
Oracle® JDBC for Rdb

Release Notes

August 2011

Release 7.3.0.2

Oracle JDBC for Rdb Release Notes, Release 7.3.0.2

Copyright © 2005, 2011 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain

proprietary information of Oracle Corporation; they are provided under a license

agreement containing restrictions on use and disclosure and are also protected by

copyright, patent, and other intellectual and industrial property laws. Reverse

engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If

you find any problems in the documentation, please report them to us in writing.

Oracle Corporation does not warrant that this document is error free. Except as may

be expressly permitted in your license agreement for these Programs, no part of these

Programs may be reproduced or transmitted in any form or by any means, electronic

or mechanical, for any purpose, without the express written permission of Oracle

Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the

Programs on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related

documentation and technical data delivered to U.S. Government customers are

"commercial technical data" pursuant to the applicable Federal Acquisition

Regulation and agency-specific supplemental regulations. As such, use, duplication,

disclosure, modification, and adaptation of the Programs, including documentation

and technical data, shall be subject to the licensing restrictions set forth in the

applicable Oracle license agreement, and, to the extent applicable, the additional

rights set forth in FAR 52.227-19, Commercial Computer Software - Restricted

Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA

94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical,

or other inherently dangerous applications. It shall be the licensee's responsibility to

take all appropriate fail-safe, back up, redundancy and other measures to ensure the

2

safe use of such applications if the Programs are used for such purposes, and Oracle

Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation. All other company or product

names mentioned are used for identification purposes only and may be trademarks of

their respective owners.

The Programs may provide links to Web sites and access to content, products, and

services from third parties. Oracle is not responsible for the availability of, or any

content provided on, third-party Web sites. You bear all risks associated with the use

of such content. If you choose to purchase any products or services from a third party,

the relationship is directly between you and the third party. Oracle is not responsible

for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms

of the agreement with the third party, including delivery of products or services and

warranty obligations related to purchased products or services. Oracle is not

responsible for any loss or damage of any sort that you may incur from dealing with

any third party.

3

Contents
Preface... 7

Purpose of This Manual .. 7
Intended Audience .. 7

Document Structure .. 7
1.1 Conventions .. 7

Chapter 1 Installation and Documentation .. 9
1.1 Accessing the Documentation... 9
1.2 System and Software Requirements ... 10

1.3 Installation... 11
1.3.1 Remove prior BETA versions of V7.3 Oracle JDBC for Rdb. 11
1.3.2 Contents of the Oracle JDBC for Rdb Kit ... 12

1.3.3 Installation Procedure .. 14
1.3.4 Rdb Thin driver software on Windows .. 17
1.3.5 Rdb Thin driver software on Other operating systems 18

Chapter 2 Enhancements Provided in Oracle JDBC for Rdb Release 7.3.0.2 19
2.1 Server Network Keep Alive .. 19

Chapter 3 Problems Corrected ... 20

3.1 Null pointer Exception during Server viability check by Pool Server.................... 20
3.2 MINUS and INTERSECT problem .. 20

3.3 Memory Leak when Executor Process fails to Run .. 21
3.4 Lost Executor not caught by MultiProcess Server .. 21
3.5 MultiProcess Native driver problem ... 21

3.6 PreparedStatement.getGeneratedKeys() problem. .. 21
Chapter 4 Known Problems and Workarounds ... 23

4.1 Thin Server deadlocks... 23
4.2 Using Java Fast VM on OpenVMS .. 23

4.3 Using the Oracle SQL/Services Management GUI and JDBC Dispatchers 24
4.4 Blob Columns and Correlation names .. 24

4.5 Blob Columns and Update Statements ... 25
4.6 Limitations .. 25

Chapter 5 New Features and Corrections in Previous Releases 28
5.1 New Features for Release 7.3.0.1 ... 28

5.1.1 Reopen Server Log files using Poll subcommand. .. 28

5.2 Corrections in Release 7.3.0.1 .. 28
5.2.1 Show Clients not Showing Column Names. .. 28
5.2.2 Batched Statement Fails with MULTIPLE_RECORDS Exception. 29
5.2.3 Incompatibility between V7.3 Thin driver and Pre-V7.3 Servers. 30

5.2.4 Global Memory leak when Executors are run-down. 30
5.2.5 Autorestart on Pooled Servers not Working. ... 31
5.2.6 setFetchSize() hint ignored by PreparedStatement .. 32

5.2.7 Missing Stmt Exception on Subsequent Execution of PreparedStatement 32
5.2.8 EOFException on READ_ROW with nested statements 33
5.2.9 DatabaseMetaData.getUDTs() ... 34

5.2.10 Using Multiprocess with the JDBC Native Driver .. 34

../V71400/jdbc_rn_7142_profile_contents.html

4

5.2.11 Prepared Statement not Closing underlying Cursor....................................... 35

5.2.12 Release Statement synchronization problem ... 35
5.2.13 Unitialized SQLCA block in MP server .. 36
5.2.14 Controller SHOW CLIENTS and MP Server problem.................................. 36

5.2.15 Documentation Error – Record Streaming .. 37
5.2.16 ResultSet.updateRow() and ResultSet.deleteRow() problem 37
5.2.17 Problem using column renaming with dbkey. ... 37
5.2.18 Class cast error on Scaled integer Retrieval after ResultSet.insertRow() 38
5.2.19 ResultSet.deleteRow() behaviour change. ... 39

5.2.20 Underlying Blob handles not released when using ResultSet.getBlob() 40
5.2.21 Sequence values not visible to ResultSet get methods using column name. . 41
5.2.22 Server Matching Exception may Stop Poll handling 43

5.3 New Features for Release 7.3 ... 44
5.3.1 Shutdown Thread ... 44

5.3.2 Driver.attach() .. 44

5.3.3 Returning List of Known Databases .. 44
5.3.4 Controller Enhancements ... 44

5.3.5 RDB_EXT.JAR file ... 45
5.3.6 Performance Enhancements ... 46

5.4 Corrections in Release 7.3 .. 48

5.4.1 Server startup failure when using CFG file ... 48
5.4.2 AccessViolation on disconnect when Inserting Blobs 48

5.4.3 PreparedStatement and Parameter Markers Known Problem now Resolved .. 48
5.4.4 Controller SHOW CLIENTS and MP Server problem 49
5.4.5 Possible memory leak when updating Blob columns 50

5.4.6 Access Violation with trace and Network Dump .. 50
5.4.7 Named Input Parameters not working with CallableStatements 51

5.5 New Features for Release 7.2.5.5 ... 52
5.6 Corrections in Release 7.2.5.5 .. 52

5.6.1 Long-running Query Holds up New Connections in MP Server 52
5.7 New Features for Release 7.2.5.4 ... 53

5.8 Corrections in Release 7.2.5.4 .. 53
5.8.1 Access Violation at Java_rdb_JNI_SetStrVal. .. 53

5.8.2 DCL Command Line Too Long ... 54
5.8.3 Access Violation during DriverManager.getConnection() when Database

Specification is Missing .. 54
5.8.4 Unaligned memory faults on IA64 .. 55
5.8.5 Read-Only Transactions not Enforced on Connection Switch 56

5.8.6 Sockets not Correctly Closing on OpenVMS Clients causing Accumulation of

Mailboxes .. 56

5.8.7 Cast problem when Converting String to Date/Time 57
5.9 New Features for Release 7.2.5.3 ... 58
5.10 Corrections in Release 7.2.5.3 .. 58

5.10.1 Interaction of DatabaseMetaData methods with Blobs may Crash the Thin

Server .. 58

5

5.10.2 BigDecimal scaling Incorrect when used with PreparedStatement SetObject()

Methods... 59
5.10.3 Connection.nativeSQL() method throws Null Pointer Exception. 59
5.10.4 Calling Resultset.isLast() method May Change Transaction Behavior 59

5.11 New Features for Release 7.2.5.2 ... 60
5.11.1 DEC_KANJI and DEC_HANZI Support Enabled .. 60

5.12 Corrections in Release 7.2.5.2 .. 60
5.12.1 ResultSet.getBigDecimal() not working with system ResultSets 60
5.12.2 Setting TraceLevel fails when using Hexadecimal Notation. 61

5.12.3 Delimited Identifier Problem in AS clause of Select Statement. 61
5.12.4 Configuration file problem in "DEFAULT" Server definition. 61
5.12.5 Pool Server May choose Incompatible Pooled Server when User Restriction

Enabled. .. 62
5.12.6 Potential problem when dumping SQLDA in trace. 63

5.12.7 Connection.getCatalog() returns wrong value for single Schema Databases 63

5.12.8 Potential memory leak with Views .. 63
5.13 New Features for Release 7.2.5.1 ... 64

5.13.1 SQLDA dumping ... 64
5.13.2 failSAFE IP with Pool Servers .. 64
5.13.3 HandshakeTries and HandshakeWait on Multiprocess Native Connections . 64

5.13.4 Server Access Security Enhancements .. 65
5.13.5 Restriction on using Multiple Blob fields in Join now removed. 65

5.14 Corrections in Release 7.2.5.1 .. 66
5.14.1 Incorrect row number returned after ResultSet.getLast() call. 66
5.14.2 Pool Server startup of Pooled Servers may fail when Persona is used. 67

5.14.3 Last Column in Select List may be Inaccessible in Some Queries. 67
5.14.4 Abnormal Client Termination may Prevent Executor Re-use. 68

5.14.5 Decimal Column Problem with Native Driver .. 68
5.14.6 'EFN xx is not available' Message on Executor startup. 69

5.14.7 Extraneous log message during Auto-restart check by Pool Server. 69
5.14.8 Logfile not correctly set for servers started using the Controller. 69

5.15 New Features for Release 7.2.5 .. 70
5.15.1 Persona ... 70

5.16 Corrections in Release 7.2.5 ... 70
5.16.1 Incorrect SQLSRV_JDBC_SERVER_STARTUP72 Installed with V7.2-41

Oracle JDBC for Rdb kit... 70
5.16.2 Multi-Process Server May Show Continuous DIO Activity Even When Idle71
5.16.3 Client idleTimeout Does Not Work for Prestarted and Reused Executors 71

5.16.4 Syntax Error in Query Generated for DatabaseMetaData.getTables 71
5.16.5 Show Clients in Controller may Crash Connected Thin Server 72

5.17 New Features for Release 7.2.4.1 ... 73
5.17.1 Client and Server Timeout Feature .. 73
5.17.2 Executor Name Prefix .. 73

5.18 Corrections in Release 7.2.4.1 .. 73
5.18.1 Release Notes Specify Incorrect Installation Directory for

RDBJDBCCFG.XML ... 73

6

5.18.2 Persona Not Handled Correctly by the Multi-Process and Pool Servers 74

5.18.3 Multi-Process Server / Executor Handshake Timeout May Be Too Short on

Heavily Loaded Systems... 74
5.18.4 Problems with srv.idleTimeout and srv.bindTimout Configuration Variables

and Their Use with SSL servers.. 75
5.18.5 IA64 Problem Causes Array Out of Bounds Exception When Handling String

Indexing .. 76
5.18.6 Comments within SQL Text Not Handled Correctly 76
5.18.7 Prepared Statements May Cause a Memory Leak with Multi-Process Servers

... 77
5.19 Corrections in Release 7.2.4 ... 78

5.19.1 Maximum Size of Single Data Row Increased to 65,272 Octets 78
5.19.2 Another Connection Overlap Window Found with Pool Servers 78
5.19.3 SSL Server Information Not Correctly Set from XML-Formatted

Configuration File ... 78

7

Preface

Purpose of This Manual

The Oracle JDBC for Rdb 7.3.0.2 release notes summarize new features, corrections

to software, restrictions, workarounds, and problems. They also include new features

and corrections provided in releases 7.2.4 through 7.3.0.1. These release notes cover

Oracle JDBC for Rdb for OpenVMS on both Alpha and Integrity Servers.

Intended Audience

This document is intended for users responsible for:

 System management

 Database administration

 Application programming

Document Structure

This document consists of five chapters:

Chapter 1 Describes location of documents and installation directions

Chapter 2 Describes new features and technical changes in this release

Chapter 3 Describes corrected software errors in this release

Chapter 4 Describes known problems, restrictions, and workarounds

Chapter 5
Describes new features and corrected software errors in

releases 7.2.4 through 7.3.0.1

1.1 Conventions

Oracle JDBC for Rdb is often referred to as JDBC.

Hewlett-Packard Company is often referred to as HP.

8

The following conventions are used in this document:

word
A lowercase word in a format example indicates a syntax

element that you supply.

[]
Brackets enclose optional clauses from which you can choose

one or none.

{ }
Braces enclose clauses from which you must choose one

alternative.

... A horizontal ellipsis means you can repeat the previous item.

.

.

.

A vertical ellipsis in an example means that information not

directly related to the example has been omitted.

▲contents

9

Chapter 1 Installation and

Documentation

This chapter contains installation and documentation information for Oracle JDBC

for Rdb release 7.3.0.2

1.1 Accessing the Documentation

You can extract release notes or an Oracle JDBC for Rdb document from the PCSI kit

prior to installation by following one of these procedures:

 To extract a copy of the release notes, define PCSI$SOURCE to point to the

location (device name and directory) of the PCSI kit. Then, enter the PRODUCT

EXTRACT RELEASE_NOTES command followed by the product name at the DCL

prompt.

