18c, with
the following restrictions:

• Materialized views created on sharded tables remain empty on the catalog
database, while the corresponding materialized views on shards contain data from
each of the individual shards.

• Only the REFRESH COMPLETE ON DEMAND USING TRUSTED CONSTRAINTS option is
supported for materialized views on sharded tables.

Chapter 4
Creating Sharded Database Schema Objects

4-20

Schema Creation Examples
The following examples show the steps you would take to create a schema for a
sharded database using the system-managed, user-defined, and composite sharding
methods.

• Create a System-Managed Sharded Database Schema
Create the tablespace set, sharded tables, and duplicated tables for a sharded
database that uses the system-managed sharding method.

• Create a User-Defined Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for
a sharded database that uses the user-defined sharding method.

• Create a Composite Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for
a sharded database that uses the composite sharding method.

Create a System-Managed Sharded Database Schema
Create the tablespace set, sharded tables, and duplicated tables for a sharded
database that uses the system-managed sharding method.

1. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create a tablespace set for the sharded tables.

SQL> CREATE TABLESPACE SET TSP_SET_1 using template
 (datafile size 100m autoextend on next 10M maxsize unlimited
 extent management local segment space management auto);

3. If you use LOBs in a column, you can specify a tablespace set for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1;

Chapter 4
Schema Creation Examples

4-21

Note:

Tablespace sets for LOBS cannot be specified at the subpartitition level
in system-managed sharding.

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m
 autoextend on next 10M maxsize unlimited
 extent management local uniform size 1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQL> CONNECT app_schema/app_schema_password
SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

Chapter 4
Schema Creation Examples

4-22

Note:

If any columns contain LOBs, you can include the tablespace set in the
parent table creation statement, as shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) TABLESPACE SET TSP_SET_1
 LOB(image) store as (TABLESPACE SET LOBTS1)
 PARTITION BY CONSISTENT HASH (CustId) PARTITIONS AUTO;

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),

Chapter 4
Schema Creation Examples

4-23

 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

Next you should monitor the DDL execution and verify that the tablespace sets, tables,
and chunks were correctly created on all of the shards.

Create a User-Defined Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for a
sharded database that uses the user-defined sharding method.

1. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant connect, resource to app_schema;
SQL> grant dba to app_schema;
SQL> grant execute on dbms_crypto to app_schema;

2. Create tablespaces for the sharded tables.

SQL> CREATE TABLESPACE ck1_tsp DATAFILE SIZE 100M autoextend on
next 10M maxsize
unlimited extent management local segment space management auto in
 shardspace shspace1;

SQL> CREATE TABLESPACE ck2_tsp DATAFILE SIZE 100M autoextend on
next 10M maxsize
unlimited extent management local segment space management auto in
 shardspace shspace2;

Chapter 4
Schema Creation Examples

4-24

3. If you use LOBs in any columns, you can specify tablespaces for the LOBs.

SQL> CREATE TABLESPACE lobts1 ... in shardspace shspace1;

SQL> CREATE TABLESPACE lobts2 ... in shardspace shspace2;

4. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

SQL> CREATE TABLESPACE products_tsp datafile size 100m autoextend
 on next 10M maxsize unlimited extent management local uniform size
1m;

5. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

SQL> CONNECT app_schema/app_schema_password

SQL> ALTER SESSION ENABLE SHARD DDL;

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp,
 PARTITION ck2 values less than (MAXVALUE) tablespace ck2_tsp
);

Chapter 4
Schema Creation Examples

4-25

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespaces, as
shown here.

SQL> CREATE SHARDED TABLE Customers
 (
 CustId VARCHAR2(60) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) PARTITION BY RANGE (CustId)
 (PARTITION ck1 values less than ('m') tablespace ck1_tsp
 lob(image) store as (tablespace lobts1),
 PARTITION ck2 values less than (MAXVALUE) tablespace
ck2_tsp
 lob(image) store as (tablespace lobts2)
);

6. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

The Orders sharded table is created first:

SQL> CREATE SHARDED TABLE Orders
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 CONSTRAINT pk_orders PRIMARY KEY (CustId, OrderId),
 CONSTRAINT fk_orders_parent FOREIGN KEY (CustId)
 REFERENCES Customers ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_orders_parent);

Create the sequence used for the OrderId column.

SQL> CREATE SEQUENCE Orders_Seq;

Create a sharded table for LineItems

SQL> CREATE SHARDED TABLE LineItems
 (
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,

Chapter 4
Schema Creation Examples

4-26

 Price NUMBER(19,4),
 Qty NUMBER,
 CONSTRAINT pk_items PRIMARY KEY (CustId, OrderId, ProductId),
 CONSTRAINT fk_items_parent FOREIGN KEY (CustId, OrderId)
 REFERENCES Orders ON DELETE CASCADE
) PARTITION BY REFERENCE (fk_items_parent);

7. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

SQL> CREATE DUPLICATED TABLE Products
 (
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) TABLESPACE products_tsp;

Next you should monitor the DDL execution and verify that the tablespace sets, tables,
and chunks were correctly created on all of the shards.

Create a Composite Sharded Database Schema
Create the schema user, tablespace set, sharded tables, and duplicated tables for a
sharded database that uses the composite sharding method.

1. Connect to the shard catalog host, and set the ORACLE_SID to the shard catalog
name.

2. Connect to the shard catalog database, create the application schema user, and
grant privileges and roles to the user.

In this example, the application schema user is called app_schema.

$ sqlplus / as sysdba

SQL> connect / as sysdba
SQL> alter session enable shard ddl;
SQL> create user app_schema identified by app_schema_password;
SQL> grant connect, resource, alter session to app_schema;
SQL> grant execute on dbms_crypto to app_schema;
SQL> grant create table, create procedure, create tablespace,
 create materialized view to app_schema;
SQL> grant unlimited tablespace to app_schema;
SQL> grant select_catalog_role to app_schema;
SQL> grant all privileges to app_schema;
SQL> grant gsmadmin_role to app_schema;
SQL> grant dba to app_schema;

3. Create tablespace sets for the sharded tables.

SQL> CREATE TABLESPACE SET
 TSP_SET_1 in shardspace cust_america using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management

Chapter 4
Schema Creation Examples

4-27

 local segment space management auto);

SQL> CREATE TABLESPACE SET
 TSP_SET_2 in shardspace cust_europe using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

4. If you use LOBs in any columns, you can specify tablespace sets for the LOBs.

SQL> CREATE TABLESPACE SET LOBTS1 in shardspace cust_america ... ;

SQL> CREATE TABLESPACE SET LOBTS2 in shardspace cust_europe ... ;

Note:

Tablespace sets for LOBs cannot be specified at the subpartitition level
in composite sharding.

5. Create a tablespace for the duplicated tables.

In this example the duplicated table is the Products table in the sample
Customers-Orders-Products schema.

CREATE TABLESPACE products_tsp datafile size 100m autoextend on
next 10M
 maxsize unlimited extent management local uniform size 1m;

6. Create a sharded table for the root table.

In this example, the root table is the Customers table in the sample Customers-
Orders-Products schema.

connect app_schema/app_schema_password
alter session enable shard ddl;

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8),
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set tsp_set_1,
partitionset europe values ('EUROPE') tablespace set tsp_set_2
);

Chapter 4
Schema Creation Examples

4-28

Note:

If any columns in the sharded tables contain LOBs, the CREATE
SHARDED TABLE statement can include the LOB tablespace set, as
shown here.

CREATE SHARDED TABLE Customers
(
 CustId VARCHAR2(60) NOT NULL,
 FirstName VARCHAR2(60),
 LastName VARCHAR2(60),
 Class VARCHAR2(10),
 Geo VARCHAR2(8) NOT NULL,
 CustProfile VARCHAR2(4000),
 Passwd RAW(60),
 image BLOB,
 CONSTRAINT pk_customers PRIMARY KEY (CustId),
 CONSTRAINT json_customers CHECK (CustProfile IS JSON)
) partitionset by list(GEO)
partition by consistent hash(CustId)
partitions auto
(partitionset america values ('AMERICA') tablespace set
tsp_set_1
 lob(image) store as (tablespace set lobts1),
partitionset europe values ('EUROPE') tablespace set
tsp_set_2
 lob(image) store as (tablespace set lobts2));

7. Create a sharded table for the other tables in the table family.

In this example, sharded tables are created for the Orders and LineItems tables in
the sample Customers-Orders-Products schema.

Create the sequence used for the OrderId column.

CREATE SEQUENCE Orders_Seq;

The Orders sharded table is created first:

CREATE SHARDED TABLE Orders
(
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 OrderDate TIMESTAMP NOT NULL,
 SumTotal NUMBER(19,4),
 Status CHAR(4),
 constraint pk_orders primary key (CustId, OrderId),
 constraint fk_orders_parent foreign key (CustId)
 references Customers on delete cascade
) partition by reference (fk_orders_parent);

Chapter 4
Schema Creation Examples

4-29

Create a sharded table for LineItems

CREATE SHARDED TABLE LineItems
(
 OrderId INTEGER NOT NULL,
 CustId VARCHAR2(60) NOT NULL,
 ProductId INTEGER NOT NULL,
 Price NUMBER(19,4),
 Qty NUMBER,
 constraint pk_items primary key (CustId, OrderId, ProductId),
 constraint fk_items_parent foreign key (CustId, OrderId)
 references Orders on delete cascade
) partition by reference (fk_items_parent);

8. Create any required duplicated tables.

In this example, the Products table is a duplicated object.

CREATE DUPLICATED TABLE Products
(
 ProductId INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 Name VARCHAR2(128),
 DescrUri VARCHAR2(128),
 LastPrice NUMBER(19,4)
) tablespace products_tsp;

Next you should monitor the DDL execution and verify that the tablespace sets, tables,
and chunks were correctly created on all of the shards.

Monitor DDL Execution and Verify Object Creation
You can monitor DDL execution using GDSCTL and SQL, to verify that the DDLs are
propagated to all of the shards.

Monitor DDL Execution

You can check the status of the DDL propagation to the shards by using the GDSCTL
show ddl and config shard commands.

This check is mandatory when a DDL is executed using SQL*Plus on the shard
catalog, because SQL*Plus does not return the execution status on all of the shards.

The show ddl command output might be truncated. You can run SELECT ddl_text
FROM gsmadmin_internal.ddl_requests on the shard catalog to see the full text of the
statements.

Run the following command from the shard director host.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
5 grant connect, resource to app_schema
6 grant dba to app_schema
7 grant execute on dbms_crypto to app_s...
8 CREATE TABLESPACE SET TSP_SET_1 usin...
9 CREATE TABLESPACE products_tsp datafi...

Chapter 4
Monitor DDL Execution and Verify Object Creation

4-30

10 CREATE SHARDED TABLE Customers (Cu...
11 CREATE SHARDED TABLE Orders (Order...
12 CREATE SEQUENCE Orders_Seq;
13 CREATE SHARDED TABLE LineItems (Or...
14 CREATE MATERIALIZED VIEW "APP_SCHEMA"...

Run the config shard command on each shard in your configuration, as shown
here, and note the Last Failed DDL line in the command output.

GDSCTL> config shard -shard sh1
Name: sh1
Shard Group: primary_shardgroup
Status: Ok
State: Deployed
Region: region1
Connection string: shard_host_1:1521/sh1_host:dedicated
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---
Failed DDL id:
Availability: ONLINE

Supported services

Name Preferred Status
---- --------- ------
oltp_ro_srvc Yes Enabled
oltp_rw_srvc Yes Enabled

Verify Tablespace Set Creation

Verify that the tablespaces of the tablespace set you created for the sharded table
family, and the tablespaces you created for the duplicated tables, are created on all of
the shards.

The number of tablespaces in the tablespace set, shown below as C001TSP_SET_1
through C006TSP_SET_1, is based on the number of chunks specified in
the GDSCTL create shardcatalog command when the sharded database
configuration was deployed.

The duplicated Products tablespace is shown below as PRODUCTS_TSP.

Run SELECT TABLESPACE_NAME on all of the shards in your configuration, as shown
here.

$ sqlplus / as sysdba

SQL> select TABLESPACE_NAME, BYTES/1024/1024 MB from sys.dba_data_files
 order by tablespace_name;

TABLESPACE_NAME MB

Chapter 4
Monitor DDL Execution and Verify Object Creation

4-31

----------------------- ----------
C001TSP_SET_1 100
C002TSP_SET_1 100
C003TSP_SET_1 100
C004TSP_SET_1 100
C005TSP_SET_1 100
C006TSP_SET_1 100
PRODUCTS_TSP 100
SYSAUX 650
SYSTEM 890
SYS_SHARD_TS 100
TSP_SET_1 100

TABLESPACE_NAME MB
------------------------ ----------
UNDOTBS1 105
USERS 5

13 rows selected.

Verify Chunk Creation and Distribution

Verify that the chunks and chunk tablespaces were created on all of the shards.

Run the GDSCTL config chunks command as shown here, and note the ranges of
chunk IDs on each shard.

GDSCTL> config chunks
Chunks

Database From To
-------- ---- --
sh1 1 6
sh2 1 6
sh3 7 12
sh4 7 12

Run the following SQL statements on each of the shards in your configuration, as
shown here.

SQL> show parameter db_unique_name

NAME TYPE VALUE
---------------- ----------- ------------------------------
db_unique_name string sh1

SQL> select table_name, partition_name, tablespace_name
 from dba_tab_partitions
 where tablespace_name like 'C%TSP_SET_1'
 order by tablespace_name;

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
ORDERS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P1 C001TSP_SET_1

Chapter 4
Monitor DDL Execution and Verify Object Creation

4-32

LINEITEMS CUSTOMERS_P1 C001TSP_SET_1
CUSTOMERS CUSTOMERS_P2 C002TSP_SET_1
LINEITEMS CUSTOMERS_P2 C002TSP_SET_1
ORDERS CUSTOMERS_P2 C002TSP_SET_1
CUSTOMERS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P3 C003TSP_SET_1
LINEITEMS CUSTOMERS_P3 C003TSP_SET_1
ORDERS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P4 C004TSP_SET_1

TABLE_NAME PARTITION_NAME TABLESPACE_NAME
---------------- ---------------- --------------------
LINEITEMS CUSTOMERS_P4 C004TSP_SET_1
CUSTOMERS CUSTOMERS_P5 C005TSP_SET_1
LINEITEMS CUSTOMERS_P5 C005TSP_SET_1
ORDERS CUSTOMERS_P5 C005TSP_SET_1
CUSTOMERS CUSTOMERS_P6 C006TSP_SET_1
LINEITEMS CUSTOMERS_P6 C006TSP_SET_1
ORDERS CUSTOMERS_P6 C006TSP_SET_1
18 rows selected.

Connect to the shard catalog database and verify that the chunks are uniformly
distributed, as shown here.

$ sqlplus / as sysdba

SQL> SELECT a.name Shard, COUNT(b.chunk_number) Number_of_Chunks
 FROM gsmadmin_internal.database a, gsmadmin_internal.chunk_loc b
 WHERE a.database_num=b.database_num
 GROUP BY a.name
 ORDER BY a.name;

SHARD NUMBER_OF_CHUNKS
------------------------------ ----------------
sh1 6
sh2 6
sh3 6
sh4 6

Verify Table Creation

To verify that the sharded and duplicated tables were created, log in as the application
schema user on the shard catalog database and each of the shards and query the
tables on a database shard, as shown below with the example app_schema user.

$ sqlplus app_schema/app_schema_password
Connected.

SQL> select table_name from user_tables;

TABLE_NAME

CUSTOMERS
ORDERS

Chapter 4
Monitor DDL Execution and Verify Object Creation

4-33

LINEITEMS
PRODUCTS

4 rows selected.

DDL Execution Failure and Recovery Examples
The following examples demonstrate the steps to issue a DDL, monitor its execution
status, and what to do when errors are encountered.

When a DDL fails on a shard, all further DDLs on that shard are blocked until the
failure is resolved and the GDSCTL recover shard command is run.

Note that you must have GSM_ADMIN privileges to run these GDSCTL commands.

The following examples demonstrate the case when a DDL is issued using SQL*Plus,
but the same status checking and corrective actions apply when using the GDSCTL SQL
command.

Example 4-1 A DDL execution error on the shard catalog

In this example the user makes a typo in the CREATE USER command.

SQL> alter session enable shard ddl;
Session altered.

SQL> CREATE USER example_user IDENTRIFIED BY out_standing1;
CREATE USER example_user IDENTRIFIED BY out_Standing1
 *
ERROR at line 1:
ORA-00922: missing or invalid option

The DDL fails to execute on the shard catalog and, as expected, the GDSCTL show
ddl command shows that no DDL was executed on any of the shards:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------

Then the user repeats the command with the correct spelling. Note that there is no
need to run alter session enable shard ddlagain because the same session is
used.

SQL> CREATE USER example_user IDENTIFIED BY out_Standing1;
User created.

Now show ddl shows that the DDL has been successfully executed on the shard
catalog database and it did not fail on any shards that are online.

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****

Chapter 4
DDL Execution Failure and Recovery Examples

4-34

Note:

For any shard that is down at the time of the DDL execution, the DDL is
automatically applied when the shard is back up.

Example 4-2 Recovery from an error on a shard by executing a corrective
action on that shard

In this example, the user attempts to create a tablespace set for system-managed
sharded tables. But the datafile directory on one of the shards is not writable, so the
DDL is successfully executed on the catalog, but fails on the shard.

SQL> connect example_user/out_Standing1
Connected

SQL> create tablespace set tbsset;
Tablespace created.

Note that there is no need to run alter session enable shard ddl because the user
example_user was created as the SDB user and shard ddl is enabled by default.

Check status using GDSCTL show ddl:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset shard01

The command output shows that the DDL failed on the shard shard01. Run the
GDSCTL config shard command to get detailed information:

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Failed DDL: create tablespace set tbsset
DDL Error: ORA-02585: create tablepsace set failure, one of its
tablespaces not created
ORA-01119: error in creating database file \'/ade/b/3667445372/oracle/
rdbms/dbs/

Chapter 4
DDL Execution Failure and Recovery Examples

4-35

SHARD01/datafile/o1_mf_tbsset_%u_.dbf\'
ORA-27040: file create error, unable to create file
Linux-x86_64 Error: 13: Permission denied
Additional information: 1 \(ngsmoci_execute\)
Failed DDL id: 2
Availability: ONLINE

The text beginning with “Failed DDL:” indicates the problem. To resolve it, the user
must log in to the shard database host and make the directory writable.

Display the permissions on the directory:

cd $ORACLE_HOME/rdbms/dbs
 ls –l ../ | grep dbs
dr-xr-xr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Change the directory to writable:

chmod +w .
ls –l ../ | grep dbs
drwxrwxr-x 4 oracle dba 102400 Jul 20 15:41 dbs/

Go back to the GDSCTL console and issue the recover shard command:

GDSCTL> recover shard -shard shard01

Check the status again:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset

GDSCTL> config shard -shard shard01

Conversion = ':'Name: shard01
Shard Group: dbs1
Status: Ok
State: Deployed
Region: east
Connection string: (DESCRIPTION=(ADDRESS=(HOST=shard01-host)(PORT=1521)
(PROTOCOL=tcp))
(CONNECT_DATA=(SID=shard01)))
SCAN address:
ONS remote port: 0
Disk Threshold, ms: 20
CPU Threshold, %: 75
Version: 18.0.0.0
Last Failed DDL:
DDL Error: ---

Chapter 4
DDL Execution Failure and Recovery Examples

4-36

DDL id:
Availability: ONLINE

As shown above, the failed DDL error no longer appears.

Example 4-3 Recovery from an error on a shard by executing a corrective
action on all other shards

In this example, the user attempts to create another tablespace set, tbs_set, but the
DDL fails on a shard because there is already an existing local tablespace with the
same name.

On the shard catalog:

SQL> create tablespace set tbs_set;
Tablespace created.

Check status using the GDSCTL show ddl command:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01

GDSCTL> config shard -shard shard01
Conversion = ':'Name: shard01
……
Failed DDL: create tablespace set tbs_set
DDL Error: ORA-02585: create tablespace set failure, one of its
tablespaces not created
ORA-01543: tablespace \'TBS_SET\' already exists \(ngsmoci_execute\)

A solution to this problem is to login to shard01 as a local database administrator, drop
the tablespace TBS_SET, and then run GDSCTL recover shard -shard shard01.
But suppose you want to keep this tablespace, and instead choose to drop the newly
created tablespace set that has the name conflict and create another tablespace set
with a different name, such as tbsset2. The following example shows how to do that on
the shard catalog:

SQL> drop tablespace set tbs_set;
SQL> create tablespace set tbs_set2;

Check status using GDSCTL:

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user example_user identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set shard01

Chapter 4
DDL Execution Failure and Recovery Examples

4-37

4 drop tablespace set tbs_set
5 create tablespace set tbsset2

You can see that DDLs 4 and 5 are not attempted on shard01 because DDL 3 failed
there. To make this shard consistent with the shard catalog, you must run the GDSCTL
recover shard command. However, it does not make sense to execute DDL 3 on this
shard because it will fail again and you actually do not want to create tablespace set
tbs_set anymore. To skip DDL 3 run recover shard with the –ignore_first option:

GDSCTL> recover shard -shard shard01 –ignore_first
GSM Errors: dbs1 shard01:ORA-00959: tablespace \'TBS_SET\' does not
exist
 (ngsmoci_execute)

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set shard01
5 create tablespace set tbsset2

There is no failure with DDL 3 this time because it was skipped. However, the next
DDL (4 - drop tablespace set tbs_set) was applied and resulted in the error because
the tablespace set to be dropped does not exist on the shard.

Because the –ignore_first option only skips the first DDL, you need to execute
recover shard again to skip the drop statement as well:

GDSCTL> recover shard -shard shard01 –ignore_first

GDSCTL> show ddl
id DDL Text Failed shards
-- -------- -------------
1 create user sidney identified by *****
2 create tablespace set tbsset
3 create tablespace set tbs_set
4 drop tablespace set tbs_set
5 create tablespace set tbsset2

Note that there are no longer any failures shown, and all of the DDLs were applied
successfully on the shards.

When recover shard is run with the –ignore_first option, the failed DDL is marked
to be ignored during incremental deployment. Therefore, DDL numbers 3 and 4 are
skipped when a new shard is added to the SDB, and only DDL numbers 1, 2, and 5
are applied.

Generating Unique Sequence Numbers Across Shards
You can generate globally unique sequence numbers across shards for non-primary
key columns, and it is handled by the sharded database.

Chapter 4
Generating Unique Sequence Numbers Across Shards

4-38

You may need to generate unique IDs for non-primary key columns, for example
order_id, when the customer_id is the sharding key. For this case among others, this
feature lets you generate unique sequence numbers across shards, while not requiring
you to manage the global uniqueness of a given non-primary key column in your
application.

This functionality is supported by the SHARDED SEQUENCE object. A sharded sequence
is created on the shard catalog but has an instance on each shard. Each instance
generates monotonically increasing numbers that belong to a range which does not
overlap with ranges used on other shards. Therefore, every generated number is
globally unique.

A sharded sequence can be used, for example, to generate a unique order number
for a table sharded by a customer ID. An application that establishes a connection
to a shard using the customer ID as a key can use a local instance of the sharded
sequence to generate a globally unique order number.

Note that the number generated by a sharded sequence cannot be immediately used
as a sharding key for a new row being inserted into this shard, because the key value
may belong to another shard and the insert will result in an error. To insert a new
row, the application should first generate a value of the sharding key and then use
it to connect to the appropriate shard. A typical way to generate a new value of the
sharding key would be use a regular (non-sharded) sequence on the shard catalog.

If a single sharding key generator becomes a bottleneck, a sharded sequence can be
used for this purpose. In this case, an application should connect to a random shard
(using the global service without specifying the sharding key), get a unique key value
from a sharded sequence, and then connect to the appropriate shard using the key
value.

To support this feature, the SEQUENCE object clauses, SHARD and NOSHARD, are included
in the SEQUENCE object DDL syntax, as shown in the following CREATE statement
syntax.

CREATE | ALTER SEQUENCE [schema.]sequence
 [{ INCREMENT BY | START WITH } integer
 | { MAXVALUE integer | NOMAXVALUE }
 | { MINVALUE integer | NOMINVALUE }
 | { CYCLE | NOCYCLE }
 | { CACHE integer | NOCACHE }
 | { ORDER | NOORDER }
 | { SCALE {EXTEND | NOEXTEND} | NOSCALE}
 | { SHARD {EXTEND | NOEXTEND} | NOSHARD}
]

NOSHARD is the default for a sequence. If the SHARD clause is specified, this property
is registered in the sequence object’s dictionary table, and is shown using the
DBA_SEQUENCES, USER_SEQUENCES, and ALL_SEQUENCES views.

When SHARD is specified, the EXTEND and NOEXTEND clauses define the behavior of a
sharded sequence. When EXTEND is specified, the generated sequence values are all
of length (x+y), where x is the length of a SHARD offset of size 4 (corresponding to
the width of the maximum number of shards, that is, 1000) affixed at beginning of the
sequence values, and y is the maximum number of digits in the sequence MAXVALUE/
MINVALUE.

Chapter 4
Generating Unique Sequence Numbers Across Shards

4-39

The default setting for the SHARD clause is NOEXTEND. With the NOEXTEND setting,
the generated sequence values are at most as wide as the maximum number of
digits in the sequence MAXVALUE/MINVALUE. This setting is useful for integration with
existing applications where sequences are used to populate fixed width columns.
On invocation of NEXTVAL on a sequence with SHARD NOEXTEND specified, a user
error is thrown if the generated value requires more digits of representation than the
sequence’s MAXVALUE/MINVALUE.

If the SCALE clause is also specified with the SHARD clause, the sequence generates
scalable values within a shard for multiple instances and sessions, which are globally
unique. When EXTEND is specified with both the SHARD and SCALE keywords, the
generated sequence values are all of length (x+y+z), where x is the length of a
prepended SHARD offset of size 4, y is the length of the scalable offset (default 6), and z
is the maximum number of digits in the sequence MAXVALUE/MINVALUE.

Note:

When using the SHARD clause, do not specify ORDER on the sequence. Using
SHARD generates globally unordered values. If ORDER is required, create the
sequences locally on each node.

The SHARD keyword will work in conjunction with CACHE and NOCACHE modes
of operation.

See Also:

Oracle Database SQL Language Reference

Chapter 4
Generating Unique Sequence Numbers Across Shards

4-40

5
Using the Sharding Advisor

Sharding Advisor simplifies the migration of your existing, non-sharded Oracle
database to a sharded database, by analyzing your workload and database schema,
and recommending the most effective Oracle Sharding configurations.

• About Sharding Advisor
The Sharding Advisor is a client-side, command-line tool that you run against
any non-sharded, production, 10g or later release, Oracle Database that you are
considering migrating to an Oracle Sharding environment.

• Run Sharding Advisor
Run the Sharding Advisor command-line tool against your existing, non-sharded
Oracle Database to obtain recommended Oracle Sharding configurations.

• Run Sharding Advisor on a Non-Production System
To minimize the impact on a live production system, you can run the Sharding
Advisor on a copy of the database schema and workload, located on a different
server than the production system.

• Review Sharding Advisor Output
Sharding Advisor discovers the table families for each potential sharding column
that it extracts from the query workload, and ranks the table families based on
query classification rules and a ranking algorithm.

• Choose a Sharding Advisor Recommended Configuration
There are some aspects of database sharding to take into consideration when
deciding which configuration to choose for your sharded database.

• Sharding Advisor Usage and Options

• Sharding Advisor Output Tables
To review the sharding configurations and related information, you can query the
following output database tables, which are stored in the same schema as your
source database.

• Sharding Advisor Output Review SQL Examples
Because the Sharding Advisor output is contained in regular database tables,
you can run many kinds of SQL queries against them to look at the output from
different perspectives.

• Sharding Advisor Security
Sharding Advisor is a client-side utility that connects to the non-sharded database
using authenticated OCI connections.

About Sharding Advisor
The Sharding Advisor is a client-side, command-line tool that you run against any non-
sharded, production, 10g or later release, Oracle Database that you are considering
migrating to an Oracle Sharding environment.

5-1

The Sharding Advisor analysis provides you with the information you need to design
a schema that maximizes performance while reducing duplicated data in the new
sharded database environment.

The following are benefits of using Sharding Advisor to aid you with schema design.

• Maximize query workload performance

• Minimize multi-shard operations requiring cross-shard joins

• Maximize parallelism for complex queries (spread query execution across all
shards)

• Minimize the amount of duplicated data on each shard

The Sharding Advisor utility, GWSADV, is installed with Oracle Database as a standalone
tool, and connects to your database using authenticated OCI connections.

To get an understanding of your schema and other preferences, Sharding Advisor
asks you questions as part of an interactive dialog.

Sharding Advisor then connects to the existing non-sharded database, also called
the source, analyzes its schema and query workload, and produces a set of
alternative designs for the sharded database, including recommendations for an
effective sharding key, which tables to shard, and which tables to duplicate on all
shards.

Sharding configurations are ranked in terms of query performance, with the ranking
favoring configurations that maximize single and multi-shard queries that do not
require cross-shard joins, while minimizing multi-shard queries that require cross-shard
joins.

You choose the design that best fits your requirements. The designs are ranked by the
advisor, so if you don't have specific preferences you can choose the highest ranked
design by default.

Note:

There are restrictions to Sharding Advisor capabilities:
The source database must be Oracle Database 10g or later release.

If you cannot run the Sharding Advisor against the live production database,
you can run the Sharding Advisor on a different server that has the schema
and workload imported from the production database.

Sharding Advisor discovers the table families based on primary key-foreign
key relationships. If the schema does not have any primary key-foreign key
constraints, sharding by PARENT clause is recommended.

Currently, Sharding Advisor recommends only single-table family, system-
managed sharding (sharding by reference) configurations if the source
database has foreign key constraints; otherwise, Sharding Advisor
recommends sharding using the PARENT clause.

Chapter 5
About Sharding Advisor

5-2

Run Sharding Advisor
Run the Sharding Advisor command-line tool against your existing, non-sharded
Oracle Database to obtain recommended Oracle Sharding configurations.

The user running Sharding Advisor requires the following priviledges.

SQL> ALTER SYSTEM SET statistics_level=all;
SQL> grant create session to sharding_advisor_user;
SQL> grant alter session to sharding_advisor_user;
SQL> grant select on v_$sql_plan to sharding_advisor_user;
SQL> grant select on v_$sql_plan_statistics_all to
sharding_advisor_user;
SQL> grant select on gv_$sql_plan to sharding_advisor_user;
SQL> grant select on gv_$sql_plan_statistics_all to
sharding_advisor_user;
SQL> grant select on DBA_HIST_SQLSTAT to sharding_advisor_user;
SQL> grant select on dba_hist_sql_plan to sharding_advisor_user;
SQL> grant select on dba_hist_snapshot to sharding_advisor_user;

The Sharding Advisor command-line utility, GWSADV, runs from $ORACLE_HOME/bin.

Run the Sharding Advisor from the command line, as shown here.

$ gwsadv -u username -p password -c –w sch=(schema1,schema2

Where -u and -p are the user name and password of the user that runs the Sharding
Advisor.

Use the capture workload parameter, -c, the first time you run Sharding Advisor
against an existing query workload, to capture the predicate information from the
source's GV$SQL_PLAN_STATISTICS_ALL view. You don't need to use -c in subsequent
queries on the same workload.

The required -w flag indicates that Sharding Advisor uses the query workload for
sharding configuration generation and ranking.

In this case, the sch parameter specifies a list of schemas to run Sharding Advisor
against. There are several other options you can use with Sharding Advisor, detailed in
Sharding Advisor Usage and Options.

Run Sharding Advisor on a Non-Production System
To minimize the impact on a live production system, you can run the Sharding Advisor
on a copy of the database schema and workload, located on a different server than the
production system.

To get the same results as if it were the live production system, the production
database schema and workload can be exported using the Oracle Data Pump utilities
and copied to a different server. Then you can run Sharding Advisor on the imported
schema.

Chapter 5
Run Sharding Advisor

5-3

You only export the database schema and system tables. There is no need to export
the actual data.

1. The following procedure uses the HR schema as an example.

Do the following steps on the source (production) database server.

1. Export the schema using Data Pump Export.

> expdp system/password SCHEMAS=HR DIRECTORY=HR_DIR
CONTENT=METADATA_ONLY
 DUMPFILE=hr_metadata.dmp LOGFILE=hr_exp.lst

2. Export the Automatic Work Repository (AWR) snapshot.

SQL> @$ORACLE_HOME/rdbms/admin/awrextr.sql

2. Do the following steps on the target database server.

3. Copy the dump files from the source to the target.

For example, copy the dump files to /scratch/dump.

