
Oracle® Human Resources Management System
Implementation Guide (US)
Release 11i
Part No. B15548-02

July 2006

Oracle Human Resources Management System Implementation Guide (US), Release 11i

Part No. B15548-02

Copyright © 1996, 2006, Oracle. All rights reserved.

Primary Author: Louise Raffo

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software–Restricted Rights
(June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any
third party.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments

Preface

1 Introduction
Planning Implementation . 1-1

2 HRMS Conguration Workbench
Getting Started with the Configuration Workbench 2-1
Implementation Options . 2-4

Quick Start Implementation . 2-5
Quick Evaluation of Prototypes Using the Configuration Workbench 2-5
Upgrade HR Foundation . 2-6
Full Implementation . 2-7

Configuring HRMS Functional Areas . 2-8
Configuration Workbench for Enterprise and Workforce Management 2-9
Defining Jobs in the Configuration Workbench 2-10
Defining Positions in the Configuration Workbench 2-11
Defining Grades in the Configuration Workbench 2-12
Configuration Workbench for Compensation, Benefits, and Payroll 2-12
Configuration Workbench for Payroll Process Management 2-13
Defining Regional Jobs, Positions or Grades in the Configuration Workbench 2-14
Converting Benefits Enrollments . 2-14

Managing Data with the Configuration Workbench 2-15
Configuration Workbench for Data Conversion. 2-16
Configuration Workbench for HR Information Systems 2-16
Configuration Workbench for Migrating Data 2-17

3 Implementation Guide
Implementation Steps . 3-1
Post Install Steps . 3-1
Implementation Checklist . 3-6
Implementation Flowchart . 3-7
Administration . 3-27

iii

Enterprise and Workforce Management . 3-44
Payroll Process Management . 3-57
Compensation, Benefits, and Payroll. 3-59
Benefits Implementation Without Plan Design Wizard 3-81
Workforce Sourcing and Deployment . 3-90
Talent Management . 3-95
Workforce Intelligence . 3-98
HR Information Systems . 3-103

4 Implementation Guide
Further Implementation Steps . 4-1
Technical Essays. 4-1

DateTrack . 4-1
How DateTrack Works . 4-1

Behavior of DateTracked Forms . 4-1
Table Structure for DateTracked Tables . 4-2
Creating a DateTracked Table and View 4-4
Restricting Datetrack Options Available to Forms Users 4-5

Create and Modify DateTrack History Views 4-7
What Can You Create and Modify? . 4-7
What Happens When You Request DateTrack History?. 4-7
Rules for Creating or Modifying DateTrack History Views 4-8
Using Alternative DateTrack History Views 4-9
List of DateTrack History Views. 4-10

Batch Element Entry . 4-12
Creating Control Totals for the Batch Element Entry Process 4-12

Setting Up Control Totals . 4-12
Creating the SQL Code . 4-12

Payroll Processes . 4-15
Overview . 4-15

PYUGEN . 4-15
Payroll Action Parameters . 4-15
Overview of the Payroll Processes . 4-15
Assignment Level Interlocks . 4-16

Payroll Run Process . 4-17
Determine Assignments and Elements 4-17
Process Each Assignment . 4-18
Create Run Results and Values . 4-19
Set Up Contexts. 4-19
Run Element Skip Rules . 4-20
Create and Maintain Balances. 4-20
Run Formulas . 4-22

Pre-Payments Process . 4-25
Setting Up Payment Methods . 4-25
Preparing Cash Payments (UK Only) 4-26

iv

Prenotification (US Only) . 4-26
Consolidation Sets . 4-26
Third Party Payments . 4-27
Exchange Rates . 4-27
Overriding Payment Method . 4-27
The Process . 4-27

Payment Processes . 4-28
Magnetic Tape Process . 4-29
Error Handling . 4-39
Example PL/SQL . 4-39
Cheque Writer/Check Writer Process. 4-41
The Process . 4-41
Cheque Numbering . 4-43
Voiding and Reissuing Cheques . 4-44
Mark for Retry . 4-44
Rolling Back the Payments . 4-45
SRW2 Report . 4-45
Using or Changing the PL/SQL Procedure 4-46
Cash Process . 4-47

Payroll Action Parameters . 4-47
Action Parameter Values . 4-47
Summary of Action Parameters . 4-47
Parallel Processing Parameters . 4-49
Array Select, Update and Insert Buffer Size Parameters 4-49
Costing Specific Parameters . 4-50
Magnetic Tape Specific Parameters . 4-50
Error Reporting Parameters . 4-51
Frequency Rule Specific Parameters . 4-51
Rollback Specific Parameters . 4-51
Reversal Specific Parameters . 4-52
External Process Archive/Payslip Archive 4-52
Payroll Process Logging . 4-52
Logging Parameters . 4-54
Miscellaneous Parameters . 4-55
System Management of QuickPay Processing 4-55

Assignment Level Interlocks . 4-56
Action Classifications . 4-56
Rules For Rolling Back and Marking for Retry 4-58

Transfer to the General Ledger Process . 4-59
Costing Process. 4-60

Example of Payroll Costs Allocation . 4-60
Example of Employer Charge Distribution 4-61

The Payroll Archive Reporter (PAR) Process 4-62
PAR Modes . 4-63
Overview of the PAR Process . 4-63

v

Overview of the Setup Steps . 4-63
Create Database Items for Archiving. 4-64
Write Formulas . 4-66
Write Package Procedures For Assignments And Assignment Actions 4-66
Provide an SRS Definition for the PAR Process 4-68
Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table 4-68
Examples: INITIALIZATION_CODE and ARCHIVE_CODE 4-70

Balances in Oracle Payroll . 4-73
Overview of Balances . 4-74
Latest Balances . 4-74
Balance Dimensions . 4-75
Initial Balance Loading for Oracle Payroll 4-78
Introduction . 4-78
Steps . 4-79
Balance Loading Process . 4-79
Latest Balances . 4-80
Setting Up an Element to Feed Initial Balances 4-81
Setting Up the Initial Balance Values . 4-82
Running the Initial Balance Upload Process. 4-84
Balance Initialization Steps . 4-87
Including Balance Values in Reports . 4-89
The Balance Function . 4-90

Legislative Balance Initialization . 4-91
Balance Initialization Elements . 4-91
Supported Dimensions . 4-92
Overview of Tax-related Balances . 4-92
Balances That Require Initializing . 4-94
Required US Legislative Balances . 4-98
Balances Reported on W2 and 941 . 4-102

PayMIX Views . 4-104
Renaming of PayMIX Tables . 4-104
Views From PayMIX Tables to BEE Tables 4-104
PayMIX Windows in Release 11i . 4-105

Dependents and Beneficiaries . 4-105
Overview . 4-106
Design . 4-106
Windows and Data Entry . 4-107
Additional Notes . 4-108

Payroll Tax Subsystem. 4-109
Installed Tax System . 4-109
Earnings and Deductions . 4-109
Taxes . 4-110
Tax Balances . 4-114
User Defined Reports . 4-118
Other Forms . 4-119

vi

Tax Implementation . 4-119
FastFormula . 4-130

The FastFormula Application Dictionary. 4-130
Entities in the Dictionary . 4-131
Defining New Database Items . 4-132

Calling FastFormula from PL/SQL . 4-140
The Execution Engine Interface . 4-141
Changes in R11i. 4-142
Server Side Interface . 4-142
Client Side Call Interface . 4-146
Special Forms Call Interface . 4-148
Logging Options . 4-150

Flexfields . 4-152
Validation of Flexfield Values. 4-152

Referencing User Profile Options . 4-153
Referencing Form block.field Items . 4-153
Referencing FND_SESSIONS Row . 4-154
Incomplete Context Field Value Lists 4-155

Security . 4-155
Extending Security in Oracle HRMS . 4-155

Security Profiles . 4-156
Security Processes . 4-160
Securing Custom Tables . 4-164

APIs . 4-164
APIs in Oracle HRMS . 4-164

API Overview . 4-166
Understanding the Object Version Number (OVN) 4-167
API Parameters . 4-169
API Features . 4-182
Flexfields with APIs . 4-183
Multilingual Support . 4-184
Alternative APIs . 4-185
API Errors and Warnings. 4-186
Example PL/SQL Batch Program . 4-188
WHO Columns and Oracle Alert . 4-190
API User Hooks. 4-191
Using APIs as Building Blocks . 4-208
Handling Object Version Numbers in Oracle Forms 4-209

DataPump. 4-215
Oracle HRMS Data Pump . 4-215

Overview . 4-217
Using Data Pump . 4-219
Running the Meta-Mapper . 4-220
Loading Data Into the Batch Tables . 4-228
Running the Data Pump Process . 4-231

vii

Finding and Fixing Errors . 4-233
Purging Data . 4-236
Sample Code . 4-238
Notes on Using The Generated Interfaces 4-240
Utility Procedures Available With Data Pump 4-243
Table and View Descriptions . 4-244

SQL Trace . 4-250
SQL Trace . 4-250

Using SQL Trace . 4-251
Enabling SQL Trace . 4-251
Locating the Trace File . 4-254
What is TKPROF? . 4-255
Formatting a Trace File using TKPROF 4-255
TKPROF Sort Options . 4-258
Understanding a TKPROF Report . 4-258
Raw SQL Trace File Example . 4-265
Advanced SQL Tracing Using Event 10046 4-266

Backfeed . 4-268
Oracle Generic Third Party Payroll Backfeed 4-268

Overview . 4-269
Setting Up the Generic Payroll Backfeed 4-269
Installing the Oracle Generic Third Party Payroll Backfeed 4-270
Payment Information . 4-271
Balance Types . 4-271
APIs. 4-272
Setting Up Data Pump . 4-273
Deciding Which Upload Option to Use. 4-273
Setting Up Data Uploader . 4-274
Using Backfeed to Upload Payroll Run Results 4-277
Creating an Upload Workbook . 4-277
Using the Load Sheets Macro . 4-278
Using the Save Sheets Macro . 4-279
Running Data Uploader . 4-279
Running Data Pump. 4-280
Viewing Third Party Payroll Results in Oracle HRMS 4-280

GB Branch Sort Code Validation in Oracle HRMS 4-281
GB Branch Sort Code Validation in Oracle HRMS 4-281

How Oracle HRMS Implements GB Branch Sort Code Validation 4-282
Overview: Enabling Sort Code Validation. 4-282
Appendix A: Sample Bank Name Mapping File and Code 4-286
Appendix B: PAY_BANK_BRANCHES_PKG APIs 4-290
Appendix C: Sample Source Branch Data File and Loader Code 4-292

Grade/Step Progression . 4-303
Grade/Step Progression and the Total Compensation Data Model 4-303

XML Output for Payment Processes . 4-305

viii

XML Output for Payment Processes . 4-305
Tables That Support XML Enhancement 4-306

HRMS Glossary

Index

ix

Send Us Your Comments

Oracle Human Resources Management System Implementation Guide (US), Release 11i
Part No. B15548-02

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Applications Release
Online Documentation CD available on Oracle MetaLink and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local
office and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web
site at www.oracle.com.

xi

Preface

Intended Audience
Welcome to Release 11i of the Oracle Human Resources Management System Implementation
Guide (US).

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• Oracle HRMS.

If you have never used Oracle HRMS, Oracle suggests you attend one or more of the
Oracle HRMS training classes available through Oracle University

• Oracle Self-Service Web Applications.

To learn more about Oracle Self-Service Web Applications, read theOracle Self-Service
Web Applications Implementation Manual.

• The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user interface, read the Oracle
Applications User’s Guide.

See Related Information Sources on page xiv for more Oracle Applications product
information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY support,
call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible,
with good usability, to the disabled community. To that end, our documentation
includes features that make information available to users of assistive technology.
This documentation is available in HTML format, and contains markup to facilitate
access by the disabled community. Accessibility standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/ .

xiii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that consists
solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Introduction
2 HRMS Conguration Workbench
3 Implementation Guide
4 Implementation Guide
HRMS Glossary

Related Information Sources
Oracle HRMS shares business and setup information with other Oracle Applications
products. Therefore, you may want to refer to other user guides when you set up and
use Oracle HRMS.

You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Document Library CD
included in your media pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle store at
http://oraclestore.oracle.com.

Guides Related to All Products

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI). This guide also includes information on setting user
profiles, as well as running and reviewing reports and concurrent processes.

You can access this user’s guide online by choosing ”Getting started with Oracle
Applications” from any Oracle Applications help file.

Guides Related to This Product

OA Personalization Framework and OA Extensibility Framework

Learn about the capabilities of the 5.6 Framework technologies.

Oracle Human Resources Management Systems Enterprise and Workforce Management
Guide

Learn how to use Oracle HRMS to represent your enterprise. This includes setting up
your organization hierarchy, recording details about jobs and positions within your

xiv

enterprise, defining person types to represent your workforce, and also how to manage
your budgets and costs.

Oracle Human Resources Management Systems Workforce Sourcing, Deployment,
and Talent Management Guide

Learn how to use Oracle HRMS to represent your workforce. This includes recruiting
new workers, developing their careers, managing contingent workers, and reporting
on your workforce.

Oracle Human Resources Management Systems Payroll Processing Management Guide

Learn about wage attachments, taxes and social insurance, the payroll run, and other
processes.

Oracle Human Resources Management Systems Compensation and Benefits
Management Guide

Learn how to use Oracle HRMS to manage your total compensation package. For
example, read how to administer salaries and benefits, set up automated grade/step
progression, and allocate salary budgets. You can also learn about setting up earnings
and deductions for payroll processing, managing leave and absences, and reporting
on compensation across your enterprise.

Oracle Human Resources Management Systems Configuring, Reporting, and System
Administration in Oracle HRMS

Learn about extending and configuring Oracle HRMS, managing security, auditing,
information access, and letter generation.

Oracle Human Resources Management Systems Implementation Guide

Learn about the setup procedures you need to carry out in order to successfully
implement Oracle HRMS in your enterprise.

Oracle Human Resources Management Systems FastFormula User Guide

Learn about the different uses of Oracle FastFormula, and understand the rules and
techniques you should employ when defining and amending formulas for use with
Oracle applications.

Oracle Human Resources Management Systems Deploy Self–Service Capability Guide

Set up and use self-service human resources (SSHR) functions for managers, HR
professionals, and employees.

Oracle Human Resources Management Systems Deploy Strategic Reporting (HRMSi)

Implement and administer Oracle Human Resources Management Systems Intelligence
(HRMSi) in your environment.

Oracle Human Resources Management Systems Strategic Reporting (HRMSi) User Guide

Learn about the workforce intelligence reports included in the HRMSi product, including
Daily Business Intelligence reports, Discoverer workbooks, and Performance
Management Framework reports.

Implementing Oracle Approvals Management

Use Oracle Approvals Management (AME) to define the approval rules that determine
the approval processes for Oracle applications. Download this document from Oracle
MetaLink, Note 282529.1.

xv

Oracle iRecruitment Implementation Guide

Set up Oracle iRecruitment to manage all of your enterprise’s recruitment needs.

Oracle Learning Management User Guide

Set up and use Oracle Learning Management to accomplish your online and offline
learning goals.

Oracle Learning Management Implementation Guide

Implement Oracle Learning Management to accommodate your specific business
practices.

Oracle Time and Labor Implementation and User Guide

Learn how to capture work patterns such as shift hours so that this information can be
used by other applications such as General Ledger.

Installation and System Administration

Oracle Applications Concepts

This guide provides an introduction to the concepts, features, technology
stack, architecture, and terminology for Oracle Applications Release 11i. It provides a
useful first book to read before an installation of Oracle Applications. This guide also
introduces the concepts behind Applications-wide features such as Business Intelligence
(BIS), languages and character sets, and Self–Service Web Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle Applications
products. In Release 11i, much of the installation process is handled using Oracle
Rapid Install, which minimizes the time to install Oracle Applications and the Oracle
technology stack by automating many of the required steps. This guide contains
instructions for using Oracle Rapid Install and lists the tasks you need to perform
to finish your installation. You should use this guide in conjunction with individual
product user guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or
Release 11.0 products to Release 11i. This guide describes the upgrade process and
lists database and product-specific upgrade tasks. You must be either at Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0, to upgrade to Release 11i. You
cannot upgrade to Release 11i directly from releases prior to 10.7.

"About" Document

For information about implementation and user document, instructions for applying
patches, new and changes setup steps, and descriptions of software updates, refer to
the "About" document for your product. "About" documents are available on Oracle
MetaLink for most products starting with Release 11.5.8.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as AutoUpgrade, Auto
Patch, AD Administration, AD Controller, AD Relink, License Manager, and others. It
contains how-to steps, screenshots, and other information that you need to run the AD
utilities. This guide also provides information on maintaining the Oracle applications
file system and database.

xvi

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Alert User’s Guide

This guide explains how to define periodic and event alerts to monitor the status of
your Oracle Applications data.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle Applications
development staff and describes the Oracle Application Object Library components that
are needed to implement the Oracle Applications user interface described in the Oracle
Applications User Interface Standards for Forms-Based Products. This manual also provides
information to help you build your custom Oracle Forms Developer forms so that the
forms integrate with Oracle Applications.

Oracle Applications User Interface Standards for Forms–Based Products

This guide contains the user interface (UI) standards followed by the Oracle Applications
development staff. It describes the UI for the Oracle Applications products and how to
apply this UI to the design of an application built by using Oracle Forms.

Other Implementation Documentation

Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products between
Release 11.0 and Release 11i. It includes new features, enhancements, and changes made
to database objects, profile options, and seed data for this interval.

Oracle Workflow Administrator’s Guide

This guide explains how to complete the setup steps necessary for any Oracle
Applications product that includes workflow-enabled processes, as well as how to
monitor the progress of runtime workflow processes.

Oracle Workflow Developer’s Guide

This guide explains how to define new workflow business processes and customize
existing Oracle Applications-embedded workflow processes. It also describes how to
define and customize business events and event subscriptions.

Oracle Workflow User’s Guide

This guide describes how Oracle Applications users can view and respond to workflow
notifications and monitor the progress of their workflow processes.

Oracle Workflow API Reference

This guide describes the APIs provided for developers and administrators to access
Oracle Workflow.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference information for the
Oracle HRMS implementation team, as well as for users responsible for the ongoing
maintenance of Oracle Applications product data. This guide also provides information
on creating custom reports on flexfields data.

xvii

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams and a detailed
description of database tables, forms, reports, and programs for a specific Oracle
Applications product. This information helps you convert data from your existing
applications, integrate Oracle Applications data with non-Oracle applications, and write
custom reports for Oracle Applications products. Oracle eTRM is available on Oracle
Metalink.

Oracle Applications Message Manual

This manual describes all Oracle Applications messages. this manual is available in
HTML format on the documentation CD-ROM for Release 11i.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser,
database triggers, or any other tool to modify Oracle Applications data unless otherwise
instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus
to modify Oracle Applications data, you risk destroying the integrity of your data and
you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a row
in one table without making corresponding changes in related tables. If your tables get
out of synchronization with each other, you risk retrieving erroneous information and
you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track of
who changes information. If you enter information into database tables using database
tools, you may store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools do not keep a
record of changes.

xviii

1
Introduction

Planning Implementation
The flexibility of Oracle HRMS enables you to develop an implementation project plan
that meets your own specific business needs for Oracle Human Resources, Oracle
Payroll, Oracle Advanced Benefits, Oracle Learning Management, and Oracle
Self-Service Human Resources (SSHR).

With Oracle HRMS you choose the functions you want to implement initially. You
implement other functions when you need to use them.

For example, you might decide to implement for HR users, and then to add payroll
processing capabilities in a subsequent phase. Alternatively, you might decide to
implement payroll functions during your initial phase. You could choose to extend your
range of HR information and functions later.

Decision making is an important part of any implementation process and before you
begin to configure Oracle HRMS you must decide how you want to use the system.

Adopting a staged, or incremental, approach to implementation lets you focus on those
areas of the system you want to use.

Working in partnership with Oracle you can call on skilled consultants to provide you
with all of the training, and technical and professional expertise you need. Together you
can successfully implement an HRMS system that matches your specific business needs
in the most efficient and cost-effective manner.

HRMS Conguration Workbench
You can manage your implementation using the HRMS Configuration Workbench. The
Workbench delivers a configuration interview that helps you make the best configuration
choices for your enterprise. The interview is based on the distilled knowledge of good
practice from the experience of hundreds of customers working in different industries
and geographies.

Use the Quick Start option in the Workbench to generate prototype configurations that
include all the essential definitions for using HR and Payroll. You can create alternative
prototypes by answering the interview questions slightly differently. The Quick Start
option generates default settings for other required system components in HR and
Payroll that you would typically set up manually. Work through your business processes
using the prototypes to experience the effect of alternative configuration choices.

When you are satisfied with your prototype configuration you can proceed to use the full
configuration management toolset in the Workbench. For the Full Implementation, you
should make sure you complete all the details about your enterprise before you generate

Introduction 1-1

the full configuration. You can load the full configuration only once, so you need to
include all the required detail before you load it.

When you have loaded the full configuration, you have a basic implementation that
matches the business processes of your enterprise. Evaluate what additional features
you require, and follow the implementation steps to add features and extend your
configuration.

Read more about the Configuration Workbench in the Getting Started guide on
MetaLink, Note 281421.1.

1-2 Oracle Human Resources Management System Implementation Guide (US)

2
HRMS Conguration Workbench

Getting Started with the Conguration Workbench
The Configuration Workbench is an integrated toolset that simplifies the tasks of
configuration management. Configuration tasks are grouped together in a framework
that makes it easy to find the right configuration tool for each task.

Added features make it easy to:

• Track your configuration activities or progress

• Store supporting documents

• View related reports

• Link directly to online training and help

• Link to the latest release information on Metalink

With HRMS you tailor each business area of the system to reflect your own data
structures and policies or processes. The Configuration Workbench provides one central
point with direct access to the tools for configuring each business area of the HRMS
system.

Embedded in the tools is the distilled knowledge of good practice configuration choices
based on our experience of working with many hundreds of customers in different
industries and geographies. The wizards provide step-by-step information as you go
through them and the pages of the Configuration Workbench contain detailed context
sensitive information.

New or Existing Customers
If you are new to Oracle HRMS, you use the Quick Start Implementation to
evaluate different configuration options as part of a conference room pilot
(CRP). When you are satisfied with your prototype configuration, you use the Full
Implementation. See: Configuration Interview, page 2-4 and Quick Start Implementation,
page 2-5

If you already use Oracle HR as a shared option with Financials or Projects, you use the
Upgrade HR Foundation diagnostic to analyze your existing setup before upgrading to
full HRMS. See: Upgrade HR Foundation, page 2-6

If you are an existing Oracle HRMS customer, you use the Full Implementation tools
to manage the ongoing activities of your existing configuration, such as data migration
and diagnostics, adding new modules, entering batches of elements for payroll, and

HRMS Conguration Workbench 2-1

extracting records for third-party vendors. See: Full Implementation, page 2-7 and
Managing Data with the Configuration Workbench, page 2-16

Oracle HRMS Functional Areas
Oracle HRMS is organized into seven business areas, called functional areas. Information
in the online help, curriculum, and the New Features information in the About Doc is
grouped into these seven functional areas.

The seven Oracle HRMS functional areas are:

• Enterprise and Workforce Management

• Workforce Sourcing and Deployment

• Talent Management

• Compensation and Benefits Management

• Payroll Process Management

• Time Management

• HR Information Systems

The current version of the Configuration Workbench supports Enterprise and
Workforce Management, Compensation and Benefits Management, Payroll Process
Management, and HR Information Systems.

Note: You will find the latest HRMS information in the About Doc on
Metalink.

Application Life-Cycle and Workbench Tools
The tools in the Configuration Workbench are intended for use at different stages of
the application life-cycle. These stages can be described with different names but they
usually include the following:

• Evaluate - Gather and retain essential information for prototyping configurations
during the sales cycle

• Install - Install the Oracle application modules with all of the related software
components

• Configure - Configure the modules that support the functional areas you decide
to deploy

• Convert - Load data from your legacy systems into your configured Oracle system

• Test - Test your configuration for completeness, for user acceptance, and to establish
regression tests for upgrade

• Migrate - Selectively extract and migrate configuration data from one environment
and move it to another, see: Configuration Workbench for Migrating Data, page 2-17

• Sustain - Change your configuration or upgrade to add new functions or features to
your system

The Configuration Workbench provides the following tools:

2-2 Oracle Human Resources Management System Implementation Guide (US)

1. The guided configuration interview simplifies the process of gathering the key facts
about your enterprise needs. The interview uses best-practice setup templates to
generate an actual configuration reliably and consistently. By using the configuration
interview, you can quickly start to use your Oracle HRMS system with your own
data.

2. The implementation wizards guide you through complex combinations of steps and
choices making it easy to setup and maintain specific functional areas.

3. You can select configured solutions from a library of predefined templates.

4. Excel worksheets for data conversion are dynamically formatted to match your
existing setup using Oracle’s Web ADI tool for desktop integration. The knowledge
of your setup for validating data before loading is embedded in these generated
worksheets. Values you enter in the worksheet are automatically mapped to the
right place in the Oracle system using published open interfaces.

5. Diagnostic reports display current setup details testing for common problems and
suggest actions if any problems are found.

6. The Configuration Workbench generates regression test plans and Mercury
Winrunner Interactive test scripts that combine your specific setup data with
predefined test templates.

7. The Configuration Workbench has specialist migration tools for specific functional
areas or general table and row level migration. You can migrate all the setup data or
selected setup data between instances.

HRMS Conguration Workbench 2-3

Conguration Interview
The configuration interview is a tool that you use to define new configurations. In
the interview, you describe the legal entities, and operating companies that comprise
your organizational framework. The Configuration Workbench uses the configuration
interview to review the decisions and operational questions you make about setting
up your enterprise using Oracle HRMS.

In the Quick Start Implementation, you create copies of the configuration and
use the configuration interview to change some of the key decisions and detailed
information. You then generate different prototypes from the configurations. You use
the prototypes to view and test the differences of specific decisions in each functional
area. You use the Configuration Workbench to store and restore different configuration
versions for comparison and tracking decision-making.

When you use the configuration interview in the Quick Start Implementation, you
also complete the jobs or positions, and grades wizards in sequence. For the Full
Implementation you must ensure that after you complete the configuration interview
you also configure jobs or positions, and grades before you load the configuration.

Note: You can use all the other tools in the Configuration Workbench
even if you do not use the configuration interview to generate your
setup. For example, if you configured Oracle HR in an earlier release
and have since upgraded, you can immediately start to use the data
loaders or diagnostic tools on your existing setup.

First Steps
If this is your first time using HRMS applications, explore some of the online education
and other information sources you can access from the Configuration Workbench home
page. The HRMS Total View class is a good introduction to all the functional areas
and features of Oracle HRMS.

Next, study the Organization Structures Overview to understand the best-practice
configuration models that are embedded as templates in the Configuration
Workbench. These templates are based on the practical experience gained from many
implementation projects and an understanding of the integration points between the
different modules in the Oracle eBusiness Suite.

If you are an implementer who is already familiar with Oracle HR you should pay special
attention to the Organization Structures Overview and the best practice configuration
models. These standard configuration models introduce new organization classifications
and the recommended use of these may differ from how you have used them in the
past. The recommended best practice configuration choices for Business Groups and
Organizations in Oracle HR, or for Jobs and Positions:

• Provide a consistent platform for customers in all industries and geographies

• Incorporate best practice in configuration for using HR only or for full integration of
Company and Cost Center structures with Oracle Financials

• Minimize the risk of reconfiguration if the enterprise expands into new geographies
or acquires new companies

See: Organization Structures Overview, Oracle HRMS Enterprise and Workforce
Management Guide

2-4 Oracle Human Resources Management System Implementation Guide (US)

Implementation Options

Quick Start Implementation
The Quick Start Implementation is a simplified configuration process that focuses on
the essential tasks for creating a CRP. This process is a quick way to test out the system
and evaluate your own needs.

You use the Quick Start Implementation if you’re a new Oracle HRMS customer and you
want to use your own data to evaluate or compare different configuration options as
prototypes for conference room pilots (CRPs).

You use the configuration interview to set up your organization structures and make
decisions about jobs and positions, and grades. The Quick Start Implementation
configures the Oracle HR and Payroll applications and generates default settings for
the required system components in HR and Payroll that you would typically set up
manually. For example, for the US legislation, the Quick Start Implementation generates
open links for Regular Salary, Regular Wages, VERTEX, and Workers Compensation
Elements.

You copy your configuration and use the configuration interview to create alternative
versions of setup information. You generate the configurations, upload your data
through spreadsheets, and compare the versions to decide the best prototype for your
organization.

For example, you can use jobs in one version and positions in another. You use
spreadsheets to upload the same data to both versions. You then evaluate whether
using jobs or positions works best for you. See: Quick Evaluation of Prototypes Using
the Configuration Workbench, page 2-5

You choose the best prototype for your organization and use it as the basis for the Full
Implementation. See: Full Implementation, page 2-7

Quick Evaluation of Prototypes Using the Conguration Workbench
The Quick Start Implementation is a simplified configuration process that focuses on
key setup and is a quick way to test out the system and evaluate your own needs. You
copy your configuration and use the configuration interview to create alternative
versions of setup information. You generate the configurations, upload your data
through spreadsheets, and compare the versions to decide the best prototype for your
organization.

The sequence of tasks for creating a CRP is:

1. Complete the manage organization tasks: configuration interview, configure jobs or
positions, and configure grades

2. Load the configuration

3. Optionally log in with HRMS_USER

4. Optionally select the common Earnings and Deductions from the Solution Library
and upload

5. Generate the default settings

6. Load reference data

HRMS Conguration Workbench 2-5

On the Workbench Home page:

• Select HR and Payroll and Manage Organization Configuration to access the work
structures wizard. Use this wizard to configure your organization structures and to
modify, import, export, and load configuration. See: Key Concepts for Representing
Enterprises, Oracle HRMS Enterprise and Workforce Management Guide

The auto-generation process creates an HRMS_USER and automatically assigns
all responsibilities, security profiles, and user profiles that are appropriate for the
loaded configuration. The password for the HRMS_USER is welcome.

• Select HR and Payroll and Select Earnings and Deductions Templates to select
the earnings and deductions you would like the Workbench to load for you. The
Workbench creates the elements, formulas, balances, and formula result rules that
Oracle Payroll requires to process each earnings and deduction type. You can
configure any of the generated components. See: Elements: Building Blocks of Pay
and Benefits, Oracle HRMS Compensation and Benefits Management Guide and Other
Payroll Earnings and Deductions Overview, Oracle HRMS Compensation and Benefits
Management Guide

• Select HR and Payroll and Generate Default Settings to generate default settings
for the required system components in HR and Payroll that you would typically
set up manually. This process generates definitions for payroll and payment
methods, eligibility links for tax elements, eligibility links for all earnings and
deductions, working conditions, and, for the US only, salary bases.

• Select HR and Payroll and Load Reference Data to access the spreadsheets into
which you import your legacy location, job, and employee data and enter your new
data. After you enter your data into the downloaded spreadsheets, you upload the
data to the open interface tables for Oracle HRMS. You then run the Data Pump to
validate and upload your data from the open interface tables to the HRMS tables.

The CRP employee data load process differs from the Full Implementation
employee data load process. The Employee data load process for the Quick Start
Implementation combines person, address, assignment, and salary details. This
process automatically generates a user name and password for each person. The
format of the user name is <first name>.<last name> and the password is welcome.

To demonstrate Employee Self-Service functionality, you use the System
Administrator responsibility to add the Person ID of one of the loaded employees
to the HRMS_USER. You then log in as that user and use Self Service HR to check
and update that user’s personal details.

Upgrade HR Foundation
Upgrade HR Foundation is a guided process to assist customers who are upgrading
from using HR Foundation as a shared option with Financials or Projects to a full
implementation of Oracle HR.

You use the Upgrade HR Foundation process to determine whether you should
re-implement your HR configuration or set up additional business groups and migrate
the data while maintaining references to the existing applications. You also use the
methodology to plan which tools to use to perform the migration and what types of tests
to run to verify that the migration has been successful.

The sequence of tasks for upgrading from HR Foundation is:

1. Review your options for change or reconfiguration

2-6 Oracle Human Resources Management System Implementation Guide (US)

2. Determine your ideal setup of work structures

3. Run the diagnostic tool

On the Workbench Home page:

• Select HR Foundation to Full HR and Review Migration White Paper and Get
Diagnostics Scripts to download the "Migrating from Shared to Full HR" White
Paper from Metalink (see Metalink Note 304002.1). Use this White Paper to review
your options for change or reconfiguration and plan the detailed steps to make your
specific setup changes. You must also download the diagnostic scripts available from
this note for use later.

• Select HR Foundation to Full HR and Determine Full HR Setup to access the work
structures wizard. Follow the configuration interview process to determine your
ideal setup of work structures for HR users. The summary report at the end of this
task gives you the full configuration detail for HR users.

• Select HR Foundation to Full HR and Review Financials Integration to run the
diagnostic scripts to report and analyze your existing setup of the shared HR data.

Note: You must run these scripts on your shared instance, and
not on the instance upon which you have installed Configuration
Workbench.

Full Implementation
The Full Implementation process provides access to the complete set of tasks and tools
used to configure Enterprise and Workforce Management; Compensation, Benefits and
Payroll; and Payroll Process Management. You can use the Configuration Workbench to
access these tools even if you did not use the configuration wizard to implement HRMS.

If you are new to Oracle HRMS, you use the Full Implementation after you have
completed the CRP. You can load the full version of the configuration only once, so you
must include all the required details about your organization, jobs or positions, and
grades before you generate the full configuration.

If you already use Oracle HR, you use the Full Implementation tasks and tools to manage
your existing HRMS configuration or add new modules.

You use the Full Implementation to:

• Create a configuration that tailors the capabilities of the applications to your specific
operational requirements

• Select predefined configuration options from a library of solution templates

• Maintain and adapt an existing configuration with functional area wizards

• Generate spreadsheets for data conversion from an existing configuration and use
these to load data directly to your system

• Extract and migrate all or part of your configuration to another instance

• Run diagnostic reports to check the status of your configuration and identify
common problems

• Generate regression test plans and scripts with test data taken from your
configuration

HRMS Conguration Workbench 2-7

After you have used the Full Implementation to configure HRMS, convert legacy
data, test for completeness, and finally to migrate setup data from a test to a production
environment, you are ready to use the newly configured system to perform HRMS
transactions. You can continue to use the tools in the Configuration Workbench to
manage your configuration through the different stages of the application life cycle.

2-8 Oracle Human Resources Management System Implementation Guide (US)

Conguring HRMS Functional Areas

Conguration Workbench for Enterprise and Workforce Management
All the Oracle HRMS functional areas are built on a common platform of organizations
and people structures. You start the configuration process by defining the legal entities
and operating companies that comprise your organizational framework. Next you
provide information about the ways that different groups of employees work in your
organization and the Configuration Workbench generates the business groups and
organizations with the job or position structures you need.

A business group in Oracle HR is a container of country specific data. Usually each
business group will be tied to one and only one country, however sometimes if you do
not have a large presence in a country a single business group may contain data from
more than one country.

You must configure organizations, jobs or positions, and grades before you load the
configuration. Create your configuration structures in this sequence:

1. Configure organizations

2. Configure jobs and positions

3. Configure grades

4. Load the configuration

5. Load data using spreadsheets

On the Workbench Home page:

• Select Organization Structures and Manage Organization Configuration to access the
work structures wizard. Use this wizard to configure your organization structures
and to modify, import, export, and load configuration. See: Key Concepts for
Representing Enterprises, Oracle HRMS Enterprise and Workforce Management Guide

• Select Jobs and Positions and Configure Jobs or Positions to define roles to represent
the ways that different groups of employees work. If you operate in multiple
countries the process will also guide you through the options to use a common
global setup or to accommodate different configuration choices for a region or a
country. See: Defining Jobs in the Configuration Workbench, page 2-10 and Defining
Positions in the Configuration Workbench, page 2-11

• Select Organization Structures and Load Organization Data to access the
spreadsheets into which you enter or import the location and organization
details for each business group. After you enter your data into the downloaded
spreadsheets, you upload the data to the open interface tables for Oracle HRMS
and run the Data Pump to upload your data from the open interface tables to the
HRMS tables.

• Select Jobs and Positions and Load Job/Positions Details to access the spreadsheets
into which you enter or import details about your jobs or positions and set their
values for each business group. After you enter your data into the downloaded
spreadsheets, you upload the data to the open interface tables for Oracle HRMS
and run the Data Pump to upload your data from the open interface tables to the
HRMS tables.

HRMS Conguration Workbench 2-9

Note: You configure grade structures in the configuration interview. For
information about grades, see: Configuration Workbench for
Compensation, Benefits and Payroll, page 2-12

To understand the full implementation process for enterprise and workforce
management, see: Enterprise and Workforce Management, page 3-44

Dening Jobs in the Conguration Workbench
You define roles to represent the ways that different groups of employees work. A
job is a generic role within a business group, which is independent of any single
organization. For example, the jobs Manager and Consultant can occur in many
organizations.

Your enterprise may have groups of employees hired to perform specific tasks. This
can be on a temporary or a permanent basis. Staff in this category can include agency
workers, consultants, and contractors. For these staff, you can define the role more
flexibly as a job.

You can also use jobs to set up supplementary roles that an employee might hold, for
example, fire warden, or health and safety officer. You can distinguish these
supplementary roles from other jobs by using job groups. Job groups are used to store
supplementary roles of a similar type in one group.

Dening Jobs in the Conguration Workbench
In the jobs and positions interview, you have chosen to use the flexibility of jobs and
supervisor reporting to represent the primary working roles in your enterprise. The jobs
you define will be available to all departments or organizations in your enterprise and an
employee can move between departments but keep the same job.

In this part of the interview you decide the structure and the component parts of the job
name that best meet your requirements for identifying jobs in your enterprise. When
you define a job you enter a value for each segment of the job name structure. Most
customers who use jobs choose between one and five segments. A typical job might be
HR Application Specialist.Consulting.Level 1.

Define more segments to make job names more specific. For example, use Job Type and
Job Level to be more specific about a job than just using a Job Title. You decide how
many components you want to use to define the unique name for each job. Standard
capabilities mean that you can use the different segments of the name to identify
common jobs or job holders for analysis or compensation, or for grouping records in
reports, for example, to find all jobs of a specific Job Type.

Note: You shouldn’t use segments with values that change regularly, for
example, Salary Ranges or Expense Approval Levels that change every
year. Use the name to uniquely identify the job and use standard
capabilities of the system to enter and maintain related information for
government reporting, valid grades, and skill requirements.

If you operate in multiple countries we usually recommend that you use the same
structure for job names in all countries. However, in this interview you can define
exceptions to this common structure for a single country or for a set of countries that you

2-10 Oracle Human Resources Management System Implementation Guide (US)

define as a Region. See: Defining Regional Jobs, Positions or Grades in the Configuration
Workbench, page 2-14

Dening Positions in the Conguration Workbench
A position is a specific occurrence of one job, fixed within one organization. For
example, the position Finance Manager is an instance of the job of Manager in the Finance
organization. The position belongs to the organization. There may be one, many, or no
holders of a position at any time.

Positions are normally used in role-based enterprise structures where clearly defined
rules largely determine the ways employees work, and the compensation and benefits
they receive.

You can set up both organizations and positions to define reporting structures in your
enterprise, but be careful to avoid duplication of information. It’s best to define most
of the detail at position level. Use your organizations to show your highest level of
departments or divisions and your positions and position hierarchies to show the
reporting groups in your enterprise.

Dening Position Components in the Conguration Workbench
In the jobs and positions interview, you have chosen to use the detailed reporting
capability of positions to represent the primary working roles in your enterprise. A
position can have multiple post holders and a person can be assigned to multiple
posts. You define the rules that control assignments when you define each position.

Each position you define will identify a specific role in the enterprise, which you can
manage independently of the person in the post, and it will belong to one specific
department or organization. The name of each position must be unique.

To make it easier for you to manage unique names for positions you can define a
structure for position names that identifies separate components or segments with
separate rules for validation of each segment. For example, you can have a position Title
segment with text names, and another segment for position Number with numeric
values. Standard capabilities mean that you can use the different segments of the name
for queries or grouping records in a report.

When defining the segments that make up the structure of a position name you should
also consider if any of your segments are really part of the definition of a common job
type. Using job types for a position you can efficiently manage common information
that applies to many different positions. For example you can define a job type of
Manager.Level 1 and use this for comparison of positions across departments or lines
or business, or for setting common job requirements. You can then define ten manager
type positions in your HR department, each of which has responsibility for a different
management function or group.

When you define a position you enter a value for each segment of the position name
structure. Most customers who use positions choose between one and five segments.

Note: Do not use segments with values that change regularly, for
example, Salary Ranges or Expense Approval Levels that change every
year. Use the name to uniquely identify the position and use standard
capabilities of the system to enter and maintain related information for
government reporting, valid grades, and skill requirements.

HRMS Conguration Workbench 2-11

We recommend that you use the same structure for position names in all countries
in which you operate. However, later in the interview you can define exceptions to
this common structure for a single country or for a set of countries that you define
as a Region. See: Defining Regional Jobs, Positions or Grades in the Configuration
Workbench, page 2-14

Identify all the components you might use to define the structure of a Position Name and
then consider if any of these are really part of the definition of a common job type. For
example, you might consider Title, Name, and Code as components of a position. When
you review these you might consider that the Position name should contain Title while
the Job name should contain Name and Code. With this choice, you could define
common types of job using the combination of Name and Code and maintain reporting
or other details for these common job types.

Dening Grades in the Conguration Workbench
Grades are normally used to record the relative status of employee assignments and to
determine compensation and benefits, such as salary, overtime rates, and company car.

For more information about Grades, see: Grades and Grade Structures, Oracle HRMS
Compensation and Benefits Management Guide

In this part of the interview you decide the structure and the component parts of
the grade names that best meet your requirements for identifying grades in your
enterprise. When you define a grade you enter a value for each segment of the
grade name structure. Most customers who use grades choose between one and five
segments. A typical grade might be Clerical.C.1.

Define more segments to make grade names more specific. For example, use Grade
Type and Grade Level to be more specific about a job than just using a Grade Title. You
decide how many components you want to use to define the unique name for each
grade. Standard capabilities mean that you can use the different segments of the name
to identify common grades or for analysis or compensation, or for grouping records in
reports, for example, to find all grades of a specific Grade Type.

Note: You shouldn’t use segments with values that change regularly, for
example, Salary Ranges or Expense Approval Levels that change every
year. Use the name to uniquely identify the Grade and use standard
capabilities of the system to enter and maintain related information for
government reporting, valid grades, and skill requirements.

If you operate in multiple countries we usually recommend that you use the same
structure for grade names in all countries. However, in this interview you can define
exceptions to this common structure for a single country or for a set of countries that you
define as a Region. See: Defining Regional Jobs, Positions or Grades in the Configuration
Workbench, page 2-14

Conguration Workbench for Compensation, Benets, and Payroll
Once you have defined your work structures framework, you can start to define your
structures for managing compensation, benefits, and payroll.

On the Workbench Home page:

2-12 Oracle Human Resources Management System Implementation Guide (US)

• Select General Compensation Structures and then Plan Design to access the Plan
Design and Plan Design Copy wizards. Use these wizards to create new or to
copy and modify plans. You can also use the Plan Design Copy wizard to migrate
program and plan design data for health and welfare plans from one instance to
another. See: Configuration Workbench for Migrating Data, page 2-17

See: Plan Design, Oracle HRMS Compensation and Benefits Management Guide and Plan
Design Copy, Oracle HRMS Compensation and Benefits Management Guide

• Select Salary and Grade Related Pay and Progression and then Configure Grades to
define or maintain your grade structures. See: Defining Grades in the Configuration
Workbench, page 2-12 and Grades and Grade Structures, Oracle HRMS Compensation
and Benefits Management Guide

Note: You must include all the required details about your
organization, jobs or positions, and grades before you generate the
full configuration.

• Select Salary and Grade Related Pay and Progression and then Load Grade Details
to access the spreadsheets into which you enter or import the grades and grade
values for each business group. After you enter your data into the downloaded
spreadsheets, you upload the data to the open interface tables for Oracle HRMS
and run the Data Pump to upload your data from the open interface tables to the
HRMS tables.

• Select Payroll Earnings and Deductions to select the earnings and deductions
you would like the Workbench to load for you. The Workbench creates the
elements, formulas, balances, and formula result rules that Oracle Payroll requires to
process each earnings and deduction type. You can configure any of the generated
components. See: Elements: Building Blocks of Pay and Benefits, Oracle HRMS
Compensation and Benefits Management Guide and Other Payroll Earnings and
Deductions Overview, Oracle HRMS Compensation and Benefits Management Guide

• Under Data Conversion, select Benefits Enrollments to upload participant and
enrollment data from third-party and legacy systems. See: Converting Benefits
Enrollments, page 2-14

To understand the complete implementation process for compensation, benefits, and
payroll, see: Compensation and Benefits Implementation Steps, Oracle HRMS
Implementation Guide

Conguration Workbench for Payroll Process Management
Once you have defined your organization framework using the Configuration
Workbench, you can start to define your structures for managing the payroll process. If
you use Oracle Payroll, you must define payrolls and payment methods. You can also
define these items for information and reporting in Oracle Human Resources.

On the Workbench Home page:

• Select Payroll Payment and Distribution and then Configure Organization Payment
Method to define your own names for the standard categories of payment methods
that are predefined with your system. If you have installed Oracle Payroll you can
also use these methods to control payments to your employees.

• Select Payrolls and then Configure Payroll to define payroll groups to meet your
business needs for processing and payment. For example, you may have a monthly

HRMS Conguration Workbench 2-13

and a weekly payroll but you might want to manage and process your weekly
payroll by plant location. In this case you could define one monthly payroll and
two weekly payrolls, one for each plant.

• US and Canadian business groups only: Select Payroll Statutory Deductions and
Reporting to access the spreadsheets into which you enter or import rules for
withholding tax. After you enter your data into the downloaded spreadsheets, you
upload the data to the open interface tables for Oracle HRMS and run the Data Pump
to upload your data from the open interface tables to the HRMS tables.

To understand the HRMS payroll process, see: Payroll Overview, Oracle HRMS Payroll
Processing Management Guide

Dening Regional Jobs, Positions or Grades in the Conguration
Workbench

From experience with many customers we recommend that you use the same name
structure for all countries in your enterprise and don’t define exceptions for individual
countries.

A common structure will still allow countries to enter local names or use local language
versions of common grades. This choice is best practice if you want to deploy or develop
a consistent approach to reporting and compensation by defining a consistent structure
for reference and administration.

However, if you want to define a different naming structure for one or more countries
then add a regional group and select the countries in the group. For example, you
might define a regional group for South America that includes operations in
Brazil, Argentina, and Chile. Alternatively you might want a regional group for all
Spanish-speaking countries regardless of geography. Then you would add a Spanish
region and include Argentina, Spain, and Chile.

You can also define exceptions for one country at a time. For example, you might want a
different name structure for Japan only. Using the regional group you can support
individual local choices within a common corporate framework.

Note: If you define a Regional Group we recommend you use
your corporate definitions and add new segments for local
requirements. Alternatively, if your local definitions are completely
different you should include an extra segment to hold a corporate name
and use a list of values to make this consistent across all countries. Both
examples make it easier to do corporate analysis and reporting.

1.

Converting Benets Enrollments
You can use Configuration Workbench to upload legacy and third-party participant and
enrollment data. You cannot use this process for conversion of historical elections.

For details on the conversion process, including spreadsheet contents, conversion
scenarios, and the method for converting historical elections, see the white
paper Converting Enrollments [https://metalink.oracle.com/metalink/plsql/
showdoc?db=NOT&id=365034.1], Metalink note 365034.1.

2-14 Oracle Human Resources Management System Implementation Guide (US)

https://metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=365034.1

To convert benets enrollments:
1. Under Data Conversion on the Configuration Workbench home page, select Benefits

Conversion.

2. Go to the Review and Complete Plan Design task to launch the Programs
window, enabling you to review and test the plan design setup.

See: Plan Design, Oracle HRMS Compensation and Benefits Management Guide

3. Go to the Run Participation Life Event Process task to launch the Submit Request
window, where you must submit the appropriate Participation Process.

Important: Different plan designs can require different
processes. While using unrestricted life event mode, for
example, you must submit the Maintain Participation Eligibility and
Recalculate Participant Values process; in other cases you can use
any normal or administrative life event process.

See: Running the Participation Batch Process, Oracle HRMS Compensation and Benefits
Management Guide

The next three steps use the Web ADI-enabled spreadsheet loaders. See
Spreadsheet Loaders: Frequently Asked Questions, Oracle HRMS Configuring,
Reporting, and System Administration. Spreadsheet details for these steps appear
in the Converting Enrollments [https://metalink.oracle.com/metalink/plsql/
showdoc?db=NOT&id=365034.1] white paper.

4. Go to the Load Benefits Elections task to upload data into enrollment results and
participant rate values tables. You must perform this step before the next two steps
unless the enrollments come from a different source.

5. Go to the Load Dependents Information task to run the process that designates
dependents to the elections made in the prior step.

6. Go to the Load Beneficiaries Information task to run the process that designates
beneficiaries to the elections made in the prior step.

7. Go to the Review Benefits Enrollment task to review the upload results from the
View Enrollment Results window.

See: Displaying Enrollment Results, Oracle HRMS Compensation and Benefits
Management Guide

HRMS Conguration Workbench 2-15

https://metalink.oracle.com/metalink/plsql/showdoc?db=NOT&id=365034.1

Managing Data with the Conguration Workbench

Conguration Workbench for Data Conversion
Once you have defined your organization framework and structures for managing
the payroll process, you load your employee details and, optionally, existing benefits
enrollments.

Under Data Conversion on the Workbench Home page:

• Select People Data or Benefits Enrollments to access the spreadsheets into which you
import your legacy data and enter your new employee data. After you enter your
data into the downloaded spreadsheets, you upload the data to the open interface
tables for Oracle HRMS. You then run the Data Pump to validate and upload your
data from the open interface tables to the HRMS tables.

Note: The Quick Start Implementation has a simplified version of
the People Data spreadsheets.

Features of Data Upload
Data to be uploaded is validated before the upload occurs. You must ensure that you
enter values in all mandatory fields so that validation is successful when the data is
uploaded to the application. If you do not, the data is not uploaded, and an error message
appears in the Messages column in the spreadsheet for the record with the invalid data.

When you change any field in the spreadsheet, the row is flagged for upload. By
default, only flagged rows are uploaded. You can change this setting so that all rows
are uploaded.

Features of Data Pump
The Data Pump Engine process is a standard concurrent process that performs the actual
data validation and loading operations.

When you submit the Data Pump concurrent process you can choose to run it in
validation mode. This enables you to review errors in batches or in related records in a
batch and to change them before any of them are committed to the HRMS database.

When you run the Data Pump the process only loads data that has not already been
processed successfully. This means that you can run a batch, review and correct errors
for any specific lines, and then rerun the same batch. You can repeat this process until
you have successfully loaded all lines in the batch. To do this you submit the concurrent
process with the same batch name. All unprocessed lines or lines with errors are
reprocessed automatically.

The Data Pump has many logging options that help you find errors when running the
process.

Conguration Workbench for HR Information Systems
You use the tools in this part of the Configuration Workbench to administer and maintain
your system, for example, to enter batches of elements for payroll and to extract records
for third-party vendors.

On the Workbench Home page:

2-16 Oracle Human Resources Management System Implementation Guide (US)

• Select HRIS Management: Interface Configuration and then Batch Element Entry
to use BEE (Batch Element Entry) to enter batches of element entries for your
employees, using defaults for fast entry. For example, you can use BEE to record
timecard data needed for regular pay processing, such as hours worked, location
or shift worked, absences, and costing or labor distribution data. See: BEE (Batch
Element Entry), Oracle HRMS Configuring, Reporting, and System Administration Guide

• Select HRIS Management: Interface Configuration and then System Extract
to manage the formatting, extraction, and delivery of HRMS data to benefits
carriers, payroll providers, and other third-party vendors. For example, you can use
System Extract to extract records for benefits plans into an extract file that you then
transmit to a third-party benefits carrier. See: Benefits System Extract, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Conguration Workbench for Migrating Data
The Configuration Workbench migration tool uses predefined groups of related data
called selection sets. You define the criteria for selection and then extract and migrate the
data as a set.

Note: To migrate benefit plans you use the Plan Design Copy
Wizard, see: Configuration Workbench for Compensation, Benefits and
Payroll, page 2-12

Before you extract or migrate data, your database administrator uses the Administration
tab to map the databases you have permission to use as the source or target instances
for extracting and loading setup data. The instance names then appear as choices in
the drop-down lists for extract and load.

You migrate data in three steps:

1. Define selection criteria

2. Run the extract process

3. Load the extracted data

Dene Selection Criteria
You define the selection criteria in the Selection Sets option on the Migrations tab.

You use a selection set template as a starting point to create a selection set. After you
select the template, you enter the name of the selection set and a description of it, and
select the source instance from the list. You scroll down until the locations filter is visible
and then select the button to set the filter. You select the Update Existing (During Load)
option if you want to update the existing setup data in the target instance as well as
insert new records during the load process.

Run the Extract Process
You now run the extract process using the selection set you have just created. You use
the Selection Sets option on the Migrations tab. You select the selection set in the list
and then run the extract process.

HRMS Conguration Workbench 2-17

The migration tool saves the snapshot to the database. You can select the snapshot in
the list on the Extracts option on the Migration tab to review it or to download the
snapshot to a local file.

The migration tool creates a log file of the extract process. If the extract process has an
error status, you can identify the problem by reading the log file.

Load the Extracted Data
You load the saved snapshot of extracted data onto the target instance using the Loads
option on the Migration tab.

You select the file to load from a list of saved snapshots or from a local directory. The
target instance you specify for loading the extracted data can be same instance as the
snapshot was extracted from, or another instance.

Note: When you define the selection set, you specify whether to update
the existing records as well as load the new ones.

2-18 Oracle Human Resources Management System Implementation Guide (US)

3
Implementation Guide

Implementation Steps

Before You Start
Before you begin implementing Oracle HRMS, you must ensure your legislation-specific
startup data is installed. The installation is normally done by the MIS Manager. You
need this startup data before you use Elements, Payment Methods or Legislation Specific
Flexfield Structures.

See Installing Oracle Applications for more information.

Also, check to see whether there are any post installation steps you need to perform
before you start to implement Oracle HRMS.

See: Post Install Steps, page 3-1.

Post Install Steps
There are two generic post install utilities for Oracle HRMS in Release 11i:

• DataInstall enables you to specify all the legislations that you want to install
for HR and Payroll, and HR only. This means that when you subsequently
perform an installation or upgrade, you can install your legislations in a single
operation. DataInstall provides a series of menus from which you can specify the
legislation and product combinations.

• AutoPatch (adpatch) applies the installation or upgrade combinations that you have
previously specified in DataInstall.

Canada and USA
If you are installing Oracle Payroll (Canada and US) you also need to install Quantum, a
third party taxation product, produced by Vertex, that Oracle Payroll (Canada and
US) uses.

France
If you are installing a French localization, there are two additional post install steps for
that must be completed for Oracle HR for France. These are:

• Run the Seed French Data process

• Create a new EUL (End User Layer) in Discoverer and enable user access to database
tables and views by running the Grant HR Access to Discoverer process

Implementation Guide 3-1

Federal
If you are installing the US Federal HR localization, there is one additional step to be
able to produce bitmap reports.

To Run the DataInstall Utility (Required):
To specify legislations using DataInstall:

1. Run the DataInstall utility to select legislations using the command:

jre oracle.apps.per.DataInstall <APPS Username> <APPS password>

Note: In multiple sets of book installs, supply the username and
password of the first APPS account.

The DataInstall Main Menu is displayed.

2. Choose option 1. This displays a screen showing a list of product localization
combinations that you can choose.

For each product or localization that already has legislation data on the database, the
Action will be defaulted to upgrade. This cannot be changed.

If the Legislation/Verticalization is Federal HR only

If you are upgrading Oracle Federal HR, choose both Oracle Federal HR and Oracle
Human Resources from the list of product localizations.

3. Select any new installations that you want to implement. For example, if you wanted
to install Canada Payroll, number 3, you would type 3I. This would also set the
action on Canada Human Resources to Install as dependencies are maintained.

If you are installing an additional legislation, to correct a mistake use the
Clear option. If you have selected to install an additional Payroll and HR
legislation, clearing the Payroll legislation will clear the HR legislation also.

You cannot use Force Install for upgrades. You only need to use Force Install if you
want to reapply steps in the Global Legislation Driver that have already been applied.

4. If you select a localization other than US or GB, you are returned to the main menu.

If you select a US or GB localization the DataInstall - College Data Option screen
is displayed showing whether college data is currently installed for US and GB
localizations. The install option is only available if you have no existing college
data. If you have existing data then the localization will default to Upgrade, though
this can be changed.

Choose Remain if you want to keep the existing data and not apply the upgrade, or
choose Clear to set the action to null.

You cannot use Force Install at this point.

Press Return to display the main menu and make further changes or exit.

5. If you are installing a US or Canadian localization and you have installed Oracle
Payroll, select the JIT/Geocodes option from the DataInstall menu to load the latest
JIT/Geocodes data.

This option is also available to Oracle HR customers who wish to validate North
American addresses using Vertex Geocodes data and/or maintain employee tax data

3-2 Oracle Human Resources Management System Implementation Guide (US)

in Oracle HR. However, customers who do not have Oracle Payroll must obtain a
license from Vertex before installing this data.

Press Return to display the main menu and make further changes or exit.

6. When you choose to exit the DataInstall Actions Confirmation screen is displayed.

Select Y to save your changes and exit, or select N to exit without saving your
changes.

When you have exited, the DataInstall Actions Summary screen is displayed. This
summarizes the actions that will be taken when the program exits, or when
ADPATCH is run with the Global Legislation driver.

Run the Global Legislation Driver using AutoPatch (adpatch) (Required):
1. The Generic HR Post Install Driver delivers the generic entity horizon and all the

selected localizations. To run it, type in the following commands:

$ cd $PER_TOP/patch/115/driver
$ adpatch

Then apply the driver hrglobal.drv

2. After applying the Global Legislation Driver, examine the out file hrlegend.lst. This
logs any localizations selected in the DataInstall utility but which have not been
applied by this driver. Refer to the Installation Manual to ensure that everything has
been applied correctly, or contact World-wide Support.

If the Legislation is UK

3. Examine the following out files:

• pegbutcl.lst. This file logs the step that removes previously seeded user tables
for the UK legislation before delivering the latest version. It may also show
where seed data names have been changed between releases.

• perleggb.lst. This file logs the housekeeping step that gets rid of redundant UK
seed data after delivery of the latest version. It also records the new balance
feeds that have been inserted following an upgrade from Oracle Human
Resources to Oracle HRMS.

• The log file produced by the FFXBCP formula compilation step. The name of
the FFXBCP log follows the naming convention of the <request_id> log, and is
included in the last section of the adpatch log.

These files are used by Oracle Support Services to diagnose problems with seed data
following an upgrade. SQL errors indicate severe problems. Keep these files for
reference in the event of any future problems with UK seed data.

Install Quantum for Oracle Payroll (Canada and US) (Conditionally
Required):
1. Set up a directory structure to hold the Quantum product.

By default, Oracle Payroll looks for the Quantum product in the
$PAY_TOP/vendor/quantum directory, however, you can choose where it is placed
and override the default location.

Tip: You could create a $PAY_TOP/vendor/quantum_versions
directory and a $PAY_TOP/vendor/quantum symbolic link pointing

Implementation Guide 3-3

to the correct version of Quantum, since the Quantum products
release cycle may be different from Oracle Payroll.

2. Unpack the Quantum Components from the CD.

Oracle Applications provide a CD on which will be a ZIP file called pyvendor.zip in
a directory called pay. On the ZIP file will be one directory per operating system
that is supported by Oracle Payroll (US). Uncompress the pyvendor.zip file and
move the required version into the directory structure created in Step 1. For
example, uncompress the file then do the following:

$ mv SOLARIS/2.2.4 $PAY_TOP/vendor/quantum_versions
$ ln -s $PAY_TOP/vendor/quantum_versions/2.2.4 $PAY_TOP/vendor/qua
ntum

The extraction from the compressed file will create a directory called (<operating
system>/2.2.4) and two sub directories (lib and utils) along with a number of files in
each directory. One of the files created is devenv, this devenv file is the same as the
$FND_TOP/usrxit/devenv file except that some of the lines are uncommented. The
uncommented lines relate to instructions on how the Oracle Payroll process
PYUGEN should be linked. The lines that are uncommented are:

VND_VERTEX=’$(PAY_TOP)/vendor/quantum’
VND_LINK=’$(VND_VERTEX)/lib/libvprt.a \

$(VND_VERTEX)/lib/libqutil.a \
$(VND_VERTEX)/libloc.a \
$(VND_VERTEX)/lib/libcb63.a’

$ ln -s $PAY_TOP/vendor/quantum_versions/2.2.4 $PAY_TOP/vendor/qua
ntum
VNDPAYSL=’$(PAY_TOP)/lib/py3c.o $(PAY_TOP)/lib/py3v.o $(VND_LINK)’
VNDPAYPL=’$(PAY_TOP)/lib/py3c.o $(PAY_TOP)/lib/py3v.o $(VND_LINK)’
export VND_VERTEX VND_LINK VNDPAYPL VNDPAYSL

Note: Some of these settings relate to the location of the
Quantum product, thus if the Quantum product is not in
$PAY_TOP/vendor/quantum this file needs to be edited.

If you have made any changes to your $FND_TOP/usrxit/devenv file, you must
merge these differences into the file. If you have not already made any changes then
you can simply copy 2.2.4/devenv to $FND_TOP_usrxit/devenv.

3. Relink the Oracle Payroll executable PYUGEN using adrelink.

$ adrelink force=y ranlib=y "pay PYUGEN"

Ensure that the adrelink completed successfully by checking the log file.

4. Build the Quantum product’s data files.

To build Quantum’s data files, firstly create a directory to hold the data files. Oracle
Payroll assumes that these data files are in $PAY_TOP/vendor/quantum/data.

Secondly, run the utility dbcreate that is in the Quantum utils directory. This utility
will show a menu of either Payroll or Geocoder. Choose the Payroll option and at the
prompt "Enter the Payroll datasource name:" enter the directory into which the data
files are to be placed, for example, /apps/pay/11.5/vendor/quantum/data. Once the
processing is complete, the menu will reappear and the utility can be exited.

3-4 Oracle Human Resources Management System Implementation Guide (US)

Note: Ensure that the file permissions of the data files are set to
readable for all the relevant users. If this is not done then Oracle
Payroll will not be able to access these files.

5. Populate the Quantum data files.

Once the data files have been created they need to be populated with taxation
data. The taxation data is held in a file called qfpt.dat, which will be delivered in
the pyvendor.zip file. Copy this file into the Quantum product area. Once this has
been done the data file update utility can be run. This is located in the utils directory
called vprtmupd. Select the Update Payroll Tax option from the menu, and answer
the displayed questions. The first prompts for the datasource, this should be the
location of the data files created in the previous step. The second is the location of
the qfpt.dat file. For example:

Enter Datasource: /apps/[ay/11.5/vendor/quantum/data
Enter the path of the update file: /apps/pay/11.5/vendor/quantum

Note: The update file supplied is a default file, it is not guaranteed
to calculate taxes correctly. Its purpose is to allow you to perform
testing prior to contacting Vertex to request the correct update file.

6. Register the Quantum Data Files location.

If the data files for Quantum have not been placed in the default location
($PAY_TOP/vendor/quantum/data), then the location of these files must
be supplied to Oracle Payroll. This is performed by placing a row in the
PAY_ACTION_PARAMETERS table:

SQL> insert into pay_action_parameters
2 values (’TAX_DATA’, ’/apps/quantum/data’);

Run the Seed French Data process :
1. This process creates and populates some of the user defined tables used by the

various French reports for the Business Group of the current responsibility. It also
delivers the example data for the Bilan Social. It should be run for each Business
Group that contains data for the French legislation.

For information on the user defined tables created by this process see: User Defined
Tables Used by the Bilan Social, Oracle HRMS Enterprise and Workforce Management
Guide , and User Defined Tables, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Run the Seed French Data process in the Submit Requests window.

Create an EUL and Enable User Access to Database Tables and Views by
Running the Grant HR Access to Discoverer process (France):
In order to use the supplied business area and Discoverer workbooks you must perform
the following steps:

1. Create an EUL

If you do not have an existing Oracle Discoverer EUL you must create one before
you can import the HR France - Bilan Social business area.

Implementation Guide 3-5

See: Oracle Discoverer Administration Guide for further information on creating an
EUL.

2. Import the hrfrbsel.eex file

Once you have a suitable EUL you must import the hrfrbsel.eex file. This will deliver
the HR France - Bilan Social business area. This file is contained in the Bilan Social
Discoverer Components zip file that can be obtained from Oracle World Wide
Support.

See: Oracle Discoverer Administration Guide for further information on importing files.

3. Run the Grant HR Access to Discoverer process

The EUL user must be given the correct permissions in order to access the tables and
views in the database that are used by the Bilan Social. To do this, you must run
Grant HR Access to Discoverer process in the Submit Requests window.

You will now be prompted to enter the following parameters:

• the connect string for the database on which the Bilan Social data is stored

• your EUL user name

• your EUL password

Choose Submit. The process will now run and assign the appropriate permissions
to your EUL user.

US Federal HR Print Reports:
To be able to produce bitmap and postscript reports, you must relink ar60runb.

1. Chenv to the environment.

2. Make sure that FND_TOP and APPL_TOP are correct.

3. cd $FND_TOP/bin

4. adrelink.sh force=y "fnd ar60runb"

Implementation Checklist
Use the following checklists to record which parts of Oracle HRMS you want to
use. Then refer to the implementation steps to see the high level steps you must complete
for each business function you have chosen to implement.

Note: Refer to the Post Install Steps, page 3-1 to see any steps you must
perform before you implement Oracle HRMS.

❒ Administration, page 3-27 (Required)

Includes key and descriptive flexfields, Extra Information Types
(EITs), currencies, "View All" HRMS User, and lookups.

❒ Enterprise and Workforce Management, page 3-44 (Required)

Includes organizations, jobs, positions and position control, workflow for
transactions, HR budgets, person types, collective agreements, and GRE Federal and
State Identification Numbers for New Hire reporting.

❒ Payroll Process Management, page 3-57 (Optional)

3-6 Oracle Human Resources Management System Implementation Guide (US)

Includes payrolls, payment methods, and Workers’ Compensation.

❒ Compensation, Benefits, and Payroll, page 3-59 (Optional)

Includes grades, grade related pay, benefits eligibility, life events, compensation
objects, enrollment requirements, activity rates, elements, salary administration, leave
and absence management, element sets, and additional setup for payroll processing
and health and welfare.

❒ Workforce Sourcing and Deployment, page 3-90 (Required)

Includes recruitment, assignment statuses, contract statuses, assignment rate types
for contingent workers, special personal information, and requirements matching.

❒ Talent Management, page 3-95 (Optional)

Includes competencies, objectives (Workforce Performance Management),
qualifications, and appraisals.

❒ HR Information Systems, page 3-103 (Optional)

Includes reports, letter generation, configuration, task flows, user security, audit
requirements, Oracle Applications Help, and Web Applications Desktop Integrator
(Web ADI).

Implementation Flowchart
Some of the steps outlined in this section are Required, and some are Optional. Required
with Defaults means that the setup functionality comes with predefined, default values
in the database; however, you should review those defaults and decide whether to
change them to suit your business needs. If you want or need to change them, you
should perform that setup step. You need to perform Optional steps only if you plan to
use the related feature or complete certain business functions.

Implementation Guide 3-7

Administration

3-8 Oracle Human Resources Management System Implementation Guide (US)

Enterprise and Workforce Management 1

Implementation Guide 3-9

Enterprise and Workforce Management 2

3-10 Oracle Human Resources Management System Implementation Guide (US)

Enterprise and Workforce Management 2

Implementation Guide 3-11

Payroll Process Management

3-12 Oracle Human Resources Management System Implementation Guide (US)

Compensation, Benets, and Payroll 1

Implementation Guide 3-13

Compensation, Benets, and Payroll 2

3-14 Oracle Human Resources Management System Implementation Guide (US)

Compensation, Benets, and Payroll 3

Implementation Guide 3-15

Total Compensation 1

3-16 Oracle Human Resources Management System Implementation Guide (US)

Total Compensation 2

Implementation Guide 3-17

Total Compensation 3

Total Compensation 4

3-18 Oracle Human Resources Management System Implementation Guide (US)

Workforce Sourcing and Deployment 1

Implementation Guide 3-19

Workforce Sourcing and Deployment 2

3-20 Oracle Human Resources Management System Implementation Guide (US)

Talent Management

Implementation Guide 3-21

Workforce Intelligence

3-22 Oracle Human Resources Management System Implementation Guide (US)

HR Information Systems 1

Implementation Guide 3-23

HR Information Systems 2

3-24 Oracle Human Resources Management System Implementation Guide (US)

HR Information Systems 3

Implementation Guide 3-25

Specic Business Functions 1

3-26 Oracle Human Resources Management System Implementation Guide (US)

Specic Business Functions 2

Administration
The administration steps are usually performed by the System Administrator. Sign on to
the application using your System Administrator username and password. Contact your
DBA if you do not know this information.

Key Flexelds
Before you can define a business group in Oracle HRMS you must define six Key
Flexfield Structures:

• Job

• Position

• Grade

• People Group

• Cost Allocation

Implementation Guide 3-27

• Competence

You can also define the Collective Agreement Grades flexfield at this time, or you can
do it after defining your business group.

Before you begin your implementation of these key flexfields you must clearly specify
your requirements. This specification must include the following details for each key
flexfield:

• The Structure Name and the number of Segments

• The Flexfield Segment Names, Order, Validation Options, and Qualifiers

• The Flexfield Value Sets and any lists of values

After you have completed the definition of a key flexfield, you need to run the
Create Key Flexfield Database Items process concurrent process to generate
Database Items for the individual segments of the Flexfield. This applies to your
Job, Position, Grade, Competence, and People Group Key Flexfields only.

Important: If you used the Configuration Workbench, you have
already defined the structures for your Job, Position, and Grade
key flexfields. You may want to add more validation, such as
cross-validation. The Workbench created default structures for the
other flexfields associated with a business group (People Group, Cost
Allocation, and Competence). If you plan to use these flexfields in your
implementation, you must update the default structures to display the
segments you require.

Dene Job Flexeld Optional Steps
After you have specified your requirements for recording and reporting Job
information, follow this implementation sequence:

Step 1: Dene Job Flexeld Value Sets
To validate the values which a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set will also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 2: Dene Job Flexeld Segments
Define a structure for your Job Flexfield which contains the segments you want to
use for your business group. You use this structure to create your unique Job Names
in the Job window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot
create new job name combinations in the Job window.

3-28 Oracle Human Resources Management System Implementation Guide (US)

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 3: Dene Job Flexeld Segment Values
If you have chosen Independent or Dependent validation for a Value Set used by a Job
Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 4: Dene Job Flexeld Cross Validation Rules
Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 5: Dene Job Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 6: Freeze and Compile Your Job Flexeld Structure
You are now ready to freeze your Job Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and
save your changes. The application now freezes and compiles your Job Flexfield
definition. Compiling the flexfield definition enables the Job Flexfield window with the
defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 7: Run Create Key Flexeld Database Items Process
If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Implementation Guide 3-29

Dene Position Flexeld Optional Steps
After you have specified your requirements for recording and reporting Position
information in your enterprise, follow this implementation sequence:

Step 8: Dene Position Flexeld Value Sets
To validate the values a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 9: Dene Position Flexeld Segments
Define a structure for your Position Flexfield which contains the segments you want
to use for your business group. You use this structure to create your unique Position
Names in the Position window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot
create new position name combinations in the Position window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 10: Dene Position Flexeld Segment Values
If you have chosen Independent or Dependent validation for a Value Set used by a
Position Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 11: Dene Position Flexeld Cross Validation Rules
Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 12: Dene Position Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

3-30 Oracle Human Resources Management System Implementation Guide (US)

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 13: Freeze and Compile Your Position Flexeld Structure
You are now ready to freeze your Position Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and
save your changes. The application now freezes and compiles your Position Flexfield
definition. Compiling the flexfield definition enables the Position Flexfield window with
the defaults, values, and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 14: Run Create Key Flexeld Database Items process
If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Dene Grade Flexeld Optional Steps
After you have specified your requirements for recording and reporting Grade
information in your enterprise, follow this implementation sequence:

Step 15: Dene Grade Flexeld Value Sets
To validate the values which a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 16: Dene Grade Flexeld Segments
Define a structure for your Grade Flexfield which contains the segments you want to
use for your business group. You use this structure to create your unique Grade Names
in the Grades window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot
create new grade name combinations in the Grades window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

Implementation Guide 3-31

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 17: Dene Grade Flexeld Segment Values
If you have chosen Independent or Dependent validation for a Value Set used by a Grade
Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 18: Dene Grade Flexeld Cross Validation Rules
Define any Cross Validation Rules you want to use to control the combinations of
segment values a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 19: Dene Grade Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 20: Freeze and Compile Your Grade Flexeld Structure
You are now ready to freeze your Grade Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and
save your changes. The application now freezes and compiles your Grade Flexfield
definition. Compiling the flexfield definition enables the Grade Flexfield window with
the defaults, values, and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 21: Run Create Key Flexeld Database Items Process
If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Dene People Group Flexeld Required Steps
People Group information, associated with employee and contingent worker
assignments, identifies special groups of people, such as members of a union or a
working group.

Warning: In Oracle HRMS you must define at least one segment for
the People Group Key Flexfield.

3-32 Oracle Human Resources Management System Implementation Guide (US)

If you do not, you will not be able to use the Assignment window for
employees, applicants, or contingent workers.

After you have specified your requirements for recording and reporting People Group
information, follow this implementation sequence:

Step 22: Dene People Group Flexeld Value Sets
To validate the values a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 23: Dene People Group Flexeld Segments
Define a structure for your People Group Flexfield that contains the segments you want
to use for your business group. You use this structure to enter People Group details in
the Assignment window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot enter
People Group information in the Assignment window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 24: Dene People Group Flexeld Segment Values
If you have chosen Independent or Dependent validation for a Value Set used by a People
Group Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 25: Dene People Group Flexeld Cross Validation Rules
Define any Cross Validation Rules you want to use to control the combinations of
segment values a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Implementation Guide 3-33

Step 26: Dene People Group Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 27: Freeze and Compile Your People Group Flexeld Structure
You are now ready to freeze your People Group Flexfield definition. Navigate to the Key
Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and save
your changes. The application now freezes and compiles your People Group Flexfield
definition. Compiling the flexfield definition enables the People Group Flexfield window
with the defaults, values, and rules that you have defined.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 28: Run Create Key Flexeld Database Items process
If you want to make use of the individual segments of the flexfield as separate Database
Items you can run this concurrent process from the Submit a New Request window. The
only parameter associated with this process is the Key Flexfield Name.

Use the Submit a New Request window.

See: Create Key Flexfield Database Items, Oracle HRMS Configuring, Reporting, and
System Administration Guide

See: Submitting a Request, Oracle Applications User's Guide

Dene Cost Allocation Flexeld Required Steps
Cost Allocation information normally records the details of employee costing associated
with payroll results. If you have installed Oracle Payroll, you can accumulate the costs
associated with your payroll results and transfer these to your General Ledger system. If
you have not installed Oracle Payroll you can use the costing flexfield to enter your cost
allocation information.

After you have specified your requirements for recording and reporting costing
information, follow this implementation sequence:

Warning: Youmust define at least one segment for the Cost Allocation
Key Flexfield. If you do not, you will experience problems using
windows with the flexfield window.

Step 29: Dene Cost Allocation Flexeld Value Sets
To validate the values which a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

3-34 Oracle Human Resources Management System Implementation Guide (US)

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 30: Dene Cost Allocation Flexeld Segments and Qualiers
Define a structure for your Cost Allocation Flexfield which contains the segments
you want to use for your business group. You use this structure to enter your payroll
costing details.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot enter
Costing details anywhere on the system.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

The Cost Allocation Flexfield is the only key flexfield in Oracle HRMS that makes use of
Qualifiers. You use Segment Qualifiers to control the level at which costing information
can be entered to the system. Each Qualifier determines the level at which costing
information can be entered. The following table illustrates the six possible choices for
each segment:

Qualier Effect on window

Payroll Enter segment values in the Payroll window.

Link Enter segment values in the Element Link window.

Balancing Enter balancing segment values in the Element Linkwindow.

Organization Enter segment values in the Costing Information window for
the Organization.

Assignment Enter segment values in the Costing window for the
assignment.

Entry Enter segment values in the Element Entries window.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 31: Dene Cost Allocation Flexeld Segment Values
If you have chosen Independent or Dependent validation for a Value Set used by a Cost
Allocation Flexfield Segment, you must define your list of valid values for the Value Set.

Use the Define Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 32: Dene Cost Allocation Flexeld Cross Validation Rules
Define any Cross Validation Rules you want to use to control the combinations of
segment values a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Implementation Guide 3-35

Step 33: Dene Cost Allocation Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 34: Freeze and Compile Your Cost Allocation Flexeld Structure
You are now ready to freeze your Cost Allocation Flexfield definition. Navigate to the
Key Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field and
save your changes. Oracle HRMS now freezes and compiles your Cost Allocation
Flexfield definition. Compiling the flexfield definition enables the Cost Allocation
Flexfield window with the defaults, values, and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Dene Competence Key Flexeld (Steps 35-40)
The Competence Key Flexfield records information about multi-level competencies. This
enables you to record more details about a competence.

After you have specified your requirements for recording and reporting competence
information, follow this implementation sequence:

Step 35: Dene Competence Flexeld Value Sets
To validate the values that a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 36: Dene Competence Flexeld Segments
Define a structure for your Competence Flexfield that contains the segments you want to
use. You use this structure to enter your competence details in the Competence window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot enter
new details in the Competence window.

You must specify one of the segments as the Default Attribute using the flexfield
qualifier. You must also attach the Others flexfield qualifier to all other segments in
the structure.

If you intend to upload SkillScape competencies you should try to ensure that you set
up segment 1 to record the competence name as this is the segment into which the
competence name is automatically uploaded. If you define another segment to hold the
competence name you must alter the file $PER_TOP/patch/115/sql/peducomp.sql so that
the reference to segment1 is changed to the segment in which you hold the name.

3-36 Oracle Human Resources Management System Implementation Guide (US)

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 37: Dene Competence Flexeld Segments Values
If you have chosen Independent or Dependent validation for a Value Set used by a
Competence Flexfield Segment, youmust define your list of valid values for the Value Set.

Use the Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 38: Dene Competence Flexeld Cross-Validation Rules
Define any Cross-Validation Rules you want to use to control the combinations of
segment values a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window.

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 39: Dene Competence Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Define Shorthand Aliases window.

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 40: Freeze and Compile Your Competence Flexeld Structure
You are now ready to freeze your Competence Flexfield definition. Navigate to the
Define Key Flexfield Segments window. Enter Yes in the Freeze Flexfield Definition field
and save your changes. The application now freezes and compiles your Competence
Flexfield definition. Compiling the flexfield definition enables the flexfield window with
the defaults, values, and rules that you have defined.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Dene Collective Agreement Grades Key Flexeld Optional Steps
The Collective Agreement Grades Key Flexfield records information about how an
employee is graded or ranked in a collective agreement. The Collective Agreement
Grades Key Flexfield enables you to specify any number of structures. Each grade
structure is defined as a separate structure of the flexfield. You then link a specific
structure to a collective agreement in the Agreement Grades window.

It is not mandatory to define your collective agreement grades key flexfield now. You
can do it after you have defined your business groups.

Implementation Guide 3-37

Warning: If you are using the Italian legislation, do not create new
structures for the Collective Agreement Grades Key Flexfield. You must
use the predefined structure, IT_ CAGR andmust not make changes to it.

After you have specified your requirements for recording and reporting agreement
grade information, follow this implementation sequence:

Step 41: Design your Collective Agreement Grades Flexeld Structures
You need to design a Collective Agreement Grades Flexfield Structure for each Grade
Structure you want the application to hold. For each structure you must include the
following:

• The Structure Title (the Grade Structure) and the number of Segments.

• The Flexfield Segment Names (the Grade Factors), Order, and Validation Options.

• The Flexfield Value Sets and any lists of values.

Note: Your system administrator performs this step.

Step 42: Dene Collective Agreement Grades Flexeld Value Sets
To validate the values that a user can enter for any segment, you must define a specific
Value Set.

The attributes of the Value Set control the type of values that can be entered, and how
many characters each segment can hold. The attributes of the Value Set also control
how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 43: Dene Collective Agreement Grades Flexeld Segments
Define a structure for your Collective Agreement Grades Flexfield that contains the
segments you want to use. You use this structure to create your Reference Grades in
the Define Agreement Grades window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you cannot enter
new details in the Define Agreement Grades window.

When you access the grades in the Assignment window they display in the numerical
order defined in the Number column of the Segments Summary window.

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

3-38 Oracle Human Resources Management System Implementation Guide (US)

Step 44: Dene Collective Agreement Grades Flexeld Segments Values
If you have chosen Independent or Dependent validation for a Value Set used by a
Collective Agreement Grades Flexfield Segment, you must define your list of valid
values for the Value Set.

Use the Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 45: Dene Collective Agreement Grades Flexeld Cross-Validation Rules
Define any Cross-Validation Rules you want to use to control the combinations of
segment values a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window.

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 46: Dene Collective Agreement Grades Flexeld Aliases
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Define Shorthand Aliases window.

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 47: Freeze and Compile Your CollectiveAgreement Grades Flexeld Structure
You are now ready to freeze your Collective Agreement Grades Flexfield
definition. Navigate to the Define Key Flexfield Segments window. Enter Yes in the
Freeze Flexfield Definition field and save your changes. The application now freezes
and compiles your Collective Agreement Grades Flexfield definition. Compiling the
flexfield definition enables the flexfield window with the defaults, values, and rules that
you have defined.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Descriptive Flexelds
Use descriptive flexfields in Oracle HRMS to define your own additional fields to the
standard windows. For example, if you want to record Driver’s License Number for any
person you can define a segment of the Additional Personal Details flexfield to record this
additional information.

After this, you can enter a Driver’s License Number in the Person window after the
standard Personal details.

Note: Because the descriptive flexfield is defined at the level of
the base-table, any window using the base-table displays the same
descriptive flexfield segments. In this example, the Driver’s License
Number appears in the Contact window as well as the Person window.

Before you begin to implement any descriptive flexfield you must clearly specify your
requirements. You must include the following details:

Implementation Guide 3-39

• The Context and the number of Segments for each Context

• The Flexfield Segment Names, Order and Validation Options

• The Flexfield Value Sets and any lists of values

You can define two types of descriptive flexfield Segments:

• Global Segments

Segments always appear in the flexfield window.

• Context-Sensitive Segments

Segments appear only when a defined context exists. You can prompt a user to
enter the context, or you can provide the context automatically from a reference
field in the same region.

Note: Often you can choose between using a code, a "base-table"
field, and a field that contains a meaning or description. You should
always use base-table fields as reference fields for Context-Sensitive
segments. These fields usually have the same name as the column in
the base table.

Some of the Standard Reports supplied with the system include
descriptive segment values. If you follow this suggestion, these reports
will be able to use the prompts you define - otherwise they will apply a
generic prompt to the data.

Note: If you want to include descriptive flexfield Segment Values in the
Lookups list for DateTrack History, you need to modify the DateTrack
History Views supplied in the application.

Dene Descriptive Flexelds Optional Steps

Step 48: Register a Reference Field
You must use the Application Developer Responsibility to update the definition of the
descriptive flexfield. From the Descriptive Flexfields window, navigate to the Reference
Fields block and enter the name of the Reference Field you want to use.

Warning: Some descriptive flexfields are predefined and
protected. These are used to deal with specific legislative and reporting
needs of individual countries or industries.

Do not attempt to alter the definitions of these protected flexfields. These
definitions are a fundamental part of Oracle HRMS. Any change to them
may lead to errors in the operating of the application.

Oracle HRMS may use other segments of these flexfields in the
future. Therefore, do not add segments to any protected flexfield. This
can impair your ability to upgrade your system.

Use the Descriptive Flexfields window.

Step 49: Dene Flexeld Value Sets
If you want to validate the values a user can enter for any segment you must define a
specific Value Set.

3-40 Oracle Human Resources Management System Implementation Guide (US)

• The attributes of the Value Set control the type of values that can be entered, and
how many characters each segment can hold.

• The attributes of the Value Set also control how the values are to be validated.

Note: Value Sets can be shared by different segments of the same
flexfield, or by segments of any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Developer's Guide

Step 50: Dene Descriptive Flexeld Segments.
Define the segments of your descriptive flexfield for each Context.

You do not need to use a Value Set to validate a segment. If you do not specify a Value
Set then a user can enter any alphanumeric value up to a limit of 150 characters.

1. Use Global Context to define any segments always appear in the flexfield window.

2. Enter your own Context Name to define segments which will appear only for that
context.

3. Freeze and compile your descriptive flexfield definitions.

Warning: Any segment you define as "Required" is required for every
record on the system. You can encounter two common problems:

• If you define a "Required" segment after you have entered records: Existing records
lack a value in this segment, causing the application to error when you query an
existing record.

• Some descriptive flexfields are used in more than one block. For example, any
"Required" segments for Additional Personal Details must be entered for every
Employee, Contingent Worker, Applicant, or Contact.

Use the Descriptive Flexfield Segments window.

See: Defining Descriptive Flexfield Structures, Oracle Applications Flexfields Guide

Step 51: Dene Flexeld Segment Values
If you have chosen Independent validation for a Value Set used by a descriptive flexfield
Segment, you must define a list of valid values for the Value Set.

Use the Define Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 52: Run Create Descriptive Flexelds Database Items Process
When you have defined your descriptive flexfields you should run the Create Descriptive
Flexfields Database Items process to create database items for your non-context-sensitive
descriptive flexfield segments.

You should rerun this process whenever you create additional non-context-sensitive
descriptive flexfield segments.

Note: If you require Database Items for Context Sensitive flexfield
segments you should consult your Oracle Support Representative for
full details of how to add other Database Items.

Implementation Guide 3-41

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Extra Information Types (EITs)
Extra Information Types are a type of descriptive flexfield that let you add an unlimited
number of information types to six of the most important entities in Oracle HRMS.

For example, you might want to use the EIT on Assignment to hold information about
project work within an assignment.

Note: With Organizations you can group the EITs by classification so
that when a user selects a classification they see the EITs associated
with the classification. You must undertake some additional steps to
implement EITs for an Organization.

Dene EITs (Excluding Organizations) Optional Steps

Step 53: Dene Extra Information Types for Locations, Jobs, Positions, People and Assignments
Once you have decided which extra information types you require, you need to select
the descriptive flexfield by title. Create a new record in the Context Field Values region
and enter the name of your new Information Type in the Code field. Enter the segment
values and compile the descriptive flexfield.

Use the Descriptive Flexfield Segments window.

See: Setting up Extra Information Types (Excluding Organization EITs), Oracle HRMS
Configuring, Reporting, and System Administration Guide

Step 54: Set Up Responsibility Access for Extra Information Types
EITs do not appear automatically in any responsibility. You must set up
responsibility-level access for EITs. Alternatively, use CustomForm security to add
individual EITs to a specific taskflow window. This level of security is usually defined
later in the implementation when you need to restrict user access.

Note: This security does not apply to EITs on organizations.

Use the Information Types Security window.

See: Setting Up Extra Information Types against a Responsibility, Oracle HRMS
Configuring, Reporting, and System Administration Guide.

Dene EITs for Organization Optional Steps
EITs for organization classifications are set up differently from other EITs. When
you define them you must also associate them with the classification of the
organization. When a user selects the classification then the application displays the
correct set of EITs.

Step 55: Dene Organization Classication
Define a new organization classification if you want to group your EITs in this way. You
do not need to do so if you intend to use an existing classification.

Tip: When you install Oracle HRMS you will find a predefined list of
Organization Classifications. These values are defined for the Lookup

3-42 Oracle Human Resources Management System Implementation Guide (US)

Type ORG_CLASS, and provide options for all users of the Organization
window.

You can disable the Lookup values you will not use in your
implementation in the Application Utilities Lookups window.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 56: Set Up Extra Information Types for an Organization Classication
Define a new EIT and then enter a row into the HR_ORG_INFORMATION TYPES
table. Then specify for which organization classifications this EIT is available.

See: Setting Up Extra Information Types for an Organization Classification, Oracle HRMS
Configuring, Reporting, and System Administration Guide

System Administration
These are tasks for your System Administrator.

Important: If you used the Configuration Workbench, you can skip these
steps. The Workbench enables the currencies for the countries in which
your enterprise operates, and creates a user called HRMS_USER for
each business group.

Step 57: Enable Currencies
All major currencies are predefined with Oracle Applications. The codes used are the
ISO standard codes for currencies. However, you must enable the specific currencies you
want to use for your base currency, or for any compensation and benefit information.

The "base currency" is the default currency used by your business group.

Note: Oracle HRMS does not use extended precision. You can control
the precision in any calculation using a formula.

Use the Currencies window

See: Enabling Currencies, Oracle HRMS Configuring, Reporting, and System Administration
Guide.

Step 58: Dene "View All" HRMS User Required Step
Before you can access any of the HRMS windows you must create a new Application
User with access to one of the default Responsibilities supplied with the application.

Use the Users window.

See: Users Window, Oracle Applications System Administrator's Guide

Step 59: Dene Lookup Types and Values Optional Step
Lookups supply many of the lists of values in Oracle HRMS. For example, both Title and
Nationality in the Person window use Lookups.

Implementation Guide 3-43

You can add new Lookups Values at any time. You can set the Enable Flag for a Value
to No, so that it will no longer appear in the list of values, or you can use the Start and
End Dates to control when a value will appear in a list.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Enterprise and Workforce Management

Organization Structures
To begin modelling your enterprise, you set up the business groups, legal entities, and
operating companies that comprise your organizational framework. You can define
these organizations and locations yourself, or complete a configuration interview in the
Configuration Workbench. The workbench creates the organizations and locations and
places them in a hierarchy for you. The workbench creates a "View All" responsibility for
each business group, and sets the required user profile options.

When the organizational framework is in place, you can extend it by creating
additional internal and external organizations, and their locations, and by building the
organizations into hierarchies.

If you use the Configuration Workbench, then you can skip steps 1, 2, and 3, although
you can optionally perform step 2 to add user profile options to the responsibilities that
the workbench creates. If you do not use the Configuration Workbench, then follow the
steps below to configure your enterprise framework.

To find out what organization structures the workbench sets up see: Key Concepts for
Representing Enterprises, Oracle HRMS Enterprise and Workforce Management Guide

Step 1: Set Up Your Business Groups Required Step
You can use the Startup business group with all of its default definitions, which you can
use with the default responsibility (Option 1), or you can define other business groups to
meet your own needs (Option 2).

To find out how many business groups you require, see: Key Concepts for Representing
Enterprises, Oracle HRMS Enterprise and Workforce Management Guide

Option 1: Adapt the Startup Business Group
1. Select the default Oracle Human Resources responsibility with the security group

’Standard’. This enables you to see all the records for the startup Business Group.

2. Adapt the startup Business Group to your own Business Group requirements.

Warning: The Setup business group has a default legislation code
of US and a default base currency of USD.

If you intend to process payrolls in your business group, or you
intend to implement legislation for another territory, you must
create a new business group with a valid legislation code and base
currency. The system uses these values to copy in the predefined
data it needs to comply with local legislative and processing
requirements.

You cannot change these definitions after they have been saved.

3-44 Oracle Human Resources Management System Implementation Guide (US)

See: Creating an Organization, Oracle HRMS Enterprise and Workforce Management
Guide

Option 2: Create New Business Groups and Responsibilities
1. Create a new Business Group.

See: Creating an Organization, Oracle HRMS Enterprise and Workforce Management
Guide

2. Set up a responsibility for the business group in the Responsibilities window.

Step 2: Set User Prole Option Values for Responsibilities Required Step
Note: Use Standard HRMS security, rather than the Security Groups
Enabled model during implementation. You can change to the Security
Groups Enabled model later in your implementation. See: Security
Models, Oracle HRMS Configuring, Reporting, and System Administration
Guide

1. Set the HR User Profile Options for any new responsibilities you create. You must set
up the HR: User Type, HR: Security Profile and the HR: Business Group options, at
responsibility level.

2. You can set also set up other User Profile Options for new responsibilities you
created or the workbench generated.

See: System Profile Values Window, Oracle Applications System Administrator’s Guide

See: User Profiles, Oracle HRMS Configuring, Reporting, and System Administration
Guide

Step 3: Set Up Your Key Organization Structures Required Step
Create the legal entities and operating companies you require to represent your
enterprise. The operating companies and legal entities are key organization structures
that form your basic enterprise framework, to find out what they represent, see: Key
Concepts for Representing Enterprises, Oracle HRMS Enterprise and Workforce
Management Guide

To find out how many operating companies and legal entities you require, see:
Configuration Models for Your Enterprise Framework, Oracle HRMS Enterprise and
Workforce Management Guide

See: Setting up Organizations, racle HRMS Enterprise and Workforce Management Guide

Step 4: Set Up Your Additional Organization Structures Optional Step
You can extend your basic enterprise structure by creating additional organizations and
locations to represent internal divisions or departments, and external organizations for
reporting or third-party payments.

See: Extending the Enterprise Framework, Oracle HRMS Enterprise and Workforce
Management Guide

See: Setting Up Organizations, Oracle HRMS Enterprise and Workforce Management Guide

The Configuration Workbench creates legal entities for HR purposes only. If you want to
integrate Oracle Payroll with Oracle Cash Management, see: the Oracle Cash Management
User Guide

Implementation Guide 3-45

Step 5: Enter Organization Classications and Additional Information Optional Step
Enter the appropriate classifications for each organization and details for any extra
information types.

Use the Organization window.

See: Entering Organization Classifications, Oracle HRMS Enterprise and Workforce
Management Guide

See: Entering Additional Information, Oracle HRMS Enterprise and Workforce Management
Guide

Accounting Reference Information for Cash Management Integration
If you want to integrate Oracle Payroll with Oracle Cash Management, see the Oracle
Cash Management User Guide

Step 6: Dene Organization Hierarchies Optional Step
A Business Group can include any number of organizations. You can represent your
management or other reporting structures by arranging these organizations into
reporting hierarchies. An organization can belong to any number of hierarchies, but
it can only appear once in any hierarchy.

Note: You may find it easier to define the primary reporting hierarchy
using the top organization and one other. Then you can add
organizations into the hierarchy when you make your definitions in
the Organization window.

Organization reporting lines change often and you can generate a new version of a
hierarchy at any time with start and end dates. In this way, you can keep the history of
your organizational changes, and you can also use this feature to help you plan future
changes.

When you use DateTrack you see the ’current’ hierarchy for your effective date.

Note: Your primary reporting hierarchy will usually show your current
management reporting structure. You can define other hierarchies for
other reporting needs.

For government reporting such as ADA, AAP and OSHA reporting, you
must define one or more Reporting Establishments to represent your
work sites. If you have more than one such establishment, you must
build establishment hierarchies to determine the employees a particular
report will cover.

For government reports such as EEO-1 and VETS-100, you create
establishment hierarchies to represent your enterprise and group your
employees into the establishments required by the report.

You will also need to define FLSA codes for jobs, and EEO codes, salary codes and
Job Groups for EEO-1 and AAP reporting

You can create organization hierarchies using the:

• Organization Hierarchy Window

See: Creating Organization Hierarchies, Oracle HRMS Enterprise and Workforce
Management Guide.

3-46 Oracle Human Resources Management System Implementation Guide (US)

• Organization Hierarchy Diagrammers (they enable you to create your hierarchies
graphically, and to make intuitive drag-and-drop changes).

See: Adding Organizations or Positions to a Hierarchy, Oracle HRMS Enterprise
and Workforce Management Guide

Jobs
If you used the Configuration Workbench, you may already have loaded jobs from a
spreadsheet in the Workbench. You can skip the Define Jobs step.

Step 7: Dene Job Groups Optional Step
As part of an employment relationship, a person can simultaneously perform a number
of roles in addition to being an employee. These can range from initiatives defined
by the enterprise, such as fire warden, to legislative defined roles such as Health
and Safety Representative. In Oracle HRMS, these are known as supplementary
roles. Supplementary roles are set up as jobs in the Job window

Each job is held in a Job Group. The Job Group is used to store jobs of a similar type
together in one group. All standard jobs created in Oracle HRMS, that is, those jobs that
define the role the person is employed to fulfil, must be stored in the default HR Job
Group. This Job Group is automatically created for your Business Group.

If you want to set up supplementary roles you must set up additional job groups to
store these roles.

Use the Job Groups window.

See: Creating a Job Group, Oracle HRMS Enterprise and Workforce Management Guide

Step 8: Dene Jobs Optional Step
Jobs can be generic or specific roles within your enterprise. By definition they are
independent of organization structures and are generally used where there is flexibility
in employee roles.

A ’Job Name’ is a unique combination of values in the segments of the job flexfield
structure that you have linked to your Business Group.

Enter the FLSA codes for every job you define. For EEO-1 and AAP reporting, you must
also enter EEO-1 codes, salary codes and Job Groups.

As you define jobs add any additional information that is appropriate.

Use the Job window.

See: Defining a Job, Oracle HRMS Enterprise and Workforce Management Guide

Positions
If you used the Configuration Workbench, you may already have loaded positions from
a spreadsheet in the Workbench. You can skip the Define Positions step.

Note: If you are a German public sector type organization, then you do
not use positions as described here.

Implementation Guide 3-47

Step 9: Dene Position Hiring Statuses Optional Step
Each position must have a hiring status: Proposed, Active, Frozen, Eliminated or
Deleted. You can create user names for these system hiring statuses, and define more
than one user name for each system name, if required.

Use the User Types and Statuses window.

See: Defining Hiring Statuses, Oracle HRMS Enterprise and Workforce Management Guide

Step 10: Dene Positions Optional Step
In Oracle HRMS a position is a job within an organization. Positions are generally used
where roles are fixed within a single organization. If you decide to use positions you
may want to use jobs to identify the common job groups of individual positions.

A "Position Name" is a unique combination of values in the segments of the position
flexfield structure that you have linked to your business group.

As you define positions add any additional information that is appropriate. To prevent
position users from attaching a position to an existing control budget and entering
budget data, set the form function parameter DISABLE_BUDGETS="Y" for the Position
window (HRWSPSF).

HRMS provides Position Copy and Mass Position Update windows that enable you to
automate the reorganization of your workforce. If you want to restrict the positions that
appear in these windows to those falling within the user’s security profile, you must
attach secure versions of the forms to the menu. The secure versions of the function
names are PQHWSCET1 (Position Copy) and PQHWSCET2 (Mass Position Update).

Use the Position window to define positions.

See: Defining a Position, Oracle HRMS Enterprise and Workforce Management Guide

See: Entering Additional Information about Jobs and Positions, Oracle HRMS Enterprise
and Workforce Management Guide

Step 11: Set Up the Synchronize Positions Process to Run Nightly Optional Step
Oracle HRMS uses the Synchronize Positions process to update the non-datetracked
Positions table (PER_ALL_POSITIONS) with changes made to the datetracked table
(HR_ALL_POSITIONS_F). When you run the process, any datetracked changes with an
effective date on or before today are applied to the non-datetracked table. Hence, future
dated changes are not applied until they become effective.

Running the Synchronize Positions process every night ensures that the system
automatically updates the table with the position changes that become effective each
day. If a power or computer failure disrupts this process, you can start it manually
from the Submit a New Request window.

Warning: Ensure that the resubmission interval is set to run every night.

Use the Submit a New Request window.

See: Submitting a Request, Oracle Applications User Guide

Step 12: Create a Position Hierarchy Optional Step
You can structure positions into hierarchies to show detailed position reporting
structures. You can also use position hierarchies to define security profile groups within
your enterprise, or to define career progression paths for positions.

3-48 Oracle Human Resources Management System Implementation Guide (US)

You can create position hierarchies using the:

• Position Hierarchy Window

See: Creating a Position Hierarchy,Oracle HRMS Enterprise and Workforce Management
Guide

• Position Hierarchy Diagrammers (they enable you to create your hierarchies
graphically, and to make intuitive drag-and-drop changes).

See: Adding Organizations or Positions to a Hierarchy, Oracle HRMS Enterprise
and Workforce Management Guide

Dene a Context for Mass Actions
The Contexts form determines what information you can view, enter, and change on the
Mass Assignment Update and Position Copy forms. A predefined global Context form
contains the default position and assignment attribution that appear on the forms. When
you create a new Context, you can choose the attributes to display based on a user’s
Application, Legislation, and Responsibility.

Step 13: Set Up a New Context
Create a new context defining the Application, Legislation, and Responsibility. Define
the attributes to include in the Display, Change List, and Criteria columns.

Use the Contexts window.

See: Defining a Context for Mass Actions, Oracle HRMS Configuring, Reporting, and
System Administration Guide

WorkFlow for Transactions

Dene HRMS Roles

Step 14: Dene Lookup Values for Role Types Optional Step
Define list of lookup values for Role Types: PQH_ROLE_TYPE.

Use the Applications Utilities Lookups window.

Step 15: Dene HRMS Roles Optional Step
Define the HRMS roles that you are going to use in your enterprise for routing
transactions and budget worksheets.

Use the Roles window.

See: Defining HRMS Roles for Transactions, Oracle HRMS Enterprise and Workforce
Management Guide

Set Up Workow Routing for Transactions

Step 16: Dene the Type of Routing Optional Step
When you set up workflow, you have a choice of how to route each transaction category
(position transaction, budget worksheet, budget reallocation transaction). The routing
types include:

• routing list

Implementation Guide 3-49

• position hierarchy

• supervisory hierarchy

Choose one routing type for each transaction category.

Use the Transaction Type Wizard.

See: Transaction Type Wizard, Oracle HRMS Enterprise and Workforce Management Guide .

Step 17: Dene the Transaction Type Optional Step
Define the Post and Future update methods. Define the notification timeout.

Use the Transaction Type Wizard.

See: The Transaction Type Wizard, Oracle HRMS Enterprise and Workforce Management
Guide.

Step 18: Associate Roles with Users or Positions Optional Step
You associate roles to users, positions, or role templates, based on the routing type
you selected for each transaction category.

• Routing List

Assign role(s) to users, specifying the user’s default role.

Use the Maintain Roles window.

See: Associating HRMS Roles with Users, Oracle HRMS Enterprise and Workforce
Management Guide

• Position hierarchy

Assign a role to each position in the position hierarchy.

Note: Before you can assign roles to the positions, you must define
the positions and create a position hierarchy.

Use the Maintain Roles window.

See: Associating HRMS Roles with Positions, Oracle HRMS Enterprise and Workforce
Management Guide

• Supervisory hierarchy

Assign roles to users who initiate transactions or have transactions routed to them as
supervisors.

Use the Roles window.

See: Associating HRMS Roles with Users, Oracle HRMS Enterprise and Workforce
Management Guide

Step 19: Dene the Routing Sequence Optional Step
If you route transactions using:

• Routing lists, create routing list(s) specifying the destinations on the list (roles and
roles/users).

Use the Routing Lists window.

3-50 Oracle Human Resources Management System Implementation Guide (US)

See: Defining Routing Lists for Transactions, Oracle HRMS Enterprise and Workforce
Management Guide

• Position hierarchies, include in the position hierarchy the users’ primary assignment
positions.

Use the Position Hierarchy window.

See: Creating Position Hierarchies,Oracle HRMS Enterprise and Workforce Management
Guide

• Supervisory hierarchy, verify that supervisors are entered in the Assignment window
for those users who will initiate transactions or have transactions routed to them.

You don’t define a supervisory hierarchy. When a user routes a transaction, the
system automatically determines the user’s supervisor (the one entered in the user’s
primary assignment) and routes to that person.

Use the Assignments window.

See: Entering an Assignment, Oracle HRMS Enterprise and Workforce Management
Guide

Step 20: Dene Routing and Approval Rules Optional Step
You can define routing and approval rules that determine the routing sequence and
identify valid approvers based on the values entered in the transaction.

Select attributes to use as the basis for defining the routing and approval rules, and
then define the rules.

Use the Transaction Type Wizard.

See: Transaction Type Wizard, Oracle HRMS Enterprise and Workforce Management Guide.

Set Up Transaction Templates and Associate with HRMS Roles

Step 21: Set up Role Templates Optional Step
Each role must have an associated role template which sets the maximum permissions
for that role. The product includes a Basic Role template that you can assign to the roles
you define in your organization. You have the option of defining new role templates
and establishing permissions appropriate for each role.

Define role templates, specifying attributes as View or Edit.

Use the Roles window.

See: Setting Up Transaction Templates,Oracle HRMS Enterprise and Workforce Management
Guide

Step 22: Set Up Task Templates Optional Step
The product comes with two predefined task templates, a Create and Update
template. You can define your own templates for those routine tasks where you wish
to simplify or restrict data entry.

Define task templates, defining attributes as View, Edit, or Required.

Use the Templates window.

See: Setting Up Transaction Templates,Oracle HRMS Enterprise and Workforce Management
Guide

Implementation Guide 3-51

Step 23: Associate Roles and Templates Optional Step
Each role must have an associated template. You can assign each role the supplied Basic
Role template or choose a role template that you have defined.

Use the Templates window.

See: Associating HRMS Roles with Transaction Templates, Oracle HRMS Enterprise and
Workforce Management Guide

Position Control

Step 24: Enable Position Control on Organizations Optional Step
Designate an organization hierarchy as the primary position control hierarchy. Designate
the starting point (top node or subordinate level), and include/exclude subordinates
(optional).

You can designate only one hierarchy for position control. Any versions you create of
this hierarchy are also position controlled.

Note: Refer to Defining Budget Characteristics, Oracle HRMS Enterprise
and Workforce Management Guide for enabling position control on budgets
for these organizations.

Use the Organization Hierarchy window.

See: Creating Organization Hierarchies, Oracle HRMS Enterprise and Workforce
Management Guide

Step 25: Congure Business Rules Optional Step
Review and where necessary configure the business rules (also called process rules) that
validate assignment modifications, budgets, and budget reallocations. The predefined
business rules are configured as warnings. You can change them to allow an action to
proceed (ignore) or to prevent an action (error).

Use the Configurable Business Rules function.

See: Business Rules, Oracle HRMS Enterprise and Workforce Management Guide

Evaluation Systems

Step 26: Dene Evaluation Types Optional Step
With Oracle HRMS you can record summary evaluation information for Jobs, or
Positions in the Evaluation window.

Define the name of your evaluation system as a value for the Lookup Type
EVAL_SYSTEM.

To record detailed evaluation scores for the Hay System or any other system you can
enable the Additional Evaluation Details descriptive flexfield to hold and validate this
information.

You can also hold comment or review information for each evaluation you undertake.

Note: If you use more than one evaluation system you may want to
define the segments as context sensitive to the System Name.

3-52 Oracle Human Resources Management System Implementation Guide (US)

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Human Resource Budgets

Step 27: Dene Lookup Types and Values Optional Step
Oracle HRMS delivers the following seeded budget measurement units: Money, Hours,
Headcount, Full Time Equivalent, and Percent Full Time Equivalent. You cannot extend
the delivered budget measurement units, but you can copy and rename an existing
measurement unit.

Define values for BUDGET_MEASUREMENT_TYPE.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 28: Dene Period Types Optional Step
The most common period types are already predefined in Oracle HRMS. You can change
the names of these predefined types but you cannot add any new types.

Use the Period Types window.

See: Renaming Period Types, Oracle HRMS Enterprise and Workforce Management Guide

Step 29: Dene Budgetary Calendars Optional Step
You use calendars to define the budget years for your staffing budgets.

Use the Budgetary Calendar window.

See: Defining Budgetary Calendars, Oracle HRMS Enterprise and Workforce Management
Guide

Step 30: Dene Budget Sets Optional Step
A budget set is comprised of one or more elements. You define a budget set to record the
money or hours or other budget measurement units in your budget. Oracle HRMS uses
budget sets to track actual expenditures and commitments.

Use the Budget Set window.

See: Defining Budget Sets, Oracle HRMS Enterprise and Workforce Management Guide

Step 31: Migrate an Existing Oracle HRMS Budget to the New Budget Tables Optional Step
If you created a budget in Oracle HRMS prior to Release 11i, you can use an existing
budget as the basis for a new budget worksheet.

Run the Migrate Budget Data process from the Submit Requests window to migrate an
existing budget to the new database tables for Budgets.

See: Migrating a Budget to Oracle HRMS, Oracle HRMS Enterprise and Workforce
Management Guide

Implementation Guide 3-53

Step 32: Set Up the HR Budget in Oracle General Ledger Optional Step
If you are transferring a budget from Oracle HRMS to Oracle General Ledger, you must
first define the budget in Oracle General Ledger.

Use the Define Budget window in Oracle General Ledger to define the budget.

See: Setting Up an Oracle HRMS Budget for Transfer to Oracle General Ledger, Oracle
HRMS Enterprise and Workforce Management Guide

Step 33: Dene Budget Characteristics Optional Step
You set up budget characteristics to define the Oracle HRMS work structure for which
you are establishing a budget. The primary entities against which you can create a
budget are job, position, grade, and organization. You can also create a budget for
a combination of these entities.

Defining the characteristics of a budget also requires you to define the budget
measurement units (Money or Headcount, for example). Optionally, you can select the
elements that are used to process budget funding commitments during a budgetary
period. For budgets that are transferred to Oracle General Ledger, you can map Oracle
HRMS Costing Segments to GL Chart of Account Segments.

Use the Budget Characteristics window.

See: Defining Budget Characteristics, Oracle HRMS Enterprise and Workforce Management
Guide

Set Up Workow for Budget Worksheets Optional Steps
If you use Oracle Workflow to delegate a budget worksheet through an organization
hierarchy or to route a worksheet for approval, you must set up HRMS roles and routing
for your budgeting personnel. A manager responsible for a budget can only delegate
a budget worksheet to another manager in the organization hierarchy who has a valid
HRMS role, and is a member of the applicable routing list or hierarchy.

Step 34: Dene an Organization Hierarchy Optional Step
Create an organization hierarchy if needed. Organization hierarchies enable you to
restrict the number of budget line items that appear in your budget, and delegate
to other managers.

Use the Organization Hierarchy or the Global Organization Hierarchy window.