$ DEFINE PCSI$SOURCE DKA400:[KITS]

$ PRODUCT EXTRACT RELEASE_NOTES RDBJDBC73

 To extract a list of files contained in a software product kit, define

PCSI$SOURCE to point to the location (device name and directory) of the PCSI kit.

Then, enter the PRODUCT LIST command followed by the product name at the DCL

prompt.

$ DEFINE PCSI$SOURCE DKA400:[KITS]

$ PRODUCT LIST RDBJDBC73

 To extract a specified file, define PCSI$SOURCE to point to the location (device

name and directory) of the PCSI kit. Then, enter the PRODUCT EXTRACT FILE

command followed by the product name and file name at the DCL prompt.

$ DEFINE PCSI$SOURCE DKA400:[KITS]

$ PRODUCT EXTRACT FILE RDBJDBC73/SELECT=filename.ext

The Oracle JDBC for Rdb documentation is also available on My Oracle Support and

OTN.

The installation procedure copies the Oracle JDBC for Rdb release notes to the

SYS$HELP directory.

10

1.2 System and Software Requirements

Oracle JDBC for Rdb requires the following software products to be installed:

Software
Minimum Version

Alpha Integrity

HP OpenVMS V8.2 V8.2-1

HP Java
tm

SDK/RTE
V5.0-1

(1.5.0-1)

V5.0-1

(1.5.0-1)

Oracle Rdb V7.2.1 V7.2.1

On the client side, you must install the following software product in order to use the

Oracle JDBC for Rdb Thin driver:

Software Minimum Version

Java
tm

SDK/RTE V1.5.0-1

In addition, if you need to start and stop Oracle JDBC for Rdb servers using Oracle

SQL/Services, the following product must be installed:

Software
Minimum Version

Alpha Integrity

Oracle

SQL/Services
V7.1.6 V7.2

Please note: the minimum version of Java required has changed. JDK 5.0 is

now the minimum SDK/RTE version supported on all platforms for both server

and client Oracle JDBC for Rdb components

Detailed information about installing Hewlett-Packard Java for OpenVMS system

may be found at the following web site:

http://www.hp.com/java.

Documentation for HP's Java for OpenVMS system may be found at the following

web sites:

http://www.hp.com/java

11

http://www.compaq.com/java/documentation/index.html - Java 2.

http://h18012.www1.hp.com/java/documentation/index.html

In line with HP recommendations for Java applications, Oracle recommends the

following minimum quota setting on accounts used to start up Thin servers, in

particular those used to start Multi-process servers.

UAF Fillm 4096

Channelcnt 4096

Wsdef 2048

Wsquo 4096

Wsextent and Wsmax 16384

Pgflquo 1500000

bytlm 1000000

biolm 150

diolm 150

tqelm 100

Be sure to set your systems quotas appropriately to accommodate these process

quotas.

See the Java for OpenVMS release notes for more information on OpenVMS quotas

and resources required by Java.

Also refer to your Oracle Rdb documentation for recommendations on OpenVMS

quotas required for Oracle Rdb.

1.3 Installation

This section describes how to install Oracle JDBC for Rdb and includes a sample log.

1.3.1 Remove prior BETA versions of V7.3 Oracle JDBC for Rdb.

If you were participating in a BETA trial of V7.3.x Oracle JDBC for Rdb then you

must remove any previously installed BETA kits before proceeding with the

installation of this release.

Failure to remove previous V7.3.x kits may prevent Oracle JDBC for Rdb from

functioning correctly. In particular, several changes have been made to the

client/server communication protocol during the life of the V7.3 BETA that may

http://www.compaq.com/java/documentation/index.html#Java 2
http://h18012.www1.hp.com/java/documentation/index.html

12

cause connection failures if V7.3 BETA thin driver jars are used to connect to a V7.3

server or vice-versa.

In addition, ensure that all deployed copies of the V7.3 BETA rdbThin.jar are

replaced. If not, connection failures may result in the applications using these BETA

driver jars.

1.3.2 Contents of the Oracle JDBC for Rdb Kit

The Oracle JDBC for Rdb kit uses OpenVMS Polycenter to simplify the installation

of the product. Please refer to your OpenVMS documentation on the use of

OpenVMS Polycenter.

The Oracle JDBC for Rdb kit product installation file is named ORCL-pppVMS-

RDBJDBC73-V0703-xxxxxx-1.PCSI where ppp will be the platform and xxxxxx

will be the build instance of this kit, for example:

 ORCL-AXPVMS-RDBJDBC73-V0703-0V0A18-1.PCSI

or

 ORCL-I64VMS-RDBJDBC73-V0703-0V0A18-1.PCSI

The installation file is located in the RDBJDBC directory of the Rdb Software

distribution CD. If you obtained the Oracle JDBC for Rdb kit from the Web, the

installation file is contained in the RDBJDBCV73xxxxx.ZIP file, where xxxxx refers

to the build instance of the kit.

The installation kit is comprised of the following files:

BUILD_CERTS.COM

Command procedure example

of building certificates for

SSL

OracleJDBCForRdbClient73000.msi

Microsoft Installer file for

client-side software

installation on Windows

RDBJDBCCHECKUP.CLASS
Use to verify the installation

of this kit

RDBJDBCCHECKUP.JAVA
Use to verify the installation

of this kit

RDBJDBCEXEC73.EXE
Executor image in conjunction

with a Multi-process server

RDBJDBCCFG.XML
Example XML formatted

configuration file

RDBJDBCSHR73.EXE Shared image required for

13

Oracle Rdb database access

RDBJDBCMPSHR73.EXE

Shared image required for

Multi-process Oracle Rdb

database access

RDBJDBC_EXECCLI.COM
CLI helper command

procedure

RDBJDBC_INSTALL.COM

Installation command

procedure used by Polycenter

during installation

RDBJDBC_STARTEXEC.COM

Command procedure used by

Oracle JDBC for Rdb Multi-

process server to start up an

executor process

RDBJDBC_STARTSRV.COM

Command procedure used

when Oracle JDBC for Rdb

servers are started up from the

Oracle JDBC for Rdb

controller

RDB_EXT.JAR

Java Jar file containing classes

and java code for extensions

to Oracle JDBC for Rdb

RDBNATIVE.JAR

Java Jar file containing the

classes for the Oracle JDBC

for Rdb native driver

RDBTHIN.JAR

Java Jar file containing the

classes for the Oracle JDBC

for Rdb Thin driver

RDBTHINSRV.JAR

Java Jar file containing the

classes for the Oracle JDBC

for Rdb servers

RDBTHINCONTROL.JAR

Java Jar file containing the

classes for the Oracle JDBC

for Rdb controller

RDBTHINSRVPOOL.JAR

Java Jar file containing the

classes for the Oracle JDBC

for Rdb Pool server

RDBJDBC_<version>_RELNOTES.PDF
Oracle JDBC for Rdb Release

Notes

RDBJDBC_<version>.RELEASE_NOTES
Text version of Oracle JDBC

for Rdb Release Notes

RDBJDBC_USERGUIDE.PDF User guide

14

SQLSRV_JDBC_SERVER_STARTUP*.COM

Command procedures used by

Oracle SQL/Services to start

up an Oracle JDBC for Rdb

server

Note

The HTML version of the user guide and release notes are no longer supplied.

1.3.3 Installation Procedure

Follow these steps to install the Oracle JDBC for Rdb kit:

1. If you obtained the kit in ZIP format, restore the kit file to a temporary directory:

$ unzip RDBJDBCV73xxxx.ZIP -d MY_DIR

This will unzip the Polycenter kit for Oracle JDBC for Rdb and you will have access

to the PCSI file, ORCL-pppVMS-RDBJDBC73-V0703-xxxxxx-1.PCSI, where ppp is

the platform and xxxxxx is the build instance of this kit.

2. Use the Polycenter PRODUCT command to install the kit.

Details of the version of the kit will be displayed and you will be asked if you want to

proceed. The following examples of installation on an ALPHA system assume the kit

build instance is 0V0A18, and that the directory where the PCSI file can be found is

MY_DIR.

$ PRODUCT INSTALL RDBJDBC73/SOURCE=MY_DIR

The following product has been selected:

 ORCL AXPVMS RDBJDBC73 V7.3-0V0A18 Layered Product

[Installed]

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected

product and for any products that may be installed to satisfy

software dependency requirements.

ORCL AXPVMS RDBJDBC73 V7.3-0V0A18: Oracle JDBC for Rdb

 Copyright © 1995, 2010,Oracle Corporation. All Rights Reserved.

15

This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:

 ORCL AXPVMS RDBJDBC73 V7.3-0V0A18

DISK$AXPVMSSYS:[VMS$COMMON.]

Portion done: 0%...10%...30%...40%...50%...60%...70%...80%...90%

Oracle JDBC for Rdb has been successfully installed in :

DISK$AXPVMSSYS:[SYS1.SYSCOMMON.rdb$jdbc.0703-0V0A18]

To help you setup the required logical names, a file named

 RDBJDBC_STARTUP.COM has been added to this installation directory

RDBJDBC_STARTUP.COM:

$! Oracle JDBC for Rdb startup command procedure

$!

$ DEFINE/SYSTEM RDB$JDBC_HOME -

DISK$AXPVMSSYS:[SYS1.SYSCOMMON.rdb$jdbc.0703-0V0A18]

$ DEFINE/SYSTEM RDB$JDBC_LOGS -

DISK$AXPVMSSYS:[SYS1.SYSCOMMON.rdb$jdbc.logs]

$ DEFINE/SYSTEM RDB$JDBC_COM -

DISK$AXPVMSSYS:[SYS1.SYSCOMMON.rdb$jdbc.com]

$ DEFINE/SYSTEM RDBJDBCSHR RDB$JDBC_HOME:RDBJDBCSHR73.EXE

$ DEFINE/SYSTEM RDBJDBCMPSHR RDB$JDBC_HOME:RDBJDBCMPSHR73.EXE

$ DEFINE/SYSTEM RDBJDBCEXEC RDB$JDBC_HOME:RDBJDBCEXEC73.EXE

...100%

The following product has been installed:

 ORCL AXPVMS RDBJDBC73 V7.3-0V0A18 Layered Product

The installation procedure will copy all the kit files to the appropriate Oracle JDBC

for Rdb product directory in the sys$common:[rdb$jdbc] directory.

If they are not already present, the installation procedure will create two new

directories, sys$common:[rdb$jdbc.logs] and sys$common:[rdb$jdbc.com]. If an

rdbjdbccfg.xml file is not already present in the sys$common:[rdb$jdbc] directory,

the installation procedure will copy the one included in the installation there.

$ dir sys$common:[rdb$jdbc]/col=1

Directory SYS$COMMON:[RDB$JDBC]

0703-0V0A18.DIR;1

COM.DIR;1

LOGS.DIR;1

16

In addition, the command procedures SQLSRV_JDBC_SERVER_STARTUP*.COM

will be copied to the system specific SYS$MANAGER directory.

3. Use the command procedure RDBJDBC_STARTUP.COM found in the Oracle

JDBC for Rdb product installation directory to define the required system logical

names:

RDB$JDBC_HOME to point to the installation home

$ define/system RDB$JDBC_HOME SYS$COMMON:[RDB$JDBC.0703-0V0A18]

RDB$JDBC_LOGS to point to the Oracle JDBC for Rdb log directory

$ define/system RDB$JDBC_LOGS SYS$COMMON:[RDB$JDBC.LOGS]

RDB$JDBC_COM to point to the Oracle JDBC for Rdb command directory

$ define/system RDB$JDBC_COM SYS$COMMON:[RDB$JDBC.COM]

RDBJDBCSHR to point to the shared image RDBJDBCSHR73.EXE.

$ define/system RDBJDBCSHR –

SYS$COMMON:[RDB$JDBC.0703-0V0A18]RDBJDBCSHR73.EXE

RDBJDBCMPSHR to point to the shared image RDBJDBCMPSHR73.EXE.

$ define/system RDBJDBCMPSHR –

SYS$COMMON:[RDB$JDBC.0703-0V0A18]RDBJDBCMPSHR73.EXE

RDBJDBCEXEC to point to the shared image RDBJDBCEXEC73.EXE.

$ define/system RDBJDBCEXEC –

SYS$COMMON:[RDB$JDBC.0703-0V0A18]RDBJDBCEXEC73.EXE

You must define the RDB$JDBC_HOME logical name if you want to use a Thin

Multi-process server or use the Thin controller or Pool servers to start server

processes.

4. Include the rdbnative.jar and rdbthin.jar files in your Java CLASSPATH by using

either the logical names CLASSPATH or JAVA$CLASSPATH or the -classpath

option on the Java command line:

17

$ define JAVA$CLASSPATH -

[],RDB$JDBC_HOME:RDBNATIVE.JAR,RDB$JDBC_HOME:RDBTHIN.JAR

5. Test your installation using the "RdbJdbcCheckup" Java class in the

RDBJDBCCHECKUP.CLASS file. During the installation

RDBJDBCCHECKUP.CLASS is copied to RDB$JDBC_HOME.

Copy this file to your default directory and then you can invoke it using Java.

You will be prompted for a username and password and an Oracle Rdb database to

test the installation against. If the test succeeds, the text "Your JDBC installation is

correct." is displayed.

$ java "RdbJdbcCheckup"

Please enter information to test connection to the database

user: my_username

password: my_password

database: my_db_dir:personnel

Connecting to the database...Connecting

connected.

Hello World

Your JDBC installation is correct.