4. Create a user that can run Sharding Advisor on the schema.

SQL> CREATE USER hr IDENTIFIED BY password;

5. Create (or replace) the dump file directory variable that Data Pump Import can
reference.

SQL> CREATE DIRECTORY HR_DIR AS '/scratch/dump'

SQL> CREATE OR REPLACE DIRECTORY HR_DIR AS '/scratch/dump'

6. Import the schema.

> impdp system/password DIRECTORY=HR_DIR DUMPFILE=hr.dmp
LOGFILE=imp.lst SCHEMAS=HR

7. Load the AWR data.

SQL> @$ORACLE_HOME/rdbms/admin/awrload.sql

8. Now you can run Sharding Advisor on the target, non-production, copy of the
database with the user you created.

> gwsadv –u hr –p password –c -awr_snap_begin begin_timestamp –
awr_snap_end end_timestamp -w

Chapter 5
Run Sharding Advisor on a Non-Production System

5-4

Review Sharding Advisor Output
Sharding Advisor discovers the table families for each potential sharding column that
it extracts from the query workload, and ranks the table families based on query
classification rules and a ranking algorithm.

To review the sharding configurations and related information that is owned by the
user running Sharding Advisor, you can query the following output database tables,
which are stored in the same schema as your source database.

• SHARDINGADVISOR_CONFIGURATIONS has one row for each table in a ranked
sharded configuration, and provides details for each table, such as whether to
shard or duplicate it, and if sharded, its level in a table family hierarchy, its parent
table, root table sharding key, foreign key reference constraints, and the estimated
size per shard.

• SHARDINGADVISOR_CONFIGDETAILS has one row for each ranked sharding
configuration, and provides details for each ranked sharding configuration, such as
the number and collective size, per shard, of the sharded tables, and the number
and collective size of the duplicated tables. It also provides the number of single
shard and multi-shard queries to expect in production, as well as the number of
multi-shard queries requiring cross-shard joins, based on your source database's
current workload, and an estimated cost.

• SHARDINGADVISOR_QUERYTYPES, for each query in the workload, lists the query type
for each sharding configuration. Note that the same query can be of a different
query type depending on the sharding configuration.

Because the Sharding Advisor output is contained in regular database tables, you
can run many kinds of SQL queries against them to look at the output from different
perspectives.

For example, to display the sharding configurations in ranking order, run

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
ORDER BY rank, tlevel, tname, parent;

For details about the Sharding Advisor output tables and more example queries see
Sharding Advisor Output Tables and Sharding Advisor Output Review SQL Examples

Choose a Sharding Advisor Recommended Configuration
There are some aspects of database sharding to take into consideration when
deciding which configuration to choose for your sharded database.

Increasing the number of shards will result in higher availability and scalability of the
sharded database.

Minimizing duplicated data can conflict with your desire to minimize multi-shard
queries that require joins across multiple shards. Because joins in a sharded database

Chapter 5
Review Sharding Advisor Output

5-5

are usually performed on related data, storing related data in the same shard can
dramatically speed up execution of such joins.

The overall cost, in terms of query workload, of the recommended sharding
configurations is based on the number of each query type (single shard, multi-shard,
and multi-shard with cross-shard joins) in the workload, where multi-shard queries
with cross-shard joins have the highest cost, and single shard queries have the
lowest cost. The cost information is in the COST column of the Sharding Advisor
SHARDINGADVISOR_CONFIGDETAILS output table.

Sharding Advisor Usage and Options
Sharding Advisor is a client command-line tool that connects to an existing non-
sharded database and provides sharding configuration recommendations.

Syntax

gwsadv
 [-n nodeName[:portnum]]
 [-s serviceName]
 -u username
 -p password
 [-c]
 [-awr_snap_begin timestamp]
 [-awr_snap_end timestamp]
 –w
 [sch=(schema1, schema2, …)]
 [-tab importantTabsFile]

Options

Each option must be prefixed with a minus sign (-).

Option Description Required (Y/N)

-u username Oracle user name Y

-p password Oracle password Y

-w Directs Sharding Advisor to
use the query workload
for sharding configuration
generation and ranking.

Y

-n nodeName[:portnum] Node name and port number,
if connecting to a database on
another host

N

-s serviceName Service name, if connecting to
a database on another host

N

Chapter 5
Sharding Advisor Usage and Options

5-6

Option Description Required (Y/N)

-c Capture a new or changed
workload.

Required on first run of
Sharding Advisor on a new or
changed workload.

Not required on subsequent
runs on the same workload.

By default, the workload is
captured from the
V$SQL_PLAN_STATISTICS_A
LL table.

Alternatively, the workload can
be captured from Automatic
Workload Repository (AWR)
snapshots by using the
-awr_snap_begin and -
awr_snap_end options with
the -c option to specify the
beginning and ending time
stamps of the AWR snapshots.

N

-awr_snap_begin
timestamp

Specify the beginning
timestamp, in the format
'YYYY-MM-DD HH24:MI:SS',
to specify the AWR snapshots
to capture the workload from.

N

-awr_snap_end timestamp Specify the end timestamp,
in the format 'YYYY-MM-DD
HH24:MI:SS', to specify the
AWR snapshots to capture the
workload from.

N

sch The sch option specifies
the list of schemas to run
Sharding Advisor against, if
you want to run as a different
user.

N

-tab importantTabsFile Name of file that consists
of table names, one
per line, in the format
schemaname.tablename, to
restrict the number of tables
that the Sharding Advisor
needs to analyze.

N

Usage Notes

For procedures describing how to run the Sharding Advisor with example commands
see Run Sharding Advisor and Run Sharding Advisor on a Non-Production System.

Sharding Advisor Output Tables
To review the sharding configurations and related information, you can query the
following output database tables, which are stored in the same schema as your source
database.

Chapter 5
Sharding Advisor Output Tables

5-7

• SHARDINGADVISOR_CONFIGURATIONS Table

• SHARDINGADVISOR_CONFIGDETAILS Table

• SHARDINGADVISOR_QUERYTYPES Table

SHARDINGADVISOR_CONFIGURATIONS Table
Each row of the SHARDINGADVISOR_CONFIGURATIONS table represents a table in
a ranked sharded configuration, and provides information about whether to shard or
duplicate it, and if sharded, its level in a table family hierarchy, its parent table, root
table sharding key, foreign key reference constraints, and table size per shard.

SHARDINGADVISOR_CONFIGURATIONS Schema

Column Description

RANK The rank of the sharding configuration based
on the ranking algorithm

TABLENAME Name of the table in the sharding configuration

TABLETYPE ‘S’ (Sharded), ‘D’ (Duplicated), or ‘L’ (Local)

TABLELEVEL Level of the table in the table family hierarchy,
NULL for duplicated tables

PARENT Parent of the table in the table family hierarchy,
NULL for duplicated tables

SHARDBY Sharding method. REFERENCE for sharding by
reference, or PARENT for sharding by PARENT
clause, for child tables.

SHARDINGORREFERENCECOLS Sharding key for the root table, partition by
REFERENCE or PARENT for the child tables in
a table family, and NULL for duplicated tables

UNENFORCEABLECONSTRAINTS Foreign key constraints other than the
reference columns, which cannot be enforced

SIZEOFTABLE Size of the table per shard

SHARDINGADVISOR_CONFIGDETAILS Table
Each row of the SHARDINGADVISOR_CONFIGDETAILS table represents a ranked
sharding configuration, and provides the number and collective size, per shard, of
each type of table, the number of each type of query, and based on your source
database's current workload, an estimated cost.

SHARDINGADVISOR_CONFIGDETAILS Schema

Column Description

RANK The rank of the sharding configuration based
on the ranking algorithm

CHOSENBYUSER ‘Y’ if the sharding configuration is chosen
by the user, NULL for other sharding
configurations

NUMSHARDEDTABLES Number of sharded tables in this sharding
configuration

Chapter 5
Sharding Advisor Output Tables

5-8

Column Description

SIZEOFSHARDEDTABLES Cumulative size of sharded tables (per shard)
in this sharding configuration

NUMDUPLICATEDTABLES Number of duplicated tables in this sharding
configuration

SIZEOFDUPLICATEDTABLES Cumulative size of duplicated tables (per
shard) in this sharding configuration

NUMSINGLESHARDQUERIES Number of single shard queries in the query
workload for this sharding configuration

NUMMULTISHARDQUERIES Number of multi-shard queries in the query
workload for this sharding configuration

NUMCROSSSHARDQUERIES Number of multi-shard queries that require an
external join in the query workload for this
sharding configuration

COST Cost of the sharding configuration based on
the costing algorithm

SHARDINGADVISOR_QUERYTYPES Table
Each row of the SHARDINGADVISOR_QUERYTYPES table represents a query in the
workload, and lists the query type and SQL ID. Note that the same query can be of a
different query type depending on the sharding configuration.

SHARDINGADVISOR_QUERYTYPES Schema

Column Description

RANK The rank of the sharding configuration based
on the ranking algorithm

SQLID The query SQL ID

QUERYTYPE The type of the query in this sharding
configuration: SINGLE SHARD QUERY, MULTI
SHARD QUERY, or CROSS SHARD QUERY

Sharding Advisor Output Review SQL Examples
Because the Sharding Advisor output is contained in regular database tables, you
can run many kinds of SQL queries against them to look at the output from different
perspectives.

Example 5-1 Display the sharding configurations in ranking order

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
ORDER BY rank, tlevel, tname, parent;

Chapter 5
Sharding Advisor Output Review SQL Examples

5-9

Example 5-2 Display the table family of the top ranked sharding configuration

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE rank = 1 AND tabletype = 'S'
ORDER BY tlevel, tname, parent;

Example 5-3 Display the table families in ranking order

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tabletype = 'S'
ORDER BY rank, tlevel, tname, parent;

Example 5-4 Display the duplicated tables of the top ranked sharding
configuration

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols, unenforceableconstraints,
 sizeoftable
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE rank = 1 AND tabletype = 'D'
ORDER BY tlevel, tname, parent;

Example 5-5 Display the number of sharding configurations with table_name
as the root table

SELECT COUNT(*)
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tablename = 'TABLE_NAME' AND tablelevel = 0;

Example 5-6 Display the table families of the sharding configurations with root
table table_name

SELECT rank, tableName as tname, tabletype as type,
 tablelevel as tlevel, parent, shardby as shardBy,
 shardingorreferencecols as cols
FROM SHARDINGADVISOR_CONFIGURATIONS
WHERE tabletype = 'S'
 AND rank IN
 (SELECT rank
 FROM SHARDINGADVISOR_CONFIGURATIONS
 WHERE tablename = 'TABLE_NAME' and tablelevel = 0)
ORDER BY rank, tlevel, tname, parent;

Chapter 5
Sharding Advisor Output Review SQL Examples

5-10

Example 5-7 Display the details of the sharding configurations in ranking order

SELECT rank, chosenbyuser,
 numshardedtables as stabs, sizeofshardedtables as sizestabs,
 numduplicatedtables as dtabs,
 sizeofduplicatedtables as sizedtabs,
 numsingleshardqueries as numssq,
 nummultishardqueries as nummsq,
 numcrossshardqueries as numcsq, cost
FROM SHARDINGADVISOR_CONFIGDETAILS
ORDER BY rank;

Example 5-8 Display the details of your chosen sharding configuration

SELECT rank,
 numshardedtables as stabs, sizeofshardedtables as sizestabs,
 numduplicatedtables as dtabs,
 sizeofduplicatedtables as sizedtabs,
 numsingleshardqueries as numssq,
 nummultishardqueries as nummsq,
 numcrossshardqueries as numcsq, cost
FROM SHARDINGADVISOR_CONFIGDETAILS
WHERE CHOSENBYUSER = ‘Y’
ORDER BY RANK;

Sharding Advisor Security
Sharding Advisor is a client-side utility that connects to the non-sharded database
using authenticated OCI connections.

• The Sharding Advisor requires the appropriate credentials (user name and
password) to connect to the non-sharded source database. Sharding Advisor can
be run as a different user than the user that owns the source database schema
that the Sharding Advisor analyzes. This user must have SELECT privilges on the
tables in the non-sharded schema.

• The user needs SELECT privileges on the GV$SQL_PLAN and
GV$SQL_PLAN_STATISTICS_ALL views, and on the DBA_HIST_SQL_PLAN,
DBA_HIST_SQLSTAT, and DBA_HIST_SNAPHSOT tables. The user does not need any
other special privileges.

• Sharding Advisor is not vulnerable to privilege escalation and denial of service.

• Sharding Advisor does not store or expose any sensitive data such as passwords,
database service names, or user names.

• Sharding Advisor does not expose sensitive details about the inner workings of the
product.

• Sharding Advisor does not include any interfaces or APIs which are not externally
documented.

• Sharding Advisor does not require any insecure protocols to be enabled.

• Sharding Advisor does not use any insecure modes of operation.

• Sharding Advisor does not store any data or other information in any files.

Chapter 5
Sharding Advisor Security

5-11

• All connections to the database are through authenticated OCI connections.

• There are no SETUID executables created.

• No new grants to PUBLIC are done.

• No new default schemas are created, but Sharding Advisor internal tables are
created under the user that is used to run Sharding Advisor.

Chapter 5
Sharding Advisor Security

5-12

6
Migrating to a Sharded Database

Migration from an existing non-sharded database to a sharded database consists
of two phases: schema migration and data migration. Oracle Sharding provides
guidelines for migrating your existing database schema and data to a sharded
database.

The following approaches are recommended for database migration.

• Using Oracle Data Pump to Migrate to a Sharded Database
Using the examples and guidelines provided in the following topics, you can
extract DDL definitions and data from the source database with the Oracle
Data Pump export utility, and then use the Data Pump import utility against the
database export files to populate the target sharded database.

• Using External Tables to Load Data into a Sharded Database
Using the examples and guidelines in the following topics, you can load data into
a sharded database by creating external tables and then loading the data from the
external tables into sharded or duplicated tables.

Using Oracle Data Pump to Migrate to a Sharded Database
Using the examples and guidelines provided in the following topics, you can extract
DDL definitions and data from the source database with the Oracle Data Pump export
utility, and then use the Data Pump import utility against the database export files to
populate the target sharded database.

If you already created the schema for your sharded database, you can go directly to
the data migration topic.

• Migrating a Schema to a Sharded Database
Transition from a non-sharded database to a sharded database requires some
schema changes. At a minimum, the keyword SHARDED or DUPLICATED should be
added to CREATE TABLE statements. In some cases, the partitioning of tables
should be changed as well, or a column with the shading key added.

• Migrating Data to a Sharded Database
Transitioning from a non-sharded database to a sharded database involves
moving the data from non-sharded tables in the source database to sharded and
duplicated tables in the target database.

Migrating a Schema to a Sharded Database
Transition from a non-sharded database to a sharded database requires some schema
changes. At a minimum, the keyword SHARDED or DUPLICATED should be added to
CREATE TABLE statements. In some cases, the partitioning of tables should be changed
as well, or a column with the shading key added.

To properly design the sharded database schema, you must analyze the schema and
workload of the non-sharded database and make the following decisions.

6-1

• Which tables should be sharded and which should be duplicated

• What are the parent-child relationships between the sharded tables in the table
family

• Which sharding method is used on the sharded tables

• What to use as the sharding key

If these decisions are not straightforward, you can use the Sharding Advisor to
help you to make them. Sharding Advisor is a tool that you run against a non-
sharded Oracle Database that you are considering to migrate to an Oracle Sharding
environment.

To illustrate schema and data migration from a non-sharded to sharded database, we
will use a sample data model shown in the following figure.

Figure 6-1 Schema Migration Example Data Model

The data model consists of four tables, Customers, Orders, StockItems, and
LineItems, and the data model enforces the following primary key constraints.

• Customer.(CustNo)

• Orders.(PONo)

• StockItems.(StockNo)

• LineItems.(LineNo, PONo)

The data model defines the following referential integrity constraints.

• Customers.CustNo -> Orders.CustNo

• Orders.PONo -> LineItems.PONo

• StockItems.StockNo -> LineItems.StockNo

The following DDL statements create the example non-sharded schema definitions.

CREATE TABLE Customers (
 CustNo NUMBER(3) NOT NULL,

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-2

 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 PRIMARY KEY (CustNo)
);

CREATE TABLE Orders (
 PoNo NUMBER(5),
 CustNo NUMBER(3) REFERENCES Customers,
 OrderDate DATE,
 ShipDate DATE,
 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 PRIMARY KEY (PoNo)
);

CREATE TABLE LineItems (
 LineNo NUMBER(2),
 PoNo NUMBER(5) REFERENCES Orders,
 StockNo NUMBER(4) REFERENCES StockItems,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 PRIMARY KEY (LineNo, PoNo)
);

CREATE TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

• Migrating the Sample Schema
As an example, to migrate the sample schema described above to a sharded
database, do the following steps.

Migrating the Sample Schema
As an example, to migrate the sample schema described above to a sharded
database, do the following steps.

1. Get access to the source database export directory.

The database administrator has to authorize the database user for required
access to the database export directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’;
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT EXP_FULL_DATABASE TO uname;

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-3

With a full database export, the database administrator must grant you the
EXP_FULL_DATABASE role, uname. No additional role is required for a table level
export.

2. Extract the DDL definitions from the source database.

A convenient way to extract the DDL statements is to create a Data Pump extract
file. You can export only metadata, or only a part of the schema containing the set
of tables you are interested in migrating, as shown in this example.

expdp uname/pwd directory=EXPDIR dumpfile=sample_mdt.dmp
logfile=sample_mdt.log INCLUDE=TABLE:\"IN \(\'CUSTOMERS\',
\'ORDERS\', \'STOCKITEMS\', \'LINEITEMS\' \) \"
CONTENT=METADATA_ONLY FLASHBACK_TIME=SYSTIMESTAMP

Then, use the Data Pump import utility against this database export file.

impdp uname/pwd@orignode directory=expdir dumpfile=sample_mdt.dmp
sqlfile=sample_ddl.sql

In this example, the impdp command does not actually perform an import of the
contents of the dump file. Rather, the sqlfile parameter triggers the creation of a
script named sample_ddl.sql which contains all of the DDL from within the export
dump file.

Trimming down the export in this way more efficiently captures a consistent
image of the database metadata without a possibly lengthy database data dump
process. You still must get the DDL statements in text format to perform the DDL
modifications required by your sharded database schema design.

3. Modify the extracted DDL statements for the sharded database.

For the sample schema shown above, the corresponding DDL statements for
the sharded database may look like the following. This is an example with system-
managed sharding.

CREATE SHARDED TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

CREATE SHARDED TABLE Orders (
 PoNo NUMBER(5) NOT NULL,
 CustNo NUMBER(3) NOT NULL,
 OrderDate DATE,
 ShipDate DATE,

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-4

 ToStreet VARCHAR2(20),
 ToCity VARCHAR2(20),
 ToState CHAR(2),
 ToZip VARCHAR2(10),
 CONSTRAINT OrderPK PRIMARY KEY (CustNo, PoNo),
 CONSTRAINT CustFK Foreign Key (CustNo) REFERENCES Customers
(CustNo)
)
PARTITION BY REFERENCE (CustFK)
;
CREATE SHARDED TABLE LineItems (
 LineNo NUMBER(2) NOT NULL,
 PoNo NUMBER(5) NOT NULL,
 CustNo NUMBER(3) NOT NULL,
 StockNo NUMBER(4) NOT NULL,
 Quantity NUMBER(2),
 Discount NUMBER(4,2),
 CONSTRAINT LinePK PRIMARY KEY (CustNo, LineNo, PoNo),
 CONSTRAINT LineFK FOREIGN KEY (CustNo, PoNo) REFERENCES Orders
(CustNo, PoNo)
)
PARTITION BY REFERENCE (LineFK)
;

CREATE DUPLICATED TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Here are some observations about the schema of the sharded database.

• Customers-Orders-LineItems form a table family of SHARDED tables, with
Customers as the root table and child tables are partitioned by reference.
StockItems is a DUPLICATED table.

• CustNo is chosen as the sharding key. Hence, this column must be included
in all the tables of the table family. Note that in the non-sharded database,
the LineItems table did not have a CustNo column, but it was included in the
sharded version on the table. The sharding key column also needs to be
present in all primary and foreign key constraints in sharded tables.

• StockItems is now a duplicated table. The master copy of a duplicated table
resides on the shard catalog database. Thus, the foreign key constraint in
the LineItems table referencing StockItems table cannot be enforced and is
removed.

4. Run the modified DDLs against the target database.

Connect to the shard catalog database and run

ALTER SESSION ENABLE SHARD DDL;

Then run the DDLs listed above to create the sharded and duplicated tables.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-5

It is recommended that you validate the sharding configuration using the GDSCTL
VALIDATE command, before loading the data.

gdsctl> validate

If you see inconsistencies or errors, you must correct the problem using the
GDSCTL commands SHOW DDL and RECOVER. After successful validation, the sharded
database is ready for data loading.

Migrating Data to a Sharded Database
Transitioning from a non-sharded database to a sharded database involves moving the
data from non-sharded tables in the source database to sharded and duplicated tables
in the target database.

Moving data from non-sharded tables to duplicated tables is straightforward, but
moving data from non-sharded tables to sharded tables requires special attention.

Loading Data into Duplicated Tables

You can load data into a duplicated table using any existing database tools, such as
Data Pump, SQL Loader, or plain SQL. The data must be loaded to the shard catalog
database. Then it gets automatically replicated to all shards.

Because the contents of the duplicated table is fully replicated to the database shards
using materialized views, loading a duplicated table may take longer than loading the
same data into a regular table.

Figure 6-2 Loading Duplicated Tables

Source
Database

Data
Pump

0

1

1

Shard Catalog
(Coordinator)

Duplicated
TableSource

Table

Shard1

Duplicated
Table

Shard2

Duplicated
Table

ShardN

Duplicated
Table

...

Loading Data into Sharded Tables

When loading a sharded table, each database shard accommodates a distinct subset
of the data set, so the data in each table must be split (partitioned) across shards
during the load.

You can use the Oracle Data Pump utility to load the data across database shards in
subsets. Data from the source database can be exported into a Data Pump dump file.
Then Data Pump import can be run on each shard concurrently by using the same
dump file.

The dump file can be either placed on shared storage accessible to all shards, or
copied to the local storage of each shard. When importing to individual shards, Data
Pump import ignores the rows that do not belong to the current shard.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-6

Figure 6-3 Loading Sharded Tables Directly to the Database Shards

Data Pump
Export

...Shard 1

Partition 1

Source
Database

Source
Table

Shard Catalog
(Coordinator)

Shard 2

Partition 2

Shard N

Partition N

Data
Pump 1

Data
Pump 2

Data
Pump N

Loading the data directly into the shards is much faster, because all shards are loaded
in parallel. It also provides linear scalability; the more shards there are in the sharded
database, the higher data ingestion rate is achieved.

• Loading the Sample Schema Data

• Migrating Data Without a Sharding Key
As an example, the following steps illustrate how to migrate data to a sharded
table from a source table that does not contain the sharding key.

Loading the Sample Schema Data

As an example, the following steps illustrate how to move the sample schema data
from a non-sharded to sharded database. The syntax examples are based on the
sample Customers-Orders-LineItems-StockItems schema introduced in the previous
topics.

1. Export the data from your database tables.

expdp uname/pwd@non_sharded_db directory=expdir
dumpfile=original_tables.dmp logfile=original_tables.log
SCHEMAS=UNAME INCLUDE=TABLE:\"IN \(\'CUSTOMERS\', \'ORDERS\',
\'STOCKITEMS\') \" FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY

If the source table (in the non-sharded database) is
partitioned, then export to dump files in non-partitioned format
(data_options=group_partition_table_data).

Example, if the Orders table is a partitioned table on the source database, export it
as follows.

$ cat ordexp.par
directory=expdir
logfile=ordexp.log
dumpfile=ord_%U.dmp

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-7

tables=ORDERS
parallel=8
COMPRESSION=ALL
content=data_only
DATA_OPTIONS=GROUP_PARTITION_TABLE_DATA

$ expdp user/password parfile=ordexp.par

Because the SHARDED and DUPLICATED tables were already created in the target
database, you only export the table content (DATA_ONLY).

Data Pump export utility files are consistent on a per table basis. If you want
all of the tables in the export to be consistent at the same point in time, you
must use the FLASHBACK_SCN or FLASHBACK_TIME parameters as shown in the
example above. Having a consistent “as of” point in time database export files is
recommended.

2. Make the export file (original_tables.dmp) accessible by the target database
nodes before you start importing the data to the sharded database.

You can either move this file (or multiple files in the case of parallel export) to the
target database system or share the file over the network.

3. Prepare all the target databases (shard catalog and shards) for import.

The database administrator has to authorize the database user for required
access to the database import directory, as shown here.

CREATE OR REPLACE DIRECTORY expdir AS ‘/some/directory’;
GRANT READ, WRITE ON DIRECTORY expdir TO uname;
GRANT IMP_FULL_DATABASE TO uname;

4. Load the DUPLICATED table (StockItems) using the shard catalog.

The following is an example of the import command.

impdp uname/pwd@catnode:1521/ctlg directory=expdir
dumpfile=original_tables.dmp logfile=imp_dup.log tables=StockItems
content=DATA_ONLY

5. Load the SHARDED tables on the shards directly.

The best way to load the exported SHARDED tables (Customers, Orders) is to run
the Data Pump on each shard (shrd1,2,…, N) directly. The following is an example
of the import command on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1 directory=expdir
DUMPFILE=original_tables.dmp LOGFILE=imp_shd1.log
TABLES=”Customers, Orders, LineItems” CONTENT=DATA_ONLY

Repeat this step on all of the other shards. Note that the same dump file
(original_tables.dmp) is used to load data for all of the shards. Data Pump
import will ignore rows that do not belong to the current shard. This operation can
be run in parallel on all shards.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-8

To benefit from fast loading into very large partitioned tables with
parallelism, the data pump parameter DATA_OPTIONS should include the value
_FORCE_PARALLEL_DML (requires patch 31891464).

$ cat ordimp.par
directory=expdir
logfile=ordimp.log
dumpfile=ord_%U.dmp
tables=ORDERS
parallel=8
content=data_only
DATA_OPTIONS=_force_parallel_dml
$ impdp user/password parfile=ordimp.par

Without patch 31891464, you can alternatively migrate data using an external
table of type DATA PUMP, as shown in the following example.

a. Export on the source database.

CREATE TABLE ORDERS_EXT
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "expdir"
 ACCESS PARAMETERS (DEBUG = (3 , 33489664))
 LOCATION ('ord1.dat',
 'ord2.dat',
 'ord3.dat',
 'ord4.dat')
)
PARALLEL 8
REJECT LIMIT UNLIMITED
AS SELECT * FROM user.ORDERS;

b. Import into each target shard.

CREATE TABLE ORDERS_EXT
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY "expdir"
 ACCESS PARAMETERS (DEBUG = (3 , 33489664))
 LOCATION ('ord1.dat',
 'ord2.dat',
 'ord3.dat',
 'ord4.dat')
)
PARALLEL 8
REJECT LIMIT UNLIMITED
;
INSERT /*+ APPEND ENABLE_PARALLEL_DML PARALLEL(a,12)
pq_distribute(a, random) */ INTO "user"."ORDERS" a
SELECT /*+ full(b) parallel(b,12) pq_distribute(b, random)*/
*
FROM "ORDERS_EXT"

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-9

WHERE <predicate*>;
Commit;

(*) The predicate in the WHERE clause depends on the sharding method. For
user-defined sharding by range, for example, it will be based on the range of
CustNo on a particular shard. For system-managed (consistent hash-based)
sharding, see the use case in Using External Tables to Load Data into a
Sharded Database.

Note:

You can make Data Pump run faster by using the PARALLEL parameter in
the expdp and impdp commands. For export, this parameter should be used
in conjunction with the %U wild card in the DUMPFILE parameter to allow
multiple dump files be created, as shown in this example.

expdp uname/pwd@orignode SCHEMAS=uname
directory=expdir dumpfile=samp_%U.dmp logfile=samp.log
FLASHBACK_TIME=SYSTIMESTAMP PARALLEL=4

The above command uses four parallel workers and creates four dump files
with suffixes _01, _02, _03, and _04. The same wild card can be used during
the import to allow you to reference multiple input files.

Migrating Data Without a Sharding Key
As an example, the following steps illustrate how to migrate data to a sharded table
from a source table that does not contain the sharding key.

The examples of the Data Pump export and import commands in the previous topic
do not include the LineItems table. The reason is that this table in the non-sharded
database does not contain the sharding key column (CustNo). However, this column is
required in the sharded version of the table.

Because of the schema mismatch between the non-sharded and sharded versions of
the table, data migration for LineItems must be handled differently, as shown in the
following steps.

1. On the source, non-sharded, database, create a temporary view with the missing
column and SQL expression to generate value for this column.

CREATE OR REPLACE VIEW Lineitems_View AS
 SELECT l.*,
 (SELECT o.CustNo From Orders o WHERE l.PoNo=o.PoNo) CustNo
FROM LineItems l;

This creates a view LineItems_View with the column CustNo populated based on
the foreign key relationship with the Orders table.

Chapter 6
Using Oracle Data Pump to Migrate to a Sharded Database

6-10

2. Export the new view with VIEWS_AS_TABLES option of the data pump export
utility.

expdp uname/pwd@non_sharded_db directory=expdir
DUMPFILE=original_tables_vat.dmp LOGFILE=original_tables_vat.log
FLASHBACK_TIME=SYSTIMESTAMP CONTENT=DATA_ONLY
TABLES=Uname.Customers,Uname.Orders,Uname.StockItems
VIEWS_AS_TABLES=Uname.LineItems_

3. Import the data to sharded tables by directly running the data pump import on
individual shards (shrd1, shrd2,.., shrdN).

The following is an example of running the import on the first shard.

impdp uname/pwd@shrdnode:1521/shrd1
directory=expdir DUMPFILE=original_tables_vat.dmp
LOGFILE=imp_shd_vat1.log CONTENT=DATA_ONLY
TABLES=Uname.Customers,Uname.Orders,Uname.LineItems_View
VIEWS_AS_TABLES=Uname.LineItems_View
REMAP_TABLE=Lineitems_View:Lineitems

The examples uses the impdp tool VIEWS_AS_TABLES option to import the view
LineItems_View exported as a table during export operation. And the parameter
REMAP_TABLE is used to indicate that this data should actually be inserted in the
original table LineItems.

Using External Tables to Load Data into a Sharded
Database

Using the examples and guidelines in the following topics, you can load data into
a sharded database by creating external tables and then loading the data from the
external tables into sharded or duplicated tables.

This data loading method is useful when the data to be loaded resides in external files,
for example in CSV files.

External tables can be defined using the ORGANIZATION EXTERNAL keyword in the
CREATE TABLE statement. This table must be local to each shard and not sharded or
duplicated. Loading the data into the sharded or duplicated table involves a simple
INSERT … SELECT statement from an external table, with a condition to filter only a
subset of data for sharded tables.

You may choose to keep the files on different hosts based on the access time and size
of the files. For example, copy the files for duplicated tables on the shard catalog host
and keep files for sharded tables on a network share that is accessible to all of the
shards. It is also possible to keep a copy of the sharded table files on each shard for
faster loading.

For more information about external tables, see External Tables in Oracle Database
Utilities.

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-11

• Loading Data into Duplicated Tables
Data for the duplicated tables resides on the shard catalog, so loading the data
into the duplicated tables is also done on the shard catalog. The data is then
automatically replicated to shards after loading is complete.

• Loading Data into Sharded Tables
Loading data into a sharded table needs to be performed on individual shards
because data for a sharded table is partitioned across shards. The load can be
done concurrently on all the shards, even if the source data file is shared.

Loading Data into Duplicated Tables
Data for the duplicated tables resides on the shard catalog, so loading the data into
the duplicated tables is also done on the shard catalog. The data is then automatically
replicated to shards after loading is complete.

Consider the following table defined as a duplicated table.

CREATE DUPLICATED TABLE StockItems (
 StockNo NUMBER(4) PRIMARY KEY,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
);

Loading data into the table StockItems involves the following steps.

1. Create a directory object pointing to the directory containing the data file and grant
access to the shard user on this directory.

CREATE OR REPLACE DIRECTORY shard_dir AS '/path/to/datafile';
GRANT ALL on DIRECTORY shard_dir TO uname;

2. Create an external table that is local to the shard catalog, with the same columns
as the duplicated table.

On the shard catalog, run:

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE StockItems_Ext (
 StockNo NUMBER(4) NOT NULL,
 Description VARCHAR2(20),
 Price NUMBER(6,2)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ’|’ (
 StockNo,
 Description,
 Price)
)LOCATION (’StockItems.dat’)
);

In this example, the data file for the duplicated table is named StockItems.dat
and column values are separated by the character ‘|’.