See: Creating Organization Hierarchies, Oracle HRMS Enterprise and Workforce
Management Guide

Step 35: Specify Starting Organization Optional Step
Specify the organization hierarchy and the organization within the hierarchy where the
budget is effective. This action enables the budget in subordinate organizations as well.

Use the Budget Characteristics window.

See: Defining Budget Characteristics, Oracle HRMS Enterprise and Workforce Management
Guide

Step 36: Dene HRMS Roles Optional Step
Define the roles that you are going to use in your enterprise for routing budget
worksheets.

Use the Maintain Roles window.

3-54 Oracle Human Resources Management System Implementation Guide (US)

See: Defining HRMS Roles for Transactions, Oracle HRMS Enterprise and Workforce
Management Guide

Step 37: Set Up Workow Routing Optional Step
When you set up workflow, you have a choice of how to route each transaction type
(position transaction, budget worksheet, budget reallocation transaction). The routing
styles include:

• routing list

• position hierarchy

• supervisory hierarchy

Choose one routing style for each transaction type.

Use the Transaction Type Wizard.

See: Transaction Type Wizard, Oracle HRMS Enterprise and Workforce Management Guide

Person Types

Step 38: Dene Person Types Required Step
You can define your own names to identify the "types" of people in your system.

Note: Person Type is a common option for Form Customization.

Use the Person Types window.

See: Defining Person Types, Oracle HRMS Enterprise and Workforce Management Guide

Collective Agreements
A collective agreement is an agreement that defines the terms and conditions of
employment for all employees that are covered by its terms. Agreements are typically
negotiated and agreed by external bodies such as Trade Unions and Representatives
of Employers.

Step 39: Setting Up Collective Agreements Optional Step
If your enterprise uses collective agreements, follow the steps in the referenced topic to
enter a collective agreement, set up the eligibility criteria for the agreement, and to apply
the values defined in the agreement to the eligible employees.

See: Setting Up a Collective Agreement, Oracle HRMS Enterprise and Workforce
Management Guide

Medical Assessments, Disabilities and Work Incidents

Step 40: Dene Lookup Types and Values Optional Step
If you want to record medical assessments, disabilities, or work incidents for the people
in your enterprise, you must define Lookup Values for the Lookup Types that are used
in those windows.

See: User and Extensible Lookups, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 3-55

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Checklists

Step 41: Set Up Checklist Templates Optional Step
If you want to use the Checklist functionality to automatically allocate checklists and
tasks to people and assignments, you must first set up the checklist templates and tasks.

See: Setting Up Checklists, Oracle HRMS Enterprise and Workforce Management Guide

New Hire Reporting

Step 42: Check GRE Federal and State Identication Numbers Optional Step
Ensure that a federal identification number and a SUI identification number, if
appropriate, is on record for each GRE that submits New Hire reports.

Use the Organization window.

See: Entering Federal Tax Rules for GREs, Oracle HRMS Payroll Processing Management
Guide

See: Entering State Tax Rules, Oracle HRMS Payroll Processing Management Guide

See: Entering Local Tax Rules, Oracle HRMS Payroll Processing Management Guide

Step 43: Enter the GRE Contact Person Optional Step
Enter the GRE contact person.

Use the Organization window.

See: Entering a New Hire Report Contact for a GRE, Oracle HRMS Workforce Sourcing,
Deployment, and Talent Management Guide

Step 44: Enter New Hire Information for Every Employee Optional Step
When you use the online system to hire an employee you enter the appropriate New
Hire status in the Employment Information region of the People window.

• The default is null

• Enter Incl or Excl

• The status automatically changes to Done after a run of the New Hire report
includes the employee.

Warning: When you load your current employees into the database, the
default New Hire Status is null. You must enter a value of Done or Excl
in the New Hire Status field if you do not want to include them in your
first run of the New Hire report.

Do this manually, or as part of your data loading.

Use the People window.

3-56 Oracle Human Resources Management System Implementation Guide (US)

See: Entering New Hire Report Information for Employees, Oracle HRMS Workforce
Sourcing, Deployment, and Talent Management Guide

Payroll Process Management
If you use Oracle Payroll, you must define payrolls and payment methods. You can also
define these items for information and reporting in Oracle Human Resources.

You must include a payroll in the employee assignment before you can make
nonrecurring entries to an element for an employee. Nonrecurring entries are only
processed for one payroll period.

You can also set up Workers Compensation in Oracle Payroll.

Dene Payroll Information

Step 1: Dene Payment Methods Optional Step
Standard categories of payment methods such as Direct Deposit are predefined with
your system. You can define your own names for each of these methods, and if you
have installed Oracle Payroll you can also use these methods to control payments
to your employees.

Use the Organizational Payment Method window.

See: Defining a Payment Method, Oracle HRMS Payroll Processing Management Guide

Step 2: Dene Consolidation Sets Optional Step
When you define your business group the system automatically generates a default
Consolidation Set. If you have not installed Oracle Payroll you can skip this step.

Oracle Payroll uses consolidation sets to gather the results from different payroll runs
into a single set for reporting or transfer to other systems. You can define any number
of additional consolidation sets.

Use the Consolidation Sets window.

See: Defining Consolidation Sets, Oracle HRMS Payroll Processing Management Guide

Step 3: Dene Payrolls Optional Step
You define your own payroll groups to meet your business needs for processing and
payment. For example, you may have a monthly and a weekly payroll but you might
want to manage and process your weekly payroll by plant location. In this case you
could define one monthly payroll and two weekly payrolls, one for each plant.

If you are using Standard Benefits or Oracle Advanced Benefits to set up and manage
benefits plans and programs, you must define a monthly payroll for each business group.

Note: The payroll calendar is different from the budgetary calendar
in Oracle HR. You define your budgetary calendar for headcount or
staffing budgets.

Use the Payroll window.

See: Defining a Payroll, Oracle HRMS Payroll Processing Management Guide

Implementation Guide 3-57

Step 4: Set Up Payslip Information and Generate Payslips Optional Step
You can set up information to appear on your payslips, and generate a printed or online
version for your employees.

See :Setting Up Payslip Information and Generating Payslips, Oracle HRMS Payroll
Processing Management Guide

Workers Compensation
If you have not installed Oracle Payroll you should skip the section on Workers
Compensation.

Workers Compensation programs are legislated in each state to provide employees with
insurance coverage for work-related injuries. The following steps cover all aspects of
setting up Workers Compensation in Oracle Payroll.

Note: Some of these steps overlap with the setup of Work Structures
and Compensation and Benefits.

Step 5: Dene Workers Compensation Insurance Carrier Optional Step
Define both state and private insurance carriers as external organizations.

Enter and enable the classification of Workers Compensation Carrier.. This provides the
lookup values when you define the Government Reporting Entity.

Use the Organization window.

See: Creating an Organization, Oracle HRMS Enterprise and Workforce Management Guide

Step 6: Enter Insurance Carriers for GREs Optional Step
When you define your GREs you can enter the insurance carrier in the State Tax Rules
window.

For each state enter the name of the Workers Compensation Carrier and any rates that
may affect calculation of the GRE’s liability.

Use the Organization window.

See: Creating an Organization, Oracle HRMS Enterprise and Workforce Management Guide

Step 7: Check State Rules for Imputed and Supplemental Earnings Optional Step
For each state in which you are liable for WC payments check the categories for Imputed
and Supplemental Earnings that represent earnings included in employee’s payroll
exposure.

Use the Taxability Rules window.

See: Reviewing and Maintaining Taxability Rules, Oracle HRMS Payroll Processing
Management Guide

Step 8: Dene Lookup Types and Values Optional Step
You can define additional categories using the Lookup type US_SUPPLEMENTAL_
EARNINGS or US_IMPUTED_EARNINGS.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

3-58 Oracle Human Resources Management System Implementation Guide (US)

Step 9: Dene State Codes and Rates Optional Step
For each carrier or carrier and location in the state, enter the state work classification
codes and associated rates.

Use the WC Codes and Rates window.

See: AssociatingWCCodes with Rates,Oracle HRMS Payroll Processing Management Guide

Step 10: Enter Codes for Jobs Optional Step
For every state where you need to calculate WC you must enter the appropriate codes
for your jobs. You can also enter the Executive Weekly Maximum, if one exists for
this state, and the state rules regarding inclusion of overtime earnings in the payroll
exposure. You can also enter any standard surcharges for the state.

Include the overtime categories that contribute to WC payroll exposure

Important: When you assign an employee to a job the system will
default the WC code for that job. You can override the default code in
the Miscellaneous region of the Employee Assignment. This override
information is datetracked.

Use the Workers Compensation window.

See: Entering WC Job Codes, Payroll Exposure Rules and Surcharges, Oracle HRMS
Payroll Processing Management Guide

Step 11: Dene Element Link for Workers Compensation Element Optional Step
With Oracle Payroll there is a predefined element and formula to calculate Workers
Compensation. To activate this element you need to define the rules for eligibility.

Ensure that you create the worker’s compensation links as open links.

Important: The additional elements that you set up are used to record
the information that is used in the calculation of Sick Pay and Vacation
pay. You must check that you have already linked the predefined
elements for Sick Pay and Vacation to all employees. You should make
these links ’standard’ for all employees on a payroll.

Use the Workers Compensation window.

See: Defining Element Links, Oracle HRMS Compensation and Benefits Management Guide

Compensation, Benets, and Payroll
Follow the implementation steps in this section to set up your compensation and benefits
plans, including grade/step progression schemes and absence plans. This section
includes the following implementation areas:

• Grade Related Information: Set up grades to record the relative status of employee
assignments

• Elements for Information: Define elements to represent a variety of earnings and
deductions, as well as other employer liabilities

• Benefits: Set up health and welfare offerings

Implementation Guide 3-59

• Earnings and Deductions for Payroll Processing: If you use Oracle Payroll, you
can set up user defined balances and write Payroll Formulas for elements that you
process in payroll runs

• Salary Administration: Manage the basic remuneration that employees receive

• Compensation Awards: Distribute one-time and recurring awards, such as stock
options and bonuses, or set up voluntary employee contribution plans

• Leave and Absence Management: Set up paid time off schemes to administer the
vacation or sick leave rules of your enterprise

• Element Sets and Batch Control Totals: Group elements together to restrict
processing; set up batch controls to calculate numerical input values with Batch
Element Entry

• Vacation Banking (Canada Only): Calculate and maintain vacation liability

• Basic Benefits (US Only): Administer employee benefits based solely on
elements, for use with simple benefit plans

If you plan to load details of employee entry history you should consider using a fixed
date, such as 01-JAN-1951, as a default for your initial setup definitions. This will
simplify your data-entry.

Grade Related Information

Step 1: Dene Grades Optional Step
Grades show the relative status of employees within an enterprise. Many enterprises use
grades as the basis for eligibility to compensation and benefits.

The Grade Name is a unique combination of values in the segments of the grade flexfield
structure that you have linked to your business group.

Use the Grades window.

See: Defining a Grade, Oracle HRMS Compensation and Benefits Management Guide

Step 2: Dene Valid Grades for Jobs or Positions Optional Step
You can define Valid Grades for jobs or positions. Oracle HRMS checks that you assign
employees to valid grades for their jobs or positions.

Use the Valid Grades window.

See: Entering Valid Grades for Jobs or Positions, Oracle HRMS Enterprise and Workforce
Management Guide

Step 3: Dene Grade Rates Optional Step
You can use grade rates to show valid rates of pay for each grade. You can express the
rate of pay as a fixed value, or as a range of values.

When you define a grade rate you are setting up a table of values. You can use these
values with an employee’s grade to control, or compare, the salary of the employee.

• You can use grade rate values in Element Input Validation formulas to validate the
element entry values given to employees.

• Oracle HRMS uses grade rates to calculate comparatio values in the View Employee
Grade Comparator window and in the Salary page for salary validation.

3-60 Oracle Human Resources Management System Implementation Guide (US)

Use the Grade Rate window.

See: Defining a Grade Rate, Oracle HRMS Compensation and Benefits Management Guide

Set Up Grade/Step Progression Optional Steps
If you want to relate pay to grades indirectly through a pay scale, you have a choice:

• Use Grade/Step Progression if you want to progress large numbers of employees
automatically from one grade, or grade step, to the next on a grade ladder. You
can define progression rules for each grade ladder. You can also use criteria salary
rates to vary employee pay depending on other details of their assignment, such
as job, location, or bargaining unit. This approach is common in public sector
enterprises and in highly-regulated organizations such as retail or those subject
to collective bargaining.

• Use Pay Scales and Scale Rates if you want to progress employees manually or using
a process that supports a limited range of criteria for selecting the assignments
to progress. Unlike Grade/Step Progression, this approach cannot automatically
maintain salary values using element entries. To use this approach, skip this section
and go to: Set Up Pay Scales, Scale Rates, and Grade Scales, page 3-61.

Step 4: Set up and Activate Grade Ladder Optional Step
Set up the grade ladder, adding grades and steps to it and defining rules for progression
and salary update.

Use the Plan Design Wizard.

See: Setting Up a Grade Ladder, Oracle HRMS Compensation and Benefits Management
Guide

Set Up Pay Scales, Scale Rates, and Grade Scales Optional Steps
Follow these steps if you are not using Grade/Step Progression and you want to relate
pay to grades indirectly using a pay scale.

Step 5: Dene Pay Scales Optional Step
Pay scales are used commonly in government and regulated or unionized enterprises
where actual values of pay are defined as a ’pay scale’, a ’schedule’, or a ’spine’.

In this environment it is common to find an automatic incrementing of employee pay
based on length of service or on a fixed date. When you define the Pay Scale you define
the points in the incrementing sequence you want to use.

A predefined incrementing process is supplied with Oracle HRMS. This will
automatically increment step and point values for employees using a fixed date. You can
specify the number of steps that you want a person to be incremented, on a specified
pay scale.

Note: You can modify the process to meet your specific business rules
for incrementing.

Use the Pay Scale window.

See: Defining a Pay Scale, Oracle HRMS Compensation and Benefits Management Guide

Implementation Guide 3-61

Step 6: Dene Scale Rates Optional Step
You define a scale rate for each type of pay, such as salary, shift allowance, and
overtime. You enter a value for each point on the pay scale. These values are datetracked.

Use the Scale Rate window.

See: Defining Scale Rates, Oracle HRMS Compensation and Benefits Management Guide

Step 7: Relate Grades to Progression Points Optional Step
Define the points from the pay scale that are valid for each grade as a numeric sequence
of steps.

The auto-incrementing process uses these steps to increment an employee’s grade point
up to a ceiling that you can define for the grade.

Use the Grade Scale window.

See: Relating Grades to Progression Points, Oracle HRMS Compensation and Benefits
Management Guide

Elements for Information
Elements are the basic components of compensation types, benefits and benefit
plans, accrual plans and deductions. You can also use elements to represent tangible
items distributed to employees, such as tools or safety equipment. When you install
Oracle HRMS you will automatically have elements defined for:

• Regular Salary

• Regular Wages

At sites including Oracle Payroll, other predefined elements are installed to represent the
earnings and deductions that process in the payroll run.

At sites without Oracle Payroll, you can define any number of additional elements to
hold information about benefits, compensation types, and other items.

Warning: If you have installed Oracle Payroll you must use the
Earnings and Deductions windows to initiate all of your earnings and
deductions. This will simplify your setup for payroll processing.

Dene Input Value Validation Optional Steps

Step 8: Dene Lookup Types and Values Optional Step
You define new Lookup Types to create additional lists of values to validate any element
input value with a character datatype.

Note: You can also use Lookup Types to validate a flexfield segment. Use
the Table Validation option for the Value Set and use the Lookups table
as the source of your list.

You can add new Lookup Values at any time. You can set the Enable Flag for a Value to
No, so that it will no longer appear in the list of values, or you can use the Start and End
Dates to control when a value will appear in a list.

Use the Application Utilities Lookups window.

3-62 Oracle Human Resources Management System Implementation Guide (US)

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 9: Dene Element Validation Formulas Optional Step
When you define input values you can use a formula to validate any entry to that input
value.

Important: You must define the formula before you define the element
input value. The type of formula is Element Input Validation.

Use the Formula window.

See: Writing Formulas for Validation, Oracle HRMS FastFormula User Guide

Dene Elements Optional Steps

Step 10: Dene Elements and Input Values Optional Step
Before you start defining elements, you should make all of your decisions about the
definitions and rules for eligibility.

Use the Element window. If you plan to process the elements using Oracle Payroll, define
the elements using the Earnings and Deductions windows, as described in the next
section.

See: Defining an Element, Oracle HRMS Compensation and Benefits Management Guide.

Step 11: Dene Element Links Optional Step
You can give an entry to an employee only when they are eligible for that
element. Employees are eligible for an element when their assignment details match
the link details.

You can link an element to any combination of organization, group, grade, job, position,
payroll, location, employment category or salary basis.

Use the Element Link window.

See: Defining Element Links, Oracle HRMS Compensation and Benefits Management Guide

Step 12: Activate Predened Elements Optional Step
When you install Oracle HRMS a number of predefined elements are installed. These
elements represent the legislative deductions that are processed in the payroll run.

If you have installed Oracle Payroll you will also have all of the formulas and balances
you need for processing these deductions. If you have not installed Oracle Payroll, you
can still use these elements to record information for transfer to your own payroll system.

To activate these predefined elements you need only define links for them.

Use the Element Link window.

See: Defining Element Links, Oracle HRMS Compensation and Benefits Management Guide

Benets
This sequence of setup steps for Benefits assumes you are using the Plan Design
Wizard, which is the recommended approach. If you prefer to set up your plan design
using individual windows, follow the steps in Benefits Implementation Without Plan

Implementation Guide 3-63

Design Wizard, page 3-81 then skip to Earnings and Deductions for Payroll Processing,
page 3-69.

Plan Design Wizard is a guided configuration tool that provides a fast and easy way
to set up compensation objects and other plan design data. You can rapidly implement
flex and non-flex programs that include health and welfare plans, life insurance
plans, and plans of other common plan types funded by employee and employer
contributions. Advanced Benefit users may also configure default and life event-based
enrollments.

You currently cannot use the Wizard to set up flex credits, premiums, communications,
and primary care providers; there are separate windows to set these up. Similarly, if you
require formulas or flexfields for your benefit plans, you must set these up in other
windows. Some implementation steps are only relevant if you use Oracle Advanced
Benefits. These implementation steps are indicated.

You can use the Plan Copy feature to copy programs and plans to provide a starting
point for similar plans.

Step 13: Set Up the Base Plan Design Using the Plan Design Wizard Required Step
The Plan Design Wizard provides a step-by-step process for creating Health and Welfare
programs and the business processing rules you associate with them. The Wizard guides
you through the set up process, reducing the likelihood of implementation errors.

Your base plan design includes compensation objects (programs, plan types, plans, and
options), enrollment periods, eligibility profiles, life event reasons, default
enrollments, and activity rates. You complete the other components of your plan design
using the relevant windows as described in the following steps.

See: Plan Design Wizard, Oracle HRMS Compensation and Benefits Management Guide

Step 14: Add the Benets Tabbed Region to the People Window (US Only) Optional Step
A person with a responsibility of system administrator or application developer can use
the Menus window to add the benefits alternate region to the People window.

1. Query the BEN_MANAGER menu in the Menu field.

2. Add a new line and select HR View Benefits in the Function field.

3. Save your work

Use the Menus window.

See: Menus Window, Oracle Applications System Admministrator's Guide

Step 15: Dene a Monthly Payroll (US Only) Optional Step
You must define a monthly payroll for each business group you maintain. When you
process employee terminations, a copy of the person’s assignment record is created as a
benefits assignment. Benefits assignments are used to maintain eligibility for continuing
benefits, and always have a payroll with a monthly period.

Note: If you have already defined payroll information, including
monthly payrolls for each Business Group, you can skip this step.

Use the Payroll window.

See: Defining a Default Monthly Payroll for a Business Group, Oracle HRMS Enterprise
and Workforce Management Guide

3-64 Oracle Human Resources Management System Implementation Guide (US)

Step 16: Dene Collapsing Life Event Reasons (OAB) Optional Step
You create a collapsing life event definition for those instances when a combination of
two or more detected life events results in either a different life event or the voiding of
the detected events.

Use the Collapsing Rules window.

See: Defining a Collapsing Life Event (Advanced Benefits), Oracle HRMS Compensation
and Benefits Management Guide

Step 17: Convert Current Enrollments Optional Step
You can use Plan Design Wizard to convert benefits enrollments from third-party and
legacy systems.

See: Converting Benefits Enrollments, page 2-14

Action Items and Certications (Advanced Benets) Optional Steps
You can set up any certifications that a benefits participant must provide to satisfy the
enrollment requirements for a compensation object. When a participant fails to provide
the required certification, the application suspends the election pending the completion
of the action item.

Step 18: Set Up Certications for Compensation Objects Optional Step
Typical certifications include date of birth and proof of good health.

Use the Certifications window.

See: Defining Certifications for Enrollment in a Plan, Oracle HRMS Compensation and
Benefits Management Guide

Step 19: Dene Action Item Due Dates Optional Step
As part of implementation, you define the required completion date of each action item.

Use the Action Types window.

See: Defining an Action Item Due Date, Oracle HRMS Compensation and Benefits
Management Guide

Actual Premiums Optional Steps
A premium is the amount paid by a plan sponsor to the supplier of the
benefit. Typically, you calculate premiums on a per-participant basis, but the application
also supports premium calculation based on total enrolled participants and total volume
of elected coverage.

Step 20: Calculate Actual Premium Costs Optional Step
You maintain the criteria that the Premium Calculation Process uses to calculate the
actual premium cost that a plan sponsor owes to a benefits supplier.

Use the Actual Premiums window.

See: Defining an Actual Premium, Oracle HRMS Compensation and Benefits Management
Guide

Implementation Guide 3-65

Flex Credit Calculations (Advanced Benets) Optional Steps

Step 21: Dene Characteristics of Benet Pools Optional Step
You define benefit pools to limit how a participant can spend flex credits and how excess
flex credits can be rolled over, distributed as cash, or forfeited.

Use the Benefit Pools window.

See: Defining the General Characteristics of a Benefits Pool, Oracle HRMS Compensation
and Benefits Management Guide

Step 22: Dene Flex Credits Optional Step
You define a flex credit calculation and link the calculation with a compensation
object. The compensation object to which you link a flex credit calculation must be part
of a program regardless of the level at which you define flex credits.

Use the Flex Credit Definitions window.

See: Defining Flex Credits, Oracle HRMS Compensation and Benefits Management Guide

Additional Setup for Health and Welfare Optional Steps

Step 23: Dene Reporting Groups Optional Step
You can define a reporting group that you link to one or more programs and plans. When
you run a report for a reporting group, the report results are based on the programs and
plans that you include in the reporting group.

You can also define the regulatory bodies and regulations govern a reporting group.

Use the Reporting Groups window.

See: Defining a Reporting Group, Oracle HRMS Compensation and Benefits Management
Guide

Step 24: Dene Reimbursable Goods and Service Types Optional Step
Define goods and services that you approve for reimbursement. You then associate one
or more goods and services types with a reimbursement plan.

Use the Goods and Services window.

See: Defining Reimbursable Goods and Service Types, Oracle HRMS Compensation and
Benefits Management Guide

Step 25: Dene Reimbursement Plans Optional Step
Use reimbursement plans to define goods and services that eligible participants may
purchase. The participant can submit a reimbursement claim for the cost of the good or
service that was purchased out-of-pocket.

Use the Plan Reimbursement window.

See: Defining a Reimbursement Plan,Oracle HRMS Compensation and Benefits Management
Guide

Step 26: Dene Communications Optional Step
You define the communications you send to employees and other potential
participants. You specify the conditions that trigger a communication and the delivery
method and medium.

3-66 Oracle Human Resources Management System Implementation Guide (US)

Use the Communication Types window.

See: Defining Communication Types,Oracle HRMS Compensation and Benefits Management
Guide

Step 27: Dene Benet Balances Optional Step
Benefit balances are useful for transitioning legacy system data to Oracle HRMS. You
define a benefit balance type and then assign a value to that type for a given person
using the Person Benefit Balances window.

Use the Benefit Balances window.

See: Defining a Benefit Balance,Oracle HRMS Compensation and Benefits Management Guide

Step 28: Maintain Desktop Activities List Optional Step
The Maintain Online Activities window lets you define the functions and windows that
are available from the Desktop Activities list of the Online Benefits Services windows.

Use the Maintain Online Activities window.

See: Maintaining Online Activities, Oracle HRMS Compensation and Benefits Management
Guide

Step 29: Maintain Pop Up Messages Optional Step
You can configure messages to display in the Online Benefit Services window based on
user events that you define. You create the message text in the Messages window

Use the Maintain Pop Up Messages window.

See: Maintaining Pop Up Messages, Oracle HRMS Compensation and Benefits Management
Guide

Step 30: Set Up Primary Care Provider Access Optional Step
You can define restrictions on the selection of a primary care provider and set high-level
configuration options for web-based PCP database searches through Oracle Self-Service
Benefits.

Use the Maintain Plan Primary Care Providers window.

See: Maintaining Primary Care Providers for a Plan, Oracle HRMS Compensation and
Benefits Management Guide

Additional Setup for Payroll Processing
These windows are available in your menus only if you are using a responsibility that
includes Oracle Payroll. If you have not installed Oracle Payroll, skip these steps and go
to the next section.

If you are using template earnings and deductions from the template library in
Configuration Workbench, or if you generated your earnings and deductions using the
Element Design Wizard or template windows, the required balances, formulas, and
formulas result rules are already available for your elements. However you can follow
these steps to review the generated components and ensure that they fully meet your
needs.

Implementation Guide 3-67

Step 31: Dene User Balances Required Step
Important: Oracle Payroll has many predefined balances installed with
the system to support all your legislative requirements for calculation of
gross to net balances. To protect the integrity of the payroll processes
you cannot change any of these balances.

You can define other balances. For example, you might want to define a special balance
to calculate a "Stop Rule" on a recurring deduction. You might also need to define a
special balance for calculating retroactive payments.

When you define a payroll balance you must specify the feeds and the dimensions.

Use the Balance window.

See: Defining User Balances, Oracle HRMS Compensation and Benefits Management Guide

Step 32: Write Payroll Formulas Required Step
You write the formula for every element that you want to process in a payroll run. The
formula type is "Oracle Payroll".

Warning: Remember that formula definitions are datetracked. After you
have used a formula in a payroll calculation you should always update
any changes to the formula.

This will keep the history of formulas for any re-calculation of
retrospective earnings or deductions.

Use the Formula window.

See: Writing Payroll Formulas for Elements, Using Oracle FastFormula

Step 33: Dene Formula Result Rules Required Step
When you process an element in a payroll run the system will calculate the results
using a formula. The results of the formula are the values you include in the Return
statement to end the formula. The result rules define what will happen to each of the
results produced by the formula.

You can calculate any number of different results in a single formula. The different
types of result are:

• Direct

• Indirect

• Message

• Order Indirect

• Stop Recurring

• Update Recurring

There is normally at least one Direct result of a payroll calculation, which provides the
Pay Value of the entry. You can create additional direct results.

Warning: If you allow users to enter the Pay Value of any earnings or
deduction type, this value will override any formula calculation to
provide the direct result for payment.

3-68 Oracle Human Resources Management System Implementation Guide (US)

Use the Formula Result Rules window.

See: Defining Formula Processing and Result Rules, Oracle HRMS Compensation and
Benefits Management Guide

Earnings and Deductions for Payroll Processing
The Earnings and Deductions windows are available on your menus only for
responsibilities that include Oracle Payroll. If you have not installed Oracle Payroll, you
should skip these steps and go to the next section.

Review the template earnings and deductions available in the template library in
Configuration Workbench for your localization. You may be able to use these elements as
supplied or as a starting point for your own definitions. If you need to create additional
earnings and deductions, you can do so by following these steps.

Dene Earnings and Deductions Optional Steps

Step 34: Dene Additional Tax Categories Optional Step
When you install Oracle HRMS you are given a predefined set of classifications and
categories for elements.

You cannot change or add to the list of classifications, but you can add more tax
categories if you need these.

Categories determine the specific processing and tax rules that are applied to each
element. These are essential for accurate payroll processing. You can add tax categories
by entering additional values for the following Lookup Types. For the US:

• US_EARNINGS

• US_IMPUTED_EARNINGS

• US_INVOLUNTARY_DEDUCTIONS

• US_PAYMENT

• US_PRE_TAX_DEDUCTIONS

• US_SUPPLEMENTAL_EARNINGS

• US_VOLUNTARY_DEDUCTIONS

For Canada:

• CA_REGULAR_EARNINGS

• CA_TAXABLE_BENEFITS

• CA_INVOLUNTARY_DEDUCTIONS

• CA_PAYMENT

• CA_PRE_TAX_DEDUCTIONS

• CA_SUPPLEMENTAL_EARNINGS

• CA_VOLUNTARY_DEDUCTIONS

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 3-69

Step 35: Dene or Customize User Tables Required Step
With Oracle HRMS you can set up any number of ’User-Defined Tables’ to hold
additional enterprise-level information in a tabular format. You can access this
information using the GET_TABLE_VALUE function in any formula.

When you install the system you should find the following predefined tables ready to
receive values. For the US:

• Company Work Schedules

• GTL Premiums

• Shift Differentials

• Wage Rates

For Canada:

• Company Work Schedules

• Default Vacation Bank (includes default values)

• Manitoba HAPSET Rate

• Maximum Assessable Earnings

• Newfoundland/Labrador HAPSET Rate

• Ontario EHT Rate

• Quebec Health Services Fund Rate

Additionally, you can set up and use your own table structures, with rows and
columns. For example, you may want to initiate a deduction with an amount rule based
on your own table of values.

A user-defined table is a ’matrix’ of columns that hold different values for the same
row. You can define exact row values or an inclusive range of values.

Use the Table Structure window.

See: Setting Up User Tables, Columns and Rows, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 36: Dene Table Values Required Step
You now need to define the table values.

Use the Table Values window.

See: Entering Table Values,Oracle HRMS Configuring, Reporting, and System Administration
Guide

Step 37: Initiate Earnings Required Step
A number of predefined earnings types are provided when you install Oracle Payroll. To
activate the following predefined earnings you need only define links for them. For
the US:

• Company Car

• GTL Imputed Income

• Overtime

• Regular Salary

3-70 Oracle Human Resources Management System Implementation Guide (US)

• Regular Wages

• Shift Pay

For Canada:

• Regular Salary

• Regular Wages

• Vacation Bank Payout

For any other type of earnings, taxable benefits, or non-payroll payments you can initiate
the types you require.

When you activate a type of earnings, the system generates all the elements, input
values, balance feeds, formulas and result rules you will need to process that type of
earnings. You can customize any of these definitions to allow additional data capture or
to modify the default calculations.

Use the Earnings window.

See: Identifying the Earnings or Payment, Oracle HRMS Compensation and Benefits
Management Guide

Step 38: Initiate Deductions Required Step
All Federal, State and Local Tax Levies (or Federal and Provincial Tax Levies in Canada)
are provided when you install Oracle Payroll. Oracle has an agreement with Vertex
Inc. to provide and maintain this data. To activate these deductions you need only define
links for the following elements. For the US:

• VERTEX

• Workers Compensation

For Canada:

• CANADIAN_TAX

For any other deduction you can initiate the types you require.

Use the Deductions window.

See: Initiating Non-Tax Deductions, Oracle HRMS Compensation and Benefits Management
Guide

Step 39: Dene Element Links Required Step
Before you can enter any of your earnings or deductions for an employee you must
define your element links.

Important: You must remember to define links for the predefined
elements before you can use them with Oracle HRMS.

For Canada the predefined elements are:

• Regular Salary and Regular Salary Special Inputs

• Regular Wages and Regular Wages Special Inputs

• CANADIAN_TAX

• Vacation Bank Payout

Implementation Guide 3-71

• WCB_CONTEXT

• PMED

For the US, link the following predefined earnings types using the criteria you require
for eligibility and costing:

Regular Salary and Regular Salary Special
Inputs

Regular Wages and Regular Wages Special
Inputs

Overtime Shift Pay

GTL Imputed Income Company Car and Company Car Special Inputs

Sick Pay Vacation Pay

Time Entry Wages Labor Recording

US: Link the following elements using an open link (that is, do not select any eligibility
criteria). These links are required for payroll to run and tax correctly:

Workers Compensation Workers Compensation2 ER

Workers Compensation3 ER VERTEX

US: If you need to use the Adjust Tax Balance process, link the following elements using
an open link:

FIT 3rd Party SIT_SUBJECT_WK

City_SUBJECT_WK County_SUBJECT_WK

SUI_SUBJECT_ER SDI_SUBJECT_ER

SUI_SUBJECT_EE SDI_SUBJECT_EE

US: You may also need to link the following elements for costing or adjusting balances:

3-72 Oracle Human Resources Management System Implementation Guide (US)

FUTA CREDIT FUTA

Medicare_ER MISC1_STATE_TAX_ER*

SDI_ER SS_ER

SUI_ER EIC (Earned Income Credit)

City_HT_RS City_HT_WK and City_HT_WK_ARR

City_RS and City_RS_ARR City_SC_RS and City_SC_RS_ARR

City_SC_WK and City_SC_WK_ARR City_WK and City_WK_ARR

County_RS and County_RS_ARR County_SC_RS and County_SC_RS_ARR

County_SC_WK and County_SC_WK_ARR County_WK and County_WK_ARR

FIT and FIT_ARR FIT_GROSSUP_ADJUSTMENT

Medicare_EE and Medicare_EE_ARR SDI_EE and SDI_EE_ARR

MISC1_COUNTY_TAX_WITHHELD_RS* MISC1_COUNTY_TAX_WITHHELD_WK*

SUI_EE and SUI_EE_ARR POST_VERTEX_SDI_PTD_LIMIT

SIT_RS and SIT_RS_ARR SIT_WK and SIT_WK_ARR

SS_EE and SS_EE_ARR Workers Compensation EE

Workers Compensation2 EE

*The MISC1_COUNTY elements are used to calculate Mental Health Tax in Boone
county, Kentucky. Cost MISC1_COUNTY_TAX _WITHHELD_RS like County RS. Cost
MISC1_COUNTY _TAX_WITHHELD_WK like County WK. The MISC1_STATE
elements are used to calculate State Health Insurance tax for Massachusetts. Cost
MISC1_STATE_TAX_ER like SDI_ER.

Use the Element Link window.

See: Defining Element Links, Oracle HRMS Compensation and Benefits Management Guide

Step 40: Set Up Additional Taxability Rules for Tax Categories Required Step
Oracle Payroll comes with the current rules for the federal and state-level (or
provincial-level) taxability already in place for regular earnings and deductions, and
taxable benefits in Canada. You can update these rules as necessary.

Note: US: The system does not come with rules in place regarding the
inclusion of supplemental and imputed earnings categories in states’
payroll exposure.

Use the Taxability Rules window.

See: Changing Taxability Rules for an Earnings Type , Oracle HRMS Payroll Processing
Management Guide

See: Changing Taxability Rules for a Pre-Tax Deduction, Oracle HRMS Payroll Processing
Management Guide

Implementation Guide 3-73

For Canada, also see: Changing Taxability Rules for a Taxable Benefit, Oracle HRMS
Payroll Processing Management Guide

Congure the Generated Denitions Optional Steps
When you initiate a type of earnings or deduction, Oracle Payroll generates all the
elements, input values, balance feeds, formulas and result rules you need to process that
type of earnings or deduction in a payroll run. Additionally, it associates a Skip Rule
(formula) with the elements generated.

You can configure any of these definitions to meet your specific business needs.

Step 41: Write or Congure Payroll Formulas Optional Step
You can edit any of the generated ’Oracle Payroll’ formulas to change the default
calculations. You can also write your own formulas if you have special calculations
that are very different from the defaults.

Canada only: The generated formulas for earnings types include three processing options
for handling negative earnings. If you do not want to use the default option, remove
the comments from the appropriate section of formula code. See: Negative Earnings,
Oracle HRMS Compensation and Benefits Management Guide.

Use the Formula window.

Important: Remember that formula definitions are datetracked. After
you have used a formula in a payroll calculation you should always
’Update’ any changes to the formula.

This will keep the history of formulas for any re-calculation of
retrospective earnings or deductions.

See: Writing Payroll Formulas for Elements, Oracle HRMS FastFormula User Guide

Step 42: Dene User Balances Required Step
Important: Oracle Payroll has many predefined balances installed with
the system. To protect the integrity of the payroll processes you cannot
change any of these balances.

You can configure any generated balance to change the feeds. A payroll balance has
’feeds’ and ’dimensions’. You can modify the feeds and also add your own dimensions.

You can define other balances. For example, you might want to define a special balance
to calculate a ’Stop Rule’ on a recurring deduction. You might also need to define a
special balance for calculating retroactive payments.

When you define a payroll balance you must specify the feeds and the dimensions.

Use the Balance window.

See: Defining User Balances, Oracle HRMS Compensation and Benefits Management Guide

Step 43: Dene Formula Result Rules Required Step
When you process an element in a payroll run the system will calculate the results
using a formula. The results of the formula are the values you include in the Return
statement to end the formula. The result rules define what will happen to each of the
results produced by the formula.

3-74 Oracle Human Resources Management System Implementation Guide (US)

When you activate any earnings or deduction type the system generates the formula
results and the rules for each result. If you customize the formula you may also have
to customize the results.

You can calculate any number of different results in a single formula. The different
types of result are:

• Direct

• Indirect

• Message

• Order Indirect

• Stop Recurring

• Update Recurring

There is normally at least one Direct result of a payroll calculation, which provides the
Pay Value of the entry. You can create additional direct results.

Warning: If you allow users to enter the Pay Value of any earnings or
deduction type, this value will override any formula calculation to
provide the direct result for payment.

Use the Formula Result Rules window.

See: Defining Formula Processing and Result Rules, Oracle HRMS Compensation and
Benefits Management Guide

Salary Administration
Use the Salary Administration function to manage basic remuneration for individual
employees.

Step 44: Create or Decide on Salary Elements Optional Step
You need at least one salary element for each salary basis in your enterprise.

If predefined elements exist in your localization, you might decide to use these. If your
localization does not include predefined elements, or if the predefined elements are
insufficient or inappropriate, you must create these elements to store the salary value.

Note: Consider how many different elements you will need to define
for the different salary bases you want to manage. Remember that you
can administer the salary on an annual basis but store the value as a
monthly value.

Use the Element window.

See: Creating a Salary Element,Oracle HRMS Compensation and Benefits Management Guide

Step 45: Decide How To Validate Salary Entries Optional Step
You can validate salary entries in one of two ways:

• Warn users when they enter a salary proposal that is outside a valid range defined
for an employee’s grade. This approach uses grade rate ranges.

Implementation Guide 3-75

• Prevent users from approving a salary that is outside a valid range, or that fails
validation performed by a formula. Notice that this validation is not performed
until you try to approve a salary proposal. This approach uses element input value
validation.

See: Validating Salary Entries, Oracle HRMS Compensation and Benefits Management Guide

Step 46: Link the Salary Element Optional Step
Link the salary elements to components of employee assignments to establishes
employee eligibility for the elements.

Use the Element Link window.

See: Linking the Salary Element, Oracle HRMS Compensation and Benefits Management
Guide

Step 47: Dene a Salary Basis Optional Step
Define a salary basis for each salary element to be used for salary administration. This
establishes the duration for which a salary is quoted, for example, hourly, monthly or
annually.

Use the Salary Basis window.

See: Defining a Salary Basis, Oracle HRMS Compensation and Benefits Management Guide

Step 48: Review or Create Salary Components Optional Step
Review the salary components predefined as values for the Lookup Type
PROPOSAL_REASON. If necessary, create your own salary components.

If you want your new components to be displayed in the Salary Management folder, you
must also change a view.

See: Creating Salary Components, Oracle HRMS Compensation and Benefits Management
Guide

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 49: Dene Performance Rating Types Optional Step
If you want to record performance ratings such as Outstanding, Superior and
Average, enter them in the Application Utilities Lookups window for the Lookup Type
PERFORMANCE_RATING.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 50: Add the Salary Administration Approve Function Optional Step
Add the function "Salary Administration Approve" to the menu of responsibilities that
should be able to approve salary proposals. Without this function, users can enter salary
proposals but they cannot approve them.

Note: If this function does not exist for a Responsibility then a user can
enter but not approve salary proposals.

3-76 Oracle Human Resources Management System Implementation Guide (US)

Use the Menus window.

See: Defining Menus, Oracle HRMS Configuring, Reporting, and System Administration
Guide

Step 51: Set Up Rate By Criteria Optional Step
To pay employees at varying rates according to a range of eligibility criteria, you must
set up Rate By Criteria (RBC), including these three areas:

• Create your own eligibility criteria (optional for RBC)

• Define criteria rates

• Create a rate matrix

See: Setting Up a Rate Matrix, Oracle HRMS Compensation and Benefits Management Guide

Compensation Awards
If you use SSHR, you can set up compensation plans to enable line managers to allocate
compensation awards to the individuals who report to them. You can also set up plans
to enable employees to enter voluntary contributions, such as savings plans, charitable
organizations, and company perquisites.

Step 52: Set Up Compensation Workbench Plans Optional Step
You can create multiple compensation plans to handle different compensation
types--such as salary, stock, and bonuses--separately, or you can create a single plan and
define each compensation type as an option so that managers allocate all the awards
from the same worksheet. Alternatively, you can use options to identify different
components of awards (such as merit or cost of living). If you operate across multiple
business groups, you can link local plans to a global plan so that you can make a
single budget allocation for a compensation type across your enterprise. To review
the plan design options, see: Compensation Workbench Plan Structure, Oracle HRMS
Compensation and Benefits Management Guide.

For the Compensation Workbench setup steps, see: Setting Up Compensation
Workbench Plans, Oracle HRMS Compensation and Benefits Management Guide.

Step 53: Set Up Individual Compensation Distribution Plans Optional Step
Define Individual Compensation Distribution plans for any one-time or recurring
awards, bonuses, and allowances that you want managers to allocate to employees
through SSHR. If your enterprise offers a charitable contribution plan or a savings bond
plan to which employees contribute at their own discretion, set up an ICD plan so that
employees can enter their voluntary contributions through SSHR.

See: Setting Up Individual Compensation Distributions (ICD), Oracle HRMS
Compensation and Benefits Management Guide.

Leave and Absence Management
You can set up as many plans as you need to permit employees to accrue PTO to use
for vacation or sick leave. Each plan has the units of Hours or Days, and can have
its own rules regarding accrual frequency, accrual bands, ceilings, carryover, start
dates, entitlement of employees with different assignment statuses, and so on.

Implementation Guide 3-77

Set Up Absence Management

Step 54: Set Up Proration and Notications (US Only) Optional Step
If you want to associate recurring elements with absence types, you must set up
proration and retro notifications. This ensures that absences that end in the middle of
a payroll period are detected and processed by the payroll run, and that retrospective
changes to absences are recorded in the Retro Notifications report.

See: Setting Up Absence Management, Oracle HRMS Compensation and Benefits
Management Guide

Step 55: Dene an Absence Element Optional Step
For each of your accrual plans, or each type of absence you are tracking, you define a
nonrecurring element and input value to hold the actual time taken for vacation or
sick leave.

If you use Oracle Payroll, you can use a recurring element instead. This enables you to
begin processing a long term absence before you enter an end date, and to apportion
time correctly over payroll periods.

Use the Element window.

See: Defining and Linking an Absence Element, Oracle HRMS Compensation and Benefits
Management Guide

Step 56: Link the Absence Element Optional Step
Link each absence element to define who is eligible to take this kind of absence.

Use the Element Link window.

See: Defining Element Links, Oracle HRMS Compensation and Benefits Management
Guide

Step 57: Dene Categories of Absence Types Optional Step
Define categories of absence types as values for the Lookup Type ABSENCE_CATEGORY,
and your absence reasons as values for the Lookup Type ABSENCE_REASON.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 58: Dene Absence Types and Associate with Absence Elements Optional Step
If you expect to record absent time using the Absence Detail window, define each
absence type, and associate it with an absence element

Use the Absence Attendance Type window.

See: Defining an Absence Type,Oracle HRMS Compensation and Benefits Management Guide

Step 59: Make Initial Element Entries Optional Step
For an absence type with a decreasing balance, use the Element Entries window or
the Element Entry API to make initial element entries for employees eligible for the
type. You can also initialize a decreasing balance by entering a negative value using
BEE. For example, if you enter -16 hours using BEE, a decreasing balance starts at 16
hours. However, be aware that using BEE creates an absence record that will show
on employees’ absence history.

3-78 Oracle Human Resources Management System Implementation Guide (US)

If you want to make batch entries, see Making Batch Element Entries Using BEE, Oracle
HRMS Configuring, Reporting, and System Administration Guide.

Step 60: Create Payroll Formula to Calculate Absence Duration (US Only) Optional Step
If you defined a recurring element, create a payroll formula that handles proration
to process the element and calculate the appropriate absence duration in each pay
period (taking into account the number of days or hours in a month, working and shift
patterns, public holidays, and so on).

See: Sample Payroll Formulas Enabled for Proration, Oracle HRMS FastFormula User
Guide

Set Up Accrual Plans

Step 61: Dene New Accrual Start Rules Optional Step
There are three seeded start rules: Hire Date, Beginning of Calendar Year, and Six
Months After Hire Date. If you need other rules, define them as values for the Lookup
Type US_ACCRUAL_START_TYPE.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 62: Decide on Accrual and Carry Over Formulas Optional Step
Decide which Accrual and Carry Over formulas to use. You can use the seeded
formulas, customize them, or write your own.

Use the Formula window.

See: Writing Formulas for Accrual Plans, Oracle HRMS FastFormula User Guide

Step 63: Write Ineligibility Formula Optional Step
If your Accrual formula defines a period of ineligibility and you want to use Batch
Element Entry (BEE) to enter absences against the accrual plan, define an Ineligibility
formula. BEE calls this formula to check whether an employee is eligible to use accrued
PTO.

Note: If you use the seeded Accrual formulas, you do not need to define
an Ineligibility formula. They use a period of ineligibility entered on the
Accrual Plan form, and BEE validation can use the same value.

Use the Formula window.

See: Writing Formulas for Accrual Plans, Oracle HRMS FastFormula User Guide

Step 64: Dene New Accrual Categories Optional Step
There are several seeded accrual categories. If you need additional categories, define
them as values for the Lookup Type US_PTO_ACCRUAL.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 3-79

Step 65: Select PTO Balance Type Optional Step
Oracle Payroll users: If you want to use a payroll balance to store gross accruals, decide
whether the payroll run should update accruals as of the run’s date earned (the date the
payroll run uses to determine which element entries to process) or date paid (the date that
appears on pay advices). Select your choice for the business group.

See: Business Groups: Selecting a PTO Balance Type, Oracle HRMS Enterprise and
Workforce Management Guide

Step 66: Create Balance Dimensions Optional Step
Oracle Payroll users: If you want to use a payroll balance to store gross accruals, consider
whether you need to define a new balance dimension. Dimensions are predefined
that reset the balance each year on 1 January, 1 June, or hire date anniversary. If you
require your balance to accumulate over a different period of time, or reset at a different
date, you must create your own balance dimension.

See: Balances in Oracle Payroll, page 4-73

Step 67: Dene a PTO Accrual Plan Optional Step
Define the accrual plan, selecting the formulas and absence element it is to use.

Use the Accrual Plan window.

See: Defining a PTO Accrual Plan, Oracle HRMS Compensation and Benefits Management
Guide

Step 68: Set Up Length of Service Bands Optional Step
Optionally, set up length of service bands for the plan.

Use the Accrual Bands window.

See: Setting Up Length of Service Bands, Oracle HRMS Compensation and Benefits
Management Guide

Step 69: Review the Net Calculation Rules Optional Step
Review the net calculation rules for the plan. If necessary, create additional elements and
associate them with the plan by selecting them in the Net Calculation Rules window.

See: Changing Net Accrual Calculations, Oracle HRMS Compensation and Benefits
Management Guide

Element Sets and Batch Control Totals

Step 70: Dene Element Sets Optional Step
In Oracle HRMS you can define a set of elements to:

• Restrict access to elements using Form Customization

• Distribute costs across a Distribution Set of elements

• Process a restricted set in a Payroll Run

• Enter values for a restricted set using BEE (Batch Element Entry)

You define an element set as a named list of elements such as Salary, or Salary and
Bonus. You can also define an element set using the classification. For example, you can
restrict access to all elements in the classification Earnings.

3-80 Oracle Human Resources Management System Implementation Guide (US)

Use the Element and Distribution Set window.

See: Defining an Element or Distribution Set , Oracle HRMS Compensation and Benefits
Management Guide

Step 71: Dene Batch Control Types Optional Step
If you use Batch Element Entry, you can set up batch control types to sum the entries in
any numerical input value. This enables users to validate a BEE batch against control
totals to check for missing lines or miskeying of amounts.

Use the Application Utilities Lookups window.

See: Setting Up BEE Validation Using Control Totals, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Vacation Banking (Canada Only)

Step 72: Create Vacation Bank Accumulator Table Optional Step
Define the length of service bands and the associated percentage with which to calculate
the vacation liability. The accumulation is paid out through the predefined Vacation
Bank Payout element. You can use the sample user table called Default Vacation Bank.

Use the Table Values window.

See: Entering Table Values,Oracle HRMS Configuring, Reporting, and System Administration
Guide

Basic Benets (US Only)
If you are beginning a new setup for benefits administration, we recommend that you
implement the Standard Benefits feature set and skip this step. Basic Benefits provides a
limited set of features and is provided mainly for compatibility with earlier releases.

Step 73: Set Up Basic Benets Optional Step
To set up basic benefits, you define elements for the benefits plans, use element links
to establish eligibility, and create benefit carriers as organizations. You can modify the
standard COBRA letters and provide new COBRA termination reasons.

See: Setting Up Basic Benefits, Oracle HRMS Compensation and Benefits Management Guide

Benets Implementation Without Plan Design Wizard
The following implementation steps provide the full sequence of steps you follow to set
up benefit plans manually. If you are using the Plan Design Wizard, note that the Wizard
handles most of the steps in the following sections:

• Benefits Eligibility

• Life Events

• Compensation Objects

• Enrollment Requirements

• Activity Rates and Coverage Calculations

Implementation Guide 3-81

See: Compensation, Benefits, and Payroll, page 3-63 if you implement your benefit plans
using the Plan Design Wizard, which is the recommended approach.

If you plan to load details of employee entry history you should consider using a fixed
date, such as 01-JAN-1951, as a default for your initial setup definitions. This will
simplify your data-entry.

Benets Eligibility
You define participation eligibility profiles to determine eligibility for compensation and
benefits. You can also use eligibility factors to determine variable contribution and
distribution rates for a benefit.

Step 1: Dene Benets Groups Optional Step
You define a benefits group as a category of people who can be either included or
excluded from receiving a benefit or a standard activity rate. A benefit group is one
optional component of an eligibility profile or a variable rate profile.

Use the Benefits Groups window.

See: Defining Benefits Groups, Oracle HRMS Compensation and Benefits Management Guide

Step 2: Dene Postal Code (ZIP) Ranges Optional Step
You define postal code (zip) ranges if you limit benefits eligibility based on a person’s
home address or if an activity rate varies based on a person’s address.

Postal code ranges are also a component of service areas.

Use the Postal Zip Ranges window.

See: Defining Postal Zip Ranges, Oracle HRMS Compensation and Benefits Management
Guide

Step 3: Dene Service Areas Optional Step
You can define a service area to group people who live in a region by their postal codes. A
service area is one optional component of an eligibility profile or a variable rate profile.

Use the Service Areas window.

See: Defining Service Areas, Oracle HRMS Compensation and Benefits Management Guide

Step 4: Dene Regulations Optional Step
You define regulations as discrete rules, policies, or requirements that a governmental or
policy making body defines regarding the administration of one or more benefits.

Use the Regulations window.

See: Defining Regulations, Oracle HRMS Compensation and Benefits Management Guide

Step 5: Create Your Own Eligibility Criteria Optional Step
You can create as many eligibility profile criteria as you need, in addition to the existing
standard eligibility and derived factor criteria, to meet the particular requirements of
your organization. You can use these criteria to determine employee eligibility for
compensation, benefits, entitlements in collective agreements, personal actions, and
so on.

Use the User Defined Eligibility Criteria window, which you can access from the
Participation Eligibility Profiles window, or the Create Eligibility Criteria page.

3-82 Oracle Human Resources Management System Implementation Guide (US)

See: Creating your own Eligibility Criteria., Oracle HRMS Compensation and Benefits
Management Guide

Dene Derived Eligibility Factors
A derived factor is a system calculated value that you can use to determine eligibility for
a benefit or to determine an activity rate.

Step 6: Dene Derived Compensation Level Factors Optional Step
Define compensation level factors to determine how the system derives a person’s
compensation level based on a person’s stated salary or a balance type that you specify.

Use the Derived Factors window.

See: Defining Derived Factors: Compensation Level, Oracle HRMS Compensation and
Benefits Management Guide

Step 7: Dene Derived Percent of Full Time Employment Factors Optional Step
Define percent of full time factors to determine how the system derives a person’s
percent of full time employment.

Use the Derived Factors window.

See: Defining Derived Factors: Percent of Full Time Employment, Oracle HRMS
Compensation and Benefits Management Guide

Step 8: Dene Derived Hours Worked in Period Factors Optional Step
Define hours worked in period factors to determine how the system derives the number
of hours a person worked in a given period.

Use the Derived Factors window.

See: Defining Derived Factors: Hours Worked in Period, Oracle HRMS Compensation and
Benefits Management Guide

Step 9: Dene Age Factors Optional Step
Define age factors to determine how the system derives a person’s age.

Use the Derived Factors window.

See: Defining Derived Factors: Age, Oracle HRMS Compensation and Benefits Management
Guide

Step 10: Dene Length of Service Factors Optional Step
Define length of service factors to determine how the system calculates a person’s length
of service.

Use the Derived Factors window.

See: Defining Derived Factors: Length of Service, Oracle HRMS Compensation and Benefits
Management Guide

Step 11: Dene Combination Age and Length of Service Factors Optional Step
Define combination age and length of service factors to combine an age factor and a
length of service factor.

Use the Derived Factors window.

Implementation Guide 3-83

See: Defining Derived Factors: Combination Age and Length of Service, Oracle HRMS
Compensation and Benefits Management Guide

Dene Eligibility Proles Optional Steps

Step 12: Dene an Eligibility Prole Optional Step
Defining an eligibility profile is the primary way in which you implement eligibility
requirements for a benefit. You link an eligibility profile with a compensation object (a
benefit that you define) so that when eligibility processes run, only the persons meeting
the eligibility profile requirements are eligible to receive the benefit.

Use the Participation Eligibility Profiles window.

See: Defining an Eligibility Profile, Oracle HRMS Compensation and Benefits Management
Guide

Step 13: Dene Dependent Coverage Eligibility Proles Optional Step
You define dependent coverage eligibility profiles to enforce eligibility requirements
for dependents.

Use the Dependent Coverage Eligibility Profiles window.

See: Defining a Dependent Coverage Eligibility Profile, Oracle HRMS Compensation and
Benefits Management Guide

Life EventsLife Events (Advanced Benets)
You define a life event as a change in a person’s record that can potentially trigger an
enrollment action. Life events can be external to work, such as a marriage or the birth of
a dependent, or they can be internal, such as a job change. The application also handles
scheduled enrollments as life events.

Step 14: Dene Life Event Processing Optional Step
Define the life events that you use to control electability, activity rates and coverage
levels, coverage dates, communications, and automatic and default enrollment
processing.

Use the Life Event Reasons window.

See: Defining General Characteristics of Life Event Reasons, Oracle HRMS Compensation
and Benefits Management Guide

Step 15: Dene Person Changes Optional Step
You define the changes to a person’s record that trigger a life event by specifying the
value of the database field that indicates this person change has occurred.

Use the Person Changes window.

See: Defining Person Changes, Oracle HRMS Compensation and Benefits Management Guide

Step 16: Associate Person Changes with Life Events Optional Step
You associate the person change that triggers the life event for each life event that you
define.

Use the Person Change Causes Life Event window.

3-84 Oracle Human Resources Management System Implementation Guide (US)

See: Associating a Person Change with a Life Event, Oracle HRMS Compensation and
Benefits Management Guide

Step 17: Dene Related Person Changes Optional Step
You define the changes to a person’s record that trigger a life event for a related person
by specifying the value of the database field that indicates this related person change
has occurred.

For example, you could define a termination life event to end benefits coverage for
terminated employees. You would define a corresponding related person life event
that ends coverage for the dependents of the primary participant when the primary
participant is terminated.

Use the Related Person Changes window.

See: Defining Person Changes, Oracle HRMS Compensation and Benefits Management Guide

Step 18: Associate Related Person Changes with Life Events Optional Step
You associate a related person changewith each related person life event that you define. A
related person change is a change to the primary participant’s HR record that may
generate a life event for a person related to the primary participant.

Use the Related Person Change Causes Life Event window.

See: Associating a Person Change with a Life Event, Oracle HRMS Compensation and
Benefits Management Guide

Compensation Objects
You define compensation objects as the benefits that you offer to your employees and
other eligible participants.

Compensation objects are arranged according to the compensation object hierarchy:

• Program

• Plan Type

• Plan

• Option

Definitions that you set at the program level cascade to the plan types, plans, and options
in that program unless you override the definition at a lower point in the hierarchy.

Step 19: Dene Reimbursable Goods and Service Types Optional Step
Define goods and services that you approve for reimbursement. You then associate one
or more goods and services types with a reimbursement plan.

Use the Goods and Services window.

See: Defining Reimbursable Goods and Service Types, Oracle HRMS Compensation and
Benefits Management Guide

Step 20: Dene a Program or Plan Year Period Optional Step
You define a program or plan year period to set the coverage boundaries for the duration
of a benefit program or plan.

Use the Program/Plan Year window.

Implementation Guide 3-85

See: Defining a Program or Plan Year Period, Oracle HRMS Compensation and Benefits
Management Guide

Step 21: Dene Plan Types Optional Step
You define plan types to categorize common types of benefits, such as medical plans or
savings plans.

Use the Plan Types window.

See: Defining Plan Types, Oracle HRMS Compensation and Benefits Management Guide

Step 22: Dene Options Optional Step
You define options to indicate the coverage levels available under a plan or to define
investment options for a savings plan.

Use the Options window.

See: Defining Options, Oracle HRMS Compensation and Benefits Management Guide

Step 23: Dene Plans Optional Step
A plan is a benefit in which an eligible participant can enroll. Common plans include
medical, group term life insurance, and stock purchase plans.

Use the Plans window.

See: Defining a Benefits Plan, Oracle HRMS Compensation and Benefits Management Guide

Step 24: Dene Reimbursement Plans Optional Step
Use reimbursement plans to define goods and services that eligible participants may
purchase. The participant can submit a reimbursement claim for the cost of the good or
service that was purchased out-of-pocket.

Use the Plan Reimbursement window.

See: Defining a Reimbursement Plan,Oracle HRMS Compensation and Benefits Management
Guide

Step 25: Dene Programs Optional Step
You define a program to group together the benefits that you offer as a package. A
program typically is comprised of plan types, plans, and options.

Use the Programs window.

See: Defining a Benefits Program, Oracle HRMS Compensation and Benefits Management
Guide

Enrollment Requirements
You define enrollment requirements to control when an eligible person can enroll in
a benefit.

Step 26: Dene Program Enrollment Requirements Optional Step
Enrollment requirements determine how an eligible participant enrolls in a program.

In standard benefits, you define enrollment requirements based on the unrestricted
enrollment type. Advanced Benefits customers can specify whether default or automatic
enrollment rules apply for a program.

3-86 Oracle Human Resources Management System Implementation Guide (US)

Use the Program Enrollment Requirements window.

See: Defining Enrollment Methods for a Program, Oracle HRMS Compensation and
Benefits Management Guide

Step 27: Dene Enrollment Requirements for a Plan Optional Step
You use the Plan Enrollment Requirements window to define enrollment requirements
for a not in program plan or an option in plan. You also use this window to set up
requirements for beneficiary designations.

Use the Plan Enrollment Requirements window.

See: Defining an Enrollment Method for a Plan, Oracle HRMS Compensation and Benefits
Management Guide

Activity Rates and Coverage Calculations
Activity rate calculations determine the contribution rate necessary to purchase a benefit
and the distribution rate for benefits that provide distributions.

Step 28: Calculate Variable Activity Rates Optional Step
You define variable activity rate calculations if an activity rate for a compensation object
can vary by participant.

Use the Variable Rate Profiles window.

See: Defining General Information for a Variable Rate Profile, Oracle HRMS Compensation
and Benefits Management Guide

Step 29: Calculate Coverages Optional Step
You define the amount of coverage available under a benefit plan for those plans that
offer a range of coverage options. Your coverage calculation can include the minimum
andmaximum coverage level available regardless of the calculation result. For Advanced
Benefits customers, coverage levels can vary based on life events.

Use the Coverages window.

See: Defining a Coverage Calculation, Oracle HRMS Compensation and Benefits
Management Guide

Step 30: Dene Across Plan Type Coverage Limits Optional Step
You can define the minimum and maximum coverage amount that a participant can elect
across plan types in a program.

Use the Coverage Across Plan Types window.

See: Defining a Coverage Limit Across Plan Types, Oracle HRMS Compensation and
Benefits Management Guide

Step 31: Calculate Imputed Income (US Only) Optional Step
You can define activity rates that calculate the amount of plan income that is considered
a "fringe benefit" and subject to Section 79 of the US Internal Revenue Service code.

Note: You must have already created the corresponding elements.

Use the Imputed Income window.

Implementation Guide 3-87

See: Defining an Imputed Income Calculation, Oracle HRMS Compensation and Benefits
Management Guide

Step 32: Calculate Actual Premium Costs Optional Step
You need to maintain the criteria used to calculate the actual premium cost that a plan
sponsor owes to a benefits supplier.

Use the Actual Premiums window.

See: Defining an Actual Premium, Oracle HRMS Compensation and Benefits Management
Guide

Step 33: Dene Period-to-Date Limits Optional Step
You define period-to-date contribution limits for those plans or options in plan that
restrict participant contribution levels in a year period. When you define a standard
contribution, you can associate a period-to-date limit for those plans or options in plan
that require contribution restrictions.

Use the Period-to-Date Limits window.

See: Defining Period-to-Date Limits, Oracle HRMS Compensation and Benefits Management
Guide

Step 34: Dene Activity Rates for Standard Contribution/Distribution Optional Step
You define a standard activity rate calculation to calculate a benefit’s contribution or a
distribution amount.

Note: You must have already created the corresponding elements.

Use the Standard Contributions/Distributions window.

See: Defining Activity Rates for a Standard Contribution/Distribution, Oracle HRMS
Compensation and Benefits Management Guide

Flex Credit Calculations (Advanced Benets) Optional Steps

Step 35: Dene Characteristics of Benet Pools Optional Step
You define benefit pools to limit how a participant can spend flex credits and how excess
flex credits can be rolled over, distributed as cash, or forfeited.

Use the Benefit Pools window.

See: Defining the General Characteristics of a Benefits Pool, Oracle HRMS Compensation
and Benefits Management Guide

Step 36: Dene Flex Credits Optional Step
You define a flex credit calculation and link the calculation with a compensation
object. The compensation object to which you link a flex credit calculation must be part
of a program regardless of the level at which you define flex credits.

Use the Flex Credit Definitions window.

See: Defining Flex Credits, Oracle HRMS Compensation and Benefits Management Guide

3-88 Oracle Human Resources Management System Implementation Guide (US)

Additional Setup for Health and Welfare

Step 37: Add the Benets Tabbed Region to the People Window (US Only) Optional Step
A person with a responsibility of system administrator or application developer can use
the Menus window to add the benefits alternate region to the People window.

1. Query the BEN_MANAGER menu in the Menu field.

2. Add a new line and select HR View Benefits in the Function field.

3. Save your work

Use the Menus window.

See: Menus Window, Oracle Applications System Admministrator's Guide

Step 38: Dene a Monthly Payroll (US Only) Optional Step
You must define a monthly payroll for each business group you maintain. When you
process employee terminations, a copy of the person’s assignment record is created as a
benefits assignment. Benefits assignments are used to maintain eligibility for continuing
benefits, and always have a payroll with a monthly period.

Note: If you have already defined payroll information, including
monthly payrolls for each Business Group, you can skip this step.

Use the Payroll window.

See: Defining a Default Monthly Payroll for a Business Group, Oracle HRMS Enterprise
and Workforce Management Guide

Step 39: Dene Reporting Groups Optional Step
You can define a reporting group that you link to one or more programs and plans. When
you run a report for a reporting group, the report results are based on the programs and
plans that you include in the reporting group.

You can also define the regulatory bodies and regulations govern a reporting group.

Use the Reporting Groups window.

See: Defining a Reporting Group, Oracle HRMS Compensation and Benefits Management
Guide

Step 40: Dene Communications Optional Step
You define the communications you send to employees and other potential
participants. You specify the conditions that trigger a communication and the delivery
method and medium.

Use the Communication Types window.

See: Defining Communication Types,Oracle HRMS Compensation and Benefits Management
Guide

Step 41: Dene Benet Balances Optional Step
Benefit balances are useful for transitioning legacy system data to Oracle HRMS. You
define a benefit balance type and then assign a value to that type for a given person
using the Person Benefit Balances window.

Use the Benefit Balances window.

Implementation Guide 3-89

See: Defining a Benefit Balance,Oracle HRMS Compensation and Benefits Management Guide

Dene Online Benets Services Optional Steps
You use the Online Benefit Services window to access a variety of benefits windows
from a central location. You can configure the windows that are accessible from this
window and you can define the pop up messages that display based on user events
that you define.

Step 42: Maintain Desktop Activities List Optional Step
The Maintain Online Activities window lets you define the functions and windows that
are available from the Desktop Activities list of the Online Benefits Services windows.

Use the Maintain Online Activities window.

See: Maintaining Online Activities, Oracle HRMS Compensation and Benefits Management
Guide

Step 43: Maintain Pop Up Messages Optional Step
You can configure messages to display in the Online Benefit Services window based on
user events that you define. You create the message text in the Messages window

Use the Maintain Pop Up Messages window.

See: Maintaining Pop Up Messages, Oracle HRMS Compensation and Benefits Management
Guide

For the next step in the implementation sequence, see: Additional Setup for Payroll
Processing, page 3-67.

Workforce Sourcing and Deployment
Oracle HRMS enables you to define your own names to identify the "types" of people
in your system, and to identify the status of employees and contingent workers in each
assignment using your own names.

Recruitment

Step 1: Dene Assignment Statuses for Applicants Required Step
Assignment Statuses for applicants enable you to define the distinct stages of your own
recruitment processes.

With Oracle HRMS you can use your own names to identify these stages. For
example, you might want to define a special status to identify applicants who have been
invited to a First Interview and applicants who have been Rejected on Application.

These user statuses enable you to track the recruitment circumstances of all your
applicants.

Use the Assignment Statuses window.

See: Defining Assignment Statuses, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

3-90 Oracle Human Resources Management System Implementation Guide (US)

Setup for Employees and Contingent Workers

Step 2: Dene Assignment Statuses for Employees and Contingent Workers Required Step
With Oracle HRMS you can identify the status of employees and contingent workers in
each assignment using your own names. For example, you might want to define special
statuses to identify assignments which have been Suspended while the employee or
contingent worker is temporarily assigned to another role.

Use the Assignment Statuses window.

See: Defining Assignment Statuses, Oracle HRMS Enterprise and Workforce Management
Guide

Step 3: Create Contract Statuses Optional Step
Oracle HRMS enables you to create up to 250 different contract statuses to help track
and identify employees.

See: Creating Contract Statuses, Oracle HRMS Enterprise and Workforce Management Guide

Step 4: Create Contract Types and Values (UK Only) Optional Step
To enable Oracle Payroll to calculate Full Time Equivalent information correctly, you set
up contract types and enter hours and periods information for each contract type.

Use the Table Structure and Table Values windows.

See: Setting Up Full Time Equivalent, Oracle HRMS Workforce Sourcing, Deployment,
and Talent Management Guide (UK)

Step 5: Set Up Shift Patterns (UK Only) Optional Step
You can define any number of shift patterns. Oracle Payroll uses this information to
calculate hours worked and payments such as overtime.

Use the Table Values window.

See: Setting Up Shifts and Shift Patterns, Oracle HRMS Workforce Sourcing, Deployment,
and Talent Management Guide (UK)

Step 6: Select Assignment Rate Types for Contingent Workers Optional Step
This step applies only if you are not using Oracle Services Procurement to provide
purchase order information for contingent workers.

Oracle HRMS enables you to record payment rate information for contingent
workers. You select an assignment rate type (such as Standard Rate or Weekend Rate)
and associate it with a rate basis (such as Hourly Rate or Weekly Rate). You can then
associate this combination of rate type and basis with an assignment rate (a monetary
value) for specific contingent worker assignments.

See: Defining a Combination of Assignment Rate Type and Basis, Oracle HRMS Enterprise
and Workforce Management Guide

You can define additional rate basis values for your assignment rate types by adding
to the existing lookup type RATE_BASIS.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 3-91

Step 7: Set Up Availability Information Optional Step
Use the integrated features from Oracle HRMS and Common Application Components
(CAC) to set up information such as shifts, schedules, and calendar events to help you
determine a worker’s availability.

See: Setting Up Availability, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Special Personal Information (Personal Analysis Key Flexeld Structures)
Use the Personal Analysis Key Flexfield to record special personal information that is
not included as standard information. You define each type of information as a separate
Structure of the flexfield. For example, you might set up a structure to hold medical
information.

This flexfield is used in the following areas:

• Special Information details for People

• Matching requirements for Jobs and Positions

You need to design a Personal Analysis Flexfield Structure for each Special Information
Type you want to hold in Oracle HRMS. For each structure you must include the
following:

• The Structure Name and the number of Segments.

• The Flexfield Segment Names, Order and Validation Options.

• The Flexfield Value Sets to be used and any lists of values.

Defining the Flexfield Structure is a task for your System Administrator.

Note: You cannot use the Create Key Flexfield Database Items process
to create database items for the segments of your Personal Analysis
Flexfield structures.

Step 8: Dene Personal Analysis Flexeld Value Sets Optional Step
If you want to validate the values which a user can enter for any segment you must
define a specific Value Set.

The attributes of the Value Set will control the type of values that can be entered, and
how many characters each segment can hold. The attributes of the Value Set will also
control how the values are to be validated.

Value Sets can be shared by different segments of the same flexfield, or by segments of
any other flexfield.

Use the Value Set window.

See: Defining Value Sets, Oracle Applications Flexfields Guide

Step 9: Dene Personal Analysis Flexeld Segments Optional Step
Define a structure for your Personal Analysis Flexfield which contains the segments
you want to use. You will use this structure to enter details in the Special Information
Types window.

You must enter Yes in the Allow Dynamic Inserts field. If you enter No, you will not be
able to enter new details in the Special Information Types window.

3-92 Oracle Human Resources Management System Implementation Guide (US)

Note: You do not need to use a Value Set to validate a segment. If you
do not specify a Value Set then a user can enter any alphanumeric value
up to a limit of 150 characters.

Use the Key Flexfield Segments window.

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 10: Dene Personal Analysis Flexeld Segment Values Optional Step
If you have chosen Independent or Dependent validation for a Value Set used by a
Personal Analysis Flexfield Segment, you must define your list of valid values for the
Value Set.

Use the Segment Values window.

See: Defining Segment Values, Oracle Applications Flexfields Guide

Step 11: Dene Personal Analysis Flexeld Cross Validation Rules Optional Step
Define any Cross Validation Rules you want to use to control the combinations of
segment values which a user can enter.

You define Rules to Include or Exclude combinations of segment values. For each
segment, you can define a Low to High range of values.

Use the Cross-Validation Rule window

See: Defining Cross-Validation Rules, Oracle Applications Flexfields Guide

Step 12: Dene Personal Analysis Flexeld Aliases Optional Step
Define Aliases for common combinations of segment values if you want to provide
these as default options.

Use the Shorthand Aliases window

See: Defining Shorthand Aliases, Oracle Applications Flexfields Guide

Step 13: Freeze and Compile Your Personal Analysis Flexeld Structure Optional Step
You are now ready to freeze your flexfield definition. Navigate to the Define Flexfield
Segments window. Enter Yes in the Freeze Flexfield Definition field and save your
changes. Oracle Human Resource Management Systems now freezes and compiles your
Personal Analysis Flexfield definition. Compiling the flexfield definition enables the
flexfield window with the defaults, values and rules that you have defined.

Use the Key Flexfield Segments window

See: Defining Key Flexfield Structures, Oracle Applications Flexfields Guide

Step 14: Register Special Information Types for the Business Group Optional Step
After you have defined your Personal Analysis Flexfield Structures you must link them
to your business group.

You do this using your view-all responsibility.

• Select each Information Type you want to use in this business group.

• Select the categories for each type.

• Job for Job Requirements

Implementation Guide 3-93

• Position for Position Requirements

• Skills for use with Oracle Training Administration

• Other for use with Person Special Information

• ADA for use only in the US, for special information types set up to record
information about employees with disabilities.

• OSHA for use only in the US, for a special information type set up to record
information about employees’ work-related injuries or illness.

Tip: If you do not check the Other category, you cannot use the type
to hold information for a person. This means that you could also use
the Special Information Types to hold any type of information for
a Job or a Position only.

Use the Special Information Types window.

See: Enabling Special Information Types, Oracle HRMS Workforce Sourcing, Deployment,
and Talent Management Guide

Requirements Matching
If you have decided to set up competencies, you can enter these as requirements for jobs
and positions and match them against people’s competence profiles.

If you have other job and position requirements that you want to record, but not define
as competencies, you can set them up using the Personal Analysis key flexfield. You can
set up each type of requirement as a Special Information Type, which is one instance
of the flexfield.

For each Special Information Type, you can also choose whether to enable entry
of information for people so that you can match people against the job or position
requirements. A standard report (Skills Matching) has been provided to match the
requirements of a job and the Special Information details of people in the system.

Important: US users: If you want to include essential job or position
requirements in your ADA reporting, make sure you have entered these
requirements for your jobs or positions.

Step 15: Dene Requirements for Jobs Optional Step
You can define the attributes required by any employee who is assigned to a job. These
attributes may be Essential or Desirable.

Definitions of requirements can use the same personal analysis flexfield structures and
segments you have defined for special personal information.

Use the Job window.

See: Entering Job and Position Requirements, Oracle HRMS Enterprise and Workforce
Management Guide

Step 16: Dene Requirements for Positions Optional Step
After you define positions in your enterprise, you can define the attributes required
by any employee assigned to that position. These attributes may be Essential or
Desirable. The requirements are based on the same personal analysis flexfield structures
you have defined for special personal information.

3-94 Oracle Human Resources Management System Implementation Guide (US)

Use the Position window.

See: Entering Job and Position Requirements, Oracle HRMS Enterprise and Workforce
Management Guide

Talent Management
Talent Management is the management of worker competencies and objectives to meet
enterprise goals. Oracle HRMS, Oracle SSHR, and Oracle Learning Management (OLM)
each supply key components of the TalentManagement functionality. This topic describes
the implementation process for the Oracle HRMS competencies, qualifications, objectives
(Workforce Performance Management), appraisals, and career path functions.

Competencies
Competencies are measurable skills a workforce must acquire or possess to enable the
enterprise to achieve its goals.

Step 1: Set HR:Global Competence Flex Structure Prole Option Optional Step
Each business group has a competence key flexfield structure. For global
competencies, you can define an additional competence key flexfield or use an
existing, business-group-specific structure. In either case, you identify the structure
for creating global competencies on the HR:Global Competence Flex Structure Profile
Option. Otherwise, you cannot create global competencies.

Use the System Profile Values window.

See: User Profiles, Oracle HRMS Configuring, Reporting, and System Administration Guide

Step 2: Create Prociency Rating Scales Optional Step
You can use generic proficiency rating scales to assess competencies during an appraisal.

Use the Rating Scales window.

See: Creating a Rating Scale, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 3: Create Competencies Optional Step
Create definitions of competencies recognized and required by your enterprise to meet
business goals.

Use the Competencies window.

See: Creating a Competency, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 4: Upload Third-Party Competency Denitions Optional Step
As an alternative or in addition to creating individual competencies, you can upload
competencies supplied by third-parties, such as vendors who supply competency
definitions for specific lines of business.

See: Uploading Third-Party Competency Information, Oracle HRMS Workforce Sourcing,
Deployment, and Talent Management Guide

Implementation Guide 3-95

Step 5: Create Competency Types Optional Step
For ease of management and retrieval, you can group competencies into competency
types. You define competency types using the lookup COMPETENCE_TYPE.

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 6: Group Competencies into Types Optional Step
Associate individual competencies with one or more defined competency types.

Use the Competence Types window.

See: Grouping Competencies into Types, Oracle HRMS Workforce Sourcing, Deployment,
and Talent Management Guide

Step 7: Dene Competency Requirements Optional Step
You can define competency requirements for business groups, jobs, organizations, and
positions. You can compare an individual’s competencies with those required for a job or
position, for example, to assist with promotion, training, or compensation plans.

Use the Competence Requirements window.

Defining Competency Requirements, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Step 8: Create Worker Competency Proles Optional Step
A competency is a record of a worker’s proficiency in competencies of interest to the
enterprise. Users can compare worker competency profiles with the competency
requirements of jobs or positions when searching for suitable candidates, for example.

See: Creating a Competency Profile, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management

Qualications
For each worker, you can record qualifications achieved and educational establishments
attended.

Step 9: Create Qualication Types Optional Step
You can define all qualification types your enterprise recognizes.

Use the Qualification Types window.

See: Creating Qualification Types, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Step 10: Create Schools and Colleges Optional Step
You can define all schools and colleges that deliver the qualifications your enterprise
recognizes, so that users can select an educational establishment when recording
a worker’s qualifications. Alternatively, users can enter school and college names
manually for each qualification.

Note: School and college definitions are available to all business groups;
therefore, define them once only.

3-96 Oracle Human Resources Management System Implementation Guide (US)

Use the Schools and Colleges window.

See: Creating Schools and Colleges, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Workforce Performance Management

Step 11: Set Up Workforce Performance Management Optional Step
The HRMS Workforce Performance Management functions enable enterprises to set
worker objectives that are aligned with the business strategy and goals.

See: Setting Up Workforce Performance Management, Oracle HRMS Workforce Sourcing,
Deployment, and Talent Management Guide

Appraisals

Step 12: Set Up the Appraisal Process Optional Step
During the appraisal process, you can assess a worker’s competencies and objectives and
identify development opportunities for the next appraisal period.

See: Setting Up the Appraisal Process, Oracle HRMS Workforce Sourcing, Deployment, and
Talent Management Guide

Career Paths
Career Paths show the progression opportunities that are available to workers in your
enterprise. You can define career paths based on either jobs or positions.

Step 13: Dene Career Paths Optional Step
Define the career-progression routes available to workers in your enterprise.

Important: In the US, for AAP-Workforce Analysis reporting use the
career path functionality to build the lines of progression for the jobs
included in your AAP plans.

Use the Career Path Names and Map Career Paths windows.

See: Defining Career Paths, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 14: Enter Work Choices for Jobs or Positions Optional Step
You can record requirements, such as work location and work schedule, for jobs and
positions.

Use the Work Choices window.

See: Entering Work Choices for a Job or Position, Oracle HRMS Workforce Sourcing,
Deployment, and Talent Management Guide

Step 15: Enter Worker Preferences Optional Step
For each worker, you can enter work preferences, such as the preferred work location or
working schedule. You can compare this information with job or position requirements
when career planning or looking for candidates.

Implementation Guide 3-97

Use the Work Preferences window.

See: Entering Work Preferences, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Workforce Intelligence
These implementation steps are required to enable you to view data in the HRMS
Discoverer business areas and workbooks. They assume that you already have installed
Discoverer. For information on Discoverer installation, see: Discoverer Administration
Guide.

Discoverer Workbooks
Follow the steps below to implement Workforce Intelligence Discoverer workbook
reports. If you do not complete these steps, reports will be available to you, but they
will not display data correctly. You need to perform some of these steps periodically, so
that the reports reflect changes in your enterprise data. See: Programs to Populate
Workforce Intelligence Discoverer Reports, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Set Up and Congure Workforce Required Steps
Workforce is not necessarily a count of the number of employees within your
enterprise. Instead, it is a count based on employee assignments and budget
measurement type. Calculations depend either on your budget measurement values for
assignments, or they use a FastFormula..

Step 1: Set budget measurement values Optional Step
Set budget measurement values for each employee assignment within Oracle Human
Resources. Reports and performance measures then calculate workforce using the
budget values.

If you do not set a budget measurement value for an assignment, and a Business Group
default does not exist, the reports and performance measures either calculate workforce
using Oracle FastFormula, or they will not include the workforce for an assignment.

Use the Assignment Budget Values window.

See: Entering Assignment Budget Values, Oracle HRMS Enterprise and Workforce
Management Guide

Step 2: Setup the Workforce FastFormula Templates Optional Step
If you want to configure how workforce is counted do not set a budget measurement
type and assignment measurement value for an assignment. The reports will then use
Oracle FastFormula to calculate workforce.

HRMSi provides two predefined workforce formulas:

• TEMPLATE_HEAD

• TEMPLATE_FTE

Use the Formula window.

See: Configuring Workforce Calculations using Oracle FastFormula, Oracle HRMS
Configuring, Reporting, and System Administration Guide

3-98 Oracle Human Resources Management System Implementation Guide (US)

Set Up a Currency Conversion Rate Type Required Steps

Step 3: Enter a Currency Conversion Rate Type Required Step
Workforce Intelligence uses the conversion rates set up in the GL Daily Rate window. You
can enter a specific conversion rate type for Workforce Intelligence, such as Corporate or
Spot.

Use the Oracle Human Resources Table Values window.

See: Entering a Conversion Rate Type, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Set Up and Congure Training Hours Optional Steps
Within Oracle Training Administration OTA you can record the duration of a training
event using a time period of your choice.

For example, rather than recording an event in hours you might record it in weeks or
months. To enable the workbooks to display the number of hours of a training event, a
predefined Oracle FastFormula, TEMPLATE_BIS_TRAINING_CONVERT_DURAT
ION, converts your time periods into hours.

OTA is installed with four predefined time periods. If you record the duration of events
using these predefined time periods the formula automatically converts them into the
following hours:

• D (Day) = 8 Hours

• W (Week) = 40 Hours

• M (Month) = 169 Hours

• Y (Year) = 2028 Hours

Note: You set up time periods in Oracle Training Administration using
the Lookup type FREQUENCY.

Step 4: Amend the Default Training Hours Optional Step
Amend the FastFormula TEMPLATE_BIS_TRAINING_CONVERT_DURATION if you
have set up different time periods using the Lookup type FREQUENCY.

Use the Formula window.

See: Amending the Default Training Hours, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Step 5: Add Additional Training Time Periods Optional Step
Amend the FastFormula TEMPLATE_BIS_TRAINING_CONVERT_DURATION if the
number of hours per time period does not match those of your enterprise.

Use the Formula window.

See: Adding Additional Training Time Periods, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Implementation Guide 3-99

Set up Cross Business Group Reporting Optional Steps
If users are using a local security profile they will only be able to see information in a
specific business group. The business group is defined in the security profile attached to
the responsibility.

For Discoverer reports, you may want to enable users to see data that spans business
groups.

Step 6: Provide users with a global security prole Optional Step
If you want to enable cross business reporting, provide users with a global security
profile. A global security profile provides cross business group reporting because it
does not specify a business group.

Use the Global Security Profile window.

See: Defining a Security Profile, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Identify the Reporting Organization Required Steps
HRMS Discoverer workbooks will not run unless the application can identify an
organization to report on. If a workbook cannot identify the reporting organization, it
will fail to generate certain report parameter lists and will produce the following error
message when displaying the report parameter page:

“No values were found for the parameter Organization whilst attempting to build the
list of values. To run this report your system must have the parameter Organization set
up. Please contact your system administrator.”

The application identifies an organization through a business group. You must therefore
ensure that you assign a business group correctly to report users. How you assign the
business group depends on which security model you implement and whether you are
using a local or global security profile. See the options below.

Step 7: Set the Prole Option HR: Security Optional Step
If you have implemented the standard HRMS security model, with a local security
profile, you must set the profile option HR: Security to the business group you want to
report on.

The reports identify the business group through the profile option HR: Business
Group. The application automatically sets this profile option to the value in the
HR: Security profile option.

Set up the business group in the profile option HR: Security. Use the System Profile
Values window.

See: System Profile Values Window , Oracle Applications System Administrator's Guide

Step 8: Set the Prole Option HR: Business Group Optional Step
If you have implemented the standard HRMS security model, with a global security
profile, the HR: Business Group profile option is not set automatically.

Set the profile option HR: Business Group at responsibility level to the business group
that you want to report on.

Use the System Profile Values window.

3-100 Oracle Human Resources Management System Implementation Guide (US)

See: Defining Preferences with User Profile Options, Oracle Applications System
Administrator's Guide

Step 9: Associate a Business Group with a Security Prole Optional Step
If you have implemented the Security Groups Enabled security model, the HR: Business
Group profile option is not used. You associate a business group with a security profile.

Use the Assign Security Profile window.

See: Assigning Security Profiles, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Restrict Discoverer Workbook Access Required Steps

Step 10: Grant Access to Discoverer Business Areas Required Step
Grant access privileges to the Discoverer business area to determine which workbooks
users can create or view.

Use Oracle Discoverer Administration Edition.

See: Grant Business Area Access, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Check the Vacancy Status Options Required Steps

Step 11: Check the Vacancy Status Options Required Step
To ensure the reports that cover vacancies return accurate results, you need to ensure
that users close vacancies by using the status of CLOSED. You may have to obsolete an
old vacancy status option that results in the status of C.

Use the Application Utilities Lookups window.

See: Check the Vacancy Status Options, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Populate Summary Tables Required Steps
To ensure your HRMS Discoverer workbooks run correctly and efficiently, you need to
run concurrent programs to populate summary tables with your hierarchy data and
workforce measurement values.

For a full discussion of these concurrent programs, and when you need to run
them, see: Programs for Populating Workforce Intelligence Discoverer Reports, Oracle
HRMS Configuring, Reporting, and System Administration Guide

Step 12: Populate the Organization Hierarchy Summary Table Required Step
All reports that use organization hierarchy gather information from the Organization
Hierarchy Summary table. Populate this summary table with your organization
hierarchy data. The table ensures that you are getting the best possible performance
from your reports.

To populate the summary table, run the concurrent program HRI Load All Organization
Hierarchy Versions.

Use the Submit Requests window.

Implementation Guide 3-101

See: Populating the Organization Hierarchy Summary Table, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 13: Populate the Supervisor Hierarchy History Table Required Step
All reports that use supervisor hierarchy gather information from the Supervisor
Hierarchy Summary table. Populate this summary table with your supervisor hierarchy
data. The table ensures that you are getting the best possible performance from your
reports.

To populate the summary table, run the concurrent program HRI Load All Supervisor
Hierarchies.

Use the Submit Requests window.

See: Populating the Supervisor Hierarchy History Table, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 14: Populate the Workforce Measurement Value History Table Required Step
Many reports use Workforce Measurement Values (WMVs). WMVs currently include
headcount and full-time equivalent (FTE) assignment budget values.

Run the concurrent program HRI Load Workforce Measurement Value History to
populate the Workforce Measurement Value History table with the WMVs used by
your reports.

Use the Submit Requests window.

See: Populating the Workforce Measurement Value History Table, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Step 15: Populate the Generic Hierarchy Summary Table Required Step
Some US specific Discoverer workbooks use a ’Vets, EEO, AAP, OSHA, Multi Work Sites’
hierarchy. They require information about the current generic hierarchy.

Run the concurrent program HRI Load All Generic Hierarchy Versions to calculate and
collect the required data.

Use the Submit Requests window.

See: Populating the Generic Hierarchy Summary Table, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 16: Collect Organization Hierarchy Structures Optional Step
The Organization Rollup – Current folder in the Discoverer End User Layer uses
organization hierarchies held in the HRI_ORG_PARAMS and HRI_ORG_PARAM_LIST
tables. If you build Discoverer reports using the Organization Rollup – Current
folder, you must populate these tables with your organization hierarchies.

To populate the tables, run the concurrent program BIS Load Organization Hierarchy
Summary Table.

See: Collecting Organization Hierarchy Structures, Oracle HRMS Configuring, Reporting,
and System Administration Guide

3-102 Oracle Human Resources Management System Implementation Guide (US)

HR Information Systems

Reports

Step 1: Use Standard Reports or Write New Reports Optional Step
A number of standard reports are supplied with Oracle HRMS. These reports have
been written using Oracle Reports V.2 and registered as concurrent programs with the
Standard Requests Submission (SRS) feature of Oracle Applications.

You can use these Standard Reports or write your own reports and register these as
additional reports which users can request from the Submit a New Request window.

UK Payroll Implementation Only
In the UK, P45 and Pay Advice reports supplied with Oracle Payroll are designed for use
with preprinted stationery. These reports use two special printer drivers to control the
print format.

• P45 paygbp45.prt

• Pay Advice paygbsoe.prt

If your printer does not accept the same control characters as the DEC LN03 printer, you
may need to modify the special SRW driver files.

When you install Oracle Payroll the two sample files are stored in the $PAY_TOP/srw
directory. You should copy the files to $FND_TOP/$APPLREP and then register them
using the Printer Drivers window.

Step 2: Register Reports as Concurrent Programs Optional Step
After you have written your new reports and saved them in the correct subdirectory, you
must register the report as a concurrent program. You also register the parameters
which can be submitted with the report. For example, you may have written a report
to display personal details and you want to submit employee name to limit the output
to include one person at a time.

Use the Concurrent Programs window.

See: Concurrent Programs Window, Oracle Applications System Administrator's Guide

Step 3: Dene Report Sets Optional Step
You can define sets of Reports:

• To restrict user access to specific reports.

A set of reports can be linked to a Responsibility.

• To simplify requesting a report

You can run a report set in one request, rather than a request for each report.

Use the Request Set window.

See: Defining Request Sets, Oracle Applications System Administrator's Guide

Implementation Guide 3-103

Standard Letter Generation
You can use standard letters in HRMS to help you to manage your enterprise’s
recruitment or enrollments, for example. You do this by issuing standard letters to
applicants or students, triggered by changes in assignment or enrollment status.

Oracle HRMS provides you with three different methods to create standard letters:

• Method 1 Concurrent Processing using Word Processors, page 3-104

• Method 2: Concurrent Processing using Oracle Reports, page 3-105

• Method 3: Create Mail Merge Letters using Web ADI, page 3-106

Method 1 - Concurrent Processing using Word Processors
You can create standard letters using Multimate, WordPerfect or Microsoft Word.

Step 4: Plan Standard Letter Requirements Optional Step
You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Step 5: Write a SQL*Plus Script Optional Step
Oracle HRMS supplies you with SQL*Plus scripts as templates for extracting database
information for standard letters. You can copy the SQL*Plus script templates and modify
them to create the standard letters you require.

See: Writing a SQL*Plus Script for MultiMate or WordPerfect, Oracle HRMS Configuring,
Reporting, and System Administration Guide

See: Writing a SQL*Plus Script for Microsoft Word, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 6: Register the SQL*Plus Script Optional Step
Register your SQL*Plus program with Oracle HRMS. You register your program so that
you can run it as a concurrent program. Name the file PERWP*** (or OTAWP***). You
must use this prefix for the system to recognize it as a type of letter.

Use the Concurrent Programs window.

See: Registering the SQL*Plus Script, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 7: Link the SQL*Plus Script to the Letter Optional Step
Link your SQL*Plus script with a letter and one or more statuses. In Oracle Human
Resources, you can link one or more applicant assignment statuses with each recruitment
letter. A request for the letter is then created automatically when an applicant is given
an associated assignment status. For example, you can link your standard recruitment
rejection letter to the status Rejected so that the letter is triggered when you set an
applicant’s assignment status to Rejected

Use the Letter window.

See: Linking the SQL*Plus Script with aLetter, Oracle HRMS Configuring, Reporting,
and System Administration Guide

3-104 Oracle Human Resources Management System Implementation Guide (US)

Step 8: Writing a Skeleton Letter Optional Step
Write a skeleton letter using your word processor. Include the appropriate merge codes
from the data source for the word processor you are using.

See: Writing a Skeleton Letter, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 9: Requesting Letters Optional Step
When you, or other users, set the status for an applicant or enrollment that triggers your
standard letters, Oracle HRMS creates a letter request automatically, with the status of
Pending. It also adds the applicant’s or student’s name to the request. You can view the
pending request and names through the Request Letter window.

Use the Request Letter window.

See: Requesting Letters/Running the Report, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Step 10: Merging the Data Files Optional Step
You now need to merge the data in the Data File with your skeleton letters.

See: Merging the Data File with the Standard Letter, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Method 2 - Concurrent Processing using Oracle Reports
You can create a report for each letter using Oracle Reports, or another tool of your
choice. The report contains the skeleton letter text and Select statements specifying the
data to be extracted from the Oracle database.

Step 11: Plan Standard Letter Requirements Optional Step
You need to identify the database information to include in the letters.

See: Planning Standard Letter Requirements, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Step 12: Write and Register the Report Optional Step
You now need to write and register the report.

See: Writing and Registering the Report, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 13: Link the Report with a Letter Optional Step
You need to link your report with a letter and one or more statuses. In Oracle Human
Resources, you can link one or more applicant assignment statuses with each recruitment
letter. A request for the letter is then created automatically when an applicant is given
an associated assignment status. In Oracle Training Administration, you can link one
or more enrollment statuses with each enrollment letter. A request for the letter is then
created automatically when an enrollment is given an associated status.

Use the Letter window.

See: Linking the Report With a Letter, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Implementation Guide 3-105

Step 14: Run the Report Optional Step
When you, or other users, set the status for an applicant or enrollment that triggers your
standard letters, Oracle HRMS creates a letter request automatically, with the status of
Pending. It also adds the applicant’s or student’s name to the request. You can view the
pending request and names through the Request Letter window.

Then, when you change the letter request from Pending to Requested, Oracle HRMS
runs the report that you created.

Use the Request Letter window.

See: Registering Letters/Running the Report, Oracle HRMS Configuring, Reporting, and
System Administration Guide

Method 3 Create Mail Merge Letters Using Web ADI

Step 15: Create Mail Merge Letters Optional Step
Define Web ADI integrators and layouts and set up template letters.

See Creating Mail Merge Letters Using Web ADI, Oracle HRMS Configuring, Reporting,
and System Administration Guide

People Management Templates

Step 16: Extend the Checklist Lookup Values Optional Step
You can add your own values to the supplied list of checklist items and statuses to be
included in a template.

Define values for the CHECKLIST_ITEM and CHECKLIST_STATUS Lookup Types.

Define values for BUDGET_MEASUREMENT_TYPES

Use the Application Utilities Lookups window.

See: Adding Lookup Types and Values, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 17: Write Formulas for Templates Optional Step
You can use formulas to configure the people management templates in the following
ways:

• Template Validation Formula

• Template Information Formula

• People Management Message Formula for the Assignment Field

• People Management Message Formula for the Message Tokens

Use the Formulas window.

See: Writing Formulas for Templates, Oracle HRMS FastFormula User Guide

Step 18: Congure Templates Optional Step
You can use the People Management Configurator to create templates for your users to
use. We recommend that you use one of the supplied templates as a basis for your
configured version.

3-106 Oracle Human Resources Management System Implementation Guide (US)

Use the People Management Configurator.

See: Using the People Management Configurator, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 19: Set up Notication Messages Optional Step
You can setup additional notification messages to be used with the people management
templates.

Use Oracle Workflow

See: Notification Messages Issued from Templates Forms, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Oracle HRMS Conguration

Step 20: Dene Elements and Distribution Sets Optional Step
Select element classifications or individual elements to define a set. There are three
types of set:

• Customization set

• Run set

• Distribution set

Use the Element and Distribution Set window.

See: Defining an Element or Distribution Set, Oracle HRMS Compensation and Benefits
Management Guide.

Step 21: Dene Congured Version of a Window Optional Step
Form Customization lets you restrict the types of information a user can access in
a specific window.

You can define your ownwindow titles for any window configuration option. Remember
that the user guides and the online help use the default window names to identify
windows.

You can call the configured window in two ways:

• Define a customized node in a task flow

• Add the customization as an argument to the menu function which calls the window

Use the Form Customization window.

See: Configuring a Window With Customform, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 22: Add Congured Window to a Menu or a Task ow Optional Step
You must add your configured windows to a menu or task flow.

See: Adding Configured Windows to a Menu or a Task Flow, Oracle HRMS Configuring,
Reporting, and System Administration Guide.

Step 23: Restrict Access to Query-Only Mode Optional Step
You can restrict access to query-only mode for an individual form.

Implementation Guide 3-107

See: Restricting Access to Query-Only Mode, Oracle HRMS Configuring, Reporting, and
System Administration Guide.

Step 24: Change the Default National Address Style Optional Step
The different national address styles are held and configured in the Personal Address
Information descriptive flexfield using the Descriptive Flexfield Segments window. You
can change the national address style for any country.

See: Changing Default National Address Styles, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 25: Review and Update Person-Name Formats Optional Step
HRMS supplies a format definition for a person’s full name and other name definitions
for use in custom code. You can change the supplied person-name format definitions
and create additional format definitions to suit enterprise requirements.

See: Person-Name Formats, Oracle HRMS Workforce Sourcing, Deployment, and Talent
Management Guide

Step 26: Use Parameters for HRMS Form Functions to Hide Sensitive Data Optional Step
You can prevent sensitive data from appearing on the Enter a person window by using
parameters for HRMS window functions.

See: Using Parameters for HRMS Form Functions, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Task Flows
A task flow defines the selection of windows you want to use when performing a specific
task. These can be arranged in sequence or as branched groups of Nodes, and you can
include configured windows as nodes in your task flow.

Warning: Do not use apostrophes (’) or percent (%) symbols in task flow
names or task flow node names.

You can create task flows using:

• Forms, page 3-108

• Workflow, page 3-109

Create Task Flows Using Forms

Step 27: Dene Task Flow Nodes Optional Step
All of the task flow windows provided with Oracle HRMS have nodes predefined
for them. You can define new task flow nodes to provide different versions of these
windows. For example, if you wanted to use CustomForm on a specific node in a task
flow.

Use the Define Task Flow Nodes window.

See: Defining Task Flow Nodes, Oracle HRMS Configuring, Reporting, and System
Administration Guide

3-108 Oracle Human Resources Management System Implementation Guide (US)

Step 28: Dene Task Flows Optional Step
Arrange the nodes of your task flows in sequential or branched groups

Use the Task Flow window.

See: Defining Task Flows, Oracle HRMS Configuring, Reporting, and System Administration
Guide

Create Task Flows Using Workow

Step 29: Create a Top Level Process Optional Step
You must define a top level process for each task flow. The top level process can contain
sub processes, but not any other top level processes.

You use the Process Diagrammers within Oracle Workflow to create your task flows. You
do this by adding and connecting the windows you want to appear.

You must create a top level process, sub processes are optional.

See: Creating a Top Level Process, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 30: Create Sub Processes Optional Step
You can group a logical set of task flow windows into a sub process, which can then be
used by several top level processes. This simplifies process modelling. Each sub process
can contain other sub processes. There are two rules to note regarding sub processes:

• A sub process cannot be defined as runnable.

• When you use a sub process in another process, you must connect the sub process to
the Top Node window.

See: Creating Sub Processes, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 31: Create Button Labels Optional Step
You can enter the label you want to appear on the task flowed windows, such as Photo
(for the Picture window), and such. Each task flow window activity has an attribute
called Button Label. Use this attribute to override the default button label for a window
and to define an access key (or keyboard shortcut).

See: Creating Button Labels, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 32: Position Button Display Optional Step
You can position the display order of buttons on the window. For example, you might
want the first button to display the Picture window.

See: Positioning Button Display, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 33: Identify Windows or Blocks to Display Optional Step
If you are creating task flows using the combined People and Assignment
window, complete this step, otherwise skip this step.

For most task flow windows, you must display the first block of the window on
entry. However, when you use the Combined People and Assignment window in a

Implementation Guide 3-109

task flow, you must specify whether to display the People window (or block) or the
Assignment window on entry.

See: Identifying Windows or Blocks to Display, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Step 34: Identify Congured Forms to Include in the Task Flow Optional Step
If you have created a configured version of a window, you can use it in the task flow. If
not, you can skip this step.

See: Identifying Configured Forms to Include in the Task Flow, Oracle HRMS Configuring,
Reporting, and System Administration Guide

Step 35: Verify and Save the Workow Optional Step
When you have completed the task flow definition within Oracle Workflow, use the
Workflow Verify function to check that your workflow conforms to Oracle Workflow
modeling rules. When you have successfully verified the Workflow, save it to the HRMS
database.

See: Verifying and Saving the Workflow, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 36: Generate a Task Flow From Oracle Workow Optional Step
After modelling a task flow in Oracle Workflow and saving it to the database, you must
generate task flow definitions.

Use the Define Task Flow window.

See: Generating a Task Flow From Oracle Workflow, Oracle HRMS Configuring, Reporting,
and System Administration Guide

Menus

Step 37: Dene Menu Functions Optional Step
Menus are composed of submenus and functions and all Oracle Applications are
supplied with default functions and menus to give you access to all of the available
windows.

Warning: You should not modify the default functions and menus
supplied with the system. On upgrade, these defaults will be
overwritten.

If you want to add window configuration options or task flows you
should define your own menus.

Use the Form Functions window.

See: Defining Menu Functions, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 38: Dene Menus Optional Step
The supplied menus give you access to all of the available submenus. However, a
number of seeded functions are not enabled on these menus. You need to add them for
the responsibilities that should have access to these functions:

3-110 Oracle Human Resources Management System Implementation Guide (US)

Use the Menus window.

See: Defining Menus, Oracle HRMS Configuring, Reporting, and System Administration
Guide

Step 39: Disable the Multiple Windows Feature Optional Step
In most Oracle Applications, you can open multiple windows from the Navigator
window without closing the window you already have open. HRMS, however, does not
support Multiform functionality.

Important: You must disable this feature on menu structures that access
Oracle HRMS windows.

See: Disabling Multiple Windows, Oracle HRMS Configuring, Reporting, and System
Administration Guide

User Security
Any system that holds human resource and payroll information must be secured against
unauthorized access. To reach employee information you need the correct security
clearance.

The responsibility for defining and maintaining the internal security of your system is
usually given to your system administrator.

Dening Security for HRMS Users
Defining the access limits of each user is a multi-stage process which defines which
records a user can see and which forms and windows they can see and use.

There are two security models to enable you to set up the right type of security for
your enterprise:

• Standard HRMS security model

Set up standard security if your enterprise sets up a different responsibility for each
business group.

• Security Groups Enabled security model

Use Security Groups Enabled security if your enterprise wants to enable many
business groups for one responsibility. This type of security is most commonly
used by Service Centers.

See Defining Security for HRMS Users, page 3-111

Dening Security for Reporting Users
You can also create reporting users who have read only access to data. This can be useful
if you want to permit access to the data from another system.

See: Defining Security for Reporting Users, page 3-114.

Dening Security for HRMS Users (Optional)

Step 40: Set up the Enable Security Groups option for your Security Model
• If you are using Standard HRMS security, ensure that the Enable Security Groups

profile option is set to No at site and application level.

Implementation Guide 3-111

• If you are using Security Groups Enabled security, ensure that the Enable Security
Groups profile option is set to Yes at the application level.

Important: Once you have changed to Security Groups Enabled Security
you cannot revert to the Standard Security model.

Use the System Profiles Value window

See: System Profile Values Window, Oracle Applications System Administrator's Guide

Step 41: (Security Groups Enabled Model only) Run the Enable Multiple Security Group Process
If you are using the Security Groups Enabled model, you must run the Enable Multiple
Security Group process to set up Oracle HRMS to use security groups.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Step 42: Dene a Security Prole
Use the Security Profile window (to give access to a single business group) or the Global
Security Profile window (to allow users to access records from more than one business
group).

See: Defining a Security Profile, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 43: Ensure Required Functions or Menus are Set Up
This is required for the responsibility. For menu functions calling configured forms or
task flows, you must enter a parameter in the Parameter field of the Form Functions
window.

See: Defining Menu Functions, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 44: Ensure Required Request Group is Set Up
You can define the groups of standard reports and processes that a user can run from
the Submit a New Request window. Every responsibility can have access to one request
group.

Use the Request Group window.

See: Defining Menu Functions, Oracle HRMS Configuring, Reporting, and System
Administration Guide

See: Request Groups Window, Oracle Applications System Administrator's Guide

Step 45: Dene a Responsibility
You need to define a responsibility.

Use the Responsibilities window.

See: Responsibilities Window, Oracle Applications System Administrator's Guide

Step 46: Set the User Prole Option Values for Responsibility
Set the HR User Profile Options for the new responsibility.

You must set up the following:

3-112 Oracle Human Resources Management System Implementation Guide (US)

• HR: User Type

Use this profile option to limit field access on windows shared between Oracle
Human Resources and Oracle Payroll.

• HR:Cross Business Group

Set this profile option to Yes if you want users to be able to view some information
across all business groups in your enterprise.

For details of the information you can make available to users across business
groups, see User Profiles, Oracle HRMS Configuring, Reporting, and System
Administration Guide

• HR: Security Profile

• If you are using the Standard Security model, enter the security profile for the
responsibility. This must be set up at responsibility level, otherwise the default
view-all security profile is used. Using Standard HRMS security you can only
set up one security profile for a responsibility.

• If you are using the Security Groups Enabled security model, do not set up or amend
the HR: Security Profile option using the System Profile Values window. To set
up or change this profile option use the Assign Security Profile window.

You can set also set up other User Profile Options.

Use the System Profile Values window.

See: System Profile Values Window, Oracle Applications System Administrator's Guide

Step 47: Associate a Responsibility With a Set of Help Files
Oracle Applications Help for HRMS defaults to Global help, but you can associate a
responsibility with a set of help files for a localization, such as Canada, US or UK, or for
a verticalization such as Oracle Federal HRMS. You do this by setting the user profile
Help_Localization_Code.

See: User Profiles, Oracle HRMS Configuring, Reporting, and System Administration Guide

In addition to associating a responsibility with a localization or a verticalization you can
also specify that a particular responsibility should have access to a configured subset
of the localized or verticalized help files.

See: Customizing Oracle Applications Help, Oracle Applications System Administrator's
Guide

Step 48: Create Usernames and Passwords
• If you are using the Standard Security model, you need to create usernames and

passwords and link responsibilities to users.

• If you are using the Security Groups Enabled security model, you need to create
usernames and passwords. Do not link responsibilities and security groups
(business groups) to users in the Users window for HRMS; instead, use the HRMS
Assign Security Profile window.

Important: If you do enter a responsibility and security group in
this window when using Security Groups Enabled security, you still
need to use the Assign Security Profile window, to link your user to a
responsibility and security profile. If you do not use the Assign Security

Implementation Guide 3-113

Profile window, the default view-all security profile is used and your
user will be able to see all records in the business group.

Use the Users window.

See: Users Window, Oracle Applications System Administrator's Guide

Step 49: (Security Groups Enabled Model only) Assign Security Proles
If you are using the Security Groups Enabled model, associate a security profile with a
user, responsibility and business group.

Important: You cannot use the HRMS Assign Security Profile window to
link responsibilities to users if you are setting up Standard Security.

Use the Assign Security Profile window.

See: Assigning Security Profiles, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 50: Run Security List Maintenance Process (PERSLM)
Oracle HRMS uses the Security List Maintenance process to generate the lists of
organizations, positions, payrolls, employees, contingent workers, and applicants that
each security profile can access.

Important: When you initiate the Security List Maintenance process you
must enter the resubmission interval to run the process every night

You must do this so that the system will automatically update the lists
with the data changes you make every day.

If a power or computer failure should disrupt this process, you can
initiate it manually from the Submit a New Request window.

When this process has completed successfully you can sign on to the system using the
new username and responsibility.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Dening Security for Reporting Users (Optional)

Step 51: Create a New Reporting User Oracle ID
If you want reporting users to have the same restricted access to records as your online
users, ask your ORACLE Database Administrator to create a new ORACLE User ID.

Reporting Users have read only access to data. This can be useful if you want to permit
access to the data from another system.

Note: You need to inform Reporting Users of their Reporting Username
and Password.

Step 52: Register the New Oracle ID
Register the new ORACLE ID with Application Object Library.

3-114 Oracle Human Resources Management System Implementation Guide (US)

Use the Register window.

Step 53: Dene a Security Prole
Using a view-all responsibility, you can define security profiles in the Security Profile
window.

Use the Security Profile window.

See: Defining a Security Profile, Oracle HRMS Configuring, Reporting, and System
Administration Guide

Step 54: Run Generate Secure User Process (SECGEN)
The Generate Secure User process will grant permissions to the new Reporting User
ORACLE ID. Until you run this process, reporting users cannot access Oracle HRMS
data using this security profile.

1. Select Generate Secure User.

2. In the Parameters window, enter the security profile you created for the ORACLE ID.

3. Submit your request.

A concurrent request ID appears in the ID field. You can check the progress of your
request on the View Concurrent Requests window.

Use the Submit a New Request window

See: Submitting a Request, Oracle Applications User's Guide

Web Applications Desktop Integrator (Web ADI)

Step 55: Set Up Web ADI Optional Step
You can set up Web Applications Desktop Integrator (Web ADI) to export information
from your Oracle HRMS database to desktop applications, for example, spreadsheets.

See Implementing Web ADI for Use with Oracle HRMS, Oracle HRMS Configuring,
Reporting, and System Administration Guide

See: Upgrade Information for Converting from ADE to Web ADI, Oracle HRMS
Configuring, Reporting, and System Administration Guide

Audit Requirements

Step 56: Turn on Auditing Optional Step
To turn on Auditing, set the AuditTrail:Activate profile option to Yes at Site or
Application level.

Use the System Profile Values window.

See: System Profile Values Window, Oracle Applications System Administrator's Guide

Turning Audit on has no noticeable effect on the performance of the system and users
will not be aware of any extra delay in committing their transactions.

Implementation Guide 3-115

Step 57: Estimate File Sizing and Management Needs Optional Step
Whenever you choose to audit the actions of users of the system you are deciding to keep
the details of all the transactions which take place. This will include before and after
details as well as the details of who made the change and when.

Warning: In normal use the auditing of data can soon generate large
volumes of audit data, which even when stored in a compressed format
will continue to grow in size until you reach the limits imposed by your
environment. If you reach the limits during active use then users will be
unable to use the system until you remedy the problem.