$

Test the Thin server by using the following commands:

$spawn/nowait/proc=rdbthinsrvtest java -jar rdbthinsrv.jar

$java "RdbJdbcCheckup" "-t"

Please enter information to test connection to the database

user: my_username

password: my_password

database: my_db_dir:personnel

Connecting to the database...Connecting...

connected.

Hello World

Your JDBC installation is correct.

$stop rdbthinsrvtest

Note

Because Java is a case-sensitive language, it is important to specify class

and method names exactly as they are described in the various APIs. By

default, the OpenVMS operating system uppercases command line

parameters unless you surround them with double quotation marks.

1.3.4 Rdb Thin driver software on Windows

If you are developing or deploying Windows applications that use the Oracle JDBC

for Rdb thin driver, you will have to copy the provided RdbThin.jar file to each

18

of the Windows systems you will be using. In addition you should consult your

application , IDE or Microsoft Windows software guides to determine how to let the

application or development environment know where the Rdb thin driver jar can be

found.

In order to facilitate installation of the Rdb thin driver on your Windows client

systems, included in the Oracle JDBC for Rdb installation kit is a Microsoft Software

Installation image, OracleJDBCForRdbClient73000.msi that may be used

on your client Windows systems to install the RdbThin and the RdbThinController

jars.

Once this file has been copied to your Windows system, double-click the filename to

invoke the Microsoft installer, and then follow the directions provided by the

installation Wizard.

This installation will place a copy of the RdbThin and RdbThinController jars as well

as the current JDBC documentation into the designated installation directory on your

Windows system.

In addition, pointers to the uninstall procedure, the Rdb Thin Controller shortcut and

documentation will be added to your Program Menu.

1.3.5 Rdb Thin driver software on Other operating systems

If you are developing or deploying applications that use the Oracle JDBC for Rdb

thin driver, you will have to copy the provided RdbThin.jar file to each of the

systems you will be using.

You should consult your application, IDE or operating system software guides to

determine how to let the application or development environment know where the

Rdb thin driver jar can be found.

▲contents

19

Chapter 2 Enhancements Provided in

Oracle JDBC for Rdb Release 7.3.0.2

This chapter describes new and changed features in Oracle JDBC for Rdb release

7.3.0.2.

2.1 Server Network Keep Alive

The ability to set SO_KEEPPALIVE on the socket used on client–side to

communicate with a server has been available for a number of releases. This release

introduces the same feature on the server-side socket used to communicate back to

the client.

See srv.networkKeepAlive in the Server Configuration Options section of

your Oracle JDBC for Rdb User guide for more information.

▲contents

20

Chapter 3
Problems Corrected

This chapter describes software errors corrected in Oracle JDBC for Rdb release

7.3.0.2

3.1 Null pointer Exception during Server viability

check by Pool Server

Fixed in Instance Build 20110223

When the Pool server checks to see if a pooled server is available and has a free client

slot, it is possible that a problem in a disconnect code feature that was added for the

V7.3 version upgrade may cause a NullPointerException to be raised by the

pooled server.

The pooled server recovers from this exception, but an entry showing the exception is

written to the server log.

This has now been fixed.

3.2 MINUS and INTERSECT problem

Fixed in Instance Build 20110303

The use of the set operators MINUS and INTERSECT may cause the JDBC SQL

parser to incorrectly allocate dbkey and alias variables within the compound

statement which may raise SQL syntex errors when the statement is compiled by Rdb.

For example, an SQL syntax error will be raised by the following simple query:

 select * from employees MINUS select * from employees;

SQLException: in <rdbjdbcsrv:prepare_stmt>

F-RELNOTDEF, Table MINUS is not defined in database or schema:42000

This has now been fixed.

21

3.3 Memory Leak when Executor Process fails to Run

Fixed in Instance Build 20110419

A small memory leak has been found in the MP Server when the server attempts to

start a new executor process but fails due to a System or a resource problem. An

example of a resource limitation may be insufficient process slots for the additional

executor process.

The MP Server correctly signals the exception however it then fails to recover a small

amount of memory (157 bytes) which may cause process memory depletion if this

situation is repeated many times within the life-time of the server.

This has now been fixed.

3.4 Lost Executor not caught by MultiProcess Server

Fixed in Instance Build 20110623

If an executor process terminates unexpectedly while still connected to an active

connection, its is possible that the MultiProcess server parent process may not get

notification of the terminations and will wait indefinitely for the executor process to

respond.

 This has now been fixed.

3.5 MultiProcess Native driver problem

Fixed in Instance Build 20110623

During the creation of connection contextes when using the MultiProcess feature of

the Native driver , the driver did not adequately synchronize the connect operation.

This may result in unexpected and incorrect behaviour during connection if multiple

threads are concurrently trying to connect to databases within the same process.

 This has now been fixed.

3.6 PreparedStatement.getGeneratedKeys() problem.

Fixed in Instance Build 20110712

On the second or subsequent execution of a PreparedStatement, the call to the method

getGeneratedKeys() will fail with the following exception:

22

 oracle.rdb.jdbc.common.RdbException: Closed Resultset

This has now been fixed.

▲contents

23

Chapter 4
Known Problems and Workarounds

This chapter describes known problems, restrictions, and workarounds for Oracle

JDBC for Rdb release 7.3.0.2

4.1 Thin Server deadlocks

When using a thin server, the Rdb database environment and binds are within the

OpenVMS process context of the server process.

When multiple clients attach to database using the same server, each client is

allocated its own thread and has its own connection context within Rdb, but from the

Rdb engines viewpoint, all of these connections are held by a single process.

The locking behavior of Rdb for connections within a single process differs from that

of connections made using discrete OpenVMS processes. In particular when two

separate processes try to get the same lock, by default, the second process will wait

until the first releases the lock. In contrast when two connections within the same

process try to get the same lock, a deadlock may be raised.

Oracle recommends, when using thin servers, that the lockwait connection switch

or server option be used to prevent deadlocks. By choosing a lock wait duration

shorter that your system deadlock wait, and then choosing an appropriate maxtries

value which determines how many times the server will attempt to get the lock before

giving up, deadlocks may be prevented. In addition keeping your transaction duration

small, will reduce the time locks are held and thus allowing better concurrency.

See “Lockwait and Maxtries” in your Oracle JDBC for Rdb User Guide for more

information.

4.2 Using Java Fast VM on OpenVMS

Using Java Fast VM on OpenVMS when you start up thin servers may limit the

number of clients a single server may be able to handle concurrently. This is because

using Fast VM drastically reduces the amount of certain system memory that the

Oracle Rdb subsystem has access to.

The usual symptom of running out of memory due to this situation is when the server

process issues COSI-VASFULL errors.

24

Refer to the OpenVMS Java documentation on using Fast VM for suggestions on

how memory usage may be altered.

Heap size used by the Java VM is important in determining how much memory will

be pre-allocated by the Java VM. You can set the size of the heap using the -Xmx

option. By default, the Fast VM looks at your quota and the size of physical memory

on the system to decide how large a heap to give you. So if both are very large, you

may wind up with a larger heap than you really need. You can use -verbosegc on the

command line of the command used to start a server to see the current heap size.

Memory usage may also be altered by using the "-Xglobal" switch.

If the thin servers are getting COSI-VASFULL errors when Fast VM is enabled,

Oracle suggests trying the following switch settings as a first pass at rectifying the

problem.

$ java "-Xmx24m" "-Xglobal120m" -jar rdbthinsrv.jar

4.3 Using the Oracle SQL/Services Management GUI

and JDBC Dispatchers

The existing version of the Oracle SQL/Services Management GUI does not

recognize dispatchers of the type JDBC. Unfortunately, this means that you will no

longer be able to use the GUI once a JDBC dispatcher has been defined.

Removing the JDBC dispatcher from your Oracle SQL/Services definitions will

alleviate this problem.

4.4 Blob Columns and Correlation names

Due to the nature of the parsing carried out by the Oracle JDBC for Rdb drivers it is

required that all blob columns referenced from the second and subsequent tables in a

multi-table join must be qualified using correlation names as shown below:

Select ta.blob, tb.blob from table1 ta, table2 tb where ta.name =

tb.name

Failure to use a correlation name in conjunction with the blob column name may

result in SQL parsing errors when data is retrieved from the blob field as the drivers

do not have enough information to determine the correct table to access the blob data

from.

SQL-F-FLDNOTCRS, Column <blob col> was not found in the tables in current

scope

25

This limitation also means that the use of "*" in the select clause for a join across two

or more tables that include blob fields may also cause a similar SQL error.

4.5 Blob Columns and Update Statements

When the SQL statements compiled by the Oracle JDBC for Rdb drivers contain

reference to list of byte varying columns (Blobs) the drivers must create auxiliary

statements to carry out the required operations on the Blob columns within the

database.

These statement handle the preparation of list cursors required by Rdb to access the

underlying list of byte varying columns and use the dbkeys of the target rows to

establish the correct currency on the parent tables when using the list cursors.

To achieve this, code is added to any Select queries containing reference to Blob

columns in order to retrieve the dbkey of the parent table row. Code is also added to

Insert and Update statement to return the dbkey of the affected row.

If a Blob column is updated within an SQL Update statement, it is required that the

execution of the statement only updates a single row as only a single dbkey can be

returned to the drivers.

For example:

 …

 PreparedStatement prep = Conn.PrepareStatement(

 "update resumes set resume = ? where employee_id = '91111'");

 prep.setBinaryStream(1, bs, sss.length());

 prep.execute();

 …

If the resumes table contains more than one row satisfying the query selection criteria

then an exception will be raised by Rdb during the execute() :

%RDB-E-MULTIPLE_MATCH, record selection criteria should identify

only one record; more than one record found

4.6 Limitations

 The following JDCB 2.0, JDBC 3.0 and JDK 1.4 methods are not currently

supported:

Blob.setBytes

Blob.setBinaryStream

26

Clob.setString

Clob.setAsciiStream

Clob.setCharacterStream

Clob.truncate

Connection.setSavepoint

Connection.rollback(savepoint)

Connection.releaseSavepoint

DatabaseMeteData.getSQLKeywords

PreparedStatement.setRef

PreparedStatement.setArray

PreparedStatement.setNull(int,int,String)

PreparedStatement.setURL(int,URL)

ResultSet.getRef

ResultSet.getArray

ResultSet.updateAsciiStream

ResultSet.updateBinaryStream

ResultSet.updateCharacterStream

ResultSet.updateRef

ResultSet.updateArray

ResultSet.rowUpdated

ResultSet.rowInserted

ResultSet.rowDeleted

ResultSet.updateBytes

Statement.cancel

Statement.setQueryTimeout

Statement.getMoreResults

27

Statement.executeUpdate(String sql, int autoGeneratedKeys)

Statement.executeUpdate(String sql, int[] columnIndexes)

Statement.executeUpdate(String sql, String[] columnNames)

Statement.execute(String sql, int autoGeneratedKeys)

Statement.execute(String sql, int[] columnIndexes)

Statement.execute(String sql, String[] columnNames)

 The following features or datatypes in JDBC 2.0 and JDBC 3.0 are not supported:

o Array

o Ref

o Clob

o User Defined datatypes

o Scroll cursors

o Savepoints

 Auto-generated keys

The total number of markers and fields allowed in a single SQL statement is 250.

 String truncation warnings:

The Oracle JDBC for Rdb drivers follow the SQL-92 rules for string truncation that

differ depending on whether it is a store or retrieval.

If a string truncation happens during a store operation, Oracle Rdb signals the error

RDB$_TRUN_STORE, unless all of the truncated characters are spaces, in which

case there is no error. If a string truncation happens during a retrieval, Oracle Rdb

signals the SQL warning RDMS$K_SQLCODE_TRUNCWARN.

 Numeric and string functions in JDBC

A number of JDBC standard Numeric and String functions are not supported within Oracle Rdb

unless you have previously prepared the database for use with OCI Services for Oracle Rdb

using the sql_functions.sql script. Refer to the Oracle SQL/Services documentation for more

details on using this script.

 ▲contents

28

Chapter 5
New Features and Corrections in

Previous Releases

5.1 New Features for Release 7.3.0.1

This section describes new and changed features in Oracle JDBC for Rdb release 7.3.

5.1.1 Reopen Server Log files using Poll subcommand.

The thincontroller now has the capability to request servers to re-open their log files

allowing the previous version of the log file to be examined or copied.

Due to a restriction within Java on OpenVMS, log files opened by a JDBC server

cannot be be read or copied while the log files are currently being used by the server.

The V7.3-01 (or above) thincontroller used in conjunction with JDBC servers from

V7.3-01 and above will allow a control user to request that the server re-open its log

file by using the POLL REOPENLOGS subcommand.

See the POLL Sub-commands section of the Oracle JDBC for Rdb User guide for

more information.

▲contents

5.2 Corrections in Release 7.3.0.1

This section describes software errors corrected in Oracle JDBC for Rdb release

7.3.0.1

5.2.1 Show Clients not Showing Column Names.

Fixed in Instance Build 20100315

The Show Clients command within the Controller displays information about clients

currently using JDBC servers.

29

A problem introduced in the 7.3 JDBC release prevents the column header

information from being displayed correctly.