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-12

3. Insert data from the external table into the duplicated table.

INSERT INTO StockItems (SELECT * FROM StockItems_Ext);

You can use also optimizer hints such as APPEND and PARALLEL (with degree of
parallelism) for faster loading depending on your system resources. For example:

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL */ INTO StockItems
 (SELECT * FROM StockItems_Ext);

or

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ APPEND PARALLEL(24) */ INTO StockItems
 (SELECT * FROM StockItems_Ext);

4. Commit the insert operation.

COMMIT;

5. Drop the external table.

DROP TABLE StockItems_Ext;

Repeat these steps for each duplicated table.

Loading Data into Sharded Tables
Loading data into a sharded table needs to be performed on individual shards
because data for a sharded table is partitioned across shards. The load can be done
concurrently on all the shards, even if the source data file is shared.

The process of loading is similar to the loading of duplicated tables, with an additional
filter in the INSERT … SELECT statement to filter out the rows that do not belong to the
current shard.

As an example, consider the sharded table created as follows.

CREATE SHARDED TABLE Customers (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12),
 CONSTRAINT RootPK PRIMARY KEY (CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-13

TABLESPACE SET ts1
;

Loading data into this table involves doing the following steps on each shard.

1. Create the directory object in the same way as done for the duplicated tables.

2. Create an external table for Customers table.

ALTER SESSION DISABLE SHARD DDL;
CREATE TABLE Customers_Ext (
 CustNo NUMBER(3) NOT NULL,
 CusName VARCHAR2(30) NOT NULL,
 Street VARCHAR2(20) NOT NULL,
 City VARCHAR2(20) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(10) NOT NULL,
 Phone VARCHAR2(12)
)
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER DEFAULT DIRECTORY shard_dir
 ACCESS PARAMETERS
 (FIELDS TERMINATED BY ’|’ (
 CustNo, CusName, Street, City, State, Zip, Phone)
)LOCATION (’Customers.dat’)
);

3. Insert data from external table into sharded table.

ALTER SESSION ENABLE PARALLEL DML;

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers
 (SELECT * FROM Customers_Ext WHERE
 SHARD_CHUNK_ID(’UNAME.CUSTOMERS’, CUSTNO) IS NOT NULL
);

The operator SHARD_CHUNK_ID is used to filter the rows that belong to the current
shard. This operator returns a valid chunk number for the given sharding key
value. The parameters for this operator are the root table name (in this case
UNAME.CUSTOMERS) and values of the sharding key columns. When a value does
not belong to the current shard, this operator returns NULL.

Note that this operator is introduced in the current release (Oracle Database
21c). If this operator is not available in your version, you must modify the insert
statement as follows for the case of system-managed sharding.

INSERT /*+ APPEND PARALLEL(24) */ INTO Customers c
 (SELECT * FROM Customers_Ext WHERE
 EXISTS (SELECT chunk_number FROM gsmadmin_internal.chunks
 WHERE ora_hash(c.CustNo)>= low_key
 AND ora_hash c.CustNo)< high_key)
);

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-14

This query user internal sharding metadata to decide the eligibility for the row to be
inserted.

4. Commit the insert operation.

COMMIT;

5. Drop external tables.

DROP TABLE Customers_Ext;

Repeat the above steps for each sharded table, starting with the root table and
descending down the table family hierarchy to maintain any foreign key constraints.

Chapter 6
Using External Tables to Load Data into a Sharded Database

6-15

7
Query and DML Execution

On a sharded database, queries and DML can be routed to the shards for execution
with or without a sharding key. If a key is provided by the application a database
request is routed directly to the shards, but if no key is provided the request is
processed by the shard catalog, and then directed to the necessary shards for
execution.

• How Database Requests are Routed to the Shards
In Oracle Sharding, database query and DML requests are routed to the shards in
two main ways, depending on whether a sharding key is supplied with the request.

• Connecting to the Query Coordinator
The Oracle Sharding query coordinator, a component of the shard catalog,
contains the metadata of the sharded topology and provides query processing
support for sharded databases.

• Query Coordinator Operation
The SQL compiler in the shard catalog identifies the relevant shards automatically,
and coordinates the query execution across all of the participating shards.
Database links are used for the communication between the coordinator and the
shards.

• Query Processing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

• Query Processing for Multi-Shard Queries
A multi-shard query is a query that must scan data from more than one shard, and
the processing on each shard is independent of any other shard.

• Supported Query Constructs and Example Query Shapes
Oracle Sharding supports single-shard and multi-shard query shapes with some
restrictions.

• Supported DMLs and Examples
DMLs in Oracle sharding can target either duplicated tables or sharded tables.
There are no limitations on DMLs when the target is a duplicated table.

• Gathering Optimizer Statistics on Sharded Tables
You can gather statistics on sharded tables from the coordinator database.

How Database Requests are Routed to the Shards
In Oracle Sharding, database query and DML requests are routed to the shards in two
main ways, depending on whether a sharding key is supplied with the request.

These two routing methods are called direct routing and proxy routing.

Direct Routing

You can connect directly to the shards to execute queries and DML by providing
a sharding key with the database request. Direct routing is the preferred way of
accessing shards to achieve better performance, among other benefits.

7-1

Proxy Routing

Queries that need data from multiple shards, and queries that do not specify a
sharding key, cannot be routed directly by the application. Those queries require a
proxy to route requests between the application and the shards. Proxy routing is
handled by the shard catalog query coordinator.

• Routing Queries and DMLs Directly to Shards
Applications can have their requests routed directly to the shards if they provide
a sharding key. With the direct routing mechanism, requests can only query and
manipulate the data that belongs to the shard they were routed to.

• Routing Queries and DMLs by Proxy
Using the shard catalog query coordinator as a proxy, Oracle Sharding can handle
request routing for queries and DMLs that do not specify a sharding key.

Routing Queries and DMLs Directly to Shards
Applications can have their requests routed directly to the shards if they provide
a sharding key. With the direct routing mechanism, requests can only query and
manipulate the data that belongs to the shard they were routed to.

Direct access to the data on the shards has several advantages.

• Offers better performance: Overall, applications experience better performance
compared to routing requests to the shards indirectly through the shard catalog (by
proxy). With direct routing there is no need for the requests and the results to pass
through a coordinator database.

• Accommodates geographic distribution of shards: Applications can access the
data in shards localized in their region.

• Eases load balancing: Load balancing application requests across the shards can
be easily achieved by moving the data across shards using chunk moves.

• Supports all type of queries:

– SELECT, INSERT, and UPDATE on sharded tables: The scope of these queries is
the data that belong to the shards accessed.

– SELECT, INSERT, and UPDATE on duplicated tables: The scope of theses queries
is all of the data in the duplicated tables. Because the master copies of
a duplicated tables reside in the coordinator database, the DMLs on the
duplicated tables are re-routed to the coordinator database.

For more information about direct routing, see Client Application Request Routing.

For information about developing applications for direct routing, see Developing
Applications for the Sharded Database

Routing Queries and DMLs by Proxy
Using the shard catalog query coordinator as a proxy, Oracle Sharding can handle
request routing for queries and DMLs that do not specify a sharding key.

By using the coordinator as a proxy, Oracle Sharding provides you with the flexibility to
allow any database application to run SQL statements without the need to specify the
shards where the query should be executed.

Chapter 7
How Database Requests are Routed to the Shards

7-2

For more information about the coordinator, see Query Processing and the Query
Coordinator.

The remaining topics in this chapter discuss routing and processing database requests
by proxy.

Connecting to the Query Coordinator
The Oracle Sharding query coordinator, a component of the shard catalog, contains
the metadata of the sharded topology and provides query processing support for
sharded databases.

To perform multi-shard queries, connect to the multi-shard coordinator using the
GDS$CATALOG service on the shard catalog database.

sqlplus app_schema/app_schema@shardcatvm:1521/GDS\$CATALOG.oradbcloud

Query Coordinator Operation
The SQL compiler in the shard catalog identifies the relevant shards automatically, and
coordinates the query execution across all of the participating shards. Database links
are used for the communication between the coordinator and the shards.

At a high level, the coordinator rewrites each incoming query, Q, into two queries,
Coordinator Query (CQ) and Shard Query (SQ) where SQ, where SQ (Shard Query) is
the part of Q that executes on each participating shard, and CQ (Coordinator Query) is
the part of Q that executes on the coordinator shard.

A query, Q, is rewritten into CQ (Shard_Iterator(SQ)), where the
Shard_Iterator is the operator that connects to the shards and runs SQ. It can be
run in parallel or serially.

The following is an example of an aggregate query, Q1, rewritten into Q1’.

Q1 : SELECT COUNT(*) FROM customers

Q1’: SELECT SUM(sc) FROM (Shard_Iterator(SELECT COUNT(*) sc FROM s1
(i)))

There are two main elements in this process.

1. The relevant shards are identified.

2. The query is rewritten into a distributive form and iterated across the relevant
shards.

During the query compilation on the coordinator database, the query compiler
analyzes the predicates on the sharding key, and extracts the predicates that can
be used to identify the participating shards, that is, the shards that will contribute rows
for the sharded tables referenced in the query. The rest of the shards are referred to as
pruned shards.

In the case where only one participating shard was identified, the full query is routed to
that shard for execution. This is called a single-shard query.

Chapter 7
Connecting to the Query Coordinator

7-3

If there is more than one participating shard, the query is called a multi-shard query
and it is rewritten. The rewriting process takes into account the expressions computed
by the query as well as the query shape.

Query Processing for Single-Shard Queries
A single-shard query is a query which needs to scan data from only one shard and
does not need to lookup data from any other shards.

The single-shard query is similar to a client connecting to a specific shard and issuing
a query on that shard. In this scenario, the entire query will be executed on the single
participating shard, and the coordinator just passes processed rows back to the client.
The plan on the coordinator is similar to the remote mapped cursor.

For example, the following query is fully mapped to a single shard because the data
for customer 123 is located only on that shard.

SELECT count(*) FROM customers c, orders o WHERE c.custno = o.custno
and c.custno = 123;

The query contains a condition on the shard key that maps to one and only one shard
which is known at query compilation time (literals) or query start time (bind). The query
is fully executed on the qualifying shard.

Single-shard queries are supported for:

• Equality and In-list, such as Area = ‘West’

• Conditions containing literal, bind, or expression of literals and binds, such as

Area = :bind

Area = CASE :bind <10 THEN ‘West’ ELSE ‘East’ END

• SELECT, UPDATE, DELETE, INSERT, FOR UPDATE, and MERGE. UPSERT is not supported.

Query Processing for Multi-Shard Queries
A multi-shard query is a query that must scan data from more than one shard, and the
processing on each shard is independent of any other shard.

A multi-shard query maps to more than one shard and the coordinator might need to
do some processing before sending the result to the client. For example, the following
query gets the number of orders placed by each customer.

SELECT count(*), c.custno FROM customers c, orders o WHERE c.custno =
o.custno
 GROUP BY c.custno;

Chapter 7
Query Processing for Single-Shard Queries

7-4

The query is transformed to the following by the coordinator.

SELECT sum(count_col), custno FROM (SELECT count(*) count_col, c.custno
 FROM customers c, orders o
 WHERE c.custno = o.custno GROUP BY c.custno) GROUP BY custno;

The inline query block is mapped to every shard just as a remote mapped query block.
The coordinator performs further aggregation and GROUP BY on top of the result set
from all shards. The unit of execution on every shard is the inline query block.

Multi-Shard Queries and Global Read Consistency

A multi-shard query must maintain global read consistency (CR) by issuing the query
at the highest common SCN across all the shards. See Specifying Consistency Levels
in a Multi-Shard Query for information about how to set consistency levels.

Passing Hints in Multi-Shard Queries

Any hint specified in the original query on the coordinator is propagated to the shards.

Tracing and Troubleshooting Slow Running Multi-Shard Queries

Set the trace event shard_sql on the coordinator to trace the query rewrite and shard
pruning. One of the common performance issues observed is when the GROUP BY
is not pushed to the shards because of certain limitations of the sharding. Check if all
of the possible operations are pushed to the shards and the coordinator has minimal
work to consolidate the results from shards.

• Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

Specifying Consistency Levels in a Multi-Shard Query
You can use the initialization parameter
MULTISHARD_QUERY_DATA_CONSISTENCY to set different consistency levels
when executing multi-shard queries across shards.

You can specify different consistency levels for multi-shard queries. For example, you
might want some queries to avoid the cost of SCN synchronization across shards,
and these shards could be globally distributed. Another use case is when you use
standbys for replication and slightly stale data is acceptable for multi-shard queries, as
the results could be fetched from the primary and its standbys.

The default mode is strong, which performs SCN synchronization across all shards.
Other modes skip SCN synchronization. The delayed_standby_allowed level allows
fetching data from the standbys as well, depending on load balancing and other
factors, and could contain stale data.

This parameter can be set either at the system level or at the session level.

Chapter 7
Query Processing for Multi-Shard Queries

7-5

See Also:

Oracle Database Reference for more information about
MULTISHARD_QUERY_DATA_CONSISTENCY usage.

Supported Query Constructs and Example Query Shapes
Oracle Sharding supports single-shard and multi-shard query shapes with some
restrictions.

The following are restrictions on query constructs in Oracle Sharding.

• CONNECT BY Queries CONNECT BY queries are not supported.

• MODEL Clause The MODEL clause is not supported.

• User-Defined PL/SQL in the WHERE Clause User-defined PL/SQL is allowed in
multi-shard queries only in the SELECT clause. If it is specified in the WHERE clause
then an error is thrown.

• XLATE and XML Query type XLATE and XML Query type columns are not
supported.

• Object types You can include object types in SELECT lists, WHERE clauses, and
so on, but custom constructors and member functions of type object type are not
permitted in WHERE clauses.

Furthermore, for duplicated tables, non-final types, that is, object types that are
created with the NOT FINAL keyword, cannot be used as a column data type. For
sharded tables, non-final types can be used as a column data type but the column
must be created with keywords NOT SUBSTITUTABLE AT ALL LEVELS.

Note:

Queries involving only duplicated tables are run on the coordinator.

The following topics show several examples of query shapes supported in Oracle
Sharding.

• Queries on Sharded Tables Only
For a single-table query, the query can have an equality filter on the sharding key
that qualifies a shard. For join queries, all of the tables should be joined using
equality on the sharding key.

• Queries Involving Both Sharded and Duplicated Tables
A query involving both sharded and duplicated tables can be either a single-shard
or multi-shard query, based on the predicates on the sharding key. The only
difference is that the query contains a non-sharded table.

• Aggregate Functions Supported by Oracle Sharding
The following aggregations are supported by proxy routing in Oracle Sharding.

Chapter 7
Supported Query Constructs and Example Query Shapes

7-6

• Queries with User-Defined Types
User-defined SQL object types and user-defined SQL collection types are referred
to as user-defined types. Oracle Sharding supports queries with user-defined
types.

• Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan which
is optimized for the data size and compute resources available on the shard.

Queries on Sharded Tables Only
For a single-table query, the query can have an equality filter on the sharding key that
qualifies a shard. For join queries, all of the tables should be joined using equality on
the sharding key.

The following examples show queries where only sharded tables participate.

Example 7-1 Inner Join

SELECT … FROM s1 INNER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Example 7-2 Left Outer Join

SELECT … FROM s1 LEFT OUTER JOIN s2 ON s1.sk=s2.sk

Example 7-3 Right Outer Join

SELECT … FROM s1 RIGHT OUTER JOIN s2 ON s1.sk=s2.sk

Example 7-4 Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN s2 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

Queries Involving Both Sharded and Duplicated Tables
A query involving both sharded and duplicated tables can be either a single-shard or
multi-shard query, based on the predicates on the sharding key. The only difference is
that the query contains a non-sharded table.

Note:

Joins between a sharded table and a duplicated table can be on any column,
using any comparison operator, = < > <= >=, or arbitrary join expressions.

Example 7-5 Inner Join

SELECT … FROM s1 INNER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

Chapter 7
Supported Query Constructs and Example Query Shapes

7-7

Example 7-6 Left or Right Outer Join

In this case, the sharded table is the first table in LEFT OUTER JOIN.

SELECT … FROM s1 LEFT OUTER JOIN r1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND filter_one_shard(s1)

In this case, the sharded table is the second table in RIGHT OUTER JOIN.

SELECT … FROM r1 RIGHT OUTER JOIN s1 ON any_join_condition(s1,r1)
WHERE any_filter(s1) AND any_filter(r1)

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND filter_one_shard(s1) AND any_filter(r1)

In some cases, the duplicated table is the first table in LEFT OUTER JOIN, or the
sharded table is first and it maps to a single shard, based on filter predicate on the
sharding key.

SELECT … FROM r1 LEFT OUTER JOIN s1 ON any_join_condition(s1,s2)
AND any_filter(r1) AND any_filter(s1)

In some cases, the duplicated table is the second table in RIGHT OUTER JOIN, or the
sharded table is second and it maps to a single shard based on filter predicate on
sharding key.

SELECT … FROM s1 RIGHT OUTER JOIN r1 ON any_join_condition(s1,s2)
AND any_filter (s1) AND any_filter(r1)

Example 7-7 Full Outer Join

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.sk=s2.sk
WHERE any_filter(s1) AND any_filter(s2)

In this case, the sharded table requires access to multiple shards:

SELECT … FROM s1 FULL OUTER JOIN r1 ON s1.non_sk=s2.non_sk
WHERE any_filter(s1) AND any_filter(s2)

Example 7-8 Semi-Join (EXISTS)

SELECT … FROM s1 EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey and filter_one_shard(s1))

Chapter 7
Supported Query Constructs and Example Query Shapes

7-8

In this case, the sharded table is in a subquery that requires the participation of
multiple shards.

SELECT … FROM r1 EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey)

Example 7-9 Anti-Join (NOT EXISTS)

SELECT … FROM s1 NOT EXISTS
(SELECT 1 FROM r1 WHERE r1.anykey=s1.anykey)

In this case, the sharded table is in the sub-query.

SELECT … FROM r1 NOT EXISTS
(SELECT 1 FROM s1 WHERE r1.anykey=s1.anykey

Aggregate Functions Supported by Oracle Sharding
The following aggregations are supported by proxy routing in Oracle Sharding.

• COUNT

• SUM

• MIN

• MAX

• AVG

Queries with User-Defined Types
User-defined SQL object types and user-defined SQL collection types are referred to
as user-defined types. Oracle Sharding supports queries with user-defined types.

Example 7-10 Create Table with User-Defined Types

The following example creates an all-shard type and type body, then creates a
sharded table referencing the type.

ALTER SESSION ENABLE SHARD DDL;

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone VARCHAR2(20),
 MEMBER FUNCTION details (
 self IN person_typ
) RETURN VARCHAR2
);
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MEMBER FUNCTION details (

Chapter 7
Supported Query Constructs and Example Query Shapes

7-9

 self IN person_typ
) RETURN VARCHAR2 IS
 result VARCHAR2(100);
 BEGIN
 result := first_name || ' ' || last_name || ' ' || email || ' '
|| phone;
 RETURN result;
 END;
END;
/

CREATE SHARDED TABLE Employees
(Employee_id NUMBER NOT NULL
, person person_typ
, signup_date DATE NOT NULL
, CONSTRAINT RootPK PRIMARY KEY(CustNo)
)
PARTITION BY CONSISTENT HASH (CustNo)
PARTITIONS AUTO
TABLESPACE SET ts1
;

Example 7-11 Insert Data Using Type Constructor

INSERT INTO Employees values (1, person_typ('John', 'Doe',
'jdoe@example.com', '123-456-7890'), to_date('24 Jun 2020', 'dd Mon
YYYY'));

Example 7-12 Multi-Shard Query of a User-Defined Type Column

SELECT e.person FROM Employees e;

SELECT e.person.first_name, e.person.last_name FROM Employees e;

SELECT e.person.details() FROM Employee e where e.person.first_name =
'John’;

SELECT signup_date from Employees e where e.person = person_typ('John',
'Doe', 'jdoe@example.com', '123-456-7890’);

Execution Plans for Proxy Routing
In a multi-shard query, each shard produces an independent execution plan which is
optimized for the data size and compute resources available on the shard.

You do not need to connect to individual shards to see the explain plan for
SQL fragments. Interfaces provided in dbms_xplan.display_cursor() display on
the coordinator the plans for the SQL segments executed on the shards, and [V/
X]$SHARD_SQL uniquely maps a shard SQL fragment of a multi-shard query to the
target shard database.

Chapter 7
Supported Query Constructs and Example Query Shapes

7-10

SQL Segment Interfaces for dbms_xplan.display_cursor()

Two interfaces can display the plan for a SQL segment executed on shards. The
interfaces take shard IDs as the argument to display the plans from the specified
shards. The ALL_SHARDS format displays the plans from all of the shards.

To print all of the plans from all shards use the format value ALL_SHARDS as shown
here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC
+ALL_SHARDS‘,
 shard_ids=>shard_ids))

To print selective plans from the shards, pass shard IDs in the display_cursor()
function. For plans from multiple shards, pass an array of numbers containing shard
IDs in the shard_ids parameter as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,

cursor_child_no=>:childno,
 format=>'BASIC',
 shard_ids=>ids))

To return a plan from one shard pass the shard ID directly to the shard_id parameter,
as shown here.

select * from table(dbms_xplan.display_cursor(sql_id=>:sqlid,
 cursor_child_no=>:childno,
 format=>'BASIC',
 shard_id=>1))

V$SQL_SHARD

V$SQL_SHARD uniquely maps a shard SQL fragment of a multi-shard query to the target
shard database. This view is relevant only for the shard coordinator database to store
a list of shards accessed for each shard SQL fragment for a given multi-shard query.
Every execution of a multi-shard query can execute a shard SQL fragment on different
set of shards, so every execution updates the shard IDs. This view maintains the SQL
ID of a shard SQL fragment for each REMOTE node and the SHARD IDs on which the
shard SQL fragment was executed.

Name Null? Type
--- --------

 SQL_ID VARCHAR2(13)
 CHILD_NUMBER NUMBER
 NODE_ID NUMBER
 SHARD_SQL_ID VARCHAR2(13)
 SHARD_ID NUMBER
 SHARD_CHILD_NUMBER NUMBER

Chapter 7
Supported Query Constructs and Example Query Shapes

7-11

• SQL_ID – SQL ID of a multi-shard query on coordinator

• CHILD_NUMBER – cursor child number of a multi-shard query on coordinator

• NODE_ID – ID of REMOTE node for a shard SQL fragment of a multi-shard query

• SHARD_SQL_ID – SQL ID of the shard SQL fragment for given remote NODE ID

• SHARD_ID – IDs of shards where the shard SQL fragment was executed

• SHARD _CHILD_NUMBER– cursor child number of a shard SQL fragment on a
shard (default 0)

The following is an example of a multi-shard query on the sharded database and the
execution plan.

SQL> select count(*) from departments a where exists (select distinct
department_id
 from departments b where b.department_id=60);
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	FILTER	
3	VIEW	VW_SHARD_377C5901
4	SHARD ITERATOR	
5	REMOTE	
6	VIEW	VW_SHARD_EEC581E4
7	SHARD ITERATOR	
8	REMOTE	
--

A query of SQL_ID on the V$SQL_SHARD view.

SQL> Select * from v$sql_shard where SQL_ID = ‘1m024z033271u’;
SQL_ID NODE_ID SHARD_SQL_ID SHARD_ID
------------- ------- -------------- --------
1m024z033271u 5 5z386yz9suujt 1
1m024z033271u 5 5z386yz9suujt 11
1m024z033271u 5 5z386yz9suujt 21
1m024z033271u 8 8f50ctj1a2tbs 11

See Also:

Oracle Database PL/SQL Packages and Types Reference

Oracle Database Reference

Supported DMLs and Examples
DMLs in Oracle sharding can target either duplicated tables or sharded tables. There
are no limitations on DMLs when the target is a duplicated table.

Chapter 7
Supported DMLs and Examples

7-12

DMLs (mainly Insert, Update and Delete) targeting sharded tables can be

• Simple DMLs where only the target table is referenced

• DMLs referencing other tables

• Merge statements

• Limitations in Multi-Shard DML Support
The following DML features are not supported by multi-shard DML in Oracle
Sharding.

Limitations in Multi-Shard DML Support
The following DML features are not supported by multi-shard DML in Oracle Sharding.

• Parallel DML Parallel DML is not supported by multi-shard DML. The DML will
always run on one shard at a time (serially) in multi-shard DML.

• Error Logging The ERROR LOG clause with DML is not supported by multi-shard
DML. A user error is raised in this case.

• Array DML Array DML is not supported by multi-shard DML. ORA-2681 is raised
in this cases.

• RETURNING Clause The RETURNING INTO clause is not supported by regular
distributed DMLs; therefore, it is not supported by Oracle Sharding. ORA-22816 is
raised if you try to use the RETURNING INTO clause in multi-shard DMLs.

• MERGE and UPSERT The MERGE statement is partially supported by Oracle
Sharding, that is, a MERGE statement affecting only single shard is supported. ORA
error is raised if a MERGE statement requires the modification of multiple shards.

• Multi-Table INSERT Multi-table inserts are not supported by database links;
therefore, multi-table inserts are not supported by Oracle Sharding.

• Updatable Join View ORA-1779 is thrown when the updatable join view has
a join on a sharded table on sharding keys. The reason for this error is that
the primary key defined on a sharded table is combination of internal column
SYS_HASHVAL + sharding key and you cannot specify SYS_HASHVAL in the updatable
join view. Because of this restriction you cannot establish the key-preserved table
resulting in raising ORA-1779.

• Triggers

Gathering Optimizer Statistics on Sharded Tables
You can gather statistics on sharded tables from the coordinator database.

The statistic preference parameter COORDINATOR_TRIGGER_SHARD, when set to TRUE on
all of the shards, allows the coordinator database to import the statistics gathered on
the shards.

The PL/SQL procedures DBMS_STATS.GATHER_SCHEMA_STATS() and
DBMS_STATS.GATHER_TABLE_STATS() gather statistics on sharded tables and duplicated
tables in the shards and in the coordinator database.

Manual Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

Chapter 7
Gathering Optimizer Statistics on Sharded Tables

7-13

This step is performed only one time and only on the shards. If, for example, you
have a schema named sharduser:

connect / as sysdba
EXECUTE
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD',
'TRUE');

2. Gather statistics across the shards.

The user should be an all-shards user and needs to have privileges to access
dictionary tables.

a. On the shards run the following.

connect sharduser/sharduser
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER',
options => 'GATHER');

b. When all shards are completed, to pull statistics run the following on the
coordinator.

connect sharduser/sharduser
EXEC DBMS_STATS.GATHER_SCHEMA_STATS(ownname => 'SHARDUSER',
options => 'GATHER');

c. Check the statistics.

connect sharduser/sharduser

ALTER SESSION SET nls_date_format='DD-MON-YYYY HH24:MI:SS';
 col TABLE_NAME form a40
 set pagesize 200 linesize 200

SELECT TABLE_NAME, NUM_ROWS, sharded, duplicated, last_analyzed
 FROM user_tables
 WHERE table_name not like 'MLOG%' and table_name not like
'RUPD%'
 and table_name not like 'USLOG%';

Automatic Statistics Gathering

1. Set COORDINATOR_TRIGGER_SHARD to TRUE on all of the shards.

This step is performed only one time and only on the shards. If, for example, you
have a schema named sharduser:

connect / as sysdba
EXECUTE
DBMS_STATS.SET_SCHEMA_PREFS('SHARDUSER','COORDINATOR_TRIGGER_SHARD',
'TRUE');

2. Schedule a job to gather the stats on the shards an on the coordinator database.
The user should be an all-shards user and needs to have privileges to access
dictionary tables.

Chapter 7
Gathering Optimizer Statistics on Sharded Tables

7-14

a. On the shards run the following.

connect sharduser/sharduser
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'Gather_Stats_2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN
DBMS_STATS.GATHER_SCHEMA_STATS(ownname => ''DEMO'', options =>
''GATHER''); END;',
 start_date => SYSDATE,
 repeat_interval =>
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=14;byminute=
10;bysecond=00',
 end_date => NULL,
 enabled => TRUE,
 comments => 'Gather table statistics');
END;
/

b. When the job is completed on all shards, start the following job on the
coordinator.

connect sharduser/sharduser
BEGIN
DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'Gather_Stats_2',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN
DBMS_STATS.GATHER_SCHEMA_STATS(ownname => ''DEMO'', options =>
''GATHER''); END;',
 start_date => SYSDATE,
 repeat_interval =>
'freq=daily;byday=MON,TUE,WED,THU,FRI,SAT,SUN;byhour=15;byminute=
10;bysecond=00',
 end_date => NULL,
 enabled => TRUE,
 comments => 'Gather table statistics');
END;
/

Chapter 7
Gathering Optimizer Statistics on Sharded Tables

7-15

8
Developing Applications for the Sharded
Database

• Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified
in the connection string for high performance data dependent routing. A shard
routing cache in the connection layer is used to route database requests directly to
the shard where the data resides.

• JDBC Sharding Data Source
Oracle Java Database Connectivity (JDBC) sharding data source enables Java
connectivity to a sharded database without requiring the application to provide a
sharding key.

• Sharding APIs Supporting Direct Routing
Oracle connection pools and drivers support Oracle Sharding.

• Suitability for Sharding of Existing Applications
Existing applications that were never intended to be sharded will require some
level of redesign to achieve the benefits of a sharded architecture.

Direct Routing to a Shard
Oracle clients and connections pools are able to recognize sharding keys specified in
the connection string for high performance data dependent routing. A shard routing
cache in the connection layer is used to route database requests directly to the shard
where the data resides.

In direct, key-based, routing to a shard, a connection is established to a single,
relevant shard which contains the data pertinent to the required transaction using a
sharding key.

A sharding key is used to route database connection requests at a user session level
during connection checkout. The composite sharding method requires both a sharding
key and a super sharding key. Direct, key-based, routing requires the sharding key (or
super sharding key) be passed as part of the connection. Based on this information, a
connection is established to the relevant shard which contains the data pertinent to the
given sharding key or super sharding key.

Once the session is established with a shard, all SQL queries and DMLs are
supported and executed in the scope of the given shard. This routing is fast and is
used for all OLTP workloads that perform intra-shard transactions. It is recommended
that direct routing be employed for all OLTP workloads that require the highest
performance and availability.

In support of Oracle Sharding, key enhancements have been made to Oracle
connection pools and drivers. JDBC, Universal Connection Pool (UCP), OCI Session
Pool (OCI), and Oracle Data Provider for .NET (ODP.NET) provide APIs to pass
sharding keys during the connection creation. Apache Tomcat, IBM Websphere,

8-1

Oracle WebLogic Server, and JBOSS can leverage JDBC/UCP support and use
sharding. PHP, Python, Perl, and Node.js can leverage OCI support.

A shard topology cache is a mapping of the sharding key ranges to the shards. Oracle
Integrated Connection Pools maintain this shard topology cache in their memory.
Upon the first connection to a given shard (during pool initialization or when the pool
connects to newer shards), the sharding key range mapping is collected from the
shards to dynamically build the shard topology cache.

Caching the shard topology creates a fast path to the shards and expedites the
process of creating a connection to a shard. When a connection request is made with
a sharding key, the connection pool looks up the corresponding shard on which this
particular sharding key exists (from its topology cache). If a matching connection is
available in the pool then the pool returns a connection to the shard by applying its
internal connection selection algorithm.

A database connection request for a given sharding key that is in any of the
cached topology map, goes directly to the shard (that is, bypassing the shard
director). Connection Pool also subscribes to RLB notifications from the SDB and
dispenses the best connection based on runtime load balancing advisory. Once the
connection is established, the client executes transactions directly on the shard. After
all transactions for the given sharding key have been executed, the application must
return the connection to the pool and obtain a connection for another key.

If a matching connection is not available in the pool, then a new connection is created
by forwarding the connection request with the sharding key to the shard director.

Once the pools are initialized and the shard topology cache is built based on all
shards, a shard director outage has no impact on direct routing.

JDBC Sharding Data Source
Oracle Java Database Connectivity (JDBC) sharding data source enables Java
connectivity to a sharded database without requiring the application to provide a
sharding key.

Using the JDBC sharding data source, you do not need to identify and build the
sharding key and the super sharding key to establish a connection. The sharding data
source scales out to sharded databases transparently because it does not involve any
change to the application code.

To use the JDBC sharding data source, set the connection property
oracle.jdbc.useShardingDriverConnection to true as shown here.

Properties prop = new Properties();
prop.setProperty("oracle.jdbc.useShardingDriverConnection", "true");

The default value of oracle.jdbc.useShardingDriverConnection is false.

See the Oracle Database JDBC Developer’s Guide for more information and
examples.

Related Topics

• Overview of the Sharding Data Source in Oracle Database JDBC Developer’s
Guide

Chapter 8
JDBC Sharding Data Source

8-2

Sharding APIs Supporting Direct Routing
Oracle connection pools and drivers support Oracle Sharding.