You are strongly advised to consider the scope of your audit activities and how you will
use the data you accumulate. Also you should consider how often you will report on the
audit data, and when you will archive and purge your audit data.

If you need more advice on this you should contact your Oracle Support representative.

Step 58: Dene Audit Installations Optional Step
If you have installed more than one Oracle Application you can audit across multiple
installations. For Oracle HRMS you should enable auditing for the HR user and the
APPLSYS user.

Use the Audit Installations window.

See: Audit Installations Window, Oracle Applications System Administrator's Guide

Step 59: Dene Audit Tables and Columns Optional Step
With Oracle Applications you can define the level of detail you want to audit. You define
the individual fields of each record that you want to audit.

• Query the Table you want to audit

• Enter the columns you want to audit for that table

Use the Audit Tables window.

See:Audit Tables Window, Oracle Applications System Administrator's Guide

Step 60: Dene Audit Groups Optional Step
You can define one or more Audit Groups for your installation. You might find this
useful if you have more than one Oracle Application installed.

Use the Audit Groups window.

See: Audit Groups Window, Oracle Applications System Administrator's Guide

Step 61: Run AuditTrail Update Tables Process and AuditTrail Update Datetracked Tables Process Optional Step
To start the AuditTrail activity you must submit the AuditTrail Update Tables Process for all
tables, and the AuditTrail Update Datetracked Tables Process for all datetracked tables.

Use the Submit a New Request window.

See: Submitting a Request, Oracle Applications User's Guide

3-116 Oracle Human Resources Management System Implementation Guide (US)

4
Implementation Guide

Further Implementation Steps
Step 1: Technical Essays Optional Step

This section includes technical essays for Oracle HRMS.

Technical Essays

DateTrack

How DateTrack Works
DateTrack adds the dimension of time to an application’s database. The value
of a DateTracked record depends on the date from which you are viewing the
data. For example, querying an employee’s annual salary with an effective date
of 12-JUL-1992 might give a different value than a query with an effective date of
01-DEC-1992. However, the application and the user see the employee’s pay as a single
record.

Behavior of DateTracked Forms
This section describes the behavior of forms that incorporate DateTracking.

When you begin to update or delete a record on a DateTracked form, you are prompted
with a number of choices. This section describes the choices and their effect on the
DateTracked table.

The term "today" refers to the effective date set by the user.

Update
When a user first alters a field in a DateTracked block in the current Commit unit, he or
she sees a choice of Update prompts as follows:

• UPDATE - Updated values are written to the database as a new row, effective from
today until 31-DEC-4712. The old values remain effective up to and including
yesterday.

• CORRECTION - The updated values override the old record values and inherit
the same effective dates.

If the user selects UPDATE, DateTrack checks whether the record being updated
starts today. If it does, a message warns that the previous values will be lost (because

Implementation Guide 4-1

DateTrack can only store information on a day by day basis). DateTrack then changes the
mode for that record to CORRECTION.

Next, if UPDATE was selected, DateTrack checks whether the record being updated has
already had future updates entered. If it has been updated in the future, the user is
further prompted for the type of update, as follows:

• UPDATE_CHANGE_INSERT (Insert) - The changes that the user makes remain in
effect until the effective end date of the current record. At that point the future
scheduled changes take effect.

• UPDATE_OVERRIDE (Replace) - The user’s changes take effect from now until the
end date of the last record in the future. All future dated changes are deleted.

In most forms, users are prompted for the update mode for each record they update. In
some forms, they are asked for the update mode for only the first record they
update. Any other rows updated take the same update mode. Users are not prompted
again, until they have committed or cleared any outstanding changes.

Delete
When deleting a record, the user is prompted for the type of delete. There are four
options, as follows:

• DELETE (End Date) - This is the DateTracked delete. The record that the user is
currently viewing has its effective end date set to today’s date. The record disappears
from the form although the user can requery it.

• ZAP (Purge) - This is the total delete. All records matching the key value, whatever
their date stamps, are deleted.

• FUTURE CHANGE (All) - This choice causes any future dated changes to the current
record, including a future DateTracked delete, to be removed. The current record
has its effective end date set to 31-DEC-4712.

The record can again be displayed by requerying.

• DELETE NEXT CHANGE (Next Change) - This choice causes the next change to the
current DateTracked record to be removed.

Where another future dated DateTracked row exists for this record, it is removed
and the current row has its effective end date set to the effective end date of the
deleted row.

Where no future DateTracked row exists, but the current row has an end date
other than 31-DEC-4712, then this option causes the effective end date to be set to
31-DEC-4712. This means that a date effective end is considered to be a change.

Notice that this option again removes the current row from the form, though it
can be displayed again by requerying.

Insert
The user is not prompted for any modes when inserting a record. The effective start
date is always set to today (Effective Date). The effective end date is set as late as
possible. Usually this is 31-DEC-4712, although it can be earlier especially when the
record has a parent DateTracked record.

Table Structure for DateTracked Tables
A DateTracked (DT) record is what the application and the user see: a single DT
record for each key value. However, this DT record may change over time, so it may
correspond to one or more physical rows in the database. The history for the record is

4-2 Oracle Human Resources Management System Implementation Guide (US)

held by storing a row when the record is created, and an extra row every time the record
changes. To control these rows, every DateTracked table must include these columns:

EFFECTIVE_START_DATE DATE NOT NULL

EFFECTIVE_END_DATE DATE NOT NULL

The effective start date indicates when the record was inserted. The effective end date
indicates when the record was deleted or updated. A deleted record has the highest end
date of all the rows with that key, but for an updated record there will be at least one row
for this key with a higher effective end date.

As time support is not provided, the effective start date commences at 0000 hours and
the effective end date finishes at 2359 hours. This means that a DT record can change at
most once per day.

Example

Table Showing Example of DateTracked Table Contents

EMPID EMPNAME SALARY EFFECTIVE_
START_DATE

EFFECTIVE_
END_DATE

3203 SMITH 17,000 12-MAR-1989 19-JUL-1989

3203 SMITH 18,200 20-JUL-1989 20-JUL-1989

3203 SMITH 18,400 21-JUL-1989 01-DEC-1989

The table above shows the physical table after the user has done the following:

• Set the effective date to 12-MAR-1989. Inserted record for SMITH.

• Set the effective date to 20-JUL-1989. Updated SMITH record with new salary.

• Set the effective date to 21-JUL-1989. Again updated SMITH record with new salary.

• Set the effective date to 1-DEC-1989. Deleted record for SMITH.

The table below shows what the user sees on querying the SMITH record at different
effective dates.

Table of Example Query Results for a DateTracked Table

EFFECTIVE DATE EMPID EMPNAME SALARY

11-MAR-1989 ** no rows retrieved

12-JUN-1989 3203 SMITH 17,000

21-JUL-1989 3203 SMITH 18,400

02-DEC-1989 ** no rows retrieved

Implementation Guide 4-3

Because the primary key column in the table is no longer unique, any indexes
on the table that included the primary key column must now also include the
EFFECTIVE_START_DATE and EFFECTIVE_END_DATE columns.

List of DateTracked Tables
To get a list of the DateTracked tables used in Oracle Human Resources, select from the
data dictionary where the table name is like Application Short Name%F. Substitute in
the HRMS application short code you are interested in (such as PER or BEN).

For each of the DateTracked tables there is a DateTracked view called <TABLE NAME>
and a synonym pointing to the full table called <TABLE NAME_F>.

Creating a DateTracked Table and View
The previous section described the table structure of a DateTracked table. This section
describes the steps to go through to create a DateTracked table and view.

You must use the following nomenclature for DateTracked tables:

Base table: <TABLE NAME_F>

DateTracked view: <TABLE NAME>

In addition to the DateTracked view, there is another view that shows the rows in the
table as of SYSDATE. The name of this view is derived by replacing the _F at the end
of the table name by _X.

Example
To incorporate DateTrack on to an existing table called EMPLOYEES, follow these steps:

1. Create a new table called EMPLOYEES_F that is identical to EMPLOYEES but
with the columns EFFECTIVE_START_DATE and EFFECTIVE_END_DATE
added. Normally you would set the EFFECTIVE_START_DATE and
EFFECTIVE_END_DATE columns to the maximum range.

CREATE TABLE EMPLOYEES_F AS
SELECT EMPLOYEES.*,
TO_DATE(’01-01-0001’,’DD-MON-YYYY’) EFFECTIVE_START_DATE,
TO_DATE(’31-12-4712’,’DD-MON-YYYY’) EFFECTIVE_END_DATE
FROM EMPLOYEES;
ALTER TABLE EMPLOYEES_F
MODIFY (EFFECTIVE_START_DATE NOT NULL,
EFFECTIVE_END_DATE NOT NULL);

Remove the old table.

DROP TABLE EMPLOYEES

If the old table already has the two new columns, just rename it.

RENAME EMPLOYEES TO EMPLOYEES_F;

2. Create the New Unique Indexes of the DateTracked Table by dropping
the old indexes, creating the new unique indexes as old unique index +
EFFECTIVE_START_DATE + EFFECTIVE_END_DATE, and creating the new
non-unique indexes the same as the old non-unique indexes.

3. Create a DateTracked view called EMPLOYEES. This view uses the entry in
FND_SESSIONS for the current user effective id for the effective date.

4-4 Oracle Human Resources Management System Implementation Guide (US)

CREATE VIEW EMPLOYEES AS
SELECT *
FROM EMPLOYEES_F
WHERE EFFECTIVE_START_DATE <=
(SELECT EFFECTIVE_DATE
FROM FND_SESSIONS
WHERE FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))
AND EFFECTIVE_END_DATE >=
(SELECT EFFECTIVE_DATE
FROM FND_SESSIONS
WHERE FND_SESSIONS.SESSION_ID = USERENV(’SESSIONID’))

4. To create the view EMPLOYEES_X based on the table EMPLOYEES_F, use the
following SQL:

CREATE VIEW EMPLOYEES_X AS
SELECT *
FROM EMPLOYEES_F
WHERE EFFECTIVE_START_DATE <= SYSDATE
AND EFFECTIVE_END_DATE >= SYSDATE

Restricting Datetrack Options Available to Forms Users
When a user edits or deletes a datetracked record, the system displays a window asking
the user what type of update or deletion to perfom. Before it displays this window, the
system calls a custom library event (called DT_SELECT_MODE). It passes in the list of
buttons that DateTrack would normally display (such as Update and Correction).

Your custom code can restrict the buttons displayed. If necessary, it can require
that the user is given no update or delete options, and receives an error message
instead. However, it cannot display buttons that DateTrack would not normally display
for the entity, effective date, and operation the user is performing.

If the user chooses Update and future changes exist, the custom library event point may
be executed a second time so your custom code can determine whether the user is given
the two update options: Insert and Replace.

Global Variables
The following global variables can be used at the DT_SELECT_MODE event. They are
not available at any other CUSTOM library event.

Implementation Guide 4-5

Table of Global Variables at DT_SELECT_MODE Event

Global Variable Name Read/Write Description

g_dt_update Read and write Set to TRUE when the product
would normally display the
Update button on the mode
selection window. Otherwise
set to FALSE.

g_dt_correction Read and write Set to TRUE when the product
would normally display the
Correction button on the mode
selection window. Otherwise
set to FALSE.

g_dt_update_change_insert Read and write Set to TRUE when the product
would normally display the
Insert button on the mode
selection window. Otherwise
set to FALSE.

g_dt_update_override Read and write Set to TRUE when the product
would normally display the
Replace button on the mode
selection window. Otherwise
set to FALSE.

g_dt_zap Read and write Set to TRUE when the product
would normally display the
Purge button on the mode
selection window. Otherwise
set to FALSE.

g_dt_delete Read and write Set to TRUE when the product
would normally display the
End Date button on the mode
selection window. Otherwise
set to FALSE.

g_dt_future_change Read and write Set to TRUE when the product
would normally display the All
button on the mode selection
window. Otherwise set to
FALSE.

g_dt_delete_next_change Read and write Set to TRUE when the product
would normally display the
Next button on the mode
selection window. Otherwise
set to FALSE.

Important: Custom code can change a TRUE value to FALSE. However, if
it tries to change a FALSE value to TRUE, the system ignores this change.

Enabling the DT_SELECT_MODE Event
To enable the DT_SELECT_MODE event, add the following code to the STYLE procedure
in the CUSTOM package, CUSTOM library:

4-6 Oracle Human Resources Management System Implementation Guide (US)

if event_name = ’DT_SELECT_MODE’ then
return custom.after;
else
return custom.standard;
end if;

Example Custom Code
Suppose you wanted to stop the Delete mode button from being displayed on the Mode
Selection window when DateTrack would normally make it available. You could add the
following code to the EVENT procedure in the CUSTOM package, CUSTOM library:

if (event_name = ’DT_SELECT_MODE’) then
if name_in(’GLOBAL.G_DT_DELETE’) = ’TRUE’ then
copy(’FALSE’, ’GLOBAL.G_DT_DELETE’);
end if;
end if;

Create and Modify DateTrack History Views
DateTrack History is available in most windows where you can enter date tracked
information. DateTrack History enables you to track changes made to records and
fields, and by whom. You can select the fields you want to focus on and view the
changed values in those fields over time.

DateTrack History is available from a button on the toolbar.

What Can You Create and Modify?
You can create new views or modify existing views to customize the information
displayed. You can:

• Create a view to join to other tables. This enables you to use a meaningful table
name as a column header. By contrast, the base table can only display an ID of
another table.

• Determine the fields to display, by modifying the views.

• Modify views to display column names aliases for the meaningful names you have
defined for descriptive flexfield segments.

• Determine which view to use dependent on criteria of your choice, such as the
Business Group ID.

What Happens When You Request DateTrack History?
When you request DateTrack History, Oracle HRMS extracts the information from one of
three sources. The application looks first for the alternative view specified by the custom
library and if one exists, extracts the information from there. If there isn’t an alternative
view specified, it looks next for a default DateTrack History view from which to extract
the information, and if that doesn’t exist, it extracts the information from the base table. It
then displays the information in the DateTrack History Change Field Summary window.

The name of the default DateTrack History view is the same as that of the base
table, except that the suffix _F is replaced by _D. For example, if the base table is
PER_ALL_PEOPLE_F, the application looks for a view called PER_ALL_PEOPLE_D.

Note: It is possible to define more than one History view for each
datetracked table, so there might be examples where the History view
name does not follow this naming convention.

Implementation Guide 4-7

When a view exists, the application reads the information about the entity name and
column prompts from the DateTrack tables:

• DT_TITLE_PROMPTS_TL

• DT_DATE_PROMPTS_TL

• DT_COLUMN_PROMPTS_TL

If the column information is not available in the DT_COLUMN_PROMPTS_TL table, the
information is obtained from the view definition. The DateTrack History code modifies
the column names of the table or view before presenting them. Underscores are replaced
by spaces and the first letter of each word appears in upper case.

Rules for Creating or Modifying DateTrack History Views
DateTrack History views should have the same name as the corresponding base
table, wherever possible, except that the suffix _F is replaced by _D. If you are using
custom library to specify an alternative view, the view name is different, but you should
still use the _D suffix.

All views must contain the following columns:

• The primary key of the base table

• The effective start date of the base table

• The effective end date of the base table

• The last updated date column

• The last updated by column (obtain the actual user name by an outer join to
FND_USER_VIEW).

Note: There is a limit of 35 columns in Date Track History views. The
primary key, effective start date, and effective end date columns must
be present in the view but cannot be seen in the DateTrack History
windows.

Do not edit the supplied DateTrack History view creation scripts. If you want to
customize the supplied DateTrack History views, copy the scripts and modify the copies
instead. After an upgrade, you should check that your customizations are consistent
with the new views supplied with the upgrade. If so, you can rerun your customized
view creation scripts to recreate your customized views.

Update Folder Denitions When Adding Columns
Adding an additional column to DateTrack History views can affect the column
order, and if you have previously saved folders, the data displayed and the prompts
might no longer match up. This is because the Date Track History Change Field
Summary window displays the column names in alphabetical order, but with the
effective date values in the first two columns.

We recommend that you update any folder definitions straight after you apply the new
view to the database, otherwise the data displayed and the prompts in folders might
not match up in future.

Example of a DateTrack History View
In this example, the base table is PAY_GRADE_RULES_F.

4-8 Oracle Human Resources Management System Implementation Guide (US)

create or replace view pay_grade_rules_d
(grade_rule_id,
effective_start_date,
effective_end_date,
maximum,
mid_value,
minimum,
grade,
rate_type,
last_update_date,
last_updated_by)
AS
select GRULE.grade_rule_id,

GRULE.effective_start_date,
GRULE.effective_end_date,
GRULE.maximum,
GRULE.mid_value,
GRULE.minimum,
GRADE.name,
HR1.meaning,
GRULE.last_update_date,
FUSER.user_name

from pay_grade_rules_f GRULE
, per_grades GRADE
, hr_lookups HR1
, fnd_user_view FUSER
where GRADE.grade_id = GRULE.grade_or_spinal_point_id
and HR1.lookup_code (+)= GRULE.rate_type
and HR1.lookup_type (+)= ’RATE_TYPE’
and FUSER.user_id (+)= GRULE.last_updated_by

Using Alternative DateTrack History Views
Before the DateTrack History Change Field Summary window displays, the system calls
a custom library event (called DT_ CALL_HISTORY). It passes in details of the current
record and which DateTrack view the product normally uses. You can write custom code
to change the name of the view DateTrack History should use. Your code can include IF
statements that determine which view to use in different circumstances.

Note: It is your responsibility to ensure that the alternative view exists
in your database and the relevant users have select access to it.

For each additional view, you need to insert extra rows into the DT_TITLE_PROMPTS_TL
and DT_COLUMN_PROMPTS_TL tables, based on the view name. Use SQL*Plus scripts
to maintain the extra table contents and view definitions.

Global Variables
The following global variables can used at the DT_CALL_HISTORY event. They are not
available at any other CUSTOM library event.

Implementation Guide 4-9

Table of Global Variables

Global Variable Name Read/Write Description

g_dt_basetable Read only Name of the database table where the data is
held. For example: PER_ALL_PEOPLE_F

g_dt_uidfield Read only Name of the surrogate ID on the database table. For
example: PERSON_ID

g_dt_uidvalue Read only The surrogate ID value for the current record.

g_dt_alternative_history_
view

Read andWrite Usually DateTrack History queries the history
data from a database view that has the same
name as the database table, except the _F suffix
is changed to _D. In that case this global variable
is null. For example when the database table is
PER_ALL_PEOPLE_F, the PER_ALL_PEOPLE_D
view is used. If you want to use a different view, set
this global variable to the actual view name (even if
the variable is initially null).

Enabling the DT_ CALL_HISTORY Event
To enable the DT_CALL_HISTORY event add the following code to the STYLE
procedure in the CUSTOM package, CUSTOM library:

if event_name = ’DT_CALL_HISTORY’ then
return custom.after;

else
return custom.standard;

end if;

Example Custom Code
Suppose you want to use a different view whenever the standard product would
normally use the PER_ALL_PEOPLE_D view. Add the following code to the EVENT
procedure in the CUSTOM package, CUSTOM library:

if (event_name = ’DT_CALL_HISTORY’) then
if name_in(’global.g_dt_basetable’) = ’PER_ALL_PEOPLE_F’ then
copy
(’NAME_OF_OTHER_VIEW’
,’global.g_dt_alternative_history_view’
);

end if;
end if;

List of DateTrack History Views
The supplied views and view creation scripts are as follows:

Table of DateTrack History Views

View Name Based on (table) View Creation
Script

BEN_BENEFIT_CONTRIBUTIONS_D BEN_BENEFIT_CONTRIBUT
IONS_F

pedtbbcf.sql

HXT_ADD_ASSIGN_INFO_D HXT_ADD_ASSIGN_INFO_F hxtdtaas.sql

4-10 Oracle Human Resources Management System Implementation Guide (US)

View Name Based on (table) View Creation
Script

HXT_ADD_ELEM_INFO_D HXT_ADD_ELEM_INFO_F hxtdtael.sql

HXT_SUM_HOURS_WORKED_D HXT_SUM_HOURS_
WORKED_F

hxtdtsum.sql

HXT_TIMECARDS_D HXT_TIMECARDS_F hxtdttim.sql

PAY_ALL_PAYROLLS_D PAY_ALL_PAYROLLS_F pydtpayr.sql

PAY_BALANCE_FEEDS_D PAY_BALANCE_FEEDS_F pydtbalf.sql

PAY_CA_EMP_FED_TAX_INFO_D PAY_CA_EMP_FED_TAX_
INFO_F

pycadtfd.sql

PAY_CA_EMP_PROV_TAX_INFO_D PAY_CA_EMP_PROV_TAX_
INFO_F

pycadtpv.sql

PAY_COST_ALLOCATIONS_D PAY_COST_ALLOCATIONS_
F

pydtpcst.sql

PAY_ELEMENT_LINKS_D PAY_ELEMENT_LINKS_F pydtelin.sql

PAY_ELEMENT_TYPES_D PAY_ELEMENT_TYPES_F pydtetyp.sql

PAY_FORMULA_RESULT_RULES_D PAY_FORMULA_RESULT_
RULES_F

pydtfmrr.sql

PAY_GRADE_RULES_D PAY_GRADE_RULES_F pydtgrdt.sql

PAY_INPUT_VALUES_D PAY_INPUT_VALUES_F pydtinpv.sql

PAY_LINK_INPUT_VALUES_D PAY_LINK_INPUT_VALIES_F pydtliiv.sql

PAY_ORG_PAYMENT_METHODS_D PAY_ORG_PAYMENT_
METHODS_F

pydtpaym.sql

PAY_PERSONAL_PAYMENT_
METHODS_D

PAY_PERSONAL_PAYMENT_
METHODS_F

pydtppym.sql

PAY_STATUS_PROCESSING_RULES_D PAY_STATUS_PROCESSING_
RULES_F

pydtstpr.sql

PAY_USER_COLUMN_INSTANCES_D PAY_USER_COLUMN_
INSTANCES_F

pydtucin.sql

PAY_USER_ROWS_D PAY_USER_ROWS_F pydtussrr.sql

PER_ALL_ASSIGNMENTS_D PER_ALL_ASSIGNMENTS_F pedtasgn.sql

PER_ALL_PEOPLE_D PER_ALL_PEOPLE_F pedtpepl.sq

PER_ASSIGNMENT_BUDGET_VALUES_
D

PER_ASSIGNMENT_
BUDGET_VALUES_F

pedtabv.sql

PER_COBRA_COVERAGE_BENEFITS_D PER_COBRA_COVERAGE_
BENEFITS_F

pedtccbf.sql

PER_GRADE_SPINES_D PER_GRADE_SPINES_F pedtgrsp.sql

PER_SPINAL_POINT_PLACEMENTS_D PER_SPINAL_POINT_
PLACEMENTS_F

pedtsppp.sql

Implementation Guide 4-11

View Name Based on (table) View Creation
Script

PER_SPINAL_POINT_STEPS_D PER_SPINAL_POINT_STEPS_
F

pedtspst.sql

PER_PERSON_TYPE_USAGES_D PER_PERSON_TYPE_
USAGES_F

pedtptu.sql

PER_CONTRACTS_D PER_CONTRACTS_F pedtctc.sql

Batch Element Entry

Creating Control Totals for the Batch Element Entry Process
Batch control totals provide a mechanism for customizing the validation of batch
contents to meet particular user requirements. This validation may be done for
example, by doing total, or average operations on the batch lines and matching the values
with values entered by the user.

Batches can be entered and viewed using the Batch Header window, and other windows
available from it.

Setting Up Control Totals
A control total type is predefined for checking the number of lines in a batch (control
type = Total Lines).

You can create control totals to sum numerical element input values by defining a lookup
for the lookup type CONTROL_TYPE. See: Setting Up BEE Validation Using Control
Totals, Oracle HRMS Configuring, Reporting, and System Administration Guide

If you need other kinds of control totals, you can define lookups for them, but you must
also write a validation procedure for checking the batch against the total. The next
section explains how to write this validation procedure.

Creating the SQL Code
The following procedure is delivered with a null statement in it. Replace the null
statement with your customized control total validation code:

• Procedure: check_control

• Package: pay_user_check

• File: pyusrchk.pkb

Parameters
The check_control procedure is executed during the batch validation phase of the BEE
process. The parameters passed to this procedure are:

• p_batch_id The batch ID.

• p_control_type The name of the control total.

• p_control_total The user entered value to match.

Two other parameters (p_status, p_message) are used in this procedure to return an error
code and message to the system if the batch control total validation fails.

4-12 Oracle Human Resources Management System Implementation Guide (US)

Batch Lines
Each line of batch data is stored as a record in the pay_batch_lines table. The data is
stored in the fields value_1 - value_15. The number of the field corresponds to the
column in the Batch Lines window.

For example, if you want to validate a check digit, you could use the following PL/SQL
code as a basis:

PROCEDURE check_control
(
p_batch_id IN NUMBER,
p_control_type IN VARCHAR2,
p_control_total IN VARCHAR2,
p_status IN OUT VARCHAR2,
p_message OUT VARCHAR2

) IS
total NUMBER;

BEGIN
-- Check the control type is the one we’re expecting
IF p_control_type = ’CHECK_DIGIT’ THEN
-- Calculate the MOD 10 of total values in value_1

SELECT MOD(NVL(SUM(value_1),0),10) INTO total FROM pay_batch_l
ines

WHERE batch_id = p_batch_id;
-- Compare with the user entered value

IF total <> p_control_total THEN
-- Create the error message to return and set the status to E(rror
)

p_message := ’Control total TOT1 (’ || p_control_total ||
’does not match calculated value (’ || total ||
’)’;

p_status := ’E’;
ENDIF;

ENDIF;
END check_control;

This, however, is a very simplistic example. If batch lines within the same batch
are entered for more than one element then the value columns may vary between
elements. Here is a more complex example to validate the check digit on the input
value ’Identification’:

PROCEDURE check_control
(
p_batch_id IN NUMBER,
p_control_type IN VARCHAR2,
p_control_total IN VARCHAR2,
p_status IN OUT VARCHAR2,
p_message OUT VARCHAR2

) IS
CURSOR c1 IS
SELECT DISTINCT element_type_id
FROM pay_batch_lines
WHERE batch_id = p_batch_id;

--
r1 c1%ROWTYPE;
total NUMBER;
value_num NUMBER;
sqlstr VARCHAR2(200);

Implementation Guide 4-13

c2 INTEGER;
ret INTEGER;

BEGIN
--
-- Check the control type is the one we’re expecting

IF p_control_type = ’CHECK_DIGIT2’ THEN
total := 0;

--
-- Loop through each element in the batch lines

FOR r1 IN c1 LOOP
--
-- Find out the value number that ’Identification’ is in

SELECT display_sequence
INTO value_num
FROM pay_input_values iv,

pay_batch_headers bh,
pay_element_types et

WHERE bh.batch_id = p_batch_id AND
iv.business_group_id = bh.business_group_id AND
et.element_type_id = r1.element_type_id AND
iv.element_type_id = et.element_type_id AND
iv.name = ’Identification’;

--
-- Create an SQL string to add the values

sqlstr := ’SELECT MOD(NVL(SUM(value_’ || value_num ||
’),0),10) ’ ||
’FROM pay_batch_lines ’ ||
’WHERE batch_id = ’ || p_batch_id || ’ AND ’
||’element_type_id = ’’’ ||
r1.element_type_id || ’’’’;

--
-- Call the string using dynamic SQL and put the value in ’total’

c2 := dbms_sql.open_cursor;
dbms_sql.parse (c2,sqlstr,dbms_sql.v7);
dbms_sql.define_column (c2,1,total);
ret := dbms_sql.execute (c2);
ret := dbms_sql.fetch_rows (c2);

--
-- Check we got some values back

if ret > 0 then
dbms_sql.column_value (c2,1,total);

else
total := 0;

end if;
--

dbms_sql.close_cursor (c2);
--
-- Check the total matches the user entered value and create an
-- error message if it doesn’t

IF total <> p_control_total THEN
p_message := ’Check digit expected ’||p_control_total||
’ but got ’||to_char(total);
p_status := ’E’;
END IF;

END LOOP;
END IF;

END check_control;

4-14 Oracle Human Resources Management System Implementation Guide (US)

Payroll Processes

Overview
Oracle Payroll provides you with the flexibility you require to run your regular pay
cycle in the best way to meet your business needs. To do this, we provide you with a
modular batch process called PYUGEN.

PYUGEN
PYUGEN is a generic process that can perform several actions. The Oracle Payroll
system administrator specifies which actions it can perform by registering it with certain
parameter sets and defaults.

The parameter identifies the specific payroll process to execute. These are predefined
in Oracle Payroll; the values are not visible to the user.

The following figure illustrates the payroll processes executed by PYUGEN, and the
typical sequence in which they are performed. Each process performs specific actions
required to calculate and generate your employees’ pay.

Pay Cycle Sequence

hr_400.gif

Checking Registration Details
You can check the registration details for each payroll process using the Concurrent
Programs window. These details are predefined and are protected from change. During
implementation you can add your own versions of these payroll processes to simplify
the running of a pay cycle for your users. For example, you might want to define a
separate payroll run process for each payroll, with different:

• Names

• Security

• Default values for different users

Consult your Oracle Applications System Administrator’s Guide for more information on
registering concurrent programs.

Payroll Action Parameters
Payroll action parameters are system-level parameters that control aspects of the Oracle
Payroll batch processes. It is important to recognize that the effects of setting values for
specific parameters may be system wide.

See: Payroll Action Parameters, page 4-47

Overview of the Payroll Processes
The first process you run in your pay cycle is the Payroll Run process. This process
calculates the gross to net payment for your employees. After the successful completion
of the Payroll Run, you start the Pre-Payments process. This process distributes
employees’ pay over the payment methods employees have requested. It also allocates
payments to third parties.

Implementation Guide 4-15

The next step is to start one of the payment processes to produce payments for
employees:

• MAGTAPE (for example BACS in the UK or NACHA in the US)

• CHEQUE (Cheque Writer or Check Writer)

• CASH (Cash) - for UK only

The payment processes take the unpaid prepayment values allocated to each payment
type and produce the required payment file. It is these processes that actually produce
payments for employees.

The Costing process allocates payroll run results to cost segments. The Transfer to the
General Ledger process transfers cost information to Oracle General Ledger interface
tables.

See Also
Payroll Run Process, page 4-17

Pre-Payments Process, page 4-25

Payment Processes, page 4-28

• Magnetic Tape Process, page 4-29

• Cheque Writer/Check Writer Process, page 4-41

• Cash Process, page 4-47

Costing Process, page 4-60

Transfer to General Ledger Process, page 4-59

Supporting Processes
In addition to this regular cycle of activities there are other processes that support the
correction and completion of each cycle. These include:

• Mark for Retry

• Retry

• Rollback

• QuickPay

• RetroPay

• Advance Pay

• Archive

See the guide Running Your Payroll Using Oracle HRMS for more information about these
supporting processes. See: The Payroll Archive Reporter (PAR) Process, page 4-62 for
information about the Archive process.

Assignment Level Interlocks
The sequence in which the PYUGEN calculates payment is critical to the success of
processing. This is because each process builds upon the results of the previous
process in the sequence. The sequence of the processing is also determined by issues of
data integrity. For example, the Pre-Payments process (which prepares the payments
according to the payment methods) uses the results of the Payroll Run process (which
calculates the gross to net payment).

4-16 Oracle Human Resources Management System Implementation Guide (US)

To ensure correct payments, you cannot change Payroll Run results without also
changing the prepayment results. Oracle Payroll uses assignment level interlock rules
to enforce this.

See: Assignment Level Interlocks, page 4-56.

Payroll Run Process
The Payroll Run process calculates the gross to net payment for your employees.

This process uses payroll actions to represent each payroll run. It identifies which
assignments have payroll actions performed on them - that action is an assignment
action of the type payroll.

The results from processing each element for an assignment are the run result
values. These individual results are accumulated into balances that summarize gross to
net, and in particular the payment balances. Payment balances are taken forward by
Pre-Payments, which is the next process in the regular pay cycle.

Determine Assignments and Elements
The first phase of the Payroll Run process is to determine the assignments and elements
to be included in the current batch. The user specifies these by selecting an assignment
set and element set when initiating the run. The default is All.

The Payroll Run accesses a number of specific entities for processing. It identifies whether
they are used for select, update, delete or insert. Where an entity is datetracked, the
Payroll Run process also identifies any datetracked information that has changed, and
actions it accordingly. For example, an update of a datetracked entity may require an
actual insert into the table.

The following list indicates the main entities for processing:

Key: S = Select, U = Update, D = Delete, I = Insert.

Entity Name Datetracked? Processing

Payroll Action No S, U, I

Assignment Action No S, U, I

Element Entry Yes S, U

Element Entry Value Yes S, U

Person Latest Balance No S, U, I

Assignment Latest Balance No S, U, I

Balance Context No S, U, I

Action Context No S, I

Run Result No S, U, I

Run Result Value No S, U, I

Implementation Guide 4-17

Process Each Assignment
The Payroll Run applies the appropriate processing to each assignment. For a specific
payroll run, this is identified by an assignment action. The following ’pseudo code’
represents the processing that occurs:

get assignment status();
if assignment status is ’Process’ then

load element entries and values ();
load latest balances ();
while(entries to process)

create run results if necessary ();
set up User Defined Context Area ();
/* third party hook */
get processing mode for entry ();
if(we are not skipping) then

look for formula to run ();
if(there is formula to execute) then

execute formula ();
if(error detected) then

handle error ();
end if;

end if;
post run results and feed balances ();

end if ;
end while ;
flush run results and values ();
write / update latest balances ();

end if ;

Element Entry Processing
Element entries hold the entry values that are input to the gross to net calculations. The
result of processing each entry value is a run result value. Before processing each
assignment, Payroll Run loads all entries for that assignment into memory. This includes
any pre-inserted run results and values.

By default, nonrecurring entries are only fetched if they are unprocessed in the current
pay period. Recurring entries are always fetched and processed when you submit a
payroll run. You must use frequency rules, element skip formulas, or element sets to
limit the inclusion of recurring entries.

If you make an additional entry of a recurring element, the Payroll Run processes the
additional entry as a nonrecurring entry. (Additional entries are not used by Oracle
Payroll in the US.)

Processing Priority
The sequence of processing entries for each assignment is determined by the processing
priority of the element, and the subpriority order of each entry. When the subpriority
is null, entries are ordered by:

1. processing priority

2. element_type_id

3. entry type

Payroll Run checks for Overrides and Replacement entries before calculating normal
entries and additional entries for non-US legislations.

4-18 Oracle Human Resources Management System Implementation Guide (US)

If subpriority is specified, the in-memory list is reordered to reflect this. Adjustments
and target entries are kept together.

Termination Processing
Payroll Run implements the entry processing rules for a terminated assignment.

For the US legislation, this means that if the date earned of Payroll Run is between the
actual date of termination and the final process date for an assignment, the assignment is
processed only when there exists an unprocessed nonrecurring entry for the assignment.

For non-US legislations, a user can also enter a last standard process date. This means that
if the date earned of Payroll Run is between the last standard process date and the final
process date for an assignment, the assignment is processed only when there exists an
unprocessed nonrecurring entry for the assignment.

An additional entry counts as nonrecurring for termination purposes.

Create Run Results and Values
For every entry that is processed there must be a run result; for each entry value there
must be a run result value. If these do not already exist, by pre-insertion, then the
appropriate run results and values are created in memory and are inserted into the
database, ready for Payroll Run to process.

For example, a nonrecurring entry may have pre-inserted run results and values if you
have entered the Pay Value.

Pre-inserted values are automatically deleted by a rollback or mark for retry
operation, and Payroll Run re-establishes them. However on the rollback of a
reversal, nonrecurring pre-inserted values are re-established.

At the same time, Payroll Run uses the current exchange rate for the payroll to perform
any currency conversions. This happens if the input and output currency codes of the
element are different. You can define an element with any input currency.

If the element contributes to a payment balance for the employee the output currency
must be the base currency of the Business Group. Payment balances can be converted
into other currencies as part of the PrePayments process linked to payment methods.

Set Up Contexts
Before an entry is processed, Payroll Run sets up the contexts that are needed by
FastFormula for Payroll and Element Skip formulas. This may include legislative specific
contexts. The values of all the contexts are held in a special data structure, known as
the User Defined Context Area (UDCA). The generic contexts that are always created
provide additional route information for the formula. These are:

• ORIGINAL_ENTRY_ID

• ELEMENT_ENTRY_ID

• BUSINESS_GROUP_ID

• PAYROLL_ACTION_ID

• PAYROLL_ID, ASSIGNMENT_ID

• ASSIGNMENT_ACTION_ID

• DATE_EARNED

• ELEMENT_TYPE_ID

Implementation Guide 4-19

• TAX_UNIT

• JURISDICTION

• SOURCE_ID

A special third party interface is called so that the value of legislative specific contexts
can be set. This has been used extensively for US legislations.

Run Element Skip Rules
Element Skip Rules enable you to define specific formula criteria to determine whether
an entry is processed or not. A skip rule formula must return a skip_flag value of Y or N.

Where appropriate, a skip formula is fired and any input values are taken from the in
memory run result values (to allow for any currency conversion). When looking at the
skipping of an adjustment, the formula inputs are taken from the entry values of the
normal target entry, not the adjustment entry itself.

There may also be legislative-specific skip rules predefined for specific elements. This
additional third party skip hook is called at the same time that the internal function looks
for a normal skip formula. This legislative specific skip rule is defined in ’C’ code.

Note: Mexican elements do not employ skip rules by default. They
must be enabled manually.

Element Entry Processing Modes
Payroll Run uses processing modes to control whether entries of an element are
processed. At first, the mode is set to indicate that it should process. Then, depending
on the entry type and whether a skip rule has fired, a different mode may be set. This
controls the processing of the current entry and (possibly) other entries of the
same element. For example, when processing an Override entry, the mode is set to
Override. This mode persists throughout the processing of this element, so no other
entries are processed.

Create and Maintain Balances
Payroll Run needs to be able to access and maintain balances and latest balances. In
summary, the Payroll Run:

• Loads any existing assignment- or person-level latest balances into memory

• Checks all loaded balances for expiry, and sets them to zero if they have expired

• Creates new in memory latest balances, where required

• Adds the appropriate run results to the current value of balances in memory

• Writes the new balances to the database (for some balance dimensions types only)

For more information about latest balances, see: Balances in Oracle Payroll, page 4-73.

Loading Balances Into Memory
Any existing assignment-level or person-level latest balances (and any associated balance
contexts) are loaded into memory before any entries are processed. The basic data
structure for this is a doubly linked list, kept ordered by balance_type_id. The balance
values themselves are held and manipulated as Oracle Numbers. The fetch is a union, in
this case because the two types of balances are held in separate tables.

4-20 Oracle Human Resources Management System Implementation Guide (US)

Expiry Checking of Latest Balances
Latest balances should expire (that is, return to zero) at a time determined by their
dimension. For example, a YTD (Year to Date) balance expires at the end of the year.

All loaded balances are checked for expiry. If they have expired, they are set to zero. The
expiry step is entirely separate from the loading step, due to the need to deal with
balance context values.

To process expiry checking, the Payroll Run calls Expiry Checking code that is held
in a PL/SQL package. To prevent performance from being degraded, the number of
accesses required is cut down by making certain assumptions about the different expiry
checking levels. The assumptions made are determined by the balance’s expiry checking
type. See: Expiry Checking Type, page 4-78.

Creation of In Memory Latest Balances
Not all balances are loaded from the database, some have to be created. Once they have
been created, they have to be maintained.

For some dimension types, the newly created or updated balances must be written
to the tables.

A balance’s dimension type determines how it is treated by the payroll run. For
example, balances with the dimension type F are fed but not stored, so the Payroll Run
creates a balance in memory. For a description of the dimension types, see: Dimension
Type, page 4-77.

There are three places in the code where in memory balances are created. One place is for
dimension types A, P and F, and two places are for type R.

• An in memory balance is created when a formula has just accessed a defined balance
with the dimension type A, P or F and which is not already held as an in memory
balance. The in memory balance is created using the value accessed by the formula.

• An in memory balance with a value of zero is created before the execution of
a formula, if the formula accesses a defined balance with the run level balance
dimension type (R). (A run level balance must be zero, by definition.)

• In memory balances with a value of zero are created before balance feeding time if
the code is attempting to feed defined balances with run level dimension types (R).

The corollary of the above rules is that, except for the Run Level dimension type, a
latest balances can only be created for a particular defined balance when that balance is
accessed by an executed formula.

Run Results Added to In Memory Balances
Next, the appropriate run results are added to the current value of the balance.

A summary of the algorithm that is used is:

1. For each processed run result, look at the balance feeds, which identify the balance
types that are potentially fed by each run result value.

2. Scan the in memory balances to see if there are any potential feeds.

3. If there are, perform feed checking.

The feed checking strategy is determined by the feed checking type on the
appropriate balance dimension. See: Feed Checking Type, page 4-77.

4. If the result of feed checking is that the run result should feed the
balance, then: balance value = balance value + (result value * scale).

Implementation Guide 4-21

In the case of run result values that might feed run level balances, Payroll Runmight need
to create them in memory, before feed checking occurs. Since Payroll Run cannot identify
which balances might be required at this point, it has to create all those it might need.

In practice, this means it creates balances for each of the run level defined balances that
might potentially be fed by the run result being examined.

Note: If the dimension type is R and the feed checking type is set to
S, this represents a special case for United States legislation. A different
algorithm is used in this case.

Writing of In Memory Balances
The contents of the in memory balances (and any associated contexts) need to be written
to the database as appropriate, that is, where the replace flag on the in memory balance
is set. Only balances with a dimension type of A or P are written. This occurs after all
entries have been processed for the current assignment action.

After all element entries have been processed for the assignment, the in memory balance
list is scanned, data is moved to an array buffer and then array inserted or updated on
the database.

Run Formulas
Payroll Run calls FastFormula to enable it to perform its complex calculations.

Note: Even if a formula has been defined against an element using a
formula processing rule, it does not fire if the Pay Value is not null.

The FastFormula Interface
The interface used by Payroll Run to access FastFormula is made up of two
sections, which are:

• The common part of the interface (available to any product)

This sets up pointers from Formula’s internal data structures to the data to be input
to the formula (contexts and inputs) and output from the formula (formula results).

• A special interface

This is designed especially for Payroll Run, and allows access to Formula’s database
item cache.

Execution of FastFormula by Payroll Run
Payroll Run goes through the following steps:

1. Declares that a new formula is executed.

2. Formula tells the run code what formula contexts, inputs and outputs are required.

3. The in memory balance chain is scanned.

If the formula might access any of the defined balances held as latest balances, it
writes the current value of the balance to the FastFormula database item cache.

4. Any formula contexts are satisfied. All the values are taken from the User Defined
Context Area (UDCA).

5. Values that are passed to the formula as ’inputs are’ variables are satisfied. This is
done by looking for a run result value that has an associated Input Value name
matching the input variable name.

4-22 Oracle Human Resources Management System Implementation Guide (US)

6. The outputs that FastFormula has told the run code about are directed to a buffer
area.

Execute the Formula
The third party post formula hook is called. This enables special legislative dependent
functions to manipulate the formula results before they are processed by Payroll
Run. For instance, it enables certain run results to be suppressed.

The formula results are processed.

Processing the Formula Results
Following the execution of a formula, Payroll Run loops through any returned
results, processing them as required by the formula result rules. It looks for a formula
result rule name that matches the formula result that has been returned. There are
several types of result rule, and they are summarized below, from an internal processing
point of view.

Message Rule
If the severity level of the message is fatal, it causes an assignment level
error. Otherwise, the message is written to the messages table. Note that the length of a
message is restricted to the size that can be held in the run result values table (currently
60 characters).

Direct Rule
If the Unit Of Measure is Money, the value is rounded as necessary. Then the run result
value chain is searched for the entry holding the Pay Value and is updated. The replace
flag is set to indicate this.

Indirect and Order Indirect Rule
These two types are grouped together, because they cause very similar
processing. During the processing of the current element entry, all indirects are held on a
temporary chain, and merged into the main entry chain later.

First of all the temporary chain is searched. If there is no existing entry for the element, a
new one is created and added to the chain. Then, in the indirect rule case only, the
appropriate entry value is located and updated with the new value. In the Order Indirect
case, the subpriority of the indirect entry is set to the formula result value.

Note: If two formula result rules target the same input value, the second
result to be processed takes precedence.

Following the processing of all formula results, the chain of indirects is merged into the
main element entry chain at the appropriate point. What is appropriate depends on
the main processing priority and the subpriority (which can be set using the Order
Indirect rule).

Payroll Run prevents the processing priority of an indirect element from being the same
as the element that gives rise to the indirect. However, the form continues to disallow
this. Same priority indirects was provided specifically for United States legislative
requirements.

Same priority indirects can cause problems, however, because they create an endless
loop.

Implementation Guide 4-23

Update Recurring Rule
Payroll Run calls a PL/SQL procedure to find the appropriate element entry to
update. This procedure then performs the date effective update. If this entry happens to
exist further down the entry chain, its value is updated to reflect the change.

Stop Recurring Rule
Payroll Run calls a PL/SQL procedure to find the appropriate element entry to stop. This
procedure then performs the date effective delete.

Run Result Processing
The run result and their associated run result values form the corollary of element entries
and element entry values. The entries express eligibility to certain elements, whilst the
results and values contain the after effect of processing those entries.

During processing, run results and values are held in memory, hung off the in memory
element entry chain. This reflects their close connection in database terms.

Creation of Run Results and Run Result Values
Results and values are created internally in one of three ways:

• Loaded when entries and entry values are loaded - as pre-inserted results, arising
from nonrecurring element entries.

• Created by Payroll Run before processing the appropriate element entry if there are
any missing results and values.

• Created via indirect results.

Defaulting of Run Result Values
Payroll Run handles Hot and Cold defaulting while it checks that results and values
exist. If results and values do already exist, and are null, Payroll Run attempts to default
them.

If currency conversion is required, it is performed at the same time. Internally, it uses
Oracle Numbers for the calculation. Following this, if it is processing an input value with
a ’Money’ Unit of Measure, it performs rounding on the result as necessary.

Writing Results and Values to the Database (Flushing)
The process moves the results and values to a special buffer and then writes the run
results and values to the database (update or insert). It uses array processing techniques
(similar to the technique used by latest balances).

This process is usually referred to as flushing the results and there are two circumstances
that may trigger it:

• If the process is about to execute a formula that accesses a database item not held
in memory. The route for that database item might need to access run results that
have been generated so far in Payroll Run itself. This assumption is made because
there is no way of finding out for sure.

• When all the element entries for the assignment action have been processed, any
remaining results and values are flushed.

Payroll Data Cache
During processing, Payroll Run has to access attributes of certain entities that represent
static definition data. For instance, it may need to know the element name or the balance
feeds for a particular input value. Furthermore, the same data typically requires access
many times over. If this data were selected from the database every time it was needed, it
would cause severe performance degradation.

4-24 Oracle Human Resources Management System Implementation Guide (US)

To resolve this problem, a special static payroll data cache was introduced. All the
appropriate data for the entity is loaded into memory the first time it is accessed. From
then on, any subsequent accesses to the data can go straight to memory.

Pre-Payments Process
The Pre-Payments process prepares the payments generated by the Payroll Run for
payment. It prepares payments for each assignment and inserts the results into
PAY_PRE_PAYMENTS for each payment method for an assignment.

The Pre-Payments process also:

• Calculates the amount of money to pay through each payment method for an
assignment, and converts any currency if the payment method is in a foreign
currency.

• Handles the preparation of third party payments.

For example, garnishments, court orders and child maintenance. Third party
payments are managed through the definition of special payment methods for the
employee.

Setting Up Payment Methods
During implementation, you set up your own specific payment methods with source
account details. When you hire an employee, you can record one or more payment
methods for the employee, and apportion payment by percentage or amount. You can
also record payment methods in different currencies.

The Pre-Payments process prepares payments following the payment methods for each
assignment. There are three predefined payment types that Oracle Payroll processes:

• Cheque/Check

• Magnetic Tape (such as NACHA/BACS)

• Cash (UK only)

You can set up as many payment methods as you require (based on the three predefined
payment types) to support your business needs.

Every payroll has a default payment method. Pre-payments uses the default method
when there is no personal payment method entered for a specific assignment.

Note: You cannot have a default method of type Magnetic Tape. This
is because Magnetic Tape payment methods require knowledge of the
employee’s bank account details, including prenotification details in
the US.

See Prenotification, page 4-26

Payment methods are processed in order of their priority for an assignment. For
example, an employee may want:

1. 50% of the salary to be paid directly into their bank account by Magnetic Tape
payment

2. 100 dollars paid by Cheque/Check

3. 100 dollars paid in Cash

Implementation Guide 4-25

Pre-Payments prepares the payments in priority order, provided that the amount to
be paid covers the payments. If there is less to be paid than the payment methods
specify, the system pays up to 100% and stops. If there is more to be paid than the
payment methods specify, the system adds the excess to the last payment method.

Preparing Cash Payments (UK Only)
If you are using Oracle Payroll to prepare cash payments, you can calculate the
banknote and coinage requirements for each employee. Pre-Payments breaks down
the amount into the individual monetary units for payment and insert the results into
the PAY_COIN_ANAL_ELEMENTS table.

You can define the monetary units for each currency you pay for cash payments
administered through Oracle Payroll. You can also define cash analysis rules to specify
minimum numbers of each denomination of the currency.

Setting Up a Cash Rule
The are two steps to setting up a cash rule:

1. Alter the package body hr_cash_rules

The alteration should test for the name of the cash rule you want to set up and then
perform the payment. For example, if the rule name is ’TENS AND FIVES’ then
enter the following:

if cash_rule = ’TENS AND FIVES’ then
--
hr_pre_pay.pay_coin(6, 10)
hr_pre_pay.pay_coin(3, 5)
--
-- number to pay ---^ ^--- unit value of currency
--
end if;\

Using this cash rule with a currency of dollar results in a minimum of 6 ten dollars
and 3 five dollars being paid (given sufficient funds).

2. Register the rule.

3. Enter the Lookup Values window and query the Lookup type of CASH ANALYSIS.

4. Add the new Cash rule with the meaning and description fields set to TENS AND
FIVES.

5. Use the cash rule when setting up an organization payment method.

Prenotication (US Only)
Prenotification validation (also known as prenoting) applies to payment methods of the
type Magnetic Tape. This validation is performed when bank details require checking
before a payment can be made. For example, when an employee has changed banks
or changed bank details, a payment value of zero is made to the employee’s bank
account. The payment is then made by subsequent methods, or by the default method.

Consolidation Sets
Pre-Payments is run for a consolidation set. A consolidation set is a tag that ties groups
of actions together. You can use a consolidation set to prepay all assignment actions in
the set that have not yet been prepaid. These assignment actions can be for different
payrolls and different time periods. For example, you could use a consolidation set

4-26 Oracle Human Resources Management System Implementation Guide (US)

to force the magnetic tape process to pay both of a company’s payrolls where one
is monthly and one is weekly.

Third Party Payments
Third party payments are post tax deductions from an employee’s salary, that are paid to
organizations or individuals. For example, court orders are payable to a municipal court
whereas child support orders may be directly payable to a spouse, or other individual.

These payments are processed in a slightly different way. The element entry that
produces the run result value for the payment holds details of which payment method to
use. This enables you tomakemore than one entry of a third party payment element to an
assignment, with each entry representing a payment to a different party. For example, an
employee can pay a third party element of Child Support to two different people.

Third party payments can only be made by magnetic tape or cheque/check. Cash
payments are not allowed. In addition, these methods pay the full amount of the
payments, so only one method is used. There is no default method for these payments, so
a payment method must always be specified. US: If the magnetic tape prenote validation
fails, the process creates an error for that assignment.

Exchange Rates
Pre-Payments calculates the currency conversion if the payment is in a different currency
to that of the remuneration balance (the element output currency in the case of third
party payments). If the process cannot find the exchange rate for the two currencies, it
creates an error for the assignment.

Overriding Payment Method
You can specify an overriding payment method when making a prepayments run. This
method overrides the personal payment methods, so the full amount of the payment
is made by the overriding method. The only exceptions are the third party payments;
these are paid by the method specified in the element entry.

The overriding payment method can be either:

• Cash

• Cheque/check

You cannot specify magnetic tape payments as an override method, as this type of
payment requires prior knowledge of bank account details.

The Process
The Pre-Payments process creates payroll actions and assignment actions. The
assignment actions are based on assignment actions of the payroll/consolidation set
specified that do not have interlocks to a prepayment process. The interlocks guarantee
that Payroll Run cannot be rolled back until Pre-Payments is rolled back. Thus, the new
assignment actions are created with interlocks to the run’s assignment actions.

See: Assignment Level Interlocks, page 4-56

Chunking
The assignment actions are split into groups called chunks, the size of which are denoted
by the CHUNK_SIZE action parameter in the PAY_ACTION_PARAMETERS table. The
process could spawn several threads (child processes), depending on the THREADS
action parameter. Each thread then picks a chunk to process, processes the assignment

Implementation Guide 4-27

actions and then picks another chunk until all the chunks are processed. The number of
threads can be used to enhance performance on multiprocessor machines.

PL/SQL Procedures
The main part of the C process (the section that performs the payment), is a harness for
PL/SQL procedures. The PL/SQL procedures create the entries in the Pre-Payment table.

The threads process the assignment actions by:

• Retrieving the third party details and recording third party payments as defined by
the personal payment methods

• Retrieving the value for the assignment’s remuneration balance using the PL/SQL
balance functions

• Recording payment of this value as defined by the payment methods

Error Handling
Errors encountered while processing can be at two levels:

• Payroll action level

These errors are fatal.

• Assignment level

These errors occur while processing assignment actions. If an error is encountered
at this level, it marks the assignment action’s status as in Error, and continues
processing. If the process then completes, it marks the payroll action status as
Complete.

Using the MAX_ERRORS_ALLOWED action parameter you can set the number of
assignment errors that can be processed before an error should be raised at payroll action
level. If MAX_ERRORS_ALLOWED is not found then the chunk size is used as a default.

All the error messages are written to the PAY_MESSAGE_LINES table with a more
detailed explanation in the log file.

This method of handling errors enables Pre-Payments to continue processing if minor
errors are encountered. For example, if Pre-Payments has thousands of assignments to
process and a few are paid by cash but the currency details have not been loaded, the
process creates an error for the assignments with cash payments ("Process unable to
perform the cash breakdown"). Most assignment actions complete, only the assignments
with errors have to be rerun.

Payment Processes
After running the Pre-Payments process to prepare the results for payment (according to
the payment methods), you produce payments for your employees.

With Oracle Payroll, you can run the following types of payment process:

• The Magnetic Tape process - MAGTAPE

See: Magnetic Tape Process, page 4-29

• The Cheque process - CHEQUE

See: Cheque Writer/Check Writer Process, page 4-41

• The Cash Payments process - CASH (UK only)

See: Cash Process, page 4-47

4-28 Oracle Human Resources Management System Implementation Guide (US)

The payment processes take the unpaid prepayment values allocated to each payment
type and produce the required payment file.

You can also record any manual payments you make to a specific employee. These
payments are not handled by the Payments processes. Recording a manual payment has
the effect of marking the prepayment as paid.

Magnetic Tape Process
The Magnetic Tape process generates the payment due and writes the data to a file on
magnetic tape. It is this tape that is taken to the bank for payment.

There are two types of magnetic tape file, which are created differently:

• Payments

• End of year tax reporting

The actual format of these tapes is legislation specific.

The tape process is a simple ’C’ harness which calls Oracle stored procedures and
FastFormula formulas to produce the required tape file. The routine is generic: you
can use it for any task that requires magnetic tape reporting. The actual structure and
content of the tape is defined entirely by the stored procedure and a series of formulas.

Some examples that use the routine are:

• BACS

• NACHA

• W2

• P35 submissions (and equivalent in other countries)

Note: The order of the entries in the magnetic file is critical. Therefore
the Magnetic Tape process cannot run with multiple threads (unlike the
PrePayments or Cheque/Check Writer processes).

See also:

The Payroll Archive Reporter (PAR) Process, page 4-62

Running the Magnetic Tape Payments Process
The payroll assignment action creation code is the entry point to the Magnetic Tape
Payments process. Employee magnetic tape payments are recorded in Oracle HRMS as
payroll and assignment actions with interlocks to the relevant pre-payment assignment
actions. The interlocks prevent the pre-payments actions being rolled back while the
magnetic tape actions exist.

Third party payments (such as the company’s health plan contributions) do not result
in payroll and assignment actions, and therefore would use the magnetic tape report
interface.

Batch Process Parameters
You run PYUGEN with the following parameters:

• consolidation_set_id - mandatory

Defines which set of unpaid pre-payments are paid.

• payment_type_id - mandatory

Implementation Guide 4-29

Defines the driving PL/SQL procedure.

• effective_date - optional

Identifies the effective date for processing.

• payroll_id - optional

Restricts the assignments processed to those on the specified payroll on the effective
date

• start_date - optional

Specifies how far back the process searches for target prepayments. If this parameter
is not specified, then the process scans back to the beginning of time.

• organisation_payment_method_id - optional

Creates assignment actions interlocking to unpaid prepayments for that payment.

• legislative - optional

Free-format parameters, available to all payroll actions. Your localization team may
use these to pass in a number of legislation-specific parameters, made accessible to
the payroll action through the entity horizon.

PL/SQL Procedure for the Payment Type
The system uses the PL/SQL driving procedure specified for the payment type on the
database (for example, <package name>.<procedure name>). The PL/SQL procedure for
the Magnetic Tape Writer process must drive off the assignment actions and not further
restrict the assignments processed. Further restricting the assignments presents the
danger of leaving some magnetic tape assignment actions never processed. When the
process first runs the PL/SQL, one of the parameters passed is the payroll action id
(PAYROLL_ACTION_ID).

The Magnetic Tape process actions prepayments with an effective date on or before the
effective date of the magnetic tape action. The magnetic tape effective date defaults to
session date in an AOL environment, and sysdate outside AOL.

Output Filenames
The magnetic tape file generated is named as per the normal file-naming standards:

p<trunc(conc_request_id, 5)>.mf

The file name is padded with zeros if the length of the request id is shorter than five
characters, (for example, p03451.mf).

It is written to the $APPLCSF/$APPLOUT directory, if $APPLCSF is defined, and
otherwise to $PAY_TOP/$APPLOUT.

Several other files can be produced by this process. You can use these files to audit the
assignments that are being processed. The audit files are created in the same way, except
that the file extension .a<file_number>. So if a formula returns a value for audit file 6
then a file with the extension .a6 is created in the correct directory using the concurrent
request id as described above.

Running Magnetic Tape Reports
Magnetic Tape reports are not recorded as payroll and assignment actions. The entry
point is the specific Magnetic Tape code, PYUMAG. The PL/SQL determines which
assignments to process.

4-30 Oracle Human Resources Management System Implementation Guide (US)

Mandatory Parameters
• Driving PL/SQL procedure (<package name>.<procedure name>)

• Output file (full pathname included)

Optional Parameters
• Audit file prefix (the prefix to the extension, plus the full path)

• Effective date (the parameters to the driving PL/SQL procedure)

The optional parameters to the PL/SQL must be tokenised, so that the generic tape
writer process can populate the PL/SQL tables for parameter name and parameter
value. These tables constitute the interface between the generic writer process and the
driving PL/SQL procedure.

See: The PL/SQL Driving Procedure, page 4-33

The magnetic tape action only processes formulas with an effective date on or before the
effective date of the magnetic tape action. The magnetic tape effective date defaults to
session date, in an AOL environment, and sysdate outside AOL.

Output Filenames
The magnetic tape filename is generated if it is not supplied to the process. The filename
is in the format:

o<trunc(conc_request_id, 5)>.mf

When an audit file prefix is not set but the process tries to write to an audit, the
concurrent request id is used as the prefix and .out used as the extension. In these
circumstances all audit returns are written to this file.

SRS Denitions
Using SRS, the generic tape writer process is defined once as an executable. You can then
define any number of concurrent programs that invoke that executable. Each concurrent
program can have its own set of parameters, its own hidden parameters, defaults and so
on. For example, we can define two concurrent programs:

• W2 report

• Illinois Quarterly State Tax report

They would both use the magnetic tape writer executable PYUMAG, each with a hidden
parameter specifying the appropriate PL/SQL procedure, and possibly, each with specific
parameters. They appear as completely distinct reports to the user. This would be set
up in the SRS process interface.

Similarly, magnetic payments can be made to appear as distinct processes to the user
- the only difference is that the payment type is the hidden parameter, and the generic
code determines the driving PL/SQL procedure from that.

How the Magnetic Tape Process Works
Magnetic tapes are usually broken down into:

• Records

• Fields

The sequence in which the process writes the records to tape follows strictly defined
rules. As a result, you can write a piece of code to return the name of the next record to
write to tape.

Similarly, the actual records have strict field place and length requirements. For example:

Implementation Guide 4-31

Record Fields

Tape Header Batch Id, Company Name, Batch Record
Length, and so on

Employee Employee Id, Salary, Age, Job, and so on

Tape Footer No. of Records Processed, Salary Total, and so
on

C Harness, PL/SQL, and Formulas
The following figure illustrates the Magnetic Tape process.

A C code harness performs the file handling (opening, closing and writing to files), and
enables the PL/SQL and the formulas to interface.

The driving PL/SQL code sequences records by returning the name of a formula.

Each formula writes one type of record, such as the Tape Header, to tape. It defines
the contents of the record.

The process of getting the formula and record name, then writing the record to tape is
repeated until all the records are processed.

Context and Parameter Values
The driving PL/SQL determines which type of record is required at any stage of the
processing, and uses context and parameter values to communicate with the formula.

The following figure illustrates how the C code acts as an interface between the PL/SQL
and formula, and how the data is passed as context values.

Context Values
Formulas use database items to reference variable values. For example, the employee
and assignment number could be different for each run of the formula and record.

The database item is held within the database, which consists of components to make up
a SQL statement. As the value could be different for each run of the formula, the ’where’
clause of the statement is slightly different. This is done by substituting key values into
the ’where’ clause that uniquely select the required value. These substitution values are
known as context values.

Context values are set by the driving PL/SQL procedure that places the values into a
PL/SQL table. The PL/SQL table is passed back to the C code, which in turn places it
in the formula structure.

Parameter Values
Parameter values are used to store the variable data to be transferred between the formula
and the PL/SQL. For example, the running totals are passed to the formula in this way.

The parameters can be:

• Passed into the C process from the command line

4-32 Oracle Human Resources Management System Implementation Guide (US)

• Created by the driving PL/SQL procedure

• Created by the formula

Only the driving PL/SQL procedure and the formula can update the values.

The PL/SQL Driving Procedure
The PL/SQL driving procedure determines the format of the magnetic tape file. You can
write this procedure from scratch by opening cursors processing a particular formula
for each fetch of the cursor, or you can use the generic PL/SQL. The generic PL/SQL
drives off the magnetic tape batch tables.

The interface between the ’C’ process and the stored procedure makes extensive use
of PL/SQL tables. PL/SQL tables are single column tables that are accessed by an
integer index value. Items in the tables use indexes beginning with 1 and increasing
contiguously to the number of elements. The index number is used to match items in the
name and value tables.

The names of the tables used to interface with the PL/SQL procedure are:

• pay_mag_tape.internal_prm_names

• pay_mag_tape.internal_prm_values

• pay_mag_tape.internal_cxt_names

• pay_mag_tape.internal_cxt_values

The first two tables (pay_mag_tape.internal_prm_names and pay_mag_tape.internal_
prm_values) are used to pass parameter details to the PL/SQL and formula. These
are reserved for the number of entries in the parameter tables and the formula ID
that is to be executed. The second two tables (pay_mag_tape.internal_cxt_names and
pay_mag_tape.internal_cxt_values) are used to set the context rules for the database
items in the formula. These are reserved for the number of entries in the context tables.

The Generic PL/SQL
The Magnetic Tape process uses generic PL/SQL that drives off several tables that contain
cursor names. These cursors and tables control the format of the magnetic tape.

These cursors retrieve three types of data:

• Data that is used in subsequent cursors

• Data that is to be used as context value data

• Data to be held as parameter/variable data

Example
Here are two select statements as examples:

cursor business is
select business_group_id,
’DATE_EFFECTIVE=C’, effective_start_date
from per_business_groups
cursor assignment is
select ’ASSIGN_NO=P’, assignment_id
from pay_assignments

In the above example, the first select (DATE_EFFECTIVE) is a context value that is
passed to a subsequent formula. The business_group_id column is retrieved for use in
subsequent cursors. It is accessed by using a function described later.

The second select (ASSIGN_NO=P) is used as a parameter.

Implementation Guide 4-33

When the cursor is opened, it assigns rows in a retrieval table that it can select into
(the number of rows depends on the number of columns retrieved by the cursor). For
example, if the above cursors were used, and the previous example was run, the retrieval
table would look like this:

After First Run After Second Run

50000 50000

DATE_EFFECTIVE= DATE_EFFECTIVE=C

16-MAR-1997 16-MAR-1997

ASSIGN_NO=P

50367

Functions to Access Data
Some cursors require access to data previously selected. This can be achieved in two
ways:

• If the column was selected as a context or an individual column (like business
group in the previous example), use the get_cursor_return function. It returns the
value, given the cursor name and the column position in the select statement. For
example, to get the business group in the above select statement use the following
command:

pay_magtape_generic.get_cursor_return(’business’, 1)

• Or, select the value as a parameter and access a function that retrieves that value
given the parameter name. For example to get the ASSIGN_NO parameter value use
the following command:

pay_magtape_generic.get_parameter_value(’ASSIGN_NO’)

Context and Parameter Data
The formula requires two types of data:

• Context

• Parameter

The context data is held in PL/SQL tables, which are filled by the PL/SQL with data
retrieved by the cursors, as described above. The context rules are inherited to lower
levels unless the lower level cursor retrieves a different value for that context name. The
PL/SQL always uses the lowest level context value for a particular context. For
example, if the second cursor above retrieved a context value for DATE_EFFECTIVE, this
value would be used for the formula until the cursor is closed. It is at a lower level in
the retrieval table than the previous DATE_EFFECTIVE. When the cursor is closed, the
rows in the retrieval table are reclaimed and the DATE_EFFECTIVE context reverts
to the first one.

The Parameter data is also held in tables, but unlike context values the values are not
level dependent. The formula can access these values by selecting the parameter on the
input line. If the formula returns a value for that parameter, it overwrites the entry

4-34 Oracle Human Resources Management System Implementation Guide (US)

in the table. If the formula returns a parameter that does not exist, the parameter is
entered in the table.

Cursor/Block Table
The driving structure for the package procedure is held in two database tables:

• PAY_MAGNETIC_BLOCKS

• PAY_MAGNETIC_RECORDS (the Formula/Record table, see below)

The PAY_MAGNETIC_BLOCKS table is as follows:

Name Null? Type

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

BLOCK_NAME NOT NULL VARCHAR2 (80)

MAIN_BLOCK_FLAG NOT NULL VARCHAR2 (30)

REPORT_FORMAT NOT NULL VARCHAR2 (30)

CURSOR_NAME VARCHAR2 (80)

NO_COLUMN_RETURNED NUMBER (5)

Example

block_id cursor_name block_name no_of_
select_
values

main_block type

1 company_curs companies 2 Y CA

2 employee_
curs

employees 2 N CA

3 assignment_
curs

assignments 1 N CA

• Block_id is system generated.

• No_of_select_values is the number of columns retrieved by the select statement
specified by cursor_name.

• Main_block signifies the starting block to use. Only one of these can be set to Y
for a given report.

• Type refers to the type of report that the select statement represents.

Formula/Record Table
The PAY_MAGNETIC_RECORDS table is as follows:

Implementation Guide 4-35

Name Null? Type

FORMULA_ID NOT NULL NUMBER (9)

MAGNETIC_BLOCK_ID NOT NULL NUMBER (9)

NEXT_BLOCK_ID NUMBER (9)

LAST_RUN_EXECUTED_
MODE

NOT NULL VARCHAR2 (30)

OVERFLOW_MODE NOT NULL VARCHAR2 (30)

SEQUENCE NOT NULL NUMBER (5)

FREQUENCY NUMBER (5)

Example

formula_
name

block_id seq next_block frequency O/F exec.last

formula 1 1 1 - - N N

formula 2 1 2 2 - N N

formula 3 2 1 - - N N

formula 4 2 2 3 - N N

formula 5 3 1 - - N N

formula 6 2 3 - - N N

formula 7 1 3 - - N N

Formulas/records can be of three general types:

• Standard formulas executed for every row returned from cursor

• Intermediate formulas executed once every x number of rows

• Formula executed depending on the result of the previous formula (overflow
formula)

The table columns are as follows:

• Block id refers to the block that this formula is part of.

• Seq refers to the sequence in the block.

• Next_block column signifies that after this formula has run, the cursor defined by
next_block should be opened and that block’s formula should be run until there are
no more rows for that cursor.

• Frequency is used by the intermediate formula to specify the number of rows to
be skipped before the formula is run.

• O/F (overflow) specifies whether the formula is an overflow. If it is (set to Y), and
if the last formula returned the TRANSFER_RUN_OVERFLOW flag set to Y, then
the formula runs.

4-36 Oracle Human Resources Management System Implementation Guide (US)

Similarly, if the formula is a Repeated overflow (set to R), and the
TRANSFER_RUN_OVERFLOW flag is set to Y then that formula is continually
repeated until the formula does not return TRANSFER_RUN_OVERFLOW set to Y.

• Exec.last can apply to all the types of formula but most commonly the intermediate
formulas. This column specifies that the formula can run one extra time after the last
row has been retrieved from the cursor.

For intermediate formula this column can be set to 4 different values:

• N - Never run after last row returned

• A - Always run after last row returned

• R - Run only if the intermediate formula has run for this cursor

• F - Run only if this is the first run of the formula for this cursor

Note: For overflow and standard formula only N and A are valid.

Using the above specification the formulas could be retrieved in the following sequence:

The generic PL/SQL procedure identifies which type of report to process. It does this by
passing the parameter MAGTAPE_REPORT_ID when calling the process. The previous
figure illustrates how MAGTAPE_REPORT_ID=CA is passed when calling the process.

The Formula Interface
Typically, a magnetic tape consists of a number of record types. Oracle suggests having a
formula associated with (generating) each record type. The formulas do the following:

• Define the field positions in the records

• Perform calculations

• Report on the details written to tape (auditing)

• Raise different levels of error messages

A PL/SQL stored procedure provides the main control flow and determines the order in
which the formulas are called.

The routine uses FastFormula to prepare records The records are written to an ASCII file
in preparation for transfer to magnetic tape. To implement the required actions, there are
more formula result rule types. These are listed below:

Implementation Guide 4-37

Result Rule Types Purpose

TRANSFER This transfers the output parameter to the input
of the stored procedure. The parameter may or
may not be modified by the stored procedure
before being used in the next execution of the
formula.

WRITE TO TAPE This instructs the process to write the result to
the magnetic tape file. This is always a character
string that represents the desired record. The
writes are performed in the order in which they
are returned from the formula.

REPORT FILE This writes the string result to an "audit" file.

ERROR This instructs the process that an ERROR/
WARNING has been detected within the
formula. Thus the process should handle the
error appropriately.

Naming Convention
These are not implemented in the traditional manner using the formula result rules
table. They use the naming convention:

WRITE TO TAPE results are named WRITE_<result_name>.

TRANSFER results follow a similar convention, but the result_name part must be the
name of the parameter. For example, a result company_total_income would be named
transfer_company_total_income.

The REPORT result must identify which file is to be written to. The file number is
embedded in the formula return name For example: REPORT1_<result_name> - this
writes to report/audit file 1.

Reports
Reports can be written during the production of the magnetic tape file. These reports
could be used to check the details that are produced. A number of reports can be created
in the same run. The number can be limited by using the ADD_MAG_REP_FILES action
parameter in the PAY_ACTION_PARAMETERS table.

Each report is accessed by using a prefix that denotes the file, for example, REPORT1_ to
denote report number 1, REPORT2_to denote report number 2, and so on. If a report
number is outside the range of the ADD_MAG_REP_FILES value, an invalid return error
is reported. The report files are opened as and when needed with the names of the
files previously described.

FastFormula Errors
Errors can be of three types:

• Payroll errors

These are identified by a return of ERROR_PAY_<error_name>.

• Assignment errors

These are denoted by ERROR_ASS_<error_name>.

• Warning errors

These are denoted by ERROR_WARN_<error_name>.

4-38 Oracle Human Resources Management System Implementation Guide (US)

The actual messages themselves have to be prefixed with the assignment action id or
payroll action id. This is done to insert the messages into the PAY_MESSAGE_LINES
table. Warning messages are regarded as being at the assignment action level and
require the assignment action id. If no id is supplied, the message is only written to the
log file. No id must be supplied when running a magnetic tape report, since no actions
exist for reports. Only payments have actions.

Example
Here are some examples of the format to use:

Error Message Meaning

ERROR_PAY_TEXT1 = ’50122: Unexpected value’ - Payroll action id 50122 with
message ’Unexpected Value’

ERROR_PAY_TEXT1 = ’:Unexpected value’ - No payroll action id just a
message

ERROR_ASS_TEXT1 = ’56988: Unexpected value’

ERROR_ASS_TEXT1 = ’Unexpected value’

ERROR_WARN_TEXT1 = ’56988: Unexpected value’

ERROR_WARN_TEXT1 = ’:Unexpected value’

Error Handling
Magnetic tape either fully completes the process, or marks the whole run with a status
of error.

Within this there are two types of errors:

• Payroll action level errors, which are fatal

If this form of error is encountered, the error is reported and the process terminates.

• Assignment action level

These can be set up in formulas and result in the error message being reported
and the process continuing to run. This can be used to report on as many errors as
possible during the processing so that they can be resolved before the next run.

The payroll action errors at the end of the run if assignment action level errors are
encountered.

A description of the error message is written to the Log file. Also an entry is placed in
the PAY_MESSAGE_LINES table if the action id is known.

Example PL/SQL
The following piece of PL/SQL code could be used to format a magnetic tape payment
(drives off assignment actions). An alternative to writing a PL/SQL procedure would be
to use the generic procedure and populate the batch magnetic tape tables.

Note: This example only works for a business group of ’MAG Test GB’
(the legislative formula is for GB only).

create or replace package body pytstm1
as
CURSOR get_assignments(p_payroll_action_id NUMBER)

Implementation Guide 4-39

IS
SELECT ppp.org_payment_method_id,ppp.personal_payment_method_id,
ppp.value, paa.assignment_id
FROM pay_assignment_actions paa, pay_pre_payments ppp
WHERE paa.payroll_action_id = p_payroll_action_id
AND ppp.pre_payment_id = paa.pre_payment_id
ORDER BY ppp.org_payment_method_id;
Also need to:
Test that the assignment are date effective?
Order by name or person_number or other ?
p_business_grp NUMBER;
--
--
PROCEDURE new_formula
IS
--
p_payroll_action_id NUMBER;
assignment NUMBER;
p_org_payment_method_id NUMBER;
p_personal_payment_method_id NUMBER;
p_value NUMBER;
--
--
FUNCTION get_formula_id (p_formula_name IN VARCHAR2)

RETURN NUMBER IS
p_formula_id NUMBER;
BEGIN
SELECT formula_id
INTO p_formula_id
FROM ff_formulas_f
WHERE formula_name = p_formula_name
AND (business_group_id = p_business_grp
OR (business_group_id IS NULL
AND legislation_code = ’GB’)

OR (business_group_id IS NULL AND legislation_code IS NULL)
);
-- RETURN p_formula_id;
--
END get_formula_id;
--
BEGIN
--
pay_mag_tape.internal_prm_names(1) :=
’NO_OF_PARAMETERS’; -- Reserved positions
pay_mag_tape.internal_prm_names(2) := ’NEW_FORMULA_ID’;-- --
Number of parameters may be greater than 2 because formulas
may be -- keeping running totals.--
pay_mag_tape.internal_cxt_names(1) := ’Number_of_contexts’;
pay_mag_tape.internal_cxt_values(1) := 1; --
Initial value---- IF NOT get_assignments%ISOPEN THEN
-- New file-- pay_mag_tape.internal_prm_values(1) := 2;
pay_mag_tape.internal_prm_values(2) := get_formula_id
(’REPORT_HEADER_1’);-- if
pay_mag_tape.internal_prm_names(3) = ’PAYROLL_ACTION_ID’
then p_payroll_action_id :=

to_number(pay_mag_tape.internal_prm_values(3)); end if;--
OPEN get_assignments (p_payroll_action_id);-- ELSE----
FETCH get_assignments INTO

4-40 Oracle Human Resources Management System Implementation Guide (US)

p_org_payment_method_id,
p_personal_payment_method_id, p_value,
assignment;-- IF get_assignments%FOUND THEN
-- New company
pay_mag_tape.internal_prm_values(1) := 2;
pay_mag_tape.internal_cxt_names(2) := ’ASSIGNMENT_ID’;
pay_mag_tape.internal_cxt_values(2) := assignment;
pay_mag_tape.internal_cxt_names(3) := ’DATE_EARNED’;
pay_mag_tape.internal_cxt_values(3) := to_char (sysdate,’DD-MON-YY
YY’);
pay_mag_tape.internal_cxt_values(1) := 3;
pay_mag_tape.internal_prm_values(2) := get_formula_id
(’ENTRY _DETAIL’);
ELSE-- pay_mag_tape.internal_prm_values(1) := 2;
pay_mag_tape.internal_prm_values(2) := get_formula_id
(’REPORT_CONTROL_1’);
CLOSE get_assignments;
-- END IF;
--END IF;--
END new_formula;
BEGIN
-- ’MAG test BG’ used as an example. The business group could be
-- retrieved using the payroll action id.
select business_group_id
into p_business_grp
from per_business_groups
where name = ’MAG test BG’;
--END pytstm1;

Cheque Writer/Check Writer Process
Note: For ease, we refer to the Cheque Writer/Check Writer process as
Cheque Writer throughout this technical essay.

You run the ChequeWriter process to produce cheque payments for unpaid pre-payment
actions. Before you run the process, you need to set up certain things, for example, the
SRW2 report and the ’order by’ option to sequence cheques (if required).

You run Cheque Writer through Standard Reports Submission (SRS). Unlike the
Magnetic Tape process, you can have multiple threads in Cheque Writer.

The Process
The Cheque Writer process has two distinct steps:

Step 1 - Create Cheque Assignment Actions
Cheque Writer creates cheque assignment actions for each of the target
pre-payments, subject to the restrictions of the parameters specified. The target
pre-payments must be unpaid-that is, never been paid-or if they have been paid, then
voided.

Cheque Writer creates assignment actions in two stages:

1. Multiple threads insert ranges of assignment actions, which interlock back to
previous actions.

Implementation Guide 4-41

This happens in the same way as Pre-Payments andMagnetic Tape create assignment
actions.

See: The Process, page 4-27 (Pre-Payments)

See: Running the Magnetic Tape Payments Process, page 4-29

2. A single thread runs through all the assignment actions in a specific order to update
the chunk and cheque number.

The order is specified by a PL/SQL procedure that you can customize. The thread
divides the assignment actions equally into chunks, one chunk per thread. It assigns
each action a cheque number.

See: Using or Changing the PL/SQL Procedure, page 4-46

At this stage, the status of the assignment actions is ’Unprocessed’.

Note: Cheque Writer creates an assignment action and cheque for each
target pre-payment of the assignment. Consequently, a single Cheque
Writer run can produce more than one cheque for a single assignment.

Step 2 - Submit SRW2 Report
When Cheque Writer has created the assignment actions and interlocks, each thread
submits the specified SRW2 report as a synchronously spawned concurrent process. The
reports produce files in a specific cheque format.

If the spawned concurrent process is successful, the status of the assignment actions
is changed to ’Complete’. If the process fails, the status of the assignment actions is
changed to ’In Error’. So, if you resubmit Cheque Writer, it can start at the point of
submitting the report.

In this respect, Cheque Writer is similar to the magnetic tape process: the whole process
must be successful before the payroll action is Complete. But, while the Magnetic
Tape process can mark individual assignment actions In Error, Cheque Writer marks
all assignment actions In Error.

Batch Process Parameters
The batch process has a number of parameters users can enter. The definition of
the printer type (for example, laser or line printer for the report output) is not a
parameter. The default for this is specified as part of the registration of the concurrent
process for the report. Consult your Oracle Applications System Administrators Guide for
more information on printers and concurrent programs.

• payroll_id - optional

This parameter restricts the cheques generated according to the current payroll of
the assignment. It is a standard parameter to most payroll processes.

• consolidation_set_id - mandatory

This parameter restricts the target pre-payments for Cheque Writer to those which
are for runs of that consolidation set.

• start_date - optional

This parameter specifies how far back, date effectively, Cheque Writer searches for
target pre-payments. If this parameter is not specified, Cheque Writer scans back to
the beginning of time.

• effective_date - optional

4-42 Oracle Human Resources Management System Implementation Guide (US)

This parameter specifies the effective date for the execution of Cheque Writer. If it is
null, the effective date is taken to be the effective date held in FND_SESSIONS. If
there is no such row, then it is defaulted to SYSDATE.

• payment_type_id - mandatory

This parameter specifies which payment type is being paid. For UK legislation, it
must be a payment type which is of payment category Cheque. For US legislation, it
must be a payment type which is of payment category Check.

• org_payment_method_id - optional

This parameter restricts the target prepayments to those which are for that
organization payment method. It would be used where different cheque styles are
required by organization payment method.

• order_by_option - mandatory

This parameter specifies which order by option is called to create and order the
cheque assignment actions. By providing this as a parameter, the user can specify
what ordering they want to take effect for the generated cheques.

• report_name - mandatory

This parameter is the name of the SRW2 report that is synchronously spawned
by Cheque Writer to generate the print file of cheques and any attached pay
advices, and such.

A user-extensible lookup is provided.

• start_cheque_number - mandatory

This parameter specifies the contiguous range of numbers to be assigned to cheques
generated.

• end_cheque_number - optional

This parameter specifies the contiguous range of numbers to be assigned to cheques
generated. If this parameter is specified, this range constrains how many cheque
assignment actions are created. Cheque Writer is the only payroll action that does
not necessarily process, what would otherwise be, all of its target actions.

If the end number is not specified, Cheque Writer assigns numbers sequentially from
the start number onwards for all generated cheque assignment actions.

If cheques must be printed for different contiguous ranges (as may occur when using
up the remnants of one box of cheque stationery, before opening another box), then
the Cheque Writer process must be invoked separately for each contiguous range.

Cheque Numbering
The cheque stationery onto which the details are printed is typically authorized, and has
the cheque number preprinted on it. It is common in the UK for there to be a further
cheque number box which is populated when the cheque is finally printed. It is this
number that the generating payroll system uses.

Usually, these two numbers are the same. It is not known whether any clearing system
invalidates the cheque if they are not. However, it seems likely that if you need to trace
the path of a cheque through a clearing system, the preprinted cheque number would
prove most useful, and hence, it should be the number recorded for the cheque payment
on the payroll system.

Implementation Guide 4-43

It is a user’s responsibility to ensure that the cheque numbers used by Cheque Writer
(and recorded on the system) are identical to those on the preprinted stationery. In
certain circumstances, you might want to use numbers that are not the same. In this
case, the cheque number recorded by the payroll system is simply a different cheque
identifier from the preprinted cheque number.

Note: Preprinted stationery usually comes in batches, for example, boxes
of 10000. Therefore, you may want to use different ranges of cheque
numbers when printing off cheques at the end of the pay period. For
example, you may have to print off 2500 cheques using the remains of
one box (numbered 9500 - 10000) and then an unopened box (numbered
20001 - 30000). Cheque Writer uses the start and end cheque number
parameters to enforce these ranges.

Voiding and Reissuing Cheques
Under some circumstances, users might need to void a cheque and optionally issue a
replacement. For example, an employee loses their cheque and requests a replacement, or
you discover that the employee has previously left employment and should not have
been paid. In both cases the first step is to void the cheque. This activity may also involve
contacting the bank that holds the source account and cancelling the cheque.

Note: Voiding a cheque does not prevent the payment from being made
again.

Voiding and reissuing a cheque is different from rolling back and reprinting a
cheque. You void a cheque when it has actually been issued and you need to keep a
record of the voided cheque. You rollback when a cheque has not yet been issued. For
example, during a print run your printer might jam on a single cheque and think it
has printed more than one. These cheques have not been issued and the batch process
should be rolled back and restarted for those actions.

Depending on the reason for voiding, a user may want to issue another cheque. This
is known as ’reissuing’. This requires no extra functionality. The user has the choice of
issuing a manual cheque and recording the details online, or of resubmitting the batch
process for automatic printing.

You cannot reprocess actions that have already been paid. The process only creates
payments for those actions that have never been paid, or have been voided.

Mark for Retry
Cheque Writer actions can be marked for retry. As with the rollback process, when
marking a Cheque Writer payroll action for retry, the user can determine which
assignment actions are to be marked by specifying an assignment set parameter.

Marking cheque assignment actions for retry does not remove the assignment
actions, but simply updates their status to ’Marked For Retry’ (standard behavior for all
action types). The assigned cheque numbers are left unaltered. Hence, on retry, Cheque
Writer generates a new print file.

The reason for this is that we cannot reassign cheque numbers for assignment actions
of a cheque payroll action. The payroll action stores the start and end cheque numbers
specified. If different ranges of numbers could be used on several retries of the payroll
action, then some of its assignment actions could be assigned numbers outside the range
held on the payroll action.

4-44 Oracle Human Resources Management System Implementation Guide (US)

Rolling Back the Payments
If a user wants to assign new cheque numbers, they must rollback the Cheque Writer
payroll and assignment actions, and submit a separate batch request.

Note: It usually makes sense to roll back all of the cheques. If you
mark individual cheques for retry, their cheque numbers are unlikely
to be contiguous and it would be difficult to print these on the correct
preprinted cheque stationery.

SRW2 Report
You may need to set up the format for the cheque stationery. The SRW2 report, invoked
by Cheque Writer is passed in two parameters:

• payroll_action_id (of the cheque action)

• chunk number (to be processed)

For this purpose, the report must take the parameters named PACTID and CHNKNO.

By the time the report is run, the appropriate assignment actions have been created and
cheque numbers assigned according to the order specified in the order by parameter.

The report must drive off the assignment actions for the cheque payroll action and
chunk number specified. It must generate one cheque for each assignment action. The
cheque number is held directly on the assignment action, while the amount to be paid is
retrieved from the associated pre-payment.

The report must maintain the order of the cheques when printed out, the report must
process the assignment actions in order of cheque number.

Example SELECT statement
The following select statement illustrates how to drive a report:

select to_number(ass.serial_number),
ass.assignment_action_id,
round(ppa.value,2),
ppf.last_name,
ppf.first_name
from per_people_f ppf,
per_assignments_f paf,
pay_assignment_actions ass,
pay_pre_payments ppa
where ass.payroll_action_id =:PACTID
and ass.chunk_number =:CHNKNO
and ppa.pre_payment_id = ass.pre_payment_id
and ass.assignment_id = paf.assignment_id
and ass.status <>’C’
and paf.person_id = ppf.person_id
order by to_number(ass.serial_number)

Registering the Report
Once the SRW2 report is written, you must register it as a Cheque Writer report. This is
similar to registering ’Cash Analysis Rules’ for the Pre-Payments process.

You must also define a new Lookup Value for the Type of ’CHEQUE_REPORT’. Enter
the report name and description.

In a similar way to the Magnetic Tape process, the file generated by the report is named:

p<trunc(conc_request_id,5)>.c<chunk_number>

Implementation Guide 4-45

The file name is padded with zeros if the length of the request id is shorter than five
characters, for example, p03451.cl.

It is written to the $APPLCSF/$APPLOUT directory, if $APPLCSF is defined, and
otherwise to $PAY_TOP/$APPLOUT.

If Cheque Writer is run with multiple threads, it produces several files. This is
because Cheque Writer assignment actions are split into several chunks, one chunk
per thread. So, each thread can pick a chunk and process it. This is done to improve
performance on machines with multiple processors. For example, if there are four
threads processing, there would be four files produced:

• p03451.c1

• p03451.c2

• p03451.c3

• p03451.c4

Cheque Writer creates a fifth file (by the process that concatenates the four files into
one). The name of this file is p03451.ch.

Using or Changing the PL/SQL Procedure
Cheque Writer updates the assignment actions with the cheque and chunk number
in the sequence determined by a PL/SQL procedure, called anonymously from
the process. A default PL/SQL procedure is provided with the generic product
- pay_chqwrt_pkg.chqsql.

The default sort order is:

1. Organization

2. Department

3. Surname

4. First name

You can change this procedure to set up several different sorting orders by
criteria, denoted by a flag passed to the procedure. You should copy the core select
statement, and alter the subquery to order according to your own business needs.

The advantage of giving access to the whole SQL statement is that the cheques can
be ordered by any criteria. If we had only allowed specification of an ORDER BY
clause, then the ordering would have been restricted to attributes on those tables already
in the FROM clause of the core SQL statement.

To set up new order by requirements, change the pay_chqwrt_pkg.chqsql package
procedure. You could add the following IF statement when checking the procname
variable:

else if procname = ’NEW ORDER BY’ then
sqlstr := ’select’

The select statement could be a copy of the existing select statement but with the order
by clause changed. The select statement must return the assignment action’s rowid.

Based on this information the assignment action can be given a serial/cheque number
and assigned to a chunk.

4-46 Oracle Human Resources Management System Implementation Guide (US)

Similarly, as with the SRW2 report the new order by option has to be registered before it
can be used. This is done in a similar manner except that the Lookup Type is CHEQUE
PROCEDURE. Enter a meaningful description in the Meaning field and the name of the
option, for example NEW ORDER BY, in the Description field.

Cash Process
The Cash process indicates to the system that payment has been made, and prevents
pre-payments from being rolled back.

Note: This is a UK-only process.

Payroll Action Parameters
Payroll action parameters are system-level parameters that control aspects of the Oracle
Payroll batch processes. It is important to recognize that the effects of setting values for
specific parameters may be system wide. The text indicates where parameters are related
to specific processes. For some parameters you should also understand the concept of
array processing and how this affects performance.

Action Parameter Values
Predefined values for each parameter are supplied with the system, but you can override
these values as part of your initial implementation and for performance tuning.

Action parameter values are specified by inserting the appropriate rows into the
following table: PAY_ACTION_PARAMETERS, which has two columns:

PARAMETER_NAME NOT NULL VARCHAR2(30)
PARAMETER_VALUE NOT NULL VARCHAR2(80)

The payroll batch processes read values from this table on startup, or provide
appropriate defaults, if specific parameter values are not specified.

Summary of Action Parameters
The following list shows user enterable action parameters and values with any
predefined default value.

Note: Case is significant for these parameters.

Implementation Guide 4-47

Parameter Value Default

ADD_MAG_RE
P_FILES

1 or more 4

BAL BUFFER
SIZE

1 or more 30

CHUNK
SHUFFLE

Y or N N

CHUNK_SIZE 1 - 16000 20

EE BUFFER SIZE 1 or more 40

INIT_PAY_
ARCHIVE

See later

LOG_AREA See later

LOG_ASSIGN_
END

See later

LOG_ASSIGN_
START

See later

LOGGING See later

MAX_ERRORS_
ALLOWED

1 or more CHUNK_SIZE or
20 (if no chunk
size)

MAX_SINGLE_
UNDO

1 or more 50

RR BUFFER SIZE 1 or more 20

RRV BUFFER
SIZE

1 or more 30

COST BUFFER 1 or more 20

THREADS 1 or more 1

TRACE Y or N N

USER_MESSAG
ING

Y or N N

FREQ_RULE_
WHOLE_PER
IOD

Y N

REV_LAT_BAL Y or N N

Note: All parameter names without underscores also have an alias with
underscores (except CHUNK SHUFFLE).

4-48 Oracle Human Resources Management System Implementation Guide (US)

Parallel Processing Parameters
THREADS
Parameter Name: THREADS
Parameter Value: 1 or more
Default Value:1

Oracle Payroll is designed to take advantage of multiprocessor machines. This means
that you can improve performance of your batch processes by splitting the processing
into a number of ‘threads’. These threads, or sub-processes, will run in parallel.

When you submit a batch process to a concurrent manager the THREADS parameter
determines the total number of sub-processes that will run under the concurrent
manager. The master process will submit (THREADS - 1) sub-processes.

Set this parameter to the value that provides optimal performance on your server. The
default value, 1, is set for a single processor machine. Benchmark tests on multiprocessor
machines show that the optimal value is around two processes per processor. So, for
example, if the server has 6 processors, you should set the initial value to 12 and test the
impact on performance of variations on this value.

Important: The concurrent manager must be defined to allow the
required number of sub-processes to run in parallel. This is a task for
your Applications System Administrator.

CHUNK_SIZE
Parameter Name: CHUNK_SIZE
Parameter Value: 1 - 16000
Default Value: 20

Size of each commit unit for the batch process. This parameter determines the number
of assignment actions that are inserted during the initial phase of processing and the
number of assignment actions that are processed at one time during the main processing
phase.

Note: This does not apply to the Cheque Writer/Check Writer, Magnetic
Tape or RetroPay processes.

During the initial phase of processing this parameter defines the array size for
insert. Large chunk size values are not desirable and the default value has been set
as a result of benchmark tests.

Each thread processes one chunk at a time.

Array Select, Update and Insert Buffer Size Parameters
The following parameters control the buffer size used for ’in-memory’ array
processing. The value determines the number of rows the buffer can hold.

Note: These parameters apply to the Payroll Run process only.

When you set values for these parameters you should note that there is a trade-off
between the array size, performance and memory requirements. In general, the
greater the number of rows fetched, updated or inserted at one time, the better the
performance. However, this advantage declines at around 20.

Implementation Guide 4-49

Therefore, the improvement between values 1 and 20 is large, while between 20 and 100
it is small. Note also that a higher value means greater memory usage. For this reason, it
is unlikely that you will gain any advantage from altering the default values.

CHUNK_SIZE
Parameter Name: CHUNK_SIZE
Parameter Value: 1 - 16000
Default Value: 20

Size of each commit unit for the batch process. As before.

RR BUFFER SIZE
Parameter Name: RR BUFFER SIZE
Parameter Value: 1 or more
Default Value: 20

Size of the Run Result buffer used for array inserts and updates: one row per Run Result.

RRV BUFFER SIZE
Parameter Name: RRV BUFFER SIZE
Parameter Value: 1 or more
Default Value: 30

Size of the Run Result Value buffer used for array inserts and updates: one row per Run
Result Value. Typically this will be set to (RR BUFFER SIZE * 1.5).

BAL BUFFER SIZE
Parameter Name: BAL BUFFER SIZE
Parameter Value: 1 or more
Default Value: 30

Size of the Latest Balance buffer used for array inserts and updates: 1 row per Latest
Balance.

EE BUFFER SIZE
Parameter Name: EE BUFFER SIZE
Parameter Value: 1 or more
Default Value: 40

Size of the buffer used in the initial array selects of Element Entries, Element Entry
Values, Run Results and Run Result Values per assignment.

Costing Specic Parameters
COST BUFFER SIZE
Parameter Name: COST BUFFER SIZE
Parameter Value: 1 or more
Default Value: 20

Size of the buffer used in the array inserts and selects within the Costing process.

Magnetic Tape Specic Parameters
ADD_MAG_REP_FILES
Parameter Name: ADD_MAG_REP_FILES
Parameter Value: 1 or more
Default Value: 4

The maximum number of additional audit or report files the magnetic tape process
can produce.

4-50 Oracle Human Resources Management System Implementation Guide (US)

Error Reporting Parameters
In every pay cycle you would expect some errors to occur in processing individual
assignments, especially in the Payroll Run. These errors are usually caused by incorrect
or missing data in the employee record. For practical reasons, you would not want the
entire run to fail on a single assignment failure. However, if many assignments generate
error conditions one after the other, this will usually indicate a serious problem, and you
will want to stop the entire process to investigate the cause. For processes that support
assignment level errors you can use the MAX_ERRORS_ALLOWED parameter to
control the point at which you want to stop the entire process to investigate these errors.

The processes that use this feature are:

• Payroll Run

• Pre-Payments

• Costing

• Rollback

MAX_ERRORS_ALLOWED
Parameter Name: MAX_ERRORS_ALLOWED
Parameter Value: 1 or more
Default Value: CHUNK_SIZE or 20 (if no chunk size)

The number of consecutive actions that may have an error before the entire process is
given a status of ’Error’.

Frequency Rule Specic Parameters
FREQ_RULE _WHOLE_PERIOD
Parameter Name: FREQ_RULE_WHOLE_PERIOD
Parameter Value: Y
Default Value: N

You may find that a payroll is processed twice in the same month even though you have
specified a monthly frequency rule. Duplicate processing occurs because Oracle Payroll
associates the first date of the month with the first payroll period. In most cases this is
a correct association. However, if you run an offset bi-weekly payroll, you may find
that your payroll is processed twice in the same month because an additional start of
month day is visible to the frequency rule.

Your System Administrator can enforce the monthly frequency rule by setting the
FREQ_RULE_WHOLE_PERIOD parameter to Y.

However, once this parameter has been set to Y, we strongly recommend that you leave
it unchanged. Any subsequent attempt to update or delete this parameter setting could
introduce unexpected results.

Rollback Specic Parameters
Rollback of specific payroll processes can be executed in two ways. A batch process
can be submitted from the Submit Requests window. Alternatively, you can roll
back a specific process by deleting it from the Payroll Process Results window or the
Assignment Process Results window. When you roll back from a window this parameter
controls the commit unit size.

Implementation Guide 4-51

MAX_SINGLE_UNDO
Parameter Name: MAX_SINGLE_UNDO
Parameter Value: 1 or more
Default Value: 50

The maximum number of assignment actions that can be rolled back in a single commit
unit when rollback is executed from a form. Although you can change the default
limit, you would usually use the Rollback process from the SRS screen if it is likely
to be breached.

Reversal Specic Parameters
REV_LAT_BAL
Parameter Name: REV_LAT_BAL
Parameter Value: Y/N
Default Value: N

If you set the REV_LAT_BAL parameter to Y, you can maintain the latest balances for
each reversal that you run. By default, the Reversal process always removes latest
balances. This parameter enables you to maintain the latest balances and reduce your
processing time.

However, be aware that maintaining latest balances also introduces a performance
overhead. The relative advantage of maintaining latest balances depends on the number
and frequency of reversals that you normally run.

External Process Archive/Payslip Archive
INIT_PAY_ARCHIVE
The parameter allows for the archiver to look at the element to be archived for an
employee’s assignment from pay_run_results/pay_run_balances rather than a previous
archive.

Use the parameter if there is data corruption on your instance or a code issue that
prevents the archive of non-recurring elements. The element is not picked up in
subsequent archives until the application processes the element again. Use this
parameter to resolve any kind of data corruption in the archiver that you corrected in the
live tables. Oracle recommends you use the date parameter as a best practice.

Parameter Name: INIT_PAY_ARCHIVE
Parameter Value: Y/N
Y - always check run result/balance
Default Value: N
Parameter Value: Date in YYYY/MM/DD format
Get data from run results and run balances only if the archiver is
run with an End date as a parameter value

Payroll Process Logging
During installation and testing of your Oracle Payroll system youmay need to turn on the
detailed logging options provided with the product. Use the LOGGING parameter to
provide a large volume of detailed information that is useful for investigating problems.

Detailed logging options should only be switched on when you need to investigate
problems that are not easily identified in other ways. The logging activities will have an
impact on the overall performance of the process you are logging. Usually, this feature is
needed during your initial implementation and testing before you go live. In normal
operation you should switch off detailed logging.

4-52 Oracle Human Resources Management System Implementation Guide (US)

Important: If you need to contact Oracle Support for assistance in
identifying or resolving problems in running your payroll processes, you
should prepare your log file first. Define the Logging Category, Area
and range of Assignments and then resubmit the problem process.

Logging Categories
Logging categories define the type of information included in the log. This lets you focus
attention on specific areas that you consider may be causing a problem. You can set any
number of these by specifying multiple values:

• G General (no specific category) logging information

Output messages from the PY_LOG macro for general information. This option does
not sort the output and you should normally choose a list of specific categories.

• M Entry or exit routing information

Output information to show when any function is entered and exited, with messages
such as ’In: pyippee’, ’Out : pyippee’. The information is indented to show the
call level, and can be used to trace the path taken through the code at function call
level. Often, this would be useful when attempting to track down a problem such as
a core dump.

• P Performance information

Output information to show the number of times certain operations take place at the
assignment and run levels and why the operation took place. For example, balance
buffer array writes.

• E Element entries information

Output information to show the state of the in-memory element entry structure, after
the entries for an assignment have been fetched, and when any item of the structure
changes; for example, addition of indirects or updates. This also shows the
processing of the entry.

• L Balance fetching information

Output information to show the latest balance fetch and subsequent expiry stage.

• B Balance maintenance information

Output information to show the creation and maintenance of in-memory balances

• I Balance output information

Output information to show details of values written to the database from the
balance buffers.

• R Run results information

Output information to show details of run results and run result values written to
the database from the Run Results or Values buffer.

• F Formula information

Output information to show details of formula execution. This includes formula
contexts, inputs and outputs.

• C C cache structures information.

Implementation Guide 4-53

Output information to show details of the payroll cache structures and changes to
the entries within the structure.

• Q C cache query information

Output information to show the queries being performed on the payroll cache
structures.

• S C Cache ending status information

Output information to show the state of the payroll cache before the process
exits, whether ending with success or error. Since much of the logging information
includes id values, this can be used to give a cross reference where access to the
local database is not possible.

• T PL/SQL Detail

Detail of PL/SQL debug information for the process. You can only use the T
parameter if you also specify the Z parameter. Include the T parameter when
debugging any process that uses PL/SQL intensively, for example, PrePayments.

• V Vertex (available to US and Canadian customers only)

Output information to show the values being passed in and out of the Vertex tax
engine.

This option also creates a separate file in the Out directory showing the internal
settings of the engine.

• Z PL/SQL Output

Output information to show the PL/SQL debug information for a process. If you
specify the Z parameter, you can also specify the T parameter to show PL/SQL
detail. Include the Z parameter when debugging any process that uses PL/SQL
intensively, for example, PrePayments.

Logging Parameters
LOGGING
Parameter Name: LOGGING
Parameter Value: G, M, P, E, L, B, I, R, F, C, Q, S, T, V, Z
Default Value: No logging

LOG_AREA
Parameter Name: LOG_AREA
Parameter Value: Function to start logging
Default Value: No default

LOG_ASSIGN_START
Parameter Name: LOG_ASSIGN_START
Parameter Value: Assignment to start logging
Default Value: All assignments

LOG_ASSIGN_END
Parameter Name: LOG_ASSIGN_END
Parameter Value: Assignment to end logging, including this one
Default Value: All assignments

Output Log File
When you enable the logging option the output is automatically included in the log file
created by the concurrent manager. You can review or print the contents of this log file.

4-54 Oracle Human Resources Management System Implementation Guide (US)

Except for the General category, the log file will contain information in a concise format
using id values. This keeps the size of the log file to a minimum while providing all the
technical detail you need.

To help you understand the output for each logging category, other than ’G’ and ’M’, the
log file contains a header indicating the exact format.

Miscellaneous Parameters
USER_MESSAGING
Parameter Name: USER_MESSAGING
Parameter Value: Y/N
Default Value: N

Set this to parameter to ’Y’ to enable detailed logging of user readable information to
the pay_message_lines table. This information includes details about the elements and
overrides that are processed during the Payroll Run.

Note: This information is useful when you are investigating
problems, but you may find that it is too detailed for normal working.

TRACE
Parameter Name: TRACE
Parameter Value: Y/N
Default Value: N

Set this parameter to ’Y’ to enable the database trace facility. Oracle trace files will be
generated and saved in the standard output directory for your platform.

Warning: Use the trace facility only to help with the investigation of
problems. Setting the value to ‘Y’ causes a significant deterioration in
database performance. If you experience a significant problem with the
performance of your payroll processes, check that you have reset this
parameter to the default value - ’N’.

System Management of QuickPay Processing
When users initiate a QuickPay run or a QuickPay prepayments process, the screen
freezes until the process finishes. QuickPay is set up to manage any cases in which the
concurrent manager fails to start the process within a specified time period, or starts
it but fails to complete it within the specified period. This situation can sometimes
arise when, for example, many high priority processes hit the concurrent manager at
the same time.

The system’s management of the screen freeze occurring when a user initiates a
QuickPay process involves:

• Checking the concurrent manager every few seconds for the process completion.

• Unfreezing the screen and sending an error message to the user when the process
has not completed within a maximum wait time.

The error message includes the AOL concurrent request ID of the process. The user
must requery the process to see its current status.

System administrators can improve the speed of QuickPay processing at their installation
by:

• Changing the default for the interval at which checks for process completion occur.

Implementation Guide 4-55

By default, the check of the concurrent manager occurs at 2 second
intervals. The parameter row QUICKPAY_INTERVAL_WAIT_SEC in the table
PAY_ACTION_PARAMETERS sets this default.

• Changing the default for the maximum wait time.

The maximum wait time allowed for a QuickPay process to complete defaults
to 300 seconds (5 minutes), after which the system issues an error message. The
parameter row QUICKPAY_MAX_WAIT_SEC in the PAY_ACTION_PARAMETERS
table sets this default.

• Defining a new concurrent manager exclusively for the QuickPay run and
prepayments processes.

To change the defaults for the interval at which checks occur or for the maximum wait
time:

• Insert new rows (or update existing rows) in the table PAY_ACTION_PARAMETERS.

Notice that QUICKPAY_INTERVAL_WAIT_SEC and QUICKPAY_MAX_WAIT_SEC are
codes for the Lookup type ACTION_PARAMETER_TYPE.

To define a new concurrent manager exclusively for the two QuickPay processes:

1. Exclude the two QuickPay processes from the specialization rules for the standard
concurrent manager.

2. Include them in the specialization rules for the new QuickPay concurrent manager
to be fewer than those of the standard concurrent manager. Doing so reduce the time
it takes to start requests for the QuickPay processes.

Assignment Level Interlocks
When you process a payroll, you run a sequence of processes that each perform an
action on the assignments.

The sequence in which you run the processes is critical to the success of processing, as
each process uses, and builds upon, the results of the previous process in the
sequence. The sequence of the processing is also determined by issues of data
integrity. For example, the Pre-Payments process (which prepares the payments
according to the payment methods) uses the results of the Payroll Run process (which
calculates the gross to net payment).

It is essential for correct payments that the results cannot be changed without also
changing the prepayment results. To prevent this from occurring (and for data
integrity), Oracle Payroll uses assignment level interlock rules.

Action Classications
The payroll processes (such as Payroll Run and Costing) and action types (such as
QuickPay) are classified as Sequenced or Unsequenced. The action classification
determines how interlock processing rules are applied.

4-56 Oracle Human Resources Management System Implementation Guide (US)

Processes and Action
Types

Classication Insert Interlock Rows?

Payroll Run Sequenced No

QuickPay Sequenced No

Reversal Sequenced Yes

Balance Adjustment Sequenced No

Balance Initialization Sequenced No

Pre-Payments Unsequenced Yes

QP PrePayments Unsequenced Yes

Ext/Manual Payments Unsequenced Yes

Magnetic Tape Transfer Unsequenced Yes

Advance Pay Sequenced No

Cheque Writer Unsequenced Yes

Cash Unsequenced Yes

Costing Unsequenced Yes

Transfer to GL Unsequenced Yes

Retropay by Action Sequenced No

Retropay by Aggregate Sequenced No

Sequenced Actions
These actions exist at the same level and must be processed in strict sequence, for
example, Payroll Run before QuickPay. The general rule is that you cannot insert a
sequenced action for an assignment if there is another sequenced action in the future, or
if there is an incomplete sequenced action in the past.

There are exceptions for Process Reversal and Balance Adjustment. And, there may
be specific legislative requirements that have implications for this rule. For more
information, see Pay Period Dependent Legislation, page 4-57.

The sequence rule uses the effective date of the payroll action. If there is more than
one action with the same effective date, the action sequence number determines the
sequence of processing.

Unsequenced Actions
You can insert unsequenced actions for an assignment even when there are other
assignment actions for that assignment in the future or in the past. For example, you can
run the Costing process before or after you run the PrePayments process.

Pay Period Dependent Legislation
The rules that govern the calculation of tax for employees with multiple assignments
vary between legislations, and this determines how the rules for interlocking are applied.

For example, in the UK when you calculate tax, you must take account of all earnings for
all assignments in a pay period. For this type of legislation, the interlock rules check the

Implementation Guide 4-57

sequence of actions for all assignments and a failure on one assignment in a pay period
may be caused by an action that applies to another assignment.

For example, if you process an employee who is on both a monthly and a weekly
payroll, you cannot roll back the monthly pay run for that employee if you have
subsequently processed and paid them on the weekly payroll. You would have to roll
back the payments process for the weekly assignment before you could roll back their
monthly payroll action.

In other legislations, for example in the US, each assignment is considered separately
and interlock failure for one assignment does not cause failure for any others.

Action Interlock Rows
When interlocks are inserted for an assignment action, they lock the action that is being
processed. For example, a pre-payment interlock points to the payroll run action to be
paid, thus locking the run from being deleted. The existence of a sequenced action
prevents the insertion of sequenced actions prior to that action. That is, sequenced
actions have to happen in order.

Checking for Marked For Retry Actions
There is one special rule for assignment actions that are marked for retry. If you attempt
to retry a Payroll Run or QuickPay action, the system checks there are no sequenced
assignment actions marked for retry existing in the past for any assignments (or
people, in some legislations) that you are attempting to process.

Specic Rules for Sequenced Actions
An assignment action is not inserted if any of the following situations exist:

• There is an incomplete sequenced action for the assignment with a date on or before
the insertion date

• There is a sequenced action for the assignment with any action status, at a date
after the insertion date

• There is a non removable action at a date after the insertion date

There are two exceptions:

• Reversal

• Balance Adjustment.

When a reversal or balance adjustment is inserted, the system maintains the action
sequence by changing the action sequence numbers for any assignment actions that exist
later in the pay period.

Specic Rules for Unsequenced Actions
An unsequenced assignment action is not inserted if there is an interlock for the
assignment action currently being processed from another unsequenced assignment
action.

For example, if we had performed a QuickPay followed by a QuickPay Pre-Payment, a
subsequent Pre-Payments process would not insert an assignment action/interlock to the
QuickPay. This is because the QuickPay Pre-Payment would have inserted an action and
an interlock, and Pre-Payments has the same action classification.