The data for each client is still displayed correctly but without column identification.

rdbthincontrol> show active clients

Server rdbthnsrv3 (//192.168.1.3:1706/)

00000004*

<CONTROL CONNECTION>

jdbc_user

192.168.1.3:1459

0x16A0(5792)

0x16A0(5792)

2010-03-15 09:59:59.296 : INIT_CONTROL

0 00:00

0

1970-01-01 10:00:00.0

rdbthincontrol>

The following shows how the display should look:

rdbthincontrol> show active clients

Server rdbthnsrv3 (//192.168.1.3:1706/)

RDB$CLIENT_ID : 00000006*

RDB$URL : <CONTROL CONNECTION>

RDB$USER : jdbc_user

RDB$IP : 192.168.1.3:1665

RDB$PID : 0x16A0(5792)

RDB$PID_AT_EXECUTOR : 0x16A0(5792)

RDB$LAST_SQL :

RDB$LAST_ACTION : 2010-03-15 10:55:01.312 : INIT_CONTROL

RDB$LAST_EXCEPTION :

RDB$TIME_SINCE_LAST_ACTION : 0 00:00

RDB$MINUTES_SINCE_LAST_ACTION : 0

RDB$LAST_OPEN : 1970-01-01 10:00:00.0

rdbthincontrol>

5.2.2 Batched Statement Fails with MULTIPLE_RECORDS
Exception.

Fixed in Instance Build 20100611.

To provide additional JDBC driver functionality in Oracle JDBC for Rdb V7.3,

during the preliminary parsing of SQL update or insert statements, the Rdb JDBC

30

drivers may append extra SQL syntax to the query to deliver the dbkey of the updated

or inserted record back to the driver for later processing.

If during the execution of that query, Rdb raises a MULTIPLE_RECORDS

exception, the JDBC drivers will re-issue the statement again without the dbkey

retrieval clause, allowing the update statement to complete succesfully.

If however, the update statement is issued as a batched statement by using the

Statement.addBatch() method, the additional dbkey retrieval code may cause

that batch statement to fail. In which case Rdb JDBC does not re-issue the query and

the update will not be done.

The Rdb JDBC drivers have been changed to not add the extra dbkey retrieval code if

the statement is being processed as a batched statement.

5.2.3 Incompatibility between V7.3 Thin driver and Pre-V7.3 Servers.

Fixed in Instance Build 20100611.

Ideally, when upgrading JDBC, all components on both the server systems and all

client systems should be updated to the same version at the same time.

Although not documented nor supported as a feature, Oracle JDBC for Rdb attempts

to maintain upward and downward compatibility between its servers and the Rdb

Thin drivers.

However a change in the initial connection hand-shake between the Thin driver and

server introduced in V7.3 may prevent applications using the V7.3 Thin driver from

connecting correctly to Rdb JDBC servers from earlier Oracle JDBC for Rdb

versions.

The connection of applications using pre-V7.3 Thin drivers to a V7.3 server should

still work correctly.

These incompatibility issues have now been resolved.

5.2.4 Global Memory leak when Executors are run-down.

Fixed in Instance Build 20100611

Bug 9787051

31

A problem in the release of global shared memory when an executor process is run-

down by a Multi-process (MP) server may cause the server to eventually run out of

global memory.

If this happens the following exception will be raised:

 System Error : Insufficient global memory

When a MP server runs out of global memory it cannot start-up new executor

processes.

As this problem occurs when an executor is run-down when it is no longer required, a

work-around for this problem is to increase the maxFreeExecutor count for the

server to a number that will be sufficient to handle the peak load of the server and to

increase the server sharedMem appropriately.

This has now been fixed.

5.2.5 Autorestart on Pooled Servers not Working.

Fixed in Instance Build 20100611

BUG 9656632

When a Pool server starts a child server that is marked for autorestart, the child server

information is placed on a queue that is periodically checked by the Pool server to

ensure the child server is still viable.

If the Pool server finds that the child is not available and that child server is marked

for autorestart, the Pool server will try to restart that server.

A problem was introduced in V7.3 within the Pool server code that caused the Pool

server to incorrectly mark a newly started child server as “failed in startup”.

If the pool server thinks that the child server did not start correctly the server will not

be placed in the check queue used to determine if the child server is still available.

This in turn means that the pool server will not automatically restart the child server if

the child server process subsequently dies.

This has been fixed.

32

5.2.6 setFetchSize() hint ignored by PreparedStatement

Fixed in Instance Build 20100623

In prior versions of JDBC, the execution of setFetchSize() method on a

PreparedStatement would be silently ignored.

The connected server process would determine the fetch size of subsequent

operations on the PreparedStatement and ignore the fetch size hint provided.

This behavior has now been changed.

The fetch size hint provided by the execution of the setFetchSize() method on a

PreparedStatement prior to the execution of the statement may now be taken

into account by the server when determining the number of records that should be

sent in one network IO operation.

As this is only a hint, the connected server may still choose to ignore it.

5.2.7 Missing Stmt Exception on Subsequent Execution of
PreparedStatement

Fixed in Instance Build 20100623

The second or subsequent execution of a PreparedStatement may raise the

following exception:

java.sql.SQLException: Missing Stmt in rdbSelect

 @rdb.Client.SELECT

This exception may be raised on any subsequent executions of the same

PreparedStatement object if the prior execution of the same statement retrieved a

greater number of records than the connected server‟s fetch size.

The following example will show this errant behavior if the fetchSize specified for

the connected server is less than 10 rows:

 try

 {

 ps = conn.prepareStatement(

 "select last_name from employees limit to 10 row");

 ResultSet rs = ps.executeQuery();

 while (rs.next())

 {

 System.out.println(" result1 <" + rs.getString(1) + ">");

 }

 rs = ps.executeQuery(); //<<<<<< this would fail

 while (rs.next())

33

 {

 System.out.println(" result2 <" + rs.getString(1) + ">");

 }

 }

 finally

 {

 if (ps != null) ps.close();

 }

This problem was introduced in V7.3 JDBC and only occurs when using the Oracle

JDBC for Rdb thin driver.

5.2.8 EOFException on READ_ROW with nested statements

Fixed in Instance Build 20100629

A problem in statement context handling may cause the following exception to be

raised:

java.io.EOFException

 @rdb.Client.READ_ROW

This problem may occur when the following conditions are met.

1. A select query is executed as the outer query

2. An update statement is executed as an inner statement

3. The fetch size of the select query is less than the total number of records

returned by the query

4. Fetch Size number of record have already been returned by the outer query

An example of code which may show this problem is shown below:

 Statement stmt = conn.createStatement();

 stmt.setFetchSize(10); // less than the total number of records

 PreparedStatement ps = conn.prepareStatement (

 "update job_history set supervisor_id = '00245' where "

 + "employee_id= ?");

 ResultSet rset = stmt.executeQuery(

 "select employee_id from employees limit to 20 rows");

 int i = 0;

 try

 {

 while (rset.next())

 {

 i = i + 1;

 System.out.println(i + " " +

 rset.getString("employee_id"));

 ps.setString(1, rset.getString("employee_id"));

 ps.executeUpdate();

 }

34

 }

 catch (SQLException sqle)

 {

 sqle.printStackTrace();

 }

5.2.9 DatabaseMetaData.getUDTs()

Fixed in Instance Build 20100702

Although Rdb does not currently support UDTs you may still retrieve the column

descriptions from the empty Resultset produced when the method

DatabaseMetaData.getUDTs() is called.

However a problem in the retrieval of the last column from the ResultSetMetaData

may result in a Null Pointer exception.

 java.lang.NullPointerException

This has now been fixed.

5.2.10 Using Multiprocess with the JDBC Native Driver

Fixed in Instance Build 20100718

A problem was introduced in V7.3 JDBC preventing the use of the Multiprocess

option within JDBC Native driver connections.

When a connection is attempted using the JDBC Native driver with a connection

URL that contains the @multiprocess=true switch the following exception

was raised:

 INFO: server version needs to be V7.3 or later

This has now been fixed.

35

5.2.11 Prepared Statement not Closing underlying Cursor.
 Fixed in Instance Build 20100721

A problem introduced in JDBC V7.3 prevents PreparedStatements containing select

statements from correctly closing cursors when the statement is re-executed but no

results set read was issued on the previous execution of the same prepared statement

instance.

The following exception may be raised:

 %SQL-F-CURALROPE, Cursor C_xxxxxxxxx was already open

The following code snippet show an example of the type of code that may show this

problem .

 String sql = "select dbkey from employees";

 ResultSet rs;

 int maxi = 10;

 PreparedStatement st=conn.prepareStatement(sql);

 for(int j=0;j<maxi;j++)

 {

 rs=st.executeQuery();

 rs.close(); // note: no read on the resultset

 // issued within the iterating block

 }

The problem would be seen on the second and subsequent iterations of the

executeQuery.

This has now been fixed.

5.2.12 Release Statement synchronization problem

 Fixed in Instance Build 20100802

Version 7.3 JDBC introduced improvements in the network handling of selection

statements. A problem in the optimization of network IOs introduce in V7.3 JDBC

may produce the following exception during statement release:

oracle.rdb.jdbc.common.RdbException: received 503316549(0x4500001E) :

expected 1 @rdb.Client.RELEASE_STMT

This problem may occur only when the following conditions have been met:

1. A select statement has been executed.

2. Statement select optimization has not been turned off.

36

3. The total size of a FetchSize number of records is greater than 9600 bytes.

4. The statement is closed before any records have been read from the

associated resultset.

This has now been fixed.

5.2.13 Unitialized SQLCA block in MP server

 Fixed in Instance Build 20100906

A problem in how internal SQLCA blocks were initialized by the Multiprocess server

may cause a nested exception to be raised during exception handling.

The SQLCA block failed to initialize correctly which may cause incorrect message

size information to be used when the server tries to dump out the underlying error

message, which in turn may cause the server to try to access incorrect memory

addresses.

This problem may lead to various access violation exceptions including :

%CXXL-F-TERMINATE, terminate() or unexpected() called

 Improperly handled condition, image exit forced by last chance

handler.

This has now been fixed.

5.2.14 Controller SHOW CLIENTS and MP Server problem

Fixed in Instance Build 20100315.

Note: This problem was reported fixed in V7.3 but unfortunately, the fix was

incomplete.

When the command SHOW CLIENTS or SHOW ALL CLIENTS is issued within the

Controller, if the recipient server is a Multi-Process server (MP Server), an executor

process may be started up by the server to execute the request.

A problem in the executor code prevents the executor from closing down correctly if

the maximum number of free executors has already been reached for the MP Server.

This new executor process will not be added to the free executor pool, but will not be

shutdown and thus will remain active on the system.

If the controller SHOW CLIENTS command is issued again, the number of executor

processes may increase until an Open VMS quota or process quota is exceeded.

This problem has now been fixed.

37

5.2.15 Documentation Error – Record Streaming

In the V7.3 release notes the Performance Enhancements subsection of the New

Features section mentions that Record Streaming is available from V7.3 onwards.

Unfortunately a number of problems required the removal of this feature prior to the

V7.3 release, but the V7.3 releases notes were not correctly updated to remove

reference to the feature prior to product shipment.

This feature may be made available in a later version of Oracle JDBC for Rdb.

5.2.16 ResultSet.updateRow() and ResultSet.deleteRow() problem

Fixed in Instance Build 20110127.

Bug 9668574

A problem introduced in the V7.3 release prevents ResultSet.updateRow() and

ResultSet.deleteRow() from working correctly.

During the execution of the update one of the following errors may be raised:

Internal Error

or
SQL-F-SYNTAX_ERR, SYNTAX ERROR

 This has now been fixed.

5.2.17 Problem using column renaming with dbkey.

 Fixed in Instance Build 20110127.

Changes to SQL statetment parsing introduced in V7.3 inadvertantly introduced a

problem in queries that access the dbkey of records directly.

For example the following query:

select dbkey as ID, last_name from employees;

38

may cause the following exception to be raised:

Exception: Unhandled exception@Statement.execute :

java.lang.ArrayIndexOutOfBoundsException:S1000

This problem only occurs when the dbkey is retrieved as the first named column of

the selection expression and the column name is changed by using the „AS‟ clause.

Some simple work-arounds are:

1. move the dbkey clause to the second or subsequent column reference:

 select last_name, dbkey as ID from employees;

2. Remove the column renaming:

 select dbkey, last_name from employees;

This has now been fixed.

5.2.18 Class cast error on Scaled integer Retrieval after
ResultSet.insertRow()

Fixed in Instance Build 20110128.

During the conversion of a scaled integer invoked by a ResultSet object retrieval the

following error may be raised:

 oracle.rdb.jdbc.common.RdbException: Connection lost
 : java.lang.Long

 @rdb.Client.GET_INT_VAL

This problem occurs when:

 The object retrieved is a scaled integer

 Immediately prior to the retrieval a ResultSet.insertRow() was carried out on

the same ResultSet

The following code example will show this problem during the call to the getInt()

method:

 Statement stmt = conn.createStatement();

39

 ResultSet rset = stmt.executeQuery("select * from JOBS");

 rset.moveToInsertRow();

 rset.updateString("JOB_CODE", "JAVA");

 rset.updateString("WAGE_CLASS","1");

 rset.updateString("JOB_TITLE","Java Tester");

 rset.updateInt("MINIMUM_SALARY",90000);

 rset.updateInt("MAXIMUM_SALARY",250000);

 rset.insertRow();

 while (rset.next())

 {

 System.out.println(rset.getString("JOB_TITLE"));

 System.out.println("min salary = " +

 rset.getInt("MINIMUM_SALARY"));

 }

 This has now been fixed.