JDBC, UCP, OCI, and Oracle Data Provider for .NET (ODP.NET) recognize sharding
keys as part of the connection check. Apache Tomcat, Websphere, and WebLogic
leverage UCP support for sharding and PHP, Python, Perl, and Node.js leverage OCI
support.

• Oracle JDBC APIs for Oracle Sharding
Oracle Java Database Connectivity (JDBC) provides APIs for connecting to
database shards in an Oracle Sharding configuration.

• Oracle Call Interface for Oracle Sharding
Oracle Call Interface (OCI) provides an interface for connecting to database
shards in an Oracle Sharding configuration.

• Oracle Universal Connection Pool APIs for Oracle Sharding
Oracle Universal Connection Pool (UCP) provides APIs for connecting to database
shards in an Oracle Sharding configuration.

• Oracle Data Provider for .NET APIs for Oracle Sharding
Oracle Data Provider for .NET (ODP.NET) provides APIs for connecting to
database shards in an Oracle Sharding configuration.

Oracle JDBC APIs for Oracle Sharding
Oracle Java Database Connectivity (JDBC) provides APIs for connecting to database
shards in an Oracle Sharding configuration.

The JDBC driver recognizes the specified sharding key and super sharding key
and connects to the relevant shard that contains the data. Once the connection is
established to a shard, then any database operations, such as DMLs, SQL queries
and so on, are supported and executed in the usual way.

A shard-aware application gets a connection to a given shard by specifying the
sharding key using the database sharding APIs.

• The OracleShardingKey interface indicates that the current object represents an
Oracle sharding key that is to be used with Oracle sharded database.

• The OracleShardingKeyBuilder interface builds the compound sharding key with
subkeys of various supported data types. This interface uses the new JDK 8
builder pattern for building a sharding key.

• The OracleConnectionBuilder interface builds connection objects with additional
parameters other than user name and password.

• The OracleDataSource class provides database sharding support with the
createConnectionBuilder and createShardingKeyBulider methods.

• The OracleXADataSource class provides database sharding support with the
createConnectionBuilder method

• The OracleConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

• The OracleXAConnection class provides database sharding support with the
setShardingKeyIfValid and setShardingKey methods.

Chapter 8
Sharding APIs Supporting Direct Routing

8-3

See the Oracle Database JDBC Developer’s Guide for more information and
examples.

Example 8-1 Sample Shard-Aware Application Code Using JDBC

The following code snippet shows how to use JDBC sharding APIs

OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=myhost)
(PORT=1521)(PROTOCOL=tcp))
(CONNECT_DATA=(SERVICE_NAME=myorcldbservicename)))");
 ods.setUser("hr");
 ods.setPassword("hr");

 // Employee name is the sharding Key in this example.
 // Build the Sharding Key using employee name as shown below.

 OracleShardingKey employeeNameShardKey =
ods.createShardingKeyBuilder()
 .subkey("Mary",
JDBCType.VARCHAR)// First Name
 .subkey("Claire",
JDBCType.VARCHAR)// Last Name
 .build();

 OracleShardingKey locationSuperShardKey =
ods.createShardingKeyBuilder() // Building a super sharding key using
location as the key
 .subkey("US",
JDBCType.VARCHAR)
 .build();

 OracleConnection connection = ods.createConnectionBuilder()
 .shardingKey(employeeNameShardKey)
 .superShardingKey(locationSuperShard
Key)
 .build();

Related Topics

• JDBC Support for Database Sharding in Oracle Database JDBC Developer’s
Guide

Oracle Call Interface for Oracle Sharding
Oracle Call Interface (OCI) provides an interface for connecting to database shards in
an Oracle Sharding configuration.

To make requests that read from or write to a chunk, your application must be routed
to the appropriate database (shard) that stores that chunk during the connection
initiation step. This routing is accomplished by using a data key. The data key enables
routing to the specific chunk by specifying its sharding key or to a group of chunks by
specifying its super sharding key.

In order to get a connection to the correct shard containing the chunk you wish to
operate on, you must specify a key in your application before getting a connection to

Chapter 8
Sharding APIs Supporting Direct Routing

8-4

a sharded Oracle database for either stand-alone connections or connections obtained
from an OCI Session pool. For an OCI Session pool, you must specify a data key
before you check out connections from the pool.

At a high-level, the following steps have to be followed to form sharding keys and
shard group keys and get a session with an underlying connection:

1. Allocate the sharding key descriptor by calling OCIDescriptorAlloc() and
specifying the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the
sharding key.

2. Allocate the shard group key descriptor by calling OCIDescriptorAlloc() and
specifying the descriptor type parameter as OCI_DTYPE_SHARDING_KEY to form the
shard group key.

3. Call OCISessionGet() using the initialized authentication handle from the previous
step containing the sharding key and shard group key information to get the
database connection to the shard and chunk specified by the sharding key and
group of chunks as specified by the shard group key.

See Oracle Call Interface Programmer's Guide for information about creating
connections to OCI Session pools, stand-alone connections, and custom pool
connections.

Related Topics

• OCI Interface for Using Shards in Oracle Call Interface Programmer's Guide

Oracle Universal Connection Pool APIs for Oracle Sharding
Oracle Universal Connection Pool (UCP) provides APIs for connecting to database
shards in an Oracle Sharding configuration.

A shard-aware application gets a connection to a given shard by specifying the
sharding key using the enhanced sharding API calls createShardingKeyBuilder and
createConnectionBuilder.

At a high-level, the following steps have to be followed in making an application work
with a sharded database:

1. Update the URL to reflect the shard directors and global service.

2. Set the following pool parameters at the pool level and the shard level.

• setInitialPoolSize sets the initial number of connections to be created when
UCP is started

• setMinPoolSize sets the minimum number of connections maintained by pool
at runtime

• setMaxPoolSize sets maximum number of connections allowed on connection
pool

• setMaxConnectionsPerShard sets max connections per shard

3. Build a sharding key object with createShardingKeyBuilder.

4. Establish a connection using createConnectionBuilder.

5. Execute transactions within the scope of the given shard.

Chapter 8
Sharding APIs Supporting Direct Routing

8-5

Example 8-2 Establishing a Connection Using UCP Sharding API

The following is a code fragment which illustrates how the sharding keys are built and
connections established using UCP Sharding API calls.

...

PoolDataSource pds =
 PoolDataSourceFactory.getPoolDataSource();

 // Set Connection Pool properties
pds.setURL(DB_URL);
pds.setUser("hr");
pds.setPassword("****");
pds.setInitialPoolSize(10);
pds.setMinPoolSize(20);
pds.setMaxPoolSize(30);

// build the sharding key object

OracleShardingKey shardingKey =
 pds.createShardingKeyBuilder()
 .subkey("mary.smith@example.com", OracleType.VARCHAR2)
 .build();

 // Get an UCP connection for a shard
Connection conn =
 pds.createConnectionBuilder()
 .shardingKey(shardingKey)
 .build();
...

Example 8-3 Sample Shard-Aware Application Code Using UCP Connection
Pool

In this example the pool settings are defined at the pool level and at the shard level.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.jdbc.pool.OracleDataSource;
import oracle.ucp.jdbc.PoolDataSource;
import oracle.ucp.jdbc.PoolDataSourceFactory;

public class MaxConnPerShard
{
 public static void main(String[] args) throws SQLException
 {
 String url = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(HOST=shard-
dir1)(PORT=3216)
 (PROTOCOL=tcp))(CONNECT_DATA=(SERVICE_NAME=shsvc.shpool.oradbcloud)

Chapter 8
Sharding APIs Supporting Direct Routing

8-6

(REGION=east)))";
 String user="testuser1", pwd = "testuser1";

 int maxPerShard = 100, initPoolSize = 20;

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 pds.setConnectionFactoryClassName(OracleDataSource.class.getName());
 pds.setURL(url);
 pds.setUser(user);
 pds.setPassword(pwd);
 pds.setConnectionPoolName("testpool");
 pds.setInitialPoolSize(initPoolSize);

 // set max connection per shard
 pds.setMaxConnectionsPerShard(maxPerShard);
 System.out.println("Max-connections per shard is:
"+pds.getMaxConnectionsPerShard());

 // build the sharding key object
 int shardingKeyVal = 123;
 OracleShardingKey sdkey = pds.createShardingKeyBuilder()
 .subkey(shardingKeyVal, OracleType.NUMBER)
 .build();

 // try to build maxPerShard connections with the sharding key
 Connection[] conns = new Connection[maxPerShard];
 for (int i=0; i<maxPerShard; i++)
 {
 conns[i] = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

Statement stmt = conns[i].createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");
 while (rs.next()) {
 System.out.println((i+1)+" - inst:"+rs.getString(1)+",
chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();
 }

 System.out.println("Try to build "+(maxPerShard+1)+"
connection ...");
 try {
 Connection conn = pds.createConnectionBuilder()
 .shardingKey(sdkey)
 .build();

 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select sys_context('userenv',
'instance_name'),
 sys_context('userenv', 'chunk_id') from dual");

Chapter 8
Sharding APIs Supporting Direct Routing

8-7

 while (rs.next()) {
 System.out.println((maxPerShard+1)+" - inst:"+rs.getString(1)+",
 chunk:"+rs.getString(2));
 }
 rs.close();
 stmt.close();

 System.out.println("Problem!!! could not build connection as max-
connections per
 shard exceeded");
 conn.close();
 } catch (SQLException e) {
 System.out.println("Max-connections per shard met, could not
build connection
 any more, expected exception: "+e.getMessage());
 }
 for (int i=0; i<conns.length; i++)
 {
 conns[i].close();
 }
 }
}

Related Topics

• UCP APIs for Database Sharding Support in Oracle Universal Connection Pool
Developer’s Guide

Oracle Data Provider for .NET APIs for Oracle Sharding
Oracle Data Provider for .NET (ODP.NET) provides APIs for connecting to database
shards in an Oracle Sharding configuration.

Using ODP.NET APIs, a shard-aware application gets a connection to a given
shard by specifying the sharding key and super sharding key with APIs such
as the SetShardingKey(OracleShardingKey shardingKey, OracleShardingKey
superShardingKey) instance method in the OracleConnection class.

At a high level, the following steps are necessary for a .NET application to work with a
sharded database:

1. Use ODP.NET, Unmanaged Driver.

Sharding is supported with or without ODP.NET connection pooling. Each pool can
maintain connections to different shards of the sharded database.

2. Use an OracleShardingKey class to set the sharding key and another instance for
the super sharding key.

3. Invoke the OracleConnection.SetShardingKey() method prior to calling
OracleConnection.Open() so that ODP.NET can return a connection with the
specified sharding key and super sharding key.

These keys must be set while the OracleConnection is in a Closed state,
otherwise an exception is thrown.

Chapter 8
Sharding APIs Supporting Direct Routing

8-8

Example 8-4 Sample Shard-Aware Application Code Using ODP.NET

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection
 ("user id=hr;password=hr;Data Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new
OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

Related Topics

• Database Sharding in Oracle Data Provider for .NET Developer's Guide for
Microsoft Windows

Suitability for Sharding of Existing Applications
Existing applications that were never intended to be sharded will require some level of
redesign to achieve the benefits of a sharded architecture.

In some cases it may be as simple as providing the sharding key, in other cases it
may be impossible to horizontally partition data and workload as required by a sharded
database.

Many customer-facing web applications, such as e-commerce, mobile, and social
media are well suited to sharding. Such applications have a well defined data model
and data distribution strategy (hash, range, list, or composite) and primarily access
data using a sharding key. Examples of sharding keys include customer ID, account
number, and country_id. Applications will also usually require partial de-normalization
of data to perform well with sharding.

Transactions that access data associated with a single value of the sharding key
are the primary use-case for a sharded database, such as lookup and update
of a customer’s records, subscriber documents, financial transactions, e-commerce
transactions, and the like. Because all the rows in a sharded schema that have
the same value of the sharding key are guaranteed to be on the same shard, such

Chapter 8
Suitability for Sharding of Existing Applications

8-9

transactions are always single-shard and executed with the highest performance and
provide the highest level of consistency.

Multi-shard operations are supported, but with a reduced level of performance and
consistency. Such transactions include simple aggregations, reporting, and the like,
and play a minor role in a sharded application relative to workloads dominated by
single-shard transactions.

Chapter 8
Suitability for Sharding of Existing Applications

8-10

9
Sharded Database Administration

Oracle Sharding provides tools and some automation for the administration of a
sharded database.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 21c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

The following topics describe sharded database administration in detail:

• Managing the Sharding-Enabled Stack

• Managing Oracle Sharding Database Users

• Backing Up and Recovering a Sharded Database
The GDSCTL utility lets you define a backup policy for a sharded database and
restore one or more shards, or the entire sharded database, to the same point in
time. Configured backups are run automatically, and you can define a schedule to
run backups during off-peak hours.

• Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

• Propagation of Parameter Settings Across Shards
When you configure system parameter settings at the shard catalog, they are
automatically propagated to all shards of the sharded database.

• Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded
database, these changes should be done from the shard catalog database.

• Managing Sharded Database Software Versions

• Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

• Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control and GDSCTL.

• Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding
deployment with Oracle Enterprise Manager Cloud Control.

9-1

• Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

• Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

• Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

• Services Management
You can manage services in your Oracle Sharding deployment with Oracle
Enterprise Manager Cloud Control.

Managing the Sharding-Enabled Stack
This section describes the startup and shutdown of components in the sharded
database configuration. It contains the following topics:

• Starting Up the Sharding-Enabled Stack

• Shutting Down the Sharding-Enabled Stack

Starting Up the Sharding-Enabled Stack
The following is the recommended startup sequence of the sharding-enabled stack:

• Start the shard catalog database and local listener.

• Start the shard directors (GSMs).

• Start up the shard databases and local listeners.

• Start the global services.

• Start the connection pools and clients.

Shutting Down the Sharding-Enabled Stack
The following is the recommended shutdown sequence of the sharding-enabled stack:

• Shut down the connection pools and clients.

• Stop the global services.

• Shut down the shard databases and local listeners.

• Stop the shard directors (GSMs).

• Stop the shard catalog database and local listener.

Managing Oracle Sharding Database Users
This section describes the database users specific to Oracle Sharding. It contains the
following topics:

Chapter 9
Managing the Sharding-Enabled Stack

9-2

• About the GSMUSER Account
The GSMUSER account is used by GDSCTL and global service managers to connect
to databases in a GDS configuration.

• About the GSMROOTUSER Account
GSMROOTUSER is a database account specific to Oracle Sharding that is only
used when pluggable database (PDB) shards are present. The account is used
by GDSCTL and global service managers to connect to the root container of
container databases (CDBs) to perform administrative tasks.

About the GSMUSER Account
The GSMUSER account is used by GDSCTL and global service managers to connect to
databases in a GDS configuration.

GSMUSER exists by default on any Oracle database. In an Oracle Sharding
configuration, the account is used to connect to shards instead of pool databases,
and it must be granted both the SYSDG and SYSBACKUP system privileges after the
account has been unlocked.

The password given to the GSMUSER account is used in the gdsctl add shard
command. Failure to grant SYSDG and SYSBACKUP to GSMUSER on a new shard
causes gdsctl add shard to fail with an ORA-1031: insufficient privileges error.

If you use the gdsctl create shard command to create a new shard with the
Database Configuration Assistant (DBCA), the GSMUSER account is automatically
granted the SYSDG and SYSBACKUP privileges and assigned a random password
during the deployment process. Because the GSMUSER account never needs to be
logged into interactively, the value of the password does not need to be known by
administrators; however, the password can be changed after deployment if required
by using the alter user SQL command on the shard, in combination with the gdsctl
modify shard -pwd command.

See Also:

add shard in Global Data Services Concepts and Administration Guide

About the GSMROOTUSER Account
GSMROOTUSER is a database account specific to Oracle Sharding that is only used
when pluggable database (PDB) shards are present. The account is used by GDSCTL
and global service managers to connect to the root container of container databases
(CDBs) to perform administrative tasks.

If PDB shards are not in use, the GSMROOTUSER user should not by unlocked
nor assigned a password on any database. However, in sharded configurations
containing PDB shards, GSMROOTUSER must be unlocked and granted the SYSDG
and SYSBACKUP privileges before a successful gdsctl add cdb command can be
executed. The password for the GSMROOTUSER account can be changed after
deployment if desired using the alter user SQL command in the root container of the
CDB in combination with the gdsctl modify cdb -pwd command.

Chapter 9
Managing Oracle Sharding Database Users

9-3

See Also:

add cdb in Global Data Services Concepts and Administration Guide

Backing Up and Recovering a Sharded Database
The GDSCTL utility lets you define a backup policy for a sharded database and restore
one or more shards, or the entire sharded database, to the same point in time.
Configured backups are run automatically, and you can define a schedule to run
backups during off-peak hours.

Enhancements to GDSCTL in Oracle Database 21c enable and simplify the centralized
management of backup policies for a sharded database, using Oracle MAA best
practices. You can create a backup schedule using an incremental scheme that
leverages the Oracle Job Scheduler. Oracle Recovery Manager (RMAN) performs the
actual backup and restore operations.

Using the GDSCTL centralized backup and restore operations, you can configure
backups, monitor backup status, list backups, validate backups, and restore from
backups.

There are two type of backups: automated backups and on-demand backups.
Automated backups are started by DBMS Scheduler jobs based on the job schedules,
and they run in the background on the database servers. The on-demand backups are
started by users from GDSCTL.

Internally, the on-demand backups are also started by DBMS Scheduler jobs on
the database servers. The jobs are created on-fly when the on-demand backup
commands are issued. They are temporary jobs and automatically dropped after the
backups have finished.

Sharded database structural changes such as chunk move are built in to the backup
and restore policy.

Supported Backup Destinations

Backups can be saved to a common disk/directory structure (NFS mount) which can
be located anywhere, including the shard catalog database host.

Terminology

The following is some terminology you will encounter in the backup and restore
procedures described here.

• Target database - A database RMAN is to back up.

• Global SCN - A common point in time for all target databases for which a restore
of the entire sharded database is supported. A restore point is taken at this global
SCN, and the restore point is the point to which the sharded database (including
the shard catalog) can be restored.

Note that you are not prohibited from restoring the shard catalog or a specific
shard to an arbitrary point in time. However, doing so may put that target in an
inconsistent state with the rest of the sharded database and you may need to take
corrective action outside of the restore operation.

Chapter 9
Backing Up and Recovering a Sharded Database

9-4

• Incremental backup - Captures block-level changes to a database made after a
previous incremental backup.

• Level 0 incremental backup (level 0 backup) - The incremental backup strategy
starting point, which backs up blocks in the database. This backup is identical
in content to a full backup; however, unlike a full backup, the level 0 backup is
considered a part of the incremental backup strategy.

• Level 1 incremental backup (level 1 backup) - A level 1 incremental backup
contains only blocks changed after a previous incremental backup. If no level 0
backup exists in either the current or parent database incarnation and you run
a level 1 backup, then RMAN takes a level 0 backup automatically. A level 1
incremental backup can be either cumulative or differential.

Limitations

Note the following limitations for this version of Oracle Sharding backup and restore
using GDSCTL.

• Microsoft Windows is not supported.

• Oracle GoldenGate replicated databases are not supported.

• You must provide for backup of Clusterware Repository if Clusterware is deployed

• Prerequisites to Configuring Centralized Backup and Restore
Before configuring backup for a sharded database, make sure the following
prerequisites are met.

• Configuring Automated Backups
Use the GDSCTL CONFIG BACKUP command to configure automated sharded
database backups.

• Enabling and Disabling Automated Backups
You can enable or disable backups on all shards, or specific shards, shardspaces,
or shardgroups.

• Backup Job Operation
Once configured and enabled, backup jobs run on the primary shard catalog
database and the primary shards as scheduled.

• Monitoring Backup Status
There are a few different ways to monitor the status of automated and on-demand
backup jobs.

• Viewing an Existing Backup Configuration
When GDSCTL CONFIG BACKUP is not provided with any parameters, it shows the
current backup configuration.

• Running On-Demand Backups
The GDSCTL RUN BACKUP command lets you start backups for the shard catalog
database and a list of shards.

• Viewing Backup Job Status
Use GDSCTL command STATUS BACKUP to view the detailed state on the
scheduled backup jobs in the specified shards. Command output includes the job
state (enabled or disabled) and the job run details.

• Listing Backups
Use GDSCTL LIST BACKUP to list backups usable to restore a sharded database or
a list of shards to a specific global restore point.

Chapter 9
Backing Up and Recovering a Sharded Database

9-5

• Validating Backups
Run the GDSCTL VALIDATE BACKUP command to validate sharded database
backups against a specific global restore point for a list of shards. The validation
confirms that the backups to restore the databases to the specified restore point
are available and not corrupted.

• Deleting Backups
Use the GDSCTL DELETE BACKUP command to delete backups from the recovery
repository.

• Creating and Listing Global Restore Points
A restore point for a sharded database that we call a global restore point, actually
maps to a set of normal restore points in the individual primary databases in a
sharded database.

• Restoring From Backup
The GDSCTL RESTORE BACKUP command lets you restore sharded database shards
to a specific global restore point.

Prerequisites to Configuring Centralized Backup and Restore
Before configuring backup for a sharded database, make sure the following
prerequisites are met.

• Create a recovery catalog in a dedicated database.

Before you can backup or restore a sharded database using GDSCTL, you must
have access to a recovery catalog created in a dedicated database. This recovery
catalog serves as a centralized RMAN repository for the shard catalog database
and all of the shard databases.

Note the following:

– The version of the recovery catalog schema in the recovery catalog database
must be compatible with the sharded database version because RMAN has
compatibility requirements for the RMAN client, the target databases, and the
recovery catalog schema. For more information, see Oracle Database Backup
and Recovery Reference, cross-referenced below.

– The recovery catalog must not share a host database with the shard catalog
because the shard catalog database is one of the target databases in
the sharded database backup configuration, and RMAN does not allow the
recovery catalog to reside in a target database.

– It is recommended that you back up the recovery catalog backup periodically,
following appropriate best practices.

– The shard catalog database and all of the shard databases must be
configured to use the same recovery catalog.

• Configure backup destinations for the shard catalog database and all of the shard
databases.

The backup destination types are either DISK or system backup to tape. The
supported DISK destinations are NFS and Oracle ASM file systems.

System backup to tape destinations require additional software modules to be
installed on the database host. They must be properly configured to work with
RMAN.

Chapter 9
Backing Up and Recovering a Sharded Database

9-6

If the shard catalog database or the shard databases are in Data Guard
configurations, you can choose to back up either the primary or standby
databases.

• RMAN connects to the target databases as specific internal users to do database
backup and restore with the exception of the shard catalog.

For the shard catalog, a common user in the CDB hosting the shard catalog PDB
must be provided at the time when sharded database backup is configured. This
user must be granted the SYSDG and SYSBACKUP privileges. If the CDB is configured
to use local undo for its PDBs, the SYSBACKUP privilege must also be granted
commonly.

For the shard databases, the internal CDB common user, GSMROOTUSER, is used.
This user must be unlocked in the shard CDB root databases and granted the
SYSBACKUP privilege in addition to other privileges that the sharded database
requires for GSMROOUSER. If the CDB is configured to use local undo for its PDBs,
the SYSBACKUP privilege must be granted commonly to GSMROOTUSER, meaning the
CONTAINER=ALL clause must be used when granting the SYSBACKUP privilege.

• All of the GDSCTL commands for sharded database backup and restore operations
require the shard catalog database to be open. If the shard catalog database itself
must be restored, you must manually restore it.

• You are responsible for offloading backups to tape or other long-term storage
media and following the appropriate data retention best practices.

Note:

See RMAN Compatibility in Oracle Database Backup and Recovery
Reference

Configuring Automated Backups
Use the GDSCTL CONFIG BACKUP command to configure automated sharded database
backups.

You should connect to a shard director (GSM) host to run the GDSCTL backup
commands. If the commands are run from elsewhere, you must explicitly connect to
the shard catalog database using the GDSCTL CONNECT command.

When you run the GDSCTL backup configuration, you can provide the following inputs.

• A list of databases.

The databases are the shard catalog database and shard databases. Backup
configuration requires that the primary databases of the specified databases be
open for read and write, but the standby databases can be mounted or open.

If a database is in a Data Guard configuration when it is configured for backup, all
of the databases in the Data Guard configuration are configured for backup. For a
shard in Data Guard configuration, you must provide the backup destinations and
start times for the primary and all of the standby shards.

This is different for the shard catalog database. The shard catalog database and
all the shard catalog standby databases will share a backup destination and a start
time.

Chapter 9
Backing Up and Recovering a Sharded Database

9-7

• A connect string to the recovery catalog database.

For the connect string you need a user account with privileges for RMAN, such as
RECOVERY_CATALOG_OWNER role.

• RMAN backup destination parameters.

These parameters include backup device and channel configurations. Different
backup destinations can be used for different shards.

Please note the following.

– Backup destinations for shards in Data Guard configuration must be properly
defined to ensure that the backups created from standby databases can
be used to restore the primary database and conversely. See "Using
RMAN to Back Up and Restore Files" in Oracle Data Guard Concepts and
Administration for Data Guard RMAN support.

– The same destination specified for the shard catalog database is used as the
backup destination for the shard catalog standby databases.

– For system backup to tape devices, the media managers for the specific
system backup to tape devices are needed for RMAN to create channels to
read and write data to the devices. The media manager must be installed and
properly configured.

• Backup target type.

Backup target type defines whether the backups for the shard catalog database
and shards should be done at the primary or one of the standby databases. It
can be either PRIMARY or STANDBY. The default backup target type is STANDBY. For
the shard catalog database or shards that are not in Data Guard configurations,
the backups will be done on the shard catalog database or the shards themselves
even when the backup target type is STANDBY.

• Backup retention policy.

The backup retention policy specifies a database recovery window for the
backups. It is specified as a number of days.

Obsolete backups are not deleted automatically, but a GDSCTL command is
provided for you to manually delete them.

• Backup schedule.

Backup schedules specify the automated backup start time and repeat intervals
for the level 0 and level 1 incremental backups. Different automated backup start
times can be used for the shard catalog database and individual shards. The time
is a local time in the time zone in which the shard catalog database or shard
is located. The backup repeat intervals for the level 0 and level 1 incremental
backups are the same for the shard catalog database and all the shards in the
sharded database,

• CDB root database connect string for the shard catalog database.

The provided user account must have common SYSBACKUP privilege in the
provided CDB.

When no parameters are provided for the CONFIG BACKUP command, GDSCTL displays
the current sharded database backup configuration. If the backup has not been
configured yet when the command is used to show the backup configuration, it
displays that the backup is not configured.

Chapter 9
Backing Up and Recovering a Sharded Database

9-8

To configure a backup, run GDSCTL CONFIG BACKUP as shown in the following example.
For complete syntax, command options, and usage notes, run HELP CONFIG BACKUP.

The following example configures a backup channel of type DISK for the shard catalog
database, two parallel channels of type DISK for each of the shards (shard spaces
dbs1 and dbs2 are used in the shard list), the backup retention window is set to 14
days, the level 0 and level 1 incremental backup repeat intervals are set to 7 and 1
day, and the backup start time is set to 12:00 AM, leaving the incremental backup type
the default DIFFERENTIAL, and the backup target type the default STANDBY.

GDSCTL> config backup -rccatalog rccatalog_connect_string
-destination "CATALOG::configure channel device type disk format '/tmp/
rman/backups/%d_%U'"
-destination "dbs1,dbs2:configure device type disk parallelism
2:configure channel 1 device type disk format '/tmp/rman/
backups/1/%U';configure channel 2 device type disk format '/tmp/rman/
backups/2/%U'"
-starttime ALL:00:00 -retention 14 -frequency 7,1 -catpwd
gsmcatuser_password -cdb catcdb_connect_string;

Once GDSCTL has the input it displays output similar to the following, pertaining to the
current status of the configuration operation.

Configuring backup for database "v1908" ...

Updating wallet ...
The operation completed successfully

Configuring RMAN ...
new RMAN configuration parameters:
CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/tmp/rman/backups/%d_%u';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete

new RMAN configuration parameters:
CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
...

Creating RMAN backup scripts ...
replaced global script full_backup
replaced global script incremental_backup
...
Creating backup scheduler jobs ...
The operation completed successfully

Creating restore point creation job ...
The operation completed successfully

Configuring backup for database "v1908b" ...

Chapter 9
Backing Up and Recovering a Sharded Database

9-9

Updating wallet ...
The operation completed successfully

Configuring RMAN ...
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK PARALLELISM 2 BACKUP TYPE TO BACKUPSET;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete

new RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/tmp/rman/backups/1/%u';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
...

Configuring backup for database "v1908d" ...
Updating wallet ...
The operation completed successfully

Configuring RMAN ...
...

Recovery Manager complete.

As shown in the CONFIG BACKUP command output above, GDSCTL does the following
steps.

1. GDSCTL updates the shard wallets.

The updated wallets will contain:

• Connect string and authentication credentials to the RMAN catalog database.

• Connect string and authentication credentials to the RMAN TARGET
database.

• Automated backup target type and start time.

2. GDSCTL sets up the RMAN backup environment for the database.

This includes the following tasks.

• Registering the database as a target in the recovery catalog.

• Setting up backup channels.

• Setting up backup retention policies.

• Enabling control file and server parameter file auto-backup.

• Enabling block change tracking for all the target databases.

3. On the shard catalog, GDSCTL creates global RMAN backup scripts for level 0
and level 1 incremental backups.

4. On the shard catalog, GDSCTL creates a global restore point creation job.

5. On the shard catalog and each of the primary databases, GDSCTL

Chapter 9
Backing Up and Recovering a Sharded Database

9-10

• Creates DBMS Scheduler database backup jobs for level 0 and level 1
incremental backups

• Schedules the jobs based on the backup repeat intervals you configure.

Enabling and Disabling Automated Backups
You can enable or disable backups on all shards, or specific shards, shardspaces, or
shardgroups.

All backup jobs are initially disabled. They can be enabled by running the GDSCTL
ENABLE BACKUP command.

GDSCTL> ENABLE BACKUP

When not specified, ENABLE BACKUP enables the backup on all shards. You can
optionally list specific shards, shardspaces, or shardgroups on which to enable the
backup.

GDSCTL> ENABLE BACKUP -shard dbs1

The DISABLE BACKUP command disables an enabled backup.

GDSCTL> DISABLE BACKUP -shard dbs1

Backup Job Operation
Once configured and enabled, backup jobs run on the primary shard catalog database
and the primary shards as scheduled.

After a backup job is configured, it is initially disabled. You must enable a backup job
for it to run as scheduled. Use the GDSCTL commands ENABLE BACKUP and DISABLE
BACKUP to enable or disable the jobs.

Backup jobs are scheduled based on the backup repeat intervals you configure for
the level 0 and level 1 incremental backups, and the backup start time for the shard
catalog database and the shards.

Two separate jobs are created for level 0 and level 1 incremental
backups. The names of the jobs are AUTOMATED_SDB_LEVEL0_BACKUP_JOB and
AUTOMATED_SDB_LEVEL1_BACKUP_JOB. Full logging is enabled for both jobs.

When running, the backup jobs find the configured backup target type (PRIMARY or
STANDBY), figure out the correct target databases based on the backup target type, and
then launch RMAN to back up the target databases. RMAN uses the shard wallets
updated during the backup configuration for database connection authentication.

Note that sharded database chunk moves do not delay automated backups.

Chapter 9
Backing Up and Recovering a Sharded Database

9-11

Monitoring Backup Status
There are a few different ways to monitor the status of automated and on-demand
backup jobs.

Monitoring an Automated Backup Job

Because full logging is enabled for the automated backup jobs, DBMS Scheduler
writes job execution details in the job log and views. The Scheduler job log and views
are your basic resources and starting point for monitoring the automated backups.
Note that although the DBMS Scheduler makes a list of job state change events
available for email notification subscription. This capability is not used for sharded
database automated backups.

You can use the GDSCTL command LIST BACKUP to view the backups and find out
whether backups are created at the configured backup job repeat intervals.

Automated backups are not delayed by chunk movement in the sharded database, so
the backup creation times should be close to the configured backup repeat intervals
and the backup start time.

Monitoring an On-Demand Backup Job

Internally, on-demand backup jobs are also started by DBMS Scheduler jobs on
the database servers. The names of the temporary jobs are prefixed with tag
MANUAL_BACKUP_JOB_. On-demand backups always run in the same session that
GDSCTL uses to communicate with the database server. Failures from the job
execution are sent directly to the client.

Using DBMS Scheduler Jobs Views

The automated backup jobs only run on the primary shard catalog database and
the primary shards. To check the backup job execution details for a specific target
database, connect to the database, or its primary database if the database is in a
Data Guard configuration, using SQL*PLUS, and query the DBMS Scheduler views
*_SCHEDULER_JOB_LOG and *_SCHEDULER_JOB_RUN_DETAILS based on the job names.

The names of the two automated backup jobs are AUTOMATED_SDB_LEVEL0_BACKUP_JOB
and AUTOMATED_SDB_LEVEL1_BACKUP_JOB.