Rules For Rolling Back and Marking for Retry
This table summarizes the rules for retry and rollback of payroll and assignment
actions. For some processes, you cannot roll back actions only for an individual

4-58 Oracle Human Resources Management System Implementation Guide (US)

assignment. For example you cannot roll back an individual from the Magnetic Transfer
process. This process actually produces the magnetic tape file so you must roll back the
whole process, and then redo it.

Action Type Name Payroll Action
- Retry

Payroll Action
- Rollback

Assignment
Action - Retry

Assignment
Action - Rollback

Payroll Run Yes Yes Yes Yes

QuickPay Yes Yes Yes No

Reversal No Yes No No

Balance Adjustment No Yes No No

Balance Initialization No Yes No No

Purge Yes No No No

Pre-Payments Yes Yes Yes Yes

QP PrePayments Yes Yes Yes No

Ext/Manual Payment No Yes No No

Magnetic Tape
Transfer

Yes Yes No Yes

Cheque Writer Yes Yes Yes Yes

Cash No Yes No Yes

Costing Yes Yes Yes Yes

Transfer to GL Yes Yes No No

Advance Pay Yes Yes Yes Yes

Retropay by
Aggregate

Yes Yes Yes Yes

Retropay by Action Yes Yes Yes Yes

Rolling Back Sequenced Actions
You cannot roll back a sequenced action if there is a later sequenced action for the
assignment, except for Balance Adjustments or Reversals. For example, you cannot roll
back a payroll run in one period, if you have already processed another payroll run
in the next pay period.

Marking Actions For Retry
You cannot mark a sequenced action for retry if there is a later sequenced action for the
assignment, except for Balance Adjustments or Reversals. However, you can do this if
the future action causing the lock is itself marked for retry.

You can retry an unsequenced action if the locking action is itself marked for retry.

Transfer to the General Ledger Process
After you have run the post-run process Costing (which accumulates costing results), you
are ready to transfer the results to the General Ledger or other systems.

Implementation Guide 4-59

This process can be submitted usingmultiple threads, in the sameway as the Payroll Run.

Costing Process
After running the payroll processes, you start the post-run process, Costing. The
Costing process accumulates results for transfer to the General Ledger and other
applications. This process sorts the run results in accordance with the information you
have selected from the Cost Allocation flexfield at all levels, by the following:

• Company

• Set of Books

• Cost Center

• General Ledger

• Labour Distribution Accounts

Examples of the cost allocation of payroll results and of the distribution of employer
charges over selected employee earnings appear in the following table.

If your installation also includes Oracle General Ledger, run the Transfer to the General
Ledger process after you have run the Costing process. This transfers the results from
the Costing process to Oracle General Ledger.

Example of Payroll Costs Allocation
The following table displays payroll run results for four employees, using accounts and
work structures identified using the Cost Allocation key flexfield. The example Costing
Process Results table illustrates how the Costing process allocates these payroll results to:

• Accounts and cost centers for the General Ledger

• Accounts for cost centers and product lines within cost centers, for labour
distribution purposes

Sample Payroll Results

Employee Cost Center Product
Line

Salary Wages Overtime Union
Dues

Employee 1 Production H201 100% 1,000 400 20

Employee 2 Sales H305 100% 1,500

Employee 3 Production H201 50%
H202 50%

2,000 600 30

Employee 4 Sales H305 20%
H310 40%

1,000

The following table illustrates the allocation of costs from these sample run results.

4-60 Oracle Human Resources Management System Implementation Guide (US)

Example Costing Process Results

Account
Code

Production Sales H201 H202 H305 H307 H310

Salaries 2,500 1,700 400 E400

Wages 3,000 2,000 1,000

Overtime 1,000 700 300

Union Dues
Liability

50

Example Costing Process Results (continued)

Account Code Results

Clearing Account contains balancing credits for earnings Salary, Wages
and Overtime, and balancing debits for deduction Union
Dues

Example of Employer Charge Distribution
When you give links for elements representing employer charges and the costable type
Distributed, the Costing process distributes the employer charges as overhead for
each employee over a set of employees’ earnings. This example shows how employer
payments totalling 100 dollars are distributed over a set of earnings including wages and
overtime, for the cost center Production and the product lines H201 and H202.

Overhead Distribution for the Production Cost Center
Total paid to Production Cost Center as Wages run result: $3,000.
00
Total paid to Production Cost Center as Overtime run result: $1,00
0.00
Total for Earnings types specified for Distribution: $4,000.00
Ratio for Wages distribution, Production Cost Center = 3000/4000 =
.75
Wages overhead = Pension Charge 100 x .75 = 75.00
Ratio for Overtime distribution, Production Cost Center = 1000/400
0 = .25
Overtime overhead = Pension Charge 100 x .25 = 25.00

Implementation Guide 4-61

Overhead Distribution for the Product Lines H210 and H202
Total paid for Product Line H201 as Wages run result: $2,000.00
Total paid for Product Line H202 as Wages run result: $1,000.00
Total paid for Product Lines H201 and H202 as Wages: $3,000.00
Ratio for Wages distribution, Product Line H201 = 2000/3000 = 0.66
67
Product Line H201 overhead = Total Wages overhead $75 x .6667 = $5
0.00
Ratio for Wages distribution, Product Line H202 = 1000/3000 = 0.33
34
Product Line H202 overhead = Total Wages overhead $75 x .3334 = $2
5.00
Total paid for Product Line H201 as Overtime run result: $700.00
Total paid for Product Line H202 as Overtime run result: $300.00
Total paid for Product Lines H201 and H202 as Overtime: $1,000.00
Ratio for Overhead distribution, Product Line H201 = 700/1000 = .7
Product Line H201 overhead = Total Overtime overhead $25 x .7 = $1
7.50
Ratio for Overhead distribution, Product Line H202 = 300/1000 = 0.
3
Product Line H202 overhead = Total Overtime overhead $25 x .3 = $7
.50

Table: Distribution of Overhead Over Cost Center and Production Line Totals

Account Code Cost Center -
Production

Product Line H201 Product Line H202

Wages 3,000 2,000 1,000

Employer Liability
Distribution

75 50 25

Overtime 1,000 700 300

Employer Liability
Distribution

25 17.50 7.50

The Payroll Archive Reporter (PAR) Process
Using the Payroll Archive Reporting (PAR) process, you can produce complex payroll
reports on employee assignments on a periodic basis, for example at the end of the tax
year, or for each tax quarter. You can submit these reports to a tax authority or other
governmental body using magnetic tape.

If necessary, you can archive the data reported on exactly as it appears in the reports. This
covers the possibility that the payroll department, or external authorities receiving the
reports, may need to review the data at some future time.

If archiving is not required, you can still retain a record of the production of the reports
and which employee assignments were included in them.

The primary use of the PAR process is for magnetic tape reporting, but you can also use
it (in Archive mode) for reports delivered using Oracle Report Writer.

The generic PAR process described here may not meet the payroll reporting requirements
of all HRMS payroll localizations. Therefore your localization team may have made

4-62 Oracle Human Resources Management System Implementation Guide (US)

changes such as extending the data reported on to include payroll actions, payrolls, or
organizations.

PAR Modes
To support flexibility in its use, PAR can be run in three different modes:

• Magnetic Tape with Archive

In this mode, PAR archives the values needed for reporting in the FastFormula
archive tables (FF_ARCHIVE_ITEMS and FF_ARCHIVE_ITEM_CONTEXTS). It then
produces a report on magnetic tape based on the archived values.

• Archive

In this mode, PAR only archives values needed for reporting in the FastFormula
archive tables.

Having run the PAR process in Archive mode, you can extract data from the
FastFormula archive tables using either Oracle Report Writer or a magnetic tape
process.

• Magnetic Tape without Archive

In this mode, PAR produces a report on magnetic tape and maintains a record of
the report production (in the table PAY_PAYROLL_ACTIONS) and/or records of the
individual assignments reported on (in the table PAY_ASSIGNMENT_ACTIONS).

Note: When you produce magnetic tape reports using the alternative
process PYUMAG, there is no record of the report production.

Notice that running PAR in Archive mode and then in Magnetic Tape without Archive
mode is convenient if you need to produce a number of reports by magnetic tape, each
of which requires a subset of a large set of data. All the data can be archived at once
in Archive mode, and then the individual reports can be produced for magnetic tape
delivery in Magnetic Tape without Archive mode.

Overview of the PAR Process
The PAR process operates as follows:

1. It creates a payroll action with associated assignment actions. In these actions, PAR
code evaluates live database items (that is, items that point to live tables) representing
the data needed for a payroll report. The PAR code uses contexts for the database
items as necessary.

2. When run in the Archiver or Magnetic Tape with Archiver modes, PAR then
stores the results of the database evaluations in the FastFormula archive tables
(FF_ARCHIVE_ITEMS and FF_ARCHIVE_ITEM_CONTEXTS).

3. When run in the Magnetic Tape with Archiver or Magnetic Tape without Archiver
modes, PAR code retrieves values from the archive tables by evaluating archive
database items, and includes the values in reports delivered by magnetic tape.

Overview of the Setup Steps
To set up the PAR process
1. Decide on the employee data to report on and to archive, and the formatting of the

reports.

Implementation Guide 4-63

2. Create the archive and live database items that are needed to produce the data in the
reports, setting contexts for them as necessary.

See: Create Database Items for Archiving, page 4-64

3. For Archive mode or Magnetic Tape with Archive mode, write formulas that
determine which database items are to be archived. For Magnetic Tape with Archiver
and Magnetic Tape without Archiver modes, write formulas that format strings as
required by tape formats, and provide error and warning messages to users.

See: Write Formulas, page 4-66

4. Write package procedures that determine the assignments and assignment actions
for PAR to process for the reports.

See: Write Package Procedures for Assignments and Assignment Actions, page 4-66

5. Provide an SRS (Standard Report Submission) definition from which users can
launch the PAR process.

See: Provide an SRS Definition for the PAR Process, page 4-68

6. Identify your custom reports, formulas and package procedures to the system by
making the appropriate entries in the table PAY_REPORT_FORMAT_MAPPINGS_F.

See: Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table, page 4-68

Create Database Items for Archiving
For its archiving function, PAR uses both live database items (which point at live
tables), and archive database items (which point at the archive tables to retrieve archived
data). For each archive database item, there must be a corresponding live database
item. You are responsible for creating the archive database items, and for any live
database items you need that do not already exist.

For example, for the archive database item A_INCOME_TAX_YTD referenced in a
formula, there must be a live database item INCOME_TAX_YTD. PAR runs this live
database item and places the value in the archive table FF_ARCHIVE_ITEMS.

Archive Database Item Creation: Background
The entity relationship diagram below shows the relationship of the PAR tables to other
tables in generic HRMS:

The FF_ARCHIVE_ITEMS table records a snapshot of what particular database items
evaluate to on a run of PAR.

The creation of archive database items includes the creation of archive routes. You
define these in FF_ROUTES, with definition texts that are simple select statements from
the two tables FF_ARCHIVE_ITEM_CONTEXTS and FF_ARCHIVE_ITEMS. Notice
however that you must define these based on the number of contexts being passed
into the routes, and the data type of the contexts. There are however, seeded Archive
Routes, which you may be able to make use of rather than defining your own; these
are detailed in the next section.

You define the route context usages in the table FF_ROUTE_CONTEXT_USAGES. The
recommended way to do this is to retrieve from FF_CONTEXTS the context IDs that the
live and archive routes require, and then define new route context usages based on the

4-64 Oracle Human Resources Management System Implementation Guide (US)

new archive routes. The route parameter is always defined based on the new archive
route and a parameter name of User Entity ID.

Here is an example of a more complex archive route:

l_text := ’ff_archive_items target,
ff_archive_item_contexts fac,
ff_archive_item_contexts fac1
where target.user_entity_id = &U1
and target.context1 = &B1 /* context assignment action id */
and fac.archive_item_id = target.archive_item_id
and fac.context = to_char(&B2) /* 2nd context of source_id */
and fac1.archive_item_id = target.archive_item_id

The simple structure underlying this relatively complex route is still evident. Each
context added just represents a further join to FF_ARCHIVE_ITEM_CONTEXTS.

Seeded Generic Archive Routes
The seeded generic archive routes fall into two categories: routes that have only one
context (using ASSIGNMENT_ACTION_ID) and routes that have two contexts.

Routes with One Context
For the generic archive routes with one context, three datatypes are supported for that
context, and therefore three such routes are automatically created when you run the
automatic database item generator:

• A Character Context route, mapping onto a FF_CONTEXT of datatype ’T’
(Text). This is named ARCHIVE_SINGLE_CHAR_ROUTE.

• A Numeric Context route, mapping onto a FF_CONTEXT of datatype ’N’
(Number). This is named ARCHIVE_SINGLE_NUMBER_ROUTE.

• A Date Context route, mapping onto a FF_CONTEXT of datatype ’D’ (Date). This is
named ARCHIVE_SINGLE_DATE_ROUTE.

Here is the text for ARCHIVE_SINGLE_CHAR_ROUTE:

ff_archive_items target
where target.user_entity_id = &U1
and target.context1 = &B1

Routes with Two Contexts
For the generic archive routes that have two contexts, the automatic database item
generator references the table FF_ARCHIVE_ITEM_CONTEXTS, whose column
CONTEXT is stored as a Varchar2(30). It makes the assumption that the first context
stored in FF_ARCHIVE_ITEMS is a number, and is an assignment action ID. It can seed
only one such ’two-context archive route’ by decoding the where clause of the generic
archive route as follows:

ff_archive_items target,
ff_archive_item_contexts context
ff_contexts ffc
where target.user_entity_id = &U1
and target.context1 = &B1
and target.archive_item_id = context.archive_item_id
and ffc.context_id = context.context_id
and context.context = decode(ffc.data_type,’T’, &B2, ’D’, fnd_date
.date_to_canonical(&B2),
to_char(&B2));

Implementation Guide 4-65

Running the Archive Database Item Generator
You make several calls to the procedure for running the interface to the archive database
item generator, one for each of the database items that you want to archive. The
procedure is as follows:

procedure pay_archive_utils.create_archive_dbi(
p_live_dbi_name IN VARCHAR2(30),
p_archive_route_name IN VARCHAR2(30) DEFAULT NULL,
p_secondary_context_name IN VARCHAR2(30));

Contexts for Database Items
Using the standard set_context procedure, you set global contexts or assignment level
contexts for those database items that require contexts. INITIALIZATION_CODE sets
the global contexts for formulas, for example, PAYROLL_ID. ARCHIVE_CODE sets the
context for the assignment level contexts, such as ASSIGNMENT_ID.

See: Examples: INITIALIZATION_CODE and ARCHIVE_CODE, page 4-70.

Write Formulas
To run PAR in Archive or Magnetic Tape with Archive mode, you write formulas that
identify the database items used in the archiving process. To run PAR in Magnetic Tape
with Archive or Magnetic Tape without Archive modes, you must write formulas to
format strings as required, and to provide warnings and errors.

The PAR process uses the entry existing for a report in the column REPORT_FORMAT of
the table PAY_REPORT_FORMAT_MAPPING_F to find the formulas associated with the
appropriate magnetic tape format in the table PAY_MAGNETIC_BLOCKS.

See also: Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table, page 4-68.

Write Package Procedures For Assignments And Assignment Actions
You must code two package procedures as follows:

• The RANGE_CODE procedure, to specify ranges of assignments to be processed
in the archive.

• The ASSIGNMENT_ACTION_CODE procedure, to create the assignment actions to
be processed.

RANGE_CODE Example
This package procedure returns a select statement. This select statement returns the
person_id that has the assignment for which PAR must create an assignment action.

4-66 Oracle Human Resources Management System Implementation Guide (US)

--
procedure range_cursor (pactid in number,
sqlstr out varchar2) is
begin
--
sqlstr := ’select distinct person_id

from per_people_f ppf,
pay_payroll_actions ppa
where ppa.payroll_action_id = :payroll_action_id
and ppa.business_group_id = ppf.business_group_id
order by ppf.person_id’;

--
end range_cursor;

Note: There must be one and only one entry of :payroll_action_id in the
string, and the statement must be, order by person_id.

ASSIGNMENT_ACTION_CODE Example
This package procedure further restricts and creates the assignment action.

--
procedure action_creation(pactid in number,

stperson in number,
endperson in number,
chunk in number) is

--
CURSOR c_state IS

SELECT ASG.assignment_id assignment_id
FROM per_assignments_f ASG,

pay_payroll_actions PPA
WHERE PPA.payroll_action_id = pactid
AND ASG.business_group_id = PPA.business_group_id
AND ASG.person_id between stperson and endperson
AND PPA.effective_date between ASG.effective_start_date

and ASG.effective_end_date
ORDER BY ASG.assignment_id;
--
lockingactid number;
begin
for asgrec in c_state loop

--
-- Create the assignment action to represent the person / tax

unit
-- combination.
--
select pay_assignment_actions_s.nextval
into lockingactid
from dual;
--
-- insert into pay_assignment_actions.
hr_nonrun_asact.insact(lockingactid,asgrec.assignment_id, pa

ctid,chunk, NULL);
end loop;

end action_creation;
--

Implementation Guide 4-67

Note: Four values are passed into the procedure. Start and End person
MUST be used to restrict the creation here, as these are used for
multithreading. Similarly, chunk must also be used and passed to the
insact procedure. This actually creates the action.

Provide an SRS Denition for the PAR Process
The PAR process is a batch process that users start from the Submit Requests
window. You need to set up the SRS definition for your process. The parameters for this
definition are as follows:

Table of Parameters for the PAR Process

Parameter Name Mandatory?

report_type Yes

report_qualifier Yes

start_date No *

effective_date No *

report_category Yes

business_group_id Yes

magnetic_file_name No

report_file_name No

legislative_parameters No *

* The PAR process requires the start_date and effective_date. However, these can be set
either by entries to the standard parameters or by using special legislative parameters
START_DATE and END_DATE. These special parameters are passed to the parameter
legislative_parameters in the form START_DATE=<date> and END_DATE=<date>.

Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table
You control PAR processing by entries you make in the table PAY_REPORT_FORMAT_
MAPPINGS_F. The columns for this table are as shown in the following table:

Column Name Type Comments

REPORT_TYPE NOT NULL VARCHAR2(30) A short name of the report.
Example: SQWL (for State
Quarterly Wage Listing)

REPORT_QUALIFIER NOT NULL VARCHAR2(30) A qualifying name for the
report. Example: for SQWL it
could be the state name (such
as Texas or California).

REPORT_FORMAT NOT NULL VARCHAR2(30) A foreign key to the PAY_
MAGNETIC_BLOCKS table.
Needed when running in ALL
modes.

4-68 Oracle Human Resources Management System Implementation Guide (US)

Column Name Type Comments

EFFECTIVE_START_DATE NOT NULL DATE

EFFECTIVE_END_DATE NOT NULL DATE

RANGE_CODE VARCHAR2(60) The name of a package
procedure that you code to
specify ranges of assignments
to be processed in the archive.
For example code, see: Write
Package Procedure for
Assignments and Assignment
Actions, page 4-66.

ASSIGNMENT_ACTION_
CODE

VARCHAR2(60) The name of a package
procedure that you code to
create the assignment actions
to be processed. For example
code, see: Write Package
Procedure for Assignments
and Assignment Actions, page
4-66.

INITIALIZATION_CODE VARCHAR2(60) A package procedure that
sets any global contexts
needed for the lifetime of
the archiving. Will likely be
used infrequently, but you
must create the procedure
(see: Contexts for Database
Items, page 4-66 and Examples:
INITIALIZATION_CODE
and ARCHIVE_CODE, page
4-70. If no value is entered in
this column, PAR performs no
archiving.

ARCHIVE_CODE VARCHAR2(60) Sets contexts at the assignment
action level to be used during
the archive. Will likely be
used instead of INITIALIZAT
ION_CODE. See: Contexts for
Database Items, page 4-66 and
Examples: INITIALIZATION_
CODE and ARCHIVE_CODE,
page 4-70.

MAGNETIC_CODE VARCHAR2(60) The standard generic magnetic
tape driving PL/SQL procedure
(see: Magnetic Tape Process,
page 4-29). To produce
the magnetic tape, PAR
uses REPORT_FORMAT as
a foreign key to the table
PAY_MAGNETIC_BLOCKS.
If no value is entered for
MAGNETIC_CODE, PAR does
not produce a magnetic tape.

Implementation Guide 4-69

Column Name Type Comments

REPORT_CATEGORY NOT NULL VARCHAR2(30) Indicator of the media type.
Naming standards are:
RT - Reel to Reel Tape
SD - Floppy Disk
REPORT - Paper Report
ARCHIVE - Archive

REPORT_NAME VARCHAR2(60) This remains null for runs in the
Magnetic Tape with Archive,
Archive, and Magnetic Tape
without Archive modes.
Available for future use with
other possible modes.

SORT_CODE VARCHAR2(60) Entered only when processing
a report for which the delivery
vehicle is Oracle Report
Writer. Enter the name of a
package procedure, which you
have coded, that returns the
assignment actions in the order
they should be processed in.

The key to this table is REPORT_TYPE, REPORT_QUALIFIER, REPORT_CATEGORY,
EFFECTIVE_START_DATE and EFFECTIVE_END_DATE.

Examples: INITIALIZATION_CODE and ARCHIVE_CODE
INITIALIZATION_CODE
/* Name : archinit
Purpose : This performs the US specific initialization

section.
*/
procedure archinit(p_payroll_action_id in number) is
jurisdiction_code pay_state_rules.jurisdiction_code%TYPE;
l_state VARCHAR2(30);

begin
null;
end archinit;

ARCHIVE_CODE
Note: This code sets the contexts by assignment action. There are two
ways of setting contexts, one using the set_context function, the other
using the PL/SQL context table. The context table is used only when
contexts can have multiple values, as in this example for SOURCE_ID
and SOURCE_TEXT.

/* Name : archive_data
Purpose : This performs the ZA specific employee

context setting.
*/

procedure archive_data(p_assactid in number, p_effective_date in d
ate) is

asgid pay_assignment_actions.assignment_id%type;

4-70 Oracle Human Resources Management System Implementation Guide (US)

l_count number;
l_context_no number;
aaseq number;
aaid number;
paid number;

cursor cursars is
select distinct code
from pay_za_irp5_bal_codes
where code in (4001, 4002, 4003, 4004, 4005, 4006, 4007);

cursor curclr is
select distinct nvl(pet.element_information1, ’&&&’)

element_information1
from pay_element_types_f pet,

pay_element_classifications pec,
pay_assignment_actions paa,
pay_payroll_actions ppa

where paa.assignment_action_id = p_assactid
and pec.classification_name = ’Deductions’
and pec.classification_id = pet.classification_id
and ppa.payroll_action_id = paa.payroll_action_id
and exists (select ’’

from pay_assignment_actions paa2,
pay_payroll_actions ppa2,
pay_run_results prr

where paa2.assignment_id = paa.assignment_id
and paa2.payroll_action_id =

ppa2.payroll_action_id
and paa2.assignment_action_id =

prr.assignment_action_id

and prr.element_type_id = pet.element_type_id
and ppa2.effective_date between ppa.start_date

and ppa.effective_date
);

begin
SELECT aa.assignment_id

into asgid
FROM pay_assignment_actions aa
WHERE aa.assignment_action_id = p_assactid;

l_context_no := pay_archive.g_context_values.sz;

for i in 1..l_context_no loop
pay_archive.g_context_values.name(i) := NULL;
pay_archive.g_context_values.value(i) := NULL;

end loop;
pay_archive.g_context_values.sz := 0;
l_count := 0;

/* Set up the assignment id, date earned and tax unit id contexts
*/

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’ASSIGNMENT_ID’;
pay_archive.g_context_values.value(l_count) := asgid;

SELECT MAX(paa.action_sequence)

Implementation Guide 4-71

INTO aaseq
FROM pay_assignment_actions paa,

pay_payroll_actions ppa,
pay_action_classifications pac,
pay_payroll_actions ppa_arch,
pay_assignment_actions paa_arch

WHERE
paa_arch.assignment_action_id = p_assactid
and paa_arch.payroll_action_id =

ppa_arch.payroll_action_id

and paa.assignment_id = paa_arch.assignment_id
AND paa.payroll_action_id = ppa.payroll_action_id
AND ppa.action_type = pac.action_type
AND pac.classification_name = ’SEQUENCED’
AND ppa.effective_date between ppa_arch.start_date

and ppa_arch.effective_date
and exists (select ’’

from pay_payroll_actions ppa2,
pay_assignment_actions paa2,
pay_run_results prr,
pay_element_types_f pet

where ppa2.time_period_id =
ppa.time_period_id

and ppa2.payroll_action_id =
paa2.payroll_action_id

and paa2.assignment_action_id =
prr.assignment_action_id

and prr.element_type_id =
pet.element_type_id

and ppa2.effective_date between
pet.effective_start_date and

pet.effective_end_date
and paa2.assignment_id = paa.assignment_i

d
and pet.element_name =

’ZA_Tax_On_Lump_Sums’)
and not exists (select ’’

from pay_assignment_actions paa3,
ff_archive_items fai,
ff_user_entities fue

where paa3.assignment_id =
paa_arch.assignment_id

and paa_arch.payroll_action_id =
paa3.payroll_action_id

and paa3.assignment_action_id =
fai.context1

and fai.user_entity_id =
fue.user_entity_id

and fue.user_entity_name =
’A_PAY_PROC_PERIOD_ID’

and fai.value = ppa.time_period_id);
if aaseq is null then
SELECT MAX(paa.action_sequence)
INTO aaseq
FROM pay_assignment_actions paa,

pay_payroll_actions ppa,

4-72 Oracle Human Resources Management System Implementation Guide (US)

pay_action_classifications pac
WHERE
paa.assignment_id = asgid
AND paa.payroll_action_id = ppa.payroll_action_id
AND ppa.action_type = pac.action_type
AND pac.classification_name = ’SEQUENCED’
AND ppa.effective_date <= p_effective_date;

end if;
SELECT assignment_action_id, payroll_action_id
INTO aaid, paid
FROM pay_assignment_actions
WHERE
assignment_id = asgid
AND action_sequence = aaseq;

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’ASSIGNMENT_ACTION_ID’;
pay_archive.g_context_values.value(l_count) :=aaid ;
pay_archive.balance_aa := aaid;

l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’PAYROLL_ACTION_ID’;
pay_archive.g_context_values.value(l_count) :=paid ;
for clrrev in curclr loop
l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) :=

’SOURCE_TEXT’;
pay_archive.g_context_values.value(l_count) :=

clrrev.element_information1;
end loop;
for sarrec in cursars loop
l_count := l_count + 1;
pay_archive.g_context_values.name(l_count) := ’SOURCE_ID’;

pay_archive.g_context_values.value(l_count) := sarrec.code
;

end loop;
-

pay_archive.g_context_values.sz := l_count;
-
end archive_data;

Balances in Oracle Payroll
This essay deals with the definition and use of balances and balance dimensions in
Oracle Payroll. It also explains how to deal with the issue of loading initial balances. This
essay does not provide any detail on how to add balance dimensions to the system.

Terms
This essay assumes that you are already familiar with the database design diagrams and
tables contained in the Oracle HRMS Technical Reference Manual.

If you are not already familiar with the setup and use of balances, or the concepts
of employee assignment, assignment actions, database items, or payroll processing

Implementation Guide 4-73

in Oracle FastFormula you should refer to your Oracle HRMS user guides for more
information.

For additional information on how the Payroll Run processes balances, see also: Payroll
Run Process - Create and Maintain Balances, page 4-17.

Overview of Balances
In Oracle Payroll a balance is defined as the accumulation of the results of a payroll
calculation. The balance has a name, feeds and dimensions.

For example, the balance GROSS PAY is the accumulation of the results of processing all
‘Earnings’. However, the idea of a dimension is unique to Oracle Payroll. Dimensions
enable you to view the value of a balance using a combination of different criteria. So, you
might want to view the value of Gross Pay for one employee for the current pay period, or
for the year to date. The actual balance and dimension you would use in a formula or a
report would be the GROSS_PAY_ASG_PTD or the GROSS_PAY_ASG_YTD.

In general, balances in Oracle Payroll can be thought of as the ‘calculation rules’ for
obtaining the balance value. Most values are not held explicitly in the database. This
approach has many advantages: New balances can be defined and used at any time with
any feeds and dimensions; balance values do not need to be stored explicitly in the
database, taking up valuable storage space and causing problems with data archiving
and purging.

Balance Types
These are the balance names, for example Gross Pay and Net Pay. Balance types always
have a numeric Unit Of Measure, and in some instances a currency code.

Balance Feeds
Balance feeds define the input values that contribute to a balance. For example the
pay values of all earnings types contribute to the Gross Pay balance. Feeds can add to
(+) or subtract from (-) a balance

Balance Dimensions
The balance dimension is identified by the database item suffix for the balance. For
example, ’_YTD’ indicates the balance value is for the year to date. Balance dimensions
are predefined in Oracle Payroll.

Dened Balances
The defined balance is the name used to identify the combination of Balance Type and
Balance Dimension. For example, GROSS_PAY_ASG_YTD. When you use the Balance
window to define a new balance, Oracle Payroll automatically generates database items
for every balance dimension you select. You can then access the value directly within
any formula. In any detailed calculation or report on balances you always refer to the
‘defined balance’ to return a value.

Latest Balances
To optimize the performance of payroll processing, some balance values are held
explicitly in the database and these are referred to as Latest Balance Values. The payroll
process accesses and updates latest balance values as it runs. In some cases it clears and
then resets values, for example when you do a rollback. All of this is invisible to the user
and is managed by the payroll process.

Note: If you need to return the value of a balance in a report you should
use the balance function pay_balance_pkg.get_value. See: Including
Balance Values in Reports, page 4-89.

4-74 Oracle Human Resources Management System Implementation Guide (US)

Expiry
An important concept for latest balances is that of ‘expiry’. For example, consider the
GROSS_PAY_YTD balance. When you cross the tax year boundary you would expect
the value to return to zero. This ‘expiry’ of a balance is maintained internally by Oracle
Payroll and there is code to work out if we have crossed such a boundary.

Important: Even if a defined balance has expired in theory for a payroll
run, it is not actually zeroed on the database unless it is subsequently
updated by the same payroll run. Thus, following a Payroll Run, you
may well see balances that you would have expected to have expired, but
have their old values.

Balance Contexts
There is occasionally a requirement to report balances where the combination of
ASSIGNMENT_ACTION_ID and BALANCE_TYPE_ID does not uniquely identify the
individual balance values that should be reported. For example in the US legislation you
need to maintain balance dimensions for particular states, while in the UK legislation
you need to maintain balance dimensions for distinct tax offices.

Both of these requirements are met by the definition of special balance contexts. These
are legislative specific ’C’ code and appear to you as part of the balance dimensions.

User definition of additional balance contexts is not yet supported because of the major
impact these may have on the overall performance of the payroll process. Bad code
in the definition of these contexts can run exceptionally slowly, especially when you
accumulate a large number of run results.

Context Balances - a UK Example
To report on context balances, we must define the relevant balances with the
ELEMENT_PTD and ELEMENT_ITD dimensions. The further context that is required
to identify the values is taken from the PAY_RUN_RESULTS.SOURCE_ID. This is
obtained from the balance feed joining to the PAY_RUN_RESULT_VALUES table, then
to PAY_RUN_RESULTS.

Using this value, we can select via the PAY_ASSIGNMENT_LATEST_BALANCES ->
PAY_BALANCE_CONTEXT_VALUES method. Or, if there is no latest balance, by the
route code call, which in the UK can be done with a function call:

hr_gbbal.calc_element_ptd_bal(ASSIGNMENT_ACTION_ID,
BALANCE_TYPE_ID,
SOURCE_ID);

(or calc_element_itd_bal with the same parameters).

Balance Dimensions
This essay describes what a balance dimension is and what it does, and how the various
parts interact with formulas and the Payroll Run.

A balance dimension defines how the value of a specific balance should be
calculated. The balance dimension is also an entity with its own attributes that are
associated with balance calculations.

Database Item Sufx
The database item suffix identifies the specific dimension for any named balance. The
‘defined balance’ name is the combination of the balance and the suffix. For example, the
suffix ’_ASG_YTD’ in ’GROSS_SALARY_ASG_YTD’ identifies that the value for the
gross salary balance is calculated for one assignment, for the year to date.

Implementation Guide 4-75

Routes
The balance dimension route is a foreign key to the FF_ROUTES table. A route is
a fragment of SQL code that defines the value to be returned when you access a
balance. As with other database items, the text is held in the DEFINITION_TEXT column
of the FF_DATABASE_ITEMS table.

The select clause of the statement is always:

select nvl(sum(fnd_number.canonical_to_number(TARGET.result_value
) * FEED.scale), 0)

Thus, a balance could be defined as the sum of those run result values that feed the
balance type (‘Gross Salary’ in our example), across a certain span of time (in our
example, this is since the start of the current tax year).

The SQL statement itself must follow a number of rules, and an example appears below:

pay_balance_feeds_f FEED
,pay_run_result_values TARGET
,pay_run_results RR
,pay_payroll_actions PACT
,pay_assignment_actions ASSACT
,pay_payroll_actions BACT
,pay_assignment_actions BAL_ASSACT

where BAL_ASSACT.assignment_action_id = \&B1
and BAL_ASSACT.payroll_action_id = BACT.payroll_action_id
and FEED.balance_type_id = \&U1
and FEED.input_value_id = TARGET.input_value_id
and TARGET.run_result_id = RR.run_result_id
and RR.assignment_action_id = ASSACT.assign_action_id
and ASSACT.payroll_action_id = PACT.payroll_action_id
and PACT.effective_date between

FEED.effective_start_date and FEED.effective_end_date
and RR.status in (’P’,’PA’)
and PACT.effective_date >=

(select to_date(’06-04-’ || to_char(to_number(
to_char(BACT.effective_date,’YYYY’))

+ decode(sign(BACT.effective_date - to_date(’06-04-’
|| to_char(BACT.effective_date,’YYYY’),’DD-MM-YYYY’

)),-1,-1,0)),’DD-MM-YYYY’)
from dual)

and ASSACT.action_sequence <= BAL_ASSACT.action_sequence
and ASSACT.assignment_id = BAL_ASSACT.assignment_id’);

This example is the route for a UK based assignment level year to date balance that uses
the 6th of April as the start of the tax year.

Comments
The route is made up of the following parts:

1. Return all possible actions for the assignment

2. Identify the possible feeds to the balance

3. - feed checking

4. Restrict the period for which you sum the balance

- expiry checking

4-76 Oracle Human Resources Management System Implementation Guide (US)

Note: The expiry and feed checking parts have a special significance that
will become obvious later.

Specific table aliases should be used as they have a particular meaning.

• The BAL_ASSACT table is the ‘source’ assignment action, that is, the current action
for this assignment.

• The ASSACT table is the ‘target’ assignment action, that is, the action for those
results that feed the balance.

• The PACT table is the ‘target’ payroll action, that is, used to define the date of the
ASSACT assignment actions.

• We join to the BACT table, getting all the Payroll Actions in which the assignment
appears.

• We join to the FEED table for the balance type and get all the TARGET input values
that could possibly feed this balance.

• The run results that feed must be processed (’P’ or ’PA’).

• The complicated looking sub-query returns the start of the current tax year, which is
from when we are summing the balance. That is, the results that feed the balance
will be between the start of the current tax year and the current action sequence.

Dimension Type
Dimension type determines how a balance is treated by the Payroll Run, and for
predefined dimensions this is optimized for performance of the payroll run.

The dimension type can take one of the following values:

• N - Not fed and not stored. This dimension type does not create a latest balance
at any time. A balance with this dimension will always have its SQL re-executed
whenever that balance is executed.

• F - Fed but not stored. This dimension type creates a balance ‘in memory’ during
the Payroll Run. This balance is fed by the run code but it does not store a latest
balance on the database.

• R - Run Level balance. This dimension type is used specifically for those balances
that total for the current run and must be used with the appropriate route. No latest
balance value is stored on the database.

• A - Fed and stored at assignment level. This dimension type creates an assignment
level latest balance and stores it in the PAY_ASSIGNMENT_LATEST_BALANCES
table.

• P - Fed and stored at person level. This dimension type creates a person level latest
balance and stores it in the PAY_PERSON_LATEST_BALANCES table.

Feed Checking Type
The feed checking type controls the feed checking strategy used during the payroll
run. This type is used to keep the in memory balance up to date by deciding whether a
run result should feed the balance. It can have the following values:

• Null This is the default value, and means that all the run result values included by
the existing balance feeds will feed the balance.

Implementation Guide 4-77

• P Payroll Run executes the package procedure defined in the expiry_checking_code
column on the dimension. An expiry flag parameter indicates whether feeding
should occur or not.

• E Equality feed checking is done. That is, feeding occurs if there is a match between
the in memory balance context values and the contexts held in the UDCA (User
Defined Context Area).

The following additional types are for US and Canadian legislative balances only:

• J Jurisdiction checking is done.

• S Subject Feed Checking is done.

• T A combination of ’E’ and ’S’ feed checking types.

• M A combination of feed checking types ’S’, ’J’ and ’E’.

Expiry Checking Type
Latest balances should expire (that is, return to zero) at a time determined by their
dimension. For example, a YTD (Year to Date) balance expires at the end of the year.

All loaded balances are checked for expiry by the Payroll Run, according to their expiry
checking type:

• N - Never expires: balances are never set to zero.

• P - Payroll Action Level: for these types, a list of the expiry check results for each
owning action/balance dimension are kept.

Once expiry checking code has been called for such a combination, it does not
need to be checked again for other balances that have the same combination, thus
avoiding multiple calls to the database.

The expiry checking is balance context independent - the list of balance contexts is
not passed to the expiry checking code.

• A - Assignment Action Level: no assumptions can be made, expiry checking code
is always called. The expiry checking is balance context dependent - the list of the
balance contexts is passed to the expiry checking code.

• D - Date Expiry: the date expiry checking mechanism looks at the balance
dimension/balance contexts combination of the balance being expiry checked, and
scans the in-memory list to see if a balance with the same combination has already
been expiry checked.

If so, the expiry date is taken from that stored on the in-memory balance.

The expiry checking is balance context dependent-the list of the balance contexts
is passed to the expiry checking code.

Initial Balance Loading for Oracle Payroll
This essay describes the functionality available with Oracle Payroll to assist in the
loading of initial balance values from an existing payroll system.

Introduction
Whether you are implementing Oracle Payroll for the first time, or upgrading from
an earlier release you will need to set initial values for your legislative balances. It is
essential for the accurate calculation of legislated deductions in Oracle Payroll that the
initial values for these balances are correct.

4-78 Oracle Human Resources Management System Implementation Guide (US)

This section shows you how to set up and load these initial balance values before you
begin to process payrolls. After you have begun processing payrolls you may need to
repeat this process for additional user balances you define in the future.

Warning: The steps you follow to load initial balances are completely
different from the steps an end user follows to adjust a balance. You
must not use the balance loading method to make balance adjustments.

Balances and Balance Adjustments in Oracle Payroll
In Oracle Payroll a balance is the accumulation of the results of a payroll calculation. The
balance has a name, feeds and dimensions. The results that feed a specific balance are
known as the ‘balance feeds’ and these can add or subtract from the total. The balance
loading process calculates and inserts the correct run results to set the initial values
with effect from the upload date.

Balances are calculated directly from the run results that are designated as feeding the
balance. This approach ensures run results and balance values are always in step and it
removes the need to store and maintain extra information in the database. In effect, the
definition of a balance is really the definition of the ‘calculation’ that is performed to
return the balance value.

The run results that feed a defined balance are usually the results of processing elements
during a payroll run. However, there may be times when balance values have to
be adjusted manually. You do this by making an entry of an element as a ‘balance
adjustment’. When you make a balance adjustment online, the effect is to create a single
processed run result for the element. This run result automatically feeds, or adjusts, all
the balances that are normally fed by the element. In this way, you are able to cascade
the adjustment to all affected balances.

Important: When performing an online balance adjustment you must
be careful to choose the right element and input value. However, if
you make a mistake you can always go back and delete and re-enter
the adjustment. You delete balance adjustments from the Payroll or
Assignment Actions windows.

Steps
There are three basic steps involved in loading initial balance values:

1. Define an element and input value to feed each specific balance

2. Set up the initial balance values in the tables

PAY_BALANCE_BATCH_HEADERS
PAY_BALANCE_BATCH_LINES

3. Run the Initial Balance Upload process

• Use the SRS window.

• Use Validate, Transfer, Undo and Purge modes as needed.

Balance Loading Process
When you run the initial balance loading process you set values for each balance relative
to a specific date - the Upload Date. The process creates run results to ensure your
legislative balances are correct from the upload date. Maintenance of balance information
after this date is managed by the system, or by using the balance adjustments.

Implementation Guide 4-79

The upload date represents the effective date of the initial balance load. For example, you
run the first payroll on 01-March, with wages of 5,000 and taxes of 1,000. The salary
PTD, MTD, QTD and YTD are all 5,000. The taxes PTD, MTD, QTD, and YTD are all
1,000. If you require YTD balances for Jan and Feb, run the balance initialization for
a date other than 01-March. If you want values of PTD = 0, MTD = 0, YTD 200 on
01-March, you need to run the Initial Balance Upload with a date of 28- February or
01-February, and with a dimension of YTD, and a value of 200. At 01-March the values
are PTD = 0, MTD = 0, YTD 200.

Consider the following example of three dimensions for gross pay balance values for
one employee.

• Gross Pay Ptd 1000.00

• Gross Pay Qtd 3250.00

• Gross Pay Ytd 6250.00

The balance loading process must calculate the actual values required for each entry
and the effective date for these entries. The result of the calculation is the creation of 3
balance entries.

• _PTD balance entry value is 1000.00

• _QTD balance entry value is 2250.00

• _YTD balance entry value is 3000.00

Balance Loading

The result is that the cumulative values of the individual entries match the initial
requirement for each balance.

• Gross Pay Ptd = 1000.00

• Gross Pay Qtd = 1000.00 + 2250.00 = 3250.00

• Gross Pay Ytd = 1000.00 + 2250.00 + 3000.00 = 6250.00

Latest Balances
To improve payroll run performance Oracle Payroll sets and maintains ’Latest Balance
Values’. If these values are not set, the balance value is created by summing the run
results for the balance. If a large number of assignments have no value then there could
be a significant impact on the first payroll run. Therefore, loading the latest balances
prior to the first payroll run has significant implications for performance.

4-80 Oracle Human Resources Management System Implementation Guide (US)

Note: Some balances cannot have latest balances, such as those that are
used in-memory but not stored.

When you are deciding which balances and dimensions you should include in the initial
loading process, consider the balances that are used in the payroll run. For example, if
the payroll run uses the balance bal_YTD, but the upload process loads bal_PTD
only, then the latest balance value for bal_PTD exists but not for bal_YTD. The first
payroll run would have to evaluate bal_YTD.

In the normal payroll run the latest balance value is associated with the last assignment
action that uses the defined balance. The balance upload process attempts to simulate
this action by creating a number of balance adjustment entries prior to the upload date.

Important: If the defined balance includes contexts then the latest
balance can only be created on a balance adjustment payroll action that
has context values that do not contradict the latest balance that is to
be created.

In Oracle Payroll, each balance adjustment entry is considered to be a separate
assignment action. These adjustments are performed in date order - earliest first. The
last balance adjustment, with the highest assignment action number, is used to create
the latest balance.

Setting Up an Element to Feed Initial Balances
Because of the complex web of feeds that can exist for any specific balance there is a
simple mechanism to let you set the initial value for any specific balance. The basic
principle is that you require a special element input value to feed each specific balance;
and you set each balance separately.

Elements to Initialize Legislative Balances
Oracle Payroll comes with the predefined elements and input values you need to set
initial values for all your legislative balances.

Important: US and Canadian users should run a special PL/SQL script
(paybalup.pkb) to create the elements and inputs needed to feed the
predefined legislative balances. This script has been registered as an SRS
process - Initial Balance Structure Creation. You will need to create batch
lines for each of these elements.

Users in other legislations need only link the predefined elements that feed the legislative
balances that must be initialized.

Elements to Initialize User-dened Balances
For all other balances you need to set up the elements that will provide the entry values
for each of your initial balances. There are some rules for setting up elements for initial
balance feeds.

Element
• Must have a start date 01-JAN-0001

This rule simplifies the validation by making sure that the element and input value
to feed the balance are always available.

• Must have a classification of ’Initial Balance Feed’

Implementation Guide 4-81

This classification is excluded from the list of classifications available when you
define a balance. You can only set up manual balance feeds for this type of element.

• Must be ‘Adjustment Only’

• Must be a nonrecurring type

• Must be processable in a payroll run

Input Values
• Must have a start date 01-JAN-0001

• Each input value must feed only one balance

If you need to set initial values for a large number of balances you can define multiple
input values for a single element with each input value feeding a different balance.

Element Link
• Must have a start date 01-JAN-0001

• Criteria must be only Link To All Payrolls - ’Yes’

Supported Balances
All the balances supported by the initialization process are set at the assignment
level. Balances at the person level are set indirectly by accumulating the values from
all the assignments.

Setting Up the Initial Balance Values
There can be many different sources for the initial balance value to be loaded. For
example, you may be migrating from a previous version of Oracle Payroll, or from
another payroll system, or you may hold this information in another system.

Two batch interface tables are supplied with Oracle HRMS to standardize the process of
loading the initial balance values. You can load information directly into these tables and
you can also review, update and insert values manually. This gives you total flexibility
for setting values. It also enables you to define and manage the loading of separate
batches as logical groups.

PAY_BALANCE_BATCH_HEADERS

Name Null? Type

BUSINESS_GROUP_ID NUMBER(15)

PAYROLL_ID NUMBER(9)

BATCH_ID NOT NULL NUMBER(9)

BATCH_NAME NOT NULL VARCHAR2(30)

BATCH_STATUS NOT NULL VARCHAR2(30)

UPLOAD_DATE NOT NULL DATE

BATCH_REFERENCE VARCHAR2(30)

BATCH_SOURCE VARCHAR2(30)

BUSINESS_GROUP_NAME VARCHAR2(60)

PAYROLL_NAME VARCHAR2(80)

4-82 Oracle Human Resources Management System Implementation Guide (US)

Each batch identifies the payroll that is being uploaded and the date of the upload. Other
identifiers can be set to identify uniquely each batch as shown, for example, in the
following table.

Batch Name Batch Ref Batch Source Payroll Upload Date

Weekly Payroll 0001 SQL*Loader Pay1 01-Jan-1995

Weekly Payroll 0002 SQL*Loader Pay1 01-Jan-1995

Monthly Payroll 0003 SQL*Loader Pay2 01-Jan-1995

Semi Monthly
Payroll

0001 Screen Pay3 01-Aug-1995

PAY_BALANCE_BATCH_LINES

Name Null? Type

ASSIGNMENT_ID NUMBER(10)

BALANCE_DIMENSION_ID NUMBER(9)

BALANCE_TYPE_ID NUMBER(9)

PAYROLL_ACTION_ID NUMBER(9)

BATCH_ID NOT NULL NUMBER(9)

BATCH_LINE_ID NOT NULL NUMBER(9)

BATCH_LINE_STATUS NOT NULL VARCHAR2(30)

VALUE NOT NULL NUMBER

ASSIGNMENT_NUMBER VARCHAR2(30)

BALANCE_NAME VARCHAR2(80)

DIMENSION_NAME VARCHAR2(80)

GRE_NAME VARCHAR2(60)

JURISDICTION_CODE VARCHAR2(30)

ORIGINAL_ENTRY_ID NUMBER(15)

Each batch has a set of batch lines that include details of the assignment, the balance and
the value for each dimension. You can also include other contexts for a specific balance.

Assignment Balance Dimension Value

101 Gross Pay PTD 1000.00

101 Gross Pay QTD 3250.00

101 Gross Pay YTD 6250.00

101-2 Gross Pay PTD 750.00

Implementation Guide 4-83

Note: The tables provide support for either a system ID (such as
assignment_id) or a user ID (such as assignment_number) for each
piece of information. This allows maximum flexibility when you are
populating the batch tables.

The rule is that if both are specified then the system ID overrides the
user ID. Here is a list of the system IDs and user IDs that can be specified
when setting up the tables:

System ID User ID

BUSINESS_GROUP_ID BUSINESS_GROUP_NAME

PAYROLL_ID PAYROLL_NAME

ASSIGNMENT_ID ASSIGNMENT_NUMBER

BALANCE_DIMENSION_ID DIMENSION_NAME

BALANCE_TYPE_ID BALANCE_NAME

ORIGINAL_ENTRY_ID

GRE_NAME (US and Canada only)

JURISDICTION_CODE (US and Canada only)

If an error occurs during the processing of the batch, the error message is written to the
PAY_MESSAGE_LINES table with a source_type of H (header) or L (line).

Running the Initial Balance Upload Process
You run the Initial Balance Upload process from the SRS window to upload values from
the batch tables. You can run this process in one of four modes:

• Validate

• Transfer

• Undo Transfer

• Purge

Prerequisites
On the upload date, every assignment in the batch must belong to the payroll identified
in the batch header.

The payroll must have a sufficient number of time periods prior to the upload date to
allow the setting of the initial balances.

Other specific criteria, such as the GRE or Legal Company, are not validated by the initial
balance loading process. It is your responsibility to validate this information.

Note: The validation process contains a predefined hook to enable
you to apply your own additional validation procedure to your own
balances. The procedure should be named validate_batch_line.

The process will check for valid data but will not set it.

4-84 Oracle Human Resources Management System Implementation Guide (US)

Modes
Validate Mode
There is no validation of the batch tables prior to running this process. The process
validates data in PAY_BALANCE_BATCH_LINES, but does not transfer these to the
Oracle HRMS database. It marks valid lines with V (Validated), and lines in error with E
(Error), and sends error messages to the PAY_MESSAGE_LINES table.

The validation process is split into two phases:

• The first phase checks the integrity of the data in the batch tables.

• The second phase checks that it is possible to create all the required balance
adjustment entries.

The validate process also populates the system ID entries in the table. This ensures that
all subsequent processing has access to the system IDs.

All batch lines are validated independently and are marked with their individual status
at the end of the process.

Transfer Mode
Transfer mode repeats the first phase of the validation check to ensure the integrity of the
data in the batch tables and the existence of all system IDs.

The process calculates the balance adjustment entries required for each assignment. This
list is checked and aggregated where values are shared and actual entries are then
created for the assignment. This is repeated for each assignment in the batch. Successful
transfer is marked with a status of T - Transferred.

Note: If any line for an assignment is in error, none of the lines for the
assignment are transferred into the HRMS database. Failures are logged
in the messages table against the batch line being processed and the
batch line is marked as I - Invalid.

If the value of the adjustment is zero then no entry is created. For example:

Balance_PTD = 500

Balance_QTD = 500

There is no need for an adjustment to the QTD dimension since the value is already
set by the PTD.

It is likely that there will be large volumes of data to load, so the work is periodically
committed to preserve successful work and to reduce the number of rollback segments
required.

Note: The commit size is specified by the CHUNK_SIZE parameter
in PAY_ACTION_PARAMETERS. The default for CHUNK_SIZE is 20
successful assignments.

This is the same parameter used by other payroll processes to determine
commit frequency.

If a batch has been processed with partial success, you can resubmit the batch and
only those assignments with batch lines that have not been Transferred are processed
again. You can also restart the batch process if it failed during processing, for example if
it ran out of tablespace.

Implementation Guide 4-85

Undo Transfer
This mode removes all the balance adjustment entries created by the transfer process
and return the status of the batch lines to U.

Note: The data in the batch tables is kept. You can correct any batch
lines with incorrect values and repeat the transfer.

Purge
Purges all data in a batch regardless of current status. When a batch is purged all the
messages, batch lines and the batch header are removed. This enables you to reclaim
space once a batch is successfully transferred.

Use Purge mode only when you are sure that the balances for all assignments in a batch
have been successfully entered into the HRMS database.

Warning: Once you have purged a batch, all the entries for that batch
are deleted. This action cannot be undone.

Process Flow
The normal sequence for using these modes to load initial balances is shown in the
following diagram:

Process Flow

Error Statuses
Any errors encountered are recorded in the messages table against the object being
validated: either the batch itself or an individual batch line. The status set against the
batch or batch lines is dependent on the mode the process is running in as well as the
status of other batch lines.

Batch Line Status
The status of each batch line can be one of the following :

4-86 Oracle Human Resources Management System Implementation Guide (US)

• V - Valid; the batch line is OK

• E - Invalid; the batch line has an error

• T - Transferred; the batch line has been successfully transferred

Batch Status
The status of the batch is dependent on the statuses of the batch lines within the batch:

• T - Transferred; all lines in the batch have been transferred

• P - Partially Transferred; some lines in the batch have been transferred

• V - Valid; all the lines in the batch are valid and none have been transferred

• E - Invalid; some of the lines in the batch are invalid and none have been transferred

Validation Problems
There are two common problems you should check.

The adjustment request for a balance dimension may be incorrect. For example, suppose
an assignment has the following upload requests:

• <Balance>_QTD = 1500.00

• <Balance>_YTD = 1000.00

The YTD value is lower than the QTD value. This may be valid, if the balance decreases
over time. However, balances normally increase so it is advisable to check a balance
that has been decreased.

Secondly, an invalid adjustment error may occur, where the process could not find
the correct date to do the adjustment. The cause of this error depend on the balance
dimension that is being processed.

However, it is always good practice to make sure that all the business group details are
correct, and there are enough payroll periods for the balance to be set. To check which
date is being used for each assignment balance, use the following SQL:

select BL.dimension_name,
pay_balance_upload.dim_expiry_date
(BH.business_group_id
,BH.upload_date
,BL.dimension_name
,BL.assignment_id
,BL.gre_name
,BL.jurisdiction_code
,BL.original_entry_id) expiry_date
from pay_balance_batch_headers BH
,pay_balance_batch_lines BL
where BH.batch_name = ’&Batch_Name’
and BL.batch_id = BH.batch_id
and BL.assignment_number = ’&Assignment_Number’
and BL.balance_name = ’&Balance_Name’
;

If the expiry date is set to ’31-DEC-4712’ then the adjustment date could not be found.

Balance Initialization Steps
Here’s a simple check list on how to set up the data:

Implementation Guide 4-87

1. Create payrolls in Oracle Payroll with periods going back to the start of the
year. Enter all employees into Oracle HRMS and give them assignments to these
payrolls.

Important: The next step applies to US and Canadian users
only. Users in other legislations need only define links for the
predefined balance loading elements.

2. From the Submit Requests window, run the Initial Balance Structure Creation
process, selecting a batch name as the parameter. For each batch, this process creates:

• An input value to hold the amount of each balance and of any context, and
enough elements with the special classification Balance Initialization to hold all
the input values created

• The necessary links and balance feeds for these elements

3. Create any other elements you need to initialize balances for your own earnings
and deductions.

• Follow the requirements listed above. See: Setting Up an Element to Feed Initial
Balances, page 4-81.

• Use multiple input values to reduce the number of elements

• Define one balance feed for each input value

Note: Each balance must have one initial balance feed only.

Multiple input values for one element must feed balances that
have the same ’upload date’.

4. Group employees into batches for managing initialization of their
balances. Enter an identifying header for each batch (these headers go into the
PAY_BALANCE_BATCH_HEADERS table). Each header contains the following
information:

• Business Group name and payroll name

• Batch name and ID number

• Upload date: the date on which the balances in the current system will be correct
and ready for transfer

For example:

Batch Name Business Group Payroll Name Upload Date
Upload 1 BG name Full Time 1 13-AUG-1995

5. Create a batch line for each balance to be transferred (these lines go into the
PAY_BALANCE_BATCH_LINES table). A batch line includes the following
information:

• Employee assignment number

• Balance name and dimension, such as quarter to date or year to date

• Balance value

• Balance context where appropriate. For US and Canadian users the context may
include a GRE and a jurisdiction (federal, state, local, or provincial).

4-88 Oracle Human Resources Management System Implementation Guide (US)

Note: The process uses your balance feed definitions to determine
which element input value to use.

• For example:

Asg. Number Balance Dimension Value
60001 Salary PTD 700
60001 Salary QTD 1400
60001 Salary YTD 2400
60001 Tax Paid PTD 2200
60001 Tax Paid QTD 2400
60001 Tax Paid YTD 2400

Important: The Tax Paid YTD value is not required because it has
the same value as the QTD. However, this balance is included to
create a value for the latest balance, and improve the performance of
the first payroll run.

6. From the Submit Requests window, run the Initial Balance Upload process. Select
the mode in which to run this process as a parameter. Available modes are:

• Validate

Validate batch lines but do not transfer

Send error messages to PAY_MESSAGE_LINES

• Transfer

Validate and transfer batch lines

If any line for an assignment is in error, none of the lines for the assignment
are transferred

• Undo

Removes balance initialization entries from the database and marks the lines
as U in the batch lines table.

• Purge

Purges all lines in the batch lines table, regardless of how they are marked.

Note: Use Purge mode only when you are sure that the balances
for all assignments in a batch have been successfully entered
into the HRMS database.

Including Balance Values in Reports
This section describes the PL/SQL interface for the balance function that enables you to
access balance values for inquiry and reporting tools.

Tip: If you need to report the same balance value many times in different
reports you might consider creating a reporting table. You would simply
include the balance function in your PL/SQL script to populate this table.

Advantages
Using this PL/SQL function to retrieve balance values has several advantages:

Implementation Guide 4-89

• You can easily call the function from a form or SRW2 report.

• You can access latest balance values, where they exist. This will optimize
performance automatically.

The Balance Function
The interface to the balance function is flexible and easy to use. Hard coded knowledge
of contexts within the function are kept to a minimum and the balance function is
controlled as follows:

• Before the function is called, calls are made to another PL/SQL function to set up
the contexts to be used. These are held in package level PL/SQL tables. This enables
the balance function to operate without hard coded knowledge of the contexts, and
reduces client-server calls for several balances.

• The ’C’ balance user exit works in two modes: date and assignment action. The
balance function does not pass a mode parameter; instead the mode is resolved by
using the PL/SQL overloading feature. This simplifies the interface.

The PL/SQL code resides in one package.

pay_balance_pkg

Procedure : Initialize the contexts:
procedure set_context (p_context_name in varchar2, p_context_val
ue in varchar2);

For example:

pay_balance_pkg.set_context (’TAX_UNIT_ID’, p_tax_unit_id);

This is called to set up ALL contexts required for a balance, with the exclusion
of assignment action id. Context values are maintained throughout the entire
session. Subsequent calls with the same context name update the value.

Note: The context name can be specified in any case. The routine
converts all context names to upper case.

Function : Get balance value (Assignment action mode):
function get_value (p_defined_balance_id in number,
p_assignment_action_id in number,
p_always_get_db_item in boolean default false)
return number;

Function : Get balance value (Date mode):
function get_value (p_defined_balance_id in number,
p_assignment_id in number,
p_virtual_date in date,
p_always_get_db_item in boolean default false)
return number;

The balance value is returned by this function. The parameters required for the function
have been kept to a minimum. Legislation code and business group id are derived by the
PL/SQL function when the balance SQL has to be built up from ff_routes.

Note: If the balance uses business_group_id as a context then this must
be set up using the set_context routine.

4-90 Oracle Human Resources Management System Implementation Guide (US)

The parameter ’p_always_get_db_item’ can be ignored. It is used for
testing purposes. If this value is set to ’true’ then the function will not
even look for a latest balance value, and will always derive the balance
from the database item.

Example
This example shows how to access parameterized balances supporting jurisdiction- and
GRE-based taxation (US and Canada specific).

In the UK, with the exception of court orders, no use is made of parameterized balances.

Note: For balances that are not parameterized, no calls to
pay_balance_pkg.set_context are necessary.

1. Set up the contexts

pay_balance_pkg.set_context (’TAX_UNIT_ID’, 1);
pay_balance_pkg.set_context (’JURISDICTION_CODE’,
’01-123-4567’);

2. Retrieve the balance value

bal_value := pay_balance_pkg.get_value
(p_def_balance_id, p_asg_a
ction_id);

3. Retrieve the balance for a different jurisdiction code but using
the same value for tax unit id

pay_balance_pkg.set_context (’JURISDICTION_CODE’,
’99-999-1234’);
bal_value := pay_balance_pkg.get_value
(p_def_balance_id, p_asg_ac
tion_id);

Legislative Balance Initialization
This essay supplements the technical essay entitled Balances in Oracle
Payroll. Specifically, it covers the following topics:

• Balance initialization elements

• Supported dimensions

• Overview of tax-related balances

• Balances that require initialization

• Required US legislative balances

Balance Initialization Elements
US users should run the "Initial Balance Structure Creation" process to create the
elements and input values required to feed the predefined legislative balances.

Note: You can remove these elements by running the Initial Balance
Structure Creation (Undo) process. You cannot run the Undo process if
there are any payroll actions in your business group.

Implementation Guide 4-91

You may need to define additional elements and input values to set up initial balances
for your own earnings and deductions.

Supported Dimensions
The following balance dimensions (BD) are currently supported:

• ASG_GRE_YTD -- Assignment within GRE Year to Date

• ASG_GRE_QTD -- Assignment within GRE Quarter to Date

• ASG_GRE_PTD -- Assignment within GRE Period to Date

At the Federal level, the SUBJECT_TO_TAX dimension is supported for balances that
hold Earnings/Deduction amounts that are subject to Tax:

• SUBJECT_TO_TAX_ASG_GRE_QTD

• SUBJECT_TO_TAX_ASG_GRE_YTD

• SUBJECT_TO_TAX_ASG_GRE_PTD

For Jurisdiction (State, County, City, School District) level taxes, the dimension of
Jurisdiction (JD) is supported:

• ASG_GRE_YTD_JD

• ASG_GRE_QTD_JD

• ASG_GRE_PTD_JD

Overview of Tax-related Balances
In accordance with the tax related information entered in the Oracle HRMS database, the
payroll run can build tax-related balances for each of the following tax types.

Federal
The federal tax types follow:

• FIT

• FUTA

• SS

• Medicare

• Earned Income Credit

State
The state tax types follow:

• SIT

• SUI

• SDI

• Head Tax

Local
The local tax types follow:

• City Tax

• County Tax

4-92 Oracle Human Resources Management System Implementation Guide (US)

• Head Tax

• School District Tax

Balances Created for Each Assignment
The following tax-related balances are created for each employee assignment:

• Gross Earnings

• Exempt Earnings

• Gross Earnings Subject to Tax

• Gross Earnings Subject to Tax and not Withholdable

• Gross Earnings Subject to Tax and Withholdable

• 401k, 403b, 457, 125, Dependent Care Reductions, and Other Pretax

• Pretax Redns

• Reduced Subject to Tax and Withholdable Earnings

• Employee withheld

• Reduced Subject EIC

• EIC advance

• Employer Liability

Balances Created for Taxes with Upper Earnings Limits
For taxes with upper earnings limits, the following balances are created.

• Taxable Earnings

• Excess Earnings

Balances Created for Non-Resident Alient Earnings
dummy

• Alien 1042s for NWSIT

• Alien 1042s for SIT

• SIT Alien Gross

• SIT Alien Subj NWhable

• SIT Alien Subj Whable

• SIT Alien Withheld

• SIT NON W2 Def Comp 401

• SIT NON W2 Def Comp 403

• SIT NON W2 Def Comp 457

• SIT NON W2 Dependent Care

• SIT NON W2 Other Pretax

• SIT Non W2 Pre Tax Dedns

• SIT Non W2 Section 125

Where Tax-related Balances Exist in the System
Tax-related balances exist in the system in the following locations:

Implementation Guide 4-93

• SOE

• View Tax Balances

• W2

• 941

• Tax Summary Report

• Tax Related Reports (Tax Remittance Reports, Payroll Register Report, etc.)

Balances That Require Initializing
Following is a list of US balances that should be initialized in Oracle Payroll in order
to obtain accuracy and consistency in the different areas of the system that use and
report such balances.

Earnings and Deductions
The US earnings and deductions balances that should be initialized follow:

• Individual balances

Oracle Payroll does not require initialization of individual balances for Earnings and
Deductions in order to derive the necessary tax-related balances. However, if there
is a requirement to initialize these balances for reporting or any other reason, the
system does support loading of such balances. Initialization of individual balances
does not impact calculation of tax related cumulative balances.

• Gross Earnings (GROSS_EARNINGS_BD)

Gross Earnings must be initialized; it cannot be derived from individual Earnings
type balances.

Federal Level Tax-related Balances
For each Federal Tax type, you must load the following appropriate balances in order to
get accurate values for derived balances:

• Gross Earnings (GROSS_EARNINGS_BD)

• Regular Earnings (REGULAR_EARNINGS_BD)

• Supplemental Earnings for Tax (SUPPLEMENTAL_EARNINGS_FOR_TAX_BD)

• Supplemental Earnings for NWTax (SUPPLEMENTAL_EARNINGS_FOR_NWTAX_
BD)

Oracle Payroll differentiates between Earnings Types for tax calculation rules and
as such holds balances for the different types (Regular Earnings and Supplemental
Earnings in particular). Supplemental Earnings and Imputed Earnings that are subject
to tax are rolled into a single balance: Supplemental Earnings for Tax. If your current
system does not maintain these split balances, you could roll your single "Subject to Tax"
Earnings balance into either bucket. Additionally, a bucket, Supplemental Earnings
for NWTax, is provided for your Supplemental and Imputed Earnings that are subject
to tax, but are not withholdable.

• Def Comp 401K (DEF_COMP_401K_BD)

• Def Comp 401K for Tax (DEF_COMP_401K_FOR_TAX_BD)

• Def Comp 403B (DEF_COMP_403B_BD)

• Def Comp 403B for Tax (DEF_COMP_403B_FOR_TAX_BD)

4-94 Oracle Human Resources Management System Implementation Guide (US)

• Def Comp 457 (DEF_COMP_457_BD)

• Def Comp 457 for Tax (DEF_COMP_457_FOR_TAX_BD)

• Section 125 (SECTION_125_BD)

• Section 125 for Tax (SECTION_125_FOR_TAX_BD)

• Dependent Care (DEPENDENT_CARE_BD)

• Dependent Care for Tax (DEPENDENT_CARE_FOR_TAX_BD)

• Other Pretax (OTHER_PRETAX_BD)

• Other Pretax for Tax (OTHER_PRETAX_FOR_TAX_BD)

• Pretax Deductions for Tax (PRETAX_DEDUCTIONS_FOR_TAX_BD)

Tax Calculation requires the amount that is reduced from the Subject to Tax
Earnings amount. This reduced amount is derived from subtracting the amount
of Pre-Tax Deductions that are subject to Tax from the total Pre-Tax Deduction
amount. Example: Def Comp 401K is the total pre-tax amount. Def Comp 401K for Tax
is the amount of pre-tax deduction that does NOT reduce Subject to Earnings, and as
such must be initialized only if it is nonzero. The same is true for Section 125, Dependent
Care, and Other Pretax.

• Employee TAXWithheld (TAX_WITHELD_BD)

• EIC Advance (EIC_ADVANCE_BD)

• Taxable Earnings for taxes with upper limits (TAX_TAXABLE_BD)

Taxable Earnings must be set for FUTA, SS and Medicare. The balance initialization
process does not include validation for upper limit and hence the amount initialized
must NOT exceed the upper limit.

Note: Medicare Taxable will be equal to the subject amount following
recent legislation changes.

• Employer Liability Balances

The following balances are DERIVED from the values entered in the balances mentioned
above.

Note: Do not initialize these explicit balances for Federal level taxes.

• Subject Witholdable = Regular Earnings + Supplemental Earnings for Tax

• Subject Nwhable = Supplemental Earnings for NW Tax

• 401 Reductions = Def Comp 401K - Def Comp 401K for Tax

• 403 Reductions = Def Comp 403B - Def Comp 403B for Tax

• 457 Reductions = Def Comp 457 - Def Comp 457 for Tax

• 125 Reductions = Section 125 - Section 125 for Tax

• Dep. Care Reductions = Dep. Care - Dep. Care for Tax

• Other Pretax Reductions = Other Pretax - Other Pretax for Tax

• Subject Earnings = Subj Whable + Subj NWhable

Implementation Guide 4-95

• Exempt = Gross - Subject Earnings

• Reduced Subj Whable = Subj Whable - 401 Reductions - 403 Reductions - 457
Reductions - 125 Reductions - Dep Care Reductions

• Excess = Reduced Subj Whable - Taxable

State, County, and City (Jurisdiction) Level Tax-related Balances
For each Jurisdiction Tax type, the following appropriate balances must be initialized:

Note: At the jurisdiction level, the subject balances do not require the
"SUBJECT_TO" dimension.

• Gross Earnings (TAX_GROSS_BD_JD)

• Total Gross Earnings earned within a particular jurisdiction

Because of the earnings accumulations rules (due to possibility of a percentage
of time worked in different jurisdictions), for nonfederal taxes, the "Subject" and
"Reduced" tax-related balance values are not derivable directly from the cumulative
Earnings/Deductions type balances. Hence the "Subject" and "Reduced" tax-related
balance values must be initialized explicitly.

Do not initialize the Supplemental Earnings, Withholdable and Notwithholdable,
balances for jurisdiction level taxes. Instead, initialize the following explicit balances:

• Subject Withholdable (TAX_SUBJ_WHABLE_BD_JD)

• Subject Notwithholdable (TAX_SUBJ_NWHABLE_BD_JD)

• 401 Reductions (TAX_401_REDNS_BD_JD)

• 403 Reductions (TAX_403_REDNS_BD_JD)

• 457 Reductions (TAX_457_REDNS_BD_JD)

• 125 Reductions (TAX_125_REDNS_BD_JD)

• Dep Care Reductions (TAX_DEP_CARE_REDNS_BD_JD)

• Other Pretax Reductions

• Employee Withheld (TAX_WITHHELD_BD_JD)

• Taxable Earnings for taxes (SDI, SUI) with upper limits (TAX_TAXABLE_BD_JD)

• Employer Liability

The following balances are derived:

• Subject Earnings = Subj Whable + Subj NWhable

• Exempt = Gross - Subject Earnings

• Reduced Subj Whable = Subj Whable - 401 Reductions - 403 Reductions - 457
Reductions - 125 Reductions - Dep Care Reductions

• Excess = Reduced Subj Whable - Taxable

Other Balances
Other balances to consider follow:

• Net (NET_BD)

This Balance holds Net Pay, exclusive of non-payroll payments.

4-96 Oracle Human Resources Management System Implementation Guide (US)

• Payments (PAYMENTS_BD)

This balance holds Net Pay, inclusive of non-payroll payments.

You must initialize the above two balances in order to see accurate YTD Net Pay figures
on the on-line Statement of Earnings. Currently the YTD Net on the check stub and
deposit advice is derived and does not use these balances explicitly. However, a design
change has been scheduled for the near future to make these reports consistent, so that
all of them will use the explicit Payments/Net Balance.

• W2_UNCOLL_SS_TAX_TIPS

• W2_UNCOLL_MED_TIPS

• W2_GROUP_TERM_LIFE

• W2_401K

• W2_403B

Note: Do not load the 403B balance directly to the seeded W2_403B
balance. You must create a user defined element and attach the
element to the Oracle delivered balance W2_403B, and use the new
element to load the balance amounts.

• W2_408K

• W2_457

• W2_501C

• W2_NONTAX_SICK

• W2_EXCISE_PARACHUTE

• W2_EXPENSE_REIMB

• W2_UNCOLL_SS_GTL

• W2_UNCOLL_MED_GTL

• W2_QUAL_MOVE

• W2 NONTAX COMBAT

• W2_MSA

• W2_408P

• W2_ADOPTION

• W2_NONQUAL_STOCK

• W2 HSA

• W2 NONQUAL DEF COMP

• W2 409A NONQUAL INCOME

• W2_PENSION

• W2_TP SICK PAY

• MISC1_COUNTY_TAX_WITHHELD_WK holds the balance for BOONMH (For KY
Boon County Mental health tax)

Implementation Guide 4-97

• MISC1_COUNTY_TAX_WITHHELD_RS holds the balance for BOONOC (For KY
Boon County occupational tax)

• WD/HC (for NJ SUI)

• W2 BOX 14A

• W2 BOX 14B

• W2 BOX 14C

• W2 BOX 14D

• W2 BOX 14E

• W2 BOX 14F

• W2 BOX 14G

• W2 BOX 14H

• W2 BOX 14I

• W2 BOX 14J

• W2 State Pickup

• W2_NONQUAL_457

• W2 MIF

• Territory Taxable Comm (For Puerto Rico)

• Territory Taxable Allow (For Puerto Rico)

• Territory Taxable TIPS (For Puerto Rico)

• Territory Retire Contrib (For Puerto Rico)

• Territory Pension Annunity (For Puerto Rico)

• Capital Gain

• EE Contributions Or Premiums

• Unrealized Net ER Sec Apprec

• Other EE Annuity Contract Amt

• Total EE Contributions

The W2 Balances hold the specific W2 Box related balances; as such, they must be
initialized based on your reporting requirements.

For ongoing maintenance of these balances, you must set up the Balance feeds explicitly
for these balances. To do so, use the Balance/Balance Feeds window. W2 related balances
do not have pre-defined feeds.

Required US Legislative Balances
The following table lists required US legislative balances.

Note: The Balance Names and Dimension Names are case sensitive and
MUST be loaded in Initcaps. This is similar to how they are stored in the
Balance Type and Dimension tables in Oracle Payroll.

4-98 Oracle Human Resources Management System Implementation Guide (US)

Balance Dimension

Gross Earnings Assignment within GRE Year
to Date

Net Assignment within GRE Year
to Date

Payments Assignment within GRE Year
to Date

Regular Earnings Assignment within GRE Year
to Date

Supplemental Earnings for
Federal Tax

Subject to Tax for Assignment
within GRE Year to Date

Supplemental Earnings for
NW Federal Tax

Subject to Tax for Assignment
within GRE Year to Date

Pretax Deductions Assignment within GRE Year
to Date

Pretax Deductions for Federal
Tax

Subject to Tax for Assignment
within GRE Year to Date

Def Comp 401K Assignment within GRE Year
to Date

Def Comp 401K for Federal Tax Subject to Tax for Assignment
within GRE Year to Date

Def Comp 403B Assignment within GRE Year
to Date

Def Comp 403B for Federal Tax Subject to Tax for Assignment
within GRE Year to Date

Def Comp 457 Assignment within GRE Year
to Date

Def Comp 457 for Federal Tax Subject to Tax for Assignment
within GRE Year to Date

Section 125 Assignment within GRE Year
to Date

Section 125 for Federal Tax Subject to Tax for Assignment
within GRE Year to Date

Dependent Care Assignment within GRE Year
to Date

Dependent Care for Federal Tax Subject to Tax for Assignment
within GRE Year to Date

Other Pretax Assignment within GRE Year
to Date

Other Pretax for Federal Tax Subject to Tax for Assignment
within GRE Year to Date

Implementation Guide 4-99

Balance Dimension

Federal TaxWithheld Assignment within GRE Year
to Date

EIC Advance Assignment within GRE Year
to Date

Federal Upper Limit Tax Taxable Assignment within GRE Year
to Date

Federal TaxWithheld Assignment within GRE Year
to Date

Federal Tax ER Assignment within GRE Year
to Date

Jurisdiction Tax Gross Assignment in JD within GRE
Year to Date

Jurisdiction Tax Subj Whable Assignment in JD within GRE
Year to Date

Jurisdiction Tax Subj Nwhable Assignment in JD within GRE
Year to Date

Jurisdiction Tax 401 Redns Assignment in JD within GRE
Year to Date

Jurisdiction Tax 403 Redns Assignment in JD within GRE
Year to Date

Jurisdiction Tax 457 Redns Assignment in JD within GRE
Year to Date

Jurisdiction Tax 125 Redns Assignment in JD within GRE
Year to Date

Jurisdiction TaxDep Care Redns Assignment in JD within GRE
Year to Date

Jurisdiction Tax Other Pretax
Redns

Assignment in JD within GRE
Year to Date

Jurisdiction Tax Pretax Redns Assignment in JD within GRE
Year to Date

Jurisdiction TaxWithheld Assignment in JD within GRE
Year to Date

Jurisdiction Tax Withheld in
State

Assignment in JD within GRE
Year to Date

JurisdictionMISC1_COUNTY_
TAX_WITHHELD_RS

Assignment in JD within GRE
Year to Date

JurisdictionMISC1_COUNTY_
TAX_WITHHELD_RS

Assignment in JD within GRE
Year to Date

Jurisdiction Misc1 State Tax
Liability

Assignment in JD within GRE
Year to Date

4-100 Oracle Human Resources Management System Implementation Guide (US)

Balance Dimension

Jurisdiction Misc1 State Tax
Withheld

Assignment in JD within GRE
Year to Date

Jurisdiction Upper Limit TAX
Taxable

Assignment in JD within GRE
Year to Date

Jurisdiction Tax ER Assignment in JD within GRE
Year to Date

W2_UNCOLL_SS_TAX_TIPS Assignment within GRE Year
to Date

W2_UNCOLL_MED_TIPS Assignment within GRE Year
to Date

W2_GROUP_TERM_LIFE Assignment within GRE Year
to Date

W2_401K Assignment within GRE Year
to Date

W2_403B Assignment within GRE Year
to Date

W2_408K Assignment within GRE Year
to Date

W2_457 Assignment within GRE Year
to Date

W2_501C Assignment within GRE Year
to Date

W2_NONTAX_SICK Assignment within GRE Year
to Date

W2_EXCISE_PARACHUTE Assignment within GRE Year
to Date

W2_EXPENSE_REIMB Assignment within GRE Year
to Date

W2_UNCOLL_SS_GTL Assignment within GRE Year
to Date

W2_UNCOLL_MED_GTL Assignment within GRE Year
to Date

W2_QUAL_MOVE Assignment within GRE Year
to Date

W2 NONTAX COMBAT Assignment within GRE Year
to Date

W2_MSA Assignment within GRE Year
to Date

W2_408P Assignment within GRE Year
to Date

Implementation Guide 4-101

Balance Dimension

W2 Adoption Assignment within GRE Year
to Date

W2_NONQUAL_STOCK Assignment within GRE Year
to Date

W2 BOX 14A through W2 BOX
14J

Assignment within GRE Year
to Date

W2 State Pickup Assignment within GRE Year
to Date

W2 HSA Assignment within GRE Year
to Date

W2 Nonqual Def Comp Assignment within GRE Year
to Date

W2 409A Nonqual Income Assignment within GRE Year
to Date

W2 MIF Assignment within GRE Year
to Date

W2 Pension Plan Assignment within GRE Year
to Date

Capital Gain Assignment within GRE Year
to Date

EE Contributions Or Premiums Assignment within GRE Year
to Date

Unrealized Net ER Sec Apprec Assignment within GRE Year
to Date

Other EE Annuity Contract
Amt

Assignment within GRE Year
to Date

Total EE Contributions Assignment within GRE Year
to Date

Note: For Pennsylvania you must initialize both Jurisdiction Tax
Withheld and Jurisdiction Tax Withheld in State to correctly load the
balances for Head Tax. For all other states with a Head Tax, you only
initialize Jurisdiction Tax Withheld.

Balances Reported on W2 and 941
The following table shows balances reported on W2 and 941 forms.

Balance Name On W2 On 941

Reduced Subject Withholdable
(Derived)

Yes Yes

Subject not Withholdable Yes Yes

FIT Wittheld Yes Yes

4-102 Oracle Human Resources Management System Implementation Guide (US)

Balance Name On W2 On 941

SS EE Taxable Yes Yes

SS EE Withheld Yes Yes

Medicare EE Taxable Yes Yes

Medicare EE Withheld Yes Yes

EIC Advance Yes Yes

Dependent Care Yes

*W2_UNCOLL_SS_TAX_TIPS Yes

*W2_UNCOLL_MED_TIPS Yes

*W2_GROUP_TERM_LIFE Yes

*W2_401K Yes

*W2_403B Yes

*W2_408K Yes

*W2_457 Yes

*W2_501C Yes

*W2_NONTAX_SICK Yes

*W2_EXCISE_PARACHUTE Yes

*W2_EXPENSE_REIMB Yes

*W2_UNCOLL_SS_GTL Yes

*W2_UNCOLL_MED_GTL Yes

*W2_QUAL_MOVE Yes

*W2 NONTAX COMBAT Yes

*W2_MSA Yes

*W2_408P Yes

*W2_ADOPTION Yes

*W2_NONQUAL_STOCK Yes

* W2 BOX 14A through W2
BOX 14J

Yes

W2 State Pickup Yes

W2 HSA Yes

W2 Nonqual Def Comp Yes

W2 409A Nonqual Income

W2 MIF Yes

Implementation Guide 4-103

Balance Name On W2 On 941

* W2 Pension Plan Yes

SIT Subj. Whable Yes

SIT Withheld Yes

County Subj Whable Yes

County Withheld Yes

City Subj Whable Yes

City Withheld Yes

* Balance feeds for these balances are not pre-defined and must be defined by the user
based on specific reporting requirements.

PayMIX Views
The US PayMIX utility is not supported in Release 11i. BEE (Batch Element Entry) should
be used instead; it has been upgraded to provide superior functionality.

However to support existing customers who have used PayMIX in earlier releases of
Oracle Payroll, the following changes have been made to the PayMIX objects.

Renaming of PayMIX Tables
The PayMIX tables have all been renamed as <original tablename>_OLD for reference
purposes, in case you ever need to check their contents.

Table of Renamed PayMIX Tables

Previous Table Name New Name

PAY_PDT_BATCH_CHECKS PAY_PDT_BATCH_CHECKS_OLD

PAY_PDT_BATCH_EXCEPTIONS PAY_PDT_BATCH_EXCEPTIONS_OLD

PAY_PDT_BATCH_HEADERS PAY_PDT_BATCH_HEADERS_OLD

PAY_PDT_BATCH_LINES PAY_PDT_BATCH_LINES_OLD

PAY_PDT_LINE_ERRORS PAY_PDT_LINE_ERRORS_OLD

Views From PayMIX Tables to BEE Tables
The PayMIX batch header table PAY_PDT_BATCH_HEADERS has been replaced by a
view on the BEE batch header table PAY_BATCH_HEADERS. Similarly the PayMIX
batch lines table PAY_PDT_BATCH_LINES has been replaced by a view on the BEE
batch line table PAY_BATCH_LINES.

Thus an insertion, update or delete into either of these PayMIX tables now causes an
insertion, update, or delete in the BEE tables. If you have written a third party interface
to manipulate PayMIX batches, creation of a batch using your interface now results in
the creation of a BEE batch. To process this batch, you must use the BEE Batch Header
window.

4-104 Oracle Human Resources Management System Implementation Guide (US)

Due to various inconsistencies between the original PayMIX tables and the BEE
tables, the following rules have been enforced in the views mapping the PayMIX tables
to the BEE tables:

• The batch_id given to a batch should be derived from the PAY_BATCH_HEADERS_S
sequence.

• The name given to a batch created via the views will be "Batch <batch_id>".

The following restrictions also exist:

• As the batch is processed using the BEE engine, the PayMIX checks, exceptions and
line_errors tables cannot be supported.

• In previous releases, PayMIX identified, from the contents of the batch, whether
additional Special Inputs element entries were required. It created them if
necessary. Neither the BEE engine nor the PayMIX views perform this operation
in Release 11i.

Therefore, processing a Deduction or Earning type batch does not result in the
creation of Special Inputs element entries unless rows have been explicitly created
in the batch for these entities.

Important: We strongly recommend that customers use the BEE tables
directly to create new batches, rather than these views. The definitions
of the views are extremely complicated and hence their performance is
inferior to the BEE tables.

PayMIX Windows in Release 11i
The PayMIX windows are provided in Release 11i but do not appear on the default
menus. They have been altered to use the new views and support the majority of
the functionality they provided for PayMIX in earlier releases. They may be used to
create, select, update, and delete batches. However, you must query and process the
batch in the BEE Batch Header window to transfer it to the Oracle HRMS Entries table.

So, for example, you can create a batch using your own third party interface, and then
use the PayMIX windows to query and edit the batch. Remember that Special Inputs
lines must be created manually if they are required within Deduction and Earning
type batches.

Important: However we strongly recommend that you use the BEE
windows to create and manipulate new batches.

Dependents and Beneciaries
This essay discusses implementing dependents and beneficiaries in the US for basic
benefits administration. Specifically, it covers the following topics:

• Overview

• Design

• Windows and data entry

• Additional notes

Implementation Guide 4-105

Overview
Oracle HRMS maintains basic benefit enrollments. A benefit enrollment gives rise to
an employee contribution, which is deducted from the employees pre-tax or post-tax
pay, and an employer contribution. A benefit enrollment has a coverage type.

A benefit enrollment may have a number of covered dependents. Details of the covered
dependents are stored on the database. Covered dependents may be entitled to
continued coverage through COBRA upon termination of the employee enrolled.

A benefit enrollment may have designated beneficiaries. Multiple beneficiaries may
be designated for a benefit enrollment. Each designated beneficiary must have a
proportion of the benefit assigned to them. Beneficiaries may also have a level specified
for them. Benefit goes to the highest surviving level only.

Details of beneficiaries are stored on the database. There should, at least, be sufficient
information to allow the beneficiary to be contacted in the case of payment. Beneficiaries
may be either people or organizations.

Design
Basic benefit plans are defined as element types. The benefit plan has a benefits
classification. The benefits classification indicates whether the benefit plan requires or
allows beneficiaries or dependents.

An element entry is given to an assignment to enroll in a benefit plan. Enrollments should
always be for the primary assignment. Deductions will be made for the benefit plan.

Depending on the dependents allowed flag for the benefit classification, a benefit
plan may have various coverage types, such as employee only, employee and
spouse, employee and children and employee and family. The coverage type is held on
the coverage input value for the benefit enrollment.

If the benefit classification specifies that dependents are not allowed for this benefit
plan, the coverage input value is set to Employee Only. The employee and employer
contribution input values are copied from the contribution table but can be overwritten
for individual employees.

If the benefit plan benefit classification allows dependents or beneficiaries, it is possible
to work flow from the Element Entries window to the Covered Dependents window
(dep) and the designate beneficiaries window (ben). (It is possible for a benefit plan to
allow both dependents and beneficiaries).

Dependents for a benefit plan are stored on the database in the people tables. The user
enters dependents using the define contact window. A valid dependent type is any
contact type with a row existing in the valid dependent types table. Entries in the valid
dependent type table are provided as startup data and specify which contact types
are covered by a coverage type.

If the benefit enrollment coverage is other than Employee Only, then the covered
dependents table is populated for the benefit enrollment element entry.

The Covered Dependents window allows the user to modify the covered dependents for
a benefit enrollment. Allowed dependents are restricted to those who had a dependent
flag set when entered, and who are of a valid dependent type for the coverage. Covered
dependents are date effective. It is possible to display the date tracked history of
dependents covered by a benefit enrollment.

The beneficiaries allowed flag on the benefit classification specifies whether beneficiaries
may be designated for a benefit plan.

4-106 Oracle Human Resources Management System Implementation Guide (US)

Beneficiaries can be organizations or people. People may be entered using the define
contact screen. The contact should have the beneficiary flag set. The relationship to the
plan enrollee is not significant.

Organizations may be entered using the Organization window. The organization is
given a classification of benefit beneficiary. The benefit beneficiary organization type
is provided with the startup data. Beneficiary organization addresses may be entered
using the location screen. The location screen includes a field into which a contact at
the organization may be entered.

Beneficiaries are specified using the designate beneficiary window. This window allows
the user to enter multiple beneficiaries for a benefit enrollment. For each designated
beneficiary a beneficiary type (person/organization) is selected. The beneficiary type
restricts the values displayed in the beneficiary list. A beneficiary person is selected from
all contacts for the plan enrollee with the beneficiary flag set. A beneficiary organization
may be selected from all organizations of type benefit beneficiary.

Each designated beneficiary is given a level (the benefit goes to the highest surviving
level) and a proportion (the benefit is divided according to the proportions of surviving
beneficiaries at a beneficiary level). There is a text field to allow the enrollee to enter
special instructions against the beneficiary. Designated beneficiaries are date effective. It
is possible to display the date-tracked history of the beneficiaries of a benefit enrollment.

Windows and Data Entry
The user can define benefit plans using the Deduction window for US Payroll or the
Element window for Oracle HRMS-only installations.

If the benefit classification indicates that the benefit contributions table is to be used, then
the user uses the Benefit Contributions window to enter benefit coverages for a benefit
plan and the contributions for them.

See: Configuring Components for Health Care Benefit Plans, Oracle HRMS Compensation
and Benefits Management Guide

See: Establishing Health Care Plan Coverage and Default Contributions, Oracle HRMS
Compensation and Benefits Management Guide

Element Entries Window
The user uses the Element Entries window to enroll an assignment in a benefit plan. The
user then queries the deduction for the benefits plan and selects the correct coverage
type for the coverage input value for the element entry. The employee and employer
contributions default from the contribution table, but may be overwritten for the
enrollment. The user can workflow from this window to the cover dependents window
and the designate beneficiary window (depending on the benefit classification of the
benefit plan).

Designate Beneciary Window
The user enters beneficiaries using the designate beneficiary window. This window
allows the user to enter multiple beneficiaries for a benefit enrollment. The user can
select a beneficiary person from all contacts for the plan enrollee with the beneficiary
flag set. A beneficiary organization may be selected from all organizations of type
benefit beneficiary.

Each beneficiary is given a beneficiary type (person/organization), a beneficiary level
(benefit goes to the highest surviving level) and a proportion (benefit is divided
according to the proportions of surviving beneficiaries at a beneficiary level). The user
may also enter a text string for special instructions to be considered with each beneficiary.

Implementation Guide 4-107

The start and end dates for the designated beneficiary are displayed.

Covered Dependents Window
The Covered Dependents window is used to enter or modify dependents covered by an
benefit enrollment. Dependents may be selected from the contacts specified with the
dependent flag set. When the covered dependents are entered they are tested to ensure
that the contact type is one of the valid dependent types for the coverage specified for
the benefit enrollment. A test is made to ensure that the number of contacts of the type
does not exceed the maximum specified for the valid dependent type.

The start and end date for coverage of the dependent is displayed.

Organization Window
The Organization window is used to enter organizations. The organization is given a
classification benefit beneficiary.

Contact Window
The Contact window is used to enter people. The window allows entry of the
name, address, telephone number and social security number. Flags indicate whether
the contact is a dependent of the employee, a beneficiary of the employee, or a series
EE bond recipient. If the contact is a dependent of the employee, then the contact type
must be a valid dependent type.

The following warnings are displayed:

• When the user attempts to leave the window without specifying a social security
number.

• When the user makes changes to contacts who are assigned as beneficiaries or
dependents to benefit enrollments. The warning indicates that coverage should be
checked.

• When a new contact is entered of a dependent type which would be covered by an
existing plan enrollment. The warning suggests that the user check the coverage.

Additional Notes
When changes to dependents are made, covered dependents for a benefit are not
updated. Each time there is a change to the details of a covered dependent, or a new
dependent is entered, the user must ensure that the dependents for a plan remain valid.

A warning message is displayed when dependent/beneficiary details are altered to warn
that the person is assigned to benefit plans and coverage details should be checked.

Dependents are validated only against the dependent contact type and the maximum
number of the dependent contact type for the coverage. There is no attempt to ensure
that the dependent meets more sophisticated criteria (children must be under 18 or in
school full time, for example). Changes to dependents eligibility due to age or other
time dependent features is not detected.

Changes to the plan enrollment such as coverage result in revalidation of covered
dependents. A change to a plan enrollment should be given a reason. There is no
attempt to ensure that enrollment changes result from valid life events.

This document does not address COBRA coverage issues and responsibilities.

Date track history is available for covered dependents and designated
beneficiaries. However, it should be noted that these are multirow tables and the history
relates to the row rather than to the person/organization concerned.

4-108 Oracle Human Resources Management System Implementation Guide (US)

Payroll Tax Subsystem
This essay introduces the tax subsystem in Oracle Payroll for US legislations. It is
assumed that you understand the use of elements, entries, formulas, run results and
balances in Oracle Payroll. Specifically, this essay covers the following topics:

• Installed tax system

• Earnings and deductions

• Taxes

• Tax balances

• User defined reports

• Other forms

• Tax implementation

Installed Tax System
When you install Oracle Payroll with a US legislation, you automatically receive the
predefined components you need to calculate the legislated Federal, State and local taxes
within the US. These components include the specific Classifications and Categories of
elements, Taxability Rules, standard Formulas, Balances and Balance Dimensions you
need. As part of your install process you will also install the Vertex tax tables used
by Oracle Payroll for all US jurisdictions.

GEOCODES
The interface between Oracle Payroll and the Vertex tax subsystem makes use of a key
called the GEOCODE to identify every jurisdiction in the US.

The geocode has a numeric format nn-nnn-nnnn and is used to identify the combination
of State, County, and City for tax liability. For school districts, the geocode has the
numeric format nn-nnnnn where nn is the state, and nnnnn is the school district
number. The geocode is not normally visible to users of Oracle Payroll and special
validation is provided on entry of the address for a location and the primary address for
an employee to ensure accurate geocodes for both home and work addresses.

Earnings and Deductions
Oracle Payroll uses a combination of classifications and categories of elements to
determine the taxability rules of every earning and deduction.

Regular Earnings
For tax purposes, regular earnings are always subject to taxes.

When you define a type of Regular Earnings, the system automatically generates an
input value to hold a jurisdiction value. This lets you enter a Vertex geocode for a
specific jurisdiction. For example, you might want to create a regular earnings type of
"Time Entry Wages - Houston" that always has a "Jurisdiction" entry value of 44-201-1440
for Houston, Texas.

Regular Earnings for which the jurisdiction element entry value is null are considered
untagged. This distinction is important for the Earnings Accumulation Rules.

Supplemental Earnings
Supplemental earnings include Bonuses, Commissions or Cash Awards. These earnings
are subdivided into several categories and each category may be subject to or exempt
from any given tax in any jurisdiction. This category is user-extensible.

Implementation Guide 4-109

Imputed Earnings
Imputed Earnings are non-cash earnings, such as personal use of a company car. These
earnings have a dollar value but are not paid directly to the employee.

Income taxes for imputed earnings may not be withheld from the employee’s
paycheck, but the earnings may be reported as income subject to tax and the tax paid
at tax return time.

Pre-Tax Deductions
Pre-Tax Deductions reduce the gross subject to tax before tax is calculated. Examples
include Deferred Comp 401k, 403b, and 457 plans, and Health Care 125 plans.

However, not all taxes may be reduced by every pre-tax deduction. For example, FIT
gross is reduced by 401k and 125 deductions, but for Social Security Tax, gross is only
reduced by 125 deductions. Similarly, rules for the various state taxes vary from state to
state.

Taxes
Oracle Payroll supports both income and limit taxes. Income taxes have no maximum
limit. Limit taxes apply to earnings up to a maximum limit after which all successive
income is not taxable.

Oracle Payroll also supports both employee and employer taxes, indicating which party
is liable for the tax. For example, Social Security has both an employee and employer
component.

Income Taxes
All income taxes are paid fully by the employee. Income taxes follow:

• Federal Income Tax (FIT)

• State Income Tax (SIT)

• County Income Tax (COUNTY)

• City Income Tax (CITY)

• School District Tax (SCHOOL)

Limit Taxes
Oracle Payroll supports the following limit taxes:

• Social Security Tax (FICA)

• Federal Unemployment (FUTA)

• State Unemployment Insurance (SUI)

• State Disability Insurance (SDI)

FICA and Medicare have both employee and employer components. FUTA is purely
an employer tax. SUI and SDI may have both employee and employer components
(or may not exist) depending on the state.

Other Taxes
Head Tax (HT) does not fall into the above categories since it is paid as a flat amount by
the employee on a periodic basis.

4-110 Oracle Human Resources Management System Implementation Guide (US)

Tax Credits
Earned Income Credit (EIC) is supported as the companion tax credit to FIT. The
taxability rules for EIC are held separately from those for FIT, but they are (and should
remain) identical.

Tax Rules
The term Tax Rules refers to the set of filing information for a given tax. One set of rules
for each relevant taxing jurisdiction is required at the assignment level.

Employee Tax Rules Form
The Employee Tax Rules form is used to default and then maintain tax information
for an employee’s assignment. Tax information is maintained at the Federal, State and
Local levels.

Maintaining Tax Information For Government Reporting Entities
You use the Define Organization form for this purpose. For the GRE in question, you
select the organization classification Government Reporting Entity. Then, the Others
button shows a list of the various contexts defined for the Org Developer DF.

Choosing State Tax Rules allows you to define additional organization information per
state such as SUI Company State ID, SIT Company State ID, SUI Self Adjust Method, SDI
Self Adjust Method, SUI ER Experience Rate 1, and SUI ER Experience Rate 2, for
example.

Taxability Rules
As indicated above, Oracle Payroll maintains rules for deciding whether a particular
supplemental or imputed earning is taxable for a given tax, and whether a pretax
deduction may reduce taxable gross for a given tax. This information is stored in the
table PAY_TAXABILITY_RULES. Given an element classification, its category, and the
tax in question (and the locality if necessary) a row in the table means that the earning is
taxable, or that the deduction may not reduce taxable gross. Regular earnings are not
included, since they are always subject to tax, so no table lookup is necessary.

Considering earnings only, for limit taxes, a row in the table means taxable.

However, for income taxes, there are two kinds of taxability:

• Subject-and-Witholdable

• Subject-and-Not-Withholdable

Subject-and-Withholdable means that tax is withheld on payment of the
earning. Subject-and-Not-Witholdable means that the earning is taxable, but tax is not
withheld, so it must be paid at the end of the year. Imputed earnings, for example, can
be Subject-and-Not-Withholdable for FIT, but are either Subject-and-Witholdable or
not subject to FUTA.

Earnings Accumulation Rules
The obvious prerequisite for calculating tax is finding the gross applicable to the tax, the
value before applying taxability rules on the earnings components and before applying
pretax deductions. For the non-federal taxes, in those cases where an employee works
and lives in multiple states, the rules for distributing earnings are not trivial. This section
outlines the rules followed in the tax system.

For each employee, tax filing information such as Primary Work Location, Resident
Location, and SUI State has been set up.

Implementation Guide 4-111

Federal
For federal taxes, all earnings regardless of where they were earned are included in
the gross figure.

SDI
In any given period (in which the Primary Work Location is unchanged), all earnings
are considered gross for SDI in the Primary Work Location only, and nowhere else. For
example, if John Doe lives in New York for the first six months of 1995, and in New
Jersey for the second six months, then he will pay SDI tax to New York only on his first
six months’ pay, and will pay New Jersey SDI on his second six months pay.

SUI
SUI works similarly to SDI, except that it is referenced to the employee’s SUI State (which
is often the Primary Work Location). An assignment’s SUI State is designated on the
Employee Tax Rules Form, and is defaulted to their work state.

In any given period (in which the SUI State is unchanged), all earnings are considered
gross for SUI in the SUI State only, and nowhere else.

Non-federal Income Taxes
For the non-federal income taxes, we need a method of apportioning earnings among
the states where the employee works and lives. For this purpose, tagged earnings
(which explicitly indicate where they were earned) are treated differently from untagged
earnings. The following steps are used find the applicable gross for one of these taxes
(SIT, County Tax, City Tax) in a given jurisdiction.

1. If an employee’s Resident Location is contained within the jurisdiction for which tax
is to be calculated, then all the employee’s earnings, regardless of where they were
earned, are considered as gross, and the following steps below are disregarded.

2. All supplemental earnings are considered to be implicity tagged in the Primary
Work Location. Commission is an exception; it is considered untagged and does
follow the percentage scaling rule in step 3.

3. All untagged earnings are scaled by the percentage of time the employee spent
working in the given jurisdiction. For example, if John Doe worked 30% in
California, and 70% in Texas, and has a Salary of 1000, then he would have a gross of
300 for California state tax, and 700 for Texas.

4. All tagged earnings which are contained within the given jurisdiction are included
to give a final value.

The special status of the Resident Location is explained as follows. Some states enter
into reciprocity agreements with other states. This fact means that if John Doe works in
state A and lives in state B, ordinarily, he is taxed in both states for the amount he earned
in the work state, A. A reciprocation agreement between state A and state B would
specify that the earnings would be taxed in just one state, say the employee’s resident
state. (To get the tax exemption from this type of agreement, the employee would need a
nonresident certificate.)

In a more complex scenario, an employee works in five states. In this case, one considers
each work state as part of a pair with the resident state, since reciprocity agreements are
not relevant between work states, only between work states and the resident state. Taxes
are then calculated independently between each pair of states. Thus, all the employee’s
earnings are potentially subject to tax in that single resident state. Each work state can
either tax the earnings in the state or choose not to do so, but ulinke the resident state, a
work state cannot tax earnings from other states.

4-112 Oracle Human Resources Management System Implementation Guide (US)

Deductions
While apportioning the earnings among states, we must also split up the pre-tax
deduction amounts as well. The following rule suffices. Within any given time
period, for a given tax, total deductions are scaled by the applicable gross for the tax in
the relevant jurisdiction, divided by the employee’s total gross earnings. For example, if
John Doe’s total gross was $2000, and his gross for SIT in Colorado was $1500, and he
had a total of $200 of 401k deductions, then the portion of his deductions that would
apply to SIT in Colorado would be 200 * 1500 / 2000 = $150.

Example
Consider the following situation. The employee lives in Oregon in January, but moves to
California in February. He works 50% in California and 50% in Nevada. His primary
Work State is California in January and Nevada in February.

Earnings for January and February follow:

1000 Salary

100 Timecard, tagged in Nevada

100 Bonus

100 Commission

1300 = Total

Deductions for January and February follow:

100 401(k)

For January:

FIT Gross = 1300

Deductions = 100

SDI:

In California, Gross = 1300 since California is the primary work state.

Deductions = 100

In Nevada, Gross = 0 "

Deductions = 0

SIT:

In California, Gross: 500 for the California half of salary

100 for bonus (supp earning) in primary work state (California)

50 for the California half of commission

650 = Total

Deductions: 50 for the CA portion of 401 (100 * 650/1300)

In NV, Gross: 500 for the Nevada half of salary

100 for the Nevada-tagged timecard earnings

Implementation Guide 4-113

50 for the Nevada half of commission

650 = Total

Deductions: 50 for the NV portion of 401 (100 * 650/1300)

For Feb:

FIT Gross = 1300

Deductions = 100

SDI:

In California, Gross = 0 since Nevada is the primary work state.

Deductions = 0

In Nevada, Gross = 1300 "

Deductions = 100

SIT:

In California, Gross = 1300 due to California = resident state

Deductions: 100 since CA = resident state (100 * 1300/1300)

(Since there isn’t a reciprocity rule between CA and NV,

NV earnings are reported in CA as gross, but not taxed)

In Nevada, Gross: 500 for the NV half of salary

100 for bonus in primary work state (Nevada)

100 for the Nevada-tagged timecard earnings

50 for the Nevada half of commission

750 = Total

Deductions: 57.69 for the NV portion of 401 (100 * 750/1300)

Year-to-date:

FIT: Gross = 2600, Deductions = 200

SDI:

In CA, Gross = 1300, Deductions = 100

In NV, Gross = 1300, Deductions = 100

SIT:

In CA, Gross = 1950, Deductions = 150

In NV, Gross = 1400, Deductions = 107.69

Tax Balances
The starting gross is converted by applying taxability rules and pre-tax
deductions, involving several steps and intermediate values. This process results in the

4-114 Oracle Human Resources Management System Implementation Guide (US)

final amount on which tax is calculated. These intermediate values (tax balances) are
also useful for reporting and other purposes.

Denitions
The various tax balances are defined as follows:

• "Gross" is the gross earnings to which the tax applies in the given jurisdiction.

• "Subject Earnings" is the portion of gross subject to the tax. This value is equal to
Subject Withholdable + Subject Not Withholdable.

• "Subject Withholdable" is the portion of gross earnings subject to the tax and
withholdable.

• "Subject Not Withholdable" is the portion of the gross earnings that are subject to the
tax but not withholdable. This figure is applicable only to income taxes.

• "Exempt" is the portion of gross earnings not subject to the tax (that is Exempt +
Subject Withholdable + Subject Not Withholdable = Gross.)

• "401k/403b/457/125 Dependent Care Reductions" refers to the 401k/403b/457/125
Dependent Care amounts applicable as pretax reductions on the gross for the given
tax. A pretax reduction is the amount of the pretax deduction that is allowed to
reduce gross according to taxability rules.

• Section 125 refers to only Health Care 125.

• Remember that "reductions" does not mean "deductions."

• "Reduced Subject Withholdable" is the Subject Withholdable less the pretax
reductions. This value is the final amount on which tax is calculated for income taxes.

• For limit taxes only, "excess" is the amount of the subject over the tax limit.

• For limit taxes only, "taxable" is the Reduced Subj Witholdable - Excess. This value is
the final amount to which tax is applied for limit taxes.

Note: Notice the limitations on which tax balances are valid for
the type of tax, limit, or income. In the case of no tax rules (as in
the case of a state with no income tax), the above tax balances are
meaningless, and thus should all be zero.

Tax Balances Form
The Tax Balances Form displays a summary of an employee’s tax balances for all the
various taxes.

Tax Balance API
This function provides a simple single function call method for obtaining the
above tax balances. It calls the core balance user exit. For example, in the package
PAY_US_TAX_BALS_PKG:

FUNCTION us_tax_balance (p_tax_balance_category in varchar2,

p_tax_type in varchar2,

p_ee_or_er in varchar2,

p_time_type in varchar2,

Implementation Guide 4-115

p_asg_type in varchar2,

p_gre_id_context in number,

p_jd_context in varchar2 DEFAULT NULL,

p_assignment_action_id in number DEFAULT NULL,

p_assignment_id in number DEFAULT NULL,

p_virtual_date in date DEFAULT NULL,

p_payroll_action_id in number DEFAULT NULL)

RETURN number;

The allowed tax_balance_category values follow:

• GROSS

• SUBJ_WHABLE

• SUBJ_NWHABLE

• SUBJECT

• EXEMPT

• 401_REDNS

• 403_REDNS

• 457_REDNS

• 125_REDNS

• DEP_CARE_REDNS

• PRE_TAX_REDNS

• REDUCED_SUBJ_WHABLE

• TAXABLE

• EXCESS

• WITHHELD (may be used for any, and will translate to LIABILITY or ADVANCED
as necessary)

• ADVANCED (only used for EIC)

• LIABILITY (only for ER taxes)

These values are in the lookup type US_TAX_BALANCE_CATEGORY.

The allowed tax types follow:

• FIT

• FICA*

4-116 Oracle Human Resources Management System Implementation Guide (US)

• FUTA

• MEDICARE*

• EIC

• SIT

• SUI*

• SDI*

• CITY

• COUNTY

• SCHOOL

• HT

The asterisk (*) indicates that the type requires a value EE or ER, denoting either the
employee or employer tax in the parameter p_ee_or_er. FUTA and HT are ER only, and
the rest are EE only. The API returns an error if an inconsistent value is entered. These
tax types are in the lookup type US_TAX_TYPE.

The allowed time types follow:

• RUN

• PTD

• MONTH

• QTD

• YTD

The allowed asg types follow:

• ASG (assignment level)

• PER (person level)

• GRE (entire GRE level).

For ASG and PER, the GRE is implicit, so these types return only those values that are
associated with the GRE identified by p_gre_id_context. These values are permitted
in the following combinations:

RUN PTD MONTH QTD YTD

ASG x x x x x

PER x x x x

GRE x x x x

The tax unit id is p_gre_id_context and is mandatory. p_jd_context should contain the
xx-xxx-xxxx format for the Vertex geocode. It is ignored for the federal taxes.

For school district, the five-digit code may be appended, as follows: xx-xxx-xxxx-xxxxx, or
it may be appended after the state code, as follows: xx-xxxxx

Two modes of access are allowed (as in the core balance user exit):

Implementation Guide 4-117

• Assignment Action Mode (for which only the assignment_action_id is needed)

• Date Mode (for which an assignment_id and a virtual_date are used)

All three parameters are provided for, and should be set NULL when not
used. Assignment action mode is required for all RUN level inquiries. However, for
an asg type of GRE, we can only use Date Mode, and without an assignment_id, so
the virtual_date must be set. Also, for GRE, we must provide the payroll_action_id
parameter for RUN level balances.

User Dened Reports
Instead of hardcoded balances and dimensions in the report definition, the user can
define the set of tax balances and the set of dimensions to report on.

The tax report name is stored in hr_lookups (lookup_type = ’US_TAX_REPORT’).

Dening a New Tax Balance Report
To define a new tax balance report, perform the following steps:

1. Add a new lookup code in hr_lookups for lookup_type = US_TAX_REPORT.

The MEANING column is used as the report title. This lookup_type is the primary
key for the dimension and balances tables such as STATE_QTD. (At runtime, the
user selects from the US_TAX_REPORTs, thereby identifying the set of balances
and dimensions.)

2. For each dimension to be reported, insert a row in pay_us_tax_report_dimensions.

Valid time dimension values are lookup_codes with US_TAX_BALANCE_DIMENS
ION lookup_type, such as report_code = STATE_QTD, dimension_code = QTD.

3. Select the subset of balances from pay_us_tax_balances. Insert a row for each
tax_balance_id in pay_us_tax_balances.

pay_us_tax_report_dimensions stores the dimensions to be used for the report. It
includes the following lookup codes:

• REPORT_CODE: report lookup code

• DIMENSION_CODE: dimension lookup code

pay_us_tax_types include the following:

• TAX_TYPE_ID

• EE_ER_CODE: indicates whether the tax is EE, ER or "EE and ER"

Do not use EE_ER_CODE when calling the tax balance api; it is used for
informational purposes only.

• LIMIT_TAX_FLAG: indicates whether or not the tax is a limit tax.

• TAX_DOMAIN_CODE: indicates whether the tax is Federal, State or Locality

• TAX_TYPE_CODE: indicates the tax type lookup code (US_TAX_TYPE)

pay_us_tax_balances include the following:

• TAX_BALANCE_ID

• TAX_TYPE_ID: FK to pay_us_tax_types

• BALANCE_CATEGORY_CODE: balance category lookup code
(US_TAX_BALANCE_CATEGORY)

4-118 Oracle Human Resources Management System Implementation Guide (US)

• EE_OR_ER_CODE: indicates whether the tax is EE or ER for the category.

• USER_REPORTING_NAME: used for reporting pay_us_tax_report_balances

• REPORT_CODE: report lookup code

• TAX_BALANCE_ID: FK to pay_us_tax_balances

• BALANCE_PRINT_SEQUENCE: used for determining the relative order to
print the balance for the report.