5.2.19 ResultSet.deleteRow() behaviour change.

Fixed in Instance Build 20110201.

Prior to the V4.0 JDBC specification , the current row positioning after resultset-

based record deletion was not clearly defined in the JDBC specification.

In prior versions of Oracle JDBC for Rdb the row position would remain at the same

absolute position after the row has been removed. Thus, for example, if the deletion

row was the 10
th

 row, then after removing the record, the current row position would

still be the 10
th

 record within the resultset, effectively moving the remaining records

down one position.

This may cause unexpected behaviour while traversing the resultset.

For example, the following code will delete every second record in the resultset as

after each deletion the remaining rows would be shifted down one position.

Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCUR_UPDATABLE);

ResultSet rset = stmt.executeQuery ("SELECT * FROM employees");

while (rset.next ())

40

{

 System.out.println("Select: " + rset.getString (1));

 rset.deleteRow();

}

To remove each row the row position would have to be reset each time back to the

prior row:

Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,ResultSet.CONCUR_UPDATABLE);

ResultSet rset = stmt.executeQuery ("SELECT * FROM employees");

while (rset.next ())

{

 System.out.println("Select: " + rset.getString (1));

 rset.deleteRow();

 rset.previous();

}

In V4.0 of the JDBC specification, the row position after deletion using the

ResultSet.deleteRow() is now specified:

After the method deleteRow has been called, the cursor will be positioned before

the next valid row. If the deleted row is the last row, the cursor will be positioned

after the last row.

Oracle JDBC for Rdb drivers have now been changed to comply with this behaviour.

The resetting of the row position using rset.previous() as shown in the example

above is no longer required.

5.2.20 Underlying Blob handles not released when using
ResultSet.getBlob()

Fixed in Instance Build 20110201.

The ResultSet.getBlob() method may be used to return the contents of a Rdb

segmented string column to your application as a Blob object.

A problem in the underlying Rdb statements associated with the retrieval of

segmented strings prevented the handles from being released correctly.

This may lead to memory problems in the JDBC server or the JAVA application if

many Blobs are being retrieved.

41

In addition as these statements are compiled and not released, operations such as

DROP TABLE may be blocked if attempted subsequent to and within the same

connection as Blob operations.

The following exception may be raised:

%RDB-E-NO_META_UPDATE, metadata update failed

-RDMS-F-ACTQUERY, there are queries compiled that reference relation

…

This has now been fixed.

5.2.21 Sequence values not visible to ResultSet get methods using
column name.

Fixed in Instance Build 20110204.

Bug 9659036

The retrieval of data from ResultSet columns using any of the „by name‟ methods fail

when the column is one of the special sequence operations such as nextval or currval.

The following code will raise an exception when the second println statement is

called:

 ResultSet rs = s.executeQuery(
 "select reportseq.nextval from rdb$database");

 if (rs.next())

 {

 System.out.println(" by id = " + rs.getBigDecimal(1));

 System.out.println(" by name="+

 rs.getBigDecimal("reportseq.nextval"));

 }

 The following exception will be raised:

 Invalid column name

A similar problem may be seen when trying to retrieve column names using the

ResultSetMetaData.getColumnName() method:

 ResultSet rs = s.executeQuery(

 "select reportseq.nextval from rdb$database");

42

 ResultSetMetaData rsMetaData = rs.getMetaData();

 String columnName = rsMetaData.getColumnName(1);

 while (rs.next ())

 {

 System.out.println("Select: " + rs.getBigDecimal(columnName));

 }

 rs.close();

The column name returned by the ResultSetMetaData method will be an empty

string and subsequent use of this value will fail to retrieve any column information.

As the first example shows, a work-around for the first problem is to use the column

index instead of the name in the get method.

An alternate work-around is to use a column alias in the query.

 ResultSet rs = s.executeQuery(

 "select reportseq.nextval as NEXT_ID from rdb$database");

 if (rs.next())

 {

 System.out.println("by name = " +rs.getBigDecimal("NEXT_ID"));

 }

There is no work-around for the ResultSetMetaData.getColumnName()problem.

These problems have now been fixed.

 Scaled integer problem.

Fixed in Instance Build 20110208.

The Oracle JDBC for Rdb native driver may fail to return the values of scaled integer

columns correctly.

If the column size is less than 4 octets and has a scaling factor other than 0 the native

driver may return wrong values.

Columns with the following datatypes are affected:

 SMALLINT(n)

 TINYINT(n)

This problem only occurs when using the native driver; the thin driver will return the

values correctly.

SMALLINT and TINYINT columns not using scaling are not affected.

43

This has now been fixed.

5.2.22 Server Matching Exception may Stop Poll handling

Fixed in Instance Build 20110210.

If a server finds an exception during the handling of a server control function such as

a POLL request, the server will log the exception and then close down asynchronous

broadcast request handling.

This means that from that point onwards, operations such as ThinController POLLing

will no longer be acknowledged by the server.

Standard client and control function are not affected and the server will keep on

handling client requests correctly, however it will no longer respond to control

requests such as POLL.

A simple example of this behavior can be shown by issuing a server name matched

POLL request containing an invalid pattern string:

 rdbthincontrol> poll #name:*srv*.

The server will log the following exception:

 Dangling meta character '*' near index 0

 srv.

 ^

The server will not respond to further POLL request until it has been restarted.

This behaviour has now been changed. The server will still log the exception but

unless the problem is a network IO problem or the server is in the process of shutting

down, the asynchronous broadcast request handling will still be enabled. Thus

operations such as POLL request handling will still be carried out by the server.

The only workaround is to restart the server again.

This has now been fixed.

▲contents

44

5.3 New Features for Release 7.3

This section describes new and changed features in Oracle JDBC for Rdb release 7.3.

5.3.1 Shutdown Thread

Starting with Oracle JDBC for Rdb release 7.3 the JDBC drivers will create a

shutdown thread when they are initially invoked. The purpose of this thread is to use

the shutdown-hook feature provided by OpenVMS that will execute the thread at

shutdown. The shutdown thread will ensure that any connection left open by the

application will be correctly disconnected prior to the application shutdown

proceeding, thus preventing application hangs at shutdown.

The application developer does not need to change any code for this shutdown feature

to be enabled, as long as the application is using V7.3 JDBC driver libraries (or later

versions) the shutdown hook will be in place.

See the section Shutdown Thread in the Oracle JDBC for Rdb User Guide for

details.

5.3.2 Driver.attach()

A new method has been added to the Oracle JDBC for Rdb Drivers, that will allow

second and subsequent databases to be attached to an existing database connection.

See the Oracle JDBC for Rdb User Guide for details.

5.3.3 Returning List of Known Databases

The Oracle JDBC for Rdb Thin Driver will now allow client applications to obtain a

list of databases known to Oracle JDBC for Rdb servers.

See the Oracle JDBC for Rdb User Guide for details.

5.3.4 Controller Enhancements

Several enhancements have been made to the Oracle JDBC for Rdb Thin Controller

application including:

 Obfuscate command

 Server matching patterns for the POLL command

See the Oracle JDBC for Rdb User Guide for details.

45

5.3.5 RDB_EXT.JAR file

Oracle JDBC for Rdb V7.3 installation now includes the RDB_EXT.JAR file that

contains classes and java source for extensions to Oracle JDBC for Rdb.

The following extensions are include:

 Hibernate RdbDialect.java source

 Oracle UCP enabling classes

Details of these extensions follow.

5.3.5.1 Hibernate RdbDialect.java source

Hibernate by Red Hat is a persistence engine that provides an alternative to standard

entity beans.

To allow Oracle JDBC for Rdb drivers to be used in conjunction with Hibernate the

RdbDialect.java source file is provided. You will find this source file in the top-level

folder of the RDB_EXT.jar.

See your Hibernate documentation for details on using third party JDBC drivers and

Dialects.

5.3.5.2 Oracle UCP enabling classes

UCP or, Universal Connection Pool, is a new database feature included in Oracle

database 11g 11.1.0.7, Oracle database 11.2.0.x and Oracle AS 11g R1. UCP works

with any java based connections, e.g., JDBC, JCA, LDAP.

The RDB_EXT.JAR file installed with Oracle JDBC for Rdb, provides the necessary

classes to enable Oracle JDBC for Rdb drivers to be used in the connection pools

created by UCP.

The class

oracle.rdb.jdbc.rdbExt.RdbDataSource

found in the RDB_EXT.JAR may be used as a Connection Factory class for UCP,

for example:

import oracle.ucp.jdbc.PoolDataSource;

import oracle.ucp.jdbc.PoolDataSourceFactory;

.

.

46

.

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

 pds.setConnectionFactoryClassName("oracle.rdb.jdbc.rdbExt.RdbDataSource");

 pds.setURL("jdbc:rdbThin://localhost:1701/my_dir:mf_personnel");

 pds.setUser("jdbc_user");

 pds.setPassword("jdbc_user");

 pds.setInitialPoolSize(0);

 Connection conn2 = null;

 for (int i = 0; i< 5 ; i++)

 {

 conn2 = pds.getConnection();

 Statement sc = conn2.createStatement();

.

.

.

 rs.close();

 sc.close();

 conn2.close();

 }

.

.

.

For more details, see the UCP Users Guide at

http://www.oracle.com/technology/tech/java/sqlj_jdbc/UCP_dev_guide.pdf

5.3.6 Performance Enhancements

Several enhancements have been made to the client/server connectivity and to

server/executor communications to improve performance including:

 Internal client/server message protocol changes

 Enhanced SQL Statement caching

 Results caching

 Server/executor synchronization

Details of these enhancements may be found in the following sub-sections.

5.3.6.1 Internal client/server message protocol changes

47

Network round-trip times for communication between client applications and JDBC

servers may constitute a large portion of wait time for applications. To help reduce

this wait time Oracle JDBC for Rdb has changed its client/server message protocol in

order to reduce the number of round-trips taken to:

 Attach to the database

 Compile and execute a SQL statement.

These enhancements are enabled automatically from V7.3 onwards.

5.3.6.2 Enhanced SQL Statement caching

As well as caching of certain statement information on the client-side, reducing the

number of network IOs required for statement compilation, V7.3 allows the caching

of statement handles. See the sections “SQL Statement Cache” and “Caching

Statement Handles” in the Oracle JDBC for Rdb User Guide for more details.

5.3.6.3 Results Caching

V7.3 will allow limited caching of resultSets on the client side. This is particulary

useful in multi-tiered environments for statements that are repeatedly executed giving

the same results each time, especially in a pooled connection environment. See the

section “Results Cache” in the Oracle JDBC for Rdb User Guide for more details.

5.3.6.4 Server/Executor Synchronization

Starting with release V7.3, the method used to synchronize operations between a

Multi-Process server and its sibling executors has been improved to reduce the

amount of CPU required and to speed-up operations.

▲contents

48

5.4 Corrections in Release 7.3

This section describes software errors corrected in Oracle JDBC for Rdb release 7.3.

5.4.1 Server startup failure when using CFG file

Fixed in Instance Build 20090201

A problem in parsing the configuration file during server startup may cause the server

to fail to startup correctly.

The following is an example of the error message seen:

$ java "-jar" "rdb$jdbc_home:rdbthinsrvpool.jar" "-cfg" rdbjdbc_cfg.cfg "-

srv.mcGroupIP" "239.8.124.3"

Configuration file problem at line 1
Content is not allowed in prolog.

This problem only occurs when using JDK 1.5-0 and above and using a Properties

file (*.cfg) to hold the server configuration properties.

A work-around for this problem is to use an XML-based configuration file instead.

5.4.2 AccessViolation on disconnect when Inserting Blobs

Fixed in Instance Build 20090301

A problem in determining the memory allocation for Blob variables may result in a

memory Access Violation during disconnect.

The problem only occurs if during the connection, data was inserted into Blob

variables and subsequently inserted into a segmented string column in the database.

This has now been fixed.

5.4.3 PreparedStatement and Parameter Markers Known Problem
now Resolved

Fixed in Instance Build 20090702

49

In previous version of Oracle JDBC for Rdb the following known problem was noted:

 Using PreparedStatement and Parameter Markers

During the creation of a prepared statement using the

Connection.PrepareStatement() method, the Oracle JDBC for Rdb

drivers call Oracle Rdb SQL to compile the SQL statement and describe its select

fields and parameter markers. At this time SQL builds internal message

representations of the parameter markers that may be passed to Oracle Rdb when

the prepared statement is executed.

The maximum size of character values that may be passed using each parameter

marker is fixed by SQL at this stage. This may cause inconsistent results when the

application attempts to use character string values that are longer than the

maximum size determined by SQL for that parameter. If the input value is longer,

the value will be truncated by SQL prior to being sent to Oracle Rdb for

processing. This does not pose any problems if the query selection is equality,

however, other Boolean comparisons may cause unexpected results. For example,

this query will return the record:

 Statement stmt = conn.createStatement();

 stmt.execute("create table tab (f1 char(3))");

 stmt.execute("insert into tab values ('123')");

 PreparedStatement ps;

 ps = conn.prepareStatement("select f1 from tab where f1 like ?");

 ps.setString(1, "123");

 ps.execute();

This query will not return the record:

ps.setString(1, "%123");

ps.execute();

The reason the above query fails is that SQL will set the maximum size of the

parameter text string to 3 characters (the size of field F1). The input value will

be truncated to %12 before being sent to Oracle Rdb and will not match the

record.