You can also use the GDSCTL command STATUS BACKUP to retrieve the job state and
run details from these views. See Viewing Backup Job Status for more information
about running STATUS BACKUP.

The job views only contain high level information about the job execution. For job
failure diagnosis, you can find more details about the job execution in the RDBMS
trace files by grepping the job names.

If no errors are found in the job execution, but still no backups have been created,
you can find the PIDs of the processes that the jobs have created to run RMAN for
the backups in the trace files, and then look up useful information in the trace files
associated with the PIDs.

Using Backup Command Output

This option is only available for on-demand backups.

Chapter 9
Backing Up and Recovering a Sharded Database

9-12

When you start on-demand backups with GDSCTL RUN BACKUP, you can specify the
-sync command option. This forces all backup tasks to run in the foreground, and the
output from the internally launched RMAN on the database servers is displayed in the
GDSCTL console.

The downside of running the backup tasks in the foreground is that the tasks will be
run in sequence, therefore the whole backup will take more time to complete.

See the GDSCTL reference in Oracle Database Global Data Services Concepts and
Administration Guide for detailed command syntax and options.

Viewing an Existing Backup Configuration
When GDSCTL CONFIG BACKUP is not provided with any parameters, it shows the
current backup configuration.

Because the parameters -destination and -starttime can appear more than once
in CONFIG BACKUP command line for different shards and backup configuration can be
done more than once, multiple items could be listed in each of the Backup destinations
and Backup start times sections. The items are listed in the same order as they
are specified in the CONFIG BACKUP command line and the order the command is
repeatedly run.

To view an existing backup configuration, run CONFIG BACKUP, as shown here.

GDSCTL> CONFIG BACKUP;

If a sharded database backup has not been configured yet, the command output will
indicate it. Otherwise the output looks like the following:

GDSCTL> config backup
Recovery catalog database user: rcadmin
Recovery catalog database connect
descriptor: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=den02qxr)
(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=cdb6_pdb1.example.com)))
Catalog database root container user: gsm_admin
Catalog database root container connect
descriptor: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=den02qxr)
(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=v1908.example.com)))
Backup retention policy in days: 14
Level 0 incremental backup repeat interval in minutes: 10080
Level 1 incremental backup repeat interval in minutes: 1440
Level 1 incremental backup type : DIFFERENTIAL
Backup target type: STANDBY
Backup destinations:
catalog::channel device type disk format '/tmp/rman/backups/%d_%u'
dbs1,dbs2:device type disk parallelism 2:channel 1 device type disk
format '/tmp/rman/backups/1/%u';channel 2 device type disk format '/tmp/
rman/backups/2/%u'
catalog::configure channel device type disk format '/tmp/rman/backups/
%d_%u'
dbs1,dbs2:configure device type disk parallelism 2:configure channel
1 device type disk format '/tmp/rman/backups/1/%u';configure channel 2
device type disk format '/tmp/rman/backups/2/%u'

Chapter 9
Backing Up and Recovering a Sharded Database

9-13

Backup start times:
all:00:00

Running On-Demand Backups
The GDSCTL RUN BACKUP command lets you start backups for the shard catalog
database and a list of shards.

All on-demand backups are level 0 incremental backups. On-demand backups have
no impact on the automated backup schedules configured for the shard catalog
database and the shards.

Internally, on-demand backups are started by DBMS Scheduler jobs on the database
servers. The jobs are created on-the-fly when the on-demand backup command RUN
BACKUP is run.

On-demand backup jobs are temporary jobs, and they are automatically dropped after
the backups have finished.

The names of the temporary jobs are prefixed with tag MANUAL_BACKUP_JOB_.

To use RUN BACKUP, you must have already set up the backup configuration with the
CONFIG BACKUP command.

The RUN BACKUP command requires the shard catalog database and any primary
shards to be backed up to be open.

GDSCTL> RUN BACKUP -shard dbs1

The -shard option lets you specify a set of shards, shardspaces or shardgroups on
which to run the backup. To take an on-demand backup on shardspace dbs1, you can
run RUN BACKUP as shown in the example above.

See the GDSCTL reference in Oracle Database Global Data Services Concepts and
Administration Guide for detailed command syntax and options.

Viewing Backup Job Status
Use GDSCTL command STATUS BACKUP to view the detailed state on the scheduled
backup jobs in the specified shards. Command output includes the job state (enabled
or disabled) and the job run details.

By default, the command displays the job run details of all the runs that the automated
backup jobs have had from 30 days ago in the specified shards. If the job run details
for different periods are needed, options -start_time and -end_time must be used.

Run STATUS BACKUP as shown in the following examples.

The following STATUS BACKUP command example lists the job state and all job run
details from the SDB catalog and the primary shard “rdbmsb_cdb2_pdb1”:

GDSCTL> status backup -catpwd -shard catalog,rdbmsb_cdb2_pdb1;
"GSMCATUSER" password:***

Retrieving scheduler backup job status for database "rdbms" ...
Jobs:

Chapter 9
Backing Up and Recovering a Sharded Database

9-14

 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60
 Global restore point create job is enabled
 Job schedule start time: 2020-07-27 23:59:55.960 -0400
 Job repeat interval: freq=hourly

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.177 -0400
 Job run slave process ID: 9023
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 22:00:01.305 -0400
Job run slave process ID: 59526
…
Global restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-27 15:28:37.603 -0400
 Job run slave process ID: 44227
 …
 Global restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-27 17:28:38.251 -0400
 Job run slave process ID: 57611

Retrieving scheduler backup job status for database
"rdbmsb_cdb2_pdb1" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.485 -0400
 Job run slave process ID: 9056
 …
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-27 14:33:42.702 -0400
 Job run slave process ID: 9056
 Incremental Level 0 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-27 00:00:01.469 -0400
 Job run slave process ID: 75176

The following command lists the scheduler backup job state and the details of the job
runs in the time frame from 2020/07/26 12:00:00 to 07/27 00:00 from the SDB catalog
and the primary shard “rdbmsb_cdb2_pdb1”:

GDSCTL> status backup -start_time "2020-07-26 12:00:00" -end_time
"2020-07-27 00:00:00" -catpwd -shard catalog,rdbmsb_cdb2_pdb1;

Chapter 9
Backing Up and Recovering a Sharded Database

9-15

"GSMCATUSER" password:***

Retrieving scheduler backup job status for database "rdbms" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-27 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60
 Globa1 restore point create job is enabled
 Job schedule start time: 2020-07-27 23:59:55.960 -0400
 Job repeat interval: freq=hourly

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.177 -0400
 Job run slave process ID: 9023
 …
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 23:50:00.293 -0400
 Job run slave process ID: 74171
 Globa1 restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:28:38.263 -0400
 Job run slave process ID: 11987
 …
 Globa1 restore point create job status: SUCCEEDED
 Job run actual start time: 2020-07-26 23:28:37.577 -0400
 Job run slave process ID: 69451

Retrieving scheduler backup job status for database
"rdbmsb_cdb2_pdb1" ...
Jobs:
 Incremental Level 0 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=daily;interval=1
 Incremental Level 1 backup job is enabled
 Job schedule start time: 2020-07-28 00:00:00.000 -0400
 Job repeat interval: freq=minutely;interval=60

Run Details:
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 14:00:00.485 -0400
 Job run slave process ID: 9056
 Incremental Level 1 backup job status: SUCCEEDED
 Job run actual start time: 2020-07-26 22:11:50.931 -0400
 Job run slave process ID: 9056

Chapter 9
Backing Up and Recovering a Sharded Database

9-16

Listing Backups
Use GDSCTL LIST BACKUP to list backups usable to restore a sharded database or a list
of shards to a specific global restore point.

The command requires the shard catalog database to be open, but the shards can be
in any of the started states: nomount, mount, or open.

You can specify a list of shards to list backups for in the command. You can also list
backups usable to restore the control files of the listed databases and list backups for
standby shards.

The following example shows the use of the command to list the backups from shard
cdb2_pdb1 recoverable to restore point BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> LIST BACKUP -shard cdb2_pdb1 -restorepoint
BACKUP_BEFORE_DB_MAINTENANCE

If option -controlfile is used, LIST BACKUPS will only list the backups usable to
restore the control files of the specified shards. If option -summary is used, the backup
will be listed in a summary format.

GDSCTL> list backup -shard cat1, cat2 -controlfile -summary

Validating Backups
Run the GDSCTL VALIDATE BACKUP command to validate sharded database backups
against a specific global restore point for a list of shards. The validation confirms that
the backups to restore the databases to the specified restore point are available and
not corrupted.

The shard catalog database must be open, but the shard databases can be either
mounted or open. If the backup validation is for database control files, the shards can
be started nomount.

The following example validates the backups of the control files from the shard catalog
databases recoverable to restore point BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> VALIDATE BACKUP -shard cat1,cat2 -controlfile -restorepoint
BACKUP_BEFORE_DB_MAINTENANCE

Backup validation for shards are done one shard a time sequentially.

Deleting Backups
Use the GDSCTL DELETE BACKUP command to delete backups from the recovery
repository.

The DELETE BACKUP command deletes the sharded database backups identified with
specific tags from the recovery repository. It deletes the records in the recovery
database for the backups identified with the provided tags, and, if the media where
the files are located is accessible, the physical files from the backup sets from those

Chapter 9
Backing Up and Recovering a Sharded Database

9-17

backups. This is done for each of the target databases. You will be prompted to
confirm before the actual deletion starts.

To run this command, the shard catalog database must be open, but the shard
databases can be either mounted or open.

The following is an example of deleting backups with tag odb_200414205057124_0400
from shard cdb2_pdb1.

GDSCTL> DELETE BACKUP -shard cdb2_pdb1 -tag ODB_200414205057124_0400
"GSMCATUSER" password:

This will delete identified backups, would you like to continue [No]?y

Deleting backups for database "cdb2_pdb1" ...

Creating and Listing Global Restore Points
A restore point for a sharded database that we call a global restore point, actually
maps to a set of normal restore points in the individual primary databases in a sharded
database.

These restore points are created at a common SCN across all of the primary
databases in the sharded database. The restore points created in the primary
databases are automatically replicated to the Data Guard standby databases. When
the databases are restored to this common SCN, the restored sharded database is
guaranteed to be in a consistent state.

The global restore point creation must be mutually exclusive with sharded database
chunk movement. When the job runs, it first checks whether any chunk moves are
going on and waits for them to finish. Sometimes the chunk moves might take a long
time. Also, new chunk moves can start before the previous ones have finished. In that
case the global restore point creation job might wait for a very long time before there
is an opportunity to generate a common SCN and create a global restore point from it.
Therefore, it is not guaranteed that a global restore point will be created every hour.

To create the global restore point, run the GDSCTL command CREATE RESTOREPOINT as
shown here.

GDSCTL> CREATE RESTOREPOINT

The global restore point creation job is configured on the shard catalog database.
The name of the job is AUTOMATED_SDB_RESTOREPOINT_JOB. Full logging for this job is
enabled.

You can optionally enter a name for the restore point by using the -name option as
shown here.

GDSCTL> CREATE RESTOREPOINT -name CUSTOM_SDB_RESTOREPOINT_JOB

The job is initially disabled, so you must use GDSCTL ENABLE BACKUP to enable the job.
The job runs every hour and the schedule is not configurable.

Chapter 9
Backing Up and Recovering a Sharded Database

9-18

To list all global restore points, run LIST RESTOREPOINT.

GDSCTL> LIST RESTOREPOINT

This command lists all of the available global restore points in the sharded database
that were created during the specified time period with SCNs (using the -start_scn
and -end_scn options) in the specified SCN interval (using the -start_time and
-end_time options).

The following command lists the available restore points in the sharded database with
the SCN between 2600000 and 2700000.

GDSCTL> LIST RESTOREPOINT -start_scn 2600000 -end_scn 2700000

The command below lists the available restore points in the sharded database that
were created in the time frame from 2020/07/27 00:00:00 to 2020/07/28 00:00:00.

GDSCTL> LIST RESTOREPOINT -start_time "2020-07-27 00:00:00" -end_time
"2020-07-28 00:00:00"

Restoring From Backup
The GDSCTL RESTORE BACKUP command lets you restore sharded database shards to a
specific global restore point.

This command is used to restore shard database to a specific global restore point. It
can also be used to restore only the shard database control files. It does not support
shard catalog database restore. You must restore the shard catalog database directly
using RMAN.

The typical procedure for restoring a sharded database is:

1. List the available restore points.

2. Select a restore point to validate the backups.

3. Restore the databases to the selected restore point.

You should validate the backups for a shard against the selected restore point to verify
that all the needed backups are available before you start to restore the shard to the
restore point.

Note that you are not prohibited from restoring the shard catalog or a specific shard
to an arbitrary point in time. However, doing so may put that target in an inconsistent
state with the rest of the sharded database and you may need to take corrective action
outside of the restore operation.

The database to be restored must be in NOMOUNT state. This command alters the
database to MOUNT state after it has restored the control file.

The RESTORE BACKUP command requires the shard catalog database to be open.

If the shard catalog database itself needs to be restored, you must logon to the shard
catalog database host and restore the database manually using RMAN. After the
shard catalog database has been successfully restored and opened, you then use the
RESTORE BACKUP command to restore the list of shards.

Chapter 9
Backing Up and Recovering a Sharded Database

9-19

For data file restore, the shards must be in MOUNT state, but if the command is to
restore the control files, the shard databases must be started in NOMOUNT state. To
bring the databases to the proper states will be a manual step.

To restore the shard database control files, the database must be started in nomount
mode. The control files will be restored from AUTOBACKUP. To restore the database
data files, the database must be mounted. The shard catalog database must be open
for this command to work.

The following example restores the control files of shard cdb2_pdb1 to restore point
BACKUP_BEFORE_DB_MAINTENANCE.

GDSCTL> RESTORE BACKUP -shard cdb2_pdb1 -restorepoint
BACKUP_BEFORE_DB_MAINTENANCE –controlfile

The restore operation can be done for the shards in parallel. When the restore for
the shards happens in parallel, you should not close GDSCTL until the command
execution is completed, because interrupting the restore operation can result in
database corruption or get the sharded database into an inconsistent state.

Backup validation only logically restores the database while RESTORE BACKUP will
do both the physical database restore and the database recovery. Therefore, after
RESTORE BACKUP is done, usually the restored the databases need to be opened with
the resetlogs option.

After the database restore is completed, you should open the database and verify that
the database has been restored as intended and it is in a good state.

Monitoring a Sharded Database
Sharded databases can be monitored using Enterprise Manager Cloud Control or
GDSCTL.

See the following topics to use Enterprise Manager Cloud Control or GDSCTL to
monitor sharded databases.

• Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the
health status of individual shards, shardgroups, shardspaces, and shard directors.

• Monitoring a Sharded Database with Enterprise Manager Cloud Control
Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage
the components of a sharded database.

• Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance,
diagnostic, and audit data from V$ views and DBA_* views.

Monitoring a Sharded Database with GDSCTL
There are numerous GDSCTL CONFIG commands that you can use to obtain the health
status of individual shards, shardgroups, shardspaces, and shard directors.

Monitoring a shard is just like monitoring a normal database, and standard Oracle best
practices should be used to monitor the individual health of a single shard. However, it
is also important to monitor the overall health of the entire sharded environment. The

Chapter 9
Monitoring a Sharded Database

9-20

GDSCTL commands can also be scripted and through the use of a scheduler and can
be done at regular intervals to help ensure that everything is running smoothly.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about using the GDSCTL CONFIG commands

Monitoring a Sharded Database with Enterprise Manager Cloud
Control

Oracle Enterprise Manager Cloud Control lets you discover, monitor, and manage the
components of a sharded database.

Sharded database targets are found in the All Targets page.

The target home page for a sharded database shows you a summary of the sharded
database components and their statuses.

To monitor sharded database components you must first discover them. See
Discovering Sharded Database Components for more information.

Summary

The Summary pane, in the top left of the page, shows the following information:

• Sharded database name

• Sharded database domain name

• Shard catalog name. You can click the name to view more information about the
shard catalog.

• Shard catalog database version

• Sharding method used to shard the database

• Replication technology used for high availability

• Number and status of the shard directors

• Master shard director name. You can click the name to view more information
about the master shard director.

Shard Load Map

The Shard Load Map, in the upper right of the page, shows a pictorial graph illustrating
how transactions are distributed among the shards.

You can select different View Levels above the graph.

• Database

The database view aggregates database instances in Oracle RAC cluster
databases into a single cell labeled with the Oracle RAC cluster database target
name. This enables you to easily compare the total database load in Oracle RAC
environments.

Chapter 9
Monitoring a Sharded Database

9-21

• Instance

The instance view displays all database instances separately, but Oracle RAC
instances are grouped together as sub-cells of the Oracle RAC database target.
This view is essentially a two-level tree map, where the database level is the
primary division, and the instance within the database is the secondary division.
This allows load comparison of instances within Oracle RAC databases; for
instance, to easily spot load imbalances across instances.

• Pluggable Database

Notice that the cells of the graph are not identical in size. Each cell corresponds to
a shard target, either an instance or a cluster database. The cell size (its area) is
proportional to the target database's load measured in average active sessions, so
that targets with a higher load have larger cell sizes. Cells are ordered by size from left
to right and top to bottom. Therefore, the target with the highest load always appears
as the upper leftmost cell in the graph.

You can hover your mouse pointer over a particular cell of the graph to view the total
active load (I/O to CPU ration), CPU, I/O, and wait times. Segments of the graph are
colored to indicate the dominant load:

• Green indicates that CPU time dominates the load

• Blue indicates that I/O dominates the load

• Yellow indicates that WAIT dominates the load

Members

The Members pane, in the lower left of the page, shows some relevant information
about each of the components.

The pane is divided into tabs for each component: Shardspaces, Shardgroups, Shard
Directors, and Shards. Click on a tab to view the information about each type of
component

• Shardspaces

The Shardspaces tab displays the shardspace names, status, number of chunks,
and Data Guard protection mode. The shardspace names can be clicked to reveal
more details about the selected shardspace.

• Shardgroups

The Shardgroups tab displays the shardgroup names, status, the shardspace to
which it belongs, the number of chunks, Data Guard role, and the region to which
it belongs. You can click the shardgroup and shardspace names to reveal more
details about the selected component.

• Shard Directors

The Shard Directors tab displays the shard director names, status, region, host,
and Oracle home. You can click the shard director names can be clicked to reveal
more details about the selected shard director.

• Shards

The Shards tab displays the shard names, deploy status, status, the shardspaces
and shardgroups to which they belong, Data Guard roles, and the regions to which
they belong. In the Names column, you can expand the Primary shards to display
the information about its corresponding Standby shard. You can hover the mouse
over the Deployed column icon and the deployment status details are displayed.

Chapter 9
Monitoring a Sharded Database

9-22

You can click on the shard, shardspace, and shardgroup names to reveal more
details about the selected component.

Services

The Services pane, in the lower right of the page, shows the names, status, and Data
Guard role of the sharded database services. Above the list is shown the total number
of services and an icon showing how many services are in a particular status. You can
hover your mouse pointer over the icon to read a description of the status icon.

Incidents

The Incidents pane displays messages and warnings about the various components in
the sharded database environment. More information about how to use this pane is in
the Cloud Control online help.

Sharded Database Menu

The Sharded Database menu, located in the top left corner, provides you with access
to administrate the sharded database components.

Target Navigation

The Target Navigation pane gives you easy access to more details about any of the
components in the sharded database.

Clicking the navigation tree icon on the upper left corner of the page opens the Target
Navigation pane. This pane shows all of the discovered components in the sharded
database in tree form.

Expanding a shardspace reveals the shardgroups in them. Expanding a shardgroup
reveals the shards in that shardgroup.

Any of the component names can be clicked to view more details about them.

• Discovering Sharded Database Components
In Enterprise Manager Cloud Control, you can discover the shard catalog and
shard databases, then add the shard directors, sharded databases, shardspaces,
and shardgroups using guided discovery.

Discovering Sharded Database Components
In Enterprise Manager Cloud Control, you can discover the shard catalog and shard
databases, then add the shard directors, sharded databases, shardspaces, and
shardgroups using guided discovery.

As a prerequisite, you must use Cloud Control to discover the shard director hosts and
the.shard catalog database. Because the catalog database and each of the shards is a
database itself, you can use standard database discovery procedures.

Monitoring the shards is only possible when the individual shards are discovered
using database discovery. Discovering the shards is optional to discovering a sharded
database, because you can have a sharded database configuration without the
shards.

1. In Enterprise Manager Cloud Control, select Setup, choose Add Target, then
choose Add Target Manually.

Chapter 9
Monitoring a Sharded Database

9-23

2. In the Add Targets Manually page, click Add Using Guided Process in the Add
Non-Host Target Using Guided Process panel.

3. In the Add Using Guided Process dialog, locate and select Sharded Database,
and click Add.

4. In the Add Sharded Database: Catalog Database page, click the browse icon next
to Catalog Database to locate the SDB catalog database.

5. In the Select Targets dialog, click the target name corresponding to the catalog
database and click Select.

The Catalog Database and Monitoring Credentials fields are filled in
if they exist. The monitoring credential is used to query the catalog
database to get the configuration information. The monitoring user is granted
GDS_CATALOG_SELECT role and has read only privileges on the catalog
repository tables.

Click Next to proceed to the next step.

In the Add Sharded Database: Components page you are shown information
about the sharded database that is managed by the catalog database, including
the sharded database name, its domain name, the sharding method employed on
the sharded database, and a list of discovered shard directors.

6. To set monitoring credentials on a shard director, click the plus sign icon on the
right side of the list entry.

A dialog opens allowing you to set the credentials.

Click OK to close the dialog, and click Next to proceed to the next step.

7. In the Add Sharded Database: Review page, verify that all of the shard directors,
shardspaces, and shardgroups were discovered.

8. Click Submit to finalize the steps.

An Enterprise Manager Deployment Procedure is submitted and you are returned
to the Add Targets Manually page.

At the top of the page you will see information about the script that was submitted
to add all of the discovered components to Cloud Control.

9. Click the link to view the provisioning status of the sharded database components.

In another browser window you can go to the Cloud Control All Targets page to
observe the status of the sharded database.

When the target discovery procedure is finished, sharded database targets are added
in Cloud Control. You can open the sharded database in Cloud Control to monitor and
manage the components.

Querying System Objects Across Shards
Use the SHARDS() clause to query Oracle-supplied tables to gather performance,
diagnostic, and audit data from V$ views and DBA_* views.

The shard catalog database can be used as the entry point for centralized diagnostic
operations using the SQL SHARDS() clause. The SHARDS() clause allows you to query
the same Oracle supplied objects, such as V$, DBA/USER/ALL views and dictionary
objects and tables, on all of the shards and return the aggregated results.

Chapter 9
Monitoring a Sharded Database

9-24

As shown in the examples below, an object in the FROM part of the SELECT statement is
wrapped in the SHARDS() clause to specify that this is not a query to local object, but
to objects on all shards in the sharded database configuration. A virtual column called
SHARD_ID is automatically added to a SHARDS()-wrapped object during execution of a
multi-shard query to indicate the source of every row in the result. The same column
can be used in predicate for pruning the query.

A query with the SHARDS() clause can only be run on the shard catalog database.

Examples

The following statement queries performance views

SQL> SELECT shard_id, callspersec FROM SHARDS(v$servicemetric)
 WHERE service_name LIKE 'oltp%' AND group_id = 10;

The following statement gathers statistics.

SQL> SELECT table_name, partition_name, blocks, num_rows
 FROM SHARDS(dba_tab_partition) p
 WHERE p.table_owner= :1;

The following example statement shows how to find the SHARD_ID value for each
shard.

SQL> select ORA_SHARD_ID, INSTANCE_NAME from SHARDS(sys.v_$instance);

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 1 sh1
 11 sh2
 21 sh3
 31 sh4

The following example statement shows how to use the SHARD_ID to prune a query.

SQL> select ORA_SHARD_ID, INSTANCE_NAME
 from SHARDS(sys.v_$instance)
 where ORA_SHARD_ID=21;

 ORA_SHARD_ID INSTANCE_NAME
 ------------ ----------------
 21 sh3

See Also:

Oracle Database SQL Language Reference for more information about the
SHARDS() clause.

Chapter 9
Monitoring a Sharded Database

9-25

Propagation of Parameter Settings Across Shards
When you configure system parameter settings at the shard catalog, they are
automatically propagated to all shards of the sharded database.

Before Oracle Database 19c, you had to configure ALTER SYSTEM parameter settings
on each shard in a sharded database. In Oracle Database 19c, Oracle Sharding
provides centralized management by allowing you to set parameters on the shard
catalog. Then the settings are automatically propagated to all shards of the sharded
database.

Propagation of system parameters happens only if done under ENABLE SHARD DDL on
the shard catalog, then include SHARD=ALL in the ALTER statement.

SQL>alter session enable shard ddl;
SQL>alter system set enable_ddl_logging=true shard=all;

Note:

Propagation of the enable_goldengate_replication parameter setting is not
supported.

Modifying a Sharded Database Schema
When making changes to duplicated tables or sharded tables in a sharded database,
these changes should be done from the shard catalog database.

Before executing any DDL operations on a sharded database, enable sharded DDL
with

ALTER SESSION ENABLE SHARD DDL;

This statement ensures that the DDL changes will be propagated to each shard in the
sharded database.

The DDL changes that are propagated are commands that are defined as “schema
related,” which include operations such as ALTER TABLE and CREATE TRIGGER. There
are other operations that are propagated to each shard, such as the CREATE, ALTER,
DROP user commands for simplified user management, and TABLESPACE operations to
simplify the creation of tablespaces on multiple shards.

GRANT and REVOKE operations can be done from the shard catalog and are propagated
to each shard, providing you have enabled shard DDL for the session. If more granular
control is needed you can issue the command directly on each shard.

Operations such as DBMS package calls or similar operations are not propagated. For
example, operations gathering statistics on the shard catalog are not propagated to
each shard.

If you perform an operation that requires a lock on a table, such as adding a not null
column, it is important to remember that each shard needs to obtain the lock on the

Chapter 9
Propagation of Parameter Settings Across Shards

9-26

table in order to perform the DDL operation. Oracle’s best practices for applying DDL
in a single instance apply to sharded environments.

Multi-shard queries, which are executed on the shard catalog, issue remote queries
across database connections on each shard. In this case it is important to ensure that
the user has the appropriate privileges on each of the shards, whether or not the query
will return data from that shard.

See Also:

Oracle Database SQL Language Reference for information about operations
used with duplicated tables and sharded tables

Managing Sharded Database Software Versions
This section describes the version management of software components in the
sharded database configuration. It contains the following topics:

• Patching and Upgrading a Sharded Database
Applying an Oracle patch to a sharded database environment can be done on
a single shard or all shards; however, the method you use depends on the
replication option used for the environment and the type of patch being applied.

• Upgrading Sharded Database Components
The order in which sharded database components are upgraded is important for
limiting downtime and avoiding errors as components are brought down and back
online.

• Downgrading a Sharded Database
Oracle Sharding does not support downgrading.

• Compatibility and Migration from Oracle Database 18c
When upgrading from an Oracle Database 18c installation which contains a single
PDB shard for a given CDB, you must update the shard catalog metadata for any
PDB.

Patching and Upgrading a Sharded Database
Applying an Oracle patch to a sharded database environment can be done on a single
shard or all shards; however, the method you use depends on the replication option
used for the environment and the type of patch being applied.

Patching a Sharded Database

Most patches can be applied to a single shard at a time; however, some patches
should be applied across all shards. Use Oracle’s best practices for applying patches
to single shards just as you would a non-sharded database, keeping in mind the
replication method that is being used with the SDB. Oracle opatchauto can be used to
apply patches to multiple shards at a time, and can be done in a rolling manner. Data
Guard configurations are applied one after another, and in some cases (depending on
the patch) you can use Standby First patching.

Chapter 9
Managing Sharded Database Software Versions

9-27

When using Oracle GoldenGate be sure to apply patches in parallel across the entire
shardspace. If a patch addresses an issue with multi-shard queries, replication, or the
sharding infrastructure, it should be applied to all of the shards in the SDB.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Upgrading a Sharded Database

Upgrading the Oracle Sharding environment is not much different from upgrading other
Oracle Database and global service manager environments; however, the components
must be upgraded in a particular sequence such that the shard catalog is upgraded
first, followed by the shard directors, and finally the shards.

See Also:

Oracle OPatch User's Guide

Oracle Database Global Data Services Concepts and Administration Guide
for information about upgrading the shard directors.

Oracle Data Guard Concepts and Administration for information about
patching and upgrading in an Oracle Data Guard configuration.

Upgrading Sharded Database Components
The order in which sharded database components are upgraded is important for
limiting downtime and avoiding errors as components are brought down and back
online.

Before upgrading any sharded database components you must

• Complete any pending MOVE CHUNK operations that are in progress.

• Do not start any new MOVE CHUNK operations.

• Do not add any new shards during the upgrade process.

1. Upgrade the shards with the following points in mind.

• For system-managed sharded databases: upgrade each set of shards in a
Data Guard Broker configuration in a rolling manner.

• For user-defined sharded databases: upgrade each set of shards in a
shardspace in a rolling manner.

• For composite sharded databases: in a given shardspace, upgrade each set of
shards in a Data Guard Broker configuration in a rolling manner.

Chapter 9
Managing Sharded Database Software Versions

9-28

• If you are upgrading an Oracle Database 18c sharded database configuration
containing pluggable database (PDB) shards, follow the PDB-specific upgrade
instructions in Compatibility and Migration from Oracle Database 18c.

2. Upgrade the shard catalog database.

 For best results the catalog should be upgraded using a rolling database upgrade;
however, global services will remain available during the upgrade if the catalog is
unavailable, although service failover will not occur.

3. Upgrade any shard directors that are used to run GDSCTL clients, and which do
not also run a global service manager server.

Shard director upgrades should be done in-place; however, an in-place upgrade
causes erroneous error messages unless permissions on the following files for the
following platforms are updated to 755:

• On Linux, Solaris64, and Solaris Sparc64:

$ORACLE_HOME/QOpatch/qopiprep.bat
$ORACLE_HOME/jdk/bin/jcontrol
$ORACLE_HOME/jdk/jre/bin/jcontrol

• On AIX:

$ORACLE_HOME/QOpatch/qopiprep.bat
$ORACLE_HOME/jdk/jre/bin/classic/libjvm.a
$ORACLE_HOME/jdk/bin/policytool

• On HPI:

$ORACLE_HOME/jdk/jre/lib/IA64N/server/Xusage.txt
$ORACLE_HOME/jdk/jre/bin/jcontrol
$ORACLE_HOME/QOpatch/qopiprep.bat

• On Windows no error messages are expected.

4. Stop, upgrade, and restart all shard director servers one at a time.

 To ensure zero downtime, at least one shard director server should always be
running. Shard director servers at an earlier version than the catalog will continue
to operate fully until catalog changes are made.

See Also:

Oracle Data Guard Concepts and Administration for information about using
DBMS_ROLLING to perform a rolling upgrade.

Oracle Data Guard Concepts and Administration for information about
patching and upgrading databases in an Oracle Data Guard configuration.

Downgrading a Sharded Database
Oracle Sharding does not support downgrading.

Chapter 9
Managing Sharded Database Software Versions

9-29

Sharded database catalogs and shards cannot be downgraded.

Compatibility and Migration from Oracle Database 18c
When upgrading from an Oracle Database 18c installation which contains a single
PDB shard for a given CDB, you must update the shard catalog metadata for any
PDB.

Specifically, in 18c, the name of a PDB shard is the DB_UNIQUE_NAME
of its CDB; however, in Oracle Database 19c, the shard names are
db_unique_name_of_CDB_pdb_name.

To update the catalog metadata to reflect this new naming methodology, and to also
support the new GSMROOTUSER account as described in About the GSMROOTUSER
Account, perform the following steps during the upgrade process as described in
Upgrading Sharded Database Components.

1. After upgrading any CDB that contains a PDB shard, ensure that the
GSMROOTUSER account exists, is unlocked, has been assigned a password,
and has been granted SYSDG, SYSBACKUP, and gsmrootuser_role privileges.

The following SQL statements in SQL*Plus will successfully set up
GSMROOTUSER while connected to the root container (CDB$ROOT) of the CDB.

SQL> alter session set "_oracle_script"=true;
Session altered.

SQL> create user gsmrootuser;
User created.

SQL> alter user gsmrootuser identified by new_GSMROOTUSER_password
 account unlock;
User altered.

SQL> grant sysdg, sysbackup, gsmrootuser_role to gsmrootuser
container=current;
Grant succeeded.

SQL> alter session set "_oracle_script"=false;
Session altered.

2. After upgrading the catalog database to the desired Oracle Database version, run
the following PL/SQL procedure to update the catalog metadata to reflect the new
name for the PDB shards present in the configuration.