Other Forms
Statement of Earnings
The Statement of Earnings form provides a summary of an assignment’s
earnings, deductions, and taxes, as produced by the payroll run process. It can be
reached from the Assignment Form, in which case it displays the results of the most
recent run, or from the Assignment Actions Form, in which case it shows the results of
the desired assignment action.

Assignment Run Results
For debugging purposes, you may need to view the raw run results, not in the processed
format shown in the statement of earnings. The Assignment Run Results Form lists the
actual run results and their run result values. For example, it shows in the xx-xxx-xxxx
format the raw geocodes in the jurisdiction run result values.

Tax Implementation
This section provides an overview of how the tax system for Oracle Payroll
operates. Subsequent sections detail the various components, including those used to
calculate taxes, and those used to gather the results.

The Quantum Tax Calculation System
A third party tax calculation system, provided by Vertex Inc., has been chosen for use in
Oracle Payroll. Vertex is the leading vendor for US tax calculation, providing a C tax
calculation function (Quantum) and a research/support infrastructure to ensure that
taxes at user sites are always correctly calculated using up-to-date changes in tax rates
and limits. Oracle Payroll takes advantage of the many and varied calculation rules and
parameters offered in the Quantum tax calculation module. Oracle also includes a layer
of additional functionality to address areas of extended requirements, as follows.

• Quantum does not hold earnings taxability rules, but does hold rules for pretax
deductions. For the sake of consistency, Oracle Payroll takes all taxability rules into
account (for both earnings and deductions) and merely passes the final gross (after
pretax deductions) to be taxed upon into the Quantum subsystem.

• Quantum only calculates values for one work and one resident location at a
time. Oracle Payroll therefore iterates calls to the Quantum subsystem for multiple
work state situations.

The interface that Quantum provided is a single chunk of memory organized as a
structure of records, and serves for both input and output values. The Oracle Payroll
tax system gathers the information Quantum needs into this "link area," calls the
Quantum C code, and then extracts the results, converting them into the familiar run
results. Generally, inputs are comprised of tax filing information (filing status and
number of exemptions, for example) and the gross amounts. Quantum returns tax codes
and the tax amounts.

Implementation Guide 4-119

Vertex Elements
Calculation of tax for an assignment is triggered off by a special element type called
"Vertex." The Assignment Tax Rules Form creates Element entries of this element
type, one for each jurisdiction in which the assignment has registered for tax, and at all
levels (state, city, and county). The two most important input values for this element are
Percentage and Jurisdiction (called JD for short).

The Jurisdiction input value is set to the state or locality jurisdiction code as
appropriate. The jurisdiction code is determined from the location in question, whether
it be the employee’s resident address, work location, or subsequent state and locality
records entered in the form.

The Percentage input value is set equal to the Remainder Percent for the State and Time
In Locality for the Locality. The State’s remainder percent is the time in state less the total
of the time in localities for the particular state.

In other words, the Percentage input value contains the percentage of time that the
assignment spends in the jurisdiction solely at that level. This percentage different from
the percentages the user enters in the Tax Rules Form.

In the form, a user might enter 40 percent for California, and then 10percent for
Mountain View. The Vertex entry created for Mountain View will have 10 for its input
value, but California will have an input value of 30 (the percentage of time spent purely
at the state level; this percentage represents the remainder of time not spent in any
specific city or county in California). This approach makes sense since the 10 percent in
the Mountain View Vertex entry will produce California state tax results, and when the
30 percent is processed, the tax on the other 30 percent will be produced, accounting
for the full 40 percent. As a consequence, all the percentages of all the Vertex entries
will always sum to 100 percent.

The Jurisdiction input value is used to set up the US-specific "Jurisdiction" context
in the payroll run (using the localization C hook). The Jurisdiction input value
serves as the reference for all database items in the formula attached to the Vertex
element. However, the processing required for setting up Vertex involves database
items requiring several different jurisdiction contexts (the primary work location, the
resident location, and the SUI state).

Vertex Formulas
To enable using multiple contexts when processing a Vertex element entry, a chain
of elements is used; the Vertex element spawns a different element as an indirect
result, passing it a new jurisdiction context. In the following chain of elements, each
vertical line indicates an indirect result and a horizontal line indicates formula results
without result rules.

(JD = primary work location)

|

VERTEX --> FIT/FSP inputs to Vertex (put into the link area)

|

VERTEX2 --> FICA/FUTA/Medicare/EIC inputs to Vertex

|

VERTEX_WORK --> Work location SIT and SDI inputs to Quantum

|

4-120 Oracle Human Resources Management System Implementation Guide (US)

VERTEX_WORK2 --> Work location County, City, Head Tax and School District Tax
inputs to Quantum

|

(change JD to SUI state)

|

VERTEX_SUI --> SUI inputs to Quantum

|

(change JD to resident location)

|

VERTEX_HOME --> Resident location SIT inputs to Quantum

|

VERTEX_HOME2 --> Resident location County, City, and School District Tax inputs to
Quantum

|

VERTEX_RESULTS

|

(Quantum Tax Calc called)

|

(All tax run results created)

Each Vertex element is associated with a specific formula (with the same name
as the element), which serves to set up the various inputs to the Quantum tax
calculation. Additionally, some direct results are created to store some useful results
for safekeeping. Multiple elements are used under the same jurisdiction, because the
formulas are limited in size and had to be split up. Because database items are cached in
memory for use across formulas, this splitting causes minimal performance impact.

The above diagram indicates that after each formula is run, its results get dumped into
the Quantum link area. This is accomplished by a C hook that, when the element’s name
takes the form VERTEX%, scans the formula results to identify those meant to be passed
to the Quantum calc. The formula results are then passed into the link area (which is
why they do not require proper formula result rules).

For VERTEX_RESULTS, the hook takes the additional step of calling the Quantum C
code, and after the calculation is complete, transfers the results out of the link area
into the formula results of VERTEX_RESULTS. Formula result rules then take over to
produce the final tax run results.

This processing is repeated once for every Vertex entry (each work jurisdiction)
belonging to the assignment. A skip rule is used on the VERTEX element to avoid
processing overhead when the gross is zero for the jurisdiction. Since multiple Vertex
entries may be processed, but federal taxes must only be calculated once, the formulas
check whether the jurisdiction on the Vertex entry is the same as the employee’s primary
work location. Since this can only occur once, federal taxes are calculated at that
time, and skipped otherwise.

Implementation Guide 4-121

Processing Priority
An important feature of the tax elements, including the VERTEX% elements, is that
all share the same processing priority (4250), and the VERTEX indirect results use
a new formula result rule type ("order indirect") to ensure that the entire above
chain is completely processed before another chain (headed by a different Vertex
entry) is begun. This prohibits the processing of two different Vertex entries from
interleaving, which if allowed, can cause subtle problems due to the nature of the
dependencies between successive Vertex formula processing chains. (For example, in
the above scenario, when the California Vertex entry is started, the Mountain View
processing chain must have finished. Its SIT tax result can then be included in the
SIT_YTD balance accessed in the California Vertex entry processing.)

Tax Elements
Tax Deduction Elements
Tax deduction elements are categorized as follows:

• The federal tax deduction elements are FIT, EIC, FUTA, Medicare_EE, Medicare_
ER, SS_EE, SS_ER

• The state tax deduction elements are SIT_WK, SIT_RS, SDI_EE, SDI_ER, SUI_EE,
SUI_ER

• The county tax deduction elements are County_SC_WK, County_SC_RS, County_
WK, County_RS

• The city tax deduction elements are City_SC_WK, City_SC_RS, City_WK, City_
RS, City_HT_WK

The county and city taxes (which are income taxes) have two input values each: Pay
Value (which contains the tax amount) and Jurisdiction.

The SDI and SUI elements have three input values: Pay Value, TAXABLE (which
contains the portion of the gross that was not over the limit), and Jurisdiction.

The SIT elements have three input values: Pay Value, Supp Tax (which contains the
portion of the Pay Value tax amount that was derived purely from the supplemental
earnings), and Jurisdiction.

EIC has only Pay Value. FIT has only Pay Value and Supp Tax. FUTA, Medicare, and
FICA have Pay Value and TAXABLE.

Naturally, the jurisdiction value matches the level of the tax (such as a state geocode for a
state-level tax and a city geocode for a city-level tax). However, for the school district
taxes, the jurisdiction value used is state code-school district code.

The reason there are WK (work) and RS (resident) element pairs of some tax types is that
the VERTEX_RESULTS formula outputs two results for each such tax, since both work
and resident jurisdictions may tax the earnings. A formula cannot produce two results of
the same element type. Thus, every non-federal income tax deduction element must be
split into two versions, each identical (even in their balance feeds) except for name.

Subject Elements
The SUBJECT Elements (classification of Information, with category of Tax Balance)
are special elements that store results the Tax Balance API uses. Because the earnings
accumulations rules for non-federal taxes are complex, the tax balance values are not
derived directly from the earnings and deductions results. Consequently, the run-level
values of each non-derived non-federal tax balance are retained as run results. These
results are direct results from the appropriate VERTEX formulas.

4-122 Oracle Human Resources Management System Implementation Guide (US)

The SUBJECT Elements follow: City_SUBJECT_RS, City_SUBJECT_WK,
County_SUBJECT_RS, County_SUBJECT_WK, SIT_SUBJECT_RS, and
SIT_SUBJECT_WK, School_SUBJECT_RS, and School_SUBJECT_WK.

These SUBJECT elements have the following input values: Gross, Subj Whable, Subj
NWhable, DC 401 Redns, S 125 Redns, Dep Care Redns.

The SDI_SUBJECT_EE, SDI_SUBJECT_ER, SUI_SUBJECT_EE, SUI_SUBJECT_ER
elements have these input values: Gross, Subj Whable, DC 401 Redns, S 125 Redns, Dep
Care Redns, Jurisdiction (this reflects the fact that limit taxes don’t have not-withholdable
rules).

Additionally, the FSP_SUBJECT element has the input value Reduced Subj Whable. This
input value is used only internally as an input for Quantum.

SUBJECT elements for the federal taxes are not necessary because the federal tax balances
can easily be derived directly from the earnings and deductions results through the
SUBJECT dimensions. However, we maintain Federal SUBJECT elements for future use.

Run Result Suppression
Because of the potential of each assignment creating more than 40 run results (and
over 100 run result values) for every run, and the performance degradation that
would ensue, some means to prevent unnecessary run results was required. The core
mechanism does not easily allow for the conditional creation of run results. The average
assignment will only have 10 or so useful run results (since many of the possible taxes
and situations catered for are not very common).

The solution was to add code to the localization C hook. This hook serves to set up the
non-core (localization) contexts, such as Jurisdiction and Government Reporting Entity
for use in formulas. It is called for each element as it is processed, and allows a check for
whether the result is unnecessary. In this case a special flag is set to disable its creation
run result on the database. This portion of C code is called the "run result suppressor";
the rules it follows to strip out useless run results follow:

1. If the element name is like VERTEX% then suppress it.

(Such results are always useless; the element exists only to trigger processing, not to
store information.)

2. If the element is a non-federal tax deduction and its value is zero, then suppress it.

This suppression is appropriate since the balance mechanism treats the absence of
run results as zero, and no code is dependent on the existence of tax run results.

3. If the element is a SUBJECT element, then check if the return code indicates that the
corresponding tax does not exist, in which case suppress it.

This suppression prevents the big SUBJECT results from being created for
jurisdictions that do not even have tax, such as the state income tax for Texas, or
the city tax for Mountain View.

Balances
Naturally, all the tax deduction and SUBJECT elements each have their own primary
balances. There is one balance for each of the SUBJECT elements’ input values (except
Jurisdiction). The earnings and deductions elements also have their own primary
balances.

Some of the important composite balances follow:

• Gross Earnings (includes all earnings: regular, supplemental, and imputed)

Implementation Guide 4-123

• Regular Earnings (includes all elements of classification Earnings)

• Supplemental Earnings (includes classifications of Supplemental Earnings and
Imputed Earnings)

• Imputed Earnings (includes all Imputed Earnings)

• Pre Tax Deductions (includes all elements of classification Pre-Tax Deductions)

• Tax Deductions (includes all elements of the Tax Deductions classification)

• Deductions (includes Involuntary Deductions and Voluntary Deductions)

• Net (this is equivalent to all earnings (except imputed) + tax credits - all deductions)

The following balances are special in that they are fed by elements, not on the basis of
their classification, but by their classification and category. This process is accomplished
using a PL/SQL procedure called the "category feeder"that is called by the earnings and
deductions template procedures to set up any necessary feeds. The package containing
the feeder procedure is called pay_us_cgty_feeds_pkg.

• Commissions (fed by "Supplemental Earnings" of category "Commissions")

• Def Comp 401K (fed by "Pre-Tax Deductions" of category "Deferred Comp 401k")

• Def Comp 403B (fed by "Pre-Tax Deductions" of category "Deferred Comp 403b")

• Def Comp 457 (fed by "Pre-Tax Deductions" of category "Deferred Comp 457")

• Dependent Care (fed by "Pre-Tax Deductions" of category "Dependent Care 125")

• Section 125 (fed by "Pre-Tax Deductions" of category "Health Care 125")

Note: There is no true Section 125 Balance that includes both Health
Care 125 and Dependent Care 125 (for the Production 3 release).

For all of the above (and many other startup balances), the following dimension
combinations are used: _ASG_RUN, _ASG_PTD, _ASG_MONTH, _ASG_QTD, _ASG_
YTD, _ASG_GRE_RUN, _ASG_GRE_PTD, _ASG_GRE_MONTH, _ASG_GRE_QTD, _
ASG_GRE_YTD, _PER_RUN, _PER_MONTH, _PER_QTD, _PER_YTD, _PER_GRE_
RUN, _PER_GRE_MONTH, _PER_GRE_QTD, and _PER_GRE_YTD, _PAYMENTS.

For balances accessed in the Tax Balance API (including the earnings
and pre-tax deductions balances), these GRE-level dimensions are also
used: _GRE_RUN, _GRE_MONTH, _GRE_QTD, and _GRE_YTD.

For the non-federal tax deductions, jurisdiction gets involved and then the JD versions
of the above dimensions must be used. The JD dimensions include extra SQL to
filter out those run results whose jurisdiction result value does not match the given
context. Thus, SIT_WITHHELD_ASG_JD_YTD, with the JD contexts et to 05-000-0000
(which is California), will return only California state tax withheld.

Jurisdiction Level
In order that the JD dimensions may be used at different levels (state, county, and
city), some method of knowing how strictly to match the run result and context JDs is
needed. For example, to calculate "all earnings earned within the state of California,"
all earnings tagged like 05-234-2893 or 05-484-3497 would be included, thus matching
the first two digits. But for "all earnings earned within California, but not in any city or
county," only tags that exactly match "05-000-0000" would be included.

4-124 Oracle Human Resources Management System Implementation Guide (US)

Creating the jurisdiction level and adding it to the balance type as a column allows
for this calculation. It contains a code that specifies how many characters of the
jurisdiction code (starting from the left) must match to be included in the balance
sum. The allowed values are 0 (federal), 2 (state), 6 (county), 11 (city). Putting this
information on the balance type prevents the number of dimensions from multiplying
by 4 (since separate, federal, state, county, and city level dimensions would be
required). However, the side effect is a replication of some balances into four (to
maintain the number of necessary defined balances).

For example, four versions of the Regular Earnings balance are exactly the same, except
that they differ in jurisdiction level. These versions follow:

• Regular Earnings (jd level of 0)

• Regular Earnings State (jd level of 2)

• Regular Earnings County (jd level of 6)

• Regular Earnings City (jd level of 11)

Those balances whose jurisdiction level is 0 are required to use the non-JD dimensions
and those whose jd level is not 0 are required to use the JD dimensions. For example, the
defined balance REGULAR_EARNINGS_ASG_RUN returns all regular earnings in
the run, but REGULAR_EARNINGS_CITY_ASG_JD_RUN (with the JD context set to
Houston) returns all those earnings that are tagged, and whose entire eleven character
code matches Houston’s. Regular Earnings is the only balance that is replicated in this
way, because it has the unique property of including tagged and untagged elements. The
State and County versions are unused, and the City version is used to get the tagged
portion for Step 4 of the Earnings Accumulation Rules for non-federal taxes.

The balance dimension of _DEFAULT_ASG_RUN exists as a special case; it includes
only those run results that are not tagged. This balance dimension is used only in
conjunction with the Regular Earnings balance, in order to implement Step 3 of the
Earnings Accumulation Rules for non-federal taxes.

The jurisdiction code placed on the school district results is state code-school district
code. Since the school district code is five digits long, the jurisdiction level is 8. The
only place such a code may appear is on a school district tax result; earnings may not
be tagged in such a jurisdiction.

Tax Type and the Subject Dimensions
The Subject dimensions were created to allow filtering of run results according
to taxability rules. These dimensions are instrumental for obtaining the subject
withholdable and pretax reduction types of tax balances.

A design tradeoff similar to the jurisdiction design tradeoff was encountered; tax
type is a new context introduced for the subject dimensions, but it would potentially
force the creation of a whole set of dimensions for each tax type (of which there are
ten). Instead, as for jurisdiction, it was decided to place the tax type context on the
balance type, forcing a replication of balance types, though limited only to a small set.

Allowed tax type values are based on the lookup_codes from US_TAX_TYPE). These
values follow: FIT, MEDICARE, FICA, FUTA, EIC, NW_FIT, SDI, SUI, SIT, and
NW_SIT. (As mentioned before, city and county level taxes use the SIT tax type.)

Balances used with the subject dimensions are fed by elements for which taxability
rules exist. These elements follow:

• Supplemental Earnings

Implementation Guide 4-125

• Def Comp 401k

• Def Comp 403b

• Def Comp 457

• Section 125

• Dependent Care

• Commissions

The first four balances are used for composing tax balances. Ten versions of each
balance appear, with names in the form old name for tax type: Supplemental Earnings
for FIT, Supplemental Earnings for NW_FIT, and Supplemental Earnings for SDI, for
example.

Commissions is used only internally, so only two versions exist. The jurisdiction level on
the balances matches the tax type.

When combined with a subject dimension, these tax types indicate the tax to which the
taxability rules refers. For example, when using Supplemental Earnings for SDI with
_SUBJECT_TO_TAX_JD_ASG_GRE_RUN and the JD context set to California, we get all
supplemental earnings which are subject to California SDI. For income taxes, the FIT or
SIT tax type returns the subject and withholdable amount, and the NW_FIT or NW_SIT
returns the subject and not the withholdable amount. (For deductions, this distinction
is meaningless and NW_FIT/NW_SIT is not used; FIT/SIT tax types return the amount
of pretax deduction that is not allowed to reduce gross.)

The following subject dimensions are currently used:

• _SUBJECT_TO_TAX_ASG_GRE_RUN

This subject dimension is used with all the "for FIT/FUTA/FICA/MEDICARE/EIC/
NWFIT" balances.

• _SUBJECT_TO_TAX_ASG_GRE_PTD

• _SUBJECT_TO_TAX_ASG_GRE_MONTH

• _SUBJECT_TO_TAX_ASG_GRE_QTD

• _SUBJECT_TO_TAX_ASG_GRE_YTD

• _SUBJECT_TO_TAX_PER_GRE_RUN

• _SUBJECT_TO_TAX_PER_GRE_MONTH

• _SUBJECT_TO_TAX_PER_GRE_QTD

• _SUBJECT_TO_TAX_PER_GRE_YTD

• _SUBJECT_TO_TAX_GRE_RUN

• _SUBJECT_TO_TAX_GRE_MONTH

• _SUBJECT_TO_TAX_GRE_QTD

• _SUBJECT_TO_TAX_GRE_YTD

• _SUBJECT_TO_TAX_JD_ASG_GRE_RUN

This subject dimension is used with the "for SIT/NWSIT/SDI/SUI" balances.

These merely extend the basic balance dimensions with the taxability rules filtering for
each run result, its classification and category are retrieved from the parent element

4-126 Oracle Human Resources Management System Implementation Guide (US)

type, referenced into the taxability rules table along with the tax type from the balance
type. If a row is found in the taxability rules table, then the result is included in the
sum. Hence the relationship between the meaning of the existence of a row in the
taxability rules table and the value returned by the subject dimensions.

The reason only one JD subject dimension exists is that only the ASG_GRE_RUN level
dimension is needed.

Tax Balance API Implementation Details
Federal taxes are obtained directly from the earnings and deductions results. Given a
balance dimension (BD), and a reference tax (TAX), the defined balances are as follows:

• Gross: GROSS_EARNINGS_BD

• Subj Whable: REGULAR_EARNINGS_BD + SUPPLEMENTAL_EARNINGS_FOR_
TAX_SUBJECT_TO_TAX_BD

• Subj NWhable: SUPPLEMENTAL_EARNINGS_FOR_NWTAX_SUBJECT_TO_
TAX_BD

• 401 Reductions: DEF_COMP_401K_BD - DEF_COMP_401K_FOR_TAX_SUBJECT_
TO_TAX_BD

• 403 Reductions: DEF_COMP_403B_BD - DEF_COMP_403B_FOR_TAX_SUBJECT_
TO_TAX_BD

• 457 Reductions: DEF_COMP_457_BD - DEF_COMP_457_FOR_TAX_SUBJECT_
TO_TAX_BD

• 125 Reductions: SECTION_125_BD - SECTION_125_FOR_TAX_SUBJECT_TO_
TAX_BD

• Dep Care Reductions: DEPENDENT_CARE_BD - DEPENDENT_CARE_FOR_TAX_
SUBJECT_TO_TAX_BD

• Taxable: TAX_TAXABLE_BD

Other federal balances derived from the above balances follow:

• Subject Earnings = Subj Whable + Subj NWhable

• Exempt = Gross - Subject Earnings

• Reduced Subj Whable = Subj Whable - 401 Reductions - 403 Reductions - 457
Reductions - 125 Reductions - Dep Care Reductions

• Excess = Reduced Subj Whable - Taxable

For the nonfederal taxes, we use the balances associated with each of the subject element
input values, which store the run-level amounts for the basic (non-derived) tax balances:

• Gross: TAX_GROSS_BD_JD

• Subj Whable: TAX_SUBJ_WHABLE_BD_JD

• Subj NWhable: TAX_SUBJ_NWHABLE_BD_JD

• 401 Reductions: TAX_401_REDNS_BD_JD

• 403 Reductions: TAX_403_REDNS_BD_JD

• 457 Reductions: TAX_457_REDNS_BD_JD

• 125 Reductions: TAX_125_REDNS_BD_JD

Implementation Guide 4-127

• Dep Care Reductions: TAX_DEP_CARE_REDNS_BD_JD

• Taxable: TAX_TAXABLE_BD_JD

Other nonfederal balances derived from the above nonfederal balances follow:

• Subject Earnings = Subj Whable + Subj NWhable

• Exempt = Gross - Subject Earnings

• Reduced Subj Whable = Subj Whable - 401 Reductions - 403 Reductions - 457
Reductions- 125 Reductions - Dep Care Reductions

• Excess = Reduced Subj Whable - Taxable

Geocode Tables
For the purpose of identifying taxing jurisdictions, Vertex Inc. has defined a numbering
scheme called geocodes. When entering employee tax filing information and work and
resident locations, the state name/county name/city name information entered by the user
must be converted into geocode format to be understood by the Vertex calculation. Each
filing jurisdiction (from the Tax Rules Form) is converted into geocode format and
placed in the jurisdiction input value of a Vertex element entry. The geocodes derived
from the work and resident addresses are obtained through a PL/SQL function called
Addr_Val, since the address tables hold only city/county/state names (plus zip code).

The geocode format is xx-xxx-xxxx, where the first two digits are the state code, the
next three digits are the county code, and the last four digits are the city code, with
each code separated by hyphens. The county code refers to "county within the state,"
meaning that the code is meaningful only given the state code. Similarly, the city code
identifies the "city within the state".

All zeros for a code means that the particular level is ignored. Thus, 44-201-0000
refers to a whole county and no city, 44-000-0000 represents an entire state, and
00-000-0000 is the federal jurisdiction (anywhere in the United States). Note that
44-201-0000 refers to Texas-Harris County, but 18-201-0000 refers to Robertson County
in Kentucky. 44-201-1440 represents Texas-Harris County-Houston, but 44-157-1440
means Texas-Fort Bend County-Houston. This approach enables us to identify cities that
span multiple counties.

Since counties cannot cross state borders, it is sufficient to identify them by a unique
number within a state. Identifying cities is a different matter. Cities can cross county and
state boundaries, so the proper scheme is to use a universally unique code. Vertex does
not use this approach, so we find that 04-091-0590 and 44-037-2950 represent two parts of
the city of Texarkana, which lies partly in Arkansas, and partly in Texas. by looking at
the geocodes, there is no way to tell that they refer to the same actual city.

This is a limitation of the Vertex geocode scheme and means that Oracle Payroll cannot
calculate the "city tax in all of Texarkana." The Texas and Arkansas portions must be
calculated separately.

A similar problem concerns the format of the geocode and the simplistic matching
scheme of the JD dimensions. For city-level balances, the jurisdiction level is 11, and so
the entire geocode must match in order to be included in the balance sum. This approach
has the side effect of only including the part of the city in the county that appears in the
JD context. For example, CITY_WITHHELD_ASG_JD_RUN with the JD context set to
44-157-1440 only returns the portion of the Houston city tax based on earnings in Fort
Bend County, not in Harris or Montgomery County. To get the full "Houston city tax
withheld" value, the balance must be evaluated for all three counties.

4-128 Oracle Human Resources Management System Implementation Guide (US)

A somewhat separate set of codes are the school district codes, used to identify which
school district is owed tax. The school district code is a five digit number, with one set of
codes for each state, chosen by the state.

An employee registers for school district tax in his resident city. Earnings are never
tagged against school districts, so the code only appears on jurisdiction _result_ values
for school district tax, the school district SUBJECT results, and nowhere else. The format
used is xx-xxxxx, where the first two digits are the state code, and the next five digits
are the school district code. This approach avoids the potential problems of school
districts crossing city borders. Thus, when accessing school district level balances, this
format must be used for the JD context.

Table Structure
The geocode data is held in the following tables:

• PAY_US_STATES contains all the US states and territories.

• PAY_US_COUNTIES contains all the counties for each state.

• PAY_US_CITY_GEOCODES contains all valid geocodes for cities.

• PAY_US_CITY_NAMES contains the names for each city geocode.

Each geocode may have multiple names (aliases), but the official one is flagged
such that PRIMARY_FLAG = Y.

• PAY_US_ZIP_CODES contains valid zip code ranges for each city geocode.

• PAY_US_CITY_SCHOOL_DSTS contains school district names/codes for each city
(only those districts that have a tax).

• PAY_US_COUNTY_SCHOOL_DSTS contains school district names/codes for those
not in cities.

The data in these tables is sourced from Vertex, and does not contain cities with less
than 250 residents.

APIs
The tables that contain addresses (PER_ADDRESSES and HR_LOCATIONS) are
referenced against this data to ensure that proper geocode translations exist. These
tables themselves only hold the state, county, city names and the zip code. A function
Addr_Val translates the information on the address to the internally used geocode
representation. In addition to the validation built into the forms, a SQL script is available
to check all addresses at once.

Address Validation
A SQL script (pyvaladr.sql) has been provided to validate US addresses. Customers who
have been using Oracle Human Resources and are now implementing Oracle Payroll can
use this script to ensure that the addresses have already been entered are valid. In this
case, valid means that the state, county, city, and zip code are all consistent with the data
in the geocode tables. This script lists all invalid addresses in an output file (pyvaladr.lst).

For PER_ADDRESSES, it shows the full name, employee number, social security number
and address of those people whose address is invalid. For HR_LOCATIONS, it shows
the location code and address of the location whose address is not valid.

Addr_Val
This function takes the state abbreviation, county name, city name, and zip code from an
address and returns the corresponding geocode. Addr_Val is in the HR_US_FF_UDFS

Implementation Guide 4-129

package. This function is available for use in formulas as a User-Defined Function (UDF)
called get_geocode. It appears as follows:

FUNCTION addr_val (p_state_abbrev IN VARCHAR2 DEFAULT NULL,

p_county_name IN VARCHAR2 DEFAULT NULL,

p_city_name IN VARCHAR2 DEFAULT NULL,

p_zip_code IN VARCHAR2 DEFAULT NULL)

RETURN VARCHAR2;

If no valid geocode is found, then 00-000-0000 is returned.

Expansion
In the near future, Oracle Payroll will allow employees to have work and resident
locations for cities that Vertex does not support. In order to do so, a special non-Vertex
geocode xx-xxx-UNKN will be used. No city with such a geocode will have the
PRIMARY_FLAG set to Y, since they will not be aliases to a single true city with that
geocode.

Users will be able to add new cities to the geocode tables, which will be marked with
the special geocode. Addresses can then include the new cities. The tax subsystem, of
course, will not support these new cities; tax rules will not be permitted to be entered
against the new cities. Instead the user will need to enter any relevant percentages and
filing status against the containing county. Addr_Val (from above) assists by converting
the UNKN city code to 0000, resulting in a county level geocode. This measure prevents
any problems stemming from the fact that different "new cities" might have the same
geocode. If multiple Vertex entries with the same geocode were created, the same tax
could potentially be calculated more than once.

FastFormula

The FastFormula Application Dictionary
The FastFormula Application Dictionary is designed to hide the complexity of the
application database from the FastFormula user. When you write a formula, you
reference database items. The Dictionary contains the information that FastFormula
requires to generate the SQL and PL/SQL error checking code that extracts these
database items.

For example, in a formula you might refer to the database item EMPLOYEE_LAST_
NAME. When the formula is run, FastFormula uses information in the Dictionary to
build up a complete SELECT statement to extract the name from the database.

Normally, you do not need to be aware of the contents of the Dictionary. For
example, when you define a new element, several database items are generated
automatically. The information that enables FastFormula to extract these new items is
generated at the same time.

However, if you do need to define new database items directly in the Dictionary, you
must also load the associated information. The next section describes the entities that

4-130 Oracle Human Resources Management System Implementation Guide (US)

you must create in the Dictionary. The following section gives step-by-step instructions
for defining new database items.

Entities in the Dictionary
Suppose FastFormula is running a formula that references the database item
EMPLOYEE_LAST_NAME from the table PER_PEOPLE. The SQL required to extract
EMPLOYEE_LAST_NAME is as follows:

SELECT TARGET.last_name
FROM per_people TARGET
, per_assignments ASSIGN
WHERE TARGET.person_id = ASSIGN.person_id
AND ASSIGN.assignment_id = &B1

This section explains where this information is stored in the Dictionary and how
FastFormula builds it up to form the SQL statement.

Note that the Dictionary stores information at the physical level. That is, it stores parts
of the text of SQL statements, which are used by FastFormula to build up the complete
statements. It does not store information about entities and relationships.

Database Items and User Entities
EMPLOYEE_LAST_NAME is a value in the USER_NAME column of table
FF_DATABASE_ITEMS in the Dictionary. When FastFormula runs a formula in which
EMPLOYEE_LAST_NAME is a variable, it accesses this table for two reasons:

• It gets the value in the DEFINITION_TEXT column. This is the value
that appears in the SELECT clause of the SQL. In our example, it is
PER_PEOPLE.LAST_NAME. (TARGET is an alias for PER_PEOPLE.)

• It identifies the user entity of which the database item is a part. A user entity is a
group of one or more database items that can be accessed by the same route. In our
example, the user entity might be EMPLOYEE_DETAILS.

Routes and Route Parameters
Using the user entity ID, FastFormula checks the table FF_USER_ENTITIES to identify
the route associated with the user entity. The route is the text of the SQL statement
following the FROM keyword. It is held in the table FF_ROUTES. In our example, the
route is:

per_people TARGET,
per_assignments ASSIGN
WHERE TARGET.person_id = ASSIGN.person_id
AND ASSIGN.assignment_id = &B1

If several user entities use the same route, the route contains one or more placeholders of
the form &U# (where # is a sequence number). Each placeholder references a parameter
in table FF_ROUTE_PARAMETERS. FastFormula identifies the parameter ID from this
table.

The values of the parameters are different for each user entity. Using the parameter
ID, FastFormula accesses the value of the parameter for the relevant user entity in
table FF_ROUTE_PARAMETER_VALUES. Since each user entity has a different set of
parameter values, the text of the route is different for each user entity.

In our example, only one user entity uses the route so there are no route parameters.

Implementation Guide 4-131

Contexts and Route Context Usage
The route may contain another type of placeholder of the form &B# (where
is a sequence number). These placeholders reference contexts in the table
FF_ROUTE_CONTEXT_USAGES. FastFormula identifies the ID of the context from
this table, and then the name of the context from table FF_CONTEXTS. Contexts are
predefined in FF_CONTEXTS and you should not change them. Examples are Payroll
ID, Organization ID, and Date Earned.

The value of the context is not fixed. It is passed through by the formula at run time.

In our example, the route requires one context, which is Assignment ID.

Formula Types and Formula Type Context Usage
When you define a formula, you assign it to a formula type, such as Payroll formulas
or QuickPaint formulas. The type of the formula determines the contexts for which it
provides values. This is defined in table FF_FTYPE_CONTEXT_USAGES.

For example, a QuickPaint formula feeds through values for the contexts Assignment ID
and Date Earned. Thus, when you define a QuickPaint formula, you can use database
items that require the contexts Assignment ID and Date Earned. However, any database
items that use the other contexts in their routes are not available to you. They do not
appear in the list of values.

This is a mechanism to restrict the database items that a formula can use. It can only use
database items that are appropriate to the formula context.

It follows that if a database item is based on a route that does not require any contexts
(for example, a SELECT from DUAL), then every formula type in the system is able to
access the database item.

Summary of How FastFormula Uses the Dictionary
1. FastFormula gets the value in the DEFINITION_TEXT column of FF_DATABASE

ITEMS and puts it in the SELECT clause of the SQL.

2. It gets the user entity ID from FF_DATABASE ITEMS and uses it to get the route
ID from FF_USER_ENTITIES.

3. It uses the route ID to get the route text from FF_ROUTES and puts it in the FROM
clause of the SQL.

4. If the route contains a placeholder of the form &U#, FastFormula accesses
FF_ROUTE_PARAMETERS to identify the parameter ID. Then it uses the
parameter ID to get the value of the parameter for the relevant user entity in table
FF_ROUTE_PARAMETER_VALUES.

5. If the route contains a placeholder of the form &B#, FastFormula accesses
FF_ROUTE_CONTEXT_USAGES to identify the context ID. Then it uses the context
ID to get the name of the context in table FF_CONTEXTS. This must be one of the
contexts for which the formula passes through values (determined by the formula
type in table FF_FTYPE_CONTEXT_USAGES).

Dening New Database Items
Before defining new items, you should consider the following issues:

• To which business group and legislation should the database item be available?

• Can the database item have a null value? Can it be non-existent?

4-132 Oracle Human Resources Management System Implementation Guide (US)

Availability of Database Items
The two attributes Business Group ID and Legislation Code are associated with each
user entity. These attributes determine the availability of the database items belonging to
the user entity. If the Business Group ID is set to a particular value, then only formulas
operating under that business group can ’see’ the database item. If the Business Group
ID is set to null, the database item can be ’seen’ by all business groups. The same
principle applies to Legislation Code.

New database items that you define must be associated with a specific business code and
legislation. Generic startup items supplied as part of the core system are available to all
formulas. Your localization group has added legislation-specific items that are available
to all business groups under that legislation.

Note: The name of the database item must be unique within a business
group.

Null & Not Found Conditions
To enable validation, you must define two flags in the FastFormula Application
Dictionary:

• The NULL_ALLOWED_FLAG is a column on the table FF_DATABASE_ITEMS, and
hence applies to each database item. If the SQL statement to extract the database
item may return a null value, you must set this flag to yes (Y). If you set the flag to no
and a null value is returned, FastFormula will report an error.

• The NOTFOUND_ALLOWED_FLAG is a column on the table FF_USER_ENT
ITIES, and hence applies to all the database items belonging to a particular user
entity. If the SQL statement to extract database items may return no rows for any of
the items, you must set this flag to yes (’Y’). If you set the flag to no and the SQL
statement fails to return a row, FastFormula will report an error.

The formula writer must provide a default for a database item used in a formula, unless
both of these flags are set to no. For more information on defaults, refer to the guide
Using Oracle FastFormula.

Steps To Generate A Database Item
To illustrate the steps to generate database items, we will use the example of a user entity
called GRADE_RATE_USER_ENTITY, which comprises three database items:

• GRADE_VALUE

• GRADE_MINIMUM

• GRADE_MAXIMUM

This user entity may share its route (GRADE_ROUTE) with other user entities. Each
user entity uses a unique value for the route parameter RATE_ID, so that the WHERE
clause for each entity is different. If the entities are in the same business group, the
USER_NAME of each database itemmust be unique. Oneway to achieve this is to include
the rate name in the USER_NAME; for example: <RATE_NAME>_GRADE_VALUE.

In this example, we suppose that the value of RATE_ID for GRADE_RATE_USER_ENT
ITY is 50012. For simplicity we consider only one user entity for the route.

The three database items are stored in table PAY_GRADE_RULES. To extract these
items, FastFormula uses an assignment ID passed by the formula. This is the formula
context.

This is the SQL required to extract these database items:

Implementation Guide 4-133

SELECT <DEFINITION_TEXT>
FROM pay_grade_rules TARGET
, per_assignments ASSIGN
WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id
AND TARGET.rate_type = ’G’
AND ASSIGN.assignment_id = &B1
AND TARGET.rate_id = &U1

<DEFINITION_TEXT> may be one of the three database items listed below:

Database Item Name <DEFINITION_TEXT>

GRADE_VALUE TARGET.value

GRADE_MINIMUM TARGET.minimum

GRADE_MAXIMUM TARGET.maximum

The following steps describe how to load the information into the Dictionary so that
FastFormula can generate this SQL. An example of PL/SQL that loads the information is
given at the end of this section.

1. Write the SQL

Write and test the SQL statement using SQL*Plus to ensure that the statement is
correct. The SQL statement must not return more than one row because FastFormula
cannot process multiple rows.

2. Load the Route

This is best done using a PL/SQL routine. Wherever possible, use the sequence value
for the primary keys (such as FF_ROUTES_S.NEXTVAL) to populate the table. The
route is held in the table FF_ROUTES as a ’long’ data type. So, using the example
above, you could assign the route to a long variable as follows:

set escape \
DECLARE
l_text long;

BEGIN
l_text := ’/* route for grade rates */

pay_grade_rules TARGET,
per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id
AND TARGET.rate_type = ’’G’’
AND ASSIGN.assignment_id = \&B1
AND TARGET.rate_id = \&U1’;
END;

Note the following changes from the original SQL that was given earlier:

• Each ’&’ is preceded with the escape character.

• The single quote mark is replaced with two single quote marks.

• A comment may be placed at the start of the route if required.

3. Load the Contexts

4-134 Oracle Human Resources Management System Implementation Guide (US)

The next step is to load the contexts into the table FF_ROUTE_CONTEXT_USAGES.
The columns in this table are as follows:

Name Null? Type

ROUTE_ID NOT NULL NUMBER(9)

CONTEXT_ID NOT NULL NUMBER(9)

SEQUENCE_NO NOT NULL NUMBER(9)

Use the current sequence number for the route ID. This is FF_ROUTES_S.CURRVAL
if you used the sequence FF_ROUTES_S.NEXTVAL to populate the table
FF_ROUTES. You can obtain the context ID for the particular formula context
(assignment ID in our example) from the table FF_CONTEXTS. The sequence
number is simply the ’B’ number.

For the example, you would insert one row for the route into the table
FF_ROUTE_CONTEXT_USAGES (see the PL/SQL for the example, at the end of
this section).

4. Insert Rows in the User Entity Table

For each route, insert at least one row in the table FF_USER_ENTITIES. This
table holds the Business Group ID, Legislation Code, the ROUTE_ID, and the
NOTFOUND_ALLOWED_FLAG.

5. Insert Rows for Route Parameters

For each placeholder of the form &U# in the route, you must insert a row into two
tables:

• FF_ROUTE_PARAMETERS, which references the route, and

• FF_ROUTE_PARAMETER_VALUES, which contains the actual value for the
route parameter, and references the user entity.

The columns in these tables are as follows:

SQL> desc ff_route_parameters

Name Null? Type

ROUTE_PARAMETER_ID NOT NULL NUMBER(9)

ROUTE_ID NOT NULL NUMBER(9)

DATA_TYPE NOT NULL VARCHAR2(1)

PARAMETER_NAME NOT NULL VARCHAR2(80)

SEQUENCE_NO NOT NULL NUMBER(9)

SQL> desc ff_route_parameter_values

Implementation Guide 4-135

Name Null? Type

ROUTE_PARAMETER_ID NOT NULL NUMBER(9)

USER_ENTITY_ID NOT NULL NUMBER(9)

VALUE NOT NULL VARCHAR2(80)

LAST_UPDATE_DATE DATE

LAST_UPDATED_BY NUMBER(15)

LAST_UPDATE_LOGIN NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

The data type held in FF_ROUTE_PARAMETERS is either a number (N) or a text
value (T).

In our example, the route parameter is RATE_ID. For GRADE_RATE_USER_ENT
ITY, its value is 50012. The values you would insert into these tables for the example
are shown in the sample PL/SQL at the end of this section.

6. Insert the Database Item

You can now insert the database items. For our example, there are three rows in the
table FF_DATABASE_ITEMS that refer to the same user entity. The columns in
this table are as follows:

SQL> desc ff_database_items

Name Null? Type

USER_NAME NOT NULL VARCHAR2(80)

USER_ENTITY_ID NOT NULL NUMBER(9)

DATA_TYPE NOT NULL VARCHAR2(1)

DEFINITION_TEXT NOT NULL VARCHAR2(240)

NULL_ALLOWED_FLAG NOT NULL VARCHAR2(1)

DESCRIPTION VARCHAR2(240)

LAST_UPDATE_DATE DATE

LAST_UPDATED_BY NUMBER(15)

LAST_UPDATE_LOGIN NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

The USER_NAME must be unique within the business group.

4-136 Oracle Human Resources Management System Implementation Guide (US)

The values you would insert into this table for the three example database items are
shown in the sample PL/SQL at the end of this section.

When you create the database items, it is useful to populate the other columns, such
as LAST_UPDATE_DATE, and CREATION_DATE.

Example
The following PL/SQL creates the database items in the example::

set escape \
DECLARE
l_text long;
l_user_entities_seq number;
l_route_id number;

BEGIN
--
-- assign the route to a local variable
--
l_text := ’/* route for grade rates */

pay_grade_rules TARGET,
per_assignments ASSIGN

WHERE TARGET.grade_or_spinal_point_id = ASSIGN.grade_id
AND TARGET.rate_type = ’’G’’
AND ASSIGN.assignment_id = \&B1
AND TARGET.rate_id = \&U1’;
--
-- insert the route into the table ff_routes
--
insert into ff_routes

(route_id,
route_name,
user_defined_flag,
description,
text,
last_update_date,
creation_date)

values (ff_routes_s.nextval,
’GRADE_ROUTE’,
’Y’,
’Route for grade rates’,
l_text,
sysdate,
sysdate);

--
-- load the context
--
insert into ff_route_context_usages

(route_id,
context_id,
sequence_no)

select ff_routes_s.currval,
context_id,
1

from ff_contexts
where context_name = ’ASSIGNMENT_ID’;
--

-- create a user entity

Implementation Guide 4-137

--
select ff_user_entities_s.nextval
into l_user_entities_seq
from dual;
--
select ff_routes_s.currval
into l_route_id
from dual;
--
insert into ff_user_entities

(user_entity_id,
business_group_id,
legislation_code,
route_id,
notfound_allowed_flag,
user_entity_name,
creator_id,
creator_type,
entity_description,
last_update_date,
creation_date)

values (l_user_entities_seq,
1, -- example business group id
’GB’, -- example legislation
l_route_id,
’Y’,
’GRADE_RATE_USER_ENTITY’,
50012, -- example creator id
’CUST’,
’Entity for the Grade Rates’,
sysdate,
sysdate);

--
-- insert the route parameters
--
insert into ff_route_parameters

(route_parameter_id,
route_id,
data_type,
parameter_name,
sequence_no)

select ff_route_parameters_s.nextval,
l_route_id,
’N’,
’Grade Rate ID’,
1

from dual;
--
insert into ff_route_parameter_values

(route_parameter_id,
user_entity_id,
value,
last_update_date,
creation_date)

select ff_route_parameters_s.currval,
l_user_entities_seq,
50012,
sysdate,

4-138 Oracle Human Resources Management System Implementation Guide (US)

sysdate
from dual;
--
-- insert the three database items
--
insert into ff_database_items

(user_name,
user_entity_id,
data_type,
definition_text,
null_allowed_flag,
description,
last_update_date,
creation_date)

values (’GRADE_VALUE’,
l_user_entities_seq,
’T’,
’TARGET.value’,
’Y’,
’Actual value of the Grade Rate’,
sysdate,
sysdate);

--
insert into ff_database_items

(user_name,
user_entity_id,
data_type,
definition_text,
null_allowed_flag,
description,
last_update_date,
creation_date)

values (’GRADE_MINIMUM’,
l_user_entities_seq,
’T’,
’TARGET.minimum’,
’Y’,
’Minimum value of the Grade Rate’,
sysdate,
sysdate);

Implementation Guide 4-139

--
insert into ff_database_items

(user_name,
user_entity_id,
data_type,
definition_text,
null_allowed_flag,
description,
last_update_date,
creation_date)

values (’GRADE_MAXIMUM’,
l_user_entities_seq,
’T’,
’TARGET.maximum’,
’Y’,
’Maximum value of the Grade Rate’,
sysdate,
sysdate);

END;
/

Calling FastFormula from PL/SQL
Oracle FastFormula provides an easy to use tool for professional users. Using simple
commands and syntax, users can write their own validation rules or payroll calculations.

Until R11 the execution engine for calling formulas and dealing with the outputs has
been hidden within the Oracle HR and Payroll products. The original engine for calling
PL/SQL was written in Pro*C. It is complex and can be called only from user exits or
directly from another ’C’ interface.

Now, there is a new execution engine or interface that lets you call formulas directly
from Forms, Reports or other PL/SQL packages. This interface means that you can call
existing validation or payroll formulas and include them in online or batch processes. It
also means that you can define and call your own formulas for other types of validation
and calculation. With FastFormula you automatically have access to the database items
(DBIs) and functions of Oracle HRMS and you automatically have calculations and
business rules that are datetracked.

The basic concepts of FastFormula remain the same as before:

Inputs -> Process -> Outputs

As you now have complete freedom to decide the inputs you provide and what happens
to the outputs produced by a formula you must write the calling code to handle both
inputs and outputs.

For optimal performance when calling FastFormula from PLSQL, generate the Formula
Wrapper after compiling the formula. You can execute a formula even if you did not
compile it before you generated the Formula Wrapper. The Bulk Compile Formulas
process automatically generates the Formula Wrapper.

Generate the Formula Wrapper only when necessary. The Formula Wrapper generates
a PLSQL package body, and the generation process may cause runtime errors in
FastFormula calls that occur at the same time. You do not need to generate the Formula
Wrapper when you test formulas.

4-140 Oracle Human Resources Management System Implementation Guide (US)

This essay provides an overview and technical details to show you how to call
FastFormula from PL/SQL. You should be familiar with PL/SQL coding techniques and
with Oracle FastFormula but you will not need to understand the internal working
of the execution engine.

The Execution Engine Interface
There are two interfaces to the execution engine for FastFormula.

• Server-side

Use this interface for any formulas to be executed by batch processes or on the
server. See: Server Side Interface, page 4-142

• Client-side

Use this interface only when a direct call is required from forms and reports to
execute a formula immediately. You could also write a custom ’wrapper’ package to
call the server engine from the client. See: Client Side Call Interface, page 4-146

Note: Some Oracle tools currently use PL/SQL V1.x only. This version
does not support the table of records data structure needed by the server
interface. The client-side version was written to get around this current
limitation.

Location of the Files
The execution engine files are stored in $FF_TOP/admin/sql

• ffexec.pkh and ffexec.pkb

Server side execution engine package header and body files.

• ffcxeng.pkh and ffcxeng.pkb

Client side versions of execution engine package header and body files.

Note: There is a special interface in the ff_client_engine module that is
designed specifically for the forms client. This interface avoids the
overhead of a large number of network calls using a fixed number of
parameters. See: Special Forms Call Interface, page 4-148

Datetracked Formulas
All formulas in Oracle HRMS products are datetracked, enabling you to use DateTrack
to maintain a history of changes to your validation rules or calculations.

In the predefined interfaces to the execution engine the system automatically manages
the setting or changing of the effective date. When you execute your own formulas
you must also manage the setting of the effective date for the session. This means that
before calling any of the execution engine interfaces you may need to insert a row into
the FND_SESSIONS table. This is required if there is no row in FND_SESSIONS for the
current SQL*PLUS session_id or the formula or formulas to be executed access database
items that reference datetracked tables.

Important: Always check the effective date for the formula to be
executed. This date affects the values of the database items and any
functions that you include in the formula.

Implementation Guide 4-141

Changes in R11i
Server Side and Client Side Interfaces
In R11i the client side interfaces are provided for backwards compatibility. The client
side PL/SQL environments used with R11i are able to use the server side interface.

NUMBER and DATE Inputs and Outputs
Input values must be passed in as strings in the correct formats. In R11i, use the
routine FND_NUMBER.NUMBER_TO_CANONICAL to format NUMBER inputs. Use
FND_DATE.DATE_TO_CANONICAL to format DATE inputs.

Output values are passed back as strings formatted as described above. To convert a
NUMBER output to a NUMBER value, use the routine FND_NUMBER.CANONICAL_
TO_NUMBER. Use FND_DATE.CANONICAL_TO_DATE to convert DATE outputs to
DATE values.

For forms code, using the corresponding routines from the APP_NUMBER and
APP_DATE packages may result in improved performance.

This set of changes applies to all the interfaces to the FastFormula execution engine.

DATE_EARNED and BALANCE_DATE Contexts
In R11i, the datatype of DATE_EARNED and BALANCE_DATE contexts is DATE. Prior
to R11i, these contexts had a datatype of TEXT.

Server Side Interface
This section describes the interface to the server execution engine and how to call the
module from other PL/SQL.

This version of the interface is preferred. It combines maximum flexibility with relatively
low network demands. However, it can only be used with PL/SQL V2.3 and above as it
requires support for the table of records data structure.

User Data Structures
There are two important user data structures when you use the server side
interface. These are the inputs table and the outputs table:

Inputs Table

Name Description

NAME The input name, such as RATE, or ASS
IGNMENT_ID

DATATYPE Can be DATE, NUMBER, or TEXT

CLASS The type of input : CONTEXT or INPUT
This field is not required, as it is not necessary
to know if an input is a context or a normal
input value to call the formula correctly.

VALUE The actual value to pass to the formula as a
Context or an Input.
This field is a type of varchar2(240). This means
that for NUMBER and DATE datatypes the
value passed in has to be in the appropriate
format. See the example code for how this
works.

4-142 Oracle Human Resources Management System Implementation Guide (US)

Outputs Table

Name Description

NAME The output name, such as RESULT1, or
MESSAGE

DATATYPE Can be DATE, NUMBER, or TEXT

VALUE The actual value returned from the formula

Note: The names of all inputs and outputs must be in upper case
and the same name can appear in both the inputs and the outputs
tables, for example where an input value is also a return value from the
formula. However, a CONTEXT can only appear in the inputs table.

Both inputs and outputs tables are initialized by a call to the ff_exec.init_formula
procedure and then contain details of all the inputs, including contexts that are needed
to execute the formula and all the outputs that will be returned.

You are responsible for holding these tables between the initialization and execution calls.

Important: Although the index values for these tables are positive in
value, the caller should not assume that they start at 1. Always use the
"first" and "last" table attributes when accessing and looping through
these tables. See also: Examples, page 4-144.

Available Calls
The following procedure calls are available. They are described below with some detail
on the parameters that can be passed to them.

Note: Refer to the appropriate package header for information on the
class of parameter (in, out or in/out).

Procedure : init_formula
This call initializes the execution engine for a specific formula. That is, it declares
to the engine that a formula is about to be run. It must be called before a formula
is executed, but that formula can then be executed as many times as desired without
having to call the initialization procedure again. This will be understood from the
examples further on.

Table of parameters to init_formula

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective date to execute

p_inputs ff_exec.inputs_t Input variable information

p_outputs ff_exec.outputs_t Output variable information

Implementation Guide 4-143

Procedure : run_formula
This call actually executes the formula, taking inputs as specified and returning any
results from the formula. The init_formula procedure must have been called before this
is used (see examples).

Table of parameters to run_formula

Parameter Name Data Type Comments

p_inputs ff_exec.inputs_t Inputs to the formula

p_outputs ff_exec.outputs_t Outputs from the formula

p_use_dbi_cache boolean If TRUE, the database item
cache will be active during
execution, else will not.
Defaults to TRUE

Further Comments
The p_inputs and p_outputs parameters could be NULL if the formula does not have
any inputs and/or outputs (although the latter is rather unlikely).

The p_use_dbi_cache would only be set to FALSE under unusual circumstances requiring
the disabling of the cacheing of database item values. This might be required if the
engine is called from code that would invalidate the values for fetched database items.

For instance, if the database item ASG_STATUS was accessed from within a formula
used in business rule validation used in turn to alter the Assignment’s status, we might
want to disable the Database Item cache in case we attempted to read that database item
in a subsequent formula.

Examples
The following examples assume we are going to execute the following formula. Note
that the DATABASE_ITEM requires an ASSIGNMENT_ID context.

The formula itself does not represent anything meaningful, it is for illustration only.

inputs are input1, input2 (date), input3 (text)
dbi = DATABASE_ITEM
ret1 = input1 * 2
return ret1, input2, input3

The following anonymous block of PL/SQL could be used to execute the formula. In
this case, it is called a number of times, to show how we can execute many times having
initialized the formula once.

declare
l_input1 number;
l_input2 date;
l_input3 varchar2(80);
l_assignment_id number;
l_formula_id number;
l_effective_date date;
l_inputs ff_exec.inputs_t;
l_outputs ff_exec.outputs_t;
l_loop_cnt number;
l_in_cnt number;
l_out_cnt number;

4-144 Oracle Human Resources Management System Implementation Guide (US)

begin
-- Set up some the values we will need to exec formula.
l_formula_id := 100;
l_effective_date := to_date(’06-05-1997’, ’DD-MM-YYYY’);
l_input1 := 1000.1;
l_input2 := to_date(’01-01-1990’, ’dd-mm-yyyy’);
l_input3 := ’INPUT TEXT’;
l_assignment_id := 400;
-- Insert FND_SESSIONS row.
insert into fnd_sessions (
session_id,
effective_date)
values (userenv(‘sessionid’),
l_effective_date);
-- Initialise the formula.
ff_exec.init_formula(l_formula_id, l_effective_date, l_inputs,

l_outputs);
-- We are now in a position to execute the formula.
-- Notice that we are illustrating here that the formula can
-- be executed a number of times, in this case setting a new
-- input value for input1 each time.
for l_loop_cnt in 1..10 loop
-- The input and output table have been initialized. We now h

ave
-- to set up the values for the inputs required. This include

s
-- those for the ’inputs are’ statement and any contexts.
for l_in_cnt in l_inputs.first..l_inputs.last loop
if(l_inputs(l_in_cnt).name = ’INPUT1’) then
-- Deal with input1 value.
l_inputs(l_in_cnt).value := fnd_number.number_to_canonical

(l_input1);
elsif(l_inputs(l_in_cnt).name = ’INPUT2’) then
-- Deal with input2 value.
l_inputs(l_in_cnt).value := fnd_date.date_to_canonical(l_i

nput2);
elsif(l_inputs(l_in_cnt).name = ’INPUT3’) then
-- Deal with input3 value.
l_inputs(l_in_cnt).value := l_input3;
-- no conversion required.

elsif(l_inputs(l_in_cnt).name = ’ASSIGNMENT_ID’) then
-- Deal with the ASSIGNMENT_ID context value.
l_inputs(l_in_cnt).value := l_assignment_id;

end if;
end loop;
ff_exec.run_formula(l_inputs, l_outputs);
-- Now we have executed the formula. We are able
-- to display the results.
for l_out_cnt in l_outputs.first..l_outputs.last loop
hr_utility.trace(’output name : ’ || l_outputs(l_out_cnt

).name);
hr_utility.trace(’output datatype : ’ || l_outputs(l_out_cnt

).datatype);
hr_utility.trace(’output value : ’ || l_outputs(l_out_cnt

).value);
end loop;

end loop;
-- We can now continue to call as many formulas as we like,

Implementation Guide 4-145

-- always remembering to begin with a ff_exec.init_formula call.
-- Note: There is no procedure to be called to
-- shut down the execution engine.

end;
/

As noted earlier, if you are attempting to call the execution engine from a client that is
not running the appropriate version of PL/SQL, it will be necessary to create a package
that ’covers’ calls to the engine or consider calling the client engine, specified below.

Client Side Call Interface
This section attempts to describe in detail the interface to the client execution engine
from a user perspective, and how to call the module from other PL/SQL.

Note: These client side calls are designed to avoid any use of
overloading, which causes problems when procedures are called from
forms.

When Should I Use This Interface?
This interface can be used when the version of PL/SQL on the client is prior to V2.3 (does
not support tables of records). It is probably the easiest interface to use. However, it is
not recommended where high performance is required, due to the greater number of
network round-trips. In these cases, consider using the special forms interface.

User Data Structures
There are no user visible data structures in the client side call.

Available Calls
The following procedure calls are available. They are described below with some detail
on the parameters that can be passed to them.

Note: Refer to the appropriate package header for information on the
class of parameter (in, out, or in/out).

Procedure : init_formula
This call initializes the execution engine for a specific formula. That is, it declares
to the engine that a formula is about to be run. It must be called before a formula
is executed, but that formula can then be executed as many times as desired without
having to call the initialization procedure again. This will be understood from the
examples further on.

Table of parameters to init_formula

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective execution date

Procedure : set_input
This call sets the value of an input to a formula. To cope with the different datatypes that
FastFormula can handle, the values have to be converted to the appropriate character
strings.

4-146 Oracle Human Resources Management System Implementation Guide (US)

Table of parameters to set_input

Parameter Name Data Type Comments

p_input_name varchar2 Name of input to set

p_value varchar2 Input value to set

Procedure : run_formula
This call actually executes the formula, taking inputs as specified and returning any
results from the formula. The init_formula procedure must have been called before this
is used (see examples).

There are no parameters to run_formula.

Procedure : get_output
This call gets the output values returned from a formula. To cope with the different
datatypes that FastFormula can handle, the output has to be converted as appropriate.

Table of parameters to get_output

Parameter Name Data Type Comments

p_input_name varchar2 Name of input to set

p_return_value varchar2 Value of varchar2 output

Examples
The following examples rely on the same formula used above.

inputs are input1, input2 (date), input3 (text)
dbi = DATABASE_ITEM
ret1 = input1 * 2
return ret1, input2, input3

The following anonymous block of PL/SQL can be used to run the formula.

declare
l_input1 number;
l_input2 date;
l_input3 varchar2(80);
l_output1 number;
l_output2 varchar2(12);
l_output3 varchar2(80);
l_assignment_id number;
l_formula_id number;
l_effective_date date;
l_loop_cnt number;

begin
-- Set up the values we need to execute the formula.
l_formula_id := 100;
l_effective_date := to_date(’06-05-1997’, ’DD-MM-YYYY’);
l_input1 := 1000.1;
l_input2 := to_date(’01-01-1990’, ’dd-mm-yyyy’);
l_input3 := ’INPUT TEXT’;
l_assignment_id := 400;

-- Insert FND_SESSIONS row.

Implementation Guide 4-147

insert into fnd_sessions (
session_id,
effective_date)

values (userenv(‘sessionid’),
l_effective_date);

-- Initialize the formula. ff_client_engine.init_formula(l_formula
_id,l_effective_date);
-- We are not in a position to execute the formula.
-- Notice that we are illustrating here that the formula can
-- be executed a number of times, in this case setting a new
-- input value for input1 each time.
for l_loop_cnt in 1..10 loop

-- The input and output tables have been initialized.
-- We now have to set up the values for the inputs required.
-- This includes those for the ’inputs are’ statement
-- and any contexts.
-- Note how the user has to know the number of inputs the
-- formula has.

ff_client_engine.set_input(’INPUT1’, fnd_number.number_to_cano
nical(l_input1));

ff_client_engine.set_input(’INPUT2’, fnd_date.date_to_canonica
l(l_input2));

ff_client_engine.set_input(’INPUT3’, l_input3);
ff_client_engine.set_input(’INPUT3’, l_input3);
ff_client_engine.set_input(’ASSIGNMENT_ID’, l_assignment_id);
ff_client_engine.run_formula;

-- Now we have executed the formula. Get the results.
ff_client_engine.get_output(’RET1’, l_output1);
ff_client_engine.get_output(’INPUT2’, l_output2);
ff_client_engine.get_output(’INPUT3’, l_output3);

-- OK. Finally, display the results.
hr_utility.trace(’RET1 value : ’ || output1);
hr_utility.trace(’INPUT2 value : ’ || l_output2);
hr_utility.trace(’INPUT3 value : ’ || output3)

end loop;
-- We can now continue to call as many formulas as we like,
-- always remembering to begin with a
-- ff_client.init_formula call.
-- Note: There is no procedure to be called to
-- shut down the execution engine.
end;
/

Special Forms Call Interface
This section attempts to describe in detail the interface to the special forms client
execution engine interface from a user perspective, and how to call the module from
forms.

When Should I Use This Interface?
This interface is recommended for use when you want to execute a formula directly from
a form or report client that does not support PL/SQL V2.3 or above (that is, does not
allow PL/SQL tables of records).

User Data Structures
There are no user visible data structures in the client side call.

4-148 Oracle Human Resources Management System Implementation Guide (US)

Available Calls
The following procedure calls are available. They are described below with some detail
on the parameters that can be passed to them.

Note: Refer to the appropriate package header for information on the
class of parameter (in, out, or in/out).

Procedure : run_id_formula
This call initializes the execution engine for a specific formula, then runs the formula
taking the input and context arguments specified. Finally it returns the appropriate
results to the user via a further set of arguments. This form of call therefore requires only
one network round-trip. The disadvantage is that it is limited to the number of inputs
and returns that it can cope with (this is based round the PL/SQL V1.0 limitations).

Note: Use this procedure call when the formula_id for the formula to
execute is known. Another procedure call (run_name_formula - see
below) is used where only the name is known.

Table of parameters to run_id_formula

Parameter Name Data Type Comments

p_formula_id number Formula_id to execute

p_effective_date date Effective execution date

p_input_name01 . . . 10 varchar2 input name 01 . . . 10

p_input_value01 . . . 10 varchar2 input value 01 . . . 10

p_context_name01 . . . 14 varchar2 context name 01 . . . 14

p_context_value01 . . . 14 varchar2 context value 01 . . . 14

p_return_name01 . . . 10 varchar2 return name 01 . . . 10

p_return_value01 . . . 10 varchar2 return value 01 . . . 10

Procedure : run_name_formula
This call initializes the execution engine for a specific formula, then runs the formula
taking the input and context arguments specified. Finally it returns the appropriate
results to the user via a further set of arguments. This form of call therefore requires only
one network round-trip. The disadvantage is that it is limited to the number of inputs
and returns that it can cope with (this is based round the PL/SQL V1.0 limitations).

Note: Use this procedure call when you know the name and type for
the formula to execute. Use the run_id_formula call (see above) when
only the id is known.

Implementation Guide 4-149

Table of parameters to run_name_formula

Parameter Name Data Type Comments

p_formula_type_
name

number Formula type

p_formula_name varchar2 Name of formula
to execute

p_effective_date date Effective
execution date

p_input_name01
. . . 10

varchar2 input name 01
. . . 10

p_input_value01
. . . 10

varchar2 input value 01
. . . 10

p_context_
name01 . . . 14

varchar2 context name 01
. . . 14

p_context_
value01 . . . 14

varchar2 context value 01
. . . 14

p_return_name01
. . . 10

varchar2 return name 01
. . . 10

p_return_value01
. . . 10

varchar2 return value 01
. . . 10

Logging Options
Sometimes things may go wrong when attempting to execute formulas via the PL/SQL
engine. In many cases, the error messages raised will make it obvious where the problem
is. However, there are cases where some more information is needed.

You can set the execution engine to output logging information. This section explains
how to activate and use the logging options

Note: The logging output makes use of the standard Oracle HR trace
feature.

Enabling Logging Options
You set logging options for the execution engine by calling the ff_utils.set_debug
procedure. This procedure has the definition:

procedure set_debug
(
p_debug_level in binary_integer

);

Since the numeric values for the options are power of two values, each represented by a
constant, the appropriate values are added together.

For instance, to set the routing and dbi cache debug options (see below) use the following
call (from SQLPLUS).

SQL> execute ff_utils.set_debug(9)

4-150 Oracle Human Resources Management System Implementation Guide (US)

The value 9 is (1 + 8).

If preferred, you can use the constants that have been defined. For example:

SQL> execute ff_utils.set_debug(ff_utils.ROUTING +
ff_exec.DBI_CACHE_DBG)

FF_DEBUG Prole Option
If the execution engine is being called from a form, you can enable logging options using
the FF_DEBUG profile option.

You use a series of characters to indicate which logging options you want to set. You
must specify X, as this enables user exit logging. For example, if you set the profile
option to XDR, you initiate the database item cache and routing information.

The full list of characters you can specify is as follows (see Summary of Available
Information for a description of each logging option).

Table of Values for FF_DEBUG Prole Option

Character Equivalent to . . .

R ff_utils.ROUTING

F ff_exec.FF_DBG

C ff_exec.FF_CACHE_DBG

D ff_exec.DBI_CACHE_DBG

M ff_exec.MRU_DBG

I ff_exec.IO_TABLE_DBG

Summary Of Available Information
What follows is a brief discussion of each logging option, with its symbolic and
equivalent binary value used to set it.

Note: To interpret the output of many of these options, you require
some familiarity with the workings of the execution engine code.

ff_utils.ROUTING : 1
Routing. Outputs information about the functions and procedures that are accessed
during an execution engine run. An example of the visible output would be:

• In : run_formula

• Out : run_formula

ff_exec.FF_DBG : 2
This debug level, although defined in the header, is not currently used.

ff_exec.FF_CACHE_DBG : 4
Formula Cache Debug. Displays information about the currently executing
formula, including its data item usage rows.

ff_exec.DBI_CACHE_DBG: 8
Database Item Cache Debug. Displays information about those items held in the
database item cache. These items are not constrained to a particular formula.

Implementation Guide 4-151

ff_exec.MRU_DBG : 16
Most Recently Used Formula chain. Displays information about those formulas
currently held in the MRU chain. The information displayed includes the table
index, formula_id, sticky flag and formula name.

ff_exec.IO_TABLE_DBG : 32
Input and Output Table Debug. Shows information about items currently held in the
input and output tables. This includes both information set by the user and the formula
engine.

How Should the Options Be Used?
Only general advice can be given, since there is no way of predicting what the problem
may be. Some hints are:

ROUTING is useful only for those who understand the code. Tracing the procedures may
illuminate a problem - perhaps an error is being raised and it is not obvious where from.

FF_CACHE_DBG will confirm what basic formula information is held by the execution
engine. This is useful to see if it looks as you expect.

IO_TABLE_DBG will confirm what is really being passed to and from a formula.

Flexelds

Validation of Flexeld Values
Oracle Self Service HR, Web ADI and some forms use the HRMS APIs to record data
in the database. Custom programs at your site, such as data upload programs, may
also use the APIs.

From Release 11i (and R11.0 Patch Set D), the APIs validate flexfield values using value
sets (in the same way as the professional Forms user interface). This provides the
benefit that value set definitions only need to be implemented and maintained in one
location. In previous releases, the APIs validated flexfield values using PL/SQL callouts
to Skeleton Flexfield Validation server-side packages. These packages are no longer used.

This essay explains how to solve some problems you may encounter when the APIs use
flexfield value sets. These problems occur when the value sets refer to objects that are not
automatically available to API validation.

In summary, problems may occur when value sets refer to:

• User profile options

• Form block.field items

• A row in the FND_SESSIONS database table

Problems may also be caused by:

• Incomplete context field value lists

The rest of this essay explains these issues in more detail with recommended
solutions. For all of these solutions, the changes are not apparent to end users and it is
not necessary to change where the data is physically held in the database.

4-152 Oracle Human Resources Management System Implementation Guide (US)

Referencing User Prole Options
Referencing profile options in value sets does not cause a problem in the Professional
Forms UI or Self Service HR. When a user logs on to these interfaces, the profiles are
available, defined at site, application, responsibility, or user level.

However, when the APIs are executed directly in a SQL*Plus database session, there is
no application log-on. If the profile is not defined at site level, its value will be null. Even
if the profile is defined at site level, this may not give the appropriate values. For
example, the PER_BUSINESS_GROUP_ID profile is defined at site level with a value
of zero, for the Setup Business Group. If you do not use the Setup Business Group, the
flexfield validation finds no rows and all data values are rejected as invalid.

Recommended Solution
Ensure any profiles you reference in value sets are set to the appropriate values before
the flexfield validation is performed. You can do this using API user hooks. The
following example uses the PER_BUSINESS_GROUP_ID profile.

Using API User Hooks to Set Business Group ID

hr_401.gif

Define a Before Process user hook call to set the PER_BUSINESS_GROUP_ID
profile. Where the API user hook provides a mandatory p_business_group_id
parameter, the profile can be set directly from this parameter value. Otherwise first
derive the business_group_id value from the database tables using the API’s mandatory
primary key parameter value.

The PER_BUSINESS_GROUP_ID profile must only be populated when it is undefined
or set to zero. If the profile is defined with a non-zero value then it should not be
changed. This is to ensure there is no impact on the Professional UI and Self Service HR.

The Before Process user hook package should also remember when it has actually set the
PER_BUSINESS_GROUP_ID profile. This can be done with a package global variable.

The second part of the solution is to define an After Process user hook to reset the
PER_BUSINESS_GROUP_ID profile back to its original zero or null value. This is only
necessary when the Before Process actually changed the value. This is to ensure the
profile will be populated with the correct value when the API is called a second time.

For further information on using API user hooks, see the "APIs in Oracle HRMS", page
4-164 essay.

Alternative Solution
If you have only one program experiencing this problem, you could modify the
program to set the PER_BUSINESS_GROUP_ID profile immediately before each API
call. However, if you introduce any other programs in the future calling the same
API, you would have to remember to set the PER_BUSINESS_GROUP_ID profile in
these programs too.

Referencing Form block.eld Items
If a value set references Form block.field items, an error is raised when the API
executes the flexfield validation because the Form item values cannot be resolved on
the server-side. This problem affects Oracle Self Service HR and any custom code that
calls the API.

Implementation Guide 4-153

Recommended Solution
There are three parts to this solution:

1. Modify the value sets so all block.item references are changed to custom profile
names. These profiles do not have to be defined within the Oracle Applications data
dictionary because profiles can be created and set dynamically at run-time.

2. To ensure the modified value sets work, the profiles must be populated before the
APIs execute the flexfield validation. As with the PER_BUSINESS_GROUP_ID
profile problem, this requires an API Before Process user hook to populate the
profile values. Some of the required values will not be immediately available from
the user hook package parameters. However any missing values can be derived
from the HRMS tables.

3. To ensure the flexfield validation continues to work in the Professional UI, the profile
values need to be populated before the flexfield pop-up window is displayed. This
can be done using the CUSTOM library. For the specific Forms when certain events
occur, read the Form items to populate the custom profiles.

Important: There may be some instances in the Self Service screens
where it is not possible to display these flexfield values. This is because
there is no Web page equivalent to the Forms’ CUSTOM library to
ensure the custom profiles are correctly populated. This will not be
resolved until a future Release.

Alternative Solution
Another method would be to extend the value set Where clauses to obtain the required
values from the database. This may require joins to additional database tables. This
removes the need to reference Form block.field items. However, this solution is only
suitable where values can be obtained from records already in the database. Attempting
to reference columns on the record being processed by the current API call will
fail. During an insert operation those values will not be available from the database table
when the flexfield validation executes. During an update operation the pre-update
values will be obtained.

Referencing FND_SESSIONS Row
The FND_SESSIONS database table is used to obtain the current user’s DateTrack
effective date. This table is only maintained by the Professional UI. The APIs and Self
Service modules do not insert or update any rows in this table. So when the value set is
executed from these modules, the join fails to find any rows.

Recommended Solution
Using an API Before Process user hook, if a row does not already exist in the
FND_SESSIONS table for this database session, then insert one. The EFFECTIVE_DATE
column should be set from the p_effective_date parameter made available at the user
hook. It is important to ensure the EFFECTIVE_DATE column is set to a date value with
no time component, that is, trunc(<date>). Otherwise some join conditions will still fail
to find valid table rows.

When the API Before Process user hook has inserted a row into FND_SESSIONS, the
After Process user hook should delete it. This ensures that when a second call to the same
API is made, the FND_SESSIONS.EFFECTIVE_DATE column is set to the correct value.

If performance is a concern for batch uploading of data, it may be more efficient for the
batch upload program to insert the FND_SESSIONS row before the first API call. That

4-154 Oracle Human Resources Management System Implementation Guide (US)

will only be acceptable if the set of records will be processed with the same effective
date. The API user hooks will still need to be defined to ensure that other programs
and interfaces work as required.

Alternative Solution
Another method would be to follow the same approach as the referencing Form
block.field items solution. Instead of the value set using the FND_SESSIONS table to
obtain the effective date, it could use a custom profile. This avoids the insert and delete
DML steps. However, there is an impact on the Professional UI so the CUSTOM library
will need to be changed to set the profile value.

Incomplete Context Field Value Lists
Using the APIs, you might see the following error if a flexfield’s reference value does not
appear in the flexfield Context Field Values list:

ORA-20001: Column ATTRIBUTE_CATEGORY, also known as CONTEXT, cannot have
value X.

Suppose a flexfield uses the business_group_id as the reference field. When the API
is called, the p_attribute_category parameter should be set to the business_group_id
value. When the API validates the Flexfield Context Field (ATTRIBUTE_CATEGORY), it
checks whether the business_group_id being used exists in the Flexfield Context Field
Values list. If not, the API raises an error.

Recommended Solution
Ensure that the flexfield Context Field Values lists contain all possible values.

Alternative Solution
In some flexfield structures, there are some contexts where only the global data
elements apply (there are no context-specific segments). You might consider setting
the p_attribute_category parameter to null for these context values. This avoids the
need to list these context values in the Context Field Values list. However, this is not
recommended because it may cause other data errors to go undetected. For example, if
the context field is set to null when a more specific value should be used, any mandatory
segment validation associated with that other value will not be executed.

Security

Extending Security in Oracle HRMS
Oracle Human Resources provides a flexible approach to controlling access to
tables, records, fields, forms, and functions. You can match each employee’s level of
access to their responsibilities.

For a discussion of security in Oracle HRMS and how to set it up to meet your
requirements, refer to the help topics on Security, Oracle HRMS Configuring, Reporting,
and System Administration Guide, and to the implementation steps for Defining User
Security, page 3-111

This essay does not repeat the definitions and description in the setup steps and
security chapter. It builds on that information to describe the objects and processes that
implement the security system. Read this essay if you need to:

• Add custom tables to the standard security system

• Integrate your own security system with the supplied mechanisms

Implementation Guide 4-155

Security Proles
All Oracle Applications users access the system through a responsibility that is linked to
a security group and a security profile. The security group determines which business
group the user can access. The security profile determines which records (related to
organizations, positions and payrolls) the user can access within the business group.

There are two types of security profile:

• Unrestricted

• Restricted

A responsibility with an unrestricted security profile has unrestricted access to data
in Oracle HRMS tables. It connects to the APPS Oracle User. If you connect to an
unrestricted security profile, the data you see when you select from a secure view is the
same data you see if you select from the table on which the secure view is based.

When you connect to the APPS Oracle User with a restricted security profile you can
access the secure tables directly if you want to bypass the security restrictions defined
in your security profile. You might want to do this to perform uniqueness checks, or
to resolve foreign keys.

Restricted security profiles can optionally make use of read-only, or reporting
users. These are separate Oracle Users, one per restricted security profile, that have
read-only access to Oracle tables and views. Reporting users do not have execute
privilege on Oracle HRMS PL/SQL packages, and do not have direct access to the
secured Oracle HRMS tables.

Restricted security profiles may restrict access to the following entities (the exact
restrictions are determined by the definition of the security profiles):

• Organizations

• People

• Assignments

• Positions

• Vacancies

• Payrolls

All other entities are unrestricted; that is, restricted security profiles can access all records
of tables, views and sequences associated with these entities.

Secure Tables and Views
The following Oracle HRMS tables are secured:

• HR_ALL_ORGANIZATION_UNITS

• PER_ALL_POSITIONS

• HR_ALL_POSITIONS_F

• PER_ALL_VACANCIES

• PER_ALL_PEOPLE_F

• PER_ALL_ASSIGNMENTS_F

• PAY_ALL_PAYROLLS_F

4-156 Oracle Human Resources Management System Implementation Guide (US)

Some of these tables (namely PER_ALL_PEOPLE_F, PER_ALL_ASSIGNMENTS_F, HR_
ALL_POSITIONS_F, and PAY_ALL_PAYROLLS_F) are datetracked. The following table
details the views that are based on the secured tables listed above.

Table of Secure Tables and Views

Table or View Description

HR_ORGANIZATION_UNITS Secure view of Organization table

HR_ALL_ORGANIZATION_UNITS Organization table

PER_ORGANIZATION_UNITS Secure view of Organization view (HR Orgs
only)

PER_ALL_ORGANIZATION_UNITS Unsecured view of Organization view (HR
Orgs only)

HR_ALL_POSITIONS Unrestricted view of datetracked Positions
table, effective at session date

HR_ALL_POSITIONS_F Datetracked Positions table

HR_POSITIONS Secure view of datetracked Positions
table, effective at session date

HR_POSITIONS_F Secure view of datetracked Positions table

HR_POSITIONS_X Secure view of datetracked Positions
table, effective at system date

PER_POSITIONS Secure view of non-datetracked Positions table

PER_ALL_POSITIONS Non-datetracked Positions table

PER_VACANCIES Secure view of Vacancies table

PER_ALL_VACANCIES Vacancies table

PER_ASSIGNMENTS Secure view of Assignments table, effective at
session date

PER_ASSIGNMENTS_F Secure view of Assignments table

PER_ASSIGNMENTS_X Secure view of Assignments table, effective at
system date

PER_ALL_ASSIGNMENTS Unrestricted view of Assignments table,
effective at session date

PER_ALL_ASSIGNMENTS_F Assignments table

PER_PEOPLE Secure view of Person table, effective at session
date

PER_PEOPLE_F Secure view of Person table

PER_PEOPLE_X Secure view of Person table, effective at system
date

PER_ALL_PEOPLE Unrestricted view of Person table, effective at
session date

Implementation Guide 4-157

Table or View Description

PER_ALL_PEOPLE_F Person table

PAY_PAYROLLS Secure view of Payrolls table, effective at
session date

PAY_PAYROLLS_F Secure view of Payrolls table

PAY_PAYROLLS_X Secure view of Payrolls table, effective at system
date

PAY_ALL_PAYROLLS Unrestricted view of Payrolls table, effective at
session date

PAY_ALL_PAYROLLS_F Payrolls table

Accessing Oracle HRMS Data Through Restricted Security Proles
When you connect to the APPS Oracle User you can access all Oracle HRMS database
objects without having to perform any additional setup.

This is not the case for reporting users: two conditions must be met to enable reporting
users to access Oracle HRMS tables and views:

• A public synonym must exist for each table and view. Public synonyms have the
same name as the tables and views to which they point. They are created during
installation of Oracle HRMS.

• The reporting user must have been granted permissions to access the tables and
views by the SECGEN process. Reporting users are granted SELECT permission
only. See below for more information about SECGEN.

How Secure Views Work
The information that is visible through a secure view depends on the definition of the
security profile through which the view is being accessed.

If you have connected with a restricted security profile the information you can see is
derived from denormalized lists of organizations, positions, people and payrolls.

The lists are used only when required. For example, the payroll list is empty for a
security profile that can see all payrolls, and in the case of a security profile that can
see all applicants but a restricted set of employees, the Person list contains employees
but no applicants.

If the HR:Cross Business Groups profile option is ’N’, the secure views return data only
for the current business group.

If the HR:Cross Business Groups profile option is ’Y’, the secure views return data for all
business groups, subject to any further restrictions that apply by virtue of the current
security profile.

Here is the text of the HR_ORGANIZATION_UNITS secure view:

4-158 Oracle Human Resources Management System Implementation Guide (US)

SELECT HAO.ORGANIZATION_ID, HAOTL.NAME
FROM HR_ALL_ORGANIZATION_UNITS HAO,
HR_ALL_ORGANIZATION_UNITS_TL HAOTL

WHERE DECODE(HR_SECURITY.VIEW_ALL, ’Y’, ’TRUE’,
HR_SECURITY.SHOW_RECORD
(’HR_ALL_ORGANIZATION_UNITS’,HAOTL.ORGANIZATION_ID))=’TRUE’
AND DECODE(HR_GENERAL.GET_XBG_PROFILE,
’Y’, HAO.BUSINESS_GROUP_ID,
HR_GENERAL.GET_BUSINESS_GROUP_ID_ = HAO.BUSINESS_GROUP_ID
AND HAO.ORGANIZATION_ID = HAOTL.ORGANIZATION_ID
AND HAOTL.LANGUAGE = USERENV(’LANG’)

Most HR security logic is encapsulated in a PL/SQL package, HR_SECURITY.

HR_SECURITY.VIEW_ALL returns the value of the VIEW_ALL_FLAG for the current
security profile.

HR_SECURITY.SHOW_RECORD is called if the current security profile is a restricted
security profile. It validates whether the row in question is visible through the current
security profile.

HR_GENERAL.GET_XBG_PROFILE returns the value of the HR:Cross Business Group
profile option.

HR_GENERAL.GET_BUSINESS_GROUP_ID returns the current business group ID. The
HR: Business Group profile option supplies this ID.

Security Context
The HR security context contains values for all the attributes of the current security
profiles. It is implemented using PL/SQL globals. The current security profile is derived
as follows:

1. If you have logged onto Oracle Applications using the Oracle Applications
sign-on screen, your security context is automatically set as part of the Oracle
Applications sign-on procedure. Your current security_profile_id is derived from the
responsibility and security group you select during sign-on.

2. If you have connected to an HR reporting user your current security_profile_id is
taken from the PER_SECURITY_PROFILES table, where REPORTING_ORACLE_
USERNAME matches the name of the Oracle User to which you have connected.

3. If it is not possible to derive a security_profile_id by either of the above two
methods, the system looks for the default view-all security profile created for the
business group. This gives you unrestricted access to the business group. If it cannot
find this, the current security_profile_id is set to null, which prevents you from
accessing any records.

So, if you connect directly to the APPS Oracle User through SQL*Plus, you will have
unrestricted access to the HRMS tables. But if you connect to an HR reporting user, your
access is restricted according to the definition of your security profile.

You can simulate the security context for an Oracle Applications session by
calling FND_GLOBAL.APPS_INITIALIZE (user_id, resp_id, resp_appl_id, and
security_group_id), passing the IDs of the user, responsibility, application, and security
group for the sign-on session you want to simulate. The security_group_id is defaulted
to zero (that is, the setup business group).

Note: FND_GLOBAL is not accessible from HR reporting users.

Implementation Guide 4-159

Security Lists
The security profile list tables contain denormalized lists of people, positions,
organizations and payrolls.

Security profile lists are intersection tables between a security profile and secured
tables, as follows:

Security List Table Name Columns

PER_PERSON_LIST SECURITY_PROFILE_ID, PERSON_ID

PER_POSITION_LIST SECURITY_PROFILE_ID, POSITION_ID

PER_ORGANIZATION_LIST SECURITY_PROFILE_ID, ORGANIZATION_
ID

PAY_PAYROLL_LIST SECURITY_PROFILE_ID, PAYROLL_ID

PER_PERSON_LIST_CHANGES SECURITY_PROFILE_ID, PERSON_ID

These tables are periodically refreshed by the Security List Maintenance process
(PERSLM). They are also written to when some relevant business processes are
performed through Oracle HR, for example, employee hire or transfer.

If people are being secured via the supervisor hierarchy and organizations, positions and
payrolls are not secured, the security list tables mentioned above are not used, and the
Security List Maintenance process need not be run. The list of visible people is derived
dynamically based on the current user.

If, however, supervisor security is being used in conjunction with organization and/or
position and/or payroll security, you must run the Security List Maintenance process
periodically to refresh the security list tables. The list of visible people is derived
dynamically based on the current user, and is a subset of the people that are visible
via the PER_PERSON_LIST table.

Security Processes
Three processes are used to implement Oracle HRMS security:

• Grant Secure Role Permission (ROLEGEN)

• Generate Secure User (SECGEN)

• Security List Maintenance (PERSLM)

ROLEGEN runs automatically as part of an installation or upgrade. If you are not setting
up reporting users, you need not run SECGEN.

Refer to the topic on Security Processes, Oracle HRMS Configuring, Reporting, and System
Administration Guide for details of how to submit SECGEN and PERSLM from the Submit
Requests window. This section describes how the processes work.

ROLEGEN: Grant Secure Role Permission Process
A role is a set of permissions that can be granted to Oracle users or to other roles. Roles
are granted to users by the SECGEN process (see below).

The ROLEGEN process must run before you run SECGEN. ROLEGEN
dynamically grants select permissions on Oracle HRMS tables and views to the
HR_REPORTING_USER role. This role must exist before ROLEGEN runs.

4-160 Oracle Human Resources Management System Implementation Guide (US)

The HR_REPORTING_USER role is created during the install of Oracle
HRMS. ROLEGEN is run during the install of Oracle HRMS.

Note: As ROLEGEN runs as part of the installation and upgrade
processes, you do not need to run ROLEGEN manually.

ROLEGEN performs the following actions:

• Creates public synonyms for HRMS tables and views, excluding unsecured tables
(%_ALL_%)

• Revokes all existing permissions from HR_REPORTING_USER roles

• Grants SELECT permissions to HR_REPORTING_USER role for HRMS tables and
views

SECGEN - Generate Secure User Process
You run SECGEN for a specified security profile. It grants the HR_REPORTING_USER
role to the Oracle User associated with the security profile.

SECGEN must be run after ROLEGEN. However, once SECGEN has been run for a
particular security profile, you need not rerun it even if ROLEGEN is run again.

SECGEN is a PRO*C process with embedded SQL statements. You initiate it from the
Submit Requests window.

PERSLM - Security List Maintenance Process
You should run PERSLM periodically (for example, nightly) to refresh the security lists
upon which the secure views are built.

Important: This process has the capability to run multi-threaded,
allowing it to take advantage of the capabilities of your hardware. To
take full advantage of this feature, you need to perform a number
of additional setup steps. Details of these are available in the Oracle
HRMS & Benefits Tuning & System Health Check - Release 11i, available on
Metalink (Note 226987.1).

PERSLM is a PL/SQL procedure that you submit from the Submit Requests window. It
builds the required security lists based on the restrictions defined for the security
profiles being processed.

For each security profile within the scope specified when the process is
submitted, PERSLM performs the following steps:

1. If the View All flag is Y, the process ends leaving all security lists empty for the
specified security profile.

2. Builds a payroll list.

If the View All Payrolls flag is Y, the process leaves the payroll list empty. If the View
All Payrolls flag is N, the process checks the Include Payroll flag. If this flag is Y, the
process makes a list of all payrolls in the pay_security_payrolls list. If the flag is
N, the process makes a list of all payrolls except those in the pay_security_payrolls
list. The pay_security_payrolls list is populated when you enter payrolls on the
Define Security Profile screen.

3. Builds an organization list.

Implementation Guide 4-161

If the View All Organizations flag is Y, the process leaves the organization list
empty. If this flag is N, the process builds a list of all organizations below the top
one you specified for the organization hierarchy you chose on the Define Security
Profile screen. The process uses the version of the hierarchy that is effective on
the date passed to PERSLM. If the Include Top Organization flag is Y, the top
organization you specified is included in the list. Any organizations specifically
listed in the Define Security Profile window are included or excluded as specified. If
the Exclude Business Group flag is N, the business group is included in the list to
allow newly entered employees and applicants to be visible before they are assigned
to an organization.

4. Builds a position list.

If the View All Positions flag is Y, the process builds a list of all positions within the
organizations on the organization list. If this flag is N, the process builds a list of
all positions below the top one you specified for the position hierarchy you chose
on the Define Security Profile screen. The process uses the version of the hierarchy
that is effective on the date passed to PERSLM. If the Include Top Position flag is
Y, the top position you specified is included in the list. The list of positions is built
up for all organizations on the organization list, or for all organizations if the View
All Organizations flag is Y.

5. Builds a person list.

The process creates person list information for all people within the specified
scope, including terminated employees, applicants, and contingent workers. The
process uses the assignment data effective on the date passed to PERSLM to
determine eligibility for current employees, applicants, and contingent workers. For
terminated employees, applicants, and contingent workers, the process identifies the
maximum effective end date for any assignment defined for the person, and uses the
assignment data effective on this date to determine eligibility.

The system processes future-dated hires, placements, or applicants using the date
when the assignment becomes effective.

Note: If the process is running for a terminated person with a
future-dated hire or placement, the system uses the future-dated
assignment information to determine eligibility. If a terminated
employee or contingent worker is also a current or future
applicant, the system determines eligibility using both the
terminated assignment data and the current or future assignment
data.

The mechanism used to generate the person list depends on the value selected for
the "Generate For" parameter selected at the time PERSLM was submitted:

• One Named Security Profile

The process generates the list of people visible to the security profile identified
by the Security Profile parameter. This process runs single-threaded.

For the named profile, PERSLM determines what security restrictions have been
entered and dynamically builds a SQL statement to identify all the people who
match the restriction criteria as follows:

• If the View Employee field is Restricted then process all Employee
assignments. If the View Employee field is either None or All then no data

4-162 Oracle Human Resources Management System Implementation Guide (US)

for employees is written to the person list table and access is controlled
within the secure view.

• If the View Contingent Worker field is Restricted then process all Contingent
Worker assignments. If the View Contingent Worker field is either None or
All then no data for contingent workers is written to the person list table and
access is controlled within the secure view.

• If the View Applicant field is Restricted then process all Applicant
assignments provided that the Applicant is not also an Employee or
Contingent Worker, in which case access is granted based on their Employee
or Contingent Worker assignment. If the View Applicant field is either None
or All then no data for applicants is written to the person list table and access
is controlled within the secure view.

• If the Organization Security Type is "Secure by Organization
Hierarchy and/or Organization List" then PERSLM restricts access to
Employees, Applicants and Contingent Workers with a current assignment
to organizations in the organization list.

• If the View All Positions flag is N, then PERSLM restricts access to
Employees, Applicants and Contingent Workers with a current assignment
to positions in the position list. PERSLM includes people who are not
currently assigned to a position.

• If the View All Payrolls flag is N, then PERSLM restricts access to Employees
and Applicants with a current assignment to payrolls in the payroll list.

• If the Custom Restriction flag is Y, then PERSLM restricts access to
Employees, Applicants and Contingent Workers using the conditions
defined within the custom restriction.

If a security profile contains multiple restrictions then data is only written to
the person list table for people who satisfy all the restrictions defined.

• All Security Profiles, All Global Security Profiles, All Security Profiles in
One Named Business Group

The process generates the list of people visible to the security profiles within
the scope of the option selected. For example, if the "All Global Security
Profiles" option is selected, the person list information is regenerated for
all global security profiles but for no business group-specific profiles. This
process is implemented using the Oracle Payroll Archiver process, allowing it
to run multi-threaded if your system has been configured correctly. See the
Oracle HRMS & Benefits Tuning & System Health Check - Release 11i, available
on Metalink (Note 226987.1), for information on configuring your system to
run multi-threaded processes.

When generating security lists for one of these options, all people in the system
are checked and processed for eligibility. (If you elect to generate list information
for security profiles in a single named business group, then only people defined
within that business group are processed. For the other two options all people
within the database are processed.)

The individual assignments for people requiring processing are examined
to determine which security profiles can access them. Based on the
Organization, Position, and Payroll data present on the assignment the set of
security profiles that can see the assignment is determined using the restrictions

Implementation Guide 4-163

defined on each security profile within scope and Organization, Position and
Payroll list information previously generated for those security profiles. In
addition, any custom restriction for each of the profiles is evaluated to ensure
that the assignment and person comply with any criteria entered.

6. Adds person list changes.

PERSLM adds a person to the person list if an entry exists in the
PER_PERSON_LIST_CHANGES table, there is no current period of service, and
there is no current application for the person. It only adds people if they are not
already in the list.

7. Contacts (Persons with system person type ’OTHER’)

Some security profiles restrict a user’s access to contacts. If this is the case, the
process generates access to the contacts who are related to the current and
terminated employees, applicants, and contingent workers within the user’s security
profile. The process also allows access to contacts who are unrelated to any person
within the system. The process uses the PER_CONTACT_RELATIONSHIPS table
to determine a contact’s relationships.

Securing Custom Tables
If you have created your own custom tables, perform the following steps to make them
accessible to reporting users:

1. Create table.

Select a table name that does not conflict with any tables or views that might exist
in Oracle Applications.

Do not use two or three character prefixes such as HR, PER, PAY, FF, DT, SSP, GHR,
BEN, OTA, HXT, EDW, HRI, HXC, PQH, PQP or IRC.

2. Grant select access on the table to HR_REPORTING_USER role, from the user that
owns the custom table.

GRANT SELECT ON custom_table TO hr_reporting_user;

You must repeat this step every time you perform an installation or
upgrade. However, you do not need to rerun SECGEN as existing reporting users
that have already been granted access to the HR_REPORTING_USER role will
automatically receive any new permissions added to the role.

3. Create a synonym to the table.

If you use public synonyms, remember that the Oracle user from which you create
the public synonym must have CREATE PUBLIC SYNONYM system privilege.

CREATE PUBLIC SYNONYM custom_table
FOR base_table_account.custom_table;

APIs

APIs in Oracle HRMS
An Application Programmatic Interface (API) is a logical grouping of external process
routines. The Oracle HRMS strategy delivers a set of PL/SQL packaged procedures and

4-164 Oracle Human Resources Management System Implementation Guide (US)

functions that together provide an open interface to the database. For convenience we
have called each of these packaged procedures an API.

This document provides all the technical information you need to be able to use these
APIs and covers the following topics:

• API Overview, page 4-166

Describes how you can use the Oracle HRMS APIs and the advantages of this
approach.

• Understanding the Object Version Number (OVN), page 4-167

Explains the role of the object version number. The APIs use it to check whether a
row has been updated by another user, to prevent overwriting their changes.

• API Parameters, page 4-169

Explains where to find information about the parameters used in each API;
parameter naming conventions; the importance of naming parameters in the API
call instead of relying on parameter list order; and how to use default values to
avoid specifying all parameters. Also explains the operation of certain control
parameters, such as those controlling DateTrack operations.

• API Features, page 4-182

Explains that commits are handled by the calling program, not the APIs, and the
advantages of this approach. Also explains how to avoid deadlocks when calling
more than one API in the same commit unit.

• Flexfields with APIs, page 4-183

Describes how the APIs validate key flexfield and descriptive flexfield values.

• Multilingual Support, page 4-184

Explains how to use the Multilingual Support APIs.

• Alternative APIs, page 4-185

Explains that we provide legislation-specific APIs for some business processes, such
as Create Address.

• API Errors and Warnings, page 4-186

Explains how the APIs raise errors and warnings, and how the calling code can
handle them. A message table is provided for handling errors in batch processes.

• Example PL/SQL Batch Program, page 4-188

Shows how to load a batch of person address data and how to handle validation
errors.

• WHO Columns and Oracle Alert, page 4-190

Explains how to populate the WHO columns (which record the Applications user
who caused the database row to be created or updated) when you use the APIs.

• API User Hooks, page 4-191

A user hook is a location where you can add processing logic or validation to an
API. There are hooks in the APIs for adding validation associated with a particular
business process. There are also hooks in table-level modules for validation on

Implementation Guide 4-165

specific data items. This section explains where user hooks are available and how to
implement them. It also explains their advantages over database triggers.

• Using APIs as Building Blocks, page 4-208

Explains how you can write your own APIs that call one or more of the supplied
APIs.

• Handling Object Version Numbers in Oracle Forms, page 4-209

Explains how to implement additional Forms logic to manage the object version
number if you write your own forms that call the APIs.

API Overview
Fundamental to the design of all APIs in Oracle HRMS is that they should provide
an insulating layer between the user and the data-model that would simplify all
data-manipulation tasks and would protect customer extensions on upgrade. They
are parameterized and executable PL/SQL packages that provide full data validation
and manipulation.

The API layer enables us to capture and execute business rules within the database - not
just in the user interface layer. This layer supports the use of alternative interfaces to
HRMS, such as web pages or spreadsheets, and guarantees all transactions comply
with the business rules that have been implemented in the system. It also simplifies
integration of Oracle HRMS with other systems or processes and provides supports for
the initial loading

Alternative User Interfaces
The supported APIs can be used as an alternative data entry point into Oracle
HRMS. Instead of manually typing in new information or altering existing data using
the online forms, you can implement other programs to perform similar operations.

These other programs do not modify data directly in the database. They call the APIs
which:

1. Ensure it is appropriate to allow that particular business operation

2. Validate the data passed to the API

3. Insert/update/delete data in the HR schema

APIs are implemented on the server-side and can be used in many ways. For example:

• Customers who want to upload data from an existing system. Instead of employing
temporary data entry clerks to type in data, a program could be written to extract
data from the existing system and then transfer the data into Oracle HRMS by
calling the APIs.

• Customers who purchase a number of applications from different vendors to build a
complete solution. In an integrated environment a change in one application may
require changes to data in another. Instead of users having to remember to go into
each application repeating the change, the update to the HRMS applications could
be applied electronically. Modifications can be made in batches or immediately
on an individual basis.

• Customers who want to build a custom version of the standard forms supplied with
Oracle HRMS. An alternative version of one or more forms could be implemented
using the APIs to manage all database transactions.

4-166 Oracle Human Resources Management System Implementation Guide (US)

• Customers who want to develop web-based interfaces to allow occasional users to
access and maintain HR information without the cost of deploying or supporting
standard Oracle HRMS forms. This is the basis of most Self-Service functions that
allow employees to query and update their own information, such as change of
name, address, marital status. This also applies to managers who want to query or
maintain details for the employees they manage.

• Managers who are more familiar with spreadsheet applications may want to export
and manipulate data without even being connected to the database and then upload
modifications to the HRMS database when reconnected.

In all these examples, the programs would not need to modify data directly in the Oracle
HRMS database tables. The specific programs would call one or more APIs and these
would ensure that invalid data is not written to the Oracle HRMS database and that
existing data is not corrupted.

Advantages of Using APIs
Why use APIs instead of directly modifying data in the database tables?

Oracle does not support any direct manipulation of the data in any application using
PL/SQL. APIs provide you with many advantages:

• APIs enable you to maintain HR and Payroll information without using Oracle forms.

• APIs insulate you from the need to fully understand every feature of the database
structure. They manage all the inter-table relationships and updates.

• APIs are guaranteed to maintain the integrity of the database. When
necessary, database row level locks are used to ensure consistency between different
tables. Invalid data cannot be entered into the system and existing data is protected
from incorrect alterations.

• APIs are guaranteed to apply all parts of a business process to the database. When
an API is called, either the whole transaction is successful and all the individual
database changes are applied, or the complete transaction fails and the database is
left in the starting valid state, as if the API had not been called.

• APIs do not make these changes permanent by issuing a commit. It is the
responsibility of the calling program to do this. This provides flexibility between
individual record and batch processing. It also ensures that the standard commit
processing carried out by client programs such as Forms is not affected.

• APIs help to protect any customer-specific logic from database structure changes
on upgrade. While we cannot guarantee that any API will not change to support
improvements or extensions of functionality, we are committed to minimize the
number of changes and to provide appropriate notification and documentation
if such changes occur.

Note: Writing programs to call APIs in Oracle HRMS requires
knowledge of PL/SQL version 2. The rest of this essay explains how to
call the APIs and assumes the reader has knowledge of programming
in PL/SQL.

Understanding the Object Version Number (OVN)
Nearly every row in every database table is assigned an object_version_number. When
a new row is inserted, the API usually sets the object version number to 1. Whenever
that row is updated in the database, the object version number is incremented. The row

Implementation Guide 4-167

keeps that object version number until it is next updated or deleted. The number is not
decremented or reset to a previous value.

Note: The object version number is not unique and does not replace the
primary key. There can be many rows in the same table with the same
version number. The object version number indicates the version of a
specific primary key row.

Whenever a database row is transferred (queried) to a client, the existing object version
number is always transferred with the other attributes. If the object is modified by the
client and saved back to the server, then the current server object version number is
compared with the value passed from the client.

• If the two object version number values are the same, then the row on the server is
in the same state as when the attributes were transferred to the client. As no other
changes have occurred, the current change request can continue and the object
version number is incremented.

• If the two values are different, then another user has already changed and committed
the row on the server. The current change request is not allowed to continue because
the modifications the other user made may be overwritten and lost. (Database locks
are used to prevent another user from overwriting uncommitted changes.)

The object version number provides similar validation comparison to the online
system. Forms interactively compare all the field values and displays the "Record has
been modified by another user" error message if any differences are found. Object
version numbers allow transactions to occur across longer periods of time without
holding long term database locks. For example, the client application may save the row
locally, disconnect from the server and reconnect at a later date to save the change to
the database. Additionally, you do not need to check all the values on the client and
the server.

Example
Consider creating a new address for a Person. The create_person_address API
automatically sets the object_version_number to 1 on the new database row. Then, two
separate users query this address at the same time. User A and user B will both see the
same address details with the current object_version_number equal to 1.

User A updates the Town field to a different value and calls the update_person_addressAPI
passing the current object_version_number equal to 1. As this object_version_number
is the same as the value on the database row the update is allowed and the
object_version_number is incremented to 2. The new object_version_number is returned
to user A and the row is committed in the database.

User B, who has details of the original row, notices that first line of the address is
incorrect. User B calls the update_person_address API, passing the new first line and
what he thinks is the current object_version_number (1). The API compares this value
with the current value on the database row (2). As there is a difference the update is not
allowed to continue and an error is returned to user B.

To correct the problem, user B then re-queries this address, seeing the new town and
obtains the object_version_number 2. The first line of the address is updated and the
update_person_address API is called again. As the object_version_number is the same
as the value on the database row the update is allowed to continue.

Therefore both updates have been applied without overwriting the first change.

4-168 Oracle Human Resources Management System Implementation Guide (US)

Understanding the API Control Parameter p_object_version_number
Most published APIs have the p_object_version_number control parameter.

• For create style APIs, this parameter is defined as an OUT and will always be
initialized.

• For update style APIs, the parameter is defined as an IN OUT and is mandatory.

The API ensures that the object version number(s) match the current value(s) in the
database. If the values do not match, the application error HR_7155_OBJECT_LOCKED
is generated. At the end of the API call, if there are no errors the new object version
number is passed out.

For delete style APIs when the object is not DateTracked, it is a mandatory IN
parameter. For delete style APIs when the object is DateTracked, it is a mandatory IN
OUT parameter.

The API ensures that the object version number(s) match the current value(s)
in the database. When the values do not match, the application error
HR_7155_OBJECT_LOCKED is raised. When there are no errors for DateTracked objects
that still list, the new object version number is passed out.

See:

Understanding the p_datetrack_update_mode control parameter, page 4-179

Understanding the p_datetrack_delete_mode control parameter, page 4-180

Handling Object Version Numbers in Oracle Forms, page 4-209

Detecting and Handling Object Conicts
When the row being processed does not have the correct object version number, the
application error HR_7155_OBJECT_LOCKED is raised. This error indicates that a
particular row has been successfully changed and committed since you selected the
information. To ensure that the other changes are not overwritten by mistake, re-select
the information, reapply your changes, and re-submit to the API.

API Parameters
This section describes parameter usage in Oracle HRMS.

Locating Parameter Information
You can find the parameters for each API in one of two ways, either by looking at the
documentation in the package header creation scripts or by using SQL*Plus.

Package Header Creation Scripts
For a description of each API, including a list of IN parameters andOUT parameters, refer
to the documentation in the package header creation scripts.

For core product APIs, which are included in the first version of a main release, scripts
are located in the product TOP admin/sql directories. Refer to filenames such as
*api.pkh. Localization-specific APIs follow a *LLi.pkh naming standard, where LL is
the two letter localization code.

For example, details for all the APIs in the hr_employee_api package can be found in the
$PER_TOP/admin/sql/peempapi.pkh file.

New APIs that were not included in the first version of a main release, or are
localization-specific, may be provided in different operating system directories.

Oracle only supports the APIs listed in the following documentation:

Implementation Guide 4-169

• Publicly Callable Business Process APIs in Oracle HRMS, Oracle HRMS Configuring,
Reporting, and System Administration Guide

• The What’s New in Oracle HRMS topic in the help system. This will list any new
APIs introduced after the first version of a main Release.

These lists are a reduced set of the server side code that matches all of the following
three criteria:

• The database package name ends with "_API".

• The package header creation script filename conforms to the *api.pkh or *LLi.pkh
naming standard, where LL is a two letter localization code.

• The individual API documentation has an "Access" section with a value of "Public".

Many other packages include procedures and functions, which may be called from the
API code itself. Direct calls to any other routines are not supported, unless explicitly
specified, because API validation and logic steps will be bypassed. This may corrupt
the data held within the Oracle HRMS application suite.

Using SQL*Plus to List Parameters
If you simply want a list of PL/SQL parameters, use SQL*Plus. At the SQL*Plus
prompt, use the describe command followed by the database package name, period, and
the name of the API. For example, to list the parameters for the create_grade_rate_value
API, enter the following at the SQL> prompt:

describe hr_grade_api.create_grade_rate_value

Parameter Names
Each API has a number of parameters that may or may not be specified. Most parameters
map onto a database column in the HR schema. There are some control parameters that
affect the processing logic that are not explicitly held on the database.

Every parameter name starts with p_. If the parameter maps onto a database column, the
remaining part of the name is usually the same as the column name. Some names may
be truncated due to the 30 character length limit. The parameter names have been made
slightly different to the actual column name, using a p_ prefix, to avoid coding conflicts
when a parameter and the corresponding database column name are both referenced in
the same section of code.

When a naming conflict occurs between parameters, a three-letter short code (identifying
the database entity) is included in the parameter name. Sometimes there is no physical
name conflict, but the three-letter short code is used to avoid any confusion over the
entity with which the parameter is associated.

For example, create_employee contains examples of both these cases. Part of the
logic to create a new employee is to insert a person record and insert an assignment
record. Both these entities have an object_version_number. The APIs returns both
object_version_number values using two OUT parameters. Both parameters cannot be
called p_object_version_number, so p_per_object_version_number holds the value for
the person record and p_asg_object_version_number holds the value for the assignment
record.

Both these entities can have text comments associated with them. When any comments
are passed into the create_employee API, they are only noted against the person
record. The assignment record comments are left blank.

4-170 Oracle Human Resources Management System Implementation Guide (US)

To avoid any confusion over where the comments have allocated in the database, the
API returns the id using the p_per_comment_id parameter.

Parameter Named Notation
When calling the APIs, it is strongly recommended that you use "Named Notation,"
instead of "Positional Notation." Thus, you should list each parameter name in the call
instead of relying on the parameter list order.

Using "Named Notation" helps protect your code from parameter interface
changes. With future releases, it eases code maintenance when parameters are added or
removed from the API.

For example, consider the following procedure declaration:

procedure change_age
(p_name in varchar2
,p_age in number
;

Calling by ’Named Notation’:

begin
change_age
(p_name => ’Bloggs’
,p_age => 21
);

end;

Calling by ’Positional Notation’:

begin
change_age
(’Bloggs’
,21
);

end;

Using Default Parameter Values
When calling an API it may not be necessary to specify every parameter. Where a
PL/SQL default value has been specified it is optional to specify a value.

If you want to call the APIs from your own forms, then all parameters in the API call
must be specified. You cannot make use of the PL/SQL declared default values because
the way Forms calls server-side PL/SQL does not support this.

Default Parameters with Create Style APIs
For APIs that create new data in the HR schema, optional parameters are usually
identified with a default value of null. After validation has been completed, the
corresponding database columns will be set to null. When calling the API, you must
specify all the parameters that do not have a default value defined.

However, some APIs contain logic to derive some attribute values. When you pass in
the PL/SQL default value the API determines a specific value to set on the database
column. You can still override this API logic by passing in your own value instead of
passing in a null value or not specifying the parameter in the call.

Implementation Guide 4-171

Take care with IN OUT parameters, because you must always include them in the calling
parameter list. As the API can pass values out, you must use a variable to pass values
into this type of parameter.

These variables must be set with your values before calling the API. If you do not want
to specify a value for an IN OUT parameter, use a variable to pass a null value to the
parameter.

Important: Check the comments in each API package header creation
script for details of when each IN OUT parameter can and cannot be
set with a null value.

The create_employee API contains examples of all these different types of parameter.

procedure create_employee
(
...
,p_sex in varchar2
,p_person_type_id in number

default null
...
,p_email_address in varchar2

default null
,p_employee_number in out varchar2
...
,p_person_id out number
,p_assignment_id out number
,p_per_object_version_number out number
,p_asg_object_version_number out number
,p_per_effective_start_date out date
,p_per_effective_end_date out date
,p_full_name out varchar2
,p_per_comment_id out number
,p_assignment_sequence out number
,p_assignment_number out varchar2
,p_name_combination_warning out boolean
,p_assign_payroll_warning out boolean
,p_orig_hire_warning out boolean
);

Because no PL/SQL default value has been defined, the p_sex parameter must be
set. The p_person_type_id parameter can be passed in with the ID of an Employee
person type. If you do not provide a value, or explicitly pass in a null value, the API
sets the database column to the ID of the active default employee system person type for
the business group. The comments in each API package header creation script provide
more information.

The p_email_address parameter does not have to be passed in. If you do not specify
this parameter in your call, a null value is placed on the corresponding database
column. (This is similar to the user of a form leaving a displayed field blank.)