In conjunction with changes made to Oracle Rdb V7.2-4, this problem has now been

resolved and queries similar to the ones shown above should now deliver the correct

results.

This fix will only work with Oracle Rdb versions V7.2-4 and higher.

5.4.4 Controller SHOW CLIENTS and MP Server problem

Fixed in Instance Build 20090821.

50

When the command SHOW CLIENTS or SHOW ALL CLIENTS is issued within the

Controller, if the recipient server is a Multi-Process server (MP Server), an executor

process may be started up by the server to execute the request.

A problem in the executor code prevents the executor from closing down correctly if

the maximum number of free executors has already been reached for the MP Server.

This new executor process will not be added to the free executor pool, but will not be

shutdown and thus will remain active on the system.

If the controller SHOW CLIENTS command is issued again, the number of executor

processes may increase until an Open VMS quota or process quota is exceeded.

Note: This problem was not completely fixed in the V7.3 release. This has

subsquently been rectified in the V7.3-01 release.

5.4.5 Possible memory leak when updating Blob columns

Fixed in Instance Build 20090827

During the processing of update statements containing references to Blobs (list of

byte varying) columns, the JDBC drivers incorrectly compile the statement twice.

Only the second statement handle is released when the statement is closed which will

lead to Rdb statement handles still being active within the current connection.

These active handles use memory and resources within the drivers and the Rdb

system which may eventually lead to problems due to insufficient resources in long

running connections.

In addition these compiled queries may prevent metadata operations from occurring

on the affected tables within the current connection.

5.4.6 Access Violation with trace and Network Dump

Fixed in Instance Build 20090904

When the following trace flags are set together in TraceLevel, it is possible that an

access violation may occur if the size of the data being flushed to the network is very

large:

Bit Hexadecimal

Value

Decimal

Value

Traces

9 0x00000200 512 Network sends

51

Bit Hexadecimal

Value

Decimal

Value

Traces

30 0x40000000 1073741824 Full provides more details

on certain flags

For example, when inserting a Blob with more than 3MB of data the dump of the

network buffer may overflow memory and cause memory problems that will

terminate the server unexpectedly.

This problem only occurs with RdbThin connections using either a standard or a

Multi-process server.

5.4.7 Named Input Parameters not working with CallableStatements

Fixed in Instance Build 20100210.

Using named parameters to set input parameter values of CallableStatements may fail

with the following exception:

oracle.rdb.jdbc.common.RdbException: Invalid column name : …

The JDBC code fails to locate input parameters by name correctly.

An example of the type of code statement that may be affected:

.

.

.

 stmt.executeUpdate("create module myproc " +

 "LANGUAGE SQL " +

 "procedure myproc(IN :val_in integer; OUT :val_out" +

 "BEGIN " +

 " SET :val_out = :val_in; " +

 "END; END MODULE");

 CallableStatement proc = conn.prepareCall("{ call myproc(?,?) }");

 proc.setInt("val_in", 999);

.

.

.

Exception raised when executing the proc.setInt() method:

52

oracle.rdb.jdbc.common.RdbException: Invalid column name : val_in

Input parameters are marked as IN in the procedure definition.

Parameters marked as OUT or INOUT will be located correctly by the JDBC code.

A work-around for the problem is to specify the parameter index value instead of the

name.

▲contents

5.5 New Features for Release 7.2.5.5

This chapter describes new and changed features in Oracle JDBC for Rdb release

7.2.5.5.

None.

▲contents

5.6 Corrections in Release 7.2.5.5

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.5.5.

5.6.1 Long-running Query Holds up New Connections in MP Server

Fixed in Instance Build 20091202.

A problem in retrieving the Process Id of the current thread during the creation of a

new connection by the MP Server may cause the connection to hang.

53

This problem may be seen when an existing connection using the same MP Server is

concurrently preparing a very large SQL statement or is executing a query that is

taking substantial time within Rdb to fetch the very first record.

Any concurrent new connection requests will hang until the long-running query

returns the query compilation results or returns the first record back to the MP Server.

All other pre-established connections using the same MP Server will execute queries

normally and will not hang, only new connection requests are affected.

This has now been fixed.

▲contents

5.7 New Features for Release 7.2.5.4

This chapter describes new and changed features in Oracle JDBC for Rdb release

7.2.5.4.

None.

▲contents

5.8 Corrections in Release 7.2.5.4

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.5.4.

5.8.1 Access Violation at Java_rdb_JNI_SetStrVal.

Fixed in Instance Build 20080720.

A problem in a memory copy used within the JNI routine SetStrVal() may cause an

access violation similar to the following:

SYSTEM-F-ACCVIO, access violation, reason mask=00…

%TRACE-F-TRACEBACK, symbolic stack dump follows

image module routine line rel PC abs PC

54

…

RDBJDBCSHR72 RDBJDBC Java_rdb_JNI_SetStrVal

…

This problem is infrequent as it depends on how memory is allocated during the

native code execution, and is usually only associated with JDBC code executing the

setString() method of a PreparedStatement or CallableStatement.

This has now been fixed.

5.8.2 DCL Command Line Too Long

Fixed in Instance Build 20080826.

During the startup of a server either by a Pool Server or by using the Controller, DCL

command procedures are used to build the DCL command to invoke the server image.

It is possible that long directory names or deep directory structures associated with

the log file or the configuration files for the server may cause the size of the DCL

command created to exceed the length limits set for a command line by OpenVMS.

In this case the startup of the server will fail and the following exception may be

noted in the output of the server startup process:

%DCL-W-TKNOVF, command element is too long – shorten

The RDBJDBC_STARTSRV.COM has now been changed to reduce the number of

options that need to present on the command line by introducing another

configuration file that will be built each time the RDBJDBC_STATSRV.COM

command procedure is executed. This new command procedure will contain the

required configuration information necessary to correctly start the server.

5.8.3 Access Violation during DriverManager.getConnection() when
Database Specification is Missing

Fixed in Instance Build 20080826.

If during a call to DriverManager.getConnection() the specified connection string

does not contain a database file specification a problem in the building of the

55

connection string to be sent to Rdb may force an unexpected termination of the

connecting server with the following exception:

An unexpected exception has been detected in native code outside the VM.

Unexpected Signal : EXCEPTION_ACCESS_VIOLATION (0xc0000005) occurred at

PC=0x18965EEB

Function=[Unknown.]Library= … \rdbjdbcshr.dll

NOTE: We are unable to locate the function name symbol for the error

 just occurred. Please refer to release documentation for possible

 reason and solutions.

Current Java thread:

 at rdb.JNI.Connect(Native Method)

 at

oracle.rdb.jdbc.common.AbstractNativeRdb.Connect(AbstractNativeRdb.java:301)

 at

oracle.rdb.jdbc.srv.DBActionHandler.handleConnect(DBActionHandler.java:3844)

The actual exception raised depends on the platform and JAVA VM and may include:

An unexpected error has been detected by HotSpot Virtual Machine:

%SYSTEM-F-ACCVIO (0xc) at pc=84C1A4A0, pid=543163880,

tid=63640192

and

SIGBUS 10* bus error

...

%SYSTEM-F-OPCCUS, opcode reserved to customer fault at

PC=FFFFFFFF80B6EF14, PS=0000001B

...

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual

address=000000000000

0000, PC=FFFFFFFF80A708E8, PS=0000001B

and similar variants of the Access Violation messages.

This has now been fixed.

5.8.4 Unaligned memory faults on IA64

Fixed in Instance Build 20090826.

Several unaligned memory faults have been located and fixed in the shared images

associated with Oracle JDBC for Rdb on IA64.

56

5.8.5 Read-Only Transactions not Enforced on Connection Switch

Fixed in Instance Build 20090902.

When the connection switch:

Transaction=readonly

is used, all transactions started by the Oracle JDBC for Rdb drivers should be forced

to READ-ONLY. However this is not correctly enforced if AUTOCOMMIT is

subsequently turned OFF and it is possible that READ-WRITE transactions may be

started on subsequent select statements.

This has now been fixed.

5.8.6 Sockets not Correctly Closing on OpenVMS Clients causing
Accumulation of Mailboxes

Fixed in Instance Build 20091002.

During the Close() of Connections using the Thin driver, sockets connecting

the client to the server will be closed and resources released. However a problem

with the release of data streams associated with these sockets prevents the sockets

from closing down completely.

The failure for the sockets to completely close down may cause problems on clients

running on OpenVMS. The mailboxes associated with TCP/IP sockets on OpenVMS

will not be closed and will accumulate for processes that do multiple connects and

disconnects using the JDBC Thin driver.

This problem only happens with clients running on OpenVMS and may depend on

the JAVA version and type of VM used.

The associated data streams are correctly closed down when the Connection class

is disposed, however unless explicitly disposed by the client application, the

Connection class object will continue to exist after the connection is closed and

until the JAVA garbage collection causes it to be disposed.

It is possible that the process may run out of TCP/IP ports or OpenVMS resources

due to this accumulation of mailbox channels, but this depends on how often the

JAVA garbage collection is run and whether or not the objects are collected.

This problem has now been fixed.

57

5.8.7 Cast problem when Converting String to Date/Time

Fixed in Instance Build 20091007.

A problem in the JDBC driver code that converts String to the internal data format

required for storing to an Rdb date/time column may cause the following exception to

be raised.

java.lang.ClassCastException: java.util.Date

This problem occurs when a date/time value stored in its text form is used to set a

parameter in a PreparedStatement or CallableStatement that is associated with an Rdb

column or variable that has one of the following SQL datatypes:

 DATE ANSI

 DATE VMS

 TIME

 TIMESTAMP

For following code example will raise the exception described above.

// SQL : create table tabx (f1 date vms);

PreparedStatement ps = conn.prepareStatement

 ("insert into TABX values (?)");

String dtStr = "2003-11-07 12:34:56.780";

 ps.setString(1,dtStr);

A workaround for this problem is to use a JAVA date/time conversion method to

convert from the String to a JAVA timestamp and then use the setTimestamp method

instead of the setString method.

String dtStr = "2003-11-07 12:34:56.780";

Timestamp dt = Timestamp.valueOf(dtStr);

ps.setTimestamp(1,dt);

This problem has now been fixed.

▲contents

58

5.9 New Features for Release 7.2.5.3

This chapter describes new and changed features in Oracle JDBC for Rdb release

7.2.5.3.

None.

▲contents

5.10 Corrections in Release 7.2.5.3

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.5.3

5.10.1 Interaction of DatabaseMetaData methods with Blobs may
Crash the Thin Server

Fixed in Instance Build 20080327

During the retrieval of RDB$DESCRIPTION data from Rdb System relations for the

inclusion into the resultSets returned by various methods within the

DatabaseMetaData class, the Oracle JDBC for Rdb Thin Server must create and

execute List Cursors.

A problem in the synchronization of access during List Cursor operations during

metadata retrieval meant that windows of opportunity exist where the thread currently

accessing the List Cursor may interfere with other concurrent threads accessing the

database from the same Thin Server.

This may result in variety of exceptions and/or bugchecks being raised. In some

cases the Thin Server may terminate unexpectedly with or without log or bugcheck

messages.

This problem only occurs within Thin Servers and only during DatabaseMetaData

method calls where description or comment data is being returned for the database

object, and only if there is another concurrent connection executing SQL statements.

59

For example, drilling-down Rdb database connection metadata within JDeveloper

using an Oracle JDBC for Rdb thin driver connection to a Thin Server may interfere

with concurrent clients on that same server.

This has now been fixed.

5.10.2 BigDecimal scaling Incorrect when used with
PreparedStatement SetObject() Methods.

Fixed in Instance Build 20080623

The scaling of BigDecimal objects may be incorrect when used as the source data

objects for PreparedStatement.SetObject() methods.

During the conversion of the BigDecimal to the underlying database datatype, scaling

information is lost which may result in the wrong values being applied.

A work-around for this problem is to use the PreparedStatement.SetBigDecimal()

methods instead.

This problem has now been fixed.

5.10.3 Connection.nativeSQL() method throws Null Pointer
Exception.

Fixed in Instance Build 20080623

Calling the Connection.nativeSQL() method will result in a

NullPointerException exception being raised.

This has now been fixed.

5.10.4 Calling Resultset.isLast() method May Change Transaction
Behavior

Fixed in Instance Build 20080625

This problem affects the Oracle JDBC for Rdb Native driver only. Applications using

the Oracle JDBC for Rdb Thin driver will not see this problem.

When the native driver is used, calling the Resultset.isLast() method will cause the

driver to fetch all the records of the resultSet to determine which is the last record.

During this processing the internal transaction status is set incorrectly. If a SQL

statement requiring a read-write transaction is executed subsequent to this but prior to

60

the resultSet's statement being closed, the update statement may fail with the

following exception:

%RDB-E-READ_ONLY_TRANS, attempt to update during a read-only

transaction

This has now been fixed.

▲contents

5.11 New Features for Release 7.2.5.2

This chapter describes new and changed features in Oracle JDBC for Rdb release

7.2.5.2.

5.11.1 DEC_KANJI and DEC_HANZI Support Enabled

Support was added to V7.1.3 Oracle JDBC for Rdb Drivers for accessing

DEC_KANJI and DEC_HANZI data from Oracle Rdb databases but until now had

not been adequately tested, so Oracle advised against using Oracle JDBC for Rdb

drivers to access DEC_KANJI and DEC_HANZI data from Oracle Rdb databases.