This procedure must be executed for each Oracle Database 18c PDB shard.

The first parameter to pdb_fixup is the value of db_unique_name in the CDB that
contains the PDB shard. In Oracle Database 18c, this is the same as the shard
name as shown by gdsctl config shard.

The second parameter is the PDB name of the shard PDB as shown by show
con_name in SQL*Plus when connected to the shard PDB.

Chapter 9
Managing Sharded Database Software Versions

9-30

The pdb_fixup procedure will update the catalog metadata to make it compatible
with the new naming method for PDB shards.

SQL> connect sys/password as sysdba
Connected.
SQL> set serveroutput on
SQL> execute gsmadmin_internal.dbms_gsm_pooladmin.pdb_fixup('cdb1',
'pdb1');

3. After upgrading all of the shard directors to the desired version, run the following
GDSCTL command once for each CDB in the configuration to inform the shard
directors of the password for the GSMROOTUSER in each CDB.

GDSCTL> modify cdb -cdb CDB_name -pwd new_GSMROOTUSER_password

Shard Management
You can manage shards in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control and GDSCTL.

The following topics describe shard management concepts and tasks:

• About Adding Shards
New shards can be added to an existing sharded database environment to scale
out and to improve fault tolerance.

• Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the
number of shards, is called resharding. Automatic resharding is a feature of the
system-managed sharding method that provides elastic scalability of a sharded
database.

• Removing a Shard From the Pool
It may become necessary to remove a shard from the sharded database
environment, either temporarily or permanently, without losing any data that
resides on that shard.

• Adding Standby Shards
You can add Data Guard standby shards to an Oracle Sharding environment;
however there are some limitations.

• Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

• Managing Shards with GDSCTL
You can manage shards in your Oracle Sharding deployment using the GDSCTL
command-line utility.

• Migrating a Non-PDB Shard to a PDB
Do the following steps if you want to migrate shards from a traditional single-
instance database to Oracle multitenant architecture. Also, you must migrate to a
multitenant architecture before upgrading to Oracle Database 20c.

About Adding Shards
New shards can be added to an existing sharded database environment to scale out
and to improve fault tolerance.

Chapter 9
Shard Management

9-31

For fault tolerance, it is beneficial to have many smaller shards than a few very large
ones. As an application matures and the amount of data increases, you can add an
entire shard or multiple shards to the SDB to increase capacity.

When you add a shard to a sharded database, if the environment is sharded by
consistent hash, then chunks from existing shards are automatically moved to the new
shard to rebalance the sharded environment.

When using user-defined sharding, populating a new shard with data may require
manually moving chunks from existing shards to the new shard using the GDSCTL
split chunk and move chunk commands.

Oracle Enterprise Manager Cloud Control can be used to help identify chunks that
would be good candidates to move, or split and move to the new shard.

When you add a shard to the environment, verify that the standby server is ready, and
after the new shard is in place take backups of any shards that have been involved in
a move chunk operation.

Resharding and Hot Spot Elimination
The process of redistributing data between shards, triggered by a change in the
number of shards, is called resharding. Automatic resharding is a feature of the
system-managed sharding method that provides elastic scalability of a sharded
database.

Sometimes data in a sharded database needs to be migrated from one shard to
another. Data migration across shards is required in the following cases:

• When one or multiple shards are added to or removed from a sharded database

• When there is skew in the data or workload distribution across shards

The unit of data migration between shards is the chunk. Migrating data in chunks
guaranties that related data from different sharded tables are moved together.

When a shard is added to or removed from a sharded database, multiple chunks are
migrated to maintain a balanced distribution of chunks and workload across shards.

Depending on the sharding method, resharding happens automatically (system-
managed) or is directed by the user (composite). The following figure shows the
stages of automatic resharding when a shard is added to a sharded database with
three shards.

Chapter 9
Shard Management

9-32

Figure 9-1 Resharding a Sharded Database

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

5

6

7

9

10

11

4 8 12

+

1

2

3

5

6

7

9

10

11

4

8

12

A particular chunk can also be moved from one shard to another, when data or
workload skew occurs, without any change in the number of shards. In this case,
chunk migration can be initiated by the database administrator to eliminate the hot
spot.

RMAN Incremental Backup, Transportable Tablespace, and Oracle Notification Service
technologies are used to minimize impact of chunk migration on application availability.
A chunk is kept online during chunk migration. There is a short period of time (a few
seconds) when data stored in the chunk is available for read-only access only.

FAN-enabled clients receive a notification when a chunk is about to become read-only
in the source shard, and again when the chunk is fully available in the destination
shard on completion of chunk migration. When clients receive the chunk read-
only event, they can either repeat connection attempts until the chunk migration is
completed, or access the read-only chunk in the source chunk. In the latter case, an
attempt to write to the chunk will result in a run-time error.

Chapter 9
Shard Management

9-33

Note:

Running multi-shard queries while a sharded database is resharding can
result in errors, so it is recommended that you do not deploy new shards
during multi-shard workloads.

Removing a Shard From the Pool
It may become necessary to remove a shard from the sharded database environment,
either temporarily or permanently, without losing any data that resides on that shard.

For example, removing a shard might become necessary if a sharded environment is
scaled down after a busy holiday, or to replace a server or infrastructure within the
data center. Prior to decommissioning the shard, you must move all of the chunks from
the shard to other shards that will remain online. As you move them, try to maintain a
balance of data and activity across all of the shards.

If the shard is only temporarily removed, keep track of the chunks moved to each
shard so that they can be easily identified and moved back once the maintenance is
complete.

See Also:

About Moving Chunks

Oracle Database Global Data Services Concepts and Administration Guide
for information about using the GDSCTL REMOVE SHARD command

Adding Standby Shards
You can add Data Guard standby shards to an Oracle Sharding environment; however
there are some limitations.

When using Data Guard as the replication method for a sharded database, Oracle
Sharding supports only the addition of a primary or physical standby shard; other types
of Data Guard standby databases are not supported when adding a new standby to
the sharded database. However, a shard that is already part of the sharded database
can be converted from a physical standby to a snapshot standby. When converting a
physical standby to a snapshot standby, the following steps should be followed:

1. Stop all global services on the shard using the GDSCTL command STOP SERVICE.

2. Disable all global services on the shard using the GDSCTL command DISABLE
SERVICE.

3. Convert the shard to a snapshot standby using the procedure described in the
Data Guard documentation.

At this point, the shard remains part of the sharded database, but will not accept
connections which use the sharding key.

Chapter 9
Shard Management

9-34

If the database is converted back to a physical standby, the global services can be
enabled and started again, and the shard becomes an active member of the sharded
database.

See Also:

Oracle Data Guard Concepts and Administration

Managing Shards with Oracle Enterprise Manager Cloud Control
You can manage database shards using Oracle Enterprise Manager Cloud Control

To manage shards using Cloud Control, they must first be discovered. Because each
database shard is a database itself, you can use standard Cloud Control database
discovery procedures.

The following topics describe shard management using Oracle Enterprise Manager
Cloud Control:

• Validating a Shard
Validate a shard prior to adding it to your Oracle Sharding deployment.

• Adding Primary Shards
Use Oracle Enterprise Manager Cloud Control to add a primary shards to your
Oracle Sharding deployment.

• Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your
Oracle Sharding deployment.

• Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been
added to your Oracle Sharding environment.

Validating a Shard
Validate a shard prior to adding it to your Oracle Sharding deployment.

You can use Oracle Enterprise Manager Cloud Control to validate shards before
adding them to your Oracle Sharding deployment. You can also validate a shard
after deployment to confirm that the settings are still valid later in the shard lifecycle.
For example, after a software upgrade you can validate existing shards to confirm
correctness of their parameters and configuration.

To validate shards with Cloud Control, they should be existing targets that are being
monitored by Cloud Control.

1. From a shardgroup management page, open the Shardgroup menu, located in
the top left corner of the shardgroup target page, and choose Manage Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard from the list and click Validate.

Chapter 9
Shard Management

9-35

4. Click OK to confirm you want to validate the shard.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

When the shard validation script runs successfully check for errors reported in the
output.

Adding Primary Shards
Use Oracle Enterprise Manager Cloud Control to add a primary shards to your Oracle
Sharding deployment.

Primary shards should be existing targets that are being monitored by Cloud Control.

It is highly recommended that you validate a shard before adding it to your Oracle
Sharding environment. You can either use Cloud Control to validate the shard (see
Validating a Shard), or run the DBMS_GSM_FIX.validateShard procedure against the
shard using SQL*Plus (see Validating a Shard).

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Add Primary Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select Deploy All Shards in the sharded database to deploy all shards added to
the sharded database configuration.

The deployment operation validates the configuration of the shards and performs
final configuration steps. Shards can be used only after they are deployed.

4. Click Add.

5. In the Database field of the Shard Details dialog, select a shard and click Select.

6. In a composite Oracle Sharding environment you can select the shardspace to
which to add the shard.

7. Click OK.

8. Enter the GSMUSER credentials if necessary, then click Next.

9. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the
adjacent field

10. Review the configuration of the shard to be added and click Submit.

11. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure
above, deploy the shard in your Oracle Sharding deployment using the Deploying
Shards task.

Chapter 9
Shard Management

9-36

Adding Standby Shards
Use Oracle Enterprise Manager Cloud Control to add a standby shards to your Oracle
Sharding deployment.

Standby shards should be existing targets that are being monitored by Cloud Control.

It is highly recommended that you validate a shard before adding it to your Oracle
Sharding environment. You can either use Cloud Control to validate the shard (see
Validating a Shard), or run the DBMS_GSM_FIX.validateShard procedure against the
shard using SQL*Plus (see Validating a Shard).

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Add Standby Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select Deploy All Shards in the sharded database to deploy all shards added to
the sharded database configuration.

The deployment operation validates the configuration of the shards and performs
final configuration steps. Shards can be used only after they are deployed.

4. Choose a primary shard for which the new shard will act as a standby in the
Primary Shards list.

5. Click Add.

6. In the Database field of the Shard Details dialog, select the standby shard.

7. Select the shardgroup to which to add the shard.

Only shardgroups that do not already contain a standby for the selected primary
are shown.

8. Click OK.

9. Enter the GSMUSER credentials if necessary, then click Next.

10. Indicate when the ADD SHARD operation should occur, then click Next.

• Immediately: the shard is provisioned upon confirmation

• Later: schedule the timing of the shard addition using the calendar tool in the
adjacent field

11. Review the configuration of the shard to be added and click Submit.

12. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

If you did not select Deploy All Shards in the sharded database in the procedure
above, deploy the shard in your Oracle Sharding deployment using the Deploying
Shards task.

Deploying Shards
Use Oracle Enterprise Manager Cloud Control to deploy shards that have been added
to your Oracle Sharding environment.

Chapter 9
Shard Management

9-37

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Deploy Shards.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select the Perform Rebalance check box to redistribute data between shards
automatically after the shard is deployed.

If you want to move chunks to the shard manually, uncheck this box.

4. Click Submit.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard.

Managing Shards with GDSCTL
You can manage shards in your Oracle Sharding deployment using the GDSCTL
command-line utility.

The following topics describe shard management using GDSCTL:

• Validating a Shard
Before adding a newly created shard to a sharding configuration, you must
validate that the shard has been configured correctly for the sharding environment.

• Adding Shards to a System-Managed SDB
Adding shards to a system-managed SDB elastically scales the SDB. In a system-
managed SDB chunks are automatically rebalanced after the new shards are
added.

• Replacing a Shard
If a shard fails, or if you just want to move a shard to a new host for other reasons,
you can replace it using the ADD SHARD -REPLACE command in GDSCTL.

Validating a Shard
Before adding a newly created shard to a sharding configuration, you must validate
that the shard has been configured correctly for the sharding environment.

Before you run ADD SHARD, run the validateShard procedure against the database
that will be added as a shard. The validateShard procedure verifies that the
target database has the initialization parameters and characteristics needed to act
successfully as a shard.

The validateShard procedure analyzes the target database and reports any issues
that need to be addressed prior to running GDSCTL ADD SHARD on that database. The
validateShard procedure does not make any changes to the database or its
parameters; it only reports information and possible issues.

The validateShard procedure takes one optional parameter that specifies whether
the shard will be added to a shard catalog using Data Guard or to a shard
catalog using Oracle GoldenGate as its replication technology. If you are using
Data Guard, call validateShard('DG'). If you are using Oracle GoldenGate, use
validateShard('OGG'). The default value is Data Guard if no parameter is passed to
validateShard.

Chapter 9
Shard Management

9-38

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

The validateShard procedure can also be run after the deployment of a shard to
confirm that the settings are still valid later in the shard lifecycle. For example, after
a software upgrade or after shard deployment, validateShard can be run on existing
shards to confirm correctness of their parameters and configuration.

Run validateShard as follows:

sqlplus / as sysdba
SQL> set serveroutput on
SQL> execute dbms_gsm_fix.validateShard

The following is an example of the output.

INFO: Data Guard shard validation requested.
INFO: Database role is PRIMARY.
INFO: Database name is DEN27B.
INFO: Database unique name is den27b.
INFO: Database ID is 718463507.
INFO: Database open mode is READ WRITE.
INFO: Database in archivelog mode.
INFO: Flashback is on.
INFO: Force logging is on.
INFO: Database platform is Linux x86 64-bit.
INFO: Database character set is WE8DEC. This value must match the
character set of
 the catalog database.
INFO: 'compatible' initialization parameter validated successfully.
INFO: Database is not a multitenant container database.
INFO: Database is using a server parameter file (spfile).
INFO: db_create_file_dest set to: '<ORACLE_BASE>/oracle/dbs2'
INFO: db_recovery_file_dest set to: '<ORACLE_BASE>/oracle/dbs2'
INFO: db_files=1000. Must be greater than the number of chunks and/or
tablespaces
 to be created in the shard.
INFO: dg_broker_start set to TRUE.
INFO: remote_login_passwordfile set to EXCLUSIVE.
INFO: db_file_name_convert set to: '/dbs/dt, /dbs/bt, dbs2/DEN27D/,
dbs2/DEN27B/'
INFO: GSMUSER account validated successfully.
INFO: DATA_PUMP_DIR is '<ORACLE_BASE>//oracle/dbs2'.

Any lines tagged with INFO are informational in nature and confirm correct settings.
Lines tagged with WARNING may or may not be issues depending on your configuration.
For example, issues related to Data Guard parameters are reported, but if your
configuration will only include primary databases, then any Data Guard issues can

Chapter 9
Shard Management

9-39

be ignored. Finally, any output with the ERROR tag must be corrected for the shard to
deploy and operate correctly in a sharding configuration.

Adding Shards to a System-Managed SDB
Adding shards to a system-managed SDB elastically scales the SDB. In a system-
managed SDB chunks are automatically rebalanced after the new shards are added.

To prepare a new shard host, do all of the setup procedures as you did for the initial
sharded database environment including:

• Install the Oracle Database Software

1. Connect to a shard director host, and verify the environment variables.

$ ssh os_user@shard_director_home
$ env |grep ORA
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/18.0.0/gsmhome_1

2. Set the global service manager for the current session, and specify the credentials
to administer it.

$ gdsctl
GDSCTL> set gsm -gsm sharddirector1
GDSCTL> connect mysdbadmin/mysdbadmin_password

3. Verify the current shard configuration.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
---- ----------- ------ ----- ------

sh1 primary_shardgroup Ok Deployed region1
ONLINE
sh2 standby_shardgroup Ok Deployed region2
READ_ONLY
sh3 primary_shardgroup Ok Deployed region1
ONLINE
sh4 standby_shardgroup Ok Deployed region2
READ_ONLY

4. Specify the shard group, destination, and the credentials for each new shard.

In the examples the new shard hosts are called shard5 and shard6, and they are
using the default templates for NETCA and DBCA.

GDSCTL> add invitednode shard5
GDSCTL> create shard -shardgroup primary_shardgroup -destination
shard5
 -credential os_credential -sys_password
GDSCTL> add invitednode shard6
GDSCTL> create shard -shardgroup standby_shardgroup -destination

Chapter 9
Shard Management

9-40

shard6
 -credential os_credential -sys_password

While creating the shards, you can also set the SYS password in the create
shard using -sys_password as shown in the above example. This sets the SYS
password after the shards are created during DEPLOY.

The above example uses the CREATE SHARD method for creating new shards.
To add a preconfigured sahrd using the ADD SHARD command, do the following
after ADD INVITEDNODE:

GDSCTL> add shard –shardgroup primary_shardgroup
 –connect shard_host:TNS_listener_port/shard_database_name
 –pwd GSMUSER_password

If the shard to be added is a PDB, you must use the -cdb option in ADD SHARD to
specify which CDB the PDB shard is in. In addition, ADD CDB must be used before
the ADD SHARD command to add the CDB to the catalog. See Oracle Database
Global Data Services Concepts and Administration Guide for the syntax for ADD
CDB and ADD SHARD.

Note:

The valid node checking for registration (VNCR) feature provides the
ability to configure and dynamically update a set of IP addresses,
host names, or subnets from which registration requests are allowed
by the shard directors. Database instance registration with a shard
director succeeds only when the request originates from a valid node.
By default, the shard management tier (based on Oracle Global Data
Services framework) automatically adds a VNCR entry for the host
on which a remote database is running each time create shard or
add shard is executed. The automation (called auto-VNCR) finds the
public IP address of the target host, and automatically adds a VNCR
entry for that IP address. If the host has multiple public IP addresses,
then the address on which the database registers may not be the
same as the address which was added using auto-VNCR and , as a
result, registration many be rejected. If the target database host has
multiple public IP addresses, it is advisable that you configure VNCR
manually for this host using the add invitednode or add invitedsubnet
commands in GDSCTL.

If there are multiple net-cards on the target host (/sbin/ifconfig returns
more than one public interface), use add invitednode to be safe (after
finding out which interface will be used to route packets).

If there is any doubt about registration, then use config vncr and use
add invitednode as necessary. There is no harm in doing this, because
if the node is added already, auto-VNCR ignores it, and if you try to add
it after auto-VNCR already added it, you will get a warning stating that it
already exists.

Chapter 9
Shard Management

9-41

5. Run the DEPLOY command to create the shards and the replicas.

GDSCTL> deploy

6. Verify that the new shards are deployed.

GDSCTL> config shard
Name Shard Group Status State Region
Availability
---- ----------- ------ ----- ------

sh1 primary_shardgroup Ok Deployed region1
ONLINE
sh2 standby_shardgroup Ok Deployed region2
READ_ONLY
sh3 primary_shardgroup Ok Deployed region1
ONLINE
sh4 standby_shardgroup Ok Deployed region2
READ_ONLY
sh5 primary_shardgroup Ok Deployed region1
ONLINE
sh6 standby_shardgroup Ok Deployed region2
READ_ONLY

7. Check the chunk configuration every minute or two to see the progress of
automatic rebalancing of chunks.

$ gdsctl config chunks -show_Reshard

Chunks

Database From To
-------- ---- --
sh1 1 4
sh2 1 4
sh3 7 10
sh4 7 10
sh5 5 6
sh5 11 12
sh6 5 6
sh6 11 12

Ongoing chunk movement

Chunk Source Target status
----- ------ ------ ------

8. Observe that the shards (databases) are automatically registered.

$ gdsctl databases

Database: "sh1" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1
 Region: region1

Chapter 9
Shard Management

9-42

 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%1
Database: "sh2" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%11
Database: "sh3" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%21
Database: "sh4" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%31
Database: "sh5" Registered: Y State: Ok ONS: N. Role: PRIMARY
Instances: 1
 Region: region1
 Service: "oltp_ro_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%41
Database: "sh6" Registered: Y State: Ok ONS: N. Role: PH_STNDBY
Instances: 1
 Region: region2
 Service: "oltp_ro_srvc" Globally started: Y Started: Y
 Scan: N Enabled: Y Preferred: Y
 Service: "oltp_rw_srvc" Globally started: Y Started: N
 Scan: N Enabled: Y Preferred: Y
 Registered instances:
 cust_sdb%51

Chapter 9
Shard Management

9-43

9. Observe that the services are automatically brought up on the new shards.

$ gdsctl services

Service "oltp_ro_srvc.cust_sdb.oradbcloud" has 3 instance(s).
Affinity: ANYWHERE
 Instance "cust_sdb%11", name: "sh2", db: "sh2", region:
"region2", status: ready.
 Instance "cust_sdb%31", name: "sh4", db: "sh4", region:
"region2", status: ready.
 Instance "cust_sdb%51", name: "sh6", db: "sh6", region:
"region2", status: ready.
Service "oltp_rw_srvc.cust_sdb.oradbcloud" has 3 instance(s).
Affinity: ANYWHERE
 Instance "cust_sdb%1", name: "sh1", db: "sh1", region:
"region1", status: ready.
 Instance "cust_sdb%21", name: "sh3", db: "sh3", region:
"region1", status: ready.
 Instance "cust_sdb%41", name: "sh5", db: "sh5", region:
"region1", status: ready.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about GDSCTL command usage

Replacing a Shard
If a shard fails, or if you just want to move a shard to a new host for other reasons, you
can replace it using the ADD SHARD -REPLACE command in GDSCTL.

When a shard database fails and the database can be recovered on the same host
(using RMAN backup/restore or other methods), there is no need to replace the shard
using the -replace parameter. If the shard cannot be recovered locally, or for some
other reason you want to relocate the shard to another host or CDB, it is possible to
create its replica on the new host. The sharding configuration can be updated with the
new information by specifying the -replace option in GDSCTL command ADD SHARD.

The following are some cases where replacing a shard using ADD SHARD -REPLACE
is useful.

• The server (machine) where the shard database was running suffered irreparable
damage and has to be replaced

• You must replace a working server with another (more powerful, for example)
server

• A shard in a PDB was relocated from one CDB to another

In all of these cases the number of shards and data distribution across shards does
not change after ADD SHARD is executed; a shard is replaced with another shard
that holds the same data. This is different from ADD SHARD used without the -replace
option when the number of shards increases and data gets redistributed.

Chapter 9
Shard Management

9-44

Upon running ADD SHARD -REPLACE, the old shard parameters, such as
connect_string, db_unique_name, and so on, are replaced with their new values.
A new database can have different db_unique_name than the failed one. When
replacing a standby in a Data Guard configuration, the DBID of the new database must
match the old one, as Data Guard requires all of the members of the configuration to
have same DBID.

Before Using Replace

Before you use ADD SHARD -REPLACE, verify the following:

• You have restored the database correctly (for example, using RMAN restore or
other method). The new database shard must have the same sharding metadata
as the failed one. Perform basic validation to ensure that you do not accidently
provide a connect string to the wrong shard.

• The shard that failed must have been in a deployed state before failure happened.

• The shard that failed must be down when executing the ADD SHARD -REPLACE
command.

• Fast-start failover observer must be running, if fast-start failover is enabled (which
it is by default).

Replacing a Shard in a Data Guard Environment

The ADD SHARD -REPLACE command can only be used to replace a standby shard if the
primary is still alive. In order to replace a primary shard that failed, wait for one of the
remaining standbys to switch over to the primary role before trying to replace the failed
shard.

When a switchover is not possible (primary and all the standbys are down), you must
run ADD SHARD -REPLACE for each member starting with the primary. This creates a
new broker configuration from scratch.

In MAXPROTECTION mode with no standbys alive, the primary database shuts down
to maintain the protection mode. In this case, the primary database cannot be opened
if the standby is not alive. To handle the replace operation in this scenario, you must
first downgrade Data Guard protection mode using DGMGRL (to MAXAVAILABILITY
or MAXPERFORMANCE) by starting up the database in mounted mode. After the
protection mode is set, open the primary database and perform the replace operation
using GDSCTL. After the replace operation finishes you can revert the protection
mode back to the previous level using DGMGRL.

When replacing a standby in a Data Guard configuration, the DBID of the new
database must match the old one, as Data Guard requires all of the members of
the configuration to have same DBID.

Example 9-1 Example 1: Replacing the primary shard with no standbys in the
configuration

The initial configuration has two primary shards deployed and no standbys, as shown
in the following example. The Availability for shdc is shown as a dash because it has
gone down in a disaster scenario.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------

Chapter 9
Shard Management

9-45

shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east -

To recover, you create a replica of the primary from the backup, using RMAN for
example. For this example, a new shard is created with db_unique_name shdd and
connect string inst4. Now, the old shard, shdc, can be replaced with the new shard,
shdd, as follows:

$ gdsctl add shard -replace shdc -connect inst4 -pwd password

DB Unique Name: SHDD

You can verify the configuration as follows:

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdd dbs1 Ok Deployed east ONLINE

Example 9-2 Example 2: Replacing a standby shard

Note that you cannot replace a primary shard when the configuration contains
a standby shard. In such cases, if the primary fails, the replace operation must
be performed after one of the standbys becomes the new primary by automatic
switchover.

The initial configuration has two shardgroups: one primary and one standby, each
containing two shards, when the standby, shdd goes down.

$ gdsctl config shard

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shdd dbs2 Ok Deployed east -
shde dbs2 Ok Deployed east READ ONLY

Create a new standby. Because the primary is running, this should be done using the
RMAN DUPLICATE command with the FOR STANDBY option. Once the new standby, shdf,
is ready, replace the old shard, shdd, as follows:

$ gdsctl add shard -replace shdd -connect inst6 -pwd password

DB Unique Name: shdf

You can verify the configuration as follows:

$ gdsctl config shard

Chapter 9
Shard Management

9-46

Name Shard Group Status State Region Availability
---- ----------- ------ ----- ------ ------------
shdb dbs1 Ok Deployed east ONLINE
shdc dbs1 Ok Deployed east ONLINE
shde dbs2 Ok Deployed east READ ONLY
shdf dbs2 Ok Deployed east READ ONLY

Replacing a Shard in an Oracle GoldenGate Environment

The GDSCTL command option ADD SHARD -REPLACE is not supported with Oracle
GoldenGate.

Note:

Oracle GoldenGate replication support for Oracle Sharding High Availability
is deprecated in Oracle Database 21c, and will be desupported in Oracle
Database 22c.

Common Errors

ORA-03770: incorrect shard is given for replace

This error is thrown when the shard given for the replace operation is not the replica
of the original shard. Specifically, the sharding metadata does not match the metadata
stored in the shard catalog for this shard. Make sure that the database was copied
correctly, preferably using RMAN. Note that this is not an exhaustive check. It is
assumed that you created the replica correctly.

ORA-03768: The database to be replaced is still up: shardc

The database to be replaced must not be running when running the add shard
-replace command. Verify this by looking at the output of GDSCTL command config
shard. If the shard failed but still shows ONLINE in the output, wait for some time
(about 2 minutes) and retry.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about the ADD SHARD command.

Migrating a Non-PDB Shard to a PDB
Do the following steps if you want to migrate shards from a traditional single-instance
database to Oracle multitenant architecture. Also, you must migrate to a multitenant
architecture before upgrading to Oracle Database 20c.

1. Back up each existing non-PDB shard, and then create a new CDB, and a PDB
inside it.

2. Restore each shard to the PDB inside the CDB.

Chapter 9
Shard Management

9-47

3. Run the GDSCTL ADD CDB command to add the new CDB.

GDSCTL> add cdb -connect cdb_connect_string -pwd
gsmrootuser_password

4. Run the GDSCTL ADD SHARD -REPLACE command, specifying the connect string of
the PDB, shard_connect_string, which tells the sharding infrastructure to replace
the old location of the shard with new PDB location.

For system-managed or composite sharding, run ADD SHARD with the parameters
shown here.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect
shard_connect_string -pwd gsmuser_password
-shardgroup shardgroup_name -cdb cdb_name

For user-defined sharding, the command usage is slightly different.

GDSCTL> add shard -replace db_unique_name_of_non_PDB -connect
shard_connect_string -pwd gsmuser_password
-shardspace shardspace_name -deploy_as db_mode -cdb cdb_name

Chunk Management
You can manage chunks in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control and GDSCTL.

The following topics describe chunk management concepts and tasks:

• About Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another.
To maintain scalability of the sharded environment, it is important to attempt to
maintain an equal distribution of the load and activity across all shards.

• Moving Chunks
You can move chunks from one shard to another in your Oracle Sharding
deployment using Oracle Enterprise Manager Cloud Control.

• About Splitting Chunks
Splitting a chunk in a sharded database is required when chunks become too big,
or only part of a chunk must be migrated to another shard.

• Splitting Chunks
You can split chunks in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

About Moving Chunks
Sometimes it becomes necessary to move a chunk from one shard to another. To
maintain scalability of the sharded environment, it is important to attempt to maintain
an equal distribution of the load and activity across all shards.

As the environment matures in a composite SDB, some shards may become more
active and have more data than other shards. In order to keep a balance within

Chapter 9
Chunk Management

9-48

the environment you must move chunks from more active servers to less active
servers. There are other reasons for moving chunks:

• When a shard becomes more active than other shards, you can move a chunk to a
less active shard to help redistribute the load evenly across the environment.

• When using range, list, or composite sharding, and you are adding a shard to a
shardgroup.

• When using range, list, or composite sharding, and you a removing a shard from a
shardgroup.

• After splitting a chunk it is often advisable to move one of the resulting chunks to a
new shard.

When moving shards to maintain scalability, the ideal targets of the chunks are shards
that are less active, or have a smaller portion of data. Oracle Enterprise Manager and
AWR reports can help you identify the distribution of activity across the shards, and
help identify shards that are good candidates for chunk movement.

Note:

Any time a chunk is moved from one shard to another, you should make a
full backup of the databases involved in the operation (both the source of the
chunk move, and the target of the chunk move.)

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about using the GDSCTL MOVE CHUNK command

Moving Chunks
You can move chunks from one shard to another in your Oracle Sharding deployment
using Oracle Enterprise Manager Cloud Control.

1. From a shardspace management page, open the Shardspace menu, located in
the top left corner of the Sharded Database target page, and choose Manage
Shardgroups.

2. Select a shardgroup in the list and click Move Chunks.

3. In the Move Chunks dialog, select the source and destination shards between
which to move the chunks.

4. Select the chunks that you want to move by choosing one of the options.

• Enter ID List: enter a comma separates list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk move should occur.

• Immediately: the chunk move is provisioned upon confirmation

Chapter 9
Chunk Management

9-49

• Later: schedule the timing of the chunk move using the calendar tool in the
adjacent field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the chunk move.

About Splitting Chunks
Splitting a chunk in a sharded database is required when chunks become too big, or
only part of a chunk must be migrated to another shard.

Oracle Sharding supports the online split of a chunk. Theoretically it is possible to
have a single chunk for each shard and split it every time data migration is required.
However, even though a chunk split does not affect data availability, the split is a
time-consuming and CPU-intensive operation because it scans all of the rows of the
partition being split, and then inserts them one by one into the new partitions. For
composite sharding, it is time consuming and may require downtime to redefine new
values for the shard key or super shard key.

Therefore, it is recommended that you pre-create multiple chunks on each shard
and split them either when the number of chunks is not big enough for balanced
redistribution of data during re-sharding, or a particular chunk has become a hot spot.

Even with system-managed sharding, a single chunk may grow larger than other
chunks or may become more active. In this case, splitting that chunk and allowing
automatic resharding to move one of the resulting chunks to another shard maintains a
more equal balanced distribution of data and activity across the environment.

Oracle Enterprise Manager heat maps show which chunks are more active than other
chunks. Using this feature will help identify which chunks could be split, and one of
the resulting chunks could then be moved to another shard to help rebalance the
environment.

See Also:

Oracle Database Global Data Services Concepts and Administration Guide
for information about using the GDSCTL SPLIT CHUNK command

Splitting Chunks
You can split chunks in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shardspaces.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shardspace in the list and click Split Chunks.

4. Select the chunks that you want to split by choosing one of the options.

Chapter 9
Chunk Management

9-50

• Enter ID List: enter a comma separate list of chunk ID numbers

• Select IDs From Table: click the chunk IDs in the table

5. Indicate when the chunk split should occur.

• Immediately: the chunk split is provisioned upon confirmation

• Later: schedule the timing of the chunk split using the calendar tool in the
adjacent field

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the chunk split.

When the chunk is split successfully the number of chunks is updated in the
Shardspaces list. You might need to refresh the page to see the updates.

Shard Director Management
You can add, edit, and remove shard directors in your Oracle Sharding deployment
with Oracle Enterprise Manager Cloud Control.

The following topics describe shard director management tasks:

• Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director
to your Oracle Sharding deployment.

• Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director
configuration in your Oracle Sharding deployment.

• Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your
Oracle Sharding deployment.

Creating a Shard Director
Use Oracle Enterprise Manager Cloud Control to create and add a shard director to
your Oracle Sharding deployment.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create, or select a shard director from the list and click Create Like.

Choosing Create opens the Add Shard Director dialog with default configuration
values in the fields.

Choosing Create Like opens the Add Shard Director dialog with configuration
values from the selected shard director in the fields. You must select a shard
director from the list to enable the Create Like option.