The p_employee_number parameter must be specified in each call. When you do not
want to set the employee number, the variable used in the calling logic must be set to
null. (For the p_employee_number parameter, you must specify a value for the business

4-172 Oracle Human Resources Management System Implementation Guide (US)

group when the method of employee number generation is set to manual. Values are
only passed out when the generation method is automatic or national identifier.)

Example 1
An example call to the create_employee API where the business group method of
employee number generation is manual, the default employee person type is required
and the e-mail attributes do not need to be set.

declare
l_emp_num varchar2(30);
l_person_id number;
l_assignment_id number;
l_per_object_version_number number;
l_asg_object_version_number number;
l_per_effective_start_date date;
l_per_effective_end_date date;
l_full_name varchar2(240);
l_per_comment_id number;
l_assignment_sequence number;
l_assignment_number varchar2(30);
l_name_combination_warning boolean;
l_assign_payroll_warning boolean;
l_orig_hire_warning boolean;

begin
--
-- Set variable with the employee number value,
-- which is going to be passed into the API.
--
l_emp_num := 4532;
--
-- Put the new employee details in the database
-- by calling the create_employee API
--
hr_employee.create_employee
(p_hire_date =>

to_date(’06-06-1996’,’DD-MM-YYYY’)
,p_business_group_id => 23
,p_last_name => ’Bloggs’
,p_sex => ’M’
,p_employee_number => l_emp_num
,p_person_id => l_person_id
,p_assignment_id => l_assignment_id
,p_per_object_version_number => l_per_object_version_number
,p_asg_object_version_number => l_asg_object_version_number
,p_per_effective_start_date => l_per_effective_start_date
,p_per_effective_end_date => l_per_effective_end_date
,p_full_name => l_full_name
,p_per_comment_id => l_per_comment_id
,p_assignment_sequence => l_assignment_sequence
,p_assignment_number => l_assignment_number
,p_name_combination_warning => l_name_combination_warning
,p_assign_payroll_warning => l_assign_payroll_warning
,p_orig_hire_warning => l_orig_hire_warning
);

end;

Implementation Guide 4-173

Note: The database column for employee_number is defined as varchar2
to allow for when the business group method of employee_number
generation is set to National Identifier.

Example 2
An example call to the create_employee API where the business group method of
employee number generation is Automatic, a non-default employee person type must be
used and the email attribute details must be held.

declare
l_emp_num varchar2(30);
l_person_id number;
l_assignment_id number;
l_per_object_version_number number;
l_asg_object_version_number number;
l_per_effective_start_date date;
l_per_effective_end_date date;
l_full_name varchar2(240);
l_per_comment_id number;
l_assignment_sequence number;
l_assignment_number varchar2(30);
l_name_combination_warning boolean;
l_assign_payroll_warning boolean;
l_orig_hire_warning boolean;

begin
--
-- Clear the employee number variable
--
l_emp_num := null;
--
-- Put the new employee details in the database
-- by calling the create_employee API
--
hr_employee.create_employee
(p_hire_date =>

4-174 Oracle Human Resources Management System Implementation Guide (US)

to_date(’06-06-1996’,’DD-MM-YYYY’)
,p_business_group_id => 23
,p_last_name => ’Bloggs’
,p_sex => ’M’
,p_person_type_id => 56
,p_email_address => ’bloggsf@uk.uiq.com’
,p_employee_number => l_emp_num
,p_person_id => l_person_id
,p_assignment_id => l_assignment_id
,p_per_object_version_number => l_per_object_version_number
,p_asg_object_version_number => l_asg_object_version_number
,p_per_effective_start_date => l_per_effective_start_date
,p_per_effective_end_date => l_per_effective_end_date
,p_full_name => l_full_name
,p_per_comment_id => l_per_comment_id
,p_assignment_sequence => l_assignment_sequence
,p_assignment_number => l_assignment_number
,p_name_combination_warning => l_name_combination_warning
,p_assign_payroll_warning => l_assign_payroll_warning
,p_orig_hire_warning => l_orig_hire_warning
);
--
-- The l_emp_num variable is now set with the
-- employee_number allocated by the HR system.
--

end;

Default Parameters with Update Style APIs
With update style APIs the primary key and object version number parameters
are usually mandatory. In most cases it is not necessary provide all the parameter
values. You only need to specify any control parameters and the attributes you are
actually altering. It is not necessary (but it is possible) to pass in the existing values of
attributes that are not being modified. Optional parameters have one of the following
PL/SQL default values, depending on the datatype as shown in the following table:

Data Type Default value

varchar2 hr_api.g_varchar2

number hr_api.g_number

date hr_api.g_date

These hr_api.g_ default values are constant definitions, set to special values. They are not
hard coded text strings. If you need to specify these values, use the constant name, not
the value. The actual values are subject to change.

Care must be taken with IN OUT parameters, because they must always be included
in the calling parameter list. As the API is capable of passing values out, you must
use a variable to pass values into this type of parameter. These variables must be set
with your values before calling the API. If you do not want to explicitly modify that
attribute you should set the variable to the hr_api.g_... value for that datatype. The
update_emp_asg_criteria API contains examples of these different types of parameters.

Implementation Guide 4-175

procedure update_emp_asg_criteria
(...
,p_assignment_id in number
,p_object_version_number in out number
...
,p_position_id in number

default hr_api.g_number
...
,p_special_ceiling_step_id in out number
...
,p_employment_category in varchar2

default hr_api.g_varchar2
,p_effective_start_date out date
,p_effective_end_date out date
,p_group_name out varchar2
,p_org_now_no_manager_warning out boolean
,p_other_manager_warning out boolean
,p_spp_delete_warning out boolean
,p_entries_changed_warning out varchar2
,p_tax_district_changed_warning out boolean
);

Note: Only the parameters that are of particular interest have been
shown. Ellipses (...) indicate where irrelevant parameters to this
example have been omitted.

The p_assignment_id and p_object_version_number parameters are mandatory and
must be specified in every call. The p_position_id parameter is optional. If you do not
want to alter the existing value, then exclude the parameter from your calling logic or
pass in the hr_api.g_varchar2 constant or pass in the existing value.

The p_special_ceiling_step_id parameter is IN OUT. With certain cases the API sets this
attribute to null on the database and the latest value is passed out of the API. If you do
not want to alter this attribute, set the calling logic variable to hr_api.g_number.

Example
The following is an example call to the update_emp_asg_criteria API, with which you do
not want to alter the position_id and special_ceiling_step_id attributes, but you do want
to modify the employment_category value.

4-176 Oracle Human Resources Management System Implementation Guide (US)

declare
l_assignment_id number;
l_object_version_number number;
l_special_ceiling_step_id number;
...

begin
l_assignment_id := 23121;
l_object_version_number := 4;
l_special_ceiling_step_id := hr_api.g_number;
hr_assignment_api.update_emp_asg_criteria
(...
,p_assignment_id => l_assignment_id
,p_object_version_number => l_object_version_number
...
,p_special_ceiling_step_id => l_special_ceiling_step_id
...
,p_employment_category => ’FT’
...
);

--
-- As p_special_ceiling_step_id is an IN OUT parameter the
-- l_special_ceiling_step_id variable is now set to the same
-- value as on the database. i.e. The existing value before
-- the API was called or the value which was derived by the
-- API. The variable will not be set to hr_api.g_number.

--
end;

Default Parameters with Delete Style APIs
Most delete style APIs do not have default values for any attribute parameters. In rare
cases parameters with default values work in a similar way to those of update style APIs.

Parameters with NOCOPY
Starting from Applications Release 11.5.9, many PL/SQL APIs have been enhanced to
make use of the PL/SQL pass by reference feature. The NOCOPY compiler directive is
defined with OUT and IN OUT parameters. This improves run-time performance and
reduces memory usage.

For the majority of calling programs, when an API with or without NOCOPY is called
with valid data values, there will be no noticeable difference in behavior. However, there
are some subtle differences, which calling programs need to take into consideration.

Use Different Variables
When calling a PL/SQL API, ensure that different variables are used to capture values
returned from the OUT and IN OUT parameters. Using the same variable with multiple
OUT parameters, or an IN only parameter and also an OUT parameter, can lead to the
API behaving incorrectly. In some circumstances this can cause data corruption. Even
if you are not interested in knowing or processing the returned value you must use
different variables.

Error Processing
At the start of any procedure call, PL/SQL sets the variables from the calling program
used with OUT only NOCOPY parameters to null. If a validation issue or other problem
is detected by the API, an error is raised as a PL/SQL exception. Any OUT parameter
values that the API has calculated before the error is detected are cleared with null. This

Implementation Guide 4-177

ensures that the variables in the calling program used with the OUT parameters do not
contain any misleading values.

When NOCOPY has not been specified, the variables contain the values that existed
immediately before the procedure call began. This difference in behavior is noticed only
by calling programs that contain an exception handler and that attempt to read the
variable expecting to see the value that the variable contained before the call.

If the calling program needs to know the variable value that existed before the API was
called, you must declare and populate a separate variable.

There is no change to the behavior of IN only and IN OUT parameters, regardless of
the existence of the NOCOPY compiler directive. After an error occurs, the variable
used with the IN or IN OUT parameter holds the value that existed immediately before
the procedure call began.

Understanding the p_validate Control Parameter
Every published API includes the p_validate control parameter. When this parameter is
set to FALSE (the default value), the procedure executes all validation for that business
function. If the operation is valid, the database rows/values are inserted or updated or
deleted. Any non warning OUT parameters, warning OUT parameters and IN OUT
parameters are all set with specific values.

When the p_validate parameter is set to TRUE, the API only checks that the operation
is valid. It does so by issuing a savepoint at the start of the procedure and rolling back
to that savepoint at the end. You do not have access to these internal savepoints. If the
procedure is successful, without raising any validation errors, then non-warning OUT
parameters are set to null, warning OUT parameters are set to a specific value, and IN
OUT parameters are reset to their IN values.

In some cases you may want to write your PL/SQL routines using the public API
procedures as building blocks. This enables you to write routines specific to your
business needs. For example, say that you have a business requirement to apply a
DateTracked update to a row and then apply a DateTrack delete to the same row in
the future. You could write an "update_and_future_del" procedure that calls two of
the standard APIs.

When calling each standard API, p_validate must be set to false. If true is used the
update procedure call is rolled back. So when the delete procedure is called, it is
working on the non-updated version of the row. However when p_validate is set to
false, the update is not rolled back. Thus, the delete call operates as if the user really
wanted to apply the whole transaction.

If you want to be able to check that the update and delete operation is valid, you
must issue your own savepoint and rollback commands. As the APIs do not issue
any commits, there is no danger of part of the work being left in the database. It is
the responsibility of the calling code to issue commits. The following simulates some
of the p_validate true behavior.

Example
[Dummy text - remove in Epic]

savepoint s1;
update_api_prc(.........);
delete_api_prc(..........);
rollback to s1;

4-178 Oracle Human Resources Management System Implementation Guide (US)

You should not use our API procedure names for the savepoint names. An unexpected
result may occur if you do not use different names.

Understanding the p_effective_date Control Parameter
Most APIs that insert/update/delete data for at least one DateTrack entity have a
p_effective_date control parameter. This mandatory parameter defines the date you
want an operation to be applied from. The PL/SQL datatype of this parameter is date.

As the smallest unit of time in DateTrack is one day, the time portion of the
p_effective_date parameter is not used. This means that the change always comes into
effect just after midnight.

Some APIs have a more specific date for processing. For example, the create_employee
API does not have a p_effective_date parameter. The p_hire_date parameter is used as
the first day the person details come into effect.

Example 1
This example creates a new grade rate that starts from today.

hr_grade_api.create_grade_rate_value
(...
,p_effective_date => trunc(sysdate)
...);

Example 2
This example creates a new employee who joins the company at the start of March 1997.

hr_employee_api.create_employee
(...
,p_hire_date => to_date(’01-03-1997’,’DD-MM-YYYY’)
...);

Some APIs that do not modify data in DateTrack entities still have a p_effective_date
parameter. The date value is not used to determine when the changes take effect. It is
used to validate Lookup values. Each Lookups value can be specified with a valid date
range. The start date indicates when the value can first be used. The end date shows the
last date the value can be used on new records and set when updating records. Existing
records, which are not changed, can continue to use the Lookup after the end date.

Understanding the p_datetrack_update_mode Control Parameter
Most APIs that update data for at least one DateTrack entity have a
p_datetrack_update_mode control parameter. It enables you to define the type of
DateTrack change to be made. This mandatory parameter must be set to one of the
values in the following table:

p_datetrack_update_mode Value Description

UPDATE Keep history of existing information

CORRECTION Correct existing information

UPDATE_OVERRIDE Replace all scheduled changes

UPDATE_CHANGE_INSERT Insert this change before next scheduled change

It may not be possible to use every mode in every case. For example, if there are
no existing future changes for the record you are changing, the DateTrack modes
UPDATE_OVERRIDE and UPDATE_CHANGE_INSERT cannot be used.

Implementation Guide 4-179

Some APIs that update DateTrack entities do not have a p_datetrack_update_mode
parameter. These APIs automatically perform the DateTrack operations for that business
operation.

Each dated instance for the same primary key has a different object_version_number.
When calling the API the p_object_version_number parameter should be set to the value
that applies as of the date for the operation (that is, p_effective_date).

Example
Assume grade rate values shown in the following table already exist in the
pay_grade_rules_f table:

Grade_rule_id Effective Start_
Date

Effective_ End_
Date

Object_Version_
Number

Value

12122 01-JAN-1996 20-FEB-1996 2 45

12122 21-FEB-1996 20-JUN-1998 3 50

Also assume that the grade rate value was updated to the wrong value on
21-FEB-1996. The update from 45 to 50 should have been 45 to 55 and you want to
correct the error.

declare
l_object_version_number number;
l_effective_start_date date;
l_effective_end_date date;

begin
l_object_version_number := 3;
hr_grade_api.update_grade_rate_value
(p_effective_date => to_date(’21-02-1996’,’DD-MM-YYYY’)
,p_datetrack_update_mode => ’CORRECTION’
,p_grade_rule_id => 12122
,p_object_version_number => l_object_version_number
,p_value => 55
,p_effective_start_date => l_effective_start_date
,p_effective_end_date => l_effective_end_date
);

-- l_object_version_number will now be set to the value
-- as on database row, as of 21st February 1996.

end;

Understanding the p_datetrack_delete_mode Control Parameter
Most APIs that delete data for at least one DateTrack entity have a
p_datetrack_delete_mode control parameter. It enables you to define the type of
DateTrack deletion to be made. This mandatory parameter must be set to one of the
values in the following table:

p_datetrack_delete_mode Value Description

ZAP Completely remove from the database

DELETE Set end date to effective date

FUTURE_CHANGE Remove all scheduled changes

DELETE_NEXT_CHANGE Remove next change

4-180 Oracle Human Resources Management System Implementation Guide (US)

It may not be possible to use every mode in every case. For example, if there are
no existing future changes for the record you are changing, the DateTrack modes
FUTURE_CHANGE and DELETE_NEXT_CHANGE cannot be used. Some APIs that
update DateTrack entities do not have a p_datetrack_delete_mode parameter. These
APIs automatically perform the DateTrack operations for that business operation. Refer
to the comments in each API package header creation script for further details.

Each dated instance for the same primary key has a different object_version_number.
When calling the API the p_object_version_number parameter should be set to the value
that applies as of the date for the operation (that is, p_effective_date).

Example
Assume that the grade rate values shown in the following table already exist in the
pay_grade_rules_f table:

Grade_rule_id Effective_ Start_
Date

Effective_ End_
Date

Object_Version_
Number

Value

5482 15-JAN-1996 23-MAR-1996 4 10

5482 24-MAR-1996 12-AUG-1996 8 20

Also assume that you want to remove all dated instances of this grade rate value from
the database.

declare
l_object_version_number number;
l_effective_start_date date;
l_effective_end_date date;

begin

l_object_version_number := 4;

hr_grade_api.update_grade_rate_value
(p_effective_date => to_date(’02-02-1996’, ’DD-MM-YYYY’)
,p_datetrack_delete_mode => ’ZAP’
,p_grade_rule_id => 5482
,p_object_version_number => l_object_version_number
,p_effective_start_date => l_effective_start_date
,p_effective_end_date => l_effective_end_date
);

-- As ZAP mode was used l_object_version_number now is null.
end;

Understanding the p_effective_start_date and p_effective_end_date Parameters
Most APIs that insert/delete/update data for at least one DateTrack entity have the
p_effective_start_date and p_effective_end_date control parameters.

Both of these parameters are defined as OUT.

The values returned correspond to the effective_start_date and effective_end_date
database column values for the row that is effective as of p_effective_date.

These parameters are set to null when all the DateTracked instances of a particular row
are deleted from the database (that is, when a delete style API is called with a DateTrack
mode of ZAP).

Implementation Guide 4-181

Example
Assume that the grade rate values in the following table already exist in the
pay_grade_rules_f table:

Grade_rule_id Effective_ Start_Date Effective_ End_Date

17392 01-FEB-1996 24-MAY-1996

17392 25-MAY-1996 01-SEP-1997

The update_grade_rate_value API is called to perform a DateTrack mode of
UPDATE_CHANGE_INSERT with an effective date of 10-MAR-1996. The API then
modifies the database rows as shown in the following table:

Grade_rule_id Effective_ Start_Date Effective_ End_Date

17392 01-FEB-1996 09-MAR-1996

17392 10-MAR-1996 24-MAY-1996

17392 25-MAY-1996 01-SEP-1997

The API p_effective_start_date parameter is set to 10-MAR-1996 and
p_effective_end_date to 24-MAY-1996.

Understanding the p_language_code Parameter
The p_language_code parameter is only available on create and update style Multilingual
Support APIs. It enables you to specify which language the translation values apply
to. The parameter can be set to the base or any installed language. The parameter default
value of hr_api.userenv_lang is equivalent to:

select userenv(’LANG’)
from dual;

If this parameter is set to null or hr_api.g_varchar2, the hr_api.userenv_lang default is
still used.

See: Multilingual Support, page 4-184

API Features
Commit Statements
None of the HRMS APIs issue a commit. It is the responsibility of the calling code to
issue commit statements. This ensures that parts of a transaction are not left in the
database. If an error occurs, the whole transaction is rolled back. Therefore API work
is either all completed or none of the work is done. You can use the HRMS APIs as
"building blocks" to construct your own business functions. This gives you the flexibility
to issue commits where you decide.

It also avoids conflicts with different client tools. For example, Oracle Forms only issues
a commit if all the user’s changes are not in error. This could be one or more record
changes, which are probably separate API calls.

Avoiding Deadlocks
If calling more than one API in the same commit unit, take care to ensure deadlock
situations do not happen. Deadlocks should be avoided by accessing the tables in the

4-182 Oracle Human Resources Management System Implementation Guide (US)

order they are listed in the table locking ladder. For example, you should update or
delete rows in the table with the lowest Processing Order first.

If more than one row in the same table is being touched, then lock the rows in ascending
primary key order. For example, if you are updating all the assignments for one
person, then change the row with the lowest assignment_id first.

If it is impossible or impractical for operations to be done in locking ladder order, explicit
locking logic is required. When a table is brought forward in the processing order, any
table rows that have been jumped and will be touched later must be explicitly locked
in advance. Where a table is jumped and none of the rows are going to be updated or
deleted, no locks should be taken on that table.

Example
Assume that the locking ladder order is as shown in the following table:

Table Processing Order

A 10

B 20

C 30

D 40

Also assume that your logic has to update rows in the following order:

A 1st

D 2nd

C 3rd

Then your logic should:

1. Update rows in table A.

2. Lock rows in table C. (Only need to lock the rows that are going to be updated
in step 4.)

3. Update rows in table D.

4. Update rows in table C.

Table B is not locked because it is not accessed after D. Your code does not have to
explicitly lock rows in tables A or D, because locking is done as one of the first steps in
the API.

In summary, you can choose the sequence of updates or deletes, but table rows must
be locked in the order shown by the table locking ladder.

Flexelds with APIs
APIs validate the Descriptive Flexfield and Key Flexfield column values using the
Flexfield definitions created using the Oracle Application Object Library Forms.

As the API Flexfield validation is performed within the database, the value set definitions
should not refer directly to Forms objects such as fields. Server-side validation cannot

Implementation Guide 4-183

resolve these references so any checks will fail. Care should also be taken when
referencing profiles, as these values may be unavailable in the server-side.

Even where the Forms do not currently call the APIs to perform their commit time
processing, it is strongly recommended that you do not directly refer to any Form fields
in your value set definitions. Otherwise problems may occur with future upgrades. If
you want to perform other field validation or perform Flexfield validation that cannot be
implemented in values sets, use API User Hooks.

See: API User Hooks, page 4-191

For further information about, and solutions to, some problems that you may encounter
with flexfield validation, see: Validation of Flexfield Values, page 4-152.

The APIs do not enforce Flexfield value security. This can only be done when using
the Forms user interface.

For each Descriptive Flexfield, Oracle Applications has defined a structure
column. In most cases the structure column name ends with the letters, or is
called, "ATTRIBUTE_CATEGORY". The implementation team can associate this structure
column with a reference field. The structure column value can affect which Flexfield
structure is for validation. When reference fields are defined and you want to call the
APIs, it is your responsibility to populate and update the ATTRIBUTE_CATEGORY
value with the reference field value.

For Descriptive Flexfields, the APIs usually perform the Flexfield validation after
other column validation for the current table. For Key Flexfield segments, values are
held on a separate table, known as the combination table. As rows are maintained in
the combination table ahead of the main product table, the APIs execute the Flexfield
validation before main product table column validation.

In Release 11.0 and before, it was necessary to edit copies of the skeleton Flexfield
validation package body creation scripts before the APIs could perform Flexfield
validation. The technology constraints that made this technique necessary have now
been lifted. These skeleton files *fli.pkb are no longer shipped with the product.

Multilingual Support
Several entities in the HRMS schema provide Multilingual Support (MLS), where
translated values are held in _TL tables. For general details of the MLS concept refer
to the following documentation:

See: Oracle Applications Concepts Manual for Principles of MLS, and Oracle Applications
Install Guide for Configuration of MLS.

As the non-translated and translated values are identified by the same surrogate key
ID column and value, the Multilingual Support APIs manage both groups of values in
the same PL/SQL procedure call.

Create and update style APIs have a p_language_code parameter which you use to
indicate which language the translated values apply to. The API maintains the required
rows in the _TL table, setting the source_lang and language columns appropriately. These
columns, and the p_language_code parameter, hold a language_code value from the
FND_LANGUAGES table.

The p_language_code parameter has a default value of hr_api.userenv_lang, which is
equivalent to:

select userenv(’LANG’)
from dual;

4-184 Oracle Human Resources Management System Implementation Guide (US)

Setting the p_language_code parameter enables you to maintain translated data for
different languages within the same database session. If this parameter is set to null or
hr_api.g_varchar2 then the hr_api.userenv_lang default is still used.

When a create style Multilingual Support API is called, a row is inserted into the _TL
table for each base and installed language. For each row, the source_lang column equals
the p_language_code parameter and the translated column values are the same. When
the other translated values are available they can be set by calling the update API, setting
the p_language_code parameter to the appropriate language code.

Each call to an update style Multilingual Support API can amend the non-translated
values and one set of translated values. The API updates the non-translated values
in the main table and translated data values on corresponding row, or rows, in the
_TL table. The translated columns are updated on rows where the p_language_code
parameter matches the language or source_lang columns. Including a matching against
the source_lang column ensures translations that have not been explicitly set remain
synchronised with the created language. When a translation is being set for the first
time the source_lang column is also updated with the p_language_code value. If you
want to amend the values for another translation, call the update API again setting the
p_language_code and translated parameters appropriately.

For delete style Multilingual Support APIs there is no p_language_code parameter. When
the non-translated data is removed, all corresponding translation rows in the _TL table
are also removed. So the API does not need to perform the process for a particular
language.

When a Multilingual Support API is called more than one row may be processed in
the _TL table. To avoid identifying every row that will be modified, _TL tables do not
have an object_version_number column. The main table, holding the non-translated
values, does have an object_version_number column. When you use a Multilingual
Support API, set the p_object_version_number parameter to the value from the main
table, even when only updating translated values.

Alternative APIs
In some situations it is possible to perform the same business process using more
than one API. This is especially the case where entities hold extra details for different
legislations. Usually there is a main API, which can be used for any legislation, and also
specific versions for some legislations. Whichever API is called, the same validation and
changes are made to the database.

For example, there is an entity to hold addresses for people. For GB style addresses
some of the general address attributes are used to hold specific details, as shown in
the following table:

Implementation Guide 4-185

PER_ADDRESSES Table
Column Name

create_person_address API
Parameter Name

create_gb_person_ address
API Parameter Name

style p_style N/A

address_line1 p_address_line1 p_address_line1

address_line2 p_address_line2 p_address_line2

address_line3 p_address_line3 p_address_line3

town_or_city p_town_or_city p_town

region_1 p_region_1 p_county

region_2 p_region_2 N/A for this style

region_3 p_region_3 N/A for this style

postal_code p_postal_code p_postcode

country p_country p_country

telephone_number_1 p_telephone_number_1 p_telephone_number

telephone_number_2 p_telephone_number_2 N/A for this style

telephone_number_3 p_telephone_number_3 N/A for this style

Note: Not all database columns names or API parameters have been
listed.

The p_style parameter does not exist on the create_gb_person_address API because this
API only creates addresses for one style.

Not all of the address attributes are used in every style. For example, the region_2
attribute cannot be set for a GB style address. Hence, there is no corresponding
parameter on the create_gb_person_address API. When the create_person_address API
is called with p_style set to "GB" then p_region_2 must be null.

Both interfaces are provided to give the greatest flexibility. If your company only
operates in one location, you may find it more convenient to call the address style
interface that corresponds to your country. If your company operates in various locations
and you want to store the address details using the local styles, you may find it more
convenient to call the general API and specify the required style on creation.

Refer to comments in each API package header creation script for further details of
where other alternative interfaces are provided.

See also: User Hooks and Alternative Interface APIs, page 4-207

API Errors and Warnings
Failure Errors
When calling APIs, validation or processing errors may occur. These errors are raised
like any other PL/SQL error in Oracle applications.

4-186 Oracle Human Resources Management System Implementation Guide (US)

When an error is raised, all the work done by that single API call is rolled back. As the
APIs do not issue any commits, there is no danger that part of the work will be left in the
database. It is the responsibility of the calling code to issue commits.

Warning Values
Warnings are returned using OUT parameters. The names of these parameters ends
with _WARNING. In most cases the datatype is boolean. When a warning value is
raised, the parameter is set to true. Other values are returned when the datatype is
not boolean. Refer to the comments in each API package header creation script for
further details.

The API assumes that although a warning situation has been flagged, it is acceptable to
continue. If there was risk of a serious data problem, a PL/SQL error would have been
raised and processing for the current API call would have stopped.

However, in your particular organization you may need to make a note about the
warning or perform further checks. If you do not want the change to be kept in the
database while this is done, you will need to explicitly roll back the work the API
performed.

Example
When the create_employee API is called, the p_name_combination_warning parameter is
set to true when person details already in the database include the same combination of
last_name, first_name and date_of_birth.

declare
l_name_combination_warning boolean;
l_assign_payroll_warning boolean;

begin
savepoint on_name_warning;
hr_employee.create_employee
(p_validate => false
...
,p_last_name => ’Bloggs’
,p_first_name => ’Fred’
,p_date_of_birth => to_date(’06-06-1964’, ’DD-MM-YYYY’)
...
,p_name_combination_warning => l_name_combination_warning
,p_assign_payroll_warning => l_assign_payroll_warning
);

if l_name_combination_warning then
-- Note that similar person details already exist.
-- Do not hold the details in the database until it is
-- confirmed this is really a different person.
rollback to on_name_warning;

end if;
end;

Note: It would not have been necessary to rollback the API work if the
p_validate parameter had been set to true.

You should not use our API procedure names for the savepoint names. An unexpected
result may occur if you do not use different names.

Handling Errors in PL/SQL Batch Processes
In a batch environment, errors raised to the batch process must be handled and recorded
so that processing can continue. To aid the development of such batch processes, we

Implementation Guide 4-187

provide a message table called HR_API_BATCH_MESSAGE_LINES and some APIs, as
shown in the following table:

API Name Description

create_message_line Adds a single error message to the HR_API_
BATCH_MESSAGE_LINES table.

delete_message_line Removes a single error message to the
HR_API_BATCH_MESSAGE_LINES table.

delete_message_lines Removes all error message lines for a particular
batch run.

For a full description of each API, refer to the comments in the package header creation
script.

For handling API errors in a PL/SQL batch process it is recommended that any messages
should be stored in the HR_API_BATCH_MESSAGE_LINES table.

Example PL/SQL Batch Program
Assume a temporary table has been created containing employee addresses. The
addresses need to be inserted into the HR schema. The temporary table holding the
address is called temp_person_address, as in the following table. It could have been
populated from an ASCII file using Sql*Loader.

TEMP_PERSON_ADDRESSES Table

Column Name DataType

person_id number

primary_flag varchar2

date_from date

address_type varchar2

address_line1 varchar2

address_line2 varchar2

address_line3 varchar2

town varchar2

county varchar2

postcode varchar2

country varchar2

telephone_number varchar2

Sample Code
declare
--
l_rows_processed number := 0; -- rows processed by api l_com

4-188 Oracle Human Resources Management System Implementation Guide (US)

mit_point number := 20; - Commit after X successful rows
l_batch_run_number hr_api_batch_message_lines.batch_run_

number%type;
l_dummy_line_id hr_api_batch_message_lines.line_id%type;
l_address_id per_addresses.address_id%type;

l_object_version_number_id per_addresses.object_version_number_i
d%type;
--
-- select the next batch run number
--
cursor csr_batch_run_number is
select nvl(max(abm.batch_run_number), 0) + 1
from hr_api_batch_message_lines abm;

--
-- select all the temporary ’GB’ address rows
--
cursor csr_tpa is
select tpa.person_id

, tpa.primary_flag
, tpa.date_from
, tpa.address_type
, tpa.address_line1
, tpa.address_line2
, tpa.address_line3
, tpa.town
, tpa.county
, tpa.postcode
, tpa.country
, tpa.telephone_number
, tpa.rowid

from temp_person_addresses tpa
where tpa.address_style = ’GB’;

begin
-- open and fetch the batch run number
open csr_batch_run_number;
fetch csr_batch_run_number into l_batch_run_number;
close csr_batch_run_number;
-- open and fetch each temporary address row
for sel in csr_tpa loop
begin
-- create the address in the HR Schema
hr_person_address_api.create_gb_person_address
(p_person_id => sel.person_id
,p_effective_date => trunc(sysdate)
,p_primary_flag => sel.primary_flag
,p_date_from => sel.date_from
,p_address_type => sel.address_type
,p_address_line1 => sel.address_line1
,p_address_line2 => sel.address_line2
,p_address_line3 => sel.address_line3
,p_town => sel.town
,p_county => sel.county
,p_postcode => sel.postcode
,p_country => sel.country
,p_telephone_number => sel.telephone_number
,p_address_id => l_address_id
,p_object_version_number => l_object_version_number
);

Implementation Guide 4-189

-- increment the number of rows processed by the api
l_rows_processed := l_rows_processed + 1;
-- determine if the commit point has been reached
if (mod(l_rows_processed, l_commit_point) = 0) then
-- the commit point has been reached therefore commit
commit;

end if;
exception
when others then
--
-- An API error has occurred
-- Note: As an error has occurred only the work in the
-- last API call will be rolled back. The
-- uncommitted work done by previous API calls will not

be -- affected. If the error is ora-20001 the fnd_message
.get -- function will retrieve and substitute all tokens
for -- the short and extended message text. If the erro
r is -- not ora-20001, null will be returned.

--
hr_batch_message_line_api.create_message_line
(p_batch_run_number => l_batch_run_number
,p_api_name =>

’hr_person_address_api.create_gb_person
_address’

,p_status => ’F’
,p_error_number => sqlcode
,p_error_message => sqlerrm
,p_extended_error_message => fnd_message.get
,p_source_row_information => to_char(sel.rowid)
,p_line_id => l_dummy_line_id);

end;
end loop;
-- commit any final rows
commit;

end;

You can view any errors that might have been created during the processes by selecting
from the HR_API_BATCH_MESSAGE_LINES table for the batch run completed, as
follows:

select *
from hr_api_batch_message_lines abm
where abm.batch_run_number = :batch_run_number
order by abm.line_id;

WHO Columns and Oracle Alert
In many tables in Oracle Applications there are standard WHO columns. These include:

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

4-190 Oracle Human Resources Management System Implementation Guide (US)

The values held in these columns usually refer to the Applications User who caused the
database row to be created or updated. In the Oracle HRMS Applications these columns
are maintained by database triggers. You cannot directly populate these columns, as
corresponding API parameters have not been provided.

When the APIs are executed from an Application Form or concurrent manager
session, then these columns will be maintained just as if the Form had carried out the
database changes.

When the APIs are called from a SQL*Plus database session, the CREATION_DATE
and LAST_UPDATE_DATE column will still be populated with the database sysdate
value. As there are no application user details, the CREATED_BY, LAST_UPDATED_BY
and LAST_UPDATE_LOGIN column will be set to the "anonymous user" values.

If you want the CREATED_BY and LAST_UPDATED_BY columns to be populated
with details of a known application user in a SQL*Plus database session, then before
executing any HRMS APIs, call the following server-side package procedure once:

fnd_global.apps_initialize

If you call this procedure it is your responsibility to pass in valid values, as incorrect
values are not rejected. The above procedure should also be called if you want to use
Oracle Alert and the APIs.

By using AOL profiles, it is possible to associate a HR security profile with an AOL
responsibility. Care should be taken when setting the apps_initialize resp_id parameter
to a responsibility associated with a restricted HR security profile. To ensure API
validation is not over restrictive, you should only maintain data held within that
responsibility’s business group.

To maintain data in more than one business group in the same database session, use a
responsibility associated with an unrestricted HR security profile.

API User Hooks
APIs in Oracle HRMS support the addition of custom business logic. We have called
this feature ‘API User Hooks’. These hooks enable you to extend the standard business
rules that are executed by the APIs. You can include your own validation rules or further
processing logic and have it executed automatically whenever the associated API is
executed.

Consider:

• Customer-specific data validation

For example, when an employee is promoted you might want to restrict the change
of grade to a single step, unless they work at a specific location, or have been in
the grade for longer than six months.

• Maintenance of data held in extra customer-specific tables

For example, you may want to store specific market or evaluation information about
your employees in database tables that were not supplied by Oracle Applications.

• Capturing the fact that a particular business event has occurred

For example, you may want to capture the fact that an employee is leaving
the enterprise to send an electronic message directly to your separate security
database, so the employee’s office security pass can be disabled.

Implementation Guide 4-191

User hooks are locations in the APIs where extra logic can be executed. When the API
processing reaches a user hook, the main processing stops and any custom logic is
executed. Then, assuming no errors have occurred, the main API processing continues.

Caution: You must not edit the API code files supplied by Oracle. These
are part of the delivered product code and, if they are modified, Oracle
may be unable to support or upgrade your implementation. Oracle
Applications support direct calls only to the published APIs. Direct calls
to any other server-side package procedures or functions that are written
as part of the Oracle HRMS product set are not supported, unless
explicitly specified.

Implementing API User Hooks
All the extra logic that you want to associate with APIs should be implemented as
separate server-side package procedures using PL/SQL. The analysis and design of your
business rules model is specific to your implementation. This essay focuses on how you
can associate the rules you decide to write with the API user hooks.

After you have written and loaded into the database your server-side package, you need
to associate your package with one or more specific user hooks. There are 3 special APIs
to insert, update and delete this information. To create the links between the delivered
APIs and the extra logic, execute the supplied pre-processor program. This looks at
the data you have defined, the package procedure you want to call and builds logic to
execute your PL/SQL from the specific user hooks. This step is provided to optimize the
overall performance of API execution with user hooks. Effectively each API knows the
extra logic to perform without needing to check explicitly.

As the link between the APIs and the extra logic is held in data, upgrades are easier to
support. Where the same API user hooks and parameters exist in the new version, the
pre-processor program can be executed again. This process rebuilds the extra code
needed to execute your PL/SQL from the specific user hooks without the need for
manual edits to Oracle applications or your own source code files.

To implement API user hooks
1. Identify the APIs and user hooks where you want to attach your extra

logic. See: Available User Hooks, page 4-192

2. Identify the data values available at the user hooks you intend to use. See: Data
Values Available at User Hooks, page 4-196

3. Implement your extra logic in a PL/SQL server-side package procedure. See:
Implementing Extra Logic in a Separate Procedure Package, page 4-197

4. Register your extra PL/SQL packages with the appropriate API user hooks by
calling the hr_api_hook_call_api.create_api_hook_call API. Define the mapping data
between the user hook and the server-side package procedure. See: Linking Custom
Procedures to User Hooks, page 4-199

5. Execute the user hook pre-processor program. This validates the parameters to
your PL/SQL server-side package procedure and dynamically generates another
package body directly into the database. This generated code contains PL/SQL to
call the custom package procedures from the API user hooks. See: The API User
Hook Pre-processor Program, page 4-203

Available User Hooks
API user hooks are provided in the HRMS APIs that create, maintain or delete
information. For example, the create_employee and update_emp_asg_criteria APIs.

4-192 Oracle Human Resources Management System Implementation Guide (US)

Note: User hooks are not provided in alternative interface APIs. For
example, create_us_employee and create_gb_employee are both
alternatives to the create_employee API. You should associate any extra
logic with the main API. Also user hooks are not provided in utility style
APIs such as create_message_line.

A PL/SQL script is available that lists all the different user hooks.

See: API User Hook Support Scripts, page 4-208

In the main APIs for HRMS there are two user hooks:

• Before Process

• After Process

There are different versions of these two user hooks in each API. For example, there is a
Before Process and an After Process user hook in the create_employee API and a different
Before Process and After Process user hook in the update_person API. This enables you
to link your own logic to a specific API and user hook.

Main API User Hooks

Before Process Logic
Before Process user hooks execute any extra logic before the main API processing logic
modifies any data in the database. In this case, the majority of validation will not have
been executed. If you implement extra logic from this type of user hook, you must
remember that none of the context and data values have been validated. It is possible the
values are invalid and will be rejected when the main API processing logic is executed.

After Process Logic
After Process user hooks execute any extra logic after all the main API validation and
processing logic has successfully completed. All the database changes that are going to
be made by the API have been made. Any values provided from these user hooks have
passed the validation checks. Your extra validation can assume the values provided are

Implementation Guide 4-193

correct. If the main processing logic does not finish, due to an error, the After Process
user hook is not called.

Note: You cannot alter the core product logic, which is executed between
the ’Before Process’ and ’After Process’ user hooks. You can only add
extra custom logic at the user hooks.

Core Product Logic
Core Product Logic is split into a number of components. For tables that can be altered
by an API there is an internal row handler code module. These rows handlers are
implemented for nearly all the tables in the system where APIs are available. They
control all the insert, update, delete and lock processing required by the main APIs. For
example, if a main API needs to insert a new row into the PER_ALL_PEOPLE_F table
it will not perform the DML itself. Instead it will execute the PER_ALL_PEOPLE_F
row handler module.

Oracle Applications does not support any direct calls to these internal row handlers, as
they do not contain the complete validation and processing logic. Calls are only allowed
to the list of supported and published APIs.

This list is provided in the Publicly Callable Business Process APIs in Oracle HRMS ,
Oracle HRMS Configuring, Reporting, and System Administration Guide topic. Any new
APIs introduced in the new version of a release will be listed in What’s New in Oracle
HRMS available on Metalink.

This list is provided in the Publicly Callable Business Process APIs in Oracle HRMS topic
in the guide Configuring, Reporting and System Administration in Oracle HRMS and in
Oracle HRMS Help. Any new APIs introduced in the new version of a release will be
listed in theWhat’s New in Oracle HRMS topic in the help system.

In each of the row handler modules three more user hooks are available, After Insert, After
Update and After Delete. The user hook extra logic is executed after the validation specific
to the current table columns has been successfully completed and immediately after
the corresponding table DML statement.

These row handler user hooks are provided after the DML has been completed for two
reasons:

• All core product validation has been carried out. So you know that the change to
that particular table is valid.

• For inserts, the primary key value is not known until the row has actually been
inserted.

Note: Although the update or delete DML statements may have been
executed, the previous - before DML, column values are still available
for use in any user hook logic. This is explained in more detail in a later
section of this essay.

When an API inserts, updates or deletes records in more than one table there are many
user hooks available for your use. For example, the create_employee API can create
data in up to six different tables.

4-194 Oracle Human Resources Management System Implementation Guide (US)

Create Employee API Summary Code Module Structure

In the above diagram, create_employee is the supported and published API. Only three
of the internal row handlers have been shown, PER_ALL_PEOPLE_F, PER_PERIODS_
OF_SERVICE and PER_ALL_ASSIGNMENTS_F. These internal row handlers must not
be called directly.

Order of user hook execution:

1st) Create employee API Before Process user hook.

2nd) PER_ALL_PEOPLE_F row handler After Insert user hook.

3rd) PER_PERIODS_OF_SERVICE row handler After Insert user hook.

4th) PER_ALL_ASSIGNMENT_F row handler After Insert user hook.

...

last) Create employee API After Process user hook.

Note: Core product validation and processing logic is executed between
each of the user hooks.

When a validation or processing error is detected, processing is immediately aborted
by raising a PL/SQL exception. API validation is carried out in each of the separate
code modules. For example, when the create_employee API is used, validation logic is
executed in each of the row handlers that are executed. Let’s assume that a validation
check is violated in the PER_PERIODS_OF_SERVICE row handler. The logic defined
against the first two user hooks is executed. As a PL/SQL exception is raised, the 3rd and
all remaining user hooks for that API call are not executed.

Note: When a DateTrack operation is carried out on a particular
record, only one row handler user hook is executed. For example, when
updating a person record using the DateTrack mode ’UPDATE’, only
the After Update user hook is executed in the PER_ALL_PEOPLE_F row
handler.

Implementation Guide 4-195

The published APIs are also known as Business Processes as they perform a business
event within HRMS.

Data Values Available at User Hooks
In general, where a value is known inside the API it will be available to the custom
user hook code.

All values are read only. None of the values can be altered by user hook logic.

None of the AOL WHO values are available at any user hook, including:

• LAST_UPDATE_DATE

• LAST_UPDATED_BY

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

The p_validate parameter value is not available at any user hook. Any additional
processing should be done regardless of the p_validate value.

Data values are made available to user hook logic using individual PL/SQL procedure
parameters. In most cases the parameter name matches the name of the corresponding
database column name with a p_ prefix. For example, the NATIONALITY column on
the PER_ALL_PEOPLE_F table has a corresponding user hook parameter name of
p_nationality.

Before Process and After Process User Hook Data Values
• IN parameter values on each published API are available at the Before Process and

After Process user hooks. At the Before Process hook none of the values are validated.

• OUT parameter values on the published API are only available from the After
Process user hook. They are unavailable from the Before Process user hook because
no core product logic has been executed to derive them.

• IN OUT parameter values on the published API are available at the Before Process
and After Process user hooks. The potentially invalid IN value is available at the
Before Process user hook. The value passed out of the published API is available
at the After Process user hook.

From the row handler After Insert user hook only column values that can be populated or
are derived during insert are available.

From the After Update user hook two sets of values are available: the new values and
the old values. That is, the values that correspond to the updated record and the values
that existed on the record before the DML statement was executed. The new value
parameter names correspond to the database column name with a p_ prefix. The old
values parameter names match the database column name with a p_ prefix and a _o
suffix. For example, the new value parameter name for the NATIONALITY column
on the PER_ALL_PEOPLE_F table is p_nationality. The old value parameter name is
p_nationality_o.

Except for the primary key ID, if a database column cannot be updated a new value
parameter is not available. There is still a corresponding parameter without the _o
suffix. For example, the BUSINESS_GROUP_ID column cannot be updated on the
PER_ALL_PEOPLE_F table. At the After Update user hook a p_business_group_id_o
parameter is available. But there is no new value p_business_group_id parameter.

4-196 Oracle Human Resources Management System Implementation Guide (US)

From the After Delete user hooks only old values are available with _o suffix style
parameter names. The primary key ID value is available with a parameter that does not
have the _o suffix.

Old values are only made available at the row handler After Update and After Delete user
hooks. Old values are NOT available from any of the Before Process, After Process or
After Insert user hooks.

Wherever the database column name is used, the end of the name may be truncated, to
fit the PL/SQL 30 character limit for parameter names.

For DateTrack table row handlers, whenever data values are made available from the
After Insert, After Update or After Delete user hooks, the provided new and old values
apply as of the operation’s effective_date. If past or future values are required the custom
logic needs to select them explicitly from the database table. The effective_start_date and
effective_end_date column and DateTrack mode value are made available.

A complete list of available user hooks and the data values provided can be found by
executing a PL/SQL script.

See: API User Hook Support Scripts, page 4-208

Implementing Extra Logic In a Separate Package Procedure
Any extra logic that you want to link to an API with a user hook must be implemented
inside a PL/SQL server-side package procedure.

Note: These procedures can do anything that can be implemented in
PL/SQL except ‘commit’ and full ‘rollbacks’.

The APIs have been designed to perform all of the work associated with a business
process. If it is not possible to complete all of the database changes then the API fails and
rolls back all changes. This is achieved by not committing any values to the database
within an API. If an error occurs in later processing all database changes made up to
that point are rolled back automatically.

Important: Commits or full rollbacks are not allowed in any API code
as they would interfere with this mechanism. This includes user-hooks
and extra logic. If you attempt to issue a commit or full rollback
statement, the user hook mechanism will detect this and raise its own
error.

When an invalid value is detected by extra validation, you should raise an error using
a PL/SQL exception. This automatically rolls back any database changes carried out
by the current call to the published API. This rollback includes any changes made by
earlier user hooks.

The user hook code does not support any optional or decision logic to decide when your
custom code should be executed. If you link extra logic to a user hook it will always be
called when that API processing point is reached. You must implement any conditional
logic inside your custom package procedure. For example, suppose you want to check
that ‘Administrators’ are promoted by one grade step only with each change. As your
extra logic will be called for all assignments, regardless of job type, you should decide if
you need to check for the job of ‘Administrator’ before checking the grade details.

Limitations
There are some limitations to implementing extra logic as custom PL/SQL code. Only
calls to server-side package procedures are supported. But more than one package

Implementation Guide 4-197

procedure can be executed from the same user hook. Custom PL/SQL cannot be executed
from user hooks if it is implemented in:

• Stand alone procedures (not defined within a package)

• Package functions

• Stand alone package functions (not defined within a package)

• Package procedures that have overloaded versions

Note: Do not try to implement commit or full rollback statements in
your custom PL/SQL. This will interfere with the API processing and
will generate an error.

When a parameter name is defined it must match exactly the name of a data value
parameter that is available at the user hooks where it will be executed. The parameter
must have the same datatype as the user hook data value. Any normal implicit PL/SQL
data conversions are not supported from user hooks. All the package procedure
parameters must be defined as IN, without any default value. OUT and IN OUT
parameters are not supported in the custom package procedure.

At all user hooks many data values are available. When implementing a custom
package procedure every data value does not have to be listed. Only the data values for
parameters that are required for the custom PL/SQL need to be listed.

A complete list of available user hooks, data values provided and their datatypes can
be found by executing a PL/SQL script.

See: API User Hook Support Scripts, page 4-208

When you have completed your custom PL/SQL package you should execute the package
creation scripts on the database and test that the package procedure compiles. Then test
that this carries out the intended validation on a test database.

Example
A particular enterprise requires the previous last name for all married females when they
are entered in the system. This requirement is not implemented in the core product, but
an implementation team can code this extra validation in a separate package procedure
and call it using API user hooks. When marital status is ‘Married’ and sex is ‘Female’, use
a PL/SQL exception to raise an error if the previous last name is null. The following
sample code provides a server-side package procedure to perform this validation rule.

4-198 Oracle Human Resources Management System Implementation Guide (US)

Create Or Replace Package cus_extra_person_rules as
procedure extra_name_checks
(p_previous_last_name in varchar2
,p_sex in varchar2
,p_marital_status in varchar2
);

end cus_extra_person_rules;
/
exit;
Create Or Replace Package Body cus_extra_person_rules as
procedure extra_name_checks
(p_previous_last_name in varchar2
,p_sex in varchar2
,p_marital_status in varchar2
) is

begin
-- When the person is a married female raise an
-- error if the previous last name has not been
-- entered
if p_marital_status = ’M’ and p_sex = ’F’ then
if p_previous_last_name is null then
dbms_standard.raise_application_error
(num => -20999
,msg => ’Previous last name must be entered for married f

emales’
);

end if;
end if;

end extra_name_checks;
end cus_extra_person_rules;
/
exit;

Linking Custom Procedures to User Hooks
After you have executed the package creation scripts on your intended database, link the
custom package procedures to the appropriate API user hooks. The linking between user
hooks and custom package procedures is defined as data in the HR_API_HOOK_CALLS
table.

There are three special APIs to maintain data in this table:

• hr_api_hook_call_api.create_api_hook_call

• hr_api_hook_call_api.update_api_hook_call

• hr_api_hook_call_api.delete_api_hook_call

HR_API_HOOK_CALLS
• The HR_API_HOOK_CALLS table must contain one row for each package

procedure linking to a specific user hook.

• The API_HOOK_CALL_ID column is the unique identifier.

• The API_HOOK_ID column specifies the user hook to link to the package procedure.

This is a foreign key to the HR_API_HOOKS table. Currently the user
hooks mechanism only support calls to package procedures, so the
API_HOOK_CALL_TYPE column must be set to ’PP’.

• The ENABLED_FLAG column indicates if the user hook call should be included.

Implementation Guide 4-199

It must be set to ’Y’ for Yes, or ’N’ for No.

• The SEQUENCE column is used to indicate the sequence of hook calls. Lowest
numbers are processed first.

The user hook mechanism is also used by Oracle to supply application, legislation,
and vertical market specific PL/SQL. The sequence numbers from 1000 to 1999
inclusive, are reserved for Oracle internal use.

You can use sequence numbers less than 1000 or greater than 1999 for custom
logic. Where possible we recommend you use sequence numbers greater than
2000. Oracle specific user hook logic will then be executed first. This will avoid the
need to duplicate Oracle’s additional logic in the custom logic.

There are two other tables that contain data used by the API user hook
mechanism, HR_API_MODULES and HR_API_HOOKS.

HR_API_MODULES Table
The HR_API_MODULES table contains a row for every API code module that contains
user hooks.

HR_API_MODULES Main Columns Description

API_MODULE_ID Unique identifier

API_MODULE_TYPE A code value representing the type of the API
code module.
’BP’ for Business Process APIs - the published
APIs.
’RH’ for the internal Row Handler code
modules.

MODULE_NAME The value depends on the module type.
For ’BP’ the name of the published API, such as
CREATE_EMPLOYEE.
For ’RH’ modules the name of the table, such as
PER_PERIODS_OF_SERVICE.

HR_API_HOOKS Table
The HR_API_HOOKS table is a child of the HR_API_MODULES table. It contains a
record for each user hook in a particular API code module.

HR_API_HOOKS Main Columns Description

API_HOOK_ID Unique identifier

API_MODULE_ID Foreign key. Parent ID to the HR_API_
MODULES table.

API_HOOK_TYPE Code value representing the type of user hook.

The API_HOOK_TYPE code represents the type of user hook, as shown in the following
table:

4-200 Oracle Human Resources Management System Implementation Guide (US)

User Hook Type API_HOOK_TYPE

After Insert AI

After Update AU

After Delete AD

Before Process BP

After Process AP

Caution: Data in the HR_API_MODULES and HR_API_HOOKS tables
is supplied and owned by Oracle. Oracle also supplies some data in the
HR_API_HOOK_CALLS table. Customers must not modify data in
these tables. Any changes you make to these tables may affect product
functionality and may invalidate your support agreement with Oracle.

Note: Data in these tables may come from more than one source and
API_MODULE_IDs and API_HOOK_IDs may have different values on
different databases. Any scripts you write must allow for this difference.

Full details for each of these tables can be found in the Oracle HRMS electronic Technical
Reference Manual (eTRM) available on MetaLink.

Example
For the example where you want to make sure previous name is entered, the extra
validation needs to be executed whenever a new person is entered into the system. The
best place to execute this validation is from the PER_ALL_PEOPLE_F row handler After
Insert user hook.

The following PL/SQL code is an example script to call the create_api_hook_call API. This
tells the user hook mechanism that the cus_extra_person_rules.extra_name_checks package
procedure should be executed from the PER_ALL_PEOPLE_F row handler After Insert
user hook.

Implementation Guide 4-201

declare
--
-- Declare cursor statements
--
cursor cur_api_hook is
select ahk.api_hook_id
from hr_api_hooks ahk

, hr_api_modules ahm
where ahm.module_name = ’PER_ALL_PEOPLE_F’
and ahm.api_module_type = ’RH’
and ahk.api_hook_type = ’AI’
and ahk.api_module_id = ahm.api_module_id;

--
-- Declare local variables
--
l_api_hook_id number;
l_api_hook_call_id number;
l_object_version_number number;

begin
--
-- Obtain the ID if the PER_ALL_PEOPLE_F
-- row handler After Insert API user hook.
--
open cursor csr_api_hook;
fetch csr_api_hook into l_api_hook_id;
if csr_api_hook %notfound then

close csr_api_hook;
dbms_standard.raise_application_error

(num => -20999
,msg => ’The ID of the API user hook was not found’
);

end if;
close csr_api_hook;
--
-- Tell the API user hook mechanism to call the
-- cus_extra_person_rules.extra_name_checks
-- package procedure from the PER_ALL_PEOPLE_F row
-- handler module ’After Insert’ user hook.
--
hr_api_hook_call_api.create_api_hook_call
(p_validate => false
,p_effective_date =>

to_date(’01-01-1997’, ’DD-MM-YYYY’)
,p_api_hook_id => l_api_hook_id
,p_api_hook_call_type => ’PP’
,p_sequence => 3000
,p_enabled_flag => ’Y’
,p_call_package =>

’CUS_EXTRA_PERSON_RULES’
,p_call_procedure => ’EXTRA_NAME_CHECKS’
,p_api_hook_call_id => l_api_hook_call_id
,p_object_version_number =>

l_object_version_number
);

commit;
end;

4-202 Oracle Human Resources Management System Implementation Guide (US)

In this example, the previous_last_name, sex andmarital_status values can be updated. If
you want to perform the same checks when the marital_status is changed, then the
same validation will need to be executed from the PER_ALL_PEOPLE_F After Update
user hook. As the same data values are available for this user hook, the same custom
package procedure can be used. Another API hook call definition should be created in
HR_API_HOOK_CALLS by calling the create_api_hook_call API again. This time the
p_api_hook_id parameter needs to be set to the ID of the PER_ALL_PEOPLE_F After
Update user hook.

The API User Hook Pre-processor Program
Adding rows to the HR_API_HOOK_CALLS table does not mean the extra logic will be
called automatically from the user hooks. Youmust run the API user hooks pre-processor
program after the definition and the custom package procedure have both been created
in the database. This looks at the calling definitions in the HR_API_HOOK_CALLS table
and the parameters listed on the custom server-side package procedures.

Note: Another package body will be dynamically built in the
database. This is known as the hook package body.

There is no operating system file that contains a creation script for the hook package
body. It is dynamically created by the API user hook pre-processor program. Assuming
the various validation checks succeed, this package will contain hard coded calls to
the custom package procedures.

If no extra logic is implemented, the corresponding hook package body will still be
dynamically created. It will have no calls to any other package procedures.

The pre-processor program is automatically executed at the end of some server-side
Oracle install and upgrade scripts. This ensures versions of hook packages bodies exist
in the database. If you do not want to use API user hooks then no further setup steps
are required.

The user hook mechanism is used by Oracle to provide extra logic for some
applications, legislations, and vertical versions of the products. Calls to this PL/SQL are
also generated into the hook package body.

Caution: It is IMPORTANT that you do not make any direct edits to
the generated hook package body. Any changes you make may affect
product functionality and may invalidate your support agreement
with Oracle. If you choose to make alternations, these will be lost the
next time the pre-processor program is run. This will occur when the
Oracle install or upgrade scripts are executed. Other developers in the
implementation team could execute the pre-processor program.

If any changes are required, modify the custom packages or the calling definition data in
the HR_API_HOOK_CALLS table. Then rerun the pre-processor program to generate
a new version of the hook package body. For example, if you want to stop calling a
particular custom package procedure then:

1. Call the hr_api_hook_call_api.update_api_hook_call API, setting the p_enabled_flag
parameter to ’N’.

2. Execute the API user hook pre-processor program so the latest definitions are read
again and the hook package body is dynamically recreated.

Implementation Guide 4-203

If you want to include the call again, then repeat these steps and set the p_enabled_flag
parameter in the hr_api_hook_call_api.update_api_hook_call API to ’Y’.

If you want to permanently remove a custom call from a user hook then remove the
corresponding calling definition. Call the hr_api_hook_call_api.delete_api_hook_call API.

Remember that the actual call from the user hook package body will be removed only
when the pre-processor program is rerun.

Running the Pre-processor Program
The pre-processor program can be run in two ways.

• Execute the hrahkall.sql script in SQL*Plus

This creates the hook package bodies for all of the different API code modules.

• Execute the hrahkone.sql script in SQL*Plus

This creates the hook package bodies for just one API code module - one main API
or one internal row handler module.

An api_module_id must be specified with this script. The required ID values are
found in the HR_API_MODULES table.

Both the hrahkall.sql and hrahkone.sql scripts are stored in the $PER_TOP/admin/sql
operating system directory.

Example
Continuing the previous example: After the calling definitions and custom package
procedure have been successfully created in the database the api_module_id can be
found with the following SQL statement:

select api_module_id
from hr_api_modules
where api_module_type = ’RH’

and module_name = ’PER_ALL_PEOPLE_F’;

Then execute the hrahkone.sql script. When prompted, enter the api_module_id returned
by the SQL statement above. This will generate the hook package bodies for all of the
PER_ALL_PEOPLE_F row handler module user hooks After Insert, After Update and
After Delete.

Log Report
Both pre-processor programs produce a log report. The hrahkall.sql script only lists
errors. So if no text is shown after the ’Created on’ statement, all the hook package
bodies have been created without any PL/SQL or application errors. The hrahkone.sql
script outputs a successful comment or error details. If any errors occurred, a PL/SQL
exception is deliberately raised at the end of both scripts. This highlights to the calling
program that a problem has occurred.

When errors do occur the hook package body code may still be created with valid
PL/SQL. For example, if a custom package procedure lists a parameter that is not
available, the hook package body is still successfully created. No code is created to
execute that particular custom package procedure. If other custom package procedures
need to be executed from the same user hook, code to perform those calls is still created
- assuming they pass all the standard PL/SQL checks and validation checks.

Important: It is important that you check these log reports to confirm the
results of the scripts. If a call could not be built the corresponding row
in the HR_API_HOOK_CALLS table will also be updated. The STATUS

4-204 Oracle Human Resources Management System Implementation Guide (US)

column will be set to ’I’ for Invalid Call and the ENCODED_ERROR
column will be populated with the AOL application error message in
the encoded format.

The encoded format can be converted into translated text by the following PL/SQL:

declare
l_encoded_error varchar2(2000);
l_user_read_text varchar2(2000);

begin
-- Substitute ??? with the value held in the
-- HR_API_HOOK_CALLS.ENCODED_ERROR column.
l_encoded_error := ???;
fnd_message.set_encoded(encoded_error);
l_user_read_text := fnd_message.get;

end;

It is your responsibility to review and resolve any problems recorded in the log
reports. Options:

• Alter the parameters in the custom package procedures.

• If required, change the data defined in the HR_API_HOOK_CALLS table.

When you have resolved any problems, rerun the pre-processor program.

The generated user hook package bodies must be less than 32K in size. This restriction
is a limit in PL/SQL. If you reach this limit, you should reduce the number of separate
package procedures called from each user hook. Try to combine your custom logic into
fewer procedures.

Note: Each linked custom package procedure can be greater than 32K in
size. Only the user hook package body that is dynamically created in the
database must be less than 32K.

One advantage of implementing the API user hook approach is that your extra logic is
called every time the APIs are called. This includes any HRMS Forms or Web pages that
perform their processing logic by calling the APIs.

Important: The user hook mechanism that calls your custom logic is
supported as part of the standard product. However the logic in your
own custom PL/SQL procedures cannot be supported by Oracle Support.

Recommendations for Using the Different Types of User Hook
Consider your validation rules in two categories:

• Data Item Rules

Rules associated with a specific field in a form or column in a table. For
example, grade assigned must always be valid for the Job assigned.

• Business Process Rules

Rules associated with a specific transaction or process. For example, when you
create a secondary assignment you must include a special descriptive segment value.

Data Item Rules
The published APIs are designed to support business processes. This means that
individual data items can be modified by more than one API. To perform extra data

Implementation Guide 4-205

validation on specific data items (table columns), use the internal row handler module
user hooks.

By implementing any extra logic from the internal row handler code user hooks, you
will cover all of the cases where that column value can change. Otherwise you will need
to identify all the APIs that can set or alter that database column.

Use the After Insert, After Update or After Delete user hooks for data validation. These
hooks are preferred because all of the validation associated with the database table row
must be completed successfully before these user hooks are executed. Any data values
passed to custom logic will be valid as far as the core product is concerned.

If the hook call definition is created with a sequence number greater than 1999, then
any Oracle legislation or vertical market specific logic will also have been successfully
executed.

Note: If extra validation is implemented on the After Insert user
hook, and the relevant data values can be updated, then you should
consider excluding similar logic from the After Update user hook. Old
values - before DML, are available from the After Update and After Delete
user hooks.

Business Process Rules
If you want to detect that a particular business event has occurred, or you only want
to perform some extra logic for a particular published API, use the Before Process and
After Process user hooks.

Where possible, use the After Process user hook, as all core product validation for the
whole API will have been completed. If you use the Before Process user hook you must
consider that all data values could be invalid in your custom logic. None of the core
product validation has been carried out at that point. References to the HR_LOOKUPS
view, any views that join to HR_LOOKUPS and lookup code validation cannot be
performed at the Before Process user hook. Values that affect the lookup code validation
are not derived and set until after this point.

Data values provided at the Before Process and After Process user hooks will be the same
as the values passed into the API. For update type business processes the API caller
has to specify only the mandatory parameters and the values they actually want to
change. When the API caller does not explicitly provide a parameter value, the system
reserved default values will be used, as shown in the vollowing table:

Data Type Default Value

varchar2 hr_api.g_varchar2

number hr_api.g_number

date hr_api.g_date

Depending on the parameters specified by the API caller, these default values may be
provided to Before Process and After Process user hooks. That is, the existing column
value in the database is only provided if the API calling code happens to pass the same
new value. If the real database value is required then the custom package procedures
must select it explicitly from the database.

4-206 Oracle Human Resources Management System Implementation Guide (US)

This is another reason why After Update and After Delete user hooks are preferred. At the
row handler user hooks the actual data value is always provided. Any system default
values will have been reset with their existing database column value in the row handler
modules. Any extra logic from these user hooks does need to be concerned with the
system reserved default values.

If any After Process extra logic must access the old database values then a different user
hook needs to be used. It will not be possible to use the After Process user hook because
all the relevant database rows will have been modified and the old values will not be
provided by the user hook mechanism. Where API specific extra logic requires the old
values, they will need to be explicitly selected in the Before Process user hook.

User Hooks and Alternative Interface APIs
Alternative Interface APIs provide an alternative version of the generic APIs. Currently
there are legislative or vertical specific versions of the generic APIs.

For example, create_us_employee and create_gb_employee are two alternative interfaces to
the generic create_employee API. These alternatives make clear how specific legislative
parameters are mapped onto the parameters of the generic API.

In the future other alternative APIs may be provided to support specific implementations
of generic features, such as elements and input values.

Important: User hooks are not provided in alternative interface
APIs. User hooks are provided only in the generic APIs. In this example
the user hooks are provided in the create_employee API and not in the
create_us_employee and create_gb_employee APIs.

Alternative interface APIs always perform their processing by executing the generic API
and any extra logic in the generic API user hooks is executed automatically when the
alternative APIs are called. This guarantees consistency in executing any extra logic and
reduces the administrative effort to set up and maintain the links.

Example 1
You want to perform extra validation on the job and payroll components of employee
assignments to make sure only ‘Machine Workers’ are included in the ‘Weekly’
payroll. There is more than one published API that allows the values to be set when a
new assignment is created or an existing assignment is updated.

Tip: Implement the extra validation in a custom server-side package
procedure. Link this to the two user hooks, After Insert and After
Update, in the PER_ALL_ASSIGNMENTS_F table internal row handler
module.

Example 2
You have a custom table and you want to create data in this table when a new employee
is created in the system, or an existing applicant is converted into an employee. The data
in the custom table does not need to be created in any other scenario.

Tip: Implement the third party table; insert DML statements in a custom
server-side package procedure. Link this to two user hooks: After Process
in the create_employee API module and After Process in the hire_applicant
API module.

Implementation Guide 4-207

Comparison with Database Triggers
User hooks have a number of advantages over database triggers for implementing extra
logic.

• Database triggers can only be defined against individual table DML statements. The
context of a particular business event may be unavailable at the table level because
the event details are not held in any of the columns on that table.

• Executing a database trigger is inefficient compared with executing a server-side
package procedure.

• The mutating table restriction stops values being selected from table rows that are
being modified. This prevents complex multi-row validation being implemented
from database triggers. This complex validation can be implemented from API user
hooks, as there are no similar restrictions.

• On DateTrack tables it is extremely difficult to implement any useful logic from
database triggers. With many DateTrack modes, a single transaction may affect more
than one row in the same database table. Each dated instance of a DateTrack record
is physically held on a different database row.

For example, a database trigger that fires on insert cannot tell the difference between
a new record being created or an insert row from a DateTrack ’UPDATE’ operation.

Note: DateTrack ’UPDATE’ carries out one insert and one update
statement. The context of the DateTrack mode is lost at the database
table level. You cannot re-derive this in a database trigger due to the
mutating table restriction.

• With DateTrack table row handler user hooks more context and data values
are available. The After Insert user hook is only executed when a new record is
created. The DateTrack mode name is available at After Update and After Delete user
hooks. The date range over which the record is being modified is also available at
these user hooks. The validation_start_date value is the first day the record is affected
by the current DateTrack operation. The last day the record is affected is known as
the validation_end_date.

API User Hook Support Scripts
You can create a complete list of available user hooks and the data values provided
by executing the hrahkpar.sql script in SQL*Plus. This script can be found in the
$PER_TOP/admin/sql operating system directory. As the output is long, it is
recommended to spool the output to an operating system text file.

The user hook pre-processor program can be executed in two ways. To create the hook
package bodies for all of the different API code modules, execute the hrahkall.sql script
in SQL*Plus. To create the hook package bodies for just one API code module, such as
one main API or one internal row handler module, execute the hrahkone.sql script in
SQL*Plus. An api_module_id must be specified with this second script. The required
api_module_id value can be obtained from the HR_API_MODULES table. Both the
hrahkall.sql and hrahkone.sql scripts can be found in the $PER_TOP/admin/sql operating
system directory.

Using APIs as Building Blocks
The API code files supplied with the product must not be edited directly for any custom
use.

4-208 Oracle Human Resources Management System Implementation Guide (US)

Caution: Any changes you make may affect product functionality
and may invalidate your support agreement with Oracle and prevent
product upgrades.

Oracle Applications supports direct calls to the published APIs. Direct calls to any other
server-side package procedures or functions written as part of the Oracle HRMS product
set are not supported, unless explicitly specified.

There are supported methods for adding custom logic, using the APIs provided. In
addition to the API user hook mechanism, you can use the published APIs as building
blocks to construct custom APIs.

Example
Suppose you always obtain a new employee’s home address when they join your
enterprise. The address details must be recorded in the HR system because you run
reports that expect every employee to have an address.

You could write your own API to create new employees with an address. This API
would call the standard create_employee API and then immediately afterwards call the
standard create_address API.

Create Employee/Create Address APIs

With API user hooks it is not possible to change any of the data values. So the building
block approach can be used to default or set any values before the published API is called.

The major disadvantage with the building block approach is that any Forms or Web
pages supplied by Oracle will NOT call any custom APIs. If a user interface is required
then you must also create your own custom Forms or Web pages to implement calls to
your custom APIs.

Handling Object Version Numbers in Oracle Forms
If you intend to write your own Forms that call the APIs, you will need to implement
additional Forms logic to correctly manage the object version number. This is required
because of the way Forms can process more than one row in the same commit unit.

Example
Consider the following example of what can happen if only one form’s block item is
used to hold the object version number:

1. The user queries two rows and updates both.

Row OVN in Database OVN in Form

A 6 6

B 3 3

2. The user presses commit.

Row A has no user errors and is validated in the API. The OVN is updated in the
database and the new OVN is returned to the form.

Implementation Guide 4-209

Row OVN in Database OVN in Form

A 7 7

B 3 3

3. The form calls the API again for row B.

This time there is a validation error on the user-entered change. An error message is
raised in the form and Forms issues a rollback to the database. However, the OVN
for row A in the form is now different from the OVN in the database.

Row OVN in Database OVN in Form

A 6 7

B 3 3

4. The user corrects the problem with row B and commits again.

Now the API will error when it validates the changes to row A. The two OVNs
are different.

Solution
The solution to this problem is to use a non-basetable item to hold the new version
number. This item is not populated at query time.

1. The user queries two rows and updates both.

Row OVN in Database OVN in Form New_OVN in Form

A 6 6

B 3 3

2. The user presses commit.

Row A is valid, so the OVN is updated in the database and the new OVN is returned
to the form.

Note: The actual OVN in the form is not updated.

Row OVN in Database OVN in Form New_OVN in Form

A 7 6 7

B 3 3

3. The forms calls the API again for row B.

The validation fails and an error message is raised in the form. Forms issues a
rollback to the database.

4-210 Oracle Human Resources Management System Implementation Guide (US)

Row OVN in Database OVN in Form New_OVN in Form

A 6 6 7

B 3 3

4. The user corrects the problem with row B and commits again.

The API is called to validate row A again. The OVN value is passed, not the
NEW_OVN. There is no error because the OVN in the database now matches the
OVN it was passed. The API passes back the updated OVN value.

Row OVN in Database OVN in Form New_OVN in Form

A 7 6 7

B 3 3

5. The API is called again to validate row B.

The validation is successful; the OVN is updated in the database and the new OVN
value is returned to the form. The commit in the form and the database is successful.

Row OVN in Database OVN in Form New_OVN in Form

A 7 6 7

B 4 3 4

What would happen when the user updates the same row again without
re-querying? Following on from the previous step:

6. When the user starts to update row A, the on-lock trigger will fire.

The trigger updates the OVN when New_OVN is not null. (Theoretically the on-lock
trigger will only fire if the previous commit has been successful. Therefore the
New_OVN is the OVN value in the database.)

Row OVN in Database OVN in Form New_OVN in Form

A 7 7 7

7. The on-lock trigger then calls the API to take out a lock using OVN.

The lock is successful as the OVN values match.

Row OVN in Database OVN in Form New_OVN in Form

A 7 7 7

8. The user continues with the update, the update API is called, and the commit
is successful.

Implementation Guide 4-211

Row OVN in Database OVN in Form New_OVN in Form

A 8 7 8

If user does delete instead of update, the on_lock will work in the same way. When
key_delrec is pressed, the delete API should be called with p_validate set to true. Doing
so ensures that the delete is valid without removing the row from the database.

Therefore, the OVN value in the form should be set with the New_OVN, when
New_OVN is not null. This ensures that the delete logic is called with the OVN value in
the database.

However, there is another special case that has to be taken into consideration. It is
possible for the user to update a row (causing a new OVN value to be returned from the
API), the update of the next row in the same commit unit fails, the user navigates back to
the first row and decides to delete it. To stop the new_OVN from being copied into the
OVN in the form, only do the copy in key_delrec if the record_status is query.

Example Code Using the Grade Rate Values
The above descriptions are handled in the following example. In this
example, <block_name>.object_version_number is a basetable item and
<block_name>.new_object_version_number is non-basetable.

Forms Procedure Called from the ON-INSERT Trigger
procedure insert_row is
begin
--
-- Call the api insert routine
--
hr_grade_api.create_grade_rate_value
(<parameters>
,p_object_version_number => :<block_name>.object_version_num

ber
,p_validate => false
);

end insert_row;

Forms Procedure Called from the ON-UPDATE Trigger
procedure update_row is
l_api_ovn number;

begin
-- Send the old object version number to the API
l_api_ovn := :<block_name>.object_version_number;
--
-- Call the api update routine
--
hr_grade_api.update_grade_rate_values
(<parameters>
,p_object_version_number => l_api_ovn
,p_validate => false
);

-- Remember the new object version number returned from the AP
I

:<block_name>.new_object_version_number := l_api_ovn;
end update_row;

4-212 Oracle Human Resources Management System Implementation Guide (US)

Forms Procedure Called from the ON-DELETE Trigger
procedure delete_row is
begin
--
-- Call the api delete routine
--
hr_grade_api.delete_grade_rate_values
(<parameters>
,p_object_version_number => :<block_name>.object_version_num

ber
,p_validate => false
);

end delete_row;

Implementation Guide 4-213

Forms Procedure Called from the KEY-DELREC Trigger
procedure key_delrec_row is
l_api_ovn number;
l_rec_status varchar2(30);
begin
-- Ask user to confirm they really want to delete this row.
--
-- Only perform the delete checks if the
-- row really exists in the database.
--
l_rec_status := :system.record_status;
if (l_rec_status = ‘QUERY’) or (l_rec_status = ‘CHANGED’) then
--
-- If this row just updated then the
-- new_object_version_number will be not null.
-- If that commit was successful then the
-- record_status will be QUERY, therefore use
-- the new_object_version_number. If the commit
-- was not successful then the user must have
-- updated the row and then decided to delete
-- it instead. Therefore just use the
-- object_version_number.

--(Cannot just copy the new_ovn into ovn
-- because if the new_ovn does not match the
-- value in the database the error message will
-- be displayed twice. Once from key-delrec and
-- again when the on-lock trigger fires.)
--
if (:<block_name>.new_object_version_number is not null) an

d
(l_rec_status = ’QUERY’) then
l_api_ovn := :<block_name>.new_object_version_number;

else
l_api_ovn := :<block_name>.object_version_number;

end if;
--
-- Call the api delete routine in validate mode
--
hr_grade_api.delete_grade_rate_values
(p_validate => true

,<parameters>
,p_object_version_number => l_api_ovn
,p_validate => true
);

end if;
--
delete_record;
end key_delrec_row;

4-214 Oracle Human Resources Management System Implementation Guide (US)

Forms Procedure Called from the ON-LOCK Trigger
procedure lock_row is
l_counter number;

begin
l_counter := 0;
LOOP
BEGIN
l_counter := l_counter + 1;
--
-- If this row has just been updated then
-- the new_object_version_number will be not null.
-- That commit unit must have been successful for the
-- on_lock trigger to fire again, so use the
-- new_object_version_number.
--
if :<block_name>.new_object_version_number is not null then

:<block_name>.object_version_number :=
:<block_name>.new_object_version_number;

end if;
--
-- Call the table handler api lock routine
--
pay_grr_shd.lck
(<parameters>
,p_object_version_number => :<block_name>.object_version

_number
);

return;
EXCEPTION
When APP_EXCEPTIONS.RECORD_LOCK_EXCEPTION then
APP_EXCEPTION.Record_Lock_Error(l_counter);

END;
end LOOP;

end lock_row;

DataPump

Oracle HRMS Data Pump
This essay provides the information that you need to understand and use the Oracle
HRMS Data Pump. To understand this information you should already have a good
functional and technical knowledge of the Oracle HRMS product architecture, including:

• The data model for Oracle HRMS and the importance of DateTrack.

• The API strategy and how to call APIs directly.

• How to code PL/SQL. Some PL/SQL code is normally required to convert legacy
data for use with Data Pump.

• The HRMS parameters that control the running of concurrent processes (for
example, to make the process run in parallel).

Restrictions
This essay does not describe the entire Data Pump schema in detail. Details are given
as needed for some of the tables and in most cases you will use the PL/SQL routines to

Implementation Guide 4-215

insert data to these batch interface tables. Full details are provided in the Oracle HRMS
electronic Technical Reference Manual (eTRM), available on MetaLink.

Oracle delivers seed data to enable Data Pump API calls to use features such as passing
in user values instead of system identifiers. This support is not available for all of the
APIs that are delivered with Oracle HRMS. This essay describes a mechanism for calling
APIs using Data Pump where the supporting seed data is not present.

For the list of supported APIs, see Publicly Callable Business Process APIs. , Oracle
HRMS Configuring, Reporting, and System Administration GuideSupport for other APIs is
planned in future releases.

When purging data from the Data Pump tables, take extra care that you do not
delete information on User Keys that you might need for future loading of external
data. See: User Key Values, page 4-242.

Contents
This essay includes the following sections:

• Overview, page 4-217

Provides an overview of the Data Pump, including its key components and special
features.

• Using Data Pump, page 4-219

Describes the steps for using Data Pump, at a high level. Each step is explained in
more detail in the following sections:

• Running the Meta-Mapper, page 4-220.

• Loading Data Into the Batch Tables, page 4-228.

• Running the Data Pump Process, page 4-231.

• Finding and Fixing Errors, page 4-233

• Purging Data, page 4-236

• Sample Code, page 4-238

Illustrates how you could call the batch lines procedures.

• Notes on Using the Generated Interfaces, page 4-240

Explains some of the factors you should consider when using the view and PL/SQL
packages generated by the Meta-Mapper process for each API.

• Utility Procedures Available with Data Pump, page 4-243

Describes the utility procedures that are provided in the HR_PUMP_UTILS package.

• Using Data Pump with Unsupported APIs, page 4-245

Outlines techniques for calling APIs using Data Pump in the absence of seed data
for Data Pump support.

• APIs Supported by the GENERATEALL Command, page 4-244

Lists the APIs for which the GENERATEALL command generates code.

• Table and View Descriptions, page 4-244

Describes the specific tables and views you use with Data Pump.

4-216 Oracle Human Resources Management System Implementation Guide (US)

Overview
Oracle HRMS has a set of predefined APIs that are business process related and you are
strongly advised always to use these APIs to load data. The predefined APIs enforce
all the business rules in the system and guarantee the integrity of any data loaded into
the system.

The Oracle HRMS Data Pump supports rapid implementation by simplifying and
standardizing the common tasks associated with loading batch data into the Oracle
HRMS tables. This is done by providing a set of predefined batch tables and standard
processes that simplify the tasks of data-loading using the supported APIs.

With the Oracle Data Pump you:

1. Map the data items from your external system to the parameter values of the
appropriate APIs.

Because you map data to the parameters of the APIs you do not need to know the
complexity of the HRMS data model. For example, to create an employee you need
to co-ordinate inserting data into multiple tables. The create_employee API does this
automatically, using the parameter values you pass in.

A special feature of the Data Pump is that you can use user values in place of system
IDs for the API parameters. These are translated automatically by the Data Pump.

2. Load your data into a single generic batch lines table. (There is also a single batch
header table to help you manage your batch loading processes.)

The Data Pump works with a single generic batch lines table. It generates a specific
view for each API so that you can easily review and update the data for each API
using the parameter names for the API.

Also, there are PL/SQL interface routines to insert your external data into the generic
batch lines table.

3. Run a standard process that automatically calls the appropriate API for each line of
data in the batch table.

Components of Data Pump
Data Pump consists of the following components:

Meta-Mapper Process
This process generates the specific PL/SQL procedures and views for each of the
supported API modules you want to use.

Use the Meta-Mapper to generate a set of views that you can use to examine or update
data in the batch tables. For example you might want to correct data or change the
order in which data is loaded.

Note: The Meta-Mapper is similar to an install process. You must run
the Meta-Mapper before making a data pump API call. Meta-Mapper
usually runs during the loading of your software, but there are occasions
when you may need to run Meta-Mapper manually. For example, if you
cannot find Meta-Mapper, or if you version displays as invalid, then you
should run Meta-Mapper manually.

Batch Header Table and Batch Lines Table
Use these two tables to hold the header and lines information from your external data.

• HR_PUMP_BATCH_HEADERS

Implementation Guide 4-217

• HR_PUMP_BATCH_LINES

Note: The Meta-Mapper creates views based on the batch lines
table called HRDPV_<API Procedure Name>, for example, HRDPV_
CREATE_EMPLOYEE.

PL/SQL Routines
Use the predefined and generated PL/SQL routines to insert your external or legacy data
into the batch lines table. Meta-Mapper generates a separate routine for each API that
is supported by the Data Pump.

• HR_PUMP_UTILS.CREATE_BATCH_HEADER(...)

• HRDPP_<API Procedure Name>.INSERT_BATCH_LINES

For example, HRDPP_ CREATE_EMPLOYEE .INSERT_BATCH_LINES

There is also a help routine to provide detailed information on the parameter options
for specific procedures.

• HR_PUMP_META_MAPPER.HELP (<package_name>, <procedure_name>)

The Data Pump Engine Process
The Data Pump Engine process is a standard concurrent process that performs the actual
data validation and loading operations. It takes these parameters:

• Batch name

• Processing mode

• Action Parameter Group

Special Features of Data Pump
The following is a list of the special features provided with Data Pump:

User Keys
Data Pump enables you to define the combination of data items that uniquely identify
records for loading into Oracle HRMS. For example, when you are loading data for
a Person, you could use a combination of Last Name, First Name, Date of Birth, and
Gender to identify that person uniquely in Oracle HRMS.

You store these user key definitions in the tableHR_PUMP_BATCH_LINES_USER_KEYS.

Use Actual Values
In nearly all cases you can load data using actual names or values without having to
identify a system value in Oracle HRMS. The conversion of name to ID is transparent
to the user. For example, you can use a real Job Name without needing to identify the
JOB_ID in Oracle HRMS; or you can use the value ‘Male’ for gender without needing to
know that the code value is ‘M’.

Alternative Meta-Mapper Generation Mode
It is possible to call the Meta-Mapper so that Data PumpAPI call is essentially a direct call
to the API. This feature is most useful in the absence of seed data for Data Pump support.

Automatic Parallel Processing Of Batch Load Process
Data Pump automatically supports parallel processing on multi-processor systems
without any extra code. You turn this on by inserting or updating a row for THREADS
in the PAY_ACTION_PARAMETER_VALUES table.

4-218 Oracle Human Resources Management System Implementation Guide (US)

This is the same parameter that controls parallel processing for the Payroll Run and
other processes in Oracle HRMS.

Note: When you are using parallel processing, use the P_LINK_VALUE
parameter in the batch lines to group transactions that must be run
within the same thread.

Explicit User Ordering of Operations
When loading batch lines with related data you must perform some operations in a strict
sequence. For example, entering salary information for an employee must take place
after the employee record has been created.

With Data Pump, you use the P_USER_SEQUENCE parameter to control the order of
processing of batch lines.

Note: Data Pump cannot validate the sequence numbers you enter. It
accepts the sequence and tries to process as instructed. If you use
incorrect numbers the process may return validation errors when it
tries to load your data in the wrong sequence. See: Running the Data
Pump, page 4-231.

Validation Mode Operation
When you submit the Data Pump concurrent process you can choose to run it in
validation mode. This enables you to review errors in batches or in related records in a
batch and to change them before any of them are committed to the HRMS database.

Processing Batches
When you run Data Pump the process only loads data that has not already been
processed successfully. This means that you can run a batch, review and correct errors
for any specific lines, and then rerun the same batch. You can repeat this process until
you have successfully loaded all lines in the batch.

To do this you submit the concurrent process with the same batch name. All unprocessed
or errored lines are reprocessed automatically.

Logging Options
There are many logging options with Data Pump that help you find errors when running
the process.

Using Data Pump
To use Data Pump, follow this sequence of tasks:

1. Decide which of the supported API modules you require for loading your external
data and run the Meta-Mapper to generate interface procedures for these APIs.

See: Running the Meta-Mapper, page 4-220.

2. Use the predefined PL/SQL routines and those created by the Meta-Mapper to
transfer your external data into the Data Pump tables.

See: Loading Data Into the Batch Tables, page 4-228.

Note: For each entity that requires a User Key you must
include the value you want to use as a unique identifier. For
example, the parameters P_PERSON_USER_KEY and
P_ASSIGNMENT_USER_KEY for create_employee.

Implementation Guide 4-219

3. Optional. Run Data Pump in validation mode to check and correct data before it
is loaded.

See: Running the Data Pump Process, page 4-231.

4. Run Data Pump to load data from batch tables into the Oracle HRMS tables.

Note: When you load a record for the first time, Data Pump
automatically inserts your user key value from the batch
lines, and the unique key ID generated by the API into the
HR_PUMP_BATCH_LINE_USER_KEYS table. This combination is
used for all further data loads that update existing records in Oracle
HRMS.

For example, P_PERSON_USER_KEY = USER_KEY_VALUE and
PERSON_ID = UNIQUE_KEY_ID.

5. Review any errors and correct causes.

See: Finding and Fixing Errors, page 4-233.

6. If necessary, rerun Data Pump to load corrected batch lines.

See: Rerunning the Data Pump Process, page 4-236.

Repeat 5 and 6 until all lines are successfully loaded.

7. Optional. Purge data from the batch tables.

See: Purging Data, page 4-236.

Running the Meta-Mapper
Based on your implementation you might decide that you do not need to use all of the
predefined APIs to load external data. Run the Meta-Mapper for all APIs or for each
single API that you select. The Meta-Mapper generates a specific PL/SQL package and
view for each API.

Note: For APIs with overloaded interfaces, the Meta-Mapper will only
generate code for the latest interface. The latest interface is the interface
that has the greatest number of mandatory parameters.

Use the following SQL*PLUS command to generate packages and views for a number of
APIs. (Not, however, all APIs, as the GENERATEALL name appears to suggest):

sql> execute hr_pump_meta_mapper.generateall;

See also: APIs Supported by the GENERATEALL Command., page 4-244

Use the following SQL*PLUS command to generate packages and views for one API:

sql> execute hr_pump_meta_mapper.generate(
<package_name>,<procedure_name>);

For example:

sql> execute hr_pump_meta_mapper.generate(’hr_employee_api’, ’cr
eate_employee’);

4-220 Oracle Human Resources Management System Implementation Guide (US)

The naming convention for the view is hrdpv_<api_module_name> and the naming
convention for the PL/SQL package is hrdpp_<api module name>. This applies unless
the name would exceed 30 bytes, in which case the name is truncated to 30 bytes. In the
example, the name of the view is hrdpv_create_employee, and the name of the package
is hrdpp_create_employee.

You can use the view to insert legacy data into the HRMS schema or the batch tables, or
to update data already in the batch lines table. The PL/SQL package contains an
insert_batch_lines procedure to make it easy to insert data from your external systems
into the batch lines table; and a call procedure that executes the API on the rows in
the batch lines table.

View Generated by the Meta-Mapper
For each API the Meta-Mapper generates a view on the HR_PUMP_BATCH_LINES
table that reflects the parameters of the API. This makes it easier to examine
and update row values. The name of the view reflects the API name. For
example, HRDPV_CREATE_EMPLOYEE. For a full listing of this view see: Table and
View Descriptions, page 4-244.

In addition to the parameters for the API, the Meta-Mapper always creates the following
columns in the view:

Column Description

--

BATCH_ID Foreign key to HR_PUMP_BATCH_HEADERS

BATCH_LINE_ID Foreign key to HR_PUMP_BATCH_LINES.

Primary key generated using the
hr_pump_batch_lines_s sequence.

API_MODULE_ID Foreign key to HR_API_MODULES.
This tells Data Pump which api to
call for each row.

LINE_STATUS Load status of this API:

‘U’ - Unprocessed.
This must be the initial value for all

lines

’C’ - Complete.
The API call was successful and the

changes have been committed.

’E’ - Error.

Implementation Guide 4-221

’V’ - Validated
The API call was successful but the
changes have not been committed.

USER_SEQUENCE Used to control processing order.
For example, to make sure that address
for an employee is loaded after the
employee record has been created.

LINK_VALUE Use a unique link_value to link multiple
rows in a single batch.
Set this value when using parallel
processing to make sure that related
rows in a batch are processed together.

BUSINESS_GROUP_NAME Alternative business group name to use
for a particular API call. If not null,
this overrides the value specified in
the batch header

Meta-Mapper also creates other columns for specific APIs. For example, some of the
columns on the create employee view are:

• P_EFFECTIVE_DATE

• P_MANAGER_FLAG

• P_ASSIGNMENT_USER_KEY

Other columns are created to reflect the PL/SQL OUT values returned from the API so
that you can examine these values. For example:

• P_NO_MANAGERS_WARNING

You do not need to know which columns of the batch lines table hold specific parameters
for the API.

Required Columns
If you use the view to insert data to the batch lines table then remember that in addition
to the data required for the insert batch line procedure you also need :

• batch_line_id

Primary key generated using the hr_pump_batch_lines_s sequence.

• line_status

Must be set to ’U’ (unprocessed).

• api_module_id

Foreign key to hr_api_modules.

The following query gets the api_module_id for create employee:

SELECT API_MODULE_ID

FROM HR_API_MODULES

4-222 Oracle Human Resources Management System Implementation Guide (US)

WHERE UPPER(MODULE_NAME) = ’CREATE_EMPLOYEE’

AND UPPER(MODULE_PACKAGE) = ’HR_EMPLOYEE_API’;

PL/SQL Package Generated by the Meta-Mapper
TheMeta-Mapper also generates a separate package for each API to make it easier for you
to load data to the batch lines table or to review the content of the table for specific APIs.

For example, the create_employee package hrdpp_create_employee contains two
procedures:

• insert_batch_lines

• call

Insert Batch Lines Procedure
Use this procedure to simplify loading data into the batch lines table.

See also: Default and Null Values for API Parameters., page 4-230

A call to this procedure creates one row in the batch lines table, complete with all the
parameters. For create employee, some of the parameters are:

p_batch_id number in

p_data_pump_batch_line_id number in default

p_data_pump_business_grp_name varchar2 in default

p_user_sequence number in default

p_link_value number in default

p_hire_date date in

p_last_name varchar2 in

p_sex varchar2 in

p_per_comments varchar2 in default

p_date_employee_data_verified date in default

p_date_of_birth date in default

p_email_address varchar2 in default

p_employee_number varchar2 in

p_expense_check _send_to_addres varchar2 in default

Implementation Guide 4-223

p_first_name varchar2 in default

p_known_as varchar2 in default

p_marital_status varchar2 in default

p_middle_names varchar2 in default

p_nationality varchar2 in default

p_national_identifier varchar2 in default

p_previous_last_name varchar2 in default

p_registered_disabled_flag varchar2 in default

p_title varchar2 in default

p_attribute1 varchar2 in default

p_attribute2 varchar2 in default

p_attribute3 varchar2 in default

p_attribute4 varchar2 in default

p_attribute5 varchar2 in default

p_attribute6 varchar2 in default

p_attribute7 varchar2 in default

p_attribute8 varchar2 in default

...

...

p_resume_exists varchar2 in default

p_resume_last_updated date in default

p_second_passport_exists varchar2 in default

p_student_status varchar2 in default

4-224 Oracle Human Resources Management System Implementation Guide (US)

p_work_schedule varchar2 in default

p_suffix varchar2 in default

p_person_user_key varchar2 in

p_assignment_user_key varchar2 in

p_user_person_type varchar2 in default

p_vendor_name varchar2 in default

p_correspondence_language varchar2 in default

This example does not show all the parameters as there are many more.

The optional p_data_pump_business_grp_name parameter specifies a business group
name to override the name specified in the batch header.

The optional p_data_pump_batch_line_id parameter specifies the batch_line_id for the
inserted row (if necessary an existing row with this batch_line_id will be deleted).

Note: This procedure requires two user key values p_person_user_key
and p_assignment_user_key. You must supply values for these keys. If
you use Data Pump to create records in Oracle HRMS then Data
Pump automatically inserts your key values and the HRMS key values
generated by the APIs into the user keys table. For subsequent actions
Data Pump can use these keys to match records from your external
system with the Oracle HRMS records. A more detailed explanation and
example is included in a later section of this document.

Call Procedure
This is the actual ’wrapper’ procedure executed by the Data Pump process to call
the API and pass in the appropriate parameter values. The procedure takes two
arguments: p_business_group_id and p_batch_line_id.

Note: Direct calls to this procedure are NOT supported. You must use
the Data Pump concurrent process to execute the procedures.

Meta-Mapper Help Procedure
The Meta-Mapper package also includes a help procedure hr_pump_meta_mapper help
that returns information on the generated PL/SQL package and view names, and the
batch lines table parameter values for a given API.

The help procedure has two parameters:

• p_module_package

The name of API PL/SQL package

• p_module_name

The name of API PL/SQL procedure

Implementation Guide 4-225

You must set server output on before calling this procedure.

For example, use the following SQL*PLUS to get help for hr_employee_api.create_employee:

sql> set serveroutput on size 1000000;
sql> execute hr_pump_meta_mapper.help(’hr_employee_api’, ’create_
employee’);

The output is as follows:

Generated package: hrdpp_create_employee

Generated view: hrdpv_create_employee

Parameter Name Type In/Out Default? Lookup Type

--------------- ----- ------ -------- -----------

P_HIRE_DATE DATE IN

P_LAST_NAME VARCHAR2 IN

P_SEX LOOKUP IN SEX

P_PER_COMMENTS VARCHAR2 IN DEFAULT

P_DATE_EMPLOYEE

_DATA_VERIFIED DATE IN DEFAULT

P_DATE_OF_BIRTH DATE IN DEFAULT

P_EMAIL_ADDRESS VARCHAR2 IN DEFAULT

P_EMPLOYEE_NUMBER VARCHAR2 IN

P_EXPENSE_CHECK
_SEND_TO_ADDRES LOOKUP IN DEFAULT HOME_OFFICE

P_FIRST_NAME VARCHAR2 IN DEFAULT

P_KNOWN_AS VARCHAR2 IN DEFAULT

P_MARITAL_STATUS LOOKUP IN DEFAULT MAR_STATUS

P_MIDDLE_NAMES VARCHAR2 IN DEFAULT

4-226 Oracle Human Resources Management System Implementation Guide (US)

P_NATIONALITY LOOKUP IN DEFAULT NATIONALITY

P_NATIONAL_IDENTIFIER VARCHAR2 IN DEFAULT

P_PREVIOUS_LAST_NAME VARCHAR2 IN DEFAULT

P_REGISTERED_DISABLED_FLAG LOOKUP IN DEFAULT YES_NO

P_TITLE LOOKUP IN DEFAULT TITLE

P_WORK_TELEPHONE VARCHAR2 IN DEFAULT

P_ATTRIBUTE_CATEGORY VARCHAR2 IN DEFAULT

P_ATTRIBUTE1 VARCHAR2 IN DEFAULT

P_ATTRIBUTE2 VARCHAR2 IN DEFAULT

P_ATTRIBUTE3 VARCHAR2 IN DEFAULT

P_ATTRIBUTE4 VARCHAR2 IN DEFAULT

P_ATTRIBUTE5 VARCHAR2 IN DEFAULT

P_ATTRIBUTE6 VARCHAR2 IN DEFAULT

...

P_ASSIGNMENT_SEQUENCE NUMBER OUT

P_ASSIGNMENT_NUMBER VARCHAR2 OUT

P_NAME_COMBINATION_WARNING BOOLEAN OUT

P_ASSIGN_PAYROLL_WARNING BOOLEAN OUT

P_USER_PERSON_TYPE VARCHAR2 IN DEFAULT

P_VENDOR_NAME VARCHAR2 IN DEFAULT

P_CORRESPONDENCE_LANGUAGE VARCHAR2 IN DEFAULT

...

The following is an explanation of the help output:

Implementation Guide 4-227

• In the above example, the insert_batch_lines procedure is: hrdpp_create_employee.
insert_batch_lines.

• The Parameter Name column shows the name of the parameter as it appears in the
insert_batch_lines procedure and generated view.

• A parameter can have type USER_KEY which means that it is a user
key (see the section User Key Values, page 4-242 for more details). For
example, P_SUPERVISOR_USER_KEY USER_KEY IN DEFAULT. User key
parameters are implicitly of type VARCHAR2.

• DATE parameter values are passed to the insert_batch_lines procedure as
VARCHAR2 strings in YYYY/MM/DD format.

Note: The date format used by Data Pump is YYYY/MM/DD. For
dates in Oracle HRMS, the internal date format is YYYY/MM/DD
HH24:MM:SS.

• BOOLEAN parameter values are passed to the insert_batch_lines procedure as
VARCHAR2 strings with the values TRUE or FALSE’.

• The In/Out column has the value IN for parameters that are PL/SQL IN or IN/OUT
when passed to the API, or are user key parameters. If the parameter is an API
PL/SQL OUT parameter, then the In/Out column value is OUT.

• Only IN parameters are arguments to the insert_batch_lines procedure. OUT
parameters appear in the generated view.

• The Default column has the value DEFAULT if the parameter’s value is not required
in the batch lines table. For mandatory parameters this column is empty.

• Mandatory parameter values must be passed to the insert_batch_lines procedure.

• If the parameter is a lookup parameter, the Lookup Type column contains the name
of the parameter’s lookup type.

Loading Data Into the Batch Tables
The Meta-Mapper generates a specific PL/SQL package and view for each API. Use these
PL/SQL interface procedures and views for loading data into the batch tables, except
where stated otherwise in this document.

It is particularly important that inserts are performed exclusively through the
interfaces. There are two reasons for this:

• Using the PL/SQL procedure insulates you from the complexities of the underlying
schema.

• Using the PL/SQL procedure insulates you from any schema changes that might be
made in any future release. This is important if you intend to use Data Pump on a
continuing basis.

Tip: Test the validity of the legacy data capture code on a subset of
the batch to be loaded. For example, if you plan to load details for
100000 people, test your routines to validate and load a subset of 100
representative people. This should help you to identify and resolve any
obvious problems with your capture code before you attempt to load
the bulk of your data.

4-228 Oracle Human Resources Management System Implementation Guide (US)

The Batch Interface Tables
The main objective of the interface design was to keep everything as simple as
possible. The result is that Data Pump only has one batch header and one batch lines
table for loading data for all APIs. Views are generated by the Meta-Mapper with
specific column names for each API.

Each row of the batch lines table holds the reference to an API and data values. Data
Pump executes each API with the data passed in as parameters.

How to Control Processing Order
There are many instances where you need to control the order in which batch lines are
loaded into the database. For example, Data Pump would generate an error if it tried to
create an address for a person before it created the person.

To control the order in which operations are performed, use the p_user_sequence
parameter to set the order manually. Choose some appropriate numeric values for this
parameter when you insert the data to the batch lines table. Data Pump uses these
numbers to determine processing order.

Different Approaches to Batch Loading
There are a number of approaches you can take when setting the order for processing
batch lines.

One approach would be to load disparate data in separate batches. For example load
personal information in one batch and address information in a second batch.

Another approach would be to create a batch containing lines with related API calls. For
example, you could load person, address, and assignment information for one employee
as part of one batch. In this approach, if you are using the parallel processing option, you
would use the p_link_value parameter to make sure all the lines are processed in the same
chunk. Use the default or p_user_sequence parameter to make sure that the different API
calls are made in the correct order within the linked group.

Processing Order When Running Parallel
The Data Pump process has been optimized to take advantage of parallel processing
options. If you want to run a multi-threaded process there are some special
considerations for ordering batch lines.

When you run the Data Pump process in parallel, the concurrent manager generates
multiple threads, each of which processes a defined number of batch lines before it
commits them to the database. The number of lines is controlled by the CHUNK_SIZE
payroll action parameter - see Other Parameters, page 4-232 for details.

With parallel processing and chunking of lines, in theory a transaction that includes
more than one line could be split between processes. This would mean that lines might
not be processed in the order set by the p_user_sequence parameter.

You can prevent this by using the p_link_value parameter. This parameter tells Data
Pump that a set of batch lines must be processed in the same chunk. Use the same link
value for all the lines that must be processed by the same thread - this will automatically
extend the number of rows processed by a single thread when necessary.

When lines have a common link value, they must also be in consecutive user sequence in
order to be processed within a single chunk.

For example, in the following table, only the lines with the user sequences 1, 2 and 5 are
guaranteed to be processed in the same thread.

Implementation Guide 4-229

User Sequence Link Value

1 1

2 1

5 1

8 2

10 1

Note: When running Data Pump in parallel you may find that
performance does not scale as expected. Remember that running
business process APIs in parallel may cause lock contention because of
extended validation. For example, in the past, the personal payment
method and element entry APIs were known to have problems in this
area.

Default and Null Values for API Parameters
Specifying a Default or NULL Parameter Value

Part of the design for the APIs in Oracle HRMS is that many parameters have default
values set for them. This means that they can be called directly without having to pass
values for all parameters.

When you use Data Pump there is a similar mechanism that means you do not have to
supply values for all parameters.

The following rules apply:

• If an insert batch lines parameter is passed NULL or is not passed a value and can be
defaulted, the appropriate default value will be passed to the API module itself.

• If you want to set up an explicit NULL value for a parameter, use the special reserved
string <NULL>. You may want to do this to update to a null value.

Any other value passed as a parameter will be the value inserted into the batch line and
subsequently passed to the appropriate API process.

Indicator Parameters

The insert_batch_lines procedure may be generated with indicator parameters. Each
indicator parameter is generated in addition to the corresponding standard parameter
e.g. I_AMOUNT (indicator parameter), P_AMOUNT (standard parameter). The
indicator parameters are generated to allow the special value NULL to be specified for
non-mandatory number and date parameters whose default value is not NULL. If the
indicator parameter = Y then the value NULL is written to the batch lines table, otherwise
the standard parameter’s value is used. The usual case for this is for update APIs where
a number or date value needs to be updated to NULL

Assumed Default Values

Occasionally, when the value NULL is used to specify a non-mandatory parameter, the
wrong default value gets passed to the API call. The usual reason for this is that the
parameter in question has a non-standard default value, but the seed data has not taken
this into account. In such case, the correct default value for the parameter should be
explicitly set in the batch lines row for the Data Pump API call.

4-230 Oracle Human Resources Management System Implementation Guide (US)

The meta-mapper assumes, that unless seeded otherwise, certain default values for API
parameters - this is because it is not possible to get the actual default values from the
database. The default value used for a create API (e.g. create_employee) is NULL. For all
other APIs, the default values used are shown in the following table:

Parameter Type Default Value

BOOLEAN NULL

DATE HR_APLG_DATE

LONG NULL

NUMBER HR_APLG_NUMBER

VARCHAR2 HR_APLG_VARCHAR2

Default and Null Values for Mapped Parameters

A mapped parameter is one where an actual value (or a user key) is used rather
than a system identifier in the Data Pump API call. The meta-mapper call procedure
calls a mapping function before making the API call to resolve the system identifier
value from the input value. Such a mapping function will usually have two or more
parameters – an obvious name parameter e.g. P_JOB_NAME, and other parameters
such as P_EFFECTIVE_DATE.

If one or more of the mapping function parameters is set to <NULL> in batch lines then
the mapped parameter is passed to the API as NULL. Otherwise, if one or more of the
mapping function parameters is set to NULL in batch lines and the default value is
NULL or an HR_API value (e.g. HR_API.G_NUMBER) then the mapped parameter is
passed to the API with its default value.

Recommendation: To use this feature, set the name parameter to <NULL> or NULL in
the batch lines table. There is no need to worry about what the other mapping function
parameters could be.

Running the Data Pump Process
Use the Submit Reports and Processes form to start the Data Pump Engine process. It
takes these parameters:

• BATCH NAME

The batch_name is one of the batches inserted via the create_batch_header procedure.

• VALIDATE FLAG

Default value for this flag is No. This commits all valid lines to the database.

If the validate flag is set to Yes, the process runs in validation mode. The APIs are
called, but their results are rolled back. Use this mode to check and correct data
before committing changes to the database.

• ACTION PARAMETER GROUP

The action parameter group specifies the set of action parameter values to configure
this Data Pump run.

The default value for this parameter is set from the HR: Data Pump Action Parameter
Group profile option.

Implementation Guide 4-231

Note: Before running the Data Pump process you should decide
whether to use parallel threads and whether you want to turn on any
logging options.

Overview of Data Pump Action Parameters
Data Pump process running can be controlled through the action parameter value
settings. A number of these action parameters (THREADS, CHUNK_SIZE, MAX_
ERRORS_ALLOWED) are also used by the other processes e.g. the payroll run.

With action parameter groups it is possible to have separate action parameter values
for different processes, something that is highly recommended. Another use of action
parameter groups is to switch in an action parameter group for debugging e.g. so that
Data Pump is run as a single thread with logging switched on.

Any action parameters not set within the specified action parameter group take
their values from the default action parameter group (the null action parameter
group). Furthermore, if action parameters are NULL then the Data Pump process uses
default values for them.

You can set action parameter values from the Action Parameters form (navigate to
Process And Reports->Action Parameters).

Running In Parallel
To enable parallel processing you set a value for the THREADS parameter in
PAY_ACTION_PARAMETER_VALUES.

The threads value includes the starting process. That means that if you set a value of
2, the main engine code starts with one slave process to make a total of two concurrent
processes. When running in parallel, the ’master’ process may finish before the slave
processes. This is normal.

Note: The THREADS parameter also controls the parallel execution of
the other Oracle Payroll processes. We recommend that you use action
parameter groups to separate action parameters for Data Pump from
normal payroll processing.

Other Parameters
There are six other payroll action parameters you can set for Data Pump.

CHUNK_SIZE
Default = 10

Controls how many batch API calls are processed at a time per thread when running
in parallel. It also controls the number of API calls per commit. Note that there are
certain circumstances under which the actual number can vary from this number. For
example, it can be higher if the p_link_value parameter is set.

MAX_ERRORS_ALLOWED
Default = 20

Controls how many errors in calling an API will be tolerated before the entire Data
Pump engine fails. This is the number of errors per parallel thread.

PUMP_DEBUG_LEVEL
Use this parameter to turn on logging for tracking errors generated by the Data Pump
process. For a list of valid values for this parameter, see Logging Options, page 4-233.

4-232 Oracle Human Resources Management System Implementation Guide (US)

DATA_PUMP_DISABLE_CONTINUOUS_CALC
Default = N

Use this parameter to turn off continuous calculation triggers. This may be desirable for
performance reasons. The value Y turns off the continuous calculation triggers.

DATA_PUMP_NO_FND_AUDIT
Default = N

Use this parameter to turn off Oracle Applications auditing. This may be desirable for
performance reasons. The value Y turns off the auditing.

DATA_PUMP_NO_LOOKUP_CHECKS
Default = N

Use this parameter to turn off lookup validation in the Data Pump API call. The Data
Pump API call assumes that values for lookup parameters are passed in as lookup
codes only. This may be desirable for performance reasons. The value Y turns off the
lookup validation.

Checking Run Status
The Data Pump runs as a concurrent process. You can check process status at any time
using the View Concurrent Requests window. The concurrent manager only reports
failure if the entire process has failed. Usually this happens because the number of errors
exceeded the value set by the MAX_ERRORS_ALLOWED parameter.

Note: Even if the concurrent process completes successfully there may
be some data errors encountered by the process. You should always
check for batch line errors.

Finding and Fixing Errors
This section deals with the logging options available for tracking errors generated by the
Data Pump process, as well as hints and tips on how to deal with these.

Logging Options
You enable logging options for Data Pump by inserting appropriate values in
the PAY_ACTION_PARAMETERS_VALUES table for the PUMP_DEBUG_LEVEL
parameter.

Note: Turning logging on always affects the overall performance of the
data pump process. You should only use logging to help track down
problems when they occur. Remember also to switch logging off after
you have solved your problem.

Valid values for PUMP_DEBUG_LEVEL are as follows.

Tip: The first three options are likely to be the most useful to you.

Implementation Guide 4-233

Option Description

AMD API Module Debug (enables
trace output from API)

RRP Range Row Processing logging
(logs the number of errors
that occurred for each unit of
work, or range)

GID Get_id function failure
information (logs failures
in functions that map user
values to IDs)

MSG Output specific logging
messages

ROU Routing information (entry to
and exit from procedures)

WCD Wrapper cache debug logging

STK Stack dump logging (trace
information on failure)

EXT Exit information (trace
information on success)

RRI Range row insert logging

BLI Batch Line Information (output
the batch line number for the
batch line being processed).

CLF Concurrent Log File (logging
messages output with the MSG
option go to the concurrent
manager log file).

You can combine any number of these options by concatenating the values, separated
by a colon. For example, the string ’MSG:RRI:RRP’ combines MSG, RRI, and RRP
debugging.

How to View Logging Output
When you enable logging options, output is produced for every thread that may be
running. Use the PYUPIP command to view this output.

To use this command you will need to know the ID for the concurrent process you are
logging. Online you can use the View My Requests window to find the Concurrent
Request IDs. Alternatively, you can query from the HR_PUMP_REQUESTS table. One
row is inserted for each process that is running. For example:

select * from hr_pump_requests;

Typical output would be:

4-234 Oracle Human Resources Management System Implementation Guide (US)

BATCH_ID REQUEST_ID PROCESS_TYPE
----------- --------------- -----------------
8437 98533 MASTER
8437 98534 SLAVE

This tells us that there are two processes running, and the request_id values are 98533
and 98534.

Use PYUPIP to trace the output in a separate command line window. For example:

PYUPIP <user/password>@database REQID98533
PYUPIP <user/password>@database REQID98534

Note: If you are running multiple threads, you should trace all the
threads. If you do not choose all threads, this means that the processing
comes to halt when the database trace pipe fills up. It may be advisable
to run a single thread only when tracing.

How to Find Errors in Batch Lines
When an error occurs during processing, Data Pump generates one or more rows in the
HR_PUMP_BATCH_EXCEPTIONS table. There will be multiple rows if the API supports
multiple messaging. In this release you must use SQL*PLUS to view this information.

Additionally, you can use SQL*PLUS to query rows in HR_PUMP_BATCH_LINES
where the LINE_STATUS has a value of E - error.

Note: In validation mode LINE_STATUS is set to V- validated, for
a successful API call. In update mode LINE_STATUS is set to to C
- complete, for a successful API call.

Investigating the Cause of Errors
Investigation strategies depend on the type of error and the indications of its origin. For
some errors you may need experience with the use of APIs and the Oracle HRMS
application to recognize what might be wrong.

Some specific advice for Data Pump follows:

• Start with the columns of the HR_PUMP_BATCH_EXCEPTIONS table to identify
which batch line has caused the error. Use this to check the parameters and values
of the batch line itself.