Testing of Oracle JDBC for Rdb drivers using these character sets in conjunction with

SHIFT_JIS on PC platforms has now been completed and the prior limitation of use

of these characters sets has now been removed.

▲contents

5.12 Corrections in Release 7.2.5.2

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.5.2

5.12.1 ResultSet.getBigDecimal() not working with system
ResultSets

Fixed in Instance Build 20070714

Calling the getBigDecimal() methods on a column in a resultset returned by

DatabaseMetaData methods may fail with the following exception:

61

 java.lang.ArrayIndexOutOfBoundsException: 2

This has now been fixed.

5.12.2 Setting TraceLevel fails when using Hexadecimal Notation.

Fixed in Instance Build 20070731

A problem in parsing hexadecimal values for trace level may cause an exception to be

raised when trace level values greater than 0x7FFFFFFF are used:

java.lang.NullPointerException

 This has now been fixed.

5.12.3 Delimited Identifier Problem in AS clause of Select Statement.

Fixed in Instance Build 20070731

A problem introduced in 7.2.5.1 in parsing delimited identifiers used in the AS clause

of a select statement may cause an exception to be raised:

select last_name as "name 1", first_name from employees

SQLException: in <rdbjdbcsrv:prepare_stmt>

%SQL-F-RELNOTDEF, Table FIRST_NAME is not defined in database or

schema:42000

 A work-around is to not use delimited identifiers in the AS clause:

 select last_name as name1, first_name from employees

 This problem has now been fixed.

5.12.4 Configuration file problem in "DEFAULT" Server definition.

Fixed in Instance Build 20080122

A problem in how properties were copied from the "DEFAULT" server definition

during the instantiation of server information may cause servers to have inappropriate

configuration settings.

This problem may only arise if the "DEFAULT" server definition in the server

configuration file contains any of the following properties:

 ssl.default

62

 ssl.context

 ssl.keyManagerFactory

 ssl.keyStoreType

 ssl.keyStore

 ssl.keyStorePassword

 ssl.trustStore

 ssl.trustStorePassword

<allowPrivUser>

<allowUser>

<allowDatabase>

<allowPrivUser>

If any of the above properties are used in the "DEFAULT" server definition it is

possible that server configuration properties such as Allowed Databases, or Allowed

Users may be incorrectly propagated from the server they were specified for, to all

other servers described in the same configuration file.

A work around for this problem is to not use any of the above properties in the

"DEFAULT" server definition and instead place the property in each of the server

definitions that require it.

Note that the examples of configurations files used in the Oracle JDBC for Rdb

documentation may be susceptible to this problem as they do show the use of the

following property in the "DEFAULT" server definition:

ssl.default="true"

The problem has now been fixed.

5.12.5 Pool Server May choose Incompatible Pooled Server when
User Restriction Enabled.

Fixed in Instance Build 20080122.

If a server taking part in a pool of servers controlled by a Pool Server has restricted

access enabled and one or more AllowedUser entries are present for that server, the

Pool Server may choose the server as a possible candidate server for the connection

request, even if the connection username is not one of the specified AllowedUsers.

If this happens, the connection request will be redirected to that chosen server but the

connection attempt will be immediately terminated with the following exception:

SQLException: Access to server denied

63

Changes have now been made to ensure that information is passed correctly to the

Pool Server during the initial connection request to allow it to correctly determine if a

candidate pooled server will accept the user requesting the connection prior to

redirecting the connection request to that server.

5.12.6 Potential problem when dumping SQLDA in trace.

Fixed in Instance Build 20080125

A problem in allocation of an internal buffer for the dumping of a SQLVAR data area

may cause unexpected and unusual problems during the execution of the server that

may result in the server terminating unexpectedly.

This problem may only be seen if the traceLevel DUMP SQLDA flag bit is set for the

connection or set server-wide and the data area of the SQLVAR being dump is

greater than 512 octets in length.

Bit Hexadecimal

Value

Decimal

Value

Traces

14 0x00004000 16384 Dump SQLDA information

A workaround for this problem is to not set the tracelevel DUMP SQLDA trace flag

bit.

This has now been fixed.

5.12.7 Connection.getCatalog() returns wrong value for single
Schema Databases

Fixed in Instance Build 20080212

The Connection.getCatalog() method incorrectly returns a single quote delimited

string instead of a NULL object when connected to a single schema database. When

used in conjunction with a multi-schema database the correct catalog value is

returned.

This problem prevents JDeveloper 10.x from correctly displaying table and views

within the Database branch in the Connections Navigator.

A similar problem may occur when using the Connection.getSchema() method.

5.12.8 Potential memory leak with Views

Fixed in Instance Build 20080227

64

A problem in the handling of statement preparation for SQL statements that contain

views where the view result tuples cannot have a dbkey associated with them, caused

a memory leak in the Oracle JDBC for Rdb drivers and servers.

The problem may manifest itself in a number of ways including access violations and

exceptions stating that shared memory has been used up.

The following example shows a typical view that may cause this problem:

create view view1 (c1 integer, c2 integer) as select c1,c2 from t1

union select c3,c4 from t2;

Queries on this view will execute correctly, however during the internal preparation

of each query, memory may be allocated that may stay allocated until the connection

is closed. In addition the underlying SQL statement may not be released correctly,

which in turn may prevent metadata updates from being carried out on the referred

tables.

▲contents

5.13 New Features for Release 7.2.5.1

This chapter describes new and changed features in Oracle JDBC for Rdb release

7.2.5.1.

5.13.1 SQLDA dumping

Setting the tracelevel to 0x00004000 (Decimal 16384) will provide information about

the SQLDA information passed to and from SQL.

See the Oracle JDBC for Rdb User Guide for details.

5.13.2 failSAFE IP with Pool Servers

Pool servers may be configured to ensure that redirected connection requests will still

correctly redirect during failSAFE IP fail over.

See the Oracle JDBC for Rdb User Guide for details.

5.13.3 HandshakeTries and HandshakeWait on Multiprocess Native
Connections

The multiprocess option on native connections allows the use of executor sub-

processes to carryout Rdb connections on behalf of your application using the

65

RdbNative driver. You now have the capability of specifying handshake options

during the initial communication handshake protocol used by the main and associated

sub-processes.

See the Oracle JDBC for Rdb User Guide for details.

5.13.4 Server Access Security Enhancements

Servers may be configured to restrict the access of their served databases to a list of

allowed usernames. The server configuration allowUser has been added to the

server section of the configuration files restricting access to databases via that server

to only those users specified.

In addition a server password can be specified using the srv.password

configuration option which forces all users of that server to provide an addition

password before access via the server will be granted.

See the Oracle JDBC for Rdb User Guide for details.

5.13.5 Restriction on using Multiple Blob fields in Join now
removed.

In previous version the following limitation was specified:

 Blobs will only be returned correctly from a SQL join statements for the first table

mentioned in the join set. For example, given the SQL statement

Select ta.blob, tb.blob from table1 ta, table2 tb where ta.name =

tb.name

ta.blob will be returned correctly as it is from the first table referenced in the join set.

Trying to access tb.blob may result in the following SQL error:

%SQL-F-BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement

that is not prepared

This restriction has now been lifted, the Oracle JDBC for Rdb drivers now handle

blob fields from multiple tables within a single join statement.

However due to the nature of the parsing carried out by the Oracle JDBC for Rdb

drivers it is required that all blob columns referenced from the second and subsequent

tables in the join must be qualified using correlation names as shown in the above

example of select.

Failure to use a correlation name in conjunction with the blob column name may

result in SQL parsing errors when data is retrieved from the blob field as the drivers

66

do not have enough information to determine the correct table to access the blob data

from.

SQL-F-FLDNOTCRS, Column <blob col> was not found in the tables in current

scope

This limitation also means that the use of "*" in the select clause for a join across two

or more tables that include blob fields may also cause a similar SQL error.

▲contents

5.14 Corrections in Release 7.2.5.1

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.5.1

5.14.1 Incorrect row number returned after ResultSet.getLast() call.

Fixed in Instance Build 20060906

A problem in the determination of the current row number when using Scrolling

ResultSets caused the ResultSet.getRow() method to return an incorrect row number

after absolute positioning of cursor after the end of stream.

The problem is only in the Oracle JDBC for Rdb Native Driver and does not show up

in when using the Oracle JDBC for Rdb Thin driver.

The problem may be seen only after a call has been made to ResultSet.afterLast()

method followed by a call to ResultSet.last().

The call to ResultSet.afterLast() incorrectly sets an internal record counter to one

greater than the actual count .

The following is an example of this problem.

 Statement s2 = conn.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 ResultSet rs = s2.executeQuery("select * from employees");

 rs.afterLast();

 rs.last();

 System.out.println("row number : " + rs.getRow());

 System.out.println("employee_id :" + rs.getString(1));

67

 rs.close();

 s2.close();

May return the following information when used with the Employees table in the

PERSONNEL or MF_PERSONNEL databases provided as sample database in the

Oracle Rdb installation (the row number of the last record should be 100) .:

row number : 101

employee_id :00471

5.14.2 Pool Server startup of Pooled Servers may fail when Persona
is used.

Fixed in Instance Build 20061011

A problem in the naming of the subordinate processes used to create a server process

during the automatic startup of servers by the Pool Server may cause the following

exception:

%RUN-F-CREPRC, process creation failed

-SYSTEM-F-DUPLNAM, duplicate name

The following related exception might also be seen during the attempted startup of

the pooled server process:

java.sql.SQLException: Unable to start process, status:

0x164 : substatus -4

These problems may be seen only if PERSONA is used to change the server

authorization characteristics of the started servers.

5.14.3 Last Column in Select List may be Inaccessible in Some
Queries.

Fixed in Instance Build 20061124

A problem in the handling of internal dbkey information may prevent the application

access to the last column in a select list. This problem only occurs if the select query

used cannot provide unique Dbkeys for the resultant tuples. Queries containing

derived tables or views from multiple tables may show this problem.

For example

 select c1.last_name from (select * from employees c

where c.employee_id='00170') c1

68

may fail to return the last_name correctly when the Resultset.GetString(String

columnName) method is used.

 select c1.last_name, c1.first_name from (select * from

employees c where c.employee_id='00170') c1

may correctly return the last name but not the first name as the problem only affects

the last column in the outermost select list.

This problem was introduced in code changes made for V7.1.3 of the Oracle JDBC

for Rdb drivers.

5.14.4 Abnormal Client Termination may Prevent Executor Re-use.

Fixed in Instance Build 20061221

If a client application using a MP Server terminates abnormally or the client socket is

lost, the associated database connection will be disconnected by the server however

due to an internal problem, the executor process associated with the terminated client

may remain present on the system in LEF state.

The handling of abnormal termination did not correctly terminate the executor

process, nor did it place the free executor back in the free list for re-use. This results

in orphaned executor processes that will remain on the system in LEF waiting state

but will never be re-used.

 If the client abnormal terminations occur frequently, the number of inactive executor

processes will grow and may eventually cause system resource problems and

excessive swapping.

5.14.5 Decimal Column Problem with Native Driver

Fixed in Instance Build 20061221

A problem in the nativeRdb driver caused Decimal columns to be returned

incorrectly. This problem only affects applications using the rdbNative driver.

The Decimal datatype may be used by SQL when scaled integers are returned after

manipulation by an internal function or aggregate operation, for example the

following query may return incorrect values when executed through the rdbNative

driver.

 select distinct salary_amount from salary_history

Application using the rdbThin driver should not encounter this problem.

69

5.14.6 'EFN xx is not available' Message on Executor startup.

Changed in Instance Build 20070302

In earlier versions of Oracle JDBC for Rdb, if the MP Server found that the common

event flag number it was using to start the handshake process with a newly created

executor, was not available after trying to obtain it for reasonable length of time, the

server would abort the client connection attempt with the following exception:

 'EFN xx is not available'

In such a case the event flag used by the server was probably left set by a previous

attempt by the server to create an executor process but failed during the process

startup due to resource problems.

The server code has now been changed to correctly clean up its event flags usage if an

executor process fails to start up correctly. In addition the server now does not abort

when it finds the event flags already in use, but now assumes that as the amount of

time the event flag is unavailable is much longer than the amount of time it might

take the executor process to be created and executor image run-up, that the flag may

be reset and the current executor start-up may proceed.

5.14.7 Extraneous log message during Auto-restart check by Pool
Server.

Changed in Instance Build 20070306

A problem in how the Pool Server checked the availability of its pooled servers when

carrying out AutoRestart checking meant that an extraneous CLIENT LOST message

would be logged by the pooled server every time it was checked. The following

message would be logged:

srv.DBActionHandler <idle> Connection to Client lost

This has now been fixed.

5.14.8 Logfile not correctly set for servers started using the
Controller.

Fixed in Instance Build 20070412

The logfile used by the server to record trace message and other output may be set in

the server specification section of the configuration file used in conjunction with the

servers and the Controller.

70

A problem in how the logfile information was passed to the newly started server

process prevented the correct logfile specification to be used by the server when the

server was started using the Controller Start Server command.

This has now been fixed.

▲contents

5.15 New Features for Release 7.2.5

5.15.1 Persona

When a Thin or Pool server starts up, it automatically inherits the rights identifiers,

quotas, and authorization attributes of the process under which it was started. You

may now override this default behavior by specifying a persona to use on the startup

of the server. This persona will then be used by both the server and the underlying

OpenVMS operating system to determine the rights and authorities of the server

process and any executor processes that the server may start up.