4. Enter the required information in the Add Shard Director dialog, and click OK.

Chapter 9
Shard Director Management

9-51

Note:

If you do not want the shard director to start running immediately upon
creation, you must uncheck the Start Shard Director After Creation
checkbox.

5. Click OK on the confirmation dialog.

6. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director.

When the shard director is created successfully it appears in the Shard Directors list.
You might need to refresh the page to see the updates.

Editing a Shard Director Configuration
Use Oracle Enterprise Manager Cloud Control to edit a shard director configuration in
your Oracle Sharding deployment.

You can change the region, ports, local endpoint, and host credentials for a shard
director in Cloud Control. You cannot edit the shard director name, host, or Oracle
home.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard director from the list and click Edit.

Note that you cannot edit the shard director name, host, or Oracle home.

4. Edit the fields, enter the GSMCATUSER password, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director configuration changes.

Removing a Shard Director
Use Oracle Enterprise Manager Cloud Control to remove shard directors from your
Oracle Sharding deployment.

If the shard director you want to remove is the administrative shard director, as
indicated by a check mark in that column of the Shard Directors list, you must choose
another shard director to be the administrative shard director before removing it.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shard Directors.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Select a shard director from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning
status of the shard director removal.

Chapter 9
Shard Director Management

9-52

When the shard director is removed successfully it no longer appears in the Shard
Directors list. You might need to refresh the page to see the changes.

Region Management
You can add, edit, and remove regions in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe region management tasks:

• Creating a Region
Create sharded database regions in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

• Editing a Region Configuration
Edit sharded database region configurations in your Oracle Sharding deployment
using Oracle Enterprise Manager Cloud Control.

• Removing a Region
Remove sharded database regions in your Oracle Sharding deployment using
Oracle Enterprise Manager Cloud Control.

Creating a Region
Create sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create.

4. Enter a unique name for the region in the Create Region dialog.

5. Optionally, select a buddy region from among the existing regions.

6. Click OK.

7. Click the link in the Information box at the top of the page to view the provisioning
status of the region.

When the region is created successfully it appears in the Regions list. You might need
to refresh the page to see the updates.

Editing a Region Configuration
Edit sharded database region configurations in your Oracle Sharding deployment
using Oracle Enterprise Manager Cloud Control.

You can change the buddy region for a sharded database region in Cloud Control. You
cannot edit the region name.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

Chapter 9
Region Management

9-53

2. If prompted, enter the shard catalog credentials, select the shard director under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Edit.

4. Select or remove a buddy region, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the region configuration changes.

When the region configuration is successfully updated the changes appear in the
Regions list. You might need to refresh the page to see the updates.

Removing a Region
Remove sharded database regions in your Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Regions.

2. If prompted, enter the shard catalog credentials, select the shard director under
Shard Director Credentials, select the shard director host credentials, and log in.

3. Select a region from the list and click Delete.

4. Click the link in the Information box at the top of the page to view the provisioning
status of the region removal.

When the region configuration is successfully removed the changes appear in the
Regions list. You might need to refresh the page to see the updates.

Shardspace Management
You can add, edit, and remove shardspaces in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe shardspace management tasks:

• Creating a Shardspace
Create shardspaces in your composite Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

• Adding a Shardspace to a Composite Sharded Database
Learn to create a new shardspace, add shards to the shardspace, create a
tablespace set in the new shardspace, and add a partitionset to the sharded table
for the added shardspace. Then verify that the partitions in the tables are created
in the newly added shards in the corresponding tablespaces.

Creating a Shardspace
Create shardspaces in your composite Oracle Sharding deployment using Oracle
Enterprise Manager Cloud Control.

Only databases that are sharded using the composite method can have more than one
shardspace. A system-managed sharded database can have only one shardspace.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Shardspaces.

Chapter 9
Shardspace Management

9-54

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create.

Note:

This option is disabled in the Shardspaces page for a system-managed
sharded database.

4. Enter the values in the fields in the Add Shardspace dialog, and click OK.

• Name: enter a unique name for the shardspace (required)

• Chunks: Enter the number of chunks that should be created in the
shardspace (default 120)

• Protection Mode: select the Data Guard protection mode (default Maximum
Performance)

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shardspace.

When the shardspace is created successfully it appears in the Shardspaces list. You
might need to refresh the page to see the updates.

Adding a Shardspace to a Composite Sharded Database
Learn to create a new shardspace, add shards to the shardspace, create a tablespace
set in the new shardspace, and add a partitionset to the sharded table for the added
shardspace. Then verify that the partitions in the tables are created in the newly added
shards in the corresponding tablespaces.

To add a new shardspace to an existing sharded database, make sure that the
composite sharded database is deployed and all DDLs are propagated to the shards.

1. Create a new shardspace, add shards to the shardspace, and deploy the
environment.

a. Connect to the shard catalog database.

GDSCTL> connect mysdbadmin/mysdbadmin_password

b. Add a shardspace and add a shardgroup to the shardspace.

GDSCTL> add shardspace -chunks 8 -shardspace cust_asia
GDSCTL> add shardgroup -shardspace cust_asia -shardgroup
asia_shgrp1 -deploy_as primary -region region3

c. Add shards

GDSCTL> add shard -shardgroup asia_shgrp1 –
connect shard_host:TNS_listener_port/shard_database_name –pwd
GSMUSER_password
GDSCTL> add shard asia_shgrp1 –connect

Chapter 9
Shardspace Management

9-55

shard_host:TNS_listener_port/shard_database_name –pwd
GSMUSER_password

d. Deploy the environment.

GDSCTL> deploy

Running DEPLOY ensures that all of the previous DDLs are replayed on the new
shards and all of the tables are created. The partition is created in the default
SYS_SHARD_TS tablespace.

2. On the shard catalog create the tablespace set for the shardspace and add
partitionsets to the sharded root table.

a. Create the tablespace set.

SQL> CREATE TABLESPACE SET
 TSP_SET_3 in shardspace cust_asia using template
 (datafile size 100m autoextend on next 10M maxsize
 unlimited extent management
 local segment space management auto);

b. Add the partitionset.

SQL> ALTER table customers add PARTITIONSET asia VALUES
('ASIA”') TABLESPACE SET TSP_SET_3 ;

c. When lobs are present, create the tablespace set for lobs and mention the lob
storage information in the add partitionset command.

SQL> alter table customers add partitionset asia VALUES ('ASIA')
tablespace set TSP_SET_3 lob(docn) store as (tablespace set
LOBTSP_SET_4)) ;

d. When the root table contains subpartitions, use the store as clause to specify
the tablespace set for the subpartitions.

SQL> alter table customers add partitionset asia VALUES ('ASIA')
tablespace set TSP_SET_3 subpartitions store in(SUB_TSP_SET_1,
SUB_TSP_SET_2);

The ADD PARTITIONSET command ensures that the child tables are moved to the
appropriate tablespaces.

3. Verify that the partitions in the new shardspace are moved to the new tablespaces.

Connect to the new shards and verify that the partitions are created in the new
tablespace set.

SQL> select table_name, partition_name, tablespace_name, read_only
from dba_tab_partitions;

Chapter 9
Shardspace Management

9-56

Shardgroup Management
You can add, edit, and remove shardgroups in your Oracle Sharding deployment with
Oracle Enterprise Manager Cloud Control.

The following topics describe shardgroup management tasks:

• Creating a Shardgroup
Create shardgroups in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

Creating a Shardgroup
Create shardgroups in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

1. Select a shardspace to which to add the shardgroup.

2. Open the Shardspace menu, located in the top left corner of the shardspace
target page, and choose Manage Shardgroups.

3. Click Create.

4. Enter values in the Create Shardgroup dialog, and click OK.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the shardgroup.

For example, with the values entered in the screenshots above, the following
command is run:

GDSCTL Command: ADD SHARDGROUP -SHARDGROUP 'north' -SHARDSPACE
'shardspaceora'
 -REGION 'north' -DEPLOY_AS 'STANDBY'

When the shardgroup is created successfully it appears in the Manage Shardgroups
list. You might need to refresh the page to see the updates.

Services Management
You can manage services in your Oracle Sharding deployment with Oracle Enterprise
Manager Cloud Control.

To manage Oracle Sharding services, open the Sharded Database menu, located in
the top left corner of the Sharded Database target page, and choose Services. On the
Services page, using the controls at the top of the list of services, you can start, stop,
enable, disable, create, edit, and delete services.

Selecting a service opens a service details list which displays the hosts and shards
on which the service is running, and the status, state, and Data Guard role of each of
those instances. Selecting a shard in this list allows you to enable, disable, start, and
stop the service on the individual shards.

The following topics describe services management tasks:

Chapter 9
Shardgroup Management

9-57

• Creating a Service
Create services in your Oracle Sharding deployment using Oracle Enterprise
Manager Cloud Control.

Creating a Service
Create services in your Oracle Sharding deployment using Oracle Enterprise Manager
Cloud Control.

1. Open the Sharded Database menu, located in the top left corner of the Sharded
Database target page, and choose Services.

2. If prompted, enter the shard catalog credentials, select the shard director to
manage under Shard Director Credentials, select the shard director host
credentials, and log in.

3. Click Create, or select a service from the list and click Create Like.

Choosing Create opens the Create Service dialog with default configuration
values in the fields.

Choosing Create Like opens the Create Like Service dialog with configuration
values from the selected service in the fields. You must select a service from the
list to enable the Create Like option.

4. Enter the required information in the dialog, and click OK.

Note:

If you do not want the service to start running immediately upon creation,
you must uncheck the Start service on all shards after creation
checkbox.

5. Click the link in the Information box at the top of the page to view the provisioning
status of the service.

When the service is created successfully it appears in the Services list. You might
need to refresh the page to see the updates.

Chapter 9
Services Management

9-58

10
Troubleshooting Oracle Sharding

You can enable tracing, locate log and trace files, and troubleshooting common issues.

The following topics describe Oracle Sharding troubleshooting in detail:

• Oracle Sharding Tracing and Debug Information
The following topics explain how to enable tracing and find the logs.

• Common Error Patterns and Resolutions for Sharded Databases
See the following topics for information about troubleshooting common errors in
Oracle Sharding.

Oracle Sharding Tracing and Debug Information
The following topics explain how to enable tracing and find the logs.

• Enabling Tracing for Oracle Sharding
Enable PL/SQL tracing to track down issues in the sharded database.

• Where to Find Oracle Sharding Alert Logs and Trace Files
There are several places to look for trace and alert logs in the Oracle Sharding
environment.

Enabling Tracing for Oracle Sharding
Enable PL/SQL tracing to track down issues in the sharded database.

To get full tracing, set the GWM_TRACE level as shown here. The following statement
provides immediate tracing, but the trace is disabled after a database restart.

ALTER SYSTEM SET EVENTS 'immediate trace name GWM_TRACE level 7';

The following statement enables tracing that continues in perpetuity, but only after
restarting the database.

ALTER SYSTEM SET EVENT='10798 trace name context forever, level 7'
SCOPE=spfile;

It is recommended that you set both of the above traces to be thorough.

To trace everything in the Oracle Sharding environment, you must enable tracing on
the shard catalog and all of the shards. The traces are written to the RDBMS session
trace file for either the GDSCTL session on the shard catalog, or the session(s)
created by the shard director (a.k.a. GSM) on the individual shards.

10-1

Where to Find Oracle Sharding Alert Logs and Trace Files
There are several places to look for trace and alert logs in the Oracle Sharding
environment.

Standard RDBMS trace files located in diag/rdbms/.. will contain trace output.

Output from ‘deploy’ will go to job queue trace files db_unique_name_jXXX_PID.trc.

Output from other GDSCTL commands will go to either a shared server trace file
db_unique_name_sXXX_PID.trc or dedicated trace file db_unique_name_ora_PID.trc
depending on connect strings used.

Shared servers are typically used for many of the connections to the catalog and
shards, so the tracing is in a shared server trace file named SID_s00*.trc.

GDSCTL has several commands that can display status and error information.

Use GDSCTL STATUS GSM to view locations for shard director (GSM) trace and log files.

GDSCTL> status
Alias SHARDDIRECTOR1
Version 18.0.0.0.0
Start Date 25-FEB-2016 07:27:39
Trace Level support
Listener Log File /u01/app/oracle/diag/gsm/slc05abw/
sharddirector1/alert/log.xml
Listener Trace File /u01/app/oracle/diag/gsm/slc05abw/
sharddirector1/trace/
ora_10516_139939557888352.trc
Endpoint summary (ADDRESS=(HOST=shard0)(PORT=1571)
(PROTOCOL=tcp))
GSMOCI Version 2.2.1
Mastership N
Connected to GDS catalog Y
Process Id 10535
Number of reconnections 0
Pending tasks. Total 0
Tasks in process. Total 0
Regional Mastership TRUE
Total messages published 71702
Time Zone +00:00
Orphaned Buddy Regions: None
GDS region region1
Network metrics:
 Region: region2 Network factor:0

The non-XML version of the alert.log file can be found in the /trace directory as shown
here.

/u01/app/oracle/diag/gsm/shard-director-node/sharddirector1/trace/
alert*.log

Chapter 10
Oracle Sharding Tracing and Debug Information

10-2

To decrypt log output in GSM use the following command.

GDSCTL> set _event 17 -config_only

Master shard director (GSM) trace/alert files include status and errors on any and
all asynchronous commands or background tasks (move chunk, split chunk, deploy,
shard registration, Data Guard configuration, shard DDL execution, etc.)

To find pending AQ requests for the shard director, including error status, use
GDSCTL CONFIG.

To see ongoing and scheduled chunk movement, use GDSCTL CONFIG CHUNKS
-show_reshard

To see shards with failed DDLs, use GDSCTL SHOW DDL -failed_only

To see the DDL error information for a given shard, use GDSCTL CONFIG SHARD
-shard shard_name

Common Error Patterns and Resolutions for Sharded
Databases

See the following topics for information about troubleshooting common errors in Oracle
Sharding.

• Issues Starting Remote Scheduler Agent
If you encounter issues starting Remote Scheduler Agent on all the shard hosts,
try the following:

• Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

• Errors From Shards Created with CREATE SHARD
For errors that occur during a DEPLOY from shards created with the GDSCTL
CREATE SHARD command check the following:

• Issues Using Create Shard
The following are solutions to some issues that occur when using the GDSCTL
CREATE SHARD command..

• Issues Using Deploy Command

• Issues Moving Chunks
If you encounter issues with MOVE CHUNK, try the following:

Issues Starting Remote Scheduler Agent
If you encounter issues starting Remote Scheduler Agent on all the shard hosts, try
the following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

[oracle@shard2 ~]$ echo welcome | schagent -registerdatabase 192.0.2.24
8080
Agent Registration Password?
Failed to get agent Registration Info from db: No route to host

Chapter 10
Common Error Patterns and Resolutions for Sharded Databases

10-3

Solution: Disable firewall

service ipchains stop
service iptables stop
chkconfig ipchains off
chkconfig iptables off

Shard Director Fails to Start
If you encounter issues starting the shard director, try the following:

To start Scheduler you must be inside ORACLE_HOME on each shard server.

GDSCTL>start gsm -gsm shardDGdirector
GSM-45054: GSM error
GSM-40070: GSM is not able to establish connection to GDS catalog

GSM alert log, /u01/app/oracle/diag/gsm/shard1/sharddgdirector/trace/
alert_gds.log
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
GSM-40122: OCI Catalog Error. Code: 12514. Message: ORA-12514:
TNS:listener does not
currently know of service requested in connect descriptor
GSM-40112: OCI error. Code (-1). See GSMOCI trace for details.
2017-04-20T22:50:22.496362+05:30
Process 1 in GSM instance is down
GSM shutdown is successful
GSM shutdown is in progress
NOTE : if not message displayed in the GSM log then enable GSM trace
level to 16
while adding GSM itself.

1. Remove the newly created shard director (GSM) that failed to start.

GDSCTL> remove gsm -gsm shardDGdirector

2. Add the shard director using trace level 16.

GDSCTL> add gsm -gsm shardDGdirector -listener port_num -pwd
gsmcatuser_password
 -catalog hostname:port_num:shard_catalog_name
 -region region1 -trace_level 16

3. If the shard catalog database is running on a non-default port (other than 1521),
set the remote listener.

SQL> alter system set
local_listener='(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=hostname)(PORT=port_num)))';

Chapter 10
Common Error Patterns and Resolutions for Sharded Databases

10-4

Errors From Shards Created with CREATE SHARD
For errors that occur during a DEPLOY from shards created with the GDSCTL
CREATE SHARD command check the following:

• Remote Scheduler Agent logs on shard hosts

• DBA_SCHEDULER_JOB_RUN_DETAILS view on shard catalog

• NETCA/DBCA output files in $ORACLE_BASE/cfgtoollogs on shard hosts

Issues Using Create Shard
The following are solutions to some issues that occur when using the GDSCTL
CREATE SHARD command..

Make sure to create $ORACLE_BASE/oradata and $ORACLE_BASE/
fast_recovery_area directories to avoid the following errors

GDSCTL> create shard -shardgroup primary_shardgroup -destination che
-osaccount
 oracle -ospassword oracle
GSM-45029: SQL error
ORA-03710: directory does not exist or is not writeable at destination:
 $ORACLE_BASE/oradata
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4730
ORA-06512: at line 1

GDSCTL>create shard -shardgroup primary_shardgroup -destination che -
osaccount oracle
 -ospassword oracle
GSM-45029: SQL error
ORA-03710: directory does not exist or is not writeable at destination:
 $ORACLE_BASE/fast_recovery_area
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4755
ORA-06512: at line 1

Solution: Create oradata,fast_recovery_area under $ORACLE_BASE on all the shard
hosts.

Privilege issues

GDSCTL>create shard -shardgroup primary_shardgroup -destination blr -
credential cred
GSM-45029: SQL error
ORA-02610: Remote job failed with error:
EXTERNAL_LOG_ID="job_79126_3",
USERNAME="oracle",
STANDARD_ERROR="Launching external job failed: Login executable not
setuid-root"

Chapter 10
Common Error Patterns and Resolutions for Sharded Databases

10-5

ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 6920
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 86
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 4596
ORA-06512: at line 1

Solution: Make sure to have root privilege on following directories,

chown root $ORACLE_HOME/bin/extjob
chmod 4750 $ORACLE_HOME/bin/extjob
chown root $ORACLE_HOME/rdbms/admin/externaljob.ora
chmod 640 $ORACLE_HOME/rdbms/admin/externaljob.ora
chown root $ORACLE_HOME/bin/jssu
chmod 4750 $ORACLE_HOME/bin/jssu

Error on create shard

GDSCTL>create shard -shardgroup primary_shardgroup -destination mysql02
-osaccount
 oracle -ospassword oracle
GSM-45029: SQL error
ORA-03719: Shard character set does not match catalog character set.
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 7469
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 5770
ORA-06512: at line 1

Solution: Check the JAVA version, it must be the same on the shard catalog and all
shard servers.

rpm -qa|grep java

Issues Using Deploy Command

GDSCTL> deploy
GSM-45029: SQL error
ORA-29273: HTTP request failed
ORA-06512: at "SYS.DBMS_ISCHED", line 3715
ORA-06512: at "SYS.UTL_HTTP", line 1267
ORA-29276: transfer timeout
ORA-06512: at "SYS.UTL_HTTP", line 651
ORA-06512: at "SYS.UTL_HTTP", line 1257
ORA-06512: at "SYS.DBMS_ISCHED", line 3708
ORA-06512: at "SYS.DBMS_SCHEDULER", line 2609
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_POOLADMIN", line 14284
ORA-06512: at line 1

Solution : Check the $ORACLE_HOME/data/pendingjobs for the exact error.
ORA-1017 is thrown if any issues on wallet.

Chapter 10
Common Error Patterns and Resolutions for Sharded Databases

10-6

1. On problematic Shard host stop the remote scheduler agent.

schagent -stop

2. rename wallet direcotry on Database home

mv $ORACLE_HOME/data/wallet $ORACLE_HOME/data/wallet.old

3. start the remote scheduler agent and it will create new wallet directory

schagent -start
schagent -status
echo welcome | schagent -registerdatabase 10.10.10.10 8080

Issues Moving Chunks
If you encounter issues with MOVE CHUNK, try the following:

Issue: Initialization parameter remote_dependencies_mode has a default value
of timestamp; therefore, because prvtgwmut.plb is run and DBMS_GSM_UTILITY
recompiled durning upgrade, GDSCTL MOVE CHUNK runs into ORA-04062 errors similar
to the following.

GSM Errors:
server:ORA-03749: Chunk move cannot be performed at this time.
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_DBADMIN", line 5497
ORA-04062: timestamp of package "GSMADMIN_INTERNAL.DBMS_GSM_UTILITY"
has been
changed
ORA-06512: at line 1
ORA-06512: at "GSMADMIN_INTERNAL.DBMS_GSM_DBADMIN", line 5366
ORA-06512: at line 1 (ngsmoci_execute)

Workaround 1: Restart the source and target shards after upgrade.

Workaround 2: ALTER SYSTEM SET remote_dependencies_mode=signature on both
source and target.

Chapter 10
Common Error Patterns and Resolutions for Sharded Databases

10-7

11
Oracle Sharding Solutions

The following solutions show you how to use Oracle Sharding to solve a business
problem.

• Combine Existing Non-Sharded Databases into a Federated Sharded Database
If you have several database installations in different locations that run the same
application, and you want to to include the data from all of them, to run data
analytics queries for example, you can combine the independent databases into a
sharded database to take advantage of Oracle Sharding multi-shard queries.

• Creating Affinity Between Middle-Tier and Shards
Middle-tier routing allows smart routers to route to the middle tier associated with a
sharding key.

Combine Existing Non-Sharded Databases into a Federated
Sharded Database

If you have several database installations in different locations that run the same
application, and you want to to include the data from all of them, to run data analytics
queries for example, you can combine the independent databases into a sharded
database to take advantage of Oracle Sharding multi-shard queries.

• Overview

• Creating and Deploying a Federated Sharding Configuration
To deploy a federated sharding environment using existing databases, you define
the database layout just as you would for user-defined sharding, using GDSCTL
commands.

• Federated Sharding Reference

Overview
• About Federated Sharding

Learn what a federated sharding configuration is, why you need it, and how it
works.

• Federated Sharding Schema Requirements
You can convert existing databases running the same application into a
federated sharding configuration, without modifying the database schemas or the
application.

• Sharded and Duplicated Tables in a Federated Sharding Configuration
Tables that have different sets of data on each of the federated databases are
equivalent to the sharded tables in a traditional sharded database. Tables with the
same content on all of the federated databases are equivalent to the duplicated
tables in a traditional sharded database.

11-1

• Limitations to Federated Sharding
There are some limitations to creating a federated sharding configuration.

• Federated Sharding Security

About Federated Sharding
Learn what a federated sharding configuration is, why you need it, and how it works.

Federated sharding is an Oracle Sharding configuration where the shards consist of
independent databases with similar schemas.

Creating a sharded database from independent databases reduces the need to import
tons of data into a single location for data analytics.

Consider the following benefits to this approach.

• Create a sharding environment using existing, geographically distributed
databases--there is no need to provision new systems

• Run multi-shard queries--access data from many locations in a single query

Oracle Sharding, in a federated sharding configuration, treats each independent
database as a shard, and as such can issue multi-shard queries on those shards.

You can create a federated sharding configuration with minor version mismatches
between the shards. For example, one region could be on Oracle Database 20.2 and
another could be on Oracle Database 20.3. All database shards and the shard catalog
must be on Oracle Database 20c or later.

Federated Sharding Schema Requirements
You can convert existing databases running the same application into a federated
sharding configuration, without modifying the database schemas or the application.

However, the databases must have the same schema or minor differences. For
example, a table can have an extra column in one of the databases.

An application upgrade can trigger changes in the schema, such as when you add
a new table, new column, new check constraint, or/and modify a column data type.
When part of an overall federated sharding configuration, Oracle Sharding handles the
schema differences caused by an application upgrade, as long as the overall schema
structure stays the same.

Sharded and Duplicated Tables in a Federated Sharding Configuration
Tables that have different sets of data on each of the federated databases are
equivalent to the sharded tables in a traditional sharded database. Tables with the
same content on all of the federated databases are equivalent to the duplicated tables
in a traditional sharded database.

When you create the federated sharding configuration, the system assumes that all of
the tables are sharded, so you must explicitly mark the tables that must be considered
duplicated by the multi-shard query coordinator.

Limitations to Federated Sharding
There are some limitations to creating a federated sharding configuration.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-2

• There is no concept of chunk in a federated sharding configuration, so the GDSCTL
MOVE CHUNK command is not supported.

• Application sharding key-based routing is not supported.

• The existing databases, before being added to a federated sharding configuration,
must be upgraded to Oracle Database 20c or later.

Federated Sharding Security

The database users do not need to exist on all of the federated databases, but the
schema owners should exist on all of the databases. The privileges and the passwords
of these schema owners can be different. Only common privileges are imported for
security.

Creating and Deploying a Federated Sharding Configuration
To deploy a federated sharding environment using existing databases, you define the
database layout just as you would for user-defined sharding, using GDSCTL commands.

The following is a high level description of the process for creating and deploying a
federated sharding configuration.

1. Run the GDSCTL CREATE SHARDCATALOG command with the
FOR_FEDERATED_DATABASE option to create the federated sharding configuration

2. Add shard directors to the configuration.

3. Add a shardspace to the configuration. A shardspace is defined as an existing
database and its replica.

4. Add a shard by adding the existing database to the shardspace, then run DEPLOY.

5. Run GDSCTL SYNC SCHEMA to compare the schemas in the federated sharding
configuration and retrieve the common shared schemas. Use SYNC SCHEMA to
inspect and apply the DDLs.

6. Use SQL ALTER TABLE on the shard catalog to convert tables containing the same
data across the federated shards to duplicated tables.

7. Prepare the shards in the federated sharding configuration for multi-shard queries.

The following topics describe the federated sharding-specific tasks in detail.

• Create the Federated Sharding Configuration
The GDSCTL command CREATE SHARDCATALOG is used to create the federated
sharding configuration, with the FOR_FEDERATED_DATABASE option used instead of
selecting a sharding method in the SHARDING parameter.

• Retrieve, Inspect, and Apply the DDLs
Run the GDSCTL SYNC SCHEMA command in phases to create the schema objects
common to the existing databases in the shard catalog.

• Convert Tables to Duplicated Tables
Use ALTER TABLE table_name externally duplicated to mark tables as
duplicated in a federated sharding configuration.

• Prepare the Shards For Multi-Shard Queries
Create all shard users and use the ORA_SHARDSPACE_NAME pseudo-column to
perform queries on specific shards.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-3

Create the Federated Sharding Configuration
The GDSCTL command CREATE SHARDCATALOG is used to create the federated sharding
configuration, with the FOR_FEDERATED_DATABASE option used instead of selecting a
sharding method in the SHARDING parameter.

The usage for the GDSCTL command CREATE SHARDCATALOG in creating a federated
sharding configuration is similar to how it is used to create the shard catalog
in user-defined sharding, except that instead of specifying a sharding method in
the SHARDING parameter, you use the FOR_FEDERATED_DATABASE option. That is, the
FOR_FEDERATED_DATABASE option is mutually exclusive with the SHARDING option.

CREATE SHARDCATALOG -DATABASE connect_identifier
 [-USER username[/password]]
 [-REGION region_name_list]
 [-CONFIGNAME config_name]
 [-AUTOVNCR ON/OFF]
 [-FORCE]
 [-SDB sdb_name]
 [-SHARDSPACE shardspace_name_list]
 -FOR_FEDERATED_DATABASE

The CREATE SHARDCATALOG syntax statement above shows which parameters
are supported. The parameters not shown are not supported when used with
the FOR_FEDERATED_DATABASE sharding method, for example, –AGENT_PASSWORD,
REPFACTOR, and the Oracle Data Guard protection mode PROTECTMODE.

Note:

Only Oracle Data Guard replication is supported for federated sharding
configurations. You don't create or manage the Data Guard configuration,
but you can use Data Guard parameters with the ADD SHARD command so
that you can add the primary and standbys to see the status in GDSCTL.

See Also:

The GDSCTL create shardcatalog topic in Oracle Database Global Data
Services Concepts and Administration Guide for usage notes and command
options.

Retrieve, Inspect, and Apply the DDLs
Run the GDSCTL SYNC SCHEMA command in phases to create the schema objects
common to the existing databases in the shard catalog.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-4

The GDSCTL SYNC SCHEMA syntax shown here illustrates the three phases of the
opertion.

sync[hronize] schema
 [-schema [schemalist | all] [-retrieve_only] [-restart [-force]]
 | -apply [-skip_first]
 | -show [[-ddl ddlnum] [-count n] | [-failed_only]]]

SYNC SCHEMA should be run in phases, as described here.

1. Retrieve Phase

Run SYNC SCHEMA with the -retrieve_only option to inspect and verify the DDLs
before they are run on the shard catalog.

sync schema -schema schemalist –retrieve_only

When SYNC SCHEMA is run without -retrieve_only, the DDL is retrieved and
applied at the same time.

2. Inspection Phase

You can examine the DDL statements and their execution status with the -show
option. The -ddl ddlnum option shows the specified DDL, and the -count n option
specifies the maximum number of entries to show.

sync schema –show -ddl ddlnum -count n

Or you can use the -failed_only option to examine only the errored out
statements.

sync schema –show -failed_only

3. Apply Phase

In the final phase, you run the DDLs on the shard catalog to create the schemas
and their objects.

sync schema –apply

If you get an error in the apply phase, there are a couple of ways to work around it:

• If you can fix the cause of the error, fix and then retry SYNC SCHEMA -apply,
which retries the failed DDL.

• If the DDL cannot be fixed or it is not required, you can run SYNC SCHEMA
–apply -skip_first, which resumes the apply phase from the point of the
DDL failure.

For security reasons, Oracle Sharding doesn't offer a way to edit the DDLs.

4. Import Incremental Changes

If there are changes in the schema at a later point, the previous phases can be run
again to import incremental changes. For example, when new objects are added,
or a new column is added to a table, which will generate an ALTER TABLE ADD
statement.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-5

See Also:

The sync schema (synchronize schema) topic in Oracle Database Global
Data Services Concepts and Administration Guide for more SYNC SCHEMA
usage notes and option details.

SYNC SCHEMA Operations for information about the tasks performed by
SYNC SCHEMA

Convert Tables to Duplicated Tables
Use ALTER TABLE table_name externally duplicated to mark tables as duplicated
in a federated sharding configuration.

Any table created by SYNC SCHEMA is considered by the multi-shard query layer as an
externally sharded table. If the table contains the same data on all of the shards, you
can alter the table to externally duplicated, so that the multi-shard query retrieves the
data from one shard only, even if it is a query on a table with no filter predicates on
ORA_SHARDSPACE_NAME.

ALTER TABLE table_name [externally duplicated | externally sharded]

Prepare the Shards For Multi-Shard Queries
Create all shard users and use the ORA_SHARDSPACE_NAME pseudo-column to perform
queries on specific shards.

All Shard Users

Before running multi-shard queries from the shard catalog, you must create all shard
users and grant them access to the sharded and duplicated tables. These users and
their privileges should be created in the shard catalog under shard DDL enabled.

Create Shardspace-Specific Queries

A shardspace in federated sharding is a set consisting of a primary shard and zero
or more standby shards. To filter query results for a particular shard[space], a pseudo-
column called ORA_SHARDSPACE_NAME is added to every externally sharded table. The
value of this pseudo column in the tables is the name of the shardspace.

Depending on the value of MULTISHARD_QUERY_DATA_CONSISTENCY, the rows can be
fetched from the primary or from any of the standbys in the shardspace. To run
a multi-shard query on a given shard, you can filter the query with the predicate
ORA_SHARDSPACE_NAME = shardspace_name_shard_belongs_to.

A query like SELECT CUST_NAME, CUST_ID FROM CUSTOMER, where the table
CUSTOMER is marked as externally sharded, runs on all of the shards.

A query like SELECT CUST_NAME, CUST_ID FROM CUSTOMER WHERE
ora_shardspace_name = ‘EUROPE’ runs on the shards belonging to the
shardspace_name Europe. Depending on the MULTISHARD_QUERY_DATA_CONSISTENCY
parameter value, the query is run on either the primary shard of the shardspace
Europe or on its standbys.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-6

You can join sharded tables from different shardspaces. For example, to find the
customers from shardspace Europe with orders in shardspace NA, write a query
similar to the following.

SELECT order_id, customer_name FROM customers c , orders o WHERE
c.cust_id = o.cust_id and
c.ora_shardspace_name = ‘Europe’ and o.ora_shardspace_name = ‘NA’

Querying an externally duplicated table, with or without the
ORA_SHARDSPACE_NAME predicate, should go to only one of the shardspaces. The
MULTISHARD_QUERY_DATA_CONSISTENCY parameter value determines whether to query
a primary shard in the shardspace or its replicas.