• One common error is ’no data found’. This is most likely to happen because of an
error in one of the functions called to convert user meaning to ID values. In this
case, the exact cause of the error will not be obvious from looking in the exceptions
table. More information can be gained from using the GID logging value. When
failure occurs, the name of the function that failed, plus the argument values passed
in, is displayed in the trace.

• The AMD logging value can be used to help track down problems. It activates the
logging in the API modules themselves - providing copious output to examine.

• Another common cause of errors is incorrect ordering of the data load. For
instance, attempting to load a person’s address before the person. An associated
error may occur if you are using parallel processing and do not use LINK_VALUE to
associate multiple batch lines.

• When running in validation mode, ordering errors will occur if the batch is not split
up into chunks that are independent of the results of other chunks. This will occur

Implementation Guide 4-235

even if the validation is done with a single thread. The reason is that the results of
APIs over a single chunk are rolled back to release rollback segments. This is another
reason to use the p_link_value parameter to control the running of a load.

How to Fix Errors
The most common cause of errors is likely to be that incorrect values have been loaded
via the insert_batch_lines procedure and that these need to be corrected.

Using The Views To Correct Data
Use the HRDPV_ views on HR_PUMP_BATCH_LINES to correct values in the
appropriate columns. You can use normal update statements on these views and this
makes fixing data problems much simpler.

Warning: When using the views to make changes to problem data, you
must not alter the LINE_STATUS on the HR_PUMP_BATCH_LINES
table. The Data Pump engine uses this for processing.

Note: Views on HR_PUMP_BATCH_LINES display rows only for
the APIs for which they were generated. Any attempt to update the
API_MODULE_ID column with an incorrect value will fail with an
ORA-1402 error. The views are generated with a WITH CHECK
OPTION on the where-clause to prevent you from using a view to
generate any row that the view could not select.

(The same warning applies to inserting rows into HR_PUMP_BATCH_L
INES using the generated views.)

Rerunning The Data Pump Process
After you have fixed any problems you can rerun the batch by submitting the Data Pump
process again using the same batch name. You can submit the process any number of
times until all lines are successfully completed. Batch lines with a status of E - error;
U- unprocessed; or V -validated are automatically reprocessed.

You do not have to take any action to remove rows from the exception table. Data Pump
automatically deals with this.

Lines validated in previous Data Pump runs are reprocessed even if the Data Pump is run
in validation mode because the results of the associated API calls would have been rolled
back in the previous runs. Only lines with a status of C -complete are not reprocessed.

Purging Data
You can use the Data Pump Purge Process to remove unwanted batches when you have
successfully uploaded them to your database. You may wish to retain some of the
batch information for future processing. When you purge a data pump batch, you can
therefore select how much of the batch information you purge. The Data Pump Purge
process enables you to select your criteria for purging and then submit your purge.

Before you submit a purge request, you should make sure that:

• You have completed all processing is for the batch.

• You have not prematurely removed data from the USER_KEYS table. For example, if
you delete assignment and person user keys, you cannot create a secondary
assignment for that employee until you run the add_user_key procedure to recreate
the keys.

4-236 Oracle Human Resources Management System Implementation Guide (US)

If you have existing Data Pump purge practices you can continue to use them in
preference to the Data Pump Purge process.

See How to Purge, page 4-237

You run the Data Pump Purge process from the Submit Requests window.

To run the Data Pump Purge process:

1. Enter the name of the batch that you want to purge. If you do not supply a batch
name, confirm that you want to purge all batches.

2. Specify whether you want to preserve the user keys so that you can use them for
future batches.

3. If you want to purge the unprocessed batch lines, enter Yes. However, these lines
are probably unprocessed because Data Pump encountered the maximum number
of errors and could not process any of the later batch lines. You can run these
unprocessed lines again when you have fixed the data. So, if you want to run these
batch lines again, enter No.

4. If you want to purge the failed batch lines, enter Yes. However, if you intend to
process these batch lines again when you have corrected the reason for failure, enter
No to preserve these batch lines for future use.

5. If you want to purge the completed batch lines, enter Yes.

6. If you want to delete the batch header, enter Yes.

7. Confirm that the action parameter group is correct.

How To Purge
In all cases you should start with the following actions:

TRUNCATE TABLE HR_PUMP_REQUESTS;
TRUNCATE TABLE HR_PUMP_RANGES;

Simple Purge Of All Rows
If you want to purge all rows regardless of status then use the following:

TRUNCATE TABLE HR_PUMP_BATCH_EXCEPTIONS;
TRUNCATE TABLE HR_PUMP_BATCH_LINE_USER_KEYS;
TRUNCATE TABLE HR_PUMP_BATCH_LINES;
TRUNCATE TABLE HR_PUMP_BATCH_HEADERS;

Purge Of All Successful Rows
This is more complicated. You should purge data only when all loads have been
successful. This avoids the danger of purging rows that are still needed. Perform the
following actions:

• Use the HR_PUMP_BATCH_LINES.LINE_STATUS column to tell which rows have
been successful, and therefore can be purged.

• Look for a status of C. Of course, if all rows in a batch have status C then simply
purge all rows in that batch.

• Remove all appropriate rows in the following tables, in the order shown below:

• HR_PUMP_BATCH_EXCEPTIONS

• HR_PUMP_BATCH_LINE_USER_KEYS

• HR_PUMP_BATCH_LINES

Implementation Guide 4-237

If all rows in HR_PUMP_BATCH_LINES have been deleted, remove the appropriate
batch from the HR_PUMP_BATCH_HEADER table.

Sample Code
This section contains some sample code showing how you could call the batch lines
procedures.

This example is artificial in that the data for the API calls is generated. However, it shows
how we can prepare the Data Pump to create a number of batch lines that:

• Create an employee

• Create an address for the employee

• Update the default assignment criteria

• Create a secondary assignment

The example also illustrates the use of p_link_value to make sure that the separate
transactions for each employee and assignment are processed by the same thread.

------------------------ start of example -----------------------
create or replace package hrdp_cre_emp as
procedure hrdp_cre_emp (p_start in number, p_end in number);
end hrdp_cre_emp;
/
create or replace package body hrdp_cre_emp as
/*
* Insert a number of batch lines in preparation for
* running the data pump engine, which will then
* - create an employee
* - create an address for the employee
* - update the criteria of the default assignment
* - create a secondary assignment
*/
procedure hrdp_cre_emp (p_start in number, p_end in number) is

l_last_name varchar2(40);
l_hire_date date;
l_birthday date;
l_first_name varchar2(40);
l_asgno varchar2(40);
-- These are the ’out’ values.
l_special_ceiling_step_id number;
l_person_user_key varchar2(100);
l_address_user_key varchar2(100);
l_assignment_user_key varchar2(100);
l_assignment_user_key2 varchar2(100);
l_link_value number;
l_commit_count number;
l_commit_limit number;
l_emp_count number;
l_address_line1 varchar2(256);

begin
l_commit_limit := 10; -- commit after every 10 employees.
l_commit_count := 0;
l_first_name := ’David’;
l_hire_date := to_date(’1997/12/01’, ’YYYY/MM/DD’);
l_birthday := to_date(’1970/01/01’, ’YYYY/MM/DD’);
l_link_value := 0;

4-238 Oracle Human Resources Management System Implementation Guide (US)

for emp_count in p_start..p_end loop
-- Prepare to create an employee.
l_last_name := ’DUMP’ || lpad(emp_count, 5, ’0’);
l_person_user_key := l_last_name || ’ : PER USER KEY’;
l_assignment_user_key := l_last_name || ’ : ASG USER KEY’;
l_address_user_key := l_last_name || ’ : ADDR USER KEY’;
l_address_line1 := to_char(emp_count) || ’, Union Square’;
hr_utility.trace(’Last Name : ’ || l_last_name);
-- Allow linking together so that these API calls process
-- by the same thread.
l_link_value := l_link_value + 1;
hrdpp_create_employee.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_person_user_key => l_person_user_key,
p_assignment_user_key => l_assignment_user_key,
p_hire_date => l_hire_date,
p_last_name => l_last_name,
p_sex => ’Male’,
p_employee_number => null,
p_per_comments => ’Comments for : ’ || l_last_nam

e,
p_date_of_birth => l_birthday,
p_email_address => ’somebody@us.oracle.com’,
p_first_name => l_first_name,
p_user_person_type => ’Employee’

);
-- Create an address for the person.
hrdpp_create_us_person_address.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_effective_date => l_hire_date,
p_primary_flag => ’Yes’,
p_date_from => l_hire_date,
p_address_type => ’Home’,
p_address_line1 => l_address_line1,
p_city => ’Golden Valley’,
p_county => ’Los Angeles’,
p_state => ’California’,
p_zip_code => ’91350’,
p_country => ’US’,
p_person_user_key => l_person_user_key,
p_address_user_key => l_address_user_key

);
-- Let’s update some criteria.
l_special_ceiling_step_id := hr_api.g_number;
hrdpp_update_emp_asg_criteria.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_effective_date => l_hire_date,
p_datetrack_update_mode => ’CORRECTION’,
p_assignment_user_key => l_assignment_user_key,

Implementation Guide 4-239

p_payroll_name => ’Monthly’,
p_special_ceiling_step_id => l_special_ceiling_step_

id
);
l_assignment_user_key2 := l_assignment_user_key || ’2’;
hrdpp_create_secondary_emp_asg.insert_batch_lines
(

p_batch_id => 3,
p_user_sequence => null,
p_link_value => l_link_value,
p_assignment_user_key => l_assignment_user_key2,
p_person_user_key => l_person_user_key,
p_effective_date => l_hire_date,
p_assignment_number => l_asgno,
p_comments => ’asg created by data pump’

,
p_organization_name => ’Setup Business Group’,
p_grade_name => ’faz1’,
p_job_name => ’TEST’,
p_payroll_name => ’Monthly’

);
l_hire_date := l_hire_date + 1;
l_commit_count := l_commit_count + 1;
if(l_commit_count = l_commit_limit) then

-- Commit after so many employees.
hr_utility.trace(’Commit after ’ || l_commit_limit || ’ e

mployees.’);
commit;
l_commit_limit := 1;

end if;
end loop;

end hrdp_cre_emp;
/

Notes on Using The Generated Interfaces
The Meta-Mapper process generates a view and PL/SQL packages for each API. This
section explains some of the factors that you should keep in mind when using them.

Finding System IDs from Names or Values
When you use APIs you must supply lookup codes and surrogate primary keys for
many parameters. For example:

...
p_sex => ’M’,
p_payroll_id => 13456,
...

Without Data Pump you would need to write additional code to convert values from
your external system to Oracle HRMS system IDs for each API.

However, with Data Pump you have a set of predefined procedures for each of the
supported APIs that automatically convert user names or values into lookups and
system IDs. For example:

...
p_sex => ’Male’,
p_payroll_name => ’Monthly Payroll’,
...

4-240 Oracle Human Resources Management System Implementation Guide (US)

Note: For lookup parameters, you can use the meaning or the lookup
code itself. For non-lookup type IDs you will find an alternative
parameter to use.

Exceptions
There are three major exceptions to the use of names for parameter values:

• Flexfield Attribute Parameters

• PL/SQL IN/OUT Parameters

• Legislation Specific Lookup Parameters

Flexeld Attribute Parameters
Most of the API processes include flexfield attribute parameters with names like
P_SEGMENT18 or P_ATTRIBUTE20. Data Pump cannot know what the mappings
of these values are in your specific implementation and therefore value conversion is
not supported.

This means that you must take responsibility for passing the correct lookup code or
other value as appropriate.

PL/SQL IN/OUT Parameters
When an API performs a combination of different actions then you need to provide the
appropriate ID or code values for the parameters rather than the user meanings. This
should not be a great problem where the values for these items can be derived before
the Data Pump run.

For example, in hr_assignment_api.update_emp_asg , p_special_ceiling_step_id must be
passed in as an ID, even though other APIs require it to be a user key.

Note: You cannot provide user keys for PL/SQL IN/OUT parameters
of the API because the Data Pump code that calls the specific API has
no way to determine whether the user key existed before the API call
and therefore whether it is to be created or its ID value updated after
the API call.

Many APIs generate a comment_id as an output parameter. However, you are not
required to supply a user key value for the comment_id. This avoids the generation of
a lot of meaningless user keys.

Note: A comment_id user key is required for the comment_id
parameters to the element entry creation and update APIs. You must
add these user keys if you require them for the element entry API calls.

Legislation Specic Lookup Parameters
A similar situation arises with legislation-specific business process API calls where a
specific lookup in the legislation-specific API call corresponds to a generic parameter
in the generic business process API call.

For example, the p_region_1 parameter in the hr_person_address_api.
create_person_address API corresponds to p_county lookup parameter in the
hr_person_address_api.create_gb_person_address API.

When calling hr_person_address_api.create_person_address for a GB address via Data
Pump, you would have to pass the ’GB_COUNTY’ lookup code for the p_region_1

Implementation Guide 4-241

parameter. Alternatively you could use the ’GB_COUNTY’ lookup meaning if you used
hr_person_address_api.create_gb_person_address.

Note: You should use legislation-specific APIs where these are available.

User Key Values
When you are mapping data from your external system to Oracle HRMS you will
find that there are some cases where an ID value for an Oracle entity cannot be
derived from a logical unique key or name. Examples of this are Person, Assignment
and Address. Consider the unique identifier for a person. It is very difficult, if not
impossible, to identify a person uniquely. In theory different people may share the same
first and last names, gender, birth date, marital status, and so forth.

There are similar problems if an entity does not have a logical key, and its surrogate
ID cannot be derived easily from the names of any of its component entities. For
example, it isn’t easy to identify a unique Element Link by looking simply at names of its
components - Payroll, Job, Position etc.

Or, the entity may be an abstract entity specific to the Oracle Applications products and
is only identifiable using an ID value. For example an ID_FLEX_NUM.

The solution provided by Data Pump is to enable you to set a ’User Key’ value. This
value must be a unique character string. It could be a unique ID taken from your external
system or it could be a concatenation of multiple values. For example a user key for a
person could be the person’s name concatenated with the existing employee number
from your legacy system. An illustration would be:

p_person_user_key => ’Joe Bloggs’ || ’2345’, -- name + emp no

You must define user key values for any parameters with a name that ends
’user_key’. Data Pump uses these user key values to identify IDs for the records in
the Oracle HRMS system.

Note: User key values must be unique across all entities. For example, it
is not possible to have a Person user key value of ’SMITH1001’, and an
Assignment user key value also of ’SMITH1001’.

In most cases you will have one user key value for each system ID. However, with Data
Pump you can define many different user keys for the same system ID. This is important
if you are loading data from different external systems and the unique keys do not match.

User keys are held as rows in the HR_PUMP_BATCH_LINE_USER_KEYS table.

Creating User Key Values
User keys are created in one of two ways:

• Data Pump inserts new user keys

Using Data Pump you must specify user keys for several API parameters. After a
successful call to an API that creates a new record, Data Pump inserts a new row in
the user keys table with the name you specified and the system ID value returned
from the API. The returned ID value is a PL/SQL OUT parameter to the API.

• Manually insert a new user key

4-242 Oracle Human Resources Management System Implementation Guide (US)

If you have already loaded data from an external system, or you want to create
multiple user keys for the same system ID you can manually insert rows into
HR_PUMP_BATCH_LINE_USER_KEYS using the add_user_key utility procedure.

Once the user keys have been created you can use the same key with other APIs to
update an existing entity, or to specify another entity. For example, two person user keys
can be used to specify a contact relationship.

Utility Procedures Available With Data Pump
This section lists the utility procedures that are provided with the Data Pump.

All the procedures are in the HR_PUMP_UTILS package.

create_batch_header
Parameters :

p_batch_name : unique batch name.
p_business_group_name : name of business group (optional)
p_reference : user reference value (optional)

Returns
The hr_pump_batch_headers.batch_id.

Description :
Creates a batch header row. This should be used to create
the row rather than direct insert.

An example of a call to this procedure is:

declare
l_batch_id number;

begin
l_batch_id := hr_pump_utils.create_batch_header

(’Employees for Dept 071’, ’AKA Enterprises’);
end;

add_user_key
Procedure : add_user_key
Parameters :

p_user_key_value : unique user key value.
p_unique_key_id : ID associated with the user key.

Description :
Creates a user key for use with Data Pump API calls.
add_user_key is used to add a user key when the object
referred to by the ID value has not been created by Data
Pump. This may happen when the object has no creation API but
is required as a user key parameter to an API called by Data
Pump, or if the object was created before Data Pump was
available.

Implementation Guide 4-243

modify_user_key
Procedure : modify_user_key
Parameters :

p_user_key_value : unique user key value identifying
the user key to be changed.

p_new_user_key_value : new unique user key value.
p_unique_key_id : new ID associated with the user

key.
Description :

The main purpose of modify_user_key is to fix an incorrect
user key created by add_user_key. If either
p_new_user_key_value or p_unique_key_id are null then the
corresponding column is not updated for the user key.

Table and View Descriptions
The following section provides more detailed descriptions of the specific tables and
views you use with Data Pump.

APIs Supported by the GENERATEALL Command

Package Name Business Process

HR_APPLICANT_API CREATE_APPLICANT

CREATE_GB_APPLICANT

CREATE_US_APPLICANT

HR_ASSIGNMENT_API ACTIVATE_EMP_ASG

ACTUAL_TERMINATION_EMP_ASG

CREATE_SECONDARY_EMP_ASG

CREATE_GB_SECONDARY_EMP_ASG

CREATE_US_SECONDARY_EMP_ASG

SUSPEND_EMP_ASG

UPDATE_EMP_ASG

UPDATE_EMP_ASG_CRITERIA

UPDATE_GB_EMP_ASG

UPDATE_US_EMP_ASG

HR_CONTACT_API CREATE_PERSON

HR_CONTACT_REL_ API CREATE_CONTACT

HR_EMPLOYEE_API CREATE_EMPLOYEE

CREATE_GB_EMPLOYEE

CREATE_US_EMPLOYEE

HR_EX_ EMPLOYEE_API ACTUAL_TERMINATION_EMP

FINAL_PROCESS_EMP

4-244 Oracle Human Resources Management System Implementation Guide (US)

Package Name Business Process

HR_JOB_API CREATE_JOB

HR_JOB_REQUIREMENT_API CREATE_JOB_REQUIREMENT

HR_PERSONAL_PAY_METHOD_API CREATE_GB_PERSONAL_PAY_METHOD

CREATE_PERSONAL_PAY_METHOD

CREATE_US_PERSONAL_PAY_METHOD

DELETE_PERSONAL_PAY_METHOD

UPDATE_PERSONAL_PAY_METHOD

UPDATE_GB_ PERSONAL_PAY_METHOD

UPDATE_US_ PERSONAL_PAY_METHOD

HR_PERSON_ADDRESS_API CREATE_GB_PERSON_ADDRESS

CREATE_PERSON_ADDRESS

CREATE_US_PERSON_ADDRESS

UPDATE_PERSON_ADDRESS

UPDATE_GB_PERSON_ADDRESS

UPDATE_US_PERSON_ADDRESS

HR_PERSON_API UPDATE_PERSON

UPDATE_GB_PERSON

UPDATE_US_PERSON

HR_POSITION_API CREATE_POSITION

UPDATE_POSITION

HR_POSITION_REQUIREMENT_API CREATE_POSITION_REQUIREMENT

HR_SIT_API CREATE_SIT

HR_VALID_GRADE_API CREATE_VALID_GRADE

PY_ELEMENT_ENTRY_API CREATE_ELEMENT_ENTRY

DELETE_ELEMENT_ENTRY

UPDATE_ELEMENT_ENTRY

Using Data Pump with Unsupported APIs
Sometimes the necessary seed data for a Data Pump call to a particular API is not
present. The usual problem when running the meta-mapper generate is the lack of
mapping functions to resolve system identifiers from user values, for example:

ORA-2001: Seed data error: Mapping function get_set_of_books_id does not exist. Please
contact your support representative.

Implementation Guide 4-245

This type of error is usually caused by API parameters with names ending in _ID, for
example, P_JOB_ID.

You can call the meta-mapper in an alternative generate mode that essentially generates
a direct call to the API rather than processing parameter values beforehand to get
system values. Making a Data Pump call with this generate mode requires a better
understanding of the API itself than is required when using the standard generate mode.

Use this SQL*PLUS command to generate packages and views for an API:

sql > execute hr_pump_meta_mapper.generate (<package_name>, <procedure_name>,
false) ;

Use these SQL*PLUS commands to display the help text for the API:

sql > set serveroutput on size 1000000;

sql > execute hr_pump_meta_mapper.generate (<package_name>, <procedure_name>,
false) ;

The view and package generated are the same as in the standard generation
mode discussed earlier in this essay. They can be used as described in this
essay. However, when using this generate mode you should note that:

• There must be a row for the API with API_MODULE_TYPE A1 or BP in
HR_API_MODULES. Note that Oracle does not support customer creation of rows
in HR_API_MODULES. This is because problems can occur if the data is delivered
in future patches.

• You must explicitly set the correct default values for API parameters when you
make the Data Pump API call. This is because API parameter default values are not
predefined and the meta-mapper makes assumptions about the default parameter
values. For details about these assumptions, see Default and NULL Values for API
Parameters, page 4-230 (Assumed Default Values).

• You will have to resolve the system values when you set up the data for each
individual API call. This is because the generated Data Pump API does not have
user keys, or names to identify the system values. This also restricts the mix of API
calls within a batch because you cannot pass system identifiers implicitly between
API calls. The same restriction applies to the object version number where an API
call creates or updates an object.

Table and View Descriptions
The following section provides more details of the specific tables and views that you use
with Oracle HRMS Data Pump

HR_API_MODULES
API modules supported by Data Pump

4-246 Oracle Human Resources Management System Implementation Guide (US)

Name Description
------------------------- --------------------
API_MODULE_ID Sequence generated unique ID.
API_MODULE_TYPE Type of the API represented by:

’RH’ - Row Handler
(not of interest to Data Pump).
’BP’ - Business Process API.
’AI’ - Alternative Interface API.

MODULE_NAME API procedure name.
MODULE_PACKAGE API package name when the

module type is ’BP’ or ’AI’.

HR_PUMP_BATCH_LINE_USER_KEYS
This table holds key mappings between your external system and the Oracle HRMS
system. These keys are required for specific entities where it may be difficult to identify
the record uniquely in Oracle HRMS from a single field in the batch line table. For
example, you might want to use Name||National Identifier from the external system to
map to Person ID in Oracle HRMS.

This table is populated automatically by the Data Pump process when you create new
records in Oracle HRMS. For example when you load your legacy data. You can insert
new lines to this table if you have already loaded your legacy data.

You can have multiple external key mappings to the same unique_key_id in Oracle
HRMS. For example, if you want to interface data from an external payroll system and
an external benefits system to Oracle HR where the unique IDs are different.

Name Null? Type Description
--------------------------- -------- ---- -------------
USER_KEY_ID NOT NULL NUMBER(9)
BATCH_LINE_ID NUMBER(9)
USER_KEY_VALUE NOT NULL VARCHAR2(240) User Defined

key to identify
a record.

UNIQUE_KEY_ID NOT NULL NUMBER(15) Unique Key in
Oracle HRMS

LAST_UPDATE_DATE DATE
LAST_UPDATED_BY NUMBER(15)
LAST_UPDATE_LOGIN NUMBER(15)
CREATED_BY NUMBER(15)
CREATION_DATE DATE

HR_PUMP_BATCH_HEADERS
This table holds batch header information for Data Pump. BATCH_NAME is a parameter
for the Data Pump concurrent process.

Implementation Guide 4-247

Name Null? Type Description
----------------------- -------- ----- -------------
BATCH_ID NOT NULL NUMBER(9)
BATCH_NAME NOT NULL VARCHAR2(80) Unique name for

the batch
BATCH_STATUS NOT NULL VARCHAR2(30) Status can be

decoded using
’ACTION STATUS’
lookup type

REFERENCE VARCHAR2(80)
BUSINESS_GROUP_NAME VARCHAR2(80)
LAST_UPDATE_DATE DATE
LAST_UPDATE_LOGIN NUMBER(15)
LAST_UPDATED_BY NUMBER(15)
CREATED_BY NUMBER(15)
CREATION_DATE DATE

HR_PUMP_BATCH_LINES
This table holds the individual batch lines that will be loaded by Data Pump

Name Null? Type Description
------------------- -------- ---- -------------
BATCH_LINE_ID NOT NULL NUMBER(9) Sequence generated ID
BATCH_ID NOT NULL NUMBER(9) Foreign key to

HR_PUMP_BATCH_HEADERS
API_MODULE_ID NOT NULL NUMBER(9) Foreign key to

HR_API_MODULES
LINE_STATUS NOT NULL VARCHAR2(1) Load status of this API

’U’ Unprocessed (initial
value)
’V’ - Validated but
record not committed
’C’ - Complete and
record committed
’E’ - Error

PROCESS_SEQUENCE NUMBER(9)
USER_SEQUENCE NUMBER(9)
LINK_VALUE NUMBER
PVAL001 VARCHAR2(2000)
PVAL002 VARCHAR2(2000)
PVAL003 VARCHAR2(2000)
PVAL004 VARCHAR2(2000)
PVAL005 VARCHAR2(2000)
PVAL006 VARCHAR2(2000)
PVAL007 VARCHAR2(2000)
PVAL008 VARCHAR2(2000)
PVAL009 VARCHAR2(2000)
PVAL010 VARCHAR2(2000)
PVAL230 VARCHAR2(2000)
PLONGVAL LONG
BUSINESS_GROUP_NAME VARCHAR2(240)

HR_PUMP_BATCH_EXCEPTIONS
Holds exception information.

4-248 Oracle Human Resources Management System Implementation Guide (US)

Name Description
------------------------ ------------
EXCEPTION_SEQUENCE Sequence generated unique ID.
EXCEPTION_LEVEL Decode using ’MESSAGE_LEVEL’ lookup.
SOURCE_ID BATCH_ID or BATCH_LINE_ID.
SOURCE_TYPE Indicates what SOURCE_ID holds:

’BATCH_HEADER’ : BATCH_ID
’BATCH_LINE’ : BATCH_LINE_ID

EXCEPTION_TEXT Text of exception.

HRDPV_CREATE_EMPLOYEE
Name Null? Type
------------------------------------ ----
BATCH_ID NOT NULL NUMBER(9)
BATCH_LINE_ID NOT NULL NUMBER(9)
API_MODULE_ID NOT NULL NUMBER(9)
LINE_STATUS NOT NULL VARCHAR2(1)
USER_SEQUENCE NUMBER(9)
LINK_VALUE NUMBER
BUSINESS_GROUP_NAME VARCHAR2(240)
P_HIRE_DATE VARCHAR2(2000)
P_LAST_NAME VARCHAR2(2000)
P_SEX VARCHAR2(2000)
P_PER_COMMENTS VARCHAR2(2000)
P_DATE_EMPLOYEE_DATA_VERIFIED VARCHAR2(2000)
P_DATE_OF_BIRTH VARCHAR2(2000)
P_EMAIL_ADDRESS VARCHAR2(2000)
P_EMPLOYEE_NUMBER VARCHAR2(2000)
P_EXPENSE_CHECK_SEND_TO_ADDRES VARCHAR2(2000)
P_FIRST_NAME VARCHAR2(2000)
P_KNOWN_AS VARCHAR2(2000)
P_MARITAL_STATUS VARCHAR2(2000)
P_MIDDLE_NAMES VARCHAR2(2000)
P_NATIONALITY VARCHAR2(2000)
P_NATIONAL_IDENTIFIER VARCHAR2(2000)
P_PREVIOUS_LAST_NAME VARCHAR2(2000)
P_REGISTERED_DISABLED_FLAG VARCHAR2(2000)
P_TITLE VARCHAR2(2000)
P_WORK_TELEPHONE VARCHAR2(2000)
P_ATTRIBUTE_CATEGORY VARCHAR2(2000)
P_ATTRIBUTE1 VARCHAR2(2000)
P_ATTRIBUTE2 VARCHAR2(2000)
P_ATTRIBUTE3 VARCHAR2(2000)
...
P_ATTRIBUTE30 VARCHAR2(2000)
P_PER_INFORMATION_CATEGORY VARCHAR2(2000)
P_PER_INFORMATION1 VARCHAR2(2000)
P_PER_INFORMATION2 VARCHAR2(2000)
P_PER_INFORMATION3 VARCHAR2(2000)
...
P_PER_INFORMATION30 VARCHAR2(2000)
P_BACKGROUND_CHECK_STATUS VARCHAR2(2000)
P_BACKGROUND_DATE_CHECK VARCHAR2(2000)
P_BLOOD_TYPE VARCHAR2(2000)
P_FAST_PATH_EMPLOYEE VARCHAR2(2000)
P_FTE_CAPACITY VARCHAR2(2000)
P_HONORS VARCHAR2(2000)
P_INTERNAL_LOCATION VARCHAR2(2000)

Implementation Guide 4-249

P_LAST_MEDICAL_TEST_BY VARCHAR2(2000)
P_LAST_MEDICAL_TEST_DATE VARCHAR2(2000)
P_MAILSTOP VARCHAR2(2000)
P_OFFICE_NUMBER VARCHAR2(2000)
P_ON_MILITARY_SERVICE VARCHAR2(2000)
P_PRE_NAME_ADJUNCT VARCHAR2(2000)
P_PROJECTED_START_DATE VARCHAR2(2000)
P_RESUME_EXISTS VARCHAR2(2000)
P_RESUME_LAST_UPDATED VARCHAR2(2000)
P_SECOND_PASSPORT_EXISTS VARCHAR2(2000)
P_STUDENT_STATUS VARCHAR2(2000)
P_WORK_SCHEDULE VARCHAR2(2000)
P_SUFFIX VARCHAR2(2000)
P_PERSON_USER_KEY VARCHAR2(2000)
P_ASSIGNMENT_USER_KEY VARCHAR2(2000)
P_PER_OBJECT_VERSION_NUMBER VARCHAR2(2000)
P_ASG_OBJECT_VERSION_NUMBER VARCHAR2(2000)
P_PER_EFFECTIVE_START_DATE VARCHAR2(2000)
P_PER_EFFECTIVE_END_DATE VARCHAR2(2000)
P_FULL_NAME VARCHAR2(2000)
P_PER_COMMENT_ID VARCHAR2(2000)
P_ASSIGNMENT_SEQUENCE VARCHAR2(2000)
P_ASSIGNMENT_NUMBER VARCHAR2(2000)
P_NAME_COMBINATION_WARNING VARCHAR2(2000)
P_ASSIGN_PAYROLL_WARNING VARCHAR2(2000)
P_USER_PERSON_TYPE VARCHAR2(2000)
P_VENDOR_NAME VARCHAR2(2000)
P_CORRESPONDENCE_LANGUAGE VARCHAR2(2000)

PAY_ACTION_PARAMETER_GROUPS
Name Null? Type
----------------------------------- ----
ACTION_PARAMETER_GROUP_ID NOT NULL NUMBER(9)
ACTION_PARAMETER_GROUP_NAME NOT NULL VARCHAR2(30)

PAY_ACTION_PARAMETER_VALUES
Name Null? Type
----------------------------------- ----
PARAMETER_NAME NOT NULL VARCHAR2(30)
PARAMETER_VALUE NOT NULL VARCHAR2(80)
ACTION_PARAMETER_GROUP_ID NUMBER(9)
Note: The PAY_ACTION_PARAMETERS view just returns those rows from
PAY_ACTION_PARAMETER_VALUES that have a NULL_ACTION_PARAMETER_GROU
P_ID

SQL Trace

SQL Trace
The SQL trace facility provides you with performance information on individual SQL
statements. You can enable the trace facility for either a session or an instance.

For each SQL statement traced, the following performance information is generated:

• SQL statement text

• Parse, Execute and Fetch count, CPU/elapsed times, physical/logical reads and rows
processed

4-250 Oracle Human Resources Management System Implementation Guide (US)

• The optimized goal

• Misses in the library cache during parse

• The Explain Plan at time of SQL execution (Oracle 8.1.6+)

• User for which the parse occurred

• Recursive SQL depth

When you enable the trace facility, the performance information for executed SQL
statements is written out to a trace file until the SQL trace facility is disabled.

Note: You need Oracle 8.1.6 and Oracle Applications Release 11i to be
able to use SQL Trace.

Using SQL Trace
To use SQL Trace, first enable it, then the desired SQL application/process/statement(s)
are executed. When all the SQL statements have been executed, SQL Trace is disabled.

Viewing the Content of the Trace
Once you have generated the Trace file, you can convert it into a user-friendly report
using the Oracle reporting program TKPROF. Alternatively, you can view the generated
raw trace file directly.

Using SQL Trace

Note: If you enable SQL Trace, an additional processing overhead is
incurred, although the impact on performance is minor.

Enabling SQL Trace
You enable and disable SQL Trace through the init.ora parameter sql_trace. The
parameter accepts a Boolean value of TRUE or FALSE. The parameter
is set at the system level in the init.ora file. Alternatively, you can set it
dynamically for a session using the SQL command ALTER SESSION, or PL/SQL
dbms_session.set_sql_trace, dbms_system.set_sql_trace_in_session.

Implementation Guide 4-251

These are Oracle supplied packaged procedures.

Related Trace init.ora Parameters
The following table details parameters that enable timings, directory location, maximum
trace file size and trace file access protections to be specified and adhered to when SQL
Trace is enabled.

Related Trace init.ora Parameters

Parameter Meaning

timed_statistics Specifies if time statistics are to be collected
or not. Valid values are TRUE or FALSE. The
timing has a resolution of 1/100th of a
second. Any operation that is less than this may
not be timed accurately. If this parameter is
FALSE, timings are not recorded and are shown
as 0 in the trace file. For tkprof the ’cpu’ and
’elapsed’ times will be 0.

max_dump_file_size Specifies the maximum SQL Trace file size in
O/S blocks if just a number, bytes if K or M
is specified or unlimited if UNLIMITED is
specified. If the size of the trace exceeds the size
of max_dump_file_size then the *** Trace file
full *** message appears at the end of the file.

user_dump_dest Specifies the directory where the SQL Trace is
to be placed. If the values is ?/log then ? means
$ORACLE_HOME because the DBA has not
changed the default trace file destination.

_trace_files_public Specifies if a trace file is written out with public
access settings. Valid values are TRUE or
FALSE.

init.ora Parameters
You can view these init.ora parameters from an Oracle Session by examining the
v$parameters table below:

SELECT name
,value
FROM v$parameter
WHERE name IN
(’timed_statistics’
,’max_dump_file_size’
,’user_dump_dest’
,’_trace_file_public’);
NAME VALUE
----------------- ------
timed_statistics TRUE
user_dump_dest usr/oracleHR/log
max_dump_file_size 204800
_trace_file_public TRUE

Selecting SQL Trace init.ora Parameters
You can set the timed_statistics and max_dump_file_size dynamically at either the
session or system level, using the ALTER SESSION or ALTER SYSTEM commands.

4-252 Oracle Human Resources Management System Implementation Guide (US)

ALTER SESSION SET timed_statistics=TRUE;
ALTER SYSTEM SET timed_statistics=FALSE;
ALTER SESSION SET max_dump_file_size=204800;
ALTER SYSTEM SET max_dump_file_size=204800;

You can only set the user_dump_dest parameter dynamically at the system level. You
can only set the _trace_file_public parameter in the init.ora file.

Tracing Oracle Payroll Processes and Reports
When SQL Trace is enabled for Oracle Payroll processes, each process produces a trace
file for the session in which the Trace is executed. If the process is run in parallel, for
example, the Payroll Run, a trace file is produced for each thread.

You can enable and disable Trace for Oracle Payroll processes and reports by setting the
parameter TRACE in the PAY_ACTION_PARAMETERS table. You can do this by one of
two methods, using SQL *Plus, or the Action Parameters window.

Method 1: Using SQL *Plus
You can set the parameter to Y (enable trace), or to N (disable trace). For example:

/* To enable SQL Trace */
UPDATE pay_action_parameters
SET parameter_value = ’Y’
WHERE parameter_name = ’TRACE’;
COMMIT;
/* To disable SQL Trace */
UPDATE pay_action_parameters
SET parameter_value = ’N’
WHERE parameter_name = ’TRACE’;
COMMIT;

Method 2: Using the Action Parameters Window
Alternatively, you can enable Trace using the Action Parameters window.

1. Select Trace as the parameter name.

2. Enter Y to enable trace, or N to disable trace.

Tracing HRMS Application Forms
You can trace HRMS Application forms if the system administrator has granted access
to the ’HR Debug Tools’ facility.

1. Select Help->Diagnostics->Trace from the menu option.

2. Check the Trace check box.

Uncheck the Trace check box if you want to disable the utility.

Dynamically Tracing from SQL *Plus
You can use either the ALTER SESSION or PL/SQL packaged procedure
dbms_session.set_sql_trace to trace from SQL *Plus. Whichever method you
use, SQL_TRACE is enabled, the SQL statements are executed and SQL_TRACE is
disabled to stop the trace.

Implementation Guide 4-253

SQL> ALTER SESSION SET SQL_TRACE=TRUE;
SQL> Execute SQL statements

SQL> ALTER SESSION SET SQL_TRACE=FALSE;
Or
SQL> EXECUTE dbms_session.set_sql_trace(TRUE);
SQL> Execute SQL statements

SQL> EXECUTE dbms_session.set_sql_trace(FALSE);

You can run the SQL Trace facility in any current active Oracle Session by using the
dbms_system.set_sql_trace_in_session packaged procedure. This procedure accepts
the three following arguments:

• SID

• SERIAL#

• SQL_TRACE

You can determine the SID and SERIAL# values from the v$session table. Further
filtration on the v$session columns osuser name, username, and such, can help identify
the SID/SERIAL# values. For example:

SELECT s.sid,
s.serial#
FROM v$session s
WHERE s.osuser = ’afergusson’
AND s.username = ’APPS’
SID SERIAL#
--- --------
15 19201
execute
dbms_system.set_sql_trace_in_session(15,19201, TRUE);

The SQL_TRACE argument is Boolean and accepts TRUE or FALSE values.

Locating the Trace File
You specify the location of the Trace file using the user_dump_dest parameter. The Trace
file name is dependent on the operating system:

• On UNIX, the trace file name is SID_ora_PID.trc

• On NT, the trace file name is oraPID.TRC

SID is the Oracle System Identifier, and PID is the operating system Process
Identifier. The PID is determined by interrogating the v$process and v$session dynamic
tables for a specific active session ID.

The example below illustrates selecting a PID for a specific active session.

SELECT p.spid,
FROM v$session s, v$process p
WHERE s.audsid = &sessionid
AND p.addr = s.paddr:
SPID

89012

4-254 Oracle Human Resources Management System Implementation Guide (US)

What is TKPROF?
TKPROF is a program that formats a raw SQL Trace file into a user-friendly file. The
program reads the Trace file and creates a file that has the following section:

• Header

• Body

• Summary.

The header section contains the version of TKPROF, any sort options used and a glossary
of terms. The body section displays the following information for each user level SQL
statement traced:

• SQL statement text

• Tabulated Parse

• Execute and Fetch statistics

• Number of library cache misses during Parse

• Parsing user id

If specified, TKPROF also:

• Shows the explain plans when the SQL Trace was executed and when TKPROF
was run

• Creates a SQL script that creates a table and inserts a row of statistics for each SQL
statement

The power of TKPROF is the ability to sort the SQL statements. The sorting helps identify
and sequence statements that are using the most resources. At the end of the report, a
tabular summary for all the user level and recursive SQL statements is provided.

Formatting a Trace File using TKPROF
You execute TKPROF from the command line. Although TKPROF has many
arguments, generally only two mandatory and three optional arguments are used. The
execution syntax and arguments are as follows:

tkprof infile outfile sort=options explain=username/password@db print=integer

The tkprof arguments are:

Implementation Guide 4-255

Table of tkprof Arguments

Argument Meaning

infile Specifies the raw SQL Trace file

outfile Specifies the file that TKPROF will create the
report in

explain Optionally specifies the Oracle username,
password and DB connector where each
SQL statement is to be explained. For Oracle
8.1.6, if explain is specified, then two plans are
provided. The first plan is for when the SQL
Trace was generated (and is always present
regardless of the explain option setting). The
second plan is generated when TKPROF is
executed

print Limits the number of SQL statements to be
included in the report. The argument accepts an
integer value. This is particularly useful is you
have a large SQL Trace file. For example, you
may want to examine the worst 25 SQL
statements only and would use print=25

sort Optionally specifies a sort order in descending
order. The order comprises of one or more
options. If the sort argument is omitted, the
SQL statements are ordered in the order they
are located in the trace file. More than one
option can be specified provided a space
separates them. The options available are
shown in the following table.

4-256 Oracle Human Resources Management System Implementation Guide (US)

Table of Sort Options

Sort Options Meaning

PRSCNT Number of times parsed

PRSCPU CPU time spent parsing

PRSELA Elapsed time spent parsing

PRSDSK Number of physical reads from disk during
parse

PRSQRY Number of consistent mode block reads during
parse

PRSCU Number of current mode block reads during
pars

PRSMIS Number of library cache misses during parse

EXECNT Number of executes

EXECPU CPU time spent executing

EXEELA Elapsed time spent executing

EXEDSK Number of physical reads from disk during
execute

EXEQRY Number of consistent mode block reads during
execute

EXECU Number of current mode block reads during
execute

EXEROW Number of rows processed during execute

EXEMIS Number of library cache misses during execute

FCHCNT Number of fetches

FCHCPU CPU time spent fetching

FCHELA Elapsed time spent fetching

FCHDSK Number of physical reads from disk during
fetch

FCHQRY Number of consistent mode block reads during
fetch

FCHCU Number of current mode block reads during
fetch

FCHROW Number of rows fetched

Typical TKPROF Execution Examples:
• Standard report

tkprof hrdb_ora_6712.trc hrdb_ora_6712.tkp

• Report with Explain option

Implementation Guide 4-257

tkprof hrdb_ora_6712.trc hrdb_ora_6712.tkp explain=apps/apps@hrdb

• Report with explain, sorted by execute/fetch elapsed time for the worst 25 statements

tkprof hrdb_ora_6712.trc hrdb_ora_6712.tkp explain=apps/apps@hrdb sort= exeela
fchela print=25

TKPROF Sort Options
TKPROF provides a number of sort options which can be specified to sort the traced SQL
statements. Some recommended sort options are listed below:

• Sort by logical IO

tkprof infile outfile sort=exeqry execu fchqry fchcu

• Sort by physical IO

tkprof infile outfile sort=exeqry execu fchqry fchcu

• Sort by CPU time (only if the timed_statistics is enabled)

tkprof infile outfile sort=execpu fchcpu prscpu

• Sort by elapsed time (only if the timed_statistics is enabled) tkprof infile outfile
sort=exeela fchela prsela

• Sort by library cache misses

tkprof infile outfile sort=prsmis

HRMS Development prefers both a Raw SQL Trace file and a TKPROF report sorting by
execute elapsed (exeela) time and fetch elapsed (fchela) time providing timed_statistics
is set to TRUE. If timed_statistics is FALSE, then the execute disk (exedsk), execute query
(exeqry) and execute cpu (execu) sort options should be used.

Understanding a TKPROF Report
After running tkprof, the resulting file contains a report which is divided into three
sections:

• Header

• Body

• Summary

TKPROF Header
The header shows the TKPROF version, date of run, the SQL Trace infile, any sort options
(default if no options specified) and a glossary for terms used in the statistic table.

4-258 Oracle Human Resources Management System Implementation Guide (US)

TKPROF header

TKPPROF Body
The body contains all the SQL statements which have been traced. Each SQL statement
is shown with it statistics and explain plan in sorted order.

Implementation Guide 4-259

TKPROF body

1.Illustrates the SQL Statement Being Traced
The SQL statement being processed is shown, together with any bind variables without
truncation. Only the following SQL statements are truncated to 25 characters:

SET ROLE, GRANT, ALTER USER, ALTER ROLE, CREATE USER, CREATE ROLE

2 Illustrates the Parse, Execute and Fetch Tabular Statistics for the SQL Statement
The tabular statistics table below is the most important information to examine for each
parse, execute and fetch call.

4-260 Oracle Human Resources Management System Implementation Guide (US)

Tabular Statistics

Call Purpose

parse The parse call is responsible for syntax/semantic
checking, type checking, execution plan
generation and the building of a shared
cursor. Depending on the SQL statement
being parsed, either a hard or soft parse will
be performed. If the SQL statement was not
found in the shared cached then a hard parse
if performed. A hard parse will perform all
of the parsing steps required and is the most
expensive parse operation. If the SQL statement
does exist in the shared cache then a complete
parse operation does not need to be performed
because the shared cursor definition can be
used, this is known as a soft parse

execute Will execute the SQL statement or in the event
of a SELECT prepare for fetching.

fetch Fetches rows which are returned from a
SELECT SQL statement. For a SELECT that
contains an ORDER BY or a FOR UPDATE
clause, rows may be accessed during execute.

count The number of calls for each call type.

cpu CPU time in seconds (always zero if
timed_statistics is FALSE). For parse, if a
statement was found in the shared pool (i.e. no
library cache misses) then this will be 0.

elapsed Elapsed time in seconds (always zero if
timed_statistics is FALSE).

disk Number of physical reads of buffers from the
database files. (Physical I/O).

query Number of buffers gets in a consistent (query)
mode from memory. (Logical I/O). This column
usually reflects the processing of a SELECT
statement.

current Number of buffers read in current mode from
memory. This column usually reflects the
processing of a DML INSERT, UPDATE or
DELETE statement.

rows The number of rows processed by each
type. For SELECT statements, the number
of rows will be in the fetch column. For
INSERT, UPDATE and DELETE statements, the
number of rows will in the execute column.

The statistics can be useful in determining other statistical values and pointers to where
particular problems are occurring.

For example:

Total logical IO buffer gets

Implementation Guide 4-261

total logical IO = query total + current total

This statistic provides the total number of data buffers retrieved from memory.

Logical IO per row

logical IO per row = total logical IO / total rows

This statistic will provides the total number of data buffers retrieved from memory for
each row processed. The greater the number of logical IOs performed the greater the
row cost. Ideally this ratio should be as low as possible.

Logical IO per execute

logical IO per execute = total logical IO / execute count

This statistic is similar to ’logical IO per row’ but is based on per execute.

Parses per execute

parses per execute = parse count / execute count

This statistic determines the number of parses per execute. If this value is close to or
is 1 (providing more than 1 execute has taken place) then a parse is being performed
for each execute and the cursor is not being re-used. The shared pool size may not be
large enough and may need increasing.

Buffer cache miss rate

buffer cache miss rate = disk total / total logical IO

This statistic provides the miss rate for data not being cached in memory. Ideally this
figure should be less than 10%.

Average time per execution

avg. time per execute = elapsed total/execute count

This statistic provides the average time it takes to execute the statement. The figure is
really a guideline to determine if it is acceptable by the end user.

Average rows per fetch

avg. rows per fetch = fetch rows/fetch count

This statistic will provide the average number of rows fetched per fetch call. This is
particularly useful in determining if array fetching is being used.

3. Illustrates the Number of Misses in the Library Cache During Parse, the Optimizer Mode
Used and the Parsing User Id
The statistic ’Misses in library cache during parse indicates if the SQL statement was
hard or soft parsed. If a miss has occurred (i.e. > 0) then the SQL statement was not
found in the shared cursor cache and was hard parsed. If a miss did not occur (i.e. = 0)
the SQL was found in the shared cursor cache and was soft parsed. If this statistic is
consistently being set (e.g. > 0) then investigation will be required to determine why the
SQL is not being shared.

The statistic ’Optimizer goal’ shows the goal used by the Optimizer to process the SQL
statement. The goal will be one of the following values:

CHOOSE, FIRST_ROWS, ALL_ROWS or RULE

The ’Parsing user id’ shows the user who issued the SQL command.

4-262 Oracle Human Resources Management System Implementation Guide (US)

4. The Explain Plan Generated when the SQL Statement was Traced
The runtime explain plan is generated when the SQL statement was executed. This
explain plan is always present regardless if the explain option is specified as a tkprof
argument (although sometimes it is not shown if the user does not have access to all the
underlying objects). Additionally, the plan contains object ids instead of names for
referenced objects. These object ids map directly onto the all/dba/user_objects tables
where the object_name can be retrieved.

5. The Explain Plan Generated when the SQL Statement was Processed by TKPROF
Provided the Explain Argument was Specied
By providing TKRPOF with the explain argument, each SQL statement will be explained
during the TKRPOF processing. The fundamental difference between this and the
explain plan generated at SQL Trace execution is they can be different if any of the
underlying objects or corresponding database statistics have changed (if using the Cost
Based Optimizer). Also, all object names are displayed instead of object ids.

The ’Rows’ column shows the number of rows processed by each operation.

TKPROF Summary
The summary is located at the end of the TKPROF file after all the traced SQL statements.

Implementation Guide 4-263

TKPROF summary

1. Illustrates Overall Totals for Non-Recursive SQL Statements
Non-recursive SQL statements are user level SQL statements, such as SQL written by
developers.

The ’OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS’ tabular table
contains the sum of all user issued statements not including an Recursive SQL issued
(see number 3 below for Recursive SQL description).

2. Illustrates the Library Cache Misses During Execute and Parse
As mentioned previous in the body section, the library cache misses indicates the
number of Non-recursive SQL Statements not being shared, for example, user.

4-264 Oracle Human Resources Management System Implementation Guide (US)

3. Illustrates the Overall Totals for Recursive SQL Statements
Recursive SQL are internal statements issued by Oracle in to complete a user SQL
statement. Typical examples are dynamic space management, getting missing data
dictionary information, and so on.

Statistics for Recursive SQL are not included in the statistics for the SQL statements
which issued the calls. Therefore, the total resources/cost for a SQL statement is the SQL
statement plus all corresponding Recursive SQL values.

The ’OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS’ tabular table contains
the sum of all the Recursive SQL in the SQL Trace file. These figures are important to
determine how much extra work is being performed internally by Oracle in order to
satisfy the user SQL statements.

4. Illustrates the Library Cache Misses During Parse
As mentioned previous in the body section, the library cache misses indicates the
number of Recursive SQL Statements not being shared.

5. Illustrates the Summary of SQL Statements Processed
Provides a quick summation of the number of ’user SQL statements in session’
(Non-recursive), ’0 internal SQL statements in session’ (Recursive) and ’SQL statements
in session’ (total of Non-recursive + Recursive SQL statements).

6. Illustrates the TKRPOF Compatibility and Processing Statistics
Lists the SQL Trace file which has been processed, the trace file compatibility and sort
options. Additionally the number of sessions, unique SQL statements and number of
lines in the SQL Trace file are provided.

Raw SQL Trace File Example
The following example illustrates a simple, raw SQL Trace file produced for three SQL
statements:

• ALTER SESSION SET SQL_TRACE=TRUE

• SELECT

• ALTER SESSION SET SQL_TRACE=FALSE.

The Trace file is more difficult to read than the TKRPOF report, and is not in any sorted
order.

Implementation Guide 4-265

Example Trace le

Advanced SQL Tracing Using Event 10046
The 10046 Event enables extra information on bind variables and waits to be reported
in the Raw SQL Trace file. This extra information is determined by setting the event
level. The Event has four level settings which are described in the table below:

Event Level Settings

Level Setting

1 Default SQL Trace

4 Include bind variable information

8 Include wait event information

12 Include bind variable and wait event
information

By default, each SQL Trace is set to level 1. To enable extra information to be reported, the
10046 Event is set to the desired reporting level using the ALTER SESSION command.

ALTER SESSION SET EVENTS ’10046 trace name context forever, level
1’;
ALTER SESSION SET EVENTS ’10046 trace name context forever, level
4’;
ALTER SESSION SET EVENTS ’10046 trace name context forever, level
8’;
ALTER SESSION SET EVENTS ’10046 trace name context forever, level
12’;

4-266 Oracle Human Resources Management System Implementation Guide (US)

By setting the event level to either 4, 8 or 12, the extra information is reported in the Raw
SQL Trace file if SQL Trace is enabled. It is important to note that TKPROF ignores any
extra information reported from setting events.

Event 10046 Bind Variable information
When the 10046 is set to level 4 or 12 bind variable information is provided if the traced
SQL statement contains bind variables. This is particularly useful if you need to review
the bind variable values being used.

Event 10046 Bind Variable Information

Event 10046 Wait Event information
When the 10046 is set to level 8 or 12, wait event information is provided if the traced
SQL statement contains waits. The wait event names are the same events which are from
V$SYSTEM_EVENT. Each event has three parameters:

• p1

• p2

• p3

These are the same as the parameters in V$SESSION_WAIT. For a full event and
parameter description please refer to the Oracle 8i Reference Release 2 (8.1.6) Part
Number A76961-01, Appendix A - Oracle Wait Events.

Tracing for Wait Events can be very useful in identifying why the elapsed time of a
SQL statement is higher than expected. For example, the session may be waiting on a
latch, I/O, SQL*Net, and so on.

Implementation Guide 4-267

Event 10046 Wait Event Information

Backfeed

Oracle Generic Third Party Payroll Backfeed
This essay provides the information that you need to understand and use the Oracle
Generic Third Party Payroll Backfeed. To understand this information you should
already have a good functional and technical knowledge of the Oracle HRMS product
architecture, including:

• The data model for Oracle HRMS.

• The API strategy and how to call APIs directly.

• How to code PL/SQL.

• The HRMS parameters that control the running of concurrent processes.

• How to use and configure Data Pump.

Contents
This essay contains the following sections:

• Overview, page 4-269

Provides an overview of Oracle Generic Third Party Payroll Backfeed

• Setting Up Oracle Generic Third Party Payroll Backfeed, page 4-269

Describes the steps for setting up Third Party Payroll Backfeed at a high level. Each
step is explained in more detail in the following sections:

• Installing the Generic Payroll Backfeed, page 4-270

• Payment Information, page 4-271

• Balance Types, page 4-271

• Setting Up Data Pump, page 4-273

4-268 Oracle Human Resources Management System Implementation Guide (US)

• Setting Up the Data Uploader, page 4-274

• Using Backfeed to Upload Payroll Run Results, page 4-277

Describes the steps for using Third Party Payroll Backfeed at a high level. Each step
is explained in more detail in the following sections:

• Using the Load Sheets Macro, page 4-278

• Using the Save Sheets Macro, page 4-279

• Running Data Uploader, page 4-279

• Running Data Pump, page 4-280

• Viewing Third Party Payroll Run Results in Oracle HRMS, page 4-280

Describes how you view the payroll run results in Oracle HRMS windows.

Overview
If you use a third party payroll system, Oracle Generic Third Party Payroll Backfeed
enables you to upload information supplied by your payroll system for a payroll run into
the Oracle HRMS tables. This information can include payment information and balance
details calculated by your third party payroll system. You can then view this information
using Oracle HRMS windows and generate reports based on this information.

Backfeed Process

The payroll results data that is uploaded using Backfeed is held in specific Backfeed
tables, not tables belonging to Oracle Payroll. This means that if you are using Oracle
Payroll and a third party payroll system, your Oracle Payroll implementation is not
impacted by Backfeed.

This generic version of Oracle Third Party Payroll Backfeed is vendor independent. It
can be configured during implementation to fit the requirements of your third party
payroll system and your HRMS implementation.

Setting Up the Generic Payroll Backfeed
To set up the Generic Payroll Backfeed, follow this sequence of tasks:

1. Install the Generic Payroll Backfeed

See: Installing the Oracle Generic Third Party Payroll Backfeed, page 4-270

2. Ensure that payment information is set up for Oracle HRMS if you intend to upload
payment information using Backfeed.

See: Payment Information, page 4-271

3. Enter the names of the balance types that will be uploaded into Oracle HRMS from
your third party payroll system.

See: Balance Types, page 4-271

4. Decide which upload option to use.

See: Deciding Which Upload Option to Use, page 4-273

5. Set Up Data Pump.

Implementation Guide 4-269

See: Setting Up Data Pump, page 4-273

6. Run Data Pump Meta-Mapper.

See the Oracle HRMS Data Pump technical essay for further details.

7. Set up Data Uploader

See: Setting Up Data Uploader, page 4-274

8. Add the View Third Party Payroll Employee Run Results, View Third Party Payroll
Organization Run Results and the Enter Third Party Payroll Balance Types form
functions to your menus. Use the Menus window.

See: Oracle Applications System Administrator’s Guide

9. Create new folder definitions in the Third Party Payroll Run Employee Results
window and the Third Party Payroll Run Organization Results, if required, so
information relevant to your enterprise is displayed.

Installing the Oracle Generic Third Party Payroll Backfeed
Release 11i
If you are using Oracle HRMS 11i you should apply the patches listed below. You can
obtain these patches from Oracle Support or Metalink.

Note: These patches are subject to change. Please contact Oracle Support
for the latest information.

Install the Backfeed tables - Patch Number 1287911
This patch installs the Third Party Payroll Backfeed tables, APIs, forms, and views.

Install Data Pump Conguration Data - Patch Number 1313097
This patch delivers some Data Pump configuration data that enables Data Pump to call
the Backfeed APIs. Also included are some PL/SQL functions that resolve the Oracle
HR system ids. These functions make certain assumptions about your Oracle HRMS
implementation. The functions are documented in the Reference Information section of
this document. If the assumptions are not valid for your implementation you will have
to configure some of the scripts that are delivered by patch 1313097.

Install Data Uploader - Patch Numbers 1164750 and 1316578
These patches deliver the Data Uploader and seed data to enable you to use the Data
Uploader functionality as part of your Third Party Payroll Backfeed. If you have changed
the PL/SQL functions that are delivered in patch 1313097, you may need to change
the seed data delivered by patch 1316578.

Install Enhancement to support Descriptive Flexelds - Patch Number 1928571
This patch delivers the updates to tables, views, business views, forms, APIs, row
handlers, messages and datapump scripts required to support descriptive flexfields. You
should install this patch if you wish to hold additional information against a balance
amount, payment detail, payroll run or processed assignment, or if you want to use the
business views; for example to create Oracle Discover reports.

Release 11.0
If you are using Oracle HRMS 11.0.x you should apply the patches listed below. You can
obtain these patches from Oracle Support or Metalink.

Note: These patches are subject to change. Please contact Oracle Support
for the latest information.

4-270 Oracle Human Resources Management System Implementation Guide (US)

Install the Backfeed tables - Patch Number 1198005
This patch installs the Third Party Payroll Backfeed tables, APIs, forms, and views.

Install Data Pump - Patch Numbers 1053696 and 1077660
These patches deliver enhancements to Data Pump and some Data Pump configuration
data that enables Data Pump to call the Backfeed APIs. Also included are some
PL/SQL functions that resolve the Oracle HR system ids. These functions make certain
assumptions about your Oracle HRMS implementation. The functions are documented
in the Reference Information section of this document. If the assumptions are not valid
for your implementation you will have to configure some of the scripts that are delivered
by patch 1077660.

Install Data Uploader - Patch Numbers 1325570 and 1176584
These patches deliver the Data Uploader and seed data to enable you to use the Data
Uploader functionality as part of your Third Party Payroll Backfeed. If you have changed
the PL/SQL functions that are delivered in patch 1077660, you may need to change
the seed data delivered by patch 1176584.

Install the Business Views - Patch Number 1198041
This patch delivers the business views for the Oracle Generic Third Party Payroll
Backfeed. You should install this if you want to use the business views, for example to
create Oracle Discoverer reports.

Payment Information
All employees for whom payments information is to be loaded using the Backfeed must
have personal payment methods set up in Oracle HRMS before the Backfeed is run.

This information should be entered using the Organizational Payment Method, and
the Personal Payment Method windows.

See: Payrolls and Other Employment Groups, and Employment Information, Oracle
Human Resources User’s Guide

While uploading payment details a currency code must be provided. This currency code
must match the currency of the payment method.

Balance Types
Balances that are maintained by your third party payroll system can be loaded into the
Backfeed tables. Each third party payroll balance that you want to hold in the Backfeed
tables must be defined as a Backfeed balance type in Oracle HRMS before you run the
Backfeed.

Note: Backfeed balance types are not the same as Oracle Payroll balance
types.

Balance dimensions can be held for any of the balance types you create. The balance
dimensions that can be held for each balance type are:

• Year-to-date balance

• Fiscal year-to-date balance

• Period-to-date balance

• Month-to-date balance

• Quarter-to-date balance

Implementation Guide 4-271

• Run amount

You must set up the balance types required by your enterprise before you upload any
payroll run data to the HRMS system. When setting up your balance types you can
link them to any user defined element input value. This enables you to easily generate
reports that can link the balance types to their associated elements.

When uploading monetary balance amounts a currency code must be provided. This
currency code must match the currency of the balance or its associated element, as
appropriate. One of the following checks is done to ensure the currency of the balance
details being loaded is the same as those defined for the balance type:

• If the balance type for the amount being uploaded is associated with an element, a
check is done to ensure that the amount being uploaded is in the same currency as
the input currency for the associated element.

• If the balance type for the amount being loaded is not associated with an element, a
check is done to ensure that the amount being uploaded is in the same currency
entered for the balance type.

Balance types must be set up using the Third Party Payroll Balance Types window.

To set up balance types:
1. Enter a display name for the balance type and enter a valid from date. If required, you

can also enter a valid to date. The balance type will not be available after this date.

2. Enter an internal name. This is used to identify the balance type internally and must
be unique within the Business Group.

3. Enter a category if required. This can be used to group balance types for reporting
purposes. For example, you could group together all balance types relating to
employee holidays in a category called Holidays.

4. Do one of the following:

• Select a user defined element and an input value to link to the balance type. The
Currency and Unit fields will be populated according to the element and input
values you have selected.

• Select a unit for the balance type and, if required, a currency.

5. The In Use check box indicates whether a balance type has any balance amounts
recorded against it. If it does you are not permitted to change the balance type’s
currency, units element name or internal name.

6. Save your changes.

APIs
Data is maintained in the Backfeed tables using business process APIs. These are
interfaces that enable you to create, update and delete information from the Oracle
tables. These APIs call one or more row handlers. Row handlers maintain the data
in a single table by validating the data being passed in before allowing it to be
created, updated, or deleted. Row handlers should not be called directly.

See the APIs in Oracle HRMS technical essay for further details.

We recommend you use Data Pump to upload your third party payroll run data into the
Oracle HRMS Backfeed tables. You launch Data Pump as a concurrent program from the
Run Reports and Process window. Data Pump will automatically call the appropriate
Backfeed APIs.

4-272 Oracle Human Resources Management System Implementation Guide (US)

Setting Up Data Pump
One of the features of Data Pump is the ability to resolve internal id values using other
information that has been passed in. Functions have to be created when implementing
a Data Pump front end to resolve these ids. These functions will differ for each
implementation as each enterprise maps the data in different ways depending on how
they have implemented Oracle HRMS.

See the Oracle HRMS Data Pump technical essay before you attempt to configure Data
Pump.

Conguring the Data Pump Front End
The Generic Payroll Backfeed uses a package called PER_BF_GEN_DATA_PUMP. This
contains some functions that are used to resolve the internal system ids, such as
payroll_id (the function for this is called get_payroll_id).

The function definitions are delivered in two scripts; pebgendp.pkh and pebgendp.pkb. If
you are using Oracle HRMS 11.0 they are located in $PER_TOP/patch/110/sql. If you are
using Oracle HRMS 11i they are located in $PER_TOP/patch/115/sql.

If the assumptions made by the supplied functions are not appropriate to your enterprise
you will have to modify the functions to reflect the way in which you have implemented
Oracle HRMS. We recommend that you make a copy of the package and make your
changes to the copy.

If you do not need to alter any of the parameters in the generic functions, but need to
change the body of the function, you can do this and run your amended version against
your database. To do this you must navigate to the directory containing your configured
script and enter the following:

sqlplus <apps_username>/<apps_pwd>@<database_name> @<package_body
_name.pkb>

If, however, you need to change the parameters in the functions, or add new functions, as
well as altering the package, you will have to run both scripts against the database. To do
this navigate to the directory containing your configured scripts and enter the following:

sqlplus <apps_username>/<apps_pwd>@<database_name> @<package_head
er_name.pkh>
sqlplus <apps_username>/<apps_pwd>@<database_name> @<package_body_
name.pkb>

You must also run the Data Pump Meta-Mapper. This regenerates the Data Pump APIs
and views specific to the Third Party Payroll Backfeed interface. For more information
on how to do this, and other Data Pump functionality that you may want to use, please
refer to the Oracle HRMS Data Pump technical essay.

If you do make any changes to the parameters in the supplied generic functions, or add
any new functions, you will also need to configure the Data Uploader front end.

See: Configuring the Data Uploader Front End, page 4-276

Deciding Which Upload Option to Use
In order to use Data Pump to upload the third party payroll run data into the Backfeed
tables you must first get this data into the Data Pump batch tables. There are two
alternative approaches to achieving this:

• Use APIs generated by the Data Pump Meta-Mapper

Implementation Guide 4-273

If you decide to use this option you will need to write a PL/SQL program to read
your payroll results data and insert it into the Data Pump batch tables using the
Data Pump APIs.

• Use Data Uploader

If you decide to use this option you will need to format your payroll run results data
file into a flat file in a format that is readable by the Data Uploader.

You must decide which is the best approach for you based on your technical resources
and the source of your payroll results data.

Setting Up Data Uploader
Data Uploader takes data held in tab delimited text files and uploads it to the Data Pump
batch tables using the packages and views created when Data-Pump Meta-Mapper is
run. To use Data Uploader you must get your payroll run data into tab delimited files
of the format required by Data Uploader. To help you format your payroll run data
files, a Microsoft Excel workbook called bfexampl.xls has been supplied. This shows
how your data must be set out. Once formatted you can use the Save Sheets macro to
export the data held in the Excel worksheets into the tab delimited text files used by Data
Uploader. This, and the Load Sheets macro are supplied in the bfmacros.xls file.

Using Excel to Create Files
Although you can use the Excel macros during the early stages of a Backfeed
implementation to create files that can be read by Data Uploader, you should stop using
Excel once you are using Backfeed in a production environment. We suggest that you
automate the creation of the tab delimited Data Uploader files, instead.

You can continue to use Excel for debugging purposes, if the files are small enough for
Excel to handle, if problems occur when running the Data Uploader part of Backfeed.

Example Files
The example files consist of:

bfexampl.xls
• Header Sheet. This contains basic information for the workbook such as the

individual worksheet names.

• Payroll Run Sheet. This holds details relating to the entire run such as the processing
date. This contains data to be used by the the create_payroll_run API.

• Balance Amounts Sheet. This holds the employee balance details for the run
defined in the Payroll Run worksheet. This contains data to be used by the the
create_balance_amount API.

• Payment Details Sheet. This holds the employee payment details for the run
defined in the Payroll Run worksheet. This contains data to be used by the
create_payment_details API.

• Processed Assignments Sheet. This holds the processed assignment details for
a particular employee assignment relating to the run defined in the Payroll Run
worksheet. This contains data to be used by the create_processed_assignment API.

bfmacros.xls
• Save Sheets Macro. This is a macro that saves the individual sheets in the workbook

as individual tab delimited text files

• Load Sheets Macro. This is a macro that loads the individual text files based on
the Header file.

4-274 Oracle Human Resources Management System Implementation Guide (US)

Header Sheet
The Header Sheet contains information about the complete set of data that is to be
uploaded. It defines standard information such as batch name and date, and also
specifies the files that are to be used in this upload.

You must enter a batch name that will uniquely identify this upload. You will be asked
for this batch name when you run the Data Pump process.

The text between the Files Start and Files End rows are the file names for the individual
sheets. The first column contains the name of the sheet, and the second column contains
the name of the text file. This is the name that the related sheet will be saved as, or
uploaded from if you use the macros.

Payroll Run Sheet
Every payroll run has information that relates to the entire run such as processing
date, periods start and end dates, and a unique identifier for the run. This worksheet
contains this type of information.

At the top of the sheet, between the Descriptor Start and Descriptor End columns, the
details relating to the run are held. It is likely that these will remain the same for all
your data uploads.

The User Key row contains an entry that allows the Data Uploader and Data Pump
functionality to uniquely refer to the payroll run that is being inserted from other
sheets that need this reference, such as the Balance Amounts Sheet and the Payment
Details Sheet. The default entry for this is %$Business Group%:payroll_identifier. You
should not need to change this as the combination of Business Group ID and the payroll
identifier should always uniquely identify a payroll run.

The ID column is the way the Data Uploader identifies a row in the spreadsheet and
can be used by other sheets in the same workbook to refer to a particular row. In this
case, both the Balance Amount Sheet and the Payment Details Sheet have a column
called Payroll_run_id that will refer to the row in this sheet. Each row of your data
should have a different, sequential number in the ID column.

Balance Amounts Sheet
The Balance Amounts worksheet holds the balance information relating to each
employee for a particular payroll run.

The row beneath the the Data Start row contains the column titles of the API. Your
payroll run balance amount details for each employee need to go between this row and
the Data End row. A currency code must be provided for all monetary amounts.

The ID column needs to be populated with sequential numbers starting from 1.

The column named Payroll_Run_id refers to the ID column in the Payroll Run
worksheet. This number will be the same for all the rows in the payroll run.

Payment Details Sheet
The Payment Amount Sheet holds the payment details for each employee processed in
a payroll run.

The row beneath the the Data Start row contains the column titles of the API. Your
payment details for a particular run need to go between this row and the Data End
rows. You must provide a currency code for all monetary amounts.

The ID column needs to be populated with sequential numbers starting from 1.

Implementation Guide 4-275

The column named Payroll_Run_id refers to the ID column in the Payroll Run
worksheet. This number will be the same for all the rows in the payroll run.

Processed Assignments Sheet
The Processed Assignment Sheet holds the assignment details for each employee
processed on a payroll run.

The row beneath the Data Start row contains the column titles of the API. Your processed
assignment details for a particular employee and payroll run need to go between this
row and the Data End row.

The ID column needs to be populated with sequential numbers starting from 1.

The column named Payroll_Run_id refers to the ID column in the Payroll Run
Worksheet. This number will be the same for all the rows in the payroll run.

This worksheet is only required if additional information is held within the processed
assignment descriptive flexfield. If there is no additional information then the processed
assignment will be created by the balance amount api or payment detail api.

If this worksheet is not required (for reasons mentioned above) then the name and text
file for processed assignment must be removed from the header sheet.

Save Sheets Macro
This Excel macro saves the individual Worksheets as tab delimited text files. The name
of each text file, with the exception of the Header Sheet, is held in the Header Sheet. You
are prompted to enter a name for the Header Sheet when you run the macro.

Load Sheets Macro
To use this macro you must have a tab delimited text file of your Header Sheet. This
macro loads the text files specified in the Header Sheet as worksheets into workbook
from which the macro was run. The text files to be loaded must be in the same directory
as the selected Header Sheet text file.

Specifying the Upload Directories for Data Uploader
You must specify the location in which files to be imported using the Data Uploader
must be placed. The following steps describe the tasks that must be completed to do this:

1. In the initialization file for the database, your Database Administrator must specify
the directory that will hold the files to be uploaded. This is done by including the
path of the required directory in the UTL_FILE_DIR parameter.

2. Your System Administrator must enter the full path to this directory in the HR: Data
Exchange Directory user profile option. Use the System Profile Values window. You
can set this profile option at site, application and responsibility level, depending on
the security you want to impose.

Conguring the Data Uploader Front End
The generic Data Uploader parameters are defined in a script called pedugens.sql. It
is separated into different sections for creating parameters for Payroll Run, Balance
Amounts etc.

If you are using Oracle HRMS 11.0 this script is located in $PER_TOP/patch/110/sql. If
you are using Oracle HRMS 11i it is located in $PER_TOP/patch/115/sql.

If you have changed the parameters in the Data Pump functions to resolve the system
ids, or added new functions and used Meta-Mapper to regenerate the Data Pump
APIs, you must include a column containing the data specified in the new parameters

4-276 Oracle Human Resources Management System Implementation Guide (US)

in the appropriate sheet of your Excel upload workbook. See: Creating an Upload
Workbook, page 4-277.

You must then amend the pedugens.sql script to map the new data in the Excel column
to the API used by the Data Uploader.

The following is an example of code that is used to create the Data Uploader mapping
details for the create_balance_amount API:

HRDU_DO_API_TRANSLATE.hrdu_insert_mapping(
p_api_module => ’create_balance_amount’,
p_column_name => ’balance_type_name’,
p_mapped_to_name => ’p_balance_type_name’);

The p_api_module parameter identifies which Microsoft Excel worksheet holds the
data that will be uploaded using this api. In this case it is create_balance_amount. The
p_column_name parameter passes in the associated Excel worksheet column name, in
this case, balance_type_name. The p_mapped_to_name parameter passes the Data
Pump view column that is to be associated with the Excel worksheet, in this case
p_balance_type_name.

You will need to add an insert statement for any new columns that you have added to
the upload workbook, whether they are in existing or new functions.

Using Backfeed to Upload Payroll Run Results
To upload payroll run results using Backfeed, follow this sequence of tasks:

1. Save the payroll run results from your third party payroll system into a text file.

2. Create an upload workbook.

See: Creating an Upload Workbook, page 4-277

3. Format the payroll run data into the format required by Data Uploader.

See: Formatting the Payroll Run Data into the Format Required by Data Uploader,
page 4-278

4. Use Data Uploader concurrent process to load the information from the text file
into the Data Pump batch tables.

See: Running Data Uploader, page 4-279

Note: If you decided not to use Data Uploader to load the payroll
run data into the Data Pump Batch table, but to write a PL/SQL
program that uploads the data using the APIs generated by the Data
Pump Meta-Mapper, you should ignore steps 3 and 4.

5. Run the Data Pump concurrent process to upload the data from the Data Pump
batch tables into the Backfeed tables.

See: Running Data Pump, page 4-280

Creating an Upload Workbook
You must create an upload workbook based on the bfexampl.xls file that meets the need
of your enterprise before you use Data Uploader.

You can change the names of the files specified in the Header Sheets to whatever you
would like the files saved as. For example, if you want to keep a file record of all the

Implementation Guide 4-277

payroll runs you have uploaded into the Backfeed tables, you may want to prefix the
files with the payroll identifier for the run they relate to.

You can amend the layout of the worksheet and remove any unnecessary worksheets
as detailed below:

If you are only using the balance detail functionality and not the payment detail
functionality, you can remove the line from the Header Sheet detailing the Payment
Detail sheet and delete the Payment Detail Sheet. You can also remove the Balance
Details functionality in the same way if you do not want to use it.

If there are any non-essential columns, such as check_type or ftd_amount, that you are
not using, you can remove them from the worksheet. Ensure that you do not remove
any columns that will prevent the data being loaded via Data Pump. For example, you
cannot remove the ID or payroll identifier columns because these are essential to the
operation of both Data Pump and Data Uploader.

As well as this, you can change the order of the data columns (with the exception of the
ID column) to suit your preference. You must also add any new columns required by
changes you have made to your Data Pump front end.

See: Configuring the Data Pump Front End, page 4-273

Formatting the Payroll Run Data into the Format Required by Data Uploader
There are a number of methods that you can use to format the payroll run data into the
format required by Data Uploader. You can choose the method that suits the working
practices of your enterprise.

One method would be to format your payroll run data using your operating system tools
and load it into another spreadsheet. You can then cut and paste it into position in the
upload workbook and use the Save Sheets macro to save the worksheets into individual
tab delimited text files.

Alternatively, you could save the upload worksheets without any data in using the Save
Sheets macro, and use operating system tools to put the data into the correct position. To
ensure that the data is correctly formatted you could use the Load Sheets macro to reload
the data into Excel so that you can view it. Reloading the data into Excel to check it is not
necessary for correct operation of the Data Uploader tool, but it is recommended.

For worksheets with minimal data, another method would be to enter the data manually
into Excel and then save it using the Save Sheets macro.

Using the Load Sheets Macro
The Load Sheets macro enables you to load the text files specified in a tab delimited text
file version of your Header Sheet into a workbook. The files are loaded from the same
directory in which the header text file is stored

To run the Load Sheets macro
1. Ensure you have a version of your Header Sheet, in the same format as the first

worksheet in bfexampl.xls, saved as a tab delimited text file. This defines the text
files you want to load and the names of the Excel worksheets that should be created
when they are loaded.

2. Ensure that the text files you want to upload are stored in the same directory as the
Header Sheet text file.

3. Open the workbook into which you want to load the files. If this workbook does not
contain the Load Sheets macro you must copy it in from another workbook.

4-278 Oracle Human Resources Management System Implementation Guide (US)

4. Choose Macro from the Tools menu and select the Load Sheets macro in the
displayed Macros window.

5. Enter the path of the directory that contains the Header Sheet text file and choose OK.

Note: The last character you must enter in this path must be a
"\", for example C:\upload\.

6. Enter the name of the Header Sheet text file and choose OK. The files are loaded
into the workbook.

Note: When the files are loaded into the workbook the name of
the worksheet containing the header information, i.e. the first
worksheet, will always be header_sheet.

Using the Save Sheets Macro
The Save Sheets macro enables you to save a multiple sheet Excel workbook into
corresponding tab delimited text files. Each text file will be given the name specified
in the Header Sheet and will be saved in the specified directory. The first worksheet in
the workbook, the Header Sheet, will create the header file that will be used by Data
Uploader.

To run the Save Sheets macro:
1. Ensure that the required Excel workbook is open. If this workbook does not contain

the Save Sheets macro you must copy it in from another workbook.

2. Ensure the worksheet containing the Header information is called header_sheet. If it
is not you must rename this worksheet or the macro will fail.

3. Choose Macro from the Tools menu and select the Save Sheets macro in the
displayed Macros window.

4. Enter the path of the directory in which you want to save the text files. This should
be the directory defined by your System Administrator during the set up of
Backfeed. Choose OK.

Note: The last character you must enter in this path must be a
"\", for example C:\upload\.

5. Enter a name for the header file. This will default to the name of the first worksheet
in the workbook. You will need to specify this file when you run the Data Uploader
process. Choose OK.

Running Data Uploader
The Data Uploader takes the information held in the text files you have created and loads
them into the Data Pump batch tables. The files that are used in each upload are defined
by the header file you select when running the HR Data Uploader concurrent process.

Note: You can load the payroll run data into the Data Pump tables using
another method if you desire.

Once the setup tasks have been completed you run the Data Uploader in the Submit
Requests window.

Implementation Guide 4-279

To run the Data Uploader process:
1. Ensure that the files you want to upload are in the directory specified during the

Backfeed setup by your Database and System Administrators.

2. In the Submit Requests window, select the HR Data Uploader concurrent process.

3. Enter the file name of the header file you want to use and choose submit.

Tracking Errors Using Data Uploader
If any errors are detected whilst using Data Uploader, you must view the concurrent
request log file for more information.

Running Data Pump
Once you have the payroll run data in the Data Pump batch tables you must run the Data
Pump Engine concurrent process to upload the data into the Backfeed tables.

To run the Data Pump Engine concurrent process:
1. Select the Data Pump Engine concurrent process.

2. Enter the required batch name and indicate whether you want the process to be
validated.

The batch name will be of the form: <batch name>-<batch ID> where batch name
relates to the batch name entered in the header file and batch ID is the internally
allocated ID. For example:

Week12-1234

3. Choose Submit.

For information on finding and fixing errors in Data Pump see the Oracle HRMS Data
Pump technical essay.

Viewing Third Party Payroll Results in Oracle HRMS
After uploading your third party payroll results into the Backfeed tables, you can view
them by:

• Employee (in the Third Party Payroll Run Employee Results window)

• Organization, job, grade, group, position, or location (in the Third Party Payroll Run
Organization Results window)

These windows each contain two folders, Balance Details and Payment Details, that
enable you to display the information you require using the standard folder utilities.

To query payroll run details using the Find Third Party Payroll Run Employee Results
window:
1. Do one or any number of the following:

• Enter a full or partial query on the person’s name. Where a prefix has been
defined for the person, a full name query should be in the format ’Maddox, Miss
Julie’.

• Enter a query on employee number, assignment number, payroll, or payroll
identifier.

• Specify an earliest and latest date for payroll period start and end dates, and
payroll process dates. This means that you can retrieve a range of payroll run
results.

2. Choose the Find button.

4-280 Oracle Human Resources Management System Implementation Guide (US)

The payroll run details found by the query are displayed in the Third Party Payroll
Run Employee Results window. If the query found more than one record, you can
use the [Down Arrow] key or choose Next Record from the Go menu to display
the next record.

To query payroll run details using the Find Third Party Payroll Run Organization Results
window:
1. Do one or any number of the following:

• Enter a query on organization, people group, job, position, grade, or location.

• Enter a query on payroll, or payroll identifier.

• Specify an earliest and latest date for payroll period start and end dates, and
payroll process dates. This means that you can retrieve a range of payroll run
results.

2. Choose the Find button.

The payroll run details found by the query are displayed in the Third Party Payroll
Run Organization Results window. If the query found more than one record, you
can use the [Down Arrow] key or choose Next Record from the Go menu to display
the next record.

To view third party payroll run results:
1. Query the required information using the Find Third Party Payroll Run Employee

Results window or the Find Third Party Payroll Run Organization Results window.

• If you queried using the Find Third Party Payroll Run Employee Results
window, details about the employee and the payroll run are displayed, including
additional flexfield information.

• If you queried using the Find Third Party Payroll Run Organization Results
window, details about the payroll run are displayed, including additional
flexfield information. The find window remains open in the background so that
you can refer to it to see the query that has retrieved the displayed results.

2. Choose the Balance Details alternative region. This displays all the balance
information relating to the displayed employee and payroll run such as run
amount, financial year to date amount, and element name. Any additional flexfield
information will also be displayed here. You can use standard folder tools to control
the data that is displayed in this folder.

3. Choose the Payment Details alternative region. This displays all the payment
information relating to the displayed employee and payroll run such as check
number, payment date, and amount. Any additional flexfield information will also
be displayed here. You can use standard folder tools to control the data that is
displayed in this folder.

GB Branch Sort Code Validation in Oracle HRMS

GB Branch Sort Code Validation in Oracle HRMS
This technical essay explains how to implement GB bank branch sort code validation in
Oracle HRMS. To implement sort code validation you require expertise in these areas:

• Oracle HRMS: functional and technical knowledge of organization and personal
payment methods, and familiarity with the GB Bank Details key flexfield structure.

Implementation Guide 4-281

• PL/SQL: you use PL/SQL APIs to load reference bank branch data into Oracle HRMS.

How Oracle HRMS Implements GB Branch Sort Code Validation
Oracle HRMS enables you to validate sort codes for GB bank accounts You can validate
from Oracle HRMS Self Service or from the Professional User Interface. You need only
enter the sort code, account name, and account number. Oracle HRMS then displays the
bank and branch name to verify that your choice of sort code is correct.

How Oracle HRMS Obtains the Data for Sort Code Validation
You use the supplied APIs to transfer the reference bank branch date to Oracle HRMS,

Customers supply the bank branch data. However, customers can only supply file-based
branch data rather than branch data validated by web services.

Features Delivered for Sort Code Validation
Sort code validation includes these features:

• The Organization Payment Method and Personal Payment Method professional
forms and the Manage Payroll Payments self-service form support sort code
validation.

• Professional and self-service users need only specify the sort code, account
name, and account number when entering account information. Sufficient additional
information (bank and branch name) is displayed with the sort code to identify
the bank branch.

• Bank account data is still written to PAY_EXTERNAL_ACCOUNTS table so that you
do not need to change code that uses bank account information, for example, BACS
tape creation.

• To minimize the creation of new records in the PAY_EXTERNAL_ACCOUNTS
table we only update bank account information when there are changes to the sort
code, account name, or account number. So, changes to the case of the account
name, or removal of left-padded zeroes from the account number are handled in
flexfield format only in PAY_EXTERNAL_ACCOUNTS. The value is accepted even
if the sort code does not exist in PAY_BANK_BRANCHES (or is otherwise disabled)
as long as no changes are made. We avoid upgrading existing data unnecessarily
and save on the duplication of data by avoiding the need for synchronisation with
potentially changing reference branch information.

• You can set a profile option to turn sort code validation on or off.

• You use the supplied PL/SQL APIs to maintain the reference bank branch data in
Oracle HRMS. You can disable unwanted reference branch information to prevent it
from being used when you create new bank accounts.

Overview: Enabling Sort Code Validation
Perform each of these steps to enable sort code validation:

1. Find a source for the reference bank information. You normally obtain this
information from a third party supplier and load it to Oracle HRMS. Ensure that the
source of your reference bank information is file-based rather than web-based.

2. Define mappings between bank name strings in the supplied reference data and
lookup codes in the GB_BANKS lookup type.

4-282 Oracle Human Resources Management System Implementation Guide (US)

3. Create a loader program to maintain reference branch data in Oracle HRMS. We
recommend that the loader program uses the supplied APIs for creating and
updating reference branch records from the third party source data. Oracle HRMS
does not provide forms for maintaining the reference branch data.

4. Enable the sort code validation by setting the profile option value.

5. Maintain updates to the reference bank branch information. You must maintain the
GB_BANKS lookup for new banks regardless of whether sort code validation is
enabled.

• If you update GB_BANKS lookup data, you must also update the bank name
mappings, as outlined in step 2.

• Run the loader program to update the Oracle HRMS reference branch data.

Mapping Bank Name Strings to GB_BANKS Lookup Codes
The GB Bank Account flexfield stores lookup codes rather than bank names for the
GB_BANKS lookup. Your payroll processing software retrieves the corresponding
meaning when it needs to display a bank name.

You must define a mapping between the source data bank names and GB_BANKS
lookup codes because the third party sourced bank names are unlikely to be exactly the
same as the GB_BANKS lookup meanings. The APIs for loading the GB bank reference
data into Oracle HRMS take a GB_BANKS lookup code parameter. Make sure that your
loader program includes code to implement the mapping.

See Appendix A for a sample mapping file and PL/SQL code to extract information
from the mapping file.

The PAY_BANK_BRANCHES Table
The PAY_BANK_BRANCHES tables stores the reference bank information. Oracle
HRMS provides PL/SQL APIs for creating and updating GB bank branch data on
PAY_BANK_BRANCHES.

We recommend that you always use the supplied APIs to upload the data. This is
because the APIs validate the data before converting it to the correct format. Do not
make direct inserts or updates to the table. There is no validation for direct table changes.

This table lists the columns in the PAY_BANK_BRANCHES table:

Implementation Guide 4-283

Column Data Type

BRANCH_CODE VARCHAR2(30) NOT NULL

LEGISLATION_CODE VARCHAR2(30) NOT NULL

BANK_CODE VARCHAR2(80) NOT NULL

BRANCH VARCHAR2(80) NOT NULL

LONG_BRANCH VARCHAR2(240)

EXTRA_INFORMATION1 VARCHAR2(80)

EXTRA_INFORMATION2 VARCHAR2(80)

EXTRA_INFORMATION3 VARCHAR2(80)

EXTRA_INFORMATION4 VARCHAR2(80)

EXTRA_INFORMATION5 VARCHAR2(80)

ENABLED_FLAG VARCHAR2(30)

START_DATE_ACTIVE DATE

END_DATE_ACTIVE DATE

When you create a new bank account, the values for these columns, along with the
account name and account number are copied from the bank branch record to the
corresponding PAY_EXTERNAL_ACCOUNTS flexfield columns.

Note: Your installation of Oracle HRMS must have an unmodified
version of the GB Bank Details flexfield structure to enable the sort code
validation to work successfully.

Usage of PAY_BANK_BRANCH Columns
This table shows how each of the columns in the PAY_BANK_BRANCH table is used:

Column Usage Format Max Size
(Bytes)

GB Bank
Details
Flex
Segment

LEGISLATION_CODE Mandatory - identifies
the row as a GB row.

Fixed string
- GB

30 n/a

BRANCH_CODE Mandatory - identifies
the sort code.

Fixed
length
numeric (0-
9) string
Left-
padded
with 0 if
necessary
Values from
the set
000000 -
999999

6 3

4-284 Oracle Human Resources Management System Implementation Guide (US)

Column Usage Format Max Size
(Bytes)

GB Bank
Details
Flex
Segment

BRANCH Mandatory - identifies
the branch name

Mixed case
alphanu-
meric, vari-
able length
string

35 2

BANK_CODE Mandatory - identifies
the GB bank code

Lookup
code for
GB banks
lookup

30 1

LONG_BRANCH Optional but
recommended -
identifies the branch
address

Free-form
text

240 n/a

EXTRA_INFORMATION1 Not used n/a n/a n/a

EXTRA_INFORMATION2 Not used n/a n/a n/a

EXTRA_INFORMATION3 Not used n/a n/a n/a

EXTRA_INFORMATION4 Not used n/a n/a n/a

EXTRA_INFORMATION5 Not used n/a n/a n/a

ENABLED_FLAG Identifies whether this
branch is enabled or
disabled.
You must enable the
branch if you want
to display the branch
record in an LOV search.

NULL or
Y indicates
that the
branch
record is
enabled

30 n/a

START_DATE_ACTIVE Identifies the date
from which this row is
enabled.
You must enter a start
date if you want to
display the branch
record in an LOV search.

NULL is
equivalent
to the start
of time
value

n/a n/a

END_DATE_ACTIVE Identifies the date
until which this row is
enabled.
You must enter an
end date if you want
to display the branch
record in an LOV search.

NULL is
equivalent
to the end of
time value

n/a n/a

Writing a Loader Program
We recommend that you:

• Write the loader program in PL/SQL

• Make loader program call the PAY_BANK_BRANCHES_PKG APIs.

Implementation Guide 4-285

Use these APIs:

• INSERT_GB_ROW

• UPDATE_GB_ROW

• DELETE_ROW

• LOCK_ROW

See Appendix B for further details on APIs.

To add data to a loader program:

1. Perform the startup actions. For example, Initialise Logging and Set Up Your
Mapping Structures.

2. Open the data source

3. If you do not require any further data, go to step 7

4. If you do require further data, fetch the next record and convert it to API call format

5. Call the API.

6. Repeat steps 4 and 5 until you no longer require any further data.

7. Perform the cleanup and reporting actions.

The actual loader program code depends on the structure of the input data.

See Appendix C for a sample program listing.

Prole Option for Enabling Sort Code Validation
Use the profile option HR: Enable Bank Branch Validation to turn the sort code validation
on and off:

• If you set the profile option to Yes, then sort code validation is on.

• If you set the profile option to No, then sort code validation is off.

If you turn the validation on, your Organization Payment Method (PAYWSDPM)
and Personal Payment Method (PAYWSEPM) forms display a different UI for the
entry of bank account information.

Calling Oracle HRMS APIs
Oracle HRMS provides these APIs for creating payment methods:

• Organization Payment Method (PAY_ORG_PAYMENT_METHOD_API)

• Personal Payment Method (HR_PERSONAL PAY_METHOD_API)

We have not modified these APIs as part of the sort code changes. However, when you
call the API you can use the sort code to fetch data from PAY_BANK_BRANCHES to
set up the branch information segments.

Appendix A: Sample Bank Name Mapping File and Code
In this sample mapping file we use the # symbol to denote a comment line and the
| symbol to denote a field separator. We have arranged the data by bank name, and that
is the order in which it is processed. You can create the file manually and then sort it
with a standard utility such as the UNIX sort program.

#

Bank Name to Code Mapping File

4-286 Oracle Human Resources Management System Implementation Guide (US)

Bank Name|Bank Code

#

Abbey National PLC|09

Alliance and Leicester Building Society|16-50

Allied Irish Banks PLC|23

Bank of Scotland|80

Bank of England|10

Bank of Ireland|90

Bank of Scotland|12

Bank of Wales Plc|12-23

Barclays Bank PLC|20

Birmingham and Midshires Building Society|20-07

Bradford and Bingley Building Society|13

Bristol and West Building Society|12-22

Britannia Building Society|08-06-02

C and G Channel Islands Ltd|40-48

Celtic Bank Ltd.|20-44

Chelsea Building Society|08-02

Citibank N.A.|08-06-02

Clydesdale Bank Plc|82

Coutts and Co.|18

First Trust Bank PLC|93

Gateway Building Society|12-22-25

Girobank PLC|72

Halifax PLC|11

Investec Bank (UK) Ltd|08-60-68

Isle of Man Bank Ltd|55

Leeds Permanent Building Society|30-14

Lloyds Bank PLC|30

Midland Bank PLC|40

NWS Bank PLC|40

National Westminster Bank PLC|60

Nationwide Building Society|07

Northern Bank Ltd|95

Northern Rock Building Society|08-60-64

Norwich and Peterborough Building Society|08-60-81

Sainsbury’s Bank PLC|12-60

Implementation Guide 4-287

Standard Charter Bank|60-91

TSB Bank Northern Ireland PLC|77-45

TSB Bank PLC|77

TSB Bank of Scotland PLC|87-34

TSB Channel Islands Ltd|77-47

The Royal Bank of Scotland PLC|16

Town and Country Building Society|08-60-8

Ulster Bank Ltd|98

Unity Trust Bank PLC|08-60

Woolwich Building Society|10-80

Yorkshire Bank PLC|05

Sample PL/SQL Code
This sample code contains procedures to:

• Create a name-to-code mapping table.

• Search the table.

The search code assumes that the bank names are sorted alphabetically.

--

-- Types for holding bank name -> hr_lookupcode map.

--

type t_name2code is record

(name varchar2 (100)

, code varchar2(30)

);

type t_name2code_table is table of t_name2code index by

binary integer;

-- Name-To-Code mapping table

g_N2C_TBL t_name2code_table;

-- Record separator

SEPARATOR constant varchar2(1) := ’|’;

-- Comment line start character

COMMENT_START constant varchar2(1) := ’#’;

/* ----------------- build N2C_TBL ---------------------

Name: build N2C_TBL

Description: procedure to build the Name-To-Code mapping table

Comment lines in the file begin with ’#’

The file record format is <Name>|<code>

For example:

4-288 Oracle Human Resources Management System Implementation Guide (US)

Big Bank PLC|BIG_BANK

dir is a directory in the list specified by the init.ora paramete
r, UTL_FILE_DIR.

Notes: both fields are mandatory, otherwise lines are rejected.

------ */

procedure buildN2C_TBL(dir in varchar2, file in varchar2) is

fhandle utl_file.file_type;

fbuf varchar2(2000);

more boolean := true;

i binary_integer := 1;

seppos number;

begin

-- Open the mapping file

fhandle := utl_file.fopen(dir, file, ’r’);

while more loop

begin

utl_file.get_line(fhandle,fbuf);

-- Extract the bank name and code, avoiding comment lines

if instr(fbuf, COMMENT_START) < > 1 then

seppos := instr(fbuf, SEPARATOR);

if seppos > = 1 then

g_N2C_TBL(i).name := substr(fbuf, 1, seppos -1);

g_N2C_TBL(i).code := substr(fbuf, seppos +1);

i := i + 1

end if;

end if;

exception

-- NO_DATA_FOUND indicates EOF

when no_data_found then

utl_file.fclose(fhandle);

more := false

-- Error exception

when others then

utl_file.fclose(fhandle);

raise;

end;

end loop;

Implementation Guide 4-289

end buildN2C_TBL;

/* ---------------------- searchN2CTBL ------------------------

Name: searchN2C_TBL

Description: Function to search the Name-To-Code mapping table.

If the function finds a match, it returns the lookup code.

If the function does not find a match, it returns NULL.

Notes:

The function uses a binary chop, when searching the mapping table
.

Make sure that you order the mapping table alphabetically (lowest
value first).

------------*/

function searchN2CTBL(sval in varchar2) return varchar2 is

low number;

high number;

mid number;

begin

low := 1

hi :=g_N2C_TBL.count;

while hi >= low loop

mid := trunc((hi + low)/2);

if g_N2C_TBL(mid).name = sval then;

return g_N2C_TBL(mid).code;

elsif g_N2C_TBL(mid).name > sval then

hi := mid -1;

else

low := mid +1

end if;

end loop;

return null;

end searchN2CTBL;

Appendix B: PAY_BANK_BRANCHES_PKG APIs
This appendix describes the PAY_BANK_BRANCHES_PKG APIs.

------------------- < DELETE_ROW > ---------------------------

-- Name: DELETE_ROW

-- Notes: All failures are reported as exceptions.

PROCEDURE DELETE_ROW

4-290 Oracle Human Resources Management System Implementation Guide (US)

(P_BRANCH_CODE IN VARCHAR2)

,P_LEGISLATION_CODE IN VARCHAR2

);

-------------------- <LOCK ROW > ------------------------------

--

-- Name: LOCK_ROW

--

-- Notes: All failures are reported as exceptions.

--

PROCEDURE LOCK_ROW

(P_BRANCH_CODE IN VARCHAR2)

,P_LEGISLATION_CODE IN VARCHAR2

);

-------------------- <INSERT_GB _ROW > --------------------------

-- Name: INSERT_GB_ROW

-- Description: GB Legislation cover for INSERT_ROW

-- Notes:

-- P_SORT_CODE is 0-left padded on output.

-- P_BUILDING_SOCIETY_ACCT is ignored.

-- The converted values are passed to INSERT_ROW.

-- An exception is raised on failure.

PROCEDURE INSERT_GB_ROW

(P_SORT_CODE IN OUT NOCOPY VARCHAR2

,P_BANK_CODE IN VARCHAR2

,P_BANK IN VARCHAR2

,P_LONG_BRANCH IN VARCHAR2 DEFAULT NULL

,P_BUILDING_SOCIETY_ACCT IN OUT NOCOPY VARCHAR2

,P_ENABLED_FLAG IN VARCHAR2 DEFAULT ’Y’

,P_START_DATE_ACTIVE IN DATE DEFAULT HR_API.G_SOT

,P_END_DATE_ACTIVE IN DATE DEFAULT HR_API.G_EOT

);

-------------------- <UPDATE_GB _ROW > --------------------------

-- Name: UPDATE_GB_ROW

-- Description: GB legislation cover for UPDATE_ROW.

-- Notes:

-- The HR_API constants, (HR_API_VARCHAR2 or HR_API.G_DATE) are ’
no change’ values.

Implementation Guide 4-291

-- P_BUILDING_SOCIETY_ACCT is ignored.

-- The converted value is passed to UPDATE_ROW.

-- An exception is raised upon failure.

--

PROCEDURE UPDATE_GB_ROW

(P_SORT_CODE IN VARCHAR2

,P_BRANCH IN VARCHAR2 DEFAULT HR_API.G_VARCHAR2

,P_LONG_BRANCH IN VARCHAR2 DEFAULT HR_API.G_VARCHAR2

,P_BUILDING_SOCIETY_ACCT IN OUT NOCOPY VARCHAR2

,P_ENABLED_FLAG IN VARCHAR2 DEFAULT HR_API.G_DATE

,P_START_DATE_ACTIVE IN DATE DEFAULT HR_API.G_DATE

,P_END_DATE_ACTIVE IN DATE DEFAULT HR_API.G_DATE

);

Appendix C: Sample Source Branch Data File and Loader Code
Example Branch Data File:

denotes a comment line.

| denotes a field separator

Each line contains a single record

Each record has three mandatory and two optional fields

#

Bank Branch Records File

Bank|Sort Code|Branch|Branch Address|Building Society Account

Abbey National PLC|000000|Town0 Branch|Abbey National PLC, Town0
Branch, The High Street, Town0, AC0 0YZ|B/S Acct0
Bradford and Bingley Building Society|000104|Town104 Branch|Bradfo
rd and Bingley Building Society, Town104 Branch, The High Street,
Town104, AC92 8YZ|
First Trust Bank PLC|000208|Town208 Branch|First Trust Bank PLC, T
own208 Branch, The High Street, Town208, AC84 6YZ|
National Westminster Bank PLC|000312|Town312 Branch|National Westm
inster Bank PLC, Town312 Branch, The High Street, Town312, AC76 4Y
Z|
TSB Channel Islands Ltd.|000416|Town416 Branch|TSB Channel Islands
Ltd., Town416 Branch, The High Street, Town416, AC68 2YZ|
Bank Of Scotland|000520|Town520 Branch|Bank Of Scotland, Town520 B
ranch, The High Street, Town520, AC60 0YZ|
C and G channel Islands Ltd|000624|Town624 Branch|C and G channel
Islands Ltd, Town624 Branch, The High Street, Town624, AC52 8YZ|
Halifax PLC|000728|Town728 Branch|Halifax PLC, Town728 Branch, The
High Street, Town728, AC44 6YZ|
Northern Rock Building Society|000832|Town832 Branch|Northern Rock

4-292 Oracle Human Resources Management System Implementation Guide (US)

Building Society, Town832 Branch, The High Street, Town832, AC36
4YZ|
Ulster Bank Ltd|000936|Town936 Branch|Ulster Bank Ltd, Town936 Bra
nch, The High Street, Town936, AC28 2YZ|
Bank of Scotland|001040|Town1040 Branch|Bank of Scotland, Town1040
Branch, The High Street, Town1040, AC20 0YZ|Citibank N.A.|001144|
Town1144 Branch|Citibank N.A., Town1144 Branch, The High Street, T
own1144, AC12 8YZ|Leeds Permanent Building Society|001248|Town1248
Branch|Leeds Permanent Building Society, Town1248 Branch, The Hig
h Street, Town1248, AC4 6YZ|
Standard Charter Bank|001352|Town1352 Branch|Standard Charter Bank
, Town1352 Branch, The High Street, Town1352, AC96 4YZ|
Yorkshire Bank PLC|001456|Town1456 Branch|Yorkshire Bank PLC, Town
1456 Branch, The High Street, Town1456, AC88 2YZ|
Birmingham and Midshires Building Society|001560|Town1560 Branch|B
irmingham and Midshires Building Society, Town1560 Branch, The Hig
h Street, Town1560, AC80 0YZ|
Coutts and Co.|001664|Town1664 Branch|Coutts and Co., Town1664 Bra
nch, The High Street, Town1664, AC72 8YZ|
NWS Bank Plc|001768|Town1768 Branch|NWS Bank Plc, Town1768 Branch,
The High Street, Town1768, AC64 6YZ|
TSB Bank of Scotland Plc|001872|Town1872 Branch|TSB Bank of Scotla
nd Plc, Town1872 Branch, The High Street, Town1872, AC56 4YZ|
Allied Irish Banks PLC|001976|Town1976 Branch|Allied Irish Banks P
LC, Town1976 Branch, The High Street, Town1976, AC48 2YZ|
Britannia Building Society|002080|Town2080 Branch|Britannia Buildi
ng Society, Town2080 Branch, The High Street, Town2080, AC40 0YZ|
Girobank PLC|002184|Town2184 Branch|Girobank PLC, Town2184 Branch,
The High Street, Town2184, AC32 8YZ|
Northern Bank Ltd|002288|Town2288 Branch|Northern Bank Ltd, Town22
88 Branch, The High Street, Town2288, AC24 6YZ|
Town and Country Building Society|002392|Town2392 Branch|Town and
Country Building Society, Town2392 Branch, The High Street, Town23
92, AC16 4YZ|
Bank of Ireland|002496|Town2496 Branch|Bank of Ireland, Town2496 B
ranch, The High Street, Town2496, AC8 2YZ|
Chelsea Building Society|002600|Town2600 Branch|Chelsea Building S
ociety, Town2600 Branch, The High Street, Town2600, AC0 0YZ|
Isle of Man Bank Ltd|002704|Town2704 Branch|Isle of Man Bank Ltd,
Town2704 Branch, The High Street, Town2704, AC92 8YZ|
Sainsburys Bank PLC|002808|Town2808 Branch|Sainsburys Bank PLC, To
wn2808 Branch, The High Street, Town2808, AC84 6YZ|
Woolwich Building Society|002912|Town2912 Branch|Woolwich Building
Society, Town2912 Branch, The High Street, Town2912, AC76 4YZ|
Barclays Bank PLC|003016|Town3016 Branch|Barclays Bank PLC, Town30
16 Branch, The HighStreet, Town3016, AC68 2YZ|
Co-operative Bank PLC|003120|Town3120 Branch|Co-operative Bank PLC
, Town3120 Branch, The High Street, Town3120, AC60 0YZ|
Midland Bank PLC|003224|Town3224 Branch|Midland Bank PLC, Town3224
Branch, The High Street, Town3224, AC52 8YZ|
TSB Bank PLC|003328|Town3328 Branch|TSB Bank PLC, Town3328 Branch,
The High Street, Town3328, AC44 6YZ|
Alliance and Leicester Building Society|003432|Town3432 Branch|All
iance and LeicesterBuilding Society, Town3432 Branch, The High Str
eet, Town3432, AC36 4YZ|
Bristol and West Building Society|003536|Town3536 Branch|Bristol a
nd West Building Society, Town3536 Branch, The High Street, Town35
36, AC28 2YZ|

Implementation Guide 4-293

Gateway Building Society|003640|Town3640 Branch|Gateway Building S
ociety, Town3640 Branch, The High Street, Town3640, AC20 0YZ|
Nationwide Building Society|003744|Town3744 Branch|Nationwide Buil
ding Society, Town3744 Branch, The High Street, Town3744, AC12 8YZ
|
The Royal Bank of Scotland PLC|003848|Town3848 Branch|The Royal Ba
nk of Scotland PLC,Town3848 Branch, The High Street, Town3848, AC4
6YZ|
Bank of England|003952|Town3952 Branch|Bank of England, Town3952 B
ranch, The High Street, Town3952, AC96 4YZ|
Celtic Bank Ltd.|004056|Town4056 Branch|Celtic Bank Ltd., Town4056
Branch, The High Street, Town4056, AC88 2YZ|

This is a sample loader script to process a bank namemapping file BANKMAP.txt (similar
to that in Appendix A) and branch data file BRANCHES.txt as shown above. The data
files must be in one of the directories specified by the UTL_FILE_DIR system parameter.

If you use the sample bank name mapping data from Appendix A, you must ensure that
the codes correspond to actual codes in you application. If you use the sample branch
data from this section , then the data file must contain one record for each line.

set serverout on size 1000000

REM

REM Example program for inserting GB branch records into

REM PAY_BANK_BRANCHES. Oracle does not support this code.

REM Customers can modify this code for their own use.

REM

REM The code reads a mapping file that contains bank names

REM (from the third party bank branch information) and the corres
ponding

REM GB_BANKS lookup code. This mapping code is used to build a

REM name-to-code mapping table.

REM

REM The code then reads the third party branch information table
and

REM inserts, or updates, records into PAY_BANK_BRANCHES using the

REM GB-specific APIs

REM

declare

g_file_dir varchar2(2000) := ’&DIR’;

--

-- Types for holding bank name -> hr_lookup code map

--

type t_name2code is record

(name varchar2(100)

,code varchar2(30)

4-294 Oracle Human Resources Management System Implementation Guide (US)

);

type t_name2code_table is table of t_name2code index by

binary integer;

--

-- Name-To-Code mapping table.

--

g_N2C_TBL t_name2code_table;

--

-- Record separator

--

SEPARATOR constant varchar2(1) := ’|’;

--

-- Comment line start character

--

COMMENT_START constant varchar2(1) := ’#’;

--

/* ----------------- build N2C_TBL ---------------------

Name: build N2C_TBL

Description: procedure to build the Name-To-Code mapping table

Comment lines in the file begin with ’#’

The file record format is <Name>|<code>

For example:

Big Bank PLC|BIG_BANK

--

dir is a directory in the list specified by the init.ora paramete
r, UTL_FILE_DIR.

--

Notes: both fields are mandatory, otherwise lines are rejected.

------ */

procedure buildN2C_TBL(dir in varchar2, file in varchar2) is

fhandle utl_file.file_type;

fbuf varchar2(2000);

more boolean := true;

i binary_integer := 1;

seppos number;

begin

--

Implementation Guide 4-295

-- Open the mapping file

--

fhandle := utl_file.fopen(dir, file, ’r’);

while more loop

begin

utl_file.get_line(fhandle,fbuf);

--

-- Extract the bank name and code, avoiding comment lines

--

if instr(fbuf, COMMENT_START) < > 1 then

seppos := instr(fbuf, SEPARATOR);

if seppos > = 1 then

g_N2C_TBL(i).name := substr(fbuf, 1, seppos -1);

g_N2C_TBL(i).code := substr(fbuf, seppos +1);

i := i + 1

end if;

end if;

exception

--

-- NO_DATA_FOUND indicates EOF

--

when no_data_found then

utl_file.fclose(fhandle);

more := false

--

-- Error exception

--

when others then

utl_file.fclose(fhandle);

raise;

end;

end loop;

end buildN2C_TBL;

--

/* ---------------------- searchN2CTBL ------------------------

Name: searchN2C_TBL

Description: Function to search the Name-To-Code mapping table.

4-296 Oracle Human Resources Management System Implementation Guide (US)

If the function finds a match, it returns the lookup code.

If the function does not find a match, it returns NULL.

Notes:

The function uses a binary chop, when searching the mapping table
.

Make sure that you order the mapping table alphabetically (lowest
value first).

------------*/

function searchN2CTBL(sval in varchar2) return varchar2 is

low number;

high number;

mid number;

begin

--

low := 1

hi :=g_N2C_TBL.count;

while hi >= low loop

mid := trunc((hi + low)/2);

if g_N2C_TBL(mid).name = sval then;

return g_N2C_TBL(mid).code;

elsif g_N2C_TBL(mid).name > sval then

hi := mid -1;

else

low := mid +1

end if;

end loop;

return null;

end searchN2CTBL;

/*------------ parse_record ------------------------------

Name: parse_record

Description: procedure to parse a bank file line

Comment lines in the file begin with ’#’. The file record format
is:

Bank|Sort Code|Branch|Branch Address|Building Society Account

You must include all the separators, even if a field is blank.

For example, this record does not have a building society account
:

Big Bank PLC|123456|My TownHigh Street |

Implementation Guide 4-297

Big Bank PLC, My Town High Street Branch, My Town, AB12 3CD |

Notes: Three fields are mandatory (Bank, Sort Code, and Branch).

The procedure ignores any lines that do not have the correct form
at.

----*/

procedure parse_record

(p_line in varchar2

,p_ignore out nocopy boolean

,p_bank_code out nocopy varchar2

,p_sort_code out nocopy varchar2

,p_branch out nocopy varchar2

,p_long_branch out nocopy varchar2

,p_bs_acct out nocopy varchar2

) is

l_sep number

l_bank varchar2(2000);

l_line varchar2(2000); := p_line

l_val varchar2(2000);

begin

p_ignore := false

--

-- Ignore comment lines

--

if instr(p_line, COMMENT_START) = 1 then

p_ignore := true;

return;

end if;

--

-- Field 1: Bank Name - (need to map to get code).

--

l_sep := instr(l_line, SEPARATOR);

-- Ignore line without separator.

if l_sep = 0 then

p_ignore := true

return;

end if;

-- Extract the bank and find the code.