This feature was introduced in release 7.1.4, but was omitted from the release notes.

5.16 Corrections in Release 7.2.5

This section describes software errors corrected in Oracle JDBC for Rdb release 7.2.5

5.16.1 Incorrect SQLSRV_JDBC_SERVER_STARTUP72 Installed
with V7.2-41 Oracle JDBC for Rdb kit

Fixed in Instance Build 20060505

An incorrect version of the SQLSRV_JDBC_SERVER_STARTUP72.COM file was

inadvertently placed in the V7.2-41 installation kit for Oracle JDBC for Rdb.

This version of the file does not set up the RDB$JDBC_SQSNAM_* logical name

properly and may cause problems when you try to use this file with SQL/Service Thin

server startup.

The following line of DCL command in this file is incorrect.

$ nam :='f$logical("RDB$JDBC_SQSNAM_''port'")

It should read:

71

$ nam = f$logical("RDB$JDBC_SQSNAM_''port'")

This has now been fixed.

5.16.2 Multi-Process Server May Show Continuous DIO Activity
Even When Idle

Fixed in Instance Build 20060505

A problem with the way error and output channels are assigned during the creation of

the executor subprocess by a detached Multi-process server may cause the server

process to continually issue direct I/Os to the associated mailboxes. This can be seen

as a continuous rise in the "Direct I/O" count for that process even when the server is

idle.

Although this does not interfere with the correct functionality of the server, it could

incorrectly show up as activity on a quiet server.

A workaround is to start up the Multi-process server directly in a login session rather

than detached.

This has now been fixed.

5.16.3 Client idleTimeout Does Not Work for Prestarted and Reused
Executors

Fixed in Instance Build 20060505

The amount of time that a client connection may be idle can be limited by using the

cli.idleTimeout parameter for the Thin server.

However, the client idle timeout value set for the server will be ignored when a Multi-

process server is used with prestarted executors. If the client gets a prestarted

executor on connection, the client idle timeout for the server does not get properly

transferred to the client context and no timeout will be issued.

Additionally even if an executor was not prestarted, if it is reused then a similar

problem will occur and the inactivity timer will not be set.

The client idle timeout set for a server is now correctly observed by prestarted and re-

used executors.

5.16.4 Syntax Error in Query Generated for
DatabaseMetaData.getTables

Fixed in Instance Build 20060620

72

The JDBC DatabaseMetaData.getTables() method allows the caller to obtain

information about the tables and views found in a connected database. When you call

this method, you can supply a list of table types to search for.

Currently the Oracle JDBC for Rdb drivers recognize the following types of tables for

this method:

 TABLE

 VIEW

 SYSTEM

 SYSTEM TABLE

 SYSTEM VIEW

 LOCAL TEMPORARY

 LOCAL TEMPORARY TABLE

 GLOBAL TEMPORARY

 GLOBAL TEMPORARY TABLE

 INFORMATION

 INFORMATION TABLE

The drivers should ignore any table type not in the above list.

However, due to a problem in the driver code, if the list of table types starts with a

type that is not recognized by the driver, a SQL syntax exception will be generated.

For example, the following example will result in a SQL syntax error:

 String types[] = {DERIVED, "TABLE", "VIEW", "GLOBAL TEMPORARY"};

 ResultSet rs = dbmd.getTables("","", "%" , types);

One possible workaround for this problem is to re-order the types so that the first type

specified is one from the list of recognized table types, for example:

 String types[] = ("TABLE", DERIVED, "VIEW", "GLOBAL TEMPORARY"};

 ResultSet rs = dbmd.getTables("","", "%" , types);

This example does not generate a SQL error.

This problem has now been fixed.

5.16.5 Show Clients in Controller may Crash Connected Thin Server

Fixed in Instance Build 20060620

A change in handshake protocol in V7.1-41 of Oracle JDBC for Rdb drivers

introduced a problem in how thin servers respond to requests for client information.

73

Issuing a SHOW CLIENT command in the Oracle JDBC for Rdb Controller

command line may cause the connected thin server to access violate and consequently

terminate the server process.

This problem has now been fixed.

▲contents

5.17 New Features for Release 7.2.4.1

This section contains new features and technical changes for Oracle JDBC for Rdb

release 7.2.4.1.

5.17.1 Client and Server Timeout Feature

You can now specify the amount of time a server or a client connection may remain

inactive before the connection will be terminated or the server closed down.

See the Oracle JDBC for Rdb User Guide for details.

5.17.2 Executor Name Prefix

You can now specify the name prefix for executors started up by the Multi-process

server. This can help in identifying executor processes on your system.

See the Oracle JDBC for Rdb User Guide for details.

▲contents

5.18 Corrections in Release 7.2.4.1

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.4.1.

5.18.1 Release Notes Specify Incorrect Installation Directory for
RDBJDBCCFG.XML

Fixed in Instance Build 20060130

The release notes for Oracle JDBC for Rdb release 7.1.2 incorrectly specified that the

RDBJDBCCFG.XML file would be copied to SYS$COMMON:[RDB$JDBC]

74

directory. The RDBJDBCCFG.XML is actually coped to two directories during

product installation:

 The product installation directory found under the main JDBC directory, for

example,

SYS$COMMON:[RDB$JDBC.0701-4V0614]

 The SYS$COMMON:[RDB$JDBC.COM] directory

In addition, the installation procedure incorrectly replaced the RDBJDBCCFG.XML

file in the SYS$COMMON:[RDB$JDBC.COM] directory, overwriting any already

existing file of the same name.

The release notes have been fixed, and the installation procedure will only copy the

RDBJDBCCFG.XML file to the SYS$COMMON:[RDB$JDBC.COM] directory if

the file does not already exist in that directory.

5.18.2 Persona Not Handled Correctly by the Multi-Process and Pool
Servers

Fixed in Instance Build 20060130

When the Persona feature is used in conjunction with a Multi-process or Oracle

JDBC for Rdb Pool server, a problem in the way either the executor processes or the

pooled server processes are created prevented the correct Persona identification from

being passed to the created processes. This problem may result in the following error

being raised:

java.io.IOException: Child creation error: not owner

Due to a restriction in the use of the JAVA System.exec() method that was used by

the JDBC servers to start executor sub-processes and pooled servers, the security

information and Persona details were not copied across to the newly created process.

The JDBC servers now use the OpenVMS system service CREPRC to start processes.

CREPRC correctly transfers the security information to the new process.

5.18.3 Multi-Process Server / Executor Handshake Timeout May Be
Too Short on Heavily Loaded Systems

Fixed in Instance Build 20060130

When a Multiprocessor server talks to an executor it uses a handshake protocol to

check that the executor is still alive and accepting direction. By default, if the

75

executor has not responded to the server's synchronization request within five seconds

it will raise the following exception and terminate the connection :

Lost connection to executor

This synchronization handshake is done after the executor has replied to the server

that it has completed the task requested and is waiting for the next operation to carry

out. This synchronization failure will not be raised while the executor is busy within

the database and thus is unaffected by such things as database locks or the duration

required to compile or execute queries. It will only occur when the executor is known

to be waiting for the next action to carry out.

In heavily loaded systems, especially on single-cpu systems, it is possible that the

executor process may not be scheduled for execution within the window of this

synchronization handshake and the exception may be raised.

In order to carry out this synchronization, in previous version of the drivers the server

polls the executor up to 500 times with a 10 millisecond delay between each poll

request. If no response is found after 500 tries, the server raises the above exception.

This version of the Oracle JDBC for Rdb drivers now allows you to specify, at the

server level, the maximum number of poll tries and the delay between each try. If you

know that the system on which the server is executing could possibly have extended

process scheduling delays, you can ensure that the server will not time out on the

synchronization handshake. Two new switches have been added to the server

definition and startup.

 Srv.MPmaxTries---Use to specify the maximum number of poll tries

 Srv.MPtryWait---Use to specify the delay between each try

See the Oracle JDBC for Rdb User Guide for more information.

5.18.4 Problems with srv.idleTimeout and srv.bindTimout
Configuration Variables and Their Use with SSL servers

Fixed in Instance Build 20060208)

The Oracle JDBC for Rdb User Guide for Version V7.1-3 incorrectly referred to the

srv.idleTimeout as affecting the inactivity timeout for a connection. This switch

actually refers to the timeout period for server inactivity. In addition, this feature was

not fully functional in previous versions.

The srv.bindTimeout configuration variable was meant to limit the time the server

will wait for an acknowledgement from the client that the database attach should

proceed. The default value is 0, which means that the server will wait indefinitely.

76

This timeout is useful when dealing with SSL communication, as the server uses it to

limit the time it will wait for the client to send down an attach request after a new

socket connection has been requested. If the client fails to use an SSL secure socket

when trying to communicate with a server that has SSL enabled, the client thread

within the server will hang as the connection cannot complete. The srv.bindTimeout

value specifies how long this wait should be before giving up.

Unfortunately the default for the value was incorrectly set to 1 second, and the

srv.bindTimeout server attribute was ignored in the XML configuration file. This

meant that on CPU-bound systems it was possible that the initial SSL negotiation

could take longer than one second and thus cause a TIMOUT failure on the new

connection request.

These problems have now been fixed. See the Oracle JDBC for Rdb User Guide for

more information.

5.18.5 IA64 Problem Causes Array Out of Bounds Exception When
Handling String Indexing

Fixed in Instance Build 20060208

A problem in the way JAVA on IA64 carries out string index operations in

association with static final string constants may infrequently cause the following

type of exception to be raised:

Caused by: java.lang.ArrayIndexOutOfBoundsException: 1054649176 at

java.lang.String.indexOf(String.java:1266) at

java.lang.String.indexOf(String.java:1236) at

java.lang.String.indexOf(String.java:1218) at

oracle.rdb.jdbc.common.Statement.getTableName(Statement.java:3148)

In all cases, the index value shown after the exception name is very large, in the same

order of magnitude as seen above.

The getTableName method has now been changed to a mechanism other than indexOf

to carry out its operation. This problem should no longer be seen.

5.18.6 Comments within SQL Text Not Handled Correctly

Fixed in Instance Build 20060301)

Executing or preparing a statement that has SQL text containing leading or embedded

comments may cause errors during parsing of the statement.

Some third-party products may use comments such as /* comment */ in the text they

send down to the JDBC drivers for compilation. Although handled correctly by

77

Oracle Rdb, comments of this style caused a problem in the determination of

statement types during the preliminary parsing of the statement by the JDBC driver.

For example the following SQL text

Stmt.Execute(/* This is a comment */ select * from jobs);

would cause an SQLException:

SQLException: in <rdbjdbcsrv:execute_immediate> %SQL-F-EXESELSTA,

Attempted to EXECUTE a SELECT statement:RR000

The JDBC driver could not correctly determine the type of statement and used the

wrong underlying SQL operation to attempt to execute it.

The drivers now extract out comments prior to determining the statement type and

sending the native SQL down to Oracle Rdb. The drivers will now correctly parse out

C and SQL type comments, for example:

/* comment */

! this comment will be terminated at the next line break

-- this comment will be terminated at the next line break

// this comment will be terminated at the next line break

5.18.7 Prepared Statements May Cause a Memory Leak with Multi-
Process Servers

Fixed in Instance Build 20060301

During the preparation of PreparedStatements, the Multi-process server has to

allocate memory from the servers' global shared memory pool that will hold some

information about columns and parameter markers in the statement that is being

prepared.

Due to a coding problem, some of this memory was incorrectly allocated each time

the prepared statement was executed, instead of only once at statement compilation

time. This wrongly allocated memory was never freed after use. Executing the same

prepared statement multiple times will slowly diminish the shared memory available

to the server, eventually causing a problem when the shared memory allocation is all

used up.

This has now been fixed.

▲contents

78

5.19 Corrections in Release 7.2.4

This section describes software errors corrected in Oracle JDBC for Rdb release

7.2.4.

5.19.1 Maximum Size of Single Data Row Increased to 65,272 Octets

Fixed in Instance Build 20051114

During copying rows of data from Oracle Rdb, the Oracle JDBC for Rdb drivers

incorrectly limited the number of octets copied to 36863 octets. This can cause

problems when there are more than 36863 octets in the row.

The following exception is a symptom of this data row truncation:

Statement creation failed: java.sql.SQLException: Connection lost :

java.lang.NegativeArraySizeException @rdb.Client.fillCache

The maximum size of a data row supported by the drivers has now been increased to

65,272 octets in keeping with the maximum row size supported by Oracle Rdb.

5.19.2 Another Connection Overlap Window Found with Pool
Servers

Fixed in Instance Build 20051209

Another potential overlap of connections between the connection made by the Oracle

JDBC for Rdb Pool server and its pooled servers has been found which may cause the

incorrect rejection of a client connection even when a free connection slot is

available.

This is similar to the problem referred to in the Oracle JDBC for Rdb V7.1.3.3 release

notes as

Spurious Maximum number of clients exceeded exception

The handshake protocol during server check by the Pool server has now been

changed to prevent this overlap of connections.

5.19.3 SSL Server Information Not Correctly Set from XML-
Formatted Configuration File

Fixed in Instance Build 20051220

79

A problem in the parsing of XML configuration file data prevented the correct port

and node information from being assigned to named servers of the type

"RdbThinSrvSSL", "RdbThinSrvMPSSL" and "RdbThinSrvPoolSSL.

Any URL specification provided for the individual server would be ignored, and the

default port and node used instead.

This has now been fixed.

▲contents