Federated Sharding Reference
• SYNC SCHEMA Operations

• Troubleshooting Federated Sharding
Solve common federated sharding issues with these troubleshooting tips.

SYNC SCHEMA Operations

• DDL Synchronization
DDL synchronization is an operation that SYNC SCHEMA runs just after the
deployment of the shards in a federated sharding configuration.

• Import Users
A user or schema is a candidate for import by SYNC SCHEMA if it exists on all of the
shards and owns importable schema objects.

• Grant User Roles and Priviledges
For the imported users, SYNC SCHEMA compares users' privileges.

• Import Object Definitions
The objects compared and imported by SYNC SCHEMA to the shard catalog are the
objects that will be referenced in multi-shard queries or used by multi-shard query
processing.

• Schema Object Comparison
The objects, from one shard to another, can have different definitions. SYNC
SCHEMA compares the different definitions and creates a common definition to
enable multi-shard queries against imported objects.

DDL Synchronization
DDL synchronization is an operation that SYNC SCHEMA runs just after the deployment
of the shards in a federated sharding configuration.

The goal of this operation is to import the object definitions from all of the shards,
compare the definitions across the shards, and generate DDLs for the objects that
exist on all of the shards (common objects). Once the DDLs are run and the objects
are created, you can reference these objects in multi-shard queries.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-7

Import Users
A user or schema is a candidate for import by SYNC SCHEMA if it exists on all of the
shards and owns importable schema objects.

You can narrow the list of users to be imported by passing a list of users in the
-SCHEMA parameter. For example,

gdsctl> sync schema -schema scott

gdsctl> sync schema -schema scott,myschema

For case-sensitive schemas use quoted identifiers.

gdsctl> sync schema -schema "O'Brien",scott

To include all non-Oracle schemas, use the value ALL in the SCHEMA parameter.

gdsctl> sync schema -schema all

Before importing the users, SYNC SCHEMA verifies that any discovered users exist on
all shards, and no user already exists on the shard catalog with the same name.
The users are then created on the shard catalog as local users and they are locked.
Because these are local users, they only share the same name with shards and are
essentially the same as any other user that may have the same name across different
databases. Note that these users are not able to login and issue queries because
they are not all shard users. To issue multi-shard queries, an all shard user must be
created.

Note:

Only users local to a PDB are imported. Common CDB users are not
imported.

Grant User Roles and Priviledges
For the imported users, SYNC SCHEMA compares users' privileges.

SYNC SCHEMA grants only the privileges that are granted on all of the shards (common
grants). A user A who has a DBA role on shard1, but does not have DBA role on
shard2, is not granted the DBA role in the shard catalog.

Import Object Definitions
The objects compared and imported by SYNC SCHEMA to the shard catalog are the
objects that will be referenced in multi-shard queries or used by multi-shard query
processing.

These objects are:

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-8

• Tables

• Views and Materialized Views (exported as tables)

• Check Constraints

• Object Types

• Synonyms

Running SYNC SCHEMA does not import objects related to storage, or objects that have
no impact on multi-shard query processing, such as tablespaces, indexes, indextypes,
directories, or zone maps.

Schema Object Comparison
The objects, from one shard to another, can have different definitions. SYNC SCHEMA
compares the different definitions and creates a common definition to enable multi-
shard queries against imported objects.

SYNC SCHEMA detects the objects' differences at two levels: number of objects, and
object definitions.

First, SYNC SCHEMA considers the number of objects. It is likely that, during an
application upgrade, some objects are added to the schemas. Only objects that are
on all of the shards will be imported into the shard catalog.

Second, the object definitions from one shard to another can have different attributes.
For the objects that SYNC SCHEMA imports, the following differences are noted:

• Differences in Tables

• Differences in Views

• Differences in Constraints

• Differences in Object Types

Differences in Tables

When comparing objects in a federated sharding configuration, some differences in
tables have an impact on multi-shard queries and some do not.

Column Differences

Only column differences have an impact on multi-shard queries. SYNC SCHEMA
addresses only this difference.

• The number of columns can be different.

• The data type of a given column can be different.

• The default value of a given column can be different.

• The expression of a virtual column can be different

When a table has a different numbers of columns, SYNC SCHEMA will opt for the creation
of a table that contains the union of all of the columns. Taking the union of all of
the columns, compared to just taking the intersection, will spare you from re-writing
multi-shard queries in case of an incremental deploy, when the added shard has fewer
columns than indicated in the shard catalog.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-9

When a column has different data types, SYNC SCHEMA defines it as the highest
(largest) datatype.

When a column has different data types, and one of the columns is a user-defined
object type, then that column is not imported into the shard catalog.

When a column has different default values, SYNC SCHEMA sets NULL as the default
value.

Nested table columns are not imported into the shard catalog.

Example: a Customer table is defined on shard1 and shard2 as shown here.

On shard1:

Customer(Cust_id number, Name varchar(30),
 Address varchar(50),Zip_code number)

On shard2:

Customer(Cust_id varchar(20), Name varchar(30),
 Address varchar(50),Zip_code number,
 Country_code number)

Note that the column Cust_id is a number on shard1 and a varchar(20) on shard2.
Also, note that Country_code exists on shard2 but does not exist on shard1.

The Customer table created by SYNC SCHEMA in the shard catalog has all of the
columns, including Country_code, and the Cust_id type is varchar(20).

Customer(Cust_id varchar(20), Name varchar(30),
 Address varchar(50),Zip_code number,
 Country_code number)

SYNC SCHEMA keeps track of these differences between schemas in the shard catalog.
A query issued on the catalog database that accesses these heterogeneous columns
is rewritten to address the differences before it is sent to the shards. On the shard,
if there is a data type mismatch, the data is CAST into the "superior" data type as
created on the catalog. If the column is missing on the shard, the default value is
returned as set on the catalog.

Partition Scheme Differences

Note that this difference has no impact on multi-shard queries, and is ignored.

• Partitioning column can be different.

• Partition type can be different.

• Number of partitions can be different.

Storage Attribute Differences

Note that this difference has no impact on multi-shard queries, and is ignored.

• Tablespaces, on which the table is created, are different.

• The encryption can be different.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-10

• The INMEMORY attribute can be different.

Differences in Views

Views on shards are created and handled as tables in the shard catalog. The same
restrictions that apply to tables also apply to views.

Differences in Constraints

Only CHECK constraints are created in the shard catalog. The CHECK constraint
condition should be same on all of the shards.

Differences in Object Types

Object types and type bodies are only created if they have the same definition on all of
the shards.

Troubleshooting Federated Sharding
Solve common federated sharding issues with these troubleshooting tips.

ORA-03851: Operation not supported in federated database

ORA-03701: Invalid parameter combination: federated database and ...

Some of the operations and command options that apply to a traditional sharded
database are not applicable to a federated database. This is because:

• There is no concept of a chunk in a federated database. Any chunk-related
operation is invalid, for example SPLIT CHUNK and MOVE CHUNK.

• The Data Guard broker configuration is not set up or managed by the system
in federated database, because the existing shards may already have been
set up with their own high availability configurations. Operations such as SET
DATAGUARD_PROPERTY or MODIFY SHARDSPACE are not supported.

• Oracle GoldenGate configuration is not supported.

• The CREATE SHARD command is not supported.

ORA-03885: Some primary shards are undeployed or unavailable

The SYNC SCHEMA operation requires that all primary shards be available. Check the
output of the CONFIG SHARD command, and check the status of all primary shards. Fix
any issues and retry the operations when the shards become available.

ORA-03871: Some DDL statements are not applied to the catalog

The SYNC SCHEMA operation cannot import object definitions from the shards when
some statements from the previous execution are still not applied on the shard
catalog. Run SYNC SCHEMA with the -apply option to run these statements.

If a multi-shard query fails with this error due to a mismatch of the object definition on
the shard and the catalog, make sure that the shard catalog has the latest schema
changes imported. Any time there are schema changes in the federated database, you
must run SYNC SCHEMA to import any changes in the schemas on the shards.

Chapter 11
Combine Existing Non-Sharded Databases into a Federated Sharded Database

11-11

Note that subsequent runs of SYNC SCHEMA will not drop and recreate the object, but
will generate ALTER statements to incorporate the definition changes. This ensures that
if there are queries already running during the SYNC SCHEMA operation, they won't fail
with invalid object errors.

Handling Errors During DDL Execution Phase

If DDL execution fails on the shard catalog, the status of each DDL can be examined
with the SYNC SCHEMA -show option.

gdsctl> sync schema -show

Note: The SYNC SCHEMA -show command is different from the command SHOW DDL.
SHOW DDL lists DDL statements run by an all-shard user that are first run on the catalog
and then propagated to the shards, whereas SYNC SCHEMA -show DDL statements are
generated from the objects imported from shards.

By default, SYNC SCHEMA -show lists a fixed number of the latest DDLs. The -count
and -ddl options can be used to inspect specific range of DDLs. For example,

gdsctl> sync schema -show -count 20
gdsctl> sync schema -show -count 20 -ddl 5

To check the complete DDL text and error message, if any, use the -ddl option.

gdsctl> sync schema -show -ddl 5

To list only the failed DDL statements, use the -failed_only option.

gdsctl> sync schema –failed_only

Based on the error message of the failed DDL, fix the cause of the error and perform
the apply phase.

gdsctl> sync schema -apply

The SYNC SCHEMA command also has a -restart option to perform the complete
operation from the beginning as if it were run for the first time. This option will DROP
all existing schemas imported during all previous executions of SYNC SCHEMA and any
related metadata. Be aware that this will cause any running queries on these objects
to fail.

gdsctl> sync schema -restart

Creating Affinity Between Middle-Tier and Shards
Middle-tier routing allows smart routers to route to the middle tier associated with a
sharding key.

You can use the middle-tier routing API to publish the sharded database topology
to the router tier so that requests based on specific sharding keys are routed to the

Chapter 11
Creating Affinity Between Middle-Tier and Shards

11-12

appropriate application middle tier, which in turn establishes connections on the given
subset of shards.

In a typical Oracle Sharding environment, middle-tier connection pools route database
requests to specific shards. This can lead to a situation where each middle-tier
connection pool establishes connections to each shard. This can create too many
connections to the database. The issue can be solved by creating an affinity between
the middle tiers and shards. In this scenario it would be ideal to dedicate a middle
tier (web server, application server) for each data center or cloud, and to have client
requests routed directly to the middle tier where the shard containing the client data
(corresponding to the client shard key) resides. A common term used for this kind of
setup is swim lanes, where each swim lane is a dedicated stack, from web server to
application server all the way to the database.

Oracle Universal Connection Pool (UCP) solves this problem by providing a middle-tier
routing API which can be used to route client requests to the relevant middle tier. The
UCP middle tier API is exposed by the OracleShardRoutingCache class. An instance
of this class represents the UCP internal shard routing cache, which can be created by
providing connection properties such as user, password, and URL. The routing cache
connects to the sharding catalog to retrieve the key to shard mapping topology and
stores it in its cache.

The routing cache is used by UCP middle-tier API
getShardInfoForKey(shardKey,superShardKey), which accepts a sharding key as
input and returns a set of ShardInfo instances mapped to the input sharding key.
The ShardInfo instance encapsulates a unique shard name and priority of the shard.
An application using the middle-tier API can map the returned unique shard name
value to a middle tier that has connections to a specific shard. The routing cache is
automatically updated when chunks are split or moved to other shards by subscribing
to respective ONS events.

The following code example illustrates the usage of Oracle UCP middle-tier routing
API.

Example 11-1 Middle-Tier Routing Using UCP API

import java.sql.SQLException;
import java.util.Properties;
import java.util.Random;
import java.util.Set;

import oracle.jdbc.OracleShardingKey;
import oracle.jdbc.OracleType;
import oracle.ucp.UniversalConnectionPoolException;
import oracle.ucp.routing.ShardInfo;
import oracle.ucp.routing.oracle.OracleShardRoutingCache;

/**
 * The code example illustrates the usage of UCP's mid-tier routing
feature.
 * The API accepts sharding key as input and returns the set of
ShardInfo
 * instances mapped to the sharding key. The ShardInfo instance
encapsulates
 * unique shard name and priority. The unique shard name then can be
mapped

Chapter 11
Creating Affinity Between Middle-Tier and Shards

11-13

 * to a mid-tier server which connects to a specific shard.
 *
 */
public class MidtierShardingExample {

 private static String user = "testuser1";
 private static String password = "testuser1";

 // catalog DB URL
 private static String url = "jdbc:oracle:thin:@//hostName:1521/
catalogServiceName";
 private static String region = "regionName";

 public static void main(String args[]) throws Exception {
 testMidTierRouting();
 }

 static void testMidTierRouting() throws
UniversalConnectionPoolException,
 SQLException {

 Properties dbConnectProperties = new Properties();
 dbConnectProperties.setProperty(OracleShardRoutingCache.USER, user);
 dbConnectProperties.setProperty(OracleShardRoutingCache.PASSWORD,
password);
 // Mid-tier routing API accepts catalog DB URL
 dbConnectProperties.setProperty(OracleShardRoutingCache.URL, url);

 // Region name is required to get the ONS config string
 dbConnectProperties.setProperty(OracleShardRoutingCache.REGION,
region);

 OracleShardRoutingCache routingCache = new OracleShardRoutingCache(
 dbConnectProperties);

 final int COUNT = 10;
 Random random = new Random();

 for (int i = 0; i < COUNT; i++) {
 int key = random.nextInt();
 OracleShardingKey shardKey = routingCache.getShardingKeyBuilder()
 .subkey(key, OracleType.NUMBER).build();
 OracleShardingKey superShardKey = null;

 Set<ShardInfo> shardInfoSet =
routingCache.getShardInfoForKey(shardKey,
 superShardKey);

 for (ShardInfo shardInfo : shardInfoSet) {
 System.out.println("Sharding Key=" + key + " Shard Name="
 + shardInfo.getName() + " Priority=" +
shardInfo.getPriority());
 }
 }

Chapter 11
Creating Affinity Between Middle-Tier and Shards

11-14

 }
}

See Also:

Middle-Tier Routing Using UCP in Oracle Universal Connection Pool
Developer’s Guide

Chapter 11
Creating Affinity Between Middle-Tier and Shards

11-15

12
Oracle Sharding Reference

The following topics provide you with reference information to help you plan, configure,
deploy, and manage your Oracle Sharding sharded database configuration.

• Using GDSCTL with Oracle Sharding
Several of the Global Data Services GDSCTL commands are used for setting up
and deploying an Oracle Sharding configuration. Learn how to use the GDSCTL
command-line tool and the Oracle Sharding-related GDSCTL commands in the
following topics.

• SHARDED_TABLE_FAMILIES
The SHARDED_TABLE_FAMILIES public view shows all sharded tables and the
corresponding root table and schema names.

Using GDSCTL with Oracle Sharding
Several of the Global Data Services GDSCTL commands are used for setting up
and deploying an Oracle Sharding configuration. Learn how to use the GDSCTL
command-line tool and the Oracle Sharding-related GDSCTL commands in the
following topics.

• GDSCTL Operation
Learn how to start GDSCTL, run commands, and get command help text.

• GDSCTL Connections
Some GDSCTL commands require a connection to the shard catalog, and for
ceratin operations, GDSCTL must connect to a shard director.

• GDSCTL Commands Used with Oracle Sharding
A subset of GDSCTL commands is used with Oracle Sharding.

GDSCTL Operation
Learn how to start GDSCTL, run commands, and get command help text.

• Starting GDSCTL
To start GDSCTL, enter gdsctl at the operating system prompt.

• Running GDSCTL Commands Interactively
You can run GDSCTL commands interactively at either the operating system
prompt or the GDSCTL command prompt.

• Running GDSCTL Batch Operations
You can gather all the GDSCTL commands in one file and run them as a batch
with GDSCTL.

• GDSCTL Help Text
You can display help for GDSCTL and GDSCTL commands.

12-1

Starting GDSCTL
To start GDSCTL, enter gdsctl at the operating system prompt.

$ gdsctl

GDSCTL starts and displays the GDSCTL command prompt.

GDSCTL>

Running GDSCTL Commands Interactively
You can run GDSCTL commands interactively at either the operating system prompt or
the GDSCTL command prompt.

Run a GDSCTL command at the system prompt.

$ gdsctl add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Run a GDSCTL command at the GDSCTL command prompt.

GDSCTL> add gsm -gsm gsm1 -catalog 127.0.0.1:1521:db1

Both of these methods achieve the same result. The command syntax examples in
this document use the GDSCTL command prompt.

Running GDSCTL Batch Operations
You can gather all the GDSCTL commands in one file and run them as a batch with
GDSCTL.

The following command starts GDSCTL and runs the commands contained in the
specified script file.

$ gdsctl @script_file_name

GDSCTL Help Text
You can display help for GDSCTL and GDSCTL commands.

The GDSCTL HELP command displays a summary of all GDSCTL commands.

GDSCTL> help

If you specify a command name after HELP, then the help text for that command is
shown.

GDSCTL> help start gsm

Chapter 12
Using GDSCTL with Oracle Sharding

12-2

You can also use the -h option with any GDSCTL command to show the help text for
the specified command.

GDSCTL> start gsm -h

GDSCTL Connections
Some GDSCTL commands require a connection to the shard catalog, and for ceratin
operations, GDSCTL must connect to a shard director.

• GDSCTL Shard Catalog Connections
If you run GDSCTL commands that require a connection to the shard catalog,
then you must run the GDSCTL CONNECT command before the first command that
requires the connection.

• GDSCTL Shard Director Connections
For certain operations, GDSCTL must connect to a shard director, also known as
global service manager.

GDSCTL Shard Catalog Connections
If you run GDSCTL commands that require a connection to the shard catalog, then
you must run the GDSCTL CONNECT command before the first command that requires
the connection.

The CONNECT command only needs to be run once in a GDSCTL session.

GDSCTL uses Oracle Net Services to connect to the shard catalog database or
another database in the Oracle Sharding configuration. For these connections you
can run GDSCTL from any client or host that has the necessary network configuration.

Unless specified, GDSCTL resolves connect strings with the current name resolution
methods (such as TNSNAMES).

The GDSCTL operations that require a connection to a shard catalog are noted in the
usage notes for each command.

GDSCTL Shard Director Connections
For certain operations, GDSCTL must connect to a shard director, also known as
global service manager.

Unless specified, GDSCTL resolves connect strings with the current name resolution
methods (such as TNSNAMES). However, to resolve the shard director name,
GDSCTL queries the gsm.ora file.

To connect to a shard director, GDSCTL must be running on the same host as the
shard director. When connecting to a shard director, GDSCTL looks for the gsm.ora
file associated with the local shard director.

The following are the GDSCTL operations that require a connection to a shard
director.

• ADD GSM adds a shard director.

• START GSM starts the shard director.

Chapter 12
Using GDSCTL with Oracle Sharding

12-3

• STOP GSM stops the shard director.

• MODIFY GSM modifies the configuration parameters of the shard director.

• STATUS GSM returns the status of a shard director.

• SET INBOUND_CONNECT_LEVEL sets the INBOUND_CONNECT_LEVEL listener parameter.

• SET TRACE_LEVEL sets the trace level for the listener associated with the specified
shard director.

• SET OUTBOUND_CONNECT_LEVEL sets the timeout value for the outbound connections
for the listener associated with a specific shard director.

• SET LOG_LEVEL sets the log level for the listener associated with a specific shard
director.

GDSCTL Commands Used with Oracle Sharding
A subset of GDSCTL commands is used with Oracle Sharding.

• add cdb

• add credential

• add file

• add gsm

• add invitednode (add invitedsubnet)

• add region

• add service

• add shard

• add shardgroup

• add shardspace

• config

• config backup

• config cdb

• config chunks

• config credential

• config file

• config gsm

• config region

• config sdb

• config service

• config shard

• config shardgroup

• config shardspace

• config table family

• config vncr

Chapter 12
Using GDSCTL with Oracle Sharding

12-4

• configure

• connect

• create restorepoint

• create shard

• create shardcatalog

• delete backup

• delete catalog

• deploy

• disable backup

• disable service

• enable backup

• enable service

• list backup

• list restorepoint

• modify catalog

• modify cdb

• modify credential

• modify file

• modify gsm

• modify region

• modify service

• modify shard

• modify shardgroup

• modify shardspace

• move chunk

• relocate service

• recover shard

• remove cdb

• remove credential

• remove file

• remove gsm

• remove invitednode (remove invitedsubnet)

• remove region

• remove service

• remove shard

• remove shardgroup

• remove shardspace

Chapter 12
Using GDSCTL with Oracle Sharding

12-5

• restore backup

• run backup

• services

• set gsm

• set inbound_connect_level

• set log_level

• set outbound_connect_level

• set trace_level

• split chunck

• sql

• start gsm

• start service

• status backup

• status gsm

• status service

• stop gsm

• stop service

• sync schema (synchronize schema)

• validate backup

• validate catalog

SHARDED_TABLE_FAMILIES
The SHARDED_TABLE_FAMILIES public view shows all sharded tables and the
corresponding root table and schema names.

Column Data Type NULL Description

TABFAM_ID NUMBER This unique table
family identifier is a
numeric value and
each table family is
assigned a unique
number

ROOT_SCHEMA_NAME VARCHAR2(128) The schema owning
root (parent) table for
a table family

ROOT_TABLE_NAME VARCHAR2(128) The root (parent) table
name for a table family

SCHEMA_NAME VARCHAR2(128) The schema name for
tables

TABLE_NAME VARCHAR2(128) NOT NULL The table name

Chapter 12
SHARDED_TABLE_FAMILIES

12-6

Sample Output

The following is sample output from a query on the SHARDED_TABLE_FAMILIES view. In
this table family customers1 is root table, and orders1 and lineitems1 are the child
tables of customers1.

SQL> select * from SHARDED_TABLE_FAMILIES order by
TABFAM_ID,ROOT_SCHEMA_NAME,ROOT_TABLE_NAME,SCHEMA_NAME,TABLE_NAME;

 TABFAM_ID ROOT_SCHEMA_NAM ROOT_TABLE_NAME SCHEMA_NAM TABLE_NAME
---------- --------------- --------------- ---------- ---------------
 6 TESTUSER1 CUSTOMERS1 TESTUSER1 CUSTOMERS1
 6 TESTUSER1 CUSTOMERS1 TESTUSER1 LINEITEMS1
 6 TESTUSER1 CUSTOMERS1 TESTUSER1 ORDERS1

 10 TESTUSER1 CUSTOMERS2 TESTUSER1 CUSTOMERS2
 10 TESTUSER1 CUSTOMERS2 TESTUSER1 LINEITEMS2
 10 TESTUSER1 CUSTOMERS2 TESTUSER1 ORDERS2

 13 TESTUSER1 CUSTOMERS3 TESTUSER1 CUSTOMERS3
 13 TESTUSER1 CUSTOMERS3 TESTUSER1 LINEITEMS3
 13 TESTUSER1 CUSTOMERS3 TESTUSER1 ORDERS3

Chapter 12
SHARDED_TABLE_FAMILIES

12-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Oracle Sharding Overview
	What is Sharding
	About Oracle Sharding
	Oracle Sharding as Distributed Partitioning
	Benefits of Oracle Sharding
	Example Applications using Database Sharding
	Flexible Deployment Models
	High Availability in Oracle Sharding
	Sharding Methods
	Client Request Routing
	Query Execution
	High Speed Data Ingest
	Deployment Automation
	Migration Automation
	Lifecycle Management of Shards
	Federated Sharding
	What's New in Oracle Sharding 21c
	Where To Go From Here

	2 Oracle Sharding Architecture and Concepts
	Components of the Oracle Sharding Architecture
	Sharded Database and Shards
	Shard Catalog
	Shard Director
	Global Service

	Partitions, Tablespaces, and Chunks
	Tablespace Sets
	Sharding Methods
	System-Managed Sharding
	User-Defined Sharding
	Composite Sharding
	Using Subpartitions with Sharding

	Sharded Database Schema Objects
	Sharded Tables
	Sharded Table Family
	How a Table Family Is Sharded
	Designing Schemas With Multiple Table Families

	Duplicated Tables
	Non-Table Objects Created on All Shards

	Shard-Level High Availability
	About Sharding and Replication
	Using Oracle Data Guard with a Sharded Database
	Using Oracle GoldenGate with a Sharded Database

	Query Processing and the Query Coordinator
	Client Application Request Routing
	Management Interfaces for a Sharded Database

	3 Sharded Database Deployment
	Introduction to Sharded Database Deployment
	Planning Your Sharded Database Deployment
	Plan the Sharded Database Configuration
	Provision and Configure Hosts and Operating Systems
	Multi-Shard Query Coordinator Availability and Scalability

	Install the Oracle Database Software
	Install the Shard Director Software
	Create the Shard Catalog Database
	Create the Shard Databases
	Configure the Sharded Database Topology
	Create the Shard Catalog
	Add and Start Shard Directors
	Add Shardspaces If Needed
	Add Shardgoups If Needed
	Verify the Sharding Topology
	Add the Shard CDBs
	Add the Shard PDBs
	Add Host Metadata

	Deploy the Sharding Configuration
	Create and Start Global Database Services
	Verify Shard Status
	Example Sharded Database Deployment
	Example Sharded Database Topology
	Deploy the Example Sharded Database

	Automated Deployment Scripts
	Deploy a Sharded Database With Terraform

	Using Transparent Data Encryption with Oracle Sharding
	Creating a Single Encryption Key on All Shards

	4 Sharded Database Schema Design
	Sharded Database Schema Design Considerations
	Choosing Sharding Keys
	Primary Key and Foreign Key Constraints

	Indexes on Sharded Tables
	DDL Execution in a Sharded Database
	Creating Objects Locally and Globally
	DDL Syntax Extensions for Oracle Sharding
	CREATE TABLESPACE SET
	ALTER TABLESPACE SET
	DROP TABLESPACE SET and PURGE TABLESPACE SET
	CREATE TABLE
	ALTER TABLE
	ALTER SESSION

	PL/SQL Procedure Execution in a Sharded Database
	Creating Sharded Database Schema Objects
	Create an All-Shards User
	Creating a Sharded Table Family
	Creating Sharded Tables
	Creating Duplicated Tables
	Updating Duplicated Tables and Synchronizing Their Contents
	Non-Table Objects Created on All Shards

	Schema Creation Examples
	Create a System-Managed Sharded Database Schema
	Create a User-Defined Sharded Database Schema
	Create a Composite Sharded Database Schema

	Monitor DDL Execution and Verify Object Creation
	DDL Execution Failure and Recovery Examples
	Generating Unique Sequence Numbers Across Shards

	5 Using the Sharding Advisor
	About Sharding Advisor
	Run Sharding Advisor
	Run Sharding Advisor on a Non-Production System
	Review Sharding Advisor Output
	Choose a Sharding Advisor Recommended Configuration
	Sharding Advisor Usage and Options
	Sharding Advisor Output Tables
	SHARDINGADVISOR_CONFIGURATIONS Table
	SHARDINGADVISOR_CONFIGDETAILS Table
	SHARDINGADVISOR_QUERYTYPES Table

	Sharding Advisor Output Review SQL Examples
	Sharding Advisor Security

	6 Migrating to a Sharded Database
	Using Oracle Data Pump to Migrate to a Sharded Database
	Migrating a Schema to a Sharded Database
	Migrating the Sample Schema

	Migrating Data to a Sharded Database
	Loading the Sample Schema Data
	Migrating Data Without a Sharding Key

	Using External Tables to Load Data into a Sharded Database
	Loading Data into Duplicated Tables
	Loading Data into Sharded Tables

	7 Query and DML Execution
	How Database Requests are Routed to the Shards
	Routing Queries and DMLs Directly to Shards
	Routing Queries and DMLs by Proxy

	Connecting to the Query Coordinator
	Query Coordinator Operation
	Query Processing for Single-Shard Queries
	Query Processing for Multi-Shard Queries
	Specifying Consistency Levels in a Multi-Shard Query

	Supported Query Constructs and Example Query Shapes
	Queries on Sharded Tables Only
	Queries Involving Both Sharded and Duplicated Tables
	Aggregate Functions Supported by Oracle Sharding
	Queries with User-Defined Types
	Execution Plans for Proxy Routing

	Supported DMLs and Examples
	Limitations in Multi-Shard DML Support

	Gathering Optimizer Statistics on Sharded Tables

	8 Developing Applications for the Sharded Database
	Direct Routing to a Shard
	JDBC Sharding Data Source
	Sharding APIs Supporting Direct Routing
	Oracle JDBC APIs for Oracle Sharding
	Oracle Call Interface for Oracle Sharding
	Oracle Universal Connection Pool APIs for Oracle Sharding
	Oracle Data Provider for .NET APIs for Oracle Sharding

	Suitability for Sharding of Existing Applications

	9 Sharded Database Administration
	Managing the Sharding-Enabled Stack
	Starting Up the Sharding-Enabled Stack
	Shutting Down the Sharding-Enabled Stack

	Managing Oracle Sharding Database Users
	About the GSMUSER Account
	About the GSMROOTUSER Account

	Backing Up and Recovering a Sharded Database
	Prerequisites to Configuring Centralized Backup and Restore
	Configuring Automated Backups
	Enabling and Disabling Automated Backups
	Backup Job Operation
	Monitoring Backup Status
	Viewing an Existing Backup Configuration
	Running On-Demand Backups
	Viewing Backup Job Status
	Listing Backups
	Validating Backups
	Deleting Backups
	Creating and Listing Global Restore Points
	Restoring From Backup

	Monitoring a Sharded Database
	Monitoring a Sharded Database with GDSCTL
	Monitoring a Sharded Database with Enterprise Manager Cloud Control
	Discovering Sharded Database Components

	Querying System Objects Across Shards

	Propagation of Parameter Settings Across Shards
	Modifying a Sharded Database Schema
	Managing Sharded Database Software Versions
	Patching and Upgrading a Sharded Database
	Upgrading Sharded Database Components
	Downgrading a Sharded Database
	Compatibility and Migration from Oracle Database 18c

	Shard Management
	About Adding Shards
	Resharding and Hot Spot Elimination
	Removing a Shard From the Pool
	Adding Standby Shards
	Managing Shards with Oracle Enterprise Manager Cloud Control
	Validating a Shard
	Adding Primary Shards
	Adding Standby Shards
	Deploying Shards

	Managing Shards with GDSCTL
	Validating a Shard
	Adding Shards to a System-Managed SDB
	Replacing a Shard

	Migrating a Non-PDB Shard to a PDB

	Chunk Management
	About Moving Chunks
	Moving Chunks
	About Splitting Chunks
	Splitting Chunks

	Shard Director Management
	Creating a Shard Director
	Editing a Shard Director Configuration
	Removing a Shard Director

	Region Management
	Creating a Region
	Editing a Region Configuration
	Removing a Region

	Shardspace Management
	Creating a Shardspace
	Adding a Shardspace to a Composite Sharded Database

	Shardgroup Management
	Creating a Shardgroup

	Services Management
	Creating a Service

	10 Troubleshooting Oracle Sharding
	Oracle Sharding Tracing and Debug Information
	Enabling Tracing for Oracle Sharding
	Where to Find Oracle Sharding Alert Logs and Trace Files

	Common Error Patterns and Resolutions for Sharded Databases
	Issues Starting Remote Scheduler Agent
	Shard Director Fails to Start
	Errors From Shards Created with CREATE SHARD
	Issues Using Create Shard
	Issues Using Deploy Command
	Issues Moving Chunks

	11 Oracle Sharding Solutions
	Combine Existing Non-Sharded Databases into a Federated Sharded Database
	Overview
	About Federated Sharding
	Federated Sharding Schema Requirements
	Sharded and Duplicated Tables in a Federated Sharding Configuration
	Limitations to Federated Sharding
	Federated Sharding Security

	Creating and Deploying a Federated Sharding Configuration
	Create the Federated Sharding Configuration
	Retrieve, Inspect, and Apply the DDLs
	Convert Tables to Duplicated Tables
	Prepare the Shards For Multi-Shard Queries

	Federated Sharding Reference
	SYNC SCHEMA Operations
	DDL Synchronization
	Import Users
	Grant User Roles and Priviledges
	Import Object Definitions
	Schema Object Comparison
	Differences in Tables
	Differences in Views
	Differences in Constraints
	Differences in Object Types

	Troubleshooting Federated Sharding

	Creating Affinity Between Middle-Tier and Shards

	12 Oracle Sharding Reference
	Using GDSCTL with Oracle Sharding
	GDSCTL Operation
	Starting GDSCTL
	Running GDSCTL Commands Interactively
	Running GDSCTL Batch Operations
	GDSCTL Help Text

	GDSCTL Connections
	GDSCTL Shard Catalog Connections
	GDSCTL Shard Director Connections

	GDSCTL Commands Used with Oracle Sharding

	SHARDED_TABLE_FAMILIES