4-298 Oracle Human Resources Management System Implementation Guide (US)

l_bank := substr(l_line, 1, l_sep -1);

if l_bank is not null then

l_val := searchN2CTBL(l_bank)

else

l_val := null;

end if;

-- Ignore lines where the codes cannot be extracted.

if l_val is null then

p_ignore := true;

return;

end if;

p_bank_code := l_val;

--

-- Field2: Sort Code (mandatory field)

--

l_line := substr(l_line, l_sep +1)

l_sep := instr(l_line, SEPARATOR);

-- Ignore if the separator is not found.

if l_sep = 0 then

p_ignore := true;

return;

end if;

l_val := substr(l_line, l_sep -1);

-- The value is mandatory

if l_val is null then

p_ignore := true;

return;

end if;

p_sort_code := l_val;

--

-- Field 3: Branch (mandatory field)

--

l_line := substr(l_line, l_sep +1)

l_sep := instr(l_line, SEPARATOR);

if l_sep = 0 then

p_ignore := true;

return;

Implementation Guide 4-299

end if;

l_val := substr(l_line, l_sep -1);

if l_val is null then

dbms_output.put_line(’Branch is NULL’);

p_ignore := true;

return;

end if;

p_branch := l_val;

--

-- Field 4: Long Branch (non-mandatory field).

--

l_line := substr(l_line, l_sep +1)

l_sep := instr(l_line, SEPARATOR);

if l_sep = 0 then

p_ignore := true;

return;

end if;

p_long_branch := substr(l_line, l, l_sep -1);

p_branch := l_val;

--

-- Field 5: Building Society Account (non-mandatory field).

--

p_bs_acct := substr(l_line, l_sep + l);

end parse_record

/*--------------------------- process_records -------------------

Name: process_records

Description: procedure to process the bank branch records.

dir is a directory in the list specified by init.ora parameter

UTL_FILE_DIR

------------*/

procedure process_records(dir in varchar2.file in varchar2) is

--

-- Cursor to determine whether the record already exists in PAY_B
ANK_BRANCHES.

--

cursor branch_exists(p_sort_code in varchar2) is

select null

4-300 Oracle Human Resources Management System Implementation Guide (US)

from pay_bank_branches

where branch_code = p_sort_code

and legislation_code = ’GB’

;

fhandle utl_file.file_type;

fbuf varchar2(2000);

more boolean := true

i binary_integer := 1;

l_ignore boolean;

l_bank_code varchar2(2000);

l_sort_code varchar2(2000);

l_branch varchar2(2000);

l_long_branch varchar2(2000);

l_bs_acct varchar2(2000);

l_exists varchar2(2000);

begin

fhandle := utl_file.fopen(dir, file, ’r’);

while more loop

begin

utl_file.get_line(fhandle,fbuf);

--

-- Get the next record.

--

--

-- Blank out the non-mandatory parameters as the code uses
NOCOPY

-- parameter passing

--

l_long_branch := null;

l_bs_acct := null

parse_record

(p_line => fbuf

,p_ignore => l_ignore

,p_bank_code => l_bank_code

,p_sort_code => l_sort_code

,p_branch => l_branch

,p_long_branch => l_long_branch

,p_bs_acct =>

Implementation Guide 4-301

);

i := i + 1;

if not l_ignore then

--

Determine whether an insert or update is necessary.

--

open branch_exists(l_sort_code);

fetch branch_exists into l_exists;

if branch_exists%notfound then

dbms_output.put_line(’INSERT:’|| l_sort_code);

pay_bank_branches_pkg.insert_gb_row

(p_sort_code => l_sort_code

,p_bank_code => l_bank_code

,p_branch => l_branch

,p_long_branch => l_long_branch

,p_building_society_acct => l_bs_acct

);

else

dbms_output.put_line(’UPDATE:’|| l_sort_code);

pay_bank_branches_pkg.update_gb_row

(p_sort_code => l_sort_code

,p_branch => l_branch

,p_long_branch => l_long_branch

,p_building_society_acct => l_bs_acct

);

endif;

close branch_exists;

--

-- Commit on every 100 records.

--

if mod(i, 100) = 0 then

commit;

end if;

end if;

exception

--

-- NO_DATA_FOUND indicates EOF

4-302 Oracle Human Resources Management System Implementation Guide (US)

--

when no_data_found then

utl_file.fclose(fhandle);

more := false

--

-- Error exception

--

when others then

utl_file.fclose(fhandle);

raise;

end

end loop;

--

-- Commit at the end

--

commit;

end process_records

begin

--

-- Build the search table

--

buildN2C_TBL(dir => g_file_dir, file => ’BANKMAP.txt’);

--

-- Process the bank records.

--

process_records(dir => g_file_dir, file => ’BRANCHES.txt’);

end;

/

Grade/Step Progression

Grade/Step Progression and the Total Compensation Data Model
The Grade/Step Progression process maps the grade ladder structure to the Total
Compensation data model. When you create grade ladders, grades, steps, progression
points and salary rates using the Grade Ladder Setup pages, the system creates
corresponding objects, such as programs and plans. The object mapping is shown below:

Implementation Guide 4-303

This Grade/Step Progression object Maps to this compensation object

Grade Ladder Program

Grade in Ladder Plan in Program

Grade Plan

Steps in Grade Options in Plan

Progression Points Options

Default Salary Rates Standard Rates

Criteria Salary Rates Variable Rates

Progression Rules Eligibility Profiles

Caution: You can create the eligibility profiles (used for progression
rules) using the Participation Eligibility Profiles window. However, you
must create all other Grade/Step Progression objects using the Total
Compensation Setup Wizard . Unless you have extensive knowledge
of the Total Compensation model and Plan Design setup, we strongly
recommend that you perform all ongoing grade ladder administration
and maintenance using the Total Compensation Setup Wizard.

The following graphic illustrates the grade ladder structure within the Compensation
Hierarchy.

4-304 Oracle Human Resources Management System Implementation Guide (US)

Mapping the Grade/Step Progression structure to the Total Compensation data model
enables the automatic progression of grades and steps, and optionally, automatic
updates to salary rates.

For more information on the Compensation Hierarchy, see: Plan Design, Oracle HRMS
Compensation and Benefits Management Guide

If you are not using Grade/Step Progression, you can create your grade, step, progression
point, and pay rate information using the Grade Rate, Pay Scale, Scale Rate and Grade
Scale windows. This will not create corresponding compensation objects.

XML Output for Payment Processes

XML Output for Payment Processes
This technical essay explains:

• Which existing payment processes you can enable for XML output

• The tables that support XML enhancement of the payment processes

• The predefined data that Oracle HRMS delivers for each process

Implementation Guide 4-305

• The extra data that each localization team must add to the predefined data for
each process

You can enable XML enhancements for each of these payment processes:

• Magtape

• Cheque/Check Writer

• Archiver

• Postal

For each process, you can produce output in each of these formats:

• XML

• PDF

• RTF

• EFT

Technical Overview of XML-enabled Processes
Each of your XML-enabled payment processes operates as follows:

1. Creates assignment actions for the payment type, or according to the
assignment_action creation code

2. Creates assignment_action level action xml according to the xml generation
procedure

3. Creates report_level xml according to xml generation procedures and by joining
together the assignment action fragments

4. Applies report templates to report_level to produce formatted output

Tables That Support XML Enhancement
The following tables support XML enhancements of the payroll processes.

PAY_REPORT_GROUPS
Use this table as the main table that groups together all possible definitions for your
report. You must specify a report_group_name and a short_name. Also, if any of the
rows in this table correspond to rows in PAY_REPORT_FORMAT_MAPPINGS, ensure
that you make an equivalent entry in PAY_REPORT_FORMAT_MAPPINGS.

Use the thread level and qualifying procedure together with the archiver (generic report)
to create assignment actions.

The ASG_MAGNETIC_BLOCK_ID is the magnetic block that produces the XML for
the assignment level.

4-306 Oracle Human Resources Management System Implementation Guide (US)

Row Can be NULL? Format

REPORT_GROUP_ID NOT NULL NUMBER

REPORT_FORMATTING_ID Can be NULL NUMBER

REPORT_GROUP_NAME NOT NULL VARCHAR2(80)

SHORT_NAME NOT NULL VARCHAR2(30)

REPORT_ON_FULL_XML Can be NULL VARCHAR2(5)

LEGISLATION_CODE Can be NULL VARCHAR2(240)

BUSINESS_GROUP_ID Can be NULL NUMBER

REPORT_LEVEL Can be NULL VARCHAR2(10)

LAST_UPDATED_BY Can be NULL NUMBER (15)

LAST_UPDATE_DATE Can be NULL DATE

LAST_UPDATE_LOGIN Can be NULL NUMBER (15)

CREATED_BY Can be NULL NUMBER (15)

CREATION_DATE Can be NULL DATE

OBJECT_VERSION_NUMBER Can be NULL NUMBER (9)

THREAD_LEVEL Can be NULL VARCHAR2(30)

QUALIFYING_PROCEDURE Can be NULL VARCHAR2(250)

ASG_MAGNETIC_BLOCK_ID Can be NULL NUMBER (9)

PAY_REPORT_DEFINITIONS
You can define many report definitions for each report group.

You can choose PDF, EFT or RTF as the report type.

You can choose P (Person), or A (Assignment) for the report level.

The MAGNETIC_BLOCK_ID is the magnetic block for the report level XML, that is
the headers and footers.

Set the ALTERABLE column to Y or N to determine whether this data, and any child
data should be updatable.

The application short name is the application against which templates are registered
for this definition.

Implementation Guide 4-307

Row Can be NULL? Format

REPORT_DEFINITION_ID NOT NULL NUMBER(15)

REPORT_GROUP_ID NOT NULL NUMBER(15)

REPORT_NAME NOT NULL VARCHAR2(80)

REPORT_TYPE NOT NULL VARCHAR2(30)

REPORT_LEVEL NOT NULL VARCHAR2(3)

MAGNETIC_BLOCK_ID NOT NULL NUMBER(15)

ALTERABLE NOT NULL VARCHAR2(1)

LAST_UPDATED_BY Can be NULL NUMBER (15)

LAST_UPDATE_DATE Can be NULL DATE

LAST_UPDATE_LOGIN Can be NULL NUMBER (15)

CREATED_BY Can be NULL NUMBER (15)

CREATION_DATE Can be NULL DATE

OBJECT_VERSION_NUMBER Can be NULL NUMBER (9)

APPLICATION_SHORT_
NAME

Can be NULL VARCHAR2(30)

PAY_REPORT_VARIABLES
The PAY_REPORT_VARIABLES table contains all the valid templates for a report
definition.

Your definition type in the DEFINITION_TYPE column should always be SS.

Ensure that the name in the NAME column is the name that you have used to refer to
the variable, and that the value entered in the VALUE column is the same value code
by which the style sheet is registered in XML Publisher.

4-308 Oracle Human Resources Management System Implementation Guide (US)

Row Can be NULL? Format

REPORT_VARIABLE_ID NOT NULL NUMBER(15)

REPORT_DEFINITION_ID NOT NULL NUMBER(15)

DEFINITION_TYPE NOT NULL VARCHAR2(10)

NAME NOT NULL VARCHAR2(80)

VALUE NOT NULL VARCHAR2(80)

LEGISLATION_CODE Can be NULL VARCHAR2(240)

BUSINESS_GROUP_ID_ID NOT NULL NUMBER(15)

LAST_UPDATED_BY Can be NULL NUMBER (15)

LAST_UPDATE_DATE Can be NULL DATE

LAST_UPDATE_LOGIN Can be NULL NUMBER (15)

CREATED_BY Can be NULL NUMBER (15)

CREATION_DATE Can be NULL DATE

OBJECT_VERSION_NUMBER Can be NULL NUMBER (9)

PAY_REPORT_CATEGORIES
The PAY_REPORT_CATEGORIES table indicates which report group you want to
run. The information that you define in this table enables your process to select the
correct report group id.

Row Can be NULL? Format

REPORT_CATEGORY_ID NOT NULL NUMBER(15)

REPORT_GROUP_ID NOT NULL NUMBER(15)

CATEGORY_NAME NOT NULL VARCHAR2(80)

SHORT_NAME NOT NULL VARCHAR2(30)

LEGISLATION_CODE Can be NULL VARCHAR2(2)

BUSINESS_GROUP_ID_ID Can be NULL NUMBER(15)

LAST_UPDATED_BY Can be NULL NUMBER (15)

LAST_UPDATE_DATE Can be NULL DATE

LAST_UPDATE_LOGIN Can be NULL NUMBER (15)

CREATED_BY Can be NULL NUMBER (15)

CREATION_DATE Can be NULL DATE

OBJECT_VERSION_NUMBER Can be NULL NUMBER (9)

Implementation Guide 4-309

PAY_REPORT_CATEGORY_COMPONENTS
The PAY_REPORT_CATEGORY_COMPONENTS table defines the report definitions
and templates that a report category can use. You define this information
in the STYLE_SHEET_VARIABLE_ID column which then refers back to the
REPORT_VARIABLE_ID column in the PAY_REPORT_VARIABLES table.

Row Can be NULL? Format

REPORT_CATEGORY_COM
P_ID

NOT NULL NUMBER(15)

REPORT_CATEGORY_ID NOT NULL NUMBER(15)

REPORT_DEFINITION_ID NOT NULL NUMBER(15)

BREAKOUT_VARIABLE_ID NOT NULL NUMBER(15)

STYLESHEET_VARIABLE_ID Can be NULL NUMBER(15)

BUSINESS_GROUP_ID_ID Can be NULL NUMBER(15)

LAST_UPDATED_BY Can be NULL NUMBER (15)

LAST_UPDATE_DATE Can be NULL DATE

LAST_UPDATE_LOGIN Can be NULL NUMBER (15)

CREATED_BY Can be NULL NUMBER (15)

CREATION_DATE Can be NULL DATE

OBJECT_VERSION_NUMBER Can be NULL NUMBER (9)

PAY_MAGNETIC_BLOCKS
Use the PAY_MAGNETIC_BLOCKS table in conjunction with the PAY_MAGNETIC_
RECORDS table to define the structure of your report.

In PAY_MAGNETIC_BLOCKS there are two levels of blocks:

• The assignment level defines the XML generation for each assignment action.

• The parent level defines the entire report (headers and footers and so on).

You can define many magnetic records for each magnetic block. The sequence of the
records indicates the order of execution.

Give a value to the report level so that you group together the blocks for this report
at assignment and report level.

Set the MAIN_BLOCK_FLAG to Y for the first block to be used.

The CURSOR_NAME column is used to return all rows to be processed, and to
retrieve any parameter information.

The NO_COLUMN_RETURNED column indicate the number of columns that the
cursor selects.

4-310 Oracle Human Resources Management System Implementation Guide (US)

Row Can be NULL? Format

MAGNETIC_BLOCK_ID NOT NULL NUMBER(9)

BLOCK_NAME NOT NULL VARCHAR2(80)

MAIN_BLOCK_FLAG NOT NULL VARCHAR2(30)

REPORT_FORMAT NOT NULL VARCHAR2(30)

CURSOR_NAME Can be NULL VARCHAR2(80)

NO_COLUMN_RETURNED Can be NULL NUMBER(5)

PAY_MAGNETIC_RECORDS
Set the FORMULA_ID to -9999. (It is not used here).

Enter a value of ’A’ for the magnetic record that retrieves the assignment_level_fragments
of XML.

The XML_PROC_NAME column holds the name of the PLSQL that generates your XML.

Row Can be NULL? Format

FORMULA_ID NOT NULL NUMBER(9)

MAGNETIC_BLOCK_ID NOT NULL NUMBER(9)

NEXT_BLOCK_ID Can be NULL NUMBER(9)

OVERFLOW_MODE NOT NULL VARCHAR2(30)

SEQUENCE NOT NULL NUMBER(5)

FREQUENCY Can be NULL NUMBER(5)

LAST_RUN_EXECUTED_
MODE

NOT NULL VARCHAR2(30)

ACTION_LEVEL NOT NULL VARCHAR2(30)

PAY_REPORT_MAGNETIC_PROCEDURES
The PAY_REPORT_MAGNETIC_PROCEDURES table provides a hook that enables
localizations to add localization specific XML to the standard XML generation
procedures delivered in core. However, we recommend that localizations should always
contact Core Payroll Development before attempting to create localized XML. Wherever
possible, we recommend that you make use of the standard core procedures.

If you do use this table, it operates by creating a procedure name for any magnetic
record, and then calling that same procedure from within the core generation procedure
pypayxml.pkb. A magnetic record is always uniquely identified by magnetic block
id, and sequence.

Implementation Guide 4-311

Row Can be NULL? Format

REPORT_MAGNETIC_
PROCEDURE_ID

NOT NULL NUMBER(15)

MAGNETIC_BLOCK_ID NOT NULL NUMBER(15)

SEQUENCE NOT NULL NUMBER(15)

REPORT_GROUP_ID NOT NULL NUMBER(15)

LEGISLATION_CODE Can be NULL VARCHAR2(150)

PROCEDURE_NAMEL NOT NULL VARCHAR2(250)

PAY_REPORT_FORMAT_MAPPINGS_F
If you are running from Archiver, insert a row in this table too.

You will need a PLSQ procedure referenced from the PAY_MAGNETIC_RECORDS
that generate the XML. You will also need a package header that contains the cursors
referenced in the magnetic block.

Your template, required to format the XML, must be registered with XML Publisher.

Again, however, we strongly recommend that you contact Core Payroll Development if
you are planning to modify the standard core approach.

Predened Data for the Postal Process
To pay people using the Postal process, you must have a payment type with the payment
category ’PP’. Provided that all assignments to be paid by the Postal process have
the necessary payment methods defined, each assignment produces an XML file on
processing, and an output file formatted according to the data that you set up in your
tables.

This data in these tables is predefined data, delivered in Core payroll:

PAY_REPORT_GROUPS

Column Entries

REPORT_GROUP_NAME ’XML_PAYMENT’

SHORT_NAME ’XML_PAYMENT’

ASG_MAGNETIC_BLOCK_ID Block id for magnetic block, where name
is ’ASG_XML_PAYMENT_DETAILS’ and
report_format is ’XML_PAYMENT_ACT

PAY_REPORT_DEFINITIONS

4-312 Oracle Human Resources Management System Implementation Guide (US)

Column Entries

REPORT_GROUP_ID Report group id, where report_group_name is
’XML_PAYMENT’

REPORT_NAME ’Bank or Post Office payment report (pdf)

REPORT_TYPE ’PDF’

MAGNETIC_BLOCK_ID Block id for magnetic block, where name is
’XML_PAYMENT_HF’ and report format is
’XML_PAYMENT’

ALTERABLE ’Y’

REPORT_LEVEL ’P’

PAY_MAGNETIC_BLOCKS

Column Entries

BLOCK_NAME XML_PAYMENT_HF

MAIN_BLOCK_FLAG Y

REPORT_FORMAT XML_PAYMENT

CURSOR_NAME pay_payment_xml_pkg.c_header_footer

NO_COLUMN_RETURNED 4

BLOCK_NAME XML_PAYMENTS

MAIN_BLOCK_FLAG N

REPORT_FORMAT XML_PAYMENT

CURSOR_NAME pay_payment_xml_pkg.c_payment_
assignment_actions

NO_COLUMN_RETURNED 2

BLOCK_NAME ASG_XML_PAYMENT_DETAILS

MAIN_BLOCK_FLAG Y

REPORT_FORMAT XML_PAYMENT_ASG

CURSOR_NAME pay_payment_xml_pkg.c_payment_details

NO_COLUMN_RETURNED 18

PAY_MAGNETIC_RECORDS

Implementation Guide 4-313

Column Entries

MAGNETIC_BLOCK_ID Block id for block name XML_PAYMENT_HF

NEXT_BLOCK_ID Block id for block name XML_PAYMENTS

SEQUENCE 1

XML_PROC_NAME pay_payment_xml_pkg.gen_header_xml

MAGNETIC_BLOCK_ID Block id for block name XML_PAYMENT_HF

NEXT_BLOCK_ID null

SEQUENCE 2

XML_PROC_NAME pay_payment_xml_pkg.gen_footer_xml

MAGNETIC_BLOCK_ID Block id for block name XML_PAYMENTS

NEXT_BLOCK_ID null

SEQUENCE 1

ACTION_LEVEL A

XML_PROC_NAME null

MAGNETIC_BLOCK_ID Block id for block name ASG_XML_
PAYMENT_DETAILS

NEXT_BLOCK_ID null

SEQUENCE 1

XML_PROC_NAME pay_payment_xml_pkg.gen_payment_details_
xml

PLSQL Package

pay_payment_xml_pkg.pypayxml.pkb - generates XML

pay_payment_xml_pkg.pypayxml.pkh - cursors

SRS Definition

The command line for this process is:

PYUGEN apps/apps 0 Y POSTAL <payroll id> consolidation_set_id <start_date>
end_date payment_type_id <payment_method> <action_parameter_group>
REP_GROUP=XML_PAYMENT REP_CAT=<category short_name>

There is an SRS screen with a program name of Bank or Post Office Payment, and a short
name of PP_PAYMENT.

Localized Data for the Postal Process
Supply the following localized data to enable the Postal process:

• In the PAY_REPORT_VARIABLES table, add a row to define which templates are
valid to format the XML for this report definition.

• In the PAY_REPORT_CATEGORIES table, define a row to indicate which
report_group you want to process.

4-314 Oracle Human Resources Management System Implementation Guide (US)

• In the PAY_REPORT_CATEGORY_COMPONENTS table, define a row to specify
which templates are to be processed in the report category.

• In the PAY_REPORT_MAGNETIC_PROCEDURES table, you can define a row to
append localization specific data to your blob file. The XML being generated is
defined in pypayxml.pkb

• Append these two core procedures to the blob:

pay_core_files.write_to_magtae_lob(p_text in varchar2) or

pay_core_files.write_to_magtae_lob(p_data_in blob)

Predened Data for the Cheque Writer Process
The Cheque Writer process creates assignment actions for each of the prepayments that
have a payment type of CHEQUE. Cheque Writer then processes these assignment
actions and produces an XML file, and a PDF document containing cheques.

This data in these tables is predefined data, delivered in Core payroll:

PAY_REPORT_GROUPS

Column Entries

REPORT_GROUP_NAME ’XML_PAYMENT’

SHORT_NAME ’XML_PAYMENT’

ASG_MAGNETIC_BLOCK_ID Block id for the magnetic block where the name
is ’ASG_XML_PAYMENT_DETAILS’ and the
report format is ’XML_PAYMENT_ACT’

PAY_REPORT_DEFINITIONS

Column Entries

REPORT_GROUP_ID Report group id, where report_group_name is
’XML_PAYMENT’

REPORT_NAME ’Bank or Post Office payment report (pdf)

REPORT_TYPE ’PDF’

MAGNETIC_BLOCK_ID Block id for magnetic block, where name is
’XML_PAYMENT_HF’ and report format is
’XML_PAYMENT’

ALTERABLE ’Y’

REPORT_LEVEL ’P’

PAY_MAGNETIC_BLOCKS

Implementation Guide 4-315

Column Entries

BLOCK_NAME XML_PAYMENT_HF

MAIN_BLOCK_FLAG Y

REPORT_FORMAT XML_PAYMENT

CURSOR_NAME pay_payment_xml_pkg.c_header_footer

NO_COLUMN_RETURNED 4

BLOCK_NAME XML_PAYMENTS

MAIN_BLOCK_FLAG N

REPORT_FORMAT XML_PAYMENT

CURSOR_NAME pay_payment_xml_pkg.c_payment_asg_
actions

NO_COLUMN_RETURNED 2

BLOCK_NAME ASG_XML_PAYMENT_DETAILS

MAIN_BLOCK_FLAG Y

REPORT_FORMAT XML_PAYMENT_ASG

CURSOR_NAME pay_payment_xml_pkg.c_payment_details

NO_COLUMN_RETURNED 18

PAY_MAGNETIC_RECORDS

4-316 Oracle Human Resources Management System Implementation Guide (US)

Column Entries

MAGNETIC_BLOCK_ID Block id for block name XML_PAYMENT_HF

NEXT_BLOCK_ID Block id for block name XML_PAYMENTS

SEQUENCE 1

XML_PROC_NAME pay_payment_xml_pkg.gen_header_xml

MAGNETIC_BLOCK_ID Block id for block name XML_PAYMENT_HF

NEXT_BLOCK_ID null

SEQUENCE 2

XML_PROC_NAME pay_payment_xml_pkg.gen_footer_xml

MAGNETIC_BLOCK_ID Block id for block name XML_PAYMENTS

NEXT_BLOCK_ID null

SEQUENCE 1

ACTION_LEVEL A

XML_PROC_NAME null

MAGNETIC_BLOCK_ID Block id for block name ASG_XML_
PAYMENT_DETAILS

NEXT_BLOCK_ID null

SEQUENCE 1

XML_PROC_NAME pay_payment_xml_pkg.gen_payment_details_
xml

PLSQL Package

pay_payment_xml_pkg.pypayxml.pkb - generates XML

pay_payment_xml_pkg.pypayxml.pkh - cursors

PAY_REPORT_VARIABLES

Column Entries

REPORT_DEFINITION_ID Report definition id, where report name is
’Bank or Post Office payment report (PDF)

DEFINITION_TYPE SS

NAME PAYMENT_SS

VALUE CHQGEN

PAY_REPORT_CATEGORIES

Implementation Guide 4-317

Column Entries

REPORT_GROUP_ID Report group id, where report name is
’XML_PAYMENT’

CATEGORY_NAME ’CHEQUE_WRITER’

SHORT_NAME ’CHEQUE_WRITER’

PAY_REPORT_CATEGORY_COMPONENTS

Column Entries

REPORT_CATEGORY_ID Report category id where category_name is
’CHEQUE_WRITER’

REPORT_DEFINITION_ID Report definition id where report name is ’Bank
or Post Office Payment report (PDF)’

STYLE_SHEET_VARIABLE_ID Report variable id where value is ’CHQGEN’

Details of XDO Register

Registered with XML Publisher, with a name of CHEQUE_GEN, code
CHQGEN, application payroll, data definition chqgen, and type RTF.

SRS Definition

The command line for the generic Cheque Writer process is:

PYUGEN apps/apps 0 Y CHEQUE <> <>

PYUGEN apps/apps 0 Y CHEQUE <payroll id> consolidation_set_id
<start_date>end_date payment_type_id <payment_method> sort_sequence
"" Start_Cheque_Number <end_cheque_Number><action_parameter_group>
REP_GROUP=XML_PAYMENT REP_CAT=CHEQUE_WRITER

There is an SRS screen with the program name of Cheque Writer (Generic) and a short
name of CHEQUE_WRITER_GEN

Localized Data for the Cheque Writer (Generic Process)
Supply the following localized data to enable the Cheque Writer (Generic) process:

• In the PAY_REPORT_MAGNETIC_PROCEDURES table, where the XML generated
is defined in pypayxml.pkb, you can define a row to append localization specific
data to your blob file.

• There are two core procedures to use to append localized data:

pay_core_files.write_to_magtape_lob(p_text in varchar2) or

pay_core_files.write_to_magtape_lob(p_data in blob)

• To use a localized template, define rows in PAY_REPORT_VARIABLES, PAY_RE
PORT_CATEGORIES, and PAY_REPORT_CATEGORY_COMPONENTS.

Predened Data for the Archiver Process
The Archiver process creates assignment actions, produces XML and formatted output
in accordance with the data set up in the tables. You create an assignment action by
defining a thread level (PER.ASG) and a qualifying procedure in the report group. The

4-318 Oracle Human Resources Management System Implementation Guide (US)

qualifying procedure takes an object id, and returns Y/N to control which assignment
actions are created.

Magnetic blocks and records have been defined, with a consistent structure of
three sections (Header, Asg Action Data, Footer). Each of these sections calls
pay_mag_tape.call_leg_xml_proc. This procedure then calls any further procedures
that localizations have defined in pay_report_magnetic_procedures, and these further
procedures write the XML into each of the three sections.

This data in these tables is predefined data, delivered in Core payroll:

PAY_MAGNETIC_BLOCKS

Column Entries

BLOCK_NAME GENERIC_REPORT_HF

MAIN_BLOCK_FLAG Y

REPORT_FORMAT GENERIC_REPORT

CURSOR_NAME pay_mag_tape.c_header_footer

NO_COLUMN_RETURNED 2

BLOCK_NAME GENERIC_REPORT_4A

MAIN_BLOCK_FLAG N

REPORT_FORMAT GENERIC_REPORT

CURSOR_NAME pay_mag_tape.c_asg_actions

NO_COLUMN_RETURNED 2

BLOCK_NAME GENERIC_REPORT_ASG_XML

MAIN_BLOCK_FLAG Y

REPORT_FORMAT GENERIC_REPORT_ACT

CURSOR_NAME pay_mag_tape.c_asg_actions

NO_COLUMN_RETURNED 2

PAY_MAGNETIC_RECORDS

Implementation Guide 4-319

Column Entries

MAGNETIC_BLOCK_ID Block id for block name GENERIC_REPORT_
HF

NEXT_BLOCK_ID Block id for block nameGENERIC_REPORT_4A

SEQUENCE 1

XML_PROC_NAME pay_mag_tape.call_leg_xml_proc_xml

MAGNETIC_BLOCK_ID Block id for block name GENERIC_REPORT_
HF

NEXT_BLOCK_ID null

SEQUENCE 2

XML_PROC_NAME pay_mag_tape.call_leg_xml_proc_xml

MAGNETIC_BLOCK_ID Block id for block name GENERIC_REPORT_
4A

NEXT_BLOCK_ID null

SEQUENCE 1

ACTION_LEVEL A

XML_PROC_NAME null

MAGNETIC_BLOCK_ID Block id for block name GENERIC_REPORT_
ASG_XML

NEXT_BLOCK_ID null

SEQUENCE 1

XML_PROC_NAME pay_mag_tape.call_leg_xml_proc_xml

PAY_REPORT_FORMAT_MAPPINGS_F

4-320 Oracle Human Resources Management System Implementation Guide (US)

Column Entries

REPORT_TYPE GENERIC_REPORT

REPORT_QUALIFIER DEFAULT

REPORT_CATEGORY REPORT

RANGE_CODE pay_generic_upgrade.range_cursor

ASSIGNMENT_ACTION_CODE pay_generic_upgrade.action_creation

INITIALIZATION_CODE pay_generic_upgrade.archinit

MAGNETIC_CODE pay_magtape_generic.new_formula

REPORT_FORMAT DEFAULT

DEINITIALIZATION_CODE pay_generic_upgrade.deinitialise

TEMPORARY_ACTION_FLAG Y

DISPLAY_NAME Generic Report

Localized Data for the Archiver Process
To enable the Archiver process for localized data, modify these tables as follows:

• In the PAY_REPORT_GROUPS table, define the report group used for this set of
reports. Include the thread level, and a qualifying procedure for the assignment
action creation.

• In the PAY_REPORT_DEFINITIONS table, define a row for each report definition
in this group.

• In the PAY_REPORT_VARIABLES table, add a row to define which templates are
valid to format the XML for this report definition. Ensure that your templates are
registered with XML Publisher.

• In the PAY_REPORT_CATEGORIES table define a row to indicate which report
group is processed.

• In the PAY_REPORT_CATEGORY_COMPONENTS table, define a row for each
template processed in this report category.

• In the PAY_REPORT_MAGNETIC_PROCEDURES table, create a row for each
section of XML to be created. Use these core procedures to append localized data
to your blob file:

pay_core_files.write_to_magtape_lob(p_text in varchar2) or

pay_core_files.write_to_magtape_lob(p_data in blob)

Use the following syntax to run from the command line:

PYUGEN apps/apps 0 Y ARCHIVE GENERIC REPORT DEFAULT "1990/01/01
00:00:00" "1990/03/31 00:00:00" REPORT BUSINESS_GROUP_ID "" "" "" "" ""
REP_GROUP=<report_group short name> REP_CAT=<report_category short_name>

Implementation Guide 4-321

Glossary

360-Degree Appraisal
Part of the SSHR Appraisal function and also known as a Group Appraisal. This is an
employee appraisal undertaken by managers with participation by reviewers.

Absence
A period of time in which an employee performs no work for the assigned organization.

Absence Types
Categories of absence, such as medical leave or vacation leave, that you define for use in
absence windows.

Accrual
The recognized amount of leave credited to an employee which is accumulated for a
particular period.

Accrual Band
A range of values that determines how much paid time off an employee accrues. The
values may be years of service, grades, hours worked, or any other factor.

Accrual Period
The unit of time, within an accrual term, in which PTO is accrued. In many plans, the
same amount of time is accrued in each accrual period, such as two days per month. In
other plans, the amount accrued varies from period to period, or the entitlement for the
full accrual term is given as an up front amount at the beginning of the accrual term.

Accrual Plan
See: PTO Accrual Plan, page Glossary-25

Accrual Term
The period, such as one year, for which accruals are calculated. In most accrual
plans, unused PTO accruals must be carried over or lost at the end of the accrual
term. Other plans have a rolling accrual term which is of a certain duration but has no
fixed start and end dates.

Active Employee
DBI for HRMS counts an employee, page Glossary-13 as active if they have a current
period of service, page Glossary-10 at the effective date, page Glossary-12

If an employee is suspended, DBI for HRMS still counts them as active.

DBI for HRMS also uses the term Incumbent to refer to an active employee.

Glossary-1

Active Contingent Worker
DBI for HRMS counts a contingent worker, page Glossary-9 as active if they have a
current period of placement , page Glossary-10 at the effective date, page Glossary-12.

If a contingent worker is suspended, DBI for HRMS still counts them as active. DBI for
HRMS also uses the term Incumbent to refer to an active contingent worker.

Activity Rate
The monetary amount or percentage associated with an activity, such as $12.35 per pay
period as an employee payroll contribution for medical coverage. Activity rates can
apply to participation, eligibility, coverages, contributions, and distributions.

Actual Premium
The per-participant premium an insurance carrier charges the plan sponsor for a given
benefit.

Administrative Enrollment
A type of scheduled enrollment caused by a change in plan terms or conditions and
resulting in a re-enrollment.

AdvancePay
A process that recalculates the amount to pay an employee in the current period, to
make an authorized early payment of amounts that would normally be paid in future
payroll periods.

Agency
An external organization that assists an enterprise in their recruitment process. Agencies
act on behalf of the candidates to help them search and apply for jobs. They provide
candidates to the fill up job openings in an enterprise or sometimes handle the complete
placement process for a vacancy.

Agency Candidate
An agency candidate is a person whose profile is created in iRecruitment by a recruiting
agency. This profile includes personal and professional information.

Agency User
An external person who belongs to a recruiting agency and accesses iRecruitment
to conduct recruiting activities such as creating candidates and applying on behalf of
the candidates.

Alert
An email notification that you can set up and define to send a recipient or group of
recipients a reminder or warning to perform a certain task or simply a notification to
inform the recipient of any important information.

Align
To define a relationship between objectives. Workers can align their own objectives
with objectives that other workers have shared with them. Aligned objectives are also
known as supporting objectives.

Glossary-2

API
Application Programmatic Interfaces, used to upload data to the Oracle Applications
database. APIs handle error checking and ensure that invalid data is not uploaded to
the database.

Applicant
An applicant is a person who submits an application for employment to an organization.

Applicability
In HRMS budgeting, a term describing whether a budget reallocation rule pertains to
donors or receivers.

Applicant/Candidate Matching Criteria
Matching functionality in the iRecruitment system that systematically identifies which
candidates and applicants possess the skills, knowledge and abilities to be considered
for a specific vacancy. The following columns are used for matching:

• Skills

• FT/PT

• Contractor/Employee

• Work at Home

• Job Category

• Distance to Location

• Key Words

• Salary

Apply for a Job
An SSHR function that enables an employee to, apply, search and prepare applications
for an internally advertised vacancy.

Appraisal
An appraisal is a process where an employee’s work performance is rated and future
objectives set.

See also: Assessment, page Glossary-4.

Appraisee
The person who is the subject of an appraisal.

Appraiser
A person, usually a manager, who appraises an employee.

Appraising Manager
The person who initiates and performs an Employee-Manager or 360 Degree
Appraisal. An appraising manager can create appraisal objectives.

Arrestment
Scottish court order made out for unpaid debts or maintenance payments.

Glossary-3

See also: Court Order , page Glossary-9

Assessment
An information gathering exercise, from one or many sources, to evaluate a person’s
ability to do a job.

See also: Appraisal, page Glossary-3.

Assignment
A worker’s assignment identifies their role within a business group. The assignment
is made up of a number of assignment components. Of these, organization is
mandatory, and payroll is required (for employees only) for payment purposes.

Assignment Number
A number that uniquely identifies a worker’s assignment. A worker with multiple
assignments has multiple assignment numbers.

Assignment Rate
A monetary value paid to a contingent worker for a specified period of time. For
example, an assignment rate could be an hourly overtime rate of $10.50.

Assignment Set
A grouping of employees and applicants that you define for running QuickPaint reports
and processing payrolls.

See also: QuickPaint Report, page Glossary-26

Assignment Status
For workers, used to track their permanent or temporary departures from your
enterprise and, for employees only, to control the remuneration they receive. For
applicants, used to track the progress of their applications.

Authoria
A provider of health insurance and compensation information, that provides additional
information about benefits choices.

BACS
Banks Automated Clearing System. This is the UK system for making direct deposit
payments to employees.

Balance Adjustment
A correction you make to a balance. You can adjust user balances and assignment level
predefined balances only.

Balance Dimension
The period for which a balance sums its balance feeds, or the set of
assignments/transactions for which it sums them. There are five time
dimensions: Run, Period, Quarter, Year and User. You can choose any reset point for
user balances.

Glossary-4

Balance Feeds
These are the input values of matching units of measure of any elements defined to
feed the balance.

Balances
Positive or negative accumulations of values over periods of time normally generated by
payroll runs. A balance can sum pay values, time periods or numbers.

See also: Predefined Components , page Glossary-24

Bargaining Unit
A bargaining unit is a legally organized group of people which have the right to negotiate
on all aspects of terms and conditions with employers or employer federations. A
bargaining unit is generally a trade union or a branch of a trade union.

Base Currency
The currency in which Oracle Payroll performs all payroll calculations for your Business
Group. If you pay employees in different currencies to this, Oracle Payroll calculates the
amounts based on exchange rates defined in the system.

Base Summary
A database table that holds the lowest level of summary. Summary tables are populated
and maintained by user-written concurrent programs.

Beneciary
A person or organization designated to receive the benefits from a benefit plan upon
the death of the insured.

Benet
Any part of an employee’s remuneration package that is not pay. Vacation
time, employer-paid medical insurance and stock options are all examples of benefits.

See also: Elements, page Glossary-12

Block
The largest subordinate unit of a window, containing information for a specific business
function or entity. Every window consists of at least one block. Blocks contain fields
and, optionally, regions. They are delineated by a bevelled edge. You must save your
entries in one block before navigating to the next.

See also: Region, page Glossary-27, Field, page Glossary-14

Budget Measurement Type (BMT)
A subset of Workforce Measurement Type. It consists of a number of different units
used to measure the workforce. The most common units are headcount and full time
equivalent.

Budget Value
In Oracle Human Resources you can enter staffing budget values and actual values
for each assignment to measure variances between actual and planned staffing levels
in an organization or hierarchy.

Glossary-5

Business Group
The business group represents a country in which your enterprise operates. It enables
you to group and manage data in accordance with the rules and reporting requirements
of each country, and to control access to data.

Business Number (BN)
In Canada, this is the employer’s account number with Revenue Canada. Consisting of
15 digits, the first 9 identify the employer, the next 2 identify the type of tax account
involved (payroll vs. corporate tax), and the last 4 identify the particular account for
that tax.

Business Rule
See Configurable Business Rules, page Glossary-8

Cafeteria Benets Plan
See: Flexible Benefits Program, page Glossary-14

Calendar Exceptions
If you are using the Statutory Absence Payments (UK) feature, you define calendar
exceptions for an SSP qualifying pattern, to override the pattern on given days. Each
calendar exception is another pattern which overrides the usual pattern.

Calendars
In Oracle Human Resources you define calendars that determine the start and end
dates for budgetary years, quarters and periods. For each calendar you select a basic
period type. If you are using the Statutory Absence Payments (UK) feature, you define
calendars to determine the start date and time for SSP qualifying patterns.

Canada/Quebec Pension Plan (CPP/QPP) Contributions
Contributions paid by employers and employees to each of these plans provide income
benefits upon retirement.

Candidate
(iRecruitment) A candidate is a person who has either directly provided their personal
and professional information to a company’s job site or provided their resume and
details to a manager or recruiter for entering in the iRecruitment system.

Candidate Offers
An SSHR function used by a line manager to offer a job to a candidate. This function
is supplied with its own responsibility.

Career Path
This shows a possible progression from one job or position from any number of other
jobs or positions within the Business Group. A career path must be based on either job
progression or position progression; you cannot mix the two.

Carry Over
The amount of unused paid time off entitlement an employee brings forward from
one accrual term to the next. It may be subject to an expiry date i.e. a date by which
it must be used or lost.

Glossary-6

See also: Residual, page Glossary-28

Cascade
A process managers at each level in a hierarchy use to allocate their own objectives to
workers who report directly to them. This technique enables the allocation of enterprise
objectives in some form to all workers.

Cash Analysis
A specification of the different currency denominations required for paying your
employees in cash. Union contracts may require you to follow certain cash analysis rules.

Ceiling
The maximum amount of unused paid time off an employee can have in an accrual
plan. When an employee reaches this maximum, he or she must use some accrued time
before any more time will accrue.

Certication
Documentation required to enroll or change elections in a benefits plan as the result of a
life event, to waive participation in a plan, to designate dependents for coverage, or to
receive reimbursement for goods or services under an FSA.

Chief HR Ofcer
In DBI for HRMS the Chief HR Officer is the chief executive of the enterprise who can
view the HR data at an enterprise-level.

Child/Family Support Payments
In Canada, these are payments withheld from an employee’s compensation to satisfy a
child or family support order from a Provincial Court. The employer is responsible for
withholding and remitting the payments to the court named in the order.

Collective Agreement
A collective agreement is a form of contract between an employer or employer
representative, for example, an employer federation, and a bargaining unit for example, a
union or a union branch.

Collective Agreement Grade
Combination of information that allows you to determine how an employee is ranked or
graded in a collective agreement.

Communications
Benefits plan information that is presented in some form to participants. Examples
include a pre-enrollment package, an enrollment confirmation statement, or a notice of
default enrollment.

Compensation
The pay you give to employees, including wages or salary, and bonuses.

See also: Elements, page Glossary-12

Glossary-7

Compensation Object
For Standard and Advanced Benefits, compensation objects define, categorize, and help
to manage the benefit plans that are offered to eligible participants. Compensation
objects include programs, plan types, plans, options, and combinations of these entities.

Competency
Any measurable behavior required by an organization, job or position that a person
may demonstrate in the work context. A competency can be a piece of knowledge, a
skill, an attitude, or an attribute.

See also: Unit Standard Competency, page Glossary-33

Competency Assessment Template
The entity that configures the Competencies section of an appraisal.

See also: Objective Assessment Template, page Glossary-21

Competency Evaluation
A method used to measure an employees ability to do a defined job.

Competency Prole
Where you record applicant and employee accomplishments, for example, proficiency in
a competency.

Competency Requirements
Competencies required by an organization, job or position.

See also: Competency, page Glossary-8, Core Competencies, page Glossary-9

Competency Type
A group of related competencies.

Congurable Business Rule
In HRMS position control and budgeting, predefined routines (also called process rules)
that run when you apply an online transaction, and validate proposed changes to
positions, budgets, or assignments. You set their default status level (typically Warning)
to Warning, Ignore, or Error.

Congurable Forms
Forms that your system administrator can modify for ease of use or security purposes by
means of Custom Form restrictions. The Form Customization window lists the forms
and their methods of configuration.

Consideration
(iRecruitment) Consideration means that a decision is registered about a person in
relation to a vacancy so that the person can be contacted.

Consolidation Set
A grouping of payroll runs within the same time period for which you can schedule
reporting, costing, and post-run processing.

Glossary-8

Contact
A person who has a relationship to an employee that you want to record. Contacts can
be dependents, relatives, partners or persons to contact in an emergency.

Content
When you create a spreadsheet or word processing document using Web ADI, the
content identifies the data in the document. Content is usually downloaded from the
Oracle application database.

Contingent Worker
A worker who does not have a direct employment relationship with an enterprise and
is typically a self-employed individual or an agency-supplied worker. The contingent
worker is not paid via Oracle Payroll.

Contract
A contract of employment is an agreement between an employer and employee
or potential employee that defines the fundamental legal relationship between an
employing organization and a person who offers his or her services for hire. The
employment contract defines the terms and conditions to which both parties agree and
those that are covered by local laws.

Contribution
An employer’s or employee’s monetary or other contribution to a benefits plan.

Core Competencies
Also known as Leadership Competencies orManagement Competencies. The competencies
required by every person to enable the enterprise to meet its goals.

See also: Competency, page Glossary-8

Costable Type
A feature that determines the processing an element receives for accounting and
costing purposes. There are four costable types in Oracle HRMS: costed, distributed
costing, fixed costing, and not costed.

Costing
Recording the costs of an assignment for accounting or reporting purposes. Using Oracle
Payroll, you can calculate and transfer costing information to your general ledger and
into systems for project management or labor distribution.

Court Order
A ruling from a court that requires an employer to make deductions from an employee’s
salary for maintenance payments or debts, and to pay the sums deducted to a court
or local authority.

See also: Arrestment, page Glossary-3

Credit
A part of the Qualifications Framework. The value a national qualifications authority
assigns to a unit standard competence or a qualification. For example, one credit may
represent 10 hours of study, a unit standard competence may equate to 5 credits, and
a qualification may equate to 30 credits.

Glossary-9

Criteria Salary Rate
Variable rate of pay for a grade, or grade step. Used by Grade/Step Progression.

Current Period of Service
An employee’s period of service is current if their most recent hire date is on or before
the effective date, and either the employee does not have a termination date for their
latest employment, or their termination date is later than the effective date.

The table below provides an example using an effective date of 12 October 2004:

Effective Date Hire Date Termination Date Current Period of
Service?

12 Oct 2004 23 Jan 1994 16 Aug 2003 No

12 Oct 2004 14 Oct 2004 ANY No

12 Oct 2004 14 Mar 2000 NONE Yes

12 Oct 2004 11 Sep 2001 15 Oct 2004 Yes

Note: In Oracle HRMS an employee cannot transfer from one business
group to another. To move from one business group to another, the
business group they are leaving must terminate the employee, and the
business group they are joining must re-hire the employee. Therefore
the definition of period of service, above, does not take account of any
service prior to the most recent business group transfer.

Current Period of Placement
A contingent worker’s period of placement, page Glossary-23 is current if their most
recent placement start date is on or before the effective date, and either the contingent
worker does not have a placement end date for their latest placement or their placement
end date is later than the effective date.

Effective Date Place Date End Placement Date Current Period of
Placement?

12 Oct 2004 23 Jan 1994 16 Aug 2003 No

12 Oct 2004 14 Oct 2004 ANY No

12 Oct 2004 14 Mar 2000 NONE Yes

12 Oct 2004 11 Sep 2001 15 Oct 2004 Yes

Database Item
An item of information in Oracle HRMS that has special programming attached, enabling
Oracle FastFormula to locate and retrieve it for use in formulas.

Date Earned
The date the payroll run uses to determine which element entries to process. In North
America (and typically elsewhere too) it is the last day of the payroll period being
processed.

Glossary-10

Date Paid
The effective date of a payroll run. Date paid dictates which tax rules apply and which
tax period or tax year deductions are reported.

Date To and Date From
These fields are used in windows not subject to DateTrack. The period you enter in these
fields remains fixed until you change the values in either field.

See also: DateTrack, page Glossary-11, Effective Date, page Glossary-12

DateTrack
When you change your effective date (either to past or future), DateTrack enables you to
enter information that takes effect on your new effective date, and to review information
as of the new date.

See also: Effective Date, page Glossary-12

Default Postings
(iRecruitment) Default text stored against business groups, organizations, jobs, and/or
positions. The default postings are used to create job postings for a vacancy.

Department
In DBI for HRMS, the term Department has the same meaning as Organization.

Dependent
In a benefit plan, a person with a proven relationship to the primary participant whom
the participant designates to receive coverage based on the terms of the plan.

Deployment Factors
See: Work Choices, page Glossary-34

Derived Factor
A factor (such as age, percent of fulltime employment, length of service, compensation
level, or the number of hours worked per period) that is used in calculations to determine
Participation Eligibility or Activity Rates for one or more benefits.

Descriptive Flexeld
A field that your organization can configure to capture additional information required
by your business but not otherwise tracked by Oracle Applications.

See also: Key Flexfield , page Glossary-17

Developer Descriptive Flexeld
A flexfield defined by your localization team to meet the specific legislative and reporting
needs of your country.

See also: Extra Information Types, page Glossary-14

Direct Deposit
The electronic transfer of an employee’s net pay directly into the account(s) designated
by the employee.

Glossary-11

Discoverer Workbook
A grouping of worksheets. Each worksheet is one report.

Discoverer Worksheet
A single report within a workbook. A report displays the values of predefined criteria
for analysis.

Distribution
Monetary payments made from, or hours off from work as allowed by, a compensation
or benefits plan.

Download
The process of transferring data from the Oracle HRMS application to your desktop (the
original data remains in the application database).

Effective Date
The date for which you are entering and viewing information. You set your effective
date in the Alter Effective Date window.

See also: DateTrack, page Glossary-11

EIT
See: Extra Information Type, page Glossary-14

Electability
The process which determines whether a potential benefits participant, who has satisfied
the eligibility rules governing a program, plan, or option in a plan, is able to elect
benefits. Participants who are eligible for benefits do not always have electable benefit
choices based on the rules established in a benefit plan design.

Element Classications
These control the order in which elements are processed and the balances they
feed. Primary element classifications and some secondary classifications are predefined
by Oracle Payroll. Other secondary classifications can be created by users.

Element Entry
The record controlling an employee’s receipt of an element, including the period of time
for which the employee receives the element and its value.

See also: Recurring Elements, page Glossary-27, Nonrecurring Elements, page Glossary-20

Element Link
The association of an element to one or more components of an employee
assignment. The link establishes employee eligibility for that element. Employees whose
assignment components match the components of the link are eligible for the element.

See also: Standard Link, page Glossary-31

Elements
Components in the calculation of employee pay. Each element represents a compensation
or benefit type, such as salary, wages, stock purchase plans, and pension contributions.

Glossary-12

Element Set
A group of elements that you define to process in a payroll run, or to control access to
compensation information from a configured form, or for distributing costs.

Eligibility
The process by which a potential benefits participant satisfies the rules governing
whether a person can ever enroll in a program, plan, or option in a plan. A participant
who is eligible for benefits must also satisfy electability requirements.

Employee
A worker who has a direct employment relationship with the employer. Employees are
typically paid compensation and benefits via the employer’s payroll application.

Employees have a system person type of Employee and one or more assignments with
an assignment type of Employee.

Employee Histories
An SSHR function for an employee to view their Learning History, Job Application
History, Employment History, Absence History, or Salary History. A manager can also
use this function to view information on their direct reports.

Employment Category
A component of the employee assignment. Four categories are defined: Full Time
- Regular, Full Time - Temporary, Part Time - Regular, and Part Time - Temporary.

Employment Equity Occupational Groups (EEOG)
In Canada, the Employment Equity Occupational Groups (EEOG) consist of 14
classifications of work used in the Employment Equity Report. The EEOGs were derived
from the National Occupational Classification system.

Employment Insurance (EI)
Benefit plan run by the federal government to which the majority of Canadian employers
and employees must contribute.

End Placement Date
DBI for HRMS uses this term to specifically refer to the contingent worker’s most recent
placement end date prior to the effective date.

Employment Insurance Rate
In Canada, this is the rate at which the employer contributes to the EI fund. The rate is
expressed as a percentage of the employee’s contribution. If the employer maintains an
approved wage loss replacement program, they can reduce their share of EI premiums
by obtaining a reduced contribution rate. Employers would remit payroll deductions
under a different employer account number for employees covered by the plan.

Enrollment Action Type
Any action required to complete enrollment or de-enrollment in a benefit.

Entitlement
In Australia, this is all unused leave from the previous year that remains to the credit of
the employee.

Glossary-13

ESS
Employee Self Service. A predefined SSHR responsibility.

Event
An activity such as a training day, review, or meeting, for employees or
applicants. Known as class in OLM.

Ex-Applicant
Someone who has previously applied for a vacancy or multiple vacancies, but all
applications have ended, either because the applicant has withdrawn interest or they
have been rejected. Ex-Applicants can still be registered users.

Expected Week of Childbirth (EWC)
In the UK, this is the week in which an employee’s baby is due. The Sunday of the
expected week of childbirth is used in the calculations for Statutory Maternity Pay (SMP).

Extra Information Type (EIT)
A type of developer descriptive flexfield that enables you to create an unlimited number
of information types for six key areas in Oracle HRMS. Localization teams may also
predefine some EITs to meet the specific legislative requirements of your country.

See also: Developer Descriptive Flexfield, page Glossary-11

Field
A view or entry area in a window where you enter, view, update, or delete information.

See also: Block, page Glossary-5, Region, page Glossary-27

Flex Credit
A unit of "purchasing power" in a flexible benefits program. An employee uses flex
credits, typically expressed in monetary terms, to "purchase" benefits plans and/or levels
of coverage within these plans.

Flexible Benets Program
A benefits program that offers employees choices among benefits plans and/or levels of
coverage. Typically, employees are given a certain amount of flex credits or moneys with
which to "purchase" these benefits plans and/or coverage levels.

Flexible Spending Account
(FSA) Under US Internal Revenue Code Section 125, employees can set aside money
on a pretax basis to pay for eligible unreimbursed health and dependent care
expenses. Annual monetary limits and use-it-or-lose it provisions exist. Accounts are
subject to annual maximums and forfeiture rules.

Form
A predefined grouping of functions, called from a menu and displayed, if necessary, on
several windows. Forms have blocks, regions and fields as their components.

See also: Block, page Glossary-5, Region, page Glossary-27, Field, page Glossary-14

Glossary-14

Format Mask
A definition of a person-name format. The format mask comprises standard name
components, such as title, first name, and last name, in an order appropriate to its
purpose and legislation.

Format Type
A format-mask classification that identifies the mask’s purpose. Oracle HRMS defines
the Full Name, Display Name, List Name, and Order Name format types. You can also
define your own format types for use in custom code.

Full Time Equivalent (FTE)
AWorkforce Measurement Type (WMT) that measures full time equivalent. Although
the actual value and calculation may vary, this value is taken from the Assignment
Budget Value (ABV) in Oracle HRMS. If the Assignment Budget Value in Oracle HRMS
is not set up then a FastFormula is used to determine the value to be calculated.

Global Value
A value you define for any formula to use. Global values can be dates, numbers or text.

Goods or Service Type
A list of goods or services a benefit plan sponsor has approved for reimbursement.

Grade
A component of an employee’s assignment that defines their level and can be used to
control the value of their salary and other compensation elements.

Grade Comparatio
A comparison of the amount of compensation an employee receives with the mid-point
of the valid values defined for his or her grade.

Grade Ladder
The key component of Grade/Step Progression. You use a grade ladder to categorize
grades, to determine the rules for how an employee progresses from one grade (or step)
to the next, and to record the salary rates associated with each grade or step on the ladder.

Grade Rate
A value or range of values defined as valid for a given grade. Used for validating
employee compensation entries.

Grade Scale
A sequence of steps valid for a grade, where each step corresponds to one point on a pay
scale. You can place each employee on a point of their grade scale and automatically
increment all placements each year, or as required.

See also: Pay Scale, page Glossary-22

Grade Step
An increment on a grade scale. Each grade step corresponds to one point on a pay scale.

See also: Grade Scale, page Glossary-15

Glossary-15

Grandfathered
A term used in Benefits Administration. A person’s benefits are said to be grandfathered
when a plan changes but they retain the benefits accrued.

Group
A component that you define, using the People Group key flexfield, to assign employees
to special groups such as pension plans or unions. You can use groups to determine
employees’ eligibility for certain elements, and to regulate access to payrolls.

Group Certicate
In Australia, this is a statement from a legal employer showing employment income of
an employee for the financial year..

Headcount(HEAD)
AWorkforce Measurement Type (WMT) that measures headcount. Although the actual
value and calculation may vary, this value is taken from the Assignment Budget Value
(ABV) in Oracle HRMS. If the Assignment Budget Value in Oracle HRMS is not set up
then a FastFormula is used to determine the value to be calculated.

HR Staff
In DBI for HRMS the HR Staff are people who work in the Human Resources role. Chief
HR Officers can track the ratio of HR professionals to the number of workers in their
enterprise.

DBI for HRMS uses the HRI_MAP_JOB_JOB_ROLE formula to categorize workers into
HR staff and non-HR staff.

Headcount Activity
DBI for HRMS uses this term to mean all the gains and losses occurring in a manager’s
hierarchy during a reporting period.

Hierarchy
An organization or position structure showing reporting lines or other relationships. You
can use hierarchies for reporting and for controlling access to Oracle HRMS information.

High Availability
iRecruitment functionality that enables enterprises to switch between two instances to
continuously support the candidate job site.

Hire Date
In DBI for HRMS Hire Date is the employee’s most recent hire date.

Imputed Income
Certain forms of indirect compensation that US Internal Revenue Service Section
79 defines as fringe benefits and taxes the recipient accordingly. Examples include
employer payment of group term life insurance premiums over a certain monetary
amount, personal use of a company car, and other non-cash awards.

Incumbent
See also: Active Employee, page Glossary-1

Glossary-16

Info Online
A generic framework to integrate Oracle applications with partner applications, enabling
users to access information from third-party providers, Metalink and Learning
Management.

Initiator
In SSHR a person who starts a 360 Degree appraisal (Employee or Self) on an
individual. An initiator and the appraisee are the only people who can see all appraisal
information.

Input Values
Values you define to hold information about elements. In Oracle Payroll, input values
are processed by formulas to calculate the element’s run result. You can define up to
fifteen input values for an element.

Instructions
An SSHR user assistance component displayed on a web page to describe page
functionality.

Integrator
Defines all the information that you need to download or upload from a particular
window or database view using Web ADI.

Interface
AWeb ADI term for the item that specifies the columns to be transferred from the Oracle
applications database to your desktop or vice versa.

Involuntary
Used in turnover to describe employees who have ceased employment with the
enterprise not of their own accord, for example, through redundancy.

Job
A job is a generic role within a business group, which is independent of any single
organization. For example, the jobs "Manager" and "Consultant" can occur in many
organizations.

Job Posting
An advertisement for a specific vacancy. This is the public side of the vacancy for which
a candidate would apply.

Key Flexeld
A flexible data field made up of segments. Each segment has a name you define and a
set of valid values you specify. Used as the key to uniquely identify an entity, such as
jobs, positions, grades, cost codes, and employee groups.

See also: Descriptive Flexfield, page Glossary-11

Key Performance Indicator (KPI)
Target values that you set for the performance of your enterprise. This value comes from
the corresponding KPI Portlet/Report. You can configure the Performance Management
Framework to send a notification when actual performance falls short of, or exceeds, the

Glossary-17

target value. For example, you may configure the Performance Management Framework
to send you a notification when workforce variance is greater than 10 percent, or when
training success is below 50 percent.

Key Performance Indicator (KPI) Portlet/Report
Displays the executive summary of keymeasures such as total headcount and total salary.

Layout
Indicates the columns to be displayed in a spreadsheet or Word document created using
Web ADI.

Learning Management
Oracle’s enterprise learning management system that administers online and offline
educational content.

Leave Loading
In Australia, an additional percentage amount of the annual leave paid that is paid to
the employee.

Leaver’s Statement
In the UK, this Records details of Statutory Sick Pay (SSP) paid during a previous
employment (issued as form SSP1L) which is used to calculate a new employee’s
entitlement to SSP. If a new employee falls sick, and the last date that SSP was paid for
under the previous employment is less than eight calendar weeks before the first day of
the PIW for the current sickness, the maximum liability for SSP is reduced by the number
of weeks of SSP shown on the statement.

Legal Employer
A business in Australia that employs people and has registered with the Australian
Tax Office as a Group Employer.

Legal Entity
A legal entity represents the designated legal employer for all employment-related
activities. The legal authorities in a country recognize this organization as a separate
employer.

Life Event
A significant change in a person’s life that results in a change in eligibility or ineligibility
for a benefit.

Life Event Collision
A situation in which the impacts from multiple life events on participation
eligibility, enrollability, level of coverage or activity rates conflict with each other.

Life Event Enrollment
A benefits plan enrollment that is prompted by a life event occurring at any time during
the plan year.

Linked PIWs
In the UK, these are linked periods of incapacity for work that are treated as one to
calculate an employee’s entitlement to Statutory Sick Pay (SSP). A period of incapacity for

Glossary-18

work (PIW) links to an earlier PIW if it is separated by less than the linking interval. A
linked PIW can be up to three years long.

Linking Interval
In the UK, this is the number of days that separate two periods of incapacity for work. If
a period of incapacity for work (PIW) is separated from a previous PIW by less than the
linking interval, they are treated as one PIW according to the legislation for entitlement
to Statutory Sick Pay (SSP). An employee can only receive SSP for the maximum number
of weeks defined in the legislation for one PIW.

LMSS
Line Manager Self Service. A predefined SSHR responsibility.

Long Service Leave
Leave with pay granted to employees of a particular employer after a prescribed period
of service or employment with that employer.

Lookup Types
Categories of information, such as nationality, address type and tax type, that have a
limited list of valid values. You can define your own Lookup Types, and you can add
values to some predefined Lookup Types.

Lower Earnings Limit (LEL)
In the UK, this is the minimum average weekly amount an employee must earn to pay
National Insurance contributions. Employees who do not earn enough to pay National
Insurance cannot receive Statutory Sick Pay (SSP) or Statutory Maternity Pay (SMP).

Manager
(iRecruitment) A manager accesses the iRecruitment system to document their hiring
needs and conduct their recruiting activities online. Specifically, these activities include
vacancy definition, searching for candidates, and processing applicants through the
vacancy process.

DBI for HRMS counts a person as a manager if they supervise assignments (directly or
through subordinates) for which the total headcount value is greater than zero at the
effective date.

Manager-Employee Appraisal
Part of the SSHR Appraisal function. A manager appraisal of an employee. However, an
appraising manager does not have to be a manager.

Mapping
If you are bringing in data from a text file to Oracle HRMS using a spreadsheet created
in Web ADI, you need to map the columns in the text file to the application’s tables
and columns.

Maternity Pay Period
In the UK, this is the period for which Statutory Maternity Pay (SMP) is paid. It may start
at any time from the start of the 11th week before the expected week of confinement and
can continue for up to 18 weeks. The start date is usually agreed with the employee, but
can start at any time up to the birth. An employee is not eligible to SMP for any week

Glossary-19

in which she works or for any other reason for ineligibility, defined by the legislation
for SMP.

Medicare Levy
An amount payable by most taxpayers in Australia to cover some of the cost of the
public health system.

Menus
You set up your own navigation menus, to suit the needs of different users.

My Account
(iRecruitment) My Account is the total of either a candidate or applicant’s personal and
vacancy-specific information including the information needed to manage their progress
through the recruitment process.

NACHA
National Automated Clearing House Association. This is the US system for making
direct deposit payments to employees.

National Identier
This is the alphanumeric code that is used to uniquely identify a person within their
country. It is often used for taxation purposes. For example, in the US it is the Social
Security Number, in Italy it is the Fiscal Code, and in New Zealand it is the IRD Number.

National Occupational Classication (NOC) code
In Canada, the National Occupational Classification (NOC) System was developed
to best reflect the type of work performed by employees. Occupations are grouped
in terms of particular tasks, duties and responsibilities. The use of this standardized
system ensures consistency of data from year to year within the same company as well
as between companies. These codes are used in the Employment Equity Report.

Net Accrual Calculation
The rule that defines which element entries add to or subtract from a plan’s accrual
amount to give net entitlement.

Net Entitlement
The amount of unused paid time off an employee has available in an accrual plan at
any given point in time.

Nonrecurring Elements
Elements that process for one payroll period only unless you make a new entry for
an employee.

See also: Recurring Elements, page Glossary-27

North American Industrial Classication (NAIC) code
The North American Industrial Classification system (NAICs) was developed jointly
by the US, Canada and Mexico to provide comparability in statistics regarding
business activity across North America. The NAIC replaces the US Standard Industrial
Classification (SIC) system, and is used in the Employment Equity Report.

Glossary-20

Not in Program Plan
A benefit plan that you define outside of a program.

Objective Assessment Template
The entity that configures the Objectives section of the appraisal.

See also: Competency Assessment Template, page Glossary-8

Objectives Library
A collection of reusable objectives. HR Professionals can either create individual
objectives in the Objectives Library or import them from an external source.

Off-Boarding
Descriptive term covering all HR processes and procedures involved in removing
a worker from your organization, including termination, relocation, and long-term
sickness.

OLM
Oracle Learning Management.

On-Boarding
Descriptive term covering all HR processes and procedures involved in hiring and
integrating a worker in your organization, including recruitment, hiring, and orientation.

Online Analytical Processing (OLAP)
Analysis of data that reveals business trends and statistics that are not immediately
visible in operational data.

Online Transactional Processing (OLTP)
The storage of data from day-to-day business transactions into the database that contains
operational data.

Open Enrollment
A type of scheduled enrollment in which participants can enroll in or alter elections in
one or more benefits plans.

Oracle FastFormula
Formulas are generic expressions of calculations or comparisons you want to repeat
with different input values. With Oracle FastFormula you can write formulas using
English words and basic mathematical functions. The output of FastFormulas is fed
back into reports.

Organization
A required component of employee assignments. You can define as many organizations
as you want within your Business Group. Organizations can be internal, such as
departments, or external, such as recruitment agencies. You can structure your
organizations into organizational hierarchies for reporting purposes and for system
access control.

Glossary-21

Organization Manager Hierarchy
An HRMS structure that contains supervisors and subordinates on a reporting chain
who also own organizations. HRMS uses this hierarchy to filter the information you
display in report modules, such as the Daily Business Intelligence Workforce Budget
Management dashboard, to include only managers who own organizations.

OSSWA
Oracle Self Service Web Applications.

Outcome
For a unit standard competence, a behavior or performance standard associated with
one or more assessment criteria. A worker achieves a unit standard competence when
they achieve all outcomes for that competence.

Overrides
You can enter overrides for an element’s pay or input values for a single payroll
period. This is useful, for example, when you want to correct errors in data entry for a
nonrecurring element before a payroll run.

Parameter Portlet
A portlet in which you select a number of parameters that may affect all your portlets on
your page. These may include an effective date, the reporting period, the comparison
type, the reporting manager, and the output currency for your reports. The parameter
portlet is usually available at the top of the portal page.

Pattern
A pattern comprises a sequence of time units that are repeated at a specified
frequency. The Statutory Absence Payments (UK) feature, uses SSP qualifying patterns
to determine employees entitlement to Statutory Sick Pay (SSP).

Pattern Time Units
A sequence of time units specifies a repeating pattern. Each time unit specifies a time
period of hours, days or weeks.

Pay Scale
A set of progression points that can be related to one or more rates of pay. Employee’s
are placed on a particular point on the scale according to their grade and, usually, work
experience.

See also: Grade Scale, page Glossary-15

Pay Value
An amount you enter for an element that becomes its run item without formula
calculations.

See also: Input Values, page Glossary-17

Payment Type
There are three standard payment types for paying employees: check, cash and direct
deposit. You can define your own payment methods corresponding to these types.

Glossary-22

Payroll
A group of employees that Oracle Payroll processes together with the same processing
frequency, for example, weekly, monthly or bimonthly. Within a Business Group, you
can set up as many payrolls as you need.

Payroll Reversal
A payroll reversal occurs when you reverse a payroll run for a single employee, in effect
cancelling the run for this employee.

Payroll Rollback
You can schedule a payroll rollback when you want to reverse an entire payroll
run, cancelling out all information processed in that run. To preserve data integrity, you
can roll back only one payroll at a time, starting with the one most recently run.

Payroll Run
The process that performs all the payroll calculations. You can set payrolls to run at any
interval you want.

People List
An SSHR line manager utility used to locate an employee.

Performance Management Framework (PMF)
A business intelligence tool used to alert users to exceptional circumstances, as defined
by KPIs. When a particular factor measured by HRMSi goes beyond a threshold chosen
by the user, the system sends the user a workflow notification.

Performance Management Plan
The entity that defines the performance-management process for a specified period. A
component of the Workforce Performance Management function.

Performance Management Viewer (PMV)
A reporting tool that displays the report that corresponds to one or more PMF targets.

Period of Incapacity for Work (PIW)
In the UK, this is a period of sickness that lasts four or more days in a row, and is the
minimum amount of sickness for which Statutory Sick Pay can be paid. If a PIW is
separated by less then the linking interval, a linked PIW is formed and the two PIWs
are treated as one.

Period of Placement
The period of time a contingent worker spends working for an enterprise. A contingent
worker can have only one period of placement at a time; however, a contingent worker
can have multiple assignments during a single period of placement.

Period Type
A time division in a budgetary calendar, such as week, month, or quarter.

Personal Public Service Number (PPS)
The Irish equivalent to National Insurance number in the UK, or the Social Security
number in the US.

Glossary-23

Personal Tax Credits Return (TD1)
A Revenue Canada form which each employee must complete. Used by the employee
to reduce his or her taxable income at source by claiming eligible credits and also
provides payroll with such important information as current address, birth date, and
SIN. These credits determine the amount to withhold from the employee’s wages for
federal/provincial taxes.

Person Search
An SSHR function which enables a manager to search for a person. There are two types
of search, Simple and Advanced.

Person Type
There are eight system person types in Oracle HRMS. Seven of these are combinations
of employees, ex-employees, applicants, and ex-applicants. The eighth category is
’External’. You can create your own user person types based on the eight system types.

Personal Scorecard
A collection of objectives for a single worker arising from a single Performance
Management Plan.

Personnel Actions
Personnel actions is a public sector term describing business processes that define
and document the status and conditions of employment. Examples include
hiring, training, placement, discipline, promotion, transfer, compensation, or
termination. Oracle HRMS uses the term self-service actions synonymously with this
public sector term. Oracle Self Service Human Resources (SSHR) provides a configurable
set of tools and web flows for initiating, updating, and approving self-service actions.

Plan Design
The functional area that allows you to set up your benefits programs and
plans. This process involves defining the rules which govern eligibility, available
options, pricing, plan years, third party administrators, tax impacts, plan
assets, distribution options, required reporting, and communications.

Plan Sponsor
The legal entity or business responsible for funding and administering a benefits
plan. Generally synonymous with employer.

Placement Start Date
In DBI for HRMS Placement Date is the contingent worker’s most recent start date prior
to the effective date.

Position
A specific role within the Business Group derived from an organization and a job. For
example, you may have a position of Shipping Clerk associated with the organization
Shipping and the job Clerk.

Predened Components
Some elements and balances, all primary element classifications and some secondary
classifications are defined by Oracle Payroll to meet legislative requirements, and are
supplied to users with the product. You cannot delete these predefined components.

Glossary-24

Process Rule
See Configurable Business Rules, page Glossary-8

Professional Information
An SSHR function which allows an employee to maintain their own professional details
or a line manager to maintain their direct reports professional details.

Prociency
A worker’s perceived level of expertise in a competency, in the opinion of an
assessor, over a given period. For example, a worker may demonstrate the
communication competency at Novice or Expert level.

Progression Point
A pay scale is calibrated in progression points, which form a sequence for the progression
of employees up the pay scale.

See also: Pay Scale, page Glossary-22

Prospect Pool
(iRecruitment) The prospect pool contains all registered users who have given
permission for their information to be published.

Provincial/Territorial Employment Standards Acts
In Canada, these are laws covering minimum wages, hours of work, overtime, child
labour, maternity, vacation, public/general holidays, parental and adoption leave, etc., for
employees regulated by provincial/territorial legislation.

Provincial Health Number
In Canada, this is the account number of the provincially administered health care plan
that the employer would use to make remittances. There would be a unique number for
each of the provincially controlled plans i.e. EHT, Quebec HSF, etc.

PTO Accrual Plan
A benefit in which employees enroll to entitle them to accrue and take paid time off
(PTO). The purpose of absences allowed under the plan, who can enroll, how much time
accrues, when the time must be used, and other rules are defined for the plan.

QPP
(See Canada/Quebec Pension Plan)

QA Organization
Quality Assurance Organization. Providers of training that leads to Qualifications
Framework qualifications register with a QA Organization. The QA Organization is
responsible for monitoring training standards.

Qualication Type
An identified qualification method of achieving proficiency in a competence, such as an
award, educational qualification, a license or a test.

See also: Competence, page Glossary-8

Glossary-25

Qualications Framework
A national structure for the registration and definition of formal qualifications. It
identifies the unit standard competencies that lead to a particular qualification, the
awarding body, and the field of learning to which the qualification belongs, for example.

Qualifying Days
In the UK, these are days on which Statutory Sick Pay (SSP) can be paid, and the only
days that count as waiting days. Qualifying days are normally work days, but other
days may be agreed.

Qualifying Pattern
See: SSP Qualifying Pattern, page Glossary-30

Qualifying Week
In the UK, this is the week during pregnancy that is used as the basis for the qualifying
rules for Statutory Maternity Pay (SMP). The date of the qualifying week is fifteen weeks
before the expected week of confinement and an employee must have been continuously
employed for at least 26 weeks continuing into the qualifying week to be entitled to SMP.

Quebec Business Number
In Canada, this is the employer’s account number with the Ministere du Revenu du
Quebec, also known as the Quebec Identification number. It consists of 15 digits, the
first 9 identify the employer, the next 2 identify the type of tax account involved (payroll
vs. corporate tax), and the last 4 identify the particular account for that tax.

Questionnaire
An SSHR function which records the results of an appraisal.

QuickPaint Report
A method of reporting on employee and applicant assignment information. You can
select items of information, paint them on a report layout, add explanatory text, and save
the report definition to run whenever you want.

See also: Assignment Set, page Glossary-4

QuickPay
QuickPay allows you to run payroll processing for one employee in a few minutes’
time. It is useful for calculating pay while someone waits, or for testing payroll formulas.

Ranking
(iRecruitment) A manually entered value to indicate the quality of the applicant against
other applicants for a specific vacancy.

Rates
A set of values for employee grades or progression points. For example, you can define
salary rates and overtime rates.

Rating Scale
Used to describe an enterprise’s competencies in a general way. You do not hold the
proficiency level at the competence level.

Glossary-26

Record of Employment (ROE)
A Human Resources Development Canada form that must be completed by an employer
whenever an interruption of earnings occurs for any employee. This form is necessary
to claim Employment Insurance benefits.

Recruitment Activity
An event or program to attract applications for employment. Newspaper
advertisements, career fairs and recruitment evenings are all examples of recruitment
activities. You can group several recruitment activities together within an overall activity.

Recurring Elements
Elements that process regularly at a predefined frequency. Recurring element entries
exist from the time you create them until you delete them, or the employee ceases to be
eligible for the element. Recurring elements can have standard links.

See also: Nonrecurring Elements, page Glossary-20, Standard Link, page Glossary-31

Referenced Rule
In HRMS budgeting, any predefined configurable business rule in the Assignment
Modification, Position Modification, or Budget Preparation Categories you use as the
basis for defining a new rule.

See Configurable Business Rules, page Glossary-8

Region
A collection of logically related fields in a window, set apart from other fields by a
rectangular box or a horizontal line across the window.

See also: Block, page Glossary-5, Field, page Glossary-14

Registered Pension Plan (RPP)
This is a pension plan that has been registered with Revenue Canada. It is a plan where
funds are set aside by an employer, an employee, or both to provide a pension to
employees when they retire. Employee contributions are generally exempt from tax.

Registered Retirement Savings Plan (RRSP)
This is an individual retirement savings plan that has been registered with Revenue
Canada. Usually, contributions to the RRSP, and any income earned within the RRSP, is
exempt from tax.

Registered User
(iRecruitment) A person who has registered with the iRecruitment site by entering an
e-mail address and password. A registered user does not necessarily have to apply
for jobs.

Report Parameters
Inputs you make when submitting a report to control the sorting, formatting, selection,
and summarizing of information in the report.

Report Set
A group of reports and concurrent processes that you specify to run together.

Glossary-27

Requisition
The statement of a requirement for a vacancy or group of vacancies.

Request Groups
A list of reports and processes that can be submitted by holders of a particular
responsibility.

See also: Responsibility, page Glossary-28

Residual
The amount of unused paid time off entitlement an employee loses at the end of an
accrual term. Typically employees can carry over unused time, up to a maximum, but
they lose any residual time that exceeds this limit.

See also: Carry Over, page Glossary-6

Responsibility
A level of authority in an application. Each responsibility lets you access a specific set of
Oracle Applications forms, menus, reports, and data to fulfill your business role. Several
users can share a responsibility, and a single user can have multiple responsibilities.

See also: Security Profile, page Glossary-29, User Profile Options, page Glossary-33, Request
Groups, page Glossary-28, Security Groups, page Glossary-28

Resume
A document that describes the experience and qualifications of a candidate.

RetroPay
A process that recalculates the amount to pay an employee in the current period to
account for retrospective changes that occurred in previous payroll periods.

Retry
Method of correcting a payroll run or other process before any post-run processing takes
place. The original run results are deleted and the process is run again.

Revenue Canada
Department of the Government of Canada which, amongst other responsibilities,
administers, adjudicates, and receives remittances for all taxation in Canada including
income tax, Employment Insurance premiums, Canada Pension Plan contributions, and
the Goods and Services Tax (legislation is currently proposed to revise the name to
the Canada Customs and Revenue Agency). In the province of Quebec the equivalent
is the Ministere du Revenu du Quebec.

Reversal
Method of correcting payroll runs or QuickPay runs after post-run processing has taken
place. The system replaces positive run result values with negative ones, and negative
run result values with positive ones. Both old and new values remain on the database.

Reviewer (SSHR)
A person invited by an appraising manager to add review comments to an appraisal.

Glossary-28

RIA
Research Institute of America (RIA), a provider of tax research, practice materials, and
compliance tools for professionals, that provides U.S. users with tax information.

Rollback
Method of removing a payroll run or other process before any post-run processing takes
place. All assignments and run results are deleted.

Rollup
An aggregate of data that includes subsidiary totals.

Run Item
The amount an element contributes to pay or to a balance resulting from its processing
during the payroll run. The Run Item is also known as calculated pay.

Salary Basis
The period of time for which an employee’s salary is quoted, such as hourly or
annually. Defines a group of employees assigned to the same salary basis and receiving
the same salary element.

Salary Rate
The rate of pay associated with a grade or step. Used by Grade/Step Progression.

Scheduled Enrollment
A benefits plan enrollment that takes place during a predefined enrollment period, such
as an open enrollment. Scheduled enrollments can be administrative, open, or
unrestricted.

Search by Date
An SSHR sub-function used to search for a Person by Hire date, Application date, Job
posting date or search by a Training event date.

Security Group
Security groups enable HRMS users to partition data by Business Group. Only used for
Security Groups Enabled security.

See also: Responsibility, page Glossary-28, Security Profile, page Glossary-29, User Profile
Options, page Glossary-33

Security Groups Enabled
Formerly known as Cross Business Group Responsibility security. This security model
uses security groups and enables you to link one responsibility to many Business Groups.

Security Prole
Security profiles control access to organizations, positions and employee and applicant
records within the Business Group. System administrators use them in defining users’
responsibilities.

See also: Responsibility, page Glossary-28

Glossary-29

Self Appraisal
Part of the SSHR Appraisal function. This is an appraisal undertaken by an employee to
rate their own performance and competencies.

Separation Categoary
See also: termination category, page Glossary-32

Site Visitor
(iRecruitment) A person who navigates to the iRecruitment web site and may view job
postings. This person has not yet registered or logged in to the iRecruitment system. This
individual may search for postings on the web site and also has the ability to log in or
register with the iRecruitment site.

SMP
See: Statutory Maternity Pay, page Glossary-31

Social Insurance Number (SIN)
A unique number provided by Human Resources Development Canada (HRDC) to each
person commencing employment in Canada. The number consists of 9 digits in the
following format (###-###-###).

Source Deductions Return (TP 1015.3)
A Ministere du Revenu du Quebec form which each employee must complete. This
form is used by the employee to reduce his or her taxable income at source by claiming
eligible credits and also provides payroll with such important information as current
address, birth date, and SIN. These credits determine the amount of provincial tax to
withhold from the employee’s wages.

Special Information Types
Categories of personal information, such as skills, that you define in the Personal
Analysis key flexfield.

Special Run
The first run of a recurring element in a payroll period is its normal run. Subsequent
runs in the same period are called special runs. When you define recurring elements you
specify Yes or No for special run processing.

SSHR
Oracle Self-Service Human Resources. An HR management system using an intranet
and web browser to deliver functionality to employees and their managers.

SSP
See: Statutory Sick Pay, page Glossary-31

SSP Qualifying Pattern
In the UK, an SSP qualifying pattern is a series of qualifying days that may be repeated
weekly, monthly or some other frequency. Each week in a pattern must include at least
one qualifying day. Qualifying days are the only days for which Statutory Sick Pay
(SSP) can be paid, and you define SSP qualifying patterns for all the employees in your
organization so that their entitlement to SSP can be calculated.

Glossary-30

Standard HRMS Security
The standard security model. Using this security model you must log on as a different
user to see a different Business Group.

Standard Link
Recurring elements with standard links have their element entries automatically created
for all employees whose assignment components match the link.

See also: Element Link, page Glossary-12, Recurring Elements, page Glossary-27

Statement of Commissions and Expenses for Source Deduction Purposes (TP
1015.R.13.1)
AMinistere du Revenu du Quebec form which allows an employee who is paid partly or
entirely by commissions to pay a constant percentage of income tax based on his or her
estimated commissions for the year, less allowable business expenses.

Statement of Earnings (SOE)
A summary of the calculated earnings and deductions for an assignment in a payroll
period.

Statement of Remuneration and Expenses (TD1X)
In Canada, the Statement of Remuneration and Expenses allows an employee who is
paid partly or entirely by commission to pay a constant percentage of income tax, based
on his or her estimated income for the year, less business-related expenses.

Statutory Adoption Pay
In the UK, Statutory Adoption Pay (SAP) is payable to a person of either sex with whom
a child is, or is expected to be, placed for adoption under UK law.

Statutory Maternity Pay
In the UK, you pay Statutory Maternity Pay (SMP) to female employees who take time
off work to have a baby, providing they meet the statutory requirements set out in the
legislation for SMP.

Statutory Sick Pay
In the UK, you pay Statutory Sick Pay (SSP) to employees who are off work for four or
more days because they are sick, providing they meet the statutory requirements set out
in the legislation for SSP.

Statutory Paternity Pay
In the UK, Statutory Paternity Pay Birth (SPPB) is payable to a person supporting the
mother at the time of birth. In cases of adoption, the primary carer receives Statutory
Adoption Pay, while the secondary carer receives Statutory Paternity Pay Adoption
(SPPA).

Student Employee
A student who is following a work-study program. Student employees have HRMS
person records (of system type Employee) so that you can include them in your payroll.

Succession Planning
An SSHR function which enables a manager to prepare a succession plan.

Glossary-31

Suitability Matching
An SSHR function which enables a manager to compare and rank a persons
competencies.

Superannuation Guarantee
An Australian system whereby employers are required to contribute a percentage of an
eligible employee’s earnings to a superannuation fund to provide for their retirement.

Supplier
An internal or external organization providing contingent workers for an
organization. Typically suppliers are employment or recruitment agencies.

Supporting Objective
An objective aligned with another objective. Supporting objectives contribute to the
achievement of the objectives they support.

Tabbed Regions
Parts of a window that appear in a stack so that only one is visible at any time. You click
on the tab of the required region to bring it to the top of the stack.

Task Flows
A sequence of windows linked by buttons to take you through the steps required to
complete a task, such as hiring a new recruit. System administrators can create task
flows to meet the needs of groups of users.

Tax Point
The date from which tax becomes payable.

Template Letter
Form letter or skeleton letter that acts as the basis for creating mail merge letters. The
template letter contains the standard text, and also contains field codes, which are
replaced by data from the application during the mail merge process.

Terminating Employees
You terminate an employee when he or she leaves your organization. Information about
the employee remains on the system but all current assignments are ended.

Termination Category
When employees leave an enterprise, the decision is either made by the employee
or by the enterprise. When the decision is made by the employee the termination is
Voluntary. When the decision is made by the enterprise, the termination is Involuntary.

DBI for HRMS uses a formula to determine which category each termination belongs
to, based on the associated leaving reason.

HRMSi elsewhere refers to Termination Category as Separation Category.

Termination Date
DBI for HRMS uses this term to specifically refer to the employee’s most recent
termination date prior to the effective date.

Glossary-32

Termination Rule
Specifies when entries of an element should close down for an employee who leaves
your enterprise. You can define that entries end on the employee’s actual termination
date or remain open until a final processing date.

Tips
An SSHR user assistance component that provides information about a field.

Transcentive
A third-party compensation management solutions provider, that provides additional
information about benefits choices.

Unit Standard
A nationally registered document that describes a standard of performance. The
standard is typically defined and maintained by industry representatives.

Unit Standard Competency
A competency that is defined in a Unit Standard and linked to a Qualifications
Framework qualification.

Upload
The process of transferring the data from a spreadsheet on your desktop, created using
Web ADI, back to the Oracle HRMS application.

User Assistance Components
SSHR online help comprising tips and instructions.

User Balances
Users can create, update and delete their own balances, including dimensions and
balance feeds.

See also: Balances, page Glossary-5

User Prole Options
Features that allow system administrators and users to tailor Oracle HRMS to their
exact requirements.

See also: Responsibility, page Glossary-28, Security Profile, page Glossary-29

User-based Security
With this type of security, the application generates the security permissions for a
current user when that user logs on to a system. The system uses the security profile
(can be position, supervisor, or organization-based, for example) to generate security
permissions for the current user, for example, based on the user’s position. An alternative
to user-based security is a security profile with defined security rules, for example, to
specify that the top-level position for a position-based security profile is Position
A, irrespective of the current user’s position.

View
An example of an interface that you can use to download data from the Oracle HRMS
application to a spreadsheet using Web ADI.

Glossary-33

Viewer (SSHR)
A person with view only access to an appraisal. An appraising manager or an employee
in a 360 Degree Self appraisal can appoint view only access to an appraisal.

Viewer (Web ADI)
A desktop application, such as a spreadsheet or word processing tool, that you use to
view the data downloaded from Oracle HRMS via Web ADI.

Voluntary
Term used in turnover to describe employees who have ceased employment with the
enterprise of their own accord, for example, by resigning.

Waiting Days
In the UK, statutory Sick Pay is not payable for the first three qualifying days in period of
incapacity for work (PIW), which are called waiting days. They are not necessarily the
same as the first three days of sickness, as waiting days can be carried forward from a
previous PIW if the linking interval between the two PIWs is less than 56 days.

WCB Account Number
In Canada, this is the account number of the provincially administered Worker’s
Compensation Board that the employer would use to make remittances. There would be
a unique number for each of the provincially controlled boards i.e. Workplace Safety
& Insurance Board of Ontario, CSST, etc.

Work Choices
Also known as Work Preferences, Deployment Factors, or Work Factors. These can affect
a person’s capacity to be deployed within an enterprise, such willingness to travel or
relocate. You can hold work choices at both job and position level, or at person level.

Worker
An employee, page Glossary-13 or a contingent worker, page Glossary-9

In DBI for HRMS workers are employees and contingent workers who report to the
selected manager.

Worker’s Compensation Board
In Canada, this is a provincially governed legislative body which provides benefits
to employees upon injury, disability, or death while performing the duties of the
employer. Worker’s Compensation Board premiums are paid entirely by the employer.

Workow
An Oracle application which uses charts to manage approval processes and in addition is
used in SSHR to configure display values of sections within a web page and instructions.

Workforce Measurement Type (WMT)
Groups of different units combined to measure the workforce. The most common units
are headcount and full time equivalent.

Workforce Measurement Value (WMV)
A WMT value, for example, headcount or FTE.

Glossary-34

Workforce Performance Management
The Oracle HRMS functions that support enterprise-directed objective
setting, management, and assessment.

Work Structures
The fundamental definitions of organizations, jobs, positions, grades, payrolls and other
employee groups within your enterprise that provide the framework for defining the
work assignments of your employees.

Glossary-35

Index

A
Absence Management
calculating absence duration, 3-79
proration and notifications, 3-78

ABSENCE_REASON, 3-78
Action classifications (for payroll processes and
actions), 4-56
Activity rates, 3-87
Adjustment element entries, 4-20
Advanced Setup
See Transaction Type Wizard

APIs
errors and warnings, 4-186
legislative versions, 4-185
loading legacy data, 4-217
multilingual support, 4-184
parameters, 4-169
user hooks, 4-191
uses of, 4-166

Applicants
assignment statuses, 3-90

Appraisals, setting up, 3-97
Archiving
payroll reports, 4-62

Assignment level interlocks, 4-56
overview, 4-16
rolling back/mark for retry, 4-58

Assignment sets, 4-17
Assignment statuses
applicants, 3-90
defining, 3-91

Assignments, 3-90
processing payroll, 4-18

B
Balance adjustments, 4-79
Balances
balance dimensions, 4-74, 4-75
contexts, 4-74
creating and maintaining, 4-20
dimension types, 4-21
feed checking types, 4-21
including values in reports, 4-89
initial values for US legislative balances, 4-91
initialization steps, 4-87

latest balances, 4-74
loading initial values, 4-78
overview, 4-73
setting up, 3-67

Balances and latest balances
processing by Payroll Run, 4-20

Batch Element Entry (BEE)
creating control totals, 4-12

BEE (Batch Element Entry)
and PayMIX, 4-104

beneficiaries
implementing, 4-105

Benefits
eligibility, 3-82
enrollment conversion, 2-14
implementation, 3-63

Budgets
implementing, 3-53

Business Groups
defining, 3-44

Business Rules
configuring, 3-52

C
Career paths, defining, 3-97
Cash payments, 4-26
process, 4-47

Cheque Writer
cheque numbering, 4-43
mark for retry, 4-44
PL/SQL, 4-46
process, 4-41
rolling back payments, 4-45
sorting the cheques/checks, 4-46
SRW2 report, 4-45
voiding and reissuing cheques, 4-44

cheque/check writer process
XML output, 4-305

Collective agreements, 3-55
Compensation objects
setting up, 3-85

Competencies
setting up, 3-95

Competency
definitions, creating, 3-95

Index-1

definitions, uploading third-party, 3-95
global flexfield structure, 3-95
profiles, creating, 3-96
rating scales, 3-95
requirements, defining, 3-96
types, 3-96

Configurable Business Rules
See Business Rules

Configuration Workbench, 3-44
Consolidation sets, 3-57, 4-26
Context field values list for flexfields, 4-155
Contexts
and formula types, 4-132
for archive database items, 4-66
for payroll run formulas, 4-19
of balances, 4-74
set by Magnetic Tape process, 4-32
used by FastFormula, 4-132

Control, 3-103
Conversion
benefits enrollments, 2-14

Correction
in a datetracked block, 4-1

Costing process, 4-60
Coverage calculations, 3-87
Currencies
conversion by Prepayments process, 4-27
enabling, 3-43
processing by Payroll Run, 4-19

Custom Library events
DT_ CALL_HISTORY, 4-9
DT_SELECT_MODE, 4-5

Custom tables
making available to reporting users, 4-164

Customization
using API user hooks, 4-191
using database triggers, 4-208

D
Data Install Utility, 3-1
Data Pump, 4-215
logging options, 4-233

Database items, 4-132
and user entities, 4-131
defining, 4-132
for archiving, 4-64

Database triggers, 4-208
DateTrack, 4-1
creating a datetracked table, 4-4
history views, 4-7
restricting options available to users, 4-5

DateTrack History views, 4-7
changing the view displayed, 4-9
list of, 4-10

Deadlocks
avoiding, 4-182

Defined balances, 4-74

Deleting a datetracked record, 4-2
dependents
implementing, 4-105

Descriptive flexfields
defining, 3-39, 3-42, 3-42

Dimension types (of balances), 4-21, 4-77
Dimensions (of balances), 4-74
Disabilities, 3-55

E
Element entries
processing by Payroll Run, 4-18

Element sets, 4-17
Element skip rules, 4-20
Elements
and distribution sets, 3-107
entry processing, 4-18
to feed initial balances, 4-81

Eligibility
derived factors, 3-83
eligibility profiles, 3-84

Employee assignment statuses
defining, 3-91

End of year reports, 4-62
Enrollment
requirements, 3-86

Enrollments
converting, 2-14

Error reporting
payroll action parameters, 4-51

Evaluation systems
implementing, 3-52

Exchange rates
Pre-Payments, 4-27

Expiry checking
of latest balances, 4-21, 4-74
types, 4-78

F
FastFormula
calling from PL/SQL, 4-140

Fastformula
application dictionary, 4-130

Feed checking types (of balances), 4-21, 4-77
Flex credit calculations, 3-66, 3-88
Flexfields
and APIs, 4-183
Cost Allocation, 4-60
validation by APIs, 4-152

FND_SESSIONS table, 4-154
Form block.field items
referenced in flexfield value sets, 4-153

Form functions
using parameters, 3-108

Formula
errors, 4-38

Index-2

for archiving payroll reports, 4-66
interface, 4-37
payroll run, 4-22
result rules, 4-23
types and contexts, 4-132

Formula results
defining, 3-67

Formulas
defining payroll formulas, 3-67

Frequency rules
payroll action parameters, 4-51

Functions, 3-112

G
GB branch sort code
validation, 4-281

Global Legislation Driver, 3-1
Grade scales
defining, 3-62

Grade/Step Progression, 3-61
and the Total Compensation Data Model, 4-303

Grades
defining, 3-60

H
HRMS Roles, 3-49, 3-54
associating with Transaction Templates, 3-51
associating with users or positions, 3-50
Role Templates, 3-51

I
Implementation Planning, 1-1
Implementing Oracle HRMS
checklists, 3-6
flowchart, 3-7
setup steps, 3-1
steps, 3-27

Implementing Talent Management, 3-95
Initial Balance Structure Creation process, 4-87
Initial Balance Upload process, 4-84
Input values
validation, 3-62

Interlocks, 4-56

J
Jobs
defining, 3-47

K
Key flexfields
setting up, 3-27

L
Latest balances, 4-74
initial loading, 4-80

Legacy data
loading using Data Pump, 4-217

Letters
generating, 3-104

Life events, 3-84
LISTGEN, 4-161
Locations, 3-45
Logging
payroll action parameter, 4-52

Lookups
creating Lookup values, 3-43

M
Magnetic Tape
formula errors, 4-38
formula interface, 4-37
PL/SQL, 4-33
process, 4-29
reports, 4-30
structure, 4-31

magnetic tape process
XML output, 4-305

Mark for retry
Cheque Writer, 4-44
interlock rules, 4-58, 4-58

Mass Actions
defining a Context, 3-49

Medical assessments, 3-55
Menus, 3-112
defining, 3-110

Meta-Mapper process, 4-217
running, 4-220

N
New hire reporting
setting up, 3-56

O
Object version number, 4-167
handling in Oracle Forms, 4-209

Online Benefits Services, 3-90
Oracle HRMS Data Pump
purge process, 4-236

Oracle Human Resources
post install, 3-1

Organization Hierarchy
Populate, 3-98

Organizations, 3-45
defining, 3-44

Override element entries, 4-20

Index-3

P
Parallel processing, 4-49
Parameters
CHUNK_SIZE, 4-27, 4-47, 4-85
for APIs, 4-169
for Cheque/Check Writer process, 4-42
for Data Pump, 4-231
for Magnetic Tape process, 4-29
MAX_ERRORS_ALLOWED, 4-28
Payroll Action, 4-47
THREADS, 4-27, 4-47

Pay scales
defining, 3-61

PAY_BALANCE_BATCH_HEADERS, 4-82
PAY_BALANCE_BATCH_LINES, 4-83
Payment methods, 3-57, 4-25
overriding, 4-27

Payment process, 4-28
PayMIX Views, 4-104
Payroll
defining, 3-57

Payroll Action Parameter
External process archive, 4-52

Payroll Action Parameters
Payslip archive, 4-52

Payroll action parameters, 4-47
error reporting, 4-51
frequency rule, 4-51
logging, 4-52, 4-54
parallel processing, 4-49
rollback, 4-51

Payroll Archive Reporter process, 4-62
payroll archiver process
XML output, 4-305

Payroll data cache, 4-24
Payroll processes, 4-15
overview, 4-15

payroll processes
XML output, 4-305

Payroll Run
balances and latest balances, 4-20
create run results and values, 4-19
element skip rules, 4-20
entities for processing, 4-17
expiry checking of latest balances, 4-21
formula, 4-22
in memory latest balances, 4-21
process, 4-17
processing each assignment, 4-18
processing element entries, 4-18
processing priority, 4-18
set up contexts, 4-19

payroll tax subsystem, 4-109
Payrolls
defining, 3-57

Payslips

generating, 3-58
setting up, 3-58

People, 3-90
People Management Templates
configuring, 3-106

Person Types, 3-55
Plans
setting up, 3-85

Position control
enabling for organizations, 3-52

Position Hierarchy, 3-48
Position Hiring Statuses, 3-48
Positions
defining, 3-47
Synchronize Positions Process, 3-48

Post install steps
Federal legislation, 3-1
French legislation, 3-1
Oracle HRMS, 3-1
Payroll (Canada and USA), 3-1

postal process
XML output, 4-305

Pre-Payments
exchange rates, 4-27
overriding payment method, 4-27
preparing cash payments, 4-26
setting up payment methods, 4-25
third party payments, 4-27

Prenotification validation, 4-26
Printing on preprinted stationery
P45 and Pay Advices, 3-103

Process Rules
See Business Rules

Processes
Cheque/Check Writer, 4-41
Costing, 4-60
Initial Balance Structure Creation, 4-87
Initial Balance Upload, 4-84
Magnetic Tape, 4-29
Payment, 4-28
Payroll Archive Reporter, 4-62
Payroll Run, 4-17
Pre-Payments, 4-25
PYUGEN, 4-15
Transfer to General Ledger, 4-59

processes
Initial Balance Upload, 4-79

Processing priority
of entries in Payroll Run, 4-18

Profile options
See System profiles

Program setup, 3-85
purge
Oracle HRMS Data Pump, 4-236

PYUGEN, 4-15
PYUMAG, 4-30, 4-63

Index-4

Q
qualification types, defining, 3-96
Quantum
Installing for Oracle Payroll (US), 3-1

QuickPay
system administration, 4-55

R
Rating scales, 3-95
Raw SQL Trace file
example, 4-265

Reporting groups, 3-89
Reports
defining, 3-103
Magnetic Tape, 4-30
payroll, 4-62

Responsibilities
associating with help files, 3-113
defining, 3-112
setting user profile options, 3-112
View All, 3-45

ROLEGEN, 4-160
Roles
See HRMS Roles

Rollback
payroll action parameters, 4-51

Rolling back
cheque/check payments, 4-45
interlock rules, 4-58

Routes
for archive database items, 4-64
of balance dimensions, 4-76
used by FastFormula, 4-131

Routing
See Transactions

Routing Style, 3-49, 3-55
Run results
creation by Payroll Run, 4-24

S
Schools and colleges, defining, 3-96
SECGEN, 4-161
Secure tables and views
Secure Tables and Views, 4-156

Security
customizing, 4-155
profiles, 3-112, 4-156
setting up, 3-111

Skills matching
defining requirements, 3-94

sort code validation
enabling, 4-282

Special information types
personal information, 3-92

SQL Trace
advanced, 4-266

event 10046, 4-266
facility, 4-250
init.ora parameters, 4-251
locating the file, 4-254
Payroll processes and reports, 4-253

SRW2 report, 4-42, 4-45
Standard letters
setting up, 3-104

Standard Setup
See Transaction Type Wizard

Startup data, 3-1
Steps
post install, 3-1

System Administration
tasks, 3-43

System profiles
AuditTrail:Activate, 3-115

T
Talent Management
implementation steps, 3-95
setting up, 3-95

Task flows, 3-108
Termination of assignments
processing by Payroll Run, 4-19

Third party payments, 4-27
TKPROF, 4-251, 4-255
body, 4-259
formatting a trace file, 4-255
header, 4-258
sort options, 4-258
summary, 4-263

Trace
facility
SQL, 4-250

Transaction Templates
associating with HRMS roles, 3-51
setting up, 3-51

Transaction Type Wizard, 3-50
Advanced Setup, 3-51
Standard Setup, 3-50

Transactions
defining HRMS roles, 3-49
routing sequence, 3-50
setting up workflow routing, 3-49

Transfer to General Ledger process, 4-59

U
Update
in a datetracked block, 4-1

Uploading competencies, 3-95
User hooks
in APIs, 4-191
to populate custom profiles, 4-153
to set user profile options, 4-153

User interfaces

Index-5

and APIs, 4-166
User keys, 4-218
User profile options
for responsibility, 3-45
referenced in flexfield value sets, 4-153

User profiles
HR:Global Competence Flex Structure, 3-95

User security
See Security

V
validating
GB branch sort code, 4-281

View All HRMS User
View All, 3-43

Voiding and reissuing cheques, 4-44

W
Web Applications Desktop Integrator (Web ADI),
3-115

Work choices for jobs or positions, 3-97
Work incidents, 3-55
Worker preferences, entering, 3-97
Workers Compensation
defining, 3-58

Workflow
for transactions, 3-49

Workforce Intelligence, 3-98
Discoverer reports, 3-98

Workforce Performance Management, setting up,
3-97

X
XML
for payment processes, 4-305

Index-6

Index-7

	Oracle Human Resources Management System Implementation Guide (U
	Preface
	Introduction
	Planning Implementation

	HRMS Configuration Workbench
	Getting Started with the Configuration Workbench
	Quick Start Implementation
	Quick Evaluation of Prototypes Using the Configuration Workbench
	Upgrade HR Foundation
	Full Implementation
	Configuration Workbench for Enterprise and Workforce Management
	Defining Jobs in the Configuration Workbench
	Defining Positions in the Configuration Workbench
	 Defining Grades in the Configuration Workbench
	Configuration Workbench for Compensation, Benefits, and Payroll
	Configuration Workbench for Payroll Process Management
	Defining Regional Jobs, Positions or Grades in the Configuration
	Converting Benefits Enrollments
	Configuration Workbench for Data Conversion
	Configuration Workbench for HR Information Systems
	Configuration Workbench for Migrating Data

	Implementation Guide
	Implementation Steps
	Post Install Steps
	Implementation Checklist
	Implementation Flowchart
	Administration
	Enterprise and Workforce Management
	Payroll Process Management
	Compensation, Benefits, and Payroll
	Benefits Implementation Without Plan Design Wizard
	Workforce Sourcing and Deployment
	Talent Management
	Workforce Intelligence
	HR Information Systems

	Implementation Guide
	Further Implementation Steps
	Technical Essays
	How DateTrack Works
	Behavior of DateTracked Forms
	Table Structure for DateTracked Tables
	Creating a DateTracked Table and ViewDateTrackcreating a datetra
	Restricting Datetrack Options Available to Forms Users

	Create and Modify DateTrack History Views
	What Can You Create and Modify?
	What Happens When You Request DateTrack History?
	Rules for Creating or Modifying DateTrack History Views
	Using Alternative DateTrack History Views
	List of DateTrack History ViewsDateTrack History viewslist of

	Creating Control Totals for the Batch Element Entry Process
	Setting Up Control Totals
	Creating the SQL Code

	Overview
	PYUGENPYUGENProcessesPYUGENPayroll processesoverview
	Payroll Action Parameters
	Overview of the Payroll Processes
	Assignment Level Interlocks

	Payroll Run Process
	Determine Assignments and ElementsAssignment setsElement sets
	Process Each Assignment
	Create Run Results and ValuesPayroll Runcreate run results and v
	Set Up ContextsPayroll Runset up contextsContextsfor payroll run
	Run Element Skip Rules
	Create and Maintain Balances
	Run Formulas

	Pre-Payments Process
	Setting Up Payment Methods
	Preparing Cash Payments (UK Only)
	Prenotification (US Only)
	Consolidation setsConsolidation Sets
	Third Party Payments
	Exchange Rates
	Overriding Payment Method
	The Process

	Payment Processes
	Magnetic Tape Process
	Error Handling
	Example PL/SQL
	Cheque Writer/Check Writer Process
	The Process
	Cheque Numbering
	Voiding and Reissuing Cheques
	Mark for Retry
	Rolling Back the Payments
	SRW2 Report
	Using or Changing the PL/SQL Procedure
	Cash Process Cash paymentsprocess

	Payroll Action Parameters
	Action Parameter Values
	Summary of Action ParametersParametersCHUNK_SIZEParametersTHREAD
	Parallel Processing Parameters
	Array Select, Update and Insert Buffer Size Parameters
	Costing Specific Parameters
	Magnetic Tape Specific Parameters
	Error Reporting Parameters
	Frequency Rule Specific Parameters
	Rollback Specific Parameters
	Reversal Specific Parameters
	External Process Archive/Payslip Archive
	Payroll Process Logging
	Logging Parameters
	Miscellaneous Parameters
	System Management of QuickPay ProcessingQuickPaysystem administr

	Assignment Level Interlocks
	Action Classifications
	Rules For Rolling Back and Marking for Retry

	Transfer to the General Ledger Process
	Costing Process
	Example of Payroll Costs Allocation
	Example of Employer Charge Distribution

	The Payroll Archive Reporter (PAR) Process
	PAR Modes
	Overview of the PAR Process
	Overview of the Setup Steps
	Create Database Items for ArchivingDatabase itemsfor archiving
	Write FormulasFormulafor archiving payroll reports
	Write Package Procedures For Assignments And Assignment Actions
	Provide an SRS Definition for the PAR Process
	Populate Rows in the PAY_REPORT_FORMAT_MAPPINGS_F Table
	Examples: INITIALIZATION_CODE and ARCHIVE_CODE

	Balances in Oracle Payroll
	Overview of BalancesBalancesbalance dimensionsDimensions (of bal
	Latest Balances
	Balance Dimensions Balancesbalance dimensions
	Initial Balance Loading for Oracle PayrollBalancesloading initia
	Introduction
	Steps
	Balance Loading Process
	Latest Balances Latest balancesinitial loading
	Setting Up an Element to Feed Initial Balances Elementsto feed i
	Setting Up the Initial Balance Values
	Running the Initial Balance Upload ProcessProcessesInitial Balan
	Balance Initialization Steps
	Including Balance Values in ReportsBalancesincluding values in r
	The Balance Function

	Legislative Balance Initialization
	Balance Initialization Elements
	Supported Dimensions
	Overview of Tax-related Balances
	Balances That Require Initializing
	Required US Legislative Balances
	Balances Reported on W2 and 941

	PayMIX Views
	Renaming of PayMIX Tables
	Views From PayMIX Tables to BEE Tables
	PayMIX Windows in Release 11i

	Dependents and Beneficiaries
	Overview
	Design
	Windows and Data Entry
	Additional Notes

	Payroll Tax Subsystem
	Installed Tax System
	Earnings and Deductions
	Taxes
	 Tax Balances
	User Defined Reports
	Other Forms
	Tax Implementation

	The FastFormula Application Dictionary
	Entities in the Dictionary
	Defining New Database ItemsDatabase itemsdefining

	Calling FastFormula from PL/SQL
	The Execution Engine Interface
	Changes in R11i
	Server Side Interface
	Client Side Call Interface
	Special Forms Call Interface
	Logging Options

	Validation of Flexfield Values
	Referencing User Profile Options User profile optionsreferenced
	Referencing Form block.field Items Form block.field itemsreferen
	Referencing FND_SESSIONS Row FND_SESSIONS table
	Incomplete Context Field Value Lists Context field values list f

	Extending Security in Oracle HRMS
	Security ProfilesSecurityprofiles
	Security Processes
	Securing Custom TablesCustom tablesmaking available to reporting

	APIs in Oracle HRMS
	API Overview
	Understanding the Object Version Number (OVN)Object version numb
	API Parameters
	API Features
	Flexfields with APIsFlexfieldsand APIs
	Multilingual Support
	Alternative APIsAPIslegislative versions
	API Errors and WarningsAPIserrors and warnings
	Example PL/SQL Batch Program
	WHO Columns and Oracle Alert
	API User Hooks
	Using APIs as Building Blocks
	Handling Object Version Numbers in Oracle FormsObject version nu

	Oracle HRMS Data Pump
	OverviewAPIsloading legacy dataLegacy dataloading using Data Pum
	Using Data Pump
	Running the Meta-MapperMeta-Mapper processrunning
	Loading Data Into the Batch Tables
	Running the Data Pump ProcessParametersfor Data Pump
	Finding and Fixing Errors
	Purging Data
	Sample Code
	Notes on Using The Generated Interfaces
	Utility Procedures Available With Data Pump
	Table and View Descriptions

	SQL Trace
	Using SQL Trace
	Enabling SQL Trace
	Locating the Trace File
	What is TKPROF?
	Formatting a Trace File using TKPROF
	TKPROF Sort Options
	Understanding a TKPROF Report
	Raw SQL Trace File Example
	Advanced SQL Tracing Using Event 10046

	Oracle Generic Third Party Payroll Backfeed
	Overview
	Setting Up the Generic Payroll Backfeed
	Installing the Oracle Generic Third Party Payroll Backfeed
	Payment Information
	Balance Types
	APIs
	Setting Up Data Pump
	Deciding Which Upload Option to Use
	Setting Up Data Uploader
	Using Backfeed to Upload Payroll Run Results
	Creating an Upload Workbook
	Using the Load Sheets Macro
	Using the Save Sheets Macro
	Running Data Uploader
	Running Data Pump
	Viewing Third Party Payroll Results in Oracle HRMS

	GB Branch Sort Code Validation in Oracle HRMS
	How Oracle HRMS Implements GB Branch Sort Code Validation
	Overview: Enabling Sort Code Validation
	Appendix A: Sample Bank Name Mapping File and Code
	Appendix B: PAY_BANK_BRANCHES_PKG APIs
	Appendix C: Sample Source Branch Data File and Loader Code

	Grade/Step Progression and the Total Compensation Data Model
	XML Output for Payment Processes
	Tables That Support XML Enhancement

	HRMS Glossary
	Index

